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Preface 

The Weurman Flavour Research Symposium has been a unique platform and prob-

ably the most representative conference for flavour scientists to present and discuss recent 

trends and developments in the field of flavour research. The conference - named after 

the flavour pioneer Cornelius Weurman - took place in 1975 for its first time and was 

then held every three years in different European countries. In 2017, it took its turn to 

Graz, Austria. It was a great honour for us to be the organisers of the XV Weurman 

Flavour Research Symposium and to welcome 230 flavour scientists from 30 countries at 

the Old Campus of our university. 

The symposium covered six major areas of flavour science: (i) Flavour Generation 

and Flavour Release, (ii) Flavour Perception and Psychophysics, (iii) Impact of Flavour 

Compounds on Humans, (iv) Flavour and Off-Flavour of Non-Food Products, (v) In-

dustry-Related Flavour Issues and (vi) Recent Developments in Analytical Techniques. 

During the conference, we had the chance to follow the presentation of 38 lectures, 14 

flash presentations and to discuss an impressive amount of topics and results in front of 

130 posters. In the run-up to the event, 65 attendees took the opportunity to attend one of 

the two satellite symposia and to deepen their knowledge in real-time flavour release 

analysis or regarding flavour analysis by advanced chromatographic methods. The 

participation of attendees from industry and academia with different flavour perspectives 

launched lively discussions in the inspiring atmosphere of our university. We hope that 

the young colleagues could feel the ‘Weurman spirit’ and that they are encouraged to 

continue their work in flavour science. 

The present edition of the book ‘Flavour Science’ follows the structure of the sym-

posium. We are very pleased that many colleagues followed our invitation to publish their 

results as full contribution in this book. With 108 interesting contributions, we hope that 

this book will be useful for many flavour scientists, whether or not they attended the 

symposium. The opportunity to publish the contributions as open access papers will 

hopefully make flavour science accessible to a large audience. 

The organisation of this symposium and the editing of the proceedings could only 

be achieved with the support and the help of a lot of people. We would like to 

acknowledge the members of our Scientific Committee for assessing abstracts, selecting 

contributions and helping us to set up the scientific programme, chairing sessions and 

reviewing full contributions to be published in this book. We would like to thank the 

members of the Local Organising Committee for organising this wonderful event at the 

campus of our university. Thanks to many master- and PhD students who assisted us 

during the symposium! We are grateful for the generous support by our sponsors. Thanks 

to their donations we were able to offer reduced student fees to 35 PhD students and, thus, 

to enable their participation. Finally, we would like to thank Larissa Kolb who worked 

hard on correcting and formatting of the manuscripts and Gabriele Gross from the Verlag 

der TU Graz for her general assistance with the book.  

The XVI Weurman Flavour Research Symposium will be organised by Elisabeth 

Guichard and Jean-Luc Le Quéré and will take place in Dijon, France in 2020. We wish 

Elisabeth and Jean-Luc all success for the organisation and we are looking forward to 

attending the next Weurman Flavour Research Symposium! 

 

Barbara Siegmund and Erich Leitner  
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Introduction 

Plants produce a wide range of structurally diverse natural products. These natural 

products play key roles in the interaction of plants with organisms in their environment. 

They, for example, act as defence compounds against herbivores and pathogens, or as 

attractants of insects for pollination. They also provide a natural resource for humans and 

are used as medicine (e.g. artemisinin and parthenolide), pigments (e.g. β-carotene and 

lycopene), fragrance (e.g. limonene and linalool) and flavours (e.g. vanillin and menthol).  

 

Figure 1: Schematic representation of plastidial and cytosolic terpenoids. Examples of different plant derived 

terpenoids and plant organs (seed, fruit, leaf or root) containing these terpenoids are shown. 

Plant natural products can be divided into several classes such as nitrogen-containing 

(e.g. alkaloids, glucosinolates and cyanogenic glucosides) and nitrogen-free metabolites 

such as terpenoids, phenolics and flavonoids [1]. Among these, the terpenoids are the 
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most diverse class, constituting almost 12% of all known plant metabolites [2] and 

possessing many different functions in plants. Low molecular weight volatile terpenoids 

are involved in plant protection mechanisms during biotic and abiotic stresses [3,4] and 

when emitted from flowers can act as pollinator attracting signals [5]. Terpenoids can be 

antifeedant compounds that protect the plant against insects, such as for example, 

geranyllinalool in Nicotiana obtusifolia [6] and can be an activator signal for systemic 

acquired resistance [7]. Several terpenoids, such as gibberellins, abscisic acid and 

strigolactones are plant hormones and act as signalling molecules in physiological 

processes. Strigolactones, for example, are a regulator of plant axillary bud outgrowth 

and thus branching [8]. In addition to their role as plant hormone, strigolactones are also 

secreted into the soil surrounding the plant’s roots where they recruit the symbiotic 

arbuscular mycorrhizal fungi. 

Biosynthesis of Terpenoids 

Biosynthesis of the basic building blocks of terpenoids 

Terpenoids are produced from the universal building blocks, isopentenyl diphos-

phate (IPP) and dimethylallyl diphosphate (DMAPP). IPP and DMAPP are synthesized 

through two different biosynthetic pathways. One of these occurs in the plastids and 

supplies mostly the substrates for the production of monoterpenoids (often present in 

essential oils), diterpenoids and tetraterpenoids (carotenoids) (Figure 2). The other 

pathway, known as the mevalonate (MVA) pathway takes place in the cytosol. The IPP 

and DMAPP derived from this pathway are mostly used as substrates in the production 

of sesquiterpenoids and triterpenoids.  

The condensation of the IPP and DMAPP building blocks produced by the MEP and 

MVA pathways provides the prenyl diphosphate substrates such as C10 (geranyl 

diphosphate, GPP), formed by condensation of IPP and DMAPP through enzymatic 

activity of geranyl diphosphate synthase (GPS) or C15 (farnesyl diphosphate, FPP), 

formed from condensation of GPP and IPP by farnesyl diphosphate synthase (FPS) 

(Figure 2). GPP and FPP are the universal precursors of monterpenoids (C10) and ses-

quiterpenoids (C15), respectively. Geranylgeranyl diphosphate synthase (GGPS) ca-

talyses the condensation of FPP with IPP, which results in the formation of the C20 

precursor of the diterpenes, geranylgeranyl diphosphate (GGPP), while dimerization of 

two FPP molecules and removal of the diphosphate groups through the activity of 

squalene synthase (SQS) results in biosynthesis of squalene (C30) [9]. Squalene mono-

oxygenase or epoxidase adds an oxygen group to the squalene, resulting in production of 

2,3-oxidosqualene, the precursor of triterpenoids (C30) as well as sterols and steroids in 

plants. Dimerization of two GGPP molecules and elimination of the two diphosphate 

groups by phytoene synthase (PS) results in the formation of a C40 compound, phytoene, 

the precursor of the tetraterpenoids or carotenoids (Figure 2). 

Biosynthesis of monoterpenoids (C10) 

Monoterpenoids are C10 compounds derived from GPP. Monoterpenoids are well-

known for their biological activity, but also for their strong odour and aromatic properties 

[10]. These compounds are used for various applications such as fragrances, drinks, food 

additives, perfumes and cosmetics [11]. Geraniol (isolated from rose flowers) and linalool 

(from coriander; Figure 1) are two of most important monoterpenoids used in the flavour 

industry which is reaching to annual consumption of 5000 tons/year [12]. 

Monoterpenoids in plants are often induced upon biotic and/or abiotic stress conditions 

and they are supposed to possess properties to enable plants to deal with these stresses 
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[13]. 1,8-Cineole, for example, is toxic to certain insects and is produced by Artemisia 

annua upon infestation by the root feeding insect, Diuraphis noxia [14]. GPP synthase 

(GPS), the enzyme responsible for synthesis of the monoterpenoid precursor GPP, was 

first characterised from the essential oil glands of sage [15]. Formation of monoterpenoids 

takes place through the activity of enzymes called monoterpene synthases (sometimes 

also called monoterpene cyclase if catalysing the formation of a cyclic monoterpene). 

 
Figure 2: Terpenoid biosynthesis pathways. Biosynthesis of monoterpenoids (C10), diterpenoids (C20) and 
teteraterpenoids (C40) takes place in the plastids (in green) while the biosynthesis of sesquiterpenoids (C15) 

and triterpenoids (C30) is localized in the cytosol (in white). 

The DDxxD motif for Mg2+ cation binding is conserved among all terpene synthases, 

which allows their identification [16]. A single monoterpene synthase often catalyses 

formation of several monoterpenoids from GPP. For example, a promiscuous 

monoterpene synthase enzyme, CsTPS2FN, isolated from Cannabis sativa encodes the 

formation of (+)-α-pinene, (+)-β-pinene, myrcene, (-)-limonene and β-phellandrene [17]. 

As detailed above, it is generally assumed that the plastids are the major organelle for 

production of monoterpenoids and their substrate, GPP. Intriguingly, however, exchange 
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of mitochondrial produced GDP to the plastids for production of monoterpenoids has 

been demonstrated [18]. 

Biosynthesis of sesquiterpenoids (C15) 

Sesquiterpenoids are produced from FPP, again through the catalytic activity of 

terpene synthases, in this case called sesquiterpene synthases. Sesquiterpenoids are often 

aromatic, and constituents of plant essential oils. The sesquiterpene β-caryophyllene 

(Figure 1) has been reported to be present in many plant species; it is the major essential 

oil component of basil (Ocimum spp.), oregano (Origanum vulgare L.) and rosemary 

(Rosmarinus officinalis) [19] (Figure 1) and, together with humulene, is the main 

sesquiterpene obtained from cannabis plants and responsible for its odour [20]. β-

caryophyllene is widely used in frozen dairy, chewing gums and beverages [21]. Zingi-

berene, a sesquiterpene present in ginger (Zingiber officinale) is a spider mite repellent 

(Figure 1) [22]. In chamomile (Matricaria chamomila) it was shown that sesquiterpene 

biosynthesis starts in the plastids with GPP that is exported to the cytosol where IPP is 

added [23]. Interestingly, results from transient expression of a sesquiterpene synthase 

from feverfew (Tancetum parthenium) show that addition of mitochondrial targeting to a 

sesquiterpene synthase will result in higher sesquiterpene biosynthesis, presumably 

because mitochondrial FPP is accessed [24]. Indeed, localization of one of the Ara-

bidopsis FPP synthases in the mitochondria has been demonstrated [25]. Protein localiza-

tion studies using GFP fusions of cis-FPS, and santalene and bergamotene synthase (SBS) 

suggest that biosynthesis of these unusual sesquiterpenoids take place in the plastids using 

IPP and DMAPP from the MEP pathway [26]. 

Sesquiterpene lactones are a sub-class of the sesquiterpenoids with over 4000 dif-

ferent known structures. Sesquiterpene lactones are mainly colourless, bitter, compounds 

found mainly in plant species in the Asteracea [27]. Their biological properties such as 

antibacterial (e.g. vernolide [28]), antifungal (8α-hydroxy-4-epi-sonchucarpolide [29]), 

anticancer (e.g. parthenolide [30]) make them of interest for medical use. Sesquiterpene 

lactones are classified in six bicyclic or tricyclic classes named guianolides, 

pseudoguaianolides, xanthanolides, eremophilanolides, eudesmanolides and ger-

macranolides [31]. Costunolide may then serve as the precursor of the other ger-

macranolides (e.g parthenolide) and/or guaianolides (e.g. the main constituents of bitter 

compounds in chicory and endive). Further modification of sesquiterpene lactones is 

carried out by double bond reductases and glycosyl transferases [32,33].  

Biosynthesis of diterpenoids (C20) 

With more than 10,000 different natural plant derived structures, the diterpenoids 

are one of the most diverse classes of plant secondary metabolites [34]. They are also part 

of plant primary metabolism as plant growth regulators such as the gibberellins are 

diterpenes [35]. Many diterpenoids have medicinal properties, such as taxol (Figure 1), 

which is isolated from the Pacific yew (Taxus brevifolia) [36], and is used for the treat-

ment of ovarian and breast cancer [37]. Cafestol (Figure 1) and the structurally related 

kahweol are two diterpenes from Coffea arabica that induce apoptosis in malignant 

pleural mesothelioma (MPM) cancer cells [38]. A valuable compound for the fragrance 

industry is cis-abienol which is an aromatic diterpene isolated from fir trees (Abies bal-

samea). Cis-abienol is an important oxygen containing diterpenoid serving as the pre-

cursor of Ambrox® in perfume formulations [39] and the major labdane type diterpenoid 

responsible for the fragrance of tobacco leaves. Biosynthesis of cis-abienol proceeds in 

two sequential steps. First a diterpene synthase converts GGPP to 8-hydroxy-copalyl 
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diphosphate and then a kaurene synthase like enzyme converts the latter into cis-abienol 

by removing the diphosphate group [40].  

Biosynthesis of triterpenoids (C30) 

This class of specialized metabolites constitutes more than 20,000 identified plant 

compounds so far [41]. Triterpenoids show a lot of diversity in plant families. Saponins, 

glycosylated triterpenoids, are, for example, found in Quillaja saponaria (a native 

Chilean tree) and Camellia oleifera. Saponins are used in detergents, shampoos and 

emulsifiers due to their foaming properties [42,43]. Many plants produce saponin type 

triterpenoids during normal growth (e.g. apple fruit peel, producing ursolic acid [44]), 

however their saponin levels strongly depends on plant species, organs and develop-

mental stage [45]. Butelin, isolated from the bark of Butela spp., is another natural 

triterpenoid which is used in cosmetic products such as hair conditioners [46]. Many 

triterpenoids are used to cure major diseases such as cancer and HIV. Celastrol, a 

triterpenoids isolated from Tripterygium wilfordii exhibits Tat inhibitory action [47]. 

‘Tat’ is a virus encoded protein which is required for HIV genome transcription. Triter-

pene synthases convert 2,3-oxidosqualene through a Chair-Boat-Chair (CBC) or the 

Chair-Chair-Chair (CCC) conformation into the different triterpene skeletons. An ex-

ample of a triterpene synthase is β-amyrin synthase [48] responsible, for example, for β-

amyrin biosynthesis in tomato (Figure 1). P450s and glycosyl transferases play an im-

portant role in further decoration of triterpenoids, for example, for the production of the 

triterpene glycoside glycyrrhizin.  

Biosynthesis of tetraterpenoids (C40) 

The tetraterpenoids contain 750 different reported structures [49]. The carotenoids 

[50](tetraterpenoids) are the most common natural pigments and also possess antioxidant 

properties. Carotenoids are industrially used as dyes and colorants, in the food industry 

(e.g. β-carotene), as nutraceuticals and in the pharmaceutical industry, as well as in 

cosmetics [51] (Figure 1). They are mostly present in photosynthetic organisms [50] and 

often are responsible for red, orange and yellow colours [52]. Carotenoids are essential 

and play a vital role in photosynthesis. Carotenoid biosynthesis starts with the activity of 

phytoene synthase making pre-phytoene diphosphate [53]. Phytoene synthase then 

converts pre-phytoene diphosphate to 15-cis-phytoene. Several other enzymes namely a 

desaturase and an isomerase are involved to produce trans-lycopene. Cyclisation is the 

next step; activity of an α-cyclase results in α-carotene biosynthesis, while a β-cyclase 

can convert trans-lycopene to β-carotene. Another class of naturally occurring 

carotenoid-derived terpenoid type molecules are the strigolactones. Their biosynthesis 

starts with isomerization of β-carotene by D27 [54]. Then a carotenoid cleavage (CCD7) 

cleaves the resulting 9-cis-β-carotene which then results in production of 9-cis-β-apo-10-

carotenal and β-ionone [55]. Then, another carotenoid cleavage enzyme, CCD8, converts 

9-cis-β-apo-10-carotenal into carlactone [54]. This ubiquitous strigolactone precursor 

will be oxidised by a cytochrome P450, the MAX1 homologs, which results in the 

formation of carlactonoic acid or ent-2-epi-5-deoxystrigol [56,57]. 

Heterologous production of terpenoids in plants and micro-organisms  

As explained above, the terpenoids are very important compounds from medicinal, 

nutraceutical and nutritional point of view. However, commercialization of these com-

pounds is often restricted due to their low concentrations in the plant and their high 

structural complexity which makes chemical synthesis approaches too costly [58]. In 

addition, some of the plant species that produce attractive molecules grow slowly, may 
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have a low yield, are threatened by extinction, or are susceptible to environmental con-

ditions. Several approaches have been followed in the last decades to overcome these 

limitations. In an approach called metabolic engineering, scientists use alternative or-

ganisms (expression platforms) to optimize production of these metabolites. Terpenoid 

production in microbial systems, for example, is an appealing approach. Rapid growth 

and regeneration (e.g. 1 to 3 days for Escherichia coli and Saccharomyces cerevisiae, 

respectively) and well established tools for transformation make them suitable organisms 

for metabolic engineering purposes. However, ectopic expression of plant derived genes 

(enzymes) in these microbial platforms comprise some limitations which needs to be 

solved for a successful engineering strategy. For example, neither E. coli nor S. cerevisiae 

contain plastids. Hence in order to prevent possible miss-folding of the enzymes in these 

platforms, removal of a possible plastid targeting signal is suggested [59]. The subcellular 

targeting strategy used by plants makes expressing cytochrome P450s in micro-organisms 

even more challenging. S. cerevisiae, however is a suitable expression platform for 

cytochrome P450s as it is a eukaryotic microorganism containing endoplasmic reticulum, 

the maturation and activity site of cytochrome P450s. Another advantage of yeast is the 

ability of in vivo recombination of DNA fragments, such that several DNA fragments 

(harbouring homologous flanking regions) can be recombined upon transformation into 

yeast in a so called transformation associated recombination (TAR) [60]. Almost all 

required precursors for the biosynthesis of the different terpenoids are produced in yeast. 

Carotenoid and diterpenoid production in yeast is achieved often by overexpression of a 

GGPP synthase as yeast produces GGPP in small quantities. Carotenoids biosynthetic 

pathway genes have been successfully expressed in yeast [61]. Overexpression of genes 

such as HMGR, the rate limiting enzyme in the MVA pathway, has been shown to 

enhance the pool of precursor for the biosynthesis of, for example, sesquiterpenoids and 

triterpenoids. Alternatively, down regulation of competing pathways like sterol 

biosynthesis through down regulation of ERG9 (squalene synthase) [62] are molecular 

strategies which are implemented for successful engineering programs. Successful in-

vivo production of artemisinic acid and costunolide in WAT11 yeast (optimal yeast strain 

for expression of recombinant cytochrome P450s) is reported by introduction of 

sesquiterpene synthases (amorphadiene synthase and germacrene A synthase) and P450s 

(amorphadiene oxidase (for artemisininc acid). 

Metabolic engineering can also be pursued in the plant species that is already making 

the attractive product by overexpression of biosynthetic pathway genes or downregulation 

of competing pathways. However, this homologous engineering - optimization and 

boosting of metabolic pathways in the original plant species - is sometimes difficult and 

time consuming. Hence, other in planta expression systems have been explored for 

heterologous expression of genes involved in the biosynthesis of secondary metabolites. 

Here we discuss a number of examples of such hosts that have been used for metabolic 

engineering and reconstruction of terpenoid biosynthesis pathways. Overexpression of 

taxadiene synthase, which converts GGDP to taxadiene - a precursor of the anti-cancer 

molecule taxol (Figure 1) - has been studied in Nicotiana benthamiana. Taxadiene was 

produced to an astonishing yield of 27 µg/g dry weight [63]. An example of successful 

reconstruction of a full biosynthetic pathway is the biosynthesis of parthenolide in N. 

benthamiana. The transient co-expression of germacrene A synthase (GAS), germacrene 

A oxidase (GAO), costunolide synthase (COS) and parthenolide synthase (PTS) yielded 

1.4 mg/g fresh weight parthenolide in the leaves [30]. Artemisinin was also successfully 

synthesized in N. benthamiana, by transient expression of five biosynthestic pathway 

genes, amorphadiene synthase (ADS), amorphadiene oxidase (ADO), alcohol 
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dehydrogenase 1 (ALDH1), artemisinic aldehyde double-bond reductase (DBR) and 

aldehyde dehydrogenase 1 (ALDH1). Physcomytrella patens is another plant expression 

platform which recently has raised a lot of interest for metabolic engineering of valuable 

terpenoids. Novel and relatively easy transformation technology [64] has made this 

platform a suitable putative heterologous system for bulk production of terpenoids. 

Successful artemisinin production in P. patens was shown recently with a yield of 

0.21 mg/g dry weight [65]. This yield was obtained upon co-expression of the same five 

biosynthesis pathway genes mentioned above, ADS, ADO, ALDH1, DBR and ALDH1. 

Yield in these heterologous production platforms is still quite low. A better knowledge of 

the natural site of biosynthesis and accumulation, the chemical properties of the 

terpenoids produced, and the mechanisms involved in their transport (from the 

biosynthesis site to the accumulation site) will provide novel solutions to be implemented 

in metabolic engineering programs [66,67]. 
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Abstract 

Major QTLs (quantitative trait loci) for the production of two-character impact 

compounds in apple (Malus x domestica), namely 2-methylbutyl acetate (2-MBA, over 

ripe, fruity, sweet notes) and estragole (anise, licorice notes), both map to the MdAAT1 

(alcohol acyl transferase 1) locus in the apple genome. Biochemical analysis shows that 

MdAAT1 is required for the production of volatile acetate esters such as 2-MBA, hexyl 

acetate and butyl acetate and for the production of p-hydroxycinnamyl acetates that are 

substrates for the production of phenylpropenes such as eugenol, chavicol and estragole 

in ripe apple fruit. The importance of the MdAAT1 gene in ester and phenylpropene 

production was validated in transgenic ‘Royal Gala’ knockdown lines that produced 

significantly reduced 2-MBA and estragole levels in ripe fruit. Manipulation of flux 

through the phenylpropanoid pathway in apple using MdCHS (chalcone synthase) 

knockout and MdMYB10 (transcription factor) over-expression lines increased 

phenylpropene production. Transient over-expression of alcohol acyl transferases 

(AATs) from ripe strawberry and tomato fruit showed these enzymes can also produce p-

hydroxycinnamyl acetates, indicating that ripening-related AATs are likely to link 

volatile ester and phenylpropene production in many different fruit. These results 

significantly increase our understanding of volatile synthesis in fruit and provide the basis 

for breeding new apple varieties with improved flavour profiles by marker assisted 

selection. 

Introduction 

The characteristic taste and aroma of different fruit species and cultivars is derived 

from non-volatile components such as sugars (providing sweetness), acids (sourness, 

tartness) and tannins (astringency, bitterness), as well as volatile compounds such as 

esters, phenylpropenes, alcohols, aldehydes, terpenes and furans. Fruit such as apple, 

banana, kiwifruit, melon and pear produce high levels of volatile esters which contribute 

characteristic ‘fruity’ notes to the aroma. In ‘Gala’ apples, the major odour-active esters 

are hexyl acetate (fruity, green, apple notes), butyl acetate (ethereal, solvent, fruity) and 

2-methylbutyl acetate (overripe, fruity, sweet) [1]. Volatile esters are synthesised via fatty 

acid degradation or from amino acid precursors with the final step being catalysed by 

alcohol acyl transferases (AATs). AATs catalyse the transfer of an acyl group from a CoA 

donor to an alcohol acceptor. 

Phenylpropenes are typically found at low levels in fruit, and impart flavour notes 

associated with aromatic spices [2]. In apple, estragole (anise, licorice notes) is the most 

widely described odour-active phenylpropene; with eugenol (sweet, spicy, clove) and 

chavicol (clove, spicy) also being reported [2]. In tomato, eugenol and guaiacol content 
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is correlated with a ‘pharmaceutical’ aroma [3], whilst in musk strawberry the high 

content of eugenol, methyleugenol, and methylisoeugenol has been associated with a 

cinnamon smell [4]. Phenylpropenes are produced as a side branch of the general 

phenylpropanoid pathway and the initial biosynthetic steps are shared with the lignin 

biosynthetic pathway up to the production of p-coumaryl alcohol and coniferyl alcohol. 

The first committed step in phenylpropene production involves the conversion of p-

coumaryl and coniferyl alcohols to p-coumaryl and coniferyl acetates (p-

hydroxycinnamyl acetates). The acetates are then reduced by NADPH-dependent 

phenylpropene reductases. Methoxylated phenylpropenes such as estragole and anethole 

are formed by O-methyltransferases (OMT) using S-adenosylmethionine (SAM) as the 

methyl donor. 

QTLs (quantitative trait loci) for volatile production have recently been described 

for aldehydes, esters, alcohols and phenylpropenes in apple (Malus x domestica). Forty-

six QTLs for ester and alcohol production were reported in a cross between the highly 

aromatic cultivar ‘Royal Gala’ (RG) and the low aroma cultivar ‘Granny Smith’ (GS) [5]. 

The major QTL for the production of 2-methylbutyl acetate (2-MBA) and 34 other 

volatiles in this population was located on linkage group 2 (LG2) and co-located with the 

Malus x domestica alcohol acyl transferase 1 (MdAAT1) gene. Two QTLs for production 

of the phenylpropene estragole were also identified in the same segregating population. 

The first QTL was located on LG1 and was responsible for 9.2% of the variation. The 

MdoOMT1 (O-methyltransferase 1) gene was shown to co-locate with the LG1 QTL and 

biochemical and molecular analysis showed that this gene was required for estragole 

production in ripe RG fruit [6]. 

Results and discussion 

QTL analysis 

The major QTL for the production of estragole (accounting for 24% of the variance) 

in the segregating RG x GS population is located on LG2. The nearest marker to the 

maximum logarithm of the odds (LOD) peak for estragole production was identical to 

that previously identified as co-segregating with the production of volatile esters such as 

2-MBA, butyl acetate and hexyl acetate in ripe apple fruit [7]. This result suggested that 

MdAAT1 might be the enzyme responsible for an acylation step in both the ester 

biosynthetic and phenylpropene biosynthetic pathways. 

Biochemical characterisation 

The enzymatic activity of MdAAT1 has previously been reported with respect to a 

wide range of alcohols and acyl CoAs involved in volatile ester production in ripe apple 

fruit [8]. In Yauk et al., 2017 [7], MdAAT1 was also shown to convert coniferyl and p-

coumaryl alcohols to p-hydroxycinnamyl acetates that serve as substrates for 

phenylpropene production in apple. The relative activity of recombinant MdAAT1-RGa 

from RG towards alcohols such as butanol, 2-methylbutanol and hexanol used for volatile 

ester production was high (64–100%, Table 1). In contrast, relative activity towards p-

coumaryl alcohol and coniferyl alcohol was much lower (< 2%, Table 1). Kinetic studies 

indicated that the affinity of MdAAT1-RGa towards p-coumaryl alcohol was comparable 

to that reported for hexanol and butanol, however the Vmax was much lower [7]. Compared 

with MdAAT1-RGa, recombinant MdAAT1-GSa from GS showed weak activity (< 3%) 

towards alcohols used for volatile ester biosynthesis and barely detectable activity 

(0.11%) towards p-coumaryl alcohol (Table 1). This difference in kinetic properties likely 

explains the QTL in the segregating RG x GS population. 
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Table 1: Activity of recombinant MdAAT1 enzymes from ‘Royal Gala’ (RG) and ‘Granny Smith’ (GS). 

Activity assays contained MdAAT1-RGa (0.5 µg) or MdAAT1-GSa (31.2 µg), 10 mM alcohol, 1 mM CoA, in 

50 mM Bis-Tris propane pH 8.0. Activity was set at 100% for acetyl-CoA and hexanol using MdAAT1-RGa. 
Data are presented as mean ± SE (n=3). Chavicol was synthesised by esterification of p-coumaric acid followed 

by DIBAL reduction to p-coumaryl alcohol. Radiolabelled acetyl-CoA was obtained from American 

Radiolabeled Chemicals and all other chemicals from Sigma-Aldrich. Data derived from Yauk et al., 2017 [7]. 

Esters    
Substrate 1 Substrate 2 MdAAT1-RGa MdAAT1-Gsa 

Hexanol acetyl-CoA 100±1.4 2.94±0.16 

Butanol  63.8±3.0 1.03±0.06 

2-methylbutanol  77.6±3.3 0.26±0.02 

    

Phenylpropenes    
Substrate 1 Substrate 2 MdAAT1-RGa MdAAT1-GSa 

p-coumaryl alcohol acetyl-CoA 1.2±0.2 0.11±0.01 

coniferyl alcohol  0.3±0.02 not detected 
 

Analysis of MdAAT1 knockdown lines 

To validate the importance of MdAAT1 in phenylpropene production, transgenic RG 

lines containing an RNAi construct of MdAAT1 were examined. Our hypothesis was that 

decreasing MdAAT1 expression (Figure 1A) would reduce the production of p-

hydroxycinnamyl acetates and the subsequent accumulation of phenylpropenes in ripe 

fruit. The results from solvent extraction and GC-MS analysis on ripe fruit samples from 

two transgenic lines and RG controls is presented in Figure 1B. Total ester production in 

the MdAAT1 lines was reduced by > 90%, confirming the results previously reported in 

Souleyre et al., 2014 [5]. Production of the phenylpropenes chavicol, (E)-isochavicol, 

eugenol and estragole were also reduced in the MdAAT1 knockdown lines. 

Manipulation of flux in the phenylpropanoid pathway 

Two additional sets of transgenic apple plants were investigated to determine what 

effect manipulating flux through the phenylpropanoid pathway would have on 

phenylpropene accumulation. The first set of transgenic lines were down-regulated for 

expression of the MdCHS (chalcone synthase) gene, a key biosynthetic gene in the 

phenylpropanoid pathway. MdCHS knockout lines do not accumulate anthocyanins or 

dihydrochalcones which are normally abundant in apple fruit [9]. Our hypothesis was that 

redirection of flux in these plants would lead to accumulation of higher levels of 

phenylpropenes (Figure 2A). The results from solvent extraction and GC-MS analysis on 

ripe fruit samples from three transgenic lines and RG controls is presented in Figure 2B. 

Production of the phenylpropenes chavicol and (E)-isochavicol increased in all three 

MdCHS lines compared to the control. Production of eugenol and estragole was elevated 

in lines A2 and A7 respectively. As expected, total ester production in the MdCHS 

knockout lines was similar to the RG control. 

Analysis of the glycosides present in two of the MdCHS knockout lines compared to 

the RG control indicated that production of chavicol and eugenol glycosides was elevated 

in the transgenic lines (Figure 2B). Chavicol glycosides were found at 80–100 fold higher 

levels in the MdCHS lines compared to controls, whilst eugenol glycosides were found at 

6–12 fold higher levels. Much of the increased flux towards phenylpropene production in 

the MdCHS knockout lines appeared to be directed towards glycoside sequestration. The 

total phenylpropene glycoside concentration in the MdCHS lines was 35,000–40,000 ng/g 
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(vs 700 ng/g in controls), whilst the total ‘free’ phenylpropene concentration was 1,400–

4,000 ng/g in the MdCHS lines (vs 800 ng/g in controls). 

 
Figure 1: Analysis of MdAAT1 knockdown lines (A) In MdAAT1 knockdown lines the production of p-

coumaryl acetate and phenylpropene derivatives should be reduced. MdAAT1 = Malus domestica alcohol acyl 
transferase 1, MdoPhR5 = Malus domestica phenylpropene reductase 5, MdoOMT1 = Malus domestica O-

methyltransferase 1. (B) Volatile phenylpropene and ester production in ‘Royal Gala’ wildtype (WT) controls 

(grey bars) and MdAAT1 knockdown lines (AS70 and AS2002, white bars). Volatiles were obtained from ripe 
fruit skin tissue extracted into diethyl ether. GC-MS analysis of solvent extracts was performed on an Agilent 

6890N GC coupled to a Waters GCT time of flight-mass spectrometer [10]. Data are presented as mean ± SE 

and are derived from Yauk et al., 2017 [7]. 

The second set of transgenic apple plants in which phenylpropene flux was 

manipulated constitutively over-expressed a copy of the MdMYB10 gene, a transcription 

factor that up-regulates flux through the phenylpropanoid pathway. MYB10 over-

expression lines have red foliage and red-fleshed fruit and accumulate much higher levels 

of anthocyanins, flavonols and total phenolics due to increased expression of several 

phenylpropanoid biosynthetic genes [12]. Our hypothesis was that the MYB10 over-

expression lines would also accumulate higher levels of phenylpropenes either as a result 

of higher flux through the phenylpropanoid pathway or that MdMYB10 might 

transcriptionally activate genes involved in phenylpropene biosynthesis. The results of 

GC-MS analysis indicated that compared to controls, the MYB10 lines accumulated 

higher levels of phenylpropenes at all four stages of fruit development tested, but 

particularly at the two latter time points [6]. No evidence for transcriptional activation of 

MdAAT1, MdoPhR5 (phenylpropene reductase 5) or MdoOMT1 in MYB10 over-

expression lines was observed [7]. Together these results suggested that the increased 

phenylpropene levels in the MYB10 fruit was due to some of the increased flux in the 

phenylpropanoid pathway being diverted into the phenylpropene biosynthetic pathway. 

Do AAT genes link ester and phenylpropene biosynthesis in other fruit? 

Our results in apple clearly demonstrated the importance of MdAAT1 to ester and 

phenylpropene production in apple, but is this true for AAT genes from other species that 

accumulate both esters and phenylpropenes such as strawberry and tomato? To test this 
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hypothesis, AATs from ripe strawberry (SAAT) and tomato (SlAAT1) fruit were 

transiently expressed in Nicotiana benthamiana in coupled reactions with MdoPhR5. 

 
Figure 2: Analysis of MdCHS knockout lines (A) In MdCHS knockout lines the phenylpropanoid pathway is 
blocked leading to the accumulation of p-coumaryl-CoA which is then metabolised via p-coumaraldehyde to p-

coumaryl alcohol. p-Coumaryl alcohol is the substrate for MdAAT1 and the entry point for production of 

phenylpropenes. Md4CL = Malus domestica 4-coumarate CoA-ligase, MdCHS = Malus domestica chalcone 
synthase, MdCCR = Malus domestica cinnamoyl-CoA reductase, MdCAD = cinnamyl alcohol dehydrogenase, 

MdAAT1 = Malus domestica alcohol acyl transferase 1. (B) Volatile phenylpropene and ester production in 

‘Royal Gala’ wildtype (WT) controls (grey bars) and MdCHS knockout lines (A2, A6 and A7, white bars). 
Volatiles were extracted from ripe fruit skin tissue into diethyl ether. GC-MS analysis of solvent extracts was 

performed on an Agilent 6890N GC coupled to a Waters GCT time of flight-mass spectrometer [10]. Data are 

presented as mean ± SE and are derived from Yauk et al., 2017 [7]. (C) Phenylpropene glycoside production in 
‘Royal Gala’ WT controls (grey bars) and MdCHS knockout lines (white bars, A2 and A7). Glycosides were 

prepared using Amberlite XAD-2 columns as described in Yauk et al., 2014 [11] from ~ 3 g of ripe apple fruit 

skin tissue. Glycosides were digested with Rapidase AR2000 for 16 h at 37ºC in reactions overlaid with 100 μL 
diethyl ether/pentane. GC-MS analysis was performed as described in Nieuwenhuizen et al., 2013 [10]. Data 

are presented as mean ± SE. 

Coupled reactions were used as the phenylpropene products are stable and readily 

detected by GC-MS analysis [7]. The results presented in Figure 3 show that chavicol 
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was produced by both SAAT and SlAAT1 when leaves were infiltrated with p-coumaryl 

alcohol. Eugenol was also produced by both SAAT and SlAAT1 when leaves were 

infiltrated with coniferyl alcohol, but at much higher levels with SAAT from strawberry. 

These results suggest that ripening-related AATs may link volatile ester and 

phenylpropene production in many different fruit and provide a rational basis for breeding 

new varieties with improved flavour profiles by marker assisted selection or metabolic 

engineering. 

 
Figure 3: Functional characterisation of AATs from ripe strawberry and tomato fruit. The activities of 

strawberry AAT (SAAT) and tomato AAT (SlAAT1) were determined by transient expression analysis in 
Nicotiana benthamiana. Leaves were initially infiltrated with SAAT or SlAAT1 coupled with MdoPhR5 (Malus 

domestica phenylpropene reductase 5). GUS + MdoPhR5 was used as the control. After seven days, leaves were 

infiltrated with either p-coumaryl or coniferyl alcohol. GC-MS analysis of solvent extracts was performed on 
an Agilent 6890N GC coupled to a Waters GCT time of flight-mass spectrometer [10]. Data are presented as 

mean ± SE and are derived from Yauk et al., 2017 [7]. 
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Abstract 

As Riesling ages, there exists a delicate balance between the loss of young fresh and 

fruity characters, and the formation of aged notes, including ‘kerosene’ due to 1,1,6-

trimethyl-1,2-dihydronaphthalene (TDN). Early formation of ‘aged’ notes in young wine 

can lead to unbalanced wines that are not necessarily appreciated by consumers. The 

vineyard drivers associated with earlier evolution of TDN have been examined in this 

work, along with glycosylated precursors, to aid in better understanding of TDN 

formation in grapes and wine.  

Two commercial vineyards with a difference in temperature of around 2 °C 

underwent treatments to modulate light exposure to the grape bunches, yielding 

significant difference in total TDN and providing information into the roles of light and 

temperature in TDN formation. These treatments allowed for LC-MS/MS studies into 

glyosidic precursors and tentative identification of several compounds that are expected 

to contribute to higher amounts of TDN.  

Introduction 

Characters of young Riesling wine like estery, citrus and floral result from 

compounds such as monoterpenes or 2-phenylethyl acetate. As Riesling ages these 

diminish and the wine develops lime, caramel, and kerosene notes. One of the compounds 

responsible for aged Riesling character, and the ‘kerosene’ descriptor, is 1,1,6-trimethyl-

1,2-dihydronaphthalene, or TDN [1]. With a sensory threshold of 2 µg/L [2], TDN can 

be polarising with sensory intensity not always relating to concentration [3]. While 

considered important to aged Riesling, it can result in an unbalanced wine especially if it 

starts to emerge in younger wines and dominate delicate floral or fruity notes.  

The evolution of TDN in wine is thought to occur via the breakdown of carotenoids 

and through reaction and rearrangement of norisoprenoids, which are present in grapes as 

glycosidically bound species. As such, TDN itself is not present in grapes but forms and 

accumulates as wine ages. Considered a thermodynamic end-point, TDN is very stable, 

unlike the monoterpenes responsible for young Riesling characters which degrade as wine 

ages [4]. Due to light-induced changes in carotenoid profiles during grape growing and 

structural diversity of the carotenoid end group from which the C13-norisoprenoids are 

formed, elucidation of the exact carotenoid(s) that give rise to TDN, and hence the 

pathway to formation, has proved difficult so far. 

It is well understood that the timing and intensity of light exposure of grapes 

modulates the amount of TDN produced in wine [5], but recently it has been proposed 

that as growing seasons get warmer due to climate change, increasing temperatures result 

in kerosene notes being more prevalent in younger Riesling wines [6]. Currently, there 

exists evidence that winemaking practices can be useful in managing the amount of TDN 

present in a wine, including yeast choice [7], wine pH [8], and closure type (Figure 1) [3]. 
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But the question remains to be answered: is limiting TDN evolution using winemaking 

interventions is just a case of too little, too late? 

 
Figure 1: The evolution of TDN in 116 commercial Riesling wines, separated into those with screw cap closures 

(red circles) and cork closures (blue crosses).  

The biggest questions that remain surround the key driving forces in the vineyard 

that determine the speed and extent of TDN production as the wine ages. Is the changing 

climate a driving force that will result in Riesling obtaining aged characters earlier in 

future, and do we continue to employ viticultural techniques to modify light exposure of 

grapes as a means for achieving optimal maturity? This work is the first step in 

determining practical solutions for managing TDN concentrations in wine, including a 

better understanding of the pathway(s) by which TDN is formed, identifying markers in 

grapes that allow us to predict TDN formation in wine, and ascertaining the true vineyard-

based driving forces of high TDN wines. 

Experimental 

Trial sites and grape sampling 

During the 2014/15 growing season, trials were conducted in two commercial 

vineyards in Barossa Valley (BV) and Eden Valley (EV) of South Australia, separated by 

13.7 km, 180 m of altitude, and a mean January temperature differential of 1.94 °C. 

Treatments were applied 30-days past berry set (11 December for EV, 23 December for 

BV), where one-third of the bunch zone leaves were removed (leaf-plucked), compared 

with a control, both replicated 6 times in an alternating manner within two adjacent rows. 

Within these treatments, light exclusion boxes were applied to single bunches (plucked 

boxed and control boxed), and temperature was monitored in both canopy and boxes 

(Tinytag Transit 2 temperature loggers). At commercial harvest (11 February for BV, 19 

February for EV) grapes were hand-picked. Grape berries were immediately plucked and 

randomised. Grapes (300 g) were homogenised (20 s, 8,000 rpm, Retsch Grindomix 

GM200) and the homogenate stored at -20 °C until further use. When required, the 

homogenate was thawed, centrifuged and the supernatant used for analyses. 

 



 

 

Shedding light on the modulation of key Riesling wine aroma compounds in a changing climate 21 

Analysis of total TDN in grape samples 

The analysis of total TDN was based on the solid-phase extraction (SPE) protocol 

described by Kwasniewski et al. [5], using d8-nathphalene (Sigma-Aldrich) as the internal 

standard. Quantification of TDN in the hydrolysed samples using GC-MS was based on 

the report of Daniel et al. [8], with minor modifications to the oven parameters.  

Preparative HPLC of glycosidic material 

Based on a reported analytical-scale SPE isolation [9], glycosidic material was 

isolated from 50 mL of Eden Valley grape homogenate supernatant using 25 SPE 

cartridges (2 mL per cartridge), to increase scale. The pooled material was concentrated 

to approximately 2 mL and made up to 4 mL using milli-Q water. An aliquot was diluted 

1:10 and 500 µL injected on a Dionex UltiMate® 3000 Binary Semi-preparative HPLC-

DAD system and separation achieved on a Synergi Hydro-RP column (80 Å, 4 µm, 250 

x 21.2 mm) with a C18 guard column (15 x 21.2 mm). A binary gradient with mobile 

phases consisting of 0.1 % acetic acid in water (A) and 0.1 % acetic acid in acetonitrile 

(B) with a flow rate of 8 mL/min and elution profile starting at 5% B, increasing linearly 

to 15% B over 10 mins, then increasing to 30% B over 40 mins, then to 90% B over one 

minute and held for further 19 mins. The gradient was reduced to 5% B over 1 minute 

and re-equilibrated for 40 minutes. The column effluent passed through a diode array 

detector (190-400 nm) and then into a fraction collector. Fractions were collected every 

30 seconds, with those representing one peak combined, as were consecutive fractions 

representing no DAD peak. These were concentrated to dryness and reconstituted in 1 

mL of water. Half of this (0.5 mL) was used for LC-MS/MS investigations and half (0.5 

mL) analysed for total TDN (as above). 

LC-MS/MS investigation into glycosidic TDN precursors 

Potential glycosidic precursors to TDN were investigated using a Liquid 

Chromatography Quadrupole Time-of-Flight-system (Agilent 1200 series LC-system). 

Due to concentration factors 10 µL were injected for the exposed and 5 µL were injected 

for the control samples, and separation was carried out on a Kinetex PFP column (100Å, 

2.7um, 150 x 2.1 mm) using the same mobile phases as above. A flow rate of 0.2 mL/min 

was used and an elution profile starting at 5% B, increasing linearly to 15% B over 7 

mins, then increasing to 30% B over 13 mins, then to 90% B over 12 minutes and held 

for further 5 mins. The gradient was dropped back to 5% B over 1 minute and then re-

equilibrated for 19 minutes. A Bruker micrOTOF-Q II mass spectrometer equipped with 

an orthogonal ESI source was used for high resolution mass spectrometric analysis. The 

ionisation was in negative APCI mode with nitrogen curtain, nebulizer and collision gas. 

The instrument conditions were: capillary voltage (3500 V), end plate offset (-500 V), 

drying gas (4 L/min, 250 °C), nebulizer gas pressure (0.4 bar); mass scan range 

(50−1650), and ramped collision energy. External instrument calibration was using 

sodium formate solution (10 mM NaOH in isopropanol/0.2% formic acid (1:1)). 

Statistics and graphics 

All graphing and statistical analyses were carried out with the open source statistical 

programming language R, using custom scripts. 

Results and discussion 

The two sites represented a climatic shift of approximately 2 °C (1.94 °C based on 

our temperature data), and provide a good model for the temperature increase predicted 

under climate change scenarios [10]. The treatments represented extreme defoliation to 
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increase light exposure and confirm the previous findings correlating exposure and TDN 

production, plus boxed treatments to create a negative control, no-light scenario. The 

changes in total TDN brought about by the light modulating treatments were marked 

(Figure 2), although no significant inter-site variation was observed. 

 
Figure 2: Total TDN in grape homogenates from each of the treatments and sites. Different letter denotes 

significant difference between treatments (P = 0.05). 

This confirms the previous findings that light is important in modulating the amount 

of potential TDN that can evolve as a wine ages [5], but also shows no obvious difference 

between the two sites that differed by approximately 2 °C. This does not necessarily mean 

that temperature has no effect, as differences between the vineyards (e.g. trellising, soil, 

humidity) could be offsetting any temperature effect. Although, this result does imply that 

increases in grape growing temperature does not necessarily have to result in an increase 

in TDN production in wine.  

 
Figure 3: Carotenoid cleavage and one proposed pathway for production of TDN via glycosylated precursors, 

showing accurate masses for protonated intermediates in this proposed pathway [4, 7] 

The C13-norisoprenoids that result from carotenoid cleavage are generally bound to 

sugars in grapes. Hence, the leaf-plucked treatments provided a means to better 
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understand TDN production as sun-exposed grapes are expected to contain an increased 

amount of the glycosylated precursors within the TDN formation pathway. As such, 

glycosidic fractions were isolated from the Eden Valley control and leaf-plucked grapes, 

then fractionated using preparative HPLC. The fractions that were collected were then 

divided, and one half used to determine the total TDN content, to ascertain the potential 

of the compounds present in that fraction to give rise to TDN, and the other half kept for 

future LC-MS/MS investigation of fractions of interest.  

Although several HPLC-separated fractions gave rise to TDN under hydrolysis 

conditions, some gave significantly higher proportions from leaf-plucked grapes than 

from control grapes, and hence were targeted for understanding the up-regulation of TDN 

formation. Although pooling fractions and differences in dilution makes comparison 

between fractions and with absolute total TDN values obtained in whole grapes hard, the 

relative amounts between leaf-plucked and control samples could be determined. Fraction 

32 showed the highest concentration of total TDN, and a relative ratio of 3.1 between the 

leaf-plucked and control samples. Fraction 30 gave a 1.5-fold increase in the leaf-plucked 

samples, and the pooled fractions 37-50 a 2.6-fold increase. These three fractions were 

taken through to LC-MS/MS analysis to better understand the compounds present that 

were giving rise to increased TDN when hydrolysed. 

For LC-MS/MS investigation, the masses of hydroxylated compounds (possible 

aglycones) that are present in the proposed TDN formation pathways (Figure 3) [4, 7] 

were combined with the known masses of the sugars that predominate in grapes [9, 11, 

12] (as well as the potential acetate analogues) to produce a table of masses of interest. A 

number of ions were identified that fit our requirements: they were present in both 

treatments; more abundant in the leaf-plucked samples; and equivalent to a mass of 

interest (Table 1). 

Table 1: Ions observed in LC-MS/MS experiments present in higher abundance in leaf-plucked samples and 

relating to glycosidically bound masses of interest in the proposed TDN formation pathway. 

Ion [M+CH3OO]- 

(Da) 
Fraction 

Retention time (min) 
Matching structure/mass of 

interest Control 
Leaf-

plucked 

447.2230 32 12.0 11.8 m/z = 226.1569 + hexose 

561.2547 37-50 14.5 14.6 
m/z = 208.1463 + hexose + 

pentose 

593.2909 30 12.7 12.6 m/z = 226.1569 + rutinose 

Figure 4 shows an example fragmentation pattern from precursor ion 593.2809 Da 

in the leaf-plucked sample. Here, the acetate adduct ion fragments (-60 Da) to yield the 

mass of the proposed rutinoside (~553.26 Da), composed of an aglycone mass that is 

commonly observed in the proposed TDN formation pathways (226.1569 Da), and 

rutinose. This fragments further via a neutral loss of the aglycone (226.1566 Da). These 

fragments align with product ion spectra previously observed for guaiacol rutinoside in 

grapes [11]. 
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Figure 4: Fragmentation pattern for the ion 593.2809 Da in the leaf-plucked sample. 

In summary, these viticultural trials have confirmed the importance of light exposure 

for increasing the total TDN content of grapes, and shown no significant difference in 

grapes from two vineyards with an approximate 2 °C growing season difference. 

Preparative HPLC separation allowed for the LC-MS/MS identification of numerous ions 

that are more abundant in leaf-plucked samples, with tentative elucidation including 

disaccharide bound norisoprenoids. These structures will provide a starting point for in 

depth studies into the formation pathway of TDN in wine.  
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Abstract  

Changes of selected odorants were followed in entire cocoa powder process. 

Contribution of the intrinsic aroma content of fermented cocoa and the impact of 

individual processing steps such as preheating, alkalization, roasting and pressing on the 

odorant content was evaluated. The intrinsic aroma content of raw cocoa beans together 

with pre-heating before breaking and winnowing appeared to be the most important 

source of odorants in cocoa powder. Roasting and alkalization surprisingly showed low 

impact on Maillard derived odorants probably due to the depletion of precursors during 

preliminary processing. It was observed that the distribution of odorants after cocoa 

pressing is driven by the polarity of the odorant; polar odorants were predominantly 

retained in cocoa powder while nonpolar odorants in cocoa butter. 

Introduction 

Cocoa powder is the product obtained by grinding the solids remaining after cocoa 

butter have been pressed out of cocoa liquor. Cocoa powder has gained a significant 

attention in industry, not only because of its volatile price, but also because of the 

increasing number of its applications including confectionary, biscuits, powdered 

beverages, dairy, ice cream, cereals and bakery segments. Approximately half of cocoa 

bean production is used for manufacturing cocoa powder and cocoa butter. 

Flavour character of cocoa powder originates from genotype and origin of cocoa 

tree, post-harvest treatments (fermentation and drying) and from the manufacturing 

processes such as alkalization, roasting and pressing. Twenty-four key aroma active 

compounds were identified in cocoa powder by a sensomics study comprising odorants 

formed by biosynthesis, during the fermentation and in Maillard reaction upon heat 

treatment [1]. Changes in key aroma compounds during the cocoa bean roasting [2] as 

well as the impact of alkalization-roasting interaction [3, 4] on the aroma content were 

described. Yet, there is no comprehensive study clarifying the origin of key cocoa 

odorants in whole cocoa powder process. Moreover, the majority of reported studies were 

performed under laboratory conditions that do not exactly match the conditions of the 

industrial process. 

The objective of the study was to evaluate the contribution of the intrinsic aroma 

content of fermented cocoa and the impact of individual processing steps on the aroma 

content in cocoa powder. 

Experimental 

Materials 

Fermented and dried cocoa beans (Ivory Coast origin) and corresponding cocoa nibs 

(pieces of de-shelled cocoa beans) were obtained from Nestlé La Penilla factory. 

Potassium carbonate was purchased from Univar (Bradford, United Kingdom). Standards 

of aroma compounds were purchased from Sigma-Aldrich (Buchs, Switzerland); 
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isotopically labelled standards were obtained either from Aroma Lab (Planegg, Germany) 

or upon customized synthesis from AtlanChim Pharma (Saint Herblain, France).  

Alkalization and roasting 

Alkalization and roasting of cocoa nibs (14 kg batch) were conducted in the pilot 

plant at Bühler Barth (Germany). Alkalization was conducted with 3% potassium 

carbonate in CN50 alkalizer under pressure of 1.5 bar (128°C) for 30 min. The nibs were 

then dried under vacuum for 10 min. The roasting was conducted in RSX Tornado 

rotating drum roaster with convective heating under a drum pressure of -0.5 bar. The 

temperature was first set to 90°C and held for 15 min and then raised to 122°C and held 

for 10 min. At temperature of 110°C, water was injected for the purpose of 

debacterization. A small scale roasting was performed under ambient pressure with 1.4 

kg nibs using a laboratory drum roaster (Probatino S) that operated with the same roasting 

profile as used during pilot plant trial.  

Production of cocoa powder 

Cocoa powder was produced using laboratory equipment. Cocoa nibs were ground 

into cocoa liquor a using planetary ball mill (Retsch PM 400 CM) and then pressed in 

1/400 GSR cocoa press. The kibble cake was broken using G10S GSR breaker and finally 

pulverized into powder in ultra-centrifugal mill ZM200 (Retsch). 

Aroma analysis 

The content of fifteen odorants was determined using Head Space Solid Phase Micro 

Extraction in combination with Gas Chromatography and tandem Mass Spectrometry 

(HS-SPME-GC/MS/MS). Quantification was accomplished by Stable Isotope Dilution 

Assay (SIDA). HS-SPME was conducted with 50 mg cocoa sample (original or grinded) 

in 5 mL water and 100 µL methanol solution of internal standards using DVB-CAR-

PDMS fibre of 2cm (Supelco). GC separations were achieved on column DB-624-UI 60 

m x 0.25 mm i.d., and film thickness 1.4μm (J&W Scientific).  

Results and discussion 

There are several processes for the production of cocoa powder varying mainly in 

the stage where alkalization (also known as “Dutching”) is applied. Alkalization can be 

applied either before or after the roasting and can be performed with cocoa nibs, cocoa 

liquor, cocoa cake or cocoa powder. The process addressed in this study (Figure 1) is the 

most common one. It starts with cleaning and preheating of cocoa beans followed by 

breaking and winnowing that result in cocoa nibs. Cocoa nibs are alkalized and then 

roasted, debacterized and finally ground into cocoa liquor. The liquor is then pressed to 

obtain cocoa butter and cocoa cake that is further broken and pulverized into cocoa 

powder. Fifteen key aroma compounds were selected based on literature data [1] and their 

content was measured in five different stages of the process as indicated by numbers in 

Figure 1. 

A relative contribution of intrinsic aroma of raw nibs and a contribution of two 

processing steps, alkalization and roasting, to the aroma content of alkalized-roasted nibs 

is depicted in Figure 2. The contribution of the alkalization and the roasting was assessed 

based on changes (increase or decrease) of odorant concentrations during these two 

processes. 

Surprisingly, carry over from raw cocoa nibs had the highest impact on the aroma of 

alkalized-roasted nibs followed by alkalization and roasting. The impact of these two 

processing steps was rather low. 
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Figure 1: Cocoa powder process (numbers indicate sampling points) 

Impact of alkalization on aroma content 

Alkalization has traditionally several purposes: neutralize acidity, decrease 

bitterness, reduce astringency, modify the colour and improve dispersability of cocoa 

powder in beverages. Impact of alkalization on aroma compounds is not yet fully 

understood.  

Alkalization revealed a decrease of the majority of the odorants, usually by 30% to 

40% as compared to raw nibs. Amounts of 2,3-butanedione (-62%) and dimethyltrisulfide 

(-81%) were reduced more significantly. Surprisingly, 4-hydroxy-2,5-dimethyl-3(2H)-

furanone (HDMF) did not change after the alkalization. Only three odorants increased 

after the alkalization; phenylacetaldehyde that doubled its amounts and guaiacol and 

2,3-pentanedione that increased by a factor 6. Yet, the levels of the latter two odorants 

were very low, thus this increase is less sensory relevant. The decrease of odorants during 

the alkalization process can be explained either by degradation in basic pH or by stripping 

of the odorants during vacuum drying applied at the end of alkalization (probably 

facilitated by water evaporation). It is possible that the generation of certain aroma 

compounds takes place during alkalisation, however it is outbalanced by the degradation 

or stripping.  

Impact of roasting on aroma content 

Roasting is considered as an important step for flavour development during cocoa 

processing. Several studies have shown significant increase of Maillard derived odorants 

upon cocoa roasting [2-5]. 

In order to evaluate changes of odorants during roasting, aroma content of alkalized 

nibs before and after the roasting was compared. Surprisingly, roasting of alkalized cocoa 

nibs had only limited and for majority of the odorants negative impact on the aroma 

content (Figure 2). More significant changes were detected only for 2,3-pentanedione that 

decreased by 63% and for dimethyltrisulfide that increased by 77% after the roasting. 
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Our results are in contradiction with literature data [2-4]. The reason for this could 

be that published data come exclusively from the trials conducted in a laboratory scale 

(either with a small coffee roaster or with an oven). In order to understand this 

phenomenon, a small scale roasting employing only 1.4 kg of alkalized cocoa nibs and a 

laboratory drum roaster operating with the same roasting profile as used during the pilot 

plant roasting was conducted. The results were indeed surprising as after small scale 

roasting a significant increase of many odorants was detected; especially Maillard 

derived odorants such as Strecker aldehydes, HDMF, dimethyltrisulfide and pyrazines 

increased by 2 to 10 folds. 

 
Figure 2:  Origin of odorants in alkalized-roasted cocoa nibs: relative contribution of intrinsic aroma content 

of raw nibs and two processes alkalization and roasting 

Small scale roasting also resulted in a substantial decrease of esters. Obtained results 

thus indicate that larger scale roasting influences the flavour development in a much lower 

extent as compared to small scale roasting (scale-up effect). This is likely linked to heat 

transfer that depends on batch size and type of heating (conductive heating in a small 

roaster versus convective heating in a pilot plant roaster). 

Intrinsic aroma content in raw nibs 

Carry over from raw cocoa nibs had by far the highest impact on the aroma of 

alkalized-roasted nibs (Figure 2). This finding was especially surprising for Maillard 

derived odorants whose formation typically requires higher temperatures. There are 

theoretically four ways how these odorants can originate in raw cocoa nibs: (i) 

biosynthesis in cocoa plant, (ii) fermentation, (iii) drying and (iv) preheating before 

breaking and winnowing. Temperature during fermentation and drying is rather low 

(between 25°C to 65°C), but both processes can last very long (up to eight days each), 

-60% -40% -20% 0% 20% 40% 60% 80% 100%

2,3-butanedione

3-methylbutanal

2-methylbutanal

2,3-pentanedione

hexanal

methional

dimethyltrisulfide

2-ethyl-3,6-dimethylpyrazine

phenylacetaldehyde

2,3-diethyl-5-methylpyrazine

HDMF

guaiacol

2-phenylethanol

ethyl-(phenylacetate)

2-phenylethyl acetate

Raw nibs Alkalization Roasting



 

 

Changes in key aroma compounds during cocoa powder process 29 

thus the formation of odorants by Maillard reaction cannot be excluded. In our study, the 

focus was put on pre-heating before breaking and winnowing as the most likely process 

for generation of Maillard odorants. During preheating cocoa beans are exposed to 

temperatures between 90 to 100°C for 20 to 30 min. These thermal conditions are 

comparable to those applied by Frauendorfer & Schieberle [2] in their roasting study. The 

authors reported that roasting of cocoa beans in a laboratory coffee roaster (95°C/14min) 

triggers significant increase of Maillard odorants. The highest increase was reported for 

phenylacetaldehyde (85 folds), HDMF (71 folds) and 3-methylbutanal (21 folds).  

 
Figure 3:  Origin of odorants in cocoa nibs: relative contribution of intrinsic aroma content in raw cocoa beans 

and pre-heating applied during breaking and winnowing 

Inspired by this finding the fermented and dried cocoa beans and de-shelled cocoa 

nibs produced from the same batch were sampled and analysed. Aroma content in both 

samples was compared in order to evaluate origin of odorants in the nibs (Figure 3). The 

sniffing of both samples already pointed out the huge difference in aroma quality (non-

heated beans possessed beany and earthy notes, while the nibs had already a strong cocoa 

aroma). The analytical results indeed confirmed that pre-heating applied during breaking 

and winnowing leads to substantial increase of the odorants, yet intrinsic aroma of raw 

cocoa still contributes significantly. The odorants in the nibs can be classified into those 

predominantly carried over from raw cocoa including 2,3-butanedione, 2-phenylethanol, 

but surprisingly also some Strecker aldehydes like phenylacetaldehyde and 

2-methylbutanal and those that are predominantly generated during the preheating 

including 3-methylbutanal, 2-phenylethylacetate, HDMF and dimethyltrisulfide. 

Methional was the only odorant whose amount decreased during the preheating. 

Distribution of odorants between cocoa powder and cocoa butter after pressing  

The relative distribution of odorants between cocoa powder and cocoa butter after 

the pressing of cocoa liquor is depicted in Figure 4. The distribution was established from 

odorant concentration determined in cocoa powder and cocoa butter and mass ratio 

between these two products. The distribution was driven mainly by the polarity of the 

odorants. More polar odorants like Strecker aldehydes, diketones and HDMF were 
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predominantly retained in the powder, while less polar odorants like esters, pyrazines, 

dimethyltrisulfide and hexanal were predominantly retained in butter. The distribution of 

the odorants after the pressing is a final step that determines the concentration ratios 

between the odorants and consequently flavour signatures of both cocoa powder and 

cocoa butter. 

 
Figure 4: Relative distribution of odorants between cocoa powder and cocoa butter after pressing cocoa liquor  

In conclusion, the intrinsic aroma content of raw cocoa beans together with 

preheating before breaking and winnowing appeared to be the most important source of 

odorants in cocoa powder produced from Ivory Coast cocoa. Roasting and alkalization 

surprisingly showed low impact on Maillard derived odorants probably due to the 

depletion of precursors during preliminary processing. Distribution of the odorants after 

cocoa pressing is driven by the polarity of the odorant. More studies are required to 

understand the generation of Maillard derived odorants during post-harvest processing 

such as fermentation and drying as well as the impact of cocoa origin. 
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Abstract 

Grape-derived glycosides contribute some of the most important aroma character-

istics to wine, with volatiles released from glycosides during vinification. Wine can retain 

high concentrations of these non-volatile flavour precursors. Juice and wine made from 

aromatic varieties such as Gewürztraminer and Riesling are particularly rich in glycosides 

of the monoterpenes geraniol, linalool, nerol and α-terpineol. Glycosides from these 

varieties were extracted and purified to remove phenolics and free volatiles, and 

extensively characterised. GC/MS analysis following enzyme hydrolysis, hydrolysis by 

human saliva, and analysis of breath after tasting glycosides showed that monoterpene 

glycosides can release monoterpenes upon hydrolysis in vitro and in vivo. The possibility 

that hydrolysis could contribute to flavour via retronasal odour perception was 

investigated in a series of sensory experiments. Time-intensity sensory studies showed 

that fruity flavour resulted from assessors tasting glycosides at elevated concentrations. 

The effect was not significant at wine-like concentrations. There was substantial 

variability in response to glycosides, and a study of 39 people and several glycosides 

showed that 77% could detect flavour from at least one glycoside. This study provided 

evidence that non-volatile glycoconjugates can contribute previously unrecognised 

flavour during tasting, as well as contributing to aftertaste, a sought-after aspect of wine 

quality. Following on from these experiments, wines were made with additional 

glycosides extracted from grape skins. The addition of glycosides increased floral, fruity 

and confectionary aromas and flavours. Floral aftertaste was especially increased for 

those panellists who were tested as perceiving flavour from geranyl glucoside.  

Introduction 

Austria and Australia are home to some of the world’s best regarded Riesling wines 

[1], notable for their floral, citrus, perfumed and fruity aroma. Wine grapes generally 

contain low concentrations of free volatiles, and it is accepted that varietal flavour 

predominantly arises from non-volatile precursors in the grapes, with the main classes 

being glycosides of volatiles possessing an alcohol functional group, and amino acid 

conjugates of volatile thiols [2-4]. Free volatiles are present in some grapes, such as 

monoterpenes in Muscat grapes, rotundone in Shiraz, and methoxypyrazines in Cabernet 

Sauvignon and Sauvignon Blanc. However, these are exceptions rather than the rule.  

Glycosides and other precursors are readily transferred from the grapes into wine, 

where hydrolysis can occur through the enzyme or acid hydrolysis [5].  

Studies have shown that precursors can hydrolyse in the human mouth, including 

thiol precursors [6], and hexyl glucoside [7]. Glycosides hydrolysed in-mouth have also 

been shown to be important to the smoky flavour of wines made from grapes exposed to 

bushfire smoke, although in this case the concentration of smoke-related phenol glyco-

sides is unusually high [8]. 
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The human oral cavity is a complex system, with many factors influencing sensory 

perception, especially retronasal perception of odorants from food. Large inter-individual 

variability has been observed in factors such as oral microbiota, salivary flow rate, saliva 

composition, breathing and swallowing behaviour [9-12]. 

For wine glycosides to impart retronasal odour, they must be present in sufficient 

concentrations, even after swallowing or expectorating the sample, and then be hydro-

lysed in the mouth cavity. The released odorant must then travel via the retronasal route 

to the olfactory cleft where it can be perceived by olfaction if the concentration is high 

enough. And these steps must happen quite quickly to be noticed as a part of the flavour 

of the wine, in the first 30 seconds to 2 minutes after consuming the wine. 

The hypothesis for this research is that grape-derived odourless aroma precursors in 

wine can be hydrolysed to release odorants in the mouth, leading to perceivable retronasal 

odour. 

Experimental 

Wines and chemicals 

A Riesling wine from Eden Valley, a Gewürztraminer wine from Goulburn Valley 

and a Gewürztraminer juice from Adelaide Hills were chosen for the study. Geranyl 

glucoside, guaiacol glucoside and d2-geranyl glucoside were synthesised in-house. Ge-

würztraminer marc from Eden Valley and Riesling juice from Adelaide were used for the 

winemaking study. 

Glycoside extraction, purification and characterisation 

Glycosides were extracted using polymeric resin Amberlite FPX66, and purified to 

remove phenolic glycosides and volatile impurities. Glycosides were incubated with a 

commercial enzyme preparation with a wide glycosidase activity, Lallzyme beta, and 

glycosides were also incubated with whole fresh saliva used within one hour of sampling. 

The volatiles released were measured using HS-SPME-GC-MS. Glycosides, including 

monoterpene glucosides, pentosylglucosides and rutinosides were also quantified directly 

using LC-MS-MS. Experimental details have been previously reported [13].  

Sensory time-intensity studies 

Glycosides from Gewürztraminer juice and wine were assessed by sensory analysis 

at five times the original concentration in the juice or wine, in model wine with 10.7% 

v/v aqueous ethanol and pH 3.50. Preliminary sensory assessment of the aroma of the 

glycosides confirmed the absence of fruity or floral aroma. Geranyl glucoside was also 

included in the study, at 3,080 μg/L. A panel (n=11, eight females) was recruited from 

AWRI staff with at least two years’ wine descriptive analysis experience. Details of the 

panel training and sensory methods have been previously reported [13]. A second study 

assessed Riesling and Gewürztraminer volatiles and glycosides at wine-like concentra-

tions, using a different sensory panel (n=11, five females), all of whom had previous 

sensory analysis experience, and none had participated in the first time-intensity ex-

periment 

For both studies, overall fruit flavour (defined as citrus, floral, stone fruit and con-

fectionary-like) was then rated continuously using FIZZ data acquisition software, over a 

period of 120 s. Samples were presented monadically, with a forced rest of at least ten 

minutes between each sample in the formal sessions. All sensory data were obtained in 

compliance with institutional ethical procedures for sensory evaluation, involving risk 
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assessment and informed consent, and all samples were expectorated. Fisher’s least 

significant difference (P=0.05) was calculated using analysis of variance of the maximum 

intensity. 

Inter-individual variability in response to a range of glycosides 

Thirty-nine people (18 males) experienced in wine sensory evaluation were assessed 

for their ability to perceive flavour from three different glycosides assessed individually 

in water: geranyl glucoside (3,080 μg/L), glycosides isolated from Gewürztraminer wine 

(2,930 μg/L), and guaiacyl glucoside (500 μg/L). A water control sample was also 

evaluated. The participants were instructed to hold the entire sample in the mouth for five 

seconds, then expectorate and rate floral/fruity flavour, smoke/medicinal flavour and, if 

needed, other flavour, rinse with water, and then rest for two minutes before the next 

sample. Individual judge responses for flavour attributes fruity/floral and smoky were 

examined using analysis of variance with P<0.15, compared to the water blank. Those 

with a significant response to a glycoside were classed as tasters of that glycoside. 

Winemaking with added glycosides from Gewürztraminer marc 

Glycosides were extracted from Gewürztraminer marc (the skin, stem and seed by-

product of grape juice production) and purified using a polymeric resin column to remove 

phenolic compounds. The glycosides were added to Riesling juices at 0.4 g/L (‘juice add’) 

and to the wine at 0.4 g/L at bottling (‘wine add’). The wines were fermented in 20 L 

stainless steel containers, in duplicate. 

Sensory descriptive analysis of wines made with added glycosides 

A panel of AWRI staff members with previous wine sensory experience (n=11, five 

females, six tasters of geranyl glucoside) was convened and a consensus-based de-

scriptive methodology was used as described previously [14]. Nine aroma, twelve flavour 

and five aftertaste attributes were rated using an unstructured 15 cm line scale. The wines 

were assessed in duplicate over four days of formal sessions. All samples were 

expectorated, and there were forced one-minute rests between samples and a ten-minute 

rest after the fifth sample.  

Analysis of variance assessed the effects of wine, judge (random effect), replicate, 

variety, and the corresponding two-way interactions. The least significant difference 

(Fisher’s, 95% confidence) was calculated using Minitab 18. 

Results and discussion 

Chemical characterisation of extracted glycosides 

Glycosides from Gewürztraminer juice and wine liberated geraniol and other 

monoterpene alcohols when hydrolysed with enzyme and whole fresh saliva. Direct 

analysis of the glycosides using LC-MS-MS confirmed the presence of geraniol glucoside 

as the major glycoside present, with minor components of monoterpene glycosides of 

diverse structures, including glucosides, pentosylglucosides and rutinosides. 

Sensory time-intensity studies 

Gewürztraminer wine glycosides tasted at five times original concentration gave a 

fruity flavour with onset approximately 7 s after the sample was taken into the mouth, 

reaching maximum intensity at 22 s, and lasting until 52 s. Gewürztraminer juice glyco-

sides had a slightly longer delay with flavour onset at 12 s, reaching maximum intensity 

at 31 s and lasting until 80 s. Pure geranyl glucoside had a similar profile with a slightly 
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earlier flavour onset. Close examination of the individual panellist data revealed that only 

six of the eleven panellists were consistently rating the flavour effect. 

 

Figure 1. Mean time intensity curves for ‘overall fruit’ flavour intensity, generated by extracting parameters 
from individual raw data curves from 11 judges x 3 replicates for the three samples with added glycosides 

assessed in model wine (10% v/v ethanol, pH 3.50). Gewürztraminer wine and juice glycosides were tasted at 

five times original concentration, geranyl glucoside at 3,080 μg/L. The Fisher’s least significant difference value 
(P=0.05), calculated from the maximum intensity data for the effect of sample, is also shown. (Originally 

published in AWRI Technical Review issue 214, 2015, with minor modifications.) 

There was no significant flavour effect from the Riesling or Gewürztraminer gly-

cosides when tasted at wine-like concentrations in model wine, in the presence or absence 

of wine volatiles for the sensory panel mean. However, close examination of the 

individual panellist responses revealed that five panellists out of the twelve responded to 

some of the glycosides in the study. In the first sensory study six out of eleven panellists 

perceived flavour. Perhaps only half of the population can perceive flavour from 

glycosides? 

Inter-individual variability in response to a range of glycosides 

There was large inter-individual variation in response to glycosides (Figure 2), with 

77% responding to one or more of the glycosides. Some people responded to all three 

glycosides, some people responded to two of the glycosides, some responded to one of 

the glycosides, and some responded to none. Overall, 54% of the panellists rated a 

significant response to the Gewürztraminer glycosides, 46% rated a significant response 

to geranyl glucoside, and 64% rated a significant response to guaiacyl glucoside.  

Winemaking with added glycosides from Gewürztraminer marc 

Glycoside additions increased the concentration of geranyl glucoside and free 

monoterpenes in the resulting wines, regardless of whether the glycosides were added to 

the juice or to the wine. The concentration of geranyl glycoside increased by more than 

2,000 μg/L, and linalool increased by approximately 50 μg/L, presumably due to hy-

drolysis during the winemaking process, followed by rearrangement of the monoterpene 

alcohols in the acidic wine matrix.  

Fruity, floral or confectionary aroma and flavour attributes were boosted by the 

glycosides. Six of the eleven panellists in this study were separately assessed as able to 

detect flavour from geranyl glucoside, and the tasters rated much higher floral aftertaste 

in the wines with glycoside additions than the non-tasters. Bitterness was not significantly 

higher in the glycoside addition wines. 
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Figure 2: Response to various types of glycosides tasted individually in water. Gewürztraminer wine glycosides 

tasted at five times original concentration, geranyl glucoside at 3080 μg/L, guaiacyl glucoside tasted at 500 

μg/L. n=39 people, triplicate presentations, ANOVA 0.15 significance.  

 
Figure 3: Floral aftertaste intensity mean score of Riesling wines made with single additions of glycosides from 
Gewürztraminer marc, added to the juice before fermentation (juice add), or to the wine at bottling (wine add). 

The panel was divided into two groups, those who had a significant (p<0.15) flavour response to geranyl 

glucoside in water at 3080 μg/L, who were labelled as tasters (T) (n=6), and nontasters (NT) (n=5) who did not 
have a significant flavour response to the geranyl glucoside. The Fisher’s least significant difference value 

(P=0.05), calculated for the effect of wine, is also shown. 

Overall, monoterpene glycosides were shown to break down in the mouth and 

contribute to flavour by retronasal perception of the released volatile odorants when tasted 
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at elevated concentrations. The effect was not significant when tested at wine-like 

concentrations, and large inter-individual variability was observed. A small survey of 39 

individuals and three types of glycosides showed most people (77%) were capable of 

detecting flavour from some glycosides. Additions of glycosides from Gewürztraminer 

marc increased fruity and floral aromas and aftertaste in Riesling wines. The floral af-

tertaste was enhanced for panellists able to taste geranyl glucoside, even in the control 

wine, providing evidence that release of glycosides in-mouth is an important part of the 

sensory experience for many people. 
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Abstract 

The aim of the present study was to develop a saliva reactor allowing temperature 

control and the addition of human saliva in order to follow the release of five aroma 

compounds from different ice creams. The developed method was a useful tool to mimic 

the in-mouth process by taking into account sample quantity, mouth volume, temperature, 

salivary flux, and mastication. The reactor was fit with solid phase micro-extraction for 

gas chromatography allowing data collection similar to nose-space sampling. Different 

ice creams were assessed, with varying fat type and level, and protein level. The results 

showed that the effect of saliva is relatively low and only observed at the higher fat level. 

Also the effect of the fat type was smaller than that of the fat level. The ice cream with a 

low fat level released more hydrophobic aroma compounds than the one with a high fat 

level. The ice creams with both low fat level and low protein level, showed the highest 

release of aroma compounds. Less added proteins led to less interaction with the aroma 

compounds and increased their rate of release from the aqueous to the vapour phase. 

Overall, an innovative tool was provided to guide food industries to reformulate ice 

creams answering nutritional recommendations in line with consumer demands.  

Introduction 

The consumption of ice cream is highly determined by its overall sensory 

acceptability, mainly flavour perception.  

During consumption, ice cream undergoes phase changes from semi-solid to liquid, 

due to the combined actions of temperature increase and dilution with saliva, before 

swallowing [1]. In water and oil model systems, the addition of artificial saliva modifies 

the air/liquid partitioning of aroma compounds [2], inducing either a retention or a salting 

out effect. This effect has not been explored yet in real food emulsions. Even if some 

general trends of flavour release from ice cream during eating have already been reviewed 

[3] there is still a need for a better understanding of the relative impact of fat level, fat 

type and protein content on aroma release from ice creams, taking into account thermal 

exchanges occurring in the mouth and the effect of human saliva. A device simulating the 

retronasal aroma release was developed by Robert and Acree (1995) [4] in order to mimic 

in vivo aroma release of a model wine with artificial saliva. Later in 2001, Deibler et al. 

showed that the ratios of aroma compounds from this device were closely related to those 

from the subjects' breath [5]. More recently, a saliva reactor has been developed within 

our research group to mimic the in-mouth breakdown of fat spreads [6], which highlighted 

the impact of human saliva on aroma release. The aim of the present paper is to adapt the 

saliva reactor to mimic ice cream consumption in order to determine the effect of fat type, 

fat level and protein level on aroma release in conditions as close as possible to human 
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consumption. The effect of fat type and fat level on either aroma release or sensory 

perception in ice creams has been the subject of different studies, realised under in vitro 

conditions without addition of human saliva, showing an effect of fat type [7], fat level 

[8] or protein type and level [9] on aroma release. However, none of these studies 

combined these effects with that of saliva and they were not realised on the same aroma 

compounds which renders the comparison of the results difficult even if some general 

trends are common. An increase in fat level decreases the release of hydrophobic aroma 

compounds [10]. The nature and amount of protein in the ice cream will change the 

structure of the emulsion by modifying the interfacial properties and the fat droplet 

agglomeration in the emulsion [11]. and thus impacting the rate of transfer of aroma 

compounds from oil to water and then from the emulsion to the gas phase [12].  

Our aim was therefore to design an experimental protocol with the saliva reactor to 

reproduce the thermal exchanges occurring in the mouth during ice cream consumption 

and worked with a pool of human saliva. The reactor was then used to determine the 

combined effects of food composition and human saliva on the release of aroma 

compounds from ice creams. This work will provide innovative tools to guide food 

industries to reformulate ice creams answering nutritional recommendations such as less 

fat, more sustainable fat and protein type with a limited effect on aroma release and, thus, 

on perception. 

Experimental 

Saliva reactor 

A saliva reactor cell was used to reproduce ice cream breakdown in the mouth as 

close as possible (Figure 1). This device was specifically designed to evaluate the 

particular role of saliva during liquid and semi-solid food consumption [6]. It was 

composed of a water-jacketed glass flask (250 mL), which allowed a temperature control 

of the sample, equipped with four orifices, one for the temperature sensor, two others to 

introduce the sample and the SPME fibres and the last one equipped with a 3-blade marine 

propeller with digital speed control.  

 
Figure 1: Schematic diagram of the saliva reactor 

Samples composition 

The study was done with different samples of ice creams realised with two fat types 

(A and B) varying in their solid fat content (SFC). Fat A had 83.3% and 39.6% SFC and 

fat B, 0.9% and 0.1% SFC at the temperatures of 10°C and 20°C. Each fat type was added 
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at two different fat levels (L for low = 3 %; H for high = 9 %). The ice creams contained 

two different levels of skimmed milk powder enriched with whey protein (level 1: 

standard - SMP: 6.4% Whey: 2.3%; level 2: low - SMP: 3.2% Whey: 1.15%). They were 

flavoured with a mixture of 5 aroma compounds (acetoin: 450 mg/Kg ice cream; vanillin: 

550 mg/Kg; benzaldehyde: 18 mg/Kg; hexanal: 54.9 mg/Kg; ethyl octanoate: 18 mg/Kg). 

To study the impact of human saliva on aroma release the experiments were realised after 

diluting the samples in either ultra-pure water (MilliQ®, Bedford, MA) (W) or human 

saliva (S). Thus, a total of 16 samples were analysed. 

Human saliva collection 

Resting human saliva was collected, centrifuged and stored from 20 volunteers as 

already described by Poette et al. [13]. It should be noted, however, that in a previous 

study, no effect of saliva storage was observed on the retention of 2-heptanone and ethyl 

heptanoate by human saliva [14]. 

Solid phase micro-extraction – gas chromatography – mass spectrometry (SPME-GC-

MS) analysis  

Two fibres were introduced into the reactor (each in one orifice) to follow the aroma 

release, and were exposed 25 sec. after the introduction of the ice cream, which 

corresponds to the time at which the mixture reaches the minimum temperature (-22°C). 

Extraction was then performed for 1 minute. All experiments were realised in triplicate. 

SPME fibres were injected in splitless mode (250ºC, 5 min) in a Gas Chromatograph 

(Agilent 6890N) coupled to a quadrupole Mass Detector (Agilent 5973N). After 

desorption of the SPME fibre, volatile compounds were separated on a DB-Wax polar 

capillary column (30 m × 0.25 mm i,d×0.50 μm film thickness) from Agilent (J&W 

Scientific, Folsom, USA). Helium was the carrier gas at a flow rate of 1 mL/min. The 

oven temperature was initially held at 40ºC, then increased at a rate of 5ºC/min until 

240ºC and held for 10 min. The fibres were regenerated 15 min at 240°C before novel 

use. 

For the MS system, the temperatures of the transfer line, quadrupole and ion source 

were 250ºC, 150ºC and 230ºC, respectively. Electron impact mass spectra were recorded 

at 70 eV ionization voltage and the ionization current was 10 µA. The acquisitions were 

performed in Scan mode (from 29 to 350 amu). The semi-quantification was done on the 

peak areas. However, the linearity of the peak area as a function of aroma concentration 

was previously verified by doing a calibration curve using 7 concentrations of the 5 aroma 

compounds diluted in a model emulsion. 

Statistical analysis  

The statistical analyses were done on the GC peak areas for each aroma compound 

after headspace SPME-GC-MS in the different ice cream samples. Data were subjected 

to univariate analysis of variance (ANOVA – α=0.05) and the [Student]-Newman-Keuls 

Procedure (SNK) mean comparison test was performed separately in water and saliva, to 

determine significant differences between the foods matrices for each aroma compound. 

Microsoft® Excel 2010/XLSTAT©-Pro (2013.4.03, Addinsoft, Inc., Brooklyn, NY, 

USA); was used for statistical evaluation. 

Results and discussion 

Experimental protocol design in the saliva reactor 

The amount of water/saliva to be added to the reactor and the temperature changes 

of the ice cream was estimated from preliminary tests with a panel of 10 volunteers. As 
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an average of 1.6 g of saliva was produced by consuming 8 g of ice cream and considering 

that 50 g was the minimum amount of ice cream needed in the reactor for a good stirring, 

10 mL of water/saliva were transferred into the reactor (250 mL), which was kept at 37ºC, 

and then 50 g of ice cream (at -22°C) were added and the mixture stirred (400 rpm; 

maximum available speed in this device). The temperature of the mixture in the reactor 

decreased from 37ºC to 15ºC after 25 sec. which follows the temperature decrease in the 

mouth after the introduction of the sample (oral-phase) then the jacket of the reactor was 

warmed-up in order to increase to 15°C which corresponds to the swallowing temperature 

of the mixture after 80 sec. (Figure 2). 

 
Figure 2: Temperature evolution in the mouth (left) and in the reactor (right) 

Effect of ice cream composition and saliva addition on total amount of aroma release 

An analysis of variance was performed (Table 1) with 4 factors (medium, fat type, 

fat level and protein level).  

Table 1: ANOVA test on the effect of saliva, fat type fat and protein level on the total amount of release for 5 

aroma compounds (univariate tests of Significance - =0.05) 

 

The 5 aromas are sorted by increasing logP and three parameters are presented: F-

test, P-value and factor effect highlighting composition impact on each aroma.  

The effect of human saliva seems negligible in comparison to that of the fat type, fat 

content and protein content. This might be explained by the fact that our work was 

conducted on clarified saliva and a recent paper showed that the effect of human saliva 

on the metabolism of aroma compounds, mainly aliphatic aldehydes and di-ketones, was 

reduced after centrifugation [15]. However, in that study, no such effect was observed for 
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alcohols, aliphatic ketones and benzaldehyde and the other aroma compounds present in 

our ice cream, which allows us to conclude that our results are fairly representative of the 

mechanisms in the mouth. Interactions between salivary proteins and aroma compounds 

in water was observed in previous studies and it might be modified here in emulsions 

containing fat and other proteins [2, 14].  

Changing the nature of fat modified the release profile. Fat type is significant for the 

most hydrophobic aroma compounds (logP > 1.7 hexanal and ethyl octanoate; p-value < 

0.001). This might be explained by a higher release of hydrophobic compounds from 

matrices with a greater percentage of SFC at 15°C (cannot solubilise the aroma 

compounds) [16]. A significant effect of the fat level (p-value < 0.001) was observed for 

the majority of the aroma compounds. Decreasing fat content led to a higher release for 

hydrophobic aroma compounds (logP > 1). This is probably due to a high solubility of 

hydrophobic aroma compounds in fat (more retained) [9b]. A significant effect of protein 

level (p-value: < 0.05) was observed for 3 volatiles and they are less released from ice 

creams with a high protein content (protein level 1).  

Effect of ice cream composition and saliva addition on the initial rate of aroma release 

The aim of this part was to determine if the modifications observed on the total 

amount of aroma release during the eating process were initiated at the beginning of the 

eating process. This study was conducted on four selected samples (WAH2, SAH1, 

WAL1, and WAH1 as the reference). Figure 3 represents the percentages of 

increase/decrease in the rate of release (between 0 and 100 seconds) as a function of 

WAH1 for the 3 other samples. 

 
Figure 3: Impact of medium, fat type, fat level and protein level on the rate of release (The increase/decrease 
is significant at: *** p-value < 0.0001 ; ** p-value < 0.001 ; * p-value < 0.05) 

A significant impact of saliva was observed for vanillin leading to an increase of the 

rate of release with saliva (SAH1/WAH1; p-value < 0.001). This compound might be 

more sensitive to a salting-out effect of salivary proteins [2]. Less fat (WAL1/WAH1) led 

to a significant better rate of release for hydrophobic (logP > 1) aroma compounds. 

Confirming that hydrophobic aroma compounds are more retained in fat. A decrease in 

protein level (WAH2 vs WAH1) induced a significant increase in the rate of release. Less 

added proteins lead to less interaction with the aromas and increase their rate of release 

from the aqueous to the vapour phase. 

Discussion and conclusion 

As a conclusion, the saliva reactor was a simple and useful tool to mimic the in-

mouth process by taking into account sample quantity, mouth volume, temperature, 
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salivary flux, and mastication. Connecting the reactor with the use of SPME makes the 

technique easy to use, and provides data similar to nose-space sampling. 

An ANOVA test on the collected data highlighted the different effects of 

composition on aroma release. The effect of saliva is relatively low and only observed at 

the higher fat level. The main effect is that of fat level (from 3 to 9%), then the effect of 

fat type at the higher fat level. The effect of protein level is more significant at the lower 

fat level. Decreasing fat content in ice cream led to a higher total amount of release for 

hydrophobic aroma compounds. Changing the nature of fat also modified the release 

profile, with a higher release of the more hydrophobic compounds from fat with a greater 

percentage of solid fat at the temperature of eating (≤ 15°C). The effect of protein level 

depends on both fat type and fat level. The level of whey proteins impacted more the 

aroma release at a low fat level, with a higher amount of aroma released at a low level of 

protein. However, a small effect was also evidenced at the high level of the fat type with 

the higher solid fat content. The obtained results showed that the reformulation of ice 

creams impacts aroma release as a function of fat type, fat level and protein level and also 

depending on the nature of the aroma compound. The combined effects of fat and protein 

have also to be taken into consideration.  

This in-vitro study using a saliva reactor could be easily applied now to study the 

impact of saliva or reformulation on aroma release. It can potentially provide a big amount 

of data allowing the computation of a flavour behaviour model in complex liquid or semi-

liquid matrices.  
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Abstract  

Aroma characteristics of fermented sausages depends on the processing factors such 

as ingredients and preservatives as well as on the starters used during the fermentative 

process. Consumers’ demand for healthier products is leading to a reduction in the 

preservative curing agents (nitrate and nitrite) used in the processing of meat products 

while preventing detriment to sausage aroma. D. hansenii yeasts are known contributors 

to sausage flavour, however little is known about their potential to produce volatiles under 

reduced concentration of curing agents or its consequences for amino acid metabolism. 

D. hansenii strains isolated from sausages manufactured with different raw materials 

(meat from pork or llama) were evaluated in a model system resembling the sausage 

formulation containing free amino acid and additives (salt and glucose) and variable 

concentrations of nitrite and nitrate. The different ability of the yeast strains to produce 

volatile compounds from different amino acids and the changes in aroma profile due to 

nitrifying agents’ reduction were evaluated. 

Introduction 

The conversion of amino acids, generated through proteolysis during sausage 

manufacturing [1], into aroma compounds depends largely on microbial metabolism 

during fermentation where yeasts play an important role [2]. The occurrence of D. 

hansenii as the dominant yeast in a large number of fermentation and ripening processes 

for production of dry meat products has led to its utilization as starter culture for meat 

fermentation. Aroma characteristics of the sausages depend not only on the yeast strain 

used for fermentation but also on the processing factors (raw materials, meat ingredients, 

preservatives, technological parameters, presence of starter cultures) that can affect the 

metabolic activity of the yeasts.  

Actual trends to reduce the use of preservatives (nitrite and nitrate) in meat products, 

despite their role in safety and technological properties, has led the industry to look for 

strategies to maintain safety and quality. However, it is unknown the effect of a reduction 

in concentration of nitrite and nitrate used as preservatives in fermented sausages on yeast 

amino acid metabolism and its contribution to generation of volatile compounds. The 

objective of this study is to search for yeast with flavour production potential in meat 

products and determine the effect of a reduction in nitrate and nitrite concentration on 

their amino acid metabolism and volatiles production. 

Experimental 

Yeast strains 

Debaryomyces hansenii strains: L1-L9 were isolated from naturally fermented 

sausages manufactured with pork meat (L1-L6) [3-5] and llama meat (L7-L9) [6]. 
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Meat model system 

The meat model system was prepared with a similar composition of dry fermented 

sausages in terms of additives and amino acid content [7]. The model was prepared using 

0.67 % YNB (Yeast Nitrogen Base, Difco Inc.), 30 g/L NaCl, 10 g/L glucose, amino acids 

in concentration reported by Corral et al. [7] and variable concentrations of NaNO2 and 

KNO3 as follows: 0.150 g/L each in control medium (C) and 0.128 and 0.113 g/L in media 

RN15 and RN25, respectively. A total of 11 experiments (50 mL media in 100 mL 

Erlenmeyer flasks) were carried out using each media C, RN15 and RN25. Nine 

experiments were inoculated with D. hansenii strains and two not inoculated and used as 

controls before and after incubation [8]. Incubation was at 25°C for 16 d. Experiments 

were performed in triplicate. After incubations all media were centrifuged and the 

supernatant recovered for volatile and amino acid content analyses [8]. 

The free amino acids content was determined by reverse phase HPLC using 

phenylthiocarbamyl amino acid derivatives according to Aristoy & Toldrá [9] using 

norleucine (65.6 µg) as internal standard. Quantification of amino acids was done relative 

to the internal standard and expressed as a percentage of concentration present in the 

control media before incubation [8].  

The volatile analysis was done by SPME-GC-MS using an automatic injector Gerstel 

MPS2 multipurpose sampler (Gerstel, Germany) and an 85µm CAR/PDMS fibre [8]. 

Compounds were identified by comparison with mass spectra from the NIST/EPA/NIH 

Mass Spectral Database, linear retention index and by comparison with authentic 

standards. Identified volatile compounds were quantified and the abundance expressed as 

the increase respect to control media after incubation [8]. 

Statistical analysis 

Data were analysed using Generalized Linear Model (GML) procedure of statistical 

software (XLSTAT 2011, v5.01, Addinsoft, Barcelona, Spain). The model included the 

effect of yeast inoculation as fixed effects and replicates as random effects. Principal 

component analysis (PCA) was used to evaluate the relationships among aroma 

compounds, free amino acids and model inoculated media. The inoculated model media 

represented the difference experiments (L1-L9) carried out using each media C, RN15 

and RN25. 

Results and discussion 

Nine yeast strains isolated from pork or llama sausages and pertaining to the species 

D. hansenii were screened for their ability to produce volatiles on amino acid rich media 

containing nitrifying agents used as preservatives in meat products. The most usual 

nitrite/nitrate concentration used for the elaboration of meat products around Europe were 

added to the medium (150 ppm) although specific regulations for other traditional 

European meat products exist [10]. The volatile compounds produced by yeast strains 

from the degradation of val, ile, leu, met and phe are summarized in Table 1. Statistical 

analysis revealed a clear difference among yeast strains to produce these volatile 

compounds from the selected amino acids (Figure 1). Yeasts isolated from llama sausages 

were characterized by the production of propanoate ester compounds and branched 

alcohols, while those from pork sausages produced branched aldehydes and acids. Yeast 

L5, isolated from pork sausages displayed a distinct volatile profile characterized by the 

presence of ethyl esters derived from methyl branched acids. 
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Table 1. Volatile compounds identified in yeast inoculated model systems after incubation. 

Volatile Compounds LRI1 RI2 Volatile Compounds LRI RI 

Valine derived comp Leucine derived compounds 

2-mehylpropanal 592 a 3-methylbutanal 689 a 

2-methyl-1-propanol 682 a 3-methylbutanol 794 a 

Ethyl 2-methylpropanoate 788 a Ethyl 3-methylbutanoate 881 a 

2-methylpropyl acetate 805 a 3-methylbutanol acetate 906 a 

2-methylpropanoic acid 862 a 3-methylbutanoic acid 937 a 

Propyl 2-methylpropanoate 896 a 3-methylbutanol propanoate 996 a 

Isoleucine derived compounds   Phenylalanine derived compounds  

2-methylbutanal (58)3 700 a Benzaldehyde 1017 a 

2-methylbutanol 797 a Phenylethyl alcohol 1194 a 

Ethyl 2-methylbutanoate 878 a 2,3-dimethylbenzaldehyde 1292 b 

2-methylbutanol acetate 909 a 2-Phenylethyl acetate 1315 a 

2-methylbutanoic acid 943 a 2-Phenylethyl propanoate 1405 b 

2-methylbutanol propanoate 999 a       

Methionine derived compounds    

Dimethyl disulfide 772 a    
1LRI: Linear Retention Index calculated for DB-624 column. 2RI: Reliability of identification: (a) mass spectra and LRI in agreement to 

standard compound, (b) tentatively identified by mass spectra. 3Target ion in brackets used to quantify the compound when the peak was 

not completely resolved. 

 
Figure 1: Loadings of the first two principal components F1 and F2 of volatile compounds derived from the 
degradation of amino acids Ile, Leu, Val, Phe and Met in media inoculated with yeast strains (pork strains L1-

L6; llama strains L7-L9). 

Among the yeast studied, those isolated form llama sausages (L7-L9) and L5 were 

the highest producers of ester compounds and could be useful to impart specific flavour 

notes in dry meat products. Ester compounds have been identified in fermented sausages 

providing fruity aromas and contributing to mask rancid and vegetable cooked odours 

[11]. In contrast, branched aldehydes, identified in fermented meats as contributors to the 

overall flavour [12], have been found in sausages inoculated with D. hansenii strains [13]. 

The main branched aldehydes producers were among the pork isolated yeasts (L1-L4) 

which may also be suitable for fermentative processes. 

Regarding the effect of preservative reduction on yeast metabolism, nitrate-nitrite 

reduction affected the yeast ability to produce volatiles. Particularly, yeasts L1 and L5, 

isolated from pork sausages, increased the production of branched acids (L1) and ethyl 

ester compounds (L5), as can be seen in the PCA graph (Figure 2). Until now, there are 

no reports regarding the effect of nitrate and nitrite reduction on amino acid catabolism 

of D. hansenii strains from meat products. Previous research on other meat starters 

reported a reduction in leucine catabolism when nitrate and nitrite were added to an 

experimental model system containing a staphylococcus starter [14]. Under these 

premises, the current trend to reduce the use of nitrites and adjust their levels in meat 
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products makes necessary an evaluation of its impact on microbial starters in terms of 

volatile compounds generation [8].  

 
Figure 2: Loadings of the first two principal components F1 and F2 of volatile compounds derived from the 

degradation of amino acids Ile, Leu, Val, Phe and Met in control (C) and nitrifying reduced media RN15 and 
RN25 media, produced from yeast inoculation (L1-L9). 

Conclusions 

Yeast strains isolated from sausages manufactured with different raw materials 

(meat from pork or llama) have different ability to produce volatile compounds. Yeast 

amino acid metabolism and production of volatiles are significantly affected by the 

presence of variable nitrate/nitrite concentrations. The inoculation of selected yeast 

strains during manufacturing of dry sausages may produce a significant effect on the 

overall sausage flavour. 
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Abstract  

The flower scent of Damask rose (Rosa damascena) was investigated. Two 

ultratrace components that exhibited high flavor dilution factors were detected as odor-

active compounds by aroma extract dilution analysis (AEDA). One of the trace 

compounds with a woody note was identified as rotundone by multidimensional gas 

chromatography–mass spectrometry/olfactometry (MD-GC-MS/O), whereas the other 

with a citrus note was identified as 4-(4-methyl-3-pentenyl)-2(5H)-furanone (MPF) via 

fractionation of a commercial rose absolute from R. damascena. To the best of our 

knowledge, this is the first study that reflects the organoleptic importance of these two 

compounds for the rose scent. Sensory analyses were performed to assess the effects of 

rotundone and MPF. Results revealed that the addition of 50 μg/kg rotundone and 5 μg/kg 

MPF to the aroma reconstitute of R. damascena provided blooming and natural aspects 

to it. In addition, the presence of rotundone and MPF in five types of fragrant roses was 

examined. MPF was also detected in fruits (e.g., lemon, orange, grapefruit, apple, and 

Muscat grape), black tea, and beer. 

Introduction 

The rose scent is crucial for flavors and fragrances. In particular, the rose note is 

essential for floral perfume compositions. Among the large varieties and forms of roses, 

Damask rose (Rosa damascena) is one of the main species of roses that are cultivated in 

the fragrance industry. The typical aroma concentrates used for fragrance products 

include rose oil, rose water, rose absolute, and rose concrete. Nevertheless, the aroma of 

these processed products is different from that of natural rose flowers. Furthermore, the 

rose aroma reconstitutes with chemical compounds are different from those of natural 

rose flowers, thus possibly suggesting that the remaining unknown components are the 

key to the secret of the rose scent. Volatile compounds of natural rose products have been 

extensively analyzed for many years; however, not many studies have reported the 

headspace aroma of natural rose flowers. Therefore, this study aims to sensorically 

characterize and identify the main odorants that are present in the aroma concentrate of 

the headspace volatiles of R. damascena by aroma extract dilution analysis (AEDA), and 

identify the compounds that differentiate the scent of natural rose from that of artificial 

rose aroma reconstitutes. 

Experimental 

Materials 

The petals of R. damascena were handpicked from the garden of the T. Hasegawa 

R&D center in the morning. Absolute from R. damascena was purchased from Biorandes 

Co., (Le Sen, France). 
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Dynamic headspace analysis and AEDA 

First, immediately after picking the petals of R. damascena (42.6 g), they were 

placed into a glass chamber. A constant flow rate of 1.5 L/min was used with air entering 

the chamber through a charcoal filter and leaving the chamber via passage through 2.0 g 

of a Tenax TA 60/80 adsorbent (GL Sciences Co., Tokyo, Japan). After collecting the 

volatiles for 6 h, 20 mL of pentane and 20 mL of diethyl ether were used for elution. The 

eluent was collected and concentrated to ca. 100 µL via solvent distillation using a 

Vigreux column at 43 °C. The concentrate was subjected to GC-MS/FID and GC-O 

analyses equipped with a polar column (InertCap WAX). In addition, MD-GC-MS/O 

analysis (first column: InertCap WAX, second column: InertCap 1MS) was performed to 

elucidate the two unknown compounds. For AEDA [1], the concentrated volatile was 

diluted stepwise with diethyl ether to obtain dilutions of 1:5, 1:25, 1:125, 1:625, etc. 

Elucidation of the citrus-like odor compound 

The absolute from R. damascena (330 g) was fractionated by distillation, silica-gel 

column chromatography, and two-step high-performance liquid chromatography 

(HPLC). GC-O analysis was performed to confirm the presence of the target citrus-like 

odor compound, thus finally obtaining the HPLC fraction (2.8 mg). The chemical 

structure of the target compound was assumed from high-resolution mass and NMR 

spectra. Identification was further confirmed by matching the analytical data and odor 

qualities of the isolated citrus-like odor compound with those of the estimated compound 

synthesized according to a previously reported method [2]. 

Threshold measurement of MPF 

The odor threshold of MPF in water was determined according to a previously 

reported method [3]. Panelists [n = 23 (16 males and 7 females; age range 20–60 years)] 

were employees of the R&D Center of T. Hasegawa Co., Ltd. Assessments were 

conducted orthonasally. Panelists also simultaneously evaluated the odor of the sample 

that they had successfully recognized. 

Evaluation of the effect of rotundone and MPF 

The triangle test was performed to assess the effects of rotundone and MPF on the 

rose aroma reconstitutes of R. damascena. Four aroma reconstitutes (samples A–D) were 

evaluated. Sample A comprised an aroma reconstitute of R. damascena diluted in 

dipropylene glycol at 5% w/w. Samples B, C, and D comprised fragrance solutions with 

the same aroma reconstitute with rotundone (50 µg/kg), MPF (5 µg/kg), and rotundone 

(50 µg/kg) and MPF (5 µg/kg), respectively.  

Identification of rotundone and MPF in various types of roses and foods 

The headspace gases of the living flowers of Rosa centifolia, “Neige Perfum,” “Pope 

John Paul II,” “Lady Hilingdon,” and “Grand Mogul” were pumped to pass through 

Tenax TA. The adsorbents were eluted with pentane and diethyl ether, followed by 

concentration. The concentrates were subjected to MD-GC-MS/O analysis to tentatively 

identify rotundone and MPF. 

Cold-pressed oils of lemon, orange, grapefruit, and distilled oil of lime were 

purchased. The aroma concentrates of apple, Muscat grape, black tea, and beer were 

prepared by solvent extraction and solvent-assisted flavor evaporation method [4]. The 

above-mentioned samples were subjected to MD-GC-MS/O analysis to tentatively 

identify MPF.  
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Results and discussion 

Dynamic headspace analysis and AEDA 

Dynamic headspace sampling was employed to prepare the headspace aroma 

concentrates of R. damascena. From the AEDA results, along with the major compounds 

such as 2-phenylethanol, geraniol, and citronellol, two ultratrace components with a high 

flavor dilution factor (FD 625) were detected as odor-active compounds. One trace 

compound was identified as rotundone, with a woody note (Figure 1) by MD-GC-MS/O 

analysis with the same retention time, MS spectrum, and odor qualities as those of the 

authentic synthesized rotundone. However, the other (citrus note) was detected at 

sufficiently low trace levels such that its structure could not be identified. Rotundone has 

been identified as an odor-active component in patchouli oil [5], frankincense oil [6], 

Shiraz wine [7], peppers [7], and several fruits [8]. To the best of our knowledge, 

rotundone has not been detected in roses. 

Elucidation of the citrus-like odor compound 

The citrus-like odor compound was detected in commercially available rose absolute 

from R. damascena. Therefore, the target citrus-like compound was isolated from rose 

absolute by distillation, silica-gel column chromatography, and two-step HPLC. As 

confirmed by GC-FID analysis, the final purity of the isolated compound was 97%. This 

compound was assumed to be 4-(4-methyl-3-pentenyl)-2(5H)-furanone (MPF; Figure 1) 

from high-resolution mass spectra and NMR spectra. Identification was further confirmed 

by matching the analytical data and odor qualities of the isolated MPF with those of 

synthesized MPF. MPF has been identified in rose oil [9] as well as in the secretion of 

acarid mites [10]. However, to the best of our knowledge, this is the first study that reports 

on the chemosensory properties of MPF. In the threshold measurement of MPF, panelists 

have described that MPF emits a citrus-like (lemon, orange, and grapefruit) and floral 

odor (muguet and jasmine) with a fairly low threshold of 3.6 µg/kg in water. 

 
 

  

Figure 1: Chemical structures of the elucidated odor-active trace compounds from the headspace aroma of rose 

petals. 

Effects of rotundone and MPF 

The triangle test was performed to examine the effects of rotundone and MPF on the 

rose aroma reconstitutes of R. damascena. Figure 2 shows the results of this test. Sample 

B and C were not significantly distinguished from sample A. Only sample D was 

significantly distinguished from sample A. Moreover, panelists who could distinguish 

sample D from sample A evaluated the aroma of sample D as “more blooming than A” 

or “more natural than A.” These results suggested that the aroma of the rose aroma 

reconstitute with the addition of rotundone and MPF was more similar to that of a natural 

rose flower. Interestingly, the panelists did not differentiate samples A and D as “woody” 

or “citrus-like.” The effect of these two added compounds is expected to differentiate the 

aroma of natural rose from that of the artificial rose aroma reconstitutes. 

rotundone MPF 
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Figure 2: Accuracy rate of the triangle test (Identification of sample B, C, or D against A). n = 52, *Binominal 

test, p < 0.05 

Identification of rotundone and MPF in various types of roses and foods 

MD-GC-MS/O analysis was employed to examine the presence of rotundone and 

MPF in five types of fragrant roses. The former was detected in all roses, while the latter 

was detected in three roses (i.e., Rosa centifolia, “Neige Perfum,” and “Pope John Paul 

II,” respectively). Rotundone has been identified in several fruits as a potent odor-active 

compound [8]; therefore, we examined the presence of MPF in fruits. The results revealed 

that MPF was detected in lemon, orange, grapefruit, apple, and Muscat grape. In addition, 

MPF was also detected in black tea and beer. These results indicated that MPF is widely 

distributed not only in roses but also in various foods. To confirm the contribution of MPF 

to the aromas of natural resources, quantitative studies need to be performed. 
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Abstract 

The aroma composition of freshly ground main roots of horseradish was 

investigated. Purified extracts of horseradish roots were analysed using the concept of 

aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry, gas 

chromatography-mass spectrometry and two-dimensional heart-cut gas chromatography-

mass spectrometry/olfactometry. Besides already reported compounds like allyl 

isothiocyanate and 2-phenylethyl isothiocyanate, a series of odorous substances 

belonging to different structural classes could be identified, some of them previously 

unknown or first-time reports in horseradish, and some with high odour potency and 

potential impact on the overall aroma of horseradish. 

Introduction 

Horseradish (Armoracia rusticana Gaertn., Mey. et Scherb.) (Figure 1) is a hardy 

perennial plant belonging to the family of Brassicaceae [1] and is distantly related to 

well-known representatives of this family like cabbage, broccoli, mustard and rapeseed. 

Horseradish plants possess large leaves [2] and produce white flowers [1], though 

horseradish is mainly propagated asexually via sets that are obtained from the harvested 

secondary roots of the previous growing season [3]. It is cultivated in temperate climates 

in many parts all over the world, but is supposed to have originated from the eastern, 

temperate regions of Europe [4]. In Europe, the countries with the main growing areas 

are Austria, Germany, Hungary and Poland. The main reason for cultivation is its white 

and fleshy root, which is processed to condiments, mainly spicy pastes or sauces; 

moreover, horseradish is used in traditional phytomedicine, for example as treatment for 

bronchitis and coughs [5], and has been reported in relation to antimicrobial effects [6, 

7].  

 
Figure 1:  Photograph of harvested horseradish plants 

Responsible for the pungent note of the typical horseradish aroma are 

isothiocyanates (ITCs), which are enzymatically formed from glucosinolates upon cell 

disruption, when the root is cut or ground [1]. Thiocyanates, nitriles and epithionitriles 
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are other possible glucosinolate degradation products that can, besides ITCs, undergo 

further reactions to various chemical substances [8, 9]. ITCs activate branches of the 

trigeminal nerve and generate a pain sensation. Numerous studies have dealt with the ITC 

composition and their content in horseradish roots [10-12], but only few have attempted 

to explore the substances responsible for the overall aroma impression of horseradish [12, 

13]. Accordingly, we applied state-of-the-art methods that cover both sensory and 

analytical techniques to unravel the composition of horseradish aroma. 

Experimental 

Samples and sample preparation 

Seven horseradish main roots from different varieties were chosen for investigation 

(n = 7). They were grown on different acreages around the city of Baiersdorf, Germany 

from April till November 2014. Each main root was peeled and shredded with a Moulinex 

Moulinette. 1 g ground material was extracted with 30 ml dichloromethane for 30 min, 

the extract filtrated and dried over anhydrous Na2SO4. The extract was purified via 

solvent-assisted flavour evaporation (SAFE) and the aroma fraction thereby recovered. 

Afterwards the purified sample extracts were gently concentrated up to 100 µl through 

Vigreux distillation and micro-distillation. 

Sensory evaluation 

Aroma extract dilution analysis (AEDA) was applied to determine the relative 

contribution of the aroma-active compounds to the overall aroma of horseradish roots. 

Therefore, the 100 µl root extracts were diluted stepwise in a ratio of 1:2 (v/v). The 

original extracts (= FD 1) and their dilutions were consecutively analysed by means of 

gas chromatography-olfactometry, applying the cold on-column application technique, 

until no odour could be perceived at the sniffing port, and the flavour dilution (FD) factors 

of each odorous substance were determined. The sniffing analysis was primarily 

conducted by one trained panellist on two different capillary columns, DB-5 and DB-

FFAP (J&W Scientific), and cross-checked by two other trained panellists. 

Mass spectrometric analysis 

The horseradish extracts were analysed via gas chromatography-mass spectrometry 

and two-dimensional heart-cut gas chromatography-mass spectrometry/olfactometry as 

has been described previously [14]. EI-mass spectra were created at 70 eV ionisation 

energy in full scan mode (m/z range 40-250/400). 

Results and discussion 

A total of 39 odour-active substances was detected [14]. 30 of these substances could 

be identified, nine of them tentatively via matching retention indices (RI) and odour 

impressions with those of authentic reference standards. 

21 aroma-active compounds from different structural groups could be detected in all 

seven samples (cf. Table 1). From the group of organic ITCs and nitriles allyl ITC, sec-

butyl ITC, isobutyl ITC, 3-butenyl ITC, 4-pentenyl ITC, 2-(methylthio)ethyl ITC, 3-

(methylthio)propyl ITC, benzyl ITC, 2-phenylethyl ITC and 1-cyano-2,3-epithiopropane 

(CETP) could be found. Those substances derive enzymatically from glucosinolates when 

the horseradish root is ground, and exhibit an overall pungent aroma sensation. As group 

they were detected in a very wide range of FD factors, starting from FD 1 for isobutyl 

ITC up to FD 2048 for 2-phenylethyl ITC. Acetic acid, (Z)-3-hexenal, 3-

(methylthio)propanal, 2-phenylacetaldehyde, 1-octen-3-one, 1-nonen-3-one and 2-
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phenylethanol, belonging to the structural group of carbonyl compounds, were detected 

with low or medium FD factors, for example FD 1 to 4 for acetic acid and FD 16 to 64 

for (Z)-3-hexenal. As the ITCs, many carbonyl compounds are likely to be primarily 

formed upon root cutting from fatty acids undergoing lipid oxidation. The pyrazines 3-

sec-butyl-2-methoxypyrazine and 3-isopropyl-2-methoxypyrazine showed ranges from 

FD 8 to 256 and FD 512 to 4096 respectively. Those pyrazines are most likely formed 

within the horseradish root through amidation of α-amino acids, condensation with α,β-

dicarbonyls and subsequent methylation [15]. The same FD range as for 3-isopropyl-2-

methoxypyrazine with likewise high FD factors was determined for the sweet, smoky, 

peach- and coconut-like smelling (3S,3aS,7aR)-wine lactone (FD 512-4096). 3-

Methylindole with its faecal odour impression was detected with medium FD factors of 

16 to 128. 

Table 1: Aroma-active compounds detected in all horseradish samples (n = 7) 

Odorant a Odour quality b 

RI value c on 
FD factor 

range d DB-5 
DB-

FFAP 

Acetic acid f Vinegar-like 636 1447 1-4 

(Z)-3-Hexenal f Grassy, green 806 1145 16-64 

Allyl ITC f 
Pungent, mustard-like, 
horseradish-like, onion-like 

883 1353 512-1024 

3-(Methylthio)propanal e Cooked potato-like 910 1450 4-16 

sec-Butyl ITC f Pungent, green 933 1263 4-32 

Isobutyl ITC f Pungent, mustard-like 954 1313 1-2 

1-Octen-3-one e Mushroom-like 979 1303 4-16 

3-Butenyl ITC f Pungent 982 1447 4 

1-Cyano-2,3-epithiopropane f,g Onion-like, pungent 1000 1827 <1-64 

2-Phenylacetaldehyde f Honey-like, sweet 1044 1636 2-4 

1-Nonen-3-one e Mushroom-like, fatty 1079 1397 1-8 

4-Pentenyl ITC f Pungent 1082 1524 2-4 

3-Isopropyl-2-methoxypyrazine f Pea-like, green pepper-like 1095 1423 512-4096 

2-Phenylethanol f Flowery, rose-like 1119 1904 1-8 

3-sec-Butyl-2-methoxypyrazine f Green pepper-like 1172 1493 8-256 

2-(Methylthio)ethyl ITC f Pungent 1206 1892 1-4 

3-(Methylthio)propyl ITC f Mushroom-like 1309 1967 8-128 

Benzyl ITC f 
Pungent, watercress-like, 

green 
1363 2087 8-32 

3-Methylindole (skatole) f Faecal 1391 2480 16-128 

(3S,3aS,7aR)-Wine lactone e 
Sweet, peach-like, coconut-

like, smoky 
1463 2214 512-4096 

2-Phenylethyl ITC f 
Horseradish-like, pungent, 
watercress-like, green 

1467 2205 512-2048 

     

a The compounds were identified by comparing them with the reference odorant based on the given criteria (see 
below). 
b Odour quality as perceived at the sniffing port. 
c Retention indices according to Kovats (1958) [16]. 
d Flavour dilution (FD) factor on the capillary column DB-5. 
e Identification criteria: RIs on capillaries named in table, odour quality and intensity at the sniffing port. 
f Identification criteria: same as in (e) and MS-EI data. 
g Detected via GC-MS in all samples, but only in four samples contents above the odour threshold. 
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Based on the FD factor values for each aroma compounds, the most potent odorants 

in freshly grated horseradish roots were 3-isopropyl-2-methoxypyrazine, (3S,3aS,7aR)-

wine lactone, 2-phenylethyl ITC and allyl ITC. Accordingly, it is conceivable that the 

general aroma impression of horseradish is mainly defined by those four substances. 

Nevertheless, other substances, particularly those with medium FD factors like the faecal 

smelling 3-methylindole and the mushroom-like smelling 3-(methylthio)propyl ITC are 

also likely to contribute to the overall aroma of horseradish. ITCs with medium or low 

FD factors like benzyl ITC and isobutyl ITC may further enhance the overall pungency 

of the horseradish flavour, thereby acting as a group. Likewise, green, vegetable-like 

notes are likely to be contributed by the green pepper-like smelling 3-sec-butyl-2-

methoxypyrazine and the grassy, green smelling (Z)-3-hexenal. 

We further detected four substances with medium or low FD factors, respectively, 

that were found in six out of the seven samples. Those were the cheesy smelling butanoic 

acid (FD 2-4) and the pungent 3-methylbutyl ITC (FD 1-2), as well as two unknown 

odorous substances. One had an onion-, vinegar- and cabbage-like smell (FD 4-32), the 

other was perceived as earthy, mouldy and dusty (FD 1-16). We assume that the former 

substance could be a sulphur-containing molecule and the other an alkylated pyrazine, as 

they show sensory traits typical for these substance groups. 

Summarising our findings, we detected substances that covered a wide FD range 

between the different samples, like CETP with a difference of seven dilution steps, 

whereas others were surprisingly consistent in the investigated varieties, like allyl ITC 

with a difference of one dilution step only between samples. 

Accordingly, the results of this study make a significant contribution to the general 

knowledge of the chemical principles of horseradish aroma. 
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Abstract  

The effect of nitrate reduction on the development of fermented sausage aroma and 

its stability during vacuum storage has been studied. Different sausage formulations were 

manufactured with different nitrate contents as a source of nitrite as preservative. The 

oxidation of sausages was evaluated by analyzing TBARS compounds and extraction of 

the volatile compounds using solid phase microextraction (SPME) and gas 

chromatography mass spectrometry. Aroma compounds related to oxidation processes 

were identified by olfactometry technique. The study revealed the relation of nitrate 

reduction and fat content on aroma compounds related to oxidation process and their 

effect on sausage aroma during vacuum storage 

Introduction 

Aroma characteristics of fermented sausage depend on processing factors such as 

raw material, meat ingredients, preservatives, technological parameters and presence of 

starter cultures. Despite the role of nitrites and nitrates in meat product safety and 

technological properties, there is a trend to reduce its use [1]. However, the effect of nitrite 

on flavor formation in meat products is essential to develop cured aroma. Thomas et al., 

[2] indicated that cured cooked ham aroma is due to the balance of sulfur compounds and 

oxidation compounds produced during cooking and in the absence of nitrite, the aroma is 

disturbed due to the excessive formation of oxidation compounds that mask the sulfur 

meaty notes. In dry fermented sausage aroma, nitrite plays a fundamental role in 

developing the typical dry cured aroma [3] although it is not known the effect of nitrite 

reduction on aroma generation and stability during shelf life. Therefore, our aim is to 

determine the effect of reduced nitrate concentrations used as preservatives on the 

development of sausage aroma in dry fermented sausages after storage under vacuum at 

ambient temperature. 

Experimental 

Dry fermented sausages preparation  

Dry fermented sausages were manufactured using lean pork (50%), pork fat (50%) 

and the following additives added in g/kg to the sausage formulation: lactose (20); 

dextrose (20); sodium chloride (20.25); glucose (7); potassium chloride (6.75); sodium 

ascorbate (0.5); starter culture (0.1) and sodium nitrate (0.25 for control sausage (C) or 

reduced in 15% (RN15) and 25% (RN25). The starter culture TRADI-302 (Danisco, 

Cultor, Madrid, Spain) was added containing Lactobacillus sakei, Pediococcus 

pentosaceus, Staphylococcus xylosus and Staphylococcus carnosus. The sausages were 

submitted to a slow fermentation process as described by Corral et al., [4]. At the end of 

ripening, sausages were vacuum packed and stored at room temperature to study its shelf 

life at 0, 36, 70 and 100 days. 
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Physicochemical analysis 

The lipid content was determined by organic extraction with Cl2CH2:CH3OH (2:1) 

[5]. Lipid oxidation was evaluated using the thiobarbituric acid reactive substances test 

(TBARS) [6] and expressed as μg of malonaldehyde per gram of dry mater (μg MDA/g 

dm).  

Volatile compound analysis 

The analysis of volatile compounds was carried out by solid phase micro extraction 

(SPME) with an 85 μm Carboxen/Polydimethylsiloxane (CAR/PDMS) fiber (Supelco, 

Bellefonte, PA). 5 g of sausage sample (with BHT to avoid oxidation) was weighed into 

a headspace vial. The vial was incubated at 37 °C for 30 min. Then, the fibre was exposed 

into the headspace vial for 120 min while maintaining the sample at 37 °C. The 

compounds adsorbed by the fibre were desorbed in the injection port of the GC-MS for 5 

min at 240 °C in splitless mode. A gas chromatograph (Agilent HP 7890 series II 

(Hewlett-Packard, Palo Alto, CA) with a mass detector (HP 5975C (Hewlett-Packard) 

equipped with an autosampler (Gerstel MPS2 multipurpose sampler (Gerstel, Germany) 

was used [7]. The compounds were identified by comparison with mass spectra from the 

library database (Nist’05), with linear retention indices [8] and with authentic standards. 

Aroma compound analysis 

A gas chromatograph (Agilent 6890, USA) equipped with a FID detector and 

sniffing port (ODP3, Gerstel, Mülheim an der Ruhr, Germany) was used to analyze aroma 

compounds [6]. Each assessment was carried out with 5 g of sample using the detection 

frequency method [9]. Four trained panelists evaluated the odors from the GC-effluent. 

A total of 12 assessments were carried out. The aroma compounds were identified by 

comparison with mass spectra, with linear retention indices of authentic standards 

injected in GC-MS and GC-O and by the coincidence of the assessor’s descriptors with 

those in the Fenaroli’s handbook of flavor ingredients [10]. 

Statistical analysis 

Analysis of variance (ANOVA) using the statistic software XLSTAT 2011, version 

5.0 (Addinsoft, Barcelona, Spain) was performed at each storage time among sausage 

formulations. Correlation tests (Pearson) among variables were also studied.   

Results and discussion 

Fat content in sausages was analyzed as it is responsible for the generation of lipid 

oxidation compounds during sausage fermentation [3]. Although all sausages were 

manufactured with the same lean and fat content, slightly differences among formulations 

were obtained due to pork back fat variability. Control sausages had a fat content of 33-

38%, while nitrate reduced sausages RN15 and RN25 contained between 29-33% and 29-

31%, respectively.  

The lipid oxidation level (TBARS values) during sausage vacuum storage is shown 

in Figure 1A. It showed a slight increase during the first month of storage and a decrease 

during the following months [11]. This behavior may be due to the high reactivity of 

malonaldehyde with sugars, aminoacids and nitrite [12]. In addition, the absence of 

oxygen in vacuum storage prevent the sausages for an increase in oxidation. However, 

differences among formulations were observed (p<0.001): the lipid oxidation was the 

highest in the control formulation. This fact can be due to the highest fat content of this 

control sausage as a positive (p<0.05) relation between lipid oxidation (TBARS values) 
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and fat content was obtained among sausages analyzed at the end of the ripening process 

(Figure 2A) [13].  

Regarding sausage aroma, GC-O analysis revealed 23 odour active zones (Table 1). 

The main odorants were Ethyl butanoate, Hexanal, Ethyl 2-hydroxypropanoate, 1-

hexanol, 2-acetyl-1-pyrroline, 3-(Methylthio)propanal, 1-Octen-3-ol and 1 unknown 

compound. Among them, only three aroma compounds were derived from lipid oxidation 

reactions: Hexanal (Figure 1B), Heptanal (Figure 1C) and 2-Pentylfuran (Figure 1D) 

which contributed to fresh cut grass, green-unpleasant and garlic-grass odour notes. The 

concentration of the three volatile compounds showed a general slight increase during 

vacuum storage of sausages. However, few differences were observed at each storage 

time among formulations. Hexanal was the most abundant compound and was positively 

related to fat sausage content at the end of the ripening (Figure 2B).  

 

Figure 1: Changes in TBARS (A), Hexanal (B), Heptanal (C) and 2-Pentylfuran (D) during vacuum storage of 

dry fermented sausages: C (control, ●), RN15 (15% reduced nitrate, ▲) and RN25 (25% reduced nitrate, □). 

Figure 2: Pearson Correlation between fat content and lipid oxidation (A) or Hexanal (B) in dry fermented 

sausages at the end of the ripening: C (control, ●), RN15 (15% reduced nitrate, ▲) and RN25 (25% reduced 

nitrate, □). 

Conclusions 

Aroma compounds derived from lipid oxidation reactions contribute to the aroma of 

fermented sausages. The increase in shelf life by vacuum storage produced variation in  
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Table 1: List of aroma compounds detected in GC-FID/Olfatometry 

Compound 
LRI stda 

GC-O 

LRIb 

GC-O 
Descriptor DFc 

Methanethiol 471 472 Rotten, unpleasant 8 

2-Methylfuran 619 615 Green, garlic, toasted, yeast, malt 4 

2,3-Butanedione 632 629 
Fruit, cheese, butter, floral, fresh, 

broth 
4 

2-Butanone 638 636 
Cheese, butter, dairy, strawberries, 

fruity, sweet, flower 
8 

Acetic acid 700 699 Vinegar, acid, unpleasant, sweet 8 

2,3-Pentanedione 739 740 Sweet, candy, fruit, glue, meat 4 

3-hydroxy-2-butanone 777 782 
Strawberry, sweet, fruity, apple, 

orange, acid, fresh, green 
9 

Ethyl butanoate 825 824 
Sweet, apple, banana, orange, fruit, 

strawberry, floral 
10 

Hexanal 836 834 
Fresh cut grass, vegetable, lemon, 

aromatic herbs, fresh 
10 

Ethyl 2-hydroxy 

propanoato 
859 865 

Cheese, fruit, strawberry, sweet, 

rancid, acid 
11 

Ethyl 3-methyl butanoato 876 874 Strawberry, fruit, glue, sweet 9 

1-hexanol 919 920 Cheese, oxidized fat, humidity 11 

2-Heptanone 931 931 
Cheese, rancid, burnt, irritating, 

garlic, vinegar, strawberry 
4 

Heptanal 937 938 Green, unpleasant, toasted 5 

2-acetyl-1-pyrroline 960 960 
Toasted, fried corn, bread, citrus, 

floral 
12 

3-(methylthio)propanal 969 965 Cooked potato, roast meat 10 

2-Pentylfuran 1011 1008 
Garlic, onion, fried, unpleasant, 

cured, grass 
8 

1-Octen-3-ol 1028 1023 Mushrooms, humidity, spicy 11 

Unknown - 1031 
Burnt, mushrooms, garlic, 

unpleasant, humidity, closed, herbs 
8 

Unknown - 1037 
Green, grass, earth, burnt, spicy, 

aromatic herbs 
6 

Unknown - 1162 
Spices, garlic, spicy, fried corn, 

unpleasant 
5 

Unknown - 1178 
Cooked potato, fried corn, toasted, 

dried fruit 
10 

Ethyl octanoate 1226 1223 
Cured sausages, onion, fruit, cooked 

potato 
7 

aLRI std: Linear retention index of standard compounds in the GC-FID-O. bLinear retention index of the 

compounds eluted from the GC-FID-O. cDetection frequency value.  
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these aroma compounds that are affected not only by the presence of preservatives (curing 

agents) but also by the matrix composition (fat content). 
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Abstract  

Shelf life prediction gains an increasing interest in food industries. It is especially 

relevant for long shelf-life products where degradations have more time to occur. In this 

study, we show that it is possible to build a reliable shelf-life kinetics model for infant 

formula (powder) packed in metal cans. The model varies the following parameters: 

storage temperature (5-40°C), storage time (0-2 years), and oxygen level in the pack 

(protected or unprotected atmosphere). The effects of light and moisture were discarded 

as they cannot penetrate through the metal can. A model was build based on chemical 

kinetics. The model is able to predict the taste, the level of vitamin C, and the aromas 

concentrations based on the chemical reactions occurring in the infant formula. The 

kinetic reactions were fitted based on data of aroma concentrations and oxygen level in 

the package. Several examples of accelerated shelf life tests simulating a normal shelf life 

at 2 years are illustrated. The results are compared to the most common practice in shelf-

life: using a fixed Q10 temperature coefficient. It is advised to use multiple accelerated 

shelf life tests to mimic the normal shelf life of the relevant sensory or nutritional aspects 

of the product.  

Introduction 

In this study, we show that it is possible to build a reliable shelf-life kinetics model 

for infant formula (powder) packed in metal cans. 

Experimental 

Shelf-life conditions 

In order to build the model several conditions were varied in the infant formula:  

 Storage temperature: 5C, 20C, 30C, and 40C, 

 Storage time: 0 to 2 years,  

 Oxygen level (O2) in the pack: protected (N2 flushed) or unprotected 

atmosphere (21 % O2). 

The effects of light and moisture were discarded in this study as they cannot 

penetrate through the metal can [1, 2, 3].  

Analysis 

Several selected parameters have been measured in the infant formula (powders): 

 Sensory attributes (Quantitative Descriptive Analysis - QDA, scale 0-100) were 

evaluated by a trained panel of 16 persons,  

 Aromas concentration was determined by GC-MS (most relevant aromas 

selected based on literature [4] and internal check; method adapted from [5]), 

 Oxygen content in the package (metal can) and vitamin C content. 
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Model building 

The relevant correlations between the parameters mentioned above were identified 

using multivariate analysis methods (Unscrambler). The gPROMS model builder was 

used to calculate the kinetics of the chemical reactions (aromas, vitamin; [6]). A user-

friendly shelf-life model was finally created in Excel and linked to the gPROMS model 

builder interface. The predictive power of the model was validated with real data. 

Utilizing this model, sensory attributes scores or vitamin C level can be predicted based 

on aroma compounds or/and oxygen evolution in the package during storage.  

Results and discussion 

General trends  

During shelf-life, infant formula powders were very sensitive to oxygen exposure. 

This effect is even more prevalent if the temperature increased during storage. As an 

example (Figure 1a), an infant formula packed in a metal can without protected 

atmosphere (high level of oxygen) developed higher oxidation flavour and showed high 

losses of vitamin C during storage. These results were expected as vitamin C is known to 

be one of the most unstable vitamins to oxygen and heat [7]. Similar results were obtained 

for liquid dairy products where other vitamins (B1, B2, D or A) always showed less 

degradation than vitamin C during storage with oxygen (data not shown).  

In contrast to unprotected atmosphere, infant formula powders packed in the metal 

can with protected atmosphere (low oxygen level) were extremely well protected. 

Vitamin C was stable at any temperature tested (30-60C) and only a slight increase (not 

significant) of oxidation flavour occurred after 2 years storage for the common 

temperatures of 30-40C (end of shelf-life; Figure 1b). At 60C, the oxidation reactions 

with the residual O2 content were increased. 

 
Figure 1: Increase of fat oxidation flavour with storage time (months) for (a) an infant formula in a metal can 
containing 21% O2; (b) an infant formula in a metal can flushed with inert gasses (protected atmosphere; 1,5% 

O2 residual).  

Fitting with aroma compounds  

A very good fitting was identified between the fat oxidation flavour and several 

aromas for the infant formula (correlation >0.6, good fitting in the model): hexanal 

(impact ~60%), pentanal (impact ~ 25%), 2,4,-tr, tr-decadienal (impact <5%), 4-cis-

heptenal (impact < 5%), penten-3-one (impact < 5%). Furthermore, furfural fitted with 

the burned odour observed during storage in the dried infant formula powder. Such a 

result is logical as furfural is produced through Maillard reactions [8]. Those reactions 
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trend to happen during storage at high temperature and can increase the caramelized, 

sweet or burned notes of the product. During storage, production of furfural in infant 

formula was only linked to heat state and not to the oxygen level. Though it is mainly 

recognized that Maillard reactions increase in the presence of oxygen [8] some authors 

however underlined that those reactions can also occur in anaerobic conditions [9]. The 

latter statement is supported by the finding that browning reactions were also observed 

during storage in dairy drinks in anaerobic conditions (data not shown). 

Q10 method 

A tool commonly used in accelerated shelf-life studies is the Q10 method. Q10 is 

the factor that indicates the increase in the rate of the reactions when the temperature is 

increased by 10°C. It is unit less and can be calculated with the following equation for 2 

reactions 10°C apart: Q10 = k (T+10°C) / k (T°C), where k= reaction rate constant. For 

most products, the Q10 value is 2.0, which means for every increase of 10°C, the rate of 

a chemical reaction will double. As an example, if a food has a stability of 20 weeks at 

20°C and 10 weeks at 30°C, then the Q10 will be 20/10 or 2. 

Accelerated shelf-life tests simulating a normal shelf-life at 2 years  

As it can be seen from Tables 1-2, the model was used to predict the accelerated 

shelf life test to mimic a normal storage of 2 years at 30°C of infant formula packed in a 

metal can. The results were compared with the common approach, i.e. the Q10 method 

(see description above). 

Table 1: Accelerated shelf life of infant formula mimicking the values obtained after 2 years at 30°C in a metal 

can flushed with inert gasses (1.5% O2 residual in the headspace).  

 
Value after  2 

years at 30C* 

Corresponding 

months at 40C 

Corresponding 

months at 60C# 

Equivalent Q10 

30C vs 40C 

Vitamin C (mg/kg) 873 12.3 3.3 2.0 

Fat oxidation flavour 5 16.5 8.3 1.5 

Hexanal (ppb) - A 254 15.8 7.3 1.5 

Furfural (ppb) - B 60 5.0 0.3 4.8 

* Initial value before storage: vitamin C: 890 mg/kg; fat oxidation flavour:1; hexanal: 10 ppb; furfural: 20 ppb. Indicator of 

oxidation reactions (A) or of Maillard reactions (B). # Values at 60C were generated by the shelf-life prediction model. 

Table 2: Accelerated shelf life of infant formula mimicking the values obtained after 2 years at 30°C for a metal 

can in unprotected atmosphere conditions (21% O2 in the headspace). 

 
Value after  2 

years at 30C* 

Corresponding 

months at 40C 

Corresponding 

months at 60C# 

Equivalent Q10 

30C vs 40C 

Vitamin C (mg/kg) 738 10.3 2.2 2.3 

Fat oxidation flavour 100 8.8 3.0 2.7 

Hexanal (ppb) - A 14992 12.5 4.0 1.9 

Furfural (ppb) - B 60 5.0 0.3 4.8 

* Initial value before storage: vitamin C: 890 mg/kg; fat oxidation flavour:1; hexanal: 10 ppb; furfural: 20 ppb. Indicator of 

oxidation reactions (A) or of Maillard reactions (B). # Values at 60C were generated by the shelf-life prediction model.  

The shelf-life parameters of the infant formula (vitamin C, fat oxidation, hexanal, 

furfural) showed different kinetics and therefore, they should be tested using different 

accelerated shelf-life (Table 1). For example, the furfural (indicator of Maillard reactions) 

needed an accelerated shelf-life at 40°C of 5 months to mimic the normal shelf life of 2 
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years at 30°C while the fat oxidation needs 16.5 months. This also means that the Q10 

coefficient of the different parameters varied from 1.5 to 4.8. Only one factor has a Q10 

coefficient of 2 in a metal can with protected atmosphere: the vitamin C. The Q10 factor 

can vary in function of the conditions, for example a Q10 of 1.5 was observed for fat 

oxidation in protected atmosphere (Table 1) while it was closer to 3 in unprotected 

atmosphere at 40°C (Table 2). The accelerated shelf-life of the infant formula at 60°C 

showed that all reactions can be accelerated but that for several parameters still some 

months were required to reach the same value found in normal shelf-life (2 years at 30°C). 

As an example, an accelerated shelf-life of 7.3 months and 2.8 months, both at 60°C were 

needed for fat oxidation and vitamin C, respectively (Table 1). This is logical since metal 

cans with protected atmosphere are extremely good protective packaging [2, 3]. 

The same observations were seen in unprotected atmosphere conditions: the 

accelerated shelf-life conditions (Table 2) as well as the Q10 coefficient depended on the 

parameter types (vitamin C, fat oxidation).  The fat oxidation flavour as well as oxidation 

reactions indicator, hexanal increased sharply in unprotected conditions (see values of 

normal shelf life at 30°C for 2 years Table 1 vs Table 2). The Maillard reactions indicator 

(furfural) was similar at 30°C for protected and unprotected atmosphere. This is because 

those reactions were dependent on the applied temperature and not on the oxygen level 

present in the headspace of the packaging. 

The results indicate that using only one accelerated shelf-life test (one 

time/temperature) to mimic the normal shelf-life is not optimal. The best approach would 

be to use one accelerated shelf-life test for each parameter of interest. In other words, a 

multiple shelf-life approaches should be used, respecting the reaction kinetic of each 

parameter. In the near future, shelf-life model will help to better predict the behaviour of 

the key parameters of infant formula powders and to correlate the results to normal shelf 

life. With this model, the duration of accelerated shelf life study is expected to reduce 

while still guarantying a good prediction of the normal shelf-life.  
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Abstract  

Despite the well-recognised role of milk fat in flavour development in cheese, 

research investigating the importance of the milk fat globule membrane (MFGM) on 

flavour in cheese is scarce. This study investigated the impact of MFGM composition and 

structure on the volatile profile of ripened Cheddar cheese samples. Three types of 

MFGM recombined cheeses were manufactured using MFGM fractions isolated from 

dairy by-products and were compared to two reference cheeses. After 6 months’ 

maturation the MFGM recombined cheeses had a higher concentration of volatile 

compounds (short chain fatty acids, alcohols, methyl ketones and sulfide compounds) 

compared to the reference-cheeses. These results demonstrate that the MFGM 

composition as well as structural rearrangement at the fat globule interface had a 

significant effect on the development of volatile compounds in cheese during maturation. 

Introduction 

Milk fat plays a vital role in determining the texture, flavour, and physico-chemical 

properties of cheese [1]. The milk fat globule (MFG) consists of a lipid core surrounded 

by a three-layer membrane termed the MFGM. The MFGM contains a complex mixture 

of glycoproteins, enzymes, and phospholipids. Phospholipids within the membrane 

possess a high water-holding capacity and the moisture captured by them can serve as a 

reservoir where enzymes can act and enhance flavour development [2]. MFGM 

components can act as substrates for both lactic acid bacteria (LAB) and non-starter lactic 

acid bacteria (NSLAB) [3] during the later stages of cheese ripening. Furthermore, the 

MFGM contains redox enzymes such as xanthine oxidase (XO), which are capable of 

catalysing the oxidation of a broad range of substrates, and therefore may play a role in 

determining the flavour of cheese.  

Buttermilk is a by-product of butter manufacturing, produced during churning; 

whereas α-serum (αS) and β-serum (βS) are by-products of anhydrous milk fat 

manufacturing. Buttermilk, αS and βS were once considered to be waste material, but are 

now recognised as good sources of MFGM. The procedures used to produce buttermilk 

powder (BMP), αS, and βS affect the protein and lipid moiety of the isolated MFGM 

fractions, and the content and activity of XO and other enzymes [4]. As such, BMP, αS, 

and βS were used in this study as a source of MFGM fractions with different protein and 

lipid composition and XO enzymatic activities. The isolated fractions were then used to 

investigate the importance of the MFGM structure and composition on development of 

volatile compounds in model Cheddar cheese samples during six months of ripening.     

Experimental 

Materials 

Raw milk was collected from Jersey cows at late lactation from a local dairy farm 

(Outram, New Zealand) on the day of milking. Freeze-dried αS and βS and spray dried 

BMP were obtained from a dairy factory in New Zealand. AMF was obtained from New 
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Zealand Milk Products (Auckland, New Zealand). Freeze-dried mesophilic starter culture 

containing Lactococcus lactis ssp. lactis plus Lactococcus lactis ssp. cremoris (R704) 

was obtained from Hansen A/S, Horsholm (Denmark).  

MFGM isolation and model cheese production 

Freeze-dried αS and βS and BMP were used for MFGM isolation as outlined in 

Haddadian et al. [4]. Three types of 5% milkfat emulsion were prepared using the three 

MFGM isolates (2%) as the emulsifier, as previously described [4]. Three separate 

batches of model Cheddar cheese were manufactured for each treatment using the 5% 

milk fat emulsions, according to a standard Cheddar cheese making procedure [5]. Two 

reference cheeses were also manufactured as comparison samples: (1) Native-cheese 

containing cream and skim milk to evaluate the role of MFGM structure in flavour 

development; and (2) Tween-cheese containing recombined MFGs emulsified by Tween 

80 to evaluate the effect of the MFGM composition in the flavour development process 

(Table 1). Cheeses were sampled after 1, 90, and 180 d of ripening. Ripened samples 

taken at each sampling date were frozen at -20C until the end of the trial so that the 

complete sample set could be analysed together.  

Table 1: Compositional properties of cheese milk samples for model cheese production 

 
Determination of volatile compounds by SPME-GC/MS 

The analysis of volatile compounds in miniature model cheeses was carried out using 

solid phase micro extraction (SPME) with a fibre coated with a film of DVB/CAR/PDMS 

(Supelco, Bellefonte, PA, USA) and analysed by gas chromatography–mass spectrometry 

(GC-MS). Volatile compounds were separated on a polyethylene glycol capillary column 

(Zebron ZB-Wax 60m x 0.32mm x 0.50 µm, Phenomenex, Torrance, CA, USA). A 

complete randomised design, blocked by replicate, was used for the volatile analysis. 

Vacuum-packed frozen cheese samples were ground with liquid nitrogen and Na2SO4 (1.5 

g/g) to give fine particles. A subsample (5 g) of each powdered sample was mixed with 2 

µL of an aqueous solution of 12.5 mg L-1 fenchol in a 20 mL sealed GC vial. Vials were 

placed on autosampler tray (PAL3 RSI 85, Agilent Technologies) for analysis. 

Results and discussion 

Effect of MFGM on development of volatile compounds during cheese ripening 

A total of 28 significantly different compounds were detected among the model 

cheese samples for the three time points during the six-month ripening period. The 

differences between samples over ripening were visualised using PCA on normalised 

peak areas (Figure 1).  

Cheese 

samples  

Cheese milk composition (mL) Emulsifier PFR* 

Cream# Emulsion 

 (mL) 

Water  

(mL) 

Skim milk  

(mL)† 
  

Native 30 - 200 170 - 1.02 

Tween - 230 - 170 Tween80 1.02 

α-cheese - 230 - 170 α-MFGM 1.02 

β-cheese - 230 - 170 β-MFGM 1.02 

BMP-cheese - 230 - 170 BMP-MFGM 1.02 

* Protein to fat ratio 
 # Pasteurised cream; 36% fat and 2.2% protein 
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Figure 1: Principal component analysis of significantly different volatile compounds detected in model cheese 

samples at three time points during six months ripening. Scores plot (top) of cheese samples; α (○), β (□), BMP 

(◊), Native (●), and Tween (◌); Loadings plot (bottom) of significantly different volatile compounds identified 
by GC-MS. Points represent 3 batches x 2 analytical replicates per treatment per time point. 

The first two principal components accounted for 62% of the total variability (PC1 

41%, and PC2 21%) and clearly separated the model cheese samples into three groups 

consisting of Native-cheese, Tween-cheese, and MFGM-recombined cheeses of α, β, and 

BMP (Figure 1, top). Ripening time proceeded from left to right on PC1. The number and 

concentration of most compounds increased as ripening proceeded, except for a few 

compounds, such as ethanol, and octen-3-ol, which decreased significantly over the 

ripening in all model cheese samples. The volatile profile of the MFGM-recombined 

cheeses developed the most, while the Tween cheese, followed by the Native-cheese 

showed the least volatile development during the ripening period.  

At six months of ripening, MFGM-recombined cheeses containing αS, βS, and BMP 

had a higher concentration of short chain fatty acids (SCFAs), alcohols, methyl ketones 

and sulfide compounds (Table 2). In MFGM recombined cheeses, the higher XO activity 

in β-serum (7.2 ± 0.8 mmol/L uric acid/min) and α-serum (7.6 ± 0.5 mmol/L uric 

acid/min) compared to BMP (no detected activity) was correlated to higher 

concentrations of SCFAs. Native and Tween cheeses had higher concentrations of 2,3-

butanediol and 3-hydroxybutanone compared to the recombined cheeses of αS, βS, and 
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BMP. Tween cheese was uniquely associated with higher levels of three esters; ethyl 

butanoate, butyl butanoate, and ethyl hexanoate, but overall had the lowest concentration 

of volatiles, thus showing the importance of MFGM to the flavour development in cheese. 

Table 2: Concentrations of significantly different volatile compounds detected in experimental cheese samples 

after six months ripening.  

 
Letters denote significant differences (p < 0.05) between samples according to Tukey HSD post-hoc test. 

Conclusion  

By comparing the volatile profile of the MFGM-recombined cheeses with Tween-

cheese, and Native-cheese, new insights were revealed into the role of MFGM and its 

composition and structure on flavour development in cheese. Rearrangement of the 

MFGM structure and the higher activity of the MFGM-enzymes such as XO, favoured 

the production of volatile compounds during ripening. These results demonstrate the 

potential of using MFGM components from commercial by-products as a functional 

ingredient to enhance the flavour development of cheese. 
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 AS-cheese BS-cheese BMP-cheese Tween-cheese Native-cheese 

Acetic acid 26.4 ± 1.6 a 22.1 ± 1.0 b 12.1 ± 0.6 c 6.7 ± 0.2 e 9.8 ± 0.3 d 

Butanoic acid 89.3 ± 5.5 a 88.3 ± 2.7 a 66.8 ± 1.8 b 34.3± 3.0 c 63.7 ± 2.6 b 

Hexanoic acid 93.8 ± 2.4 a 99.3 ± 3.4 a 72.2 ± 2.6 b 45.0 ± 5.5 d 61.5± 7.8 c 

Ethanol 322.8 ± 5.0 a 285.0 ± 2.9 b 187.1 ± 13.6 c 248.1 ± 13.4 e 129.8 ± 8.2d 

1-Butanol 7.8 ± 0.4 b 9.0 ± 0.2 a 6.8 ± 0.3 c 5.9 ± 0.5 d 2.7 ± 0.3 e 

1-Nonanol 1.1 ± 0.05 b 1.0 ± 0.06 d 1.1 ± 0.03 b 0.8 ± 0.03 c 0.6 ± 0.04 a 

1-Hexanol 4.3 ± 0.1c 4.9 ± 0.3 ab 4.4 ± 0.2 c 4.8 ± 0.1bc 2.6 ± 0.4 d 

Dimethyldisulfide 0.7 ± 0.06 a 0.7 ± 0.02 a 0.6 ± 0.07 b 0.04 ± 0.05 c 0.5 ± 0.04 b 

Dimethyltrisulfide 0.5 ± 0.04 b 0.6 ± 0.03 a 0.4 ± 0.03 c 0.07 ± 0.01 d 0.1 ± 0.04 c 

2-Hexanone 40.1 ± 0.1 a 40.7 ± 1.9 a 40.3 ± 1.4 a 28.8 ± 0.3 b 8.6 ± 0.1 c 

2-Heptanone 13.2 ± 0.4 b 15.0 ± 0.6 a 13.8 ± 0.4 b 9.8 ± 0.3 c 4.0 ± 0.7 d 

2-Nonanone 4.9 ± 0.3 a 5.4 ± 0.2 a 5.0 ± 0.2 a 3.7 ± 0.1 b 2.4 ± 0.3 c 

4-Methyl-2-

hexanone 
5.9 ± 0.6ab 6.3 ± 0.4 b 5.4 ± 0.2 a 3.5 ± 0.4 c 2.0 ± 0.2 d 

2-3-Butanediol 0.9 ± 0.1 e 1.4 ± 0.1 d 2.0 ± 0.2 c 5.5 ± 0.07 a 3.1 ± 0.3 b 

3-Hydroxybutanone 4.6 ± 0.4 d 4.0 ± 0.2 d 5.7 ± 0.2 c 10.1 ± 0.2 a 8.8 ± 0.3 b 

Ethyl butanoate 1.4 ± 0.05 a 1.2  ± 0.06 a 1.0  ± 0.07 a 1.5  ± 0.08 a 1.0  ± 0.1 a 

Ethyl hexanoate    0.7  ± 0.2  

Butyl butanoate 3.9  ± 0.2 b 4.8  ± 0.6 b 4.3  ± 0.1 b 11.9  ± 0.6 a 4.7  ± 0.6 b 
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The effect of sugar type on VOC generation in a model 
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Abstract  

Due to the multiple functions of sugar in foods, in particular the contribution of sugar 

to the desirable “fresh baked” aroma, efforts to improve the nutritional profile of baked 

products by reducing sugar is problematic. As such to produce consumer accepted 

reduced sugar products it is necessary to understand how removing and/or modifying 

sugar composition influences the final product flavour. Model baked products (muffins) 

were produced containing variable amounts of sucrose, fructose, glucose and lactose and 

the volatile organic compound (VOC) composition isolated by solvent assisted flavor 

extraction (SAFE) and measured by gas chromatography mass spectrometry (GC-MS). 

Overall changing the sugar composition changed the VOC composition with lactose 

containing systems producing a VOC composition that was most different from the 

uncooked and sucrose containing muffins. In comparison to the lactose containing 

muffins the glucose and fructose containing muffin produced VOC compositions more 

similar to sucrose containing muffins. Not all compounds increased with increasing levels 

of sugar. 

Introduction 

Replacing sugar in baked products is a major challenge. Sugar not only imparts 

sweetness, but contributes to the fresh flavour quality of baked foods during thermal 

processing and acts as a tenderiser by retarding and restricting gluten formation [1]. 

Reducing sugars have a direct influence on the Maillard reaction, which can either 

promote or reduce Strecker degradation, resulting in the formation of important 

compounds such as pyrazines that are character impact odorants of freshly baked foods 

[2]. Sucrose, a non-reducing sugar, can degrade during baking forming the reducing 

sugars fructose and glucose. Therefore, it is necessary to understand how removing and/or 

modifying sugar composition influences the final product flavour. 

The objective of the study was to investigate the effect of sugar type (sucrose, 

glucose, fructose and lactose) at two sugar levels (3.7%, 14.7% of batter recipe) on 

volatile organic compound (VOC) generation in a model baked system (muffins). 

Experimental 

Model baked systems (muffins) were produced using the generic formulation in 

Table 1 and sugar composition in Table 2. Dry ingredients (flour, sugar, baking powder, 

salt, polydextrose and sugar mixture) were mixed with the liquid ingredients (egg white, 

water and oil) and baked at 200 °C for 18.5 min. Muffin cooked weight was 55 +/- 0.5 g. 

Muffins were immediately frozen after baking using liquid nitrogen. 

Ground frozen muffins (200g) were added to 150mL distilled water and 200mL 

diethyl ether (99.7%, Merck KGaA, Germany). This mixture was shaken for 40min then 

filtered and 30ppm carvone added. 

SAFE (Glasbläserei, Bahr, Manching, Germany) distillation was carried out at 

about 10-6 mbar over two hours (including sample addition time of one hour).  The 500mL 
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sample flask was maintained at 35°C. The 500mL receiver flask was cooled using liquid 

nitrogen. Circulating Water was held at 42C. Diethyl ether (25mL) was used to rinse the 

sample bottle and dropping funnel.   

Table 1: Generic formulation of the muffins 

Ingredient % (weight/weight) 

Flour 31.3 

Baking powder 1.8 

Salt 0.5 

Polydextrose 2.7 

Egg white 11.2 

Canola oil 11.1 

Water 26.7 

Sugar mixture 14.7 

Table 2: Composition of the sugar mixture used in each muffin variant 

Variant number Sugar composition 

1 100% sucrose 

2 100% fructose 

3 100% glucose 

4 100% lactose 

5 25% sucrose, 75% polydextrose 

6 25% fructose, 75% polydextrose 

7 25% glucose, 75% polydextrose 

8 25% lactose, 75% polydextrose 

9 100% sucrose - uncooked 

10 100% polydextrose 

Distillates were dehydrated with anhydrous sodium sulphate, filtered through celite 

then concentrated to 1 mL in a Kuderna Danish apparatus under oxygen-free nitrogen. 

All the extracts were stored in a freezer (-20°C) until GC-MS analysis. Distillates were 

analysed using an Agilent 6890 GC coupled with Agilent 5973 Quadrapole MS fitted 

with a BPX5 column (30m x 0.25mm id, 0.25um film thickness). 

Data Analysis: Peak alignment and peak area extraction were performed using 

XCMS [3]. Principal component analysis (PCA) was used to investigate the relationships 

between samples and peak areas. 

Results and discussion 

The use of different sugar formulations impacted on the extent of browning upon 

baking (most browning, 100% fructose; least browning, polydextrose). Differences in the 

total amount of volatile organic compounds (VOCs) produced, as measured by summed 

normalised peak areas, were also observed. Summed normalised peak areas were highest 



 

 

The effect of sugar type on VOC generation in a model baked system 71 

for muffins containing 100% lactose followed by 25% lactose, 100% fructose, 100% 

glucose, 25% glucose, 25% fructose, 100% sucrose, 25% sucrose and polydextrose, 

respectively.  

The effect of sugar type on VOC composition was examined by normalising the peak 

areas to the sum of the peak areas then assessed by principal component analysis (PCA). 

The PCA plot explained 78% of the variation on the 1st and 2nd PCs (PC1 60%; PC 2 

18%) (Figure 1). Along PC 1 the VOC composition of muffins containing lactose were 

most different from the uncooked muffin batter. 

 

Figure 1: Principal component analysis scores plots of muffins containing different sugar compositions 

The separation of the cooked muffins from the uncooked muffin batter on the PCA 

appeared to be related to a combination of number of compounds detected and higher 

proportions of common compounds. Separation towards the lactose containing muffins 

was due the presence of higher proportions of 2-furanmethanol, maltol, γ-butyrolactone, 

2(5H)-furanone, and lower proportions of acetic acid, hexanoic acid and three unknown 

compounds. PC2 separated the muffins containing glucose/fructose from muffins 

containing sucrose/ polydextrose due to higher proportions of 2,3-dihydro-3,5-

dihydroxy-6-methyl-4H-pyran-4-one, 5-(hydroxymethyl)-2-furancarboxaldehyde, 5-

methyl 2-furanmethanol, 5-hydroxymethylfurfural, furfural, 2,5-dimethyl-4-hydroxy-

3(2H)-furanone, hexanoic acid and 5-hydroxymethylfurfural; and higher proportions of 

methyl pyrazine, benzeneacetaldehyde, nonanal and two anhydro-glucopyranose 

compounds, respectively. 

Relative peak areas of the main VOC’s responsible for the separation of muffins on 

the PCA plot are shown in Figure 2. Furan methanol and maltol are highest for lactose 

100% (Figure 2A and 2B). Acetic acid and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-

pyran-4-one are highest in the fructose and glucose containing muffins (2C and 2F). For 

these VOC’s the muffins containing 25% lactose, 100% sucrose, 100% polydextrose and 

uncooked muffin all contained similar relative peak areas. Their contribution to the 

separation on PC 1 was probably due to lower total peak areas for sucrose, polydextrose 

and uncooked muffins compared to lactose containing muffins. Methyl pyrazine and 
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benzeneacetaldehyde show a similar trend with the sucrose containing muffins containing 

the highest peak areas (2D and 2E). 

 
Figure 2: Relative peak areas for compounds responsible for descrimination based on sugar composition 

(relative peak area of internal standard =30); A. 2-furanmethanol ; B. maltol ; C. acetic acid ; D. methyl 
pyrazine; E. benzeneacetaldehyde; F. 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one 

Overall changing the sugar composition changed the VOC composition with lactose 

containing systems producing a VOC composition that was most different from the 

uncooked and sucrose containing muffins. In comparison to the lactose containing 

muffins the glucose and fructose containing muffin produced VOC compositions more 

similar to sucrose containing muffins. In some instances higher relative peak areas were 

obtained for some compounds (e.g. benzeneacetaldehyde) in the 25% level of muffins 

containing fructose and glucose compared to the 100% levels. This may reflect some 

compounds present are intermediates and react to form other compounds. 
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Abstract 

The impact of sodium inclusion on the structural properties of sweet biscuits was 

investigated. Mass loss behaviour of four biscuit doughs (four levels of added salt) during 

baking (rate of loss, mass loss) was monitored using TGA, and texture properties of the 

baked biscuits were established with a texture analyser. Reducing the amount of added 

salt significantly increased the rate of mass loss at the baking phase, and hence, impacted 

biscuit hardness. Furthermore, less sodium chloride in the dough decreased the intrinsic 

break strength of the biscuits. This could be explained at a molecular level by changes in 

the glutenin gliadin cross-linking leading to changes in the gluten network. In contrast, 

when high levels of sodium chloride were added to the dough, an increased intrinsic 

biscuit break strength was observed. The present study demonstrates the significant 

impact of sodium on gluten polymerization during biscuit baking and confirms that 

sodium inclusion led to a retention of free water necessary for the gluten formation. 

Introduction 

Although sodium is required for normal body functions, it is often consumed in 

excess, this has led to a major global health problem for both adults and children. A high 

consumption of salt causes an increase in blood pressure and therefore increased risks of 

cardiovascular disease, stroke and coronary heart disease. The World Health Organization 

(WHO) recommends that adults consume less than 5g of salt daily. However, the average 

global intake significantly exceeds this level (e.g. 10g/day in the UK) [1]. Salt is used for 

3 principal applications: processing, sensory (enhancement properties of others 

ingredients) and preservation [2]. More precisely, sweet biscuits have been highlighted 

because they often contain significant amounts of hidden salt. In 2013, a survey found 

that biscuits are in the top ten contributors of salt intake in the UK diet [3]. To ensure that 

biscuits with a lower sodium content remain appealing to consumers, sodium reduction 

in food products must not modify quality such as texture, or preservation and taste 

properties. Several studies have investigated the impact of sugar and fat in sweet biscuits, 

but to the best of the authors’ knowledge, the impact of sodium reduction was exclusively 

performed on bread and salty snacks [4]. Sweet biscuits are a complex food matrix 

composed of various ingredients such as wheat flour (containing gluten and starch), fat 

(butter), sugar (sucrose), salt, and a low amount of water (< 5 %). During dough making, 

high sugar and fat levels and low water levels result in poor gluten hydration [5], leading 

to a non-elastic dough with a low gluten development [6]. During dough heating, fat, 

sugar, and gluten react. Starch granules could potentially swell but in short dough, this 

phenomenon might be very limited. A degradation of starch particles could also be 

observed but the high sucrose and low water levels prevent complete gelatinization [7]. 

Gaines (1990) stated that gluten proteins remain functional during the baking phase in 

this kind of matrix. Chevallier et al. (2000) and Pareyt et al. (2009) observed that the level 

of extractable proteins after baking decreased significantly, suggesting the formation of a 

gluten network in the dough during baking [8]. Moreover, Chevallier et al. suggest that 
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the structure of the matrix after baking could be attributed to the sucrose [8a]. As the 

biscuit could be defined as a complex matrix made of sugars, lipids, starch granules and 

protein aggregates, they suggested that the structure cohesiveness might be mainly 

achieved by sugars that become glassy after the baking phase during the cooling step. It 

still appears that the quality of the gluten network is the most important factor that affects 

the structural properties of the biscuits [9]. The aim of this study was to observe and 

understand the impact of sodium on gluten polymerization in sweet biscuits and the 

impact on the structure after baking. 

Experimental 

Materials 

Reference dough (L3) was prepared from the ingredients listed below: (1) Unsalted 

Butter 23.2 g/100 g; (2) Caster sugar 18.6 g/ 100 g; (3) Semi-skimmed long life milk 

11.1g/100 g; (4) Salt, 0.6 g/100 g; (5) Flour containing self-raising agent 46.5 g/100 g. 

Unsalted butter, caster sugar, semi-skimmed long life milk and sodium chloride were 

sourced from Sainsburys (Supermarket company, UK), and flour was sourced from 

Morrisons (Supermarket company, UK). 

Biscuit dough making and baking 

The ingredients from (1) to (4) were weighed and blended manually then (5) was 

added and the dough mixed by a Food processor blender (Multipro Home, Kenwood, 

UK). A homogeneous dough was then formed, rolled to 40 mm thickness using an 

industrial laminator (Fritsch, Rollfix, Germany), and shaped by a model cutter (24 mm 

diameter, round with a smooth edge). The biscuits were placed on the same tray, placed 

in a Deck oven (Tom Chandley Compacta, UK) and baked at 180°C for 12 min. 

Subsequently, the biscuits were cooled to room temperature (20°C). The biscuit 

dimensions and weight were (average): height: 0.6mm; diameter: 32mm, and weight 3g. 

The biscuits were carefully packed and stored in sealed aluminium bags with a minimum 

headspace within the bag to reduce the effect on moisture content. Four doughs, from L0 

to L3, were formulated and each contained different quantities of sodium chloride 

(respectively: 0.53; 0.75; 0.96; 1.20g of salt/100g of dough). L3 was the reference, 

comparable to the higher quantity of salt in commercial biscuits available in supermarkets 

(i.e. 1.3g per 100g of biscuit). 

Thermogravimetry (TGA) 

The weight loss of samples was measured with a Mettler-Toledo TGA/SDTA 851 

thermal gravimetric analyser, using a nitrogen atmosphere (3 replicates). TGA is an 

analytical technique used to determine a material’s thermal stability by monitoring the 

weight change that occurs as a specimen is heated; the weight is recorded as a function 

of the increasing temperature. In dynamic measurements, 10.0 ± 0.2mg of sample were 

placed in the aluminium pans and heated from 30 to 200°C at a heating rate of 10°C/min. 

Moisture content 

Moisture content of all biscuits was assessed by drying the biscuit using an OHAUS 

MB25 moisture balance. 2 g of sample were ground using a pestle and mortar and then 

placed on the moisture balance pan. The balance was programmed to run at 120°C for 12 

min. 12 replicates of each type of biscuit were run. 

Three-point bend 

A Texture Analyser (TAXT Texture Analyser, Stable Micro Systems) was used to 

measure fracture force (Newton, N) of biscuits in compression mode, in a 3-point bending 
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test using a 3-point bending rig (HDP/3PB), a heavy-duty platform (HDP/90) and a load 

cell of 5 kg. The inner gap distance between 2 plates was 18 mm and the upper blade 

linked to the probe moved vertically with 5.5 mm either side of the plate.  

Statistical analysis 

The data obtained from colour, moisture content, water activity, texture analyser and 

aroma release experiments were statistically evaluated using the software Microsoft® 

Excel 2010/XLSTAT©-Pro (2013.4.03, Addinsoft, Inc., Brooklyn, NY, USA). Data were 

subjected to univariate analysis of variance (ANOVA). The significance level was set at 

p-value<0.05. Significant differences among means of treatments were evaluated by the 

post-hoc multiple comparisons Fisher test. 

Results and discussion 

Reducing the salt content resulted in more rapid weight loss probably due to a lower 

water retention during baking. Rates for L0 and L3 were -4.12 and -3.28 µg/s respectively. 

Fessas & Schiraldi (2001) suggested that water in the dough would mainly be in two 

states, namely, i) free to diffuse through a medium, whose viscosity increases with 

increasing temperature because of the drying and transformations affecting starch and 

gluten, and ii) tightly bound to the gluten network and thus able to flash off only at higher 

temperatures [10]. The observed phenomena here could be due to release of “free water” 

in L0 (high rate of release; low temperature) and the added sodium in L3 might lead to 

an increase of the amount of “bound water”. This could also explain why we need a higher 

temperature to release water in L3 (maximum rate of loss for L3=106°C while for 

L0=104°C). Moisture content analysis of biscuits showed a significant difference 

between the samples L0 to L3 with respectively 3.13 and 3.60 %.  

 
Figure 1: Maximum rate of mass loss (mg/s) between 104 and 106°C (A) and force (Newton) required to 

fracture (B) biscuits L0 to L3 

However, there is no difference between L1 and L2 but the global trend shows a 

decrease of the moisture content when the quantity of added sodium chloride decreases. 

This observation tends to confirm our hypothesis that reducing the amount of added salt 

led to a matrix which retains less water leading to a smaller moisture content of L0 than 

L3. The force required to bend and fracture the samples was measured and a significant 

decrease in the force needed to reach the point of break was observed (p-value < 0.05) in 

biscuits without added salt, meaning less resistance to fracture and lower elastic response 

in L0 (11.70 N) than L3 (12.75 N). Decreasing values from L3 to L0 could be here related 

to the development of a less elastic structure in biscuits during baking. However, it must 

be stressed that due to the low moisture content in these doughs before baking (≈17%), 

and a high fat level (23.4%) and sugar level (18.6%), gluten proteins may  not be properly 

hydrated and may form a non-continuous network [11]. Lynch et al. showed that sodium 
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chloride increased the strength of the gluten network in bread doughs by enhancing the 

orientation uniformity [12]. The impact of the sodium on the gluten network strength was 

established by McCann & Day as added sodium chloride reduced the proteins charge 

leading to less repulsive forces (enhanced non-covalent hydrophobic interactions), and 

they observed higher interactions between them, leading to an increase in the gluten 

network strength [13]. Therefore, the added sodium chloride increased the force required 

to break the biscuits due to the formation of the gluten network being more resistant after 

baking. This is hypothesised to be due to the sodium chloride retaining more water in the 

matrix and decreasing the quantity of free water. So, the increase of the force required to 

break the salted biscuits could be due to the strengthening of the gluten network mixed 

with sugar in a glassy state (forming a more elastic matrix – lowering Young modulus). 

Conclusion 

The objective of this study was to understand the impact of sodium on the physico-

chemical characteristics (colour, aroma release, texture) and sensory properties of sweet 

biscuit by baking biscuits with less added salt. When sodium chloride was added up to 

1.20% (L3 as reference), the biscuit required more force to be broken, and had a higher 

moisture content than the biscuits with no added sodium chloride. Salt reduction may 

reduce the formation/strength of the gluten network [13]. It was suggested that there is an 

increase of “free water” in L0 (high rate of release at a lower temperature) and that the 

added sodium chloride in L3 might lead to an increased amount of “bound water” due to 

a more developed/strengthened gluten network (lower rate of release; higher 

temperature). A good gluten network might retain more water in the matrix (L3) and that 

more “bound water” will lead to a more resistant and elastic matrix which could 

potentially retain more aroma compounds in the matrix during the baking step.  
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Abstract 

Interactions between proteins and flavours have been reported to produce flavour 

retention and to decrease flavour perception in food products. Protein/flavour 

interactions, a type of flavour retention, can either be reversible such as hydrophobic, 

hydrogen, and electrostatic interactions or irreversible such as covalent binding. Proteins 

can also transmit undesirable off-flavours to food products affecting their organoleptic 

properties and thus also altering flavour perception. It has been previously confirmed that 

vanilla flavour intensity was reduced due to interactions between vanillin and milk 

proteins. However, less is known about plant protein/flavour interactions. Therefore, the 

aim of this study was to investigate interactions between vanillin and plant proteins 

(wheat, soy, lupin, pea, and potato) in aqueous systems and their impact on flavour 

perception. Results showed that interactions were dependant on the protein source. 

Vanillin was bound mainly by pea protein, followed by wheat protein. The final sensory 

profiles of model beverages were influenced by both, protein/vanillin interactions and 

off-flavour related to each protein. 

Introduction 

Multiple studies have shown that proteins can interact with various flavour 

components resulting in flavour retention and affecting flavour perception [1]–[3]. 

Protein/flavour interactions differ according to the amino acid composition of proteins 

and the chemical structure of flavour components. Retention of flavour by physico-

chemical interactions can be either reversible such as hydrophobic, hydrogen, and 

electrostatic interactions or irreversible such as covalent binding. Protein/flavour 

interactions have been confirmed for vanillin (4-hydroxy-3-methoxybenzaldehyde), the 

main compound of vanilla flavour which is widely applied in food products [2], [4]–[9]. 

Vanillin binding affinity and flavour perception has been largely investigated for milk 

proteins [1], [2], [4]–[8]. Studies showed that sodium caseinate or whey proteins interact 

with vanillin, and that the binding affinity increases with protein concentration [2], [4]–

[6]. Reversible interactions can even occur quickly and influence the flavour perception 

of food immediately [2], [9], [10]. On the other hand, fewer studies have focussed on 

interactions between plant proteins and flavours, although the plant protein usage is 

predicted to increase in the future [11]. Plant protein/flavour interactions have been 

previously investigated for soy protein [6], [12]–[15], in lesser extent for pea [16], [17] 

and wheat proteins [18], and no studies have focused on lupin or potato proteins. The 

usage of proteins may not only cause flavour retention but also transmit unwanted off-

flavours, which represent the main limitation for their use in food [2], [19]. This sensory 

dimension is less taken into account in studies that focussed on protein/flavour 

interactions. Therefore, the aim of this study was to investigate both, flavour retention 

and flavour perception when vanillin is mixed with plant proteins (wheat, soy, pea, lupin, 

and potato), as well as the contribution of protein off-flavours in the final sensory profile 

of model beverages.  
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Experimental 

Vanillin (Mane, France), wheat protein concentrate (Tereos, France), soy protein 

concentrate (ADM, USA), pea protein isolate (Roquette, France), lupin protein-rich 

powder (Terrena, France), and potato protein isolate (Avebe, The Netherlands) were used 

to investigate protein/vanillin interactions and sensory flavour perception. The protein 

content in dry base were 80 %, 69 %, 83 %, 42 %, and 90 % for wheat, soy, pea, lupin, 

and potato proteins, respectively. Solutions were prepared in demineralised water by 

adding proteins and sugar at 3 % w/w and at 2.5 % w/w concentrations, respectively. The 

pH of wheat, soy, pea, lupin, and potato protein solutions was not adjusted and was around 

5.8, 7.4, 7.2, 7.5, and 6.0, respectively. When vanillin was added to samples the final 

concentration was 100 ppm. 

Sensory evaluation 

Descriptive sensory analyses were performed by an internal panel composed 

between 10 and 15 panellists using the rank-rating evaluation method [20]. Per session, 

panellists tested protein and protein/vanillin solutions and evaluated the vanillin flavour 

and the off-flavours: cereal/wheat, herbal/vegetal, and bitterness, on a 0-10 scale. These 

three protein off-flavour descriptors were selected by their frequency from a separate 

sensory session testing protein solutions. Changes in the perceived intensity of each 

descriptor were determined by the difference between pure vanillin and protein/vanillin 

solutions. Data obtained was treated using an analysis of variance (ANOVA). 

Determination of protein/vanillin interaction 

Physico-chemical interactions between vanillin and plant proteins were determined 

by equilibrium dialysis experiments and High Performance Liquid Chromatography 

(HPLC) analysis for quantification of vanillin. In equilibrium dialysis experiments 

proteins were kept separated by using semi-permeable membranes (Spectra/Por1 

MWMO: 6-8 kDa). Protein solutions were first dialysed overnight against demineralised 

water to purify samples prior to vanillin addition. After the equilibrium was reached (~72 

h), samples were taken from the side of the membrane without proteins and centrifuged 

at 4500xg for 30 min. HPLC analysis was done using a UPLC HSS C18 column (150 mm 

x 2.1 mm with 1.8 μm particle size) (Waters, France) coupled to a UV spectrophotometric 

detector set at 280 nm. The mobile phase consisted of a mixture of demineralised water, 

acetic acid, and acetonitrile (83:2:15). 1 μl sample was injected at 0.4 mL.min-1 of flow 

rate and 40°C of temperature. The loss of vanillin by interaction with proteins was 

calculated by the following relationship: % Loss of vanillin = (concentration of vanillin 

in the control - concentration of vanillin in the sample)*100 /concentration of vanillin in 

the control. Experiments were performed in triplicate and control samples did not contain 

proteins. Results were normalised by the protein content in solutions. 

Results and discussion 

To understand the impact of protein addition on flavour perception, the sensory 

profile of plant protein solutions containing vanillin or not were evaluated by a panel. The 

off-flavours of pure wheat, soy, pea, lupin, and potato protein solutions were mainly 

described as bitter, herbal, vegetal, cereal, wheat, astringent, flour, metallic, yeast, earthy, 

metallic, hay, fatty, soapy, and paper cardboard. Among these terms, the most frequents 

off-flavour descriptors generated for all proteins were: bitter, cereal/wheat, and 

herbal/vegetal which were later used for sensory evaluations. The off-flavour intensity 

scores in pure wheat, soy, pea, lupin, or potato protein solutions are presented in Table 1.  
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Table 1: Off-flavours intensity scores of wheat, soy, pea, lupin, and potato protein sweet solutions without 

vanillin. Analysis of differences between categories (a, ab, b) with a confidence level of 95%. 

Protein Cereal/Wheat Herbal/Vegetal Bitter 

Wheat 5,6 a 3,8 a 2,2 b 

Soy 6,3 a 3,5 a 4,1 ab 

Lupin 5,8 a 4,9 a 6,0 a 

Pea 6,6 a 3,4 a 4,2 ab 

Results showed that the cereal/wheat flavour was characteristic for most of protein 

solutions, except for potato protein. Herbal/vegetal flavours were perceived at different 

degrees among all proteins. Bitterness was mainly pronounced in solutions containing 

lupin and potato proteins, while it was the least present in wheat protein solutions. 

Similarly, other studies on soy, pea, and lupin proteins described beany, green, bitter, 

grassy, metallic, and astringent off-flavours [16], [21], [22]. Especially, green and beany 

off-flavours in pulse and legume ingredients were explained by the presence of 

unsaturated lipids susceptible to oxidative deterioration by endogenous lipoxygenases 

[19], [22]. Changes on the perceived intensity of vanillin flavour and off-flavours 

(cereal/wheat, herbal/vegetal, and bitterness) of wheat, soy, pea, lupin, and potato protein 

solutions after addition of vanillin are shown in Figure 1. As expected, the perception of 

vanillin increased in most of protein solutions after addition of vanillin. However, the 

perceived intensity of vanillin was different for each protein. The vanillin flavour was 

best perceived in solutions containing lupin protein, producing an intensity increase of 

2.4 significantly higher than the other proteins. In contrast, the vanillin flavour was least 

perceived in potato protein solutions. Off-flavours seemed to decrease after addition of 

vanillin in most of protein solutions, expect for potato protein.  

 
Figure 1: Changes in the perceived intensity of bitterness, herbal/vegetal, cereal/wheat, and vanillin flavours in 

wheat, soy, pea, lupin, and potato protein sweet solutions after addition of vanillin. Significant difference 

between categories with 90% (*) and 95% (**) of confidence level. 

Protein/vanillin interactions were quantified in terms of vanillin loss for wheat, soy, 

pea, lupin, and potato protein solutions (figure 2). The loss of free vanillin varied 
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depending on the protein source. The strongest interaction with vanillin was observed for 

pea protein followed by wheat protein, with a vanillin loss of around 50 % and 22 %, 

respectively, compared to the control. In contrast, soy, lupin, and potato proteins slightly 

interacted with vanillin under the tested conditions. Different degrees of flavour retention 

by plant proteins were expected since there are many factors that can play a role on 

protein/flavour interactions, and there is no universal mechanism. Protein/flavours 

interactions have been reported to be mainly of reversible nature in aqueous system [2], 

[9], [14].  

 
Figure 2: Loss of free vanillin (%) by interactions with wheat, soy, pea, lupin, or potato proteins in sweet 

aqueous systems with respect to the control without vanillin. Values were normalised by the protein content in 

dry base and error bars represent one standard deviation. 

This study suggested that lupin was the most suitable source of plant protein to be 

used with vanillin, and thus vanilla flavour. Lupin protein had moderated off-flavours, 

and vanillin was almost not retained by the protein. Therefore, vanillin stayed free and 

enhanced the vanilla flavour profile of model beverages. In line with this statement, other 

studies showed that lupin ingredients had cheese-like, milky, fruity, and fatty off-flavours 

[21]. This creamy-like sensory profile certainly contributed to a better vanillin perception 

and, simultaneously, to the decrease of off-flavours such as bitterness in lupin protein 

solutions. On the other hand, potato protein also displayed low interaction with vanillin 

but did not produce an increase in vanillin perception after its addition. Contrary to lupin, 

solutions containing potato protein and vanillin displayed a slight increase of cereal/wheat 

and herbal/vegetal flavours. This was likely due to the strong and characteristic off-

flavours related to this protein (i.e. earthy, paper cardboard, algae). So, for masking potato 

protein off-flavours, we may suggest to use other warm flavours rather than vanilla (e.g. 

chocolate). Controversially, soy protein did not have strong affinity for vanillin but 

displayed relatively low vanillin perception. Soy proteins are known to interact reversibly 

by hydrophobic binding with carbonyl compounds, such as vanillin [6], [13]. Soy 

protein/flavour interactions were mainly entropy driven, which means that 

conformational changes of soy protein may be important in binding of vanillin [6], [14], 

[23]. The traditional extraction of our commercial soy protein could tentatively explain 

the low interaction with vanillin. Due to thermal treatment and/or acid precipitation, the 

protein may have aggregated irreversibly and reduced its flavour binding capacity. 

Anyhow, further research is necessary to evaluate protein denaturation. Finally, in this 

study, pea and wheat proteins primarily interacted with vanillin. Similar to our findings, 

previous studies showed that pea globulins had more flavour binding capacity than wheat 
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gluten [18]. Pea protein/flavour interactions were mainly of hydrophobic nature [16], 

[17], while for wheat gluten also inter- and intra-molecular disulphide linkages can 

participate in flavour binding [18]. Interestingly, even if pea protein retained almost twice 

more vanillin than wheat protein, the later protein obtained lower scores in vanillin 

perception. Intuitively, we can think that larger retention produces lower flavour 

perception. However, the type and strength of interactions could also influence the loss 

of flavour perception. Since our commercial wheat protein was hydrolysed for better 

solubility, we can think that as a result, gluten peptides increased the number of binding 

sites and had better access to primary structures, including sulphur-containing residues 

[1], [3], [6]. Therefore, if disulphide bridges were somehow involved in wheat 

protein/vanillin interactions, they were probably stronger and more stable as compared to 

hydrophobic ones, producing larger impact on the flavour perception.  

In conclusion, the impact of plant protein (wheat, soy, pea, lupin, and potato) on 

flavour perception was studied and tentatively correlated to the protein off-flavours and 

physico-chemical interactions with vanillin in aqueous systems. Understanding these 

protein/flavour implications is allowing the flavour industry to have better control on the 

flavour release and the reduction of off-flavours in plant protein based products. 
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Abstract 

After application of an Aroma Extract Dilution Analysis and Stable Isotope Dilution 

Assays, 39 odorants with Odour Activity Values ≥ 1 were mixed in their natural 

concentrations in 40 % ABV (alcohol by volume) ethanol for a recombination experiment 

to verify the correct characterisation of all aroma impact compounds. The smoky, clove-

like and phenolic character of the peaty whisky was caused by a set of 14 phenol 

derivatives, such as 3-ethylphenol with an Odour Activity Value up to 940. Comparing 

the concentrations of phenol derivatives in the raw whisky with the matured ready to 

drink product, it seems that the maturation process also contributes to the smoky aroma 

by increasing the concentrations of 4-allyl-2-methoxyphenol and 2-ethylphenol, while the 

other phenol derivatives mainly originated from the special kilning process with peat reek. 

Introduction 

Whisky making has a long tradition in Scotland and its islands. After mashing barley 

malt with yeast, a double-batch distillation yields the raw spirit, which is then aged for at 

least 3 years in second hand oak casks before bottling as single malt whisky. Especially, 

whiskies from the island Islay are particularly known to elicit a peaty odour. The malting 

process on Islay contains the traditional step of kilning with so-called peat reek (peat 

smoke) which is responsible for the typical smoky and phenolic aroma of the spirit. It is 

already suggested that this “peatiness” is caused by a spectrum of phenolic compounds 

including phenol, methylphenol and dimethylphenol derivatives and 2-methoxyphenol 

with a total amount up to 80 ppm [1-5]. Early studies could correlate the cumulated 

concentrations of all phenolic compounds to the degree of peatiness [1,2] or identified 

some phenol derivatives, such as 4-ethyl-2-methoxyphenol and 2-, 3-, and 4-

methylphenol in Scotch and Japanese whiskies as aroma impact compounds based odour 

activity values (OAV) calculated, however, using threshold data in 10 to 20 % ABV 

ethanol [3-5]. Poisson and Schieberle were the first to fully characterise an American 

Bourbon whiskey by means of the Sensomics concept. Their investigations resulted in a 

set of 26 impact aroma compounds, including ethyl (S)-2-methylbutanoate, 3-

methylbutanal, 4-hydroxy-3-methoxybenzaldehyde and (E)-β-damascenone with highest 

OAV [6,7]. They also investigated a peaty whisky from Islay and could trace back the 

distinctive smoky aroma to the high OAVs of several phenol derivatives, such as 2-

methoxyphenol, 4-allyl-2-methoxyphenol and 5-methyl-2-methoxyphenol. However, 

their recombination experiments did not lead to a satisfying outcome [8] as not all phenol 

derivatives could be identified. In order to decode the unique aroma with focus on the 

peatiness of Scotch Single Malt whiskies from Islay on a molecular basis, a whisky from 

the Ardbeg distillery was investigated by means of the Sensomics concept [9]. 

Additionally, selected aroma compounds were quantitated in a sample of the 

corresponding raw whisky to investigate the impact of the maturation process to the 

smoky aroma of the whisky. 
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Experimental 

Samples. The whisky “Uigeadail” from the distillery Ardbeg was purchased at a 

local spirit shop. The shop owner also kindly provided a sample of the raw whisky, 

intended to be matured into an “Uigeadail” whisky.  

Workup. After solvent extraction and SAFE (solvent assisted flavour evaporation) 

distillation and Vigreux column distillation, the concentrated distillate was subjected to 

aroma extract dilution analysis (AEDA), which was carried out by two panellists to assure 

the detection of the whole set of important odorants. Impact aroma compounds with high 

FD factors were quantitated by means of stable isotope dilution assays (SIDA), using 13C 

or 2H-labelled analogues. OAVs were then calculated by using the respective odour 

threshold concentration in 40 % ABV ethanol from the literature [7,8,10]. 

Sensory trials. Unavailable odour threshold concentrations were newly determined 

in 40 % ABV ethanol by a sensory trained panel according to the method reported 

previously [10]. For a descriptive analysis of the recombinate and the original whisky, 

the sensory panel was asked to rate the intensities of nine aroma attributes from 0 (no 

perception) to 10 (very strong intensity) on an unscaled line. 

Results and discussion 

AEDA and identification experiments resulted in 36 aroma active compounds with 

FD factors ranging from 32 to 4096. Next to (E)-β-damascenone, cis-whisky lactone and 

4-hydroxy-3-methoxybenzaldehyde with high FD factors, a group of phenol derivatives 

with FD factors ranging from 4 to 4096 with smoky, phenolic or clove-like odour 

attributes were identified (data not shown). Based on these data quantitations followed by 

the determination of OAVs of 44 aroma compounds were carried out. Highest OAVs 

were found for 3-ethylphenol (940), followed by 3-methybutanal (640), (S)-ethyl 2-

methylbutanoate (410), ethanol (390), 2-methoxy-5-methylphenol (590) und 2-

methoxyphenol (280). Altogether, 39 aroma compounds with an OAV ≥ 1 (Table 1), 

including 14 phenol and 2-methoxyphenol derivatives, contributed to the complex aroma 

of the peaty single malt whisky. A recombination experiment with all 39 impact aroma 

compounds in their natural concentration could mimic the original whisky very well 

(Figure 1) confirming their correct characterisation as impact aroma compounds. The 

typical smoky and phenolic aroma of the whisky was generated by the set of phenol and 

2-methoxyphenol derivatives with high to very high OAVs, such as 3-ethylphenol, 2-

methoxy-5-methylphenol, 4-ethyl-2-methoxyphenol, 4-methylphenol, 2-methoxy-4-

propylphenol, 2-methylphenol und more.  

 
Figure 1: Aroma profiles of the original whisky (a) and the corresponding aroma recombinate (b) 
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Table 1: Impact aroma compounds with OAV ≥ 1 of the peaty single malt whisky from Islay. 

odorant OAV1  odorant OAV1 

3-ethylphenol 940  2-phenylethyl acetate 29 

3-methylbutanal 640  (E)-2-nonenal 29 

(S)-ethyl 2-methylbutanoate 410  3-methylbutyl acetate 25 

ethanol 390  4-allyl-2-methoxyphenol 20 

2-methoxy-5-methylphenol 380  ethyl cinnamate 18 

2-methoxyphenol 280  4-ethylphenol 16 

ethyl octanoate 250  3-methyl-1-butanol 15 

(E)-β-damascenone 220  2-phenylethanol 14 

4-ethyl-2-methoxyphenol 200  3-methylphenol 12 

ethyl methylpropanoate 160  2-ethylphenol 10 

vanillin 140  decanoic acid 9 

ethyl 3-methylbutanoate 120  ethyl 3-phenylpropanoate 9 

4-methylphenol 97  2-methoxy-4-methylphenol 7 

ethyl hexanoate 80  methyl-1-propanol 5 

1,1-diethoxyethane 68  γ-nonalactone 5 

ethyl butanoate 67  phenol 4 

2-methoxy-4-propylphenol 52  acetaldehyde 3 

2-methylphenol 46  2,3-dimethylphenol 3 

2-methylbutanal 43  3,5-dimethylphenol 1 

cis-whisky lactone 30    
1 OAV; odour activity value using odour threshold concentrations in 40 % ABV ethanol. 

In order to investigate the impact of the maturation process on the smoky aroma of 

the whisky, a sample of the raw spirit intended for the production of “Uigeadail” with 

69 % ABV ethanol was investigated focussing on known maturation derived compounds, 

such as cis-whisky lactone and 4-hydroxy-3-methoxybenzaldehyde, as well as on the 

previously identified phenol derivatives. Since the investigated whisky had cask strength 

(59 % ABV) meaning the spirit did not undergo dilution after the maturation process, the 

concentrations of the selected compounds in the raw spirit and final whisky were directly 

compared without conversion.  

Next to the typical maturation derived compounds, only two phenol derivatives, such 

as 2-ethylphenol and 4-allyl-2-methoxyphenol showed noteworthy concentration 

increases after oak cask maturation. The remaining phenol derivatives were already 

present in the raw whisky, thus confirming their origin from the peat smoke used for 

kilning the malt. Minor concentration differences could be explained by the use of 

different starting material and vintage. 
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Table 2: Concentrations of impact aroma compounds in the raw and matured whisky. 

odorant 

concentration [µg/L] 

raw 

whisky 

matured 

whisky 

increase/ 

decrease [%] 

maturation compounds    

cis-whisky lactone < 1.3 2000 +150000 

vanillin 23.1 3140 +  13500 

phenol derivatives    

2-ethyphenol 411 870 +      112 

4-allyl-2-methoxyphenol 89.2 139 +        56 

3-ethylphenol 444 537 +        21 

2-methoxy-4-propylphenol 88.6 97.6 +        10 

4-ethyl-2-methoxyphenol 1380 1370 -          1 

2-methylphenol 4290 4120 -          4 

2-methoxy-4-methylphenol 2010 1790 -        11 

4-methylphenol 3260 2900 -        11 

4-ethylphenol 3330 2740 -        18 

3-methylphenol 1770 1400 -        21 

2-methoxyphenol 3480 2600 -        25 

2-methoxy-5-methylphenol 236 122 -        48 

Conclusions 

By applying the Sensomics concept to the Single Malt Scotch whisky from Islay, its 

aroma could be successfully characterised. The typical smoky and phenolic aroma was 

traced back to the multiplicity of phenol and 2-methoxyphenol derivatives with high 

OAVs. The additional investigation of the raw spirit confirmed their origin mainly from 

the peat reek used for malt kilning in the making process of these especially peaty 

whiskies.  
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Abstract 

Microalgae are known to produce several volatile organic compounds that can be 

obtained from the biomass or released extracellularly into the medium. The aim of this 

study was to evaluate the generation of volatile organic compounds with flavour potential 

from the microalga Phormidium autumnale in mixotrophic cultivation. The experiment 

was conducted in a New Brunswick Scientific BioFlo®310 bioreactor operating under a 

batch system, with a 1.5 L working volume. The experimental conditions were as follows: 

initial inoculum concentration 100 mg L-1, temperature 25°C, pH adjusted to 7.6 and 

aeration of 1.0 volume air per culture volume per minute, supplemented with 5 g.L-1 of 

sucrose and constant light intensity of 4 klux. The volatile compounds were isolated by 

solid phase micro-extraction applied in headspace of residence time (144 hours), 

separated by gas chromatography and identified by mass spectrometry (HS-SPME-

GC/MS), co-injection of standards and Kovats index. The major products in the 

bioreactor were 2,4-decadienal (46.03%), 3-methyl-1-butanol (12.39%), hexanol (4.17%) 

and 2-ethyl-1-hexanol (3,51%). The descriptor flavour of the compounds detected in 

experiments was mainly classified as fried food, fruity, spice, and floral compounds. In 

conclusion, the results have shown that the mixotrophic cultivation of the Phormidium 

autumnale could be a potential biotechnological to produce natural flavours. 

Introduction 

Microalgae are a group of photosynthetic microorganisms typically unicellular and 

eukaryotic. Although cyanobacteria belong to the domain of bacteria, and are 

photosynthetic prokaryotes, they are often considered microalgae [1]. Microalgae and 

cyanobacteria are considered some of the most promising feedstocks for the supply of 

food and nonfood industries [2; 3]. Because they present a high content of macronutrients 

(proteins, carbohydrates, and lipids), microalgae have the potential to enhance the 

nutritional value of foods [4]. They may also be used as a feed source for many aquatic 

organisms and livestock [5]. Microalgae-based systems for chemicals production are an 

emergent area, representing a great promise for industrial application. 

The growing interest in natural products guides the development of the technologies 

that employ microorganisms, including microalgae, which are able to synthesize specific 

volatile organic compounds. Therefore, the selection of a mode of cultivation of 

microalgae is of vital importance. Four major modes of microalgae cultivation can be 

adopted, namely photo-autotrophic, heterotrophic, photo-heterotrophic, and mixotrophic 

[6]. Mixotrophic microalgae use different energy and carbon sources so that they may use 

organic or inorganic sources and light in different combinations. Mixotrophy makes 

microalgae more flexible because it may gather both the carbon and energy demand from 

organic or inorganic sources and light simultaneously [7]. 
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The occurrence of volatile organic compounds in microalgae is a consequence of 

their versatile metabolism. The compounds produced may belong to different classes of 

compounds such as esters, alcohols, hydrocarbons, ketones, terpenes, carboxylic acids 

and sulphur compounds [8, 9]. Many of these volatiles present odour descriptors such as 

floral, fruity, spice, sweet, roasted, and can, therefore, be used as a flavouring agent in the 

food industry and others used in the pharmaceutical and fine chemicals industries. 

Thus, the objective of this study was to evaluate the generation of volatile organic 

compounds with flavour potential from the microalga Phormidium autumnale in 

mixotrophic cultivation. 

Experimental 

Microorganism and culture conditions 

Axenic cultures of Phormidium autumnale were originally isolated from the Cuatro 

Cienegas desert (26°59′ N, 102°03′, W. Mexico). Stock cultures were propagated and 

maintained in solidified agar-agar (20 g L-1) containing BG11 medium [10]. The cultures 

were illuminated with 20 W fluorescent day light-type tubes (Osram Sylvania, Brazil), 

located in a photo period chamber at a photon flux density of 15 μmol photons m−2s−1 and 

a photoperiod of 12/12 h light/dark at 25°C. The photon flux density was adjusted and 

controlled by using a digital photometer (Spectronics, model XRP3000). To obtain the 

inoculum in liquid form, 1 mL of sterile medium was transferred to slants, and the 

colonies were scraped off and then homogenized with the aid of mixer tubes. The entire 

procedure was performed aseptically. 

The experiment was conducted in a New Brunswick Scientific BioFlo®310 

bioreactor operating under a batch system, with a 1.5 L working volume. The bioreactor 

including filtration units was sterilized by autoclaving at 121ºC for 20 min. The 

experimental conditions were as follows: initial concentration of inoculum of 100 mg L-

1, temperature of 26°C, pH adjusted to 7.6, aeration of 1.0 VVM (volume of air per 

volume of culture per minute per minute). The culture medium consisted of a BG11 

synthetic medium supplemented with 5g L-1 of sucrose and a constant light intensity of 4 

klux. 

Isolation of the volatile organic compounds 

The volatile organic compounds were analysed at 144 h of the residence time using 

headspace solid-phase micro-extraction (HS-SPME) with a 50/30μm 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre (Supelco, 

USA). Sample preparation was performed using 20 mL of culture medium, equally 

separated into two portions. Each of these portions was analysed by HS-SPME coupled 

with GC/MS for the quantitative determination of the volatile compounds. The aliquot 

was placed in a headspace septum vial containing 3 g of NaCl. The SPME fiber was 

inserted into the headspace of the vial containing the sample (previously kept at 40ºC for 

equilibration temperature) for 45 min at 40°C, with agitation provided by a magnetic stir 

bar. After this period, the fiber was removed from the vial and immediately desorbed into 

the injector of the GC. The analytical procedure was performed twice and in duplicate. 

Therefore, the data refer to the mean value of two repetitions. 

GC/MS analysis 

The volatile organic compounds were analysed in a GC system (Agilent 7890A) 

coupled to a mass spectrometer detector (Agilent 5975) using a DB-Wax fused silica 



 

 

Flavour generation from microalgae in mixotrophic cultivation 89 

capillary column (60 m in length, 0.25 mm id and 0.25 μm film thickness). The initial 

oven temperature was held at 35°C for 5 min., followed by a linear increase at 5°C/min 

to 220°C, and held at this temperature for 5 min. For the identification of the compounds 

was based on GC-MS, electron-impact ionization voltage of 70 eV was applied, and 

helium was used as the carrier gas. The volatile compounds were identified by a 

comparison of their MS spectra with those provided by the computerized library (NIST 

MS Search). In addition, to assist with identification, each volatile linear retention index 

(LRI) was calculated using the retention times of a standard mixture of paraffin 

homologues prepared in hexane and compared with the LRI values published in the 

literature for columns with the same polarity (www.flavornet.net). Co-injection of the 

sample and the standard mixture provided experimental LRIs for the compounds, which 

were compared with those of standards analysed under similar conditions. 

Results and discussion 

The volatile organic compounds produced by Phormidium autumnale cultivated in 

mixotrophic conditions are presented in Table 1. A total of 16 compounds (aldehydes, 

alcohols, ketones, and hydrocarbons) with different odour descriptors were found. 

Among the chemical classes identified, 2,4-decadienal (46.03%), 3-methyl-1-butanol 

(12.39%) and 1-hexanol (4.17%) were the major compounds identified. 

Table 1: Volatile organic compounds produced by Phormidium autumnale cultivated in a mixotrophic 
microalgal reactor. The odour description presented was extracted from the literature in comparison to the 

compound name, chromatographic column and Kovats index (www.flavornet.org). 

Compound Kovats Index Description of odour Relative peak area (%) 

acetaldehyde 714 pungent, ether 2.37 

hexanal 1084 grass, tallow, fat 1.96 

2-methyl-1-propanol 1099 wine, solvent, bitter 0.73 

3-methyl-1-butanol 1205 whiskey, malt, burned 12.39 

1-pentanol 1255 balsamic 0.75 

1-hexanol 1360 resin, flower, green 4.17 

2-octenal (E) 1408 green 1.62 

(E,E)-2,4-heptadienal 1463 nut, fat 3.02 

2-ethyl-1-hexanol 1487 rose, green 3.51 

benzaldehyde 1495 almond, burnt sugar 0.57 

hexadecane 1600 alkane 3.28 

2-octen-1-ol (E) 1608 soap, plastic 0.72 

acetophenone 1645 must, flower, almond 1.43 

2,4-decadienal (E,E) 1710 fried, wax, fat 46.03 

trans-geranylacetone 1840 green 1.83 

β-ionone 1912 seaweed, flower, raspberry 0.82 

Other Compounds   14.80 

Total   100 

Mixotrophic cultivation occurs when the microalga uses photosynthesis and 

oxidation of organic compounds concomitantly: the oxygen produced in the 

photosynthesis is consumed in the heterotrophic route. At the same time, the carbonic gas 

generated in the oxidation of the organic compound is exploited in photosynthesis. This 

cultivation is already widely exploited in terms of biomass production [6, 7]. The volatile 

organic compounds biosynthesis mainly depends on the availability of carbon and 
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nitrogen as well as energy provided by primary metabolism. The formation of volatile 

organic compounds can occur during both primary and secondary metabolism of 

microorganisms as secondary products, thereby we can suggest that the presence of these 

compounds is due to the secondary metabolism of these microorganisms. 

According to Santos [8], aldehydes proved to be the most prevalent volatile organic 

compounds and, due to their low odour threshold values, might be important headspace 

volatiles compounds contributing to desirable aromas as well as rancid odours and 

flavours. Saturated aldehydes have a green-like, hay-like, paper-like odour, whereas 

unsaturated aldehydes have a fatty, oily and frying odour. Whereas the shorter chain linear 

aldehydes are often derived from chemical lipid oxidation, branched and aromatic 

aldehydes are typically formed due to enzymatic lipid and protein oxidation. 

Microalgae can produce a variety of industrially relevant volatile compounds that 

can represent an improvement in the supply of a large volume of inputs for different types 

of industry (odour, flavours, energy). 

In conclusion, the results show that the mixotrophic cultivation of the Phormidium 

autumnal could be an alternative to obtain flavours by this biotechnological route. More 

knowledge about the biochemical routes should be taken into account, thereby increasing 

the production of compounds of interest and the use of all the products generated during 

the bioprocess. 
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Abstract  

The fermented corn starch hydrolysate reveals more complexity in savoury flavour 

that goes beyond the umami-taste of MSG, despite the presence of glutamic acid amongst 

other amino acids. Glutamyl-dipeptides were identified as major class of known taste 

compounds present in the savoury paste but, at the found concentrations, their impact is 

not sufficient to match the product’s taste. Fru-Glu was found as the major Amadori 

compound. However, its individual taste impact could not be proven. Additionally, 

sensory-guided fractionation has revealed a class of N-acyl derivatives of amino acids as 

possible taste-actives in that fermented product. Taste activity for some derivatives has 

already been described elsewhere but their final impact on the taste profile of the current 

product is currently under investigation. 

Introduction 

In culinary food products, umami compounds like monosodium glutamate (MSG) 

and 5′-nucleotides are often used to impart savoury taste. As consumers get increasingly 

more sensitive to the addition of such pure ingredients, which are classified as flavour 

enhancers, alternative natural sources have gained interest in the past years such as 

products obtained through the fermentation of different raw materials (e.g., wheat gluten, 

soybean). In the past years, several studies have been conducted to determine the presence 

of taste-active or modifying compounds in such products, mainly in soy sauce [1,2]. 

However, the link to the sensory characteristics of the products was studied less intensely 

and the role of the individual taste compounds on the overall flavour remains in many 

cases questionable [3]. The fermented savoury product herein investigated (Savoury Base 

100) is produced by fermentation of hydrolysed corn starch using C. glutamicum, a Gram-

positive bacterium. C. glutamicum has been widely used for industrial production of 

amino acids, such as L-glutamic acid, and fermented cereals. The aim of the study was to 

unravel the complex savoury flavour by combination of analytical and sensory 

approaches. 

Experimental 

The investigated product (Savoury Base (SB) 100) is produced by fermentation of 

hydrolysed corn starch using non genetically-modified proprietary strains of 

Corynebacterium sp. (Corynebacterium glutamicum ATCC 13032).  

Sensory assessment was performed with a trained panel using nose-clips for 

descriptive and comparative profiling either in water or model broth.  

Glutamyl-peptides and Amadori compounds were quantified by LC/MS in MRM 

mode on a BEH amide (Waters) using isotopically labelled standards. Nucleotides were 

quantified by LC-UV using a PBr column (Cosmosil) and external calibration. 

Determination of basic composition was performed by ion chromatography for sugars, 

amino acids, organic acids and minerals with external calibration. 
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Ultrafiltration was performed using a stirring cell and membranes of 1 kDA cut-off. 

Further fractionation of the low molecular weight fraction was performed by 1D 

preparative HPLC and 2D-fractionation with a Sepbox (Sepiatec) using the polar set-up. 

HR-mass spectroscopy of individual fractions was performed using a BEH amide 

column and MS detection was done on a Q Exactive Focus (Thermo) in full scan mode 

and auto MS/MS of the 3 most abundant ions at three different collision energies.  

For structure elucidation, NMR of isolated peaks was performed on a 600 Mz NMR 

from Bruker using 1D/2D experiments. 

Results and discussion 

The savoury powder used in this study contains a specific intrinsic mix of various 

compounds, including amino acids, organic acids, and minerals. The considerable 

amounts of glutamic acid raised the question how the sensory profile of this novel 

ingredient is compared to a pure MSG solution. Sensory evaluation (Fig. 1) performed 

with a trained panel (n=6) wearing nose-clips comparing MSG and the savoury base at 

same glutamic acid level, revealed that the umami taste of the fermented savoury product 

is higher than a pure MSG solution. In addition, a simple recombinant including basic 

tastants (NaCl, glutamic acid, acetic acid, pH adjusted) did not match the initial product’s 

taste either. Panellists described the taste of SB100 as being more complex and round. 

 
Figure 1: Sensory evaluation of MSG and savoury base providing same amount of glutamic acid (left) and 

comparison of simple recombinant with entire product SB 100 (right) 

Based on the gap identified by the sensory panel, known taste-active molecules were 

quantified in the corresponding product and their individual contribution to overall taste 

was evaluated by calculating dose-over-threshold (DoT) values (Table 1). Glutamic acid 

was found to be the dominant amino acid with a DoT value of 6.4 followed by alanine 

and proline as second most abundant amino acids. Amongst the well-known γ-glutamyl-

dipeptides, Glu-Glu and Glu-Gln were found as the most abundant members of that 

family, beside small amounts of other derivatives. The DoT values of these di-peptides 

were below their reported taste thresholds. However, it is known that these peptides have 

taste-modulating properties rather than showing taste-activity on their own. In addition, 

Amadori compounds were identified, with N-(1-deoxy-D-fructos-1-yl)-L-glutamic acid 

(Fru-Glu) as the main compound beside traces of other Amadori compounds. These 

Amadori compounds were also below individual threshold but might be of importance 

due to modifying properties. Other compounds that were identified were minerals and 

organic acids with NaCl and acetic acid, respectively, being the dominating ones, as well 

as sugars and ribonucleotides found in trace levels in SB100. Among those, most 

individual compounds were found well below their individual taste thresholds except for 
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NaCl, and acetic acid, which showed DoT-factors of 0.6 and 0.3, respectively. A 

recombinant sample, including compounds with DoT >0.1, still showed a gap in taste 

profile indicating the presence of other compounds contributing to the taste of the savoury 

powder. 

Table 1: Concentrations and Dose-over-threshold factors of taste compounds found in SB 100 

Taste  Compound  Av. Conc. (% dm) DoT at 0.2% solution 

umami Glutamic acid 52.1 6.4 

 Glutamyl-peptides 1.8 < 0.01 

 Fru-Glu 0.7 0.03 

 Ribonucleotides 0.1 < 0.01 

 Other Amadori 0.2 n.c 

salty NaCl 4.9 0.6 

 Other minerals 0.9 < 0.01 

sour Acetic acid 1.7 0.3 

 Other acids 0.3 < 0.01 

other Alanine 1.8 0.05 

 Proline 1.1 0.01 

 Sugars < 0.1 < 0.01 

 Other free amino acids 0.9 < 0.01 

 Nucleosides 0.2 < 0.01 

 

As the recombinant of the known taste-active compounds showed no taste match 

with the initial powder, the product was submitted to a sensory-guide fractionation 

approach, using ultrafiltration (1 kDa) followed by preparative HPLC of the LMW 

fraction. Each fraction was then tested in water or model broth (MSG, NaCl, sucrose) for 

any taste activity (Fig. 2). Sensory evaluation of fractions revealed two fractions showing 

low taste activity when tasted alone in water, but having umami (F3 and F4) and salt 

modulating effects (F4), when tasted in a model broth. 

 
Figure 2: Sensory evaluation of most taste-active fractions F3 and F4 
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Taste-active fractions were then submitted to LC-HR-MS analysis and a library 

search was performed for first identification of peaks. This confirmed the presence of the 

already quantified glutamyl-peptides in fractions F3 and F4. Recombination of these 

peptides was nevertheless not sufficient to mimic the taste properties of fractions F3 and 

F4. Thus, the most prominent unknown peaks were isolated by preparative LC and 

structure elucidation was performed by means of NMR and HR-MS/MS. This led e.g. to 

the identification of N-acetyl-glutamine in fraction F4. By using molecular networks of 

the MS data several more of N-acyl derivatives of amino acids could be tentatively 

identified. Confirmation by reference molecules and sensory evaluation is currently 

ongoing and structure elucidation of further unknown compounds is also in progress. The 

results so far show that the fermented savoury base is a complex mixture of several taste-

active and taste-modifying molecules, which probably contribute even in sub-threshold 

concentrations to the complex taste of the product by additive, synergistic and modulating 

effects.  

 
Figure 3: HR-MS chromatogram of fraction F4 containing taste-active/modifying molecules 
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Abstract 

The mixtures of different volatile and non-volatile compounds create the unique 

aroma and taste of foods. Aroma, derived from combinations of volatile components, is 

essential for determining the quality of foods. Aroma profile of dried foods may be 

affected by loss, destruction, change or improvement of unexpected flavours during 

drying processes. The Maillard reaction and autoxidation are the main chemical reactions 

responsible for the formation of new compounds during drying. These reactions have 

considerable effects on the flavour of dried fruit and vegetables. The Maillard reaction 

derived compounds are classified in three groups which are sugar 

dehydration/fragmentation products (furans, pyrones, cyclopentenes, carbonyl 

compounds and acids), amino acid degradation products (aldehydes, sulphur compounds 

and nitrogen compounds) and volatiles produced by further interactions (pyrroles, 

pyridines, pyrazines, imidazoles, oxazoles, thiazoles and thiophene). Some of the flavour 

compounds (aldehydes and esters) might be formed through lipid oxidation or 

biosynthesis of alcohols and acids. The concentration of volatile compounds and activity 

of volatile forming enzymes are affected by drying methods and conditions. Besides that, 

loss of the precursors may also cause the loss of volatile compounds after drying. 

Conventional drying techniques adversely affect colour, aroma and flavour due to 

increased temperature and long exposure to heat and oxygen. On account of the negative 

effects of conventional drying processes, freeze drying and vacuum drying have been 

alternatively used in recent years. These technologies are expensive and time consuming; 

even they preserve flavour better than conventional drying. This review highlights the 

effects of drying methods on the volatile compounds of fruits and vegetables. 

Introduction 

Fruits and vegetables are readily perishable foods because of their high moisture 

content [1]. Drying of fruits and vegetables are important in preserving food quality, 

forming suitable option for economic postharvest management, increasing food safety 

and shelf-life. In the drying process, water is removed to slow down or stop the existent 

chemical reactions, in addition to inhibit growth of spoilage microorganisms [2]. 

However, drying leads to loss and change in volatiles (e.g. stripping process, oxidation 

and thermal degradation), formation of new volatile compounds (e.g. enzymatic 

reactions, Maillard reaction and lipid oxidation), and negative impact on colour, texture 

and nutritional value [3, 4, 5].  

Different drying methods are commercially utilized to remove moisture from fruits 

and vegetables. These methods are basically divided into three subgroups; solar drying, 

atmospheric drying (e.g., tunnel, cabinet, fluidized bed, spray and microwave drying) and 

sub atmospheric drying (e.g. vacuum and freeze drying) [6]. In order to maintain the 

characteristic aroma of fruits and vegetables during drying, novel or improved drying 

methods have been developed [3]. Therefore, this study is aimed to collect recent 

information on volatile flavour compounds of dried fruits and vegetables. 
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Drying methods 

Sun and solar drying: In sun drying, sunshine is used to dehydrate fruits and 

vegetables which are spread out under the sun and dried. It is widely used in tropical and 

semitropical countries due to its low cost by using free renewable energy source, whereas 

there are adverse effects of this method such as inapplicability in all seasons and hygiene 

problems [6]. The different solar drying methods use equipment to gather sunrays in a 

unit. Compared to sun drying, the temperature in solar unit is usually 20-30°C higher. 

The handicap of these methods is that fruits and vegetables that are dried outdoors must 

be covered during cool nights because air condenses and can moisturize foods back [2].  

Conventional drying: Drying times in conventional driers change remarkably, 

depending on room temperature, humidity, the amount of food and its moisture content. 

Air temperature and circulation are important aspects which should be controlled during 

drying. When the temperature is too low, the food will dry slowly and microbial growth 

may occur, but if the temperature is too high, a hard shell can develop and the inside of 

product remains wet [2].  

Tunnel dryers: The tunnel driers consist of fans, heaters and wagons in which 

products are carried. During drying the wagons are moved in the tunnel. Tunnel dryers 

decrease the drying time and enable closer control of moisture content [7, 8, 9].  

Drum dryers: Drum dryers consist of a cylinder which is heated on the inside and 

turns continuously. During drying, the product is carried out in a thin film on the outside 

of the drum and dries quickly. After every rotation, the dry solid is scraped off the roll, 

which is revolving slowly. This method is convenient for highly or low viscous foods 

[10].  

Spray drying: Spray dryers are used to remove moisture from foods especially those 

in puree or liquid forms. In this method, atomization and evaporation of water are carried 

out when the dispersed / sprayed material passes through the drying chamber. Higher 

drying rates, low energy consumption, preservation of food quality and prevention of 

oxidation are the main advantages of spray drying [2, 10].  

Freeze drying: Freeze drying technique uses extreme cold temperatures as low as -

50°C in a wide variety of products [11]. In regards to low processing temperatures applied 

in this method, thermal degradation reactions are excluded, high aroma retention and high 

quality product is attainable with excellent rehydration properties [12].  

Microwave drying: Microwave drying is an another alternative method with various 

advantages like providing higher drying rate, shorter drying time, homogeneous energy 

delivery on the material and better process control [13, 14, 15, 16].  

Vacuum drying: Vacuum drying is used under reduced pressure, which enables food 

to be dried at lower temperatures. With this method, oxidation reactions are inhibited due 

to the absence of air while the flavour, colour and texture of the dried foods are maintained 

[10, 17].  

The volatile flavour compounds of dried fruits and vegetables 

More than a few hundred volatile compounds are present in fruits and vegetables. 

Many vegetables contain aroma compounds such as allicin in garlic [18] terpenes, 

sesquiterpenes, styrene, alkanes and a few alcohols in carrots [1], sulphur compounds, 

alcohols and esters in shiitake mushrooms [19] and sesquiterpene lactones in chicory and 

lettuce [20, 21]. Moreover, citrus fruits such as lemon and orange are abundant in 

terpenoids, while aroma compounds of the other non-citrus fruits such as banana, apple, 
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apricot and cranberry are described by esters and aldehydes [22]. These volatile 

compounds may change, be lost or form new compounds during drying with some 

reactions such as stripping process, oxidation, thermal degradation, enzymatic and non-

enzymatic reactions.  

Nunes et al. [23] reported that among thirty-one volatile compounds of fresh guava 

fruit, terpenes were predominant even after oven (55°C, 22 h) and freeze drying (50°C, 

0.025 mbar, 48 h) processes. However, aldehydes and esters were other main compounds 

diminished by dehydration of guava fruit. 

Allicin, which is the principal volatile of organosulfur compound in garlic, was 

affected by drying time and temperature when dried convectively at 50 and 60°C, 

respectively, with airflow of 1.5 m/s. Allicin retention after drying was significantly 

affected by temperature and variance in the structural properties of garlic. Researchers 

reported that drying at 60° C lowered loss of allicin content [18]. 

Rajkumar et al. [1] showed that freeze drying is an extremely useful technique for 

higher aroma retention in carrots. They also indicated that terpenes had a greater effect in 

giving aroma to the samples. The key flavour components of fresh carrots were mostly 

kept during drying. 

Narain et al. [24] evaluated the retention of volatile compounds in tomato juice and 

its products (A: prepared with 5% maltodextrin, B: prepared with 5% tapioca flour) 

dehydrated by a forced air circulation dryer (temperature: 60°C, relative humidity: 25%, 

air velocity: 5 m/min). The volatiles, mostly sulphur compounds, were more retained in 

product A than product B. The concentration of dimethyl sulphide, hydroxymethyl 

furfural, acetaldehyde, 2-ethyl furan and 𝛼-terpineol in tomato powder rose with drying, 

whereas ethanol and geranyl butanoate decreased during dehydration. 

In another study reported by Huang et al. [25], aroma composition of apple slices 

dried by a combination of freeze drying and microwave-vacuum drying (A) was evaluated 

and compared with only freeze dried (B) samples. They also indicated that volatile 

compounds in apple slices were classified as esters (principal compounds in apple), 

aldehydes, alcohols and acids. From the results of aroma retention between drying 

methods applied, researchers observed that dried apple slices by B application were 

retained aroma better than A application. 

Shiga et al. [26] studied the influences of spray drying on powdery encapsulation of 

shiitake flavours. It was reported that flavour retention increased with the rise of drying 

air temperature and solid content and decreased with the rise of dextrose equivalents of 

maltodextrin. Lenthionine concentration was increased with heat treatment but other 

flavours were not affected by heat treatment. 

The study of Jeyaprakash et al. [27] was attempted to identify the effects of heat 

pump dehumidifier dryer on flavour retention of tomato samples and compared with 

fresh, freeze dried and commercial spray dried samples. The quality parameters were 

determined as volatile, non-volatile and odour intensity. Heat pump dried tomato showed 

better retention with regard to volatile and sensory profiles of tomatoes than freeze drying. 

However, loss of the fresh aroma compounds (E)-2-hexenal, 1-penten-3-one, 1-hexanol) 

and the availability of heat induced compounds (dimethyl sulphide, furfural, pyrrole) 

were identified in spray dried tomato samples. 

Conclusion 

Consumers demand processed products, which retain their original properties. 

During drying, important flavour components could degrade and be lost due to high 
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temperatures and long drying times. Among the drying technologies, freeze drying, 

vacuum drying and heat pump drying offer great scope for the dried products retaining 

aroma components. 

References 

1. Rajkumar, G., Shanmugam, S., Galvao, M.S., Neta, M.T.S.L., Sandes, R.D.D., Mujumdar, 

A.S., and Narain, N. (2017) Drying Technology 35 (6): 699-708. 

2. Nabais, R. (2010) In: Handbook of fruit and vegetable flavors (Hui, Y.H., ed.), John Wiley & 

Sons, Inc., pp.487-514. 

3. Nijhuis, H.H., Torringa, H.M., Muresan, S., Yuksel, D., Leguljt, C., and Kloek, W. (1998) 

Trends in Food Science & Technology 9:13-20. 

4. Phoungchandang, S., and Saentaweesuk, S. (2010) Food and Bioproducts Processing 89 (4): 

429-437. 

5. Ding, S.H., An, K.J., Zhao, C.P., Li, Y., Guo, Y.H., and Wang, Z.F. (2012) Food and 

Bioproducts Processing 90: 515-524. 

6. Komes, D., and Ganic, K.K. (2010) In: Handbook of fruit and vegetable flavors (Hui, Y.H., 

ed.), John Wiley & Sons, Inc., pp.487-514. 

7. Wrolstad, R.E., Lombard, P.B., and Richardson, D.G. (1991) In quality and preservation of 

fruits (Eskin, N.A. ed.), Boca Raton, FL: CRC Press, pp. 67-95. 

8. Singh, R.P., Heldman, D.R. (2015) Introduction to food engineering. Nobel Publication, 

Ankara, pp.859. 

9. Kutlu, N., İşçi, A., and Şakıyan Demirkol, Ö. (2015) Gıda, 40(1): 39-46. 

10. Geankoplis, C.J. (2011) Transport Processes and Unit Operations, Pearson, Turkey, pp. 1052. 

11. Nawirska, A., Figiel, A., Kucharska, A. Z., Sokol-Letowska, A., and Biesiada, A. (2009) 

Journal of Food Engineering 94 (1): 14-20.  

12. Coumans, W.J., Kerkhof, P.J.A., Bruin, S. (1994) Drying Technology 12 (1-2): 99-149. 

13. Maskan, M. (2000) Journal of Food Engineering 44: 71-78. 

14. Zhang, M., Tang, C.J., Mujumdar, A.S., and Wang, S. (2006) Trends Food Sci Technol 

17(10): 524-534. 

15. Arslan, D., and Ozcan, M.M. (2010) LWT-Food Science and Technology 43: 1121-1127. 

16. Incedayı, B., Tamer, C.E., Özcan Sinir, G., Suna, S., and Çopur, Ö.U. (2016) Food Science 

and Technology: Campinas 36(1): 171-178. 

17. Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T.M., and Blaszczak, W. (2013) 

Journal of Food Engineering 115: 347-356. 

18. Mendez-Lagunas, L., Rodriguez-Raminez, J., Reyes-Vasquez, D., and Lopez-Ortiz, A. (2017) 

Food Measure 11: 1127-1232. 

19. Tian, Y., Zhao, Y., Huang, J., Zeng, H., and Zheng, B. (2016) Food Chemistry 197: 714-722. 

20. Peters, A.M., and Amerongen, A.V. (1998) J Amer Soc Hort Sci 123 (2): 326 – 329. 

21. Sessa, R.A., Bennett, M.H., Lewis, M.J., Mansfield, J.W., and Beale, M.H. (2000) The Journal 

of Biological Chemistry 275: 26877-26884. 

22. Venir, E. (2010) In: Handbook of fruit and vegetable flavors (Hui, Y.H., ed.), John Wiley & 

Sons, Inc., pp.515-529. 

23. Nunes, J.C., Lago, M.G., Castelo-Branco, N., Oliveira, F.R., Torres, A.G., Perrone, D., and 

Monteiro, M. (2016) Food Chemistry 197:881-890. 

24. Narain, N., Sousa Galvao, M., Santana, K.L., and Silveira Moreira, J.J. (2010) Drying 

Technology 28: 232-239. 

25. Huang, L., Zhang, M., Wang, L., Mujumdar, A.S., and Sun, D. (2012) LWT-Food Science 

and Technology 47: 183-188. 

26. Shiga, H., Yoshii, H., Ohe, H. Yasuda, M., Furuta, T., Kuwahara, H., Ohkawara, M., and 

Linko, P. (2004) Bioscience, Biotechnology and Biochemistry 68 (1): 66-71. 

27. Jeyaprakash, S., Frank, D.C., and Driscoll, R.H. (2016) Drying Technology 34 (14): 1709-

1718. 

 
 



 

 
B. Siegmund & E. Leitner (Eds): Flavour Sci., 2018, Verlag der Technischen Universität Graz 

DOI: 10.3217/978-3-85125-593-5-20, CC BY-NC-ND 4.0 99 

Characterization of aroma-active compounds in canned 

tuna by fractionation and GC/Olfactometry 

Fei He1, YanPing Qian1, Christina Dewitt2 and MICHAEL C. QIAN1 
1 Oregon State University, Corvallis, OR 97331 U.S.A.  
2 Seafood Research and Education Center, Oregon State University, Astoria, OR 97103 

Abstract 

Odour-active compounds from two canned tunas (albacore and skipjack) were 

isolated using solvent extraction followed by solvent-assisted flavour evaporation and 

normal phase chromatography separation. Aroma-active compounds were identified by 

gas chromatography/olfactometry-mass spectrometry (GC/O-MS). Many sulfur-

containing compounds (2-methylthiophene, 2-methyl-3-furanthiol, 1-acetyl-1-pyrroline, 

dimethyl sulfide, dimethyl trisulfide, 2-furfurylthiol, methional) were identified 

contributing to meaty, chicken-like aroma. The majority of the odour-active compounds, 

however, were saturated and unsaturated aldehydes such as hexanal, nonanal, (Z)-4-

heptenal, (E,Z)-2,6-nonadienal, (E,E)-2,4-decadienal, and acids. Most of these 

compounds were identified in both skipjack and albacore species, but their aroma 

intensities were different. Results demonstrated that normal phase chromatography is a 

useful tool to help compound identification in complex mixture. 

Introduction 

Many factors can affect the aroma profile of canned tuna, including processing 

conditions [1], fish species [2,3], and storage conditions [4,5]. Oxidation of unsaturated 

fatty acids in fish generates saturated and unsaturated aldehydes [6], and some of these 

compounds have been reported as useful markers for fishy off-flavours in fish and fish 

products [7]. Besides lipid oxidation, off-flavours may originate from environmental 

pollutants, microbial spoilage, or endogenous enzymatic decomposition [8,9]. The 

objectives of this study were to identify the odour-active compounds responsible for the 

canned tuna aroma. 

Experimental 

Materials 

Two types of commercially canned tuna (skipjack and albacore species) were 

provided by an industrial collaborator (Bumble Bee Foods, San Diego, CA). Each of the 

species was procured from five different fish suppliers/regions, including Europe, Asia, 

and America. All samples were stored at 4 °C until use. 

Tuna aroma isolation with Solvent-Assisted Flavour Evaporation (SAFE) 

For each tuna species, one can of tuna sample (125 g) from each supplier/batch was 

blended with liquid nitrogen into fine powders and all five samples were mixed together 

(625 g totally). The tuna powder was mixed with 200 mL of saturated salt water and then 

extracted with 200 mL of freshly distilled diethyl ether. The mixture was shaking 

vigorously for 1 hour at room temperature in a Teflon centrifuge bottle. The organic 

phases were separated by centrifuge at 5500 rpm for 10 min at 5 °C. The organic phase 

was saved and the sample was extracted two more times. The organic phases from three 

extractions were combined and distilled using solvent assisted flavour evaporation 

(SAFE) (Glasblaserei Bahr, Manching, Germany) at 50 °C under vacuum. The distillates 
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were dried over anhydrous sodium sulfate and concentrated to 1mL at 40 °C using a 

Vigreux column, then concentrated to 0.5 mL using a gentle nitrogen. 

Normal Phase Chromatography and Gas Chromatography/Olfactometry-Mass 

Spectrometry (GC/O-MS) 

To facilitate the GC/O analysis, aroma extracts were separated by fractionation prior 

to GC-O analysis. A column packed with 5 g of silica gel was washed with 100 ml 

methanol, then 100 ml diethyl ether, and then with 100 ml pentane. After sample loading, 

pentane (fraction 1), 50 ml pentane: diethyl ether (98:2, fraction 2), pentane:diethyl ether 

(95:5, fraction 3), pentane:diethyl ether (90:10, fraction 4) and diethyl ether (fraction 5) 

were sequentially applied to elute the aroma compounds from the column at a flow rate 

of 3 ml/min. All elutes were slowly concentrated to 10 ml and then to 100 µL with a 

stream of nitrogen for GC–O and GC–MS analysis. 

The GC-O and GC-MS analysis were performed using an Agilent 6890 GC-MS 

(5973N, Agilent, Willmington, DE), and a Gerstel olfactory detection port (Gerstel, 

Baltimore, MD). All the samples were analysed on a DB-Wax column (30 m, 0.25mm 

ID, 0.5 μm film thickness). One microliter of fractionated aroma extract was injected into 

the GC in splitless mode. The oven temperature was programmed initially at 40 °C for 1 

min, then increased to 70 °C at a rate of 8 °C/min, then increased to 200 °C at a rate of 3 

°C/min and increased to 230 °C at a rate of 8 °C/min with 15 min holding. The column 

carrier gas was helium at a flow rate of 2 mL/min. The flow was split between MS and 

ODP at 1:1 ratio to provide one stream for MS identification and another stream to the 

sniffing port for odour detection simultaneously. The olfactometry analysis was achieved 

by five experienced panellists for all samples. The odour intensities were evaluated on a 

five-point intensity scale, where 1 meant a volatile has a slight sensory impact, 3 was for 

moderate, and 5 was for extreme impact. The intensity was the average from all panellists. 

Compounds’ identification was achieved by comparing mass spectral data from the MS 

spectra database and confirmed by comparing Kovats retention indices of standards under 

the same conditions or those reported in the literature, in addition to odour description.  

Results and discussion 

Normal phase chromatography separates the tuna extract into five fractions. The 

number in each fraction represented the odour intensity ranging from 1 to 5, where 5 was 

the strongest odour, and 1 was the weakest.  

Table 1. Odour-active compounds in canned tuna detected by GC-O and Normal Phase Fractionation. 

Compounds RI 

(DB-

wax) 

ID Odour Skipjack Albacore  

F1 F2 F3 F4 F5 All F1 F2 F3 F4 F5 All 

Dimethyl sulfide 842 1,2 cabbage 3     3      0 

2,3-Butanedione 982 1,2 buttery  2 2 2 3 9    1 4 5 

Methyl thioacetate 1014 1,2 roasted 1 1  2  4 2     2 

Dimethyl disulfide 1029 1,2,3 fishy      0   2   2 

2,3-Pentanedione 1046 1,2,3 buttery  2    2 3   1 2 6 

Hexanal 1067 1,2,3 grassy  3    3  2    2 

2/3-Methylthiophene 1079 1,2,3 roasty 2     2 3     3 

Heptanal 1169 1,2,3 oily  3 1   4      0 
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Table 1 (continued) 

Compounds RI 

(DB-

wax) 

ID Odour Skipjack Albacore  

(Z)-4-Heptenal 1228 1,2,3 meaty 4  3 4 3 14 3 3 3 3  12 

Octanal 1287 1,2,3 soapy 2 2 2 2  8 2     2 

1-Octen-3-one 1301 1,2 mushroom 2 2 2  2 8 3 3 3  2 11 

2-Methyl-3-furanthiol 1309 1,2 meaty 3 2 2   7 3 4   2 9 

2-Acetyl-1-pyrroline 1340 1,2 popcorn      0  3   1 4 

Ethyl thioacetate 1360 1,2 sulfury  2 1  2 5 4 3    7 

Dimethyl trisulfide 1380 1,2 onion 4     4 5     5 

Nonanal 1389 1,2,3 fruity      0   1   1 

(E)-2-Octenal 1426 1,2,3 oily  2    2      0 

2-Furfurylthiol 1430 1,2,3 coffee  4  3  7 4 5 4 2 4 19 

Acetic acid 1445 1,2,3 vinegar    4  4     3 3 

1-Octen-3-ol 1450 1,2,3 mushroom   4   4    3  3 

Methional 1454 1,2 nutty    3  3  4    4 

(Z)-1,5-octadien-3-ol 1486 1,2,3 earthy      0  1 1   2 

(E, E)-2,4-

Heptadienal 
1497 1,2,3 earthy 2     2      0 

(Z)-2-Nonenal 1501 1,2,3 oily  3   2 5      0 

Benzaldehyde 1520 1,2,3 nutty  4    4      0 

Isobutyric acid 1564 1,2,3 sweaty    3  3    2  2 

(E,Z)-2,6-Nonadienal 1581 1,2,3 cucumber   5   5      0 

2-Undecanone 1592 1,2,3 oily   3   3   2   2 

2-Ethylthiophene 1597 1,2,3 fishy    3  3   2   2 

(E,E)-2,4-Octadienal 1619 1,2,3 mushroom  2    2      0 

Butanoic acid 1628 1,2,3 sour   5 5  10   4 3 3 10 

(E)-2-Decenal 1639 1,2,3 oily    1  1      0 

2-Acetylthiazole 1663 1,2,3 popcorn      0 3     3 

Isovaleric acid 1670 1,2,3 sweaty   5  3 8   4 4  8 

Valeric acid 1744 1,2,3 sour   2   2      0 

(E)-2-Undecenal 1756 1,2,3 green      0      0 

β-Damascenone 1816 1,2,3 sweet      0     2 2 

(E,E)-2,4-Decadienal 1819 1,2,3 oily   4   4      0 

Hexanoic acid 1856 1,2,3 sour   4 4  8   3   3 

Heptanoic acid 1965 1,2,3 sour      0  2    2 

Furaneol 2049 1,2,3 candy      0    3 2 5 

Octanoic acid 2070 1,2,3 sour  2    2   3   3 

p-Cresol 2097 1,2,3 horse   4 4  8   4 3  7 

Sotolon 2229 1,2,3 sweet    3  3      0 

Vanillin 2572 1,2,3 vanilla           0        3 3 

1: compounds were identified by the aroma descriptors; 2: compounds were identified by retention indices 

compared with pure compound standard;3: compounds were identified by the MS spectra. 
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The major odour compounds identified in canned tuna were sulfur-containing 

compounds, aldehydes, ketones, alcohols and short-chained fatty acids. The sulfur-

containing compounds are generated via Maillard reactions during cooking and generally 

contribute to meaty, chicken-like aroma. The aldehydes, ketones as well as some alcohols 

are generated via lipid oxidation, and they contribute to fishy, oily off-flavour in the 

products. This research provided directions for future research and actionable steps to 

improve flavour quality of canned tuna fish.  
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Abstract 

The effect of mechanic extrusion on aroma compounds in brown and polished rice 

was studied by gas chromatography-olfactometry (GC-O). Aroma compounds were 

isolated using solvent extraction followed by solvent-assisted flavor evaporation.  Aroma 

extract dilution analysis (AEDA) was performed on both brown rice and polished rice 

before and after the extrusion process. A total of 71 odorants were identified.  On the 

basis of flavor dilution (FD) factors, the most important aroma compounds in extruded 

rice could be hexanal, heptanal, 2-acetylpyrroline, 1-octen-3-ol, octanal, (E)-2-octenal, 

nonanal, decanal and (E, E),2,4-nonadienal. The aroma compounds were similar in all 

rice samples but FD factors were different. The FD factors of 2-acetylpyrroline, 1-octen-

3-ol in brown rice were much higher than in polished rice. The extrusion process greatly 

increased the FD factors of most aroma compounds, particularly aldehydes in brown rice. 

Introduction 

The aroma and volatile profile of cooked rice can be affected by postharvest 

processes (harvesting, drying, milling and storage) and cooking processes (boiling, 

puffing or extrusion) [1]. Extrusion is a high-temperature/short-time cooking process, 

producing breakfast cereals and other snack food products [2]. Extrusion conditions such 

as temperature and screw speed can affect product quality such as expansion, bulk 

density, and texture. Those conditions are also critical for the development, retention, and 

degradation of flavor components in the finished products [3].  

In brown rice, the bran and germ are present while in milled rice, they are partly or 

totally removed[1]. Rice bran contains amino acid, lipids, minerals and antioxidants. 

Milled rice has a different chemical composition according to the degree of milling, and 

therefore could lead to differences on the formation of rice aroma during cooking [4][5].  

In this work, the aroma compounds in brown and polished rice powder were 

analyzed by gas chromatography-mass spectrometry/olfactometry (GC-MS/O). Aroma 

extract dilution analysis (AEDA) was used to study the generation of aroma compounds 

in brown and polished rice before and after the extrusion process. 

Experimental 

Materials 

‘Huanghuazhan’ rice cultivar was used in this study because it is one of the main 

commercial cultivars in South China. The rice was grown in the Experimental Station of 

the Rice Research Institute of Guangdong Academy of Agricultural Sciences on a sandy 

loam soil in 2016. They were sown in late March and harvested in mid-July. The rice 

grains were then air-dried to a moisture content of approximately 13% and stored at room 

temperature for 3 months. The rice samples were milled to separate the husk from the 

brown rice. The brown rice was then polished using a rice milling machine (Satake Co. 

Hiroshima, Japan) to obtain approximately 90% (w/w) polished rice. The brown rice and 
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polished rice samples were sieved by passing through a 60-mesh sieve using a Cyclone 

Sample Mill (UDY Corporation, Fort Collins, CO, U.S.A.) for further process.   

Extrusion 

Extrusion was performed using a twin-screw extruder (Continua 37, Werner and 

Pfleiderer, Stuttgart, Germany) system with co-rotating. The screw diameter was 37 mm, 

overall L/D ratio was 27, and the diameter of extrusion die was 6 mm. The feed rate (25 

kg/h) and screw speed (200 rpm) were kept constant. The extrusion was carried out at 

120℃ with the temperature of different barrel zones set at 60, 100 and 120℃. The feed 

moisture was conditioned to 12–17%. The extrudates were cooled to room temperature, 

packed in polyethylene bags and milled later to flour using a grinder (Sujata, India) to a 

particle size < 250 μm and stored at -20℃ until further analysis. All samples, including 

raw polished rice (RPR); extruded polished rice (EPR), raw brown rice (RBR), and 

extruded brown rice (EBR), were kept in a refrigerator at 4 °C until analysis. 

Rice aroma isolation with Solvent-Assisted Flavor Evaporation (SAFE) 

The aroma compounds from four rice samples were extracted using organic solvent. 

For each variety, 200 g of sample was mixed with amylase (0.2% w/w) and Milli-Q water 

(1:1, v/v) and shaked for 1 hour. Then 100 mL of pentane/diethyl ether mix (2:1, v/v) was 

added to the rice mixture. The mixture was shaken vigorously for 1 hour at room 

temperature in a Teflon centrifuge bottle. The organic phases were separated by 

centrifugation at 5000 rpm for 15 min at 5 °C. The organic phase was saved and the 

sample was extracted two more times. The organic phases from three extractions were 

combined and distilled using solvent assisted flavor evaporation (SAFE) (Glasblaserei 

Bahr, Manching, Germany) technique to remove the nonvolatile constituents at 50 °C 

under high vacuum. After distillation, the receiving part of SAFE in the system was 

carefully rinsed with 5 mL of pentane/diethyl ether mix, and combined with the distillates 

in the volatile-receiving flask. The final distillates were dried over anhydrous sodium 

sulfate overnight and concentrated to about 1 mL at 40 °C using a Vigreux column, then 

concentrated to 0.1 mL using a stream of gentle nitrogen flow for further analysis. 

Gas Chromatography/Olfactometry-Mass Spectrometry (GC/O-MS) 

The GC-O and GC-MS analysis were performed using an Agilent 6890 GC with an 

Agilent 5973N mass selective detector (MSD, Willmington, DE, U.S.A.), and a Gerstel 

olfactory detection port (ODP series 2, Baltimore, MD, U.S.A.). All samples were 

analyzed on a DB-Wax column (30 m, 0.25 mm ID, 0.5 μm film thickness). One 

microliter of sample was injected into the GC in splitless mode. The oven temperature 

was programmed initially at 40 °C for 4 min, then increased to 230 °C at a rate of 4 

°C/min with 20 min holding. The column carrier gas was helium at a flow rate of 2.5 

mL/min. The flow was split between MS and ODP to provide one stream for MS 

identification and another stream the sniffing port for odor detection simultaneously. Six 

experienced panelists (2 males and 4 females) performed the GC-O analysis on the 

original extracts. Each sample was sniffed by each panelist in duplicates. Compounds’ 

identification was achieved by comparing mass spectral data from the database and 

confirmed by comparing Kovats retention indices (RI) of standards obtained under the 

same conditions in the lab, in addition to odor description. 
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Aroma Extract Dilution Analysis (AEDA) 

The aroma extracts were diluted stepwise with 1:1 (v/v) distilled pentane/ ether mix 

(1:1, v/v). Analyses were performed on the same instrument as described previously on a 

DB-5 column (30 m, 0.25 mm ID, 0.5 μm film thickness). One microliter of sample was 

injected into the GC in splitless mode. Determination of the flavor dilution (FD) factors 

was then done by two panelists, and each dilution was evaluated by each panelist in 

duplicates.  

Results and discussion 

GC/Olfactometry analysis of the four rice extract revealed 71 odor-active areas in 

the gas chromatogram (data not shown). AEDA revealed 28 compounds with FD factors 

ranging from 1 to 2048 (Table 1). Although the aroma-active compounds identified were 

similar among all the samples, their FD factors varied in different samples, demonstrating 

the flavor differences among the products.  

Table 1:  Aroma -active compounds in polished and brown rice, before and after extrusion 

Compounds Odor RI ID FD factor 

    RPR EPR RBR EBR 

Dimethyl sulfide cabbage 723 RI, A 8 8 8 8 

Butan-2,3-dione buttery 736 RI, A 2 8 8 8 

3-Methylbutanal malty 761 MS,RI,A Na na 2 1 

Hexanal green 819 MS,RI,A 32 64 32 256 

Methional potato 898 MS,RI,A 16 64 8 256 

4-Mercapto-4-
methylpentan-2-one 

(4MMP) 

Grapefruit 912 RI, A 8 32 16 8 

2-Acetylpyrroline popcorn 917 MS,RI,A 16 64 512 2048 

Pentanoic acid sweaty 941 MS,RI,A 8 8 8 16 

1-Octen-3-ol mushroom 972 MS,RI,A 32 64 1024 1024 

Octanal oily 996 MS,RI,A 1 16 32 1024 

Hexanoic acid sour 1032 MS,RI,A 16 2 2 8 

(E)-2-Octenal oily 1057 MS,RI,A 16 32 32 64 

Linalool oxide floral 1080 MS,RI,A Na na 2 16 

Nonanal oily 1098 MS,RI,A 16 64 2 128 

Ethyl hexanoate fruity 1127 MS,RI,A Na na 8 8 

(E)-2-Nonenal oily, green 1130 MS,RI,A 2 na 2 32 

Decanal waxy 1195 MS,RI,A 2 64 8 128 

(E,E)-2,4-Nonadienal oily 1207 MS,RI,A 4 8 16 64 

4-Vinylphenol woody 1227 MS,RI,A 2 na 32 64 

Octanoic acid sour 1281 MS,  na na 16 16 

4-Vinylguaiacol woody 1312 MS,RI,A 2 8 2 64 

Vanillin vanilla 1376 MS,RI,A 2 na 8 na 

ID representes identification method. RI: compounds were identified by retention indices compared with pure 

compound standard; A: compounds were identified by the aroma descriptors; MS: compounds were identified 
by the MS spectra. 
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Among all the compounds identified, 2-acetylpyrroline, 1-octen-3-ol, hexanal, 

octanal, nonanal and decanal had relatively high FD factors, suggested their potentially 

higher aroma contribution. 2-Acetylpyrroline is a well-known character compound for 

rice products, whereas 1-octen-3-ol, hexanal, octanal, nonanal and decanal are generated 

from lipid oxidation of unsaturated fatty acids. 4-Mercapto-4-methylpentan-2-one (4-

MMP) was also identified as a key odor-active compound. 

Compared with the raw polished rice, the raw brown rice had higher FD factors for 

2-acetylpyrroline, 1-octen-3-ol, octanal, and 4-vinylphenol, suggesting these compounds 

were associated with the bran and germ of the rice. The reason that the brown rice had 

higher FD factors for 1-octen-3-ol and octanal could be due to the fact that brown rice is 

more susceptible to off-flavor development, mainly due to oxidation of rice oil catalyzed 

by enzymes such as lipase and lipoxygenase and autooxidation. It is interesting to notice 

that the brown rice also showed a higher FD factor for 2-acetylpyrroline. 

Extrusion changed the FD factors of many compounds. Extrusion increased the FD 

factors of 4-mercapto-4-methylpentan-2-one, 2-acetylpyrroline, and some lipid derived 

compounds (i.e. octanal, nonanal) in polished rice, and the increases were much more 

pronounced for brown rice, especially for lipid derived compounds including hexanal, 

heptanal, octanal, nonanal, decanal. During the extrusion process, thermal processing of 

the raw ingredients occurs under high temperature and shear, with limited moisture 

conditions. This process causes decomposition, degradation, denaturation, cross-linking, 

and various chemical reactions such as oxidation, polymerization, hydrolysis and other 

reactions in the extruded material. Thermal oxidation will generate straight-chained 

aldehydes. Linalool oxide was only detected in brown rice, and the extrusion process 

greatly increased its FD factor. 3-Methylbutanal, ethyl hexanoate and octanoic acid were 

also detected only in brown rice, however their FD factors were not greatly influenced by 

extrusion process.  

In conclusion, brown rice had higher FD factors than polished rice for most of 

aroma-active compounds. The extrusion process greatly increased the FD factors of most 

aroma compounds, particularly aldehydes in brown rice. 
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Abstract  

The influence of different origin on proximate composition of Roselle seeds and 

different sample preparation methods on the aroma profiles of Roselle seeds were studied. 

It was seen that sample origin affected the proximate composition and volatile profiles. 

Ground dry (GD) was chosen as the preparation method because it was an efficient 

method with less chemical changes of the samples whereas, Roselle seeds of Malaysian 

origin was selected as potential food ingredient because it has high lipid, protein, and total 

dietary fiber content. 

Introduction 

Roselle (Hibiscus sabdariffa L.) is an important food and medicinal plant, among 

other things due to its high content of antioxidants, for example anthocyanins and vitamin 

C. It is also used as a natural food colorant. Normally, in food industry only Roselle 

calyces are used to produce various food products; the seeds are removed and disposed 

as a by-product. However, Roselle seeds are also edible [1]. To our knowledge, the study 

of Roselle seeds is limited and there are no aroma profiles of Roselle seeds being reported. 

Therefore, this study addresses the influence of different origin on proximate composition 

of Roselle seeds and tests different sample preparation methods to determine the aroma 

profiles of Roselle seeds.  

Experimental 

Materials 

Two types of sun dried Roselle (Hibiscus sabdariffa L.) seeds commercially 

available were obtained to study aroma profiles and proximate analysis: 1) Roselle seeds 

of the UMKL cultivar (obtained from HERBagus Sdn. Bhd., Penang, Malaysia) 2) 

Roselle seeds of Chinese origin (obtained from Sichuan Keren Imp & Exp Trading Co. 

Ltd, Sichuan, China). 

Sample preparation 

For aroma analysis, samples were prepared by two different procedures and analyzed 

in triplicate: Ground, dry (GD): Whole Roselle seeds were ground for 90 sec using a 

laboratory blender Model 38BL41 (Waring, USA). Internal standard (1 mL of a 5 ppm 4-

methyl-1-pentanol solution) was added to 25 g of Roselle seeds and volatiles were 

sampled by Dynamic Headspace Sampling (DHS).  

Ground, mixed with water (GMW): Whole Roselle seeds were ground as mentioned 

above and then 25 g of ground Roselle seeds were mixed with 100 mL of tap water, ratio 

(1:4). Again, 1 mL of a 5 ppm 4-methyl-1-pentanol solution was added and DHS was 

carried out. 
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Dynamic Headspace Sampling (DHS) and Gas Chromatography-Mass Spectrometry 

(GC-MS) 

The DHS method was adopted and modified from Starr et al. [2]. Each sample was 

placed in a 500 mL glass flask. A trap containing Tenax-TA (200 mg) was attached to the 

sealed flask. The flasks containing the samples were immersed in a water bath held at 40 

°C. Under magnetic stirring (200 rpm), the sample was tempered for 10 min and then 

purged with nitrogen (100 mL min-1) for 40 min. The traps were purged with a flow of 

nitrogen (100 mL min-1) for an extra 10 min to remove water. 

In GC-MS analysis, the collected volatiles were determined as previously described 

by Starr et al. [2]. Volatile compounds were identified by probability based matching of 

their spectra with those of a commercial database (Wiley275.L, HP product no. G1035A). 

The software program, MSDChemstation (Version E.02.00, Agilent Technologies, Palo 

Alto, California), was used for data analysis. Amounts are presented as peak areas. 

Volatile compound identification was confirmed by comparison with retention indices 

(RI) of authentic reference compounds or retention indices reported in the literature. 

Proximate composition 

In proximate analysis, samples were treated according to the AOAC standard 

methods [3]. Moisture content (hot-air oven method), ash (dry ashing method), lipid 

(Soxhlet extraction), protein (Micro-Kjeldahl method) and total dietary fiber [4] were 

analyzed and calculated. All measurements were conducted in triplicate. The results were 

expressed as a percentage (wet weight). 

Data analysis 

Multivariate data analysis (principal component analysis (PCA)) using the Latentix 

software (LatentiXTM 2.0 Latent5, Copenhagen, Denmark, www.latentix.com) was 

applied to GC-MS data to evaluate the variation between the different samples from 

different countries and one-way analysis of variance (ANOVA) was performed using the 

software JMP (version 12.0, SAS Institute Inc.) to test for differences in proximate 

composition. 

Results and discussion 

A total of 61 volatile compounds were identified including alcohols (18), terpenes 

(15), aldehydes (13), ketones (9), furans (2), phenols (2), ester (1), and lactone (1). An 

equal number of aroma compounds was recovered in GD and GMW. Roselle seeds from 

China and Malaysia had different volatile profiles (chromatogram not shown). But both 

volatile profiles were dominated by alcohols, terpenes and aldehydes and had phenols, an 

ester and a lactone present in traces. A Principal Component Analysis was carried out 

using the peak areas obtained, in order to provide an overview of the influences of 

different sample preparation methods and different origins of Roselle seeds (Figure 1). 

The first principal component (PC1) explained 58 % of the variance while PC2 explained 

22 % of the variance. The samples were clearly separated according to country and also 

by different sample preparation methods. The differences are probably due to different 

harvesting time, harvesting place, climate zone and varieties. 
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Figure 1: PCA scores and loadings plot of volatile compounds for Roselle seeds 

For most volatiles the largest peak areas were obtained using the GD sampling 

technique: only some ketones had higher peak areas in the GMW samples. GD would 

therefore be the preferred sample preparation technique compared to GMW. It seems that 

addition of water during sample preparation does not improve the efficiency of sampling 

of Roselle seeds. Nevertheless, care must be taken to avoid sampling procedures which 

may alter the substances being studied. GD was assumed to cause less chemical changes 

of the samples, it was simple, and it was easy to handle. Therefore, it was decided to use 

the GD preparation method in further experiments. 

The loadings plot shows that Roselle seeds from Malaysia were found to have a 

larger amount of many alcohols, aldehydes, and ketones, whereas samples from China 

were high in most terpenes (Figure 5). The major volatile compounds (by peak size; 2-

methylpropanal, 2-methylbutanal, 3-methylbutanal, α-phellandrene, hexanal, 2-methyl-

1-propanol, sabinene, 4-methyl-2-hexanone, β-phellandrene, 3-methylbutanol, 2-

pentylfuran, 1-pentanol, ρ-cymene, 1-hexanol, and 2-ethyl-5-methylphenol) were found 

in all samples in varying levels. 

The composition of Roselle seeds is rarely studied compared to the calyces and 

studies on proximate composition of Roselle seeds are limited compared to studies on 

other seeds such as black cumin seed (Nigella sativa L.) and jojoba seed (Simmondsia 

chinensis) [5]. The results of proximate compositions of Roselle seeds are presented in 
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Table 1. The total dietary fiber, protein and lipid of Roselle seeds ranged between 47.1 

and 47.3 %, 21.3 and 23.6 %, 11 and 16.2 %, respectively. The differences in proximate 

composition may be attributed to the different origins, agricultural practices, and 

varieties. Previous studies have also shown that Roselle seeds contain high protein, 

dietary fiber, and minerals such as phosphorus, magnesium and calcium. This contributes 

to the strength of the seed compared to other common sources of dietary fiber such as 

wheat and rice bran, oat, and fiber from fruits [5]. Furthermore, El-Adawy and Khalil [6] 

reported that the lipid from Roselle seeds contained more than 70 % of polyunsaturated 

fatty acids and Dhar et. al. [7] found high content of γ-tocopherol.  

In conclusion, it was found that Roselle seeds of Malaysian origin had more volatile 

compounds recovered in both types of sample preparation, GD and GMW, and had higher 

lipid content. The effect of the volatile profile on the sensory quality remains to be 

elucidated, but a high lipid content in the seeds is considered an advantage due to its 

richness in polyunsaturated fatty acids (PUFAs) and γ-tocopherol which possess potential 

health benefits. Thus, Roselle seeds of Malaysian origin were selected instead of Roselle 

seeds of Chinese origin as a potential food ingredient for further exploration in 

development of bakery products using Roselle seeds.   

 

Table 1: Proximate composition of Roselle (Hibiscus sabdariffa L.) seeds 

Type of analysis 

Malaysia China 

Significance 

Moisture content (%) 8.4a 7.9b *** 

Ash (%) 6.5a 4.8b *** 

Lipid (%) 16.2a 11b *** 

Protein (%) 21.3 23.6 ns 

Total dietary fiber (%) 47.3 47.1 ns 
Values in a column not marked with the same letters are significantly different, Student t-test (p<0.05).           

*** Indicates significant at p<0.001; ns, no significant difference between the samples.                                      
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Abstract 

The presence of metal salts in a food system can change the quantitative distribution 

of the reaction products formed during Maillard and caramelisation reactions. In this 

respect, dough formulae containing NaCl, KCl and CaCl2 were prepared and a set of 

heating experiments was performed at 180 °C. To determine the volatile compounds 

formed during the Maillard reaction, headspace analyses were carreid out using solid-

phase microextraction (SPME) coupled with gas chromatography mass spectrometry 

(GC-MS). It was found that the quantitative distribution of aroma compounds, such as 

Strecker aldehydes, pyrazines, pyrroles and furan derivatives, changed in the presence of 

salts.  

Introduction 

Metal cations can interact with sugars and amino acids in a food system, especially 

during thermal processing when they can alter the kinetics of rate-limiting pathways that 

control the Maillard and caramelisation reactions. Degradation of sugars is accelerated in 

the presence of metal cations, and 5-hydroxymethyl-2-furfural and 2-furfural are formed 

in higher concentrations as a result [1,2]. On the contrary, the reactions of amino acids 

may be inhibited in the presence of metal cations, as evidenced by the mitigation of 

acrylamide formation from asparagine in the presence of calcium salts during the Maillard 

reaction [1,3]. 

Metal cations directly interact with the nucleophilic oxygens of sugars, which are 

key in dehydration, and isomerisation reactions [4]. It has also been suggested that metal 

cations coordinate with the ring oxygen, facilitating ring-opening reactions [5]. Alkali 

metal cations change the quantitative distribution of the products in two different ways: 

(i) by increasing the rate of isomerisation and (ii) changing the rates of different 

dehydration and fragmentation reactions [6]. It has been shown that under pyrolytic 

conditions, the sodium ion changes the reaction rate constants of glucose degradation by 

catalysing most of the reactions but also inhibiting others [7]. The effect of sodium cations 

is related to how the particular stereochemistry of the transition state interacts with the 

ions, therefore changing the reaction rate constants [7]. In contrast to the metal cations, 

chloride anions interact with the partially positively charged hydrogen atoms by locating 

farther from reaction centres [4]. 

Although the effect of sodium, potassium and calcium on the formation of 

acrylamide and furfurals is well established, their effect on the formation of flavor 

compounds during the Maillard reaction is not entirely known. The aim of this study was 

to investigate changes in the flavour profile generated in Maillard reaction model systems 

composed of wheat flour and glucose in the presence of NaCl, KCl, CaCl2.  
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Experimental 

Wheat flour (100 g) was mixed with 50 mmol glucose, 5 mmol of either NaCl, KCl 

or CaCl2, and 50 mL water to form a dough. The dough was freeze-dried and ground prior 

to dry heating at elevated temperatures. The ground dried mixtures (0.5 g) were 

transferred to tubes with PTFE sealed screw caps and heated in duplicate at 180 °C for 1, 

3, and 5 min in an oil bath.  

Heated mixtures were analysed by headspace SPME-GC/MS after adding 1 mL 

saturated NaCl solution containing the internal standards of 2-methylpentanal (0.5 mg/L), 

isopropylpyrazine (0.05 mg/L) and 3-furfural (0.05 mg/L). Saturated NaCl solution was 

used for adjusting the ionic strength in all the formulae, to standardise the flavour release. 

A Supelco 50/30 μm DVB/CAR/PDMS SPME fibre was used. Volatile analyses were 

carried out on an Agilent 7890A GC system coupled to an Agilent 5975C mass 

spectrometer. A ZB-WAX column (30 m × 0.25 mm i.d., 1 μm film thickness; 

Phenomenex, UK) was used for chromatographic separation. The data were 

approximately quantified as ng of volatile compounds in 0.5 g of heated mixture by 

comparing the area of the analytes to the response of the internal standards.  

Results and discussion 

A model system, simulating the drying conditions on the surface of bakery products 

during thermal treatment, was created to monitor the effect of salts on the Maillard 

reaction. Although sucrose is the major sugar source in bakery products, glucose was 

chosen as a reducing sugar. It is known that sucrose hydrolysis and degradation increase 

in the presence of metal salts, producing glucose and fructose [8]. Therefore, the aim was 

to observe the effects with a single reducing sugar by keeping the model system simpler 

at first. 

The concentration of volatile compounds was found to increase during 5 min heating 

at 180 °C. NaCl and KCl, at concentrations of 0.3 and 0.4 g/100 g flour respectively, had 

minor effects on aroma formation compared to the control (Figure 1). Slight increases 

were observed in the Strecker aldehydes, 2-methylbutanal and 3-methylbutanal, in the 

presence of KCl. CaCl2, at a concentration of 0.6 g/100 g flour, had no effect on Strecker 

aldehyde formation during heating.  

Remarkable changes were observed for pyrazines and furan derivatives in the 

presence of CaCl2. Pyrazines were found to decrease in the presence of CaCl2 whereas 

furan derivatives increased dramatically. Pyrrole and pyridine derivatives showed an 

increment in case of prolonged heating.  

In conclusion, the quantitative distribution of flavour compounds changed in the 

presence of salts to varying degrees. The effect of salts on the Maillard reaction and 

caramelisation needs detailed investigation to be able to control flavour development 

during processing when considering sodium reduction and use of calcium salts to reduce 

acrylamide formation. 
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Figure 1: Formation of certain volatile compound during heating wheat flour-glucose mixture in the absence 

of salts (control, ) and presence of NaCl ( ), KCl ( ) and CaCl2 ( ). 
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Abstract 

Fine flavours in chocolate are influenced by factors such as cacao variety, growing 

environment, post-harvest processing and chocolate manufacturing processes. The 

objective of this experiment was to develop a method to enhance the flavour of cocoa 

nibs without affecting their inherent fine flavours. Concentration of cinnamon, method of 

packaging, and exposure time were manipulated to obtain a unique ancillary spice note 

as detected via descriptive sensory evaluation of cocoa liquor processed from the 

cinnamon infused cocoa nibs. Increased concentration enhanced the detection of 

cinnamon flavour, more so under vacuum packaging, while simultaneously reducing the 

perception of an undesirable note.  This study shows that addition of ancillary spices to a 

mass of nibs can enhance the taste experience, allowing for novel favourable and unique 

liquor products. This method has particular potential for small to medium size chocolate 

makers and chefs.  

Introduction 

Cocoa beans are categorized globally into two groups, “fine or flavour” cocoa and 

bulk cocoa. Fine or flavour cocoa beans are generally obtained from cocoa trees of Criollo 

or Trinitario ancestry. They are characterized by desirable ancillary flavour notes such as 

floral and fruity, with a robust chocolate flavour. In contrast, bulk cocoa has a robust 

chocolate note with no significant ancillary notes. Cocoa nibs are fermented, dried, 

roasted and crushed cocoa beans [1]. Currently, there is an increase in demand for “fine 

or flavour” cocoa beans and nibs largely due to the buoyant craft chocolate and culinary 

industry that uses it to produce exclusive chocolates and chocolate products.  

This craft industry uses innovations through the transference of novel flavours into 

cocoa and therefore can provide a competitive advantage in an increasingly competitive 

marketplace. Cocoa or chocolate flavours can be enhanced through the addition of direct 

spices and flavouring during conching but this may give negative mouthfeel properties.   

Desirable flavours can result in unique flavour notes and thus further enhance the 

quality of cocoa and the potential price it can fetch in the market. Bio-generated 

atmospheres or vacuum storage demonstrated a positive impact on stored cocoa beans 

[2]. Little work has been done to show the significance of vacuum storage or its influence 

on flavour infusion on “fine or flavour” roasted cocoa nibs. Aromas could potentially be 

transferred onto cocoa by a process known as mass transfer [3]. By manipulating 

concentration and distance one should be able to affect a flavour change in stored roasted 

cocoa nibs validated through descriptive sensory evaluation. 

Descriptive sensory evaluation of cocoa liquor has been used as a tool to judge cocoa 

bean quality. A major strength of descriptive sensory evaluation is that it can link 

instrumental measurements of quality with consumer acceptance [4]. An optimised 
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protocol for descriptive sensory evaluation was developed to quantify different flavour 

attributes of cocoa liquors in Trinidad and Tobago [1].  

The overall objective of this work is, therefore, to develop a standardised method for 

cocoa nib infusion with cinnamon spice aroma to be used by small to medium size 

chocolate makers and chefs. 

Experimental 

Nib and cocoa liquor preparation 

Cocoa beans from the International Cocoa Gene Bank Trinidad (ICGT) were 

selected and used for the experiment. Roasting of beans was done according to Sakha et 

al. [1]. After roasting, beans were cooled to room temperature on cooling racks for further 

processing.  Cocoa beans were broken using a cocoa breaker to an average size of 0.2-0.5 

cm and collected into neutral and non-odorous plastic containers. The broken beans were 

then winnowed and winnowed nibs were manually fine cleaned using stainless steel 

forceps. Cocoa nibs were packaged based on the experiment design below and stored at 

22°C room temperature.  

Table 1: Overview of the experimental set-up and design.  

Experiment 
Replication 

Treatments of ingredient 
infusion 

Storage method 

Levels of infused 

ingredient in 100 

grams of nibs 

Sampling 
days 

Two replicates 
(0 grams 

cinnamon was 
not repeated in 

experiment) 

Cinnamon sticks 

(placed in the bags with 
nibs) 

 

Vacuum (1) 
sealable bags 

 
Aerated (2) 

sealable bags 

 2 grams 

 10 grams 

 25 grams 

 0 grams 

3, 7, 14, 
28, 56 

 

Each vacuum sealed and aerated sample bag was opened and 50 g of nibs were 

removed and used to make liquor. Bags with the remainder of the nibs were resealed. 

Nibs were broken down using a Magic Bullet®USA blender. The blender was pulsed 9 

times for one second and 3 times more for 3 seconds. The ground sample was placed in a 

Cocoa Town® USA mini 500g bowl to be milled for one and a half hours in a Cocoa 

Town® ECGC-12SLTA Melanger. The cocoa paste or liquor was then transferred to a 

sterile plastic cup, which was labelled with the date and sample information. The cups 

were then sealed with tape and placed in a freezer at -4 °C.  

Sensory evaluation 

Frozen samples were thawed and one ounce of each liquor sample was placed in 

one-ounce cups. Each cup was given a random code [1]. A sensory panel, consisting of 6 

people, was trained for four days to taste cocoa liquors prior to the actual sensory 

evaluation of the infused nibs. Each person was trained to taste 46 different descriptors 

and to use the extended sensory sheet called “Cocoa and Chocolate Flavour Evaluation” 

[5]. Panellists were also asked to provide comments, an overall score and assessment of 

‘uniqueness’. Sensory evaluation was done in an air conditioned room at 23°C. Each 

panellist was given samples in random order. Seventy-four coded liquors were tasted over 

a period of 10 days; 70 from the experiment and four samples of Ghana liquor as 

additional controls. The latter was used to test consistency of the panellists in scoring. 

Liquors were placed on a VWE Analog 2 block heater (USA) prior to tasting. Each 

panellist was given a jar of warm water, a jar of room temperature water and Carr's table 

water crackers to clear their palate. A tasting spoon and a small plate were also provided. 
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The method for cleaning the palate and tasting liquor were as described by “ESSeguine-

DASukha Cocoa and Chocolate Flavour Evaluation method 2017” [5].  

Panellist scored each flavour note perceived on a 10 point hedonic scale. The data 

was subjected to analysis of variance (ANOVA) to determine the significance of the 

major effects and interactions. Data were subsequently used in statistical analysis to 

determine the effects of cinnamon concentration, storage methods (aerated or vacuum 

stored), and storage time. 

Results and discussion  

The average mean scores for “Spice other”, “Wood resin” and “overripe fruit” were 

significantly affected by the infusion of cinnamon. The average mean scores are 

calculated based on all samples tested for time, concentrations and aerated and vacuum 

packaging. Not all sensory evaluation results are recorded on this paper.  

  
Figure 1: The effect of increasing concentration of cinnamon spice on vacuum and aerated packaging for the 

infusion of “spice other” flavour note on cocoa nibs. 

 
Figure 2: Evaluation of the spice other flavour note of cocoa nibs after selected days of infusion.  

“Spice other”: “Spice other” flavour was the note that the sensory panellists 

determined as the cinnamon flavour in the liquors. Interaction between concentration and 

packaging method was significant (P <0.001) and least significant difference (LSD) 

0.3846 indicating that the effect of vacuum packaging was more evident at the 25% 

cinnamon concentration than at the lower concentrations. In general, the intensity of the 

spice note increased with increasing time of exposure to the spice (P < 0.05).  
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“Cinnamon spice” aroma is perceived by two main volatile compounds: cinnamon 

aldehyde (cinnamon), and 2-propenoic acid, 3-phenyl ester (cinnamon) [7]. This 

experiment showed that with increased percentages of cinnamon bark, and increased 

storage time, especially under vacuum storage, a spice note can be effectively transferred 

to cacao nibs. 

Overall score: This is a score that rates how good or bad the cocoa liquor samples 

are. The panellists significantly (P < 0.001) preferred vacuum over aerated storage. The 

overall score was significantly (P < 0.05) higher for nibs stored with 25% cinnamon. 

Thus, infusing the nibs with 25% cinnamon under vacuum storage, improve the general 

quality of the nibs.  

Conclusion 

The objective of this experiment was to develop a novel method to change cocoa nib 

flavour. Here this method was tested using cinnamon. Vacuum storage and higher 

cinnamon concentration allowed for superior intensity of cinnamon flavour. Length of 

exposure also enhanced the spice flavour in cocoa nibs. Given the positive results of this 

study, this method can be recommended for the infusion of flavour to nibs.  

Nonetheless more research using other spices remains necessary to show the general 

usefulness of the methods. Moreover, quantifying the mass transfer of volatiles from spice 

to nibs and the inclusion of analytical data such as solid phase micro extraction (SPME)-

gas chromatography (GC)-and mass spectroscopy (MS), will help to identify 

relationships or linkages between the panel's sensory analysis and instrumental 

quantitative data [7].  
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Abstract  

In this investigation green Robusta coffee beans were pre-soaked with different time-

temperature profiles before roasting in normal conditions and grinding to a standardized 

particle size. Aroma profile of roasted coffee beans and water soluble precursors such as 

sucrose and total protein content from soaking water were examined by using Solid Phase 

Micro Extraction -Gas Chromatograph Mass Spectrometry and Liquid chromatography–

mass spectrometry and BCA Protein Assay Kit respectively. A significant impact of 

soaking time-temperature profile was observed on the yield of water-soluble precursors 

in the soaking water. The loss of these precursors significantly de-creased aroma 

formation during roasting. The results also suggested that water-soluble precursors could 

modify the quality of Robusta coffee.   

Introduction 

Coffee species such as Arabica and Robusta are most common coffee varieties in the 

world, which account for 61% and 38% of the coffee production worldwide. Arabica, 

perceived as a smooth, and rich flavour is usually more desirable than Robusta, which is 

often described as having a muddy odour. Robusta coffee beans are often blended with 

Arabica coffee beans to create specific aroma profiles, enhance cream formation or reduce 

cost, but the maximum that can be included is often limited due to the loss of aroma 

quality [5]. 

Aroma formation in coffee is directly related to the chemical composition of the 

green coffee beans and typical coffee aromas are developed during the roasting pro-cess 

due to complex reactions such as, Maillard reactions, Strecker degradation, thermal 

degradation and oxidation [2]. A number of studies have improved the quality of Robusta 

coffee by passing the green Robusta beans through steam to remove sub-stances such as 

2-methylisoborneol, which is responsible for the muddy odour [1]. However, during this 

process important water soluble precursors such as sucrose and protein are leached into 

water, hence compromising the flavour generation potential of the roasted coffee. The 

amino acids and sugar are considered to be the main precursors in the aroma generation 

and colour formation during coffee roasting [3]. Therefore, the objective of this study was 

to investigate how much water-soluble precursors are lost during pre-soaking of green 

coffee beans and its impact on aroma generation during coffee roasting. 

Experimental 

Coffee preparation 

Coffee beans were purchased from Edgehill coffee, Warwick, United Kingdom, 

where both Robusta beans (Vietnam) and Arabica beans (Kenya) are single-origin 

washed beans. Robusta green beans were soaked in water solution at different time (2, 4, 

6, 8, 10 and 12 h) and temperatures (20, 40, 60, 80 and 100 ˚C), four replicates each. 

Soaked Robusta green beans and non-treated Robusta green were placed into a desiccator 

with saturated sodium nitrate solution (relative humidity 65.5%) at room temperature 
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(20±2 °C) for 20 d to control the moisture content (around 11.5%). Determination of the 

water changes during soaking and coffee roasting was carried out by weighting the coffee 

sample at every step. Soaked Robusta green beans and non-treated Robusta green beans 

were roasted in a convection oven (Mono Equipment, Swansea, UK) at 200 °C for 20 

min. Roasted samples were ground with an electronic coffee grinder (KG 49, Delonghi, 

Australia) then passed through a metal sieve size 710 um (Endecotts, Essex, UK) and 

stored in the freezer at -80°C prior to analysis. 

Gas Chromatograph Mass Spectrometry (GC-MS) 

The ground coffee (1.5 g) was transferred into glass vials (20 ml), four replicates for 

GC-MS analysis. An internal standard was prepared by adding 10 μL 3-heptanone 

(Sigma, Saint Louis, USA) into 10 ml methanol (Laboratory reagent grade, Fisher 

Scientific, UK). 2 μL of internal standard was added into each coffee sample and kept for 

1 h equilibrium prior to GC analysis. All analytical samples were randomised for GC-MS 

analysis. A trace 1300 series Gas Chromatograph coupled with the Single-Quadrupole 

Mass Spectrometer (Thermo Fisher Scientific, Hemel Hemptead, UK) was used for 

analysis of volatile compounds. Samples were incubated at 40 °C for 5 min with shak-

ing. A 50/30 μm DVB/CAR/PDMS SPME Fibre (Supelco, Sigma Aldrich, UK) was used 

to extract volatile compounds from the sample headspace (extraction for 5 min then 

desorption for 2 min). The injector temperature was set at 200 °C in splitless mode 

(constant carrier pressure was at 18 psi). Separation was carried out on a ZB-WAX 

Capillary GC Column (length 30 m, inner diameter 0.25 mm, film thickness 1 μm; 

Phenomenex Inc., Macclesfield, UK). Column temperature was held initially at 40 °C for 

5 min, increased by 3 °C/min to 180 °C, then 8 °C/min to 240 °C and held for 2 min. Full 

scan mode was used to detect the volatile compounds (mass range from m/z 20 to 300).  

BCA protein assay kit and Liquid Chromatography-Mass Spectrometry (LC-MS) 

Pierce TM BCA protein assay kit (23225/23227, Thermo Scientific) was used to 

measure the total protein content for both green beans and soaking water. Liquid 

Chromatography-Mass Spectrometry (LC-MS) was used to measure the sucrose content 

for both green beans and soaking water. The LCMS analysis was performed following 

standard protocol described in Perrone et al, 2008. All results were analysed by Design-

Expert version 7.0.0 and Microsoft excel 2010 using samples as the fixed effect and a 

Tukey’s HSD post-hoc test. Principal Component Analysis (PCA) was performed by 

Excel XLSTAT Version 2015.5.01.23373. 

Results and discussion 

Water-soluble precursors  

In figure 1, protein content showed a significant decrease with increased soaking 

temperature (p < 0.05). Similarly, a significant decrease in the sucrose content was 

observed in soaked Robusta green beans at 20 ˚C for 12 h when compared with non-

soaked Robusta green beans. However, there were no significant differences between the 

soaked green beans at 20 ̊ C and 40 ̊ C for 12 h. Significant decrease in the sucrose content 

showed in the soaking temperature at 60 C˚, 80 C˚ and 100 C˚ for 12 h. A significant 

decrease in the sucrose content was observed with at 60, 80 and 100 ˚C soaking 

temperature for 12 h. 
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Figure 1: Sucrose and protein content in the non-soaked and soaked Robusta green beans at different soaking 

temperature at constant soaking time (12 h). The error bars are standard derivation.  

Figure 2 showed that the soaking time also play an important role on the sucrose and 

protein content. In summary, a significant impact of soaking temperature and time on the 

water soluble precursors from green coffee beans was observed, this can significantly 

impact the aroma profile of roasted coffee beans (p < 0.001). In addition, in-crease 

soaking temperature results in higher loss in protein (from 8.3% to 3.3%) and sucrose 

(from 3.1% to 1.6%) content (Figure 1) when compare with increase soaking time the 

protein loss from 7.04% to 3.3% and sucrose from 2.6% to 1.6% (Figure 2). 

 

Figure 2: Sucrose and protein content in the non-soaked and soaked Robusta green beans at constant soaking 

temperature 100˚C for different soaking time. The error bars are standard derivation 

Aroma  

A range of volatile compounds were observed with roasted Robusta coffee beans 

with different functional groups such as 2 organic acids, 1 alcohol, 2 aldehydes, 3 key-

tones, 2 furans, and 5 heterocyclic compounds (N containing). All aroma com-pounds 

showed a significant decrease in their content with increasing soaking time and 

temperature (p < 0.05). These volatile compounds are associated with sensory odour 

description such as malty, nutty, grassy, sour, burnt, and smoky [3]. 

Principal component analysis (PCA) was used to illustrate the variation between the 

15 aroma compounds across the 10 soaked Robusta samples (including different time and 

temperature) and 1 non-soaked Robusta sample (Figure 3). PCA results indicated that 

both soaking time and temperature have a significant effect on aroma generation during 

the coffee roasting. The first principal component (PC1) accounted for 75.51% of the 
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variance in the whole dataset and showed separation between the soaked Robusta (left) 

and non-soaked Robusta samples (right). The second principal component (PC2) 

accounted for 17.37% of the variance in the dataset and discriminated the difference 

between increasing soaking time (top) and soaking temperature (bottom). Sample soaked 

at 20 ˚C and 40 ˚C for 12 h, showed more closed to the furfural, acetic acid, 2-

methylfuran, 2, 3-butanedione, 2-furanmethanol and 2, 3-pentanedione content as 

compared to the samples soaked at a higher temperature (60 ˚C, 80 ˚C and 100 ˚C). Non-

soaked beans have a significantly higher concentration of all these volatile compounds (p 

< 0.001) as compared to soaked green beans. This change can be explained by the 

leaching of sucrose during soaking process at higher temperature as shown in Figure 1. 

Volatiles such as furfural, acetic acid, 2-methylfuran, 2, 3-butanedione, 2-furanmethanol 

and 2, 3-pentanedione have been reported as sugar degradation products [3]. Therefore, 

in conclusion the reduction sucrose content in the soaked green beans has significantly 

affected aroma formation during the roasting process. 

 

Figure 3: Principle component analysis (Bi-plot) of the volatiles compounds associated with soaked and non-

soaked Robusta coffee analysed by GC-MS.  
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Abstract 

Grapes are determinant for the quality of the final wine since they not only provide 

a specific profile of nutrients which strongly determines the production of secondary 

metabolites by yeast, but they provide precursors of key aroma components. Glycosidic 

precursors were the first category of aroma precursors discovered and for long it has been 

known that they constitute the main source of relevant wine aroma molecules such as 

linalool and β-damascenone, but also main sources of some potential off-flavours such as 

1,1,6-trimethyl-1,2-dihydronaphthalene (TDN). 

In spite of their known importance, their role in wine aroma formation is not 

completely understood due to the complexity of their genesis. Difficulties arise because 

many aglycones undergo different chemical rearrangements to produce the aroma 

molecule.  

In order to better understand the role of yeast and of aging two large fractions of 

precursors from highest quality Garnacha grapes were obtained by SPE, and used to 

prepare model musts. The musts have been fermented by different yeasts and resulting 

wines have been subjected to accelerated aging under strict anoxic conditions. Analytical 

controls have been included all throughout the process in order to ensure an efficient 

control of the mass balance. 

Results show that aromas formed from different grape varieties and in combination 

with different microorganisms lead to high aroma diversity. Besides, this study has 

allowed to differentiate the aroma formation influenced by enzymatic or hydrolytic 

activity, as well as their evolution during bottle aging, enlightening the principal 

formation mechanism and the fate of these aromas during the shelf-life of wines. 

Introduction 

Most wine grapes are aromatically neutral, nonetheless, they are important providers 

of aroma precursors that can be released during wine making and wine aging. Different 

families of odorants can be formed from precursors such as polyols by chemical 

rearrangements, glycosides by enzymatic or acidic hydrolysis, or cysteinyl derivatives by 

the action of yeast β-lyases. Glycosides are related with the genesis of important aroma 

volatiles, some of them are considered as varietal wine aroma compounds [1][2]. Since 

different strains of Saccharomyces contain different types and activities of glycosidases, 

some specific strains have been proposed as having abilities to enhance the varietal aroma 

of wines made of grapes from a single variety. Moreover, different genera of yeast can 

lead to very different fermentative outcomes due to their diverse genetic pool and that is 

why the usage of non-Saccharomyces yeast strains as enhancers of the organoleptic 

properties of wine is gaining more and more attention [3][4].  

The processes that lead to the release of aroma from non-floral grape precursors by 

yeast is not yet fully understood, since large amount of reactions and interconversions 
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take place during this stage of winemaking. Particularly, the bound fraction of grape 

glycosides can be source of several families of odorants, such as monoterpenes, volatile 

phenols, C13-norisoprenoids or vanillin derivates. These compounds are very important 

to establish the varietal character of wines and some can be very powerful odorants, even 

at small concentrations. While the release of some compounds can occur by direct 

enzymatic or acidic hydrolysis of the glycosylated bound between the glycone (sugar 

moieties) and the aglycone of volatile aroma compounds, others require more complex 

reactions or even chemical rearrangements. In addition, wine aging can also be 

determinant to the appearance of certain odours, positive or negative, which can further 

contribute to the development of the varietal character of wine [1][2]. 

The present research intends to further investigate the effects of yeast (S. cerevisiae 

and non-Saccharomyce) on the formation of aroma compounds derived from glycosidic 

precursors taking into account aging time. 

Experimental 

Glycosidic precursors fraction was extracted from 23 kg of Garnacha grapes from 

Spain. After grape crushing and addition of SO2 (5 mg/kg) and pectolitic enzymes 

(Lafazym, 127 mg/kg), cold maceration took place during 48 hours inside a closed 

recipient. Grapes were then pressed and the liquid obtained was sulfited (90 mg/L) and 

let to sediment at 4˚C for 24hours, after which the clean must was further filtered, divided 

into two 5L-batches and sulfited again (90 mg/L). Five grams of conditioned LiChrolut-

EN resins were added to each batch and kept under magnetic stirring for 48 hours at 10˚C. 

Resins were further recovered using paper filter, washed with water and re-packed into 

beds. Free aroma compounds were washed out with 45ml of DCM and the glycosidic 

fraction was eluted with 90ml of Ethyl acetate-methanol (95:5, v/v). The extracted must 

was further sulfited (50 mg/L) and re-extracted with a second 5g-batch of clean resins, 

which were similarly processed to obtain the glycosidic fraction which was collected with 

the previous one and evaporated to dryness under Nitrogen.  

A complex synthetic grape must with pH 3.5 containing oligoelements, vitamins, 

glucose, fructose, Tween, and amino acids imitating Garnacha grapes was prepared under 

aseptic conditions. Three-hundred and fifty mL volumes of synthetic must, containing or 

not glycosidic precursors were inoculated with non-Saccharomyces yeast strains at day 0 

and with S. cerevisiae after 4 days. Control samples fermented only with S. cerevisiae 

were also prepared. The strains used were Pichia kluyveri (Frootzen), Lachancea 

thermotolerans (Concerto), Torulaspora delbruekii (Prelude), all from Chr. Hansen. Air 

locks were used to seal the fermenters and fermentation was carried out at 21˚C.  

Once the fermentation was over, the wines were centrifuged, introduced into an 

anoxic chamber, aliquoted into three air tight tubes and further bagged in high density 

plastic bags containing oxygen scavengers. The tubes were subjected to anoxic 

accelerated aging at 50˚C for 1, 2 and 5 weeks.  

Resulting wine samples were characterized according to their general enological 

parameters; major volatiles were analysed by liquid-liquid microextraction followed by a 

GC-FID analysis [5], and minor volatiles were isolated by SPE and determined by GC-

MS [6]. 

Results and discussion 

The effects of the presence of glycosidic precursors on the aroma profile were 

assessed by comparing the odorant profiles (paired t-test) of corresponding ferments with 
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or without precursor fractions. Overall, the presence of glycosidic precursors caused 

significant increases in the levels of 28 compounds, 9 of which were above or close to the 

odour threshold. Eight out of the 28 compounds were in fact fermentative compounds, 

which suggest that the precursor fraction –in synthetic must- exert a general effect on the 

secondary metabolism of yeast. 

Table 1: Aroma compounds whose levels significantly increase in the presence of glycosidic precursors. 
Compounds marked with * are at levels above or close to the odour threshold. 

 Varietal odorants 

Monoterpenols Linalool, α-Terpineol, Geraniol* 

Norisoprenoids β-Damascenone* 

Volatile Phenols 4-Vinylphenol, E-Isoeugenol*, Eugenol, 4-

Vinylguaiacol*, Guaiacol*, 2,6-Dimethoxyphenol, 4-

Ethylguaiacol, 4-Allyl-2,6-dimethoxyphenol 

Lactones γ-Nonalactone, γ-Butyrolactone 

Vanillin derivates Methyl vanillate, Ethyl vanillate, Acetovanillone, 

Syringaldehyde, Vanillin 

Cinnamates Ethyl dihydrocinnamate* 

 Fermentative odorants 

Higher alcohols 1-Hexanol, Benzyl alcohol, Methionol* 

Ethyl esters Ethyl hexanoate*, Ethyl octanoate*, Ethyl decanoate* 

Acetate esters Butyl acetate 

Carbonyl compounds Acetoine 

In order to further investigate the role of the different strains of yeasts and the effects 

of accelerated wine aging on the formation of these aroma compounds a two-way 

ANOVA was carried out. As summarized in Figure 1 for the particular case of 4-

vinylguaiacol, the effects of the precursor fraction increased with aging time and were 

just slightly dependent on the strain of yeast which conducted the fermentation, in 

apparent disagreement with previous results [3][4].  

 

Figure 1: 4-Vinylguaiacol content in fermentations carried out by L. thermotolerans, P. kluyveri and T. 

delbruekii, sequentially inoculated with S. cerevisiae and S. cerevisiae, individually inoculated (yeast control) 
in control must and in musts spiked with glycosidic precursors fraction. Samples were analysed at the end of 

fermentation and after 1, 2 and 5 weeks of accelerated wine aging under strict anoxia conditions.  
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Two relevant exceptions to this general pattern of low yeast dependence were the 

cases of ethyl dihydrocinnamte and of geraniol, for which levels were significantly 

influenced by the strain of yeast. In the cases of ethyl dihydrocinnamate, T. delbruekii 

seems to be able to produce this compound at relatively large levels regardless of the 

presence of glycosidic precursors.  

By contrast, wines made with the other yeasts contained low levels of this important 

aroma compound, just slightly higher in samples fermented in the presence of glycosidic 

precursors.  

The case of geraniol was still more challenging. In wines obtained from L. 

thermotolerans and T. delbruekii, highest levels of this compound were observed by the 

end of fermentation in those samples containing glycosidic precursors. Levels of this 

unstable compound later decreased throughout aging. Contrarily, wines fermented with 

P. kluyveri and S. cerevisiae did not contain any geraniol by the end of fermentation, but 

its levels later increased during aging, regardless of the presence of precursors. Again, 

this suggests that both yeasts are able to form de novo a precursor of this odorant. 

In conclusion, while this research confirms that the glycosidic aroma precursor 

fraction has an important effect on the levels of many wine aroma components, it also 

revealed that the effects of the yeast carrying out the first step of fermentation on the 

levels of most aromatic aglycones were surprisingly low. In contrast, some yeasts showed 

a specific activity to form de novo aroma molecules or aroma precursors. All this suggests 

that the different role played by yeast are more related to their specific secondary 

metabolism and not to their differential glycosidase activities.  
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Abstract 

A preliminary sensory study conducted on a set of 187 dark chocolates varying in 

terms of cocoa origin and variety allowed their classification into four distinct sensory 

categories. Fingerprints in volatile organic compounds (VOCs) of these chocolates were 

obtained by a direct-injection mass spectrometry headspace method using Proton Transfer 

Reaction Mass Spectrometry (PTR-MS). This chemical analysis allowed discriminating 

the four sensory poles, so the sensory discrimination seemed to be mainly based on 

volatile compounds. Then, the key odorants responsible for chocolates differentiation 

were determined through identification of targeted aroma compounds by GC-MS after 

GC-O analyses of extracts representative of each subset of chocolates. Twelve dark 

chocolates were studied using the detection frequency method. The odour events 

generated by a panel of 12 assessors were grouped into 124 odorant areas (OAs). 

Correspondence analyses allowed distinguishing the samples while identifying 34 OAs 

that appear relevant to discriminate the chocolates sensory poles. Among these 

characteristic OAs, five were identified unambiguously with GC-MS and the remaining 

need to be resolved from numerous coeluted peaks. 

Introduction 

Dark chocolates develop several organoleptic characteristics depending on cocoa 

origin, cocoa variety and fabrication process. These parameters influence the chemical 

composition of the chocolates, and particularly their qualitative and quantitative content 

in volatile organic compounds (VOCs) responsible for their aroma [1]. A set of 187 dark 

chocolates varying in terms of cocoa origin and variety, obtained with exactly the same 

fabrication process, was submitted to sensory evaluation based on 36 descriptors (32 

aromas and 4 tastes). Four distinct sensory poles (SPs) were subsequently clearly 

established. As their sensory differentiation was essentially based on aroma descriptors, 

we hypothesized that the sensory classification of the chocolates should be mainly based 

on their composition in VOCs. VOCs investigation can be carried out by headspace 

analysis using direct-injection mass spectrometry such as Proton-Transfer Reaction Mass 

Spectrometry (PTR-MS), an untargeted approach that leads to aroma profiles 

(fingerprints). Identification of targeted aroma compounds is possible using gas 

chromatography combined with olfactometry (GC-O) and GC-MS. GC-O has been 

commonly used to investigate key aroma compounds in several products, including cocoa 

and chocolate [2-4]. The aim of this study was to identify key aroma compounds of the 

four sensory poles. To achieve this goal, we first checked that the sensorial differentiation 
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was mainly based on VOCs composition by studying the chemical fingerprints of the 187 

chocolates. Then we identified the key odorants responsible for chocolates differentiation 

by GC-MS analyses of targeted aroma compounds selected after GC-O analyses of 

extracts representative of each subset of chocolates. 

Experimental 

Samples  

Dark chocolates were provided by the Valrhona company. All the samples 

originating from different cocoa varieties and sources were produced using the same 

transformation process with the same mass of cocoa, sugar, soy lecithin and vanillin. 

Headspace analysis using PTR-ToF-MS  

Samples of chocolate (1 g) mixed with 1 mL of artificial saliva were transferred to 

20 mL vials that were maintained under stirring at 36.2°C for 2 hours equilibration time. 

Headspace measurements of 187 samples were performed in triplicates using a Proton 

Transfer Reaction - Time of Flight - Mass Spectrometry (PTR-ToF-MS) instrument 

(PTR-ToF 8000, Ionicon Analytik GmbH, Innsbruck, Austria) with H3O+ as reagent ion. 

The instrument drift-tube was set to a pressure of 2.30 mbar, a temperature of 80°C and 

a voltage of 480 V, which resulted in E/N ratio (electric field strength to gas number 

density) of 111 Townsend (Td, 1 Td=10-17 V.cm2). Total inlet flux was adjusted to 65 

ml/min and the transfer line maintained at 110°C. To assure a constant flux into the PTR 

and avoid drift-tube depression, a flux of 100 ml/min of zero-air was used with a leak 

allowing the flux excess to escape. The designed experimental setup allowed analysing 

successively background air, the sample and the molecule used for mass calibration of 

the instrument (headspace of aqueous ethyl decanoate (Sigma-Aldrich)) just by twisting 

four three-way valves. A sample analysis lasted 5 minutes and was followed by cleaning 

the tubing by flushing the transfer line with zero-air until baseline recovery. This protocol 

allowed the analysis of successive samples every 10 min. The measurement order was 

randomized using a Latin square design to avoid possible systematic memory effects. The 

average areas under the curves obtained for the 2 min release of 314 significant ions 

present in the mass spectra were used to perform unsupervised (PCA) and supervised 

(PLS-DA) multivariate data analyses. 

Extraction of the volatiles of 12 samples 

30 g of chocolate were mixed with 100 mL ultra-pure water and 300 µl 2-

methylheptan-3-one (93 ng/µl in water) as internal standard. This mixture was vacuum 

distilled under stirring for 1h45 using a SAFE apparatus [5] in a thermostated bath at 

37°C. The aqueous distillate was extracted with dichloromethane (3 x 15ml). Finally, the 

extract was concentrated to 400µl with a Kuderna-Danish apparatus in a 70°C water bath. 

Identification of odorous compounds with GC-O and GC-MS 

Twelve assessors evaluated the extracts using detection frequency methodology. 

Samples were analysed using a 6890A gas chromatograph (Agilent Technologies, Massy, 

France) equipped with a flame ionization detector (FID) using a DB-FFAP column (30 

m x 0.32 mm x 0.5 µm; J&W Scientific, Folsom, CA, USA). The effluent was split into 

two equal parts to the FID and the sniffing port via Y-type seal glass and two deactivated 

capillaries. The assessors generated sensorial attributes at the same time they detected an 

odour events. These were grouped into olfactive areas (OAs) on the basis of the closeness 

of their linear retention indices (LRIs). A detection filter of 30% was set to finally retain 

124 significant OAs. A correspondence analysis (CA) was performed on the detection 
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frequencies of the discriminant OAs found in the 12 samples. Identification of the 

compounds responsible for OAs was done by gas chromatography-mass spectrometry 

(GC-MS) by injection on the same column as in the GC-O study. Reliability of 

compounds identification was assured by comparison of mass spectra to databases (NIST 

08 and an in-house database, INRAMass) and by comparison of LRIs to LRIs on DB-

FFAP cited in literature. 

Results and discussion 

A Principal Component Analysis (PCA) conducted on the PTR-MS data revealed 

partial separation of the four sensory poles (SPs) (data not shown). To go further a Partial 

Least Squares Discriminant Analysis (PLS-DA) was conducted on the 314 ions obtained 

in the PTR-MS study (X variables) to try to better distinguish the four sensory poles (Y 

variables) and identify the most explanatory ions used for the classification. PLS-DA 

revealed 7 significant latent variables with R2 = 0.847.  

Figure 1 displays the plane defined by the two first latent variables that carried out 

significant explained variance (28% for X and 26% for Y on the first factor and 9% for 

X and 20% for Y on the second). The robustness of the model was obtained using leave-

one-out cross validation. The groups formed by samples of each SPs were differentiated, 

especially those from the SP 1 and 2, found in the positive side of the first factor while 

SP4 were find on the opposite side. The groups formed by samples affected to the SP3 

and the SP4 are better distinguished on the plan defined by the factors 1 and 3. 

Explanatory ions could be inferred from the model and could be considered as molecular 

markers of SPs and could be used to predict to which SP an unknown sample belongs. 

This classification could be compared to the one obtained with the sensory data and 

globally revealed the same features (data not shown). 

 
Figure 1: PLS-DA with chemical data (factors 1 and 2) 187 samples distributed in 4 sensory poles (Y variables) 

/ 314 ions (X variables) (star: pole 1; box pole 2; dot: pole 3; open diamond: pole 4) 

The GC-O experiment revealed 124 OAs after application of a 30 % threshold on 

the detection frequencies. Among them, 34 showed significant detection frequencies 

differences between samples and were included in a correspondence analysis in the aim 

to discriminate the samples and associate corresponding OAs. The samples were clearly 
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discriminated along factor 1 of the CA (Figure 2) and characteristic OAs were found for 

each SP. Factor 3 discriminated samples belonging to the poles 1 and 2 (data not shown). 

Furthermore 90 OAs exhibited no real changes in detection between samples and 

therefore may represent the background of the overall chocolate aroma. Only five OAs 

have been positively identified so far by comparing their experimental data to the 

literature data (retention indices, mass spectra and aroma descriptors). 
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Figure 2: Correspondence analysis (factors 1 and 2): detection frequencies of 34 OAs (grey dots) within 12 

samples (black diamonds). The different numbers (1, 2, 3 and 4) indicate the sensory poles. 

To conclude, the “chemical map” obtained in the PTR-MS analyses of the chocolates 

headspace allowed retrieving the classification of the 187 samples into the four sensory 

categories previously determined. Thus, it could be deduced that the composition of 

chocolates in VOCs explained in a large part the sensory classification. Using GC-

Olfactometry, discriminant OAs for each pole were identified thanks to a correspondence 

analysis. Some discriminant OAs have been positively identified using GC-MS. The 

remaining unidentified OAs required additional analyses for their identification (a 

different GC column, chemical ionization, 2DGC-MS-O…). 
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Abstract 

Salt reduction in food is becoming a major concern for public authorities since a high 

sodium diet is associated with an increased risk of hypertension and obesity [1,2,3,4]. As 

convenience products and ready-to-eat meals are one of the main sources of dietary 

sodium, the food industry is encouraged to produce low-sodium formulations. However, 

salt is a well-known flavour enhancer and its reduction could modify the release of 

volatile compounds, thereby affecting flavour perception. In this study, a salt reduction 

of 40% in a meal composed of chicken, pasta and cheese sauce significantly impacts its 

flavour perception evaluated in sensory analysis compared to the reference meal with no 

salt reduction. The decrease of flavour intensity could be related to the decreased amount 

of terpenes as these compounds are known to be highly odour-active. 

Introduction 

Sodium chloride, usually referred to as salt, provides about 90% of people’s dietary 

sodium intake [1]. The World Health Organization recommends a maximum salt intake 

of 5 g/day for adults. However, in the industrial countries, the mean sodium intake is 

generally higher [2]. Dietary sodium intake mainly originates from processed foods (75-

80%), from non-processed foods (5-10%), and from the salt added during the preparation 

of meals or at the table (10-15%) [1]. A salt consumption higher than the physiological 

needs is known to increase blood pressure, leading to the development of 

noncommunicable diseases, such as hypertension, cardiovascular diseases or coronary 

heart disease [1,2,4]. Lowering the salt intake of individuals is one of the main challenges 

for authorities to prevent health diseases [5]. 

During industrial food processing, salt is largely used as a flavour enhancer. A 

reduction of its amount in foods may modify their organoleptic properties, especially 

taste. However, taste has been pointed out to be one of the main drivers of liking, which 

motivates consumers to purchase a product [6]. Considering the pressure of the public 

authorities on the food industry to reduce salt in their products, the main challenge is to 

formulate food with lower sodium content while maintaining satisfying organoleptic 

qualities [6]. Processed foods are particularly rich sources of sodium. In Europe, the main 

sources of sodium are bread and cereal products, delicatessen, sauces and condiment, 

ready-to-eat meals, cheese, soups, pasta dishes and pizzas [1,3,7]. The consumption of 

convenience foods and ready-made meals is steadily increasing, as is the development of 

obesity and other diseases related to high sodium intake. This phenomenon is related to 

our modern life style which involves less time spent for meal cooking [8]. 

Many solutions have been tested to reformulate foods with lower sodium content 

while maintaining an acceptable organoleptic quality. Each solution must be adapted to 

the type of food, as salt may also have a technological role, especially for microbial safety 

[1,9]. For ready-to-eat meals, the solutions tested involve direct salt reduction, use of 

substitutes such as potassium chloride and flavour enhancers such as yeast extract and 
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addition of natural flavour enhancers such as aromatic herbs [1,10]. In fact, the study of 

odour-taste interactions could compensate salt reduction with the use of aromas congruent 

with salt perception [10,11]. 

Many studies were conducted to test solutions to compensate salt reduction and 

check their acceptability by consumers, however only a few were performed to 

characterize the impact of salt reduction on the flavour of food, especially ready-meals, 

with both instrumental and sensorial methods. As salt is a well-known flavour enhancer, 

a reduction of its amount could modify the release of the volatile compounds and thus 

flavour perception. In this study, a ready-to-eat meal composed of chicken with pasta and 

cheese sauce with various levels of salt content was chosen to study the impact of salt 

reduction on sensory perception as well as on volatile compounds release. The aim was 

to characterize the modifications in the aroma profile due to salt reduction of ready-to-eat 

meals by means of a descriptive profile to determine the effect of salt reduction on the 

sensory properties, and, secondly, to identify if modifications in the volatile compounds 

can be observed due to salt reduction. 

Experimental 

Materials 

Ready-to-eat meals were produced containing pasta (38%), chicken (24%) and 

cheese sauce (38%). Various salt levels were tested: 100% salt (0.80g salt/100g food), 

80% salt (0.64g salt/100g food), 70% salt (0.56g salt/100g food) and 60% salt (0.48g 

food/100g food). 

Sensory analysis 

A panel consisting of 21 trained assessors (23-55 years) was recruited. Sensory 

analysis took place in a sensory analysis room equipped with sensory booths. The 4 

samples were conditioned in isotherm boxes and delivered at 63°C to the panellists. The 

samples were presented in a randomized order and identified with a three-digit code. A 

ranking test on 11 attributes was performed. The attributes were chosen to describe odour 

(O), texture (T) and flavour (F). A Friedman test (α=5%) was applied on these results. 

Chromatographic analysis 

Volatile compounds were extracted using HS-SPME (Headspace Solid Phase Micro 

Extraction). The fibre used was 1cm Car/PDMS 85µm. Samples were weighed (5 g) in a 

20mL vial. The equilibrium phase lasts 15min at 49°C. The extraction phase lasts 50min 

at 49°C. After extraction, the volatile compounds were injected in the GC-MS (column 

DB-WAX). Injector was maintained at 260°C. The program temperature ranged from 

40°C (5min) to 230°C (10min) at 5°C/min. Identification of the volatile compounds was 

performed with comparison of the Kovats linear retention indices (LRI) with the 

literature, comparison of the mass spectra with a database and standard injection. Relative 

areas were used for semi-quantification. Comparison of the amount of each volatile 

compounds in each sample was performed with one-way analysis of variance (α=5%) 

followed by Least Significant Difference test. 

Results and discussion 

Sensory properties of pasta/chicken/cheese sauce meal  

A sensory characterization of the 4 samples of pasta/chicken/cheese sauce meals was 

performed (figure 1).  
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Figure 1: Sum of ranks computed for each sample and each attribute. Significant differences between samples 

are indicated by an asterisk (α=5%). Different letters mean significant differences.  

Differences between the samples were mainly observed for the flavour in mouth. 

The control 100% salt was always perceived more aromatic than the salt-reduced samples. 

As expected, the salty taste obtained significant different scores between samples. 

Moreover, the 3 others flavour attributes (F_Pepper, F_Chicken, F_Tasty) were also 

impacted by salt reduction, emphasizing its role on flavour release. However, no 

differences were perceived for texture and odour, except for the odour of béchamel. Such 

interactions between taste and aroma may be explained by physico-chemical, 

physiological and psychological interrelationships [12]. 

A characterization of the aroma volatile compounds was performed to explain the 

results observed in sensory analysis. Chromatographic analysis revealed that the samples 

had the same total number of volatile compounds (82) varying only in quantity. Volatile 

compounds belong to various chemical classes. The most significant differences between 

samples occurred with respect to terpenes, with a decrease of their concentration 

associated with the salt reduction (Table 1). 

Table 1: Sample means of the quantity of terpenes identified in the 4 ready meals with various salt content 

(expressed in area x105/g of product). Superscripts refer to results from post-hoc LSD tests associated with each 

volatile com-pound (α=5%). When identical, means are not significantly different. 

Volatile compounds LRI 100% salt 80% salt 70% salt 60% salt 

α-pinene 1026 5,3 (7)a 5,3 (7)a 4,5 (3)b 4,4 (5)b 

β-pinene 1111 6,5 (9)a 4,7 (10)b 5,0 (4)b 5,2 (8)b 

Sabinene 1125 5,2 (7)a 3,1 (10)ab 3,4 (4)b 2,9 (9)c 

δ-3-carene 1154 5,8 (6)a 4,6 (13)b 4,7 (8)b 4,9 (3)b 

β-myrcene +  

l-phellandrene 
1171 10,3 (3)a 9,5 (9)ab 8,7 (2)b 9,2 (7)b 

α-terpinene 1186 7,0 (8)a 5,9 (11)b 5,4 (4)b 5,8 (4)b 

d-limonene 1205 30,1 (3)a 23,5 (8)c 26,8 (7)b 28,9 (4)ab 

β-phellandrene 1209 8,4 (11)a 6,1 (10)b 5,9 (5)b 5,3 (5)b 

γ-terpinene 1238 12,4 (5)a 10,4 (10)b 9,6 (3)b 10,8 (4)b 

p-cymene 1268 13,2 (10)a 10,4 (9)b 9,8 (7)b 10,6 (5)b 

α-terpinolene 1279 4,5 (5)a 4,1 (12)ab 3,8 (4)b 3,1 (6)c 

4-terpineol 1601 17,5 (3)a 16,1 (4)b 16,0 (2)b 16,4 (5)ab 
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The presence of terpenes, known as highly odour-active compounds originating from 

natural products, may be explained by the use of pepper and nutmeg in the sauce. Among 

the 15 volatile compounds with significant higher concentration in the 100% salt sample 

12 are terpenes. Indeed, the impact of salt on the release of the volatile compounds, known 

as the “salting out” effect, is particularly noticeable for terpenes. This latter aspect may 

explain the increase of the intensity of the flavour attributes F_Pepper and F_Tasty 

perceived by assessors in the sensory analysis for 100% salt sample. Similar results were 

obtained with tomato soups rich in vegetables [6]. Our results show that terpenes are 

particularly sensitive to salt reduction even when natural products are present in very 

small quantity in a complex matrix, and these modifications are perceived by consumers.  

To improve the nutritional properties of processed foods, salt reduction is strongly 

advised. However, such a salt reduction might impair the organoleptic quality of food, 

resulting in a loss of aroma. With regard to cheese sauce-topped chicken and pasta dishes 

produced within this study, sensory analysis indicated that a salt reduction beyond 20% 

is perceived by assessors. A characterisation of the volatile compounds revealed that the 

aroma loss is mainly due to the decrease of the amount of terpenes which was associated 

with salt reduction (r²=82% without d-limonene). These compounds, generated by plants, 

are highly odour-active, and play a significant role in the global aroma of the dish. The 

complementary use of sensory and instrumental analyses allows us to identify those 

volatile compounds responsible for aroma loss and permits to consider solutions to 

compensate it. Indeed, the increase of pepper or nutmeg in the recipe may be an efficient 

solution to increase the content of terpenes, as well as the use of other herbs and spices 

or salt-associated flavours [11]. Further sensory analysis performed on the various 

formulations tested may be necessary to determine the most efficient solution to 

compensate salt reduction and to produce dishes with satisfying organoleptic qualities. 
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Abstract  

The old apple variety ‘Ilzer Rose’, coming from the region near the village Ilz 

(Austria), is an old variety that has been described since approximately 1900. The rather 

small, intense-red apples with white flesh have a very pleasant, intense fruity and rose-

like flavour. The aim of this study was to characterize the flavour of the old apple variety 

‘Ilzer Rose’ but also to identify differences in distribution of volatiles between the skin 

and the flesh of the apples. The use of comprehensive GC x GC-MS resulted in the 

detection of more than 600 volatile compounds and offers a completely new picture of 

the apple volatilome.  

Introduction 

Styria is Austrian’s apple cultivation hot spot. About 80% of the annual yield 

(corresponding to about 130.000 tons) is harvested in this region. The majority of apples 

– mainly new apple varieties as Golden Delicious, Gala or Idared – are cultivated in 

plantations. However, about 25% of the apples are grown in so-called meadow orchards. 

The traditional meadow orchards have been part of a specific type of landscape for 

hundreds of years and have hosted an enormous number of old apple varieties since then. 

Even though these varieties have been cultivated in this region for many decades, their 

flavour properties have not been characterised so far. Most varieties lack a molecular 

characterisation of flavour compounds.  

In general, the flavour of apples is composed by several hundred different volatile 

compounds such as alcohols, aldehydes, esters, etc. The composition of the apple volatiles 

depends on variety, climate, maturity/ripening level and storage conditions [1]. Primary 

flavour compounds are formed via the enzymatic and biological processes in the intact 

fruit during growth, maturation and ripening, whereas secondary flavour compounds 

develop as results of tissue disruption. Apple flavour compounds are produced by several 

biosynthetic pathways, such as the β-oxidation of fatty acids, which is the primary 

biosynthetic pathway for ester formation. After cell disruption, the lipoxygenase (LOX) 

pathway is active and is mainly responsible for the formation of straight chain C6 and C9 

aldehydes whereas amino acid degradation reactions lead for example to methyl branched 

aldehydes and alcohols. It is generally assumed that terpene biosynthesis plays a minor 

role for apple flavour. However, terpenes are formed via the mevalonic (MVA) pathway 

or the 2-C-methyl-ᴅ-erythriol-4-phosphate (MEP) pathway. In general, compounds such 

as (E)-2-hexenal, hexanal, ethyl-2-methylbutanoate, ethyl butanoate and propyl butanoate 

are regarded to play a significant role for the apple flavour. 

The formation of flavour compounds depends on the presence of precursor 

compounds and enzyme activities of the fruits, for processed fruits also on the conditions 

used during fruit processing. In this study we aimed to investigate primary flavour 

compounds in different parts of ‘Ilzer Rose’ apples. To reach this aim we applied 1-

dimensional GC-MS as well as comprehensive GC x GC-MS for the identification of 
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‘Ilzer Rose’ volatiles after enrichment by Headspace Solid Phase Microextraction (HS-

SPME). The enormous capacity regarding separation as well as sensitivity of 

comprehensive GC x GC-MS allows deep insight into the flavour composition of this old 

apple variety. In addition, sensory methods were used to characterize the overall flavour 

properties. 

Experimental 

Apple samples 

Apples were harvested in 2016 from traditionally grown trees from meadow 

orchards in Styria. Apple skin was carefully separated from the flesh. To inactivate apple 

enzymes as far as possible, apple flesh and skin were prepared separately according to 

Aprea et al [2] prior to GC analysis. 

Gas chromatographic analysis 

Aliquots of the homogenised samples (250 mg each for 1-dim GC-MS and 50 mg 

for comprehensive GC x GC-MS) were transferred into headspace vials, 2-octanol was 

used as internal standard (50 ng absolute). Four replicates of each sample were prepared 

and analysed. After enrichment of the volatiles by HS-SPME  (30°C, 20 min, 50/30 µm 

DVB/CAR/PDMS fibre, 2 cm stable flex fibre)  analyses were performed with 1-

dimensional GC-MS (Agilent GC 7890, MS 5975c VL MSD, Santa Clara, CA, USA; 

HP5 30 m*0.25 mm*1 µm, EI (70eV)) and comprehensive GC x GC-MS (Shimadzu GC-

2010 Plus coupled with Shimadzu GCMS-QP2010 Ultra, , Shimadzu Europa Gmbh; 1st 

dim.: ZB-5MS 30 m *0.25 mm*0.25 µm and 2nd dim.: BPX50 2.5 m *0.15 mm*0.15 µm, 

Zoex cryo modulator, 5s modulation frequency, Hot Jet 280°C, 350 msec pulse time; EI 

(70 eV)). Identification of the compounds was based on the comparison of the obtained 

mass spectra to those from MS libraries or authentic reference compounds as well as on 

retention indices (RI). Linear-temperature programmed RI were calculated using n-

alkanes (C5-C26) and compared to data from authentic reference compounds and data from 

literature. For comprehensive GC x GC-MS retention indices were calculated for the 1st 

dimension. 

Sensory evaluation 

For sensory evaluation, the fruits were cut into cylinders and treated with an 

antioxidant solution according to Corollaro et al. [3] to avoid (i) browning of the apple 

pieces and (ii) excessive formation of secondary flavour compounds. Sensory evaluation 

was performed by 14 well-trained panellists under standardised conditions using 

quantitative descriptive analysis (QDA®). All panellists had vast experience in evaluating 

fruits and had undergone apple-specific training prior to this study. Data acquisition was 

performed by the use of Compusense Sensory Software (Compusense Inc., Guelph, 

Canada). 

Results and discussion 

It was the aim of this study to characterize the flavour of the old apple variety ‘Ilzer 

Rose’, but also to investigate the distribution of the volatile compounds between the skin 

and the flesh of the apples.  

Sensory evaluation was performed from standardised ‘Ilzer Rose’ apple pieces after 

inactivation of apple enzymes at the sample surface. Nine different odour/flavour 

attributes were chosen by the panel to describe the sensory characteristics of ‘Ilzer Rose’. 
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Results from QDA® demonstrate the pronounced rose-like/floral and fruity properties of 

‘Ilzer Rose’ apples (Figure 1). 

 
Figure 1: Results from QDA® of ‘Ilzer Rose’ after inactivation of fruit enzymes at the sample surface  

A total of 82 volatile compounds was identified from the skin of the ‘Ilzer Rose’ by 

1-dimensional GC-MS, in contrast to only 55 volatiles in the flesh alone. Significantly 

higher concentrations of most volatile compounds were found in the skin than in the flesh 

of the Ilzer Rose apples. Table 1 gives a comparison of the relative concentrations of 

selected volatiles in the skin and the flesh, respectively. Interestingly, not only the 

carotinoid cleavage product 6-methyl-5-hepten-2-one and the sesquiterpene α-farnesene 

– that had already been described in apple coating decades ago [5] – are significantly 

higher in concentration in the skin, but also esters like hexyl butanoate, hexyl 2-methyl 

butanoate and hexyl hexanoate (Table 1). 

Table 1: Selected volatile compounds semi-quantified in the headspace of the apple skin and flesh samples by 
1-dim GC-MS. Concentrations are expressed as relative concentrations to the internal standard 2-octanol   

Compound RI (HP5) exp RI (HP5) lit Skin (mg kg-1) Flesh (µg kg-1) 

6-Methyl-5-hepten-2-one 986 987a 1.6 n.d. 

Hexyl acetate 1008 1014b 6.6 7 

Hexyl butanoate 1188 1193a 3.5 3 

Hexyl-2-methyl butanoate 1236 1236c 2.5 3 

Hexylhexanoate 1384 1386c 5.0 n.d. 

α-Farnesene 1516 1508d 24.6 25 

a RI obtained from authentic reference compounds and collected in the SKAF Flavor database for Food Research Institute, 

Slovakia, © 2001−2002 
b RI obtained from www.flavornet.org    
c RI obtained from http://webbook.nist.gov/ 
d RI obtained from literature [4] 

Chromatograms obtained from comprehensive GC x GC-MS analysis clearly 

demonstrate the differences between flesh and skin (Figure 2). More than 600 volatile 

compounds were (tentatively) identified in ‘Ilzer Rose’ apples, many of them seen in the 

apples for the first time. These results are in accordance with recently published data on 

the volatilome of strawberries – nearly 600 volatiles were described from strawberries 

after analysis by comprehensive GC x GC-MS [6]. The identified compounds include 
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well-known apple volatiles like esters, alcohols, aldehydes and ketones, but also a large 

number of mono- and sesquiterpenes. The presence of high numbers of terpenes 

predominantly in the skin of ‘Ilzer Rose’ is of special interest as, so far, terpenes have not 

been regarded to be important contributors to apple flavour. However, they might be the 

reason for the expressed floral/rose-like notes that are known from ‘Ilzer Rose’ apples.  

 

 

Figure 2: Chromatograms obtained from comprehensive GC x GC-MS; analysis of the (a) flesh and (b) skin of 

Ilzer Rose apple. Retention times in the first (x-axis) are given in minutes, retention times in the second 

dimension (y-axis) are given in seconds. (1) 6-methyl-5-hepten-2-one, (2) hexyl acetate, (3) hexyl butanoate, 
(4) hexyl-2-methylbutantoate, (5) hexyl hexanoate, (6) α-farnesene, (7) cis-β-farnesenet, (8) cis-thujopsenet, (9) 

β-longipinenet, (10) β-vatirenenet, (11) cis- α-santalolt; t tentatively identified by probability-based matching of 

the obtained mass spectra with the mass spectra from the NIST library 

The results obtained from this study demonstrate that the use of comprehensive GC 

x GC-MS offers a completely new insight into the apple volatilome. The preliminary 

results from this study serve as a basis for future investigations of volatiles in different 

parts of apples in general and of the floral, rose-like odour of ‘Ilzer Rose’ in particular.  
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Abstract  

The juice of black chokeberries (Aronia melanocarpa) was in the focus of this 

investigation. Whereas there are several studies available about the health beneficial 

effects of aronia products, which are mainly based on the extraordinary high polyphenol 

concentrations, little is known about the flavour properties of aronia products. The 

volatile compounds of aronia juices were investigated by one- and two-dimensional gas 

chromatographic methods. In addition, gas chromatography-olfactometry as well as 

sensory evaluation was applied to explore the sensory properties of compounds and 

juices, respectively. The results show an interesting composition of the flavour 

compounds that is dominated by alcohols, aldehydes, free fatty acids, terpenes, 

norisoprenoids and cinnamic acid metabolites. Most striking is the lack of fruit esters in 

aronia juices when compared with volatiles from other fruit and berry juices, leading to 

very weak fruity notes in the aronia products. These results serve as a basis for future 

investigations on the technological impact on flavour formation during the production of 

aronia juices. 

Introduction 

The black chokeberry (Aronia melanocarpa) is a shrub that has traditionally been 

cultivated in Eastern European countries as well as in North America where it has also 

been used as domestic remedy. Recently, the black chokeberry has been included into the 

group of ‘superfoods’ which made this berry type popular. In Southern Austrian regions, 

the crop area for the cultivation of aronia has increased drastically within the last few 

years with the aim to produce a domestic superfood. Its superfood status is mainly based 

on the very high antioxidative capacities due to exceptionally high concentrations of 

polyphenols (i.e. anthocyanins and proanthocyanins, flavonols as well as phenolic acids) 

[1]. Furthermore, the black chokeberry is rich in minerals and trace elements as well as 

some vitamins [2]. Several studies proved the health benefits of aronia showing positive 

impact on blood pressure values, cholesterol- and trigylceride concentrations, anti-

inflammatory effects, anti-tumor activity as well as the exhibition of immunomodulatory 

activity in breast cancer patients [2, 3]. 

Due to the high concentrations of anthocyanins, and as a consequence the 

extraordinary colour intensity, aronia products (e.g. extracts, concentrates or dried 

products) have been of interest for food industry as a natural food colourant. Only 

recently, the consumption of aronia products as health promoting food has become 

popular. Austrian farmers founded a consortium named ‘Aronia Austria’ to promote NFC 

(not from concentrate) aronia juice as a domestic superfood. However, in contrast to other 

juices and nectars from domestic fruits, the flavour characteristics of high quality aronia 

juice are not well described. As a consequence, we investigated aronia juice produced 

from Austrian aronia berries with emphasis on volatile compounds and sensory 

properties.  



 

 

Susanne Robert et al. 140 

Experimental 

Material 

Aronia juices were prepared from Styrian aronia berries (variety Nero) from the 

harvest 2015 by a small local fruit processing company. All investigated juices were NFC 

juices. The juices were prepared after enzymatic treatment and were pressed using a belt 

press. All juices were stored in glass bottles in the dark at 5°C until further use. Only 

juices that were awarded with at least 18 out of 20 points at a local juice tasting 

competition prior to this study were included in these investigations. 

Sensory evaluation 

Sensory evaluation of the juices was performed by an expert panel (14 well-trained 

panellists) under standardised conditions. All panellists had vast sensory experience with 

fruit products and achieved specific training on aronia products prior to this study. 

Descriptive analyses to select appropriate attributes for the products as well as 

quantitative descriptive analyses (QDA®) were applied. Sensory data were recorded using 

Compusense sensory software (Compusense Inc., Guelph, Canada). 

Analysis of the volatile compounds 

Enrichment of the volatile compounds was performed by headspace solid phase 

microextraction (HS-SPME; 60°C, 20 min, 50/30 µm DVB/CAR/PDMS fibre, 2 cm 

stable flex fibre) for all types of GC-analyses. 200 µL of aronia juice with the addition of 

50 mg NaCl were transferred into 20 mL headspace vials. 2-Octanol (100 ng absolute) 

was added as internal standard. Four replicates of each sample were prepared and 

analysed. 1-dimensional GC-MS analysis was performed on Agilent GC 7890, MS 5975c 

VL MSD, Santa Clara, CA, USA; HP5 30 m*0.25 mm*1 µm, EI (70eV), scan range 35-

350 amu. Comprehensive GC x GC-MS was carried out on Shimadzu GC-2010 Plus 

coupled with Shimadzu GCMS-QP2010 Ultra, Shimadzu Europa GmbH; 1st dim.: ZB-

5MS 30 m *0.25 mm*0.25 µm and 2nd dim.: BPX50 2.5 m *0.15 mm*0.15 µm, Zoex 

cryo modulator, 5s modulation frequency, Hot Jet 280°C, 350 msec pulse time; EI (70 

eV). Identification of the compounds was based on the comparison of the obtained mass 

spectra to those from MS libraries or authentic reference compounds as well as on 

retention indices (RI). Linear-temperature programmed RI were calculated using n-

alkanes (C5-C26) and compared to data from authentic reference compounds and data from 

literature. For comprehensive GC x GC-MS, RI were calculated for the 1st dimension.  

For GC olfactometry, 1 mL of aronia juice with the addition of 500 mg NaCl was 

used. GCO/GC-FID analysis was performed on a non-polar column (Hewlett Packard 

5890 series II equipped with an FID and a Gerstel Olfactory Detection Port; Split ratio 

FID:ODP 1:1; analytical column DB5, 30 m*0,32 mm*0.25 µm; splitless injection). 

Detection frequency (DF) with the use of 5 trained panellists was performed to determine 

the odour active compounds with the potentially highest sensory impact. Each GCO run 

was performed in duplicate resulting in a total of 10 GCO runs for DF analysis. 

Identification of the odour active compounds was performed by the determination of 

linear temperature programmed RI and the odour descriptors given for the odour 

impressions from authentic reference compounds or literature.  

Statistical evaluation of the results 

Principal component analysis (PCA) using a Pearson correlation matrix was 

performed to correlate concentrations of volatile compounds from 15 different aronia 
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juices with results from QDA®. PCA was performed with XLSTAT Sensory by Addinsoft 

(France). 

Results and discussion 

Due to its pronounced antioxidative properties, the consumption of aronia juice has 

gained increasing popularity on the (local) market. However, little is known about the 

sensory properties and the composition of flavour compounds of aronia juice. In this 

study, we therefore aimed for a basic characterisation of aronia juice volatiles. 

In comparison to other juices, aronia juice is somehow different as the products do 

not show dominant fruitiness. Depending on the juice, adstringency and bitterness on the 

one hand, and woody, balsamic, green and sweaty notes on the other hand significantly 

influence aronia juice flavour. Figure 1 shows a typical chromatogram (comprehensive 

GC x GC-MS) of a high quality aronia juice. Several hundred volatile compounds could 

be detected, 50 thereof were identified. These results show that the volatiles count to the 

chemical classes of alcohols, aldehydes and ketones, (methyl-branched) short-chain fatty 

acids, terpenoid compounds and norisoprenoids. In addition, several aromatic compounds 

as polyphenol degradation products (formed most likely via the shikimic acid pathway 

and degradation of cinnamic acid, respectively) were identified. The enormous 

concentrations of 5,6-dihydro-2H-pyran-2-one (up to 1.250 µg/L) have to be pointed out. 

However, with an odour threshold of higher than 100 mg/L (in water), this compound is 

not considered to be of relevance for aronia juice flavour. Noticeable is the lack of the 

typical fruit esters which is most likely the reason for the lack of the fruity notes in the 

juice. Ethyl-2 (3)-methyl butanoate was identified in the GCO experiment as the only 

pronounced fruity odour with medium impact and is thus supposed to be responsible for 

the moderate fruity attributes of the products. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Chromatogram from comprehensive GC x GC-MS of a selected aronia juice (divided into 2 parts); 
retentions times in x-axis are given in minutes and in y-axis in seconds; 1: (E)-3-penten-2-one, 2: 2,3-butandiol, 

3: acetylacetone, 4: (Z)-2-penten-1-ol, 5: 2-methylpropanoic acid, 6: hexanal, 7: 4-hydroxy-2-pentanone, 8: 

furfural, 9: 2-methylbutanoic acid, 10: 3-methylbutanoic acid, 11: (E)-2-hexenal, 12: (Z)-3-hexen-1-ol, 13: (E)-

2-hexen-1-ol, 14: γ-butyrolactone, 15: 1-hexanol, 16: heptanal, 17: benzaldehyde, 18: 1-heptanol, 19: 6-methyl-

5-hepten-2-one, 20: 1-octen-3-ol, 21: hexanoic acid, 22: β-myrcene, 23: (E)-3-hexenoic acid, 24: 2-hexenoic 

acid, 25: sorbic acid, 26: hexyl-2-methyl-2-propenoate, 27: benzyl alcohol, 28: limonene, 29: 5,6-dihydro-2H-
pyran-2-one, 30: β-ocimene, 31: γ-terpinene, 32: cis-linalool oxide (furanoid), 33: heptanoic acid, 34: guaiacol, 

35: trans-linalool oxide (furanoid), 36: nonanal, 37: linalool, 38: 2-phenylethanol, 39: 1-phenyl-1,2-

propanedione, 40: benzoic acid, 41: ethyl benzoate, 42: octanoic acid, 43: terpinen-4-ol, 44: α-terpineol, 45: 
decanal, 46: 3-phenylpropanol, 47: 4-ethylguaiacol, 48: 2,3,6-trimethylphenol, 49: acetovanillone, 50: β-

damascenone 
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Figure 2 shows the results from PCA of 20 aronia volatiles of 15 investigated aronia 

juices. The selection of the compounds was based on the results from GCO. Products that 

can be found in quadrants I and IV are described to possess well-balanced odour with 

slight fruity notes. Unfortunately, the concentrations of ethyl-2(3)-methyl butanoate were 

too low for quantification and could, thus, not be included in the PCA. Interestingly, 

volatiles like benzaldehyde, benzyl alcohol or 2-phenylethanol or ethylbenzoate are 

important for these products and obviously contribute positively to the overall flavour 

with their balsamic, woody, slighty floral attributes. These volatile also showed high 

impact in the GCO experiments. Juices with high concentrations of hexanal, (Z)-3-hexen-

1-ol and hexanoic acid (quadrant II) were perceived as mainly imbalanced and dominated 

by green notes, lacking any fruity and berry like odour.  

 
Figure 2: PCA based on the relative concentrations to the internal standard of 20 volatile compounds [µg/L] 

for 15 investigated aronia juices; four digit numbers are sample codes.  

The results of this study demonstrate that the flavour of black chokeberry (Aronia 

melanocarpa) juice differs significantly from the juices of other fruits and berries, mainly 

due to the lack of esters with fruity notes. However, these results serve as a good basis 

for future investigations of the technological impact on the flavour formation in aronia 

juices. 
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Abstract 

The impact of the atmosphere on the flavour formation of coffee aroma during 

roasting was investigated by means of on-line proton transfer reaction time-of-flight mass 

spectrometry (PTR-ToF-MS). Roasting under inert atmosphere (nitrogen) was compared 

to roasting under oxidative conditions (air). Roasting under air has resulted in overall 

higher intensities of PTR-ToF-MS time-intensity profiles for seven mass peaks, which 

were significantly higher in intensity for ≥30 % of the roasting duration. Conversely, to 

the coffee roasted in air, coffee roasted under nitrogen had an unpleasant smell and lacked 

the distinctive coffee aroma. The results show clear differences between the flavour 

formation during coffee roasting in different atmospheres and provide evidence that a 

certain degree of oxidation during roasting is essential to formation of coffee aroma. 

Introduction 

Coffee roasting contributes most significantly to coffee aroma by transforming the 

green coffee beans both physically and chemically into its characteristic end-product. 

Thermally induced pathways, including the Maillard reaction, generate a plethora of 

volatile organic compounds (VOCs) that contribute to the coffee’s characteristic aroma. 

During coffee roasting, these reactions occur throughout the bean, resulting in a portion 

of the volatiles being released into the roaster exhaust while the rest remains trapped 

within the bean matrix. Roaster exhaust is primarily composed of water vapour, driven 

off the beans through air convection. This study aims to investigate the influence of 

oxidative flushing of the roasting chamber during roasting on the VOC composition of 

the roaster exhaust gas. Previous EPR studies suggest that oxygen does not contribute to 

radically driven pathways during roasting [1]; however, this does not exclude it from 

being essential in non-radical pathways. 

Traditionally studied using static measurement techniques, such as gas 

chromatography mass spectroscopy (GC/MS), coffee aroma analysis has recently adopted 

more dynamic approaches, for example PTR-ToF-MS. Several groups have used PTR-

ToF-MS to monitor the exhaust gas of coffee roasters. Wieland and associates [2] used 

this highly sensitive, time resolved technique to predict the coffee roast degree based on 

the evolution of the exhaust gas composition. Whereas Gloess and colleagues [3] found 

that the exhaust gas composition was coffee origin dependent, providing evidence that 

different VOC pathways were occurring. The sensitivity of PTR-ToF-MS was a key 

feature in the present study to investigate the impact of anaerobic and oxidative conditions 

on the roaster exhaust gas VOC composition. 

Experimental 

Coffee roasting 

Arabica coffee beans from Guatemala were used for roasting experiments. The 

coffee was conditioned before experiments for 20 min at 105 °C and roasted in 10 g 

batches. A modified pilot plant type 4E Reactor vessel (Büchi, Uster, Switzerland) was 
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used for roasting. The reactor was set horizontally and consisted of an internal fan, 

rotating sample basket and two heaters (internal and in the vessel jacket). The inlet to the 

reactor vessel was connected to air or nitrogen supply for purging the reactor at 

approximately 20 LN/min (normal litre per minute). The outlet of the reactor was left 

open. Coffee was roasted 20 min to reach a set point of 180 °C at the sensor in the reaction 

vessel. 

PTR-ToF-MS 

The PTR-ToF-MS was interfaced directly to the inside gas of the reaction vessel 

using a custom built dilution system. The experimental setup is shown schematically in 

Figure 1. The outlet of the dilution system was actively pumped and nitrogen was 

introduced to the dilution stream at 3.9 LN/min. The sampling flow rate was set to 24.0 ± 

0.4 mLN/min (mean ± SD) from the roasting chamber, to achieve dilution of about 160-

fold. The gas lines were heated to 90 °C and the dilution system was heated to 120 °C. A 

PTR-ToF-MS 8000 mass spectrometer (Ionicon) was used. The PTR drift tube was 

operated at 80 °C and 140 Td. The mass axis calibration was performed on [H3
18O]+, 

acetone ([C3H7O]+) and caffeine ([C8H11N4O2]+).  

Gas chromatography 

Headspace GC/MS (system with cryogenic CO2 oven cooling) was performed on 

roasted and ground coffee beans. Two grams of coffee powder were transferred into vials 

and analysed with HS GC/MS based on a previously published method [4]. Peak 

identification was based on comparing the mass spectra with the NIST08 database. In 

total, 58 peaks were evaluated. 

 
Figure 1: Schematics of the coupling of the PTR-ToF-MS to the reaction vessel for on-line PTR-ToF-MS 
analysis of the exhaust gas during roasting under controlled atmosphere. 

Results and Discussion 

The aerobic conditions realised by flushing the roasting chamber with air were found 

to have a significant influence on the coffee aroma.  Sensory observations parallel to those 

made by Tai and Ho’s [4] for cysteine model systems, suggesting that cysteine’s oxidative 

state plays an essential role in the development of coffee’s aroma profile.  These 

observations are further supported by differences observed, using PTR-ToF-MS, in the 

exhaust gas composition. 

Roasting under inert atmosphere increased the intensity of m/z 34.996, tentatively 

assigned to dihydrogen sulphide (H2S).  The increased intensity of H2S (Figure 2a) was 

accompanied with an unpleasant aroma, a similar unpleasant aroma was observed by Tai 

and Ho [4]. These authors observed that when cysteine’s sulphur group was reduced 

sulphur containing molecules were dominant within the product profile [4]. 
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Roasting under oxidative conditions generated characteristic differences within the PTR-

ToF-MS profile and restored the characteristic coffee aroma.  Tai and Ho [4] observed an 

absence in sulphur containing compounds as well as, “a strong coffee note” when the 

sulphur side chain of cysteine was oxidized to cysteinesulfinic acid. 

Aerobic roasting increased the intensities and shape of several VOC PTR-ToF-MS 

profiles (Table 1) demonstrating the influence of oxygen on the evolution of coffee aroma 

formation pathways. Amongst the most prominent differences was the higher intensity 

observed for m/z 153.0910, tentatively assigned to 4-ethylguaiacol (Figure 2b). 

Table 1: Compounds of significantly higher intensities generated during coffee roasting in either air or inert 

(nitrogen) atmosphere.   

Atmosphere On-line PTR-ToF-MSa Headspace GC/MSb 

Nitrogen m/z 34.996 (H2S) 

 

Methanethiol, 

dimethyl sulfide 

Air m/z 31.0178 (CH2O, formaldehyde),  

m/z 44.0174 (CH2NO+), m/z 55.0542 

(C4H6, butadiene), m/z 67.0542 (C5H6), 

m/z 107.0491 (C7H6O, benzaldehyde), 

m/z 135.1 (unresolved), m/z 153.0910 

(C9H12O2, 4-ethylguaiacol) 

Dimethyl 

disulphide 

a PTR-ToF-MS: mean intensities (n=4) differ for at least 2 SD for >30% of roasting time, 

compounds were tentatively assigned based on molecular mass. 
b HS GC/MS: t-test, P < 0.1 

 

a) b) 

  
Figure 2: Time-intensity profiles of (two samples: air and nitrogen, each four repetitions) (a) a VOC of mass-

to-charge-ratio (m/z) 34.996 (tentatively assigned to protonated H2S) and (b) m/z 153.091 (tentatively assigned 

to protonated 4-ethyl guaiacol) of roasting in air and nitrogen. 

PTR-ToF-MS time-intensity profile of m/z 107.049 (tentatively assigned to 

protonated benzaldehyde) was observed at higher intensity when roasting in air (Figure 

3a), but no difference in the shape of the profile was seen. Despite no obvious difference 

in profile, the larger amount of benzaldehyde formed during aerobic roasting is consistent 

with studies on model systems [5], where oxidative degradation of phenylalanine at high 

temperatures was studied. Phenylacetaldehyde, the Strecker aldehyde of phenylalanine 

has been suggested as an intermediate for benzaldehyde formation, but it does not show 

a significant difference between air and nitrogen roasting (Figure 3b). This could be 

caused by less reproducible signal for phenylacetaldehyde, or alternatively that oxidative 
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formation of benzaldehyde in coffee matrix does not go through a phenylacetaldehyde 

intermediate. 

a) b) 

  
Figure 3: Time-intensity profiles of (two samples: air and nitrogen, each four repetitions) (a) m/z 107.049 

(tentatively assigned to protonated benzaldehyde) and of (b) m/z 121.067 (tentatively assigned to 
phenylacetaldehyde) of roasting in air and nitrogen.   

The GC/MS analysis was performed seven days after coffee roasting. The higher 

intensity of methanethiol in samples roasted in nitrogen indicated that there is less 

oxidative degradation during storage. This is consistent with higher amounts of dimethyl 

disulphide in the samples roasted in air. Dimethyl disulphide is a product of methanethiol 

oxidation and is used as an indicator of coffee freshness in its ratio against methanethiol 

[6]. 

The aerobic conditions in the roaster play an essential role in the development of 

characteristic coffee aroma.  Under anaerobic conditions dihydrogen sulphide (H2S) 

serves as the dominant nucleophile leading to high concentrations of primarily sulphur 

containing VOCs, which unbalances coffees aroma profile leading to an undesirable 

sensory experience.  Oxidative conditions suppress the formation of H2S by oxidizing 

coffee’s sulphur groups.  Suppression of H2S allows ammonia to become the dominant 

nucleophile allowing for the development of more desirable aroma profiles.   

References 

1. Goodman B.A., Pascual E.C., Yeretzian C. (2011) Food Chem 125: 248-254. 

2. Wieland F., Gloess, A.N., Keller M., Wetzel A., Schenker S., Yeretzian C. (2012) Anal. 

Bioanal. Chem. 402: 2531-2543. 

3. Gloess A.N., Vietri A., Wieland F., Smrke S., Schonbachler B., Lopez J.A.S., Petrozzi S., 

Bongers S., Koziorowski T., Yeretzian C. (2014) Int. J. Mass Spectrom 365: 324-337. 

4. Tai C.-Y., Ho C.-T. (1997) J. Agric. Food Chem. 43: 3586-3589.  

5. Chu F.L., Yaylayan V.A. (2008) J. Agric. Food Chem. 56: 10697-10704. 

6. Gloess A.N., Schonbachler B., Rast M., Deuber L., Yeretzian C. (2014) Chimia 68: 179-182. 

 



 

 
B. Siegmund & E. Leitner (Eds): Flavour Sci., 2018, Verlag der Technischen Universität Graz 

DOI: 10.3217/978-3-85125-593-5-32, CC BY-NC-ND 4.0 147 

Characterization of key aroma compounds in two types of 

Keemun tea  

TETSUYA YOSHIDA1, Johanna Kreissl2, Yoshiko Kurobayashi1, Tsukasa Saito1, 

Andreas Dunkel3 and Thomas Hofmann2,3  
1 R&D Center, T. Hasegawa Co., LTD., 29-7 Kariyado, Nakahara-ku, Kawasaki-shi, Kanagawa 211-0022, 
Japan 
2 Leibniz-Institute for Food System Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 

Freising, Germany 
3 Chair for Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 

34, 85354 Freising, Germany 

Abstract  

Keemun tea is one of the most popular Chinese black teas, and it is highly 

appreciated by consumers because of its sweet, floral, and slightly smoky odor. In this 

study, two types of Keemun tea that differ in terms of raw material and manufacturing 

process, namely “gōngfū” and “míngyōu” type Keemun tea, respectively, were 

investigated by aroma extract dilution analysis (AEDA). 

From the AEDA results, 34 odorants with flavor dilution (FD) factors ranging from 

64 to 1024 were detected from the volatiles obtained from the isolated fractions of 

Keemun tea infusions. In particular, geraniol, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 

and coumarin exhibited the highest FD factor, which was followed by methional, 2-

phenylethanol, phenylacetic acid, and 3-methyl-2,4-nonanedione. These odorants were 

detected in both Keemun teas. Stable isotope dilution assays (SIDA) were performed, and 

odor activity values (OAVs) were calculated for the quantitative evaluation of 38 

odorants: 27 key odorants with an OAV ≥ 1 were identified. The obtained quantitative 

data permitted the preparation of aroma recombinates from both types of Keemun tea. 

Comparative aroma profile analyses between the recombinates and their respective 

Keemun tea indicated excellent similarity in terms of the overall aroma, thus validating 

these volatiles as the key components that contribute to the unique odor profile of Keemun 

tea. 

Introduction 

Tea (Camellia sinensis), which is one of the most popularly consumed beverages in 

the world, is mainly cultivated in tropical, subtropical, and temperate climates. India, Sri 

Lanka, and China are the main tea-producing countries. The following two principal 

varieties are grown in the tea-producing areas: small-leaved Chinese plant (Camellia 

sinensis V. sinensis) and a large-leaved Assamese plant (Camellia sinensis V. assamica). 

Darjeeling and Keemun tea are classified into the former group, while Assamese and 

Ceylon tea are classified into the latter group. Among Chinese plants, numerous studies 

have reported on the Darjeeling tea aroma [1]. Although Keemun tea exhibits unique 

flowery, sweet, and slightly smoky notes [2,3], few studies have reported on the Keemun 

tea aroma. 

Black tea production generally comprises the following four steps: withering, 

rolling, fermentation, and firing. In particular, several biochemical reactions occur in tea 

leaves during fermentation. Keemun tea is categorized into two types mainly based on 

the manufacturing method. One is “gōngfū”-type Keemun tea (GK) that is used for 

exports, while the other is “míngyōu”-type Keemun tea (MK) that is used for domestic 
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consumption. The rolling process (i.e., rubbing and twisting processes) is different for 

GK and MK. GK is tightly rolled using a machine, while MK is softly rolled by hand. 

This study aimed to clarify the key aroma compounds in Keemun black tea by aroma 

extract dilution analysis (AEDA) and stable isotope dilution assays (SIDA) as well as to 

determine whether the difference in the rolling process considerably affects the volatile 

profiles of tea infusions. 

Experimental 

First, tea leaves (6 g) were soaked in hot water (95°C, 300 mL). After 5 min, tea 

leaves were separated by filtration, and the infusion was cooled to 15°C using an ice bath. 

Second, the beverage (50 mL) was repeatedly extracted with dichloromethane (2 × 50 

mL), and the volatile compounds were isolated by solvent-assisted flavor evaporation [1]. 

GC-O was employed to analyze the aroma extract, and the most important aroma-

active compounds were determined by AEDA. After identification (RI on two capillary 

columns, odor quality, and mass spectra), the aroma compounds with the highest FD 

factors were quantified by SIDA. Finally, odor activity values (OAVs) of the key odorants 

were calculated from the concentrations of the aroma compounds and their odor 

thresholds. 

Aroma reconstitution models were prepared by utilizing natural concentrations of 

the key odorants with an OAV greater than or equal to one dissolved in water. Sensory 

analysis was performed in a sensory room with single booths. The sensory panel 

comprised 15–21 trained assessors. 

Results and discussion 

Screening of aroma-active compounds by AEDA 

The elucidation of the aroma-active compounds by AEDA revealed 34 odorants in 

the two types of Keemun tea with FD factors ranging from 64 to 1024. The highest FD 

factors in both Keemun tea were observed in case of odorants such as flowery-smelling 

geraniol and sweet-smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone (FD 1024). 

However, in GK, oat-like smelling (E,E,Z)-nonatrienal (FD 1024) was followed by the 

cooked potato-like smelling methional, flowery-smelling 2-phenylethanol, and sweet-

smelling coumarin (FD 512). Meanwhile, in MK, coumarin (FD 1024) was followed by 

hay-like-smelling 3-methyl-2,4-nonanedione (FD 512). 

Quantitation of the key odorants by SIDAs 

Aroma-active compounds that exhibited high FD factors from AEDA in addition to 

four compounds (i.e., α-ionone, (Z)-4-heptenal, (E,E)-2,4-decadienal, and (E,Z)-2,6-

nonatrienal, respectively) were quantified. All compounds concentrations were 

determined by SIDA, and OAVs were calculated on the basis of these concentration and 

odor thresholds [4] in water revealed 27 key odorants in each Keemun tea (Table 1). 

Geraniol, 2-phenylethanol, and linalool were determined as the key floral odorants, and 

4-hydroxy-2,5-dimethyl-3(2H)-furanone, coumarin, and (E)-β-damascenone were 

determined as the key sweet odorants; finally, 4-vinylguaiacol, 4-vinylphenol, and 

guaiacol were determined as the key smoky odorants in the Keemun tea. 

Sensory profile analysis 

To validate the results obtained from these investigations, 27 key odorants were 

recombined in their natural concentrations, and each aroma model was compared to the 
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original Keemun tea infusions by aroma profiling (Figure 1). Both mixtures considerably 

matched the original Keemun tea infusions in terms of all attributes; these investigations 

demonstrated that the aroma of the two types of Keemun tea can be simulated by 27 

compounds. 

  

Figure 1: Comparative aroma profiles of aroma recombinate and original Keemun tea infusions 

The comparison of the aroma profiles of the original Keemun tea revealed clear 

differences among metallic, malty, and smoky attributes. Odorants responsible for these 

attributes were trans-4,5-epoxy-(E)-2-decenal (metallic), 4-vinylguaiacol (smoky), 2-

methylbutanal, and 3-methylbutanal (malty), and their OAVs were clearly different in the 

two types of Keemun tea (Table 1). 

Table 1: FD factors and OAVs of aroma-active compounds (OAV ≥ 1) in Keemun tea (GK and MK) 

Odorant Odor quality 
FD factor OAV 

GK MK GK MK 

geraniol flowery, fruity 1024 1024 290 530 
4-hydroxy-2,5-dimethyl-

3(2H)-furanone 
caramel, sweet 1024 1024 3 5 

(E,E,Z)-2,4,6-nonatrienal oat 1024 64 36 19 

methional cooked potato 512 32 7 7 
2-phenylethanol flowery, honey 512 256 3 4 
coumarin woodruff, sweet 512 1024 1 2 
linalool flowery 256 32 530 610 

(E)-β-damascenone 
cooked apple, 

sweet 
256 256 23 25 

trans-4,5-epoxy-(E)-2-

decenal 
metallic 256 256 8 15 

eugenol clove 256 32 1 1 
3-ethylphenol phenol 256 256 2 3 

4-vinylguaiacol clove, smoky 256 256 2 <1 
3-hydroxy-4,5-dimethyl-

2(5H)-furanone 

celery, 

seasoning 
256 256 2 2 

4-vinylphenol phenol, smoky 256 16 3 2 
phenylacetaldehyde honey, bees wax 128 64 76 54 

guaiacol smoky, sweet 128 256 9 9 
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Table 1: continued 

Odorant Odor quality 
FD factor OAV 

GK MK GK MK 

3-methyl-2,4-

nonanedione 
hay, fishy  64 512 63 67 

2,3-butanedione buttery 64 32 11 15 
3-methylbutanal malty 32 64 421 618 
2-methylbutanal malty 32 64 155 220 
hexanal green, grassy 32 64 24 43 
2-acetyl-1-pyrroline roasted, popcorn 16 64 1 2 

3-methylindole (skatole) fecal, mothball 16 64 2 3 
1-octen-3-one mushroom 4 64 5 8 

(Z)-4-heptenal fishy, fish oil 4 8 15 10 

(E,E)-2,4-decadienal fatty, fried - - 12 11 

(E,Z)-2,6-nonadienal cucumber 8 8 8 8 

 

In conclusion, a majority of the key odorants in Table 1 had been previously 

identified as the major contributors to the aroma of Darjeeling tea [1]; meanwhile, some 

smoky-smelling compounds such as 4-vinylphenol and guaiacol and sweet-smelling 

compounds such as coumarin have been reported to be crucial contributors to the aroma 

of Keemun tea. Our study has revealed the key aroma compounds that can characterize 

the overall aroma of Keemun tea and the potent aroma compounds that differentiate 

between the two types of Keemun tea; however, further investigation is necessary to 

clarify the presence of a high number of odorants that contribute to smoky attributes in 

the Keemun tea rolled by a machine and a high number of odorants contributing to the 

metallic and malty attributes in the Keemun tea rolled softly by hand. 
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Abstract  

With aging comes many physiological changes, including those in the oral and nasal 

cavity, such as impaired olfactory function, reduced salivary flow and compromised 

dental status and function [1-3]. These changes may impact on aroma release and flavour 

perception, and subsequently the enjoyment of foods, leading a risk of undernutrition. 

This review aimed to summarise current literature on how olfaction is affected by aging, 

the major physiological parameter in flavour perception. With the worldwide projected 

increase in the older population, the economic and social burden of undernutrition is 

expected to be severe. Tackling this issue is of interest to both clinical practice and 

industry, as there is potential for new products to be developed which meet the needs and 

sensory preferences of this specific, increasing population. 

Introduction 

Due to socioeconomic development people are living longer than ever [4]. For 

example, somebody born in Japan in 2015 was projected to live until 90 years old, this is 

compared to only 83 years if born in 1985 [4]. Although extra years are added to life, 

unavoidable changes in sensory capacity may reduce functionality and life quality. It is 

well documented that aging is associated with a decline in both vision and hearing[4]; 

however, a lesser acknowledged sensory impairment, is the sense of olfaction.  

Discussion 

Importance of olfaction 

Olfactory impairments have been proposed to be a key contributor in the aetiology 

of “anorexia of aging” [5, 6] a term which alludes to the high prevalence of undernutrition 

within the older adult population. The “anorexia of aging” leads to multifaceted clinical 

conditions, such as frailty and sarcopenia, which are common among frail older persons, 

and are related to many comorbidities and ultimately an increased risk of mortality [5].  

Olfaction is a key contributor to the anorexia of aging due to the impact it may have 

on hunger and appetite [7] and on reducing nutritional quality and altering dietary habits 

[8]. For example, Duffy et al. (1995) [9] found that older women (aged 65 to 93 years) 

with olfactory dysfunction had lower interest in food-related activities (i.e. cooking) and 

Aschenbrenner et al. (2008) [10] found that more than one-third of patients with olfactory 

loss reported changes in their social food-related activities. In terms of altered nutritional 

quality, Duffy et al. (1995) [9] found that olfactory impairments led to a lower preference 

for foods with predominant sour/bitter taste such as fruits and vegetables, and higher 

intake of sweets. Such evidence is supported by the work of Griep et al. (1996) [11] who 

found that older individuals with olfactory impairments had lower nutrient intake levels 

than older individuals with good odour perception. One recent study has suggested that 

community dwelling older adults with impairments in sensory perception, including 

olfaction, are at a greater risk of frailty [12] due to decreased appetite and food intake. It 
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has been suggested that weight loss is more frequent in individuals with olfactory 

impairments [8, 10, 13, 14]; Gopinath et al. (2012) [14] found that BMI was significantly 

lower in participants with, than without, olfactory impairment. Weight loss is a significant 

problem in the population of older adults as it can lead to muscle wasting, decreased 

immunocompetence and increased rate of complications, along with being highly 

predictive of morbidity and mortality [15]. Thus olfactory impairments have been 

proposed to be predictive of overall mortality, over a 5 year period [14]. Schiffman and 

Graham (2000) [16] also drew attention to how undernutrition itself may be a risk factor 

for olfactory impairments as deficiencies in the B Vitamins Niacin and Vitamin B12 and 

Zinc impair olfactory function [14], so it is easy to understand how undernutrition may 

become exacerbated and maintained. 

Prevalence of age-related olfactory impairment 

The prevalence of impaired olfactory function in the older adult population is high. 

Using a smell identification test, Doty et al. (1984) [17] conducted a cross-sectional study 

in 1955 individuals and found that 60% of those aged 65-80 were experiencing major 

olfactory impairments. More recently, Murphy et al, (2002) [18] conducted a population-

based study with 2491 individuals aged 57-93 years. They found the prevalence of 

olfactory impairment to be 24.9% and also that the prevalence increases with age; within 

the population of 80- to 97-year-olds, 62.5% were experiencing olfactory impairments.  

Causes of age-related olfactory impairment 

The cause of olfactory impairments is likely to be multi-factorial, involving age-

related alterations within the nose, olfactory epithelium, olfactory bulb and higher levels 

of the brain that receive olfactory input [1, 19, 20]. The complex causes of age-related 

olfactory impairment are discussed in detail in the review by Doty and Kamath, (2014) 

who summarised potential contributing factors to be: altered nasal engorgement and 

airflow, increased propensity for nasal disease, cumulative damage to the olfactory 

epithelium from viral and other environmental insults, decrements in mucosal 

metabolizing enzymes, ossification of cribriform plate foramina, loss of selectivity of 

receptor cells to odorants and changes in neurotransmitter and neuromodulator systems. 

A potential genetic contribution to odour identification ability has also been identified 

[21, 22]. 

There is a strong association between olfactory impairment and age-related 

neurodegenerative disease, such as Alzheimer’s and Parkinson’s disease. Olfactory 

impairments can be an early symptom of these diseases, which Doty and Kamath, (2014) 

[1] proposed to be due to expression of aberrant proteins. The significance of these 

proteins was shown by Wilson et al, (2007) [23], who found inverse correlations between 

Brief Smell Identification Test (B-SIT) scores obtained before death and the post-mortem 

density of neurofibrillary tangles. In another study, Wilson et al, (2011) [24] found an 

inverse relationship between B-SIT scores and post-mortem measures of Lewy bodies in 

limbic and cortical brain regions. This evidence suggests that olfactory impairment in 

older adults in not confined to structural changes within the nose, but its aetiology is likely 

to involve higher brain structures. 

Lastly, the influence of medications should be taken into account. Many drugs used 

to treat age-related conditions, such as antihypertensive medications and statins, are 

known to affect both taste and smell [20]. A comprehensive discussion of these 

medications and diseases can be found in Schiffman and Zervakis (2002) [20] who states 
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that older adults experience an exaggerated burden of chemosensory disorders from these 

medications, compared to younger individuals.  

Aroma- specificity of age-related olfactory impairment 

While older adults experience an impairment in their olfactory function, only a few 

studies have investigated how their perception of single aroma compounds changes with 

aging. In a large survey involving 1.2 million National Geographic readers, Wysocki and 

Gilbert (1989) [25] reported differences in the rate of age-related olfactory loss to six 

odorants. More recently, Seow et al, (2016) [26] conducted a study using The Specific 

Sensitivity test involving 281 participants of various age groups. They tested the 

identification rates and detection thresholds of 10 odorants, with various chemical and 

sensory properties, and found large differences in detection thresholds for some odorants, 

between age groups. For example, participants in their 70s had a detection threshold 179 

times higher than the young for the rose-like aroma compound phenylethyl alcohol, 

whereas for the onion-like aroma compound 2-methyloxolane-3-thiol, the threshold was 

only 3 times higher. Interestingly, they also found that the older subjects had higher 

identification rates if they rated the odorants as pleasant. This is supported by Wysocki 

and Gilbert (1989) [25] who found no age effect for the intensity rating of galaxolide 

(which may be considered a pleasant aroma), whereas a 26% age decline was observed 

for methanethiol (which could be considered an unpleasant aroma). These findings are is 

in contrast to Konstantindis et al, (2006) [27] who found that, unlike pleasant odours, 

unpleasant odours were not sensitive to age-related olfactory loss.  

In an effort to explain the physiological phenomenon of aroma-specific age-related 

loss, Sinding et al, (2014) [28] investigated if there was a difference in age-related odour 

perception between aroma molecules with heavy and light molecular weights, based on 

the idea that the molecules would bind differently to olfactory receptors. They found that 

older adults experience olfactory loss more specific to heavier molecules, suggesting that 

aroma-specific age-related loss bears connection to the molecular structure of individual 

aroma molecules. 

Considering these findings on age-related aroma-specific sensory loss, it is 

reasonable to conclude that it is not simply the case that older adults perceive flavour at 

a weaker intensity, it is likely that their overall flavour perception becomes distorted as 

the contribution made by individual aroma compounds to a flavour mixture is altered. 

Previous food-based aroma strategies to counteract olfactory changes 

To endeavour to combat the effects of olfactory impairments in older adults, a 

reasonable response undertaken is to modify the aroma in food in an effort to counteract 

impairments, and ultimately improve food liking and intake. Many studies have 

investigated this, however, results have not been consistently successful. For example, 

Koskinen, et al, (2003) [29] heightened the aroma in a yogurt-like fermented oat bran 

product and found that older adults liking and intake of the product was lower, when 

compared with the regular product. Considering that olfactory loss is aroma-specific [25-

27], heightening of aroma may have distorted flavour perception [26], and may explain 

why some panellists reported an “artificial flavour”.  

Future approaches and conclusion 

In order to combat age-related olfactory impairments, more tailored aroma-

modification strategies are needed. Seow et al, (2016) [26] stated that, in order to design 

targeted remedies for the effects of chemosensory losses (including olfaction), it is 

imperative to first gain insight on the extent of olfactory loss to specific single aroma 
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compounds. Developing foods which meet the sensory needs of the aging population is a 

challenging and complex task, but considering the social and economic burden of 

undernutrition, it is a vital challenge to overcome.  

References 

1. Doty RL, Kamath V (2014) Applied Olfactory Cognition 5:213-232 

2. Martin-Harris B, Brodsky MB, Michel Y, Ford CL, Walters B, Heffner J (2005) Archives of 

Otolaryngology–Head & Neck Surgery 131:762-770 

3. Vandenberghe‐Descamps M, Labouré H, Prot A, Septier C, Tournier C, Feron G, Sulmont‐

Rossé C (2016) Journal of Texture Studies 47(4):353-360 

4. WHO (2015) World report on ageing and health. World Health Organization 

5. Landi F, Calvani R, Tosato M, Martone AM, Ortolani E, Savera G, Sisto A, Marzetti E (2016) 

Nutrients 8:69 

6. Wysokiński A, Sobów T, Kłoszewska I, Kostka T (2015) Age 37:81 

7. de Jong N, Mulder I, de Graaf C, van Staveren WA (1999) Journals of Gerontology Series A: 

Biomedical Sciences and Medical Sciences 54:B324-B331 

8. Mattes RD, Cowart BJ, Schiavo MA, Arnold C, Garrison B, Kare MR, Lowry LD (1990) The 

American journal of clinical nutrition 51:233-240 

9. Duffy VB, Backstrand JR, Ferris AM (1995) Journal of the American Dietetic Association 

95:879-884 

10. Aschenbrenner K, Hummel C, Teszmer K, Krone F, Ishimaru T, Seo H-S, Hummel T (2008) 

The Laryngoscope 118:135-144 

11. Griep M, Verleye G, Franck A, Collys K, Mets T, Massart D (1996) European journal of 

clinical nutrition 50:816-825 

12. Somekawa S, Mine T, Ono K, Hayashi N, Obuchi S, Yoshida H, Kawai H, Fujiwara Y, 

Hirano H, Kojima M (2017) The journal of nutrition, health & aging 21:710-714 

13. Frasnelli J, Landis B, Heilmann S, Hauswald B, Hüttenbrink K, Lacroix J, Leopold D, 

Hummel T (2004) European Archives of Oto-Rhino-Laryngology and Head & Neck 261:411-

415 

14. Gopinath B, Anstey KJ, Kifley A, Mitchell P (2012) Maturitas 72:50-55 

15. Alibhai SM, Greenwood C, Payette H (2005) Canadian Medical Association Journal 172:773-

780 

16. Schiffman S, Graham B (2000) European Journal of Clinical Nutrition 54:S54 

17. Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L (1984) Science 

226:1441-1443 

18. Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Jama 

288:2307-2312 

19. Attems J, Walker L, Jellinger KA (2015) Gerontology 61:485-490 

20. Schiffman SS, Zervakis J (2002) Advances in food and nutrition research 44:247-346 

21. Calhoun-Haney R, Murphy C (2005) Brain and cognition 58:178-182 

22. Hedner M, Nilsson L-G, Olofsson JK, Bergman O, Eriksson E, Nyberg L, Larsson M (2010) 

Frontiers in aging neuroscience 2 

23. Wilson RS, Arnold SE, Schneider JA, Tang Y, Bennett DA (2007) Journal of Neurology, 

Neurosurgery & Psychiatry 78:30-35 

24. Wilson RS, Yu L, Schneider JA, Arnold SE, Buchman AS, Bennett DA (2011) Chemical 

senses 36:367-373 

25. Wysocki CJ, Gilbert AN (1989) Annals of the New York Academy of Sciences 561:12-28 

26. Seow Y-X, Ong PKC, Huang D (2016) Chemical Senses 41:487-495 

27. Konstantinidis I, Hummel T, Larsson M (2006) Archives of Clinical Neuropsychology 

21:615-621 

28. Sinding C, Puschmann L, Hummel T (2014) Chemical senses:bju004 

29. Koskinen S, Kälviäinen N, Tuorila H (2003) Appetite 41:87-96 

 



 

 
B. Siegmund & E. Leitner (Eds): Flavour Sci., 2018, Verlag der Technischen Universität Graz 

DOI: 10.3217/978-3-85125-593-5-34, CC BY-NC-ND 4.0 155 

Influence of the brewing process and degree of milling on 

the taste characteristics of pigmented rice wine 

SANCHAI YOTMANEE, Maria Jose Oruna-Concha and Jane K. Parker 
Department of Food and Nutritional Sciences, University of Reading, Reading, RG6 6AP, UK 

Abstract 

The taste characteristics of pigmented rice wine were investigated with respect to 

brewing conditions, and the extent to which the rice had been milled to remove the bran. 

Both the saccharification and the subsequent alcoholic fermentation processes were 

monitored over time at 25 ºC and 30 ºC. The following conditions were selected based on 

maximising ethanol content and minimizing acetic acid: saccharification for two days at 

30 ºC and alcoholic fermentation for nine days at 30 ºC. This brewing process was applied 

to pigmented rice which had been milled to various degrees (0%, 30%, 50% and 65%) 

and the wine was analysed for taste compounds (sugars, organic acids, amino acids and 

cyclic dipeptides (2,5-diketopiperazines)). The results showed that the higher degree of 

milling significantly increased the glucose in the wine, however there was a concomitant 

loss of glutamic acid (p<0.05). Cyclo(Pro-Val), cyclo(Pro-Ile), cyclo(Pro-Leu) and 

cyclo(Pro-Pro) were detected in pigmented rice wine for the first time. They can impart 

bitter and metallic tastes, but they were present at concentrations below their reported 

taste thresholds. Their formation increased as the degree of milling increased and the pH 

decreased. Based on reported taste thresholds, the compounds most likely to contribute 

to the taste of pigmented rice wine are acetic acid and glutamic acid. 

Introduction 

Rice wine or Sake is a traditional fermented alcoholic beverage which is becoming 

increasingly popular in some Asian countries [1]. The production of sake is well-

documented. Chinese or Japanese rice wine is prepared using high quality polished 

glutinous rice, wheat and koji, a starter culture which contains both the fungi for the 

saccharification step, and the yeast for the subsequent fermentation step. During these 

processes, the brewing temperature is important as it affects the cell growth, cell density, 

starch hydrolysis and the production of ethanol and organic acids [1]. The taste of rice 

wine has been described as having sweet, sour, harmonious, mellow, and fresh 

characteristics [2], which are mainly generated during fermentation when proteins present 

in the rice are converted to small peptides and amino acids by proteases from the 

microorganisms [3]. Other non-volatile metabolites, including organic acids and sugars 

can contribute to the taste of rice wine. 

Polished glutinous rice is not the only rice used for wine manufacture. Unpolished 

pigmented rice, where the bran is retained, is also used to produce pigmented rice wine, 

especially in countries such as Thailand and the Philippines. However, contrary to Sake, 

it has a unique savoury flavour, and much less is known about the compounds 

contributing to the characteristic taste and aroma of the pigmented rice wine. Therefore, 

this study investigated the influence of (i) the brewing process and (ii) degree of milling 

on the generation of the taste characteristics of pigmented rice wine. 
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Experimental 

Materials 

Glutinous pigmented rice (Double Elephant, Thailand) was purchased from a local 

supplier at Reading, UK. Brewing microorganisms were Aspergillus oryzae ATCC 22787 

and Saccharomyces cerevisiae NCYC 478 obtained from LGC Standards (UK) and The 

National Collection of Yeast Cultures (UK) respectively, and cyclic dipeptide standards 

(2,5-diketopiperazines) were purchased from Bachem AG (Switzerland). 

Selection of brewing process  

Saccharification 

Pigmented rice was steamed for 60 min at 100 ºC and inoculated with the fungi A. 

oryzae, followed by incubation at 25 ºC or 30 ºC for 8 days. Sugars and organic acids 

were analysed every 24 h. The optimum saccharification process was determined by the 

conditions (time and temperature) that produced the highest concentration of glucose. 

Alcoholic fermentation 

The optimum saccharification process was applied to the steamed pigmented rice, 

which was subsequently inoculated with S. cerevisiae and left to ferment for 10 days at 

either 25 ºC or 30 ºC. Samples were collected every day to determine the levels of sugars, 

organic acids and the ethanol content. The optimum fermentation conditions were 

selected on the basics of high ethanol content and reduced levels of acetic acid. Samples 

were pasteurized at 70 ºC for 10 min. 
 

The brewing of rice wine from pigmented rice with different degree of milling 

Pigmented rice was milled in a Twinbird rice polishing machine (Japan) to (partially) 

remove bran and produce rice of various degrees of milling (DM0% (whole grain), 

DM30%, DM50% and DM65% (fully polished grain)). The grains were used for brewing 

under the selected brewing conditions.  
 

Analysis of compounds responsible for taste 

Sugars, organic acids and ethanol content  

The analysis of sugars, organic acids and ethanol was performed as described by 

Zeppa et al. [4]. Separation was carried out on an Aminex HPX-87H column (300 x 7.8 

mm, 9µm) from Bio-Rad (UK) with 5 mM sulfuric acid as the mobile phase for the 

separation of the compounds of interest. The selected wavelength for the organic acids 

was 210 nm, whereas an RI detector was used for the analysis of sugars and ethanol.  

Free amino acids  

Free amino acids were analysed using the EZfaast™ amino acid derivatization 

technique (Phenomenex, Torrance, CA), followed by GC-MS (Agilent, Germany) as 

described by Elmore et al. [5].  

Cyclic dipeptides  

Analysis of cyclic dipeptides was carried out as described by Oruna-Concha et al. 

[6]. Briefly, pigmented rice wine (15 mL) was mixed with 50 µL of 3-chlorophenol (100 

mg/L) as internal standard, and then passed through the SPE cartridge (Strata-X 33 µm 

polymeric reversed phase giga tube, Phenomenex). HPLC water and methyl acetate were 

used for washing and elution, respectively. The eluent was concentrated by flushing with 

N2, and then injected into the GC-MS equipped with a ZB-Wax column. 
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Results and discussion 

Selection of brewing conditions for the production of pigmented rice wine 

Saccharification is one of the important steps during brewing, as the starch present 

in cooked rice is converted to simple sugars, thus acting as nutrients for the subsequent 

fermentation stage and contributing to the taste and flavour of the rice wine [1]. Sugars 

including maltotriose, maltose and glucose were monitored throughout the 

saccharification process (Figure 1). Sugar levels were low on day 1 regardless of the 

temperature, however the concentration of maltotriose and maltose significantly 

increased by day 2 as the rice starch was degraded to maltotriose and maltose by the fungi. 

From day 2, an increase in glucose levels was observed as both maltotriose and maltose 

were converted to glucose. The highest levels of glucose were observed at day 6. After 

that, the sugars levels decreased as their rate of formation was less than their rate of 

consumption by A. oryzae. Slightly higher levels of sugars were observed at 30 ºC and 

therefore the optimum saccharification process for this study was set at 30 ºC for 2 days.  

  
Figure 1: Glucose, maltose and maltotriose generated from pigmented rice during saccharification by  
A. oryzae; n=3 brews. The standard deviation was generally <2%, and <5% in all cases. 

Following saccharification, the rice was inoculated with S. cerevisiae for alcoholic 

fermentation. During this step, and regardless of temperature, the levels of maltose and 

glucose decreased, whereas an increase in ethanol was observed, particularly on day 9 

(Figure 2). Malic, lactic, succinic and acetic acid were also formed by yeast metabolism 

which used glucose as a substrate [1]. Moreover, fermentation at 30 ºC produced more 

ethanol and lower levels of acetic acid (p<0.05). Although acetic acid is the most 

abundant volatile acid in wine, its excessive concentration (>0.9 g/L) affects negatively 

the quality of wine because it can contribute a bitter or sour aftertaste [7]. Therefore, the 

optimum fermentation conditions for this study were set at 30°C for 9 days. 

  

  

Figure 2: Sugars, ethanol and organic acids produced during fermentation from pigmented rice; n=3 brews. 

The standard deviation was generally <2%, and <5% in all cases. 
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Effect of degree of milling on the characteristic taste compounds of pigmented rice wine 

Four proline-based cyclic dipeptides, namely cyclo(Pro-Val), cyclo(Pro-Ile), 

cyclo(Pro-Leu) and cyclo(Pro-Pro) were identified in pigmented rice wine (Table 1) 

however their concentrations were lower than the reported threshold [8] and they are 

therefore unlikely to contribute to the taste of rice wine. It is likely that these cyclic 

dipeptides are generated by the action of the yeast [6] during the brewing process. A 

Pearson correlation (p=0.01) showed a correlation between pH and the formation of 

cyclic dipeptides, the lower pH being more favourable for formation of cyclic dipeptides 

[8]. 

Table 1 shows that glucose significantly increased (0.79-1.78 g/L, p<0.05) as the 

DM increased, however no significant differences were observed in the ethanol content. 

The predominant acid was acetic acid (0.36-0.65 g/L) and glutamic acid was the 

predominant amino acid (0.62-1.17 g/L), all present at concentrations higher than their 

reported thresholds [9], thus contributing respectively to the unique sour and umami taste 

characteristics of pigmented rice wine. Moreover, this study has shown that retaining the 

bran increases the glutamic acid in pigmented rice wine (p<0.05). 

Table 1: pH, ethanol and taste compounds found in pigmented rice wines 

taste compounds 
degree of milling 

 

threshold 

 0% 30% 50% 65% 

 

 

 

 

pH 4.76d 4.24c 3.94b 3.69a - 
ethanol (%)  11.9a 12.2a 11.6a 11.8a - 

glucose (g/L)  0.79a 1.20b 1.19b 1.78c 3.24 [9] 

glutamic acid (g/L)  1.17c 0.81b 0.62a 0.62a 0.18 [9] 
organic acids (g/L) 

 

lactic acid 0.73a 0.90a 1.04a 0.76a 1.39 [9] 

acetic acid 0.65c 0.39a

b 

0.36a 0.48b 0.12 [9] 
cyclic peptides (mg/L)  

 

cyclo(Pro-Val) 1.07a 1.88b 1.79b 2.06b 251 [8] 

cyclo(Pro-Ile) 5.04a 14.2b 16.3b 17.2b 101 [8] 

cyclo(Pro-Leu) 8.96a 9.74a 9.34a 9.81a 250 [8] 
cyclo(Pro-Pro) 2.98a 4.14b 4.27b 4.94c 501 [8] 

Values are the mean of three replicates. Means with different letters are significantly different at p=0.05. 
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Abstract  

When jack fruit seeds are fermented with banana leaves, and dried and roasted in a 

process similar to that used in the production of roasted cocoa nibs, a chocolate aroma 

develops. By using SPME GC-olfactometry, we have shown that compounds such as 2- 

and 3-methylbutanal, trimethylpyrazine and phenylacetaldehyde, which are key 

components of cocoa aroma, are present in the headspace of roasted fermented jack fruit 

(FJS) seeds at similar levels to that of a typical Brazilian cocoa powder. However, a series 

of less desirable higher molecular weight pyrazines with branched chain substituents was 

also found in the headspace of the FJS, but not in the cocoa. The valine-derived 

substituents imparted carbolic and cardboard aromas typical of the jackfruit seeds. 

Minimisation of these is important for improving the flavour of this sustainable and 

inexpensive cocoa substitute.  

Introduction 

The flesh of the jackfruit (Artocarpus heterophyllus Lam.) is popular in tropical 

countries where it grows in abundance in the wild. The seeds, which are usually discarded, 

account for 15-18% of the weight of the fruit and they are an under-utilised waste stream 

which could be exploited by local communities in Brazil. Recently, Spada et al. [1] 

showed that when jackfruit seeds are fermented and roasted using a process similar to that 

used for cocoa beans, a distinctive chocolate aroma develops. Various novel applications 

are currently being developed for the use of ground and roasted jackfruit seeds as a partial 

substitute for cocoa powder in cakes, cappuccino and cosmetics. 

The development of the desirable chocolate aroma is very dependent on the post-

harvest treatment, and the subsequent drying and roasting processes. Response surface 

methodology was used to compare fermentation and acidification steps prior to roasting, 

and to identify optimum roasting conditions to maximise the chocolate aroma of the 

ground roasted seeds. Twenty-seven different roasted jackfruit seed powders were 

assessed for “chocolate aroma” by a sensory panel (n=162) using ranking tests [1]. 

Optimum roasting conditions from each of the three processes (dried, acidified and 

fermented) were selected and the corresponding powders analysed by GC-MS and GC-

olfactometry and compared to a standard Brazilian cocoa powder. In this paper, we focus 

on the fermented product (FJS) which had the highest ranking score for chocolate aroma. 

The aim of the work was to confirm the presence of key chocolate aroma compounds 

in the FJS powder and to identify those compounds responsible for the less desirable 

“jackfruit seed” aromas. 
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Experimental 

Materials 

The jackfruit were collected from the local countryside, the flesh discarded and the 

seeds, pulp and banana leaves were placed in a closed container for 3 days to encourage 

anaerobic fermentation and production of alcohol. Over 5 days, the container was opened 

daily and the fermentating mass was turned over manually to encourage oxidation and 

production of acetic acid. After 8 days the pulp and banana leaves were removed and the 

fermented seeds dried at 60 ºC for 24 h. The seeds were then roasted at 154 ºC for 35 min 

and ground to a powder. 

The cocoa powder was obtained from Cargill, Brazil. It was of Brazilian origin and 

the cocoa beans had been fermented and roasted. All reference standards were obtained 

from Sigma Aldrich, Gillingham, UK.  

Model reactions 

Equimolar amounts (0.1 mM) of glucose, glycine and another amino acid (valine, 

leucine or isoleucine) were adjusted to pH 7 and heated in an autoclave at 125 °C for 30 

min. They were diluted 10 times prior to GC-MS analysis on two columns under identical 

conditions to the analysis of the powders. 

Analysis of the volatile compounds by SPME and GC-MS 

FJS powder (3 g) or Brazilian cocoa powder (3 g) were mixed with HPLC grade 

water (3 ml) in an SPME vial and vortexed for 2 min. After equilibrating the sample at 

45 °C for 15 min, the triple phase fibre (65 μm PDMS/DVB/Carboxen from Supelco) was 

exposed to the headspace for 55 min as previously described [1]. SPME extracts were 

analysed by GC-MS on an Agilent HP5890 Series II GC, coupled to a 5975 MSD. The 

GC was equipped with either a Zebron ZB-wax column or a Zebron DB5 column (both 

Phenomenex® 30 m x 0.25 mm x 0.25 µm film thickness) and a standard 5 °C/min 

temperature ramp programme was used. 

Analysis of the volatile compounds by SPME and GC-Olfactometry 

SPME extracts were also analysed on the same two columns using an Agilent 

HP5890 Series II GC-FID system coupled to an ODO 2 odourport (SGE). The outlet was 

split between a flame ionisation detector and a sniffing port, each with a flow of 1 ml/min. 

The contents of the SPME fibre were desorbed for 3 min in a split/splitless injection port, 

in splitless mode, onto five small loops (5 cm diameter) of the column in a coil, which 

were cooled in solid carbon dioxide, contained within a 250 mL beaker. After 3 min the 

beaker was removed and a standard 5 °C/min temperature ramp programme employed. 

The eluting aroma regions were described and scored by two assessors in duplicate on a 

scale of 0 (none) to 7 (strong). Mean values are reported in Table 1.  

Results and discussion 

GC-MS 

The extract contained ~200 volatile compounds, most of which were identified and 

at least 70 of the identities were confirmed by comparison with the appropriate standard 

reference compound. Of the 200 volatiles, we believe that >60 are pyrazines, although 

reference standards were only available for 10 of these. For that reason, model reactions 

were prepared in order to distinguish the many pyrazines that were generated during the 

roasting process. By using either valine, isoleucine or leucine in a simple glucose/-glycine 
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Maillard reaction, it was possible, in conjunction with mass spectra and LRI data on two 

columns, to confirm the identity of the substituents on many pyrazines as 2-methylpropyl, 

2-methylbutyl or 3-methylbutyl respectively. However, the position of the substituents 

could not be determined unless there were authentic standards available for some of the 

isomers. This information was vital in attributing the aroma regions in the GC-

Olfactometry to particular compounds. 

GC-Olfactometry 

Over 50 aroma regions were detected by the assessors on the DBWax column. Of 

these, 40 were assigned to compounds, most of which were also found in the GC-MS. 

The identities of these 40 compounds were further confirmed by carrying out GC-O on a 

DB5 column. Most of the aromas detected on the DBWax were found at the correct LRI 

on the DB5 column. Many of these were generic aroma compounds found in most foods 

as described by Dunkel et al. [2]. 

In this paper, the main focus is on the aroma regions which obtained high scores 

from the GC-O assessors, particularly those which are known to be important in the aroma 

of chocolate [3] or cocoa powder [4], or those which resembled the less desirable 

character of the jackfruit seeds which dominated the aroma of some of the earlier trial 

samples. These are summarised in Table 1. 

Table 1: Comparison of GC-Olfactometry scores for selected compounds for roasted fermented jackfruit seeds 

(FJS) and Brazilian cocoa powder, mean score of 2 assessors in duplicate where 0 = none and 7 = strong 

LRI on DBWax  LRI on DB5 GC-O Score 

GC-O GC-MS GC-MS Identity of compound GC-MS GC-O GC-MS FJS Cocoa 

expt expt au  au expt expt   

         

i)Compounds typically found to be important in chocolate or cocoa aroma, detected in both FJS and cocoa 

909 911 

925/ 

928 

 

2/3-methylbutanal 
 

656/ 
665 

<600 
651/ 
662 

7 6 

1390 1394 1394 
trimethylpyrazine 

 
1008 coelute 1003 7 6 

1628 1624 1624 
phenylacetaldehyde 

 
1058 1053 1049 6 5 

         

ii) Compounds only found in roasted jackfruit seeds, typically with jackfruit, carbolic, cardboard aroma 

1487 1489 1489* 
methyl-2-methyl-
propylpyrazine 1 

1134* 1133 1140 5 0 

1494 1495 1495* 
methyl-2-methyl-

propylpyrazine 2 
1134* 1145 1149 5 0 

1553 1553 1555* 
a dimethyl 2-methyl-

propylpyrazine 
1206* 1205 1206 3 0 

 

*found in corresponding reaction mixture 

The upper half of Table 1 shows compounds which are typically associated with 

chocolate or cocoa aroma and have been reported by GC-Olfactometry, and deemed to 

be important, in many cocoa based products including milk chocolate [3] and cocoa 

powder [4]. These compounds were detected in both the Brazilian cocoa and the FJS, 
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suggesting that these too might be important in the chocolate component of the FJS 

aroma.  

The lower half of the table shows the compounds which had relatively high GC-O 

scores and were detected in FJS, but not in the cocoa powder. These were 2-methylpropyl 

substituted pyrazines which were far more abundant in the FJS chromatograms compared 

to the cocoa, and were described by the GC-O assessors with less desirable terms such 

carbolic, cardboard and “roasted jackfruit seed flour”. All three isomers of methyl-2-

methylpropylpyrazine were detected in the FJS by GC-MS, and in the valine model 

system, two of which corresponded to the very characteristic jackfruit seed aromas which 

were detected in the GC-O at the corresponding LRIs. Similarly, all three isomers of 

dimethyl-2-methylpropylpyrazine were detected by GCMS in both FJS and the valine 

model system, but only the most abundant isomer was detected by GC-O. The LRI of this 

isomer on a DB5 column matches the LRI of one of the two isomers (2,5- and 2,6-

dimethyl-3-(2-methylpropyl)pyrazine) synthesised in our lab and reported previously [5]. 

Further development of the flavour of this potential cocoa substitute needs to focus 

on removing or decreasing the contribution from the branched chain substituted 

pyrazines, particularly those which are likely to be derived from valine during the roasting 

process.  

References 

1. Spada, F.P., Masson Zerbeto, L., Cabreira Ragazi, G., Roel Gutierrez, E., Coelho Souza, M., 

Parker, J. K., Canniatti-Brazaca, S. (2017) J. Ag. Food Chem. 65: 1196-1208. 

2. Dunkel, A., Steinhaus, M., Kotthoff, M., Nowak, B., Krautwurst, D., Schieberle, P., Hofmann, 

T. (2014) Angew. Chem. Int. Ed Engl. 53(28):7124-43. 

3. Schnermann, P., Schieberle, P. (1997) J. Agric. Food Chem. 45: 867–872. 

4. Frauendorfer, F., Schieberle, P. (2006) J. Agric. Food Chem. 54: 5521- 529. 

5. Elmore, J.S., Dodson, A.T., Muttucumaru, N., Halford N.G., Parry, M.A.J., Mottram, D.S. 

(2010) Food Chem. 122:753-760. 

 
 

 

 

 



 

 
B. Siegmund & E. Leitner (Eds): Flavour Sci., 2018, Verlag der Technischen Universität Graz 

DOI: 10.3217/978-3-85125-593-5-36, CC BY-NC-ND 4.0 163 

Investigating the phytochemical, flavour and sensory 

attributes of mature and microgreen coriander 

(Coriandrum sativum) 

MARIA JOSE ORUNA-CONCHA1, Stella Lignou1, Emma L. Feeney2, Karen 

Beegan2, Owen Kenny2 and Niamh Harbourne2 
1 Department of Food & Nutritional Sciences, University of Reading, RG6 6AR, Reading, UK  
2 Institute of Food & Health, University College Dublin, Belfield, Dublin 4, Ireland 

Abstract 

Microgreens, young stem and leaves of growing plants, have recently been the 

subject of much interest due to their higher concentrations of nutritive and purported 

bioactive compounds in comparison to their mature plant counterparts. However, there is 

currently limited information available in relation to the flavour and sensory attributes of 

microgreen species, which may ultimately prove important in determining consumer 

acceptance. This paper reports the total phenolic, carotenoid and chlorophyll contents as 

well as the aroma volatile profile and sensory attributes of both mature and microgreen 

coriander. Microgreen coriander was shown to contain significantly higher levels of 

phenolic compounds, elevated concentrations of terpenes as the main aromatic 

compounds and a more intense bitter/sweet taste characteristics compared to the mature 

coriander.  

Introduction 

The term ‘microgreen’ is generally used to describe young (7 – 21 days) stem and 

leaves of growing plants [1]. In recent years, microgreens have become a growing trend 

in the food industry due to their nutritional density and ease of growth. These small but 

powerful greens have been shown to contain higher concentrations of vitamins, minerals, 

and phytonutrients than their mature counterparts [2,3] and continue to increase in 

popularity due to their appealing appearance and use as a flavourful, edible garnish.  

Microgreens are considered a novel crop and therefore not much scientific 

information is available. Previous research on microgreens has shown that the chemical 

composition has a major impact on its acceptability. As such, it has been shown that 

sugars, phenolics and other non-volatile compounds (such as ascorbic acid) are important 

in microgreens as per their direct correlations to consumer preference and overall eating 

quality [4]. However, there is very little published research on the flavour profile of plants 

specifically on their microgreen stage. 

Experimental 

Materials 

Mature coriander (MC) and microgreen coriander (MGC) were obtained from 

McCormack Farms Ltd (Co. Meath, Ireland). Sensory evaluation was carried out in fresh 

samples. Coriander leaves were plucked from the stem, washed and air-dried before 

presenting them to the panellists. Micro coriander leaves were prepared in the same way. 

For the remaining analysis, the herbs were harvested and immediately freeze-dried. 

Solvents and authentic compounds were purchased from established laboratory chemical 

suppliers. 
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Analysis of volatile compounds 

The extraction of volatile compounds was performed using a headspace solid-phase 

microextraction system (HS-SPME). A 50/30 µm divinylbenzene 

(DVB)/polydimethylsiloxane (PDMS) fibre (Supelco, Bellefonte, Pennsylvania, USA). 

Freeze-dried herb (0.5g) reconstituted in 4.5mL of water containing 5000 ng of IS propyl 

propanoate were placed in a SMPE vial of 15 mL fitted with a screw cap. After 

equilibration at 40°C for 10 min, the fibre was exposed to the headspace above the sample 

for 30 min. The sample was kept under stirring at 40°C and desorpted for 20 min in the 

GC injector at 230°C and analysed by GC-MS as described by Morales-Soto et al. [5]. 

Analysis of free amino acids 

Free amino acids were analysed using the EZ-Faast amino acid derivatisation 

technique (Phenomenex, Torrance, CA) followed by GC-MS analysis, as described by 

Elmore et al. [6]. For each plant sample, 0.2 g of freeze-dried powder was weighed in 

glass vials and suspended in 10 mL of 0.01 M HCl. The suspensions were stirred for 15 

minutes with a magnetic stir bar and plate. After standing for 15 minutes, 2 mL of the 

supernatant was removed and placed into Eppendorfs that were centrifuged for 15 

minutes at 12,100g in a MiniSpin Eppendorf centrifuge. 

Analysis of total phenolics 

The extraction of phenolic compounds was carried as described by Sun et al. [7]. 

Freeze-dried herb (0.1g) was extracted with 5 mL of methanol/water (60:40, v/v) using 

sonication for 60 min at 21°C.  The sample was centrifuged at 1000g for 15 minutes and 

supernatant used for analysis. Total phenolic determination was carried as described by 

Singleton & Rossi [8].  

Analysis of total carotenoids & chlorophyll 

The carotenoids & chlorophyll were extracted as described by Giallourou et al. [9] 

with slight modifications. Methanol (4 ml) was added to 25 mg of powder and the samples 

were shaken for 15 min at 8000 rpm. Following centrifugation at 4000 rpm for 5 min, the 

supernatant was transferred to a clean tube and the process was repeated until a colourless 

supernatant was obtained. The absorbance of the combined supernatants was measured at 

470, 645 and 662 nm. The total amount of carotenoids & chlorophyll was calculated 

according to the equations by Lichtenthaler & Buschmann [10]. 

Sensory analysis 

Sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) 

on micro and mature coriander fresh leaves via a trained panel (n=11) on a gLMS scale 

[11,12]. 

Results and discussion 

Microgreen coriander had significantly higher (p<0.05) levels of total phenols in 

comparison to mature plants (24.1mg GAE/g and 16.4 mg GAE/g (d.w.), respectively), 

however there was no significant difference in the content of total carotenoids (1.6 vs 1.6 

mg/g d.w.) or chlorophylls (8.5 vs 8.3 mg/g d.w.) between MGC and MC.  

In general, higher levels of amino acids (more than 2 fold) were found in the MGC 

compared to the mature counterpart (24.5 mg/g and 11.0 mg/g (d.w), respectively). Of 

sixteen amino acids identified, the predominant one was asparagine (15.82 vs 5.01 mg/g 

(d.w) in MGC and MC, respectively) followed by glutamine (1.99 vs 1.05 mg/g (d.w)), 

aspartic acid (1.75 vs 1.48 mg/g (d.w)) and glutamic acid (1.44 vs 1.09 mg/g (d.w)) 
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although differences for these three amino acids were not significant. Free amino acids 

may contribute to the flavour quality of the herbs by their own taste characteristics 

including sweet, sour and bitter taste. Significant differences (p<0.05) were found in the 

levels of glycine and tryptophan, thus potentially contributing to the sweet and bitter taste 

of the MGC. 

Thirty-six compounds were identified in the headspace of the coriander herbs and 

the significant ones are listed in Table 1. Terpenes were the major compounds identified 

in the MGC comprising 62% of the total volatile compounds collected from the headspace 

whereas aldehydes, particularly hexanal, together with alkanes and alkenes represented 

87% of the total volatile compounds collected from the headspace of the MC. The most 

abundant compound present in the MGC was linalool (more than 30 fold higher in 

microgreen coriander compared to mature coriander). Previous research on the chemical 

profile of coriander essential oil has also indicated that it is a rich source of oxygenated 

monoterpenes, with linalool as the principal constituent [11]. Additionally, α-pinene, γ-

terpinene, limonene and p-cymene were also detected as the main compounds in the MGC 

samples.  

Table 1: Volatile compounds in the headspace of microgreen (MGC) and mature (MC) coriander. 

 LRIA MGCB MCB P* 

Methyl 2-methylbutanoate 777 238 113 * 

Hexanal 799 804 1613 * 

Methyl 2-methyl-2-butenoate 825 335 70 ** 

α-Pinene 940 4539 nd *** 

Camphene 956 643 nd ** 

cis-Sabinene 979 259 nd ** 

β-Pinene 984 208 nd ** 

β-Myrcene 994 676 nd ** 

Linalool 1102 11636 370 *** 

Nonanal 1105 703 439 ** 

p-Cymene 1030 1587 nd ** 

Limonene 1035 1727 550 ** 

(Z)-β-Ocimene 1050 136 nd ** 

γ-Terpinene 1064 2374 nd ** 

Terpinolene 1095 248 nd ** 

Camphor 1158 774 18 *** 

Borneol 1178 414 1 ** 

Dodecane 1200 579 264 * 
A Linear retention index on DB-5 column, calculated from a linear equation between each pair of straight chain 

alkanes C6–C20.  
B Estimate quantities (ng) of compound in the headspace of 0.5g of herb calculated by comparison with 5000ng 
of propyl propanoate used as internal standard.  

*Significant at the 5% level;  

**Significant at the 1% level;  
***Significant at 0.1% level. Means of three replicate samples; nd, not detected 

Results from the sensory analysis are show in Figure 1. MGC was rated as more 

intense for both bitterness and sweetness which could be associated with significantly 

higher levels of phenolic compounds as well as bitter and sweet tasting amino acids in 

MGC (Figure 1A). However, no significant differences in umami were observed between 

the microgreen and mature coriander thus confirming the amino acid results where similar 

levels of aspartic acid and glutamic acid, responsible for umami taste, were found in both 

samples. 



 

 

Maria Jose Oruna-Concha et al. 166 

 

Figure 1: Radar plot and cobweb representing the taste (A) and flavour (B) profiles of microgreen (MGC) and 

mature (MC) coriander. Intensity of each attribute was marked on a gLMS scale (n=11) (p˂ 0.05). 

Flavour characteristics (Figure 1B), on the other hand, showed significant 

differences between MGC and MC in the attributes “peppery”, “earthy” and “sharp”, 

commonly used to describe the flavour of coriander [12], on the gLMS scale with the 

MGC scoring higher than MC, which could be associated with higher levels of β-myrcene 

(peppery) and α-pinene (earthy). Furthermore, higher “perfumery” and “citrusy” notes 

were also associated with MGC. Linalool which was the major compound in the MGC 

generally contributes to the floral and pleasant notes. Several other terpenes such as 

limonene, γ-terpinene and terpinolene, present at higher level in MGC, could be 

responsible for the citrus notes described by the panellists.       

Results of the current study suggest that microgreen coriander could potentially be 

used as novel culinary ingredients whose widespread popularity may be dependent on 

familiarization of consumers with their particular sensory attributes. 
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Abstract 

After the evidence in hop of the cysteinylated precursors of 3-sulfanyl-4-

methylpentan-1-ol (3S4MPol) and 3-sulfanylhexan-1-ol (3SHol), S-glutathione 

precursors were recently investigated in Amarillo, Hallertau Blanc and Mosaic. The aim 

of the present work was to assess the linked-potential in two other dual-purpose hop 

cultivars, namely Citra and Sorachi Ace. The occurrence of S-3-(1-

hydroxyhexyl)glutathione (G-3SHol) was confirmed in all cultivars, at levels well above 

those reported for the cysteinylated counterpart, while S-3-(4-methyl-1-

hydroxypentyl)glutathione (G 3S4MPol) revealed more specific of the Hallertau Blanc 

variety. 

Introduction 

Dual-purpose hop cultivars are characterized by high contents of both bitter acids 

(>7% humulones) and essential oils. Among the essential oils, odorant polyfunctional 

thiols, present in much lower amounts (1-150 µg/kg) than terpenols (10−100 mg/kg), are 

viewed as key contributors to hop flavour in beer, especially when dry hopping or bottle 

refermentation are applied. Most of them have a 3-carbon distance between the SH group 

and the other chemical function (alcohol, ester, carbonyl, etc.). [1-5] 41 Volatile 

polyfunctional thiols have been found in hop, and each cultivar exhibits a unique thiol 

profile. [5-7] Among them are found 3S4MPol with its very nice grapefruit/rhubarb-like 

flavours (odour perception threshold = 70 ng/L in beer), and 3SHol, also with a grapefruit-

like flavour (odour perception threshold = 55 ng/L in beer). [6,7] Hoppy flavours can be 

enhanced in beer by applying either late hopping (addition of hop at the end of wort 

boiling or in the whirlpool) or dry hopping (addition of hop during beer fermentation or 

maturation). As described by Gros et al., the thiol content of the final beer reaches higher 

values than might be expected on the basis of hopping rate and hop free thiol contents, 

due to the presence of heavy precursors including cysteine adducts (levels 20-120 times 

higher than the free forms). [5] In plants, cysteine-S-conjugates usually arise through the 

glutathione detoxification pathway, where the tripeptide is added to an α,β-unsaturated 

carbonyl in the presence of glutathione-S-transferase. The resulting glutathione-S-

conjugate is further converted to the corresponding S-cysteine conjugate after successive 

enzymatic cleavages of glycine and glutamate residues. [8,9] The occurrence in hop of 

glutathione S-conjugates was evidenced for the first time in 2016. [10] Very high 

concentrations of G-3SHol were quantitated in Amarillo, Hallertau Blanc and Mosaic 

cultivars (up to 32 mg/kg). The aim of the present work was to investigate G-3SHol and 

G-3S4MPol in two other dual-purpose hop varieties: Citra and Sorachi Ace. 
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Experimental 

Extraction of cysteine and glutathione S-conjugates 

Thiols S-conjugates were extracted (according to Kankolongo et al. [10]) from the 

Citra and Sorachi Ace hop varieties. S-Benzylcysteine (Cys-IST) was used as an internal 

standard at 8 mg/kg of hop. Milled pellets (100 g) were stirred with 1000 mL of a 1% 

(v/v) formic acid aqueous solution for 2 h at 45 °C. After centrifugation for 30 min, the 

supernatants were collected and loaded on a column of IR-120 cation exchange resin (100 

g preconditioned with 100 mL of aqueous 2M HCl followed by 1 L of water). The column 

was then washed with 500 mL of water and the thiol precursors were recovered by elution 

with aqueous ammonia solutions from 0 to 3.3 mol/L (increment of 0.3 mol/L). 

Glutathione adducts are eluted in the 1.2−2.4 mol/L fractions (also containing the cysteine 

S-conjugates). Those fractions were pooled and concentrated under reduced pressure. The 

obtained extract was dissolved in a formic acid aqueous solution for analysis by HPLC-

ESI(+)-MS/MS with the Cyclobond I 2000 RSP chiral column. The elution solvents were 

water containing 0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic 

acid (solvent B). An isocratic elution with 95% solvent A and 5% solvent B was applied, 

with a flow rate of 300 μL/min. 5 µL of sample was injected onto the column at room 

temperature. The mass spectra were acquired with a BrukerDaltonics Esquire 3000 ion 

trap mass spectrometer equipped with an electrospray ion source (Bruker) operated in 

positive mode (ESI+). The ESI inlet conditions were as follows: source voltage, 4.5 kV; 

capillary temperature, 360 °C; nebulizer, nitrogen, 12 Psi. Nitrogen was also used as     

drying gas, at a flow rate of 8 mL/min. For identification, collision-induced dissociation 

MS/MS spectra were recorded at a relative collision energy of 0.2 V. For quantitation, 

the MRM mode was applied (relative collision energy of only 0.05 V to maximize the [M 

+ H+] ions). Calibration curves of G-T relative to Cys-IST were determined and the 

following equation was used: concentration of G-T (in μg/kg) = concentration of Cys-IST 

(in μg/kg) × (peak area of G-T/peak area of Cys-IST) × (mass response coefficient of 

Cys-IST/mass response coefficient of G-T). All analyses were carried out in duplicate.  

Results and discussion 

As depicted in Figure 1, HPLC-ESI(+)MRM analyses enabled us to evidence both 

diastereomers of G-3SHol in Citra and Sorachi Ace hop cultivars, at concentrations 

similar to those reported by Kankolongo et al. for the Amarillo, Hallertau Blanc and 

Mosaic hops. On the other hand, no bound 3S4MPol was found. [10] 
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Figure 1: HPLC-ESI(+)MRM analysis of G-3SHol and G-3S4MPol diastereomers in Citra and Sorachi Ace 
hops on the Cyclobond I 2000 RSP column. Comparison with three previously investigated cultivars. [10] 
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Given in free thiol equivalents (Figure 2), the glutathionylated 3SHol emerged as the 

key fraction in all cultivars while for 3S4MPol, cysteinylated and free fractions remain 

important to be considered. 

 

 

Figure 2: Concentration (μg/kg) of free and bound potentials (given in free thiol equivalents) of 3SHol and 
3S4MPol in Citra and Sorachi Ace hop varieties. Comparison to Amarillo, Hallertau Blanc and Mosaic hops. 

[10] 

In conclusion, 3SHol seems relatively ubiquitous in free, cysteinylated, and 

glutathionylated forms while the glutathione adduct of 3S4MPol was found only in the 

Hallertau Blanc variety. Further research is needed to understand how more thiols could 

be released from glutathione forms through the brewing process.  
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Abstract  

Proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) was used 

as a novel, direct and real-time analytical method to monitor small-scale fermentations 

carried out in 20 mL vials (3 mL sample volume) at 20 °C with repeated measurements 

of the headspace volatile organic compounds (VOCs) for four days. A design matrix of 

two yeast biotypes (California Ale and Edinburgh Scottish Ale) and two New Zealand 

aroma hop cultivars (Motueka and Nelson Sauvin), together with their respective no 

addition controls, were used to investigate yeast-hop interactions. The results highlighted 

the advantages of using online analytical measurements, such as PTR-ToF-MS, to 

understand temporal changes that occur in VOCs during fermentation. Distinct 

differences were observed in the VOCs profile of the different beers based on 

combinations of yeast biotype and hop cultivar; e.g. samples with Motueka and Scottish 

Ale had higher concentrations of m/z 89.057 (3-methyl-1-butanol). Complex dynamics 

were observed for VOC development during the fermentation; e.g. production maxima 

for masses such as m/z 145.121 (2-nonanol or ethyl hexanoate) and m/z 173.153 (isoamyl 

isovalerate or ethyl octanoate).  

Introduction 

The craft beer market is experiencing a rapid increase in growth. To help brewers 

optimise hop character, and to make beer with distinctive hop profiles, a better 

understanding of the role that yeast play in the development of hop character is required. 

Anecdotally, brewers report that some yeasts “promote” hop flavour or accentuate one 

hop character over another, while other yeast biotypes are considered to be “hop neutral” 

or known to reduce hop intensity. However, to date very little scientific research has been 

published on the impact of different yeast biotypes and fermentation parameters on hop 

flavour in beer or on the mechanisms responsible for differing aroma and flavour 

development [1]. 

Traditionally, hop flavour development has been assessed using GC-MS based 

approaches, where hop derived compounds in the final beer are identified and measured. 

The drawback with this approach is that it is time consuming and provides little 

information on changes that occur during brewing and fermentation. Furthermore, the 

sensitivity of GC-MS to detect volatile organic compounds (VOCs) is dependent on the 

extraction method employed and the volatility and polarity of the target analytes and their 

affinities towards the chosen solvent or solid phase material [2,3].  

In this paper PTR-ToF-MS was used to measure and compare the dynamic changes 

in VOCs during the production of beer containing one of two aroma hops (Motueka and 

Nelson Sauvin) in combination with one of two yeast biotypes (California Ale and 

Scottish Ale) and their respective no addition controls. 
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Experimental 

Laboratory scale beer samples were produced with wort standardised to 10.2˚P 

[degree Plato] (1044 OG [Original Gravity]) and 20 IBU [International Bittering Units]. 

Aroma hops (5 g/L) (Table 1) were added at 90˚C for 5 min before being cooled to 20˚C. 

Wort was inoculated with yeast (Table 1) (pitching rate: ~1.0×107 cells/mL) and divided 

into 6 aliquots (3 mL) of each treatment. Fermentation was carried out in HS-vials at 20˚C 

with consecutive headspace sampling every 6 hours using PTR-ToF-MS. Compounds 

were identified through an elemental composition calculator and preceding GC-MS 

measurements [4]. Microfermentations (3 mL) may be regarded to not closely represent 

industrial fermentations due to differences in convection and pressure in large scale 

ferments, which might impact on the magnitude of concentrations of some VOCs (e.g. 

ester formation might be altered in micro ferments). However, the production pathways 

and the sequence of changed in the volatile profile are expected to stay the same. 

Table 1: Experimental design with yeast and hop combinations (treatments) 

Treatment 
No yeast 

(NY) 

California Ale yeast 

(CA) 

Scottish Ale yeast 

(SA) 

No aroma hop 

(NH)  
Blank 

California Ale  

control 
Scottish Ale control 

Motueka hop 

(MT) 

Motueka  

control 

California Ale with 

Motueka 

Scottish Ale with  

Motueka 

Nelson Sauvin 

hop (NS) 

Nelson Sauvin  

control 

California Ale with 

Nelson Sauvin 

Scottish Ale with  

Nelson Sauvin 

Results and discussion 

The fermentation was monitored for four days and information from 672 mass ions 

(m/z) over 14 time points were collected. Two-way ANOVA was carried out to select m/z 

with a significant change during the fermentation; overall, 182 m/z were found to have a 

significant (p < 0.01) change during the fermentation. A principal component analysis 

(PCA) was carried out on all significant (p < 0.01) ions for all treatments (except 

controls). A score plot coded to highlight treatment effects of hop cultivar is shown in 

Figure 1, where each point represents the VOC profile of the selected m/z of each sample 

at each time point. Reproducibility of the replicates (n=6) was found to be very good. 

Separation along PC-1 (39% explained variance) and PC-2 (10% explained variance, data 

not shown) were mainly due to changes during fermentation. As illustrated on PC-3 (4% 

explained variance), hop cultivar had a major impact on the VOC profile at the beginning 

of the fermentation (black circles), with this impact disappearing over time due to either 

modification by the yeast cells or stripping due to CO2 production during the 

fermentation. Towards the end of fermentation yeast biotypes dominated the VOC profile 

differentiation owing to differences in the metabolites they were producing (red circles).  
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Figure 1: PCA of the samples with the significant m/z VOC profile over the fermentation time for the treatments 

Selected m/z were tracked over time to observe VOC development throughout 

fermentation. Three different dynamics were observed during the fermentation: reduction 

(through stripping, yeast uptake, or metabolic conversion), production, and increase with 

a subsequent decrease. In some cases, multiple VOCs shared the same m/z. 

 
Figure 2: Changes in generation of m/z 145.121 during the fermentation of each treatment 

An example of the varying dynamics present during the fermentation is illustrated 

by m/z 145.121 (Figure 2). This compound was tentatively identified at the beginning of 

the fermentation as octanoic acid and/or methyl heptanoate, which were determined to be 

hop-derived compounds. Towards the end of the fermentation m/z 145.121 was more 

likely to be either ethyl hexanoate and/or 2-nonanol, which were fermentation-derived 

compounds. Scottish Ale yeast with Nelson Sauvin hop demonstrated a greater reduction 

in m/z 145.121 towards the end of fermentation indicating an interaction between yeast 

biotype and hop cultivar. It is believed that differences observed in fermentation-derived 

VOC production could be due to differential gene expression.  
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The impact of the hop cultivar is evident for some fermentation-derived compounds, 

e.g. m/z 89.057 (Figure 3A), which was tentatively identified as ethyl acetate and/or 3-

methyl-1-butanol, and m/z 173.153 (Figure 3B) was tentatively identified as isoamyl 

isovalerate, pentyl pentanoate, 2-methylbutyl-2-methylbutyrate, and/or ethyl octanoate. 

For both masses, Motueka hops resulted in higher production compared to Nelson Sauvin. 

Two production maxima (~34 hours and ~60 hours) were congruent with the rate of 

change in ethanol production during the fermentation, possibly related to yeast 

metabolism and ester production.  

 

Figure 3: Changes in generation of m/z 89.057 (A) and m/z 173.153 (B) during the fermentation of each 

treatment 

In conclusion, PTR-ToF-MS can successfully differentiate and monitor the change 

in VOCs during fermentation in real time and demonstrate how interactions between hop 

cultivars and yeast biotypes result in unique VOC profiles. Dynamic monitoring has the 

capability to enhance understanding of how metabolic pathways and stress factors 

influence the production of VOCs and this knowledge will facilitate a better 

understanding of beer flavour. A better understanding of how yeast biotypes influence 

hop-derived compounds during fermentation will improve our understanding of hop 

aroma generation in beer and will give insight on how to accentuate a desired hop 

character by selecting yeast biotypes and modifying fermentation parameters. 
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Abstract  

The formation of the buttery smelling 2,3-pentanedione was studied in 

glucose/glycine and glucose/proline reaction systems under different conditions and 

compared with the formation of 2,3-pentanedione upon extrusion cooking. The 

CAMOLA approach was applied to determine the relative importance of different 

reaction pathways. The results indicate a strong impact of moisture on the formation of 

2,3-pentanedione. Under dry heating conditions, the majority of 2,3-pentanedione (70% 

to 82%) was formed from the intact glucose backbone, irrespectively of the pH and the 

type of amino acid. On the other hand, under aqueous conditions, both pH and the type 

of amino acid played an important role. At pH 5 the majority of 2,3-pentanedione was 

formed from the intact sugar backbone (60% in the presence of proline and 86% in the 

presence of glycine) while at pH 9 this diketone was almost exclusively formed by 

recombination of C3/C2 and C4/C1 sugar fragments. Upon extrusion cooking the major 

part of the 2,3-pentanedione (83%) was formed via the intact glucose backbone.  

Introduction 

Numerous studies were conducted up to date to better understand the generation of 

the buttery smelling 2,3-butanedione from reducing sugars. The use of labelled precursors 

and the introduction of the so-called Carbon Module Labeling (CAMOLA) technique 

have allowed to propose several formation pathways, but also to determine their relative 

importance [1]. The formation mechanisms were shown to be strongly affected by 

reaction conditions such as moisture, temperature, pH and type of amino acid [1-4]. For 

example, under aqueous conditions at pH 7 and 135°C, the glucose/proline model system 

generated 2,3-butanedione exclusively by recombination of sugar fragments, whereas at 

pH 5 the same precursor system generated 2,3-butanedione both from the intact glucose 

skeleton (about 30%) and by recombination of sugar fragments (70%). Similar to 2,3-

butandione, the generation of 2,3-pentanedione was shown to proceed via several 

mechanisms, e.g. from intact skeleton, recombination of sugar fragments (both of C4/C1 

and C3/C2) or by alanine-mediated chain elongation of methylglyoxal [3-6]. Nevertheless, 

the impact of reaction conditions on the importance of the individual pathways is much 

less understood as compared to 2,3-butanedione. 

The aim of this study was to better understand the impact of reaction conditions on 

the formation of 2,3-pentandione in model systems containing glucose and glycine or 

proline and to compare the results with those obtained for extruded cereals. 

Experimental 

Materials 

The following chemicals were commercially available: D-glucose, glycine, L-

proline, 2,3-butanedione, 2,3-pentanedione, monosodium dihydrogenphosphate 

anhydrous, disodium hydrogenphosphate dihydrate, trisodium phosphate, sodium 
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sulphate anhydrous (Sigma-Aldrich, Buchs, Switzerland); [U-13C6]-glucose (Cambridge 

Isotope Laboratories, Inc., Andover, USA); [13C4]-2,3-butanedione, [13C2]-2,3-

pentanedione, (Aroma Lab, Planegg, Germany).  

Aqueous systems 

Amino acid (either glycine or proline; 0.1 mmol each) and a 1:1 mixture of [12C6]-

glucose (0.15 mmol) and [U-13C6]-glucose (0.15 mmol) were placed in a 20 mL 

headspace vial and dissolved in phosphate buffer (1 mL; 0.5 M; pH 5, 7 or 9). Vials were 

sealed with a crimp cap and heated in a silicon oil bath at 135 °C for 20 min. After cooling 

down with ice water, anhydrous sodium sulphate (2 g) was added, the vials were vortexed, 

and directly analysed by HS-SPME GCxGC-TOFMS. 

Dry systems 

Mixtures were prepared as described for aqueous systems, however the samples 

were freeze dried prior to heating (135 °C for 20 min). After cooling down with ice, the 

mixtures were dissolved in water (1g), anhydrous sodium sulphate (2 g) was added, the 

vials were vortexed, and directly analysed by HS-SPME GCxGC-TOFMS. 

Extrusion trials 

The extrusion trials were performed on a twin-screw extruder BC-21 (Clextral, 

France) using a model rice recipe. Rice flour was spiked with glycine (0.05 mol/kg) and 

a 1:1 mixture of [12C6]-glucose (0.075 mol/kg) and [U-13C6]-glucose (0.075 mol/kg) and 

extruded under moderate extrusion conditions (135 °C, 20% moisture, 400 rpm). The 

extruded products were dried in an Aerotherm oven (Wiesheu, Germany) at 120 °C for 6 

min.  

Gas-Chromatography-Mass spectrometry 

The samples were analysed by HeadSpace Solid Phase Micro-Extraction in 

combination with 2D Gas Chromatography-Time-of-Flight-Mass Spectrometry (HS-

SPME-GCxGC-TOFMS) as described previously [2]. The contribution of individual 

reaction pathways to the formation of 2,3-pentanedione was calculated from the relative 

distribution of the isotopologues. All results were corrected for the 13C content of the 

natural isotope. The obtained percentage after correction <0.5% was set to 0% by 

definition. 

Results and discussion 

The formation of 2,3-pentanedione from hexoses has been shown to proceed via 

several pathways including recombination of fragments as well as formation from the 

intact sugar skeleton [3-6]. The impact of reaction conditions was studied in model 

systems containing equimolar mixtures of unlabelled and 13C6-labelled glucose 

(CAMOLA approach) in the presence of glycine or proline.  The relative importance of 

the individual pathways generating 2,3-pentanedione in glucose/proline systems under 

different reaction conditions is shown on Figure 1. 

Under aqueous conditions, the importance of individual pathways depended on the 

pH of the reaction mixture. While the formation from the intact glucose skeleton was the 

major pathway contributing to 2,3-pentanedione at pH 5 (60%), this pathway was not 

active at pH 7 and pH 9. Under neutral and alkaline aqueous conditions, 2,3-pentanedione 

was exclusively formed by recombination of glucose fragments. The recombination of 

C3/C2 fragments (e.g. 1-hydroxypropanone and acetaldehyde as proposed by Hofmann 

[5]) was the major pathway (72 % to 74%) while the recombination of C4/C1 fragments 

(e.g. 2,3-butanedione and formaldehyde as proposed by Weenen [4]) contributed to about 
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one quarter of the 2,3-pentanedione formed (24% to 28%). Contrary to aqueous 

conditions, under dry heating the formation of 2,3-pentanedione was almost independent 

of the pH value. The majority of the compound was formed from the intact sugar skeleton 

(72% to 82%) followed by recombination of C3/C2 fragments (12% to 18%). The 

recombination of the C4/C1 fragments contributed only marginally under dry heating 

conditions (6% to 8%). 

  
Figure 1: Relative contribution of different pathways generating 2,3-pentanedione in glucose/proline model 

systems under aqueous (A) and dry (B) heating conditions as calculated from the isotopologue distribution of 

CAMOLA experiments  

In the presence of glycine, the contribution of the individual pathways to 2,3-

pentanedione was different as compared to the system containing proline (Figure 2). In 

general, the contribution of the intact skeleton was more pronounced in the system 

containing glycine. The formation from the intact sugar skeleton was the major pathway 

generating 2,3-pentanedione at pH 5 (86%). The formation through recombination of 

sugar fragments was very limited at pH 5, however the importance of these pathways 

strongly increased with pH. At pH 9 the majority of 2,3-pentanedione was formed by 

recombination of C3/C2 fragments (62%), followed by recombination of C4/C1 fragments 

(24%). The presence of glycine, as compared to proline, triggered also limited formation 

of 2,3-pentanedione by recombination of C4 sugar fragment and C1 glycine fragment 

(most probably formaldehyde, the Strecker aldehyde of glycine). The importance of the 

latter pathway slightly increased with the pH of the aqueous system, but remained 

marginal.  

  
Figure 2: Relative contribution of different pathways generating 2,3-pentanedione in glucose/glycine model 

systems under aqueous (A) and dry (B) heating conditions as calculated from the isotopologue distribution of 
CAMOLA experiments  

Under dry heating condition, the results obtained in the glucose/glycine system were 

quite similar to that obtained in the glucose/proline system. Irrespectively of the pH, the 

A B 

A B 
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majority of the 2,3-pentanedione has been formed from intact glucose backbone. The 

generation of 2,3-pentanedione through recombination of C3/C2 and C4/C1 sugar 

fragments was slightly less important in the systems containing glycine as compared to 

those containing proline, in favour of generation via recombination of the C4 sugar 

fragment and C1 glycine fragment. Indeed, at pH 5 and pH 7, the dry heating system 

seems to produce more easily the C1 fragment (formaldehyde) from glycine than from 

glucose, which is not the case for pH 9 where generation of the C1 fragment from both 

precursors was comparable. In contrast, under aqueous conditions the generation of the 

C1 fragment from glucose was favoured over the generation from glycine, irrespectively 

to pH value. 

The relative contribution of different pathways generating 2,3-pentanedione from 

glucose in the presence of glycine under extrusion cooking is shown in Figure 3. The 

results indicate that upon extrusion cooking, the major part of the 2,3-pentanedione 

originates from the added precursors and only a small part (about 7%) is formed from the 

inherent precursors of rice flour. The majority of 2,3-pentanedione (83%) that originated 

from added precursors was generated from the intact glucose backbone. The 

recombination of C3/C2 sugar fragments contributed to only about 11% and 

recombination of C4 sugar fragment and C1 glycine fragment to the remaining 6% of 2,3-

pentanedione. Under extrusion conditions, the generation of the C1 fragment from glycine 

is favoured over the generation from glucose, indicating that extruded systems seem to 

behave more like dry systems than aqueous systems. 

 
Figure 3: Relative contribution of different pathways generating 2,3-pentanedione upon extrusion cooking from 

added precursors (glucose/glycine) and inherent precursors of rice as calculated from the isotopologue 

distribution of CAMOLA experiments 

In conclusion, the generation of 2,3-pentanedione from glucose strongly depends on 

the reaction conditions as well as on the type of co-reacting amino acids. Therefore, 

extrapolation of the results from models systems to food systems must be done with 

caution and should be validated by experiments using authentic food systems.   
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Abstract 

Strawberry is one of the most economically important fruit in the food industry, 

because it is used as an ingredient in jam, jelly, yogurt, several milk based products, ice 

cream, syrup, fruit juice, tea, and other processed foods. Strawberry has a unique fresh 

and fruity flavour with the contribution of more than 360 volatile compounds, which were 

widely studied by many researchers. Strawberry aroma is a complex mixture of 

furanones, esters, aldehydes, acids, alcohols and sulphur compounds. Besides, it is highly 

changed during processing. Jam making and fruit juice processing are important methods 

to preserve strawberry, which require heat treatment. Actually, fresh characteristic of 

strawberry volatiles is mostly replaced in processed strawberry by certain heat-induced 

volatile compounds, such as isobutyraldehyde, furan, furfural and dimethyl sulphide. In 

this review, change of volatile compounds of strawberry after several processes (heating, 

blanching, osmotic dehydration, high hydrostatic pressure, pulsed electric field etc.) is 

summarized. 

Introduction 

Strawberry (Fragaria x ananassa Duch) has a specific, enticing aroma and is one of 

the most popular fruits. Strawberry is the 6th most eaten fresh fruit after banana, apple, 

orange, grape and watermelon in the world. The United States is the world’s largest 

producer of strawberry. Turkey, Spain, Egypt, Korea, Mexico, and Poland are the next 

highest producing countries. Consumers prefer to purchase strawberry and its derived 

products for their unique sensory characteristics and nutritional value. It is commonly 

used as an ingredient in several food products such as jam, jelly, yogurt, several milk 

based products, ice cream, syrup, fruit juice, tea and other processed foods.  

Strawberry is rich in phytochemicals such as phenolic acid, ellagic acid, 

anthocyanins, catechins, quercetin and kaempferol (and their glucosides) which make a 

positive impact to human health. Studies made by several researchers determined that 

total phenolic content of strawberry ranges from 43 to 273 mg/100 g fresh weight (FW). 

Total anthocyanin content was identified between 6 to 102 mg/100 g FW and total ellagic 

acid content was less than 84 mg/100 g FW [1]. The predominant anthocyanin in 

strawberries is pelargonidin 3-glucoside and it defines the red colour of the fruit [2, 3]. 

Some researchers determine that quercetin 3-rutinoside is the major flavonol while others 

indicate quercetin 3-glucoside and quercetin 3-glucuronide [4]. 

Strawberry has unique fresh and fruity flavour with contribution of more than 360 

volatile compounds [5]. Furanones, esters, aldehydes, acids, alcohols, and sulphur 

compounds are the main groups, which form desired strawberry aroma [6]. Several 

processes such as heat treatments and storage can impact the concentrations of aroma 

characteristics [7, 8]. In this review, differentiation in aroma profile of strawberry after 

several processes and storage is summarized.  
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Thermal Processes 

Andujar-Ortiz et al. [9] investigated the cooked and fermented flavour in strawberry 

juices. They stated that, heating of juice to 60ºC and 90ºC generates cooked flavour, 

similar to the report of Schieberle [8]. Some of the volatile compounds are present in 

strawberries, such as mesifurane, methyl butanoate, hexyl acetate, and butyl butanoate 

[10, 11], while some of them have not previously been identified in strawberries such as 

α-bisabolol, (Z, E)-farnesol and nerol. These alcohols and γ-undecalactone found in 

strawberry jams [12]. Andujar-Ortiz et al. [9] also found that some chemical compounds 

such as α-bisabolol oxide, epoxy-linalool oxide and 1-octen-3-one were contributing to 

fermented flavour of strawberry mainly came from fresh fruit, while others could be 

formed during processing. 

Heat has an important effect on aroma profile of strawberry. Sterilization treatment 

at 120°C for 20 min caused a significant increase in the concentration of butyl acetate, 

hexanal, linalool, heptan-2-one, hexen-2-al, 2-methyl propanoic acid, butanoic acid, 

hexanoic acid, benzene methanol, furaneol, nerolidol, octanoic acid and γ-decalatone 

when compared to raw strawberry [13]. Sterilization also increases the concentration of 

acetaldehyde [14]. However, the flower-scented strawberry flavour is lost due to heat 

treatment, with a significant decrease in nerolidol and furaneol concentrations. 

Sterilization (120°C, 20 min) also formed geraniol and vanillin [13]. Also dimethyl 

sulphide and isobutyl aldehyde, which are not present in raw strawberry puree, were 

formed. Also isobutyraldehyde may be formed by Strecker degradation of valine. 2-

Furaldehyde, 2-acetyl furan and ethyl furoate were the heat generated compounds found 

in strawberry jam [14]. Sloan et al. [14] identified heat induced dimethyl sulfide in 

strawberry puree which is heated at 120°C for 30 min. It was not determined in freshly 

prepared puree but was noticed higher than its threshold level after heating for 10 min. 

Heating affect the odour characteristics of strawberries. Sweet caramel like odour 

turns into a dominant odour in heated strawberries while green and fruity odours are the 

most desirable odour in the fresh strawberry [8]. Short thermal treatments retain volatiles 

which contain fruity and fresh flavours better than long thermal treatments [15]. Thermal 

treatments with long time and high temperature lead to caramelization as well as Maillard 

reaction, which cause undesired burnt and caramel flavours during strawberry jam 

production [16, 17]. 

Ozcan and Barringer [11] studied the concentration change of volatile compounds 

in the headspace of whole undamaged, whole punctured, and whole bruised strawberries 

under refrigerated storage conditions for 8 days. (E)-2-hexenal, (Z)-3-hexenal, hexanal, 

and hexanoic acid level increased in undamaged strawberries due to the continuing 

activity of enzymes during storage. The concentration of (E)-2-hexenal and hexanoic acid 

was significantly higher in bruised strawberries, which have severe damage, than 

undamaged strawberries.  

Also some processes such as freezing and thawing did not change the furaneol and 

mesifurane level of strawberries while esters changed [18].  

Non-thermal Processes 

The traditional preservation methods require high temperatures which can destroy 

several food components [19]. In contrast to this, novel or non-thermal processes preserve 

the colour, flavour, nutritious and bioactive components of food.  
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Lambert et al. [13] investigated the differences in aromatic volatile composition of 

strawberry after high pressure treatment. Researchers applied 200 and 500 MPa for 20 

min to strawberry puree and found no major difference in aromatic profile compared to 

untreated fruit. When they used 800 MPa for 20 min, 3,4- dimethoxy 2-methyl furan and 

γ-decalactone were detected as new compounds and concentration of many volatiles 

contributing to fresh strawberry flavour, such as nerolidol, furaneol, linalool and some 

esters were importantly lower in the strawberry puree compared to unprocessed sample. 

Also pressure processed samples did not have geraniol and vanillin which are typical 

volatiles originated from sterilization (120°C, 20 min.).  

Esters are the most important flavour compounds, which give fruity note to 

strawberry. According to Lambert et al. [13], many esters remain after high pressure 

treatment, while other researchers did not determine any ester compounds after high 

pressure treatment (200, 400, 600 or 800 MPa/18-22°C/15 min) [20]. 

Cao et al. [21] studied the effects of high hydrostatic pressure (HHP) combined with 

blanching on volatile profile of cloudy and clear strawberry juices. In comparison with 

cloudy and clear juices, the concentration of total volatile constituents in HHP-treated 

(600 MPa for 0, 2, 4, and 6 min) cloudy juice increased by 13.21% while HHP-treated 

clear juice declined by 6.92%. The acid esters such as butanoic acid methyl ester, butanoic 

acid ethyl ester, and acetic acid hexyl ester decreased and the content of (E)-2-hexenal 

increased in both HHP-treated cloudy and clear juices. They also determine rise in one of 

the key aroma compounds of strawberry, 2,5-dimethyl-4-methoxy-3(2H)-mesifurane, 

19.76 and 3.80% in HHP-treated cloudy and clear juices, respectively. 

High pressure processing is also used in jam making process. Gimenez et al. [22] 

declared that application of 400 or 800 MPa pressure at 22°C for 5 min caused soured 

and lower fruity smell than conventional processed strawberry jam.  

Bermejo-Prada et al. [23] investigated the effect of hyperbaric storage (0.1, 50, and 

200 MPa for 15 days) at 20°C on the aroma profile of strawberry juice. They found that 

volatile content of samples stored under pressure were similar to beginning day. Even no 

changes were observed in important aroma compounds after hyperbaric storage. The 

study showed that hyperbaric storage was more effective than refrigeration in retaining 

the volatile profile of strawberry juices unchanged for 15 days. 

Combined osmotic-blanching treatments were applied to strawberries for increasing 

shelf life and retain fresh flavour during that time [24]. When blanching step is 

implemented before osmotic dehydration process, volatile profile of strawberries 

remained like the original. Whereas, esters and furaneol promoted when blanching is 

performed after the osmotic process.  

Geveke et al. [25] determined the effect of pilot plant pulsed electric field process 

(field strengths: 24.0–33.6 kV/cm, outlet temperatures: 45.0–57.5ºC and flow rate: 

100L/hr) on flavour of strawberry puree. Researchers did not measure specific compound 

concentrations but noticed that colour and flavour of a strawberry beverage containing 

pulsed electric field processed purée was bright red and fresh. 

Beyond the free flavour compounds, high amount of flavour compounds are 

aggregated as non-volatile and flavourless glycol conjugates [26]. Application of enzyme 

hydrolysis for clarification of juices allows freeing the volatile constituents from the 

attached fraction by hydrolyzing glycosides, and also reduces the consistency of the 

mixture by degrading pectin. This process makes possible the volatile components to 

deliver from the complex structure of food more easily [27]. 
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Conclusion  

The results obtained by several studies showed that heating affects the aroma profile 

of strawberries while non-thermal processes preserve flavour of fruit better. If blanching 

process applies before osmotic dehydration process, volatile compounds of strawberries 

remained like fresh. Pulsed electric field process, hyperbaric storage and refrigerated 

storage also had minimal negative effect on fresh strawberry flavour. 
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Abstract  

In 1932, Blakeslee and Fox published detailed reports on the inability of some people 

to taste phenylthiocarbamide (PTC), calling this heritable trait ‘tasteblindness’. In 2003, 

the molecular mechanism underlying this trait was finally elucidated. Over the last 15 

years, molecular genetics and modern psychophysics have made it clear that this heritable 

dimorphism is only one of many, some of which are directly relevant to the food supply. 

Nor are these differences restricted to taste, as other sensory modalities involved in 

flavour perception also show genetic variability. Here I review some mechanisms 

involved in systematic variation in chemosensation across individuals, and highlight a 

few examples that are relevant to ingestive behavior, food choice, and consumer behavior. 

Other complications are also discussed. 

Introduction 

Each year, the food industry spends millions of dollars formulating new products 

and reformulating existing products. For existing products, these efforts typically focus 

on either product improvement or margin improvement (a euphemism for cost cutting). 

In both cases, there is an implicit assumption that formulation influences the sensations 

arising from the food. That is, a classical psychophysical relationship is assumed: if I add 

more sucrose, my product will get sweeter. In turn, sensations are then assumed to affect 

the hedonic responses for the food. Finally, it has long and widely been accepted liking 

drives intake [1, 2], although more precisely, this relationship is heteroskedastic and 

disliking drives non-use [3, 4]. Whether implicitly or explicitly, extensive resources are 

deployed in research and development efforts under the assumption that a causal chain 

linking formulation to sensation to pleasure to use exists [5].  

However, at each step along this chain, the relationship between pairs is clearly not 

perfect (i.e., the correlation is certainly less than one). Accordingly, the final relationship 

between formulation and use is highly attenuated. As a rough estimate, reasonable values 

of the individual correlations can be drawn from existing literature (e.g., [2, 6]). As shown 

in Figure 1, when these values are multiplied together, the potential correlation between 

formulation and use is between .47 and .12, suggesting total variance in use that can be 

explained by formulation is depressingly low, somewhere between 2 and 22%. Of course, 

this is not entirely surprising given the myriad other factors which influence food choices 

and use, including availability, cost, context, health concerns, prior experience, 

physiological state, personality, parental modelling, culture, etc. [7-9]. Yet despite this 

relatively weak relationship, the continued expenditure of substantial resources on 

formulation and reformulation suggest that despite all these other factors that influence 

use, the presumed chain outlined here must still have some influence on purchase and 

use, or the food industry would have abandoned this approach years ago. 
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Figure 1: Putative causal chain linking stimulus to use, with estimated correlations between each step 

At risk of oversimplification, for many decades, the food industry focused much of 

their work on formulation and reformulation toward producing foods that please the 

largest possible number of consumers. Acceptance tests are performed with demographi 

ically appropriate consumers and sample sizes [10] that allow for interferential statistics 

to be used, under the assumption that means estimated under controlled laboratory 

conditions generalize back to the broader population in the real world. Besides the issues 

inherent to simple measurement error (see discussion in [5]), this also leads to what I call 

the paradox of the modern product development process.  

Specifically, sensory and market research studies typically use mean liking or 

acceptability to predict liking in some population, while decisions about what to eat are 

typically made at the level of the individual, and critically, individual vary. This is similar 

to the dilemma currently faced by the pharmaceutical industry, wherein clinical trials for 

new drugs are based on average responses while individuals differ in their responses to 

these drugs. There, one proposed solution is to use genetics to understand this variation 

(i.e., pharmacogenetics) towards a goal of personalized medicine [11]. Similarly, genetics 

can be used to systematically understand differences in chemosensation that may 

influence food choices and dietary behaviour [12]. That is, in addition the influence of 

formulation shown above, genetics also has the potential to influence the sensations from 

foods, with downstream implications for liking and use of various foods. 

Sources of genetic variation with the potential to influence chemosensation 

By some estimates, humans share about 99.9% of their genetic information. That is, 

given a total of ~3 billion base pairs in our DNA, on average, two randomly selected 

individuals will differ by about 3 million basepairs (i.e., 1 in 1000 basepairs). This 

variation can be broadly grouped into three categories: substitutions of individual 

basepairs, insertion or deletion of a string of basepairs, or structural variation. Here, I will 

focus on the first and third, as there is more evidence of meaningful variation in relation 

to flavour, with the caveat this may change in the future, as this is an active area of 

research.  

When an individual nucleotide basepair is changed (e.g., Thymine for Cytosine), this 

is called a single nucleotide polymorphism, abbreviated SNP, and pronounced “snip”. 

Within sections of DNA known as coding regions, base pair triplets encode which specific 

amino acid is transcribed, so a SNP may or may not alter the resulting amino acid 

sequence. If the nucleotide substitution does not change which amino acid is transcribed, 

the SNP is termed a “synonymous SNP”, as it typically assumed that such variation does 

not meaningfully influence the protein structure. Conversely, a “non-synonymous SNP” 

results in a different amino acid being transcribed, with the potential to alter the secondary 
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or tertiary structure of the protein, depending in the chemical properties of the amino acid. 

In the case of taste or smell receptor proteins, this can affect the binding pocket, resulting 

in altered receptor function. Separately, SNPs also occur in so-called non-coding regions 

of DNA. Despite being outside the gene per se, these SNPs can also influence protein 

expression, as SNPs in the promoter region of a gene can influence regulatory 

mechanisms that control when a gene is turned on or off.  

Small groups of SNPs are inherited together, meaning variation at one point in the 

genome may not be statistically independent from variation at another spot. Known as 

linkage disequilibrium (LD), this results in haplotypes, where a set of SNPs cluster within 

or even across genes. Critically, the existence of haplotypes can explain why robust 

statistical associations between SNPs and specific outcomes may still be false positives, 

mechanistically speaking. An example of this will be given below. 

A separate source of variation with the potential to influence flavour perception 

comes from a type of structural variation known as a copy number variant (CNV). In a 

CNV, a large section of DNA, typically in excess of a kilobase (1000 basepairs), is 

repeated one or more times. Higher CNVs influence the level of protein that is expressed, 

with the downstream potential to influence flavour perception.  

TAS2R polymorphisms, perception and behaviour 

The best known and studied example of taste variation is the ability or inability to 

taste a small class of structurally similar compounds that contain a thiourea moiety [13, 

14]. ‘Tasteblindness’ to PTC was briefly described in April 1931, followed by a more 

detailed formal report by Fox in 1932 [13]. Almost immediately, Snyder [15] and 

Blakeslee [16] each replicated Fox’s initial finding, and more critically, showed that this 

dimorphism was heritable. In 1932, Blakeslee and Fox conducted a ‘Taste Exhibit’ at the 

American Association for the Advancement of Science meeting held in New Orleans in 

December 1931 and January 1932 [17], where they noted that “Thomas Jefferson said all 

men are created equal, but he had not tried [phenylthiocarbamide] crystals. Taste tests 

show people are different. Our world is what our senses tell us. Each [of us] lives in a 

different world.” However, PTC is synthetic, so why would we have evolved the ability 

to taste it? In 1950, Boyd [18] concluded this ability must have evolved to protect us from 

natural anti-thyroid toxins found in plants, like 5-vinyloxazolidine-2-thione. (Interested 

readers should see [19] and [20] for more on early work in this area). 

The ability to taste PTC and related compounds, like 6-n-propylthiouracil (PROP), 

is due to SNPs in the TAS2R38 bitter receptor gene (HGCN: 9584). Three SNPs result in 

amino acid substitutions (Pro49Ala, Ala262Val, and Val296Ile) that alter receptor 

function [21, 22]. In Americans of European ancestry, the minor allele frequency of the 

Pro49Ala SNP is high (~.43), and the linkage disequilibrium (LD) with the other SNPs is 

strong, resulting in 2 common (PAV and AVI) and 4 (AAI, AAV, PAI, PVI) rare 

haplotypes. Diplotypes are roughly balanced between the common haplotype 

homozygotes (25% AVI/AVI, and 23% PAV/PAV), with proportionally more AVI/PAV 

heterozygotes (43%). The balance (~9%) have rare diplotypes. Of the 2 common 

haplotypes, the PAV variant associates with greater suprathreshold bitterness and lower 

(more sensitive) thresholds, while the AVI variant associates with less bitterness and 

higher thresholds (e.g., [23, 24]); the rare haplotypes show intermediate phenotypes [25].  

Despite PTC and PROP being synthetic compounds not found in nature or the food 

supply, tasteblindness is not merely an academic curiosity. As presaged by Boyd’s 

speculation, responses to 5-vinyloxazolidine-2-thione (i.e., goitrin), show the same (but 
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weaker) patterns of responses as PTC and PROP for PAV homozygotes, heterozygotes 

and AVI homozygotes [26]. Indeed, recent work on TAS2R38 variation and vegetable 

intake is highly consistent with earlier work associating PROP phenotype with vegetable 

intake (e.g., [27, 28]). Specifically, PAV carriers report more bitterness from vegetables 

[29, 30], lower liking [30], and thus less intake [31], in general agreement with the model 

in Figure 1. Work by Duffy et al. [31] suggests these effects are not small: AVI/AVI 

homozygotes (i.e., those who experience the least bitterness) reported eating vegetables 

much more frequently than heterozygotes or PAV homozygotes (roughly 700 versus 400 

times per year). Also, these findings seem to be robust, as similar effects on intake have 

also been reported in Italians [32], Brazilians [33], and Finns [34].  

The influence of TAS2R38 variants on diet is not limited to vegetables, as multiple 

studies show an association with alcohol use. Using a quantity-frequency measure in non-

dependent European-Americans, Duffy et al. found PAV homozygotes drank less than 

heterozygotes, who drank less than AVI homozygotes [35]. Hayes et al. replicated this 

for both drinking occasions and total intake [36]. In older white mostly male cancer 

patients, TAS2R38 SNPs associated with drinking frequency and heavy drinking 

frequency, but not drinks per drinking day [37]. In Mexicans, drinker status associated 

with the TAS2R38 Pro49Ala and Ala262Val SNPs [38]. In older Australians undergoing 

colonoscopy, intake associated with TAS2R38 Pro49Ala SNP (although effects varied by 

gender and beverage type) [39]. Again, consistent with the model in Figure 1, these 

associations appear to be mediated via differences in bitterness [40] and liking [41]. 

Critically, TAS2R38 is only one of 25 different bitter receptor genes in humans, and 

several others also appear to have functional polymorphisms that potentially influence 

ingestive behavior and food choices. For example, TAS2R31 (formerly TAS2R44 before 

being renamed; HGNC: 19113) is activated by numerous ligands including the plant 

derived compound aloin and the sweeteners saccharin and acesulfame potassium (aceK). 

SNPs in TAS2R31 alter receptor function and associate with differences in the bitterness 

from saccharin and aceK [42, 43]. As would be expected, this SNP also associates with 

differential liking of aceK [44]; whether it also predicts differences in use of aceK or 

saccharin containing products is currently unknown, at least in the open literature. 

Separately, yet another variant, the Val96Leu SNP in TAS2R4 (HGNC: 14911), associates 

with differential bitterness of the non-nutritive sweetener stevioside [45].  

Finally, it should be noted that all these SNPs and haplotypes are unrelated and 

independent of each other. That is, the bitterness of PROP is unrelated to the bitterness of 

saccharin or aceK [43, 46], and the bitterness of the sweetener aceK does not predict the 

bitterness of stevia derived sweeteners like rebaudioside A [47]. This highlights that being 

sensitive to bitterness is not a monolithic trait where an individual is universally a 

sensitive or insensitive responder. Indeed, back in 1932, Blakeslee and Fox [17] noted “a 

person may be an acute taster for one kind of bitter but a poor taster for another.” 

Odorant receptor variation, food sensations, and affective responses 

Like taste receptors, odor receptors are G-protein coupled receptors (GPCRs) that 

bind ligands, initiating the signal cascade we eventually perceive as a sensation. And like 

taste receptor genes, genetic variants have the ability to alter sensation. The observation 

that individuals are smell blind to specific odorants is not new, as Amoore first described 

what he called specific anosmia a half century ago [48]. However, unlike taste, direct 

evidence of the influence on food liking and intake is much more sparse. The best 

example to date is the meat defect known as boar taint. Androstenone is a hormone 
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produced in the testicles of male pigs, and this steroid can be found in adipose tissue. 

Notably, not all humans can smell this compound, but those who do describe it as having 

a sweaty / urine-like character. In humans, the OR7D4 gene contains multiple SNPs, two 

of which (R88W and T113M) are in very strong LD, resulting two common haplotypes: 

RT and WM. When the RT/RT homozygotes are compared to RT/WM heterozygotes, or 

the WM/WM homoyzygotes, they report more intense as well as less pleasant sensations 

from pure androstenone sniffed in a laboratory setting [49]. Notably, these effects also 

generalize to cooked meat samples spiked to contain varying levels of androstenone: the 

RT/RT individuals dislike the androstenone samples significantly more [50]. To date, 

there is no published data showing this variant influences food intake, but this seems 

highly likely, as can be attested to by anyone who has ever been served tainted pork. 

Other examples of genetic variants in odor receptors that may potentially influence food 

choice include β-ionone [51], guaiacol [52], and cilantro [53].  

Influence of genetics on texture perception  

There is some evidence that texture perception differs across people due to genetic 

variability, at least with respect to starch. Salivary amylase is encoded by the gene AMY1, 

and humans have between 2 and 15 copies [54]. As with other CNV (see above), this has 

the potential to influence the amount of protein produced. In the case of salivary amylase, 

those with higher copy numbers have both higher amounts of amylase and higher amylase 

activity [55, 56]. Because salivary amylase begins breaking down starch while it is still 

in the mouth, this has the potential to influence texture perception. Indeed, those with 

great amylase activity experience faster breakdown and greater overall changes in 

perceived viscosity [55]. There is no evidence that AMY1 CNV influences food liking or 

intake to date, but this may change as this is an active area of research.   

Further complications: perceptual interactions and false positives  

Despite the model given above, it is not sufficient to know the stimulus concentration 

in the food and the genetic makeup of the consumer. Even if they could each be measured 

perfectly, that ignores the key role of interactions that occur centrally [57]. Mixture 

suppression describes the phenomenon that occurs when two qualitatively distinct stimuli 

are mixed: in a mixture, the intensity of each quality is lower than the intensity would 

have been had the same stimulus been given in isolation. For example, sweetness from 

sucrose suppresses the bitterness from caffeine; the reverse is also true, although the effect 

is smaller [58]. This asymmetry is consistent across studies [59, 60], meaning that 

sweetness reduces bitterness more than bitterness reduces sweetness. Critically, such 

interactions can influence liking in non-intuitive ways: bitterness is normally aversive, 

but adding small amounts of quinine to concentrated sucrose can actually increase 

pleasantness ratings, due to mixture suppression [59]. Nor are such effects limited to 

model systems. Grapefruit juice is both sweet and bitter. Accordingly, when TAS2R 

variants cause some individuals to experience more bitterness from grapefruit juice, they 

also tend to experience less sweetness, presumably due to mixture suppression; as 

expected, more bitterness and less sweetness lead to lower liking [36].  

Additional complications come from false positives that can arise from haplotypes 

within and across genes. For example, multiple studies have consistently suggested the 

Arg299Cys SNP in TAS2R19 (neé TAS2R48; HGNC: 19108) predicts the bitterness of 

quinine and grapefruit juice [36, 61] and liking of grapefruit juice [3, 36]. Critically 

however, newer data show the TAS2R19 Arg299Cys SNP is in strong LD with TAS2R31 
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SNPs, which also predict grapefruit liking and quinine bitterness [62]. As the major bitter 

constituents from grapefruit juice fail to activate hT2R19 receptors in vitro, this suggests 

prior findings for TAS2R19 were false positives, at least mechanistically.  

Conclusions  

Flavour is, ultimately, a perceptual construct that occurs within a human, so it must 

be studied interdisciplinarily using multiple levels of analysis. There is a causal chain 

from stimulus to food intake, via sensation and affect, even if we only focus on one narrow 

part of this chain within our own research. Biologically driven differences in perception 

are very common, and exist for taste, smell, and texture. This ubiquity also implies that 

past work with very low numbers of observers need to be interpreted cautiously. Further 

work is needed to better understand how flavour drives food choices.  
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Abstract 

This study investigates whether variations in taste receptor genotypes account for 

differences in perception and liking of the non-nutritive sweeteners sucralose and 

Rebaudioside A (RebA). Single nucleotide polymorphisms (SNPs) of sweet taste receptor 

subunits TAS1R2 and TAS1R3 (8 SNPs), bitter taste receptors TAS2R4 and TAS2R14 (2 

SNPs), and carbonic anhydrase 6 (CA6, GUSTIN) were studied. Consumer liking and 

perception of apple beverages varying in sucralose or RebA concentration were 

measured. Of the sweet receptor SNPs, TAS1R2 rs12137730 had a significant effect on 

sweet perception of sucralose beverages. No sweet taste receptor SNPs had any 

significant effect on liking. The bitter taste receptor SNP TAS2R4 rs2234001, however, 

significantly affected bitter perception of stevia beverages; the more bitter sensitive 

consumers, homozygous for the GG allele, liked the RebA-sweetened drinks substantially 

but not significantly less than the homozygous CC group. 

Introduction 

Individual differences exist in liking and perception of sucrose sweetness [1]. 

Consumers can be classified into ‘sweet likers’ and ‘sweet dislikers’ (SLs, SDs) [2]. SDs 

like sweet taste at relatively high levels; their liking of sucrose solutions decreased at 

around 12 % (w/v), whereas SLs continued to like sucrose at 36 % (w/v) [2]. Whether 

hedonic phenotypes for non-nutritive sweeteners correlate with distinct genotypes is less 

clear. G-protein coupled receptors responding to sweet stimuli, are T1R2 and T1R3. 

Several SNPs in TAS1R2 and TAS1R3 genes have been investigated, focusing on either 

sweet perception or carbohydrate intake. One study of TAS1R2 SNPs found rs12033832 

was significantly associated with sucrose taste thresholds and sugar intake, yet cofounded 

by the body mass index (BMI) [3]. A study of TAS1R3 found correlations between sucrose 

sensitivity and two SNPs, rs307355 and rs35744813, where in both cases individuals 

carrying the T allele were less sensitive to sucrose [4]. TAS1R3 rs35744813 has been 

reported to impact on a preference for sucrose concentrations [5]. Regarding diet, TAS1R2 

rs35874116 has been shown to influence carbohydrate intake [6]. Two dental studies 

found that TAS1R2 rs3935570, rs35874116, and rs307355 are related to dental caries risk 

[7, 8]. Finally, the CA6 gene is linked to taste cell proliferation; SNP rs2274333 A allele 

carriers have been shown to have produced more taste cells [9]. There is a lack of research 

into genotype/phenotype associations and non-nutritive sweeteners. Sucralose is a widely 

used artificial sweetener, whereas steviol glycosides (SGs), such as RebA, are natural 

non-nutritive sweeteners obtained from the leaves of the Stevia rebaudiana shrub. 

However, SGs are also bitter due to their affinity for TAS2R4 and TAS2R14 receptors. 

SNPs rs2234001 and rs3741843, of TAS2R4 and TAS2R14, respectively, have been 

proposed to account for individual differences in bitter perception from SGs [10, 11]. This 

study investigates associations between receptor genotype and differences in individual 

liking and perception of the non-nutritive sweeteners, sucralose and stevia (RebA).  
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Experimental 

Subjects, study design and stimuli 

Participants (n=62; 11 male, 51 female, ages 18-62, non-smoking) were recruited 

(study number 34/16). Each participant attended two 30 min visits. In visit 1 they rated 

liking of beverages, had buccal samples collected and answered demographic questions. 

On visit 2 they rated perception of the same beverages. An Apple cordial beverage was 

developed containing an apple flavouring (0.017% w/v, International Flavours and 

Fragrances), malic acid (0.2% w/v, Sigma-Aldrich), potassium sorbate (0.02% w/v, 

Young’s Group), sucrose (2% w/v, Silver Spoon), water (Harrogate Spa), plus the non-

nutritive sweetener (sucralose, Tate and Lyle; RebA, Cargill) at varying levels (Table 1). 

To calculate equivalent sweetness (ES), it was estimated that sucralose and RebA were 

600 and 250 times sweeter than sucrose, respectively.  

Table 1: Concentration of sweetener added to apple cordial beverage models 

Equivalent 

sweetness to 

sucrose  

(% w/v) 

Equivalent 

sweetness to 

sucrose required 

from sweetener  

Sucralose 

(g/L) 

Equivalent 

sweetness to 

sucrose  

(% w/v) 

Equivalent 

sweetness to 

sucrose required 

from sweetener  

Reb 

A 

(g/L) 

3 1 0.017 4 2 0.08 

11 9 0.15 6 4 0.16 

20 18 0.30 8 6 0.24 

28 26 0.43 16 14 0.56 

36 34 0.57 32 30 1.2 

Sensory methods 

The liking of samples was rated on a 9-point hedonic scale. The five sucralose-

sweetened samples were presented first (monadic sequential presentation, balanced order, 

random code labelling and allocation), with a 30 s time delay to cleanse the palate (water, 

crackers) between samples. Following a 5 min break, the five RebA-sweetened samples 

were presented in the same manner. Perceived sweetness (all samples) and bitterness 

(RebA samples) were rated using the general Labelled Magnitude Scales (gLMS). Prior 

to sample rating, a gLMS practice session was performed where four food items (“salty 

crisps”, “black coffee”, “lemon”, and “honey”) were rated for their respective tastes (by 

recall). Testing was carried out in individual booths with artificial daylight at 23°C. Data 

were collected using Compusense at-hand software (Canada). 

Genotyping 

Two replicate buccal swab samples were collected per participant by rubbing a 

sterile swab along the inside of the cheek for 1 min. Swab heads were placed into 

individual tubes with Isohelix Dri-capsules and stored in a dry place at ambient 

temperature. Samples were sent to iDNA Genetics Ltd (Norwich, UK) for genotyping.  

Statistical analysis 

Analysis was carried out within the individual sweetener sample set. To avoid scale 

bias, sweet and bitter perception data were normalised using the gLMS practice data. 

ANOVA was used to investigate liking and taste perception depending on the sweetener 

concentration. Agglomerative Hierarchical Clustering (AHC) of liking data used 

dissimilarity (Euclidean distance) and agglomeration by Ward’s method. A chi-squared 

test of independence determined associations between receptor genotypes. Due to the 

high number of significant associations, subsequent analysis by ANOVA was performed 
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for each SNP independently. Liking and taste perception were reanalysed fitting sample, 

genotype and interaction. Using Bonferroni correction for multiple testing, a significance 

of the main effect was assumed at p<0.001. Trends at p<0.05 were discussed due to the 

small sample size. Multiple pairwise comparisons used Tukey HSD (p<0.05). XLSTAT 

software (Paris, France) was used for all statistical data analysis. Error bars on all figures 

represent standard error of the mean. 

Results and discussion 

Population genotype 

Genotypes for the receptor SNPs examined are given in Table 2. Proportion of 

participants with the minor allele types was similar to those reported in the literature, 

except for CA6 rs227433, where the proportion of the GG genotype was much lower 

(5%) as compared to previous literature (21%) [9]. 

Table 2: Distribution of receptor genotypes within the study population 

Cat. 
Receptor 

Gene 
SNP 

Allele 

Frequency 

Homozy. 

wild type 

n (%) 

Heterozy. 

type n (%) 

Homozy. 

polymorphic 

type n (%) 

s TAS1R2 rs35874116 T > C 36 (58) 23 (37) 3 (5) 

s TAS1R2 rs12033832 G > A 27 (43) 29 (47) 6 (10) 

s TAS1R2 rs12137730 A > C 30 (48) 25 (40) 7 (12) 

s TAS1R2 rs4920566 G > A 16 (26) 32 (52) 14 (22) 

s TAS1R2 rs3935570 G > T 31 (50) 30 (48) 1 (2) 

s TAS1R2 rs4920564 G > T 32 (52) 24 (39) 6 (9) 

s TAS1R3 rs307355 C > T 42 (68) 14 (23) 6 (9) 

s TAS1R3 rs35744813 C > T 46 (74) 10 (16) 6 (10) 

g CA6 rs2274333 A > G 33 (53) 26 (42) 3 (5) 

b TAS2R4 rs2234001 C > G 23 (37) 25 (40) 14 (23) 

b TAS2R14 rs3741843 A > G 45 (72) 11 (18) 6 (10) 

*Cat. = category; s = sweet, g = gustin, b = bitter 

Influence of sweet stimuli and genotype on the sweet perception 

Sweetness increased with increasing sweetener concentration as expected. Fig.1a 

demonstrates psychophysical relationship between perceived sweetness against stimuli 

concentration (log-log plot). As samples contained two different types of sweetener, and 

in all cases 2 % sucrose was included, the stimulus concentration is represented as ES. In 

the case of sucralose, the relationship for sweetness approximated a decelerating 

relationship (exponent 0.7), whereas for stevia the relationship is close to proportional 

(exponent 0.9). There was no effect of CA6 rs2274333 on sweetness perception (data not 

shown). Of the 8 type-1 receptor SNPs investigated, there was only one significant 

association between sweetness perception of sucralose which was for TAS1R2 SNP 

rs12137730 (p=0.0001) (Fig. 1b), with a tendency for an effect of rs35874116 (p=0.011) 

(data not shown). Of these two SNPs, TAS1R2 SNP rs12137730 also had a tendency for 

association with sweetness perception of stevia (p=0.005) (Fig. 1c). However, there was 

no clear link to the wild or minor allele (Fig 1b-c); consumers with the AC genotype rated 

sweetness higher than either homozygous group for both sweetener types. This result 

should be treated with caution as the CC group size was small (n=7). In the case of 
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TAS1R2 rs35874116, there was a tendency for the TT homozygotes to rate sweetness 

from sucralose higher than the CC homozygotes, but this effect was not replicated for 

stevia, and the CC group was extremely small (n=3) (data not shown). Neither of these 

two SNPs influenced liking. 

Figure 1: (a) Psychophysical relationship between perceived sweetness (log gLMS data) and equivalent sucrose 

concentration (log %w/v), (b) Sweet perception of sucralose sweetness according to TAS1R2 r12137730 

genotype, (c) Sweet perception of stevia sweetness according to TAS1R2 r12137730 genotype, (d) Bitter 
perception of stevia beverages according to TAS2R4 rs2234001 genotype. (ES = equivalent sweetness) 

Influence on genotype on bitter perception of Stevia 

In addition to sweet taste, RebA imparts bitter taste and liquorice flavour [10]. 

Previous studies have shown that bitterness becomes noticeable above 1000µM [10], 

which is equivalent to 0.97g/L, between samples 4 and 5 in the present study. The 

relationship between bitterness and Reb A concentration was far less than proportional 

(exponent 0.28 on log-log plot, data not shown), and indeed the bitterness perceived was 

very low until 0.56 g/L. In the present study, there was no relationship between TAS2R14 

rs3741843 and RebA bitter perception; however the influence of TAS2R4 rs2234001 was 

significant (p<0.0001), where the homozygous GG group (n=14) rated bitterness 

significantly higher than the CC group (p<0.0001%) (Fig. 1d), as expected from previous 

literature [10]. In addition, the CA6 SNP rs2274333 demonstrated a relationship that was 

close to significance (p=0.003; data not shown); the homozygous GG group tended to 

rate bitterness lower than the other two groups, however, there were extremely few GG 

consumers (n=3). Although TAS1R3 rs307355 and rs35744813 did not influence sweet 

perception, there was a trend for an effect on bitter perception (p=0.004 and p=0.003, 

respectively; data not shown). For both SNPs the homozygous polymorphic type (TT) 

rated bitterness lower than the wild type CC groups (p=0.005; data not shown) however, 

there were only 6 TT participants for each of these SNPs. These SNPs were not associated 

with the type 2 bitter receptor genotypes tested, therefore, there is no clear hypothesis for 

this trend.  
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Influence on sweet stimuli and genotype on liking of Apple Cordial Samples 

Table 3 demonstrates liking of the apple beverages across the study population. With 

both sweetener types the mean liking increased from the first to second concentration, 

plateaued from the second to fourth sample, and decreased at the highest sweetener 

concentration. The sweetness varied from an ES of 3 to 36 % (w/v) sucrose.  

Table 3: Mean liking of apple beverages sweetened with varying levels of sucralose or rebaudioside A (with 

2% sucrose w/v). (S1 to S5 = samples 1 to 5). abcValues without the same letter significantly different (p<0.05) 

 S1 S2 S3 S4 S5  

Sucralose (g/L) 0.017 0.15 0.3 0.43 0.57  

Reb A (g/L) 0.08 0.16 0.24 0.56 1.2 Significance (p) 

Sucralose 4.3a 6.3c 6.2 c 6.1bc 5.3b <0.0001 

RebA 4.4ab 5.6 c 5.6 c 5.0bc 3.7a <0.0001 

 

 

Figure 2: (a) Liking of sucralose beverages by consumers clustered into two distinct liking groups, (b) Liking 

of RebA beverages by consumers clustered into three distinct liking groups. (ES = equivalent sweetness, SD = 

sweet liker, SL = sweet liker) 

AHC revealed two liking clusters for sucralose beverages (Fig. 2a): for the larger 

cluster (58%), sucralose SLs, liking reached a maximum at an ES of 19.5%, which was 

then maintained. The sucralose SDs reached maximum liking at 11% ES, above which 

liking decreased. For RebA there were 3 clusters (Fig. 2b): there was an outright RebA 

SL group (18%), where liking increased with increasing RebA, however, there were two 

SD groups. The first SDs(i) (31 %) showed a similar pattern of liking to the SLs up to an 

ES of 6-8%, above which their liking ratings decreased. The second SD(ii) group (52%) 

rated their liking at all levels of RebA lower than the other 2 groups, and again their liking 

for the RebA sweetened beverages decreased when ES above 8%. Considering the sweet 

perception of the sweet liking groups, there was no significant difference between the 

sucralose sweet perception between the 2 clusters (p=0.07). However, there was a 

significant difference in sweet perception for the stevia sweet liking clusters (p=0.006) 

where the SLs had lower sweet perception than both the SD(i) and SD(ii) groups (p=0.002 

and 0.006, respectively). In addition, there was a difference in bitterness perception 

between these groups, where the participants that particularly disliked RebA beverages 

(SD(ii)) had significantly higher bitter ratings than the SD(i) group, that only disliked the 

higher RebA levels (p=0.008).  

None of the sweet receptor SNPs, nor the CA6 SNP, had any significant effect on 

liking of either sucralose or RebA sweetened beverages at p<0.001. However, for RebA 

there were trends for two TAS1R2 SNPs (rs4920566 p=0.01; rs12033832 p=0.04), the 2 
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TAS1R3 SNPs (rs307355 p=0.01, rs35744813 p=0.008) and the TAS2R4 rs2234001 

(p=0.004). The more bitter sensitive TAS2R4 rs2234001 GG group liked the RebA 

sweetened drinks substantially less than the homozygous CC group (p=0.003). However, 

for TAS1R3 rs307355 and rs35744813, the CC groups which rated bitterness higher had 

a tendency to give higher mean liking scores which cannot readily be explained. For 

TAS1R2 rs4920566 the trend in liking was attributed clearly to the minor allele, as the 

heterozygotes rated liking higher than either homozygous group. For TAS1R2 

rs12033832 the homozygotes with the minor allele (AA) rated liking higher for stevia 

beverages. Although they did not differ here in sweet perception, a previous study [3] 

found the AA group of normal BMI to have higher taste thresholds for sucrose.  

In conclusion, consumers varied in their liking for sweetness of sucralose and RebA, 

as previously shown for sucrose. Such differences in liking were not associated with 

differences in their perception of sucralose. However, for stevia-sweetened beverages our 

study revealed that those participants with a higher liking had a lower sweet perception, 

and those that particularly disliked these beverages found them to be more bitter. There 

were a number of trends for the receptor genotypes tested to influence perception and 

liking of the apple beverages, however, there were only two significant differences at 

p<0.001: TAS1R2 rs12137730 had a significant effect on the sweet perception of the 

sucralose beverages, and TAS2R4 rs2234001 had a significant effect on the bitter 

perception of the stevia beverages. To reduce free sugar intake, beverage manufacturers 

are replacing sugar with non-nutritive sweeteners. The findings of this study may help to 

explain why consumers differ in their sensorial appreciation of non-nutritive sweeteners. 

23% of our study sample were of the TAS2R4 rs2234001 GG genotype, suggesting that a 

substantial proportion of the population may find RebA to be too bitter, which may 

influence their beverage choice. 
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Abstract  

Aroma-induced sweetness enhancement (AISE) is a cross-modal perceptual inter-

action repeatedly demonstrated in model foods but rarely in real foods. Previously, we 

hypothesized that the taste of flavoured foods can be enhanced by aroma components 

associated with naturally occurring taste-intense versions of that food. This was proven 

for apple juice sweetness by adding ethyl hexanoate (HEX), an odourant synthesized in 

apples during ripening. Here, we investigated whether AISE persists after repeated 

exposure or whether humans eventually learn to discriminate between sugar- and aroma 

contributions to sweetness. A case series study was performed to assess the effects of 

sucrose feedback on the perceived sweetness of apple juice. Feedback effects were 

assessed by pre-test/post-test evaluations by 21 subjects of the sweetness of HEX-con-

taining (0, 1, 2, 5 ppm) apple juices with 0% or 2% sugar added. Juices were evaluated 

naively and after 4 and 8 intermittent sucrose feedback sessions. Finally, subjects rated 

sweetness after a 35-day washout period in which no further feedback was given.  

Significant enhancement of sweetness by HEX confirmed previous findings that 

AISE occurs with naïve subjects (HEX effect: p < 0.001) and is most profound at low 

sucrose concentrations (HEX x Sucrose effect: p < 0.05). Furthermore, AISE was sup-

pressed to an extent proportional to the amount of feedback received (HEX x Feedback 

effect: p < 0.001), but recovered significantly after washout for all but the highest HEX 

concentration (HEX x Washout effect: p < 0.05). Results contradict that subjects acquired 

perceptual skills to distinguish between sucrose- and odour-induced sweetness. Instead, 

we conclude that subjects temporarily adopted the response strategy to reduce sweetness 

ratings with a factor proportional to the perceived intensity of the HEX odour. Results 

indicate the long-term applicability of AISE to reduce sugar in naturally flavoured 

beverages. 

Introduction 

Overweight and obesity are increasing health threats in the western society [1]. In 

part, their incidence is attributed to a global shift in diet towards increased intake of 

energy-dense foods that are high in fats and sugars [2, 3]. Sweetened beverages appear to 

play an exceptional role in this dietary shift as drinking beverages results in higher ad-lib 

calorie intakes than spooning beverages [4, 5]. A recent investigation under Dutch 

primary school pupils substantiated the effect of liquid calorie intake on weight gain. It 

showed that the sugar content of fruit-based juices, consumed as single 250-mL servings 

during daily lunch, significantly contributes to weight gain over a period of one year [6]. 

Hence, lowering the sugar contents of beverages that are drunk on a daily basis may 

reduce overweight incidence. 
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In order to reduce sugar in beverages without affecting taste, synthesized intense 

sweeteners are being applied extensively in spite of resistance from consumer organiza-

tions against the use of synthesized sweeteners [7, 8]. Yet, alternative sugar reduction 

strategies are available that do not require substitute sweeteners. First of all, consumers 

may adapt to a gradual reduction of sugar from all beverages. This could challenge 

consumer loyalty for beverages and the successful gradual reduction of sugar would 

therefore require broad commitment in the industry. More elegantly, compensation of 

sweet taste may be compensated for by aromas, as was shown for simple taste solutions 

[9, 10].  

Reports on such aroma induced sweetness enhancement (AISE) of real foods are 

few. This may be due to the fact that foods have pronounced aromas already, which makes 

improvement more challenging than in simple aqueous taste solutions. To deal with the 

complexity of adjusting existing food aromas for taste enhancement, we introduced a 

modified approach to the AISE paradigm [11]. This approach was born from the 

hypothesis that, by mere exposure to many instances of foods, humans learn to associate 

food aromas with the taste (intensity) that it usually accompanies. If so, mimicking the 

aroma of sugar-rich versions of a food would raise perceived sweetness by mere 

suggestion through the aroma. This was confirmed by the demonstration that ethyl 

hexanoate (HEX), an aroma component that is synthesized simultaneously with sugars in 

apples during ripening [12], raises the sweetness of apple juice. Although demonstrated 

repeatedly [11], it is yet unclear whether this effect is robust over long-term repeated 

presentations to the same subjects. 

In the present study, we tested the robustness of the previously demonstrated en-

hancement of sweetness by mimicking the aroma of sweeter versions of the same food. 

To that end, we monitored AISE of apple juice by HEX over repeated exposures during 

a 6-month period. To maximize the opportunity of panellists to learn to distinguish 

between the contributions of sucrose and aroma to sweet taste, explicit feedback on 

sucrose-calorie content was provided intermittently in dedicated sessions. To prevent that 

sweetness differences could only be attributed to aroma differences, two concentrations 

of sucrose were used in the apple juices. This was expected to aid subjects in dis-

tinguishing between AISE-induced and sweetener-induced sweetness. After repeated 

sucrose-feedback sessions, a wash-out period was observed during which no sucrose 

feedback was given. AISE is still to be considered robust if it recovers from initial sup-

pression by sucrose feedback during this wash-out period. 

Experimental 

Subjects 

Forty-five naïve subjects enrolled in the experiment. Of these, 26 passed tests for 

normogeusia and normosmia. In line with ISO guidelines on the selection of panellists 

(ISO 8586-1:1993) normogeusia entailed the correct identification of 9 out of 12 duplicate 

presentations of water and aqueous tastant solutions of sucrose, sodium chloride, citric 

acid, caffeine and mono-sodium glutamate. Smell acuity was assessed by the Dutch odour 

identification test GITU; [13], an odour recognition test using 36 common odours varying 

in familiarity. Test results of 18 or more correct identifications were considered 

normosmic. Of the 26 selected subjects, 21 completed the study (mean age 40.7 years, 7 

male). Their acuity scores were 10.0 and 22.6, respectively. This panel size was 

considered sufficient to replicate the AISE studies by Knoop [11], involving 17 or 18 

subjects. 
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Under the Dutch regulations, a medical-ethical evaluation was not indicated at the 

time of execution of this behavioural study (2009-2010). However, the application of 

stimulus materials in naïve panellists was medically-ethically approved by the 

Wageningen University medical ethical board (NL25364.081.08). The study was 

conducted in compliance with the Declaration of Helsinki on Medical Research Involving 

Human Subjects. Subjects gave written informed consent and were paid for their 

participation.  

Methods 

Stimuli: Stimuli were apple juices with varying contents of sucrose and additional 

aromas. Apple juices were prepared by diluting a commercial apple juice concentrate, 

low in aroma content (‘medium acid’, FrieslandCampina, the Netherlands) in water 

(Evian, Danone, France) at a concentration of 130 g/L. To this dilute, 10 ppm (vol/vol) 

of a commercial food-grade apple aroma (Aroma Type ‘apple’; IFF, Hilversum, the 

Netherlands) was added. Crystalline sucrose (0 or 2 % w/w) obtained from the local 

supermarket and food-grade ethyl hexanoate (0, 1, 2 or 5 ppm (vol/vol); Sigma-Aldrich, 

Zwijndrecht, the Netherlands) were added to the apple juice in a full-factorial manner to 

obtain eight different apple juices.  

Procedure: Thirty-ml medicups (King, Tiel, the Netherlands) were filled with 25-ml 

aliquots of apple juice and closed by a lid with a straw (8.0 mm o.d.) stuck through a hole 

of the same diameter. In this way, retronasal aroma stimulus presentation was favoured 

as it is assumed that AISE is optimal for retronasal aroma presentation [14]. The apple 

juice without added HEX or sucrose was presented as reference stimulus in transparent 

plastic cups of 100 ml (King, the Netherlands). These cups were sealed with Parafilm® 

(Pechiney Plastic Packaging, US) through which a straw was inserted. Stimuli were 

labelled with 3-digit codes for identification without revealing their composition. 

Subjects started each session by first evaluating the reference stimulus. They could 

taste this reference stimulus at will throughout the experiment. Subjects then rated the 

sweetness of the apple juices on visual-analogue scales anchored 0 at the left extreme 

(‘not sweet at all’) and 100 at the right extreme (‘very sweet’). To prevent that perceived 

stimulus differences due to aroma manipulation would, for lack of response alternatives, 

be dumped into the sweetness ratings [15], three additional attributes were evaluated in 

parallel to sweetness on identical scales. These attributes, ‘sourness’, ‘apple-like aroma’ 

and ‘flowery-like aroma’, were previously identified as important quality descriptors of 

the apple juices in the Knoop studies [11]. Reference scores for these attributes were also 

derived from the Knoop studies. The stimulus presentation order was individually 

randomized. Attribute ratings were collected with EyeQuestion software (Logic8, Elst, 

the Netherlands). 

Experimental design 

Subjects evaluated apple juices that varied systematically in HEX content (0, 1, 2, 5 

ppm) and added sucrose content (0, 2% w/w), combined in a full-factorial manner. In 

addition, the amount of sucrose-content feedback given was manipulated systematically. 

For this, the experiment consisted of 7 phases (Figure 1) during each of which all 8 apple 

juices were evaluated. The first, naïve, evaluation phase (I) was in essence a replication 

of the study by Knoop [11] performed in two consecutive sessions. During the subsequent 

sucrose feedback phase (4 sessions), sucrose content information was presented to 

subjects during stimulus evaluation. In a subsequent informed evaluation phase (II; 2 

sessions), subjects evaluated stimuli in an identical fashion as during the first stimulus 
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evaluation phase. Because subjects received feedback prior to this evaluation phase, they 

were not naïve regarding possible discrepancies between the perceived sweetness and the 

actual sucrose contents. This procedure was repeated in a second sucrose feedback phase 

(4 sessions) and a further informed evaluation phase (III; 2 sessions). After a subsequent 

wash-out period of 3 weeks, subjects performed another evaluation (IV; 2 sessions), 

which took place 5 weeks after they received the last sucrose feedback.  

 

Figure 1: Scheduled experimental sessions in days after start. Subjects rated the sweetness of apple juices in 

duplicates on fixed week days under four information conditions: (I) ‘naïve’ regarding the actual sucrose 

contents, (II) after 4 evaluation sessions in which sucrose content feedback was provided, (III) after further 4 
sessions in which sucrose content feedback was provided, and (IV) 5 weeks after the last exposure to sucrose 

content feedback. 

Data analysis 

Only sweetness ratings are evaluated since aroma and sourness attributes were 

merely included in the experiment to prevent dumping. The statistical evaluation of 

sweetness results is divided in three relevant sub-tests:  

Naïve evaluation. First, to test whether the AISE results of Knoop [11] were repro-

duced, sweetness ratings from the (naïve) evaluation phase I were subjected to repeated-

measures ANOVA, testing for main effects of HEX concentration (HEX; 0, 1, 2, 5 ppm; 

within-subject), added sucrose (Sucrose; 0, 2% w/w; within-subject) and Replicates 

(within-subject), and for the respective 2-way and 3-way interactions.  

Sucrose content feedback. Second, the effect of sucrose content feedback on 

sweetness ratings was tested by comparing sweetness ratings for the three conditions of 

increasing sucrose content feedback (Feedback; ‘naïve evaluation I’, ‘informed evalua-

tion II’ and ‘informed evaluation III’). Between these evaluation conditions, the total 

exposure of subjects to sucrose content information was the distinguishing variable. 

Hence, the factors tested were Feedback (naïve, 4x feedback, 8x feedback), HEX (0, 1, 

2, 5 ppm), Sucrose (0, 2% w/w) and Replicates and their mutual 2-way and 3-way inter-

actions (all within-subject).  

Recovery. Third, to test whether recovery of AISE occurred after the wash-out pe-

riod, sweetness ratings collected after the wash-out period in evaluation phase IV were 

compared to ratings collected during evaluation phase III. The factors thus tested by 

ANOVA were Recovery (most-informed [III] vs. after washout [IV]), HEX, Sucrose and 

Replicates, along with their mutual 2-way and 3-way interactions (all within-subject).  

All statistical tests were performed with Statistica (version 10, 2011; Statsoft, Inc, 

Tulsa, OK). 
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Results and discussion 

Naïve evaluations  

For the naïve evaluations of apple juice, significant effects were observed for 

Sucrose [F(1,20) = 49.1; p < 0.001], HEX [F(3,60) = 8.91, p < 0.001] and the Sucrose x 

HEX interaction [F(3,60) = 3.06, p < 0.05]. Observed sweetness ratings (Figure 2) reflect 

the observation by Knoop [11] that both sucrose and HEX enhance sweetness, and that 

the contribution of HEX to sweetness is more pronounced at lower sucrose concen-

trations. No significant effects were observed for replicates or for any of the interactions 

involving replicates.  

 

Figure 2: Rated sweetness as a function of ethyl hexanoate- and sucrose concentrations in apple juice under 

different sucrose content feedback conditions: I = no information provided, II = after 4 sucrose content feedback 

sessions, III = after 8 sucrose content feedback sessions and IV = after a subsequent ‘wash-out’ period of 5 
weeks during which no sucrose content information was communicated. 

Sucrose content feedback 

Sweetness ratings were affected by Sucrose [F(1,20) = 85.4, p < 0.001], HEX 

[F(3,60) = 3.81, p < 0.05] and the HEX x Feedback interaction [F(6,120) = 5.85, p < 

0.001]. No main effects of Feedback or Replicate or other interactions were observed. 

Inspection of sweetness ratings for the first three evaluation phases in Figure 2 shows that 

the main effect of Sucrose is due to an overall sweetness enhancement upon addition of 

2% w/w sucrose. The addition of increasing concentrations HEX results in increasing 

sweetness ratings in the naïve evaluation setting, and to a lesser extend also in the 

evaluation after the first sucrose-content feedback phase, explaining the main HEX effect. 

The observed HEX x Feedback interaction is reflected in a gradual decrease of HEX-

induced sweetness enhancement for increasing amounts of feedback on sucrose content. 

In fact, after two feedback blocks, no HEX-induced sweetness enhancement is observed 

at all (Figure 2, plot III). 
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AISE recovery effects after wash-out 

Analysis of the effects of a wash-out period on AISE (evaluation IV versus evalua-

tion III) resulted in significant effects of Sucrose [F(1,20) = 70.7, p < 0.001] and a non-

significant trend for the HEX x Recovery interaction [F(3,60) = 2.56, p = 0.063]. In-

spection of the interaction effect of HEX x Recovery on sweetness learns that AISE 

appears to be restored for the lower HEX concentrations (0, 1 and 2 ppm) but not for the 

highest HEX concentration (5 ppm). For the 3 lowest HEX concentrations, this com-

parison results in a significant HEX x Recovery interaction [F(2,40) = 3.62, p = 0.036]. 

No main effects of Replicate or HEX were observed, nor for any of the remaining inter-

actions. 

Discussion 

Aroma-induced taste enhancement is a cross-modal perceptual interaction that re-

ceived a fair amount of attention in the scientific literature. This interest could originate 

from the prospect of exploiting cross-modal effects to reduce sugars and sodium in foods. 

Nonetheless, only few reported on the successful application of single odourants to 

enhance the taste of model systems reminiscent of real foods [11, 16, 17], possibly 

because of the challenge to modify the existing aromas of these foods without ill effects 

on their quality. The aroma-induced taste enhancement paradigm proposed by Knoop [11] 

differs from classical cross-modal interaction approaches because it entails the balancing 

of selected aroma components in line with their natural occurrence in sweeter versions of 

the food, rather than the classical combination of singular aroma components or entire 

aroma mixtures with a mere taste solution. Consequently, literature reports on AISE in 

simple taste solutions may still be a poor indicator of the reliability and robustness of the 

few observations of aroma-induced taste enhancement by Knoop. Therefore, the repeated 

observation of AISE in apple juice by an odourant that is synthesized in sugar-rich apples 

provides further support for the hypothesis that AISE exists in real foods and that it relies 

on previously learned aroma-taste associations. 

In the present study, explicit feedback on sucrose contents of stimuli elicited a pro-

found suppression of AISE. After four sucrose feedback sessions, HEX contributions to 

sweetness ratings nearly disappeared and after eight feedback sessions HEX did not 

contribute to sweetness ratings at all. As the contributions of sucrose to sweetness remain 

unchanged over feedback conditions, it is expected that the feedback-induced sweetness 

reductions are entirely due to a changed processing of aroma information, and not to a 

changed processing of sweetness in general. We therefore conclude that subjects have 

learned to use aroma information to adjust their sweetness ratings on basis of feedback 

regarding the stimulus sucrose contents. The conscious exposure to calorie feedback 

therefore appears to mimic acceleration of the effects of repeated exposure to stimuli on 

the reduction of sweetness ratings.  

Central to the interpretation of these results is the question whether the observed 

suppression of AISE after sucrose content feedback reflects a limited robustness of AISE 

for repeated exposure. We think that the answer lies in the mechanism involved in the 

observed AISE suppression. Either, subjects became unresponsive to HEX after sucrose 

feedback because (i) they successfully acquired the skill to perceptually isolate the aroma 

contribution to sweetness from the sucrose contribution, or (ii) they learned to apply the 

response strategy that if HEX is perceived, the perceived sweetness should be diminished 

with a corresponding amount. The former explanation reflects a genuine refinement of 

perceptual skills whereas the latter implies that only response behaviour is affected by 

feedback. In the latter case, a reduction of AISE after sucrose content feedback does not 
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unequivocally demonstrate a poor robustness of AISE because perception is overruled by 

the application of a response rule. Given the general long-term persistence of acquired 

perceptual skills and perceptual odour associations [18, 19] and the more transient nature 

of non-reinforced cognitive strategies in perceptual tasks [20], it is expected that response 

strategies will decay after discontinued feedback, whereas perceptual associations will 

not. If a response strategy invokes AISE suppression, AISE is expected to recover after a 

wash-out period during which no further feedback is given on sucrose content. Therefore, 

the observed AISE recovery after the final wash-out period is indicative of robust 

sweetness enhancement by HEX and of a response rule in decay. Further support for this 

interpretation is that, after the wash-out period, sweetness enhancement was restored for 

the two intermediate HEX concentrations (1ppm and 2ppm), but not for the highest 

(5ppm) HEX concentration. This suggest that AISE recovered, although partially 

compensated for by a remainder of the response strategy that only kicks in when the 

enhancing aroma becomes too apparent, i.e. at its highest concentration.  

The partial recovery of AISE after a wash-out period favours an explanation in terms 

of robust AISE and a decaying application of a response strategy. Would AISE have 

recovered even more after longer wash-out periods? As the present results do not rule out 

a persistent partial suppression of AISE, we invited the panel for a repeated evaluation of 

the used stimuli, one year after the start of the experiment, to verify whether further 

recovery of AISE occurred. Unfortunately, panellist drop out had increased by then and 

the sweetness ratings collected for the remaining subgroup of panellists showed a 

decrease of general task performance (higher intrinsic response variation). This may 

reflect a general problem in longitudinal studies of multimodal perception in which a 

panel should be kept naïve and untrained during wash-out periods. 

In general, studies on taste enhancement by factors other than the tastant concen-

tration show that enhancement is most pronounced at lowered tastant concentrations. This 

is, for instance, observed for aroma-induced taste enhancement of sweet tasting stimuli 

[11, 21], salty stimuli [22] and the effects of salt distribution on the salty taste of bread 

[23]. The present study confirms this dependency, which further supports the applicability 

of AISE for enhancing the sweetness of beverages with reduced sugar contents.  

This study is premised on the idea that by informing panellists on the amounts of 

sucrose in the apple juice, the worst case scenario is created for the extinction of AISE. 

If explicit sucrose feedback cannot forestall AISE in the long run, does this therefore 

really imply that AISE is robust for long-term repeated exposure? Or may, alternatively, 

the chosen feedback regime in the present study not have challenged AISE robustness 

enough? For instance, one may argue that after repeated exposure to low-sugar juices 

with the enriched aroma, subjects may cease to associate the aroma with sweetness and 

the sweetness-enhancing effect of the aroma would disappear. This scenario is improba-

ble if perceived sweetness were the main driver for the learned aroma-taste association 

because a full compensation of sugar reduction by AISE would not reduce the perceived 

sweetness. However, sugar is not only a sweetener but also an important energy source. 

Pairing a particular aroma with low-energy foods may then, in the long run, invoke 

consumers to associate aromas with caloric content as was previously shown for rodents 

[24]. Attempts to replicate such controlled intake experiments in humans failed, as foods 

in which aromas signalled different calorie contents [25, 26] invoked no behavioural 

changes due to metabolic impact. With this in mind, we consider the present study a 

greater challenge to the robustness of AISE than mere repeated consumption. Regarding 

the comparison with explicit sucrose feedback in real-life, we argue that even if 
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consumers would spell out ingredient lists, the discrepancy between sucrose contents and 

the perceived taste intensity would not be as explicit as it was in this study. Nonetheless, 

only a longitudinal consumer study that monitors daily intake under natural conditions 

without revealing the focus on taste-aroma interactions, taste intensity and preference 

may provide a conclusive answer. 
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Abstract 

The olfactory dimension of food flavour is critical to the food identity and typicality. 

Food odour and aroma result from the processing of complex mixtures of volatile 

compounds activating the sense of smell. The perceptual properties of odour mixtures 

have been explored from both the aroma analysis point of view and the psychophysical 

point of view, thus revealing perceptual effects such as masking, synergy, or perceptual 

blending. However, considering odorants separately, the classical aroma analysis 

approach misses the central role of perceptual integration in odour mixture processing. 

Therefore, the challenge of food flavour analysis is now to integrate the mechanisms of 

complex odorant mixtures perception. Here, we briefly review recombination strategies 

and tools that are already available to go one step forward and consider not only key-

odorants but also key-associations involved in overall flavour perception. 

Introduction 

The olfactory dimension of food flavour is critical to the food identity and typicality. 

This has been nicely showed in a basic experiment by Mozell et al. [1], in which a group 

of subjects had to identify real food flavours. In order to minimize identification by 

nonchemical cues, 20 food samples were prepared to be presented as liquids of about the 

same apparent viscosity. Subjects were allowed to swirl the liquid around their mouth 

before being asked to identify the flavour by a food name (e.g. "chocolate, "coffee," 

"onion,"). All the samples were presented twice to each subject but following two 

experimental procedures. In a first condition, the olfactory dimension was removed since 

subjects were equipped with an air stream apparatus, connected to their nostrils, which 

blew odourless air in the direction opposite to the movement of volatile molecules from 

the mouth to the nose via the nasopharynx. In the second condition, without the air stream 

apparatus, the nose remained normally accessible to the molecules. When deprived of the 

olfactory and the nasal trigeminal inputs, subjects were poorly able to identify the samples 

and were even unable to identify the flavour of coffee or chocolate. 

Food odour and aroma are both percepts, namely cerebral representations, 

constructed on the basis of the olfactory processing of complex mixtures of volatile 

compounds able to activate olfactory receptors [2]. Following the aroma analysis classical 

methodology, GC/MS-O (Gas Chromatography/Mass Spectrometry-Olfactometry) is 

used to separate and identify those odorants that contribute to the odour of a given food 

sample headspace extract. The analysis process requires around half an hour to detect and 

identify the main odorants of the mixture that constitutes the headspace [3]. In contrast, 

the human nose, when confronted to the same mixture of odorants, analyses 

simultaneously all the chemicals to provide a pattern that is integrated by the brain to 

produce, in less than one second, a mental representation of the food sample. The result 

will be the rapid categorisation and likely recognition of the odour as an odour object [4]. 
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Therefore, we always have to keep in mind that there is a critical difference between the 

chemical analysis strategy and the perceptual strategy when focusing on complex odour 

mixtures responsible for the flavour of food. 

The perception of odour mixtures, the case of perceptual blending 

The processes underlying the perception of complex mixture of odorants as patterns 

and the elaboration of odour object representation in the brain are based on odour coding 

and perceptual interactions that take place along the olfactory pathway [4]. The 

simultaneous interplay of several odorants with the olfactory system induces various 

interactions at all the levels of integration, from the very periphery where competition at 

the olfactory receptors level takes place [5,6] to high order integrative processes involving 

cognitive and top-down modulations [7]. From a theoretical point of view, it is possible 

to consider several cases of perceptual interactions in odour mixtures (Figure 1). 

 
Figure 1: Theoretical outcomes on odour quality when two odorants are processed in mixture by the olfactory 
system. One odorant has an odour noted A and the other B, while odour C is specific to the mixture and results 

from configural processing of the so-called blending mixture (adapted from [4]). 

In one case, the mixture carries a specific odour, which is not the superposition of 

the odorants’ odour. Such a perceptual outcome is the result of the configural processing 

of certain mixtures called blending mixtures [8], which may be the chemical signature of 

odour objects [4]. Another processing strategy of odour mixture, namely elemental 

processing, leads to the recognition of the odorants’ quality within the mixture (Figure 

1). These two processing strategies, likely concurrent, can be influenced by individual-

related factors such as physiological or cognitive state but also by the stimulus features, 

especially the odour quality of each of the odorants and their relative concentrations. 

In a recent study, we investigated the configural and elemental perception of two 6-

odorants mixtures in two mammal species, human adults and newborn rabbits, which 

have both assets with regard to the study of odour mixtures [9]. Using free-sorting tasks 

in humans, we evaluated the perception of a blending mixture (RC), which evoked the 

specific odour of Red Cordial and another mixture (RCmod), made of the 6 same odorants 

but in different proportions, in comparison to the perception of the single odorants. In 

newborn rabbits, the perception of the same mixtures was assessed by measuring the 

orocephalic sucking response to the mixtures or their components after conditioning to 

one of these stimuli. The results revealed that the blending mixture (RC) was indeed 

configurally processed both in humans and rabbits. In contrast, the other mixture (RCmod), 

containing the same odorants but in different concentration ratio, was elementally 

processed. These results demonstrate that configural perception is specific not only to the 
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odorants included in a blending mixture but also to their respective proportion [10]. 

Interestingly, rabbit neonates also responded to each odorant after conditioning to the red 

cordial mixture, which demonstrated their ability to perceive elements in addition to the 

configuration in the mixture [11] and, in turn, supports the hypothesis that both elemental 

and configural processing are concurrent. 

Key odorants and key associations in odour mixtures 

Within the aroma chemical analysis framework, it is usually considered that if the 

omission of an odorant from a recombined mixture changes the overall perception, then 

this odorant is a key aroma compound [12]. However, key odorants may have a different 

status depending on whether the mixture has blending properties or not, which may also 

explain why key odorants reported in the literature for a lot of food sometimes carry an 

odour similar to the overall food odour and sometimes not. We tested this hypothesis 

through the study of the perceptual roles of the odorants that are included in mixtures 

elementally or configurally perceived. We examined, in humans, the perceptual impact 

of the nature and concentration ratio of the odorants included in two 6-components 

mixtures and their sub-mixtures containing 2 to 5 components [13]. The 6-odorants 

mixtures were RC and RCmod used in the previous study [9]. Mixture processing was 

explored through a similarity rating task, in which 61 subjects rated the similarity of odour 

samples containing 1 to 6 components to either the RC or the RCmod reference mixtures.  

 
Figure 2: Illustration of the perception of key elements and key association in a 6-components mixture (A). 

Some of the elements carry a specific object identity (boomerang, bird and cherry); at a specific ratio 
(represented here by the spatial arrangement of the elements), their perception as individual elements can be 

still salient (B); they are key elements; the perception is elemental. In contrast, at another ratio (another spatial 
arrangement), the same elements may lead to a key association (C), in which the elements lose their object's 

identity but create another feature (a basic face); these elements are contributors to the key association. Adding 

other elements, which do not necessarily refer to specific objects (point, curved line), “polishes” the key 
association and provides an identity for the whole mixture; the perception is configural. (adapted from [13]). 

The results highlighted that elemental perception depended primarily on the odour 

quality and concentration ratio of many of the mixed odorants, whereas configural 

perception depended on specific associations of odorants in strict concentration ratios. 

These findings led us to reconsider the impact of key elements in odour mixtures within 

the framework of a perceptual model, illustrated in Figure 2 owing to a visual analogy. In 

mixtures, some odorants may preserve their perceptual features such that the individual 

odour they carry as single molecules is still identifiable within the mixture. In that case, 
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the mixture is elementally processed. It is perceived as a collection of a few individual 

odours carried by some of the odorants, which can be qualified as key odorants. Still, 

several odorants may lose some of their perceptual features [14] and create meaningful 

associations that strongly contribute to the mixture odour quality. These associations can 

be considered as key associations. 

New developments in aroma analysis 

If the aroma analysis methodology, relying on GC/MS-O, has been repeatedly shown 

to be efficient to identify impact odorants in complex food flavour, it appears that it can 

only point those molecules that are key odorants. Indeed, key associations can only be 

identified through the study of mixtures. Nevertheless, some odorants, likely contributors 

to key associations, may have been spotted during confirmatory recombination 

approaches, in which odorants, which odour is not similar to the odour of the overall food 

flavour, can appear as impacting compounds (e.g. [15,16]). The need for new tools to 

rapidly evaluate the perceptual importance of odorants in complex mixtures have led to 

the development of several methods based on dynamic reconstitution of mixtures online 

during GC-O analysis [17–20]. The Olfactoscan system couples two devices: a GC-O 

apparatus and a multi-channel dynamic dilution olfactometer [21]. The humidified air 

stream at the outlet of the olfactometer is connected to the GC-O sniffing port so that 

controlled mixtures of odorants, provided by the olfactometer, can be mixed with the 

odorants coming from the GC-O. Therefore, the olfactoscan system enables the screening 

of the olfactory active compounds delivered during a GC-O run, while mixed with a well-

controlled background odour generated with the olfactometer. 

 
Figure 3: Olfactoscan setup including an olfactometer that delivered a precise mixture of odorants from the 

four vessels (V1, V2, V3, V4) to be combined with odorants eluted from a gas-chromatograph coupled to the 

outlet of the olfactometer; this formed the Odour mixture olfactory port. The olfactometer was also used to 
control the delivery of real cheese odour at the Cheese odour olfactory port, which served as the reference odour 

for the direct similarity rating task (adapted from [22]). 

We used the Olfactoscan system to screen for specific associations of odorants 

responsible for the odour specificity of 3 non-processed semi-hard cheeses (setup 
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presented on Figure 3) [22]. Eight odorants, identified as contributors to the basic odour 

of the cheeses, were dispatched into the four vessels of the olfactometer to form an 

optimal basic composition, specific to each of the three cheeses. Eight odorants, among 

which four were also present in mixture in one of the olfactometer vessels, were 

individually added to the basic composition owing to the GC-O system. All the 

combinations formed complex odour mixtures that were systematically compared to the 

real odour of each cheese, by 16 trained subjects through a direct similarity rating.  

The results highlighted that the relative concentrations of the same few odorants in 

a mixture can be adjusted via a recombination approach to reach an optimum of similarity 

with the odours of different non-processed semi-hard cheeses. More precisely, when 

combined with acetic acid, butan-2,3-dione and methional, the odorant dimethyl 

trisulphide contributed to one cheese odour, whereas butanoic acid contributed to another 

cheese odour. Still, for the third cheese odour, the combination of dimethyl trisulphide, 

butanoic acid, 3-methylbutanoic acid and 3-methylbutan-1-ol is required. 

Conclusion 

Odour mixture processing, which constitutes the basic rule when perceiving the 

flavour of a food, induces several perceptual effects that contribute to the olfactory system 

striking efficiency in coding complex odour objects. The concept of configural-elemental 

dual olfactory processing has led to consider a new perspective in the identification of 

key components of odour sources, namely the importance of key odorants but also of key 

associations. In the framework of food flavour analysis, online recombination strategies 

and specifically relevant tools have been developed and are now available to go one step 

forward and take up the challenge of integrating odour mixture processing specificity into 

the aroma analysis path. Beyond the expected impact in terms of food flavour analysis, 

the study of odour mixtures is an original window allowing the investigation of olfaction-

specific mechanisms certainly crucial to interpret -and provide an efficient representation 

of- our food and more broadly our environment. 
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Abstract 

Twenty 1,1-dithioalkane derivatives were synthesized including ten compounds 

structurally derived from acetaldehyde and the ten corresponding compounds structurally 

derived from propanal. Compounds included ethane-1,1-dithiol and propane-1,1-dithiol 

as basic structures and their methyl, ethyl, and propyl derivatives 1-

(methylsulfanyl)ethane-1-thiol, 1-(ethylsulfanyl)ethane-1-thiol, 1-(propylsulfanyl)-

ethane-1-thiol, 1,1-bis(methylsulfanyl)ethane, 1-(ethylsulfanyl)-1-(methylsulfanyl) 

ethane, 1-(methylsulfanyl)-1-(propylsulfanyl)ethane, 1,1-bis(ethylsulfanyl)ethane, 1-

(ethylsulfanyl)-1-(propylsulfanyl)ethane, 1,1-bis(propylsulfanyl)ethane, 1-(methyl-

sulfanyl) propane-1-thiol, 1-(ethylsulfanyl)propane-1-thiol, 1-(propylsulfanyl)propane-

1-thiol, 1,1-bis(methylsulfanyl)propane, 1-(methylsulfanyl)-1-(ethylsulfanyl)propane, 1-

(methylsulfanyl)-1-(propylsulfanyl)propane, 1,1-bis(ethylsulfanyl)propane, 1-(ethyl-

sulfanyl)-1-(propylsulfanyl)propane, and 1,1-bis(propylsulfanyl)propane. GC-O 

analyses revealed onion-like odour qualities for the majority of the compounds and 

additional fruity notes for some higher homologues. Thresholds showed a clear tendency 

towards higher values with increasing alkyl chain length, particularly the 

dithiohemiacetals showed consistently lower thresholds than the dithioacetals. 

Introduction 

1,1-Dithioalkane derivatives such as alkane-1,1-dithiols, dithiohemiacetals, and 

dithioacetals (Figure 1) have scarcely been reported in food so far. One of the rare 

exceptions is durian, the fruit of the Southeast Asian tropical rainforest tree Durio 

zibethinus. Durian is famous for its strong and penetrating odour which combines fruity 

notes with a strong sulfury, oniony smell. The latter was recently assigned to a series of 

1,1-dithio compounds and some short-chain alkanethiols [1,2]. The odour-active 

1,1-dithio compounds in durian were all structurally related to acetaldehyde and propanal 

as carbonyl component and hydrogen sulfide, methanethiol, ethanethiol, and propane-1-

thiol as thio component. This prompted us to synthesize all possible 1,1-dithio compounds 

available from these building blocks and have a closer look at the relation of their 

structure to their odour properties. 

 
Figure 1: General structure of alkane-1,1-dithiols (R1 = alkyl; R2, R3 = H), dithiohemiacetals (R2 = H; R1, R3 

= alkyl), and dithioacetals (R1, R2, R3 = alkyl)  

Experimental 

Syntheses 

Compounds 1-6, 8, 12, and 13 were synthesized as detailed in [1].  

Synthesis of 1-(methylsulfanyl)-1-(propylsulfanyl)ethane (7) was accomplished by 

adding CsCO3 (820 mg, 25 mmol) and Bu4NI (930 mg, 2.5 mmol) in anhydrous DMF 
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(13 ml) under Ar to 2 (270 mg, 2.5 mmol). After stirring (1 h, RT), PrBr (338 mg, 

2.75 mmol) was added dropwise at 0 °C. After further stirring (1 h, RT), water (30 ml) 

was added and the mixture was extracted with DCM (3 × 30 ml). Combined solvent 

extracts were washed with water (3 × 30 ml) and brine (30 ml) and dried. The solvent was 

evaporated and the product was purified by flash chromatography [1] to give 145 mg of 

7 in 97% purity (GC-FID) and with 37% yield. 

Synthesis of 1-(ethylsulfanyl)-1-(propylsulfanyl)ethane (9) was done by adding 4 

(272 mg, 2 mmol) to a mixture of aqueous NaOH (10 M, 0.2 ml) and MeOH (5 ml) at 

0 °C. After stirring (5 min), EtI (2.4 mmol, 0.2 ml) was added and stirring was continued 

(2 h, RT). MeOH was removed (Vigreux column), water (20 ml) was added, and the 

mixture was extracted with Et2O (3 × 20 ml). Combined extracts were washed with brine 

(60 ml) and dried. The solvent was evaporated and the product was purified by flash 

chromatography [1] to afford 155 mg of 9 (85% purity, 40% yield). 

Synthesis of 1,1-bis(propylsulfanyl)ethane (10), 1,1-bis(ethylsulfanyl)propane (18), 

and 1,1-bis(propylsulfanyl)propane (20) was achieved from the corresponding aldehydes 

and alkanethiols by applying the approach detailed for 8 in [1]. Yields were 1.31 g (73%) 

(10), 1.31 g (79%) (18), and 1.29 g (67%) (20), all in 99% purity.  

Propane-1,1-dithiol (11) and 1-(propylsulfanyl)propane-1-thiol (14) were synthe-

sized by adding propanal (2.9 g, 50 mmol), PrSH (3.8 g, 50 mmol), and acetate buffer 

(5.4 M, pH 5, 40 ml) to a mixture of Na2S ·9 H2O (12 g, 50 mmol) and DCM (20 ml) at 

-60 °C under Ar. After stirring (3 h at -60 °C, then 3 d at RT), the organic layer was 

separated and the aqueous phase was extracted with DCM (50 ml). Combined extracts 

were washed with water (100 ml), dried and the solvent was evaporated. Vacuum 

distillation (60 °C, 5 kPa) afforded 230 mg of 11 (90% purity, 3.8% yield). DCM (50 mL) 

was added to the residue, the mixture was washed with aqueous Na2CO3 (5%, 50 ml), 

dried, and the solvent was evaporated in vacuo. The residue was purified by flash 

chromatography. Elution with pentane afforded 330 mg of 14 in 99 % purity (GC-FID).  

1,1-bis(Methylsulfanyl)propane (15) was synthesized from Me2S2 (1.32 g, 21.3 

mmol) and propanal (1.24 g, 21.3 mmol) by the approach detailed for 5 [1], resulting in 

500 mg product (97% purity, 17% yield).  

The approach detailed above for 9 was also used to synthesize 1-(ethylsulfanyl)-1-

(methylsulfanyl)propane (16) from 13 (180 mg, 1.2 mmol), 10 M NaOH solution (0.1 ml, 

1 mmol) and MeI (0.1 ml, 1.6 mmol), 1-(methylsulfanyl)-1-(propylsulfanyl)propane (17) 

from 14 (150 mg, 1 mmol), 10 M sodium hydroxide solution (0.1 ml, 1 mmol) and MeI 

(0.1 ml, 1.6 mmol), as well as 1-(ethylsulfanyl)-1-(propylsulfanyl)propane (19) from 14 

(150 mg, 1 mmol), 10 M sodium hydroxide solution (0.1 ml, 1 mmol) and EtI (0.1 ml, 

1.6 mmol). Yields were 42 mg (22%) in 93% purity (16), 50 mg (30%) in 95% purity 

(17), and 62 mg (34%) in 98% purity (19). 

Odour threshold values (OTVs) in air 

These were determined by aroma extract dilution analysis using (2E)-dec-2-enal as 

internal standard [3,4]. Results of two panellists were averaged by calculating the 

geometrical mean of the individual thresholds. 

Results and discussion 

In total, 1,1-dithio compounds were synthesized. Ten compounds were derived from 

acetaldehyde as carbonyl component (Figure 2) and ten compounds were derived from 

propanal as carbonyl component (Figure 3). Each series started from the 1,1-dithiol, i.e. 
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ethane-1,1-dithiol (1) and propane-1,1-dithiol (11). Then the structure was modified by 

adding alkyl groups of increasing length, namely methyl, ethyl, and propyl to both of the 

two sulfur atoms. In doing so, for each of the two carbonyl compounds, four homologues 

series resulted, each including four members. 

For the acetaldehyde derivatives (Figure 2), the first homologues series consisted of 

ethane-1,1-dithiol (1) and the three 1-(alkylsulfanyl)ethane-1-thiols 1-(methyl-

sulfanyl)ethane-1-thiol (2), 1-(ethylsulfanyl)ethane-1-thiol (3), and 1-(propyl- 

sulfanyl)ethane-1-thiol (4). In this series, all compounds exhibited an onion-like smell 

and rather low odour thresholds. Thresholds decreased from 1 to 3 and increased from 3 

to 4, with 4 showing the highest threshold value in the series. 

(1)* 

onion-like 

 0.29 ng/L 

(2)* 

onion-like 

 0.20 ng/L 

(3)* 

onion-like 

 0.15 ng/L 

(4)* 

onion-like 

 0.40 ng/L 

 
(5)* 

onion-like 

 0.88 ng/L 

(6)* 

onion-like, fruity 

 1.9 ng/L 

(7) 

onion-like 

 9.7 ng/L 

  
(8)* 

onion-like, fruity  

 1.9 ng/L 

(9) 

onion-like, fruity  

 9.6 ng/L 

   

(10)* 

onion-like, fruity  

 18 ng/L 

Figure 2: Structures, odour qualities as perceived during GC-O, and OTVs of 1,1-dithioethane derivatives; 

asterisks indicate compounds found among the odour-active compounds in durian [1] 

The second homologues series of acetaldehyde derivatives consisted of 1-(methyl-

sulfanyl)ethane-1-thiol (2) and the three 1-(methylsulfanyl)-1-(alkylsulfanyl)ethanes 

1,1-bis(methylsulfanyl)ethane (5), 1-(ethylsulfanyl)-1-(methylsulfanyl)ethane (6), and 

1-(methylsulfanyl)-1-(propylsulfanyl)ethane (7). Thresholds increased in this series, 

odour qualities were described as onion-like, but 6 showed an additional fruity note. 

In the third homologues series of acetaldehyde derivatives, including 1-(ethylsul-

fanyl)ethane-1-thiol (3) and the three 1-(ethylsulfanyl)-1-(alkylsulfanyl)ethanes 1-

(ethylsulfanyl)-1-(methylsulfanyl)ethane (6), 1,1-bis(ethylsulfanyl)ethane (8), and 1-

(ethylsulfanyl)-1-(propylsulfanyl)ethane (9), thresholds again increased with increasing 

carbon number and fruity notes were prevalent, though the onion-like note dominated. 

The fourth homologues series of acetaldehyde derivatives consisted of 1-(propyl-

sulfanyl)ethane-1-thiol (4) and the three 1-(propylsulfanyl)-1-(alkylsulfanyl)ethanes 
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1-(methylsulfanyl)-1-(propylsulfanyl)ethane (7), 1-(ethylsulfanyl)-1-(propylsulfanyl)-

ethane (9), and 1,1-bis(propylsulfanyl)ethane (10). All compounds showed onion-like 

odours, but the higher homologues 9 and 10 additionally exhibited fruity notes and 

thresholds increased by trend. 

(11) 

onion-like 

 0.67 ng/L 

(12)* 

onion-like 

0.15 ng/L 

(13)* 

onion-like, fruity 

 0.24 ng/L 

(14) 

onion-like, fruity 

 0.31 ng/L 

 

(15) 

onion-like, fruity 

 4.7 ng/L 

(16) 

onion-like, fruity 

14 ng/L 

(17) 

fruity, fatty 

13 ng/L 

  

(18) 

onion-like, fruity 

 7.3 ng/L 

(19) 

onion-like 

 11 ng/L 

   

(20) 

onion-like 

 27 ng/L 

Figure 3: Structures, odour qualities as perceived during GC-O, and OTVs of 1,1-dithiopropane derivatives; 
asterisks indicate compounds found among the odour-active compounds in durian [1] 

In summary, all analysed acetaldehyde derivatives showed an onion-like odour, but 

an additional fruity note was prevalent in the higher homologues. Thresholds showed a 

tendency towards higher values with increasing chain length. Similar observations were 

made with the propanal derivatives (Figure 3). The comparison of the propanal 

derivatives with the respective acetaldehyde derivatives showed a tendency towards 

slightly higher thresholds in the propanal derivatives. For both, acetaldehyde and 

propanal derivatives, the dithiohemiacetals (1-4 and 11-14) showed consistently lower 

thresholds than the dithioacetals (5-10 and 15-20). 
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Abstract  

The relationship between instrumental and sensory measurements were investigated 

in 11 wines varying in their carbonation level. Although sourness intensities of the wines 

were not significantly different, increased carbonation concentration affected the 

dynamics of sourness perception. Both the onset and extinction of the sourness perception 

were delayed with increased carbonation. Amongst potential explanations are that 

dynamic effects of carbonation draw attention away from sensations that arise in other 

sensory modalities, including gustation, and that carbonation has an anaesthetizing effect 

which partially reduces the ability to perceive sourness. Findings suggest potential for 

further research for systematically investigating how carbonation level affect how 

products are perceived in mouth. 

Introduction 

From a sensory perspective, sparkling wines are highly complex products. 

Carbonation increases surface area and kinetic energy. It also imparts characteristic 

mouthfeel effects that include tingling and other sensations, and may trigger gustatory, 

olfactory, trigeminal, and auditory perceptions as well [1]. A mechanism for carbonation 

perception as sourness has been proposed [2]. The effect of carbonation on the perception 

of sourness intensity (as determined using static sensory measurements) has been 

investigated in various beverages but reported results are inconsistent [3-8]. Although 

effects on sourness intensity are often reported to be slight, overall impact of carbonation 

may have a more pronounced effect on taste quality perceptions, e.g. on sweet and salty 

perception [9].  

In a previous study, eleven wines with different carbonation levels were created [10] 

then evaluated according to a replicated experimental design by trained assessors using 

(i) sensory descriptive analysis (which provides static data on attribute intensities), and 

(ii) temporal check-all-that-apply (TCATA) [11] in which attribute applicability is 

determined dynamically over time. 

Specifically, a trained descriptive sensory panel (n=11) conducted a replicated 

evaluation of the eleven wines according to the intensities of 20 sensory attributes. The 

panel discriminated wines based on 12 of the attributes (9 mouthfeel, 1 aroma, 1 flavour, 

and 1 taste), but the wines were not discriminated according to their sourness intensities 

[1]. TCATA data from trained assessors (n=12) indicated that the duration during which 

sensations are elicited is elongated with increasing carbonation concentration, yet the 

average citation rates for sourness (proportional to the area under the curve) were not 

significantly different across carbonation levels. 

In this study, we further investigate these data to determine potential relationships 

between carbonation level in sparkling wine and the dynamic perception of sourness. 
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Experimental 

Materials 

Eleven wines were made starting from the same base cuvee, resulting in one (still) 

base wine and ten sparkling wines, each at a different carbonation level (1.2-7.5 g CO2/L), 

using materials and winemaking techniques described in [10]. Wine chemistry analysis 

confirmed differences amongst samples with respect to carbonation, as well as similarity 

in terms of sensory threshold levels in recorded concentrations of total sugars, titratable 

acid, pH, and ethanol [10]. 

Sensory evaluation 

Twelve assessors evaluated the 11 wines in triplicate via TCATA using eight 

attributes: six mouthfeel attributes (Bite/Burn, Carbonation/Bubble pain, Foamy, 

Numbing, Prickly/Pressure, Tingy) and two taste attributes (Bitter, Sour). The evaluation 

period was 120 s. Details related to attribute definitions, training, sample evaluation 

protocols, and other experimental parameters are found in [1]. 

Statistical analysis 

TCATA curves were obtained for sourness citation rates per CO2 level using the R 

package tempR [12]. Cumulative citation rates leading up to 15, 30, 45, 60, and 75 s were 

obatined per CO2 level and stacked, such that rows indicated unique combinations of CO2 

level and time for both the predictor matrix (with variables ethanol, CO2 concentration, 

titratable acidity) and response variables (TCATA citation rate for the eight TCATA 

attributes). These X and Y matrices were then submitted to multivariate PLS regression 

using the plsreg2 function in the R package plsdepot [13].  

The predictor variable CO2 level and response variable sourness citation rates per 

15-s interval were submitted to least squares regression to investigate how sourness 

characterization changes with CO2 level and time. 

Results and discussion 

TCATA curves for sourness citation rates per CO2 level are presented in Figure 1. In 

this figure, we are looking at aggregated raw panel data in which the sourness curves are 

right-shifted and damped as the CO2 concentration increases. Increased carbonation 

delayed the perceptual onset and extinction of sourness. 

 
Figure 1: TCATA curves for the attribute Sour for the eleven samples which varied in CO2 concentration. 
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Multivariate PLS-regression analysis gives correlations between the predictor and 

response variables; the relationships in the first two latent vectors are given in Figure 2, 

and show a temporal relationship between CO2 concentration and time for sourness 

characterization.  

 
Figure 2: Partial least squares regression analysis of analytical measurements (Titratable Acidity, CO2, and 

Ethanol) vs. TCATA Citation Proportion for 15-s intervals leading up to 15, 30, 45, 60, and 75 s. For each 

attribute shown these five time intervals are joined. The line that starts at 15 s and kinks at each time interval, 

with the closed square indicating 30 s, the open square 60 s, and the cumulating arrow (which indicate the 

progression of time) 75 s. Sour, which was the focus of this paper, is shown as a thick blue line. 

Results from least squares regression indicate a strong relationship between sourness 

citation proportion and time. The proportion of assessors describing the wine as sour is 

highest in the 15-s interval leading up to 30 s across all CO2 concentrations. There is 

significant interaction between time and CO2 concentration (which is visualized here as 

differences in slopes). Leading up to 30 s, assessors describe low-CO2 wines as sour more 

often than high-CO2 wines; thereafter, the low-CO2 wines are described as sour less often 

than high-CO2 wines. Thus, the sourness citation proportion depends on both time and 

CO2 concentration. 

The wines described herein are similar in pH [10] and perceived intensity of sourness 

[1], yet differ in dynamic perception of sourness. Why might low-CO2 wines be 

characterized as sour early, more often, and for a shorter duration, and high-CO2 wines 

be characterized as sour later, less often, but for a longer duration? Potential explanations 

include the possibility that CO2 has a masking or distracting effect (e.g. dynamic effects 
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of carbonation draw attention away from sensations that arise in other sensory modalities) 

or an anaesthetizing effect (e.g. carbonation partially reduces the ability to perceive 

sourness). Additionally, the right-shifted curves in Figure 1 may indicate adaptation, with 

perceived sourness attenuating after initial perception. Findings are relevant to product 

developers working on carbonated products, and suggest potential for further research for 

systematically investigating how carbonation level interacts with other wine components 

at different concentrations to affect how products are perceived in mouth. 

 

Figure 3: Interaction plot showing cumulative TCATA Citation Proportion for the 15-s intervals leading up to 

15, 30, 45, 60, and 75 s vs. CO2 concentration. The observed citation proportions are shown in black, and 

slopes are presented in red.  
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Abstract  

Great inter-individual differences exist in fat perception. Forty subjects were 

grouped according their global fat perception in cottage cheeses. The more sensitive 

subjects were also more sensitive to fatty odorants, they had a higher respiratory flow and 

thus a higher rate of release of aroma compounds in the nasal cavity, which could explain 

the role of the olfactory modality in fat perception. Fat sensitive subjects had a lower 

saliva flow, less viscous saliva, and less amount of product remaining in the mouth after 

swallowing, which could explain, why they were more sensitive to taste and textural 

modalities of fat perception.   

Introduction 

In the aim to increase sensory acceptability of low fat content foods, a better 

understanding of the physiological mechanisms involved in fat perception is needed. Fat 

perception is considered as a multimodal sensation in itself involving smell, taste and 

texture perception [1, 2]. In a previous experiment conducted on 40 subjects and focusing 

on fat perception in cottage cheese, great inter-individual differences in fat sensitivity 

were observed in both absolute and difference detection thresholds [3]. An Ascending 

Hierarchical Classification evidenced three subsets of subjects with contrasted sensitivity 

profiles: high, medium and low absolute and difference thresholds. For each group of 

subjects, thresholds were always lower when the subjects did not wear nose clips, 

suggesting a strong impact of the olfactory modality in fat perception. The aim of the 

present paper was to determine, on the same well-characterized 40 subjects, the 

physiological parameters related to aroma release and/or aroma sensitivity that better 

explain the differences of fat perception in cottage cheeses. 

Material & Methods  

Odour detection and recognition thresholds were determined for 3 aroma compounds 

(pentane-2,3-dione; hexane-3,4-dione and 3-hydroxy-2-butanone) using the AS’SCENT 

International Olfactometer (St. Croix Sensory, Stillwater, MN). Detection thresholds 

were estimated using a 3-Alternative Forced Choice (AFC) procedure based on 14 

dilution steps. Recognition threshold were estimated using a 4-AFC method in which 

subjects has to choose among 4 odour labels at each detection trial. Thresholds were 

expressed as the absolute value of the logarithm of threshold dilution level; the threshold 

could range from 0 for the less sensitive to 5 for the most sensitive. 

General olfactory capabilities were estimated using the European Test of Olfactory 

Capabilities [4]. The overall score to the test is usually expressed as a percentage, here as 

a value between 0 and 1. 

In vivo release of 2 aroma compounds imparting fatty notes (pentane-2,3-dione and 

hexane-3,4-dione) was followed by a Proton Transfer Reaction-Mass Spectrometer 
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equipped with a Time-of-flight analyser (PTR-ToF 8000, Ionicon Analytik, Innsbruck, 

Austria), while consuming 1% fat content cottage cheese. Sampling was performed at a 

total flow rate of 60 mL/min with the transfer line maintained at 80°C. All the release 

data were calculated from the breath concentration ncps data, using Microsoft Excel 2010. 

Ten parameters were extracted from the smoothed release curves as described in Figure 

1. 

 
Figure 1: Parameters extracted from in vivo release curves. Maximal intensity before swallowing (IBS) and after 

swallowing (IAS), Time to reach maximal intensity before swallowing (TBS) and after swallowing (TAS), area 
under the curve before swallowing (ABS) and after swallowing (AAS), and time to reach 10% (T10), 50% (T50) 

and 90% (T90) of the total area (AUC).  

Mouth coating, defined as the residual food that sticks to the oral surface after food 

ingestion, was quantified by the “mouth rinse” method [5]. Dry matter of residual food 

(DM) was measured after lyophilisation. The lipids of residual food were quantified in 

the lyophilisate after extraction with chloroform/methanol (2:1) [6]. 

Resting saliva was collected as previously described [7] by instructing the subjects 

to spit out the saliva whenever they felt like into a pre-weighed cup over a period of 10 

minutes. The cups were weighed and the salivary flow rates were expressed in mL/min. 

Saliva viscosity at rest (mPa.s) was measured with a Vibro – viscosimeter type SV-A 

(A&D Compagny Limited Japan). 

An Eccovision® acoustic pharyngometer (Hood Laboratories, USA) was used to 

measure the oral volumes [8]. 

Respiratory flow was measured at rest using a spirometer (Pulmo System II, MSR, 

Rungis, France). Subjects were asked to breathe normally by the nose for three minutes. 

Respiratory frequency represents the number of respiratory cycles per minute and current 

volume, the volume of air used during each respiratory cycle.  

Analyses of variance (ANOVA) were performed using XLSTAT® Software (Excel 

97, version 8.0, Paris, France). 

Results and discussion 

The 40 subjects included in the panel pertained to 3 groups of sensitivity for fat 

perception in cottage cheese: 7 high sensitive subjects (S+), 24 medium sensitive (S0) 

and 9 low sensitive (S-) [3]. Among the different physiological parameters measured in 
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the study, only those presenting significant differences between the three groups of 

sensitivity are reported (Figure 2).  

Subjects less sensitive to fat (S-) had lower overall olfactory capabilities reflected 

by lower scores to the ETOC (Figure 2a). They were less sensitive to aroma compounds 

imparting fatty notes (Figure 2a). They had especially a higher recognition threshold for 

2,3-hexanedione and a higher detection threshold for acetoin. These results confirmed our 

previous hypothesis that olfaction is important for global fat perception. 

  

  

  
Figure 2: Physiological parameters (mean and standard error) showing significant differences between groups 

of fat sensitivity threshold (S+: high sensitive, S0: medium sensitive, S-: low sensitive) a) recognition 

threshold for 2,3-hexanedione, detection thresholds for acetoin, ETOC test; b) area under the curve (AUC) for 
2,3-pentanedione (23P) and 2,3-hexandione (23H); c) time to reach 90% AUC for 23P and 23H; d) amount of 

dry matter (DM) and lipids remaining in the mouth after swallowing; e) respiratory parameters: current 

volume, number of cycles and oral volume; f) saliva viscosity and saliva flow.  

Subjects less sensitive (S-) to fat significantly released a higher total amount of 

aroma than medium (S0) and high (S+) sensitive (AUC, Figure 2b), which cannot explain 
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their greater sensitivity. They needed a longer time to reach 90% AUC (Figure 2c), which 

means that their rate of release was slower. It has previously been suggested that the rate 

of release impacts more aroma perception than the total amount of aroma compounds 

release [9]. Moreover, subjects S- had a higher amount of product remaining in the mouth 

(DM and lipids, Figure 2d), which explains their higher amount of total aroma in the nasal 

cavity [8].   

Subjects less (S-) and medium (S0) sensitive to fat had a higher respiratory frequency 

(nbe cycles/min) and a higher oral volume than high sensitive (S+) and subject’s medium 

(S0) sensitive to fat had a significant lower respiratory flow (current volume) than high 

sensitive (S+) (Figure 2e). All these parameters could explain that the S- subjects had a 

higher rate of aroma release and thus aroma compounds will reach their olfactory 

receptors in a longer time. 

Subjects less sensitive to fat (S-) also presented a higher salivary flow and saliva 

viscosity than medium (S0) and high sensitive (S+) (Figure 2f). These parameters, in 

addition to a higher mouth coating, could decrease the accessibility to taste and 

chemesthesic receptors and thus decrease textural and taste modalities of fat perception 

[3]. A high amount of lipid remaining in the mouth will form a fat barrier, which could 

limit the access to the receptors. A high viscous saliva will limit the diffusion of stimuli. 

Conclusion 

Fat perception in cottage cheese is multimodal and involves smell, taste and texture 

perception, with great interindividual differences. Subjects more sensitive to fat have 

higher olfactory capabilities, a lower respiratory frequency and a higher rate of aroma 

release in the nasal cavity; all these physiological features converge to increase aroma 

perception. Subjects less sensitive to fat have a higher saliva viscosity, a higher amount 

of product remaining in the mouth after swallowing, which could limit the access of the 

fat stimulus to the taste and chemesthesic receptors in the mouth. 
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Abstract 

Fat is perceived through three modalities; mouthfeel, odour and, also taste where 

free fatty acids are the stimuli generating this sensation. Individuals showed variation in 

oral fat taste perception which significantly influenced fat intake and preference. The 

mechanisms causing differences in individual oral fat taste perception could be explained 

by genetic variation of the fatty acid translocase CD36 and lipase activity. Individuals 

had different lipase activities in saliva to release free fatty acids from dietary fat, which 

influenced oral fat perception. In addition, CD36 genotypes influenced oral fat perception 

and the influence of CD36 genotype on oral fat perception differed between subjects with 

high salivary lipase activity and those with low lipase activity. 

Introduction 

Taste is one of the influential determinants driving individual food preference and 

consumption. Fat contributes to the unique texture and odour of foods, and recent studies 

proposed that fat can also be perceived through taste. Fatty acids are proposed as the 

effective stimuli in generating fat taste sensation due to the discovery of fatty acid 

receptors and activation of transduction pathways in mouth [1]. Individuals present 

diverse oral fat taste perception and these variations could contribute to individual 

differences in food liking and consumption [2]. As triglyceride is the major component 

in dietary fat and free fatty acids are only present in foods at very low levels, recent study 

report that salivary lipase can hydrolysis triglyceride in the mouth into free fatty acids [3]. 

This may cause an increase in free fatty acid in the mouth and hence result in a greater 

oral taste sensation. However, it is still unclear whether differences in individual salivary 

lipase activity may be a potential cause of individual differences in oral fat perception. 

CD36, as the fatty acid translocase, has been regarded as a putative candidate for the oral 

fat sensor. Genetic variations in CD36 have been proposed as another potential factor that 

could influence individual differences to oral fat taste perception. 

This study aims to understand how fat is perceived in mouth. It also aims to under-

stand inter-subject variability in fatty acid sensitivity, fat perception, fat preference and 

choice of high fat foods, and to elucidate the impact of CD36 genotype and salivary lipase 

activity on individual variation in fat perception. 

Materials and methods 

Participant 

Ninety participants of age range 18-55 years were recruited and self-reported to be 

healthy. Three participants dropped out before they had completed the sessions, and two 

participants were excluded from the data analysis due to the incomplete questionnaires.  

Fat intensity rating 

The samples and method for the intensity test were developed as described in the 

study of Zhou et al., 2016 [4]. Non-fat skimmed milk, single cream and double cream 

(Tesco, UK) were used to generate seven samples of different fat levels: 0%, 2.5%, 5%, 
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7.5%, 10%, 15% and 20%. Mouthfeel masked samples (containing thickener (Nestlé 

Nutrition Resource ThickenUp Clear, UK) and liquid paraffin (Care, Thornton & Ross, 

UK)) and mouthfeel non-masked samples were prepared. Participants were asked to rate 

the perceived fat intensity on a generalised labelled magnitude scale (gLMS). Nose-clips 

were provided for mouthfeel-masked samples to obtain intensity ratings under the “taste” 

modality in isolation from odour and mouthfeel. 

Fatty acid sensitivity test 

Samples and methods for threshold sensitivity were developed as described by Zhou 

et al. (2016). Food-grade oleic acid (Sigma, UK) was chosen and the concentration of 

oleic acid ranged from 0.098 to 55.9 mM (0.0028 to 1.58% w/v), with dilution differing 

by 0.25 log units. The rapid 3 alternative forced choice (3AFC) approach was used to 

measure fatty acid sensitivity. During the whole process, participants were asked to wear 

nose-clips to avoid any olfactory effects. 

Dietary intake and preference  

A Food Frequency Questionnaire (FFQ) and a Food Preference Questionnaire (FPQ, 

adapted from Deglaire et al., 2012 [5]) were used to collect recalled food intake and food 

preference data.  

Salivary lipase activity measurement  

The lipase activity in saliva was reflected by the free oleic acid generation in 

expectorated almond samples. Participants were asked to chew one almond (15s) without 

swallowing and the expectorated almond was collected. The free oleic acid in 

expectorated almond samples was analysed using Folch extraction of fat from 

expectorated almond samples, separation of free oleic acids from fat (using solid phase 

extraction with aminopropyl cartridges (ISOLUTE® NH2, Biotage)), derivatization of 

free oleic acids to oleic acid methyl ester at room temperature for 5 min (by using 1.5% 

H2SO4 in methanol) and gas chromatography analysis (using gas chromatography flame 

ionization detector (Hewlett Packard 5890 Series II) with non-polar capillary Agilent 

J&W DB-5 column (60 m × 0.25 mm × 0.25 μm)). The total fat in the expectorated 

almond sample was measured by using Folch extraction to calculate the free oleic acid in 

total fat (g/ml).  

CD36 genotype measurement 

Participants were asked to swab the inside of their cheek 7 times to collect buccal 

cells using sterile Omni swabs (Whatman, UK). The buccal swab samples were collected 

in duplicate. Genotyping of three CD36 SNPs (rs1761667, rs1527483, rs3840546) was 

carried out at iDNA genetics Ltd (Norwich, UK). 

Statistical analysis 

Fat intensity ratings were collected by Compusense at-hand (Canada). Data was 

analysed by XLSTAT (version 2016.8, Addinsoft). Latent cluster analysis was conducted 

to classify participants into different liking groups based on their recalled liking ratings 

of foods. Multivariate ANOVA with Bonferroni pairwise comparison was conducted to 

examine the difference in perceived fat intensity between groups (e.g. liking groups, 

sensitivity groups or genotypes). Significance was set at 0.05.  
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Results and Discussion 

Taste modality on oral fat perception 

Significant differences were found between fat levels under the “taste” condition 

(p<0.05), which implies that fat can be distinguished by taste. The perceived fat intensity 

rated in the “taste” modality was significantly higher than in the “overall” modality 

(p<0.0001), which was due to the addition of paraffin and thickener in the mouthfeel-

masked samples. This confirms that mouthfeel, such as thickness and lubrication, is an 

important indicator of oral fat perception. 

Food liking, food intake and oral fat perception 

Based on liking results collected by FPQ, high fat likers (HFLs) and high fat dislikers 

(HFDs) were established. HFLs (n=34) displayed higher liking scores in most food items 

(42 out of 46) which was significant for 25 items (p<0.05). HFLs showed higher fat intake 

(as % total energy) (p=0.004), which implies that high liking to foods rich in fat could 

stimulate the consumption of these foods. In addition, HFLs showed significantly lower 

perceived fat intensity under the “taste” modality compared to HFDs (n=51, Figure 1A). 

Fat taste generated by fatty acids has been reported to be an unpleasant taste sensation 

[6], so this might explain why the HFDs do not like foods rich in fat. 

 
Figure 1: Perceived fat “taste” intensity between HFLs and HFDs (A, left) and perceived fat “overall” inten-

sity between oleic acid producers/non-producers (B, right). Bars not sharing a common letter differ signifi-

cantly (p<0.05) between fat levels and between groups. Error bars represent standard error of the mean. 

Fatty acid sensitivity and oral fat perception 

Individual threshold sensitivity to oleic acid varied, and participants were divided 

into high (n=47) / medium (n=19) / low (n=21) sensitivity groups (grouping approach 

was developed by Zhou et al. (2016)). No significant difference in the perceived fat 

intensity rating was found between fatty acid sensitivity groups (p=0.46). However, the 

high sensitivity group could discriminate more pairs of fat levels in the fat intensity rating, 

which implies that individual sensitivity to oleic acid influenced the ability to distinguish 

fat levels in the real food model.  

Salivary lipase activity and oral fat perception   

Free oleic acid as a percentage of total fat in expectorated almond samples ranged 

from 0.024% to 3.75%w/w. Compared with free oleic acid (as % of total fat) in whole 

ground almond (0.027% to 0.26%), participants with expectorated free oleic acid (%) 

above 0.26% (n=20) were grouped as “oleic acid producers”, and those below 0.26% 

(n=65) were “oleic acid non-producers”. No significant difference in fat “taste” intensity 

ratings was found between producers and non-producers (p=0.39), however, under the 

“overall” condition, oleic acid producers rated oral fat perception higher than non-
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producers (p<0.0001, Figure 1B). Therefore, to some extent, subjects who could produce 

free oleic acid in the mouth perceived a stronger oral sensation of fat in the cream model. 

CD36 genotype and oral fat perception 

CD36 rs1761667 genotype influenced perceived fat “taste” intensity rating 

(p=0.003), where A/A carriers (n=27) had significantly higher perceived fat “taste” 

intensity than G/G (n=21) and A/G (n=35). No significant effect of rs1527483 nor 

rs3840546 was found on perceived fat intensity (p=0.22, p=0.14, respectively).  

 
Figure 2: Perceived fat “taste” intensity between oleic acid producers and non-producers with different CD36 
genotypes at rs1761667 (A) and at rs1527483 (B). Bars not sharing a common letter differ significantly 

(p<0.05) between groups. Error bars represent standard error of the mean. 

A significant interaction between rs1761667 genotypes and oleic acid produc-

ers/non-producers, and between rs1527483 genotypes and producers/non-producers on 

perceived fat “taste” intensity was observed (p=0.007, p<0.0001, respectively). In oleic 

acid producers, rs1761667 A/A carriers (n=6) showed higher perceived fat “taste” 

intensity than G/G carriers (n=5, p=0.014) and A/G carriers (n=7, p<0.0001, Figure 2A). 

In addition, rs1527483 C/T carriers (n=5) presented higher perceived fat “taste” intensity 

than C/C carriers (n=13) (p<0.0001, Figure 2B). Regarding non-producers, no significant 

difference in perceived fat “taste” intensity was found between rs1761667 A/A (n=21), 

G/G (n=28) and A/G (n=16); however, rs1527483 C/C carriers (n=56) showed higher 

perceived fat “taste” intensity than C/T carriers (n=9) (p=0.035, Figure 2B). This implies 

that the influence of CD36 genotypes on oral fat perception varied between subjects 

according to their ability to generate free fatty acids.  

Conclusion 

Fat can be perceived through taste. Individual preference to high-fat foods varies. 

High-fat likers had significantly lower fat taste perception in dairy model. Both lipase 

activity and CD36 genotype influence oral fat perception. The influence of CD36 

genotypes on oral fat perception varies between subjects with high or low lipase activity. 
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Abstract  

Sensory-directed fractionation of an ethanol extract prepared from black pepper 

corns (Piper nigrum L.) followed by LC-TOF-MS, LC-MS/MS, and 1D/2D-NMR 

experiments as well as synthesis revealed in sum 25 key tingling and/or pungent stimuli, 

which belong to two chemical classes of non-volatiles: the piperine-type analoges and 

unsaturated, long-chain fatty acid amides. While sensory evaluation of human recognition 

threshold concentrations by means of a modified half tongue test demonstrated the 

structural features causing the tingling and/or pungent impression of these pepper amides, 

the data obtained did not correlate with those reported for heterologously expressed TRP 

channels TRPV1 and TRPA1 in literature. Screening experiments with two-pore domain 

(KCNK, K2P) K+ channels suggest that pungent/tingling chemosensates from pepper 

exhibit a marked effect on three KCNK channels, namely TASK-1 (KCNK3, K2P 3.1), 

TASK-3 (KCNK9, K2P 9.1) and TRESK (KCNK18, K2P 18.1), respectively, which are 

likely to play a complementary role to TRP channels in the complex orosensory 

impression elicited by black pepper corns.  

Introduction 

Due to the fact that nearly every cuisine all around the world appreciates black 

pepper (Piper nigrum L.) for its characteristic pungent and tingling orosensory 

impression, its corns remain the world’s most important spice today. Although multiple 

research groups isolated next to piperine (1a), several other piperine-type analoges, like 

piperylin (1b), piperettine (2b) or retrofractamide (3c), all of which share a piperonal 

moiety, and identified them as the key players imparting the pungent impression of pepper 

[1], reliable data published on their human taste threshold concentrations are still lacking 

(Figure 1). In addition, next to its pungency black pepper corns exhibit a long-lasting 

tingling impression, which has never been characterized before. Therefore, the first 

objective of the present investigation was to target the sensory active key molecules in 

black pepper corns by application of a Sensomics approach. Thereby, we identified 25 

key pungent and tingling chemosensates, among which, interestingly, exclusively 

piperine analogues exhibited a clear pungent orosensory impression while a group of 2,4-

dienoic acid amides with an additional cis-configurated double bond exhibited both, a 

pungent and a long-lasting tingling sensation at higher concentrations [2]. However, the 

data obtained did not correlate with those from heterologously expressed TRP channels, 

like TRPV1 and TRPA1, which are known to be activated by several pungent sensing 

amides from black pepper [2-4]. For decades, the pungency perception has rested almost 

exclusively on polymodal TRP channels. However, there are publications suggesting 

additional targets for pungent substances [3, 5-9] and we found that even in the presence 
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of TRP-antagonists, piperine (1a) was still able to activate a fraction of trigeminal 

neurones. Two-pore domain K+ channels (KCNK) channels are among the most plausible 

candidates for a complementary role in the chemoperception of pungent stimuli [8,9]. 

Three of those channels have been previously shown in mice to be molecular targets of 

the tingling active hydroxy-α-sanshool [10]. 

Therefore, the aim of the present investigation was, on the one hand to target the 

sensory active key molecules in black pepper corns by means of a Sensomics approach 

and on the other hand to investigate whether two-pore domain K+ channels (KCNK) 

channels could play a physiologically relevant role in their perception. 

Experimental 

Materials 

Black peppercorn samples were purchased from the German retail market. Prior to 

the cell-culture assays and the psychophysical experiments, spectroscopic data and the 

purity (>98%) of each individual pepper amides 1a−11c were checked by means of 

HPLC-UV, 1H/13C NMR, LC-MS/MS, and LC-TOF-MS experiments. Thereby, 

spectroscopic data were in good agreement with those published in the literature [2]. All 

experimental procedures including isolation, identification and psychophysical 

experiments of pepper amides as well as all cell experiments have been described in detail 

previously [2,8,9].  

Results and discussion 

Aimed at characterizing the pungent and tingling orosensory impression of black 

pepper corns data from human psychophysical experiments, collected by means of a 

Sensomics approach, were combined with their effect on background K+ currents.  

Molecular definition of black pepper taste by means of a Sensomics approach 

A Sensomics approach, including taste dilution analysis, followed by UHPLC-TOF-MS, 

LC-MS/MS and 1D/2D NMR experiments as well as synthesis, led to the structure 

identification of 12 piperine analogues (1a-6c) and 13 2,4-dienoic acid amides (7a-11c) [2] 

(Figure 1). Depending on the chemical structure of the amides, sensory studies by means 

of a modified half-tongue test revealed human orosensory recognition thresholds of these 

phytochemicals to range from 3.0 to 1150.2 nmol/cm2 for pungency and from 520.6 to 

2162.1 nmol/cm2 for tingling [2]. Interestingly, while the piperine analogues 1a-6c 

exclusively exhibited a clear pungent orosensory impression, 2,4-dienoic acid amides 

with an additional cis-configurated double bond in the fatty acid chain (7a-8c,10a-11c) 

were found to exhibit both a pungent (at lower concentrations) and a tingling impression 

(at higher concentrations) [2]. 
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Figure 1: The chemical structures of pungent and tingling compounds 1a-11c in black pepper corns and its 
pungentp and tinglingt recognition threshold concentrations in nmol/ cm2 as reported ealier [8]: piperine (1a) 

[3.0p], piperyline (1b) [5.1p], piperlonguminine (1c) [10.4p], piperettine (2a) [5.2p], piperoleine (2b) [10.3p], 
dehydropipernonaline (3a) [152.1 p], 1-[1-oxo-9(3,4-methylenedioxyphenyl)-2E,4E,8E-nonatrienyl]-

pyrrolidine (3b), retrofractamide A (3c) [25.3p], pipernonaline (4a), piperroleine B (5a) [1150.2p], brachyamide 

A (6b), guineensine (6c) [810.1p], 1-(octadeca-2E,4E,13Z-trienyl)piperidine (7a), 1-(octadeca-2E,4E,13Z-
trienyl)pyrrolidine (7b), (2E,4E,13Z)-N-isobutyl-octadeca-2,4,13-trienamide (7c) [540.5p, 2162.1t], 1-

(octadeca-2E,4E,12Z-trienyl)piperidine (8a), 1-(octadeca-2E,4E,12Z-trienyl)pyrrolidine (8b), (2E,4E,12Z)-N-

isobutyl-octadeca-2,4,12-trienamide (8c), (2E,4E)-N-isobutyl-octadeca-2,4-dienamide (9c) [763.0p], 1-(eicosa-
2E,4E,15Z-trienyl) piperidine (10a), 1-(eicosa-2E,4E,15Z-trienyl)pyrrolidine (10b), isobutyl-eicosa-2,4,15-

trienamide (10c), 1-(eicosa-2E,4E,14Z-trienyl) piperidine (11a), 1-(eicosa-2E,4E,14Z-trienyl)pyrrolidine 

(11b),  (2E,4E,14Z)-N-isobutyl-eicosa-2,4,14-trienamide (11c) [741.2p, 1482.3t]. The compounds 7c/8c [540.5p, 

2162.1t], 10a/11a [260.2p, 520.6t], 10b/11b [405.8p, 811.6t] and 10c/11c [741.2p, 1482.3t] were tasted as binary 

mixtures. Graphic top right: Normalized currents showing the effect of 12 chemosensates at 1 mM on Xenopus 

laevis oocytes expressing hKCNK3, hKCNK9 and hKCNK18. The currents were normalized to the current 
measured prior to the application of each tastant (middle line). If a pepper amide induces a change greater than 

20% of the basal activity (upper and lower lines), a relevant effect is suggested. Figure adapted by [9]. 
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Pungent and tingling substances inhibit the human two-pore domain potassium channels 

TASK-1, TASK-3 and TRESK 

For a long time, the focus of pungent trigeminal chemoperception has rested almost 

exclusively on two members of the TRP family, TRPV1 and TRPA1 [3,4,8,9]. However, 

we found that the human recognition threshold concentrations for many pepper amides 

did not correlate with the data obtained from heterologously expressed TRP channels 

[2,3,9]. In addition to this, we observed that even in the presence of TRP-antagonists, 

piperine (1a) was still able to activate a large fraction of trigeminal neurones [8]. 

Therefore, we assumed that additional receptors, like two-pore domain (K2P) potassium 

channels, which have been shown by Noël et al. [11] to “fine-tune” the cellular response 

to stimuli that activate TRP channels [8, 9], possibly interact with our taste stimuli.  

Next to piperine, 6-gingerol and capsaicin 12 other pungent/tingling amides from 

black pepper corns, which were additionally screened, exhibited a marked effect on two-

pore domain (KCNK, K2P) K+ channels, namely TASK-1 (K2P 3.1), TRESK (K2P 18.1) 

and especially TASK-3 (K2P 9.1) (Figure 1) [8,9]. Although tingling compounds from 

Szechuan pepper have been shown to induce neuronal excitation by inhibiting KCNK 

channels before [10], our results demonstrate, for the first time, that next to tingling and 

pungent stimuli, exclusively pungent tasting compounds from Piper nigrum, like 1a-c, 

2a, 3a or 6c, possess an inhibitory effect on two-pore domain K+ channels. This inhibitory 

effect was dose-dependent and fully, although slowly, reversible. Thereby, 1-(octadeca-

2E,4E,13/12Z-trienoyl)-pyrrolidine (7b/8b) was found to be the most potent naturally 

occurring inhibitor of hKCNK3. In addition, we observed when His98, the amino acid 

which is thought to be the main proton sensor in TASK-1 and TASK-3 [12,13], is mutated 

to Glu, the piperine-induced inhibition is significantly reduced [8].  

In conclusion, a Sensomics approach led to the structure determination of 25 key 

phytochemicals, which elicit the typical pungent/tingling flavour of black pepper corns. 

In addition, our results suggest that pungent/tingling tasting pepper compounds, possesses 

a marked effect on KCNK channels, especially on KCNK3, which are likely to play a 

complementary role to TRP channels in the complex orosensory impression elicited by 

black pepper corns.  
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Abstract 

There is evidence that odorants in a mixture produce their sensations at different 

times. If true, then temporal processing may be an important component of olfactory 

decoding. Starting with binary odorant mixtures at which subjects had equal probability 

to detect one compound or the other, Equal Odd Ratio (EOR), we prepared solutions of 

each component separately and puffed these separated solutions at different times 

between 0 to 800 ms (latency times) and different concentration ratios. The results 

indicate a linear relationship between latency and concentration ratios confounding the 

meaning of the temporal delays reported in earlier psychophysical experiments. 

Introduction 

Human perceptions of odorant mixtures are created from olfactory receptor output 

combined with information from many brain functions, i.e. memory, emotion, other 

sensory input, etc. and each of these can operate at different speeds. Using four different 

odorant pairs Laing in 1994 observed a latency ranging from 92 ms (Carvone-Limonene) 

to 580ms (Carvone-Benzaldehyde). [1] Twelve years later, Rinberg studied the speed-

accuracy tradeoff in mice and observed that the time required to reach the maximal 

accuracy can be up to 600 ms (harder tasks). [2] In 2015, Resulaj demonstrate that mice 

process odor information in 70-90ms after odor inhalation indicating that mice can make 

decisions surprisingly fast. [3] This evidence of temporal differences in human and 

murine response to different odorants led us to use a sniff olfactometer (SO) to study the 

effect of stimulus onset time for 3 odorant-pairs and compare these differences between 

mixtures of the same odorants at different concentration ratios. [1,3,4] 

Experimental 

Materials 

The three odorants tested had thresholds that ranged over 10,000 fold: benzaldehyde 

(threshold 350 ppb), R(-)-carvone (threshold 2 ppb) and 2,4,6,-trichloroanisole (threshold 

0.027ppb). They were tested starting at 5 times their threshold in binary mixtures and at 

concentration ratios above and below their equal odds ratio (EOR) in Experiment 1 and 

as pairs of single component solutions puffed simultaneously in Experiment 2. They were 

dissolved in ethanol and aliquots diluted to a target concentration with 7% ethanol and 

water to yield 7% ethanol for all samples tested. 

Psychophysics 

Four subjects participated in this study; 3 females and 1 male ranging from 25 to 32 

years old. None of them were smokers and reported any olfactory dysfunction. They were 

students and employees of Cornell University’s Department of Food Science and did not 

have any prior experience with this type of psychophysical testing. [5] Figure 1 shows a 

cartoon of the Sniff Olfactometry (SO) used. The SO delivers a 15ml puff of headspace 

gas from above 50 ml solutions of odorants with a duration of 70ms. The puffs were 

presented 500ms after a visual cue directing the subjects to inhale was shown on the 

monitor. After an additional 750 ms the subjects were asked to answer a question using 
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the mouse. Shown on the right in Figure 1 is Binomial Generalized Linear Model (B-

GLM) plot of the responses to the cue, “which is stronger: the ‘mint’ or the ‘almond’ 

smell?” replicated 9 times for each of 4 sessions covering a range of responses from 100% 

“mint” to 100% “almond”. The dotted lines indicate the outer limits of the 95% prediction 

interval for the data. In Experiment 1 they were asked, “which odor was the strongest” 

but in Experiment 2 they were asked “which odor came first”. They answered either 

“mint” or “almond”.  

  
 

Figure 1: The Sniff Olfactometer, DATU, Inc., Geneva, NY, shown in the cartoon on the left shows a subject 

from above waring noise-canceling headphones, the mouse used for input, the shape and location of the odor 
port and the monitor used to provide cues to the subject. [4] In the center is shown the script for the 27 

randomized trials each replicated 9 times. When testing mixtures, each bottle contains a different concentration 

ratio. [6] On the right is Binary-GLM fit of the carvone-benzaldyde data showing the probability of “mint”, the 
EOR and the prediction interval (between the dotted lines).  

Experiment (1): 

As outlined on the left in Figure 2 the odorant pairs were tested as a mixed head 

space above a solution containing both. Iterative tests (n=9) of a range of odor ratios 

yielded response probabilities for 3 odorant pairs and 4 subjects. 

Binary Odorant Mixture Test (1) Separate Odorant Puff Test (2) 

 

Figure 2: Shows the two experimental protocols: 1) used to determine the response probability at different 

concentration ratios of a binary mixture and 2) used to determine the response probability to the binary odorants 
puffed separately at various times. 

Experiment (2):  

To test the temporal effect on binary odorant detection, separate solutions were 

prepared at their EOR concentrations determined in Test (1). These solutions were placed 

in separate bottles and instead of puffing a mixture two bottles with separate odorants 
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were puffed simultaneously. Then, they were puffed with different latencies between the 

puffs. The right side of Figure 2 is a cartoon of this experiment showing the randomly 

interlaced puffs of single odorants at different delay but all at same concentration ratio, 

in contrast to Experiment 1 where the samples were presented as single puffs of mixture 

at different ratios.  

Results and discussion 

Figure 3. summarizes the results of Experiment 1 (a. and b.) and Experiment 2 (c. 

and d.). The plots are generalized linear model fits to the binomial data produced from 

the SO. Dotted lines indicate the extent of the 95% prediction intervals and the 3 colors 

in a. and c. indicate different odorant pairs of the three odorants tested. The 4 colors shown 

in b. and d. indicate the four different subjects used in the study.  

 
Figure 3: Summarizes the resutls of Experiment 1. and 2. Plots a. and b. show the combined Binomial-GLM 
plots for responses to mixtures of odorant. In a., blue, red and green, are the data from the 3 odorant pairs and 

b. shows the compined data GLM plots for the 4 different subjects. The EOR concentrations produced by subject 

“black” was used (arbitrarerly) to define the concentration ratio used in Experiment 2.  

It is well documented that odorants differ greatly in their odor potency therefore we 

would expect the response probabilities for the 3 odorant pairs plotted in Fig.1(a.) to have 

different plots and indeed they do. Exactly how these differences affect odorant mixture 

perception remains to be determined but that behavior is compositionally determined is 

clear. Furthermore, Figure 1 (b.) shows an even greater difference in the perceptions for 

different subjects to the same odorant pair, a result also well documented in the literature. 

Far from being a confounding factor it implies that SO studies may be an excellent way 

to investigate individual differences. Speed is the main advantage SO tests have over 
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more traditional sensory testing but SO studies require knowledge of the key odorants in 

a mixture.  

In Experiment 2 the subjects were presented with single puffs separated in time by 

a range of latencies from -800ms to +800ms. All experiments began with odorants in 

separate bottles at their EOR determined in Experiment 1 for each odorant pair. For every 

pair and each subject, the response probability was 0.5 when separate puffs of single 

odorants were presented to the subject as it was when single puffs of mixtures were 

presented. At the EOR concentrations all the models were within the prediction interval 

at a 95% probability. In this study, no difference in temporal response different odorants 

or by different subjects. It is as though the brain does not distinguish between the 

sensations produced by a puff of air containing a uniform mixture of two different 

odorants and the sensations produced by two puffs of air each containing uniform sample 

of a single odorant. Whatever the mechanism that translates odorant composition from a 

sniff into a perception the intensity of each odorant is concentration dependent and 

independent of the delivery mechanism, i.e. individually or in a mixture. The receptor 

system evaluates each odorant separately and the two puffs in the SO do not dilute each 

other. Such a mechanism would allow organisms to perceive turbulent mixing of odorant 

sources as undiluted by the turbulence and indicative of the source composition. At least 

until diffusion completely dilutes the odorants and the gas is uniform.  

As both figures c and d indicate the puffing of odorant pairs with different latencies 

has a marked effect on which odorant is perceived most frequently as first to be detected. 

All 3 pairs of odorants and all 4 subjects showed the same relationship between 

probability of detection and latency within a 95% prediction interval and reaching 100% 

detection of one odorant first with a 600-800ms separation. In light of these results from 

4 subjects and 3 odorants it is not clear if the 580ms carvone-benzaldehyde latency 

measured by Laing was caused by differences in concentration ratios or differences in 

temporal processing. A better psychophysical experiment may be one that measures the 

effects of odorant composition on reaction time. [1] 
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Abstract 

We devised to convert the contributions of retronasal aroma fluctuating with time 

during consumption into numerical values. Retronasally perceived aroma compounds 

were directly analyzed with proton transfer reaction mass spectrometry (PTR-MS) while 

subjects drank several samples of aqueous solutions of aroma compounds. The behavior 

of aroma compounds released from the nostrils was detected with breath-by-breath AUC 

(area under curve in a plot concentrations vs time) and was approximated as a power law 

function. Separately, subjects determined the flavor threshold for each aroma compound 

by drinking its aqueous solution. AUC of each compound at the 1st breath released from 

the nostrils was newly defined as retronasal threshold when subjects drunk an aqueous 

solution at its threshold concentration. Then, the value which was calculated from the 

AUC of retronasal aroma and retronasal threshold was defined as the contribution value 

of retronasal aroma (CRA). A contribution of an aroma compound at an arbitrary time 

after swallowing foods and drinks can be indicated with CRA. Consequently, our study 

enables the visualization of a perceived flavor balance and calculation of its time changes 

during consumption. 

Introduction 

Retronasal aroma is one of the most important factors for palatability of foods and 

drinks during consumption. It is different from orthonasal aroma inhaled from the nostrils. 

It is thought that nosespace analysis of aroma compounds released from the nostrils and 

olfactory sensation during ingestion of foods and drinks have a high correlation [1]. 

Aroma extract dilution analysis (AEDA) and odor activity value (OAV) are widely 

known as methods to determine the contribution value for aroma compounds in a food by 

sniffing via the orthonasal route; both are very useful to indicate the aroma contribution 

[2]. Even though several studies reported calculation methods of retronasal OAV by using 

odor thresholds determined retronasally [3, 4], they did not indicate time changes of the 

aroma contribution. An aroma contribution on AEDA or OAV is just derived from an 

aroma compound’s concentration in a target sample so that it does not indicate flavor 

perception nor time changes of aroma during consumption. Real-time measurement of 

volatile compounds using atmospheric pressure chemical ionization mass spectrometry 

(APCI-MS) or PTR-MS has been possible since the 1990s, and has been used to measure 

aroma release from foods or in vivo aroma release from nostrils [5, 6]. Few reports, 

however, referred to time changes of the contribution value of retronasal aroma. In this 

study, we developed a method which shows time changes of aroma contribution during 

the ingestion of foods and drinks and predicts the time changes of the perceived flavor 

balance. 
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Experimental 

Sample preparation for nosespace analysis and odor profile creation 

Nineteen aroma compounds were selected from aroma compounds which are known 

to be present in a coffee drink, and were separated into several groups in order to analyze 

them with PTR-MS. Each mixture of compounds was dissolved in water. The 

concentration of each compound was adjusted to be detected reliably with PTR-MS until 

the measurement was finished.  

Separately, for odor profile verification, a coffee model flavor was prepared with the 

nineteen aroma compounds mentioned above at an appropriate composition ratio as 

coffee flavor. The model flavor was added to water purified by ion-exchange at 0.1% 

w/w, and it was used as a model coffee drink. 

Nosespace analysis with PTR-MS 

A commercial PTR-MS instrument (Ionicon Analytic GmbH, Innsbruck, Austria) 

was used for nosespace analysis. Two subjects sucked each aqueous aroma solution (10 

ml) through a straw and swallowed at once. Then, expiration from each subject’s nostrils 

was measured for one minute under controlling their breathing pattern (once per 3 sec). 

Each compound released from the nostrils was introduced with a flow of 100 sccm into 

the drift tube (2.0 mbar, 105 °C, 480 V drift voltage). The E/N ratio was 136 Td. The 

mass ion counts were normalized to H3O+ ion counts. The behavior of each retronasal 

aroma compound analyzed with PTR-MS was changed over to breath-by-breath AUC 

[7]. The behavior of AUC was approximated as a power law function [8]. The results of 

two subjects’ measurement were averaged. 

Determination of retronasal thresholds 

Nineteen aroma compounds were dissolved in water separately, and were stepwise 

diluted with dilution factor 10 (0.1ppt to 1000ppm). Two assessors drank aqueous aroma 

solutions in ascending order of concentrations. The lowest concentration of each aqueous 

aroma solution that the assessors perceived on average was determined as flavor threshold 

of the aroma compound, respectively. When subjects drink an aqueous aroma solution, 

there is a proportional relationship between an aroma concentration in water and the 

aroma concentration released from a nostril [8]. AUC of each compound at the 1st breath 

released from nostrils was defined as retronasal threshold when subjects drink an aqueous 

aroma solution at its threshold concentration.  

Calculation of the contribution value of retronasal aroma (CRA) 

The behavior of AUC of each aroma compound is shown as a power law function 

by nosespase analysis with PTR-MS. In the case of any aroma concentration in water, a 

power law function of each compound can be used, because previous reports 

demonstrated an approximate linear relationship between each aroma concentration in 

water and breath concentration of each compound [8]. Therefore, AUC at arbitrary breath 

can be calculated in proportion to the aroma concentration in water. The contribution 

value of retronasal aroma (CRA) was calculated to divide AUC at arbitrary breath by 

retronasal threshold. 

Sensory evaluation of odor intensity 

Seven trained panelists assessed the odor intensity of aroma attributes according to 

seven descriptors (malty, butter, nutty, roast, green coffee bean, brown sugar, 

smoky/medicine) on a seven-point scale from 0 (not perceivable) to 6 (strongly 

perceivable) in order to visualize the sensory profile during the ingestion of the model 
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coffee drink. Each odor intensity was evaluated immediately after swallowing the drink. 

In addition, each odor intensity was evaluated after about 30 seconds after swallowing 

the drink. 

Results and discussion 

Prediction of CRAs 

First of all, AUC of the 1st breath of each compound was calculated from each 

concentration of 19 aroma compounds in water during the ingestion of the model coffee 

drink. AUC of the 10th breath of each compound was calculated using the individual 

power law function. The 1st breath is assumed to be right after swallowing the drink and 

10th breath is assumed to be after about 30 seconds from swallowing the drink. Then, 

CRA of each aroma compound was calculated by dividing AUC of 1st and 10th breath, 

respectively by retronasal threshold, and the results showed that CRA of 11 compounds 

exceeded 1.0 at 1st breath CRA (Table 1). CRA of other compounds was smaller than 1.0. 

In other words, this shows that we are not able to recognize these compounds at the 

concentration level in the model coffee drink, because their AUC of 1st breath was 

considered smaller than retronasal threshold. 

Table 1: Contribution values of retronasal aroma (CRA) of 11 compounds in model coffee drink 

Aroma compound 
Aroma  

Attributes 

CRA 

(1st Breath) 

CRA 

(10th Breath) 

2-Methylpropanal Malty 10   0.1   

2-Methylbutanal Malty 36   0.1   

3-Methylbutanal Malty 40   0.2   

Diacetyl Butter 10   1.6   

2-Ethyl-3-methylpyrazine Nutty 4   1.3   

2-Ethyl-3,5-dimethylpyrazine Nutty 20   6.7   

Furfuryl mercaptan Roast 50   0.1   

Furfuryl alcohol Roast 10   2.6   

2-Methoxy-3-isobutyl pyrazine green coffee bean 50   3.9   

Methyl cyclopentenolone brown sugar 20   6.8   

Guaiacol smoky, medicine 10   2.3   

Comparison of the sensory profile and the predicted profile 

In order to verify the advantage of our procedure, we compared the CRAs and the 

results obtained from sensory evaluation. It is difficult to linearly compare the CRAs of 

aroma compounds with the sensory evaluation because the CRAs were derived from 

quantitative values and it would be predominated by Fechner law when converted to a 

predicted flavor profile. So, CRAs of the same aroma attribute were first summed up. 

Next, the total CRA's value of each aroma attribute was taken as a logarithmic value. In 

addition, the calculated logarithmic values at 1st breath were multiplied by 2.1 so that the 

"roast" values in Figure 1A overlapped. And the values at 10th breath were multiplied by 

3.7 so that the "brown sugar" values in Figure 1B overlapped. Therefore, the predicted 

profile and the sensory profile can be easily compared visually. 



 

 

Shinichiro Ito et al. 240 

Figure 1A shows a comparison of the sensory intensity at right after swallowing and 

the predicted profile at the 1st breath. Profiles resulted in almost overlapping profiles. 

Figure 1B shows a comparison of the sensory intensity at after about 30 seconds and the 

predicted value at the 10th breath. Both of them changed over time from Figure 1A. The 

predicted profile deviated partly from the sensory profile recorded after about 30 seconds. 

However, we think that the profiles are still similar at several aroma attributes like nutty, 

green coffee bean, brown sugar, and smoky/medicine. 

 
Figure 1: Comparison of sensory profile and predicted profile 

Conclusion 

We devised a method to predict aroma contributions and the time changes that we 

perceive after swallowing in the following sequence: in vivo measurements of retronasal 

aroma with PTR-MS, relationship between aroma concentration in water at swallowing 

and aroma concentration released from nostrils, then newly defined retronasal threshold 

derived from the relationship. The results of verification using the model coffee drink 

showed a good correlation between the predicted profile and the sensory evaluation. 

Therefore, it was suggested that this study is useful to indicate the real-time perceived 

flavor balance. On the other hand, there is an inevitable deviation between our prediction 

system and sensory evaluation because cross- or multi-modal sensory integration of 

olfaction and gustation has occurred during consumption [9]. Individual or genetic 

differences among subjects should be considered as well in future investigations. 
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Introduction 

More than thousand volatiles have been identified in wine. To be perceived, these 

aroma compounds need to be first volatilized from the matrix to the headspace in order 

to reach the olfactory epithelium of the taster. From a physico-chemical point of view, 

compounds’ release may be explained by their partition coefficient, which represents the 

ratio of aroma concentration between gas and liquid phase. 

In red wine, a part of the fruity aroma is the consequence of perceptive interactions 

between various aromatic compounds, thanks to synergistic effects (Lytra et al., 2014, 

2015), as well as masking effects, thus modulating the overall fruity expression 

(Cameleyre et al., 2015; Lytra et al., 2012). Even if these effects have been clearly 

described, the levels where they occur have been poorly investigated (Tempere et al., 

2016). 

This work proposes to explore the pre-sensorial level, where the release of flavour-

active compounds from the matrix take place, using multiple partition coefficients 

determination. 

Experimental 

Sensory analysis  

Sensory profiles were established for previously highlighted perceptive interactions. 

Impact on fruity perception of diacetyl, acetoin, acetic acid and γ-butyrolactone, but also 

dimethyl sulphide (DMS) at various concentrations and hydroxylated esters was studied. 

Typical fruity aroma found in red wine was represented in the fruity aromatic 

reconstitution by 13 esters at concentrations listed in Table 1. 

The panel consisted of 21 judges, 9 males and 11 females aged 28.7 ± 5.3 (mean ± 

SD) years. All panellists were research laboratory staff at ISVV, Bordeaux University, 

selected for their experience. 

Partition coefficients calculation  

Partition coefficient (kg/m) represents, at the thermodynamic equilibrium, the ratio of 

concentrations between the gas phase (Cgas) and the liquid matrix (Cliq) of a volatile 

compound: 

𝑘𝑔/𝑚 =
𝐶𝑔𝑎𝑠

𝐶𝑙𝑖𝑞

 

Partition coefficient determination was realized using Phase Ratio Variation (PRV) 

method developed by Ettre et al (1993), who established the following equation, where 

the concentration of volatiles in the headspace is proportional to the sample volume in the 

vial: 
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1

𝐴
=

1

𝑓𝑖 × 𝐶
𝑖
𝑙𝑖𝑞

× 𝑘𝑔/𝑚

+
1

𝑓𝑖 × 𝐶
𝑖
𝑙𝑖𝑞

× 𝛽 

kg/m is the partition coefficient between the gas and the matrix, where A is the 

chromatographic peak area at the thermodynamic equilibrium, fi is the detector response 

factor, 𝐶𝑖
𝑙𝑖𝑞

 is the initial compound concentration in the vial and β is the ratio between the 

headspace (Vg) and the liquid (Vl) volume (Ettre et al., 1993).  

By plotting as 1/A against β, Equation 2 can be written as a linear relationship 

between 1/A and β, as follows: 
1

𝐴
= 𝑎 + 𝑏𝛽 

Where     𝑎 =
1

𝑓𝑖×𝐶𝑖
𝑙𝑖𝑞

×𝑘𝑔/𝑚

 and 𝑏 =
1

𝑓𝑖×𝐶𝑖
𝑙𝑖𝑞. 

The value of the partition coefficient kg/m is thus equal to the ratio between a and b, 

with 𝑘𝑔/𝑚 = 𝑏
𝑎⁄ , expressed as a concentration ratio. 

Partition coefficients were determined by plotting the inverse of the 

chromatographic areas against the phase ratio β, in order to obtain values for a and b. 

Glass vials (22.8 mL, Chromoptic, France) were filled with 6 amounts of volatiles 

solutions in dilute alcohol solution (0.05, 0.1, 0.5, 1, 1.5 and 2 mL), with phase ratios 

from 227 to 10.4 (according to the liquid samples volumes). 

 

Table 1: Ethyl ester concentrations used for sensory analysis 

Ethyl Esters and Acetates (μg/L) 
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C3C2, ethyl propanoate; C4C2, ethyl butanoate; C6C2, ethyl hexanoate; C8C2, ethyl octanoate; 2MeC3C2, ethyl 2-

methylpropanoate; S-2MeC4C2, S-ethyl 2-methylbutanoate; 2OH4MeC5C2, ethyl 2-hydroxy-4-

methylpentanoate; C2C4, butyl acetate; C2C6, hexyl acetate; C2iC4, 2-methylpropyl acetate; C2iC5, 3-methylbutyl 
acetate; 3OHC4C2, ethyl 3-hydroxybutanoate; 3MeC4C2, ethyl 3-methylbutanoate; 2MB, 2-methylbutan-1-ol; 

3MB, 3-methylbutan-1-ol; 2MP, 2-methylpropan-1-ol; P, propan-1-ol; B, butan-1-ol. 

Results and discussion 

Sensory profiles establishment 

Sensory analysis, and more precisely sensory profiles in dilute alcohol solution, 

showed modulation of fruity aroma perception in the presence of diacetyl, acetoin, acetic 

acid and γ-butyrolactone, but also with addition of dimethyl sulfide (DMS) at various 

concentrations (5, 10, 50 and 70 µg/L) or hydroxylated esters. Presence of these 

molecules led to masking and synergistic effects of fruity aromatic reconstitution, via 

some remarkable sensory interactions (results not shown).  
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Esters partition coefficients determination  

SHS-LP-GC/MS method was applied, in order to research potential modifications 

of equilibrium release in headspace when compounds were mixed together.  

Significant decrease in esters partition coefficients was observed demonstrating a 

masking effect when diacetyl, acetoin, acetic acid and γ-butyrolactone were added. This 

indicated a reduction in esters’ presence in the headspace (Figure 1). This fact may 

explain, at least partially, that the taster was stimulated differently and was therefore 

possibly related to the masking effect observed for fruity notes, with an existence of pre-

sensorial effects. 

 

 
Figure 1: Impact of diacetyl, acetoin, acetic acid and γ-butyrolactone on partition coefficient of ethyl esters and 

acetates in dilute alcohol solution (12% v/v.). *, 5% significant level; error bars represent standard deviation; 

D, diacetyl; A, acetoin; Ac, acetic acid; GBL, γ-butyrolactone; FAR, fruity aromatic reconstitution. 

DMS addition led to an increase in esters partition coefficients, especially as DMS 

concentration increased. Moreover, adding the 13 esters also led to an intensification of 

DMS partition coefficients (Figure 2). These observations suggested an intensification of 

these compounds release in the headspace when they were mixed together in dilute 

alcohol solution. These results may be correlated with the ones obtained using sensory 

analysis. Indeed, addition in fruity aromatic reconstitution of increasing concentrations 

of DMS led to a significant synergistic perception of black-fruit and blackcurrant notes. 
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Figure 2: Impact of DMS at various levels on partition coefficient of esters in dilute alcohol solution (12% 
v/v.). *, 5% significant level; error bars represent standard deviation; FAR, fruity aromatic reconstitution. 

The analytical tool application for hydroxylated esters highlighted that omission of 

ethyl 2-hydroxy-4-methylpentanoate or ethyl 3-hydroxybutanoate from fruity aromatic 

reconstitution did not change the partition coefficients of the other esters (results not 

shown). This fact was surprising, because omitting ethyl 2-hydroxy-4-methylpentanoate 

or ethyl 3-hydroxybutanoate from fruity aromatic reconstitution led to decrease of black- 

and fresh-fruit or red-, fresh- and jammy-fruit perception, respectively, even if these 

compounds were present at level below their olfactory thresholds. These data suggested 

that these synergistic effects related to hydroxylated esters were not the result of pre-

sensorial interactions, but the consequence of interactions at sensorial level. 

In general, our work highlighted the complexity of the mechanisms involved in 

perceptual interaction phenomena, whose origins can take place on several levels. They 

also contribute to the understanding of new perception modifications, especially between 

fruity and non-fruity compounds found in red wines. 
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Abstract 

The compounds in white wine that give rise to varietal ‘stone fruit’ aroma characters 

are not well understood. Relating the compositional differences among wines to their 

sensory attributes can help uncover the cause of specific sensory differences. Viognier 

and Chardonnay wines with differing levels of ‘stone fruit’ character, ranging from low 

to high intensity, were characterised by sensory descriptive analysis and comprehensive 

quantitative chemical analysis. Several aroma compounds were positively associated with 

the ‘apricot’ aroma attribute notable in some of the Viognier wines, including γ-lactones, 

monoterpenes and aldehydes. Sensory reconstitution experiments verified that a mixture 

of three monoterpenes, linalool, geraniol and nerol, was the most important group for the 

model to be perceived as having an ‘apricot’ attribute. 

Introduction 

‘Stone fruit’ aroma attributes are important to many varieties of white wine, such as 

Chardonnay and Viognier. Some γ-lactones, monoterpenes and aldehydes have been 

reported as important aroma compounds in fresh stone fruits [1]. However, very little is 

known about the chemical basis of ‘stone fruit' aromas in wine. Previous Chardonnay 

wine sensory studies have included a ‘stone fruit’ descriptor but these studies did not 

focus on wines with clear ‘stone fruit’ aroma attributes. Little has been reported about 

aroma compounds in Viognier wine. Multivariate statistical techniques can be used to 

find relationships between compositional differences among wines to their sensory 

attributes [2]. Using an appropriate set of wines, highlighting the sensory attribute of 

interest, is more likely to provide well modelled predictions of the aroma compounds 

responsible for that attribute and to help determine if sensory difference is due to variation 

in concentrations of aroma compounds, an absence/presence of certain aroma compounds 

or an additive effect of several aroma compounds. To confirm or dismiss these 

predictions, reconstitution, addition and omission experiments in a realistic model are 

required [3]. 

Experimental 

Materials 

A set of 18 commercially available wines (six wines each: Australian Chardonnay; 

Australian Viognier; and French Viognier) were selected by a small group of experienced 

wine tasters from 75 potential wines to encompass a wide range of ‘stone fruit’ intensities.  

Sensory evaluation 

Descriptive sensory analysis was carried out on the wines using similar methodology 

to Mayr et al. 2014 [4]. A sensory panel, consisting of 10 trained panellists, rated the 

intensity of sensory attributes of the wines in triplicate under controlled conditions. 
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Analysis of the volatile compounds 

Wines were characterised by comprehensive quantitative chemical analysis, 

targeting over 100 volatile aroma compounds using previously published methods [5-13] 

with stable isotope dilution analysis (SIDA-MS) and basic wine chemical composition.  

Statistical analysis 

Sensory panel performance was evaluated using Fizz, Senstools and PanelCheck 

software. Analysis of variance (ANOVA) was carried out using Minitab 17.1.0. 

Following ANOVA, Fisher’s least significant difference (LSD) value was calculated  

(P = 0.05). The sensory attribute ratings were related to chemical composition by partial 

least squares regression (PLSR) using The Unscrambler X software.  

Aroma reconstitution 

Preliminary model reconstitutions were promising for ‘apricot’ but not for ‘peach’. 

Therefore, only apricot was further investigated. 

Addition and omission descriptive sensory studies were conducted in a wine-like 

base model wine: ethanol (13.3 %v/v), tartrate (2 g/L), glucose/fructose (2 g/L), glycerol 

(4.6 g/L), citric acid (0.4 g/L), malic acid (2.6 g/L), succinic acid (0.6 g/L), SO2  

(20 mg/L), pH 3.33 and food colouring. All models contained a mixture of 55 aroma 

compounds (mean concentrations of the 18 wines from the wine sensory study, Table 1). 

The aroma compounds predicted from the PLSR to be important to apricot were added as 

groups at the mean concentrations measured in the three wines with the highest intensity 

rating of apricot (Table 1). Sensory assessments were performed by a panel of eight in 

the same manner as for the wines, but only aroma attributes were assessed not palate.  

Table 1: Volatile compounds included in Control model reconstitution and concentrations of compounds that 
were included in the reconstitution study for ‘apricot’ aroma 

Compounds in Control model  Addition to Control model µg/L 

14 ethyl and acetate esters  Lactones γ-nonalactone 5.9 

5 alcohols   γ-decalactone 1.2 

8 fatty acids   (Z)-6-dodeceno-γ-lactone 0.05 

3 sulphur compounds  Monoterpenes linalool 83 

3-mercaptohexanol   geraniol 27 

8 oak-derived volatiles   nerol 5.3 

10 oxidation-related volatiles  Aldehydes benzaldehyde 206 

2,3-butanediol   (E)-2-hexenal 0.37 

α-terpineol, β-damascenone    (E)-2-nonenal 1.8 

γ-octa and γ-decalactone   (E)-2-hexenol 3.2 

6-amyl-α-pyrone     

Results and discussion 

Relationships between the sensory and chemical data 

The sensory descriptive analysis data established that the selected 18 wines had 

distinct descriptors of stone fruit aroma attributes, ‘apricot’ (tinned apricots) and ‘peach’ 

(fresh white peach), with widely differing intensity ratings. Notably, the two stone fruit 

attributes were not closely correlated.  
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Of the 104 targeted wine aroma compounds, 79 were detectable and quantified in 

the 18 wines. The odour activity values (OAVs) of many of the aroma compounds were 

below 0.5. However, OAVs do not account for additive, synergic, antagonistic or 

perceptual interactions that might be occurring. Hence, all compositional measurements 

were used in the multivariate analysis.  

From the PLSR analysis, several aroma compounds were positively associated with 

the ‘apricot’ aroma attribute notable in some of the Viognier wines (Figure 1). γ-Nona-

lactone, γ-decalactone and the previously little studied and potent aroma compound (Z)-

6-dodeceno-γ-lactone were associated with the apricot sensory attribute, together with the 

monoterpenes linalool, geraniol and nerol, several aldehydes and (E)-2-hexenol. 3-

Mercaptohexyl acetate and trans-ethyl cinnamate were negatively correlated. In contrast, 

other wine aroma studies have generally reported monoterpenes to imbue ‘floral’, ‘citrus’ 

and ‘pine-like’ characters [14]. The ‘peach’ aroma attribute was associated with a range 

of fermentation-derived ethyl and acetate esters, fatty acids and monoterpenes (Figure 1). 

However, the association with monoterpenes was strongly influenced by a few Viognier 

wines rated highly in both ‘apricot’ and ‘peach’, thus confounding the ‘peach’ 

reconstitution model. 

 
Figure 1: PLSR of chemical composition and sensory data loadings plot: volatile aroma compounds that 

explain apricot and peach aroma attributes. 

Aroma reconstitution 

All models containing the monoterpenes were rated higher in ‘apricot’ than the 

Control model (Figure 2). However, the lactones did not increase the intensity of 

‘apricot’. Aldehyde additions did not enhance ‘apricot’ scores (data not shown). ‘Peach’ 

aroma attribute intensities were not significantly different across the models. 
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Figure 2: Mean ratings of ‘apricot’ aroma attribute in white wine reconstitution models. Compounds in the 

reconstitution models are listed in Table 1. Error bars are plus half LSD (P = 0.05). 

‘Tropical’, ‘confection/floral’, and ‘cardboard’ aroma attribute intensities were 

significantly different across the models (p < 0.05) and the effects of the additions and 

omissions for these attributes were varied (data not shown). To our knowledge, this is the 

first time that this comprehensive approach has been used to identify the aroma 

compound(s) responsible for a particular wine aroma attribute from a set of wines 

specifically selected with that attribute. Subsequently, reconstitution studies confirmed 

that the mixture of the three monoterpenes linalool, geraniol and nerol, in the presence of 

ubiquitous wine compounds, was the most important group for the model to be perceived 

as having an ‘apricot’ attribute.  
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Abstract 

Acyclic monoterpenes are a valuable class of compounds useful for the flavor and 

fragrance industries [1]. Among them are the C-6 unsaturated monoterpene alcohols, 

namely linalool, geraniol, nerol and β-citronellol. These substances exhibit pleasant smell 

properties, are prevalent in the essential oils of many plants and are pharmacologically 

and physiologically active. Thereby, it is interesting to note that linalool and geraniol, 

specifically, do not only activate olfactory receptors, but have also other physiological 

activities, e.g. acting as anti-cancerogens [2, 3]. Systematic elucidation of the sensory 

characteristics of metabolic derivatives of this substance group, however, is very limited 

as most work, until today, focused on the basic acyclic monoterpene compounds. Our 

studies demonstrated that a series of these metabolites are odor active compounds, at 

times exhibiting exceptionally pleasant smells [4, 5]. In the course of our studies, we 

started from the respective monoterpene alcohols and their corresponding acetates, 

yielding a total of 24 oxygenated derivatives via diverse synthetic strategies, and 

characterized their olfactory properties. Specifically, these compounds were tested with 

regards to their odor qualities, relative odor thresholds (OTs) in air, and potential inter-

individual variations in human sensory perception for each single substance. Finally, a 

comprehensive substance library was established comprising the respective retention 

index data (RI values) as well as mass spectrometric and nuclear magnetic resonance data, 

to aid in future analytical studies on this sensorially fascinating substance class. 

Introduction  

Apart from being fragrant compounds, linalool, geraniol, nerol and citronellol are 

characterized by several pharmacological and physiological properties. Linalool, found 

in lavender plant, potentiates GABAA receptor modulatory activity in the central nervous 

system; this mechanism is supposed to be the underlying principle for sleep-inducing and 

balancing effects in humans [6]. Similarly, nerol, present in lemon balm, showed to 

exhibit an anxiolytic effect in mice [7]. Geraniol, found in palmarosa, is a plant-based 

insect repellent especially active against mosquitos [8]. β-citronellol, a main component 

of lemon grass leaves, has showed a vasodilatory effect and therefore is claimed to be a 

hypotensive agent [9]. These monoterpenes and their acetate esters have previously been 

studied in view of their odor characters, without comprehensively correlating these smell 

properties with their chemical structure. In addition, the metabolic derivatives of these 

compounds in plants and animals have been studied [10, 11]. The main metabolic 

pathway includes C-8 hydroxylation of these monoterpenes yielding 8-hydroxy 

compounds which are further oxidized to the corresponding 8-carboxy derivatives. Due 

to the lack of commercial availability of these metabolites, the present work aimed at the 

synthesis of a total of 24 C-8 oxygenated compounds, and the determination of their odor 

qualities and odor thresholds (OT) in air using gas chromatography-olfactometry (GC-

O). It was found that most of these derivatives elicited distinct smells [4, 5, 12]. Therefore, 
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a structure-odor relationship study was established in a comparative approach comprising 

all the aforementioned monoterpenes, their acetates and their derivatives, highlighting the 

main structural features and functional groups that impact the odor quality and potency 

of this substance class. 

Experimental 

Syntheses  

General synthetic pathways are shown in Figure 1. Chemicals required for synthesis 

were purchased from Sigma-Aldrich or Fischer Scientific. Data comprising nuclear 

magnetic resonance spectra (1H and 13C), mass spectra as well as retention indices were 

recorded and are described in Elsharif, Banerjee [4], Elsharif and Buettner [5], Elsharif 

and Buettner [12].  

 

 

Figure 1: General synthetic pathways leading to the oxygenated derivatives. 

Evaluation of odor quality and odor threshold 

Odor qualities and thresholds in air were determined according to the procedure of 

Czerny, Brueckner [13] using GC-O involving five panelists who are trained volunteers 

from the University of Erlangen. Compounds were evaluated by each panelist repeatedly 

on different days on different capillary columns (DB-FFAP and DB-5). Panelists were 

asked to relate their sensory impression to an in-house developed flavor language. 
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Results and discussion  

Tables 1 (monoterpene alcohols and their oxygenated derivatives) and 2 

(monoterpene acetates and their oxygenated derivatives) show a comparison of the odor 

attributes perceived by at least 60% of the panel and group odor thresholds calculated as 

a geometric mean of the individual thresholds of panelists.  

We found that parent monoterpene alcohols and their 8-hydroxy derivatives elicited 

citrus-like, fresh odor attributes (Table 1). Only two 8-oxo derivatives, 8-oxolinalool and 

8-oxocitronellol showed similar odor attributes, i.e. citrus-like and fresh. On the other 

hand, 8-oxogeraniol and 8-oxonerol exhibited a fatty, musty odor. All 8-carboxy 

derivatives of this group were odorless with the sole exception of the 8-carboxynerol 

which elicits a fatty, waxy odor. Odor potencies of the parent monoterpene alcohols were 

much higher than that of their corresponding oxygenated derivatives. Although the 

additional OH group at C-8 preserved the citrus-like odor of the parent monoterpene 

alcohols, it tremendously decreased their potency. In case of 8-oxogeraniol and 8-

oxonerol, the aldehyde group turned the odor to musty. A C-8 carboxy group added to 

linalool, geraniol or citronellol yielded odorless substances. To sum up: 1) the OH-group 

at C-1 or C-3 is responsible for the citrus-like odor and the low OT of the parent 

monoterpenes, 2) an additional OH at C-8 only retains the odor quality but not the 

potency, 3) oxidation of the OH at C-8 to the corresponding aldehyde group commonly 

turns the odor to musty and fatty, and 4) further oxidation of the aldehyde to the respective 

acid leads to odorless compounds. 

Table 1: Odor qualities and thresholds for the acyclic monoterpene alcohols and their synthesized oxygenated 
derivatives 

The parent monoterpene acetates elicited similar odor characters closely related to 

their monoterpene alcohols (citrus-like) with the sole exception of neryl acetate which 

smells sweet and phenolic (Table 2). Similarly, the 8-hydroxy acetates provoked citrus-

like, soapy smell. 8-Oxogeranyl and 8-oxocitronellyl acetates were perceived as fatty, 

musty and rotten, musty. Interestingly, all 8-carboxy acetates were found to be odor active 

compounds with the sole exception of 8-carboxycitronellyl acetate. The panel described 

their smells as fatty for 8-carboxylinalyl acetate, sweet and coconut-like for 8-

carboxygeranyl acetate, and green for 8-carboxyneryl acetate.  

 

Name Odor qualitya % of panelists 
Odor thresholdb,c 

ng/Lair 

Linalool Citrus  80 3.2 

Geraniol Citrus, fresh, fatty 80, 60 11.5 

Nerol Citrus, fresh 60 68 

β-Citronellol Citrus, floral, fresh 100, 40 11 

8-Oxolinalool Citrus, fatty 80, 60 50 

8-Oxogeraniol Fatty, musty 60 139 

8-Oxonerol Fatty, musty 80, 60 534.4 

8-Oxocitronellol Citrus, fresh 80, 60 879 

8-Hydroxylinalool Citrus, sweet 80, 40 123.6 

8-Hydroxygeraniol Citrus, fatty 60 310.2 

8-Hydroxynerol Citrus, sweet, vanilla 40, 60 451 

8-Hydroxycitronellol Citrus, fresh 100, 80 233 

8-Carboxynerold Fatty, waxy 40 297 
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Table 2: Odor qualities and thresholds for the acyclic monoterpene acetates and their synthesized oxygenated 

derivatives 

Name Odor qualitya % of panel 
Odor thresholdb,c 

ng/Lair 

Linalyl acetate Citrus, fatty 60 134 

Geranyl acetate Citrus 60 57.1 

Neryl acetated Phenolic, sweet 40 108 

Citronellyl acetate Citrus, soapy 60 665 

8-Hydroxylinalyl acetate Citrus, fresh 80, 60 120.3 

8-Hydroxygeranyl acetate Citrus, soapy 80, 60 62 

8-Hydroxyneryl acetated Citrus 80 92 

8- Hydroxycitronellyl acetate Citrus, soapy 100, 80 1261 

8-Oxolinalyl acetate Citrus, fatty 60 6 

8-Oxogeranyl acetate Fatty, musty 60 20.5 

8-Oxoneryl acetate Citrus, fatty 80 26.1 

8-Oxocitronellyl acetate Musty, rotten 80, 60 346 

8-Carboxylinalyl acetate Fatty 100 7 

8-Carboxygeranyl acetate Sweet, coconut 60, 40 37.1 

8-Carboxyneryl acetate Green 40 24 
aCommon odor attributes given by the panel as perceived at the sniffing port. bOdor thresholds in air were 

determined as described by Ullrich and Grosch [14]. cOdor threshold was calculated as a geometric mean of 
the individual thresholds of panelists. dAnosmia observed. 

The findings can be summarized as follows: 1) the acetate group at C-1 or C-3 

decreases the odor potency at least by a factor of 5, but preserves the citrusy odor of the 

parent monoterpene alcohols with the sole exception of neryl acetate, 2) addition of an 

OH- group at C-8 enhances the citrus odor with an increase in potency, 3) the C-8 

aldehyde group leads to the appearance of a musty odor for 8-oxogeranyl and 8-

oxocitronellyl acetates, and 4) an acid moiety at C-8 of the acetates induces odor attributes 

other than citrusy, but with a further increase in odor potency. It is important to note that 

single cases of anosmia were observed for individuals with the following compounds: 8-

hydroxynerol, neryl acetate and 8-hydroxyneryl acetate. 
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Abstract 

Over the past several years, taste receptors have emerged as key players in the 

regulation of innate defenses in the mammalian respiratory tract.  Several cell types in the 

airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial 

smooth muscle cells all display chemoresponsive properties that utilize taste receptors. A 

variety of bitter products secreted by microbes are detected with resultant downstream 

inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct 

bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in 

susceptibility to infection in respiratory disease states, including chronic rhinosinusitis. 

Ongoing taste receptor research may yield new therapeutics that harness innate defenses 

in the respiratory tract and offer alternatives to antibiotic treatment.  

Introduction 

Canonically, taste has been thought of as an adaptive sense for organisms that feed 

on matter in the environment: food that nourishes is considered to have a pleasant taste, 

while poisons and inedible material tend to be far less palatable. Specifically, bitter taste 

receptors are often tuned to respond to toxic chemicals or products that compromise 

digestive health. Over the past several years, a growing body of literature supports a 

broader role for taste receptors throughout the body, with functions extending far beyond 

the sensory capacity of the tongue [1-6]. Both bitter and sweet taste receptors are 

expressed in the airway, where they appear to play several important roles in innate 

defenses [7, 8].  

Taste receptor mechanisms 

Bitter and sweet taste receptors are G-Protein Coupled Receptors (GPCR’s) that 

were first identified in taste bud type II cells [9, 10]. Those from Taste Receptor Family 

1 subtype 2 and 3 (TAS1R2/TAS1R3) respond to sugars [5, 11] such as glucose, fructose, 

and sucrose [12]. Bitter taste receptors, from Taste Receptor Family 2 (TAS2R’s), have 

a much wider diversity of subtypes, with each tuned to specific bitter compounds [13]. 

These compounds include the plant sesquiterpene lactones, strychnine, and denatonium 

[14]. Humans are known to have at least 25 TAS2R subtypes [11, 15], and there are many 

others that have been discovered in mammalian species [16]. The type II taste cells of the 

tongue most often express only one taste modality, but some cells do express multiple 

unique receptors [17].  

The pre-synaptic mechanisms for taste receptor stimulation and signal transduction 

are relatively conserved in the tongue and the airway. Briefly, a bitter or sweet ligand 

binds its respective GPCR, triggering activation of phospholipase C isoform β2 (PLCB2). 

PLCβ2 then causes inositol 1,4,5-trisphosphate (IP3) production, activating the IP3 

receptor on the endoplasmic reticulum (ER) with release of calcium (Ca2+) [18]. While 

this process occurs, the GPCR stimulation also activates phosphodiesterases (PDE’s) that 

cause the reduction of cAMP levels and corresponding protein kinase A (PKA) activity. 
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PKA acts as an inhibitor of the type III IP3R through phosphorylation, so removal of this 

inhibitory pathway further enhances calcium release from the ER [19]. The released 

calcium activates the TRPM5 channel [20], which depolarizes the cell membrane, 

activates voltage-gated sodium (Na+) channels generating an action potential that causes 

ATP release through the CALHM1 ion channel [5, 19, 21, 22]. In the tongue, this ATP 

release activates purinergic receptors on presynaptic taste cells and sensory fibers, 

transmitting the sensation of taste to the central nervous system [5, 22, 23]. 

Taste receptors and airway immunity 

GPCR taste receptors are expressed in a number of organ systems, including the 

brain, pancreas, testicles, bladder, respiratory and GI tracts [1-4, 24] The present review 

will focus on taste receptors expressed in the airways.  

Overview of innate airway immunity 

Several respiratory immune mechanisms work in concert to achieve a relatively low 

microbial biomass in the lower airway, in spite of the vast number of bacteria, fungi, and 

viruses that are inhaled into the upper respiratory tract with each breath. During infection 

or debris inhalation, ciliary beat frequency (CBF) increases to speed up mucociliary 

clearance (MCC) [25]. In addition to transporting the mucus to the pharynx where it is 

cleared by swallowing, innate immune products are disseminated on the airway surface 

[26]. These immune products include direct anti-microbial compounds such as defensins, 

lactoferrin, cathelicidins, and lysozyme, in addition to reactive oxygen species (ROS) and 

nitric oxide (NO) that also display potent antimicrobial activity [27].  

In order to activate all of these defense mechanisms, recognition of foreign 

organisms or toxins both immediately and throughout bacterial colonization is 

paramount. Toll-like receptors (TLR’s) are expressed by airway epithelial cells and 

recognize pathogen-associated molecular patterns (PAMP’s), which are bacterial cell 

wall components or bacterial products. TLR signaling and downstream immune effect 

takes up to 12 hours and works through gene expression, creating a sustained immune 

response [28]. However, a portion of antimicrobial peptide secretion and changes in MCC 

in response to pathogens occurs almost immediately [29], suggesting the existence of a 

molecular pathway that rapidly detects foreign compounds and effects timely responses. 

Bitter taste receptors may provide a missing link in this pathway as initiators of these 

rapid defenses.  

Airway bitter taste receptors 

A wide variety of bitter taste receptors are expressed in various parts of both the 

human and rodent airway [8, 29-32]. While some bitter taste receptors in the airway are 

upstream of a nervous system signaling cascade [33], others act in a cell-autonomous 

fashion without any nervous innervation with the bitter products detected an entirely local 

phenomenon. In 2009, bronchial epithelial cells were shown to have Ca2+ increases 

following bitter compound stimulation, thus increasing CBF thereby accelerating 

clearance of the noxious compound [32]. These TAS2R receptors are located on the 

motile cilia themselves. In response to phenythiocarbamide (PTC) stimulation of 

sinonasal epithelial cell TAS2R’s, an increase in NO production is also observed, with 

potent bactericidal consequences [8]. NO diffuses rapidly into bacteria such as P. 

aeruginosa, where it causes cellular destruction and death [34]. However, recent in vitro 

experiments demonstrated differential bactericidal activity of NO depending on the 

specific organism in question [35]. In addition to this direct antimicrobial activity, NO 
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acts as a second messenger to activate protein kinase G (PKG) and guanylyl cyclase to 

phosphorylate proteins within the cilia and speed up CBF [36]. Other experiments have 

further investigated this NO pathway and found that both the TRPM5 channel and 

PLCB2, two of the components in canonical taste transduction, are necessary for NO 

production but not the canonical taste G-protein gustducin [8].  

Lactones are bitter chemicals that can stimulate TAS2R’s in the airway [8, 37], and 

acyl-homoserine lactones (AHL’s) are a subclass of lactones that are produced by many 

gram-negative bacteria [38, 39]. AHL’s serve as biofilm “quorum-sensing molecules” for 

the bacteria. Once a sufficient concentration of AHL’s are produced in a localized 

environment, bacteria will form a biofilm, which confers increased protection for the 

bacteria from host immune defenses [40]. It is proposed that detection of these AHL’s 

before bacteria reach a density adequate for biofilm formation is an adaptive mechanism, 

allowing for an increased immune response before microbial protection occurs in the 

biofilm formation [7].  

Solitary chemosensory cells 

Ciliated epithelial cells are not the only cells to express bitter taste receptors in the 

airway. Over a decade ago, a class of cells that is sparsely scattered in rodent respiratory 

epithelium was shown to be immunoreactive with alpha-gustducin (a component of taste 

signaling) [41]. These cells were named “solitary chemosensory cells” (SCC’s), and they 

share many similarities with cells found in the taste buds of the tongue [30]. 

Approximately one out of every hundred cells in the sinonasal cavity is a SCC [33]. The 

function of these airway taste-like cells were explored further, and it was discovered that 

they express sweet and bitter taste receptors [29, 42], and in the mouse capable of 

responding to AHL’s and other bitter agonists [7, 43, 44]. These murine SCC’s show 

intracellular calcium responses in the presence of AHL’s [33], but they do not appear to 

activate downstream NO production. Instead, when mouse sinonasal SCC’s are 

stimulated with AHL’s or denatonium, the calcium response results in acetylcholine 

(ACh) release that stimulates trigeminal nerve peptidergic nociceptors, with downstream 

effects of breath holding and inflammatory mediator release [7, 33, 43]. The inflammatory 

response is intuitively antimicrobial, while the breath holding response may also represent 

an adaptive reflex to limit toxin or organism aspiration in the host.  

SCC’s have been identified in human upper airway tissue as well [29, 45], along 

with additional physiological function beyond what has been elucidated in the rodent 

system. TAS1R1 and 2, and TAS2R4, 10, and 47 are all expressed on SCC’s in the human 

nasal cavity [31, 45]. Denatonium, a bitter compound that shows activity in mouse SCC 

signaling [30], also stimulates a Ca2+ response in human SCC’s that spreads to 

neighboring cells via gap junctions [31]. Just as in the NO response seen in ciliated cells, 

the calcium signaling requires canonical taste signaling pathways, including gustducin, 

PLCβ2, the IP3 receptor, and TRPM5 [31]. Gap junction spread of the signal causes 

immediate release of antimicrobial peptides (AMP’s) from the adjacent ciliated cells [29]. 

These AMP’s include beta defensin 1 (DEFB1) and beta defensin 2 (DEFB2), and the 

secreted products have potent activity in killing of gram-positive and gram-negative 

organisms [46], including methicillin-resistant S. aureus and P. aeruginosa. This rapid 

secretion of antimicrobial products contrasts directly with the TLR mechanism of AMP 

messenger RNA upregulation, causing a sustained response that does not appear until 

several hours after bacterial stimulation [28]. Pre-formed stores of AMP’s are released in 

the TAS2R response, rather than de-novo synthesis [46].  
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T2R38 

TAS2R’s are very genetically diverse, a phenomenon that helps to explain the wide 

variety of taste preference both within and between cultures [47, 48]. Many individuals 

find bitter foods such coffee or herbs to be detestable, while others do not have an aversive 

response. This genetic variation of TAS2R’s is not exclusively found in the tongue; 

TAS2R receptor variation in the airway appears to also play a key role in respiratory 

defense. TAS2R38, a receptor that is localized to motile cilia in humans, responds to at 

least three AHL’s produced by P. aeruginosa, N-butyrl-L-homoserine lactone, N-

hexanoyl-L-homoserine lactone and N-3-oxo-dodecanoyl-L-homoserine lactone [8]. 

Additionally, PTC and propylthiouricil (PROP) are bitter compounds that also agonize 

TAS2R38 in a similar fashion [49]. When TAS238 in nasal cells is stimulated by AHL’s, 

PTC, or PROP, NO is produced to speed up MCC and directly kill pathogens in the human 

upper airway [31]. However, the genetic locus for TAS2R38, has three common 

polymorphisms that tend to segregate together, yielding a functional receptor (PAV) and 

a non-functional receptor (AVI) [48]. Individuals who have an AVI/AVI genotype do not 

taste the bitter compounds PTC or PROP [50], and epithelial cells from these patients 

grown at an air-liquid interface (ALI) show significantly lower NO production in 

response to AHL’s when compared to epithelial cells from a PAV/PAV individual. The 

consequent reductions in MCC and bacterial killing are also significant in the AVI/AVI 

group [51]. 

The implications of these differences are broad. Patients with chronic rhinosinusitis 

(CRS) have pathological mucociliary stasis, which harbors bacteria and allows infection 

to perpetuate [52]. This creates a very stagnant and favorable environment for bacteria to 

proliferate, and for bacterial toxins to continually cause destruction of both cells and cilia 

[53]. It was previously shown that sinonasal epithelial explants from patients with CRS 

show an attenuated response to a variety of compounds that stimulate CBF in normal 

controls [54]. Additionally, further studies demonstrated that there were differences in 

NO levels in patients with CRS or other airway diseases [55]. However, a review of the 

nasal NO literature was unable to demonstrate any trends in rhinopathologies with regard 

to nasal NO measurements [56]. The pathophysiology behind this disparity is not entirely 

clear, but the TAS2R38 genotype (or not controlling for TAS2R38 genotype) may help 

to explain the conflicted literature. Individuals who have the PAV/PAV genotype are less 

likely to need surgical intervention for their CRS symptoms than those with the AVI/AVI 

genotype [50, 57]. PAV/PAV patients are additionally less prone to developing gram-

negative infection, such as that of P. aeruginosa [50, 57, 58]. In light of this data, it 

appears that variation in bitter taste receptor function in humans has a phenotypic effect 

on upper respiratory disease. In the near future, bitter taste testing with PTC or PROP 

could potentially help to stratify CRS patients who are more likely to benefit from 

standard sinus procedures as well as those who should receive alternative or more 

aggressive management [8]. Further, the bitter compounds themselves could even serve 

as therapeutic agents, in speeding up MCC and strengthening host responses to counter 

bacterial proliferation in CRS [59]. 

  



 

 

Taste receptors in respiratory innate immunity 259 

Table 1: Overview of bitter and sweet receptors and their functions in airway immune defense.  

Cell Type Receptor(s) Expressed Animal Function 

Solitary Chemosensory 

Cells (sinuses) 

TAS2R bitter receptors Mouse Breath holding, inflammation 

Human Antimicrobial peptide release 

TAS1R sweet receptors Mouse Silence TAS2R stimulation 
Human Unknown 

Ciliated cells (sinuses) TAS2R38  Human NO production (MCC 

stimulation and direct killing) 
Ciliated cells (bronchi) TAS2R bitter receptors Human MCC stimulation 

Brush cells (trachea) TAS2R bitter receptors Mouse Breath holding 

Smooth muscle cells 
(bronchi) 

TAS2R bitter receptors 
    

Mouse 
Human 

Bronchodilation 
    

Sources: [7, 8, 30-32, 43, 45, 51, 60-64] 

Sweet taste receptors 

The TAS1R receptors (dimer of isoform 2 and 3) detect sweet compounds and are 

also found in the respiratory mucosa [30]. They have been isolated in the human 

vomeronasal duct [30] as well as in SCC’s [29]. In the sinuses, the sweet receptors 

respond to concentrations of glucose and other sugars that are far lower than those 

detected on the tongue [65]. Normally, individuals have a glucose concentration of 

approximately 0.5 mM in the airway surface liquid (ASL), and there is a constant leak 

and reuptake of glucose from the serum that maintains this constant concentration [31]. 

The T1R2/3 sweet receptors are tonically activated by this low level of glucose, and 

appear to function in an antagonistic role to that of the bitter taste receptors. Depletion of 

ASL glucose is a harbinger of bacterial infection, as the bacteria consume the sugar 

rapidly. It is hypothesized that this reduction in glucose deactivates the sweet receptors, 

which then release their inhibition on the action of the TAS2R receptors to bitter 

compounds [31]. While low-level colonization by bacteria is expected in the sinonasal 

tract, any perturbation in this homeostasis towards glucose depletion (i.e., more than 

colonization) causes a balance in favor of TAS2R activation with subsequent 

mobilization of local defenses against the pathogen, resulting in decreased microbial 

numbers and restoration of physiologic airway surface glucose concentrations. 

Paradoxically, a recent study correlated in vitro SCC hyper-activation to disease 

recurrence for patients with chronic rhinosinustis [66]. 

This hypothesis has been supported by several experiments. The addition of glucose 

and sucrose (both TAS1R2/3 agonists) to the ASL of an ALI culture blocked the Ca2+ 

response of bitter taste receptors to denatonium, while mice that did not express these 

sweet receptors [67] showed a normal response to the compound [31]. Antagonists of the 

TAS1R2/3 receptors, such as lactisole [68] and amiloride [31], also could release the 

inhibition of the denatonium response. D-amino acids produced by bacteria in the airway 

also could activate TAS1R2/3 sinonasal taste receptors [69]. Work by Lee and colleagues 

demonstrated that S. aureus produced at least two TAS1R2/3-activating D-amino acids, 

and these D-amino acids could suppress sinonasal SCC innate immune responses with 

resultant decreased secretion of antimicrobial peptides. These D-amino acids may be 

produced by the bacteria for protection from host innate defenses and may allow for 

increased colonization and potential opportunistic infection. Just as is the case with bitter 

receptors, there is genetic variation in TAS1R genes that manifests as individual 

preference in sweet taste [70]. While no single locus has yet been identified, there are 

allele variations among the TAS1R genes that show frequency differences of >10% in 16 

loci between patients with CRS and controls [58]. TAS1R2/3 antagonists such as lactisole 
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may prove useful in the future in augmentation of host airway bitter taste receptor 

responses. 

Additional functions of taste receptors in the airway 

The previous experiments discussed focused on SCC’s and ciliated cells that 

populate the upper airway, and SCC cells are unique to that location of the respiratory 

tract. Bronchial tissue, which contains an abundance of smooth muscle cells, do not 

demonstrate SCC responses or secretion of AMP’s following stimulation [31].  However, 

the smooth muscle cells do express several TAS2R’s, and activation of these receptors 

causes bronchodilation [30, 51]. This phenomenon potentially occurs due to an increase 

in Ca2+ that modifies potassium currents within the muscle cells that causes them to 

become hyperpolarized and relax [63]. These cells lack innervation, so this response is 

similar to that of the NO production within ciliated cells, in that it is a local defense. 

Interestingly, asthmatics have an upregulation in TAS2R gene expression [71].  

Allele expression studies in patients with CRS showed that TAS2R38 is not the only 

genetic determinant of disease severity. Several other loci, such as that of TAS2R14 and 

TAS2R49 show an allele frequency difference of >10% between CRS patients and 

controls [58]. It will be important for future research to determine the full expression 

pattern of taste receptors throughout the length of the respiratory tract, as well as explore 

the full complement of bitter products that are secreted by organisms.  

Conclusions 

Airway taste receptors play an important role in innate respiratory defense, and they 

function in regulating inflammation and antimicrobial activity within the respiratory tract. 

These responses are quick in onset and are complementary to traditional antimicrobial 

pathways, such as those involving TLR’s. Dysfunction or genetic variation of bitter or 

sweet taste receptors appears to play a key role in respiratory disease, including CRS and 

increased susceptibility to infection in diabetes. Conventional management of respiratory 

diseases often involves antibiotics, but strengthening endogenous defense mechanisms 

may be possible by using TAS1R and TAS2R receptors as novel therapeutic targets.  
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Abstract  

Bitter taste sensation is considered a signal of toxicity and is elicited by molecules 

of widely varying chemical structures, as summarized in BitterDB 

(http://bitterdb.agri.huji.ac.il). We developed a machine-learning (decision trees-based) 

tool BitterPredict, and showed that only 60% of the toxic compounds are known or 

predicted to be bitter, similar to the predicted bitter abundance in FDA-approved drugs 

and lower than in natural compounds. This suggests that there are many non-bitter toxic 

compounds. Interestingly, bitter mouth-rinse leads to lower mood scores and the effect 

depends on perceiving the solution as bitter.  

Introduction 

Bitter taste is one of the basic taste modalities and is typically considered a sentinel 

of toxicity. Yet, several examples of tasteless poisons or bitter non-toxic molecules are 

known. Intriguingly, the molecules that elicit taste sensation are numerous and chemically 

diverse [1] (Figure 1). 

 
Figure 1: Examples of bitter compounds from food 
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To facilitate the study of bitter taste, we have established the BitterDB 

(http://bitterdb.agri.huji.ac.il) [2], which has served over 30,000 users so far. The 

BitterDB contains data on molecules that were reported as bitter or were shown to activate 

at least one bitter taste receptor (T2R). Close to 700 bitter molecules have been gathered 

in the BitterDB, but clearly many additional bitter compounds exist. Some additional 

bitter molecules can be unraveled using a combination of computational, cell-based and 

sensory techniques [3]. Machine-learning approaches are proving to be extremely 

powerful in many areas of research and engineering, including sensory science [4]. Here 

we describe BitterPredict [5], a machine learning adaptive boosting program to classify 

molecules as bitter or non-bitter, and apply it to datasets of toxic and other compounds 

[6]. Finally, complementing the vast literature on emotional effects of odors, we present 

the effects of bitter (quinine or 6-n-propylthiouracil (PROP) dissolved in water) and sweet 

(sucrose in water) mouth rinse on mood [7].  

Experimental methods 

I. BitterPredict [5] 

14 physicochemical properties and 47 Absorption, Distribution, Metabolism, 

Excretion and Toxicity (ADME/T) descriptors from the QikProp package (Schrödinger, 

LLC) were calculated for the molecules. BitterPredict is an AdaBoost model constructed 

from 200 decision trees. AdaBoost is an ensemble method, where the final prediction uses 

the weighted average of the predictions given by each of the decision trees in the 

ensemble. The data was divided into a training set (70%) and a test set (30%). The model 

was trained only on the training set. Additionally, 3 external validation sets (molecules 

which were not used for training or testing) were collected and used to assess the 

performance of BitterPredict.  

II. Toxicity datasets [6] 

Two datasets were created to represent toxicity: FocTox is a focused, relatively small 

dataset aptly named FocTox, comprised of ~40 compounds from the FAO/WHO food 

contaminants list and ~350 compounds from the List of extremely hazardous substances 

defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know 

Act. CombiTox is a broad dataset, combining two publicly available datasets: T3DB (The 

Toxin and Toxin-Target Database, contains ~3000 compounds) and DSSTox (Distributed 

Structure-Searchable Toxicity Database, contains ~140,000 compounds). 

III. Sensory panel testing [7] 

Participants tasted a solution without swallowing, and then had to: identify the taste 

they perceive (by choosing either sweet, sour, salty or bitter as the main taste modality), 

rank the taste intensity, perform seemingly unrelated behavioral tasks, and fill a standard 

Positive and Negative Affect Schedule (PANAS) [8] mood questionnaire. The 

questionnaire consists of 10 positive and 10 negative affect items. Each item was rated 

on a Likert scale of 1 (not at all) to 5 (very much). The total score was calculated by 

subtracting the sum of the 10 negative items, from the sum of the 10 positive items. 

T2R38 genotype was determined by collecting saliva samples from the participants, using 

OG-500 Saliva collection kits (Pronto Diagnostics Ltd). Nucleotides and amino acid 

codons for the two alleles of each panelist were carried out in The Monell Chemical 

Senses Center. 

 

http://bitterdb.agri.huji.ac.il/
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Results and discussion 

Bitter compounds are very diverse in their chemical structures. Various chemical 

classes (terpenes, flavones, glucosinolates and more) are found among bitter compounds 

in food (Figure 1). So what are the chemical properties of bitter compounds, and can these 

be used for bitterness prediction? 

A principle component analysis (PCA) of the bitter set, non-bitter set and 2000 

random molecules, using physicochemical properties suggests that the non-bitter sub-sets 

are capturing different narrow chemical spaces (Figure 2). Most of the bitter molecules 

(97%) have molecular weight below 700 and range in -3 < AlogP < 7. This range was 

defined as the applicability domain for BitterPredict, which was then trained using the 

physicochemical and the ADME/T descriptors of the bitter and non-bitter set. 

 

Figure 2: PCA of the negative sets (flavors, sweet and tasteless molecules), positive set (bitter) and random 

molecules within the Bitter Domain. The bitter molecules (green) spread widely inside the Bitter Domain. Each 
non-bitter sub set covers distinct sub-space (red, pink and purple); however, the combined non-bitter set covers 

almost all the domain, though not uniformly distributed. Principle components (PC) PC1 and PC2 explain ~61% 

and ~15% of the variation, respectively. 

BitterPredict outputs a numerical score, positive for bitter and negative for non-

bitter. Higher absolute values indicate higher confidence scores. Score > 0.6 can selected 

as a high confidence bitter score (leading to a false positive rate lower than 0.05) and < -

0.7 can be selected as a high confidence non-bitter score (leading to a false negative rate 

lower than 0.1). BitterPredict separates well between the bitter and non-bitter molecules, 

with sensitivity (true positive/true positive+false negative) of 0.77 and specificity (true 

negative /true negative+false positive) of 0.85 on the test set (Table 1).  
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Table 1: BitterPredict performance on train set, test set and validation sets 

Sensitivity = (true positive) / (true positive + false negative) 

Specificity = (true negative) / (true negative + false positive) 

  Sensitivity Specificity Accuracy 

 train set 0.9 0.94 0.93 

 Test set 0.77 0.85 0.83 

Negative 

subsets 

Non-Bitter flavors  0.83  

sweet  0.82  

tasteless  0.86  

Validation 

Sets 

BitterNew 0.75  0.75 

Phyto 0.98 0.69 0.88 

UNIMI 0.78 0.85 0.82 

The high performance of BitterPredict was confirmed via external sets, sensory 

evaluation, and datamining of prospective predictions [5] and enabled us to estimate the 

abundance of bitter compounds in toxic, random, natural and other datasets (Table 2). 

Interestingly, only 60% of the toxic compounds were predicted as bitter. This prediction 

is higher than in food compounds, but lower than in natural products and in approved 

drugs, suggesting existence of many toxic compounds that are not bitter. All in all, the 

number of predicted bitter compounds in the entire chemical space may be higher than 

initially thought. 

Table 2: Approximate percentage of molecules predicted by BitterPredict as bitter/non-bitter with different 
confidence levels, in datasets with defined orientation 

 

Bitter taste may be generally associated with unpleasant and difficult situations [9], 

and thus may evoke negative emotions. A direct negative change in PANAS score 

compared to water baseline score, was induced by oral exposure to quinine or to PROP, 

but not to sucrose. PROP taster/non-taster status was determined by the participants’ 

genotype of T2R38, which underlies the ability to taste PROP as bitter-. The negative 

affect caused by exposure to PROP depends on the taster/non-taster status of the 

participants (Figure 3A). Furthermore, the mean PANAS score for a group of participants 
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that tasted quinine solution was significantly lower than for groups of participants that 

tasted water, sweet or bitter-sweet mixture solutions (Figure 3B). However, the reverse 

effect – positive mood changes as a result of sweet solution – was not observed. 

 
Figure 3: (A) Mean change in PANAS score, after exposure to the examined solutions, compared to water 

baseline. Bars indicate standard error. The horizontal line represents 0 (no change). PAV and AVI represent 
PROP tasters and non-tasters, respectively. PAV/PAV homozygotes have high sensitivity to PROP compound, 

PAV/AVI heterozygotes have intermediate sensitivity, while AVI/AVI homozygotes are PROP non-tasters.  

(B) Mean PANAS score of the examined solutions (blue), compared to the water group (red). Bars indicate 

standard error. The horizontal line represents the mean for all participants.  

Summary 

Bitter ligands can be accessed via BitterDB (http://bitterdb.agri.huji.ac.il). The 

BitterPredict bitter/non-bitter classifier works well despite tremendous chemical diversity 

of bitter compounds and can be applied to drug repurposing and bitterness prediction. 

Many random compounds may be bitter and only 60% of toxic compounds are predicted 

to be bitter. The high percentage of predicted bitter compounds in the datasets tested – 

including food-derived compounds – suggests that bitter taste may not be a strong marker 

for toxicity [6]. Mood scores were decreased by quinine solution that was perceived as 

bitter. PROP mouth rinse lead to negative mood change among in PROP tasters only. 

Conversely, while sweet mouth rinse ranked higher hedonic scores, it did not positively 

affect mood scores. 
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Abstract  

Food flavour might be helpful for weight management by regulating appetite 

sensation and food intake. This chapter investigated whether the enhancement of flavour 

intensity or flavour complexity can modulate appetite sensation and food intake within a 

female sample. A single flavour modality, aroma or taste, seems to have no actual effect 

on appetite sensation and food intake. Sensory-specific satiety was developed for a 

flavour modality (sweet taste) after the consumption of a drink containing that flavour 

modality (sweet taste). An enhancement of flavour complexity due to multimodal 

interaction of two flavour modalities (aroma + taste) suppressed hunger sensation 

significantly but did not affect subsequent food intake. 

Introduction 

Excessive food energy intake has promoted the global overweight and obesity 

pandemic which accounts for approximately 9.1% of a country’s total healthcare 

expenditure [1]. Food intake and appetite are mediated by successive satiation and satiety 

signals [2, 3]. “Satiation” is the process that results in the termination of a meal when 

appetite for food has been satisfied; “Satiety” describes the lingering feeling of 

satisfaction during the inter-prandial period before hunger returns [4]. To date, limited 

attention has been paid on the effect of food flavour which may act as a pre-ingestive 

satiation or satiety signal on the regulation of appetite and food intake [2]. 

Taste alone has been shown to contribute to the improvement of food palatability, 

resulting in an increase in hunger sensation and food intake [5-8]. On the contrary, a single 

flavour modality per se, aroma or taste, has been reported to enhance fullness sensation, 

suppress hunger sensation and reduce subsequent food intake [9, 10]. The preliminary 

findings from the current literature suggests that flavour can be appetizing due to its 

positive influence on food palatability, at the same time, a prolonged exposure to food 

flavour may also induce satiation or satiety signals over the time course of an eating event 

[9, 11]. A decrease in the palatability of a food after the food is consumed to satiation has 

been repeatedly observed, resulting in a reduction in subsequent consumption of foods 

with a similar flavour profile [12]. This phenomenon is described as sensory-specific 

satiety (SSS), which may partly contribute to the satiating effect of food flavour [12].   

Aroma and taste modalities are two primary drivers in food flavour perception, but 

flavour perception is not a mere sum of the two modalities [13, 14]. Flavour is the 

synergistic combination of multisensory modalities; however, no study has been focused 

on the interactive effect of two flavour modalities on appetite and food intake. [13, 14]. 

This chapter investigated whether flavour enhancement can modulate appetite sensation 

and food intake. Flavour was enhanced in two dimensions: 1) a simple increase in the 

intensity of a flavour modality; 2) an increase in flavour complexity because of 

multimodal interaction. Specifically, two behaviour experiments were conducted to 

answer several unresolved questions in this field. 
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Experiment 1: Whether enhancing the intensity of a single flavour modality (sweet 

taste) affected the ad libitum food intake and sensory-specific satiety;  

Experiment 2: Whether two combined flavour modalities (aroma + taste) affected 

appetite sensation and subsequent food intake because of their multimodal interaction on 

flavour enhancement. 

Experimental 

Experiment 1 

Protocol 

The objective of this experiment was to study the effect of sweetness intensity of a 

milkshake on ad libitum intake of the milkshake and on SSS. Based on a cross-over 

experimental design, 24 female participants consumed one of the three pre-selected 

milkshakes with high sweetness (HS), ideal sweetness (IS) or low sweetness intensity 

(LS) over 3 sessions on 3 separate visits.   

Having fasted from food and drink except water overnight (from 21.00 one evening 

before a visit), participants arrived at the laboratory at 8.45 in the next morning. 

Participants consumed 50 g porridge (190 kcal) (“So Simple Original Porridge Original 

Pot”, Quaker Oat, UK) dissolved in 100 ml hot water as a standard breakfast between 

9.00 and 9.20. From 9.20 to 10.25, participants fasted from any food and drink while 

sitting quietly in a waiting room. From 10.30 to 10.40, participants were served one of 

the milkshake (HS, IS or LS) with a serving portion of 800 ml to consume until they felt 

comfortably full. Participants were encouraged to ask for another portion of the milkshake 

if they needed. The volume of the milkshake consumed were recorded. The total energy 

intake of the milkshake was calculated by multiplying the volume (ml) consumed by its 

energy density (kcal/ml). Subjective appetite sensations were rated immediately before 

breakfast at 9.00 (baseline appetite), immediately before and after the consumption of 

milkshake using a 100-mm visual analogue scales (VAS) [15]. SSS was characterised by 

the changes (Δ) in the pleasantness of the milkshake after consumption of the milkshake, 

compared to the initial pleasantness of the milkshake. Immediately before and after intake 

of the milkshake, participants tasted and rated 5 ml of each of the HS, IS and LS 

milkshakes on the pleasantness of the milkshakes on a 100 mm VAS [11]. 

Participants and materials 

24 recruited female participants had normal BMI with a mean of 20.2 ± 1.6 kg/m2. 

They were aged from 19 to 27 years (mean age: 22 ± 2 years), non-restraint eaters and 

not clinical depressed [16, 17]. 

The milkshakes, in every 100 ml, consisted of 50 ml mineral water (Evian, Danone 

Group, France), 50 ml of a commercial milkshake drink (Yazoo banana, Friesland 

Campina, Belgium), and varying concentrations of a low-caloric sweetener (Canderel 

Spoonful artificial sweetener, Merisant, UK). The HS, IS and LS milkshake samples were 

selected on an individual basis. Each participant tasted 10 milkshake samples with 

varying Canderel sweetener concentrations at 480, 576, 691, 829, 995, 1194, 1433, 1720, 

2064 and 2477 mg. They rated their perceived intensities of sweetness, relative-to-ideal 

sweetness, pleasantness, and desire to drink the milkshake on 100-mm VAS scales. The 

geometric distance of the sweetener concentrations between each pair of HS and LS 

samples was similar between participants, which was 3-4 folds of the common ratio 1.2. 

 

 

https://en.wikipedia.org/wiki/FrieslandCampina
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Experiment 2 

Protocol 

Using a “preloading paradigm” design, the impact of aroma and taste, in 

combination and independently, on appetite sensation and subsequent food intake were 

investigated. 26 female participants visited the laboratory 4 times to consume 4 different 

sample drinks as preloads, followed by ad libitum past meal. They were asked to fast from 

21.00 at one evening before their visit until arriving at the laboratory next morning. 

During each visit, they arrived at 08.45 and baseline subjective appetite sensation was 

rated at 09.00 on a 100-mm visual analogue scales [15]. The appetite sensation include 

hunger, fullness, satisfaction, desire to eat and prospective consumption. Participants 

consumed a standardised breakfast containing cereal and milk between 09.00 and 09.20. 

At 11.00, they consumed one of the four sample drinks over 15 minutes using a fine straw 

(diameter: 0.625 mm, Altec Ltd., UK). VAS ratings were collected immediately at several 

time intervals before, during the 15 minutes’ sample drink consumption, and until 65 

minutes after the sample drink consumption. At 12.20, participants were provided an ad 

libitum pasta meal. They were given a 530 g (878 kcal) portion of pasta and instructed to 

terminate the meal only when they felt comfortably full. They were instructed to ask for 

another portion once the previous one was finished. The weight of the pasta consumed 

was recorded. Pasta energy intake was calculated by multiplying the weight (g) of pasta 

consumed by the energy density of pasta lunch (kcal/g). Participants seated in a quiet 

waiting room within the laboratory centre when not asked to conduct any experimental 

activity. 

Participants and materials 

The recruited 26 female participants had normal BMI with a mean of 20.9 ± 1.9 

kg⋅m-2. They were aged from 18 to 45 years (mean age of 22 ± 4 years), non-restraint 

eaters and not clinical depressed [16, 17].  

The 4 sample drinks were: water (S1, 150 ml, 0 kcal), water with 0.05% strawberry 

aroma (S2, 150 ml, 0 kcal), water with 8% sucrose and 0.1% citric acid (S3, 150 ml, 48 

kcal) and water with 0.5% strawberry aroma, 8% sucrose and 0.1% citric acid (S4, 150 

ml, 48 kcal). The volatile compounds in strawberry aroma (Mane Co. Ltd., Derby, UK) 

were ethyl butyrate, ethyl 2-methyl butyrate, and ethyl hexanoate, diluted in propylene 

glycol.  

The breakfast consisted of Rice Krispies (Kellogg’s UK Limited, Manchester, UK) 

and semi-skimmed milk (Sainsbury’s Supermarkets Ltd., London, UK). It was equivalent 

to 10% of the participant’s estimated total daily energy requirement and containing 14%, 

14%, and 72% energy from fat, protein, and carbohydrate, respectively [18].  

The pasta meal consisted of penne pasta, olive oil, cheddar cheese (Sainsbury’s 

Supermarkets Ltd., London), and Dolmio Garden Vegetable pasta sauce (MARS Food, 

USA). Its energy density was 1.66 kcal/g, of which 14%, 52%, and 34% provided by 

protein, carbohydrate and fat, respectively.  

Results and discussion  

Experiment 1 

Effect of sweetness intensity on ad libitum intake of milkshake 

The hunger sensation reduced significantly after the consumption of milkshakes (p 

< 0.05), but appetite sensation was not affected by the sweetness intensity of the 

milkshake. The consumption amount (ml or kcal) of a high sweetness milkshake (HS) 
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was not different from the intake of a less sweet milkshake (LS or IS), even when the two 

milkshakes shared a similar palatability (Figure 1 and Figure 2). It suggests that the ad 

libitum intake of the milkshake (satiation) was not affected by the sweetness intensity of 

the milkshake.  

 
Figure 1: Mean (n=24) of the initial pleasantness, sweetness and relative-to-ideal sweetness for HS, IS and LS 
milkshakes. For each measurement, the samples without a same small letter were significantly different. Error 

bars represent the standard deviations 

 

Figure 2: Mean values of ad libitum intake of HS, IS and LS milkshake samples measured as total volume 

consumed (A) and energy (B) consumed. Error bars represent the standard deviations. Values within a column 
without a same letter superscript are significantly different (p < 0.05) 

Effect of sweetness intensity on sensory-specific satiety 

The pleasantness of the HS milkshake was reduced significantly (p < 0.05), 

following the intake of the HS, IS or LS milkshake. This suggests that SSS for the HS 

milkshake was developed following ad libitum intake of any sweet milkshake. However, 

the reduction in the pleasantness of the HS milkshake was not affected by the sweetness 

intensity of the milkshake. This indicated that the extent of SSS for the milkshake was 

not affected by the sweetness intensity of the milkshake. 
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Figure 3: Change (Δ) in pleasantness of HS, IS and LS milkshakes. Δ pleasantness were calculated by 
subtracting the initial pleasantness ratings of the milkshake from the pleasantness ratings after consumption of 

the milkshake. Error bars are standard errors. ‘*’ represents a significant reduction in the pleasantness. p< 0.05. 

Experiment 2 

Effect of combined aroma and taste on appetite sensation 

The consumption of the sample drinks containing only aroma (S2) or only taste (S3) 

did not affect appetite sensation differently from the water control (S1) (Figure 4) [19]. 

But the combined aroma and taste (S4) suppressed hunger sensation more than the water 

control (S1) or the sample drink with only aroma (S2) or only taste (S3), during the 15-

min sample drink consumption. The drink condition with combined aroma and taste (S4) 

suppressed hunger sensation more than the water control (S1), the aroma condition (S2) 

and the taste condition (S3) for a further 30 minutes, 20 min and 5 minutes after the 

sample drink was consumed, respectively (p < 0.05). This suggests that the combined 

aroma and taste induced a greater satiation and a greater short-term satiety than aroma, 

taste and the water control. This was potentially due to an increase on the perceived 

intensity of flavour and an enhancement of the complexity of the perceived flavour 

because of aroma-taste cross-modal interaction [19]. 

 
Figure 4: Mean Δ hunger over 5, 10, 15, 20, 25, 35, 45, and 80 min after starting to consume sample drink of 

S1 (water), S2 (aroma), S3 (taste) or S4 (aroma + taste), n = 25 participants. Error bars represent standard errors 
[19]. 
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Effect of combined aroma and taste on subsequent food intake 

The subsequent energy intake of the pasta meal, provided 65 min following the 

sample drink consumption, was not different by the different sample drink preloads 

(Table 1) [19]. The accumulative energy intake did not differ between the sample drink 

conditions.  

Table 1: Mean ± standard deviation (n=26) of energy intakes from pasta meal and accumulative energy intake 
of pasta and sample drink in the 4 sample drink conditions [19]. 

Sample drink 

conditions 

Pasta meal 

energy intake (kcal) 

Accumulative (sample + pasta) 

energy intake (kcal) 

S1 776 ± 96 a 776 ± 96 a 

S2 781 ± 75 a 781 ± 75 a 

S3 759 ± 82 a 807 ± 82 a 

S4 757 ± 89 a 806 ± 89 a 

Values within a column without a same letter superscript are significantly different (p < 0.05) 

Conclusion 

A single flavour modality, aroma or taste, had no actual effect on appetite and food 

intake. The consumption of a drink containing one flavour modality (sweet taste) induced 

sensory-specific satiety for that flavour modality (sweet taste). However, increasing the 

intensity of a single flavour modality did not affect appetite sensation, food intake and 

sensory-specific satiety. An enhancement on the flavour complexity due to the 

multimodal interaction of two flavour modalities (aroma + taste) suppressed hunger 

sensation significantly but did not affect subsequent food intake. 
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Abstract  

An increased conversion of white adipocytes to a “brite” adipocyte phenotype, 

characterized by increased number of mitochondria and increased expression of 

uncoupling protein 1 (UPC-1), represents a promising anti-obesity approach. Beside an 

activation of beta-adrenergic signalling by a cold ambient temperature, also the activation 

of several temperature-sensing transient receptor potential (TRP) ion channels has been 

associated with browning of white adipocytes. In the present study, we hypothesized that 

the two food-derived aroma compounds and TRP-channel agonists nonivamide and 

cinnamaldehyde augment the thermogenic response of 3T3-L1 white adipocytes to a cold 

stimulus. We found that upon incubation at 29°C, 3T3-L1 adipocytes show an increased 

expression of UCP-1 at the levels of gene transcripts and protein level as well as increased 

mitochondrial biogenesis in comparison to 37°C, confirming the validity of the cellular 

model. In addition, we demonstrate here that treatment of 3T3-L1 cells with 0.1 µM 

nonivamide or 10 µM cinnamaldehyde for 48 h increased mitochondrial biogenesis when 

incubated at 29°C, but not at 37°C. These data hint towards beneficial effects of the two 

aroma compounds when applied as a chronic treatment in addition to a cold stimulus, 

which has to be validated in future studies.  

Introduction 

For the first time, the current generation of humans may have a shorter life span than 

the previous [1]. This is mostly due to an inactive lifestyle combined with the 

consumption of energy-dense food, resulting in an expanding population of chronically 

ill people with obesity-associated diseases [2]. This underlines the urgent need for new 

weight loss-supporting measures.  

Weight loss is achieved by a negative energy balance, which can be accomplished 

by an increased energy expenditure, determined by the total metabolic rate. The total 

metabolic rate is divided into basal metabolic rate, physical activity, and thermogenesis 

[3]. Recent calculations demonstrate that the adaptive thermogenesis, which is mediated 

by brown adipose tissue, is accounting for ~5% of the total thermogenesis and can be a 

relevant target to achieve a difference in body weight [4]. The brown adipocytes are, in 

contrast to white adipocytes, densely packed with mitochondria that express UCP-1. 

Upon activation, this protein shortcuts the circuits of the electrochemical gradient of the 

respiratory chain, which is the driving force in ATP production. Thus, UCP-1 activates 

heat production from available substrates, leading to an increased energy expenditure [5]. 

More recently, upon stimulation, clusters of UCP-1 expressing adipocytes with an 

increased number of mitochondria have been identified in white adipose tissue. This 

specific phenotype of cells is often referred to as “brite” (brown in white) adipocytes [6, 

7]. 
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The probably most widely studied inducer of a brite adipocyte phenotype is cold 

temperature, which stimulates sympathetic nerve activity by beta-adrenergic receptor 

activation, followed by increased cyclic adenosine monophosphate (cAMP) and protein 

kinase A levels, finally leading to activation of UCP-1 [8].  

Beside a cold ambient temperature, also activation of the warm-temperature-sensing 

transient receptor potential (TRP) ion channels TRPV1 [9] and TRPV4 [10] has been 

associated with browning of white adipocytes. In addition, also the food-derived TRPA1 

agonist cinnamaldehyde has been demonstrated to unfold thermogenic effects in primary 

white adipocytes [11]. However, the response of TRP channel agonists in addition to cold 

ambient temperatures has not been studied so far. Thus, in the present study, we 

hypothesized that the food-derived aroma compounds nonivamide and cinnamaldehyde, 

which are agonists for the TRPV1 or TRPA1 channel, respectively, may augment cold-

induced browning-responses in 3T3-L1 white adipocytes as a model. The first part of this 

study investigated the suitability of the 3T3-L1 cells to demonstrate browning of white 

adipocytes using UCP-1 gene expression and protein level, and mitochondrial biogenesis 

as novel marker for compound screening. The second part of the study assessed the effects 

of the TRPV1 agonist nonivamide and the TRPA1 agonist cinnamaldehyde on 

mitochondrial biogenesis with or without an additional cold stimulus.  

Experimental 

Materials 

3T3-L1 (mouse fibroblasts) cells were purchased at ATCC. Nonivamid was kindly 

provided by Symrise AG, Holzminden, Germany. All other used reagents were obtained 

from Sigma Aldrich, Austria, unless stated otherwise.  

Cell culture 

3T3-L1 pre-adipocytes were cultured and differentiated to mature adipocytes as 

described before [12]. Adipocytes were used for experiments on day 10 after initiation of 

differentiation. Incubation of the cells was carried out in DMEM supplemented with 10% 

FBS, 2 mM L-glutamine, 4.5 [g/L] glucose and 2 mM pyruvate in the absence of phenol 

red and bicarbonate.  

Cell viability 

Effect of applied concentrations of cinnamaldehyde (CA, 10-100µM) and 

nonivamide (NV, 0.1-1µM) on cellular proliferation as a measure for the viability of the 

cells was analysed via standard MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] (Carl Roth, Germany) assays as described before [12].  

Quantitative real time-polymerase chain reaction 

UCP-1 gene expression was analysed in mature 3T3-L1 cells by using quantitative 

Real-Time PCR. The total RNA was isolated using MasterPure™ RNA Purification Kit 

(Epicentre®) according to manufacturer’s protocol. Quality and concentration of isolated 

RNA was analysed using NanoQuant Plate on an Infinite M200 Plate reader (both Tecan). 

RNA was subsequently reversely transcribed into cDNA using the high capacity RNA to 

cDNA Kit (ABI, Thermo Fisher) and the PCR was performed on a StepOnePlus device 

(ABI, Thermo Fisher) using SYBR Green Fast Master Mix (ABI, Thermo Fisher). Gene 

expression of UCP-1 was measured in triplicates and normalized to the reference genes 

HPRT and ACTB as endogenous controls. The hypothetical respective starting mRNA 

levels were calculated using LinReg v 12.8 software and presented as fold change relative 

to control cells (37°C, set to 1). Detailed Primer information can be obtained in Table 1. 
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Table 1: Sequences of the primers used during PCR reaction.  

Gene Sequence (3‘-5‘) 
Product 

length [bp] 
Reference 

HPRT 
FW: GAGAGCGTTGGGCTTACCTC 

RV: ATCGCTAATCACGACGCTGG 
136 [12] 

ACTB 
FW: TCTTTGCAGCTCCTTCGTTG 

RV: CATTCCCACCATCACACCCT 
188 [13] 

UCP-1 
FW: AGGCTTCCAGTACCATTAGGT 

RV: CTGAGTGAGGCAAAGCTGATTT 
133 [14] 

Mitochondrial biogenesis  

For assessing mitochondrial biogenesis, mitochondria were stained using 

MitoTracker® Deep Red (Molecular Probes, Thermo Fisher) after incubation of 3T3-L1 

adipocytes at 37°C or 29°C for 48 h in a 96-well format with or without addition of the 

test substances based on methods described by Chowanadisai et al. [15] and Huang et al. 

[16]. In brief, cells were incubated with 50 nM MitoTracker ® dissolved in phenol red-

free DMEM for 30 min, and washed three times with phenol red-free DMEM before 

fluorescence was measured at 640 nm excitation and 665 nm emission by means of a 

Tecan Infinite M200 (Tecan) plate reader. Results were calculated in percent relative to 

untreated control cells. 

Immunocytochemistry  

For intracellular UCP-1 staining, 3T3-L1 pre-adipocytes were differentiated on 

round glass slides (12mm, Carl Roth) in 24-well plates (Sarstedt) before incubation at 

37°C or 29°C for 48 h. After fixation with 4 % formalin and blocking for 60 min with 5% 

FBS (Gibco) and 0.5% Trition-X100 (Carl Roth), cells were incubated under gentle 

agitation with a specific UCP-1 primary antibody (1:200; Abcam) for further 60 min. 

Detection was carried out using Alexa Fluor 488 goat anti-rabbit IgG (1:1,000; Molecular 

Probes). The corrected total cell fluorescence (CTFC) was analysed using Image J 2.0.0. 

As a control, background fluorescence intensity after incubation of the cells with the 

secondary antibody alone was analysed (data not shown).  

Statistical analysis 

Data are presented as fold change or percent of control ± SEM, calculated from at 

least three different experiments with multiple technical replicates each after excluding 

outliers identified using Nalimov outlier test. Normal distribution and equal variance of 

the data were tested using Shapiro-Wilk or Brown-Forsythe test, respectively. Significant 

differences between two groups were assessed using T-Test, or Mann-Whitney-U test, in 

case of not normally distributed data. Likewise, significant differences between multiple 

treatments were tested using One-Way ANOVA with Holm-Sidak post hoc test, or One-

Way ANOVA on Ranks with Dunn’s post-hoc test, respectively. Differences between 

treatment groups are marked with * P<0.05, ** P<0.01 and ***P<0.001. SigmaPlot 13.0 

was used for statistical analysis.  

Results and discussion 

Browning of white adipocytes is, amongst others, characterized by an increased 

number of mitochondria combined with an upregulation of UCP-1 expression [17]. The 
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process of browning can not only be mediated by cold-stimuli via beta-adrenergic 

signalling, but also by activation of TRP channels like TRPV1 and TRPV4 [9, 10]. In the 

present study, we hypothesized that the food-derived aroma compounds nonivamide 

(NV) and cinnamaldehyde (CA), which are agonists for TRPV1 or TRPA1 cation 

channels, respectively, may augment cold-induced browning responses in 3T3-L1 white 

adipocytes.  

In a first set of experiments, 3T3-L1 adipocytes were tested for their browning 

response when exposed to a cold ambient temperature. Since pyruvate serves as an easily 

catabolized substrate for mitochondrial futile cycles, and pyruvate metabolism partly 

regulates lipogenesis during cold exposure [18], the impact of pyruvate on UCP-1 

expression was addressed as well. UCP-1 gene expression was analysed as a marker of 

the induction of a beige phenotype in 3T3-L1 cells after exposure to 29°C for 6 h (Figure 

1A), and revealed an 8.98 ± 3.61 fold increased expression. When no pyruvate was added 

to the incubation media, the UCP-1 gene expression was significantly reduced to a 

2.06 ± 0.25 fold change increase (data not shown). This result strengthens the assumption 

that the increased UCP-1 gene expression indicates a thermogenic response in 3T3-L1 

adipocytes. 

 
Figure 1: Analysis of UCP-1 gene expression (A, n=10), UCP-1 immunostaining (B,D, analysis of the corrected 
total cellular fluorescence (CTCF) in a total of 50-100 cells) and mitochondrial biogenesis (C, n=4) in 3T3-L1 

adipocytes after incubation for 6 h (A) or 48 h (B-D) at 37°C or 29°C. Statistics: Student’s T-test, *P<0.05, 

**P<0.01, ***P<0.001. 

Moreover, the increased UCP-1 gene expression was confirmed by 

immunocytostaining on protein level after incubation for 48 h at 29°C, demonstrating 

31.3 ± 5.22% increased UCP-1 levels in cells kept at 29°C compared to cells incubated 

at 37°C (Figure 1B & 1D). In addition, staining of the mitochondria using a specific 

mitochondric dye demonstrated that the number of mitochondria was increased by 36.6 

± 24.1% after 48 h at 29°C in comparison to 37°C (Figure 1C). These data point to an 
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increased mitochondrial biogenesis following exposure to cold temperatures and confirm 

the validity of the 3T3-L1 cells as a model for browning.   
 

 
Figure 2: Differences in the mitochondrial biogenesis after treatment with 0.1-10 µM nonivamide (A) or 1 to 
100 µM cinnamaldehyde (B) for 48 h at 29°C. n=3-4. Statistics: One-Way ANOVA vs. control with Holm-

Sidak post hoc test (A), One-Way ANOVA on Ranks vs. control with Dunn’s post hoc test (B). * P<0.05 

Beside cold temperatures, also activation of thermosensitive TRP channels like 

TRPV4 and TRPV1 has been shown to induce a brite adipocyte phenotype [9, 10]. In 

addition, the thermosensitive TRPV1 and, more recently, also TRPA1 has been shown to 

be involved in the differentiation and maturation process of 3T3-L1 adipocytes [12]. 

Moreover, the TRPV1 agonist NV has been associated with a decreased body fat content 

following oral administration of 0.15 mg per day in a 12-week human intervention trial 

with overweight test subjects [19]. Likewise, also addition of 1% of the TRPA1 agonist 

CA to a high-fat diet has been associated with anti-obesity effects accompanied by 

increased mitochondria protein levels in mice [20]. However, it has not been clarified yet 

if thermogenic responses of adipocytes to a cold-stimulus can be enhanced by a treatment 

with NV or CA. Thus, in the present study, we investigated whether NV or CA induce 

mitochondrial biogenesis in 3T3-L1 adipocytes at ambient temperatures of 37°C or 29°C 

as a marker for potential browning effects. The range of test concentrations of the two 

compounds was chosen based on the EC50 values for activation of TRPV1 (1.4 µM, NV 

[21]) or TRPA1 (63 µM, CA [22]), respectively. Negative effects of NV or CA in the 

applied concentrations on cellular proliferation as a measure for cell viability were 

excluded using standard MTT assays (data not shown). Neither incubation with 

0.1-10 µM NV nor with 1-100 µM CA for 48 h at 37°C led to increased mitochondrial 

biogenesis (data not shown). However, when incubated at 29°C for 48 h, 0.1 µM NV as 

well as 10 µM CA increased the mitochondrial biogenesis by 99.2 ± 16.2% or 58.5 ± 

16.2%, respectively. A very recent report on increased markers of thermogenesis at 37°C 

after treatment with CA was carried out with higher test concentrations of 400 µM CA. 

Induction of thermogenesis markers was analysed after short-term incubation up to 4 h 

[11], although longer-lasting effects have not been investigated yet on the mitochondrial 

level. Thus, it cannot be excluded that higher test concentrations of CA will lead to an 

increased number of brite adipocytes at 37°C as studied here. Data on the effect of NV 

on markers of thermogenesis in adipocytes are not available so far, however, the more 

pungent structural analogue of NV, capsaicin treatment has been shown to increase 

expression of genes associated with a brite adipocyte phenotype by Baboota et al.[23], 
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however, without addressing mitochondrial biogenesis directly. Overall the current data 

emphasize the need for more studies to evaluate the efficacy of food-derived TRP agonists 

like NV and CA to stimulate mitochondrial biogenesis at support of body weight loss.  

To summarize, the presented data hint towards a long-term beneficial effect of the 

TRP channel agonists NV and CA on thermogenesis in addition to a cold-stimulus. Future 

studies are needed to confirm browning effects in vitro and in vivo and to clarify an 

involvement of TRPV1 and TRPA1.   
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Abstract  

The impact of raw garlic consumption (3 g) on the composition of human milk 

(n=18), urine (n=19) and exhaled breath (n=11) was explored. Urine and milk samples 

gathered prior to and after garlic ingestion (up to 24 h and 4 h, respectively) were 

analyzed by GC-MS and GC-GC-MS. Milk samples were additionally assessed by aroma 

profile analyses. Exhaled breath analysis was performed by PTR-MS. The compound 

allyl methyl sulfide was identified as garlic-derived metabolite in all three excreta. 

Furthermore, allyl methyl sulfoxide and allyl methyl sulfone were identified as 

metabolites in both urine and milk. These garlic-derived metabolites were quantified by 

means of stable isotope dilution assays. Two garlic-derived metabolites were identified 

in breath, namely allyl methyl sulfide and methanethiol. The measurements revealed 

inter-individual differences in metabolite concentrations and removal kinetics after 

consumption of 3 g of raw garlic.  

Introduction 

Garlic is savoured for its characteristic aroma and has been associated with 

beneficial health effects [1-3]. The active principles of garlic are not fully understood, 

although allicin and its metabolic derivatives have been proposed as active components 

[4]. Constituents ingested with food can be strongly modified in the body and evoke  

physiological effects [5]. In previous studies we identified three garlic-derived 

metabolites in human milk and urine, namely allyl methyl sulfide (AMS), allyl methyl 

sulfoxide (AMSO) and allyl methyl sulfone (AMSO2) [6, 7] .These compounds have been 

identified as the dominant metabolites in rat liver, plasma and urine after treating rats with 

diallyl disulfide, a constituent compound in garlic [8]. To further characterize their 

biotransformation processes, the present study aimed to quantify these metabolites in 

human milk and urine and additionally explore the influence of raw garlic consumption 

on the odorant and metabolite composition of exhaled breath. 

Experimental 

Samples 

This study was conducted in agreement with the Declaration of Helsinki. Written, 

informed consent was given by all volunteers prior to participation. Withdrawal from the 

study was possible at any time. The study (registration number 49_13B) was approved 

by the Ethical Committee of the Medical Faculty, Friedrich-Alexander Universität 

Erlangen-Nürnberg. 

Milk samples were collected using mechanical or electrical breast pumps according 

to the mothers’ preferences. Sampling took place within the 9 to 36 weeks postpartum 



 

 

Laura Scheffler et al. 282 

lactation period. Milk samples (n=18) were collected at the times indicated in Figure 1. 

Sampling intervals reflected the normal lactation period of individual mothers.  

 
Figure 1: Times of milk sample taking 

Urine samples (n=19) were collected in brown glass bottles. Breath analysis (n=11) 

was performed by having individuals exhale deeply into a buffered-end-tidal (BET) 

sampling tube that was connected to a proton-transfer-reaction mass spectrometer (PTR-

MS) for on-line analysis. Sampling times of urine and breath samples are indicated in 

Figure 2. 

 

Figure 2: Urine and breath sampling. U: urine sample B: breath sample 

Stable isotope dilution assays (SIDA) 

Defined amounts of 2H3-isotopically-labeled reference compounds were added to 

each milk and urine sample. Dichloromethane (DCM) was then added at a ratio of 1:2 

(DCM:sample, v/v) to the sample. The mixture was stirred (30 min, room temperature) 

and then distilled via solvent-assisted flavour evaporation (SAFE; 50 °C) and subse-

quently concentrated to a volume of 100 µL. Analyses of AMSO and AMSO2 were 

performed using GC-MS in selected ion monitoring (SIM) mode. The analysis of AMS 

was performed with GC-GC-MS. The metabolite concentrations in milk and urine sam-

ples were calculated from the intensity ratios of labeled to unlabelled compounds in the 

extracts. 

Creatinine content 

The creatinine content of each urine sample was determined using a creatinine kit 

(Labor + Technik Eberhard Lehmann GmbH, Berlin, Germany). The concentrations of 

the metabolites in urine samples were normalized to the creatinine content of the 

respective urine sample. 

Sensory analyses  

All milk samples underwent sensory analyses. These analyses took place prior to the 

work-up described above and were performed by a trained panel that evaluated the 

samples orthonasally. 

  

Milk 1 

3 g garlic 

Milk 2 

1,5 – 4 h 

Milk 3 

1,5 – 4 h 

Milk 4 

1,5 – 4 h 

U 2 

0 h 2 h 4 h 6 h 8 h 24 h 
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U 1 U 3 U 4 U 5 U 6 U 7 U 8 

B 1 
B 2 
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Breath gas analyses 

On-line PTR- time-of-flight-MS (PTR-TOFMS) was used for monitoring the 

presence of garlic metabolites in exhaled breath gas [9]. Use of a BET sampling apparatus 

extended the analysis time of end-tidal breath and reduced the likelihood of interferences 

of garlic-constituents emanating from the stomach.  

Results and discussion 

The analyses revealed three garlic-derived metabolites in human milk and urine, 

namely AMS, AMSO and AMSO2. Of these three, only AMS had a garlic-/cabbage-like 

door whereas the other two metabolites were odourless. AMS had an impact on the aroma 

profile of the milk samples, whereby milk samples collected prior to garlic consumption 

did not exhibit the garlic-/cabbage-like door whereas samples collected after garlic 

intervention clearly did. Furthermore, the quantitative analyses revealed differences in 

concentrations and excretion kinetics of metabolites between individuals. Three examples 

of milk and urine sample sets are shown in Figure 3 and 4, respectively.  

 
Figure 3: Concentrations of garlic metabolites (left: AMS; right: AMSO and AMSO2) in three different milk 

sets. pre: sample prior garlic ingestion. x h post: samples after garlic ingestion. 

 
Figure 4: Concentrations of garlic metabolites (left: AMS; right: AMSO and AMSO2) in three different urine 

sets. pre: sample prior garlic ingestion. x h post: samples after garlic ingestion. 

The highest concentrations of AMS and AMSO in the investigated milk samples 

were detected in the first samples taken after garlic consumption. In contrast, AMSO2 

maxima were only detected in the second milk sample after garlic consumption for some 

0

100

200

p
re

2
 h

 p
o

st
4
.5

 h
 p

o
st

7
 h

 p
o

st

p
re

2
.5

 h
 p

o
st

5
 h

 p
o

st
7
.5

 h
 p

o
st

p
re

3
 h

 p
o

st
5
.5

 h
 p

o
st

8
 h

 p
o

st

co
n

ce
n

tr
at

io
n

 [
µ

g
/k

g
]

Milk samples

AMSO2

AMSO

0

1

2

p
re

2
 h

 p
o

st
4
.5

 h
 p

o
st

7
 h

 p
o

st

p
re

2
.5

 h
 p

o
st

5
 h

 p
o

st
7
.5

 h
 p

o
st

p
re

3
 h

 p
o

st
5
.5

 h
 p

o
st

8
 h

 p
o

st

co
n

ce
n

tr
at

io
n

 [
µ

g
/k

g
]

Milk samples

AMS

0,0

0,5

1,0

1,5

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
st

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
st

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
stco

n
ce

n
tr

at
io

n

[µ
g
/ 

m
m

o
l

cr
ea

ti
n

in
e]

Urine samples

AMS

0
100
200
300
400
500
600

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
st

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
st

p
re

0
.5

 h
 p

o
st

1
 h

 p
o

st

2
 h

 p
o

st

4
 h

 p
o

st

6
 h

 p
o

st

8
 h

 p
o

st

2
4

 h
 p

o
stco

n
ce

n
tr

at
io

n
 

[µ
g
/ 

m
m

o
l

cr
ea

ti
n

in
e]

Urine samples

AMSO
AMSO2



 

 

Laura Scheffler et al. 284 

individuals. Similar results were observed in urine samples, with the highest 

concentrations of the garlic metabolite being detected 1-2 h after garlic intervention. By 

comparison, the AMSO2 maxima often appeared slightly later than AMSO. In breath, the 

highest AMS concentration was observed between 0.5-4 h after garlic consumption (see 

Figure 5). Methanethiol displayed similar excretion kinetics to AMS. 

 

Figure 5: Breath profiles of AMS (left; m/z 89.04) and methanethiol (right; m/z 49.01) for two individuals after 

consumption of 3 g raw garlic. t=0: time of garlic ingestion. 

Overall, the duration and concentration of excretion of the metabolites exhibited 

large inter-individual variations, despite all individuals consuming identical quantities of 

raw garlic. The concentrations observed in urine samples were approximately twice or 

three times higher than those observed in the milk samples. Additional possible 

elimination routes such as via feces were not considered in this study. Nevertheless, these 

findings suggest that different garlic-derived metabolites are excreted via different 

metabolism pathways.  
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Abstract  

Consuming Takifugu is very popular in China because of its delicious taste. In this 

study, Takifugu obscurus (T. obscurus) and Takifugu rubripes (T. rubripes), edible puffer 

fishes, were used as the raw materials to isolate and identify the umami peptides. Different 

fractions were separated and purified using some isolation technologies such as 

membrane separation. Then sensory evaluation was performed of theses fractions to 

distinguish the peptides with the umami taste. The separated umami peptides were 

synthesized to verify their umami taste using the sensory evaluation. Finally, 12 novel 

umami peptides were identified and validated. This study could provide theoretical basis 

and technical support to understand the flavour of Takifugu and develop the new 

flavouring using the umami peptides. 

Introduction 

Flavour perception involves in the olfactory and gustatory interaction, which results 

from the volatile and non-volatile compounds releasing from the food. It also has a 

decisive influence on the eating quality, preference and acceptability of foods, especially 

for meat products [1]. And this is the reason why the number of research on understanding 

the chemistry of meat flavour, and determining the dominant influencing factors on 

flavour quality during the production and processing of meat has increased over the years. 

Inorganic salts, peptides, amino acids, organic acids, ATP breakdown products (ATP 

derivatives) and sugars contribute to generating the taste of meat and meat products in 

their water soluble substances [2]. Among these contributors, flavour peptides possess 

unique taste properties owing to their primary structure and amino acid sequence, which 

participates in the formation of the flavour and improve the overall flavour of food [3].  

The pioneer study of the flavour peptide can be traced back to 1987. Japanese 

scientist firstly isolated the beefy meaty peptide (BMP) from beef meat, which was 

identified as a savoury taste similar to monosodium glutamate (MSG) [4]. After that, 

many researchers are gradually focusing on isolating the novel flavour peptides using gel 

filtration chromatography, reverse phase high performance liquid chromatography, 

tandem mass spectrometry, sensory evaluation and the electronic tongue.  

Puffer fish, known as blowfish, bubble fish, fugu and porcupine fish, is a popular 

and edible fish species in both China and eastern Asian countries, owing to its unique 

umami taste. Peptides and free amino acids are the key components to release the 

delicious taste of puffer fish [5]. The relationship between the formation of flavour and 

free amino acids, ATP in puffer fish has been well studied. However, the isolation and 

identification of the novel umami peptides in puffer fish is a neglected topic.   

Therefore, our present study is to identify the novel umami peptides from Takifugu 

obscurus and Takifugu rubripes. Different treatments including water soluble, heating, 

and enzymatic hydrolysate were used on Takifugu to extract and separate the umami 

peptides. The meaning of the study is not only to identify the novel umami peptides, but 

also to provide information on developing the new umami flavours or seasonings.  
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Experimental 

Materials 

Takifugu obscurus and Takifugu rubripes fish were both purchased from Jiangsu 

Zhongyang Group Co., Ltd (Nantong City, Jiangsu Province, China). And they were 

killed by a puffer fish licensed chef.  Muscle filets were removed and three different 

treatments, including water soluble, heating, and enzymatic hydrolysate were used to 

extract the fractions from fresh cultured muscle filets. The supernatants were collected 

freeze-dried and stored at -80℃.  

Isolation and purification [6] 

The T. obscurus and T. rubripes extractions with a molecular weight of less than 

3KDa were fractionated by ultra-filtration using membranes with a MW cut off size of 

3KDa. The condition of ultrafiltration was at 5℃ under 2.5-3.0 Psi N2 pressure. All the 

ultrafiltration fractions were collected for freeze-drying and stored at -80℃. Sephadex G-

15 gel filtration chromatography (column 1.6*60cm) was used to elute the extracted 

fractions with deionized water as the eluting solvent and the flow rating being 

0.75ml/min. The UV absorbance of the eluent was monitored at 220nm. Each filtration 

fraction from successive runs were pooled and lyophilized for the sensory evaluation 

(described in the following).  

The most intense umami taste fraction, obtained from the gel filtration 

chromatography, was separated using a Waters 2695 Allicance® HPLC system under the 

condition of a Kromasil C18 column at 30℃ to get several sub-fractions. The elution 

condition was an isocratic elution with eluting solvent 90% A (Milli-Q water) and 10% 

B (ACN HPLC grade) for 20 minutes at a flow rate of 1ml/min. And the elution peaks 

were monitored at 215nm.  

Identification of the umami peptides by MALDI-TOF/TOF MS/MS [6] 

Freeze-dried RP-HPLC fraction with the most intense umami taste was first re-

dissolved in 50% ACN, 0.1% TFA containing 4mg/ml a-cyano-4-hydroxycinnamic acid 

(HCCA) and filtered. Myoglobin digested with trypsin was used to calibrate the mass 

instrument with internal calibration mode. The MALDI-TOF/TOF MS/MS (mass range 

scanning from 450 to 2000Da) was run in the positive refractor mode. MS/MS spectra 

were acquired from 2000 shots by adjusting the laser intensity above the threshold for 

generation of molecular ions for each umami peptide.  

Synthesis of the umami peptides  

The sequenced umami peptides by MALDI-TOF/TOF MS/MS were synthesised 

using the Solid phase peptide synthesis technique. The purity of synthetic peptides was 

higher than 97%.  

Sensory evaluation [6] 

The sensory panel consisted of 3 males and 5 females, who were screened by 

recognising the basic tastes. The sensory evaluation was conducted in the sensory lab. 

The sensory attributes, including sweetness, sourness, bitterness, umami, and kokumi, 

were evaluated to describe the taste perception of sample fractions, including the 

ultrafiltration, Sephadex G-15 gel filtration, RP-HPLC fractions, and the synthetic umami 

peptides.  
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Results and discussion 

After ultrafiltration and gel chromatography, the fractions of T. obscurus and T. 

rubripes were separated and subjected to the sensory evaluation in order to screen out the 

most intense fraction with the umami taste. RP-HPLC was conducted on this fraction to 

get several individual sub-fractions. The descriptive analysis was used to describe and 

assess the sensory properties of the sub-fractions. The sub-fractions with the most intense 

umami taste were considered as the umami peptides and their sequences were identified. 

In order to validate the umami taste with these identified peptides, the synthetic peptides 

were subjected to the sensory evaluation. The umami taste was also found and described 

by the synthetic peptides, which indicates the validation of these identified peptides as 

the umami peptides.  

Table 1 lists the sensory description of the synthetic umami peptides. The result 

shows that totally, 12 novel umami peptides were identified and validated from T. 

obscurus and T. rubripes using the different treating methods. Additionally, regardless of 

the different treatments, another attribute kokumi, is one of the main sensory properties 

of these umami peptides, which is more likely to contributing the delicious taste of puffer 

fish. 

 

Table 1: The sequences, sources and sensory description of the synthetic umami peptides [7] 

The sequences of identified 

umami peptides 
Sources Sensory Properties 

Leu-Tyr-Glu-Arg Takifugu Obscurus 
enzymatic hydrolysate 

Sweetness, Umami, Kokumi 

Val-Arg-Ser-Tyr Takifugu Obscurus 

enzymatic hydrolysate 
Sweetness, Umami, Kokumi 

Cys-Ala-Leu-Thr-Pro Takifugu Obscurus  

(100℃） 
Umami, Kokumi 

Arg-Pro-Leu-Gly-Asn-Cys Takifugu Obscurus  

(100℃） 
Umami, Kokumi 

Glu-His-Ala-Met-Leu-Asn Takifugu Rubripes (4℃) Umami, Kokumi 

Lys-Gly-Arg-Tyr-Glu-Arg Takifugu Obscurus 

enzymatic hydrolysate 
Sweetness, Umami, Kokumi 

Thr-Leu-Arg-Arg-Cys-Met* Takifugu Obscurus (4℃) Umami, Kokumi 

Pro-Gly-Gly-Val-Arg-Asn-Gly Takifugu Rubripes (4℃) Umami, Kokumi,Sourness 

Pro-Val-Ala-Arg-Met*-Cys-Arg Takifugu Obscurus (4℃) Umami, Kokumi 

Tyr-Gly-Gly-Thr-Pro-Pro-Phe-Val Takifugu Obscurus  

(100℃） 
Umami, Sweetness 

Tyr-Lys-Cys-Lys-Asp-Gly-Asp-Leu-

Arg 
Takifugu Obscurus 

enzymatic hydrolysate 
Umami, Kokumi, Fish flavour 

Glu-Phe-Lys-Glu-Tyr-Asn Takifugu Rubripes  (4℃) Umami, Kokumi, Sourness 
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Abstract 

Understanding individual subjects’ taste sensitivity and the mechanisms involved in 

peri-receptor events taking place in the oral cavity would open new avenues for the 

reformulation of food products. Salivary proteins are believed to interact with key food 

taste molecules like sodium chloride and, by doing so, seem to impact taste receptor 

activation. Therefore, the present study set a particular focus on the salivary proteome 

level before and upon chemosensory stimulation using a combination of liquid 

chromatography mass spectrometry and sensory experiments. Interestingly, dynamics 

upon stimulation and differential proteome pattern between sensitivity groups seemed to 

be two largely independent conditions. Gene ontology enrichment analysis of key 

proteins with regard to sodium chloride sensitivity revealed augmented endopeptidase 

activity for sensitive subjects. Non-sensitive subjects, in contrast, were high abundant in 

proteins showing endopeptidase inhibitor activity. In the context, increased sensitivity 

could be demonstrated to arise from enriched serine-type endopeptidase activity and an 

in-vivo generation of salt-modulating peptides. Decreased sensitivity, in contrast, could 

be correlated to increased abundances of lipocalin-1 and lysozyme C and furthermore, 

predicted at an individual subject’s level. 

Introduction 

Dietary salt intake is challenging. On the one hand, salt is essential for homeostatic 

regulation and nerve conductance [1]. On the other hand, excess sodium chloride has been 

correlated to cardiovascular diseases [2]. Understanding mechanisms involved in salivary 

peri-receptor events and sodium-induced ion channels, pharmacology would open new 

avenues to reformulate low-sodium food products without compromising on salt taste 

quality. Several mechanisms have been reported in terms of salt taste transduction 

involving the amiloride sensitive epithelial sodium chloride channel (ENaC). However, 

the response of the ENaC in its external environment also plays an important role. In 

doing so, the activity of the ENaC has been described to be modulated by serine proteases, 

e. g. kallikrein and trypsin, and thus, leading to facilitated signal transduction [3, 4]. Ion 

channels and taste receptors have further been considered to be activated by saliva during 

oral food processing. Alternatively, salivary constituents such as proteins or peptides may 

interact with sensory stimulants and therefore, influence the concentration which is 

available at a receptor stage [5, 6]. The wide-ranging influence of saliva on chemosensory 

perception raised the question as to whether the salivary composition and dynamic 

changes upon tastant stimulation affect salt taste perception and, drive salt taste sensitivity 

at an individual panellist’s level. Therefore, the objective of the present study is to classify 

panellists according to sodium chloride sensitivity, collect saliva before and upon salty 

tastant stimulation and investigate time-dependent dynamic changes in the salivary 

proteome by means of tryptic in-solution digestion followed by protein quantitation using 

isobaric tags for relative and absolute quantitation (iTRAQ). The second part of this study 
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focuses on sensitivity at individual panellist’s level and consequently, a targeted 

quantitation of identified key proteins within each subject’s saliva. To investigate as to 

whether a salt taste enhancing effect might be correlated to endoprotease-catalysed ion 

channel modulation or an in-vivo release of salt enhancing peptides, panellists were 

further challenged with a serine-type endoprotease and degradation products identified 

using sequential windowed acquisition of all theoretical mass spectra (SWATH-MS), 

followed by sensory evaluation. 

Experimental 

Study subjects and classification according to sodium chloride sensitivity 

31 panellists were screened in their full sodium chloride detection range by means 

of threshold determination using 3-alternative forced-choice tests (ISO 13301:2002) and 

individually adapted concentration ranges [7]. Thereupon, psychometric functions were 

calculated for each panellist using logistic regression models and a 95 % confidence 

interval and subjects classified accordingly. 

Collection of saliva and analyses of proteome pattern as well as degradation products 

The collection of unstimulated and stimulated saliva was conducted according to 

literature [7, 8]. The four most NaCl-sensitive (S+) and four most NaCl-insensitive 

panellists (S-) were challenged with aqueous salt solution and saliva before, upon and 

after chemosensory stimulation taken for tryptic in-solution digestion and shotgun 

proteomics as described in literature [7]. Unstimulated saliva was collected from 20 

subjects classified according to NaCl-mediated salt taste sensitivity and saliva samples 

analysed using targeted proteomics [9]. A subset of four panellists was further challenged 

with trypsin (0.1 mg/mL in bottled water, 2 mL) and saliva samples before and upon 

trypsin challenge were analysed using SWATH-MS as described in literature [9]. 

Results and Discussion 

Classification according to NaCl-mediated salt taste sensitivity 

31 healthy panellists performed 3-alternative forced-choice tests (3-AFC) with 

individually adapted concentration ranges to determine NaCl detection threshold 

concentrations. However, since detection thresholds may be subject to day-to-day 

variability, each panellist’s reproducibility in identifying threshold level sodium chloride 

samples had to be evaluated prior to classification. To achieve this, logistic regression 

models were calculated on the basis of each subject’s daily performance at respective 

NaCl sample concentrations. The resulting psychometric functions revealed that four 

panellists consistently detected NaCl concentrations of less than 1.2 mmol/L and 

consequently, were classified most sensitive (S+). The four panellists consistently 

detecting NaCl concentrations above 8.1 mmol/L were classified most insensitive (S-). 

The classification of 20 panellists into sensitive, medium sensitive non-sensitive subjects 

was carried out as described in literature [9]. 

Salivary proteome patterns affecting salt taste sensitivity 

To investigate salt taste sensitivity in the context of the salivary proteome and 

dynamic changes upon salt taste stimulation, collected saliva samples were analysed 

using shotgun proteomics and results illustrated in figure 1.  
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Figure 1: Principal component analysis of saliva samples upon salty tastant challenge 

Principal component analysis demonstrated that dynamics upon stimulation (PC1) 

and sensitivity (PC2) seemed to be largely independent and further suggested that sodium 

chloride sensitivity may depend on the proteome pattern in resting saliva only. 

Subsequently, t-tests with a 5 % FDR cut-off revealed that lipocalin-1, lysozyme C, 

cystatin-D, cystatin-S and cystatin-SN are highly abundant within the S--group. 

Immunoglobulin heavy constant y1, cathepsin G, haptoglobin, kallikrein and 

myeloblastin, in contrast, were found to be key proteins for the S+-group. When taken for 

gene ontology enrichment analysis, identified marker proteins showed significant 

enrichment in contrasting biological functions: The S+-group demonstrated an augmented 

serine-type endopeptidase activity (p-value = 8.52 ∙ 10-8) whereas the S--group exhibited 

a significantly enriched cysteine-type endopeptidase inhibitor activity (p-value = 8.74 ∙ 

10-9) and thus, suggesting that proteolytic events in the oral cavity may play a role in salt 

taste perception. 

Key proteins affecting individual subject’s salt taste sensitivity 

To identify key proteins which may be predictive for individual panellist’s 

sensitivity, saliva of 20 subjects classified according to NaCl-mediated salt taste was 

analysed by using targeted proteomics with stable isotope incorporation. In doing so, a 

pseudo-inverse logarithmic response between salt taste sensitivity and the abundance of 

lipocalin-1 and lysozyme C was found as illustrated in figure 2. 

 
Figure 2: Individual panellists’ sodium chloride sensitivity in correlation with abundances of lipocalin-1 and 

lysozyme C 
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Interestingly, both proteins have been demonstrated to be co-localised in salivary 

von Ebner glands and interact to form a thin film layer [10] which may lead to a decreased 

accessibility of the ENaC. 

Serine-type endopeptidases and in-vivo generation of salt taste enhancing peptides 

To answer to question as to whether enriched endopeptidase activity facilitates salt 

taste perception by activation of the ENaC [4] or an in-vivo release of salt taste enhancing 

peptides, a subset of four panellists was challenged with trypsin and saliva samples before 

and after stimulation analysed by using sequential window acquisition of all theoretical 

mass spectra (SWATH-MS). Interestingly, an unknown compound with a mass of 

570.327 Da was observed to be significantly (p-value = 0.01) upregulated upon trypsin 

challenge demonstrating a fold change of 29. A targeted data extraction of SWATH-MS 

data resulted in the identification of tetrapeptide PLWR which could be confirmed by 

using a reference standard. A sensory evaluation of PLWR in model broth using a triangle 

test design [9] further revealed a salt taste enhancing effect at concentrations of 6.5 

μmol/L and above. To the best of our knowledge, this is the first time that salt taste 

sensitivity could be correlated to an in-vivo endoprotease-catalysed release of salt taste 

modulating peptides and consequently, a facilitated salt taste perception. 
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Abstract  

2-Acetyl-1-pyrroline (2-AP) has been widely reported as being a key contributor to 

the popcorn-like aroma of fragrant rice. To understand more about the contribution of 2-

AP to the aroma of fragrant rice and to highlight the sensory differences between fragrant 

and non-fragrant rice, quantitative descriptive analysis was conducted, to examine the 

sensory properties of six boiled rice samples (three fragrant rice and three non-fragrant 

rice) by 11 panellists, with emphasis on popcorn-like odour and flavour. The results 

showed perceived intensity of popcorn odour and flavour in fragrant rice were higher than 

in non-fragrant rice (p = 0.016, p = 0.026, respectively). However, the panellists could 

not differentiate between fragrant boiled rice varieties based on popcorn odour or flavour. 

2-AP was extracted from the six boiled rice samples by headspace solid-phase 

microextraction and quantified by gas chromatography-mass spectrometry. 2-AP was 

found in fragrant rice samples (146 µg/kg in Jasmine, 113 µg/kg in Basmati and 80 µg/kg 

in Sintanur) but could not be quantified in non-fragrant varieties (below 5 µg/kg). These 

results suggested that although 2-AP is a key contributor to popcorn-like notes in fragrant 

rice, the differences in level of 2-AP content between different boiled fragrant rice 

samples may be too small to cause perceptual discrimination. In addition, popcorn-like 

notes were perceived in non-fragrant rice samples, despite levels of 2-AP being below 

detection limits.  

Introduction 

2-Acetyl-1-pyrroline (2-AP) is a volatile compound with a popcorn-like odour and 

a low detection threshold (0.1 µg/kg in water). It was firstly identified in boiled fragrant 

rice [1]. When popcorn odour intensities in several fragrant rice varieties were ranked, 2-

AP was considered as the most important contributor to this odour [2]. However, Yang et 

al. [3] reported that popcorn-like note may not be the only important characteristic in 

boiled fragrant rice odour. In addition, Limpawattana et al. [4] reported no correlation 

between popcorn flavour and 2-AP. Moreover, 2-AP has been reported to be generated 

only during fragrant rice growth and not during other postharvest procedures or cooking 

[5].  

Lexicons of rice descriptors have been established in several studies, especially for 

fragrant rice [6-8]. The selection of descriptors depends on the panellists’ culture and 

familiarity with the samples [9]. However, no rice lexicon has previously been reported 

using a UK sensory panel. In this study, different boiled rice varieties were evaluated 

using quantitative descriptive analysis (QDA). A lexicon was developed for both boiled 

fragrant and non-fragrant rice varieties using a UK-based panel. Differences in flavour 

and odour between fragrant and non-fragrant rice were evaluated. In addition, the 

relationship between popcorn flavour/odour and 2-AP content in boiled fragrant and non-

fragrant rice was examined. 
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Experimental 

Materials 

Six varieties of white rice were obtained in summer 2016, including three fragrant 

rice varieties (Basmati and Thai Jasmine from ASDA supermarket; Sintanur from 

Indonesia Centre of Rice Research) and three non-fragrant rice varieties (American long 

grain from ASDA supermarket; Arirang from Korea Foods Company Limited; and 

Ciherang from Indonesia Centre of Rice Research). 2-AP and deuterated 2-AP (2-AP-d2) 

standards were used for 2-AP quantification (both 30,000 ppm in dichloromethane 

(DCM), Aroma Lab, Germany). 

Quantitative Descriptive Analysis (QDA) in boiled rice 

Milled rice (200 ± 1 g) was weighed and then boiled using 300 mL mineral water in 

a rice cooker (0.8 L, Lloytron, UK). Cooking proceeded for 20 min before the rice cooker 

automatically turned to warm mode. The samples were kept warm (65 °C) for 20 min 

before serving to panellists for evaluation.  

Quantitative descriptive analysis (QDA) was conducted for six rice samples, using 

11 trained UK panellists. A vocabulary was developed for appearance, odour, taste, 

flavour, mouthfeel and after-effect. A pre-heated ceramic cup (50 mL) filled with boiled 

rice (20 g) covered by foil was served to panellists for developing odour attributes and 

another 20-g sample was then served in the same manner for developing all the other 

attributes. The scoring for each attribute of sample was conducted in individual booths in 

duplicate on separate days, and samples labelled with three-digit codes were presented 

randomly in a balanced order. Data were collected using Compusense at-hand (Canada). 

2-Acetyl-1-pyrroline quantification in boiled rice 

Rice samples (1 g ± 0.001 g) and 1.5 mL HPLC-grade water were added to 20-mL 

SPME glass vials with metal screw-caps and PTFE-faced silicone septa. Vials were then 

heated in a GC oven at 100 °C for 20 min. A 1.5-mL aliquot of 2-AP-d2 aqueous solution 

(approximately 100 µg/kg, prepared by replacing DCM with HPLC-grade water) was 

added into the vials after they were cooled to room temperature. 2-AP in boiled rice was 

extracted from these samples by automated SPME (GC Sampler 120, Agilent). Samples 

were incubated with magnetic shaking for 10 min at 40 °C, and then extracted with a 

Supelco DVB/CAR/PDMS SPME fibre for 1 hour at 40 °C. After extraction, the extracts 

were analysed by gas chromatography-mass spectrometry (GC-MS) using a 7890 GC 

with 5975C MS (both Agilent). The SPME fibre was desorbed in the GC injector at 250 

°C for 20 min, in splitless mode, onto the front of a Zebron ZB-Wax column (30 m × 0.25 

mm; 1 µm film thickness; Phenomenex). The carrier gas was helium at a constant column 

flow rate of 0.9 mL/min. The initial GC oven temperature was 40 °C and held for 2 min, 

then increased to 60 °C at the rate of 2 °C/min; then the rate increased to 6 °C/min until 

the temperature reached 250 °C. Electron ionisation (EI) mode was used at 70 eV. Full 

scan mode was used for analysis from m/z 30 to 280. Simultaneous selective ion 

monitoring was also applied: ions m/z 68, m/z 83 and m/z 111 were monitored for 2-AP; 

m/z 86 and m/z 114 were monitored for 2-AP-d2. The dwell time of monitored ions was 

set at 100 ms/ion.  
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Results and discussion 

Quantitative Descriptive Analysis (QDA) in boiled rice 

Thirty-seven attributes (covering appearance, odour, taste, flavour, mouthfeel and 

after-effect) were found in six boiled rice samples by 11 trained UK panellists. Significant 

differences between samples were found in all appearance attributes (p < 0.0001), 

popcorn odour (p = 0.028) and cohesive mouthfeel (p < 0.0001). Popcorn-like attributes 

were not only found in fragrant rice, but also in non-fragrant rice. When the six samples 

were grouped into fragrant (Jasmine, Basmati and Sintanur) and non-fragrant rice (long 

grain, Arirang and Ciherang), the perceived intensities of popcorn odour and flavour in 

fragrant rice were found significantly higher than in non-fragrant rice (p = 0.016, p = 

0.026, respectively; Figure 1a). Although a significant difference in perceived popcorn 

odour was observed by ANOVA between different rice varieties (Figure 1b, p = 0.028), 

this difference was caused by a difference between Jasmine and Ciherang (p < 0.05); 

differences between other rice varieties were not observed. Jasmine and Sintanur tended 

to show higher perceived popcorn flavour than other samples, but no significant 

differences in popcorn flavour were found between rice varieties (Figure 1b, p = 0.134). 

These results indicated that although the panellists could not detect a difference in 

popcorn odour and flavour between individual boiled rice varieties, fragrant and non-

fragrant rice could be categorised based on popcorn odour or flavour. 

 
Figure 1: popcorn odour and flavour in fragrant and non-fragrant rice (a); perceived popcorn odour and flavour 
among six rice samples (b). Bars not sharing a common letter are significant different (p<0.05). Error bar 

represents standard error. Blue bars represent fragrant rice; red bars represent non-fragrant rice. 

Quantification of 2-acetyl-1-pyrroline in boiled rice 

Concentrations of 2-AP in six boiled rice samples are shown in Figure 2. Significant 

difference in 2-AP concentrations was observed between the three boiled fragrant rice 

samples (p = 0.028). The concentrations of references (four levels of 2-AP standards) 

used for popcorn odour in QDA training were 5 or 10-fold in difference, and the trained 

panellists could rank these samples in order of intensity with no difficulty. However, the 

two-fold difference in 2-AP (Jasmine vs Sintanur) was not great enough to be noticed by 

panellists, which might explain why there was no significant difference in popcorn odour 

or flavour between fragrant rice samples. Limpawattana et al. [4] reported that although 

2-AP was the only contributor to popcorn-like note in boiled rice, this compound did not 

correlate with popcorn flavour. Therefore, as rice contains numerous volatile compounds, 

the interaction of other compounds with 2-AP might affect the perception of popcorn 

odour and flavour. In three non-fragrant rice varieties, although traces of 2-AP were 

detected in the GC-MS chromatograms, the concentration in these samples was too low 

to be quantified (Figure 2). The lowest concentration of 2-AP that could be quantified in 
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this study was 5 µg/kg. However, these concentrations may be still about 50-fold higher 

than the 2-AP detection threshold (0.1 µg/kg in water), which could be the reason that 

popcorn-like attributes in non-fragrant rice were also detected by panellists.  

 
Figure 2: 2-acetyl-1-pyrroline concentrations in six boiled rice samples.  Bars not sharing a common letter are 

significantly different (p < 0.05). Error bar represents standard deviation. ND: not detected, concentration lower 

than 5 µg/kg. Blue bars represent fragrant rice; red bars represent non-fragrant rice. 

Yang et al. [3] analysed odour-active compounds in five boiled fragrant rice and one 

boiled non-fragrant rice samples. They found that 2-AP was detected in all six rice 

varieties, and popcorn-like odour was also detected in the non-fragrant rice variety. 

However, no other compounds that contributed popcorn-like odour were detected in their 

study. As no other compounds known to possess popcorn aroma were found in the current 

study, this suggests that trace levels of 2-AP in the non-fragrant varieties may be 

responsible for their popcorn-like aroma.  

Conclusion 

A lexicon was developed by a trained UK panel to describe six boiled rice varieties 

(three fragrant and three non-fragrant rice types). Popcorn odour and flavour were found 

in both fragrant and non-fragrant rice, but it was difficult to differentiate all six boiled 

rice varieties based on these attributes. However, significant differences were observed 

in both popcorn odour and popcorn flavour when fragrant and non-fragrant rice were 

compared by t-test. Significant differences in 2-AP concentration were found between the 

three fragrant rice varieties, although such differences were too small to cause a 

significant perceptual difference. Much higher levels of 2-AP were found in fragrant rice 

than non-fragrant rice. However, trace levels of 2-AP may contribute to popcorn attributes 

in non-fragrant rice varieties. 
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Safety assessment of flavourings in the European Union  
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Freising-Weihenstephan, Germany 

Abstract  

In the European Union (EU) the regulatory framework for the use of flavourings in 

and on foods is provided by Regulation (EC) No 1334/2008. It contains as Annex the so-

called Union list, i.e. a list of flavouring substances authorized for use in and on foods to 

the exclusion of all others. The principles underlying a group-based approach applied for 

the safety evaluation of flavouring substances prior to their entry into the Union list are 

outlined. The application of a decision-tree that takes into consideration structure-activity 

relationships, metabolism, intake and toxicity is described. Examples with particular 

emphasis on testing for genotoxic potential are given, and criteria for future safety 

evaluations of chemically defined substances and of flavourings other than flavouring 

substances are presented.  

Regulatory framework 

In the European Union (EU) the regulatory framework for the use of flavourings in 

and on foods is provided by Regulation (EC) No 1334/2008 of the European Parliament 

and of the Council of 16 December 2008 [1]. The Regulation applies to flavourings, food 

ingredients with flavouring properties, to food containing flavourings and/or food 

ingredients with flavouring properties, and to source materials for flavourings and/or 

source materials for food ingredients with flavouring properties. Flavourings to be used 

in or on food must meet the following conditions: (i) They do not, on the basis of the 

scientific evidence available, pose a safety risk to the health of the consumer, and (ii) their 

use does not mislead the consumer. 

Regulation (EC) No 1331/2008 of 16 December 2008 [2] laid down a common 

procedure for the assessment and the authorization of so-called food improvement agents, 

i.e. food additives, food enzymes and food flavourings. A Union list, i.e. a list of 

flavourings and source materials for use in and on foods that are authorized to the 

exclusion of all others, is included as Annex to Regulation (EC) No 1334/2008.  

Principles of the safety assessment 

The procedure to establish the Union list had been laid down in Regulation (EC) No 

2232/96 of the European Parliament and of the Council [3]. Member States were 

requested to notify to the Commission a list of flavouring substances which at that time 

were legally accepted on their territory. The resulting register of about 2800 substances 

was adopted by Commission Decision (1999/217/EC) [4]. The measures for the 

evaluation programme were laid down by Commission Regulation (EC) No 1565/2000 

[5].  Considering the large number of substances, it was decided to make use of already 

existing safety assessments. Flavouring substances that had been considered as being not 

of safety concern at the current levels of intake either by the Scientific Committee on 

Food of the European Commission (SCF), the Experts on Flavouring Substances of the 

Council of Europe (CEFS) or by the Joint FAO/WHO Expert Committee on Food 

Additives (JECFA) before 2000 did not need to be re-evaluated within the evaluation 

programme. Flavouring substances classified after 2000 by JEFC as to present no safety 

concern at the current level of intake had to be considered by the European Food Safety 
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Authority (EFSA), in order to decide whether no further evaluation is necessary.  The 

remaining flavouring substances had to be evaluated by EFSA.  

In order to make the evaluation process as efficient as possible, a group-based 

approach was followed. The flavouring substances contained in the register were divided 

into 34 structurally related chemical groups; substances within a group are considered to 

have some common metabolic and biological behaviours. An additional important feature 

is that data may be provided either for a candidate substance as such or for supporting 

representatives showing sufficient structural and metabolic similarity.  

The evaluation procedure is based on a stepwise decision-tree approach that 

considers information on structure-activity relationships, metabolism, intake and toxicity 

(Figure 1). This corresponds to a procedure developed by JECFA [6] and subsequently 

applied in an adjusted version to the evaluation of various flavouring substances [7-9].  

The only differences are that the option to accept flavouring substances with the only 

argument that their estimated intake is lower than the threshold of concern of 1.5 

µg/person/day was not adopted and that flavouring substances should be particularly 

examined for structural alerts of potential genotoxicity [10]. 

 
Figure 1: Procedure for the safety evaluation of chemically defined flavouring substances 

The first step of the decision tree is the assignment of a flavouring substance to one 

of three classes for which thresholds of concern (human exposure thresholds) have been 

specified. Class I contains flavouring substances with simple chemical structures and 

efficient modes of metabolism, suggesting a low order of oral toxicity. Class II contains 

substances with structural features that are less innocuous, but are not suggestive of 

toxicity. Class III includes flavouring substances with structural features that permit no 

strong initial presumption of safety, or may even suggest significant toxicity [11]. The 

thresholds of concern for these structural classes (1800, 540 and 90 µg/person/day, 

respectively) have been derived from a large dataset of subchronic and chronic animal 

studies [6,12].  

In the following step, the answer to the question whether the flavouring substance 

can be predicted to be metabolized to innocuous products determines whether the 

evaluation proceeds via the A- or the B-side of the decision tree. Another decisive 



 

 

Safety assessment of flavourings in the European Union 301 

question is whether the intended conditions of use of the flavouring substance result in an 

intake greater than the threshold of toxicological concern for the structural class. The 

answer determines whether the substance is not expected to be of safety concern or 

whether information is required on a no-observed-adverse-effect level (NOAEL) for the 

flavouring substance as such or structurally related substances, which provides an 

adequate margin of safety under the intended conditions of use. 

The intake assessment plays an important role in the application of the Procedure. 

As a default, the so-called “Maximised Survey-derived Daily Intakes” (MSDI) approach, 

which is based on annual production volumes, was used [13]. However, the MSDI 

approach in a number of cases grossly underestimates the intake by regular consumers of 

products flavoured at the use levels reported by Industry. Therefore, the intakes were also 

estimated using the “modified Theoretical Added Maximum Daily Intake” (mTAMDI) 

approach, which is based on normal use levels reported by industry and consumption data 

for certain food categories [13]. The mTAMDI value was not considered in the Procedure 

but was only used as tool to prioritise the flavouring substances according to the need for 

a refined intake screen and the request for more precise data. Accordingly, the following 

types of conclusions can be found in the scientific opinions, the so-called Flavouring 

Group Evaluations (FGEs): (i) Based on the default MSDI approach, the candidate 

substance, which was evaluated through the Procedure, would not give rise to safety 

concern at the estimated level of intake arising from the use as flavouring substance. (ii) 

Based on the mTAMDI approach, the estimated intake of a flavouring substance is above 

the threshold of concern for the respective structural class. In this case, more reliable 

exposure data are required. On the basis of such additional data, the flavouring substance 

should be re-evaluated using the Procedure; subsequently, additional toxicological data 

might become necessary. 

Implementation of the Union list 

The Union list of flavouring substances has been adopted by Commission 

Implementing Regulation (EU) No 872/2012 of 1 October 2012 [14]. It contains 

information on the identities and the purities (at least 95%; otherwise composition is 

given) of the flavouring substances. It may also contain restrictions of use, e.g. that a 

substance may only be added to the listed food categories and under the specified 

conditions of use. The scientific body that has carried out the evaluation is given and 

finally, footnotes indicate for which flavouring substances the evaluation is to be 

completed, and the time limits for applicants to comply with EFSA´s requests expressed 

in published opinions.  

Requests for additional genotoxicity data 

In the pending requests for additional information, particular attention is paid to the 

provision of genotoxicity data. According to the guidance expressed in the opinion of the 

EFSA Scientific Committee [15], genotoxicity testing should start with a basic battery of 

in vitro tests, i.e. a bacterial reverse mutation assay and an in vitro micronucleus test. If 

all in vitro endpoints are negative, there is no genotoxic potential. If one or two tests are 

positive, the following in vivo tests should be considered: (i) an in vivo mammalian 

erythrocyte micronucleus test, (ii) a transgenic rodent cell gene mutation assay, and (iii) 

an in vivo Comet assay. The in vivo test selected should relate to the genotoxic endpoint(s) 

identified as positive in the in vitro tests. If any of the in vivo tests is positive, there is a 

genotoxic potential and the flavouring substance is considered to be of safety concern.  
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The α,β-unsaturated aldehyde and ketone structures are considered as structural 

alerts for genotoxicity. FGE.19 contains 360 α,β-unsaturated aldehydes or ketones and 

precursors which could give rise to such carbonyl substances via hydrolysis and/or 

oxidation. These substances were divided into structurally related subgroups, 

representative substances were selected, and the Flavouring Industry had to provide 

additional genotoxicity data [16]. If on the basis of these data a genotoxic potential can 

be ruled out, the substances are merged with structurally related substances in other FGEs 

and evaluated using the Procedure. 

An example of such a subgroup of FGE.19 are the three alicyclic aldehydes with 

α,𝛽-unsaturation in the ring/side chain and the seven precursors for such aldehydes shown 

in Figure 2.  

 
Figure 2: Examples of α,𝛽-unsaturated carbonyls and their precursors (subgroup 2.2 of FGE.19) 

p-Mentha-1,8-dien-7-al [FL-no: 05.117] was selected as representative substance for 

which genotoxicity data were requested. According to the data submitted, the EFSA Panel 

concluded that p-mentha-1,8-dien-7-al is genotoxic in vivo [17], and the flavouring 

substance was removed from the Union list [18]. This, however, meant that were also 

concerns regarding potential genotoxicity for the other flavouring substances in this 

subgroup represented by p-mentha-1,8-dien-7-al. Subsequently, the flavor industry 

withdrew the support for 2,6,6-trimethyl-1-cyclohexen-1-carbox-aldehyde [FL-no: 

05.121], myrtenyl formate [FL-no: 09.272], myrtenyl 2-methylbutyrate [FL-no: 08.899] 

and myrtenyl 3-methylbutyrate [FL-no: 09.900] which then were also removed from the 

Union list. For myrtenol [FL-no: 02.091], myrtenyl acetate [FL-no: 09.302] and p-

mentha-1,8-dien-7-yl acetate [FL-no: 09.278] new genotoxicity data were provided; they 

allowed to rule out the concerns regarding genotoxicity for these substances. Only for 

myrtenal [FL-no: 05.106] the genotoxicity data submitted were considered equivocal and 

therefore this flavouring substance presently cannot be evaulated through the Procedure 

[19]. 
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In contrast to this group-based approach involving a representative substance, the 

rather unique structure of 4,5-epoxydec-2(trans)-enal [FL-no: 16.071] resulted in an 

evaluation as stand-alone substance. The genotoxic effect observed in vitro was 

confirmed in an in vivo Comet assay in the liver of rats. Accordingly, the EFSA Panel 

concluded that 4,5-epoxydec-2(trans)-enal raises a safety concern with regard to 

genotoxicity [20], and consequentially this flavouring substance was removed from the 

Union list [21]. 

Evaluation of newly submitted flavouring substances  

The established Union list is open and can be amended in the light of scientific and 

technical developments. EFSA has elaborated a guidance document for the risk 

assessment of flavourings newly submitted after the adoption of the Union list [22]. As a 

starting point of the assessment genotoxicity testing is required. Flavourings which can 

be assigned to one of the existing FGEs on the basis of structural and metabolic 

similarities can be evaluated according to the scientific principles and to the group-based 

approach underlying the former evaluation programme. For flavouring substances which 

cannot be assigned to one of the existing FGEs individual evaluations via the tiered 

approach shown in Figure 2 have to be performed. The type of data required depends on 

(i) whether there are experimental data available for the substance to demonstrate that the 

metabolites can be considered innocuous, and (ii) whether the chronic dietary exposure, 

based on added use levels, is below or above the threshold of concern of the structural 

class to which the flavouring substance belongs.  

For the assessment of dietary exposure, a new approach called “Added Portions 

Exposure Technique” (APET) has been introduced [22]. The APET is calculated based 

on the occurrence levels provided by the applicant in a defined list of food categories by 

summing the highest potential dietary exposure within each of the two groups of 

“Beverages” and “Solid foods”. Such an estimate, based on daily consumption of one 

single standard portion of beverage and one single portion of solid food, is considered to 

provide a conservative assessment of long-term average dietary exposure for consumers 

of flavoured products. A case study on the use of the APET technique to estimate total 

dietary exposure to flavouring substances has been provided [23].  

The applicant needs to provide: (i) Normal and maximum occurrence levels as added 

flavouring substance; (ii) normal and maximum occurrence levels of the substance from 

other sources, e.g. as natural constituent, as substance developed through the processing 

of foods, as carry-over originating from the use in animal feed or as residues of packaging; 

(iii) normal and maximum combined occurrence levels of the substance, taking into 

account all sources. In addition, the applicant needs to indicate the non-food uses of the 

flavouring substance. 
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Figure 3: Individual evaluation of flavouring substances 

A recent example for the application of the approach outlined in Figure 2 is the 

assessment of 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hy-

droxybenzyl)-imidazolidine-2,4-dione [FL-no: 16.127], a substance intended to be used 

as flavour modifier [24]. Data provided for the substance demonstrated that there is no 

concern regarding genotoxicity. It was assigned to Cramer class III; potential metabolites 

could not be considered to be innocuous. The cumulative dietary exposure using the 

APET technique was 850 µg/person/day for an adult (60 kg) and 536 µg/person/day for 

a 3.year-old child (15 kg). Considering that this intake is higher than the threshold of 

concern of substances belonging to Cramer class III, i.e. 90 µg/person/day, but lower than 

10 times this threshold, i.e. 900 µg/person/day, a 90-day feeding study and a 

developmental study were required. In a developmental toxicity study with rats no 

differences between treated and control groups up to 100 mg/kg bw/day were observed. 

In a 90-day feeding study with rats an NOAEL of 100 mg/kg bw/day could be derived. 

The comparison of this NOAEL with the estimated intakes resulted in margins of safety 

of > 7,000 for adults and > 2,000 for a 3-year-old child.  

Evaluation of flavourings other than flavouring substances 

In addition to flavouring substances, Article 9 of Regulation (EC) No 1334/2008 of 

the European Parliament specifies the following categories of flavourings for which an 

evaluation and approval is required: (i) Flavouring preparations obtained from material 

of vegetable, animal or microbiological origin, other than food. (ii) Thermal process 

flavourings for which ingredients for their production are source materials other than food 

and/or for which the conditions of their production and/or the maximum levels of 

undesirable substances set out in Annex V of Regulation 1334/2008 (EU, 2008) are not 

met. (iii) Flavour precursors obtained from source material other than food. (iv) Other 

flavourings. The information requested for a safety evaluation of these categories of 

flavourings is described in a guidance document [22]. 
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For the categories (i) – (iii) no applications have been submitted so far. Examples of 

recently assessed “Other flavourings” are two “grill flavours”, i.e. high oleic sunflower 

oils subjected to short-time heating at high temperatures [24, 25], and “rum ether”, a 

complex mixture of volatiles obtained by pyrolysis of wood (oak, beech, hickory) and 

esterification of the resulting pyroligneous acid with ethanol, under oxidative conditions 

in the presence of sulfuric acid and manganese oxide [26]. 

Conclusion 

The establishment of the Union list of flavourings substances constitutes a basis 

change in paradigm in the regulatory oversight on flavourings in the EU. On the one hand, 

this creates economically relevant hurdles for applicants, on the other hand such a list 

increases transparency, it can serve as reliable platform for involved stakeholders, and it 

may finally help to increase the acceptance of flavourings by consumers.  
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Impact of Nagoya protocol on flavour research  
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Abstract 

On 12th October 2014 the Nagoya Protocol on Access to Genetic Resources and the 

Fair and Equitable Sharing of Benefits Arising from their Utilization came into effect on 

being ratified by the 50th party.  So, three years after ratification, what has happened and 

what impact can be expected on commercially orientated flavour research? 

The overall aims and intentions of the Nagoya Protocol are relatively clear in 

principle; researchers who obtain biological materials from a Nagoya country with ABS 

legislation in place, and develop and launch a new ingredient based on that research, now 

have an obligation to establish a benefit sharing agreement with the provider. 

However, the specific national laws and regulations are often complex and unclear. 

On the provider side, where national access legislation exists it is variable in its scope and 

application while the official processes and documentation are still evolving in many 

countries.  On the user side, the EU has enacted the first compliance legislation and is 

currently working on the guidance documentation and the processes for making the 

declarations as required by the legislation. 

The main impact for those involved in flavour research appears to be more 

paperwork, a need to carry out additional due diligence concerning the origin of natural 

materials, and in some cases additional agreements or contracts when obtaining biological 

materials for use in research programs.  At present there are many more questions than 

answers and most of the activity is in the realm of industry associations and corporate 

legal departments but as the obligations under the EU legislation become clearer it is now 

beginning to impact at the research laboratory level. 

Introduction 

For most of the long history during which mankind has harvested the wealth of 

nature, the natural resources of the planet could be claimed and used by those who 

invested the time and effort to obtain and develop them. Throughout the 17th to 19th 

century, as colonialization and international trade developed, botanic gardens and 

agricultural experimental stations were established around the world to assist the transfer 

of valuable species to alternative locations where they could be developed and traded. 

The benefit of this trade was mostly gained by those doing the trading such as the French, 

British, Portuguese and Dutch through their respective East India companies. Rubber 

trees were relocated from Brazil to Malaysia, vanilla relocated from Mexico to 

Madagascar, tea, coffee and cocoa redistributed to plantations worldwide, and this was 

encouraged by the governments of the time. An early example is that of Pierre Poivre, 

who in 1770 as Governor of Mauritius established the botanic garden there and obtained 

clove, nutmeg, pepper and other plants from the Spice Islands, now Maluku islands in 

Indonesia to be grown in Mauritius for the benefit of France. When plants were relocated, 

whether purchased or plundered, there was often little benefit for the local communities, 

although some colonial enterprises did establish local plantations and trading posts that 

enhanced the wealth of at least some of the local population. 

Things changed significantly in 1992 with the “Rio Earth Summit”, a landmark 

United Nations conference covering many topics related to sustainable development and 
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the economic development of natural resources. At the Rio conference the Convention on 

Biological Diversity (CBD) was opened for signature and it came into force in 1993[1]. 

Among many other things, this established that countries could assert sovereign rights 

over the ‘genetic resources’ found in their territory. Thus biological resources now belong 

to the country in which they are found and, following the principles of Access and Benefit 

Sharing (ABS) established by the CBD, anyone wishing to develop those biological 

resources for commercial gain should negotiate a benefit sharing deal with the country of 

origin. Although the principles had been established, it has taken many years of discussion 

and negotiation for further treaties to evolve such as the Bonn Guidelines (2002) and the 

Nagoya Protocol (2010) which define the principles of Access and Benefit Sharing in 

more detail. These are international treaties and, as such, have no legal bearing on 

individuals, companies or institutions. It is up to the countries that are parties to these 

conventions to establish their own policy measures and enact their own legislation to 

address these principles, thus the application of the Nagoya Protocol can be very different 

in different countries.  

The Nagoya protocol 

To give it its full title, ‘The Nagoya Protocol on Access to Genetic Resources and 

the Fair and Equitable Sharing of Benefits Arising from their Utilization to the 

Convention on Biological Diversity’ was adopted at the Conference of the Parties in 2010 

in Japan and finally came into force on 12th October 2014 with the 50th signatory [2]. The 

full text is available online [3]. 

From the perspective of a ‘User’, the principle of the Nagoya protocol can be 

summarised as; 

“If genetic resources or traditional knowledge associated with genetic resources are 

obtained from a country that is a party to the Nagoya protocol for the purposes of 

research and development, then some of the benefits from its subsequent 

commercialisation should be shared with the provider.” 

The protocol sets out the regulatory, administrative and policy measures to be 

undertaken by the parties at national level, and also establishes the concept of national 

focal points and an international clearing-house mechanism [5] for the exchange of 

information relating to access and benefit sharing in each country.  

One of the challenges in understanding the scope and application of the Nagoya 

protocol comes in the interpretation of the limited definitions in Article 2 of the CBD and 

Article 2 of the Nagoya protocol [6,3]. The following is a simplified interpretation of the 

words used in the title of the protocol: 

Access:  Obtaining genetic resources or traditional knowledge in situ, or from ex 

situ collections or through trade. Requires Prior Informed Consent (PIC) 

Genetic resources: Plants, animals, microbes, their DNA/RNA, and extracts made from 

them. 

Equitable sharing: Mutually Agreed Terms (MAT), benefit sharing agreement. 

Benefits: Monetary or non-monetary; payments, shared results and IP, community 

projects, etc. 

Utilization: Carrying out Research & Development. 
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Figure 1: Principles of access and benefit sharing [4] 

There are some specific exceptions, notably the exclusion of human genetic 

resources, certain pathogenic organisms, and genetic resources covered by other 

instruments such as the ITPGRFA for crop plants [7]. 

Currently, 32 ‘Provider’ countries have registered some form of legislative, 

administrative or policy measures on the clearing-house website [5] and others are in the 

process of developing their legislation. So far, only the European Union has enacted 

compliance legislation as a ‘User’ of genetic resources and it in turn transfers the 

obligations for administering the measures to its member states.  The registration to date 

of over 100 internationally recognised certificates of compliance (IRCC) on the clearing 

house website is evidence that the system is beginning to function, and there are certainly 

many more ABS agreements that have been successfully concluded in some form or 

other. 

The EU Regulation EU-ABS 511 / 2014 

Since the EU represents countries that are mainly ‘Users’ rather than ‘Providers’ of 

genetic resources it has enacted compliance legislation but not access legislation. The 

regulation: EU-ABS 511 / 2014 on compliance measures for users from the Nagoya 

Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits 

Arising from their Utilization in the Union [8] came into force in 2014 and applies, along 

with the Nagoya Protocol from 12th October 2014. The text contains several cumulative 

requirements, and is also based on definitions that are open to interpretation, but which 

can be summarised as: 

If genetic resources or traditional knowledge associated with genetic resources are 

obtained …by a user carrying out R&D in the EU 

…from a country that is party to the Nagoya Protocol with ABS laws in place 

…after 12th Oct 2014, 

then the user is required to comply with the legislation in the country of origin. 
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The user should carry out due diligence to determine if the EU ABS regulations and 

any laws in the country of origin apply. If the regulations apply, a declaration of the due 

diligence should be submitted to the EU via the ‘DECLARE’ system which is currently 

in development.  The regulations identify two trigger points at which the due diligence 

should be carried out and a declaration made; on receiving funding for the work, and on 

launching a new product on the market in the EU. And by default there is a trigger point 

on ‘Access’ to the genetic resources or traditional knowledge. 

The EU has published a general Guidance Document [9] to assist the interpretation 

of the regulations and is in the process of preparing Sectorial Guidance Documents for 

each of 7 sectors; Cosmetics, Animal Breeding, Plant Breeding, Biocontrol, 

Pharmaceuticals, Food and Feed, Biotechnologies, and also for Upstream Actors 

including collections and research institutions. These guidance documents have been 

prepared in consultation with relevant industries through their associations which, for the 

purposes of the flavour industry, includes IOFI, IFRA, EFFA, and EU 

SpecialityFoodIngredients. The guidance documents will provide more specific 

interpretations of the scope and application of the regulations but they are not themselves 

legally binding.  There are an increasing number of law firms and lawyers specialising in 

Biodiversity Law and a variety of NGOs that champion the cases of the providers as well 

as facilitating benefit sharing agreements between providers and users. The Union for 

Ethical Biotrade (UEBT) is one such organisation that is well established in the flavour, 

fragrance and cosmetics area. 

There are several unresolved issues which are still subject to on-going discussions 

at various levels right up to the UN. Notably the topic of Digital Sequence Information 

(DSI) which is currently understood to be outside the scope of Nagoya, but certain 

countries cover this in their national legislation. It is being discussed and reviewed by 

many interested parties including UN, ITPGR, WHO, ICC [10] etc., and is on the agenda 

for the CBD conference of the parties in 2018. 

An unresolved topic with direct impact on researchers is the definition of research 

and development itself. This is of critical importance, since it is the act of carrying out 

R&D on a genetic resource than triggers the need to carry out due diligence. However, it 

is not clear which activities fall within the definition. The proposed definitions are based 

on the Frascati Manual of the OECD [11] and the activities under discussion include, 

among others, routine QC tests, screening to de-select material from further study, and 

toxicological tests for regulatory purposes.   

The concept and definition of “derivatives” has been a point of much discussion 

since the outset. It is defined in article 2e) of Nagoya as “…a naturally occurring 

biochemical compound resulting from the genetic expression or metabolism of biological 

or genetic resources…”, and referred to in the definition of utilization, but not mentioned 

elsewhere. The EU guidance document [8] interprets this to mean that a derivative is in 

scope when accessed in combination with the genetic resource from which it is derived. 

So it may be inferred that “isolated derivatives” such as many food and flavour 

ingredients purified from plants or animals such as proteins, fats & oils, essential oils and 

flavour extracts would be out of scope when accessed without any associated access to 

their original genetic resources. 

As it stands in 2017, the guidance from the EU and the processes and systems of the 

competent authorities are still very much in development, nonetheless, it is slowly 

becoming clearer which research activities involving genetic resources fall in scope and 

what, if any, legal obligations apply. 
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Implications for flavour research 

Biodiversity and genetic resources are important for flavour research and it is our 

responsibility as scientists to use them wisely, and as an industry to carry out commercial 

developments ethically. 

The landscape around the use of natural biological materials as a starting point for 

research projects in the EU is changing. With the gradual introduction of both access 

legislations in provider countries and compliance legislation in user countries the act of 

obtaining biological material for an R&D project may now carry certain obligations. 

For anyone involved in obtaining biological materials for a research project, this 

means ensuring that the relevant checks concerning ABS legislation in the country of 

origin are carried out and documented, and that any corresponding requirements are met. 

For research institutions or collections of biological resources this may relate to the 

transfer of relevant information to subsequent users. For commercial and applied research 

activities this may involve some form of benefit sharing with the original provider, or the 

transfer of relevant information to subsequent retailers of the new product developed from 

their research.  

For flavour and fragrance houses with their own R&D departments and for traders 

obtaining new products from abroad, this will mean more checks and more paperwork 

for everyone along the supply chain, but not necessarily more constraints on the scope or 

quality of flavour research that can be successfully carried out in the EU. 
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Abstract 

Matching of competitor flavours is one of the most common tasks for the majority 

of flavour chemists working for a flavour house. It is obvious to find various artefacts in 

those flavourings, where carbonyl compounds, alcohols and acids are together part of the 

recipe. Unfortunately, mass spectra of many of these compounds are not available in the 

commercial mass spectra databases. We decided to systematically investigate the reaction 

products of carbonyl compounds with the most common solvents used in the flavour 

industry – ethanol and propylene glycol, by means of gas chromatography– mass 

spectrometry. In a second study, we investigated the formation of acetals of selected 

alcohols and aldehydes, naturally occurring in concentrated apple condensates. Mass 

spectra of unpublished acetals are presented, together with results of a complementary 

storage study at different pH levels of the base. 

Introduction 

Aldehydes are essential constituents of the flavour of various foods, such as citrus 

fruits or apples [1]. Aldehydes are quite reactive because of the electronegativity of 

oxygen on the carbonyl group, what in the presence of alcohols leads to the formation of 

labile hemiacetals. This process can be both acid and base catalysed. In the acid catalysed 

reaction, protonation of carbonyl group occurs and a carbocation intermediate is 

produced.   Acidic conditions and excess of alcohol cause transformation of the 

carbocation to acetal and water [2]. Diols and triols are capable of reacting intra-

molecularly to form cyclic acetals. These reactions generally proceed rapidly due to their 

low activation energies. Acetals are stable at neutral pH, because the equilibrium reaction 

needs the protons, which are at pH 7 not available. Up to four isomers can be formed in 

the case of propylene glycol due to its chirality and diastereomerism [3].  

In current business world, the matching of competitor’s flavours is one of the main 

tasks for the creators of food flavours – the flavourists. Acetal formation makes this task 

much more complicated, because mass spectra of acetals of many aldehydes are still not 

available in the commercial mass spectra databases, such as NIST [4] or Wiley [5].  

The aim of this study was to systematically synthetize acetals of all aldehydes we 

had on our shelf with the most common solvents used in flavour industry: ethanol and 

propylene glycol. In this work, we present the mass spectra of acetals not found in 

literature. We additionally synthetized the acetals of the most common aldehydes and 

alcohols as found in apple condensate (FTNF), because we hypothesized that some of 

them could be among the unknown peaks we found in the FTNFs concentrated to high 

degree with the Spinning Cone Column (Flavourtech, Griffith, AU) technique. We 

performed a storage study as well in following media: soft drink base, mineral water, 

water and yoghurt to prove the stability of some acetals.  
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Experimental 

Materials 

All compounds used in this study were of food grade, purchased from Sigma-Aldrich 

(Munich, D). 

Aldehydes to be reacted with ethanol and propylene glycol (PG):  

2-methyl-propanal, 2-phenyl-2-butenal, 5-methylfurfural, acetaldehyde, α-

amylcinnamaldehyde, anisaldehyde, benzaldehyde, β-homocyclocitral, butyraldehyde, 

cinnamaldehyde, citral, citronellal, decanal, dodecanal, ethylvanillin, furfural, heptanal, 

hexanal, isovaleraldehyde, melonal, nonanal, octanal, perillaldehyde, 

phenylacetaldehyde, piperonal, p-tolualdehyde, trans-2-decenal, trans-2-hexenal, trans-2-

methyl-2-butenal, undecanal, valeraldehyde, vanillin. 

Flavouring compounds for the FTNF study: 

acetaldehyde, benzaldehyde, hexanal; propanol, 1-butanol, 2-methylbutanol, 

isobutanol, isopropanol, 3-methylbutanol, n-hexanol, n-pentanol. 

Preparation of acetals:  

100 µL of carbonyl compound, 890 µL of solvent, 10 µL of acetic or formic acid, 2 

days at 37°C. 

Gas Chromatography-Mass spectrometry:  

Gas chromatograph Agilent 7890B equipped with autosampler Gerstel Robotic and 

mass detector Agilent 5977B, operated at 70 eV (all Gerstel, Mühlheim a.d. Ruhr, 

Germany), S/SL injector, injection volume 0.5 µL, split ratio 200:1, injector temperature: 

230ºC, column: Restek Vms 20 m x 0.8 mm x 1 µm (Restek GmbH, Bad Homburg, 

Germany), carrier gas: helium, constant flow = 1 mL/min, acquisition mode: Scan, 26-

250 amu, oven program: 50ºC (3min), 10ºC/min, 250ºC (6min), retention indices: C7-C20. 

Headspace analysis:  

Alpha M.O.S. Heracles II (Toulouse, France), PAL autosampler, S/SL injector, 

injection volume: 2mL from 1g/L solution of the corresponding acetals, splitless mode, 

injector temperature: 200ºC, columns: Restek MXT-5 and MXT-1701, both 10 m x 0,18 

mm x 0,4 µm, carrier gas: hydrogen, oven program: 40ºC (5s), 0.6ºC/s, 250ºC (60s), 

detector: 2x flame ionization detector. 

Results and discussion 

Acetals of aldehydes with propylene glycol and / or ethanol were subject of various 

studies [3, 6-8]. In table 1 we show the spectra of those acetals, which have not been 

published in any mass spectra database yet [9]. 

We were not able to find the following acetals at our reaction conditions:  

 With ethanol were not reacting: 2-phenyl-2-butenal, 5-methylfuraldehyde, α-

amylcinnamaldehyde, anisaldehyde, citral, ethylvanillin, perillaldehyde, 

piperonal, trans-2-decenal, trans-2-hexenal, trans-2-methyl-2-butenal and 

vanillin 

 With isopropanol were not reacting benzaldehyde and trans-2-hexenal 

 With propylene glycol we observed only sluggish reaction of: 2-phenyl-2-

butenal, 5-methylfurfural and perillaaldehyde 
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Table 1: The first 10 most abundant mass fragments of acetals, which have not been published yet  

Aldehyde Alcohol RI m/z (Abundance) 

β-Homo-cyclocitral PG 1575 87(1000), 59(235), 41(72), 88(45), 

91(36), 79(32), 95(30), 107(30), 

31(29), 77(24) 

5-Methylfurfural PG 1311 168(1000), 108(984), 95(977), 94(704), 

153(673), 167(480), 79(472), 82(471), 

81(168), 111(149) 

α-Amylcinnam-

aldehyde 

PG 1971 189(1000), 131(308), 190(139), 

117(121), 115(105), 91(83), 87(74), 

129(67), 59(58), 128(53) 

Citronellal PG 1479 87(1000), 127(915), 121(750), 59(474), 

41(368), 69(349), 95(284), 136(218), 

81(169), 109(142) 

p-Tolualdehyde PG 1496 177(1000), 119(967), 163(514), 

91(420), 92(368), 178(312), 105(225), 

104(132), 133(130), 103(118)  

trans-2-Decenal PG 1578 113(1000), 127(444), 69(273), 55(262), 

169(251), 41(189), 211(115), 83(107), 

114(107), 59(79) 

trans-2-Methyl-2-

butenal 

PG 1075 127(1000), 69(420), 83(301), 87(243), 

59(211), 41(159), 55(151), 97(126), 

67(92), 39(72)  

β-Homo-cyclocitral Ethanol 954 103(1000), 75(462), 47(200), 195(75), 

149(74), 107(66), 104(57), 93(48), 

81(47), 91(45), 123(45) 

Melonal Ethanol 1343 103(1000), 86(883), 75(558), 82(385), 

47(349), 123(241), 69(226), 41(207), 

125(171), 81(161) 

p-Tolualdehyde Ethanol 1394 149(1000), 121(511), 93(248), 91(211), 

119(144), 150(120), 77(80), 65(46), 

122(45), 29(31) 

Undecanal Ethanol 1602 103(1000), 199(264), 75(182), 47(107), 

97(87), 83(72), 57(69), 104(56), 

69(56), 55(55), 85(54), 200(38) 

Benzaldehyde Propanol 1457 149(1000), 107(949), 79(230), 77(135), 

105(127), 150(113), 43(86), 108(76), 

41(50), 27(29) 

Hexanal Propanol 1281 131(1000), 143(981), 89(806), 43(757), 

83(647), 101(364), 55(255), 41(228), 

144(96), 57(95) 

Benzaldehyde Butanol 1639 163(1000), 107(962), 79(169), 

164(124), 105(106), 77(93), 108(78), 

41(67), 29(50), 51(16) 

Hexanal Butanol 1454 57(1000), 157(798), 159(630), 83(508), 

83(647), 103(402), 101(351), 41(244), 

55(191), 29(144) 

 



 

 

Ján Pet’ka et al. 316 

Table 1: continued  

Aldehyde Alcohol RI m/z (Abundance) 

Benzaldehyde Isobutanol 1535 107(1000), 163(798), 77(135), 

105(127), 150(113), 43(86), 108(76), 

41(50), 27(29) 

Hexanal Isobutanol 1281 57(1000), 157(462), 83(200), 159(197), 

103(163), 101(162), 41(155), 55(91), 

29(74), 43(50) 

Acetaldehyde Pentanol 1307 115(1000), 71(961), 43(420), 187(229), 

45(170), 41(118), 29(72), 55(61), 

42(64), 97(56) 

Benzaldehyde Pentanol 1826 177(1000), 107(926), 79(230), 77(135), 

105(127), 150(113), 43(86), 108(76), 

41(50), 27(29) 

Hexanal Pentanol 1634 71(1000), 171(766), 181(477), 43(473), 

83(388), 101(360), 117(296), 55(161), 

41(134), 42(65) 

Benzaldehyde 2-Methylbutanol 1740 107(1000), 177(821), 71(178), 43(131), 

178(109), 79(99), 108(84), 105(61), 

77(56), 41(50),  

Hexanal 2-Methylbutanol 1545 71(1000), 171(385), 43(271), 101(167), 

83(148), 187(109), 117(106), 77(56), 

41(76), 29(48) 

Acetaldehyde 3.Methylbutanol 1232 71(1000), 115(723), 43(373), 41(90), 

55(70), 72(67), 116(55), 45(40), 

29(36), 39(26) 

Hexanal 3-Methylbutanol 1556 71(1000), 171(384), 43(303), 187(248), 

55(76), 41(70), 72(56), 117(48), 

172(46), 29(31), 188(30)  

Benzaldehyde Hexanol 2014 191(1000), 192(145), 43(129), 79(89), 

105(79), 108(72), 41(49), 85(48), 

55(26), 29(22)  

Hexanal Hexanol 1815 85(1000), 185(634), 43(463), 215(335), 

101(306), 83(277), 131(175), 57(138), 

55(128), 41(121) 

Due to the diminished electrophilicity of C=O group in conjugated aldehydes (via 

positive mesomeric effects), these carbonyl derivatives are less susceptible to AdN 

(nucleophilic addition) reactions of O-nucleophiles (e.g. alcohols in hemi/acetalization) 

in comparison to more reactive aldehydes. This is due to the low reactivity of such 

compounds with ethanol, and thus, no formation of acyclic acetals occurs.  

On the other hand, the use of propylene glycol as bis-O-nucleophile leads to the 

formation (though sluggish) of the corresponding cyclic acetals of the same carbonyls 

because the generation of 5-membered rings is thermodynamically favourable. 

Unfortunately, we were not able to find any of the aldehydes we synthetized from 

apple alcohols and aldehydes in apple FTNF itself. The unknown peaks might possibly 

be rather combined acetals of aldehydes with two alcohols, such as acetals of 

acetaldehyde with ethanol and some other alcohol (ethyl-methyl, ethyl-butyl, etc.) This 

will be the subject of our further study.  
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In the storage study, we observed complete elimination of acetals in the low pH 

environment (soft drink base, yoghurt) within 2 hours after mixing (Figure 1). In media 

with higher pH, such as near-water drinks or mineral water, the decomposition of acetals 

was reduced considerably (Figure 2), which may raise the need for testing of these 

compounds by the food safety bodies, as many of acetals are still not in the Union list of 

flavourings and source materials [10]. 

 
Figure 1: Headspace chromatograms showing complete decomposition of acetaldehyde propylene glycol 

acetalat at pH 3 

 

 
Figure 2: Headspace chromatograms showing increased stability of acetaldehyde propylene glycol acetal 
stored at higher pH and at lower temperature 
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Abstract 

Foods and beverages are highly complex systems in terms of composition and 

chemical and material changes during processing. The expected quality and benefits 

represent a delicate balance between sensory properties (aroma, taste, mouthfeel, texture), 

nutrition, health, and safety. This calls for a holistic and system-type approach to obtain 

the best product quality. Therefore, it is important to consider chemical and physical 

interactions, to study the formation kinetics of both desired and undesired compounds, 

and to know more about the release of bioactive compounds from the food and beverage 

matrix including the consumption event as well as during digestion and resorption. This 

requires sophisticated experimental setups, the use of non-targeted (“omics”-type) 

analytical methods and advanced data processing, working at the interface of scientific 

disciplines and establishing correlations between product quality and consumer benefits. 

Introduction 

Flavour research has been a key activity in academia as well as in flavour and food 

industry. Many key odorants and taste compounds have been identified, their sensory 

characteristics described, their formation mechanisms studied using thermal and/or bio-

assisted approaches, and ways for their formulation and controlled release developed. For 

a long time, the discovery of new molecules has been the primary focus, using targeted 

analytical methods as well as synthetic chemistry. More recently, high-throughput 

receptor-based assays have been designed for the screening of taste-active components. 

While identifying new sensorially relevant molecules will remain an active area of 

interest, generating and delivering the desired, complex, and well-balanced flavour 

profile by natural means and mild processing has become a major focus. This paper 

briefly describes new approaches of dealing with increasing complexity in flavour 

research and options to transform challenges into opportunities. 

Results and discussion 

Flavour Chemistry. Our understanding of complex phenomena in food chemistry is 

largely based on the attempt to simplify intricate systems and to study individual 

phenomena in model systems, i.e. typically lipid oxidation and Maillard-type reactions. 

This approach has led to major breakthroughs highlighting the reaction mechanisms and 

relevant parameters of control. However, in food matrices these reactions cannot be seen 

in isolation, as food is composed of many different chemical entities such as lipids, 

carbohydrates, amino acids, peptides and proteins, but also polyphenols, alkaloids, 

vitamins, terpenoids, minerals, etc. They interact at various stages of different reaction 

cascades and influence and shape food properties and quality attributes such as aroma, 

taste, colour, texture and the nutritional profile. In this respect, chemical transformations 

taking place in foods can be regarded as a subset of “systems chemistry”. In the following, 

complex food chemistry will be depicted from different perspectives, such as i) chemical 
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interactions, ii) food as a complex system, iii) formation of defined molecules from 

various precursors, and iv) flavour generation in self-assembly systems. 

As examples, amino acid degradation products characteristic for Maillard-type 

reactions (e.g. Strecker aldehydes, thermogenic amines, vinylogous compounds) can be 

produced in the presence of lipid oxidation products such as α,β-unsaturated aldehydes 

[1]. Lipid-derived reactive aldehydes can also be replaced by polyphenols as shown for 

the Strecker degradation of phenylalanine in the presence of o- and p-diphenols [2]. 

Epicatechin reactions have been shown to influence the mechanism of Maillard product 

formation in low moisture systems [3]. Hydroxyhydroquinone, a degradation product of 

chlorogenic acids, is trapping 2-furfurylthiol (FFT), a character-impact odorant of coffee 

aroma, in the presence of transition metals, thus changing the overall coffee aroma from 

fresh to stale [4]. The triple role of polyphenols has recently been discussed, resulting in 

a multitude of chemical interactions based on their chelating, free radical-scavenging, and 

carbonyl-trapping regions [5]. 

Looking at food as a complex system, it is mandatory to perform studies not only in 

simplified model systems but in real food matrices. Coffee constitutes one of those 

examples. The coffee bean can be seen as a mini-reactor. Consequently, the most 

appropriate approach studying chemical transformations upon roasting is using the coffee 

bean itself as a reaction system. Therefore, it is not surprising that the formation of FFT 

in coffee is different from what we learned from the respective model systems. It has been 

shown that FFT is generated in arabinose/cysteine model systems via 3-deoxypentosone 

and furfural maintaining the intact carbon chain [6]. However, ‘in-bean’ experiments 

using fully 13C-labelled arabinose resulted in only 1% fully labelled FFT upon coffee 

roasting while almost 90% of the FFT formed was not labelled at all [7]. This strongly 

suggests alternative formation pathways of FFT in coffee, which are still not well 

understood. 

A specific molecule can derive from one individual source material or, on the other 

side, from many different precursors. As an example and depending on the food 

composition, furan might be formed from various sugars, amino acids, polyunsaturated 

fatty acids (PUFAs), carotenoids, and ascorbic acid [8, 9]. Therefore, it is mandatory to 

screen for all potential sources to mitigate the formation of this undesirable compound 

during food preparation. Contrastingly, acrylamide is primarily formed from asparagine 

as a well-defined precursor [10] while 2,4-decadienal is known as a lipid degradation 

product of PUFAs. As recently shown [11], the choice of the oil in combination with heat 

treatment has a strong impact on the level of acrylamide and flavour active components 

(2,4-decadienals) exhibiting deep fried notes (Table 1). Therefore, it is recommended to 

study the formation of undesirable and desirable compounds in parallel in order to enable 

mitigation while delivering desired sensory properties.  

Table 1: Concentrations (μg/kg) of acrylamide and 2,4-decadienal (sum of the (E,E)- and (E,Z)-isomers) in 

potato chips after deep-frying at 180 °C and 140 °C for 2.5 min 

Odorant 
Safflower oil 

180 °C 

Safflower oil 

140 °C 

Linseed oil 

180 °C 

Linseed oil 

140 °C 

Acrylamide 160 94 1690 1240 

2,4-Decadienal 4697 468 321 46 

A characteristic feature of systems chemistry is the formation of self-assembled 

structures, also referred to as mesophases, which can be observed in many food products. 

Molecular organisation of flavour precursors can play an important role in food systems 
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containing ingredients that tend to form self-assembly structures, as for example in 

reversed microemulsions. This may lead to increased yields in flavour formation due to 

favouring certain formation pathways and increased flavour stability by protecting labile 

flavour compounds in compartments of the structured medium. As shown in Figure 1, the 

yield of FFT generated from xylose (Xyl) in the presence of cysteine (Cys) increased 

continuously during the entire heating period in both reaction media. However, highest 

FFT yields were obtained in the mesophasic system as compared to phosphate buffer [12]. 

 
Figure 1: Formation of 2-furfurylthiol (FFT) from Xyl/Cys in phosphate buffer and in self-assembled structures 

(mesophase: reversed microemulsion) at 95 °C and as a function of time.  

In such structures, three domains of submicrometre size are present, i.e. aqueous, 

amphiphilic, and lipophilic. A given molecule is preferably dissolved in one particular 

domain and may display a specific spatial orientation. When two molecules are located 

in the same domain (e.g. amphiphilic domain), their concentration is higher, thus 

increasing the probability of reaction. On the other hand, a molecule in the aqueous 

domain is unlikely to react with a molecule in the lipid domain. As a result, this domain 

fragmentation (compartmentalization) may favour certain reactions while inhibiting 

others. For Maillard-type reactions involving cysteine and xylose, both reactants are 

hydrophilic whereas the reaction products are more lipophilic, such as FFT for example. 

Thus, this type of reactions in mesophases may lead to high yields considering that the 

product concentration in water will remain low, as formed FFT will migrate into the 

lipophilic domain once generated. Furthermore, isolation of FFT in the lipid domain may 

protect it against reactants present in the aqueous media. 

Advanced Analytics. Novel insights and the data quality obtained usually correlate 

with the advancement in analytical techniques applied. New key odorants and tastants 

have been identified thanks to sensory-guided chemical analyses, i.e. GC-Olfactometry 

[13, 14] and LC-Taste [15]. Quantitative results can be obtained using the Stable Isotope 

Dilution Assay (SIDA) method [16]. Reaction mechanisms can be elucidated using 

labelling experiments and the relative importance of concurrent pathways estimated by 

the carbon module labelling (CAMOLA) technique [17]. These techniques, e.g. primarily 

targeted methods, have contributed to major new discoveries and our current 

understanding of flavours.  

We have applied the CAMOLA technique in kinetic studies to study the formation 

of 2,3-butanedione (diacetyl) from various precursors [18]. Figure 2 shows the formation 

of diacetyl from sucrose and other sources, e.g. bound carbohydrates. While the total 

amount of diacetyl is constantly increasing over time and with roasting degree (up to 

seven minutes and in particular after three minutes), sucrose is progressively losing 
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importance as a source of diacetyl in favour of other precursors (e.g. bound carbo-

hydrates). Furthermore, the contribution of the intact carbohydrate skeleton decreases 

with increased roasting level (data not shown) due to fragmentation favoured at higher 

temperatures. These data give a new insight into the relative role of various formation 

pathways, which are the base for adapting process conditions and selecting raw materials. 

Understanding the relative importance of various alternative reaction pathways helps to 

single out the relevant formation patterns and to identify how they could potentially be 

influenced via adapted processing conditions. 

 
Figure 2: Formation of 2,3-butanedione (diacetyl) upon coffee roasting obtained in a CAMOLA study using 
13C-labelled and unlabelled sucrose in a 1:1 ratio.  

The techniques mentioned above are suitable to study known compounds and 

relationships in a targeted manner. However, they show some limitation when it comes 

to unknown molecules and intricate formation pathways. Data independent acquisition 

(DIA) of mass spectrometry (MS) data has been proven a very effective tool in Life 

Sciences to unravel complex correlations and, thus, identify new molecular targets and 

mechanistic relationships. In the food context, they may correlate with phenomena of 

interest such as aroma, taste, and health benefits. The sequential window acquisition of 

total high-resolution mass spectra (SWATH-MS) method is measuring all signals in one 

run. SWATH-MS is a DIA method that generates, in a single measurement, a complete 

recording of the fragment ion spectra of all analytes in a sample for which the precursor 

ions are within a predetermined m/z versus a retention time window [19]. SWATH-MS 

results in a digital fingerprint of the sample (digital twin) allowing retrospective data 

interpretation. It can be used as a new method in food and flavour research to compare 

differences between samples and changes upon processing. Targeted analysis can 

subsequently be performed with a focus on significant chemical differences. This 

untargeted method is considerably gaining importance in food research as a 

complementary approach to targeted molecular characterization. It is frequently 

associated with the term “foodomics” as shown at the recent RAFA symposium [20]. 

Release Phenomena. Aroma and taste components present in foods and beverages 

need to reach the respective receptors in order to elicit the desired aroma note or taste 

response. One critical step is the release of those aroma- or taste-active molecules during 

mastication in the mouth and their transport in the saliva. In-mouth release phenomena 

are studied with the aim of maximizing the inherent flavour potential of sensory-active 

components before they are being swallowed [21, 22]. During this in-mouth process, 

flavour compounds are progressively released from the food matrix. This phenomenon is 

mainly dependent on food texture, composition, in-mouth breakdown, and on 
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impregnation with saliva. The saliva composition and its activity may represent another 

opportunity of influencing flavour perception. As all these factors will affect release 

kinetics, this could potentially be an option to reduce the amount of ingested sodium and 

sugar while maintaining the desired taste characteristics.  

Tailored design of materials in the solid state, for instance as a co-crystal, constitutes 

a novel concept to modulate taste perception. Co-crystals are little known in the food 

industry [23], however, co-crystallization as a concept has been broadly applied in the 

pharmaceutical industry to improve solubility and bioavailability of the respective active 

compound. In a food context, modulating dissolution kinetics could be of interest for 

delivering salt and sweet taste through the use of co-crystalline salt and carbohydrate 

materials. Co-crystals of glucose and NaCl are well known in the literature and easy to 

obtain via direct crystallization from aqueous solution [23]. Synthetic protocols to obtain 

co-crystals of sucrose and NaCl have not been described previously. This material is 

preferably accessible via isomorphous seeding with the co-crystalline NaBr heterologue: 

their synthesis and physico-chemical characterisation have recently been reported [24]. 

The dissolution kinetics in saliva are key for the sensory perception of water-soluble 

tastants consumed in the solid state, e.g. salt and sugar. This concept has been explored 

in the past via micronization, e.g. using powdered sugar or dusted salt. Interestingly, co-

crystalline formulations can display faster dissolution properties, possibly giving rise to 

a stronger taste impact. Figure 3 shows the dissolution kinetics of pure NaCl, anhydrous 

glucose, glucose monohydrate and the respective co-crystal (Glucose)2 · NaCl · H2O, the 

structure of which is presented in the bottom right of Figure 3.  

 
Figure 3: Dissolution kinetics of co-crystalline glucose sodium chloride vs. its individual pure ingredients 
indicating that the co-crystal dissolves faster than glucose or glucose monohydrate alone.  

This co-crystalline material dissolves faster compared to pure glucose or pure 

glucose monohydrate alone, taking into account parameters like crystal size, crystal size 

distribution, concentration and molar composition. It dissolves comparably to NaCl with 

respect to kinetics. From a sensory perspective, the salt taste perception is much stronger 

than the simultaneously perceived faint sweetness of glucose. However, the co-crystal 

also dissolves faster than a simple dry-mix of glucose with NaCl. Therefore, such co-

crystalline forms of NaCl could potentially offer a boost of saltiness, as carbohydrates are 

omnipresent in food products [25].  

In conclusion, flavour research is facing an increasing complexity. Product quality 

is not only depending on one individual attribute, e.g. aroma, but on a multitude of 
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features (e.g. taste, mouthfeel, texture) which need to be well balanced. In addition, it is 

equally important to ensure nutrition and to maintain or develop health benefits (e.g. 

appropriate amount of carbohydrates, minerals and lipids), as well as mitigation of 

process contaminants. While the concurrent study of all these phenomena represented a 

clear challenge in the past, we have got emerging analytical techniques from Life 

Sciences using extensively non-targeted methods (“omics”). Their transfer and 

application to food science (“foodomics”) has become a trend and it is an excellent 

opportunity to connect flavour research with other disciplines delivering additional 

benefits. Another recent development of equal importance stems from Material Sciences 

allowing the use of tailored solid-state structures to better master flavour formation and 

release.  
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Abstract  

Many of the key flavour impact compounds for cooked beef are present at very low 

concentrations and are challenging to analyse. Marker compounds for desirable flavour 

have been identified and may be used to monitor flavour-forming reactions. In this paper, 

this approach is used to follow the impact of muscle, ageing and packaging on grilled 

beef flavour. 

Different muscles and ageing periods show some alterations in the profile of marker 

volatile compounds that may reflect changes in consumer perception. Some significant 

and consistent differences are observed between muscles and ageing periods, while 

grilled beef that has previously been modified atmosphere packed, vacuum packed and 

over-wrapped show differences in numerous volatile flavour compounds, especially in 

the products of lipid oxidation. 

This approach is yielding a new understanding of the factors affecting the formation 

of flavour compounds in cooked beef, which could enable new processing methods to be 

proposed to manage flavour formation in commercial beef products. 

Introduction 

Consumer assessments of beef from across Europe have shown that palatability is 

not as consistent as might be expected from a high value product [1]. The proportion of 

beef judged to be “unsatisfactory” ranges from 19.5% for grilled sirloin and 25% grilled 

rump to 54% of roasted topside. An inconsistency in quality delivered to the consumer 

was one of the catalysts for the development of “Meat Standards Australia” (MSA), a 

cuts-based quality assurance grading scheme developed by Australian scientists [2,3]. 

This system is now widely used in Australia, and has been tested and found effective in 

other countries including South Korea, Northern Ireland, Ireland, USA, New Zealand, 

France and Poland [4].  

Despite its effectiveness at predicting eating quality and tenderness, there is some 

evidence that the MSA prediction of flavour for some consumers could be improved [5]. 

Flavour can be as important as tenderness for consumers [5,6]. For this reason, studies 

have been conducted to determine the relationship between volatile flavour compounds 

in beef and consumer-perceived quality.  

Many of the key flavour impact compounds for cooked beef are present at very low 

concentrations and are challenging to analyse. Therefore, marker compounds for 

desirable flavour have been proposed [7] to provide a cost-effective and accessible 

method of monitoring flavour-forming reactions. In this study, this approach is used to 

follow the impact of muscle, ageing and packaging on grilled beef flavour.  
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Experimental 

Materials 

Beef was obtained from an experiment conducted in Australia, which investigated 

the impact of muscle, packaging and ageing on sensory quality. Samples were blast frozen 

after the designated ageing period and selected samples were transported frozen to 

Northern Ireland by commercial courier. Samples from three muscles (striploin, fillet and 

rump), three packaging methods (modified atmosphere packaging (MAP with 80% 

O2:20% CO2), overwrapped (OWP) and vacuum skin packaging (VSP)) and three ageing 

periods (14, 21 and 49 days) were selected for analysis. Table 1 summarises the 

treatments evaluated and the numbers of samples analysed for volatile compounds.  

 

Table 1: Experimental design  

Cut Muscle Abbreviation Ageing MAP* OWP VSP Total 

Striploin Longissimus 

thoracis/ 

lumborum 

STR045 14 4 5 5 14 

21 4 5 4 13 

49 2 4 5 11 

Fillet Psoas major TDR062 14 5 5 5 15 

21 5 4 5 14 

49 4 5 4 13 

Rump Gluteus 

medius 

RMP131/ 

RMP231# 

14 4 5 5 14 

21 5 4 4 13 

49 4 5 6 15 

    37 42 43 122 

* MAP = modified atmosphere packaging; OWP = overwrapped; VSP = vacuum skin packaging. 
#  RMP131 and 231 are two parts of the same muscle; similar numbers of samples were taken from each: 22 
from RMP131 and 20 from RMP231. 

Analysis  

Beef was grilled according to the standard MSA protocol for “medium” cooked beef 

[8] and the volatiles were collected using Solid Phase Micro Extraction, prior to analysis 

by electron impact GC-MS, as described previously [9]. The results were statistically 

analysed using linear mixed methodology, using restricted maximum likelihood (REML) 

estimation.  

Results and discussion 

Differences between muscles and ageing periods are significant for some 

compounds but generally small, while those caused by packaging are more extensive.  

Effect of muscle 

Comparison of the volatile compounds from different muscles (Figure 1) shows the 

quantities of selected compound classes (Strecker aldehydes and ketones) from the grilled 

muscles, relative to that obtained from striploin, which was common to both trials. Of the 

Strecker aldehydes, only benzaldehyde showed a significant difference between muscles 

(P=0.018), with striploin producing less than the other muscles. Other Strecker aldehydes 

showed a non-significant trend also towards lower quantities in striploin. This agrees with 

previous findings [9] that benzaldehyde (but not the other Strecker aldehydes) were lower 

in striploin than tenderloin, rump or topside. Three ketones showed significantly higher 
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levels in tenderloin than the other muscles, with 2-butanone showing a similar non-

significant pattern.   

 

 
Figure 1 (a – b). Relative qualities of Strecker aldehydes (a) and ketones (b) from grilled beef, different muscles, 
shown relative to striploin, STR045 = 1. Abbreviations and replication may be found in Table 1. 

Previous research [9] showed a similar pattern for 2-propanone (P<0.001) and 

2-butanone (ns), but did not report findings for the remaining ketones. Most of the 

remaining volatile compounds were not significantly different between muscles. These 

results indicate that different muscles produce a similar balance of volatile compounds 

on grilling, but with some significant and consistent differences. The changes in flavour 

formation pathways reflected by these differences may contribute to variations in flavour 

between muscles.  

Effect of ageing 

Figure 2 shows the effect of ageing from 14 and 21 to 49 days on selected volatiles. 

While there were few significant differences, there were some trends, with the C7 to C9 

n-aldehydes showing an apparent increase at 21 days that was not replicated at 49 days 

(Figure 2). The large variation within treatments for these compounds meant that these 

results were generally not statistically significant and further analyses are ongoing to 

clarify these effects. The Strecker aldehydes, heterocyclic compounds and C4 ketones 

formed by the Maillard reaction showed no significant effects of ageing and nor were 

there significant ageing x muscle interactions (results not shown). Research has shown 
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that the concentrations of sugars, amino acids and ribonucleotides increase with age [10, 

Farrell, unpublished data], and it might have been expected that the volatile products 

would follow a similar pattern. Only 3-methylbutanal and 2-methylbutanal showed a non-

significant trend correlating with ageing (results not shown). 

  
Figure 2: Relative qualities of n-aldehydes from grilled beef from different muscles, shown relative to 14 

days = 1. Abbreviations and replication may be found in Table 1. 

Effect of packaging 

Changes in packaging caused significant differences in the generation of a number 

of different volatile flavour compounds (Figure 3). Benzaldehyde (P < 0.001) was lowest 

in modified atmosphere packed (MAP) beef and highest in vacuum packed beef. Other 

Strecker aldehydes followed the same pattern (though non-significantly), as did 

dimethyltrisulphide (P < 0.01). MAP is reported to cause oxidation of proteins and it is 

possible that this could affect the concentrations of free amino acids available for the 

formation of these compounds [11,12]. Strecker aldehydes have been closely associated 

with desirable flavour of beef for consumers [7,13], so changes in these compounds could 

contribute to differences in consumer preference between packaging treatments.   

Amongst the n-aldehydes, only pentanal shows a significant difference with at least 

five times more in MAP-packed beef than the other two packaging treatments. The 

remaining n-aldehydes follow the same pattern as hexanal (shown in Figure 3). Vacuum-

packed beef has significantly lower concentrations than overwrapped beef of 5-methyl-

3-hexanone and 2-pentyl furan while 3-heptanone and 2-ethyl-1-hexanol are lower in 

both VSP and MAP beef. These compounds can be formed by oxidation pathways [14-

16] and it is possible that the reduced oxygen in vacuum-packed beef and higher oxygen 

permeability of overwrapped beef has caused this effect. Further studies are ongoing to 

elucidate these effects. 

While products of the Maillard and lipid oxidation reactions often follow a similar 

pattern, a number of products show different effects due to treatment. In some cases, a 

significant effect is mirrored by a non-significant trend in related compounds, but in 

others, there are widely different effects within a compound class. Thus, care will be 

required when identifying marker compounds for desirable flavour [7] that these apply in 

all cases. 
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Figure 3: Relative qualities of selected volatile compounds of grilled beef from different packaging methods, 
shown relative to overwrap (OWP) = 1: (a) Strecker aldehydes; (b) n-aldehydes from Trial 2. Abbreviations and 

replication may be found in Table 2. 

Conclusions 

Differences in volatile odour compounds are observed due to muscle, ageing and 

packaging method. These changes are most extensive due to packaging. The resulting 

changes in the balance of flavour compounds are likely to alter the flavour profile 

perceived by consumers.  

While products of the Maillard and lipid oxidation reactions often follow a similar 

pattern, some demonstrate different effects due to treatment. Thus, care will be required 

when identifying marker compounds for desirable flavour. Further analyses are ongoing 

to clarify further these effects. 
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Abstract  

Aroma Extract Dilution Analysis (AEDA) evaluates volatile compounds most likely 

contributing to the overall aroma of a food sample by means of flavour dilution (FD) 

factors. In the food industry, this can be useful to compare aroma-active profiles of raw 

materials or finished products and to select those that are statistically similar. When 

multiple samples are analysed, the high number of variables makes it difficult to take 

conclusions. Principal Component Analysis (PCA) should not be applied to FD values as 

they are discrete numbers. To our knowledge, there are no appropriate methods available 

to interpret AEDA results from multiple samples. In this study, a new rapid methodology 

to interpret AEDA results was developed. Latent Dirichlet Allocation (LDA) was 

developed in the context of text analysis as a mean of dimensionality reduction and has 

been successfully applied for the analysis of AEDA outcomes. Furthermore, Jensen 

Shannon divergence measure was a useful tool to compare the distribution of volatile 

compounds with similar descriptions ("berries", "cheese" or "fruits") among different 

samples. 

Introduction 

Gas chromatography-olfactometry (GC-O) is used to judge the sensory relevance of 

the volatiles present in foods. In particular, AEDA evaluates the odour activities of the 

volatiles by sniffing the effluent of a series of dilutions of the original aroma extract. The 

result is expressed as the flavour dilution (FD) factor that corresponds to the maximum 

dilution value detected. Compounds with the highest FD are assumed to be most likely 

contributing to the overall aroma of a food product. AEDA is a time-consuming technique 

and generally research articles report the analysis of 1-3 samples where it is fairly easy to 

see differences. However, when multiple samples are analysed, the interpretation of 

AEDA results becomes challenging. This is because AEDA data set is fairly high-

dimensional but sparse and it is difficult to conclude similarity among samples. A 

common approach in situations like this is to map the data into an adequate lower 

dimensional sub space where the comparison and clustering is done. When the data is 

normally distributed, PCA is often used. However, PCA should not be applied to AEDA 

because the data are discrete. This may be the reason why in other works, the statistical 

interpretation of AEDA has been claimed to be controversial or even not applicable [1, 

2] although the authors did specify the reasons.  

Latent Dirichlet Allocation (LDA) was developed in the context of text analysis as 

a means of dimensionality reduction [3]. For example, LDA can be used to cluster 

documents where instead of cluster them word by word, they can be clustered by topic (a 

topic would be described by a distribution over words). In probability theory and 

statistics, the Jensen–Shannon divergence is a method of measuring the similarity 

between two probability distributions [4].  

The aim of this work was to develop a rapid methodology using LDA and Jensen-

Shannon divergence to interpret AEDA results from multiple samples. In particular, the 

method was used to investigate the similarities in the aroma profile of pet foods. 
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Materials and methods 

Samples 

8 pet foods samples from different brands and varieties were used in this study. 20 

g of each sample were suspended with 20 mL H2O and extracted with 100 mL diethyl 

ether (distilled before use). The organic layer was separated from the residue and the 

volatiles were isolated via Solvent Assisted Flavour Evaporation. The distillate was dried 

over sodium sulphate and concentrated to 200 μL using a Vigreux column.  

GC-O analysis 

High resolution gas chromatography was performed by means of a Trace GC 

(Finnigan, Bremen) and a column FFAP (30 m x 0.25 mm x 0.25 μm, J&W Scientific). 

The samples (1 μl) were injected using “on column“ injection technique at 40 °C. After 

1 min, the temperature was raised 6 °C/min until 240 °C were reached. The flow rate of 

the carrier gas (helium) was set on 1.5 mL/min. At the end of the capillary, the effluent 

was split 1:1 into a flame ionization detector (FID) and a sniffing port by using two 

deactivated, uncoated fused silica capillaries (20 cm × 0.25 mm). The FID and sniffing 

port were held at 250 °C. Linear retention indices (LRI) were calculated by the equation 

given by Kovats. The volatile fraction was diluted stepwise 1+1 with solvent and each 

dilution step was sniffed until no odourant in the effluent was perceived. The odour 

extract dilution analysis was performed by two trained panellists. FD factors were 

expressed in logarithmic scale units. 

Statistical analysis 

LDA was used to model aroma profiles as random mixtures over latent topics, each 

topic was characterized as a distribution over aroma compounds and was interpreted as a 

basic aroma profile. 

The following generative process was assumed for each product aroma profile In: 

1. Choose N  ̴  Poisson (ξ) as the sum of all logarithmized FD-factors. in In 

2. Choose Θ  ̴  Dirichlet (α) 

3. For each of the N: 

(a) Choose topic Zn  ̴ Multinomial (Θ) 

(b) Choose a DF from the aroma compounds from p(In|Zn,β), a multinomial 

probability conditioned on the topic Zn 

Model fitting and inference based on this process was done by Variational Bayes. 

To determine the similarity of the aroma profiles of two products, to use information-

theoretically motivated measure of distance of two probability distributions 𝑷 and 𝑸 like 

the Kullback-Leibler divergence 𝑫𝑲𝑳(𝑷||𝑸) =  ∑ 𝑷(𝒊) ⋅ 𝐥𝐨𝐠
𝑷(𝒊)

𝑸(𝒊)
 𝒊 is appropriate. 

Jensen-Shannon Divergence is the symmetric version of Kullback-Leibler 

divergence and was used a distance metric to describe distances between products, as 

follows:  

𝑱𝑺𝑫(𝑷||𝑸) =
𝟏

𝟐
𝑫𝑲𝑳(𝑷||𝑴) +

𝟏

𝟐
𝑫𝑲𝑳(𝑸||𝑴) 

Where 𝑴 =
𝟏

𝟐
(𝑷 + 𝑸). 

Results and discussion 

A total of 77 odour-active compounds was detected in the samples although 10 of 

them could not be identified (Table 1). The 67 identified compounds include 11 alcohols, 

10 aldehydes, 10 acids, 8 ketones, 7 sulphur compounds, 4 esters, 4 pyrazines, 4 lactones, 
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3 hydrocarbons, 2 pyrrolines, 2 furans and 2 nitrogen compounds. Not all of the flavour 

active compounds were present in all the samples and for those present in all the samples, 

the FD values were different in many cases. From the FD factors it was not obvious if 

samples were statistically different to each other (Figure 1). 

Table 1: Volatile compounds in the pet food samples and their odour description.  

 

LDA was used to reduce the dimensions by clustering the odour descriptors into 

“aroma topics”. The 77 odour-active compounds were narrowed down to 3 aroma topics, 

each aroma topic being a distribution of odour-active compounds as shown in Figure 2. 

Aroma topic 1 was mainly defined by compounds having sweet, roasted notes, Aroma 

Topic 2 by spicy, fruity floral notes and Aroma Topic 3 by stable, fatty and cheese notes.  

In Figure 3, the aroma topics per sample are shown. As it can be seen the aroma 

topic 1 was common to all the samples. It could be argued that it contains the basic flavour 

active compounds for pet foods. The presence of aroma topics 2 and 3 varied among the 

samples contributing to the specific notes. It was observed that products 2, 4 and 6 had 

similar flavour active profiles, as well as products 7 and 8. 

Compound/chemical class Odour descriptor LRI FFAP Compound/chemical class Odour descriptor LRI FFAP

Ketones Alcohols

2,3-butanedione butter 967 linalool floral 1 1529

3-mercapto-2-butanone catty, blackcurrant 1267 geraniol rose 1839

1-octen-3-one mushroom 1294 2-methoxyphenol smoky 1857

3-mercapto-2-pentanone catty 1356 2-phenylethanol honey 1 1900

(Z)-1,5-octadien-3-one geranium 1367 maltol caramel 2 1957

3-methyl-2,4-nonandione minty 2 1706 4-ethyl-2-methoxyphenol clove 1 2014

β-damascenone apple 1807 4-methylphenol barnyard 2083

β-ionone violet 1920 eugenol clove 2 2162

Aldehydes 3-/4-ethylphenol leather 2169

2-/3-methylbutanal malty 911 2,6-dimethoxyphenol smoky, clove 2258

hexanal grassy 1077 isoeugenol clove 3 2333

(Z)-4-heptenal fishy 1233 Pyrrolines

octanal citrus 1289 2-acetyl-1-pyrroline roasty 1 1328

(E,Z)-2,6-nonadienal cucumber 1582 2-propionyl-1-pyrroline roasty 2 1406

phenylacetaldehyde floral 2 1625 Terpenes and hydrocarbons

(E,E)-2,4-nonadienal fatty 1 1688 á-pinene resinous 1007

(E,E)-2,4-decadienal fatty 2 1800 (E,Z)-1,3,5-undecatriene pineapple 1378

(E,E,Z)-2,4-6-nonatrienal oatflakes 1 1860 vanillin vanilla 2560

tr.-4,5-epoxy-(E)-2-decenal metallic 1986 Esters

Acids ethyl-2-methylbutanoate fruity 1 1038

acetic acid vinegar 1433 methylhexanoate fruity 2 1174

propanoic acid cheese 1 1511 ethyl-3-phenylpropanoate cinnamon 1 1867

2-methylpropanoic acid cheese 2 1553 ethylcinnamate cinnamon 2 2113

butanoic acid cheese 3 1606 Nitrogen compounds

2-/3-methylbutanoic acid cheese 4 1656 indol mothballs 1 2440

pentanoic acid cheese 5 1724 3-methylindol mothballs 2 2480

3-/4-methylpentanoic acid cheese 6 1781 Terpenes and hydrocarbons

hexanoic acid goat 1 1833 á-pinene resinous 1007

phenylacetic acid honey 2 2530 (E,Z)-1,3,5-undecatriene pineapple 1378

phenylpropionic acid goat 2 >2600 vanillin vanilla 2560

Sulfur compounds Lactones

3-methyl-2-buten-1-thiol beer 1107 γ-octalactone coconut 1906

dimethyltrisulfide cabbage 1 1370 sotolon seasoning 1 2185

2-fufurylthiol burnt 1418 δ-dodecalactone peach 2383

methional cooked potato 1444 3-hydroxy-2(2H)-pyranone meaty 1953

benzenemethanthiol cress, burnt 1616 Unknowns

dimethyltetrasulfide cabbage 2 1713 unknown 1 sulphurous 1150

2-acetyl-2-thiazolin roasty 3 1744 unknown 2 caramel 1 1415

Pyrazines unknown 3 minty 1 1555

2,3,5-trimethylpyrazine earthy 1 1400 unknown 4 catty, rhubarb 1933

2-ethyl-3,5-dimethylpyrazine earthy 2 1450 unknown 5 oatflakes 2 1975

2,3-diethyl-5-methylpyrazine earthy 3 1478 unknown 6 sour 2029

2-vinyl-3,5-dimethylpyrazine earthy 4 1542 unknown 7 minty 3 2079

Furans unknown 8 fatty 3 2150

furaneol caramel 3 2017 unknown 9 foxy 2208

abhexone seasoning 2 2246 unknown 10 chemical 2300
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Figure 1: FD factors for the 8 samples analysed and the corresponding descriptors identified for each of the 
flavour-active compounds.  

 
Figure 2: Aroma topics obtained by LDA. Bars represent the distribution of each odour-active compound.  

 
Figure 3: Aroma topics 1, 2 and 3 in the samples (Left, centre and right columns respectively).  

The developed method was successfully applied to pet food and could be a useful 

tool for the food and flavour industry to select raw materials with similar aroma profiles. 

The correlation between this method and the traditional quantification of compounds 

could be explored in the future. 
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Abstract  

The secret of the great popularity of truffles and its derivatives resides mainly in its 

volatile aromatic fraction, which contributes to their unique aroma. Some culinary 

preparations are made with this fungus, such as truffle-infused oils. The adulteration of 

these products must be controlled and prevented due to the high economic cost of natural 

black truffles.  

In this preliminary work the volatile composition of truffles and some commercial 

truffle-infused oil samples were determined by headspace solid-phase micro-extraction 

(HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) in order to 

confirm the authenticity of the infused oils. Complementary, a descriptive sensory 

analysis was also performed with the same purpose.  

Principal component analysis (PCA) was applied to the data obtained and different 

groups were established according to the sensory profiles and the variation among 

samples.   

Introduction 

Truffles are hypogenous fungi that live in symbiosis with the roots of several host 

trees. These fungi are widely appreciated for their organoleptic properties. As it is well-

known, the culinary and commercial value of truffles is mainly due to their sensorial 

properties such as their aroma [1, 2] the quality of which clearly provides the economic 

value of this edible fungus.  

The aim of this preliminary study was to characterize sensory and analytically the 

organic volatile compound composition of commercial truffle oils by headspace-solid 

phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) 

coming from the truffles and not from the oil in order to characterize its natural origin or 

to detect the presence of added flavourings.   

Experimental 

Materials 

Two fresh Tuber melanosporum black truffle samples in its optimum maturation 

level purchased in a local market were analysed as a reference for the generic volatile 

compound profile. Six samples from different geographical origins of commercially 

available vegetable oils infused and/or aromatized with truffle were evaluated. Samples 
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were purchased in local (Spain: S1, S2, S3) and foreign markets (France: F1, Italy: I1, I2) 

August- November 2013. All samples were labelled as artificially aromatized except S3. 

S1 and S2 were a mixture of naturally infused and aromatized oil. One more sample (ES) 

was studied: a truffle-infused oil sample prepared in our laboratory with 5 g of minced 

Tuber melanosporum in 250 ml of olive oil in order to have a positive authenticity control 

sample. The infusion was made at ambient temperature and darkness during 2 weeks. The 

oil infused samples were stored at 4ºC and the analysis was done maximum 24-48h after 

each bottle was opened.  

Sensory evaluation 

A group of thirteen trained panellists (7 women and 6 men, between 25 and 65 years 

old) participated in the evaluation of the aroma of truffle oils. First, the descriptors or 

sensory terms for describing the odour sensations perceived from truffle were established. 

After that, the panellists were trained in the identification of descriptors and the use of 

continuous scales for evaluating the intensity of each descriptor. Finally, the trained 

panellists evaluated the seven truffle oil samples and the aroma profile of each sample 

was obtained. For each sample, panellists scored the perceived intensity in duplicate using 

an unstructured 10 cm line with anchors “weak” and “strong”. Panel performance was 

studied using Panelcheck software. For each sensory attribute, a 2-way ANOVA (sample 

and panellist) with interaction was applied to the data obtained. To study the significance 

of the sample effect a mixed model ANOVA, considering panellists as random factor and 

the sample as fixed factor was performed for each attribute. In order to study the sensory 

differences among samples, taking into account all sensory attributes, a principal 

component analysis (PCA) was performed. A one-factor analysis of variance (ANOVA) 

was used in order to study differences between samples on aroma compounds of truffle-

infused oil samples. Significance of differences among means was established using 

Tukey’s Test (α ≤ 0.05). Principal component analysis was used to evaluate relationships 

among selected aroma volatile compounds obtained by GC-MS data and samples. A one-

factor analysis of variance (ANOVA) was used to study differences between samples on 

aroma sensory attributes. Principal component analysis was used to evaluate relationships 

among selected aroma attributes and samples. Partial Least Squares Regression (PLSR) 

was applied to model the relation among the variance of sensory attributes among samples 

(Y variables) and the variance in volatile compounds obtained by GC (X variables). All 

the analysis were carried out with XLSTAT Pro software version 2013 (Addinsoft, 

France). 

Analysis of the volatile compounds 

Extraction of organic volatile compounds was performed with static headspace solid 

phase microextraction (HS-SPME) using 2 g of sample. At least two replicates of each 

sample were prepared and analysed and the final results are the average of all samples 

analysed. For fresh Tuber Melanosporum black truffle samples two fibres from Supelco 

were used: 50/30 µm DVB-CAR-PDMS and 100 µm PDMS Truffle samples were sliced, 

incubated for 5 min at 50ºC and extracted for 10 min at the same temperature. For truffle-

infused oil samples only the triple phase fibre was used due to its better results, obtained 

in previous studies. A direct 30 min extraction of 2 g sample at 50ºC was made to avoid 

oil oxidation. After extraction, the volatiles were thermally desorbed for 10 minutes at 

250ºC in splitless mode. Volatiles were separated on two different columns: a polar 

column and an apolar one. Detection was carried out in a single quadrupole mass 

spectrometer. 
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Results and discussion 

107 volatile components were identified in fresh black truffles. Only 43 of those 

components were also found in an olive oil sample infused with the same type of truffles 

in our laboratory. From those 43 products some alcohols like ethanol, isobutanol, 2-

methyl-1-butanol, 2-butanol, 2-pentanol, 2,3-butanediol, 2-methylthioethanol and 3-

methylthiopropanol, were higher in the authentic infused sample than in the flavoured 

samples. The high quantity of ethanol found could be due to truffle fermentation 

processes in the oil at ambient temperature and in this case it cannot be considered a true 

marker. On the other hand, 1-octen-3-ol, a typical mushroom component and 2,4-

dithiapentane, a typical white truffle component, were only present in trace quantities in 

our analysis made to fresh black truffles. Both have been found in huge quantities in 

flavoured samples.    

Looking to the sensory analysis a total of eleven odour attributes were found to be 

useful for describing the odour of truffle oils: fungus, fermented, cockle, moist soil, 

rancid, hazelnut, faecal, boiled cabbage, garlicky gas, potato and carob. Fifteen panellists 

initially evaluated the intensity of the odour attributes of the seven oil samples. Data from 

two panellists that showed low concordance with the rest of panel were not considered in 

further analysis. The results of a mixed model ANOVA showed significant differences 

(α= 0.05) among samples for all attributes, even in those (faecal, garlicky gas and potato) 

for which the effect of panellists’ x sample interaction had been found significant. The 

mean values of the perceived intensity for each attribute in the oil samples were obtained 

and the sensory profile of each sample is presented in spider web plots (Figure 4) 

 
Figure 1: Mean values of the intensity perceived for each attribute in the oil samples 

For samples infused with truffle the odour intensity was low (S1 and S3) or high 

(ES) but it was equilibrated among the different attributes. However, oil samples 

aromatized with truffle flavours presented high intensity of only certain attributes, such 

a: fungus, cockle, garlicky gas and boiled cabbage.  
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Figure 2: Sensory attributes PCA Analysis of truffle infused oils 

The PCA (principal component analysis) of the data (Figure 5) showed that the first 

two dimensions accounted for 85.2% of the variability in the odour of truffle oil. The first 

dimension clearly separated on the right side the oil samples infused naturally with truffle 

and on the left side the oil samples aromatized with truffle flavourings. The second 

dimension separated the aromatized oil samples S2, I1 and I2 (upper side) with more 

intense garlicky gas and boiled cabbage odours and aromatized oil sample F1 (bottom 

side) with more intense fungus and soil odours. 

Conclusions 

Analytical and sensory differences were clearly seen between oil samples naturally 

infused with Tuber Melanosporum fresh black truffles and artificially aromatized oil 

samples. Some volatile components frequently present in other mushroom flavours but 

not present in black truffles were found in aromatized samples. Some alcohols present in 

the flavour of fresh black truffles and also present in naturally infused oils were found in 

higher quantities in those samples than in artificially flavoured oil samples.  
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Abstract  

In the present study, we compare the odour qualities and odour thresholds of 

guaiacols with different structural moieties with special focus on the impact of 

halogenation on their sensory properties. Thereby, a series of substances, which were not 

commercially available, was synthesized. All compounds were systematically analysed 

regarding their retention indices, odour qualities and odour thresholds. 

Odour qualities of alkylated, alkenylated and methoxylated guaiacols were mainly 

smoky, clove-like and vanilla-like. Halogenated derivatives also exhibited smoky, sweet 

and vanilla-like odours, but also medicinal and plaster-like smells. Odour thresholds in 

air were very low, namely between 0.00018 and 111 ng/L for all compounds. Huge inter-

individual differences were found for odour thresholds, whereas the perceived odour 

qualities were quite comparable between different individuals.  

The analytical and sensory data library created in this study will aid future analytical 

discovery of this interesting substance class. Parts of this work are also published in [1] 

and [2]. 

Introduction 

Guaiacol-derived odorants are commonly found in nature. Guaiacols are produced 

by various plants as well as by animals, and widely used in food and perfume industry. 

They are employed inter alia as antiseptic and anesthetic agents [3, 4]. Guaiacol 

derivatives have been found in smoked foods like smoked ham [5], in wheat beers [6] and 

brandy amongst a row of other foods. Halogenated guaiacols are, however, up to now 

mainly found in nature due to human intervention. Halogenated guaiacols are for example 

present in waste water of pulp mills and therefore responsible for some off-odours in fish 

[7, 8]. However, comprehensive data on sensory characteristics of guaiacol derivatives 

and the impact of halogenation have not been reported until now. 

Experimental 

Gas chromatography 

GC-FID and GC-olfactometry (GC-O) were carried out with a Trace CT Ultra using 

a DB-5 and FFAP capillary. Helium at a flow rate of 2.5 mL/min was used as carrier gas. 

Samples were injected at 40 °C, 40 °C was kept for 2 minutes, then the oven temperature 

was raised at 10 °C/min to 200 °C or at 6 °C/min to 250 °C, then raised at 20 °C/min or 

40 °C/min to 300 °C (DB-5), or at 8 °C/min to 240 °C (FFAP), respectively, and held for 

5 or 10 minutes. GC-MS analyses were performed with an Agilent MSD 5975C using the 

same temperature programs and types of capillaries as described above. Mass spectra 
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were generated in the electron impact mode (EI) at 70 eV. Retention indices were 

determined according to the method of Van den Dool and Kratz [9]. 

Odour thresholds and odour qualities 

Panellists were trained assessors form the University of Erlangen. Odour thresholds 

in air were determined according to the method described by Ulrich & Grosch [10] using 

(E)-2-decenal as internal standard. 2 µL were injected of every dilution. Odour thresholds 

were determined by 8 assessors for all compounds. Odour qualities were determined 

during GC-O and panellists were asked to freely choose odour quality descriptors.  

Syntheses 

Compounds, which were not commercially available, were synthesized according to 

the literature procedures named in [1] and [2]. 

Results and discussion 

Figure 1 gives an overview of odour thresholds of all investigated compounds.  

 
Figure 1: Odour thresholds of guaiacol derivatives 

With the exception of 5-methoxyguaiacol, all compounds with lower odour 

thresholds than guaiacol itself were halogenated derivatives. The compound with the 

lowest odour threshold was 5-methoxyguaiacol with a median odour threshold about 500-

times lower than that of guaiacol, namely 0.00018 ng/L. Halogenated compounds with an 

odour threshold lower than guaiacol were some chloro-, bromo-, and iodoguaiacols with 

the halogen in positon 4, 5, or 6. Additionally, two dichloroguaiacols were tested. Both 

had a lower odour threshold than guaiacol. Compounds with odour thresholds higher than 
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guaiacol were alkylated guaiacols as well as alkenylated guaiacols. Additionally, some 

halogenated compounds also exhibited odour thresholds higher than guaiacol. These were 

derivatives with halogens in position 3 or 4. The compounds with the highest odour 

thresholds of the investigated substances were cis- and trans- 6-propenylguaiacol with 

thresholds of 44 and 111 ng/L air, respectively. Of the halogenated compounds, the 

substances with halogens in position 3 showed the highest odour thresholds. These were 

3-chloro-, 3-bromo- and 3-iodoguaiacol.  

Inter-individual differences in odour thresholds were quite pronounced. The most 

prominent inter-individual differences were found for 5-methoxyguaiacol with a factor of 

about 17000 between the lowest and the highest individual odour threshold. Other 

compounds with high inter-individual differences in odour thresholds were 5-iodo-, 5-

methyl-, cis-4-propenyl-, and 4-bromoguaiacol, all with factors over 1000 between 

highest and lowest individual odour thresholds. On the other hand, there were also 

compounds with small inter-individual variations, like 6-iodo-, 3-chloro-, 4,5-dichloro-, 

4-vinyl-, 6-bromo-, and trans-6-propenylguaiacol, all with a factor of 8 between highest 

and lowest individual threshold.  

Odour qualities were mainly smoky, clove-like and vanilla-like for alkylated, 

alkenylated and methoxylated guaiacols. Halogenated guaiacols also exhibited smoky, 

sweet and vanilla-like odour qualities. However, none of the halogenated compounds 

exhibited a clove-like odour. Conversely, some of the halogenated derivatives also 

showed medicinal and patch-like smells. Table 1 provides an overview of the odour 

qualities of the investigated compounds. The most frequently named attributes were 

smoky, vanilla-like and sweet. Several substances also exhibited a ham-like odour, but 

only one of them was a halogenated substance, namely 5-chloroguaiacol. All in all, odour 

impressions were quite consistent between individuals. Additionally, Table 1 shows 

odour thresholds in [pmol/Lair]. By giving odour thresholds in [pmol/Lair] (cf. Table 1) in 

addition to the values in [ng/L] (cf. Figure 1), one can also see the impact of the molecular 

weight on the odour threshold values.  

These results form a basis for future analytical discovery of this substance class. 

Table 1: Odour qualities and odour thresholds (OT) of all investigated guaiacol derivatives 

Odouranta,b Odour qualities OT [pmol/Lair] rangec 

5-Methoxyguaiacol  sweet, clove, vanilla 0.000004 - 0.065 

5-Chloroguaiacol smoked, smoky, ham-like 0.0011 - 0.037 

6-Chloroguaiacol smoky, sweet 0.0020 - 0.063 

5-Iodoguaiacol sweet, smoked 0.0024 - 10 

5-Bromoguaiacol smoky, sweet 0.0028 - 0.089 

4,5-Dichloroguaiacol smoky, sweet, vanilla-like 0.0032 - 0.10 

4-Bromoguaiacol vanilla-like, sweet, smoky 0.0045 - 4.6 

6-Bromoguaiacol medical, smoky, patch-, plastic-like 0.0059 - 0.045 

5,6-Dichloroguaiacol smoky, medical, patch-like 0.018 - 0.14 

4-Propylguaiacol  smoky, clove, sweet 0.018 - 10 

4-Ethylguaiacol  clove, smoky 0.039 - 21 

Guaiacol  smoky, vanilla, ham 0.056 - 30 

6-Iodoguaiacol medical 0.072 - 0.60 

6-Vinylguaiacol  smoky, ham 0.11 - 100 
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Table 1. continued 

Odouranta,b Odour qualities OT [pmol/Lair] rangec 

5-Vinylguaiacol  smoky, ham, clove, sweet, vanilla 0.12 - 63 

cis-4-Propenylguaiacol  clove 0.13 - 177 

trans-4-Propenylguaiacol  clove 0.20 - 55 

4-Allylguaiacol  clove 0.23 - 79 

4-Chloroguaiacol sweet, vanilla-like 0.27 - 18 

5-Methylguaiacol  vanilla, sweet, smoky 0.29 - 413 

trans-5-Propenylguaiacol  vanilla, sweet 0.30 - 38 

4-Vinylguaiacol  clove, smoky 0.35 - 2.7 

6-Methoxyguaiacol  smoky, sweet 0.45 - 227 

4-Methoxyguaiacol  clove, sweet, smoky, vanilla, ham 0.71 - 383 

4-Methylguaiacol    vanilla, sweet, ham, smoky 0.87 - 441 

6-Methylguaiacol   smoky, plastic, sweet, bacon 0.94 - 60 

cis-5-Propenylguaiacol  smoky, clove, ham 1.3 - 104 

5-Allylguaiacol   smoky, ham, clove, sweet 2.4 - 104 

cis-6-Propenylguaiacol  smoky, ethereal, clove 2.8 - 2259 

5-Ethylguaiacol  smoky, sweet, ham 3.1 - 33 

4-Iodoguaiacol vanilla-like, smoky, sweet 4.0 - 64 

3-Bromoguaiacol musty, old 6.4 - 212 

5-Propylguaiacol  clove, vanilla 7.8 - 999 

3-Iodoguaiacol musty, moldy 12 - 184 

3-Chloroguaiacol smoky, medical 18 - 145 

6-Ethylguaiacol  smoky 22 - 683 

6-Allylguaiacol  plastic, clove, smoky 30 - 773 

6-Propylguaiacol  plastic, sweet 51 - 1203 

3-Vinylguaiacol  smoky, clove 55 - 3509 

trans-6-Propenylguaiacol  ham, smoky 335 - 2698 
a Odorants are displayed in the order of their minimum odour threshold. 
b Retention indices of all compounds on DB-5 as well as on FFAP can be found in [1, 2].  
c Odour thresholds were established according to the method described by Ullrich & Grosch [10].  
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Abstract 

The pleasant fruity flavour of lager beers is one of the most appreciated features of 

these beverages, whereas alcohol-free beers (AFB) also exhibit a flavour reminiscent of 

wort. Even though several studies have been carried out to characterise the key odorants 

in different alcoholic beers, there are no similar works for AFB. Hence, the aim of this 

research is to identify the compounds contributing to the characteristic aroma of AFB. In 

this work, the volatile fraction of an AFB-base (without added flavourings) was isolated 

using solvent assisted flavour evaporation (SAFE) and analysed by GC-MS and GC-

Olfactometry. Twenty-three odour regions showed odour activity in GC-O experiments, 

amongst which the most potent were methional, phenylacetaldehyde, 2-methoxyphenol, 

β-damascenone, 2-phenylacetic acid, 2-phenylethanol, and 5-ethyl-3-hydroxy-4-methyl-

2(5H)-furanone. The presence of these compounds plays a crucial role in AFB aroma. 

Introduction 

AFB consumption has increased over the last few years, mainly in response to strict 

drink driving legislation, medical recommendation or religious grounds, but also due to a 

growth in health awareness. According to current UK legislation, the description 

“alcohol-free” may be applied to products containing “an alcoholic strength by volume 

of not more than 0.05 per cent”. 

These beers usually exhibit a flavour reminiscent of wort. Recent literature shows 

that Strecker aldehydes, particularly 2-methylbutanal, 3-methylbutanal and methional, 

are responsible for the negative attributes associated with AFB flavour [1], and these 

compounds are also present in barley malt [2]. These aldehydes have exceptionally low 

odour thresholds (1.25 μg/L, 0.6 μg/L and 0.25 μg/L for 2-methylbutanal, 3-methyl-

butanal and methional, respectively [3]) and impart potent worty, malty aromas even at 

very low concentrations. 

Although worty aroma of AFB has been related to Strecker aldehydes [1], there is 

no information in literature about the possible contribution of other odour-active 

compounds to the overall aroma of AFB. Sensomic methodology has been employed to 

identify the key odorants in different beers, such as pale lager [4] and wheat beers [5]. In 

the latter example, the authors found more than 30 odorants contributing to the 

characteristic aroma of wheat beer, Strecker aldehydes being amongst them. The aim of 

this study was to identify a more complete set of odour-active volatile compounds present 

in AFB by means of Sensomic methodology. 
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Experimental 

Materials 

An alcohol-free beer-base (AFB-base), without any external flavour added, was 

brewed, bottled and pasteurised in Heineken’s pilot brewery (Zoeterwoude, The 

Netherlands) in January 2016 following a standard cold-contact fermentation procedure 

(brewing conditions not specified). Diethyl ether and saturated alkane standards were 

purchased from Sigma (Dorset, UK). 

Isolation of the volatile fraction 

For the isolation of volatiles from the AFB-base, the procedure described by Langos 

et al. was employed with slight modifications [5]. Briefly, 1 kg of sample was extracted 

with redistilled diethyl ether (250 mL  4). The organic phase was dried over anhydrous 

Na2SO4 and filtered before concentration using a Vigreux distillation column (60 cm, 1 

cm i.d.) at 40 °C until a final volume of approximately 100 mL was reached. To separate 

the non-volatile materials from the extract, this was submitted to a high-vacuum 

distillation process known as solvent assisted flavour evaporation (SAFE) technique 

(evaporation at 25 °C and 10-5 Pa). The distillate was fractioned into an acidic and a 

basic/neutral fraction using NaHCO3 0.5 M solution (60 mL  3). After washing with 30 

mL of a saturated NaCl solution three times, the organic layer was kept for further 

treatment (basic organic extract). In parallel, the basic aqueous phase was acidified to pH 

2.25±0.10 by adding HCl solution (10 M or 1 M) and extracted using redistilled diethyl 

ether (60 mL  3) and the extracts combined (acidic organic extract). Both basic and 

acidic organic extracts were concentrated using a Kuderna-Danish concentrator at 45 °C 

(final volume ~400 µL for each extract). The concentrated aroma extracts were kept at -

80 °C until use. 

Gas chromatography analyses of concentrated aroma extracts 

In order to identify odour-active compounds in the concentrated aroma extracts, 

these were analysed by GC-Olfactometry (GC-O) using a 5890 Series II gas 

chromatograph (Hewlett Packard, Waldbronn, Germany) provided with an FID detector 

held at 250 °C. A sample (2 μL) was injected and two capillaries with different polarities 

were employed: Rxi®-5 Sil MS capillary (30 m, 0.25 mm i.d., 1.0 µm df) non-polar 

column and a Stabilwax®-DA (30 m, 0.25 mm i.d., 0.25 µm df) polar column, both from 

Restek (Bellefonte, Pennsylvania, USA). The temperature gradients were set as follows: 

40 °C for 2 min, then a rise of 5 °C/min up to 200°C and 15 °C/min from 200 °C to 300 

°C, and then held for 19 min for the non-polar column; 40 °C for 2 min, then rise of 4 

°C/min up to 200 °C, then from 200 °C up to 250 °C at 15 °C/min, and then held for 15 

min for the polar column. Helium was used as a carrier gas (2 mL/min). The sample was 

split 1:1 at the end of the column, followed by two untreated silica-fused capillaries of 

the same dimensions (1 m, 0.32 mm i.d.). An ODO II sniffing port (SGE, Ringwood, 

Victoria, Australia), where the flow was diluted with a moist make up gas, was utilised. 

Every sample was analysed by at least 3 assessors in duplicate. The assessors scored the 

intensity of the aromas perceived on a scale from 1 (“very weak”) to 10 (“very strong”). 

These results were reported as the modified frequency, defined as MF(%)=[F(%)·I(%)]1/2, 

where F(%) is the detection frequency and I(%) is the average intensity expressed as the 

percentage of the maximum intensity [6]. 

The concentrated aroma extracts were also analysed by GC-MS using equivalent 

capillaries and chromatographic conditions as used for the GC-O analyses. The 

instrument employed for these analyses was a gas chromatograph model 7890A coupled 
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to a 5975C inert XL EI/CI MSD triple axis mass spectroscopy detector and a 7683B Series 

autosampler (Agilent Technologies, Santa Clara, CA, USA). The carrier gas was helium 

at a flow rate of 1mL/min. Mass spectra were recorded in the electron-impact mode at an 

ionisation voltage of 70 eV and source temperature of 200 °C. 

Results and discussion 

The sensomic approach was applied for the identification of key odorants in alcohol-

free beer. Recently, this methodology has been applied to identify key flavour compounds 

in a wide variety of foodstuff and beverages, such as hazelnuts [7] and rapeseed oil [8]. 

For this reason, concentrated aroma extracts (basic and acidic fractions) were prepared 

from AFB-base using the methodology described previously [5]. 

Table 1: Odour regions and attributed compounds found by GC-Olfactometry (n=3 in duplicate) in acidic and/or 

basic fractions of a SAFE extract of an alcohol-free beer-base  

LRI     

Rxi-5 StabW Odour qualitya Odorantb Fnc %MFd 

579 1000 cream, butter butanedione b 80 

648 950 malty, cocoa 3-methylbutanal a 65 

664 1429 vinegar acetic acid a 76 

680 950 cocoa 2-methylbutanal b 60 

725 1225 banana, alcoholic 3-methyl-1-butanol b,a 44 

845 1609 cheese butanoic acid a 76 

886 1646 cheese, rancid 3-methylbutanoic acid a 83 

917 1470 boiled potato methional b,a 91 

992 1354 cooked rice 2-acetyl-1-pyrrolinee b 31 

1059 1649 rose, honey phenylacetaldehyde b,a 95 

1103 1872 smoky 2-methoxyphenol b,a 92 

1109 2188 smoky, spicy 3-hydroxy-4,5-dimethyl-2(5H)-furanone a 56 

1125 2074 candy floss 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone a 48 

1127 1930 rose, honey 2-phenylethanol b,a 86 

1130 2223 cloves, woody 2-methoxy-4-vinylphenol b 67 

1154 2223 curry, spicy 5-ethyl-3-hydroxy-4-methyl-2(5H)-furanone b,a 89 

1180 1983 spicy, smoky 2-methoxy-4-methylphenol b,a 55 

1206 2380 leather 4-vinylphenol b,a 68 

1293 2540 honey, floral 2-phenylacetic acid  a 87 

1382 2022 honey, rubber 2'-methoxyacetophenone b 73 

1389 1835 apple, apricot β-damascenone b 87 

1400 - hospital, phenolic unknown. a 56 

1472 2556 vanilla vanillin a 73 

aOdour perceived at the sniffing port of the GC-O. 
bCompounds were identified by comparison of their mass spectrum and LRI on two columns with those of 

authentic standards, and confirmed by detection in the extract by GC-MS  
cFraction where the compound was found: basic/neutral (b) or acidic (a). 
dMF(%)=[F(%)·I(%)]1/2, where F(%) is the detection frequency and I(%) is the average intensity expressed as 

the percentage of the maximum intensity 
eTentative identification based on odour description and LRI. 
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These extracts from the AFB-base were sniffed by GC-O on columns of different 

polarity and mass spectra were obtained from GC-MS analyses. Twenty-three odour 

regions were found in total in both basic and acidic fractions from the AFB-base. Table 

1 shows the most active odour regions found in the SAFE extracts. Amongst them, the 

highest MF values corresponded to 2-methoxyphenol, β-damascenone, 5-ethyl-3-

hydroxy-4-methyl-2(5H)-furanone, 2-phenylacetic acid, 2-phenylethanol and the 

Strecker aldehydes methional and phenylacetaldehyde. The presence of these compounds 

might explain the honey-like, worty aroma of alcohol-free beers brewed by cold contact 

fermentation. Moreover, two Strecker aldehydes were found to be important: 2-

methylbutanal and 3-methylbutanal. These two, along with methional, have been 

previously reported as contributors to malty and worty aromas in alcohol-free beers [1, 

2]. 

Similar work has been carried out in other beers, such as wheat beer [5] and pale 

lager beer [4], where higher alcohols and esters were found to be main contributors to the 

overall aroma. Examples of these are ethyl hexanoate, ethyl butanoate, 3-methylbutyl 

acetate, and 3-methyl-1-butanol. In our case, no fruity esters were detected by GC-O. This 

was associated with the mild conditions for cold contact fermentation process, where 

yeast was not active enough to synthesise esters throughout the Ehrlich pathway [9]. 

Butanedione, also found in this study, has been reported as an off-flavour in lager beers 

[10]. 

Note, however, that in this study we used an alcohol-free beer “base” which was 

prepared without the addition of external flavours which provide the desirable fruity note 

which is not generated during cold contact fermentation. The addition of external flavours 

to commercial alcohol-free beers is common practice of brewers to improve the flavour 

of AFB. 

We conclude that the information generated from this study will help in the 

identification of the less desirable worty notes in alcohol-free beers. Further quantitative 

and sensory analysis will elucidate the actual role of the key odorants in the overall aroma 

of these beverages. 
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Abstract 

The trend across Europe is towards using rams in production due to welfare reasons, 

and because they reach slaughter weight faster. Two trials were conducted to determine 

the role of gender, breed and diet on the incidence and cause of off-flavour in lambs. 

Lambs were slaughtered and the loin subjected to sensory profiling and analysis of 

branched chain fatty acids was also conducted. 

Results showed effects of breed and diet on flavour, but fewer effects of gender. 

Close examination of the data indicated that some animals from all treatments had 

elevated scores for off-flavour. These occurrences were apparent in rams and castrates 

across both trials. Analysis of branched chain fatty acids showed that for the three 

compounds studied, there was no clear link between diet or gender and a higher level of 

branched chain fatty acids. 

Introduction 

Across Europe, there is a move to produce lamb meat from entire males rather than 

castrates for welfare reasons and because they are more efficient [1]. They reach slaughter 

weight faster and produce a leaner carcass; the value of a lamb’s carcass is determined 

mainly by the yield of lean meat [2]. Some studies found that meat from ram lambs is of 

inferior quality [2], whilst others conclude there are no differences in sensory quality [3] 

or that meat from ram lambs was actually of a superior quality than castrates or ewes [4, 

5]. 

Research on off-flavour in sheep meat has identified a number of compounds that 

may contribute to the characteristic flavour of lamb and/or off-flavour. These include 

medium-chain branched fatty acids, namely 4-methyloctanoic acid, 4-ethyloctanoic acid 

and 4-methylnonanoic acid [3, 7], carboxylic acids, aldehydes, ketones, indoles (such as 

skatole) and sulphur-containing compounds [8]. It was proposed that off-odours and other 

sensory attributes may be associated with ram lambs as a result of them reaching sexual 

maturity [5], or that bacteria in the rumen may produce skatole, which may lead to a 

farmyard, slurry-like taint [6]. 

It is believed within the industry that there is a potential issue concerning the quality 

of ram lamb meat over castrated lambs and ewes. However, there appears to be little 

evidence to support this. Where there are claims that meat quality is lower in rams, it 

generally refers to colour, texture analysed by Warner Bratzler shear force, and higher 

ultimate pH, but it is accepted that if differences are apparent, they are small [2]. Lamb 

meat quality is influenced by breed, slaughter weight and sex according to Teixera et al. 

[9], and the sensory characteristics of tenderness, juiciness and flavour [10] as well as 

aroma and taste [11] are most important, as these are what the consumer experiences. 

This study compares the sensory evaluation of the meat from rams & castrates, from 

two breeds, fed on a variety of diets. It also investigates individual incidences of off-

odour/off-flavour, as assessed by the trained panellists. Analysis of the branched chain 

fatty acids (BCFA) is also reported. 



 

 

Janeen S. Speers et al. 348 

Experimental 

Materials 

Trial A (144 lambs), and Trial B (132 lambs) of two genders (entire male or castrate), 

two breeds (Suffolk cross (Trial A), Suffolk-Texel cross (Trial B), and Blackface-

Swaledale) were reared on six diet housing regimes as follows: Trial A – concentrate C, 

grass silage, clover silage (indoors), grazed grass, rape and stubble turnip (outdoors), 

Trial B – concentrate A, concentrate B, grass silage (indoors), grazed grass, rape and 

stubble turnip (outdoors). There were 6 animals per treatment for Trial A, and the 

experimental design included 50 % rams and 50% castrates. Trial B used the same 

experimental design as Trial A but for the indoor lambs there was just one breed with 11 

animals per treatment.  Lambs were slaughtered between 8-10 months old (November to 

January) and the longissimus dorsi removed, aged for 9 days at 4oC after boning, before 

being cut into 25 mm steaks, blast frozen and stored for future analyses. 

Sensory evaluation 

The left loin from each animal was subjected to sensory profiling by eight trained 

assessors using quantitative descriptive analysis to evaluate the samples over an 

unstructured line scale from 0 - 100. Assessors developed a common vocabulary to 

describe the characteristics of the fat and lean meat (presented separately) during training 

and they agreed upon definitions for each descriptor. Sensory evaluation was carried out 

over 12 sessions according to a latin square design.   

Samples were grilled to an internal temperature of 75oC with fat attached. Prior to 

serving, the fat was removed and served in a ceramic dish with a lid. Panellists assessed 

the aroma of the fat before assessing the lean meat for a number of attributes including 

aroma, texture, flavour and aftertaste. The results were statistically analysed using linear 

mixed methodology, using restricted maximum likelihood (REML) estimation. The 

incidences of off-flavours and off-odours in individual animals was also assessed by 

determining samples that were scored highly for particular attributes by assessors. 

Samples were defined as scoring highly if the score was greater than the mean + 2 x S.D 

for each individual panellist.  

Branched chain fatty acids 

Branched chain fatty acids were determined in adipose tissue attached according to 

an adaptation of the method of O’Fallon et al [12]. The limit of detection was 0.6 μg/g 

using mass spectrometry as the detector. 

Results and discussion 

Sensory profiling results (not shown here) did not show significant effects due to 

gender or breed that would suggest increased off-flavour or off-odour. There were some 

significant gender x breed interactions but they were small. Therefore, this paper focuses 

on the occurrence of sporadic incidences of off-flavour and off-odour in individual 

animals. Sensory evaluation showed that not all panellists were equally sensitive to off-

flavours and that they used the scoring system differently.  Therefore, detection of off-

flavours in meat from an animal was defined as when an individual panellist scored more 

than two standard deviations above their mean score. 
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1 a 1 b 

Figures 1 a & 1 b: Incidences of off-odour and off-flavour exceeding mean + 2*S.D for a minimum of 2 

assessors. There were 2 genders (Ram and Castrate) and 8 diets (Conc A (Concentrate A), Conc B (Concentrate 
B), Conc C (Concentrate), CSil (Clover Silage), Grass, GSil (Grass Silage), Rape and Turnip). 

Figure 1a illustrates that in Trial A the incidences of off-flavour and off-odour was 

higher for rams than castrates but, in Trial B, the opposite was true. Figure 1b shows that 

each diet had at least 14% of lambs which demonstrated off-odour/off-flavour, rising to 

more than 70% for some diets in Trial 2. However, there is no consistent effect of diet on 

sporadic off-flavours between trials, which may indicate a seasonal effect, or that off-

flavours are caused by some other factor. Work is ongoing to establish if there is a link 

with sire line and the farms where the lambs were born.  

  2 a 

 

  2 b 

 
Figures 2 a & b: Branched Chain Fatty Acids from 2 genders; Ram and Castrate, and 6 diets; Conc 

(Concentrate), CSil (Clover Silage), Grass, GSil (Grass Silage), Rape and Turnip. 

Figure 2 shows the mean concentrations of the three main BCFAs of interest.  For 

all three compounds, loin from rams contained higher levels, although the relative 

difference was smaller for 4-ethyloctanoic acid than the other two. Quantities of 

4-methyloctanoic acid were higher overall which is consistent with the findings of Young 

et al. [3]. These results were in keeping with other work which found that 4-ethyloctanoic 
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acid is present in much smaller amounts when compared to the more abundant 

4-methyloctanoic acid. All BCFAs studied are present in quantities greater than the odour 

threshold values according to Brennand et al. [13] and Wong et al. [14]. The lambs in this 

study were slaughtered between late November and early January. It is possible that the 

BCFAs were highest in the rams due to them reaching sexual maturity by October when 

they were approximately 30 weeks old [15]. Previous studies indicated that lambs should 

ideally be slaughtered before October to avoid potential issues with off-flavour in the 

meat [5]. The incidence of high levels of BCFAs for both trials (Figure 2) did not 

correspond with high scores for off-flavours and off-odours (Figure 1). This suggests that, 

although BCFAs are detectable at above the threshold, they do not have a consistent effect 

on sensory quality. Therefore, there may be another cause of the sporadic off-

odours/flavours in these lambs and research is ongoing.  

Conclusion 

There is no evidence from this study of any consistent off-flavour problem with ram 

lamb meat, and only small differences between meat from ram lambs and castrates.  

Therefore, there appears to be little argument from this data for castrating rams to improve 

meat quality.  Incidences of off-odour/off-flavour occur in individual lambs, both rams 

and castrates and the influence of diet is variable. The evidence suggests that BCFAs 

alone are not responsible and other compounds may contribute. 
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Abstract  

Sensory evaluation of traditionally prepared and industrially manufactured meat 

bouillons showed a striking difference in their flavour profiles. Notably, the latter were 

less intense in chicken or beef signature flavours. In order to gain an insight into the 

molecular basis responsible for these aroma differences, traditionally prepared and 

commercially available products were screened for aroma compounds by applying 

comparative aroma extract dilution analysis (cAEDA). In general, traditionally prepared 

samples showed much higher FD-factors for α,β-unsaturated aldehydes, e.g., (E)-2-

nonenal and (E,E)-2,4-decadienal, resulting in boiled, fatty aroma notes, whereas 

commercial samples revealed high FD-factors for organic acids, leading to sour, sweaty 

odours. 

Introduction 

The increasing consumer demand for organic, natural and authentic culinary 

products, free from taste enhancers or artificial antioxidants, has led to a surge in “all-

natural” meat bouillons in the markets. 

Sensory evaluation (Figure 1) of meat bouillons prepared at industrial-scale showed 

different flavour profiles when compared to bouillons prepared in a traditional manner.  

  

 

 

Traditionally prepared samples 

Commercial samples 

Figure 1: Aroma profiles of beef and chicken bouillons. Commercial samples (C) versus traditionally prepared 

samples (TP). Scale: 0 = aroma not detectable; 4 = strong aroma. 

Traditionally prepared chicken and beef bouillons showed much stronger meaty, 

fatty and boiled aroma notes whereas commercial samples revealed a more sour, malty 

and roasted aroma. In general, traditionally prepared samples were much more intense in 
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chicken or beef signature flavours. These differences might be caused by aroma losses, 

degradation upon processing or low quality of the raw materials. 

While aroma compounds of traditionally prepared chicken [1, 2] and beef bouillons 

[1, 2, 3] have been well studied, no data were available regarding the difference in aroma 

compared to commercial products. In order to gain more insight into the molecular 

composition responsible for this aroma difference, the aim of the present study was to 

identify the key aroma compounds by applying aroma extract dilution analysis (AEDA). 

Experimental 

Commercial (C) meat extracts were prepared according to instructions on the packet. 

Traditionally prepared (TP) standards were produced by experienced kitchen chefs using 

beef or chicken meat and water.  

Volatile compounds were isolated using high vacuum distillation (SAFE) after liquid 

extraction (diethyl ether). The distillate was concentrated (200 µl) and odour-active 

compounds were located by AEDA. Structural identification of aroma compounds was 

achieved by comparison of their mass spectra (EI), retention indices and odour 

characteristics with data of reference compounds analysed in parallel. Differences 

between TP and C samples were evaluated using comparative AEDA. 

Results and discussion 

Aroma-active compounds in traditionally prepared samples 

The results of the identification experiments in combination with the FD factors 

revealed 2-acetyl-1-pyrroline, 2-furfurylthiol, methional and (E)-2-nonenal as important 

aroma contributors in traditionally prepared boiled chicken and beef (Tables 1 and 2). 

The highest FD factor in chicken bouillon was found for (E,E)-2,4-decadienal (FD 1024), 

whereas this compound was of minor importance (FD < 4) in beef. For beef, FD-factors 

for furaneol (sweet, caramel-like aroma) were much higher, whereas for chicken more 

fatty aroma notes, e.g., (E)-2-decenal, (E,E)-2,4-nonadienal, were identified. These 

results are in good accordance with literature data [1, 2, 4]. Interestingly, 2-methyl-3-

furanthiol and bis(2-methyl-3-furyl)disulphide were not identified by AEDA in beef or 

chicken. These sulphur compounds were evaluated as important contributors for beef and 

chicken aroma by Gasser, 1990 [1], whereas in other studies [4, 5] their influence was 

rated rather low. In contrast to some literature studies on beef aroma [2, 6], 12-

methyltridecanal, which was identified as an important species-specific odorant was not 

detected in this study. 

Comparison of commercial and traditionally prepared samples 

Comparative AEDA showed significant differences between traditionally prepared 

and commercial samples, in good accordance with sensory results. Commercial chicken 

and beef samples presented higher FD factors for organic acids, e.g., acetic acid, butanoic 

acid, 2-methylbutanoic acid (Tables 1 and 2), resulting in significantly increased sour and 

sweaty aroma notes (Figure 1).  

In contrast, FD factors of α,β-unsaturated aldehydes, e.g., (E)-2-octenal, (E)-2-

nonenal, (E,E)-2,4-nonadienal and (E,E)-2,4-decadienal for chicken and (E)-2-octenal, 

(E)-2-nonenal and (E,Z)-2,6-nonadienal for beef were considerably lower for the 

commercial samples. The highest differences were found for (E)-2-nonenal (FD 256 

compared to FD 32 in chicken, FD 128 compared to FD 16 in beef) and (E,E)-2,4-

decadienal (FD 1024 compared to FD 32 in chicken). These aldehydes are well known to 
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contribute to the characteristic boiled, fatty aroma of meat and they are responsible for 

the typified aroma notes, in particular for boiled chicken [1]. Therefore, these aroma 

qualities were clearly lower in the aroma profiles of the commercial samples (Figure 1). 

Lower FD factors for pyrazines and 2-acetylthiazole were observed in the traditionally 

prepared sample. This may be a reason for significantly lower roasted aroma notes, 

whereas increased FD factors for 2-/3-methylbutanal may be correlated with increased 

malty odour notes in the commercial samples. 

Table 1: AEDA of chicken bouillons: traditionally prepared samples (TP) compared to commercial samples 
(C) (selected results). 

Compound Odour quality TP C 

2-/3-methylbutanal malty 8 64 

1-octen-3-one mushroom-like 32 8 

2-acetyl-1-pyrroline roasty 128 128 

2,3,5-trimethylpyrazine roasty, earthy 16 64 

(E)-2-octenal fatty 32 8 

2-furfurylthiol roasty, coffee-like 128 16 

3-ethyl-2,5-dimethylpyrazine earthy, roasty 32 128 

methional cooked potato-like 128 256 

acetic acid vinegar-like 8 32 

(E)-2-nonenal fatty 256 32 

(E)-2-decenal fatty 16 n.d. 

butanoic acid sweaty, sour 8 128 

2-methylbutanoic acid sweaty, sour n.d. 32 

2-acetylthiazole roasty 32 64 

(E,E)-2,4-nonadienal fatty, fried 64 16 

(E,Z)-2,4-decadienal fatty 16 n.d. 

(E,E)-2,4-decadienal fatty, fried 1024 32 

hexanoic acid sour, sweaty 8 32 

furaneol sweet, caramel-like 32 64 

phenylacetaldehyde flowery 8 16 
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Table 2: AEDA of (selected results) for beef bouillons: Traditionally prepared samples (TP) compared to 

commercial samples (C). 

Compound Odour quality TP C 

2-/3-methylbutanal malty 16 64 

2,3-pentanedione butter-like 8 n.d. 

1-octen-3-one mushroom-like 32 4 

2-acetyl-1-pyrroline roasty 256 256 

(E)-2-octenal fatty 16 8 

2-furfurylthiol roasty, coffee-like 128 16 

3-ethyl-2,5-dimethylpyrazine earthy, roasty 64 128 

acetic acid vinegar 16 64 

methional cooked potato-like 128 256 

2,3-diethyl-5-methylpyrazine earthy, roasty 32 64 

(E)-2-nonenal fatty 128 16 

(E,Z)-2,6-nonadienal cucumber-like 16 n.d. 

butanoic acid sour, sweaty 32 128 

2-methylbutanoic acid sweaty, sour n.d. 32 

2-acetylthiazole roasty 64 128 

β-ionone violet-like 16 8 

furaneol sweet, caramel-like 256 512 

 

In conclusion, key aroma compounds responsible for the differences in flavour 

profiles of industrially manufactured and traditionally prepared meat bouillons were 

identified by comparative AEDA. During industrial processing, on the one hand, a loss 

of α,β-unsaturated aldehydes, responsible for characteristic boiled, fatty aroma notes was 

observed, e.g., (E,E)-2,4-decadienal, whereas on the other hand organic acids, e.g., 

butanoic acid, responsible for sour, sweaty odours were increasing. Preliminary results 

(data not show) indicate that the concentration process is a critical step for aroma 

development. To obtain a closer insight into specific processing parameters, different 

model studies will be performed. The study shows the importance of identifying and 

monitoring character impact compounds. Additionally, manufacturing steps should be 

adapted in the best possible manner to obtain an authentic meat bouillon character. 
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Abstract 

Potential to decrease sourness, and thus increase sensory value of sea buckthorn 

berries, by using malolactic fermentation with Lactobacillus plantarum was investigated. 

Sea buckthorn juice samples were fermented with four different L. plantarum strains, and 

chemical changes related to fermentation were determined by analysing sugars, sugar 

alcohols and organic acids as trimethylsilyl-derivates from fermented sea buckthorn 

juices with GC-FID. There was a clear difference in fermentation efficiency between 

studied strains, strain 10492 being the most effective, resulting in total conversion of 

malic acid into lactic acid. Additionally, levels of total sugars maintained comparable to 

the non-treated juice with all strains, and thus sweetness was maintained. Therefore, L. 

plantarum with selected strains is potential candidate for malolactic fermentation of sea 

buckthorn. 

Introduction 

Sea buckthorn (Hippophaë rhamnoides L.) berries contain a versatile combination 

of chemical compounds having health promoting features such water-soluble vitamins 

(C, B1, and B2), fat-soluble vitamins (A, K, and E), fatty acids, flavonoids, and plant 

sterols [1]. However, the sour, bitter and astringent taste characteristics limit its regular 

consumption. The main chemical factors related to the sourness of sea buckthorn are the 

high concentrations of malic and quinic acids. Additionally, strong sourness intensifies 

the perception of astringency [2]. 

One potential treatment to increase the value of sea buckthorn would be to use 

malolactic fermentation, a method currently used for decreasing acidity of sour wines. In 

this process, certain lactic acid bacteria convert malic acid into lactic acid. In the wine 

industry, Oenococcus oeni is the most commonly used lactic acid bacteria [3]. However, 

while being effective in wines, O. oeni has specific nutrient requirements and a relatively 

slow growth rate [4], and thus other candidates for malolactic fermentation of atypical 

materials (such as sea buckthorn) are worth investigating. One potential candidate is 

Lactobacillus plantarum, a bacterial species commonly found in and responsible of the 

fermentation of plant-based lactic acid fermented foods such as sauerkraut and table 

olives. Potential benefit of L. plantarum is in its robustness: it has a relatively fast growth 

rate, tolerance of low pH, and low nutrient requirements [5]. However, studies related 

using L. plantarum as malolactic organism are currently limited. Here we evaluate the 

potential to use Lactobacillus plantarum to decrease acidity of sea buckthorn juice, and 

thus increase its sensory value. 
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Experimental 

Materials 

Frozen sea buckthorn berries (Hippophaë rhamnoides subp. mongolica) were 

obtained from Asterpajutooted OÜ (Tõrva, Estonia). Berries were originated from South 

Estonia, collected from multiple producers by the distributor. Berries were stored at –20 

°C until use. 

Four strains of Lactobacillus plantarum (DSM 16365, DSM 20174, DSM 10492, 

DSM 100813) were obtained from Leibniz Institute DSMZ-German Collection of 

Microorganisms and Cell Cultures (Leibniz, Germany) as freeze-dried cultures. Cultures 

were revived as instructed by the manufacturer, and stored in 10 % (v/v) glycerol in food-

grade medium (FGM) [6] at –20 °C until use. 

Sample preparation and fermentation set-up 

In order to prepare the juice, frozen berries were thawed in a microwave at 650 W 

for 5 minutes with intermittent mixing. Berries were made into a mash with an immersion 

blender. Juice was extracted from the mash with mechanical pressing. Prior to 

pasteurization, the juice was diluted 1:1 with active-carbon filtered water. Juices were 

pasteurized in an autoclave (Systec D-150, Linden, Germany) at 85 °C for 5 minutes. 

After pasteurization, juice samples were cooled down on an ice bath and stored at +4 °C 

for 24 hours before inoculation. 

To produce the starter cultures, each strains was inoculated into 250 ml of FGM by 

a scrape from the glycerol stock with a sterile inoculation loop. Cells were grown at +30 

°C for 24 hours. From each culture, cells were collected with centrifugation at 3410 × g 

for 10 minutes from 200 ml of o/n growth. Cells were washed twice with sterile saline 

solution and concentrated into a volume of 4,5 ml. Each juice sample of 100 ml was 

inoculated with 1 ml of respective cell concentrate. Fermentation was performed for +30 

°C for 72 h in iCinac equipment (Unity Scientific, Milford, USA) equipped with TW8 

water bath (Julabo, Seelbach, Germany). Each fermentation was prepared in duplicates. 

After fermentation, samples were collected in sterile 2 ml tubes and stored at –80 °C until 

analysis. 

Analysis of sugars, sugars alcohols, and organic acids 

First, the juice samples were diluted with reverse-osmosis water to achieve an 

appropriate concentration for the analyses. Aliquots of the diluted samples were dried 

under nitrogen flow, followed by derivatization of the sugars, sugars alcohol and organic 

acids with chlorotrimethylsilane reagent with pyridine and hexamethylsilazane (Tri-Sil 

HTP, Thermo Scientific, Bellefonte, PA, USA). Each sample was prepared in triplicate. 

TMS-derivated samples were analysed by using a Shimadzu 2010Plus gas 

chromatograph (Kyoto, Japan) equipped with flame ionization detector and Shimadzu 

AOC-20i autosampler. Analyses were performed on SPB-1 column (30 m x 0,25 mm ID, 

liquid film 0,25 μm, Supelco, Bellefonte, PA, USA). Internal standards were used for 

quantification, xylitol for sugars and sugar alcohols, and tartaric acid for organic acids. 

External standards were used for the calculation of correction factors and for the 

identification of the analytes. 
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Results and discussion 

The purpose of this work was to investigate the potential to utilize malolactic 

fermentation with Lactobacillus plantarum to decrease the acidity in sea buckthorn juice. 

The content of malic acid in the control juice was 11,5 ± 0,08 mg/ml (Figure 1). The level 

of malolactic fermentation varied greatly among the studied L. plantarum strains. Strain 

DSM 10492 was the most effective, with all malic acid converted into lactic acid. Strains 

DSM 20174 and 100813 had moderate conversions, and malic acid contents were reduced 

to 8,73 ± 0,19 and 8,34 ± 0.14 mg/ml, respectively. No conversion was detected with the 

strain 16365. 

 
Figure 1: Lactic acid, malic acid and total sugars (sum of fructose, glucose, myo-inositol and methyl-myo-

inositol) in control sea buckthorn juice and juices fermented with L. plantarum. Error bars present standard 

deviation (N = 6). 

As malic acid is converted into lactic acid, acidity is reduced due to decarboxylation, 

as was observed in the increase in pH of the fermented juices (Figure 2). Although lactic 

acid bacteria can use a variety of carbon sources, including monocarbohydrates such as 

glucose and fructose, the content of total sugars remained similar in the fermented juices 

compared to the control. A similar phenomenon was observed when sea buckthorn juice 

was fermented with other malolactic bacteria, Oenococcus oeni [7]. This is most likely 

due to the high acidity of the material. At low pH, L. plantarum seems to prefer malic 

acid as an energy source over sugars, possibly due to passive diffusion, as the acids are 

predominately present in the protonated form [3]. 

Other identified and quantified compounds were the organic acids citric acid, quinic 

acid, and ascorbic acid, and the sugars ethyl-glucose, myo-inositol, and methyl-myo-

inositol. Additionally, the sugar alcohol L-quebrachitol was identified. Compared to the 

control, samples fermented with strain 10492 had a small but significant (P<0,05) 

decrease in levels of citric acid, fructose, and quinic acid. Comparing the same samples, 

significantly higher levels (P<0,05) of ascorbic acid and ethyl-glucose were measured in 

the fermented samples compared to the control. 
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Figure 2: Measured pH in sea buckthorn control juice and in juices fermented with L. plantarum. Error bars 

present standard deviation (N = 4). 

All in all, our results indicate that L. plantarum could be used for malolactic 

fermentation of sea buckthorn juice without additional nutrients or by increasing the pH. 

Additionally, other acids, sugars and sugar alcohols remained mostly unfermented. 

Therefore, this method also maintains the sweetness of the berry juice. However, the 

effectiveness of the fermentation is highly affected by the strain. Thus, prior investigation 

of the suitable strains is important. On the other hand, prolonged malolactic fermentation 

can also produce unwanted off-flavours on strain-dependent basis [7], possibly due to the 

production of alcohols [8]. On the other hand, malolactic fermentation with O. oeni was 

shown to increase fruity notes in sea buckthorn juice by releasing more ethyl esters or 

acetate esters of fatty acids [8]. Our work should therefore in the future be combined with 

aroma analysis and sensory evaluations to confirm how the sensory value and the flavour 

of sea buckthorn are affected by lactic acid fermentation with L. plantarum. 
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Abstract  

Aronia (Aronia mitschurinii) is rich in different polyphenolic compounds and 

sorbitol. Pressed aronia juice has a beautiful colour. The aim of this work was to analyse 

smell and taste of aronia juices prepared from berries grown in South-West of Finland. 

Sensory properties were studied using projective mapping with consumers and applying 

qualitative profiling with experienced sensory panel. Sugar and acid composition was 

analysed with GC-FID. Based on our results, pectinase treatment had a negative impact 

on both odour and taste of aronia juice.  

Introduction 

Berries, in general, are rich in polyphenols and various other bioactive components 

and their possible health inducing properties are intensively studied. However, some 

eatible berries such as bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-

idaea), sea buckthorn (Hippophae rhamnoides), black currant (Ribes nigrum), red 

currant (Ribes rubrum) have challenging flavour and taste properties which may limit 

their further utilization despite their healthiness [1-2]. Aronia (Aronia mitschurinii), also 

called chokeberry, is a shrub that originates from the eastern part of North America. 

Aronia is a popular garden decoration also in Europe and in Finland, mainly consumed 

by birds instead of human consumers. The colour of aronia juice is deep violet and stable 

and it has high contents of various polyphenols. However, due to the strong and mostly 

unfamiliar orosensory properties of the berry [3], chokeberries are usually used in blended 

juices.  

The aims of this work were to 1) analyse smell and taste of aronia juices prepared 

from berries grown in South-West of Finland, 2) study the effect of enzymatic pectinase 

treatment on odour, taste and flavour, 3) study the effect of sucrose or citric acid addition 

on the sensory properties of juice. 

Experimental 

Samples are shown in Table 1 and the protocol is shown in Figure 1. Aronia berries 

were grown in Turku (Finland) and harvested in 2016. Juices (n = 6) were pressed from 

crushed berries without (I) and with (II) pectinolytic enzyme (Pectinex Ultra SP-L, 

Novozymes) treatment applying incubation for 5h at 50°C. Also sucrose (1 %) or citric 

acid (0.15 %) was added to some samples.  

Table 1: Sample set included 6 different juice samples.  

Juice samples w/o pectinase w pectinase 

Juice No enzyme Enzyme 

Juice + Sucrose 1 % No enzyme / added sugar Enzyme / added sugar 

Juice + Citric acid 0.15 % No enzyme / added acid Enzyme / added acid 

 

 

https://en.wikipedia.org/wiki/Hippophae_rhamnoides
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Figure 1: Study protocol for flavour research moving from aronia berries to pressed aronia juices applying 

enzymatic treatment.   

Differences and similarities of all the samples were studied using projective mapping 

(PM) with volunteer participants (n = 32) in controlled sensory laboratory environment 

(ISO 8589). Pure juices were diluted with water (carbon-filtrated) 1/2 before the sensory 

evaluation. Moreover, qualitative descriptive analysis was applied to describe the sensory 

properties of juices in our sensory laboratory by experienced sensory panellists (n = 7).  

In addition, gas chromatography (GC) with flame ionization detection (FID) was 

applied to determine the sugar and acid contents in juices without any sugar or acid 

addition. Sugars and acids were measured by GC as trimethylsilyl derivatives [4]. GC-

FID was Shimadzu with a column (SPB-1, 30 m x 0.25 mm x 0.25 um, Supelco), 

temperature of injector: 210 °C, temperature of detector: 290 °C. GC-analysis was 150 

°C  (hold 2 min), rate 4 °C/min => 210 °C/min, rate 40 °C/min 0 => 275 °C (hold 5 min) 

with a total time 28.6 minutes).  

Results of projective mapping were processed with Principal Component Regression 

(PCR) and full cross validation using Unscrambler X (Camo, Norway).  In PCR-model 

X-variables were sample coordinates from project mapping and sensory descriptors were 

defined as Y-variables.    

Results and discussion 

Our results showed a clear impact of enzyme treatment on smell and taste of aronia 

juices (Figure 2). Two separate PCR models were created based on odour and flavour 

evaluations (Figure 2A and 2B, respectively) with sample coordinates by 32 participants 

as X-data explaining the variances in sensory descriptors data (Y-data) with three 

validated components in both models. Differences between juices produced with or 

without enzymes are shown on the first PCs in both models whereas notably less 

significant components 2 and 3 show the impact of added sugar or acid on the sensory 

quality. The key odour and flavour descriptors describing the differences between the two 

juice types are shown in Table 2. In the PM test based on flavour and taste (Figure 2B), 

juice with added acid locate on lower section of plot on PC-2 together with astringent 
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descriptors as opposed to (loadings plots not shown). In the PM test based on odour, 

addition either sucrose or citric acid to the juice samples had little impact on the sensory 

descriptors.   

 
Figure 2: PCR Score plots showing the distributions of six aronia juice samples by the participants in PM test 
based on odour (A) or flavour and taste characteristics (B).   

Most common sensory descriptors for aronia juice samples were “sour”, “sweet” and 

“astringent”. Juices produced with pectinase were described as “unpleasant” with 

descriptions such as “almond”, “nutty” and “oat-like” or “grainy” odour and their flavours 

were “stale” and with various astringent descriptors (Table 2). Somewhat expected 

notable increase in astringent properties was due to the release of polyphenolic 

compounds from berry skins by the enzymes [5]. Juices without enzymatic assistance 

were described as more pleasant with odour attributes such as “forest”, “aronia” and 

“sweet” and flavours “berry-like” and “sweet”. Addition of low concentration of sucrose 

or citric acid did not result in notable new odour or flavour descriptors in comparison to 

descriptor differences between juice treatments. 

Table 2: Odour and flavour or taste properties for diluted juice samples.  

Odour  

w/o  pectinase 

Odour  

w/ pectinase 

Flavour and taste 

w/o  pectinase 

Flavour and taste 

w/ pectinase 

Aronia Earthy Berry-like Almond 

Forest Fermented Fermented Astringent 

Fresh 

Pleasant 

Sour 

Sweet 

Feed 

Nutty 

Stale 

Unpleasant 

Oat/grain 

 

Leaf-like 

Sweet 

Bitter 

 

 

Mouth-drying 

Puckering 

Stale 

Watery 

Berry 

Based on GC-analyses main sugars were glucose, sorbitol and fructose, and main 

acids were malic and quinic acid (Table 3) in both juices (w/ and w/o pectinase). Also 

there were no differences in concentrations of sugars and acids. Although in some berries 

and berry products the ratio between sugars and acids is a critical predictor of flavour [1-
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2,6], we may conclude that flavour differences between pectinase treated and natural juice 

could be better explained by other compounds than original sugars and acids. 

Table 3: Sugar and acid composition (mg/100 ml) of juice samples  

 

mg/100ml 

Juice 

w/o pectinase  

Juice  

w/ pectinase 

Succinic acid 1.39±0.3 1.57±0.3 

Malic acid 421±15 416±10 

Isocitric acid 20.8±4.8 22.2±4.0 

Citric acid 3.0±2.6 2.9±3.6 

Quinic acid 142±7.2 147±7.4 

Fructose 1150±130 1120±160 

Glucose 10900±760 10000±1200 

Sorbitol 2550±52 2490±85 

Sucrose 358±270 404±370 

Sugar-acid ratio 25.4 23.8 

Inclusion of pectinolytic enzyme to the juice pressing process gave the aronia juices 

in this study very strong odour and flavour characteristics different from juices without 

enzymatic assistance. Enzyme treatments used in food industry will typically contribute 

to yields of pressed juice instead of focusing on flavour. However, in the case of aronia, 

they may also create flavours, which may be considered as undesired and unpleasant by 

consumers. 
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Abstract 

Methyl 3-methoxy-3-phenyl-propanoate (3-MMPP) is seen as a potential marker, 

which is used by analytical laboratories and NGO´s to conclude on the correct production 

of natural methyl cinnamate (MC) qualities according to the EU flavour directive 

1334/2008. However, there have been questions about its validity, as a marker for 

adulteration is only valid, if it can unmistakably be associated with non- permitted starting 

materials and/or process conditions. There are two obvious routes to get access to natural 

methyl cinnamate, which would be in full compliance with the requirements for natural 

flavouring substances according EU flavour regulation 1334/2008. As potential starting 

materials natural cinnamic acid or Alpinia malaccensis roots can be used. Within this 

study we shed light on the potential formation of 3-MMPP during processing and proved 

that this trace compound is not appropriate as a marker for adulteration.    

Introduction 

There is a global trend towards natural food solutions. Hence the industry is looking 

for ways to increase their portfolio of natural aroma compounds. Good examples are the 

esters of cinnamic acid, which are widely used for fragrance compositions as well as for 

the creation of flavours. Especially the methyl ester of cinnamic acid is widely used due 

to its sweet, aromatic and balsamic notes combined with a fruity odour. Methyl cinnamate 

occurs naturally in a variety of plants, including fruits like strawberry and some culinary 

spices, such as thyme and basil. However, the isolation from these species is not 

economically feasible. Alternative sources are essential oils of rhizomes of various 

Alpinia species, e.g. Alpinia malaccensis [1] containing approximately 78% methyl 

cinnamate (Figure1). [2,3]  

 

 

 

 

 

 

Figure 1: Potential ways to generate methyl cinnamate from different sources. 

Another alternative would be the esterification of widely available natural cinnamic 

acid with methanol form natural sources under conditions permitted by corresponding 

national or international laws. Natural aroma compounds are mostly more expensive than 

their synthetic equivalents and are therefore prone to adulteration. Several sophisticated 

methods, e.g. isotopic ratio mass spectrometry [4] or SNIF-NMR, have been developed 

to identify adulterated material. As these methods are not always conclusive, the presence 

of trace components is often considered as an additional marker. The presence of 3-
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MMPP is often referenced as an indicator for potential adulteration, when found in natural 

methyl cinnamate samples. At the same time there is no published evidence supporting 

the quality of this potential indicator. Within this study we attempted to check the 

suitability of 3-MMPP by answering the question whether or not 3-MMPP can be formed 

during processing of a suitable raw material. In this study it was also investigated, whether 

the formation of 3-MMPP could serve as a potential indicator for the use of a mineral acid 

during the esterification of cinnamic acid. 

Experimental 

Materials and methods 

All chemicals were purchased from commercial suppliers. Dried roots of A. 

malaccensis were purchased from Indonesia via a German distributor. 

GC/MS-Analysis was conducted using a HP 6890N (Agilent, Santa Clara, CA, 

USA), fitted with a DB-WAXms capillary column (Phenomenex, Torrance, CA, USA) 

(30m*0.25mm i.d., df 0.25µm), coupled with an MSD 5975C (Agilent, Santa Clara, CA, 

USA). The GC conditions for the GC/MS-analysis were: split injection (split ratio 20:1), 

injector temperature 230°C; initial oven temperature at 60°C for 1min, ramp at 4°C/min 

to 230°C for 20min. Helium was used as the carrier gas and the flow rate was 2.0mL/min. 

Quantities of 3-MMPP were determined via semi-quantification against the internal 

standard 2-Nonanol using the GC-FID signal. 

All stable isotope measurements were performed using a gas chromatography-

combustion/ high temperature conversion-isotope ratio mass spectrometry (GC-C/HTC-

IRMS) system consisting of an HP 7890B gas chromatograph (Agilent, Santa Clara, CA, 

USA) equipped with a robotic autosampler (CTC Analytics, Zwingen, Switzerland), 

coupled to a BiovisION isotope ratio mass spectrometer (Elementar, Langenselbold, 

Germany) via an oxidation reactor (δ13C) or via a pyrolysis reactor (δ2H) in a GC5 

interface (Elementar, Langenselbold, Germany). All δ13C and δ2H values were 

normalized relative to V-PDB or V-SMOW by a two-point calibration using two vanillin 

working standard with distinct isotope signatures. 

Results and Discussion 

Isolation of methyl cinnamate from Alpinia malaccensis 

The processing of the dried rhizomes of Alpinia malaccensis can either be done by 

extraction with a suitable solvent (e.g. methanol) or hydrodistillation with subsequent 

rectification to obtain sensorially acceptable products. Dried Alpinia malaccensis 

rhizomes from Indonesia were extracted by simultaneous distillation extraction (SDE) 

employing water and a mixture of diethylether/pentane to mimic hydrodistillation 

conditions. In addition, the rhizomes were extracted with methanol and the solvent 

removed with and without the addition of Na2CO3 to prevent the decomposition by acidic 

byproducts during rectification. As expected, it was not possible to distinguish the 

different processing conditions via IRMS data (Table 1). 
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Table 1: IRMS data and formation of 3-MMPP during different extraction conditions. 

work-up procedure 
Methyl Cinnamate 

3-MMPP 
delta 13C delta 2H 

SDE ̶  26.5 ± 1.0 ‰ ̶  150 ± 15 ‰ ./. 

methanolic extract w/o 

addition of Na2CO3 
̶  26.6 ± 1.0 ‰ ̶  151 ± 15 ‰ ./. 

methanolic extract with 

addition of Na2CO3 
̶  27.2 ± 1.0 ‰ ̶  146 ± 15 ‰ 720 ppm 

However, the addition of Na2CO3 led to the formation of significant amounts of 3-

MMPP which is in line with related reactions described in chemical literature. [5] So even 

during processing of a widely accepted raw material, traces of 3-MMPP can be formed 

and good communication with the corresponding supplier is mandatory. 

Generation of methyl cinnamate via esterification 

Our studies showed that the esterification of cinnamic acid and methanol is possible 

under various conditions. Surprisingly, simple heating of a mixture of both starting 

materials led to significant formation of methyl cinnamate without the need of any 

additional additives (Table 2). Moreover, there is no significant difference regarding the 

formation of 3-MMPP neither between the use of a mineral or organic acid nor without 

the use of any additive. 

Table 2: Generation of methyl cinnmate starting from cinnamic acid and methanol.  

Cinnamic 

acid [mmol] 

Methanol 

[mmol] 

Additive 

[mmol] 
Conditions 

Conversion 

[%] 

MC :      

3-MMPP 

34 244 
Sulfuric acid 

16.9 
6h reflux > 90 50:1 

27.0 244 
Tartaric acid 

2.7 
9h, 120 °C/ 4.2 bar 15 67:1 

67 280 none 26h, 120 °C/ 4.2 bar 19 63:1 

In many regulations heating of methanol and cinnamic acid under slightly elevated 

temperature and pressure is a process which is allowed for the generation of natural aroma 

compounds. Hence the use of 3-MMPP as a potential marker for authenticity is highly 

questionable, as there is no reliable evidence for unequivocal differentiation between the 

use of permitted and non-permitted process conditions according to the EU flavour 

regulation 1334/2008 during the generation of natural methyl cinnamate. 
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Summary 

Available natural methyl cinnamate (European legislation) can at least be generated 

via two different processes. Firstly, an extraction/distillation of Alpinia malaccensis roots 

should be feasible. Here the generation of 3-MMPP could be traced back to the potential 

use of processing aids (e.g. Na2CO3) which are widely used and comply with current 

legislation for the generation of natural aroma chemicals. Secondly esterification of 

methanol and cinnamic acid delivers a suitable product, providing the used raw materials 

are sourced in a natural quality. Here we could show that methyl cinnamate could be 

formed easily as assumed under the addition of a mineral acid. However, it could also be 

formed just by addition of an organic acid or even without any additives. In all cases 3-

MMPP could be detected. Taking this into account, the use of 3-MMP as potential marker 

for adulteration should be challenged.   
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Abstract 

Cajuput essential oils (CEO) were utilized as a functional flavour in Cajuputs® 

candy. CEO are produced in several areas of Indonesia such as Buru Island, Bupolo, 

Namlea, Belu, Gelaran, Sendang mole, Tanjung enim, Indramayu, Ponorogo, Mojokerto, 

Gundih, Kuningan, and Pasuruan. The quality of these CEO, however, might be 

influenced by its geographical origin. The current product is utilizing CEO originated 

from Buru Island as its flavouring. The aim of this study was to obtain compatible CEO 

as alternative functional flavour for Cajuputs® candy. The physicochemical properties 

such as density, refractive index, optical rotation, solubility in alcohol 70% and cineol 

content were examined. Hedonic test and different from control test were also conducted 

to evaluate their sensory characteristics. Principal Component Analysis (PCA) was 

applied to observe the mapping of CEO from different origin based on their 

physicochemical and sensory properties. The results showed that CEO from Bupolo, 

Ponorogo and Mojokerto showed good compatibility in terms of the best acceptance rate 

of taste, aroma and overall attributes, and having the least difference to the reference 

characteristics. 

Introduction 

Cajuput essential oils (CEO) derived from Melaleuca cajuputi species are known to 

have antibacterial and antifungal activity related to their bioactive compounds [1,2]. CEO 

has been long used for tropical medicine, yet it was developed as functional flavour in 

Cajuputs® candy, an Indonesian herbal-based lozenge which was also proved to maintain 

the oral health from pathogenic microbial infections. Since 1997 this functional candy 

has been produced by using CEO from Buru island as its main flavouring. However, the 

availability of this CEO was gradually decreasing since most of their producers had 

become gold miners. Therefore, it is necessary to explore alternative CEO with 

compatible flavour characteristics for Cajuputs® candy. 

Indonesia has many sources of CEO due to the excellent adaptability of the plants to 

grow both in dry and wetlands or even in swamp areas. However, the quality of CEO 

seems different depending on the origin. The aim of this study was to obtain compatible 

CEO, in terms of their physicochemical and sensory properties, as alternative functional 

flavouring for cajuputs Cajuputs® candy. 

Experimental 

Materials 

CEO were obtained from steam distillation of leaves and twigs of cajuput plants 

(Melaleuca cajuputi) collected from 13 different locations, with Buru island CEO used 

as the reference. Others CEO samples were obtained from private suppliers (Bupolo, 

Namlea and Belu), Dinas Kehutanan dan Perkebunan Daerah Istimewa Yogyakarta 

(Gelaran and Sendang mole), Bukit Asam Company (Tanjung enim), and Kesatuan Bisnis 
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Mandiri IMKP Surabaya (Indramayu, Ponorogo, Mojokerto, Gundih, Kuningan, and 

Pasuruan). Peppermint oil was purchased at PT. Brataco Chemika. 

Preparation of candy 

The original Cajuputs® candy non sucrose was made based on the procedures 

conducted by Wijaya [3].  

Physicochemical analysis 

The physicochemical properties of CEO were examined based on Indonesian 

national standard for CEO (SNI 06-3954-2006).  

Sensory evaluation 

The hedonic rating test and different from control test of Cajuputs® candy were 

performed for the CEO sensory analysis. They were done according to Meilgaard et al. 

[4]. In case of the hedonic test, the samples were given to the panellists in the block system 

according to the Balanced Incompleted Block Design [5]. 

Statistics analysis 

Analysis of variance (ANOVA) was conducted to assess significant differences 

between samples Cajuputs® candy using the SPSS version 22.0 program (SPSS Inc., 

Chicago, IL, USA). Dunnet test was performed for the different from control test data 

while the hedonic test data was analysed by Duncan's test. P value < 0.05 was considered 

statistically significant. Principal component analysis was performed to map 13 CEO 

towards their physicochemical properties and hedonic scores using Minitab 16 (Minitab 

Inc., USA). 

Results and discussion 

The CEO had different colour, ranging from colourless to greenish. They also had 

strong cajuput-like odour, except for Belu CEO which was showing off-flavour. As 

shown in table 1, none of these 12 CEO showed significant differences among the CEO. 

In addition, they also had a high similarity to the reference except for the cineol content 

and optical rotation. Most of the CEO samples had a good quality based on SNI standard. 

Tanjung enim, Gelaran, Sendang mole and Namlea were out of the range due to their 

lower cineol content. 

 

Figure 1: Different from control test of Cajuputs® candy derived from several CEO in Indonesia (Blind Control 

= Reference) 

Panellists’ given response showed that there were significant differences between 

the samples and the reference (p<0.05) on the overall attributes (Figure 1). Cajuputs® 

candy with CEO from Belu had the most different sensory characteristic from the 

reference. It might be due to its strong metallic odour and off-flavour. Similar 

phenomenon was found on the CEO from Indramayu. On the other hand, Bupolo and 
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Namlea CEO had a huge similarity with the reference. This could be due to their similar 

geographical origin. However, the most similar sensory characteristic of CEO in terms of 

flavour was shown by CEO from Mojokerto. Interestingly, Mojokerto is located on a 

different island, however, it showed better similarity. It indicated that the compatibility 

of the CEO is not only due to the geographical impact, but also due some other factors. 

There should be specific chemical compounds on CEO which could affect their similarity. 

Similar tendencies were also found on Kuningan, Pasuruan and Ponorogo CEO. 

Table 1: Physicochemical properties of CEO from different origins 

No CEO Origins 

Analysis parameters 

Smell test Density 
Refractive 

index 

Optical 

rotation 

Solubility 
in alcohol 

70% 

Cineol 
content 

(%) 

cajuput-like 
0,900 – 
0,930 

1,450 –
1,470 

(-) 4,00 –   
0,00 

1:1 – 1:10 50 – 65 

1 
Buru Island 

(Reference) 
cajuput-like 0,915 1,463 (-) 0,10 1:3 50,10 

2 Tanjung enim slightly metallic 0,924 1,470 (-) 0,30 1:3 43,16 

3 Gelaran cajuput-like 0,911 1,468 (-) 7,60 1:3 41,51 

4 Sendang mole cajuput-like 0,913 1,468 (-) 0,40 1:3 46,29 

5 Bupolo cajuput-like 0,917 1,467 (-) 0,35 1:3 54,62 

6 Belu Off-flavour 0,917 1,465 (-) 3,40 1:3 52,78 

7 Gundih cajuput-like 0,910 1,467 (-) 6,10 1:3 51,44 

8 Pasuruan cajuput-like 0,910 1,467 (-) 4,10 1:3 64,79 

9 Ponorogo cajuput-like 0,916 1,465 (-) 5,40 1:3 53,79 

10 Mojokerto cajuput-like 0,913 1,468 (-) 3,40 1:3 56,71 

11 Indramayu Slightly burned 0,914 1,461 (-) 0,50 1:3 57,76 

12 Kuningan cajuput-like 0,915 1,468 (-) 0,90 1:3 60,50 

13 Namlea cajuput-like 0,915 1,466 (-) 2,00 1:3 45,86 

 

The results from the hedonic test results (Figure 2) showed that the level of 

panellists’ preference was influenced also by the origin of the CEO. The results showed 

that the preferences upon candy which was added with CEO from Belu showed the lowest 

score. CEO from Ponorogo, Mojokerto, Kuningan, Bupolo, and Namlea had a similar 

preference level, equal to the reference. These results supported the previous finding that 

the CEO with high similar sensory characteristic to the reference tends to obtain high 

score of preference level approach to the reference. 

 
Figure 2:  Hedonic test of Cajuputs® candy derived from several CEO in Indonesia (p< 0,05) 

The mapping of the physicochemical properties into the sensory characteristics 

showed that the CEO from Bupolo, Mojokerto, and Ponorogo were the most potential 

CEO to be developed as compatible functional flavour ingredients in Cajuputs® candy 
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due to their similarity with the reference (Figure 3). This grouping tends to be dominated 

by the panellists’ preferences in terms of taste, aroma (data not shown) and the overall 

attributes. Cineol content also gives a significant contribution. The second option comes 

to the group of CEO from Pasuruan, Kuningan and Namlea. 

 
Figure 3: Score plot (a) and loading plot (b) PCA of different origins CEO towards its physicochemical 
properties and sensory characteristics 

Moreover, the data proved that although the physicochemical characteristic of the 

CEOs (Table 1) looks similar to the reference, the sensory characteristics toward the 

Cajuputs®candy showed diversity. Similar with the previous phenomena, Mojokerto, 

Ponorogo, Kuningan, and Pasuruan CEO which were located in a different island as the 

CEO reference origin, having similar sensory characteristic as the reference (Figure 1). 

Surprisingly, not all of the CEOs which met the requirements of SNI standard obtained a 

good sensory preference level (Figure 2). Otherwise, some CEO those had high level of 

preferences and high similarity on sensory characteristic actually did not met the 

requirements of SNI (Pasuruan, Ponorogo and Namlea). Therefore, further studies are 

necessary to be done in order to investigate the correlation of the CEO origin with their 

chemicals composition, particularly for the volatiles which contributed to the flavour 

perception.  
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Abstract  

The efficacy of three divers processing atmospheres: nitrogen (N2), carbon dioxide 

(CO2), and conventional “air” (O2) (as a control), for the protection of the volatile aroma 

compounds of commercially produced orange juice during its guaranteed four-month 

shelf life was investigated over two successive production years. Headspace-solid phase 

microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), and in 

parallel gas chromatography coupled to the flame ionization detector and with 

olfactometry (GC-FID/O) were used for the isolation, and subsequently for investigation 

of the volatiles with the emphasis on the key odour-active constituents of the aroma. 

Gained results showed that inert processing atmospheres can partly preserve the aroma 

profile of the orange juice. The best results were obtained with N2 application. Concerning 

the outcomes of CO2 application on orange juices, the results were comparable with N2, 

but acceptability of juices treated by CO2 have to be considered by consumers because of 

the sparkling character of final products evoking more sour taste. Nevertheless, none of 

two investigated inert gases was able to avoid all changes in the composition of volatiles 

during the storage time. However, from a sensory point of view, GC-FID/O analyses 

proved that these changes are not significant to that extent to lead to deterioration in the 

overall flavour of juices. On the contrary, certain negative sensory changes were observed 

for juices processed in conventional “air” (O2) atmosphere as early as in second month of 

four-month shelf life, and they were getting worse gradually over the storage time. GC-

FID/O revealed that the generation of some aldehydes, mainly hexanal, nonanal and 

perillaldehyde, as a consequence of oxidative changes could be responsible for this off-

flavour phenomenon. In these juices obvious increase in bitter and waxy odour and taste 

was noticed, as well as the appearance of considerable astringent taste, a certain loss of 

freshness and fruity sweetness, and undesirable colour changes.  

Introduction 

Generally, the flavour of fresh hand-squeezed orange juice is considered to be the 

most attractive one, and it is used as a reference etalon against which all other types of 

orange juices are judged. Nevertheless, sensory perception evoked by commercial 

produced orange juice can be quite different because individual stages of industrial 

processing (freezing/thawing, depulping, deaeration, pasteurisation of raw juice) [1-9], 

influence of used packaging materials, as well as long-term storage in retail chain (impact 

of temperature, time, oxygen content, light exposure) result in some alterations in original 

fresh juice aroma [10-15]. It is obvious that a lot of effort has been devoted to the research 

of commercial orange juice up to now, so one potential way how to reduce degradation 

of fruit juices during storage can be their production under inert atmosphere.  
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Experimental 

Materials 

Raw, unconcentrated orange juice imported from Costa Rica in frozen state was 

obtained, and afterwards technologically processed by McCarter a.s., Bratislava, 

Slovakia. After unfreezing, juice was enriched with pulp, mixed, pasteurised at up to 95 

°C during 20 s and filled aseptically into the 200 ml polyethylene terephthalate (PET) 

bottles with oxygen scavengers. The first year, one series of samples from the same batch 

of raw juice was processed under N2 atmosphere, and the second one by the traditional 

technology in conventional “air” (O2) atmosphere. In the second year, one series of 

samples was produced under N2, and the second one under CO2 atmosphere. Bottled 

samples were stored in lab at 7±1 °C in the showcase refrigerator under conditions 

simulating the daylight exposure, i.e. typical conditions in a retail chain, within 4-month 

shelf life period. Analyses were performed in 24 h after delivery of samples to the lab, 

and then on a monthly basis. 

Head-space solid phase microextraction (HS-SPME) 

Each sample of orange juice (5.0 ml) was incubated statically in a 40 ml glass vial 

in a metallic block thermostat at 35 °C for 30 min, with a SPME fibre with 50/30 µm 

DVB/Carboxen/PDMS film (2 cm stable flex) placed in the headspace of sample. HS-

SPME isolates were desorbed at 250 °C in GC injector during the entire GC runs. 

Gas chromatography-mass spectrometry (GC-MS) 

Obtained complex mixtures of the volatiles were analysed by GC-MS using the gas 

chromatograph Agilent 6890N coupled to the mass spectrometric detector 5973 inert 

equipped with fused silica capillary GC column Ultra 1 (50 m × 0.32 mm × 0.52 µm) 

operating with a temperature programme 35 °C (2 min), 4 °C.min-1, 200 °C. The linear 

velocity of carrier gas helium was 33 cm.s-1 (measured at 143 °C). Splitless injection 

mode was used at an injector temperature of 250 °C. Ionization voltage (EI) was set to 70 

eV. Identification of compounds was performed by comparison of measured mass spectra 

with available mass spectral libraries Wiley and NIST MS. Relative proportions of 

individual volatiles as semi-quantitative parameters were calculated by the method of 

internal normalization and expressed as a percentage; the values were the averages of 

triplicates (data not shown). 

Gas chromatography-olfactometry (GC-FID/O) 

GC-FID/O was involved using the detection frequency concept of posterior 

evaluation of odour quality and odour intensity of individual odorants. A sniffing panel 

was formed from 5 sniffers who were chosen from 11 well-trained assessors in sensory 

analysis. Results of these analyses were expressed as the average values of estimated 

odour intensities in a scale from 0 to 3 with increments of 0.5, obtained from 5 

independent measurements. Each sensory perception was based on at least 4 citations. 

The value ±0.5 was considered as measurement deviation. For the performance of these 

analyses, as well as for the determination of linear retention indices the gas 

chromatograph Agilent 7890A was coupled to FID and an olfactory detection port 

(ODP3, Gerstel). GC column Ultra 1 (50 m × 0.32 mm × 0.52 µm) operated with the 

temperature programme 35 °C (2 min), 4 °C.min-1, 200 °C. Hydrogen was used as a 

carrier gas at the linear velocity of 44.6 cm.s-1 (measured at 143 °C). Splitless injection 

mode was used at injector temperature of 250 °C. The linear retention indices (LRIU1) 

were calculated according to the equation of Van den Dool and Kratz [16], using n-

alkanes C6–C14 as reference compounds. For GC-FID/O experiments the effluent of the 
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column was splitted with a ratio of 1:1 to the FID and ODP, which operated at the 

temperature of 180 °C, interface temperature was 230 °C, the flow of added N2 in ODP 

humidifier 12 ml.min-1. The sniffing time of each judge did not exceed 30 min.  

Results and discussion 

GC-FID/O study of juices produced under N2 atmosphere vs “air“(O2) atmosphere 

GC-FID/O technique was used in order to detect and identify volatiles which can be 

responsible for the sensory differences observed between juices processed in inert and 

conventional “air“ atmosphere during storage, as well as to reveal potential off-flavour 

compounds causing negative changes in the aroma of juices. In general, 24 odour-active 

compounds were detected in the orange juice irrespective of used processing atmosphere 

(Fig. 1, Tab. 1), however, only 23 olfactory responses were recorded, due to the overlap 

between odours of octanal + β-myrcene. Odorants D-limonene, (Z)-β-ocimene, δ-3-

carene, α-terpinolenet, linalool, L-limonenet and decanal were principal in the volatile 

fraction of orange juice. They contributed with their high odour intensities (from 2 to 3) 

to the overall odour of orange juice to a decisive degree and thus, they were the most 

characteristic components of its odour. With regard to odorants such as (E)-2-hexenal, D-

limonene, (Z)-β-ocimene, α-terpinolenet, linalool, perillaldehyde and unknown 

compound No. 23, their odour intensities remained unchanged during the entire storage 

period in both processing atmospheres. 

 
Figure 1: Gas chromatogram + olfactogram of orange juice volatiles (production without inert gas (O2), 0. 

month of storage) obtained by HS-SPME coupled to GC-FID/O. The numbering verticals, marking olfactory 
responses corresponds to Tab. 1. 

On the contrary, hexanal (green, grassy, leafy and bitterish odour), and also nonanal 

(soapy, waxy, tallow-like odour) were detected only in samples produced in conventional 

(O)2 atmosphere (Tab.1). Perillaldehyde (smoked, cumin, spicy odour) was noticed in 

both atmospheres, but in conventional one showed higher odour intensity. Intensity of 

decanal (orange peel-like, waxy odour) dropped in N2 atmosphere, whereas in 

conventional one was stable. Only undecanal (fatty, citrus, aldehydic, waxy odour) 

showed increasing trend in both atmospheres. Concerning the observed changes in odour 

intensities of some aldehydes, they can explain deterioration of the organoleptic 

properties of juice processed in conventional atmosphere that occurred during the second, 

but especially the third month of storage. Mainly, it was increased bitter and astringent 

taste of juice, it was registered a certain loss of freshness and fruity sweetness, 

accompanied by undesirable colour changes. In contrast, juice processed in N2 

atmosphere had standard organoleptic quality comparable to the fresh product during the 

entire storage period. 
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Table 1: Principal odorants of industrially processed orange juice with application of N2 or without inert gas 

(02), revealed by the method HS-SPME coupled to GC-FID/Olfactometry 

Compounds identified on the basis of following criteria: LRI U1–linear retention index measured on GC column Ultra 1; MS(EI)-

mass spectrum; ST-comparison with the reference compound; OD-odour quality; LIT-literature reference. t- tentative 

identification (only on the basis of mass spectra); o- compound detected only by GC-O 

One of the principal findings of the study is that production of juices under inert 

atmosphere N2 or CO2 can protect their standard organoleptic quality from undesirable 

changes caused by oxidative load or acid-catalysed reactions during the guaranteed 

storage period. 

Acknowledgement: This contribution is the result of the project APVV-15-0023 „Quality and 

authenticity of fruit juices – study of relationships between the origin of feedstock, processing technology 

and quality of fruit juices”. 
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Abstract  

Odours associated with contemporary products are encountered frequently on a daily 

basis, often with intense potency, yet their chemical nature has been barely investigated, 

to date. Several studies were performed to identify the substances that cause sensory 

defects in products that included children’s toys, adhesives, and post-consumer plastic 

waste and their corresponding recycled polymers, which were analysed using odorant 

analytical techniques derived from the methods used in flavour research. A wide range of 

odorants were identified in these diverse matrices, with noticeable clustering of certain 

functional groups or substance classes. This chapter summarises previous findings 

according to the substance classes of the corresponding odorants and describes the 

analytical procedures employed for the targeted identification of odorants in polymer 

matrices. 

Introduction 

Contemporary products often emanate unusual or unpleasant smells that people are 

repeatedly confronted with in their everyday lives [1-6]. As with many undesirable 

smells, consumers report concerns over associated health risks, yet equally, an increasing 

number of consumers no longer react to such olfactory (warning) signals due to their 

(mis)belief that some smells, for example, ‘plastic’, are entirely normal and should not be 

a cause for concern. In many cases, such smells indeed might be simply harmless by-

products of production processes that dissipate quickly after purchase, yet smells of other 

products can be caused by hazardous compounds. Conversely, however, odourless is not 

synonymous with harmless.  

The continual development and global ubiquity of contemporary materials and 

associated products presents an increasingly pressing need to monitor and control their 

quality. In view of this it is interesting to note that the general issue of non-intentionally 

added substances (NIAS) has received increasing attention in product quality control 

screenings [7,8].  

Recently, we published several studies that explored the odorous artefacts associated with 

modern materials and products, including those derived from woods, plastics, polymers, 

consumer waste regrinds, colouring agents, glues, adhesives and binders, and reported on 

how products of potential concern can be ‘sniffed out’ analytically. Knowledge of the 

underlying chemical structures of smells related to these products provides an essential 

basis to elucidate their formation pathways and is the main premise for developing 

targeted avoidance strategies and adapted sensor technologies for controlling for such 

substances. Furthermore, the analytical results provide the basis for risk assessment 

strategies for those who are exposed to such odorous emissions, not only consumers, but 

also people that regularly handle such products vocationally. 



 

 

Andrea Buettner et al. 378 

Experimental 

Sensory evaluation 

The descriptive analyses of the non-food samples under investigation were carried 

out by a trained sensory panel. The samples were presented individually in covered glass-

vessels. The panel members were asked to open the lid of the vessel and note their 

perceived odour impressions. After a consensus decision of the odour attributes by the 

panel, the selected impressions were rated on a scale from 0 (not perceived) to 10 (very 

strongly perceived). Additionally, the overall intensities were evaluated together with the 

hedonic ratings. The intensity assessment was performed according to an in-house 

method based on the industrial standard EN ISO 13299:2016. 

Isolation of the volatiles 

The identification of odour-active compounds in the samples utilised a non-selective 

extraction method. Samples were dissolved in high purity dichloromethane and stirred 

vigorously at room temperature for 30 min. After filtration, the resulting solvent extract 

was subjected to distillation under high vacuum using solvent-assisted flavour 

evaporation (SAFE) [9]. This technique ensures a careful isolation of the volatile 

compounds due to the mild distillation conditions, whereby the temperature of the water 

bath is held at 50°C and the apparatus at 55°C and under high vacuum. The distillate was 

then concentrated by Vigreux distillation and micro-distillation [10]. 

Gas chromatography-olfactometry 

The presence of odour-active compounds in the sample distillates was screened 

using gas-chromatography olfactometry (GC-O). An aliquot of each distillate was applied 

to the GC-system by the cold on-column technique. This injection technique avoids the 

formation of breakdown products and the generation of new odorants. At the end of the 

GC capillary, the effluent was split (1:1; v/v) to a flame ionisation detector (FID) and an 

odour detection port (ODP), at which a trained panellist determined the odour quality of 

the odorous regions in the eluent gas. A linear retention index (RI) for each odour-active 

region was calculated according to van den Dool and Kratz [11]. Experimental details are 

given in the corresponding publications [1-6]. 

Odour extract dilution analysis 

Odour extract dilution analysis (OEDA) is used to screen for the most odorous 

components in a sample distillate and thereby provides a measure of the impact of 

individual odorants to the overall odour impression of the sample [12]. For this purpose, 

each distillate was volumetrically diluted stepwise with dichloromethane (1+2; v/v) 

resulting in different solutions corresponding to odour-dilution (OD) factors. An aliquot 

of each dilution step was analysed by GC-O.  

Two-dimensional gas chromatography-mass spectrometry/olfactometry 

Unambiguous identification of the constituent odorants of a sample extract was 

carried out by comparing the mass spectra (electron ionisation (EI) mode at 70 eV), RI, 

and odour quality with those of corresponding reference substances. This procedure was 

conducted using two-dimensional gas chromatography-mass spectrometry/olfactometry 

(2D-GC-MS/O). This system allows odorous portions that elute after separation in the 

first capillary to be cryo-trapped and subsequently transferred onto a second capillary 

column with different polarity to that of the first. This provides further separation of 

volatiles that co-elute from the first capillary column. 
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Results and discussion 

Mono- and polyunsaturated carbonyl compounds 

Carbonyl compounds are well known as aroma compounds in food, as are their 

mechanism of formation, such as for the unsaturated aldehydes (E)-non-2-enal or (E,E)-

deca-2,4-dienal whereby the autoxidation of unsaturated fatty acids forms these fatty, 

cucumber or cardboard-like smelling compounds [13]. Diverse carbonyl compounds were 

identified in our recent investigations of non-food materials like toys, post-consumer 

packaging waste, and adhesives. (E)-Non-2-enal (fatty), (Z)-non-2-enal (fatty, green, 

musty), (E,E)-nona-2,4-dienal (fatty, peanut-like) and (E,E)-deca-2,4-dienal (fatty) were 

all found to be present in packaging waste and selected toys [1,2,4]. Other aldehydes 

included (E)-oct-2-enal (fatty, musty, peanut-like) in post-consumer packaging waste and 

toys [2,4], (E,Z)-nona-2,4-dienal (fatty) in diverse toys [1,2], and (Z)-dec-2-enal and (E)-

dec-2-enal (fatty, metallic, and fatty, respectively) in packaging waste. Beside mono- and 

polyunsaturated aldehydes, some unsaturated ketones like the mushroom-like smelling 

oct-1-en-3-one [1,2,4] and hex-1-en-3-one with a glue-like odour [1,2] were additionally 

identified. Also, some epoxidised derivatives with metallic odorous attributes like trans-

4,5-epoxy-(E)-non-2-enal [1] and trans-4,5-epoxy-(E)-dec-2-enal [1,2,4,5] were 

detected. All of these substances are likely to be formed by the degradation of fatty acids 

from trace contaminants, such as residual food matter in packaging waste or fatty acid-

derived constituents such as fatty lubricants [14], which are used for the production of 

such materials.   

Phenol, guaiacol and alkylated or halogenated derivatives 

Phenol and guaiacol derivatives are classes of odorants that are ubiquitous in flora 

and fauna and are widely used as aromatising agents in the food and perfume industries 

[15,16], but they were also found to be present in modern plastic products. Phenol (typical 

phenolic odour), for example, was successfully identified in diverse aquatic toys and 

swimming aids [1], as well as in a plastic toy sword [6], and its derivative p-cresol (horse 

stable-like) was detected in a fancy-dress handbag for children [2], a toy sword [6], but 

also in adhesives, where the isomer o-cresol was also found to be present [5]. Another 

phenol derivative that was detected in several products was the leather-like smelling 3-

ethylphenol [2,5,6], although its isomer 2-ethylphenol (phenolic odour) was only 

detectable in the toy sword sample [6]. The latter sample was found to additionally 

contain traces of 2-isopropylphenol (phenolic), 2-propylphenol (smoky), 3,5-

dimethylphenol (phenolic), and 3- and 4-propylphenol (both leather-like, phenolic) [6]. 

In contrast, guaiacol (smoky) and the halogenated phenol derivative 2-bromophenol 

(medicinal, plaster-like) were only detected in acrylic adhesives. 

The formation of these phenolic compounds in polymer matrices is not fully 

resolved, although their presence might relate to the use of phenolic antioxidants during 

the production of such products [17] and their formation during degradation. 

Nevertheless, other pathways, such as contaminated raw materials (e.g., pigments), might 

equally contribute to their presence. 

Naphthalene and derivatives 

Naphthalene is the smallest member of the polycyclic aromatic hydrocarbons 

(PAHs), a substance class that is commonly associated with health hazards due to the 

carcinogenic potential of these chemicals. In general, PAHs can be transferred into plastic 

products by contaminated raw materials such as extender oils or the pigment Carbon black 

[18]. 
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Naphthalene contaminations in products are not only critical due to potential health 

hazards, but a secondary issue is the characteristic faecal or mothball-like odour that it 

can impart to the corresponding products. Polyvinyl chloride products, for instance, have 

been found to contain this compound, for example, with 74 mg/kg naphthalene detected 

in an inflatable plastic toy that had been investigated – and subsequently withdrawn from 

the market – due to its potent smell. It is worthy of note that the article in question was 

only sent to a specialised laboratory and analysed because its strange odour was noticed 

by a television crew, leading to media coverage on the issue [19]; as such, it is unlikely 

that this serendipitous finding is an isolated incident. 

Methylnaphthalenes have also previously been responsible for product recalls, with 

a prominent case in 2010 when the Kellogg Company issued a voluntary recall of 28 

million boxes of breakfast cereals in response to consumer reports of off-flavour and off-

odour. This sensory defect could be traced back to hydrocarbon contaminations, including 

methylnaphthalene, in the wax paper liners of the cereal boxes. Unsurprisingly, neither 

the specific isomer nor the levels of 1- or 2-methylnaphthalene found in the tainted cereals 

have been made public [20]. 

These anecdotal examples give us an impression of the range of products in which 

contaminations of PAHs can occur, thus the detection of naphthalene and a variety of its 

derivatives in malodorous toys is unsurprising. Two of the products tested in our analyses 

– namely a fancy dress accessory handbag and a children’s toy sword – were found to 

contain naphthalene as well as both 1- and 2-methylnaphthalene [2,6]. In addition, several 

dimethylnaphthalene isomers, namely 1,2- and 1,7-dimethylnaphthalene, were detected 

in both products [2,6]. The handbag additionally contained the isomers 1,4-, 1,5-, 1,6- 

and 2,6-/2,7-dimethylnaphthalene, as well as 2,3,5-trimethylnaphthalene, whereas 1,2- 

dihydronaphthalene and 2,6-diethylnaphthalene were present in the sword, and 3-

methylisoquinoline was detected in both toys [2,6]. 

As mentioned above, naphthalene and both 1- and 2-methylnaphthalene exhibit 

faecal or mothball-like odours, and most of the aforementioned dimethylnaphthalene 

isomers exhibit similar odours. Surprisingly, the isomers 2,6- and 2,7-

dimethylnaphthalene, as well as 2,6-diethylnaphthalene, exhibit anise-like odours, thus 

these results additionally provide new insights into structure-odour relations of these PAH 

compounds. 

In addition to comprehensive molecular elucidation using classical and enhanced 

GC-MS approaches, often the absolute concentrations of such compounds within the 

sample matrix are not indicative of their emissions into the gas-phase, and consequently 

their exposure potential. GC-MS analyses can partially address this issue by the use of 

headspace gas sampling, but such methods are intermittent and provide only snapshots of 

emission profiles. In order to characterise the kinetics of release with higher resolution 

and accuracy, on-line chemical ionisation mass spectrometry in the form of proton-

transfer-reaction mass spectrometry (PTR-MS) can be applied to follow the emissions of 

PAHs from such products [21]. Preliminary results (unpublished) from such PAH 

analyses on selected children’s products revealed different release kinetics depending on 

the initial concentration in the material and nature of the material itself. Such insights 

assist in estimating risk assessment for exposure to affected products.  

Terpenes and their oxidation products 

Terpenes occur naturally in a large group of plants, bacteria, and in some insects, 

often as signalling molecules. Two biosynthetic pathways are involved in their formation, 
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the mevalonate pathway and the deoxylulose pathway, yet the formation of the building 

block isopentenylpyrophosphate (IPP) is common and fundamental in both. By coupling 

with another IPP unit, linear terpenes are formed and several changes by reactions such 

as cyclisation and hydrolysis lead to the large variety of terpenes [22, 23]. 

Terpenes have been used throughout the ages for a range of purposes, including 

perfumery and medical treatments such as aromatherapy. Resolving the underlying 

odorants of plants and resins such as frankincense is essential in this context in order to 

better understand the potential physiological benefits of their use. In the case of 

frankincense, several mono- and sesquiterpenes, often oxygenated, were found to be 

natural constituents of different varieties of the resin, specifically 1,8-cineole (eucalyptus 

odour), linalool (flowery, fresh, balsamic), verbenone (spicy, soup, bread), trans-carveol 

(mint, eucalyptus, green), carvone (mint, caraway, spicy), and thymoquinone (flatbread, 

black cumin) [24-26]. Furthermore, the hydrocarbon monoterpenes α-pinene (rosiny, 

pine), β-myrcene (geranium), p-cymene (solvent-like, fruity), limonene (citrus, soapy, 

fresh), the sesquiterpene hydrocarbons germacrene (fruity, woody, cherry), α-copaene 

(spicy, broth, woody) and the two oxygenated sesquiterpenes rotundone and mustakone 

were detected in frankincense samples. 

As terpenes often exhibit flowery or fruity notes, they find application as fragrances, 

deodorants or masking ingredients in a variety of products including cosmetics, washing 

and cleaning agents. As the biosynthesis of these compounds are rare, terpenes used for 

such applications are typically produced by chemical synthesis. For example, β-ionone is 

routinely produced from citral and acetone via aldol condensation and cyclisation [27]. 

Besides toiletries and detergents, foods are often also rich in terpenes such as linalool and 

1,8-cineol, especially spices [28]. This presents an issue for packaged foods, whose 

volatile compounds can migrate from the filling good into the packaging material, and 

indeed several terpenes have been identified to be present in plastic packaging waste and 

associated recycled materials [4], including, for example, β-ionone (violet-like) and α-

isomethylionone (rosy). In the case of β-ionone, this compound is not only a common 

perfuming ingredient, but may also be formed by oxidative degradation in food 

containing carotenes [29].  

Summary 

Our analyses demonstrate that comprehensive state-of-the-art odorant analytical 

techniques – as routinely used in food science – are also a powerful tool to identify the 

odorants responsible for the intense smells of contemporary products. The odours of the 

analysed products were found to arise from diverse substances. Many of them, however, 

belong to the substance class of (poly-)unsaturated carbonyl compounds or derivatives of 

either phenol, guaiacol or naphthalene. Several odorants were also found to be terpenes 

or their derivatives. Depending on the substance, odorants might stem from contaminated 

raw materials or can be formed (as by-products) from contaminants or additives or via 

oxidation processes during production or storage. 
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The toilet malodor challenge 

CHRISTIAN STARKENMANN, Charles Chappuis and Jana Pika 
Firmenich SA, Corporate R&D Division, P.O. Box 239, CH-1211 Geneva 8, Switzerland 

Abstract 

Globally, 2.5 billion people lack access to adequate sanitation. To help address this 

issue, Firmenich partnered with the Bill & Melinda Gates Foundation initiative: Reinvent 

the Toilet Challenge.  

A receptor-based discovery program was developed to identify malodor antagonists 

and to bring affordable, novel and effective toilet cleaning and freshening products to 

global markets. When integrated into cleaning products, and used as part of a regular 

hygiene and maintenance regime, our malodor counteracting technologies aim to promote 

sanitary environments. 

This presentation will focus on human waste and toilet malodor analysis. We will 

explain how pit latrine headspace analyses were performed in crowded slums in Africa 

and India. Based on the diverse volatiles found, rigorous sensory analysis allowed us to 

develop fecal reconstitutions using only four molecules. Hedonic appreciation of odors 

(like or dislike) is driven by diverse factors including cultural heritage. We therefore 

validated the authenticity of our reconstitutions via sensory surveys of more than 400 

subjects in Switzerland, Africa and India. In the meantime, the four key malodorant 

molecules were used to identify odor receptors which were expressed and screened using 

a library of volatile organic compounds to identify potential antagonists. We recreated 

the exact toilet conditions in terms of temperature, humidity and ventilation in model 

latrine cabins. These cabins were equipped with devices that delivered malodors, 

including H2S and methyl mercaptan. We concurrently monitored perfume release by 

solid supported delivery systems, analyzed the concentrations of antagonists in the air and 

conducted sensory analyses.  

Introduction 

Offending toilet malodors resulting from the action of environmental microbiota on 

human waste to produce volatile organic chemicals (VOCs) makes toilet/latrine use 

undesirable to populations more accustomed to defecating in the open.  

The compounds responsible for fecal malodor have been well-known since 1878 

when a Swiss doctor distilled 50 kg of human fecal material to yield a crystalline 

compound he named skatole [1]. The first analysis of odorant compounds from feces was 

published in 1987 [2]. Subsequently, Sato et al reported the first exhaustive analysis of 

odorant compounds from human waste sludge [3] and the analysis of fresh fecal odorants 

in Western style toilets [4]. Unfortunately, these studies were insufficient to help us 

answer key questions related to the toilet malodor challenge, specifically, what are the 

odor differences between conventional and urine diverted toilets and how different is the 

smell of an African pit latrine compared with an Indian toilet. Additionally, we couldn’t 

find any documented quantitative headspace analysis of key latrine odorants. 

The project was based on two approaches to the control of malodor. The first was a 

traditional fragrance engineering approach, where perfumers used psychophysical data 

and their experience to build a fragrance which combined with the malodor to produce an 

acceptable or even pleasant smell. The second approach relied on a new breakthrough 
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technology based on the identification of molecules that antagonize temporarily but very 

specifically the odor receptors (OR) involved in the perception of the malodorous 

chemicals. Humans express an estimated 360 ORs in their noses, and according to the 

experiments performed within this project, only a small fraction of these receptors are 

activated by fecal malodors. This second approach was riskier, because it required the 

development of new technologies, but we anticipated that the final perfume including 

malodor antagonists would be considerably more performant. For the second approach it 

was critical to find the key malodorant compounds to identify which ORs were activated. 

It was also critical to simplify the screening protocols and for this reason we focused on 

four key malodorant molecules.  

This presentation reviews the odors associated with different toilet systems in India 

and Africa. The analytical challenges of working with potentially pathogenic materials, 

in crowded informal settlements, is explained. The development of new tools to evaluate 

our new malodor counteractant technologies and their validation process are also 

discussed. 

Experimental 

The qualitative and quantitative analyses of latrine sludge VOCs by SPME and SPE 

was described in J. Environ. Sci. Technol. 2013 [5]. The quantification of H2S, CH3SH 

and other selected VOCs in toilet headspace was described in the same journal [6]. The 

sensory survey of reconstituted latrine malodors was described in Flavour Fragr. J. [7]. 

Results and discussion 

1. Challenges to the analysis of human excrement and sludge in informal settlements 

Analyzing urine is easier compared to feces because it is generally sterile, and, if 

not, can be easily sterilized using membrane filters [8]. Conversely, feces contain gut 

bacteria remains, proteoglycans, cellulosic fibers debris and can be contaminated by 

pathogenic species. While fresh stools can vary in consistency, they can usually be 

suspended in water and sterilized by ultra-filtration. Waste sludge, however, was a colloid 

and the membrane fouling made processing for analysis almost impossible. 

Consequently, SPME was gauged to be the most suitable analytical technique. Human 

waste, urine and feces were collected in a bucket which was covered with a lid into which 

a small hole had been drilled to allow insertion of a SPME fiber. The draw back was that 

the composition of VOCs was evolving. The action of ureases caused an increase in 

sample pH resulting in deprotonation of the organic acids which could consequently not 

be detected in the headspace. When fresh stools were analyzed without urine the VOC 

profile changed. Dynamic headspace was performed using Tenax cartridges but this 

technique had two drawbacks: we could not smell the extract, the rapid breakthrough of 

highly volatile compounds and finally we noticed an important diffusion of volatiles over 

time, even in closed tubes, which makes this technique not suitable for shipping Tenax 

tubes from Africa or India. Static headspace analysis using Porapak resin was better but 

the absorption process was slow, and it was not convenient to leave a device containing 

the resin hanging in the toilet without attendance overnight. In fact, many were stolen 

from the sampling sites. Finally, the analysis of the exposed Porapak resin, extracted with 

Et2O was very instructive. It was possible to smell the headspace extract back in the lab 

with perfumers and to perform GC-olfaction to determine that four classes of compounds 

were key sludge odorants, namely sulfur-containing compounds, short chain fatty acids, 

phenols, indole and skatole (Figure 1). 
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Figure 1: Schematic summary of VOC impairing toilet smell 

Finally, sludge samples spiked with deuterated standards were analyzed in closed 

vials using SPME. The SPME fibers were thermally desorbed and analyzed by GC-MS 

in our labs in the USA. 

2. Learning from the first analytical campaign 

Latrine odors can be classified as resulting from anaerobic and aerobic microbial 

degradation. Typically, anaerobic latrines produced a strong H2S, CH3SH sewage odor. 

This was mainly the case for toilets in India connected to sewage pipes or in South Africa 

when the sludge was covered by rain or infiltrated water. Latrines equipped with efficient 

ventilation ports didn’t smell much. Urine-diverted toilets systems smelled more barn-

yard and stale urine. 

Based on the VOCs detected during our study, the malodor was reconstituted using 

pure chemicals. It was possible to simplify the formula to four chemicals while retaining 

its authenticity. Dimethyltrisulfide was used as a proxy for methylmercaptan, which was 

difficult to handle, and indole was used instead of skatole which was declared 

carcinogenic [9].  

The logical next step was to confirm that the reconstitutions were representative of 

toilet malodors. To achieve this goal, sensory surveys were conducted in Africa, India 

and Switzerland. Three bad smells, one complex fecal odor reconstitution, one fecal odor 

containing only the four compounds and one urine odor reconstitution were submitted to 

panelists along with three pleasant smells: banana, citrus, lavender.  

From the sensory surveys the conclusion was that the fecal reconstitutions were both 

evaluated as latrine malodor and unpleasant. From these results we were confident that 

identifying ORs activated by the four key malodorant compounds, and subsequently 
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antagonists to the activation, would help us to design the first malodor counteractant 

prototypes based on antagonists.  

 

3. Toilet headspace analysis 

For the sensory analyses, we used smelling sticks that had been impregnated with 

the reconstituted latrine malodor. The real latrine smell was quite different from what we 

could smell from the smelling sticks. The reason was that H2S and CH3SH are very 

important contributors to the real odor and the partition coefficients of short chain fatty 

acids is related to sludge pH and matrix interactions. During our second campaign we 

attempted to precisely quantify key malodor molecules in Indian and African latrines. 

This was achieved by bubbling 350 L of latrine air through water in order to trap the 

VOCs. H2S and CH3SH were derivatized using N-ethylmaleimide (NEM). The aqueous 

extract was loaded on a SPE-Oasis cartridge which was shipped to Switzerland. To abide 

by flight regulations, the water eluted from the first SPE-Oasis cartridge was not acidified 

with HCl but with acidic sulfonic resin and reloaded onto a fresh SPE-Osasis cartridge to 

quantify butyric acid. Recovery factors, reproducibility, limits of detection and limits of 

quantification were established and verified using olfactometers and certified diluted H2S 

and CH3SH standards (Figure 2). 

 

 
Figure 2: Schematic analysis of toilet headspace and quantification of H2S and CH3SH in addition to p-cresol, 

indole and butyric acid. 

4. Recreating latrine conditions in the laboratory to assess perfume performance 

Delivery systems can be used for extended release of and enhanced fragrance 

performance. When we obtained the first generation of malodor control prototype 

fragrances, we committed to evaluate their performance under realistic conditions. In the 

field many problems emerged. When cellulosic pads were used as delivery systems they 

were stolen and the citrus fragrance-containing pads were partially eaten. The air flows 

were totally different for different latrines, even those in the same block. When we 

conducted a sensory survey with local subjects we experienced all kinds of problems. For 

example, the toilet cleaning person cooked a curry in the ablution block, therefore the 

hedonic results were confounded, not due to the perfume but due to his cuisine. 

For these reasons it was decided to build model toilet system using climate-

controlled chambers where exact concentrations of malodors, at constant humidity and 

A

Water +NEM

From the trap

pH 8 

1 L Water + H+

pH 2-3 

B
SPESPE

Shipped to Switzerland

Organics desorbed with Et2O + I.S

GC-MS/Quantification.

Latrine air
Pump

350 L/2h20

NEM



 

 

The toilet malodor challenge 387 

temperature, were injected. Under these conditions the perfume prototype-containing 

delivery system performance was precisely evaluated by sensory analyses or by 

quantification of the VOCs in the headspace (Figure 3).  

 

 
Figure 3: Trends in toilet systems visited. Arrows explain air flows. 
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Key odorants in the artificial leather of car interiors 
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Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 
85354 Freising, Germany 

Abstract 

Application of an aroma extract dilution analysis (AEDA) to the volatiles isolated 

from a PVC based automotive artificial leather with representative odour characteristics 

by solvent extraction and solvent-assisted flavour evaporation (SAFE) revealed 22 odour-

active compounds in the flavour dilution (FD) factor range of 4 to 64. The three 

compounds with the highest FD factor of 64 were plastic-like, pungent smelling 1-hexen-

3-one, mushroom-like smelling 1-octen-3-one, and plastic-like smelling acetophenone. 

Quantitation of these three compounds was accomplished by stable isotope dilution 

assays (SIDAs). On the basis of the obtained concentrations and oil as matrix, an odour 

reconstitution model was prepared that clearly reflected the typical odour of the artificial 

leather. Omission tests in combination with quantitative descriptive analyses (QDAs) 

showed that 1-hexen-3-one contributed most to the overall odour, but 1-octen-3-one and 

acetophenone modified the sensory impression of the mixture. Quantitation of 1-hexen-

3-one in a variety of other PVC materials, including baby toys, inflatable beach toys, and 

a flexible PVC tubing for beverage industry applications finally showed that the problem 

of odour-active amounts of 1-hexen-3-one is not limited to artificial leather. 

Introduction 

The interior of new cars often exhibits a more or less strong odour. Many modern 

consumers consider this "new car odour" as unpleasant and it has been shown that it may 

have a huge influence on the purchase decision [1]. As a consequence, the automotive 

industry currently tries hard to reduce the interior odour towards an almost odourless new 

car. A targeted minimization approach, however, requires knowledge of the causal 

compounds and their source materials. So far, little data has been published on this topic. 

Polyurethane foams included in headliners and floor carpets have been identified as 

source of fishy smelling compounds such as benzyldimethylamine (BDMA) and 

pentamethyldipropylenetetramine (PMDPTA) [2, 3]. The role of PVC materials, 

however, was yet unclear. 

The aim of the present study was to get an insight into the major compounds 

contributing to the odour of PVC based artificial leathers. Such materials are widely used 

in the automotive industry for upholstery and interior covers. On the one hand, artificial 

leathers are very versatile, allowing for a wide range of optical (colour, gloss) and haptic 

adjustments. On the other hand, they are very resistant against scratching and aging [4]. 

However, PVC materials are known to be highly odorous and numerous volatiles emitted 

from PVC have been characterized including plasticizers, solvent residues, unreacted 

monomers, and secondary degradation products [5]. However, little information is 

available on the odour activity of volatiles emanated from PVC materials [6, 7].  
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Experimental 

Materials 

The automotive artificial leather was provided by a German car manufacturer. It was 

~1 mm thick and consisted of a main layer of expanded PVC, which was glued to a 

polyester fabric on the back side and covered by a layer of dense PVC and a transparent 

lacquer film on the front side. A flexible PVC tubing for industrial beverage handling was 

obtained from ESSKA.de (Hamburg, Germany). All other PVC products were purchased 

from local shops in Freising, Germany. For analyses, the materials were cut into small 

pieces by scissors or knives and further crushed by use of a cryomill (Retsch, Haan, 

Germany) at −196 °C. 

Reference odorants 

1-Hexen-3-one and acetophenone were purchased from Sigma-Aldrich (Tauf-

kirchen, Germany). 1-Octen-3-one was from Alfa Aesar (Karlsruhe, Germany).  

Workups 

Solvent extraction was accomplished by using dichloromethane. Extraction time was 

72 h. Light was excluded during extractions. Non-volatile material was removed by 

solvent-assisted flavour evaporation (SAFE) [8]. SAFE distillates were concentrated by 

using a Vigreux column (50 cm × 2 cm). For the volatile isolate used for gas chromato-

graphy-olfactometry and aroma extract dilution analysis (AEDA), 150 g material and 1 L 

solvent were used and the distillate was concentrated to 1 mL. 

Gas chromatography-olfactometry (GC-O) 

GC-O was performed by using a gas chromatograph equipped with a cold-on-

column injector and a DB-FFAP column, 30 m × 0.32 mm i.d. × 0.2 μm film thickness, 

or a DB-5 column, 30 m × 0.32 mm i.d. × 0.2 μm film thickness (both J&W, Agilent 

Technologies, Waldbronn, Germany). The eluate of the column was split 1:1 using a glass 

splitter and the volatiles were simultaneously transferred to an FID and a tailor-made 

sniffing port [9]. AEDA was done as detailed in [10]. 

Quantitations 

These were accomplished by stable isotope dilution assays using the following stable 

isotopically substituted analogues of the target compounds as internal standards: (2H2)-1-

hexen-3-one [11], (2H4)-1-octen-3-one [12], and (2H5)acetophenone (Sigma-Aldrich). 

Work-up was done as detailed above. Internal standards were added at the beginning of 

the extraction period. Selective recording of analytes and standards was done by GC-MS 

analysis using a GC×GC-TOFMS system [13] and concentrations were calculated as 

detailed in [13].  

Sensory tests 

These were performed by a trained panel of males and females, aged 23-36. Odour 

threshold values were determined according to the ASTM method [14]. Odour 

reconstitution models were prepared in odourless sunflower oil. Descriptors used in the 

QDAs were collected by a preceding free choice profiling test. During QDAs, descriptors 

were defined by reference solutions of the following odorants: 1-hexen-3-one (pungent, 

plastic), 1-octen-3-one (mushroom), (E, Z)-2,4-decadienal (fatty), nonanal (citrusy, 

soapy), and ethyl 2-methylbutanoate (fruity). For each descriptor the intensity was rated 

on a seven-point scale using 0.5 increments and a range from 0 to 3 with 0 = not 

detectable, 1 = weak, 2 = moderate, and 3 = strong. 
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Results and discussion 

Odorant screening by GC-O and AEDA 

Automotive artificial leather with a characteristic odour was obtained from a car 

manufacturer. The volatiles were isolated using solvent extraction and SAFE. GC-O of 

the concentrated volatile fraction using an FFAP column resulted in 22 odour-active 

zones. Application of an aroma extract dilution analysis revealed flavour dilution (FD) 

factors in the range of 4 to 64 (data not shown). Ten odorants showed an FD factor of 4, 

four showed an FD factor of 8, and five showed an FD factor of 16. The remaining three 

compounds exhibited an FD factor of 64, thus were the most potent odorants in the 

extract. Among them, two compounds showed an odour reminiscent of plastic and the 

third compound smelled like mushrooms. Comparison of their odour qualities and their 

retention indices on the FFAP column with published data suggested them to be 1-hexen-

3-one, acetophenone, and 1-octen-3-one. These structure assignments were confirmed by 

GC-O analysis of reference compounds in parallel to the artificial leather extract using 

the FFAP column as well as a DB-5 column and by GC-MS analysis (Figure 1). 

Figure 1: Most potent odorants (FD 64) in the automotive artificial leather  

Quantitation of 1-hexen-3-one, 1-octen-3-one, and acetophenone  

Quantitation of 1-hexen-3-one, 1-octen-3-one, and acetophenone in the automotive 

artificial leather was accomplished by stable isotope dilution assays using (2H2)-1-hexen-

3-one, (2H4)-1-octen-3-one, and (2H5)acetophenone as internal standards. Results 

revealed concentrations of 0.40 µg/kg for 1-hexen-3-one, 41.0 µg/kg for 1-octen-3-one, 

and 5600 µg/kg for acetophenone (Table 2). Comparison of these data with the odour 

threshold values of the three compounds in water, which were determined to be 

0.00069 µg/kg (1-hexen-3-one), 0.016 µg/kg (1-octen-3-one), and 26 µg/kg (aceto-

phenone), confirmed their high odour potency. 

Table 1: Concentrations of the major odorants in the automotive artificial leather 

Odorant Odour Concentration (µg/kg)a 

1-hexen-3-one plastic-like, pungent 0.40 ± 0.01 

acetophenone plastic-like 5600 ± 26 

1-octen-3-one mushroom-like 41.0  ± 1.0 
 a mean of triplicates ± standard deviation 

Odour reconstitution and omission experiments 

On the basis of the quantitative data detailed in Table 1, a reconstitution model was 

prepared from the pure compounds and oil as matrix. The model was compared 

   
   

1-hexen-3-one 

odour: plastic-like, pungent 

RIDB-5: 775; RIFFAP: 1093 

acetophenone 

odour: plastic-like 

RIDB-5: 1312; RIFFAP: 1654 

1-octen-3-one 

odour: plastic-like 

RIDB-5: 979; RIFFAP: 1293  
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orthonasally with the artificial leather in a QDA. Results showed a good agreement of the 

odour profiles of the original material and the model (Figure 2). 

  

artificial leather odour reconstitution model 
  

Figure 2: Orthonasal odour profiles of the artificial leather (left) and the odour reconstitution model (right) as 

obtained by QDA 

To get a deeper insight into the individual odour contribution of the three odorous 

components, omission tests were performed. Omission of one component resulted in three 

binary mixtures that were compared to the complete model in triangle tests. The three 

tests revealed significant differences, indicating that all three compounds contributed to 

the odour of the mixture (Table 2). However, omission of 1-hexen-3-one was detected 

with higher significance (p = 0.00004) than omission of 1-octen-3-one (p = 0.01) and 

acetophenone (p = 0.005). Thus, 1-hexen-3-one obviously played a key role for the odour 

of the artificial leather.  

Table 2: Results of omission tests applied to the artificial leather odour reconstitution model 

Odorant omitted Correct answers  p value Significance 

1-hexen-3-one 26/40  0.00004 *** 

acetophenone 26/50  0.005 ** 

1-octen-3-one 25/50  0.01 ** 

Results of the triangle tests were confirmed by QDA of the three binary mixtures 

and by QDA of models containing only one of the three compounds (Figure 3). Omission 

of 1-hexen-3-one clearly reduced the plastic-like note. On the other hand, the model 

containing only 1-hexen-3-one (Figure 3, upper left) showed a profile that was already 

quite close to the profile of the tertiary mixture (Figure 2, right). 
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1-hexen-3-one 

 

1-hexen-3-one + 1-octen-3-one 

  

1-octen-3-one 

 

1-octen-3-one + acetophenone 

 

  

acetophenone acetophenone + 1-octen-3-one 
  

Figure 3: Orthonasal odour profiles of single compound models (left) and binary mixtures (right) obtained by 

omitting one or two compounds from the complete artificial leather odour reconstitution model 

Concentrations of 1-hexen-3-one in other PVC products 

To put the 1-hexen-3-one concentration found in the automotive artificial leather 

into perspective, we quantitated the compound in various other PVC products. Among 

them was a small water fun toy in the form of a dolphin, a baby toy in the form of a 

dinosaur, two inflatable beach balls, swimming aids in the form of inflatable armbands, 

and a PVC tubing intended for industrial beverage handling. Results (Table 3) showed 

concentrations in the range of 0.621 to 11.8 µg/kg. Thus, the 1-hexen-3-one concentration 

in all analysed materials was higher than the concentration previously determined in the 
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automotive artificial leather. The highest concentration was found in an inflatable beach 

ball, but high concentrations were also determined for the baby toy in the form of a 

dinosaur (10.1 µg/kg), another inflatable beach ball of different brand (7.34 µg/kg), and 

the beverage tubing material (6.93 µg/kg). Clearly lower 1-hexen-3-one concentrations 

were found in the inflatable armbands (1.81 µg/kg) of a well-known brand and the rather 

highly priced water fun toy in the form of a dolphin (0.621 µg/kg). 

Table 3: Concentrations of 1-hexen-3-one in various PVC products 

PVC material Concentration of 1-hexen-3-one (µg/kg)a 

water fun toy dolphin 0.621 ± 0.033 

baby toy dinosaur 10.1 ± 0.8 

inflatable beach ball I  7.34 ± 0.25 

inflatable beach ball II 11.8 ± 1.1 

inflatable armbands (swimming aids) 1.81  ± 0.08 

beverage tubing 6.93  ± 0.34 
a mean of triplicates ± standard deviation 
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Abstract 

Wood is a material humans come into contact with every day, e.g., in the form of 

furniture and building materials, products of daily use such as pencils and toys, or 

secondary products that are derived from wood such as paper and cardboard. Whereas 

general emissions of volatile organic compounds from wood are well known, only limited 

information is available on the odour-active substances. The present study therefore 

aimed at specifically elucidating the odorous constituents of wood. To gain an overview 

of the odorants emitted by wood, two different wood species were investigated. 

Targeted odorant analysis requires specialized techniques combining modern 

odorant analytical tools with human-sensory evaluation. Following this concept, the wood 

samples were first evaluated by human sensory analysis. The odorants were then 

characterized by gas chromatography-olfactometry (GC-O) and ranked according to their 

odour potency via aroma extract dilution analysis (AEDA). Using this approach, more 

than 60 odorous substances were detected and the most potent odorants were identified 

by gas chromatography-mass spectrometry/olfactometry (GC-MS) and two-dimensional 

gas chromatography-mass spectrometry/olfactometry (2D-GC-MS/O). 

Introduction 

Previous investigations have predominantly focused on odorants in wood from 

wooden barrels that are used for wines and spirits, and their impact on the filling goods. 

Thus, mainly wood types with a potential usage in the alcoholic beverage production have 

previously been investigated and the samples were, according to their usage, commonly 

toasted. Following this conception, different oak woods as well as extracts from chestnut, 

acacia, cherry, and ash woods have already been analysed regarding their odorants.[1,2] 

In contrast to that, information about odorous substances in untreated wood, especially in 

softwoods, is rare. To close this gap, we focused on the elucidation of odorants in natural 

wood samples. Therefore, wood samples of incense cedar, which is commonly used for a 

range of products like pencils or furniture, and Scots pine, one of the most common trees 

in Germany, were investigated.  

Experimental 

Wood samples of incense cedar (Calocedrus decurrens (Torr.) Florin) and Scots 

pine (Pinus sylvestris L.) were supplied by Staedtler Mars GmbH & Co KG (Nuremberg, 

Germany). The samples were delivered in form of cuttings which were planed into wood 

shavings and were then directly used for analysis without any further treatment. The 

samples were analysed by a trained sensory panel prior to extraction to elaborate the 

respective odour profiles. For the isolation of the volatiles, 2.5 g of the wood shavings 

were mixed with 100 ml dichloromethane. The solution was stirred at room temperature 

for 30 min and thereafter immediately applied for solvent assisted flavour evaporation 
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(SAFE) [3]. Aroma extract dilution analysis (AEDA) [4] was performed using GC-O [5]. 

The most potent odour-active compounds were identified using GC-MS/O and 2D-GC-

MS/O by comparing the odour quality, linear retention index [6], and mass spectrum with 

the properties of the respective reference compounds. Experimental details for the sensory 

evaluation as well as the instrumental analysis were as described in Schreiner et al. 2017 

[5].  

Results and discussion 

The odour profile analyses (cf. figure 1) showed that the smell of the incense cedar 

wood sample was dominated by a pencil-like note showing the highest intensity (5.2) 

followed by a sawdust-like odour impression (2.9). In contrast to that, the Scots pine wood 

sample smelled strongly resin-like with an intensity of 7.1 followed by sawdust-like (2.7) 

and frankincense-like notes (2.6). AEDA showed 16 substances to be the most potent 

odorants in Scots pine wood or incense cedar wood, respectively, with flavour dilution 

(FD) factors of ≥729 (cf. table 1). 14 of these substances were successfully identified. 

Most of the odour-active compounds are commonly known fatty acid degradation 

products like unsaturated alkenals and dialkenals with fatty smells, or acids like butanoic 

and heptanoic acid. Moreover, a group of terpenoic substances was found, inter alia the 

woody, resinous smelling α-pinene or α-bisabolol (balsamic, peppery). Another 

prominent group of odour-active constituents in both wood types were phenyl compounds 

such as vanillin or p-cresol, occurring due to the degradation of lignin. Two substances 

with a sweaty, perfume-like, androstenone-like smell remained unknown in the cedar 

samples, but could be tentatively identified in the pine wood samples as androst-2,16-

diene and (5β)-androst-2-en-17-one.  

 
Figure 1: Odour profiles of Incense cedar and Scots pine wood 

The results of the sensory evaluation show a close agreement with the odour qualities 

of the identified odorants. The most potent attribute for the Scots pine wood was resin-

like which could be correlated with α-pinene, whereas the main attribute chosen to 

describe the smell of the incense cedar was pencil-like. This smell impression appears to 
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result from the pronounced smell impact associated with thymoquinone. Thymoquinone 

as naturally occurring molecule with a pencil-like smell was a new finding [5]. 

Thymoquinone is known to be the major compound in black cumin seed (Nigella sativa 

L.) [7] and contributes with its bioactivity for example to the antioxidant [8] and anti-

inflammatory [9] activities of black cumin seed essential oil.  

Table 1: Odorant compounds, their retention indices, flavour dilution (FD) factors, and odour qualities as 
identified in incense cedar and Scots pine wood 

Substance Odour quality RI DB-FFAP FD-factor 

  
Incense 

cedar 

Scots 

pine 

Incense 

cedar 

Scots 

pine 

α-Pinene woody, resinous 1029 1032 ≥ 729 ≥ 729 

(E)-Non-2-enal fatty 1533 1526 ≥ 729 243 

3-Methylbutanoic 

acid 
cheesy 1664 1677 ≥ 729 9 

(E,E)-Nona-2,4-

dienal 
fatty 1700 1700 ≥ 729 ≥ 729 

(E,E)-Deca-2,4-dienal fatty 1810 1810 81 ≥ 729 

Heptanoic acid 
red pepper-like, 

plastic-like 
n.d. 1942 n.d. ≥ 729 

δ-Octalactone coconut-like 1920 1984  ≥ 729 

p-Cresol horse-like 2100 2089 ≥ 729 27 

Sotolone savoury 2222 2212 ≥ 729 243 

α-Bisabolol 
blasamic, 

peppery 
2250 2255 ≥ 729 9 

Phenylacetic acid honey-like 2563 2567 243 ≥ 729 

Vanillin vanilla-like 2588 2594 ≥ 729 ≥ 729 

3-Phenylpropanoic 

acid 

metallic, fruity, 

vomit-like 
2625 2640 ≥ 729 ≥ 729 

(5β)-Androst-2-en-

17-one1 

sweaty, perfume-

like, 

androstenone-

like 

2875 2878 ≥ 729 81 

Androst-2,16-diene1 

sweaty, perfume-

like, 

androstenone-

like 

2986 2927 ≥ 729 27 

Thymoquinone pencil-like 3100 3100 243 ≥ 729 
1 tentatively identified 

Additionally, it was the first time that 3-phenylpropanoic acid, hexanoic acid, α-

bisabolol, and thymoquinone are reported to be odour-active substances in wood. α-

Bisabolol is a sesquiterpene which was first found in German chamomile (Matricaria 

chamomilla) [10]. It has already been discovered as ingredient in the oil from Candeia 

wood (Eremanthus erythropappus) [11], but its appearance as wood odorant is a new 

finding. Whereas thymoquinone and α-bisabolol are naturally occurring molecules, 
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hexanoic acid and 3-phenylpropanoic acid are likely to result from degradation of 

common wood components such as fatty acids and lignin.  

Quantification trials will be a future challenge to trace back the differences in smell 

between the respective wood samples, as the respective profiles indicate that most likely 

the sensory differences result from quantitative rather than general qualitative differences 

in odorant composition. Moreover, more comprehensive investigations will be required 

targeting the impact of wood smell on wellbeing in humans. 

Conclusions 

The found odorants belong to a variety of substance classes and exhibit a great 

diversity in odour character. Some of the substances are known constituents in wood 

whereas others were identified for the first time in wood or even for the first time as being 

odour-active. The successful elucidation of potent odorants in wood is a first important 

step towards the understanding of the molecular basis of the odour profile of a commonly-

used material in daily life. 
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Abstract 

Application of an aroma extract dilution analysis to an inflatable beach ball made of 

PVC revealed 38 odour-active compounds with flavour dilution (FD) factors of 1 to 4096 

among which 13 compounds showed FD factors >128. The most potent odorants were 

sweet, plastic-like smelling 2-ethylhexanal (FD 4096), fatty smelling (2E,4E)-nona-2,4-

dienal (FD 4096), mushroom-like smelling non-1-en-3-one (FD 2048), plastic-like 

smelling 2-ethylhexyl 4-methylbenzoate (FD 2048), fatty smelling (2Z)-non-2-enal (FD 

1024), solvent-like smelling γ-butyrolactone (FD 1024), plastic-like smelling hexan-3-ol 

(FD 512), green, fatty smelling (2E)-hept-2-enal (FD 512), and fruity smelling hexyl 

hexanoate (FD 512). (2E,4E)-Nona-2,4-dienal, 2-ethylhexyl 4-methylbenzoate, and (2E)-

hept-2-enal were previously unknown in PVC material. Structures suggested that 

autoxidation of unsaturated fatty acids and degradation of di(2-ethylhexyl) terephthalate 

(DEHT) used as plasticizer were the most important sources of odour-active compounds. 

Introduction 

Inflatable beach toys such as beach balls and pool floats are typically manufactured 

from polyvinyl chloride (PVC). Particularly when new, these PVC toys often exhibit an 

intense and characteristic "plastic-like" odour. To date, little is known on the molecular 

background of this odour [1,2]. The aim of the current study was to extract the volatiles 

from a typical PVC beach toy with a characteristic smell and screen them for odour-active 

compounds by gas chromatography-olfactometry (GC-O) and aroma extract dilution 

analysis (AEDA) [3]. 

Experimental 

Materials 

Numerous PVC beach toys including pool floats in different sizes and shapes as well 

as beach balls were obtained from local shops in Freising, Germany and from German e-

tailers. All materials were orthonasally evaluated by a sensory panel using free choice 

profiling. In open discussion, a beach ball was finally selected for the further 

investigations, because it showed an intense and highly characteristic smell.  

Reference odorants 

2-Ethylhexanal (1), (2E,4E)-nona-2,4-dienal (2), γ-butyrolactone (6), hexan-3-ol 

(7), and (2E)-hept-2-enal (8) were purchased from Sigma-Aldrich (Taufkirchen, 

Germany). Oct-1-en-3-one (10) was obtained from Alfa Aesar (Karlsruhe, Germany). 

Non-1-en-3-one (3) was synthesized by oxidation of non-1-en-3-ol (Alfa Aesar) with 

Dess-Martin periodinane (Sigma-Aldrich) [4]. Hexyl hexanoate (9) was obtained from 

hexan-1-ol and hexanoic acid (both Sigma-Aldrich) using the general approach detailed 

in [5].  

The same approach was used to synthesize 2-ethylhexyl 4-methylbenzoate (4) from 

2-ethylhexan-1-ol and 4-methylbenzoic acid (both Sigma-Aldrich). 4 was obtained as a 

colourless oil. RI (FFAP) 2300. MS (EI, 70 eV), m/z (%) 41 (35), 55 (26), 65 (20), 70 

(90), 83 (20), 91 (45), 112 (30), 119 (100), 137 (20). 1H-NMR (CDCl3, 400.13 MHz, 298 
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K), δ (ppm) 0.90-0.95 (m, 3H), 0.97 (t, 3H), 1.29-1.39 (m, 2H), 1.39-1.46 (m, 4H), 1.46-

1.54 (m, 2H), 1.69-1.77 (m, 1H), 2.43 (s, 3H), 4.21-4.29 (m, 2H), 7.25-7.27 (m, 2H), 

7.94-7.97 (m, 2H). 13C-NMR (CDCl3, 100.62 MHz, 298 K): δ (ppm) 11.1 (CH3), 14.0 

(CH3), 21.6 (CH3), 23.0 (CH2), 24.0 (CH2), 29.0 (CH2), 30.6 (CH2), 38.9 (CH), 67.1 

(CH2), 127.8 (C), 129.0 (CH), 129.5 (CH), 143.4 (C), 166.8 (C). 

Isolation of the volatile compounds 

The PVC beach ball skin was cut into small pieces (1 cm × 1 cm). The mouthpiece 

was discarded. The pieces (500 g) were stirred with dichloromethane (1 L, 20 h). The 

extract was filtered and non-volatiles were removed by solvent-assisted flavour 

evaporation (SAFE) [6] at 40 °C in high vacuum. 

Odorant screening 

The SAFE distillate was concentrated (1 mL) using a Vigreux column (60 cm × 1 

cm). An aliquot of the concentrate (1 µL) was analysed by GC-O using an FFAP column 

(30 m × 0.32 mm i.d. × 0.2 μm film thickness). The GC eluate was split 1:1 between an 

FID and a heated exit serving as sniffing port [7]. Following the concept of an AEDA [3], 

the initial concentrate was stepwise diluted 1:2 and each diluted sample was also analysed 

by GC-O. Each odour-active compound was assigned an FD factor representing the 

dilution factor of the highest diluted sample in which the odorant was detected by any of 

three trained panellists. 

Structure assignment of odorants 

Preliminary structure assignments were achieved by comparing odour and retention 

indices of the PVC beach ball odorants as obtained by GC-O using the FFAP column 

detailed above and a DB-5 column (30 m × 0.32 mm i.d. × 0.2 μm film thickness) as well 

as mass spectra as obtained by GC-MS with data compiled in databases. Preliminary 

structure assignments were then confirmed by GC-O and GC-MS analysis of authentic 

reference substances analysed in parallel to the PVC ball volatile isolates. To avoid 

coelution problems during MS analysis, the PVC ball volatiles were previously separated 

into a fraction containing the acidic volatiles and a fraction containing the neutral and 

basic volatiles. The latter was further fractionated into five fractions of different polarity 

by silica gel chromatography as detailed in [7]. Before the fractions were subjected to 

GC-MS, the PVC beach ball odorants were localized in the fractions by GC-O. 

Results and discussion 

The AEDA resulted in a total of 38 odour-active compounds covering an FD factor 

range of 1 to 4096 (data not shown). Thirteen compounds exhibited FD factors >128 

(Figure 1). Among them, sweet, plastic-like smelling 2-ethylhexanal (1) and fatty 

smelling (2E,4E)-nona-2,4-dienal (2) were the most potent (FD 4096), followed by 

mushroom-like smelling non-1-en-3-one (3, FD 2048), plastic-like smelling 2-ethylhexyl 

4-methylbenzoate (4, FD 2048), fatty smelling (2Z)-non-2-enal (5, FD 1024), solvent-

like smelling γ-butyrolactone (6, FD 1024), plastic-like smelling hexan-3-ol (7, FD 512), 

green, fatty smelling (2E)-hept-2-enal (8, FD 512), fruity smelling hexyl hexanoate (9, 

FD 512), mushroom-like smelling oct-1-en-3-one (10, FD 256), plastic-like smelling hex-

1-en-3-one (11, FD 128), solvent-like smelling cyclohexanone (12, FD 128), and plastic-

like smelling 2-ethylhexan-1-ol (13, FD 128). 
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Figure 1: Structures, odour qualities, and FD factors of the most potent odorants identified in the beach ball 

(2E,4E)-Nona-2,4-dienal (2), 2-ethylhexyl 4-methylbenzoate (4), (2E)-hept-2-enal 

(8), and γ-butyrolactone (6) were found for the first time in a PVC material. 

Among the 13 most potent odorants in the PVC beach ball depicted in Figure 1 six 

were typical autoxidation products of unsaturated fatty acids, namely (2E,4E)-nona-2,4-

dienal, non-1-en-3-one, (2Z)-non-2-enal, (2E)-hept-2-enal, oct-1-en-3-one, and hex-1-en-

3-one [8]. Hex-1-en-3-one was previously identified as key odorant in a PVC-based 

automotive artificial leather [9]. 

Three compounds, namely 2-ethylhexanal (1), 2-ethylhexyl 4-methylbenzoate (4), 

and 2-ethylhexan-1-ol (13) were structurally related to common PVC plasticizers such as 

di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) terephthalate (DEHT) 

(Figure 2). It may therefore be assumed that 1, 4, and 13 are potential decomposition 

products and/or impurities of such plasticizers. GC-MS analysis of authentic reference 
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compounds of DEHP and DEHT in comparison with the PVC beach ball volatile isolate 

showed the presence of DEHT in the beach ball, whereas DEHP was absent. This was in 

particular also in agreement with the para-structure of 4. For a long time, DEHP was the 

standard plasticizer in PVC materials, but today its use is restricted in most parts of the 

world and DEHT is used as a common substitute. DEHT shows similar plasticizing 

properties as DEHP, but is considered to be less toxic [10]. 

 

 
Figure 2: Structure of di(2-ethylhexyl) terephthalate (DEHT) used as plasticizer in the beach ball 
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Abstract  

During storage of pellets, various compounds like e.g. carbon monoxide (CO), 

carbon dioxide (CO2) and partly malodourous volatile organic compounds (VOCs) can 

be formed. Research on this so-called off-gassing phenomenon is focusing on the one 

hand on the identification and characterization of the unpleasant odour-active VOCs and 

on the toxic atmosphere caused by formation of CO and depletion of oxygen (O2). On the 

other hand, the mechanism behind the off-gassing phenomenon is a further topic in 

research. However, both topics have in common that they are necessary research 

questions in order to prevent insecurity due to the formation and enrichment of harmful 

CO and complaints by the end-user because of malodourous smell in pellet storage places.  

Thus, the aim of this study was to identify and quantify the malodorous VOCs and 

find correlations with the released amounts of CO. To identify odour-active components 

in wood pellets, sensory and analytical methods were applied. A trained sensory panel 

established olfactory descriptors for the wood pellet samples. By means of instrumental 

methods like GC-MS, volatile and potentially odour-active components were identified. 

The total amount of VOCs was determined using a flame ionization detector and CO was 

analysed with a gasanalyzer. The results showed significant differences concerning both 

types of emission - VOCs and CO - between sensory unremarkable wood pellets and 

pellets with a pronounced off-flavour. Terpenes, short chain fatty acids and saturated 

aldehydes were identified to have major impact on the aroma profile of wood pellets. 

Introduction 

In recent years, a significant increase in the demand of wood pellets has been 

observed. Besides beneficial characteristics for the combustion process (e.g. wood pellets 

exhibit a high energy density) the customer also expects a natural wood pellet flavour of 

the product [1]. During storage of wood pellets, various compounds like carbon monoxide 

(CO), carbon dioxide (CO2) and volatile organic compounds (VOCs) are formed, and the 

oxygen (O2) in the surrounding air decreases [2]. Simultaneously, partly malodourous 

compounds may be formed leading to unpleasant and disturbing smell in the pellet storage 

facilities. The formation pathways of the unpleasant odour-active VOCs and CO are not 

completely clear, but the degradation of natural wood components like resins or fatty 

acids seem to be one reason for the release of the emissions. In addition, secondary 

metabolites of microbial growth on the raw material can lead to off-flavour formation 

during storage [3].  

The aim of this study was the identification of odour-active components in wood 

pellets. To reach this aim, sensory and analytical/gas chromatographic methods were 

applied on wood pellets (with or without off-odour) made of spruce or/and pine in various 

ratios. Different sensory unremarkable and malodourous wood pellets were analysed.  
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Experimental 

For the analysis of the volatile compounds the pellets were crushed using a 

laboratory scale mill. For the extraction and enrichment of the volatile compounds from 

the pellets prior to the GC analysis, headspace solid phase micro extraction (HS-SPME) 

was used. 100 mg of ground pellet samples were analysed and 50/30 μm 

DVB/Carboxen/PDMS fibres (2 cm stable flex, Supelco) were used for the enrichment of 

the volatile compounds. The fibre was exposed into the headspace of the samples for 20 

minutes at 40°C while stirring the samples. The separation and the identification of the 

volatile compounds were performed on an Agilent GC-MS system (GC 7890 with MS 

5975c VL MSD, electron impact ionisation 70 eV) using a nonpolar analytical column 

(HP5MS, 30m*250µm*1 µm) and on a Shimadzu GC-MS system (GC2010 with 
GCMS-QP 2010 Plus, Shimadzu Europa GmbH, electron impact ionisation 70 EV) 

system with a polar analytical column (ZB-Wax plus, 20m*180μm* 0.18μm). The 

identification of the compounds was based on the comparison of the obtained mass 

spectra with mass spectra from literature or from MS databases as well as the calculation 

of linear temperature programmed retention indices and comparison with retention 

indices from authentic reference compounds or data from literature.  

Moreover, for the determination of emitted amounts of CO and total VOCs (TVOC, 

i.e. the sum of all volatile compounds that can be emitted from the wooden material) the 

pellets samples were stored in closed glass bottles for five days at 22°C. Thus, this method 

is called storage experiment. For the measurement of CO concentration, a gasanalyzer 

(Emerson, NGA 2000) and for the determination of total VOCs concentration a flame 

ionization detector (Thermo-FID) were used [4]. The release of emissions is explained as 

release of gas per kg pellets on dry basis per day enabling the comparison of different 

pellet samples. 

A sensory panel consisting of 15 well trained panellists performed descriptive 

analysis of sensory unremarkable and malodourous wood pellets and established 

corresponding olfactory descriptors. 

Results and discussion 

The results of the study show that terpenes (e.g. α-pinene, β-pinene or camphene), 

short chain fatty acids and saturated aldehydes have major impact on the composition of 

the wood pellet volatiles. The composition of the volatile compounds of pellets with and 

without detected off-odour differs significantly. Figure 1 shows the comparison of the 

aldehyde and free fatty acid distribution, receptively, of a reference sample produced from 

spruce and pine (50/50) and a rejected, malodourous pellet sample. On the one hand, 

shifts of the compound ratios were discovered which could be one reason for the detected 

off-flavours in pellets. Increasing concentrations of compounds like hexanoic acid and 

aldehydes like octanal or nonanal are supposed to negatively influence the pellet odour. 

On the other hand, some compounds were detected which are most likely produced by 

microorganisms as secondary metabolites during microbial growth on sawdust (e.g. 3-

methyl-butanoic acid). These VOCs present in higher concentrations in the pellets with 

malodour most probably influence the off-odour formation.  

Concerning the acid composition, a drastic decrease of acetic acid but also of 

butanoic and pentanoic acid was observed from the ‘good’ to the ‘bad’ sample, as well as 

a simultaneous increase of hexanoic and heptanoic acid were observed. The methyl 

branched fatty acid 3-methyl-butanoic acid shows slightly higher concentration in the 

malodorous pellet than in the ‘good’ one. Due to its low odour threshold (OT; 
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0,0018mg/m³; [5]) 3-methyl-butanoic acid is considered to be of importance for the pellet 

off-odour. Regarding aldehydes, hexanal concentrations were reduced while pentanal, 

octanal and nonanal showed higher concentrations in the malodourous sample. These 

compounds shift results in pellets with a very strong lacquer-like flavour, whereas the 

typical woody odour mainly caused by terpenes was no longer detectable. The total 

concentration of terpenes decreased in the malodourous samples as well as the total 

concentration of VOCs. The loss of hexanal might be also responsible for the loss of fresh 

notes.  

 
Figure 1: Odour-active components in pellets samples  

Figure 2 shows the results from CO and TVOC analysis. Interestingly, the so-called 

reference sample (i.e. good sample) shows a significantly higher emission of CO and total 

VOCs, respectively, than the malodourous sample.  

 
Figure 2: Release of CO and total VOCs  
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The formation pathways for odour-active VOCs, total VOCs and CO have not been 

explained yet. The identities of the detected compounds indicate that the (oxidative) 

degradation of natural wood components like resins or fatty acids is one reason for the 

release of emissions from the pellets. 

Results from previous studies show (data not shown), that the microbial spoilage of 

raw material during storage could be an additional way for the formation of VOCs 

(especially for aldehydes and acids). 

Moreover, interestingly the pellet sample with pronounced off-odour did not emit 

more CO and total VOCs than an odour unobtrusive pellet sample. Although the pellet 

sample was rejected due to a distinct off-odour, a decrease of total VOCs could be 

detected in GC-MS analysis. The results of the study show a shift of different odour-

active substances as a reason for the existing off-odour. Thus, the total amount of VOCs 

is not the decisive parameter alone for the evaluation of a malodourous smelling pellet 

sample. Since odour of pellets is dependent on the concentration in combination with the 

odour thresholds (OT) of the respective component (e.g. OT of hexanal 58mg/m³, OT of 

3-methylbutanoic acid 0,0018mg/m³) [5], quantification is inevitable to be able to judge 

the sensory relevance of the compounds of interest.  

The results of this study show that the determination of CO emission and the 

measurement of total VOC release from the pellets are not sufficient to evaluate off-odour 

formation in wooden pellets. The detailed investigation of the sensory properties in 

combination with the GC-MS analysis of the potentially (mal)-odorous volatiles is 

necessary to obtain a comprehensive picture of pellet (off)-flavour. The results serve as a 

basis for future investigations to elucidate off-flavour formation pathways in wood 

pellets. 
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Abstract  

Meal time is increasingly considered by pet owners as a privileged moment to create 

emotional bonds with their animal. To make meal time a shared enjoyable moment, pet 

food manufacturers not only need to satisfy pets’ appetite, they also need to satisfy pet 

owner expectations towards food. For instance, pet food cosmetic and sensory properties 

such as appearance and smell highly contribute to its acceptance by the pet owner. These 

factors play an important role in the act of repurchase of the pet food product. Only a few 

research studies have used human sensory analysis to describe the smell of wet pet food. 

The purpose of this study was to characterize the smell of different wet cat foods available 

on the European market using Petscript®, a sensory language specifically developed for 

this type of product. First, a full set of olfactory descriptors was generated by a human 

expert panel in order to have a common sensory language to describe the odor profile of 

wet pet food. Then, several products were selected to offer a representative picture of the 

market. All these products were assessed via a Rate All That Apply (RATA) method in 

association with a free description to have an exhaustive odor characterization. The 

products were then positioned on a map according to their olfactory profile. The 

Petscript® sensory language was successfully used to build the olfactory space for wet 

cat food. The results highlight the existence of clusters of products showing similar odor 

profile. The Petscript® language can be used to support pet fooders’ strategy by 

positioning their products in the olfactory landscape, and helping them to reach a specific 

smell target and then differentiate from the other products on the market. The ongoing 

challenge is now to couple these sensory results with human and animal preferences to 

identify the smell profiles appreciated by both pet owners and their beloved animal. 

Introduction 

In the past 10 years, human sensory panels have been used to characterize different 

pet foods [1, 2]. However, there is a lack of a common sensory language to describe the 

smell of pet food. Furthermore, it has been observed that prior experience and cultural 

environment can affect the way people describe the smell of food products [3]. The 

purpose of this study was to utilize a unique and universal sensory language - the 

Petscript® - to characterize the smell of different wet cat foods available on the European 

market.  

Experimental 

Market products: 32 premium and super premium wet cat foods were bought in 

France, UK and Germany (Figure 1). All the products were chicken based recipes in 

different matrices: chunks in jelly, chunks in gravy, loaf or mousse. They were packed in 

pouches, cans or aluminum trays. 
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Figure 1: 32 European wet cat foods used in the study  

Sensory sessions: 25 judges were trained on the Petscript® language. Figure 2 

presents the Petscript® olfactory descriptors used to characterize wet pet food. The whole 

study was divided into 9 sensory sessions. Up to 4 products were presented during each 

sensory session. 11 to 21 trained judges participated to each sensory session. The products 

were randomized between judges over each session. The sessions were conducted under 

red light to avoid any sensory bias. 

 

Figure 2: The 25 odor terms of Petscript® sensory language for wet pet food 

RATA method [4] with a 4 points scale was used to describe all the cat food 

products, using the 25 odor terms of the Petscript® language. The order of the odor terms 

was randomized between judges, over each sensory session. The judges could also add 

up to 5 odor terms of their choice to describe the smell of the products.  

Data analysis: a mixed model was used with “judge” as a random effect and 

“product” as a fixed effect for each descriptor (STATGRAPHICS Centurion XVI.I). A 

PCA was conducted on adjusted means (SPAD8). An AHC (Ward criteria) was then 

applied to the factorial coordinates of the products in the spaces defined by PCA 

(SPAD8). 
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Results and discussion 

An olfactory space with 6 distinct clusters was obtained from PCA (Figure 3).  

 

Figure 3: Representation of the 6 clusters of products in the 1st and 2nd dimensions of the PCA 

Two clusters are opposed on axis 1, the “CHICKEN BREAST” cluster and the 

“SWEET” cluster. The “CHICKEN BREAST” cluster gathers together products 

characterized by ‘chicken meat’ and ‘chicken skin’ olfactory notes. These hyper premium 

products were all bought from the UK market. They contain above 45% of chicken meat 

in a clear white jelly or gravy. On the other hand, the “SWEET” cluster was described 

with ‘biscuit’, ‘cereals’, ‘caramel’ and ‘grilled’ terms that are typical of products from 

the Maillard reaction. The darker color of these products and the mention of ‘sugar’ in 

the ingredient list also point towards the Maillard reaction. 

Two clusters are opposed on axis 2: the “GAMEY MEAT” cluster, characterized by 

‘animal’, ‘blood’, ‘liver’, and ‘fatty’ olfactory notes; and the “AROMATIC HERBS” 

cluster, characterized by ‘rosemary’, ‘thyme’ and ‘basil’ olfactory notes. The “GAMEY 

MEAT” cluster is the most represented on the EU market and could target animal 

satisfaction [5]. The cluster “AROMATIC HERBS” contains 3 products bought 

respectively from UK, France and Germany. The use of herbs ingredients in these recipes 

underlines the trend of ‘humanization’, with pet food products not only design to attract 

pets, but also to improve pet owner satisfaction towards smell. 

The 2 last clusters “FISHY” and “OTHER” are better represented in the 3rd, 4th and 

5th dimensions. The “FISHY” cluster is characterized by ‘fishy’ and ‘prawn’ olfactory 

notes. The "OTHER” cluster contains products with particular olfactory profiles and 

weaker smell intensity. One product from this cluster was for instance described as 

‘peanut like’. Two products out of the 5 products in the “FISHY” cluster declare 

containing at least one fish ingredient (fish oil or fish extract). 

In this study, the Petscript® sensory language was successfully used to build the 

olfactory space for European wet cat food. Petscript® allowed differentiating selected 

products based on their odor profiles. Odor similarities and differences between products 

could be due to recipes and raw material origin, process, and manufacturing place. They 

can also highlight different pet food manufacturers’ strategies. Indeed, one pet food 
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manufacturer has all his products in the cluster “GAMEY MEAT” while another pet food 

manufacturer has 3 out of 4 products in the cluster “SWEET”. These could traduce pet 

food manufacturers’ will to create a brand olfactory signature. On the other hand, other 

brands use smell differentiation according to product positioning. One famous brand of 

pet food has their products spread in 4 out of the 6 different olfactory clusters. 

Petscript® can be used to support pet fooders’ strategy by positioning their products 

in the olfactory landscape, and helping them to reach a specific smell target or to 

differentiate from the other products on the market. The ongoing challenge is now to 

couple these sensory results with human and animal preferences to identify the smell 

profiles appreciated by both pet owners and their beloved animal. 
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Abstract  

2,4,6-trichloroanisol (2,4,6-TCA), the major compound responsible for cork taint in 

wine, belongs to haloanisoles which are formed by microorganisms, primarily fungi [1]. 

These substances can contribute to off-flavour in food and food contact material at 

remarkably low concentrations. Odour threshold concentrations (OTCs) of haloanisoles 

were determined by our trained expert panel in different matrices. The fact that 2,4,6-

TCA and 2,4,6-tribromoansiol (2,4,6-TBA) exhibit extremely low OTCs concludes in a 

challenge for analytical detection methods. Different analytical methods were developed 

and compared, highly sensitive and selective systems. It is shown that gas 

chromatography mass spectrometry (GC-MS) using negative chemical ionization (NCI) 

in selected ion monitoring (SIM), comprehensive GCxGC-MS using electron impact 

ionization (EI) in SIM and GC-MS/MS using EI in multiple reaction monitoring (MRM) 

mode fulfil the desired requirements.  

Introduction 

Haloanisoles with their musty, mouldy and earthy odour are known contaminants in 

recycled paper and paperboard. Using these materials for packaging food, these 

substances can migrate into the packed good and cause unpleasant off-flavour. Based on 

sensory evaluation a threshold of 10 ng/kg paperboard, which correlates with the 

sensitivity of the human nose and covers the OTCs of the most sensitive individuals, was 

chosen as reference for the required sensitivity of the analytical methods. Since the 

measurement with EI-GC-MS neither in scan nor in SIM mode reaches the desired 

sensitivity, a MRM method with increased sensitivity and selectivity was developed. 

With comprehensive GCxGC-MS using EI in SIM the requested sensitivity was achieved 

due to the process of solute focusing and reinjection in the modulator, which results in a 

narrow peak with higher amplitude [2]. Due to its high selectivity for electron capturing 

species, NCI-GC-MS operated in SIM can be used to analyse haloanisoles at very low 

concentrations. External calibrations of the 4 most potent haloanisoles were performed to 

prove sensitivity and linearity. For quantification standard addition and single point 

internal standard method (where applicable) were conducted. The aim of this study was 

to compare different gas chromatographic methods that can be used for analysis and 

quantification of haloanisoles in paperboard samples.  

Experimental 

Sensory analysis 

Determinations of OTCs were performed in duplicate by Graz University of 

Technology sensory expert panel using a 3 alternative forced choice sample presentation 

method in an ascending concentration series [3]. The panel consisted of 14 persons (9 

women and 5 men in the age between 27 and 50) who were trained in the standard sensory 
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evaluation methods and fulfilled all psychological and physical demands required for a 

sensory panellist. Samples were prepared the day before the trial in the specific matrix 

and served the panel in covered odour-free plastic cups immediately before testing. OTCs 

were calculated as the geometric means of the individual thresholds and were evaluated 

in three different matrices, water, Mygliol®812 (fat matrix) and cellulose.  

Sample preparation 

The sample preparation was performed by headspace solid phase microextraction 

(HS-SPME) with agitation by magnetic stir bars. Two different fibers, SPME fiber 50/30 

µm Carboxen®/DVB/PDMS (2 cm stable flex) and PAL SPME Arrow fiber Carbon 

Wide Range/PDMS (CTC-ARR11-C-WR-120/20-P3), were compared to prove an 

alleged increase in sensitivity due to the larger stationary phase volume in the Arrow 

fiber.  

GC-MS and GC-MS/MS 

The GC-MS system consisted of a Shimadzu GCMS-TQ8050 combined with 

Shimadzu AOC-6000 multifunctional auto sampler, using a quadrupole mass filter and 

EI. The headspace exposure of the SPME fiber was performed at 100°C for 20 minutes. 

A 29.5 m ZB-5MSi Column with 0.25 mm id and 0.25 µm film thickness was used for 

GC separation. Carrier gas was helium (51.4 kPa, linear velocity, 35.0 cm/sec). Column 

oven temperature program was 70°C (1 min) @ 10°C/min until 200°C @ 35°C/min until 

320°C (1 min). Measurements were conducted in Q3 scan (m/z 50-400, 5000 scans/sec), 

Q3 SIM and MRM. The m/z filtered in SIM are shown in Table 1, the transitions for the 

GC-MS/MS MRM method are shown in Table 2. 

 

Table 1: GC-MS measurement of haloanisoles in SIM mode, selecting following m/z 

Compound m/z m/z m/z 

Internal Standard 2,4,6-dTCA 217 215  

2,4,6-TCA 212 210  

2,3,4,6-tetrachloroanisol (2,3,4,6-TeCA) 246 231 229 

Internal Standard 2,4,6-dTBA 351 349  

2,4,6-TBA 346 344  

2,3,4,5,6-pentachloroanisol (2,3,4,5,6-PCA) 282 280 265 
 

Table 2: GC-MS/MS method; transitions (collision energy)  

Compound transitions transitions transitions 

2,4,6-dTCA 217.00>199.00 (15) 215.00>197.00 (15) 217.00>171.00 (30) 

2,4,6-TCA 211.90>197.00 (15) 210.00>195.00 (15) 212.00>169.00 (30) 

2,3,4,6-TeCA 230.90>202.90 (12) 228.90>200.90 (18) 243.90>201.90 (27) 

2,4,6-dTBA 350.80>332.70 (18) 348.70>330.70 (15) 348.70>302.70 (33) 

2,4,6-TBA 345.80>330.80 (18) 343.70>328.70 (15) 343.70>300.70 (27) 

2,3,4,5,6-PCA 264.80>236.80 (15) 279.80>236.80 (27) 236.90>142.90 (24) 

 

Comprehensive GCxGC-MS 

The comprehensive GCxGC-MS system consisted of a Shimadzu QP2010 Ultra 

instrument combined with an Optic-4 injector and a Shimadzu AOC-5000 Plus auto 

sampler using EI and was run in SIM mode. The headspace exposure of the SPME fiber 

was performed at 100°C for 20 minutes. A 30 m HT1 column with 0.25 mm id and 0.25 

µm film thickness was combined with a 2.5 m BPX5 column both with 0.15 mm id and 
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0.25 µm of film thickness. Modulation time was set with 5 seconds. Carrier gas was 

helium (131.1 kPa, average linear velocity 33.7 cm/sec on both columns). Column oven 

temperature program was 65°C (1 min) @ 5°C until 230°C. Ion source temperature was 

200°C, detector voltage was 1.2 kV. M/z selected in SIM mode are the same as used in 

GC-MS SIM measurements (Tab.1). 

Negative Chemical Ionisation (NCI) 

The GC-MS system consisted of a Shimadzu QP2010 Plus system combined with 

AOC-5000 Plus auto sampler. The headspace-exposure of the SPME-fiber was performed 

at 100°C for 20 minutes. A 30 m ZB-5 MS column with 0.25 mm id and 0.25 µm film 

thickness was used for separation. Column oven temperature program was 50°C (1 min) 

@ 10°C/min until 300°C (5 min). Carrier gas was helium (45.6 kPa, linear velocity, 35.0 

cm/sec). Isobutane was used for NCI, the ion source temperature was 160°C, the detector 

voltage 1.4 kV. In SIM mode m/z 35 and m/z 37 were filtered for compounds containing 

chlorine and m/z 79 and m/z 81 for bromine. 

Results and discussion 

Sensory analysis 

OTCs of 9 different haloanisoles were determined in water. It was shown that the 

haloanisoles with the positions 2,4 and 6 on the benzene molecule filled with the halogen 

(2,4,6-TCA and 2,4,6-TBA) show the lowest OTCs. As soon as one position is exchanged 

or one halogen is added, the OTC increases. However, in general the matrix has great 

influence on the sensory threshold. To investigate this effect, OTC evaluations of the 4 

most odorous compounds were conducted in Miglyol®812, a fat matrix used in the food 

sector as it is odour neutral due to its oxidation resistant properties. An increase in the 

sensory threshold of approximately 4 decades compared to the values received in water 

was observed. Due to the fact that haloanisoles are known to cause off-flavour in 

paperboard with unpleasant musty, earthy odour, the OTCs of the two most potent 

substances (TCA and 2,4,6-TBA) were investigated in cellulose as matrix, too. It was 

shown that the sensory thresholds were 3 decimal powers higher in cellulose than in 

water. A comparison of the OTCs in the different matrices is given in Table 3. At this 

point the great variations in the sensory thresholds between the individual panellists 

should be noticed. Values for 2,4,6-TBA for example were ranging from 0.001 ng/l to 1 

ng/l (water). 

 

Table 3: BET concentrations [ng/L] / [ng/kg] in different matrices; (n.d.: not determined) 

Compound BET [ng/L] 

in water 

BET [ng/L] 

in Miglyol®812 

BET [ng/kg] 

in cellulose 

2,4,6-trichloroanisol 0.1 800 360 

2,4,6-tribromoanisol 0.1 5000 480 

2,3,4,6-tetrachloroanisol 2.5 11000 n.d. 

2,3,4,5,6-pentachloroanisol 60 284000 n.d. 

2,3,5,6-tetrachloroanisol 250 n.d. n.d. 

2,3,4,5-tetrachloroanisol 1000 n.d. n.d. 

2,4-dibromoanisol 1500 n.d. n.d. 

2,3,4-trichloroanisol 36000 n.d. n.d. 

3,5-dibromoanisol 54000 n.d. n.d. 
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Calibrations 

In the progress of method development external calibrations (10 ng/kg; 100 ng/kg; 

500 ng/kg and 1000 ng/kg) were performed. With GC-MS (SIM) the desired sensitivity 

of 10 ng/kg could not be achieved, but was realised with GC-MS/MS in MRM (Figure 

1). An improvement of sensitivity of the Arrow fiber compared to the traditional SPME 

fiber in the MRM measurements could not be shown. Linearity of the calibrations curves 

of the 4 haloanisoles was shown using the correlation coefficients, where values of > 

0.998 (SPME-fiber) and > 0.995 (arrow-fiber) were received.  

  
Figure 1: 2,4,6-TCA [10 ng/kg]; left: EI-GC-MS/MS in MRM; right: EI-GC-MS in SIM 

  

Figure 2: Calibration curves showing linear ranges for 2,4,6-TCA using comprehensive GCxGC-MS (left) and 
GC-MS/MS (right) 

Quantifications 

To investigate if the methods are applicable for the quantification of haloanisoles in 

real life samples, recycling paperboard samples (100 mg) were analysed. As expected, 

haloanisoles could not be detected with EI-GC-MS, but with comprehensive GCxGC-MS 

using EI in SIM, EI-GC-MS/MS in MRM and NCI-GC-MS in SIM (Table 4). Standard 

addition was conducted to investigate the influence of the matrix. Due to its better 

applicability single point internal standard method is going to be conducted in routine 

analysis except for the NCI-GC-MS measurements, where chlorine/bromine ions are 

selected in SIM and consequently the deuterated standard cannot be separated from the 

analyte.  

Table 4: Quantification of the two most odorous compounds, 2,4,6-TCA and 2,4,6-TBA in an example 
paperboard sample using standard addition and * single point internal standard method 

Compound GCxGC-MS GC-MS/MS GC-MS/MS* GC-MS/NCI 

2,4,6-TCA [ng/kg] 172 ± 9 154 ± 17 177 ± 13 137 

2,4,6-TBA [ng/kg] 1536 1104 ± 102 1449 ± 234 987 
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Abstract 

The compost dairy bedded pack barn is an animal-friendly housing system for cattle. 

It consists of a large, open resting area, usually bedded with sawdust. The most critical 

success factor for managing a compost dairy bedded pack barn (CDB) is providing a 

comfortable, dry resting surface for cows at all times.  

Within the project “Assessment of compost dairy bedded pack barns with regard of 

compost quality, odour and ammonia emissions” emission measurements (NH3) of 23 

CDB were executed during three different seasons (summer – autumn – winter). Samples 

for the analysis of odour-active volatile organic compounds (VOCs) and chemical 

parameters (e.g. pH value, dry matter, C/N ratio) were taken. In addition, an extensive 

microbiological screening with special attention to harmful bacteria was carried out. The 

samples were picked from the compost manure mattress. In CDB, mainly sawdust is used 

as bedding material despite its increasing cost.  

Concerning the assessment of emissions in CDB no correlations between ammonia 

and odour-active VOCs could be determined, but the majority of the analysed CDBs 

shows emission concentrations below or in the range of cubicle housing systems.  

Introduction 

The compost dairy bedded pack barn (CDB) is a new and an animal-friendly housing 

system for cattle, which is also positively assessed from the perspective of claw health [1, 

2]. The most critical success factor for managing a CDB is providing a comfortable, dry 

resting surface for cows at all times [3]. A CDB consists of a large, open resting area 

usually bedded with sawdust. Due to its good absorptivity, structural stability and good 

decomposition under aerobic conditions, sawdust is a very well-suited bedding material. 

The major drawback of sawdust is the constantly increasing costs, which makes the use 

of cheaper alternatives like spelt husk, wood chips or hay from nature conservation areas 

more attractive.  

However, until now only scattered investigations about ammonia and odour-active 

volatile organic compounds (VOCs ) were carried out [4–6]. Knowledge about VOC 

emission of CBDs is of utmost importance, as potentially odorous emissions will not only 

effect the animals’ well-being. Emission of malodourous compounds would also lead to 

complaints by neighbouring residents. 

Another important parameter in a CDB is the large diversity of microorganisms [7]. 

In Friesland (The Netherlands), for instance, the group of extremely thermophilic aerobic 

spore-formers (XTAS) was the reason for a ban on the delivery of milk from composting 

plants to dairies [8]. Because of this ban, intense investigations and characterization of 

the compost mattress especially with respect to the microbial load is of increasing 

importance. Nevertheless, a total screening and characterization of the different 
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microorganisms in the compost mattress (e.g. harmful bacteria, like Klebsiella spp.) has 

not yet been conducted. 

Experimental 

Sampling 

Within this project, emission measurements (NH3) of 23 CDB were performed and 

samples for the analysis of odour-active VOCs and chemical parameters were taken. The 

samples were drawn from the compost manure mattress during three different seasons 

(summer – autumn – winter) and on six different locations of the mattress.  

Analysis of volatile compounds 

The gaseous NH3 emissions were measured by an open dynamic chamber and 

analysed by a Multigasmonitor INNOVA 1412. For the analysis of potentially odorous 

compounds, headspace solid phase micro extraction was carried out prior to GC analysis 

to enrich the VOCs from the mattress samples (50/30 µm DVB/Carboxen/PDMS 2 cm 

stable flex fibre, Supelco; enrichment at 40°C for 20 minutes). Gas chromatography mass 

spectrometry (Agilent 7890A GC Systems and Agilent 5975C VL MSP, electron impact 

ionisation, 70eV, scan mode) equipped with a nonpolar analytical column (HP5MS, 30m 

x 250µm x 1µm) was used for the analysis of the VOCs. Quantitation was performed 

using deuterated dodecane as internal standard. Identification of the compounds was 

based on the comparison of the obtained mass spectra with mass spectra from MS 

databases or literature and the linear temperature programmed retention indices and 

comparison to data from authentic reference compounds and data from literature.  

Microbial screening 

To receive information about the microbial load of CBD compost mattresses, an 

extensive microbial screening was carried out. Special attention was paid to the 

characterization of harmful bacteria, like Klebsiella ssp. and XTAS (extreme 

thermophilic aerobic spore-formers). To determine the bacterial count (colony forming 

units, CFU) samples were plated on plate-count agar (PCA) and on selective culture 

media (e.g. Baird Parker RPF Agar or SGC2). 

Results and discussion 

Results from the CDB study show, that ammonia emissions are generally lower from 

CBD than in cubicle housing systems (Figure 1), except for the use of spelt husk and 

CBD with reduced lying area availability per cow. Concerning the assessment of 

emissions in CDB, no correlations between ammonia and odour-active VOCs formation 

were found.  
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Figure 1: Ammonia emissions in CDB summer and autumn 2015 in comparison to a cubicle housing system 

Concerning the potentially odour-active VOCs, the same conclusion was drawn as 

for ammonia emissions. The VOCs have a high dependency regarding seasonal changes 

and on the bedding material (Figure 2). Especially phenolic and sulphur compounds (e.g. 

dimethyl disulphide) as well as aldehydes and terpenes (e.g. 3-methylbutanal, camphene, 

α- and β-pinene) were identified as the major compounds responsible for the odour of the 

compost manure mattress. Phenols and sulphur substances show constant concentrations, 

whereas aldehydes and terpenes range from low to high concentrations depending on the 

bedding material or on the composting state of the resting surface. Furthermore, in 

summer, the total odour-active VOCs are - as expected – significantly higher than in 

winter, which shows that the annual temperature fluctuations are one of the major external 

factors of influence on odour formation of the CDB. VOC measurements in a comparable 

cubicle housing system showed 10 to 100 times higher VOC values than in CDB 

(depending on the compound). 

 
Figure 2: Comparison of total odour-active VOC (mg kg-1) in dependency to seasonal changes 
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Microbial analysis of the compost mattresses showed no significant variation neither 

depending on the individual season nor on the farm (Figure 3). In general, farms using 

spelt husk showed the highest bacterial counts, whereas the lowest microbial 

concentrations were found for bedding with sawdust. Extreme thermophilic spore-

formers (XTAS) were analysed in a very low concentration range. So far, no limit value 

exists for the presence of XTAS. Based on the results obtained from the 23 investigated 

CDBs, it can be assumed that CDBs do not present any hazard potential. 

 
Figure 3: Microbiological Screening (total count vs. XTAS count) winter 2015/16 

The results of this study show that a well-managed CDB is not only animal-friendly 

but it is also a farming option with less emissions compared to a commercial used cubicle 

housing system. Consequently, CDBs are said to be a very recommendable and suitable 

cattle farming option.  
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Abstract 

A new approach to treatment of complex GC-MS datasets is introduced. The 

approach is based on PARAFAC2 modelling but does not require extensive coding and 

in-depth mathematical knowledge due to the new ’PARAFAC2 based Deconvolution and 

Identification System’ (PARADISe). PARADISe can, in a user-friendly way, perform all 

the necessary steps in treatment of GC-MS data. It is demonstrated how PARADISe can 

efficiently quantify peaks, resolve co-elution, improve identification and save significant 

amounts of time.  

Introduction 

Modern GC-MS systems combined with efficient sampling techniques produce 

chromatograms with a large number of peaks of which many are not well-resolved. Well-

designed experiments and screening investigations include many samples and replicates. 

The result is unavoidably heavy workload on the investigator to treat this data and extract 

the chemical information. Many approaches have been used from simple analysis of total 

ion chromatograms over single-ion techniques to different kinds of deconvolution 

techniques. They all have significant draw-backs: most are very time-consuming, results 

can be user-dependent to different degrees, and for almost all techniques, chromatograms 

are treated independently of each other. Furthermore, many approaches can only handle 

moderately overlapping peaks and often experience problems with low signal-to-noise 

peaks. Non-detects remain an issue as well. 

Here, a completely different approach using the so-called PARAFAC2 modelling 

(PARAllel FACtor analysis 2) is demonstrated. Until now, PARAFAC2 modelling has 

only been available for mathematical users and has required extensive coding for efficient 

use [1]. An integrated approach called PARAFAC2 based Deconvolution and 

Identification System (PARADISe) has, however, become available. The solution is user-

friendly, extremely time-saving, and produces reliable results that are less user-

dependent. It is developed by a group of chemometricians around the ‘Chemometrics and 

Analytical Technology’ group at Department of Food Science, University of 

Copenhagen, and is freely available.  

PARADISe benefits from the ability of PARAFAC2 to resolve co-eluting 

chromatographic peaks for all investigated chromatograms simultaneously [2]. It 

overcomes the limitation of PARAFAC2 which only works on time intervals, by assisting 

the user in defining appropriate intervals in the chromatograms, and it can thus perform 

all the necessary steps from visualization of data to generation of a final table of identified 

compounds for an entire set of chromatograms. 

The steps in an analysis of a set of chromatograms by PARADISe are: 

 Conversion of datafiles to AIA format 

 Open/import files in PARADISe 

 Inspect raw data (zoom/pan, search in NIST, exclude samples…) 

 Define intervals 
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 Calculate PARAFAC2 models 

 Evaluate models (decide number of components) 

 Tag relevant compounds 

 Make report 

In the following, examples are given to compare data treatment of real datasets done 

with a commonly used vendor software (Agilent ChemStation) and with PARADISe. It 

will be demonstrated how the techniques perform with regard to integration/baseline-

modelling, deconvolution, peak identification, and user’s time-consumption.   

Experimental 

Chromatograms from datasets exhibiting typical challenges were selected from 

recent projects carried out in our lab. The chromatograms were from different food 

products and were all obtained using dynamic headspace sampling in combination with 

thermal desorption (Perkin Elmer Turbomatrix ATD 650) gas chromatography mass 

spectrometry (7890A GC-system interfaced with a 5975C VL MSD with Triple-Axis 

detector from Agilent Technologies, Palo Alto, California) as described by Fjaeldstad et 

al. [3]. The chromatograms were treated using Agilent’s software ChemStation (MSD 

ChemStation E.02.02.1431) and using PARADISe, a software package developed by 

Johnsen et al. [4] and available from http://models.life.ku.dk/paradise (PARADISe 

version 1.1.6). 

Results and discussion 

Example 1 

This is a simple case to demonstrate the basic features in PARAFAC2 modelling as 

carried out in PARADISe. The raw data is the time interval from 3.71 to 3.99 minutes 

taken from 40 chromatograms. Part of the task in using PARADISe is to determine how 

many components need to be used. There are several utilities for this in the software and 

some are explained in Example 3. Figure 1 shows how a PARAFAC2 model with 2 

components can separate the raw data into two ‘phenomena’ or components: Component 

1 which includes mass fragments of typical background noise (air, water a.o.) and 

component 2 which mainly includes the mass fragments 43 and 86 (see Figure 2).  

 
Figure 1: Total Ion Chromatograms (TIC) from the interval 3.71 - 3.99 min from 40 chromatograms and 
weighted elution profiles from a PARAFAC2 model with two components 

http://models.life.ku.dk/paradise
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Figure 2: Patterns of mass fragments (=mass spectra) constituting component 1 and 2 in Figure 1 

The mass fragments of component 2 do actually make up a mass spectrum, and when 

searched in the NIST database, it was identified as 3-methyl-2-butanone. It is seen that 

the PARAFAC2 model eliminates the need for integration of peaks. Instead the 

background is modelled and separated into its own component(s), in this case component 

1, so component 2 exclusively represents 3-methyl-2-butanone. Even background noise 

that changes in intensity and in composition throughout the interval can be modelled, but 

may then require more than one component. 

The PARAFAC2 model extracts one mass spectrum for each component by 

combining information from all chromatograms. This results in a mass spectrum of higher 

quality and better match factors are most often experienced. Finally, the PARAFAC2 

model creates a concentration profile which is a list of the peak areas in all the 

chromatograms included. It should be noted that minor retention time shifts (for example 

as those seen most clearly in the weighted elution profiles in Figure 1) are handled by the 

model without problems. It is also worth noting that the PARAFAC2 model does not 

assume any particular shape (e.g. Gaussian or Lorentzian) of the elution profiles. The 

shape is solely determined by the data. 

Example 2 

This example demonstrates a more complex situation, see Figure 3. The figure shows 

two coeluting peaks which were expected to be 2- and 3-methylbutanal. PARAFAC2 

modelling did, however, reveal that 6 ‘phenomena’ or components could be found in the 

interval, see Figure 4. 

The first component is representing ethyl acetate, but it is only a small remain (or 

‘tail’) not belonging to this time interval. Component 2 and 3 represent rather small peaks 

that were hidden behind 2- and 3-methylbutanal in the TIC, but could still be identified 

with high match factors as vinyl isopentylether and 2-methyl-2-propanol. Component 4 

models background noise. So, in addition to performing a near perfect separation, and 

thus quantification and identification, of 2- and 3-methylbutanal, two hidden peaks were 

identified and quantified with high reliability. 
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Figure 3: Total Ion Chromatograms (TIC) from the interval 3.30 - 3.75 min from 80 chromatograms 

 

Figure 4: Weighted elution profiles (not overlaid) from a 6 component PARAFAC2 model applied to the data 

shown in Figure 3. Identifications and match factors from search in the NIST database are also shown. 

Example 3 

This example shows how the appropriate number of components is determined and 

how decisions on number of components affect the data obtained. The same 40 

chromatograms and the same retention time interval as in example 1 are used, 

supplemented by data from the interval 3.73 - 3.92 min which include the compound 2-

butanone. Figure 5 and 6 show peak areas of the two compounds from five selected 

samples. The peak areas were calculated from the TIC’s using standard integration 

settings in ChemStation and by applying 1, 2, 3 and 4 component PARAFAC2 models in 

PARADISe.  
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To determine the appropriate number of components in the models, PARADISe 

includes two diagnostics: Fit and core consistency. Fit will normally increase with 

increasing number of components while core consistency tends to decrease. Both values 

should be as high as possible (range: 0-100). Fit and core consistency are included in the 

figures. The numbers indicate that 2 and 3 components could both be reasonable. When 

several models are appropriate it is often useful to select the one with most components 

in order to extract as many chemical pieces of information as possible. 

 

Figure 5: Peak areas of 2-butanone in five selected samples. The peak areas were calculated from TIC’s using 

standard integration settings in ChemStation and by applying 1, 2, 3 and 4 component PARAFAC2 models. 

2-Butanone (Figure 5) is a medium sized peak. A 3 component model would be the 

choice since it has fit and core consistency values of 100. The 2 component model works 

almost equally well, but the 4 component model is obviously wrong, having a core 

consistency of 0. The 1 component model gives too high peak areas because the 

background noise is not modelled by a separate component but is included in component 

1. The TIC data from ChemStation fits the 2 and 3 component models well. The reason 

for the discrepancy in sample 33 is a coelution which is not resolved by ChemStation (and 

neither by the 1 component model). 

 
Figure 6: Peak areas of 3-methyl-2-butanone in five selected samples. The peak areas were calculated from 

TIC’s using standard integration settings in ChemStation and by applying 1, 2, 3 and 4 component PARAFAC2 
models. 

3-Methyl-2-butanone (Figure 6) has very small peaks in some of the samples. A 2 

component model would be the choice since it has fit and core consistency values of 100. 
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The 3 and especially the 4 component models have lower core consistency and are 

therefore less appropriate. The TIC data from ChemStation fits the 2 component model 

well except in sample 2 and 4 where the peak is too small to be integrated by the 

ChemStation software. 

This example shows that the diagnostics fit and core consistency give good guidance 

in determining the correct number of components. Even when the guidance is not clear 

(as for 2-butanone) the two possible selections (2 or 3 components) result in almost equal 

peak areas. Furthermore, it is demonstrated that PARADISe does not depend on 

integration settings, but gives areas of all peaks independent of their size, and that the 

peak areas reported by PARADISe are practically equal to those obtained when well 

separated TIC peaks are integrated in ChemStation. Note, that even in samples without a 

certain chemical present, it will still be quantified. All chemicals are quantified in all 

samples and hence, there is no issue with below limit of detection.  

Time consumption 

To go through the steps mentioned in the introduction, a user of PARADISe will 

typically spend a few minutes to convert and import files. Time used for inspecting raw 

data depends mostly on the data. Defining intervals can be done within 30 min for an 

experienced user. The calculation of PARAFAC2 models is very time consuming (few 

hours to more than a day) but will be carried out by the computer unattended. Evaluating 

the models and tagging compounds may take up to a couple of hours depending on the 

complexity of the chromatograms, and finally the report is created within few minutes. In 

total, the typical time consumption will be 2-3 hours for an experienced user – almost 

independent on the number of chromatograms included.  

Conclusion 

It is concluded that treatment of large datasets with PARADISe results in extraction 

of more information, the information is more reliable, and user’s time-consumption when 

treating datasets with numerous complex samples/chromatograms is dramatically 

reduced.  
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Abstract 

2-Acetyl-1-pyrroline (2AP) is the characterizing odorant in foods such as aromatic 

rice and popcorn. 2AP is a potent odorant with a detection threshold of 0.1 ppb and 

contributes a roasted, cracker-like or popcorn-like aroma character. As such, 2AP would 

be appealing as an added flavoring but this poses a challenge due to the molecule’s 

unstable nature. When 2AP is neat or in a concentrated aqueous solution, the color will 

rapidly change from colorless to red as 2AP reacts. Mass spectral data from our lab show 

a decline in a 25 mg/mL aqueous solution of 2AP in only 5 minutes. Buttery et al. 

postulated in 1983 that this molecule undergoes a polymerization process. Yet, little 

information is available in the literature to support this hypothesis. Our research has 

probed 2AP loss in water by high resolution mass spectrometry (HR-MS) and NMR (1D 

and 2D) and confirmed that a polymerization process does occur. We have observed that 

2AP polymerization is a complex process, generating many unstable intermediates. The 

intermediates are highly unsaturated molecules which contain an increasing number of 

2AP moieties, accompanied by the loss of water. Increasing dehydration occurs as 

molecular weight increases. NMR shows the increase of other small molecules in 2-6 

hours of reaction. We have assembled a list of structural features of the polymeric species 

via 2D NMR and MS2. The research presented will focus on the insights gained about 

2AP’s reactions products. Stabilization strategies for 2AP will be briefly mentioned. 

Introduction 

2-Acetyl-1-pyrroline (2AP) is the characterizing aroma compound in aromatic rice, 

popcorn and the Pandan leaf with a low odor threshold (0.1 ppb) [1]. 2AP can be formed 

biochemically, such as in rice, the Pandan leaf and the bread flower. Additionally, it is a 

Maillard reaction compound; and therefore, 2AP is present in a huge variety of cooked 

foods. Unfortunately, 2AP is very unstable when isolated in its neat form. 2AP rapidly 

undergoes a color change from a pale yellow oil to a viscous red material in minutes after 

being concentrated. 

2AP was discovered in 1982 by Ron Buttery’s group [2]. In the following year, this 

research group offered the hypothesis that 2AP undergoes a polymerization process 

between the carbonyl group and the five position of other molecules [1]. During the 35 

years since 2AP’s discovery, there has been a wealth of research done on 2AP that has 

included the development of new synthetic routes, the identification and quantification of 

2AP in various foods, and a variety of chemical and physical methods developed to 

increase the compound’s storage stability. Figure 1 shows some highlights from 2AP’s 

history. Yet, 2AP’s fate has been accepted as polymerization without analytical 

characterization. 

The current work provides strong data to explain the fate of 2AP. This research is 

motivated by the clear interest of the scientific community in this molecule and the 

potential of 2AP as a flavoring molecule in the food industry. A deeper understanding of 
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2AP’s reaction fate can offer insight into stabilization attempts and provide knowledge 

about the chemistry of the structurally similar family of cracker-like aroma compounds. 

 

 
Figure 1: Timeline of 2AP’s discovery and synthesis and patent history. The italicized work is focused on 2AP 

stabilization. Compiled from references 1-13. 

Experimental 

2AP was synthesized according to known methods [5]. The product was stored as a 

dilute solution in dry ether (sodium sulfate present) in the freezer. Immediately prior to 

an experiment, neat 2AP was obtained by filtering away the sodium sulfate and removing 

the ether under a stream of nitrogen gas. Initial experiments explored 2AP degradation in 

methanol. However, 2AP was relatively stable (days) and deuterium exchange proved to 

be a problem when working with deuterated solvents. The acetyl group can undergo keto-

enol tautomerization. This is observed in NMR by the loss of a singlet corresponding to 

2AP’s methyl group, accompanied by the formation a triplet and pentet just upfield of the 

methyl signal. This is consistent with the incorporation of one or two deuterium atoms, 

respectively, based on the deuterium 2n+1 rule. 

Further studies used water as the dilution solvent for 2AP. This is an appropriate 

solvent choice since water is a major component of many foods. Normal (protonated) 

water was used for NMR studies as well to overcome problems with exchange. Time 

course data was collected with high resolution mass spectrometry (HR-MS) and NMR 

for times within a few minutes of the reaction start and up to seven hours. MS2 data was 

used to obtain additional structural insights. 2D NMR experiments (COSY, TOCSY, 

HSQC, HMBC) were also conducted to gain connectivity data. Isotopically labeled d3-

2AP was synthesized from d3-iodomethane. HR-MS studies in deuterium oxide were 

conducted on the labeled molecule. 

Results and discussion 

From the time course data collected with HR-MS (not shown) it is notable that 2AP’s 

peak area declines in only 5 minutes [14]. Table 1 demonstrates the formation of a series 

of products with increasing molecular weight [14]. These masses are a multiple of 2AP’s 

mass plus a proton. Alternatively, the masses correspond to a multiple of 2AP’s mass, 

accompanied by the loss of water. For example, the mass 205.1338 is the equivalent mass 

of 2 molecules of 2AP, the loss of 18 Daltons from water and the addition of a proton to 



 

 

Exploring 2-acetyl-1-pyrroline loss by high resolution mass spectrometry and nuclear magnetic resonance 429 

create a positive ion, caused by the ionization process. Another feature observed from the 

data is that the abundance of the dimer (223.1444) increases at early time points and then 

declines (data not shown) [14]. This would also be consistent with a polymerization 

process, where products continue to react and increase in size. 

From Table 1, the mass accuracies are all within 3 ppm, which gives confidence that 

the proposed chemical formulas are correct. The same time course experiment was 

repeated with d3-2AP. In order to get useful data, the experiment must be conducted in 

deuterium oxide, since the deuteriums on the acetyl group exchange with the deuteriums 

of the solvent. Table 2 shows some very interesting results, which indicate that exchange 

must occur between the solvent and a proton on the pyrroline ring, indicating that a ring 

opening mechanism is involved [14]. The rationale for this conclusion is based on the fact 

that the observed masses have one more deuterium that the predicted formulas for the 

isotopic species. For example, the dimer has six deuterium atoms from the two molecules 

coming together and one deuterium from the ionization process, giving a total of seven 

deuterium atoms. Since eight deuterium atoms are actually present on the dimer, this 

strongly points to a ring opening mechanism. Further, this observation gives further 

confidence that a chemical reaction is occurring, as opposed to aggregates forming in the 

mass spectrometer. 

Table 1: 2AP product masses with chemical formula assignments and qualitative descriptions 

General name 
Chemical formula 

(protonated) 
Exact mass 

Mass accuracy, 

ppm 

2AP C6H10NO 112.0760 2.762 

dehydrated dimer C12H17ON2 205.1341 2.731 

dimer C12H19O2N2 223.1447 2.669 

dehydrated trimer C18H26O2N3 316.2026 2.044 

trimer C18H28O3N3 334.2131 1.741 

doubly dehydrated tetramer C24H33O2N4 409.2605 1.704 

dehydrated tetramer C24H35O3N4 427.2710 1.480 

triply dehydrated pentamer C30H40O2N5 502.3179 0.494 

doubly dehydrated pentamer C30H42O3N5 520.3287 0.929 

triply dehydrated hexamer C36H49O3N6 613.3874 2.175 

doubly dehydrated hexamer C36H51O4N6 631.3980 2.169 
 



 

 

 

 

 

 

Table 2: Products observed from the loss of d3-(Me)-2-acetyl-1-pyrroline in deuterium oxide 

General name 
Chemical formula 

(protonated) 

Predicted d3- 

analogue (in D2O) 

Actual d3- analogue 

(in D2O) 

Exact 

mass 

Mass accuracy, 

ppm 
Complications 

2AP C6H10ON C6H6
2H4NO C6H6

2H4NO 116.10081 0.108 none 

dehydrated dimer C12H17ON2 C12H12
2H5ON2 C12H11

2H6ON2 211.17116 -0.190 1 D exchanged for H 

dimer C12H19O2N2 C12H12
2H7O2N2 C12H11

2H8O2N2 231.1942 -0.512 1 D exchanged for H 

dehydrated trimer C18H26O2N3 C18H18
2H8O2N3 

C18H15
2H10O2N3Na 348.24626 -1.165 2 D exchanged for 2 H 

trimer C18H28O3N3 C18H18
2H10O3N3 C18H16

2H12O3N3 346.28784 -1.413 2 D exchanged for 2 H 

trimer 
  C18H16

2H11O3N3Na 367.26306 -1.218 2 D exchanged for 2 H 

dehydrated tetramer C24H35O3N4 C24H24
2H11O3N4 C24H21

2H14O3N4 441.35799 -0.571 3 D exchanged for 3 H 
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The NMR data was collected in an array. There was no delay between each step in 

the array, allowing the maximum sensitivity by continuous acquisition of spectra. The 

major signals in the time zero data are all associated with 2AP and it structural dimer 

(data not shown) [14], the latter of which is formed during 2AP’s chemical synthesis and 

is difficult to separate from 2AP using silica gel chromatography. After 2 hours of 

reaction, it is clear that much of the 2AP has been lost and new species have formed. The 

challenge of NMR in general is that milligram quantities of product are needed. In this 

reaction system, numerous products are being generated in trace quantities. Another 

particular challenge is the system’s dynamic nature. NMR sensitivity doubles as the 

number of scans is quadrupled; however, this system does not give the option of long 

acquisition times. The problem is being overcome through the use of a quick sample 

preparation procedure using solid phase extraction. We have successfully isolated the 

dimer in excess of 90% purity. With the low quantity of 2AP, the dimer was stable for at 

least a 24-hour time period, quite adequate for acquiring quality 2D data. NMR spectra 

was collected using protonated solvents (regular water and methanol) due to the exchange 

problem. Presaturation of the methyl signal from methanol interferes with dimer cross 

peaks in the 2D data. Studies are currently underway with d3-methanol (CD3OH) to 

overcome this problem. 

The data given here provide strong evidence that 2AP undergoes a polymerization 

process. Dilution is a simple strategy to extend 2AP’s shelf life, also suggested by Buttery 

when he hypothesized that 2AP undergoes polymerization [1]. Various stabilization 

strategies have been developed for 2AP.  Physical methods have included entrapment in 

cyclodextrin [9] and spray drying [15]. Unfortunately, these methods have suffered from 

poor loading and a limited increase in shelf life. The most promising strategy to date has 

been 2AP complexation with zinc halides [13]. The zinc forms a covalent bond to both 

the nitrogen and oxygen groups of 2AP. This complex is stable for months if stored under 

moisture free conditions. Further, since zinc, chloride and 2AP are all GRAS molecules, 

the complex should not pose a problem for obtaining GRAS status. This concept of 

holding the reactive groups on 2AP captive is a key idea from both the current work and 

the zinc halide complexation. Future stabilization work should continue to utilize this 

concept. 

Summary and Conclusions 

From this research we have provided mass spectral data to show that 2AP undergoes 

polymerization. We see that 2AP forms up to at least a hexamer in dehydrated form. MS2 

data indicates that the 2AP ring opens during formation of the dimer. Further, NMR 

suggests that the dimer contains carbonyl and carbon-carbon and/or carbon-nitrogen 

double bonds. We are continuing efforts to identify the dimer structure. Holding one or 

more of the reactive groups on 2AP captive is a promising approach to stabilizing this 

potent flavor molecule. 
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Abstract 

A novel Proton Transfer Reaction – Mass Spectrometry (PTR-MS) setup for rapid, 

sensitive and selective food and flavor analysis is introduced and proof-of-concept 

measurements are presented. The setup enables rapid and sensitive analysis because of 

the utilization of ion transmission improving technologies, namely an ion funnel and a 

hexapole ion guide between the PTR drift tube and the mass spectrometer and the 

interfacing with an autosampler. Furthermore, the setup is highly selective because of the 

implementation of an advanced fastGC inlet system. Using a certified gas standard, the 

performance of the PTR-MS instrument is evaluated and compared to conventional 

devices. Finally, the combination of all instrumental components is tested in real-life 

conditions by analyzing nine different red wines.  

Introduction 

For decades Gas Chromatography – Mass Spectrometry (GC-MS) has been the gold 

standard for sensitive and selective analysis in food and flavor science. However, soon 

after its introduction in the 1990s PTR-MS has proven its potential in this field and has 

rapidly become an established method for real-time monitoring [1]. Early PTR-MS 

instruments were equipped with quadrupole mass filters and lacked selectivity because of 

unit mass resolution. They provided real-time quantification capability only for 

monitoring of selected compounds, as acquiring full mass spectra with quadrupole MS 

can only be done in mass scanning mode and thus is time-consuming. These drawbacks 

have been overcome by the introduction of high resolution Time-Of-Flight (TOF) mass 

spectrometers in the late 2000s [1], [2].  Nowadays PTR-TOFMS instruments can be 

considered as state-of-the-art, because of their ample advantages over quadrupole based 

PTR-MS devices and development work of various commercial manufacturers and 

universities is mainly focused on the further improvement of selectivity and sensitivity.  

The importance of high selectivity in food and flavor science is obvious, as often a 

large number of compounds needs to be analyzed in complex matrices (e.g. coffee [3], 

wine [4], etc.), with many of them being isobars or even isomers. Whereas high mass 

resolution of TOF mass spectrometers enables the separation of isobaric compounds, 

isomers cannot be distinguished regardless of the resolution and require additional means 

of selectivity improving measures. Early attempts of coupling GC to PTR-MS were 

successful in considerably improving selectivity (separation of isomers, unambiguous 

compound identification, etc.) but disabled one of the most important advantages of PTR-

MS, namely the real-time capability [5]. Much more rapid methods, which have 

subsequently evolved, include switching of reagent ions and changing of the reduced 

electric field strength in the PTR drift tube (E/N) [6], but have not met the gold standard 

GC in terms of selectivity so far. Eventually, a presumably ideal compromise between 

separation power and response time has been published in 2014: a rapid GC system 

consisting of a multi-capillary-column coupled to PTR-TOFMS [7].  
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The main advantage of improved sensitivity is not only a better Limit-of-Detection 

(LoD), but increased measurement speed and better quality of data. If one assumes a 

typical sensitivity of 25 cps/ppbv of first generation PTR-TOFMS instruments [2], the 

relative statistical error for measuring a compound at 1 ppbv for 1 s is 20% (square root 

of count rate divided by count rate). Exactly the same concentration measured for 1 s with 

an improved instrument with 1000 cps/ppbv would lead to an error of only 3%. Even if 

the measurement time would be reduced by one order of magnitude to 100 ms, the error 

would still be only 10%. Thus, sensitivity is of utmost importance for time-critical 

applications, such as flavor analysis in mouth- and nosespace or rapid aroma releasing 

processes. Furthermore, sample throughput can be considerably increased if the 

measurement time per sample can be reduced.  

Here we present a sophisticated setup combining a novel high-sensitivity PTR-

TOFMS instrument with an advanced fastGC inlet system, which allows for switching 

between direct injection and fastGC mode, and an autosampler. 

Experimental 

The working principle of PTR-TOFMS has been described in detail e.g. in the book 

by Ellis and Mayhew [8]. In short, H3O+, NO+, O2
+ [9] and Kr+ [10], respectively, reagent 

ions are generated in a hollow cathode ion source and injected into a drift tube, where 

chemical ionization of the analytes takes place. The reagent and product ions are then 

separated according to their m/z in a TOF analyzer and detected with a microchannel plate 

detector.  

The transfer region between the drift tube and the TOF mass spectrometer is what 

distinguishes the novel instrument (called "PTR-TOF 6000 X2") from conventional 

designs. Recently, it has been found that this area, traditionally consisting of a series of 

electrostatic lenses, is the cause for a high amount of ion losses and thus is the main 

limiting factor for the overall sensitivity. As a countermeasure we developed an ion funnel 

for being installed at the end of the drift tube. Ion funnels have been invented in the late 

1990s [11] and consist of a series of lenses with successively smaller apertures to which 

an alternating voltage is applied. This setup effectively focuses ions to the exit aperture 

and has first been applied to PTR-TOFMS by Barber et al. [12], where the ion funnel 

constituted about 50% of the drift tube and thus formed a major part of the reaction region. 

We, however, developed a compact and modular funnel design, which i) is primarily for 

focusing the ions and with only about 1/3 of the drift tube length, not forming an integral 

part of the reaction region and ii) can easily be installed in existing PTR-TOFMS 

instruments by replacing the drift tube exit lens with the ion funnel.  

In 2014 we introduced a PTR-TOFMS instrument equipped with a quadrupole ion 

guide instead of a conventional transfer lens system [13]. Now we considerably improved 

this design by developing a hexapole instead of a quadrupole ion guide, as hexapoles are 

known to have a better transmission and to be more beneficial for focusing ions of a broad 

m/z range. Besides improving the transmission, i.e. the sensitivity of the instrument, 

multipole ion guides additionally cause cooling of the ions and thus improve injection 

conditions into the TOF mass spectrometer, which results in an increased mass resolution. 

In the results section we present the effects this combination of ion funnel and hexapole 

ion guide, which is displayed in the schematic view in Figure 1, has on the instrument's 

sensitivity by analyzing a certified gas standard (TO-14A aromatics mix).  

For selectivity improvement we essentially revised the GC design from [7] to an 

efficient fastGC setup. The present setup consists of an electronically switchable pressure 
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controlled multiport valve, which enables switching between direct injection and fastGC 

mode. In direct injection mode the air from the sampling line is split to two lines, with 

one line leading directly to the PTR drift tube and the other feeding a sample loop. That 

is, while the instrument is measuring in real-time, as it is common for PTR-MS, the 

sample loop is continuously flushed with sample air. By switching to the fastGC mode, 

the content of the sample loop is injected into a 10 m nonpolar MXT-1 column, which 

can be heated to 400°C with a heating rate of up to 1200°C/min. After being separated 

according to their retention times the compounds are injected into the drift tube. Typical 

spectral runs take between 30 to 150 s depending on the temperature profile. This means 

that by switching between direct injection and fastGC mode the advantages of PTR-MS 

and GC can be combined, namely real-time analysis and the highest level of selectivity.  

 
Figure 1: Schematic view of the novel PTR-TOF 6000 X2 equipped with an ion funnel (insert bottom left) and 
hexapole ion guide (insert top right). 

The "sophisticated setup for rapid, sensitive and selective food and flavor analysis", 

as referred to in the title of this contribution, is completed by a commercial autosampler 

(PAL RSI, CTC Analytics AG, CH) for which we developed a dedicated interface to 

connect it to the PTR-TOFMS instrument. This interface consists of a heated cell, which 

is constantly flushed with N2 at a controlled flow rate. Via a septum the content of the 

autosampler syringe is injected into the cell. Finally, the mixture of headspace and N2 is 

introduced into the PTR-TOFMS instrument via a common inlet line and excess air is 

ejected via an overflow port. This design is necessary so that the static headspace of 

sample vials can be analyzed, because the PTR-TOFMS instrument requires a continuous 

sample gas flow.  

As a proof-of-concept test of the performance of the novel setup we investigated 

nine different red wines purchased at a local supermarket.  

Results and discussion 

In order to evaluate the sensitivity improvement of installing an ion funnel and a 

hexapole ion guide we analyzed a certified TO-14A aromatics mix with three different 

PTR-TOFMS instruments. In the left diagram of Figure 2 the results are shown. The PTR-

TOF 1000 is a conventional instrument with a system of electrostatic lenses in the transfer 

region between the drift tube and the TOF mass spectrometer. The PTR-TOF 1000 ultra 

has been upgraded by installing a modular ion funnel, as described in the experimental 
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section. Finally, the PTR-TOF 6000 X2 is equipped with a hexapole ion guide in addition 

to the ion funnel and thus combines both transmission improving technologies. However, 

it should be noted that the latter instrument has a TOF with a longer flight-path, compared 

to the PTR-TOF 1000, which improves the mass resolution, but somewhat lowers the 

sensitivity, because a lower pulse rate has to be used. All instruments show increasing 

sensitivities with increasing m/z, which is a well-known effect observed in TOF analyzers. 

For the conventional PTR-TOF 1000 the resulting sensitivity is in the range of 60 – 130 

cps/ppbv. After installing the modular ion funnel the sensitivity is boosted by nearly one 

order of magnitude to 600 – 1000 cps/ppbv for the PTR-TOF 1000 ultra. Eventually, the 

combination of further improved transmission due to the hexapole ion guide and a lower 

pulse frequency leads to a boost by another factor of 2 for the PTR-TOF 6000 X2, with 

values between 1200 – 1800 cps/ppbv.  

In the right diagram of Figure 2 the minimum integration times for an arbitrary 

compound with a low concentration of 100 pptv in order to get a relative statistical error 

of 5 and 10% (compare introduction), respectively, have been calculated using the 

measured sensitivities. Assuming one wants to quantify 100 pptv with 5% error e.g. in 

exhaled nosespace air, the importance of high sensitivity gets immediately obvious. The 

30 s of the PTR-TOF 1000 well exceed the duration of a breath cycle and disqualify the 

instrument for the given task. With the PTR-TOF 6000 X2, however, 100 pptv can be 

detected with 5% error within about 2 s and if an error of 10% is acceptable, the breath 

cycles can be monitored with a high time resolution of 600 ms.  

 
Figure 2: Comparison of measured sensitivities for different instrument types (left) and the calculated minimum 
integration times to reach a relative error of 5 and 10%, respectively (right). 

For the LoDs, calculated via the maximum sensitivities and by using the 3σ method, 

we determined 70, 10 and 10 pptv for 1 s and 10 pptv, 750 ppqv and 550 ppqv for 1 min 

integration time for the PTR-TOF 1000, ultra and 6000 X2, respectively. The mass 

resolutions (full width at half maximum) at m/z 181 were 1700 m/Δm for the PTR-TOF 

1000 (ultra) and 6000 m/Δm for the PTR-TOF 6000 X2 (data not shown).  

Figure 3 shows the instrumental response during the autosampler injection of wine 

headspace while switching between direct injection and fastGC mode. The various lines 

in this diagram represent the ion yields for different m/z versus time. Note: As data 

evaluation of the wine study is still ongoing and this contribution should only serve as a 

proof-of-concept, here we do not attempt to identify compounds or go into detail about 

the different wines. As soon as the autosampler injects the wine headspace into the 

interface an immediate response can be seen for all m/z. In conventional PTR-TOFMS 

these signal intensities would be attributed to distinct compounds matching the exact m/z. 

100 pptv 
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However, switching to fastGC mode unveils that for nearly all m/z more than one ion is 

contributing to the total ion yield, which can be due to the presence of isomers, non-

resolved isobars or fragment ions.  

The advantage of high selectivity gets even more obvious in Figure 4, where the nine 

different wines are compared. At m/z 131.11 two ions can be separated in fastGC mode 

(left diagram). Importantly, these two ions, which are detected as one sum signal in direct 

injection mode, have considerably different ratios. That is, even if the ion yields at a 

particular m/z are similar in intensity for several wines in direct injection mode, it is still 

possible that the compounds contributing to this ion yield are present in completely 

different concentrations. This can also nicely be seen in the right diagram of Figure 4, 

where even three ions can be seen at m/z 117.09. For some wines the abundance of all 

three ions is comparable in intensity, whereas for other wines over 50% originates from 

the ion at 38 s retention time. 

 
Figure 3: Exemplary ion yields during the autosampler injection of wine headspace in direct injection and 

fastGC mode. 

  

Figure 4: Relative intensity distributions for different ions sharing the same exact m/z: 131.11 (left) and 

117.09 (right); the abbreviations stand for the different wines.  
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We conclude that the combination of an ion funnel and hexapole ion guide in a high 

resolution PTR-TOFMS instrument with additionally a fastGC and autosampler inlet 

system is a powerful setup for rapid, sensitive and selective food and flavor analysis, 

which produces considerably more high quality data at a higher sample-throughput than 

established methods. As a next step following this proof-of-concept we will perform 

statistical analysis on the acquired data in order to distinguish between different 

brands/vintages of wine. 
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Abstract  

Metabolome investigations by means of mass spectrometry are often limited in 

structure elucidation of unknown and new metabolites. A novel Differential Off-Line LC-

NMR approach (DOLC-NMR) was developed to record and quantify nutrient-induced 

metabolome adjustments in Saccharomyces cerevisiae. Off-line coupling of preparative 

high performance liquid chromatography separation and 1H-NMR spectroscopy 

supported by automated comparative NMR bucket analyses, followed by quantitative 1H-

NMR using ERETIC II has been successfully utilized to monitor significant quantitative 

changes in the metabolome of S. cerevisiae upon intervention with the aromatic amino 

acid L-tyrosine. Among the 33 metabolites identified by means of exact mass and 1D/2D-

NMR experiments, glyceryl succinate, tyrosol acetate, tyrosol lactate, tyrosol succinate, 

and N-(1-oxoacyl)-L-tyrosine derivatives like N-(1-oxooctyl)-L-tyrosine have not been 

earlier reported as yeast metabolites. Depending on the chain length of the fatty acid, N-

(1-oxooctyl)-, N-(1-oxodecanyl)-, N-(1-oxododecanyl)-, N-(1-oxomyristinyl)-, N-(1-

oxopalmityl)-, and N-(1-oxooleoyl)-L-tyrosine imparted a kokumi taste enhancement 

above their human recognition thresholds ranging between 145 and 1432 μmol/L in a 

savoury model broth. Based on Carbon Modul Labelling (CAMOLA) and Carbon Bond 

Labelling (CABOLA) experiments using 13C6-glucose as carbon source, biosynthesis 

pathways of the identified key metabolites could be described unequivocally. The 

aliphatic side chain of N-(1-oxooctyl)-L-tyrosine could be shown to be generated via de 

novo fatty acid biosynthesis from four C2-carbon modules (acetyl-CoA) originating from 

D-glucose. 

Introduction 

Due to the wide application and its importance in foods production such as bread, 

wine, and beer, Saccharomyces cerevisiae has been one of the most investigated micro-

organisms in the past 60 years. Various imaging techniques based on mass spectrometry 

and NMR spectroscopy were used to monitor stress-induced metabolome alterations and 

enabled the identification of stress markers. Salt stress, for example, has been reported to 

be responsible for the increase of trehalose levels to counteract osmotic pressure, whereas 

concentration levels of mono- and disaccharides depleted upon ethanol stress. 

Furthermore, different aroma and taste characteristics of fermented beverages are 

determined by utilizing different amino acids. Aliphatic branched-chain amino acids like 

L-leucine, L-isoleucine, and L-valine were found to be responsible for the typical aroma 

of S. cerevisiae fermented beverages. Upon entering the Ehrlich pathway, various fusel 

alcohols were provided by the yeast upon fermentation of different amino acids. [1] 

Metabolomic studies on yeast were performed by analysing the metabolite profile 

emitted by the microorganism into the supernatant during the fermentation process. 
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Although LC-MS has been often used for observing metabolite profiles because to its 

high resolution and rather low limit of detection, the unambiguous identification of 

important key metabolites undergoing an alternation in their concentration level upon an 

intervention becomes often a big challenge. Analyses of the whole extract by means of 
1H NMR spectroscopy seems to be promising as it can supply direct structure information 

as well as quantitative data of unknown metabolites. However, the low resolution and 

signal overlapping in 1H-NMR spectroscopy limits the comprehensive analyses of 

complex natural extracts. Therefore, liquid chromatographic or SPE pre-separation has 

been described to simplify complex crude mixtures, such as faeces and urine, and to raise 

the resolution and decrease the complexity of one-dimensional 1H NMR spectroscopy in 

metabolome research. [2] 

To investigate secondary metabolites from L-tyrosine in yeast, a novel differential 

off-line HPLC-NMR approach (DOLC-NMR) was established to monitor metabolite 

alterations in S. cerevisiae. [3] Before and after an intervention with the aromatic amino 

acid L-tyrosine, yeast supernatants were pre-separated using preparative HPLC prior to a 

comparative NMR buckets analyses to record relative concentration changes of key 

metabolites, followed by absolute quantitation via qHNMR using the ERETIC II 

protocol. [3] In addition, the biosynthesis pathways of newly characterized key 

metabolites have been monitored by means of 13C-labeling experiments, namely, carbon 

module labelling (CAMOLA) and carbon bond labelling (CABOLA) with LC-TOF/MS- 

and 13C-NMR-based analyses of isotopologue patterns. [4,5]  

Experimental 

S. cerevisiae fermentation with/without L-tyrosine (Tyr1/Tyr0) 

Dry yeast (S. cerevisiae, 460 mg of dried pellets; RUF, Quakenbrück, Germany) was 

mixed with water (200 mL), D-glucose (194 mmol/L) and L-tyrosine (12 mmol/L) were 

added, and the suspension was incubated for 96 h at 36°C under anaerobic conditions 

(Tyr1). In addition, a control experiment (Tyr0) was performed without the presence of L-

tyrosine. Thereafter, the supernatants of Tyr0/1 were separated from the yeast cells by 

filtration (0.45 μm, Sartorius Stedium Biotech GmbH; Göttingen, Germany) and freeze-

dried and the residue obtained was used for chromatographic MPLC separation using a 

Spot Prep II (Gilson, Limburg, Germany) equipped with a preparative 250 × 21.2 mm, 5 

μm, PhenylHexyl Luna column (Phenomenex, Aschaffenburg, Germany) to collect a total 

of 34 fractions in 1 min intervals. [3] After concentration of each fraction in vacuum by 

means of a HT-12 evaporation system (Genevac Limited, Ipswich, UK), the individual 

fractions collected from Tyr1 and Tyr0, respectively, were dissolved in D2O or MeOD-d4 

(Euriso-Top, Gif-sur-Yvette, France) for NMR analyses. 

Stable isotope labelling experiments 

To perform a CAMOLA experiment, a mixture of dry yeast (460 mg of dried pel-

lets), D-glucose (97 mmol/L), 13C6-glucose (97 mmol/L; Cambridge Isotope Laboratories, 

Inc., Andover, MA, USA), and L-tyrosine (12 mmol/L) in water (200 mL) was incubated 

for 96 h at 36 °C under anaerobic conditions. After fermentation, the supernatant was 

obtained by filtration and, then, directly used for UPLC-ESI-TOF/MS (Waters Synapt 

G2S HDMS; Waters, Manchester, UK, coupled to an Acquity UPLC core system; Waters, 

Milford, MA, USA) analyses.  

For the CABOLA experiment, a mixture of dry yeast (460 mg of dried pellets), D-

glucose (184.3 mmol/L), 13C6-glucose (9.7 mmol/L), and L-tyrosine (12 mmol/L) in water 

(200 mL) was incubated for 96 h at 36 °C under anaerobic conditions. Purified 
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metabolites from the supernatants were taken up in D2O or MeOD-d4 and analysed by 

means of 13C-NMR spectroscopy to analyse nJ13C-13C coupling patterns of the isolated 

target fermentation products. 

Nuclear Magnetic Resonance spectroscopy (NMR)  
1H/13C-NMR experiments were performed on a Bruker AVANCE III 500 MHz 

system equipped with a cryo-TCI Probe at 300 K (Bruker, Rheinstetten, Germany). The 

collected HPLC fractions were dissolved in D2O (1 mL), and aliquots (540 μL) were then 

mixed with an aliquot (60 μL) of the NMR buffer (phosphate buffer, pH = 7) solution 

prior to the measurement. The more hydrophobic fractions 20−34 were taken up in 

MeOD-d4 (1 mL) and aliquots (600 μL) used for NMR analyses. 1H NMR spectra were 

acquired using the Bruker standard water suppression pulse sequence (noesygppr1d). The 

90° pulse length (P1), PL9, and O1 were adjusted individually on each sample and spectra 

were acquired using 16 scans (NS) and 4 prior dummy scans (DS) and collected into 64K 

data points using a spectral width of 10273.97 Hz. The relaxation time (T1) was set to 20 

s based on the longest relaxation time of a signal of interest.  

The NMR buckets were calculated with Amix Viewer V3.9.13 software (Bruker, 

Rheinstetten, Germany). Each spectrum was referenced to TMSP (0.0 ppm). After 

checking the baseline offset and using the underground removal tool, the spectra were 

used to determine the buckets. Covering the chemical shift region from −1 to 11 ppm, the 

range of each bucket was set to 0.1 ppm. The area between 4.5 and 5 ppm was excluded 

from bucketing due to the water signal in the spectra. The calculation of the absolute 

integral value for each of the 115 buckets was performed successfully when the signal-

to-noise ratio was >10. The noise was calculated in the region from 10 to 11 ppm, where 

no signals appeared. From the yeast fermentation with tyrosine (Tyr1) and the control 

(Tyr0), the corresponding buckets showing an integral ratio (Tyr1/Tyr0) of >2 or <0.5 were 

used for further analyses. Quantitative 1H-NMR was performed using ERETIC 2 

(Electronic REference To access In vivo Concentrations) based on the PULCON (PULse 

length based CONcentration determination) methodology. [6] 

Sensory analyses for determination of taste threshold concentrations 

Intrinsic taste threshold concentrations of the purified compounds were determined 

in Evian water using a duo test in triplicate analyses by a well-trained sensory panel (n = 

14). Threshold concentrations for taste modulation effects were determined in a savoury 

model broth (pH 5.9, adjusted with 0.1% FA) consisting of sodium chloride (2.9 g/L), 

maltodextrin (6.4 g/L), monosodium L-glutamate (1.9 g/L) and an amino acid mix (0.38 

g/L). The geometric mean of the last correct tasted and the first incorrect tasted 

concentration was calculated and taken as the individual threshold of each panellist. The 

threshold value of the sensory group was approximated by averaging the threshold values 

of the individuals in two independent sessions. 

Results and discussion 

Differential off-line HPLC-NMR analyses  

To overcome the challenge of overlaying signal, the fermentation batches Tyr1 and 

Tyr0 were separated by means of RP-HPLC into 1 min subfractions prior to 1H-NMR 

analyses to increase spectral resolution of the key metabolites. The obtained NMR 

buckets from fraction 3-34 were used for statistical analyses to visualize relative con-

centration ratios in the metabolite signature, expressed as the ratio (Tyr1/Tyr0) of the 

signal integrals of the corresponding metabolites (Figure 1). 
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Figure 1: (A) RP-HPLC chromatograms of the L-tyrosine perturbed fermentation broth (Tyr1) and the control 

approach without L-tyrosine (Tyr0). (B) Differential NMR bucket analyses of fractions 3−34 showing the 

relative integral ratios (Tyr1/Tyr0) and chemical shifts of influenced metabolites. 

The first-eluting fractions 3−15 showed only marginal differences in relative me-

tabolite concentrations between the broths Tyr0 and Tyr1. Among the identified meta-

bolites, many primary metabolites playing a key role in energy management and growth 

of the microorganism like intermediates of the citrate cycle such as succinic acid 

(fractions 8−10; 2, Figure 3), malic acid (fraction 5), fumaric acid (fractions 7−9) were to 

be found. Furthermore, amino acids such as leucine (fraction 6/7), isoleucine (fraction 

6/7), phenylalanine (fraction 15/16), degradation products of D-glucose like glycerol 

(fraction 4/5; 3) and lactic acid (fractions 4−6; 4), and the nucleotides adenosine (fractions 

11−15), guanosine (fractions 14−16) and uridine (fractions 8−12) were significantly 

influenced by the nitrogen source. Additionally, the ester glycerol succinate (5), identified 

in fractions 12−14, has been found for the first time as a metabolite of S. cerevisiae. 

In comparison to the first eluting polar metabolites, higher differences in metabolite 

concentrations between Tyr0 and Tyr1 were monitored in fractions 16−34 containing 

semi- and nonpolar compounds. The aromatic fusel alcohol tyrosol (fraction 21/22; 1), 

degradation product of L-tyrosine via the Ehrlich pathway, was found in a 100-fold higher 

concentration in Tyr1. In the further analyses three tyrosol esters, varying in the organic 

acid side chain, could be clearly identified, namely, tyrosol acetate (6) in fraction 30/31, 

tyrosol succinate (7) in fraction 27/28, and tyrosol lactate (8) in fraction 26. Neither 

Tyrosol succinate (7) nor tyrosol lactate (8) have been reported as a metabolite of S. 

cerevisiae. Moreover, p-hydroxyphenyl lactic acid (fraction 20) and 

p-hydroxybenzaldehyde (fraction 24/25) were identified as nitrogen-free L-tyrosine 

degradation metabolites. Finally, the amino acid amide N-(1-oxooctyl)-L-tyrosine (9) 

could be isolated from the Tyr1 fractions 33/34. This amide is already known from 

Escherichia coli but has not yet been reported as a metabolite of S. cerevisiae. Further-

more, LC-MS/MS analyses revealed the presence of N-(1-oxoacyl)-L-tyrosine derivatives 

with acyl chain lengths of C4, C6, C10, and C12 along with the predominating N-(1-

oxooctyl)-L-tyrosine (9) homologue. 
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Absolute metabolite quantitation by 1H NMR spectroscopy 

A validated PULCON methodology using ERETIC II was applied to the NMR 

buckets of fractions 3−34 collected from Tyr0 and Tyr1. Using fraction 14 as an example 

(Figure 2), glycerol succinate (5), uridine and adenosine were quantitated using selected 

resonance signals that were baseline separated without showing no signal overlap, 

namely, 2.64 ppm (dd, 2H, H-(3′)) for glycerol succinate (5), 7.88 ppm (d, 1H, H-(6)) for 

uridine and 8.35 ppm (s, 1H, H-(2)) for adenosine, respectively.  

 
Figure 2: Quantitative 1H NMR spectroscopy (noesygppr1d, 500 MHz, D2O, 300 K) of fraction 14 containing 
adenosine (H-(2), 8.34 ppm, 1H), uridine (H-(6), 7,75 ppm, 1H), and glycerol succinate (5; H-(3′), 2.64 ppm, 

2H). Labelled signals were used for metabolite quantitation. 

Sensory activity of metabolites 

All detected N-(1-oxoacyl)-L-tyrosine derivatives showed a bitter intrinsic taste 

within a narrow threshold range from 343 to 647 μmol/L in Evian water (Table 1). The 

evaluation of the compounds in a spicy model broth demonstrated a clear kokumi en-

hancing activity of N-(1-oxooctyl)-L-tyrosine (9) above 1432 μmol/L (Table 1).  

Table 1: Human taste recognition thresholds in µmol/L of N-(1-oxoacyl)-L-tyrosine derivatives in Evian water 

(intrinsic bitter taste) and savoury model broth (kokumi enhancement) with a significance level α ≤ 0.05 
 

Compound Bitter taste Kokumi enhancement 

N-(1-Oxobutyl)-L-tyrosine (C4) 647 n.d. 

N-(1-Oxohexyl)-L-tyrosine (C6) 343 n.d. 

N-(1-Oxooctyl)-L-tyrosine (C8) 631 1432 

N-(1-Oxodecanyl)-L-tyrosine (C10) 627 537 

N-(1-Oxododecanyl)-L-tyrosine (C12) 480 145 

N-(1-Oxomyristyl)-L-tyrosine (C14) 672 160 

N-(1-Oxopalmitylyl)-L-tyrosine (C16) 627 183 

N-(1-Oxooleoyl)-L-tyrosine (C18:1) 446 217 
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A prolongation of the length of the fatty acid side chain reduced the kokumi 

recognition thresholds concentrations to 145−217 μmol/L as for the C12 to C18:1 

homologues. A shortening of the chain length (C4 and C6) eliminated the kokumi activity.  

Biosynthetic pathway analyses using 13C-labelling experiments 

The analyses of the biosynthetic pathways (Figure 3) of identified metabolites were 

performed by means of two different 13C-labelling experiments. The added glucose was 

diluted with 5% (CABOLA) and 50% (CAMOLA) 13C6-glucose, respectively, prior to 

yeast fermentation in the presence and absence of L-tyrosine to monitor the joint transfer 

of several 13C atoms en bloc into the target metabolite. Supported by these experiments it 

could be clearly shown that the aliphatic side chain of N-(1-oxooctyl)-L-tyrosine (9) is 

generated via de novo fatty acid biosynthesis from four C2-carbon modules (acetyl-CoA). 

In addition, the 13C signatures of the secondary metabolites tyrosol acetate (6), tyrosol 

lactate (8), tyrosol succinate (7), and glyceryl succinate (5) beside the primary 

intermediates glycerol (3), succinic acid (2) and lactic acid (4) were investigated. The 

labelling experiments showed the ability of S. cerevisiae to form tyrosol (1) via the 

Ehrlich pathway from L-tyrosine or de novo via the Shikimi pathway from D-glucose. 

 
Figure 3: Biosynthesis pathways of key metabolites originating from D-glucose and L-tyrosine (TCA: tricar-

boxylic acid cycle; PPP: pentose phosphate pathway; PEP: phospho enol pyruvate). Bold lines indicate intact 

carbon bonds originating from 13C-glucose as observed by the CABOLA and CAMOLA experiment. 
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Abstract 

Sensors that are suitable to monitor chemical reactions leading to the formation of 

potent odorants in foods, and consequently, enabling process control, are of increasing 

demand. In the present work, real time kinetic analyses were made by developing new 

methodologies combining near infrared spectroscopy (NIR) with rich information 

detectors such as GC and LC-MS. These were applied to study the dynamics in 

phenylacetaldehyde formation through a number of reactions, namely (i) glucose and 

phenylalanine, (ii) gallic acid and phenylalanine and iii) gallic acid, phenylalanine and 

glucose. Phenylacetaldehyde as well as other reaction intermediaries were monitored 

during 60 min with a frequency for data acquisition of 3 spectra/min. Samples were 

collected in 10 minutes reaction intervals, and target analysis was performed using mass 

spectroscopy (GC-ITMS and LC-ESI-QqTOF-HRMS). For comparison, the spectral data 

were analysed in a conventional way fitting kinetics for specific wavelengths. 

Multivariate alternative least squares (MCR-ALS) method was applied to model the 

spectral data with the quantification of the reaction compounds, and to perform 

deconvolution of spectral data. Different reaction rates were observed according to the 

perturbation, i.e. metals addition, temperature increase and substrate class. The obtained 

results were in line with those obtained by LC-ESI-QqTOF-HRMS. The developed NIR 

spectroscopy method showed to be a good alternative for real time, high-throughput and 

low-cost analysis process monitoring, unlocking chemical information related to specific 

compounds such as, phenylacetaldehyde, benzaldehyde, quinones and dicarbonyls, and 

the impact on phenylacetaldehyde formation. Also, it showed that the information 

captured by NIR spectroscopy can accurately predict the phenylacetaldehyde 

concentration under real time conditions. 

Introduction 

Several factors affect the formation of Strecker aldehydes in wines, in particular the 

formation of phenylacetaldehyde. In particular compounds such as antioxidants [1], 

metals [2] and glucose [3] are key compounds in mechanisms responsible for aldehydes 

formation such as Maillard reaction and oxidation of phenolic compounds. Commonly 

the kinetic studies are performed by taking points at specific times during an experiment 

The disadvantage of this time point approach is the loss of information between the 

intervals. 

Process analytical technology (PAT) involves the combined use of in-process 

monitoring, allowing a dynamic measurement of reaction kinetics in short periods of time. 

Monitoring is at the core of PAT and is done in situ or at-line on whole samples by multi-

parametric methods. Many spectroscopic techniques are multi-parametric methods. Near-
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infrared (NIR) spectroscopy is one of the techniques to be suitable for a variety of PAT 

applications. Major advantages of NIR spectroscopy regard its non-destructive nature and 

its immediate (real-time) delivery of results. However, this technique is based on indirect 

measurements, resulting in convoluted and broad spectra, that are very difficult to 

interpret with the unaided eye. It requires calibration and the use of a reference technique, 

such as GC-MS or HPLC with mathematical and statistical tools (chemometrics) to 

extract analytical information from the corresponding spectra [4]. This represents a major 

limitation for its usage, nevertheless, in recent studies it has been successfully applied in 

different food systems such as meat, fruits, vegetables, grains, dairy products, oils and 

beverages mainly for quality control [5]. In the present study, NIR spectroscopy was 

applied to investigate its add-value, as tool to monitor key odorants formation, such as 

phenylacetaldehyde formation in wine related model systems, as well as to verify its 

potential to unlock chemical information related to specific compounds 

(phenylacetaldehyde, benzaldehyde, quinones and dicarbonyls) involved in the reaction 

mechanism of phenylacetaldehyde formation.  

Experimental 

Sample preparation  

Three equimolar model systems (2.4 mM) comprising i) glucose and phenylalanine 

(M) and ii) gallic acid and phenylalanine (O) and iii) gallic acid, glucose and 

phenylalanine (MO) were prepared in 12% (v/v) aqueous ethanol and tartaric acid (0.03 

M) buffered to pH 3.4 with NaOH. The metal ions, copper(II) and iron(II), were added to 

the model system at concentrations of 6.3 μM and 0.1 mM, respectively, in the form of 

Cu(II)sulfate·5H2O and Fe(II)sulfate·7H2O. In the solutions with no metal addition, a 50 

μM EDTA solution was also added. The solutions were prepared in 20 mL vials. The 

vials were closed with an internal silicone septum and an external screw cap.  

Offline measurements 

A design of experiments was performed consisting of storing two model solutions 

(O & MO) at three different temperatures (T=40, 60 and 90ºC). Phenylacetaldehyde was 

identified and quantified by GC-MS and the reaction intermediaries such as the gallic 

acid, quinone and the hydroxysulphonic acid of phenylacetaldehyde (HASA) by LC-ESI-

QqTOF-HRMS, respectively [3]. 

Online measurements - NIR acquisition and data analysis 

On-line and offline acquisition of spectra was performed with the use of a portable 

DLP NIRscan Nano Evaluation Module (EVM) (Texas Instruments, Dallas, USA). 

Absorbance spectra were measured in the wavelength range from 900 to 1700 nm, at 

intervals of 3.51 nm. Diffuse reflectance NIR spectra were continuously collected in-line 

and non-invasive during the process, a spectrum has been acquired each 1 minute for 160 

minutes. 

Data manipulation with NIR spectra was performed using PLS Toolbox version 8,0 

(Eigenvector Research, Inc., USA) for MatlabR2014a for Mac (Mathworks, USA). It is 

common in NIR spectroscopy to apply pre-treatments designed to avoid a mix-up 

between the relevant information and the spectral noise. After the acquisition either 

multiplicative scatter correction (MSC) or a 7- point second order Savitzky-Golay filter 

(second order derivative pre-processing) were performed. 
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Principal component analysis (PCA) was used for sample classification to obtain 

process trajectories/perturbations from the spectral data. Partial least squares-regression 

(PLS-R) was applied to develop a model to predict phenylacetaldehyde content in online 

measurements. 

Results and discussion 

The two major questions addressed in this study were: (1) how much information 

can NIR spectroscopy capture from Strecker aldehyde formation in wine related model 

systems and (2) how accurate is the predicted phenylacetaldehyde concentration. 

The approach used focused not only on the multi-parametric assessment of NIR 

spectra but also on the ability to define process kinetics (i.e. process-signatures or 

fingerprints) related to several perturbations such as the addition of metals and 

antioxidants during the reaction time taken from consecutive spectra acquisitions. 

A representative scheme of NIR spectra pre-processing is shown in Figure 1. The 

raw spectrum is characterized by broad and unresolved bands; pre-processing techniques 

(MSC + SG + Mean Centre) clearly allowed a better enhancement of spectral information. 

 
Figure 1: A) Pre-processing of spectras obtained in offline measurements (coloured according temperature) B) 

Scores plots from PCA analysis of PC1 vs. PC2 and PC1 vs. PC3 

Offline measurements - results 

The effect of temperature was well captured by the score plot of the three first 

principal components analysis (Figure 2). The PCA was carried out on the offline 

measurements to investigate the variance in the spectral data and it clearly shows that 

temperature 90ºC (light blue) was well separated from 60 and 40ºC along PC2. Along 
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PC3 a clear separation between samples with and without metals, represented in green 

and red respectively, was also observed. These results show that the developed NIR 

spectroscopy method was sensible to both temperature and metals presence which is a 

good indication that the sensor can be used for offline process control. 

 
Figure 2: PCA results for the NIR data obtained in DOE offline measurements: scores plots from PCA 

analysis of PC1 vs. PC2 and PC1 vs. PC3 

Online measurements - results 

To better understand the impact of single factors in real time, sequential additions of 

metals and sulphur dioxide were done to the MO model system. NIR was applied to 

continuously collect spectra during the process, and a large amount of complex data was 

obtained per monitored process. Useful information from these data was extracted using 

suitable chemometric tools. 

To further complement the obtained NIR information every ten minutes an aliquot 

was taken from the reactor and analysed by LC-ESI-QqTOF-HRMS. Phenylacetaldehyde 

content and reaction intermediates, such as: hydroxysulphonic acid (HASA) of 

phenylacetaldehyde were quantified.  

The NIR data were again modelled using PCA and 87% of the variation was 

explained by the first two components (results not shown). Since this study was 

performed in dynamic mode as a function of time, the correlation of score plot expression 

can be correlated with the time of the experiment. For this purpose, the scores for the first 

component were plotted versus reaction time and indicated that the Strecker degradation 

started after 12 minutes and ended at 117 minutes (Figure 3). This endpoint also 

corresponded to the addition of sulphur dioxide, which was expected to stop the formation 

of phenylacetaldehyde due to the binding power of bisulphite to phenylacetaldehyde to 

form the HASA of the aldehyde. In parallel, target quantification of phenylacetaldehyde 

by GC-MS was done every 10 minutes during the total experiment time. Figure 3 shows 

that phenylacetaldehyde concentration increased during time, and the addition of SO2 

decreased its formation dramatically, confirming the results obtained with NIR 

Spectroscopy. 
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Figure 3: PCA results for the NIR data obtained during the reaction time. A) Scores of PC1 versus process time 

plot. B) Phenylacetaldehyde concentration measured by GC-MS during reaction time (each 10 minutes) 

Furthermore, for online measurements of phenylacetaldehyde using NIR spectra a 

correlation coefficient of r=0,935 was obtained and a Root Mean Square Error of 

Calibration of 1.8 mg/L was calculated as depicted in Figure 4. An indication is given 

that the information captured by NIR spectroscopy can rather accurately predict 

phenylacetaldehyde concentration under real time conditions. 

 

Figure 4: Phenylacetaldehyde real time prediction based on the PLS-R regression vector during the reaction 

time 

In summary, this study evaluated the feasibility of NIR spectroscopy as a process 

analyser (PAT tool) for the non-invasive, on-line and real-time monitoring of Strecker 

aldehydes in wine related model systems. It clearly showed that it can capture the impact 

of the addition of metals and temperature variation on the phenylacetaldehyde formation 

and rather accurately predicted its concentration. The developed NIR spectroscopy 

method showed potential as a real time, high-throughput and low-cost analysis for process 

monitoring, unlocking chemical information related with specific compounds. 
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Abstract 

Odour-active components of grapefruit essence oil obtained by distillation of 

grapefruit juice were investigated by aroma extract dilution analysis (AEDA). The results 

showed a total of 15 components exhibited high flavour dilution (FD) factors in the range 

of 64-1024. By application of a GC omission test, it was clarified that a woody odorant 

contributed to the juicy aroma of grapefruit. Subsequently, a multi-dimensional GCMS-

Olfactometry (MDGC/MS-O) analysis revealed the woody odorant was mustakone. 

Enantiomeric distribution of mustakone in grapefruit showed (−)-mustakone was 

predominant over (+)-mustakone. A GC omission test and a reconstitution test with a 

mixture of both synthesized enantiomers indicated that mustakone enriched the natural 

juicy aroma note like original essence oil. 

Introduction 

Grapefruit (Citrus paradisi) has a characteristic odour and its volatile components 

have been investigated for several decades. So far, over 320 volatile compounds have 

been identified including intense odorants such as 1-p-menthene-8-thiol and 4-mercapto-

4-methylpentan-2-one [1]. However, there still remain some unknown odour-active 

components because the preparation of high quality reconstituted grapefruit flavour like 

original natural grapefruit aroma is extremely difficult even by blending reported 

compounds.  

Essence oils, obtained by distillation during the concentrated fruit juice production 

process, are highly concentrated juice aroma. Therefore, they are used as flavour 

ingredients to enrich the juicy aroma note of foodstuffs and/or beverages. Among them, 

grapefruit essence oil is one of the most expensive ingredients because the production for 

processing gradually decreases year by year. Hence, clarification of the remaining odour-

active components in grapefruit is very important for us to cope with the essence oil 

supply shortage and the increase in price. 

Omission experiments are enormously effective to evaluate the actual contribution 

of certain compounds to the overall aroma of the original sample. Recently, we have 

developed a novel sample preparation method for omission tests using preparative 

capillary GC [2]. The procedure of our method is: 1) determination of target odorants by 

GC-O, 2) preparation of original and omitted samples by preparative GC, 3) evaluation 

of differences of the aroma between the samples by sensory analysis. More details 

regarding sample preparation, the original sample is a collection of all components of the 

aroma eluted from preparative GC. The omitted samples are the same collections expect 

they do not include each target odorant. The preparation is accomplished by preparative 

GC based only on the retention time range of target odour-active regions. Therefore, this 

method requires no qualification and quantification. Furthermore, there is little change in 

the ratio of all components during the experiment.  
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The aim of this study is to reveal novel odour contributors in grapefruit essence oil 

and their effect through omission experiments without complex processes. 

Experimental 

Materials 

Grapefruit essence oil was purchased from Peace River Citrus Products Inc. (Florida, 

US). Essence oils are obtained by distillation during concentrated juice production 

processing. 

GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA) 

GC-O was conducted on a 7890A GC (Agilent, Santa Clara, USA) equipped with a 

sniffing port (GL Sciences, Inc., Tokyo, Japan) and a BC-Wax column (50 m × 0.25 mm, 

0.15 µm, GL Sciences, Inc.). At the end of the separation column, the effluent was split 

between an FID and a sniffing port (1:10). For AEDA, the sample was diluted stepwise 

(1:4) with ethanol and each dilution was investigated by GC-O. All analyses were 

repeated in triplicate by three trained panellists. 

Preparative-gas chromatography 

Preparative-GC was carried out on a GC-2010 plus equipped with an FID (Shimadzu 

Corp., Kyoto, Japan) and a BC-Wax column (30 m × 0.53 mm, 1.0 µm, GL Sciences Inc.) 

as a separation column. The end of column was connected to both a VPS2800 GC fraction 

collector (GL Sciences, Inc.) and the FID via a splitter. GC conditions: Helium was used 

as carrier gas at a head pressure of 103 kPa (flow rate, 6.8 mL /min). The splitter make-

up pressure set at 80 kPa. The oven temperature was set at 70 °C, ramped at 4 °C/min to 

230 °C and held for 20 min. The temperature of the injector and detector were set at 

230 °C. The target compounds were collected using the GC fraction collector equipped 

with traps cooled at −30 °C. 

GC omission test 

Grapefruit essence oil was divided into 3 fractions using preparative-GC. The odour-

active region of the target odorant by GC-O was 32.9 to 33.0 min, therefore, each fraction 

was collected as below. Fr.1: 0 min to 32.9 min, Fr.2: 32.9 to 33.0 min, Fr.3: 33.0 to 60 

min. The recombination with these fractions provided the original sample A (Fr.1 + Fr.2 

+ Fr.3) and the omitted sample B (Fr.1 + Fr.3). Subsequently, sensory evaluation was 

applied in order to compare the overall aroma of these samples [2].  

Multi-Dimensional GC/MS-O (MDGC/MS-O) 

MDGC/MS-O analysis was performed on a MDGC/GCMS-2010 (Shimadzu Corp.). 

The first GC column was a BC-Wax (30 m × 0.25 mm, 0.15 µm, GL Sciences, Inc.) and 

the second GC column was an Rxi-5ms (30 m × 0.25 mm, 0.25 µm, Restek Corp., 

Bellefonte, USA). For chiral analysis, the second GC column was a CP-Chirasil-DEX CB 

(25 m × 0.25 mm, 0.25 µm, Agilent).   

Synthesis of chiral mustakone 

(+)- and (−)-mustakone were obtained by oxidation of (+)- and (−)-alpha-copaene, 

respectively [3]. 

Preparation of reconstituted sample 

The original grapefruit essence oil was subjected to preparative-GC to give Fr.1, Fr.2 

and Fr.3. A mixture of Fr.1 and Fr.3 was used as the omitted sample B. The mustakone 

solution D was a mixture of both authentic enantiomers in the resulted enantiomeric ratio. 
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A reconstituted sample C was prepared by the addition of a mustakone solution D to an 

omitted sample B in a concentration of 100 ppm. All samples were diluted to 1% (w/w) 

with ethanol and then the solutions were diluted to 0.1% (w/w) with water. The aqueous 

solutions were subjected to sensory evaluation. 

Sample A: Fr.1 + Fr.2 + Fr.3 (recombined original sample) 

Sample B: Fr.1 + Fr.3 (without the target woody odorant) 

Sample C: sample B + sample D (replaced Fr.2 with mustakone) 

Sample D: synthetic mustakone solution  

Sensory evaluation 

All samples were evaluated by trained panellists. The omitted sample B and the 

reconstituted sample C were evaluated by 10 trained panellists. The panellists were asked 

to rate given descriptors for each sample on a scale from 0 to 5 in 1 increments, where 0 

= very weak and 5 = very strong. 

Results and discussion 

Investigation of a potent odorant contributing to grapefruit juicy aroma 

Odour-active components of grapefruit essence oil were investigated by AEDA. The 

results showed a total of 14 components exhibited high FD factors in the range of 64-

1024 (Table 1). Among them, a woody odorant 13 was focused because the structure 

could not be identified by conventional GCMS analysis. The GC omission test was 

carried out to confirm the effect of 13 on overall aroma of grapefruit. By application of 

the GC omission test, the original sample A and the omitted sample B were prepared 

using preparative-GC and then a sensory evaluation of overall aroma was performed. The 

result showed that the typical grapefruit juicy aroma note of the omitted sample B was 

clearly less intense than that of the original sample A. Thus, the woody odorant 13 should 

contribute to grapefruit juiciness.  

Table 1: Flavour Dilution factors (FD factors ≥ 64) of potent odorants in grapefruit essence oil  

 

No. odorant FD factor exp. ref 
2 odour description

1 alpha-pinene 256 1045 1043 piney

2 cis -3-hexenal 256 1138 1128 green, leafy

3 limonene 256 1218 1207 citrus

4 octanal 1024 1284 1282 peely, citrus

5 nonanal 64 1381 1383 peely, waxy

6 linalool 64 1529 1531 floral, citrus

7 (E , E )-2,4-decadienal 64 1785 1787 oily, fried

8 cis -calamenene 64 1809 1813 spicy, phenolic

9 geraniol 64 1824 1828 floral, citrus

10 trans -4,5-epoxy-(E )-2-decenal 256 1977 1977 metallic, green

11 trans -4,5-epoxy-(E, Z)-2,7-decadienal 256 2032 2034 metallic, green

12 eugenol 64 2140 2146 spicy, clove-like

13 unknown 64 2231 - woody, peppery, powdery

14 rotundone 256 2244 2248 woody, peppery
1  

Linear Retention indices on BC-Wax calibrated by n -alkanes

2  
According to internal database

LRI 
1
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Identification of the potent odorant 

MDGC/MS-O was conducted to determine the structure of 13. As a result of mass 

spectrum analysis, the woody odorant 13 was estimated as mustakone. Its mass spectrum, 

retention time and odour characteristics were in good agreement with those of an 

authentic mustakone standard. Therefore, the woody odorant 13 was determined to be 

mustakone. To the best of our knowledge, mustakone was found for the first time in 

grapefruit. Mustakone has a pair of enantiomers as shown in Figure 1. As a result of chiral 

analysis by MDGC/MS, the enantiomeric ratio (+) : (−)-mustakone in the grapefruit 

essence oil was 8.5 : 91.5 (Fig. 1).  

 
Figure 1: (a) MDGC second dimension chromatograms of grapefruit essence oil (top) and mixture of 

synthesized mustakone ((+) : (−) = 1 : 9) (bottom). (b) Structures of two enantiomers of mustakone.  

Evaluation of the effect of Mustakone on overall aroma 

To confirm the effect of mustakone on grapefruit odour, the omitted sample B and 

the reconstituted sample C were prepared and then evaluated by sensory analysis. The 

result indicated that “impactˮ, “voluminousˮ, “woodyˮ and “sweetˮ were rated slightly 

more intense in reconstituted sample C (Fig. 2). For the overall aroma, all sensory 

panellists judged that mustakone enriched natural juicy aroma note like original essence 

oil. It was concluded that mustakone was responsible for the juicy aroma of grapefruit.  

 
Figure 2: Aroma profiles of grapefruit essence oils omitted the woody odorant and added mustakone to omitted 
sample. 
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Abstract 

Before starting detailed flavour analyses of food or beverage samples, it is often 

worthwhile carrying out a pre-screen to indicate what kinds of differences are present. 

Typically, the analyst wants to know: are there different compounds present / missing 

between samples or are the flavour profiles similar, but just differ in the amounts present 

and to what extent? With this knowledge, they can then design suitable analyses to 

investigate these differences more thoroughly. Here we present an example of a set of 

coffee samples, with different sensory aroma profiles, which were subjected to rapid 

headspace analyses using on-line APCI-mass spectrometry and the data imported into a 

visualization package to carry out data quality checks as well as some preliminary data 

interrogation. This approach yielded useful information in a few days, so that the next 

analytical steps could be planned, based on the pre-screen evidence. 

Introduction 

Modern analytical instruments can analyse complex flavour profiles effectively and 

provide qualitative and quantitative data on the compounds present (identity and amount). 

Techniques like GC-MS and LC-MS can deliver detailed information on the odour and 

tastant profiles, although the process can be time-consuming if full identification and 

quantification are carried out using LRI, spectral matching and authentic standards. 

Flavour scientists have recognised this issue already and have introduced techniques like 

GC-olfactometry [1] to filter the data so that, in this case, identification and quantification 

will focus only on the odorous compounds and therefore reduce the workload. Another 

approach is to compare the odour or taste profiles of samples under investigation to 

determine the nature of the differences and then choose which detailed analyses would be 

most suitable to characterise the samples. For example, if the analytical odour profiles of 

the samples are similar, then an obvious step would be to compare the taste profiles to 

determine what differences lay there. If the same odour compounds were present, but in 

quite different amounts, then it would be useful to consider the odour threshold values 

and determine, first whether the compound was present above the odour threshold value, 

and then, whether the change in amount could cause a significantly different sensory 

response using techniques like AEDA or Odour Activity Values (OAV) [2]. Pre-

screening can provide evidence on which to base an experimental plan and, when coupled 

with data visualisation, it provides a way to handle all the data, carry out data quality 

checks, investigate the nature of the differences and produce results in 2D and 3D formats 

to clearly visualise the differences found in the data set. When full analyses become 

available, (compound identification, GC-O, odour threshold or sensory data) they can be 

added to the data table and the multi-factorial data can be subjected to interrogation using 

various statistical tests or by considering the relationships between chemical compounds. 

This latter approach can give an insight into the chemistry that occurred in the processes 

used to manufacture the food or the beverage and might be useful in understanding why 

the differences occurred.  
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Experimental 

Samples 

Five coffee samples from Brazil (3), Ethiopia (1) and Vietnam (1) were provided by 

a coffee manufacturer. Samples were characterised by their lightness (L value) and origin 

only. Brewed coffee was prepared using 11 g of ground coffee and 240 mL of boiled 

water in a glass bottle fitted with a screw-top lid, providing a sampling port from which 

headspace was sampled at 65˚C. 

Headspace analysis 

A heat-jacketed, fused-silica transfer line (0.53 mm diameter, Agilent) was 

maintained at 150˚C and connected to the glass bottle containing the brewed coffee. The 

APCI-MS venturi inlet introduced a flow of headspace (10 mL/min) into the APCI source 

for 0.5 min. Triplicate samples were analysed. 

APCI-MS conditions 

A Micromass ZQ mass spectrometer fitted with a gas phase APCI interface (Waters, 

Manchester, U.K.) was operated as described previously [3]. Raw ion abundance and m/z 

values were recorded in a table, with no data processing.  

Data wrangling 

APCI data were imported into Spotfire (v7.9, Tibco, Palo Alto, USA) and extra 

identity tags (Sample) and calculated values (mean, standard deviation and %CV) were 

added. Data were un-pivoted to make columns that were appropriate for data filtering 

(m/z, abundance, sample, replicate, country of origin, lightness, mean, SD and %CV). 

JMP (v13, SAS Institute Inc., Cary, USA) was used for PCA plots. 

Results and discussion 

Data quality checks 

The first step in any data analysis is to check and clean the data. The filter on the 

data visualisation screen (Fig 1a) shows that the APCI ion abundance values ranged from 

4 to 40 x 106. In all analyses, there is a minimum signal to noise ratio and with knowledge 

of the analytical procedure being used, the minimum signal can be reset to remove 

spurious signals. In this case, the minimum acceptable APCI signal is >1000 so the slider 

was set to 1000, which excluded all values <1000 (Fig. 1b).  
 

 

Figure 1: Screenshots of the filters in Spotfire and their adjustment to achieve rapid data cleaning. Circles 

indicate the changes made in steps 1a to 1c (left to right) 
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The Standard Deviation (Ion Abundance) filter (Figure 1b) also showed that there were 

some empty values in the data table; these occur when there are insufficient replicates to 

calculate a value, i.e. only one or two of the replicates showed the presence of that 

particular ion. These data can be removed by unclicking the “Show empty values” box to 

further clean the data. Finally, the %CV values show how robust the data are. Again, with 

knowledge of the samples and the typical analytical variation, the analyst can make 

informed choices about the degree of data variability they are willing to include in the 

data table and a final data cleaning step can be applied by adjusting the slider, in Fig 1c 

it is set at 50.96% but 24% was used to clean the data for PCA analysis. Using this feature 

of the visualisation software, the data can be cleaned by changing the filter box values to 

produce a robust data table which can then be interrogated with confidence. 

Qualitative differences in coffee aroma profiles 

A bar chart plot was constructed using Samples and m/z values on the X axis and 

Average Abundance on the Y axis. (Fig 2). Qualitative differences in the profile of the 

coffees were identified visually and, by hovering the cursor over each bar in Spotfire, the 

information about that point was displayed and assessed. Visual inspection led to two 

main conclusions. One was that the ion profiles of the samples in Fig. 2 were very similar, 

it was the amounts that were different. The other was that all the coffee profiles contained 

ions from m/z 50 to 200, so chromatographic conditions should be chosen to resolve 

compounds across this molecular weight range and, for quantification, internal standards 

would need to be added across the molecular weight range.  

 
Figure 2: Ion profiles for each of the m/z values in the five coffee samples (Ion abundance are aggregated 

values for the three replicates) 

Principal component analysis of the data using correlation and covariance matrices 

indicated that covariance, using the absolute data, not the normalised data, gave the best 

discrimination of the samples and explained around 85% of the variance (Figure 3). This 

showed that ions with high abundance contributed strongly to the discrimination of the 

samples by the PCA. 
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Figure 3: PCA plots of normalised data (left) and absolute data (right) using correlation and covariance 

matrices 

Further analysis indicated that the same discrimination could be achieved with 19 

high abundance (>106) ions and these represented the key drivers of the differences in the 

coffee headspace samples. Therefore, the pre-screen defined the next stage of analysis, 

which was to identify and quantify the nineteen compounds associated with the ions 

monitored in APCI using the GC-EI-APCI-MS technique [4].  

Conclusion 

Pre-screening of the coffee samples using APCI-MS and visualisation of the results, 

provided a rapid way to assess the differences between the samples. The information 

gained could be used to design subsequent analyses, in terms of chromatographic 

conditions and the type of internal standards needed. The concept is to get the GC- and/or 

LC-MS analyses right first time to avoid time delays due to having to re-run the analyses. 

APCI-MS provides an untargeted snapshot of the volatile profiles of the samples and, 

while not providing a comprehensive analysis, does cover off the main chemical classes 

involved (esters, acids, aldehydes, pyrazines etc.). Assessing the APCI-MS data in a 

visualisation package allows rapid data cleaning and checking, followed by easy-to-

interpret plots that inform the design of the chromatographic procedures. The advantage 

of visualisation software is that any ion can be added to this chart using drag and drop, so 

the analyst can quickly test out ideas and hypotheses about the differences in the coffee 

profiles. Both JMP and Spotfire offer more sophisticated statistical analyses to interrogate 

the data. While statistical analysis is obviously key in identifying quantitative differences 

between samples, our experience is that data visualisation can complement the basic 

statistical analyses (e.g. ANOVA) and provide a focus for further chemical and statistical 

analyses. 
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Abstract 

This study illustrates a rapid approach to qualify and quantify taste active 

compounds in chocolate. Eleven commercially available chocolate samples were 

extracted with aqueous, acidified methanol and analysed by UHPLC-QToF-MS. This 

allowed the (semi)-quantification of a series of taste actives within a single injection, 

while the high resolution of the mass analyser allowed a high confidence in their 

identification. Dose-over-Threshold (DoT) values were calculated for key chocolate taste 

compounds allowing a deeper understanding of the orosensory properties of chocolate 

and creating a link with human-sensory investigations. The outcomes of this study 

illustrate the benefit of UHPLC in combination with high resolution mass spectrometry, 

while requiring minimal sample preparation for the extraction of key tastants from 

chocolate.  

Introduction 

Chocolate is appreciated by consumers around the globe due to its unique 

organoleptic properties. The combination of desirable textural features and a boost of 

flavours when melting in the mouth made chocolate become one of the most beloved 

treats in the human diet. Several decades of research have focussed on deciphering the 

flavour active components in cocoa and chocolate and deepening the understanding of 

their origin [1, 2, 3, 4]. In particular, the role of cocoa derived aroma active components 

and their fate during roasting has been studied in detail [2]. Fewer studies are available 

for the taste active components, but it is generally well understood that besides acidity 

and astringency, bitterness is a characteristic sensory attribute for cocoa taste [5]. 

Research applying sensory-guided techniques identified a range of chemically 

diverse molecules contributing to the bitter taste of roasted cocoa nibs (Figure 1) [5].  

 
Figure 1: Structure of the bitter tastants theobromine (1), caffeine (2), cyclo(Pro-Val) (3) and epi-/catechin 
(4a/b) 
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In particular, the alkaloids theobromine and caffeine, the diketopiperazine 

cyclo(Pro-Val) and the flavan-3-ol epicatechin were attributed with high Dose-over-

Threshold (DoT) values [5]. Besides their intrinsic taste, selected diketopiperazines were 

found to modulate the taste of theobromine solutions resulting in increased bitterness 

intensity, as well as changing bitterness qualities [6, 7].  

The aim of this work was to develop a fast method to identify and quantify key bitter 

compounds in chocolate and create a link with bitter sensory scores.  

Experimental 

Materials  

Eleven chocolates from seven markets (with claimed cocoa content from 39 to 70%) 

were used. Methanol for LC-MS, acetonitrile for LC-MS, water for LC-MS and formic 

acid were from VWR (Lutterworth, United Kingdom). Caffeine, (+)-catechin, (-)-

epicatechin, theobromine, and tyrosine methyl ester hydrochloride were from Sigma-

Aldrich (Dorset, United Kingdom). cyclo(Pro-Val) was from Bachem (Bubendorf, 

Switzerland).  

Extraction of key tastants and analysis by UHPLC-QToF-MS 

Details of the experimental procedures on the isolation and quantification will be 

published elsewhere. Briefly, finely ground chocolate was spiked with the internal 

standard tyrosine methyl ester and extracted with a mixture of methanol/water/formic 

acid (80/20/0.1, v/v/v). The samples were filtered, diluted and analysed on an ekspert™ 

ultraLC 100 (AB Sciex, Warrington, United Kingdom) coupled to a Triple TOF 5600+ 

Mass Spectrometer (AB Sciex, Warrington, United Kingdom). Chromatographic 

separation was achieved on an ACQUITY® BEH C18 column (2.1 x 150 mm, 1.7 μm) 

(Waters, Elstree, United Kingdom) equipped with corresponding pre-column using 0.1% 

formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phases. 

Calibration curves were prepared by dilution of the commercially available reference 

substances. The peak areas of the target analytes were extracted using the m/z values 

calculated for [M+H]+ with an extraction window of ± 5 ppm. 

Quantification of theobromine by HPLC-UV 

The quantitative determination of theobromine in chocolate was performed as 

described in literature [8]. 

Sensory evaluation 

The bitter taste of the chocolates was scored by twelve trained sensory panellists on 

a scale ranging from 0 (not bitter) to 10 (very bitter), in duplicate repetition.  

Results and discussion 

Identification of the analytes 

The developed UHPLC-QToF-MS method enabled analysis of a wide range of taste 

active components of different functional groups found in the chocolates. The tastants 

were identified based on their retention times and accurate masses in comparison to 

references. Figure 2 shows extracted ion chromatograms (EICs) for selected bitter 

compounds (Figure 1) in a dark chocolate.  
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Figure 2: Extracted ion chromatograms (EICs) for the [M+H]+ (±5 ppm) for theobromine (1), caffeine (2), 
cyclo(Pro-Val) (3), catechin (4b) and epicatechin (4a) from a dark chocolate sample 

Quantification of the analytes 

Following identification, the concentrations of the analytes were quantified using 

tyrosine methyl ester as internal standard. The values obtained for theobromine using the 

developed method were compared to that of a conventional HPLC-UV method (Figure 

3). A good correlation of the results was observed (r2=0.9171). 

 
Figure 3: Correlation of theobromine values obtained by the developed UHPLC-QToF-MS method and the 

HPLC-UV reference method 

Calculation of Dose over Threshold (DoT) values and correlation to sensory analysis 

The quantification of key taste actives (theobromine, caffeine, epicatechin, catechin 

and cyclo(Pro-Val)) allowed the calculation of DoT values based on taste threshold values 

obtained in literature [5]. A link of the sum of the DoT values for compounds 1-4 

(Figure 1) with values obtained by human-sensory assessment of bitter taste was then 

established (Figure 4). Figure 4 shows that in particular sample I is deviating from the 
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predicted values. This was attributed to the higher concentration of DKPs, shown for 

cyclo(Pro-Val) in Table 1. This agreed with literature on the taste modifying properties 

of DKPs [5, 6].  

 
Figure 4: Correlation of the sum of the DoT values for bitter for the key tastants (Figure 1) and the observed 
sensory bitter scores 

Overall a good correlation was observed between the sum of the DoT factors for the 

five taste compounds (Figure 1) and the bitter sensory scores. The results confirm in 

particular that 1 is the most important contributor to the bitterness of commercial dark 

chocolates (Table 1). Further investigation on the synergism of DKPs and theobromine 

(1) and the relevance of DKPs for the sensory perception of dark chocolates are on-going.   

 
Table 1: DoT values for the key tastants and sensory scores for bitter in selected dark chocolate samples. 

Numbering of components refers to Figure 1. 

Sample 
 Dose over threshold factor (DoT) [-] 

Sensory 

score bitter 1 2 3 4a 4b 

I 40.6 4.6 2.9 <0.5 2.9 7.3 

II 38.7 4.9 0.8 0.9 0.8 6.7 

III 42.2 4.4 1.9 <0.5 1.9 6.5 

References 

1. Afoakwa, E. O., Paterson, A., Fowler, M. and Ryan, A. (2008) Crit. Rev. Food Sci. Nutr. 

48:840-857. 

2. Frauendorfer, F. and Schieberle, P. (2008) J. Agric. Food Chem. 56:10244-10251. 

3. Schnermann, P. and Schieberle, P. (1997) J. Agric. Food Chem. 45: 867-872. 

4. Liu, J., Liu, M., He, C., Song, H., Guo, J., Wang, Y., Yang, H. and Su, X.(2015) J. Sci. Food 

Agric. 95: 1362-1372. 

5. Stark, T., Bareuther and S., Hofmann, T. (2006) J. Agric. Food Chem. 54:5530-5539. 

6. Pickenhagen, W., Dietrich, W., Dietrich, P., Keil, B., Polonsky, J., Nouaille, F. and Lederer, 

E. (1975) Helv. Chim. Acta 58:1078-1086. 

7. Stark, T. (2005) Charakterisierung der wertgebenden Geschmacksstofe von geröstetem Kakao 

(Theobroma cacao) mittels Dekompositions- und Rekonstruktions-Analyse (in German). PhD 

Thesis, Technische Universität München. 

8. Schweizerisches Lebensmittelbuch (1999) Bestimmung des Theobromins und Coffeins 

mittels HPLC.



 

 
B. Siegmund & E. Leitner (Eds): Flavour Sci., 2018, Verlag der Technischen Universität Graz 

DOI: 10.3217/978-3-85125-593-5-97, CC BY-NC-ND 4.0 463 

Evaluation and optimization of sample preparation 

techniques towards the regional differentiation of Chinese 

green teas 

MARK BÜCKING1, T. T. Ho1, Hongbo Yang2, T. Albinus3 and M. Kotthoff1 
1 Fraunhofer Institute of Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, 

Germany 
2 Guizhou Academy of Testing and Analysis, No.99, Baoshannan Road, Guiyang, Guizhou Province, China 
3 GERSTEL GmbH & Co. KG, Eberhard-Gerstel-Platz 1, 45473 Mülheim an der Ruhr, Germany 

Abstract  

Aroma profiles of 18 green tea samples from Guizhou province were investigated 

and compared to teas from other Chinese regions.  

Several preparation techniques like Static (SHS) and Dynamic Headspace (DHS), 

Solid-Phase Microextraction (SPME), Stir-Bar Sorptive Extraction (SBSE) and Solvent 

Assisted Flavour Evaporation (SAFE) were performed to compare their efficiency and 

applicability. All methods were measured with gas chromatography coupled to mass 

spectrometry (GC-MS).   

HS-SPME proved to be the most efficient method regarding enrichment of the 

analytes, robustness, flexibility, ease of handling, and in economic regards. The optimized 

method identified 43 volatile organic compounds (VOC). Subsequently, all green teas 

were classified on the basis of these VOC into their provinces. Here, Partial Least Squares 

Discriminant Analysis (PLS-DA) achieved a separation of teas of the provinces Anhui 

and Guizhou, whereas the VOC profiles of teas from the remaining provinces overlap 

with others. 

Introduction 

Tea contains substantial amounts of polyphenols, caffeine, volatile oils, vitamins, 

aroma-forming substances and other compounds that have unique biological activities 

and health benefits [1]. 

The flavour of green tea is characterized by up to 300 volatile compounds, of which 

only eight are responsible for the formation of the distinct green tea aroma [2].  

Green tea is mainly consumed in Asia. The overall market in 2016 for Chinese tea 

was about 37.5 billion Euro. Especially high-quality green teas from special regions like 

the Guizhou province are of interest. The price per kilogram tea can vary from ten to 

several thousand euros. The increasing demand for those teas, however, misleads certain 

producers to sell their low-quality products as high-quality ones from specific regions. As 

a result, a large number of adulterations have already been registered on the markets. In 

order to protect consumers from adulteration and food fraud, instrumental analysis is 

necessarily required to clearly indicate distinctions between the tea aroma profiles of 

specialty goods and inferior ones. Due to its popularity, the characterization of green tea 

aroma compounds is widely spread, but does not address the situation mentioned above. 

Essentially, a method investigating the regional origin may also consider VOC other than 

key food odorants. 
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Experimental 

All green teas were high quality teas from special Chinese regions. 18 green teas 

derive from Guizhou, six from Anhui, two of each from Henan and Zhejiang and one 

from Jiangsu.  

GC settings: Column: Rxi-5ms and Rtx-624 (Restek GmbH, Bad Homburg, 

Germany) 60 m x 250 µm x 0,25 µm; oven: initial 40°C, hold 4 min; 5°C/min to 100°C; 

2°C/min to 138°C; 5°C/min to 210°C, hold 2 min; 15°C/min to 230°C, hold 16 min; 

carrier gas: Helium, constant flow = 1 mL/min; aquisition mode: Scan mode, 35-500 amu; 

GC system: Agilent 7890 (Waldbronn, Germany); MS/MS system: MS Triple Quad 7000 

C Agilent. 

For the following analyses, an amount of 0.3 g green tea was ground with liquid 

nitrogen and poured with 8 mL distilled water at 80°C. For direct SPME and SBSE a 

filtration step was included. At SHS analysis the sample was incubated for one minute at 

80°C in the incubator oven of the autosampler (MultiPurposeSampler MPS2, Gerstel, 

Mülheim a.d. Ruhr, Germany). After that an aliquot of 600 µL was injected into the GC 

injector.  

In the course of DHS (Automated Dynamic Headspace, Gerstel), the sample was 

incubated for one minute at 45°C. Soon afterwards the headspace was flushed with 100 

mL nitrogen (flow of 40 mL/min) and subsequently injected onto a cryogenic trap cooled 

with nitrogen at –120°C (KAS 4, Gerstel), heated and injected onto a Rtx-624 in an 

Agilent 6890 GC. 

In SBSE (coupled to a Thermal Desorption Unit TDU, Gerstel) and SPME 

(automated SPME using the Gerstel MPS2) analysis the analytes were incubated for 1 

min at 80°C and enriched on a PDMS-based Twister® SBSE respectively a 50/30 µm 

DVB/Carboxen/PDMS fibre and analysed on a Rtx-624 as well. 

SAFE was performed at 10-5 mbar. Before analysis, the apparatus was set 

thermostatically at 40°C. 2 g with liquid nitrogen grounded tea were poured with 50 mL 

of 80°C hot distilled water and stirred for 15 min. 40 mL of the sample was then added 

to the SAFE apparatus by decantation. After 30 min distillation time the distillate was 

extracted twice with 15 mL diethyl ether and the ether phases were combined. 1 μL of the 

ether extract was injected directly for GC-MS analysis. 

0.4 g cryo-ground green tea were analysed without infusion. The volatiles were 

enriched in 20 mL SPME vials by HS-SPME after which GC-MS was performed. For 

SPME analysis a 50/30 µm DVB/Carboxene/PDMS fibre (2 cm) was used and the 

analysis was performed with the GERSTEL-Multi Purpose Sampler MPS2. The 

incubation of the samples took place at 70°C for 40 min. After that the SPME fibre was 

exposed into the sample’s headspace for 40 min extraction at 70°C. A temperature 

programmed transfer of the analytes was performed in the GC-injector. To include very 

volatile compounds as well, the initial GC oven temperature was set on 40°C. 

Results and discussion 

HS-SPME analysis was preferred over the tested methods direct SPME, direct 

SBSE, DHS, SHS and SAFE. In a direct comparison, higher signal intensities and a wider 

range of analytes have been achieved by HS-SPME [5]. SHS merely turns out as a 

screening method for the analysis of very volatile compounds (e. g. 2-methybutanal or 3-

methylbutanal). Later eluting compounds as well as typical terpenoid components of 

green tea like linalool or geraniol were not covered by this method. DHS, on the other 

hand, should be able to analyse a wider range of substances and be able to achieve higher 
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signal intensities as it includes concentration steps like purging and trapping. Due to this 

the equilibrium between liquid and gas phase is constantly resetting. This ensures that 

even substances with low volatility and low concentrations can be detected. This method, 

however, turns out as not suitable for the characterisation of green tea under the given 

sample preparation conditions. Aqueous samples like tea infusions were rather 

problematic for DHS analysis. The difficulty is that condensed water may block the GC 

injector by freezing out. To minimize this effect, DHS analysis was performed at a low 

incubation temperature of 45°C, which results in a small spectrum of VOC extracted from 

green tea. According to the results, DHS performance was limited in the case of aqueous 

samples and was thus not suitable for tea analysis. Additionally, DHS was not preferred 

over HS-SPME due to economic aspects. 

When comparing SPME and SBSE, HS-SPME proves to be preferred over direct 

SPME and direct SBSE. Compared to the first, HS-SPME is the more robust method, 

because in direct analysis, the tea infusion had to be filtered before starting the analysis 

in order to protect the fibre from contamination. In consequence, very volatile compounds 

escaped during the filtration process. On the contrary, HS-SPME analysis allowed a direct 

investigation in the vial immediately after tea infusion, so that these losses did not occur. 

Similar to direct SPME, the deficit of very volatile substances appeared in direct SBSE 

as well. 

Another advantage of HS-SPME is the triple coated fibre that guarantees a wider 

range of aroma compounds of different polarities. PDMS-Twister® are selective for non-

polar compounds, while polar compounds are less effectively analysed. In total, only 8 

green tea components were determined by direct SBSE analysis, while 43 substances 

were analysed by the HS-SPME method [5]. Polar compounds such as volatile esters and 

alcohols can be determined more efficient by magnetic stirrers coated with ethylene 

glycol and polyacrylate. On the other hand, extraction deficits would result due to polar 

materials regarding non-polar substances, so that there should be no advantage over the 

triple-coated SPME fibre. Additionally, the analysis of several sorption phases with 

different polarities are connected with extra efforts and a longer analysis time which lead 

to economic disadvantages. 

SAFE was also carried out in comparison with the automated methods. This 

application, however, was not suitable due to the low analyte concentrations in those 

green teas.  

Using HS-SPME-GC-MS analysis and PLS-DA, it can be stated that round 83% 

investigated green teas are well classified. Especially samples from Guizhou and Anhui 

100% separated from each other. The two samples from Zhejjang have similar aroma 

profiles like samples from Anhui and Guizhou.  In the same way, the aroma profile of 

green teas from Jiangsu and Henan overlap with these from Guizhou (cp. figure 1).  

In general, this data analysis shows that a classification of the green teas by means 

of their volatiles profile into their provinces is possible. General conclusions for specific 

provinces can hardly be stated. A broader analysis with equal sample numbers of each 

province are required to draw general and valid statements. The statistical power of this 

study is limited, since only 29 teas with varying shares of regions were analysed. For 

example, Jiangsu province was only represented by one green tea sample (T19).  
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Figure 1: PLS-DA plot of 29 green teas of five different provinces; based on 43 identified VOC 

Future studies, should therefore contain a variety of green teas from different 

regions. It would be advantageous if the same numbers of green tea were examined in 

each province, to assure even weighting of the samples. In parallel, a trained sensory 

panel should accompany the study and establish relations to influencing factors. 

Further work should be carried out in the context of organic teas. By statistical 

analysis the organic tea of this study (Tea 10) was significantly distinguished from all 

other 28 teas (s. figure 1). To confirm whether such teas and why are different from 

conventional teas, a larger number of organic teas should be included in the statistics.  

Finally, the analysis of low-volatility components can as well be performed by liquid 

chromatography coupled to mass spectrometry, since e.g. flavonoids are important 

constituents with varying and potentially fingerprint concentrations in green tea.  
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Abstract  

Yeast and bacterial fermentations play a key role in producing not only important 

technological functions in fermented foods but also the characteristic sensory attributes. 

While key flavor compounds are generally characterized, the kinetics of formation are 

poorly understood and poorly controlled. Multipurpose head-space automated sampling 

(MHSA) together with Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry 

(PTR-ToF-MS) were investigated as a tool to understand volatile organic compound 

(VOC) changes during fermentation. Automation of the analytical process as provided by 

MHSA guaranteed reproducibility over the whole microorganism life cycle, the accurate 

control of process parameters (temperature and sampling times) while maintaining the 

rapid sampling rates that PTR-ToF-MS enables. Multivariate data analysis techniques are 

required to identify important trends in the data. 

Introduction 

Yeast and bacterial species are widely used for leavening, brewing, wine making or 

dairy fermentations and play a key role in producing the characteristic sensory profiles 

and perceived quality of these products through the VOCs they generate [1-3]. These 

VOCs synthetized by microorganisms as secondary metabolites, not only impart 

important sensory notes but also have important technological functions [3]. As such, an 

on-line and non-invasive screening of the microorganism volatilome is of high 

importance to better understand and control these processes and support innovation in 

this traditional sector by unlocking the flavor generation process.  

Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) 

coupled with multipurpose head-space automated sampling (MHSA) was investigated to 

enable the efficient monitoring of agroindustry-relevant microbiological processes: 

dough leavening, lactic acid fermentation and wine making. 

Experimental 

The following three experimental datasets are used to illustrate the usefulness of the 

coupled PTR-ToF-MS 8000 (Ionicon Analytik GmbH, Austria) and multipurpose 

headspace automated sampler (Gerstel GmbH & Co. Germany): 

1. Lactic acid bacteria in low fat milk [4]; 3 cultures from Chr Hansen (A: FD-DVS 

YF-L812 Yo-Flex; B: FD-DVS YC-380 Yo-Flex; and C: FD-DVS YC-X11 Yo-

Flex) and 1 from Danisco (D: YO-MIX 883 D) x 3 replicates x 12 time points (0 – 

240 min) 

2. Yeast in bread dough [5]; 4 commercial yeast (Y1: Lessaffre, Parma, Italy; Y2: 

Lessaffre, Parma, Italy; Y3; Pakmaya, Istanbul, Turkey; and Y4: Italmill, Cologne, 

Italia) x 5 replicates x 3 time points (0 – 2.7 h); headspace dilution of 2:1 inert gas: 

sample flow 
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3. Sacchromyces cerevisiae on agar [6]; 6 strains x 12 replicates x 66 time points (0 – 

11 d); dilution of 1:3 sample flow to argon was used to overcome the deleterious 

effect of ethanol on the acquired spectra. 

 

PTR-ToF-MS drift tube temperature and pressure were 110°C and 2.3 mbar, 

respectively and the drift tube voltage was about 550 V, which resulted in an E/N ratio of 

about 140 Td (1 Td = 10−17 cm2 V−1 s−1). The inlet flow was 40 sccm for the yogurt 

and wine yeast fermentations and 120 sccm for the dough. 

Data processing of PTR-ToF-MS included dead time correction, external 

calibration, peak extraction, peak fitting and baseline extraction [4,5] and concentration 

was calculated as per Lindinger et al. [6].  

Results and discussion 

The coupling of PTR-ToF-MS with multipurpose headspace automated sampling 

allows the on-line noninvasive high-throughput screening of microorganism volatilome; 

and the identification of strain specific features and new metabolic pathways over time 

frames that are industrially relevant. 

PTR-ToF-MS analysis of the VOCs generated during fermentation from doughs 

fermented with four different commercial yeasts produced complex spectra (Figure 1). 

After filtering to remove m/z that were unchanged, clusters (water and/or ethanol) and 

isotopologues (13C and 18O) 46 m/z discriminated the bread dough with respect to time or 

yeast type. Yeast types were discriminated by 16 VOC. The high mass resolution was 

advantageous in allowing the discriminate between separate masses within one nominal 

mass, e.g. m/z 87 where variation in the signal between yeast could be assigned to 

variation in an aldehyde/ketone rather than diacetyl (Figure 1 inset). 

 
Figure 1: Average PTR-ToF-MS spectrum of fermenting dough; inset shows a double peak for the nominal 

mass 87 [2] (Copyright © 2014 John Wiley & Sons, Ltd) 

The four cultures that fermented yogurt were distinguished by 13 m/z including 2 

isotopologues. During the conversion of milk into yogurt the MHSA coupled with PTR-

ToF-MS allowed sampling times with sufficient temporal resolution to allow 

depletion/consumption of methanethiol and synthesis/appearance of acetoin to be 

followed (Figure 2). 
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Figure 2: Fermentation kinetics of methanethiol (A) and acetoin (B) (means of three replicates ± standard 

deviation). Open circle (○), uninoculated milk; filled square (■), starter A; filled circle (●), starter B; filled 
triangle (▲), starter C; filled rhombi (♦), starter D. Asterisks indicate statistically significant differences 

(ANOVA, p b 0.05) among commercial starters. [1] (Copyright © 2015 Elsevier Ltd) 

The VOC generated by the wine yeast grown on agar were significantly 

discriminated by 70 m/z based on yeast type and time. Of these 50 could be assigned a 

chemical formula and 37 were tentatively identified. The principal component analysis 

(PCA) explained 76.1% of the data variation on 2 principal components (Figure 3). The 

PCA plot shows from left to right the open circles, which represent the times points for 

each yeast during the lag phase and growth phase, an increase in fermentation time. 

Separation is largely due to increases in esters and ethanol. In contrast, during the 

stationary phase ester and ethanol synthesis cease and due to the sampling conditions 

stripping occurs, i.e., ester and ethanol concentrations decrease. 

 
Figure 3: Score plot of principal component analysis showing fermenting wine differentiation due to yeast 

volatilome evolution during 11 days. Data are logarithmically transformed and centered. Different colors 

indicate different yeast strains, medium and blank samples. Length of fermentation time is represented by an 
increase in point size; Open circles represent the lag and growth phase; and closed circles represent the 

stationary phase [3]. 
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Automation of the analytical process as provided by MHSA guaranteed 

reproducibility over the whole microorganism life cycle, the accurate control of process 

parameters (temperature and sampling times). Analysis could be completed as frequently 

as every second but typically the headspace of each sample was measured for one minute 

while displacing the headspace with zero air or pure nitrogen. In addition, the 

fermentation processes can automatically be monitored for several hours in the case of 

dough leavening and lactic acid fermentations or days for alcoholic fermentations or yeast 

colonies grown on a solid medium. The set-up allows the monitoring of up to 128 samples 

at each time point. 

To deal with data matrices containing several hundreds of mass peaks for each 

measurement multivariate data analysis is needed to provide the general overview of 

biological processes and phenotypic variability among different microbial strains. 

Observations of single VOC emission curves allow the opportunity to study known 

metabolic pathways and unravel unknown ones. 
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Abstract  

Biological matrices of mammals contain many volatile compounds which can act as 

specific chemical cues for congeners modifying their behavior or their physiological 

parameters. Gas-chromatography (GC) can be used to assess such matrices, however, this 

is a challenging technique because of low concentrations of highly volatile analytes. Thus, 

an extraction technique that (i) preserves the original profile of the volatile compounds, 

and (ii) concentrates the analytes is required. Headspace extraction methods, such as 

headspace solid phase micro-extraction (HS-SPME) or dynamic headspace (DHS), show 

many advantages. Therefore, they are promising methods for the analyses of biological 

matrices.   

In this study, DHS was compared by using two sorbent cartridges, and HS-SPME 

was performed for the exploration of human milk composition. Volatile compounds of 

pooled breast milk samples were extracted by HS-SPME using a Car/PDMS fiber, by 

DHS associated to Tenax® or Bio-monitoring sorbent tubes. Extracts were analyzed by 

GC coupled to a mass spectrometer and a flame ionization detector. Extraction yields 

were compared on the basis of qualitative and semi-quantitative chromatograms. 

As a result, HS-SPME with Car/PDMS fiber extractions enabled the recovery of a 

large diversity of compounds from breast milk and displayed a great reproducibility, 

whereas DHS enabled to recover a larger number of compounds with an about 10-fold 

higher yield. The DHS method allowed four compounds to be newly identified in breast 

milk: cyclohexanone, 6-methyl-5-hepten-2-one, pyridine and phenol. Thus, despite a 

challenging implementation, DHS is a better option than HS-SPME with Car/PDMS fiber 

for the investigation of volatile fractions of small-scale or low concentrated samples like 

breast milk. Since the two sorbents used in DHS, Tenax® and Bio-monitoring, 

demonstrated equivalent extraction capabilities, Tenax®, which is widely used, is the 

preferred option for a better comparison of the results with the current literature.  

Introduction 

Biological matrices of mammals contain many volatile compounds which can act as 

specific chemical cues for congeners modifying their behavior or their physiological 

parameters1. Extraction of volatile compounds and their subsequent analysis by means of 

gas-chromatography (GC) could enable key components from biological matrices to be 

identified. However, since volatile compounds of biological matrices were present in 

very-small amounts2 their exploration is particularly challenging. Indeed, analytical 

methods require the extraction technique to have a strong concentration capability 

without distorting the original volatile profile. Regarding this issue, the headspace 

extraction techniques could be of interest since they involve solvent-free procedures and 

respect matrix integrity3. Among them, headspace solid phase micro-extraction (HS-

SPME) is widely employed because it is relatively easy to apply and low in costs. 

However, the low amount of sorbent on fibers could limit its application for samples with 

low-concentrated headspace. Dynamic headspace (DHS) methods demonstrate enriched 
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capabilities through the constant displacement of the headspace equilibrium and the large 

quantity of sorbent involved. However, the implementation of this technique can be 

complex, notably due to leaking during desorption of the target compounds.  

The objective of this study was to evaluate the capability of DHS associated with the 

commonly used sorbent, Tenax® or a new combination of sorbent Bio-monitoring and 

HS-SPME for the exploration of a low-concentrated biological fluid: the breast milk. 

Experimental 

Samples  

Four samples of human milk (50mL) were collected into a pre-cleaned 120mL wide-

mouth bottle. The bottle was capped and the sample stored at -20°C until all samples were 

collected. Once the four samples were collected, they were defrosted and pooled together. 

The pooled sample was divided into 5mL aliquots, placed into 22,5 mL amber screw cap 

vials, sealed with a PTFE septum and stored at -80°C prior to analysis. Before extraction, 

samples were defrosted during 10 minutes at ambient temperature.  

Extraction methods  

DHS extraction. A nitrogen flow was bubbled into 5mL sample of human milk with 

a purge flow of 20mL.min-1 during 2 hours adapted from conditions previously 

published4. The compounds were trapped either in a Tenax® (Markes international Ltd, 

Llantrisant, UK) or a Bio-monitoring cartridge (composed of Tenax® TA and 

Carbograph 5 TD, Markes).  

HS-SPME extraction. Volatile compounds from a 5mL sample of human milk were 

extracted by HS-SPME with a Car/PDMS fiber (10mm length, 85μm film thickness) 

placed in the headspace of the vial for 2 hours at 34°C. SPME extraction time was set in 

order to have comparable conditions with DHS.  

Desorption and chromatographic conditions 

Analyses were carried out using a GC (7890A System Agilent, Wilmington, DE, 

USA) equipped with a mass spectrometer (5975 inert MSD with Triple Axis Detector 

MS, Agilent) and a Flame Ionization Detector (FID, Agilent). Triplicates of HS-SPME 

and DHS extracts were analyzed in a random sequence. Compounds on the SPME fiber 

were desorbed into the injection port of the chromatograph (T=260°C, splitless) whereas 

DHS cartridges were desorbed on a thermal desorption system (Unity 2 thermal 

desorption, Markes) for 20 minutes at 240°C. The thermal desorption system uses a two-

stage procedure, where the first stage is a desorption of the cartridge followed by a re-

trapping on a Peltier-cooled (10°C) trap. Compounds were then transferred to the GC 

column during the rapid heating of the Peltier trap from 10°C to 320°C with a rate of 

100°C.s-1. After desorption, volatile compounds were separated on a DB-WAX column 

(30m x 0.25mm x 0.5µm film thickness, Agilent). Hydrogen was used as a carrier gas at 

constant flow (1mL.min-1). The oven temperature was programmed from 50°C (0min) to 

80°C at 5°C.min-1, then from 80°C to 200°C (0min) at 10°C.min-1, and finally from 200°C 

to 240°C (4min) at 20°C.min-1. Peak areas were integrated using the MSD Chemstation 

software (Agilent). Mass spectra were recorded in electron impact mode (70eV) between 

a mass range of 33 and 300 m/z at a scan rate of 2.7 scan.s-1. Compounds were identified 

by comparing their mass spectra and their linear retention indices (LRI) with those of 

reference databases (Nist and internal database) and with relevant literature.  
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Data processing and statistical analyses.  

One-way analysis of variance (ANOVA) and Least Significant Difference (LSD) 

tests were performed on FID peak areas obtained from the analysis of HS-SPME or DHS 

(Tenax® or Bio-monitoring cartridges) milk extracts with a 95 % confidence level. A 

normalized principal component analysis (PCA) and Ascendant Hierarchical 

Classification (AHC) were conducted on the data. The Xlstat software (Addinsoft) was 

used to perform statistical analyses. 

Results and discussion 

Chromatograms obtained from the three extraction methods are presented in Figure 1.  

 
Figure 1: FID chromatograms of breast milk extracts obtained with DHS with Tenax® or Bio-monitoring 

cartridges and HS-SPME with Car/PDMS fiber  

Fifty-five peaks were detected in at least one of the three extracts, mostly carbonyl 

compounds, alcohols, terpenes and carboxylic acids (Fig.2).   

.  

Figure 2: Principal component analysis performed on the peak areas of the volatile compounds detected in 
human milk extracted by HS-SPME, DHS (Tenax®) and DHS (Bio-monitoring) and projection of clusters 

(AHC). a- Score plot from human milk different extracts. b- Loading plot for volatile compounds 1: Hexane; 

2:Unidentified-1; 3: Octane; 4 :2-propanone; 5: Butanal; 6: 2-Butanone; 7: Heptane, 2,2,4,6,6-pentamethyl-; 8: 2-Pentanone; 9: α-Pinene; 10: 

Toluene; 11: Camphene; 12: Hexanal; 13: β-Pinène; 14: Ethylbenzene; 15: 1-Butanol; 16: 3-Carene; 17: Unidentified-2; 18: 2-Heptanone + Heptanal; 

19: Pyridine; 20: dl-Limonène; 21: (E)-2-Hexenal; 22: 2-Pentylfuran; 23: 1-Pentanol + γ-Terpinene; 25: p-Cymene; 26: Octanal; 27: 1-Hexanol; 28: 

Cyclohexanone; 29: (E)-2-Heptenal; 30: 6-Methyl-5-hepten-2-one; 31: 1-Hexanol; 32: Unidentified-3; 33: 2-Nonanone; 34: Nonanal; 35: 

Unidentified-4; 36: Unidentified-5; 37: (E)-2-Octenal; 38: Acetic acid; 39: Unidentified-6; 40: Unidentified-7; 41: 2-Ethyl-1-hexanol; 42: 

Unidentified-8; 43: Unidentified-9; 44: Unidentified-10; 45: Unidentified-11; 46: 3,5-Octadien-2-one; 47: (E)-2-Nonenal + Benzaldehyde; 48: 

Camphor; 49: Butanoic acid; 50: Unidentified-12; 51: Acetophenone; 52: Pentanoic acid; 53: Hexanoic acid; 54: Heptanoic acid; 55: Phenol 

Among detected compounds, 43 were associated with at least one identified 

compound. All of them have already been identified in human milk except 

cyclohexanone, 6-methyl-5-hepten-2-one, pyridine and phenol which were tentatively 

identified. These compounds have already been found in other human materials5. The 

analysis of chromatographic profiles of breast milk samples showed that respectively 38 

and 53 compounds were identified in HS-SPME and DHS extracts. The following 20 

Fifty-five peaks were detected in at least one of the three extracts, mostly 

carbonyl compounds, alcohols, terpenes and carboxylic acids (Fig.2).  

  
 

Figure 2. Principal component analysis performed on the peak areas of the volatile compounds detected 

in human milk extracted by HS-SPME, DHS (Tenax®) and DHS (Bio-monitoring) and projection of clusters  

AHC cluster 1 

AHC cluster 2 
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compounds were only detected in the DHS extracts: butanal, (E)-2-hexenal, 3,5-octadien-

2-one, acetophenone, camphene, 3-carene, camphor, 1-hexanol, 2-ethyl-1-hexanol, 

octane, heptane,2,2,4,6,6-pentamethyl, ethylbenzene, styrene and 7 unidentified 

compounds (LRIs: 1372, 1418, 1441, 1456, 1493, 1503, 1510) while four compounds: 2-

propanone, an unidentified compound (LRI: 1651), hexanoic acid and heptanoic acid 

where only detected in the HS-SPME extracts. The ANOVA and LSD tests performed on 

individual peak areas (data not shown) demonstrated that among the 34 compounds 

common to HS-SPME and DHS extracts, all of them, except butanoic acid, were found 

at a larger extent in the DHS extracts with a 10-fold higher yield.  However, no specific 

trends were observed for any chemical family. The ratio of five compounds, two mono-

terpenes (α-pinene and p-cymene) and three other components (1-butanol, pyridine and 

6-methyl-5-hepten-2-one) even exceeded a ratio of 20. Some of these compounds, could 

have originated from the mother’s diet, like terpenes (vegetables) or pyridins (roasted 

food), and could be flavor cues present in the mother’s milk influencing the early and 

future newborn’s feeding behavior6. Moreover, among the 53 compounds detected in 

DHS extracts, none was statistically different between the Tenax® and Bio-monitoring 

cartridges, except hexane and acetic acid, which were significantly more abundant when 

using the Bio-monitoring cartridge, although these could also have been artifacts of 

sorbents. 

A PCA performed on the peak areas of each compound (Fig. 1) allowed visualization 

of these previous observations. Indeed, 89% of the variance was recovered in the PCA 

map. In the PCA score plot, DHS extracts were positively correlated to the first axis, 

which represents 78% of the variance, while the HS-SPME extract was negatively 

correlated to this axis. HS-SPME extraction exhibited a greater repeatability than DHS. 

However, the loading plot showed that the majority of peaks (48) was positively 

correlated to DHS extracts, whereas only 7 peaks were correlated to the HS-SPME 

extract. The AHC shows that HS-SPME and DHS extracts were discriminated, however 

Tenax® and Bio-monitoring cartridges were not.  

In conclusion, even if HS-SPME with the Car/PDMS fiber extraction enables the 

recovery of a large diversity of compounds from milk and displays a great reproducibility, 

DHS enables the recovery of a larger number of compounds and in a greater extent than 

HS-SPME. Thus, despite a challenging implementation, DHS is a better option than HS-

SPME to investigate volatile fraction of small-scale or little concentrated samples like 

breast milk. Tenax® and Bio-monitoring sorbents, tested in DHS, exhibited equivalent 

extraction capabilities. Thus, Tenax®, which is widely used, should be preferred to Bio-

monitoring sorbent to enhance comparison of results with the current literature.  
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Abstract  

Volatile organic compounds (VOCs) produced by bacteria are known to play a 

significant role in interactions among many organisms, but VOCs also impart aroma to 

many food products. Streptomyces bacteria include a large group of organisms that 

produce a wide range of secondary volatile metabolites with potential for clinical and 

industrial applications. VOC profiles of bacteria are typically analyzed in liquid media. 

Yet, many bacteria also grow well on solid media and may here produce different VOCs 

than in liquid media. However, it is challenging to capture and measure VOCs from 

bacteria grown on solid media, and such limitations could bias measured VOCs profiles 

from bacteria. In this study, a special approach was applied to examine VOC production 

by Streptomyces when grown on oatmeal agar in a large gas-washing flask with Tenax-

TA traps attached 96 hours of incubation. The obtained VOC profiles of two Streptomyces 

species show presence of geosmin and 2-MIB along with a total of 110 compounds, 

including 51 terpenes. 

Introduction 

Bacterial volatile organic compounds (VOCs) may play a significant role in inter- 

and intraspecies relations in ecosystems [1], but they also add flavor to many food 

products [2]. Bacteria belonging to the genus Streptomyces are known for their production 

of the off-flavors geosmin and 2-methylisoborneol (2-MIB), but they produce a wide 

range of other volatile metabolites with potential clinical and industrial applications [3]. 

Much attention has been given to geosmin and 2-MIB because these two VOCs are 

commonly occurring in many aquatic environments. Geosmin and 2-MIB are reported to 

spoil the quality of fish in aquaculture systems due accumulation in the flesh, and to add 

unattractive flavor to drinking water that is produced from surface water reservoirs. 

The production of volatiles by bacteria is influenced by growth conditions and the 

metabolism of the organisms [4, 5]. Typically, in studies of VOCs production by 

microorganisms, bacteria have been grown in liquid media [4], probably because the 

determination of VOC production from cells grown on solid media is challenging. Liquid 

media may not provide optimum growth conditions for all microorganisms and may also 

underestimate the production of volatiles. Thus, in some bacterial species like 

Streptomyces and fungi, the metabolite production is stimulated by growth on surfaces, 

as compared to liquid media [5]. 

The objective of the present study was to establish a method for measuring volatiles 

produced by bacteria when cultured on solid media. Two species of Streptomyces were 

grown on oatmeal agar in gas-washing flasks attached with Tenax traps to facilitate 

continuous adsorption of volatiles upon equilibration in headspace. Geosmin, 2-MIB and 

other volatiles produced by Streptomyces were monitored for four days by collection of 
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VOCs in the headspace onto the Tenax traps by flushing with N2 every 24 hours. The 

volatiles were quantified by GC-MS analysis.  

Experimental 

The two species included in the study are Streptomyces 2R (isolated from a Danish 

aquaculture pond) and Streptomyces diastatochromogenes (SD) (from DSMZ, Germany). 

Thirty ml of oatmeal agar was added to 500 ml sterile gas-washing flasks and inoculated 

with conidia (spores) to a number of 2×107 per flask of strain 2R or SD. The flasks were 

sealed with a purge-head attached to a Tenax-TA trap and incubated at 29°C. Volatiles in 

the headspace were collected by purging with N2 at 200 ml/min for 15 min. Headspace 

was collected every 24 h until 96 h and analyzed by GC-MS settings as described in 

Podduturi et al. [2]. In brief, volatiles from the Tenax traps were analyzed by an automatic 

thermal desorption unit (ATD 400, PerkinElmer, Norwalk, USA) in combination with gas 

chromatograph mass spectrometer (GC-MS, 7890A GC-system interfaced with a 5975C 

VL MSD and a Triple-Axis detector from Agilent Technologies, Palo Alto, California). 

Separation of the volatiles was carried out on a DB-Wax capillary column (30 m length 

× 0.25 mm internal diameter and 0.5 μm film thickness) using H2 as carrier gas with an 

initial flow rate of 1.0 mL/min. The column temperature program was held at 40°C for 

10 min, then raised to 240°C at the rate of 8°C/min and finally at 240°C for 5 min. The 

mass spectrometer was operated in electron ionization mode at 70 eV. Mass-to-charge 

(m/z) ratios between 15 and 300 were scanned. Tenax-TA traps were changed every 24 h 

to avoid overloading of the traps. Parallel setups were used to collect cell biomass without 

interrupting the VOC production. Biomass of the bacteria was estimated using a DNA-

based assay after staining of the cells with SYBR green I. 

Results and discussion 

The obtained VOC profiles from cultivation of Streptomyces showed the presence 

of geosmin and 2-MIB along with several other terpenes. 

Geosmin and 2-MIB production 

Production of geosmin and 2-MIB was detected by both strains throughout the 96 h 

growth period. Streptomyces 2R produced rather similar amounts of both compounds, 

while Streptomyces SD produced a higher amount of 2-MIB (800 ng per flask) as 

compared to geosmin (70 ng per flask) after 96 h (Figure 1). A large increase in the 

production of geosmin and 2-MIB occurred from 24 to 48 h for both strains. After 48 h, 

no major changes in production of the metabolites were found, but the biomass of both 

strains still increased after 48 h. In strain 2R, the geosmin and 2-MIB production rate 

increased 2- to 3-fold between 24 and 48 h and then declined to the initial 0 to 24 h rate. 

In strain SD, a high production of 2-MIB (4 × 10-18 g/cell) occurred from 24 to 48 h, while 

the geosmin production was lower. From 24 to 48 h, the geosmin and 2-MIB production 

rate increased almost 200-fold, followed by decline in the production rate, as also 

observed for 2R. Streptomyces 2R’s geosmin production rate (0.28 × 10-18 g/cell) 

observed in this study is in similar range as previously reported, S. albidoflavus (0.3 × 10-

18 g/cell) grown on solid media [6] and S. citreus (0.28 × 10-18 g/cell) grown in submerged 

culture during active growth stage [7].  

Species of Streptomyces are known to produce several secondary metabolites during 

transition from compartmentalized mycelium to aerial mycelium, simultaneous with 

initiation of the sporulation [8]. Among metabolites produced in this phase are geosmin 

[9]. According to Yagüe et al. [8], Streptomyces grown on agar media begin forming 
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aerial mycelium after about 24 h. This agrees with the observed formation of a dense layer 

of white spores on the agar surface at bottom of the present culture flasks. The spore 

formation coincided with the increased geosmin and 2-MIB production by 48 h, relative 

to 24 h, and resulted in the highest metabolite production rate during 24-48 h. 

Table 1: Terpenoid compounds found in headspace extracts of Streptomyces 2R and Streptomyces 

diastatochromogenes   

 Calculated 

RI(DB-Wax) 

Suggested  

Compound 

 Calculated 

RI 

Suggested  

Compound 

1 1064 2-Methylenebornanea 18 1688 Humulene b 

2 1105 β-Pineneb 19 1705 γ-Muurolenea 

3 1176 β-Myrceneb 20 1721 γ-Gurjunenea 

4 1197 D-Limoneneb 21 1728 Germacrene Da 

5 1467 α-Cubebenea 22 1739 Eremophilenea 

6 1503 α-Copaenea 23 1741 α-Muurolenea 

7 1531 β-Bourbonenea 24 1752 β-

Dihydroagarofurana 

8 1552 β-Cubebenea 25 1763 β-Bisabolenea 

9 1584 (-)-Aristolenea 26 1773 δ-Cadinenea 

10 1589 β-Copaenea 27 1778 γ-Cadinenea 

11 1602 β-Elemenea 28 1800 Cadina-1(2),4-dienea 

12 1614 2-Methylisoborneol b 29 1853 Calamenenea 

13 1637 Allo-

Aromadendrenea 

30 1854 Geosmin b 

14 1642 α-Himachalenea 31 2084 Caryophyllenyl-

alcohola 

15 1649 cis-β-Guaienea 32 2094 Cubenola 

16 1658 α-Guaienea 33 2177 γ-Eudesmola 

17 1683 Viridiflorenea     
a Compounds identified by NIST MS library and RI from literature 
b Compounds identified by NIST MS library and RI of pure compounds 

Total VOC profile 

A total of 110 different VOCs were found in headspace of strain 2R, while 108 

different compounds were identified for strain SD. The VOC composition of both strains 

was dominated by 51 terpenoids (mono and sesquiterpenes and their derivatives) and 23 

hydrocarbon compounds. The list of terpenoids identified with standards and tentatively 

identified with NIST library similarity and RI values from literature are shown in Table 

1. The identity of 12 of the detected 51 terpenoids was unknown. The total number 

compounds found in this study are considerably higher than the Streptomyces grown in 

liquid media [7]. 
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Figure 1: Production of geosmin and 2-MIB as well as biomass by Streptomyces 2R (A) and Streptomyces 
diastatchromogenes (B) over 96 hours 

The headspace composition of various volatiles produced by the Streptomyces 

isolates in this study (dominance of mono and sesquiterpenes) resemblances the volatile 

profiles by other geosmin-producing Streptomyces [3, 10]. Most of the compounds listed 

in Table 1, including 1, 2, 4, 5, 6, 8, 11, 12, 18, 21, 23, 24, 25, 30 and 32, have previously 

reported to be produced by various Streptomyces strains [3, 10]. 

Conclusion 

The experimental setup demonstrates that volatile metabolites produced by 

Streptomyces, such as geosmin and 2-MIB, can be detected and identified by cells 

growing on solid media. The current study also shows that Streptomyces grown on solid 

media produces higher number of metabolites compared to submerged culture with 

almost similar rate of production. The present approach can be applied for detection and 

quantification of VOCs produced by bacteria, but the experimental setup could also be 

useful in studying dynamics and kinetics of volatiles and metabolites produced by 

bacteria. 
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Abstract 

Aroma results of a complex mixture of volatile compounds in which the contribution 

of each volatile depends on its concentration, detection threshold, interaction with the 

matrix and emergence of complex aroma-aroma interactions. [1] Gas chromatography 

(GC) coupled to olfactometry is useful to identify and estimate the individual potential of 

odour-active compounds, but it is irrelevant to predict the effective contribution of 

odorants to food aromas. Therefore, models reconstituted with chemicals are used to 

evaluate these contributions in a mixture context. [2] This approach requires time and 

above all, needs every compound to be identified, quantified, and commercially available. 

The InnOscent chromatographic device was designed to overcome these constraints and 

was configured to realize both conventional GC analysis coupled with multiple detectors, 

and innovative fraction collection experiments including recombination possibilities. 

This study aims at presenting this system through a wine aroma analysis. 

An olfactometric analysis was first performed on a wine made of Cabernet Franc 

grape variety, with an 8 judges-panel and the InnOscent system configured to operate as 

a conventional GC coupled to a mass spectrometer (MS) and a dual olfactometric port. 

On the basis of the olfactometric results, recombined fractions of selected compounds 

were directly recovered from the system and were submitted to the panel in order to 

evaluate the contribution of these odour-active compounds to the wine aroma. 32 odorants 

were detected by at least 3 out of 8 judges in the wine aroma. Evaluation of the 

recombined extracts demonstrated that the mixture of all these odorants mimics the 

original wine aroma. Moreover, the mixture of the 14 most intense odorants was 

demonstrated to be representative of this aroma. The findings of this study illustrate the 

relevance of the system to realize a comprehensive aroma exploration using a single 

disposal. While freeing from chemicals, InnOscent system makes it possible to evaluate 

the contribution of any compound or group of compounds to an overall aroma, and thus 

go further in aroma analysis. 

Introduction 

Food aroma is a major criterion in consumers’ appreciation prompting food 

producers and processors to regard it as a perennial issue. However, comprehension of 

aroma is still an ongoing scientific challenge since aroma results from a complex mixture 

of volatile compounds. All do not contribute equally to the aroma mainly due to their 

respective concentrations, detection thresholds, interactions with the matrix and 

emergence of complex aroma-aroma interactions. Gas chromatography (GC) coupled to 

olfactometry is a both analytical and sensory technique used to identify odour-active 

compounds and estimate their individual odorant potential. However, there is a gap 

between this individual characterization of compounds and their effective contribution to 

a food aroma. Thus, investigation of many product aromas turns to models that are 

reconstituted with chemicals, generally based on odour activity values. While 

functioning, this approach is time-consuming and requires every compound to be 
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identified, quantified, and commercially synthesized. In this context, the InnOscent 

chromatographic system was designed to overcome these constraints and ease aroma 

comprehension. This device was configured to perform both (1) conventional analyses by 

GC coupled with a mass spectrometer, a single or dual olfactometric port, or a flame 

ionization detector, and (2) innovative fraction collection experiments including 

recombination possibilities. As a demonstration of the capabilities of this system, the 

aroma analysis of a wine made of Cabernet Franc grape variety was performed and the 

contribution of most potent odorants was investigated. 

Experimental 

Material 

Wine used for the study was a red wine, 13% alcohol, from Bourgueil appellation, 

elaborated in 2010 from a Cabernet Franc vineyard. Chemical standards and n-alkanes 

were purchased from Sigma Aldrich (St Quentin Fallavier, France) with purity > 97%.  

Wine aroma extraction 

Volatiles from a 5mL wine sample were extracted by solid phase micro-extraction 

with a Car/PDMS fibre (10 mm length, 85μm film thickness; Supelco, Bellefonte, PA, 

USA) placed in the headspace of the vial for 10 minutes at 34°C after 1hour of incubation. 

Compounds were directly desorbed from the fibre in the injection port of the GC 

(T=260 °C). 

Chromatographic device and conditions 

Analyses were carried out with the InnOscent laboratory-designed system (Figure1) 

using an Agilent 7890A gas chromatograph combined with a 5975 mass spectrometer 

(MS, electron impact mode 70 eV, scan m/z 33-300, 2.7 scan.s-1, Agilent Technologies, 

Wilmington, DE, USA). The column was a DB-Wax (Agilent, 30m length × 0.25 mm 

internal diameter × 0.5 µm film thickness), hydrogen was used as the carrier gas and oven 

temperature was programmed as follows: 50°C (0 min) to 80 °C at 5 °C·min−1, then 80 

to 200 °C at 10 °C·min-1, and 200°C to 240 °C (4 min) at 20°C·min−1.  

 
Figure 1: Schematic configuration of the InnOscent-GC device (patent pending) [3] 

The end of the column was connected to a splitting and switching disposal allowing 

the eluate to be split and directed for one part to the MS and for the rest of the eluate 

towards secondary outlets. Throughout the run, the flow can be selectively transferred to 

one or another secondary outlet, via the events control module of Chemstation software 

(Agilent). Depending on the purpose of the experiments, secondary outlets can be 
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connected to an olfactometric port (transfer line T=200°C, Gerstel ODP 3, Mülheim an 

der Ruhr, Germany), a flame ionization detector (FID, T=260°C, Agilent) or a collecting 

device. 

Olfactometric analysis 

The InnOscent system was first scheduled to get a conventional GC-MS coupled to 

a dual olfactometric port, connecting two olfactometric ports to secondary outlets. The 

eluate was analysed by an 8 trained judges-panel, throughout successive runs. Judges’ 

perceptions (time, intensity and description) were recorded via the WheelOscent 

olfactometric software presenting an aroma wheel interface designed for wine analysis. 

[4] Results are displayed as an aromagram, directly obtained from the software, 

presenting the number of detections vs retention time. Identification of odorants was 

performed by comparing their linear retention index and mass spectra to those of 

databases (Wiley, Nist and internal databases) and by injection of standard compounds. 

Recombination experiments and extracts evaluation 

A collector was connected to a secondary outlet of the InnOscent GC-MS system 

and an FID was also connected to the system allowing to control the recovered extract. 

The total extracts were first recovered in the collector throughout successive runs. Then 

the recombined extracts were recovered. Switching events were programmed so that only 

selected compounds were directed to the collector and the FID, whereas other fractions 

of the eluate were eliminated through other secondary outlets. Extracts containing 

odorants perceived by at least, 3, 4, 6 and 8 judges on the basis of the olfactometric results 

were this way successively collected in different collectors. Timing of the switching 

events was set according to the GC-MS-O results. Collectors containing the recombined 

and total extracts were coded with a three-digit random number and submitted to the panel 

in a randomized order. The judges were asked to smell the content of the collectors and 

score the similarity of the odour with that of a total extract named reference. Anova was 

performed on similarity scores obtained for each extract with a 95% confidence level. 

Results and discussion 

The aromagram and chromatogram of the wine aroma obtained from the InnOscent 

device present different patterns, underlining that compounds with the most abundant 

peak areas are not necessarily the most frequently perceived, and highlighting that 

instrumental and human detections are complementary. Thirty-three compounds were 

perceived by at least 3 out of the 8 judges (Figure) and 25 compounds were identified. 

Among them a majority of ethyl esters and acetates are found, as well as alcohols, acids, 

carbonyl and sulfur compounds, phenols and pyrazines. These observations are consistent 

with extensive literature dealing with wine aroma analysis. [5] 

On the basis of these olfactometric results, recombined extract were directly 

recovered from the InnOscent device and were submitted to the panel to evaluate their 

contribution to the aroma. The extract that contained the 33 compounds detected by at least 

3 out 8 judges, was perceived as representative of the wine aroma with a similarity score 

of 7.7 out of 10 (Table 1). This is particularly true considering the similarity score (8.2 out 

of 10) given to the total extract compared to the identical reference, explained by the 

natural reluctance of the judges to use the ends of the scale. This result illustrates the 

capability of the olfactometry analysis to point out the compounds involved in the wine 

aroma. 
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Figure 2: Aromagram and MS chromatogram of the wine aroma. 

Table 1: Similarity scores obtained from the 8 judges-panel for the different extracts recovered directly from 

the InnOscent GC device compared to a total extract. 

 Recombined extract with x compounds perceived by at least : Reference 

 
8 judges 

x= 5 

6 judges 

x= 13 

4 judges 

x= 24 

3 judges 

x= 33 
= total extract 

Similarity 

score 
2.2b 7.2a 7.4a 7.7a 8.2a 

Furthermore, if the mixture of the 5 more perceived compounds did not allow to 

reconstitute the wine aroma, the mixture of the 13 more frequently perceived compounds 

demonstrated to be sufficient to produce an extract perceived as representative for the 

wine aroma. This study illustrates the possibilities given by the InnOscent device 

combining conventional analysis and innovative omission/recombination capabilities. 

The system provides solutions to directly evaluate the aroma of mixture of compounds or 

estimate the contribution of any target compound to a global aroma, overcoming 

constraints of current approaches. This approach will deliver valuable information to 

understand complex aroma-aroma interactions and to go further into aroma 

comprehension. 
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Abstract 

The characteristic aroma of fresh onion (Allium cepa L.) is formed enzymatically. 

[1] When the onions are chopped, the cells release enzymes (alliinases), which transform 

isoalliin into the highly reactive 1-propenyl sulfenic acid. [2,3] The latter compound can 

condense with itself to form thiosulfinate (pathway I). Thiosulfinates can react with free 

thiols to form relatively stable compounds such as disulfides. Alternatively, the enzyme 

lachrymatory factor synthase (LFS) can convert 1-propenyl sulfenic acid into syn-

propanethial-S-oxide, the lachrymatory compound in onions (pathway II). [4] It is known 

that, in water, syn-propanethial-S-oxide can decompose to form propanal and hydrogen 

sulfide. These decomposition products can further react with other volatiles present in 

onion juice, to form new molecules that contribute to the aroma of fresh onion. [5] 

Propanal and hydrogen sulfide can readily generate a number of high impact flavor 

compounds. These molecules possess a powerful fresh onion character, but their 

analytical characterization is often challenging. This is due to their reactivity towards 

other molecules present in onion juice, their thermal lability in water and their low 

concentration in the matrix. A pathway was proposed for the formation of the major sulfur 

compounds in onion juice.  

Objective 

The goal of this work was to compare the different types of volatile sulfur 

compounds in fresh onion juice to those in onion oil. Onion oil can be prepared simply 

by steam distillation of ground onions in water. The obtained oil contains the volatiles 

sulfur compounds and can be analyzed directly by GC-MS. The identification of the 

volatile sulfur compounds in onion juice, however, required a special approach. In Allium 

analysis by GC, cool injection techniques are preferred, because hot injection may result 

in artifacts. [1,6,7,8] On-column injections have limited sample load ability and may 

bring non-volatile plant material in the extract onto the column. In this research, it was 

attempted to overcome these limitations by applying a thiol enrichment step, followed by 

analysis under mild conditions using an Agilent multimode inlet. 

Approach and results 

Onion oil. Yellow onions were peeled, chopped and added to water. The mixture 

was steam distilled under atmospheric pressure. The oil layer was separated from the 

distillate, dried over magnesium sulfate, filtered and injected directly on an Agilent 5977 

single-quadrupole GC/MS system in electron ionization mode. Figure 1 depicts the gas 

chromatogram of the onion oil. Mass spectral identification was achieved using in-house 

and commercial libraries. Structure assignment and relative percentages of the seven 

major signals in the matrix are presented in Table 1.  
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Figure 1: Gas chromatogram of onion oil. 

Table 1: Predominant Sulfur Compounds in Onion Oil   

# Compound Relative percentage 

1 dipropyl disulfane 21.8 % 

2 dipropyl trisulfane 17.1 % 

3 methyl propyl trisulfane 10.1 % 

4 dipropyl tetrasulfane 5.8 % 

5 trans-1-propenyl propyl disulfane 5.8 % 

6 1-propenyl propyl trisulfane 4.8 % 

7 cis-1-propenyl methyl disulfane 3.0 % 

8 dimethyl trisulfane 1.2 % 

Numbers match the signals in the chromatogram. 

Onion juice. Yellow onions were peeled, cut and processed with a commercial juicer. 

The juice was collected and allowed to stand for 30 minutes prior to extraction. During 

this period, enzymatic reactions and subsequent chemical reactions could take place, by 

which the compounds of interest were formed. The juice was extracted with methylene 

chloride, followed by partial evaporation of the solvent. The residue was passed through 

a mercuric agarose gel which was eluted with methylene chloride / dithiothreitol. [9,10] 

Prior to the actual analysis, a multimode inlet, operating in the vent mode, was used to 

evaporate the solvent to further concentrate the sample in the GC inlet liner at low 

temperature. Only the (semi-)volatile compounds were swept onto the column under mild 

thermal conditions (150 °C). Analysis was done on an Agilent 5977 single-quadrupole 

GC/MS system in electron ionization mode. Figure 2 depicts the gas chromatogram of 

the thiol enriched onion juice extract. Mass spectral identification was achieved using in-

house and commercial libraries, as well as synthesized or purchased reference standards. 

Structure assignment and relative percentages of the seven major signals in the matrix are 

presented in Table 2. 
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Figure 2: Gas chromatogram of the thiol enriched onion juice extract 

Table 2: Predominant Sulfur Compounds in Raw Onion Juice [11]  

# Compound Relative percentage 

9 Propanethiol 21.5 % 

10 1-propylsulfanyl-1-propanethiol 15.7 % 

11 Methanethiol 15.3 % 

12 1-methylsulfanyl-1-propanethiol 12.0 % 

13 1,2-propanedithiol 10.1 % 

14 1,1-propanedithiol 7.1 % 

15 Allylthiol 3.6 % 

16 3-sulfanyl-2-methylpentan-1-ol 2.2 % 

Numbers match the signals in the chromatogram.  

Discussion and conclusion  

The sulfur compounds that are found in onion juice are rather different from the 

sulfur compounds that are found in onion oil. Onion oil has a ‘boiled onion’ aroma and 

its composition analysis has well been described in literature. It consists mainly of 

disulfanes, trisulfanes and tetrasulfanes, which are relatively stable end products. These 

components are formed by reactions of thiosulfinates during boiling in water. Reaction 

of a thiosulfinate with a free thiol will result in the formation of a disulfane. If a 

thiosulfinate reacts with hydrogen sulfide, an alkyl hydropersulfide will be formed as an 

instable intermediate. Hydropersulfides can again react with a thiosulfinate to form 

trisulfane. From the sulfur compounds found in the oil, it can be concluded that by heating 

in water, 1-propenyl sulfenic acid follows reaction pathway I in Figure 3. Raw onion juice 

has a ‘fresh onion’ aroma and contains rather different classes of sulfur compounds; 

disulfanes and trisulfanes are not the major components in the thiol enriched extract of 

the juice. The major sulfur compounds found in onion juice can be classified in groups: 

free thiols, thiohemiacetals and aldol condensation products. Figure 3 proposes a potential 

pathway for their formation. From the sulfur compounds found by analysis of the juice, 

it can be concluded that in the absence of a boiling step in water, 1-propenyl sulfenic acid 

follows reaction pathway II in Figure 3. 
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Figure 3: Proposed pathways of 1-propenyl sulfenic acid for the formation of the thiol compounds in onion oil 

(I) and in fresh onion juice (II) 
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Abstract 

Aroma quality of apple juice from concentrate depends on an appropriate 

rearomatisation. Nevertheless, until now, available concepts to analytically evaluate the 

aroma quality of apple juices are non-satisfying. Most concepts focused only on the 

concentration of esters to rate the aroma quality. However, without consideration of the 

different odour thresholds of the esters no successful results were obtained. To address 

this challenge, odour-active compounds were characterized in apple juices by means of 

the Sensomics concept including gas chromatography-olfactometry and GC×GC-

MS(TOF) and a set of 16 esters was selected for quantitation. The concentrations and 

OAVs of these esters were determined in 23 defined apple juices using a fast, 

multicomponent stable isotope dilution assay (SIDA), based on headspace-solid phase 

micro extraction (HS-SPME) in combination with GC×GC-MS(TOF). Thus, for each 

ester limits in terms of OAV ranges were determined representing a correct re-

aromatisation and a good aroma quality of apple juice. The new method enabled a high 

and fast throughput of samples due to the absence of any sample work-up.  

Introduction 

Beside orange, multivitamin, and grape juices, apple juice is one of the most 

favoured juices in Germany [1]. About 700 million litres of apple juice are consumed per 

year in Germany. However, its consumption dropped from more than 12 litres in 2005 to 

8 litres per person and year in 2010. Beside juice not from concentrate (NFC), mainly 

juice from concentrate (FC) is produced. For its manufacturing, the fresh juice is 

concentrated, while recovering the valuable apple aroma. After storage and/or 

transportation, the reconstitution of the juice concentrate, the apple aroma and water takes 

place, followed by a pasteurisation step. However, thermal stress and an inappropriate re-

aromatisation may affect the aroma quality. This has also been criticised by consumer 

protection organisations [2]. However, until now, there is no appropriate concept 

available to evaluate the aroma quality respectively an adequate re-aromatisation of apple 

juices by means of analytical parameters. 

Esters are known as important odorants in apple juice. Former proposed concepts 

(sum of esters, aroma index) included the concentration of esters to rate the aroma quality 

of apple juices, but these concepts did not consider the (big) difference in odour thresholds 

of individual odorants. To evaluate the aroma of apple juice not only the amount of an 

aroma compound is important, the potential (odour threshold) of an odorant has to be 

regarded, as well. For example, while hexyl acetate has an odour threshold of 15 µg/L 

(water), ethyl 2-methylbutanoate has a threshold of 0.013 µg/L. This is the reason why, 

when considering the sensory potential, of the 72 esters already found in apple juices, 
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only a few (~7) are sensory relevant [3-6], because not all esters reach or exceed their 

individual odour threshold. 

The aim of the study was to develop a reliable and fast, multicomponent quantitation 

method, taking the sensory potential of single esters into consideration for the evaluation 

of the aroma quality of apple juices.  

Experimental 

Materials 

23 apple juices (freshly pressed, NFC, and FC) and in cased of FC, correctly re-

aromatized, were obtained from defined processes directly provided by the 

manufacturers. The apples were from different varieties (not known) from South Tyrol, 

Germany, and Poland and harvested in the years 2010 to 2013. In addition, 17 

commercially available apple juices of different origin and appearance were purchased 

form several supermarkets: 10 from Germany, 2 from United Kingdom, and 1 each from 

Poland, Hungary, France, Belgium, and Netherlands. Among them 4 cloudy NFC juices, 

1 clear NFC juice, 2 cloudy FC juices, and 10 clear FC juices. 

Hedonic, ranking order 

Hedonic evaluation was performed using an incomplete balanced block plan with 18 

tests and 4 juices per test. 40 panellists were asked to rank the juices on a scale from  

1 (most wanted) to 4 (most unwanted).  

Screening for esters 

For the screening of esters volatiles were extracted with dichloromethane, distilled 

in high vacuum (SAFE) at 40 °C, concentrated, and analysed by GC-olfactometry (GC/O) 

on a GC 8000 (Fisons Instruments, Mainz, Germany). After the separation on an FFAP 

column (30 m×0.25 mm, 0.25 µm film thickness, J&W, Köln) using the following 

temperatures: 40 °C (2 min), 6 °C/min, 190 °C (0 min), 12 °C/min, 230 °C (5 min) the 

effluent was split 1:1 via an Y-splitter and transferred to an FID and a sniffing port.  

Quantitation of esters 

For the quantitation of the esters, stable isotope dilution assays (SIDA) were applied. 

Measurements were done by HS-SPME/GC×GC-MS(TOF) analysis on a Pegasus 4D 

instrument (Leco, St. Joseph, MI) consisting of a 7890A GC (Agilent), a dual-stage quad-

jet thermal modulator and a secondary oven coupled to the mass spectrometer. Apple 

juice samples (0.5 mL) and stable isotope internal standards were mixed in a SPME vial 

(20 mL), equilibrated for 30 min and afterwards, the enrichment of the esters was done 

by exposing a Stable Flex fibre (65 µm, PDMS/DVB, Supelco, Sigma-Aldrich, 

Taufkirchen) for 30 min at 40 °C in the headspace of the sample. Desorption was 

performed in the GC Multimode inlet system at 250 °C. In the first dimension an FFAP 

column (30 m×0.25 mm, 0.25 µm film thickness, J&W, Köln) was installed running the 

following temperatures: 40 °C (3 min), 6 °C/min, 230 °C (7 min). In the second 

dimension a VF-5 column (1.5 m×0.15 mm, 0.30 µm film thickness, Agilent, Böblingen) 

was installed running the following temperature program: 80 °C (3 min), 6 °C/min, 

250 °C (10 min). 
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Results and discussion 

Screening for esters and additive effects 

First, aroma-active esters in the solvent extract of an NFC apple juice were screened 

by GC/O to detect esters in trace amounts but with a high aroma potential. In addition, 

less odour-active esters were identified by GC×GC/MS(TOF). In total 29 esters were 

found whereof 17, with low odour thresholds and/or present in huge amounts, were 

selected for quantitation. These compounds were quantitated in the NFC apple juice by 

HS-SPME/GC×GC/MS(TOF) using stable isotope dilution assays. Finally, odour activity 

values (OAV, ratio of the concentration of an odorant to its odour threshold) were 

calculated (Table 1). 

Table 1: Odour activity values of 17 esters in NFC apple juice  

No. Compound/variety Odour activity value (OAV)* 

1 ethyl 2-methylbutanoate 1700 

2 ethyl butanoate 100 

3 2-ethylbutyl acetate 64 

4 methyl 2-methylbutanoate 27 

5 ethyl 2-methylpropanoate 20 

6 hexyl acetate 11 

7 butyl acetate     9.6 

8 propyl 2-methylbutanoate     4.4 

9 ethyl hexanoate     3.7 

10 ethyl propanoate     1.9 

11 pentyl acetate         < 1 (0.77) 

12 2-methylpropyl acetate         < 1 (0.31) 

13 butyl 2-methylbutanoate         < 1 (0.17) 

14 butyl butanoate         < 1 (0.09) 

15 hexyl 2-methylbutanoate         < 1 (0.07) 

16 hexyl butanoate         < 1 (0.03) 

17 butyl propanoate         < 1 (0.03) 
* Ratio of the concentration of an odorant to its odour threshold. 

The calculation of OAVs served as basis for the investigation of additive effects of 

esters in sensory tests. For this purpose, a mixture of all esters (no. 1-17) was compared 

in a triangle test to a mixture of esters containing only esters with an OAV ≥ 1 (no. 1-10). 

The sensory evaluation clearly showed that the esters with OAVs < 1 did not contribute 

to the overall aroma. Due to this fact, further investigations were done with ethyl 2-

methylbutanoate, ethyl butanoate, 2-methylbutyl acetate, ethyl 2-methylpropanoate, 

methyl 2-methylbutanoate, butyl acetate, propyl 2-methylbutanoate, hexyl acetate, ethyl 

propanoate, and ethyl hexanoate (ester no. 1 to 10).  

Determination of OAV ranges and application to commercial juices 

Esters 1 to 10 were quantitated in all 23 defined juice samples (freshly pressed, NFC, 

and FC) and OAV were calculated. Thus, OAV ranges for a well-balanced apple juice 

aroma were established (Table 2).  

These OAV ranges were applied to 17 commercially available apples juices. A 

sensory trained panel ranked these juices concerning their hedonic preference. In 

addition, esters 1 to 10 were quantitated and OAVs were calculated. The OAVs of the 

(significantly) most appreciated (best) and the most unpopular (worst) juice were applied 
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to the established OAV ranges and highlighted a clear trend: while all OAVs were within 

these OAV ranges for the best, only the OAVs of 2-methylbutyl acetate and hexyl acetate 

were within its range for the most unpopular juice (Table 2). 

Table 2: OAV Ranges of 10 Selected Esters and OAVs of Juice 6 and 13  

Compound/variety OAV range  ⃰ OAV best juice OAV worst juice 

ethyl 2-methylbutanoate 900 – 12000 12000 280 

ethyl butanoate 55 – 390 270 17 

2-methylbutyl acetate 11 – 110 31 11 

ethyl 2-methylpropanoate 8 – 110 95 3 

methyl 2-methylbutanoate 12 – 80 75 3 

butyl acetate 5 – 45 10 4 

propyl 2-methylbutanoate 4 – 37 23 < 1 

hexyl acetate 1 – 26 4 2 

ethyl propanoate 1 – 12 11 < 1  

ethyl hexanoate 1 – 11 4 < 1 
* Values resulted from the investigation of 23 sensory proper juices (freshly pressed, NFC, FC) from defined 

processes directly provided by different apple juice manufacturers. 

The results of these investigations showed that OAV ranges of only 10 aroma-active 

esters may serve as markers for the fruity aroma quality of apple juices. Using HS-

SPME/GC×GC/MS a suitable method was established for the simultaneous quantitation 

of all esters of interest. By considering the aroma perception of a sensory panel 

(consumer) and the analysis of the aroma quality of apple juices, expressed in OAV 

ranges, the production and also a correct re-aromatisation of apple juices can be lifted to 

a reliable basis. 
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Abstract 

GC-Olfactometry is a valuable methodology commonly used to investigate odor 

active compounds in complex food aroma profiles. Considering the number of studies 

using this technique, little is done to improve olfactometric data acquisition although it is 

essential for quality results. Efforts were mainly done to automate recording of moments 

of perception but intensity and description of perception are still often communicated 

orally, which disrupts the judge’s breathing rhythm during analysis. Solutions that 

integrate all recording parameters result in a multiple steps acquisition procedure, 

scarcely compatible with the transience of the perceptions evaluated during olfactometry. 

The objective of this work was to develop a new olfactometric software that include 

olfactometric data acquisition and processing capabilities. The WheelOscent software 

was designed to improve the users’ task and overcome constraints and bias of existing 

systems. More specifically the software, coded with Java technologies, implements 

innovative components:  

 a data acquisition interface based on intuitive aroma wheels, adaptable to 

each product studied, which enables judges to characterize all parameters 

related to odors perceived in a simple and intuitive move, 

 a data store, for collected data, 

 a data analysis interface, which provides easy and direct analysis of data 

displayed into interactive and graphical visualization. 

Providing good usability, this software enables a precise characterization that allows 

to point out special features of products even with close and complicated aroma profiles. 

This disposal is now used for wine analysis, where judges take advantage of the wheel 

aroma presentation, currently used for wine sensory characterization. 

Introduction 

GC-Olfactometry is a valuable methodology commonly used to investigate odor 

active compounds in the aroma of food products. Considering the number of studies using 

this technique, small number of papers deals with the improvement of olfactometric data 

acquisition although it is essential for the quality of the results. Despite many drawbacks, 

some olfactometric studies are still conducted with an oral transmission of judges’ 

sensory impressions. This practice leads to perturbation of breathing rhythm, breakdown 

of sensorial perceptions and complicates the recording of the judge’s perception. Besides, 

it mobilizes an operator to capture judges’ comments and restricts olfactometry sessions 

to a single judge. To avoid these bias, instrumental devices were developed to automate 

the acquisition of judges’ perceptions. A pushing button was first employed to record 

time and duration of odor events and finger-span system was developed to record the 

intensity perceived by using the distance between the thumb and the major finger of the 

judge to represent the odor intensity score. [1,2] However, when recorded, descriptors 
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were independently captured. Tape and digital recorders could be used to overcome the 

presence of an operator and devices can merge vocal information into numerical data 

through a voice recognition system, but these appliances don’t prevent perturbations 

associated with speaking. Besides, when descriptors are freely chosen by judges, a 

consensus can be complicated to obtain for a same odor event. Even if training of judges 

strongly reduces these difficulties linked to individualities, this lack of consensus can 

persist due to the difficulty for human brain to link the olfactory and semantic memories 

and thus, to clearly associate a word to an odor. [3] To come through this problem, an 

acquisition software proposed to constrain judges to first choose an odor category and 

then a more precise term. [4] Despite the intuitiveness of this software using pictures, the 

odor description is made in several steps which delayed data recording and could fail to 

characterize closely eluted odorants. Currently, and according to literature, there was no 

device that, all at once, prevents judges from speaking, enables to record simultaneously 

all odor event parameters, and permits data processing.  

The objective of this work was to introduce an innovative olfactometric software 

based on an intuitive wheel interface that allows a simultaneous and automatic recording 

of moment, duration, intensity and description of the perceived sensations (patented). 

[5,6] This approach was conceived to respect the breathing rhythm and the continuity of 

sensorial judge’s perceptions while offering direct data processing possibilities. This 

original integrative system named WheelOscent is herein presented through a wine aroma 

analysis. 

Experimental 

Material 

The wine used for the study was a red wine, 13% alcohol, from appellation 

Bourgueil, elaborated in 2010 from a Cabernet Franc vineyard. Chemical standards and 

n-alkanes were purchased from Sigma Aldrich (St Quentin Fallavier, France) with purity 

> 97%.  

Wine aroma extraction and chromatographic conditions 

Volatiles from a 5 mL sample of wine were extracted by solid phase micro-extraction 

with a Car/PDMS fiber (10mm length, 85μm film thickness; Supelco, Bellefonte, PA, 

USA) placed in the headspace of the vial for 10 minutes at 34°C after 1 hour of 

incubation. The fiber was then directly introduced into the injection port of the gas 

chromatograph (T=260 °C). Besides the analyses of the samples, a solution of C5 to C32 

n-alkanes was injected under the same chromatographic conditions. Analyses were 

carried out with a gas chromatograph (GC 7890A, Agilent Wilmington, DE, USA) 

equipped with a DB-Wax column (Agilent, 30m length, 0.25mm internal diameter, 0.5µm 

film thickness). Hydrogen was used as the carrier gas and the oven temperature was 

programmed as follows: 50°C (0min) to 80 °C at 5 °C·min−1, then 80 to 200 °C at 10 

°C·min-1, and 200°C to 240 °C (4min) at 20 °C·min−1. GC was coupled to a mass 

spectrometer (MS 5975, electron impact mode 70 eV, scan m/z 33-300, 2.7 scan.s-1, 

Agilent) and a dual olfactometric port (transfer line T= 200°C, Gerstel ODP 3, Mülheim 

an der Ruhr, Germany). The olfactometric ports were equipped with nose glass funnels 

and supplied with humidified air to prevent dehydration of the nasal mucosa. 

Olfactometric analysis 

The eluate was analyzed by 8 judges throughout successive runs. Judges were trained 

to aroma recognition and the use of an intensity scale. Judges’ perceptions (time, intensity 
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and description) were recorded in real time via the WheelOscent software coded with 

Java technologies, described above (Figure ). Descriptors were presented on a dedicated 

aroma wheel especially designed for wine aroma. The wheel is structured in 23 poles 

associated to general odor families written in capital letters. These poles can be divided 

into sections associated to more precise descriptors. 

 
Figure 1: Schematic functioning of the WheelOscent olfactometric software presenting the aroma wheel 
interface (patent pending) [5,6] 

Colors were also associated to poles to help the judges to rapidly find terms 

corresponding to the perceived odors. During the GC-Olfactometric run, judges were 

asked to signal the perception of an odor by directing the mouse pointer outside the central 

zone and then to direct it to the section of the wheel corresponding to the adequate odor 

term. They were also asked to score the intensity of the odor by clicking on the 0-10 

intensity scale represented by the radius of the wheel (center of the wheel= 0, edge of the 

wheel=10). When an odor was no longer perceived, judges were asked to direct the 

pointer of the mouse back to the center of the wheel. Judges were encouraged to describe 

each odor perceived using terms proposed on the wheel. If the odor perceived did not 

correspond to any descriptor, judges were invited to describe the odor by the name of the 

pole corresponding to the general odor family or failing that, by the “Unknown” or 

“Other” sections.  

Results and discussion 

The results are displayed directly from the software. Concatenated aromagrams can 

be obtained presenting either the number of detections or the mean intensity of odors 

perceived vs retention time or linear retention index (LRI, Figure). For the investigated 

wine, 33 odorant zones were perceived by at least 3 judges. Individual aromagrams are 

also available for each judge with their associated descriptors. Moreover, a table of results 

that summarize the recorded data for each odorant zone is accessible from the software. 

Identification of odorants was performed by comparing their LRI and mass spectra 

to those of databases (Wiley, Nist and internal databases) and by injection of standard 

compounds. Descriptors given for each detected compound were also compared with 

those found in the literature. Identification of compounds associated to each odorant zone 

and LRI is systematically recorded in the software database, so that a list of plausible 
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odorants with related descriptors is available for exploration of later samples.  

 
Figure 2: Individual and concatenated aromagrams directly obtained from the wheelOscent software after the 

GCO analysis of the investigated wine  

As proved by the excerpt of the table of results obtained after the analysis of the wine 

sample (Table ), this tool enables to clearly discriminate odorants closely eluted like the 

2-ethyl-2-methylpropanoate (4,82min) and the 2,3-butanedione (4,94 min). 

Table 1: Excerpt of the table of results obtained from the software after olfactometric analysis of the wine 

LRI 

apex 

Retention 

time 

Start 

time 

End 

time 
Judge1 Judge2 Judge3 Judge4 Judge5 Judge5 Judge6 Judge7 Judge8 

940 4,40 4,37 4,45 CHIMIQUE alcool CHIMIQUE   CHIMIQUE LACTONE   

970 4,82 4,78 4,92 FRUITE amylique FRUITE  
VANILLE, 

DOUX 

fruits 

rouges 
amylique amylique  

978 4,94 4,92 5,18 INCONNU beurre caramel beurre beurre beurre amylique beurre  

1018 5,57 5,52 5,62 INCONNU alcool INCONNU 
VEGETAL 

VERT 
 CHIMIQUE  caramel  

As expected, this software allows a rapid, precise and efficient recording of GC-

Olfactometric data, associated with an excellent usability for judges through the intuitive 

aroma wheel interface. This approach solves bias found in current GC-O data acquisition 

methods and notably disruption of breathing rhythm inherent to the oral transmission of 

judges’ perceptions. It provides a complete characterization of odor events, and includes 

data treatment capabilities. The accuracy of the approach makes it a valuable tool to shed 

light from whatever complex aroma product or compare those with very close aroma 

profile and point out their significant characteristics. Besides, the wheel presentation of 

descriptors, consistent with those found in numerous sensory analysis, can facilitate 

chemometric approaches that attempt to understand the contribution of compounds to a 

global aroma. 
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Abstract  

Sensomics is a stepwise approach for determining the compounds responsible for 

food odour. In this work, meta-analysis was carried out on a selection of sensomics 

publications and previously unpublished research, identifying two steps with scope for 

improvement. Firstly, it was found that Flavour Dilution (FD) factors, as calculated for 

odourants using Gas Chromatography – Olfactometry (GC-O), are very poor predictors 

of an odorants’ Odour Activity Value (OAV). FD factors are used to prioritize odorants 

for quantitation and, following this work, it is recommended that all odorants are 

quantitated, regardless of FD factor, or other measures are considered in odorant 

prioritization. Secondly, from the statistical information available, it was found that 

Flavor Profiling®, used to compare the odour simulation to original material (OM), is able 

to test for significant difference in specific odour attributes but not overall odour.  It is 

therefore recommended that simulations are assessed by additional methods such as 

Napping®. All sensory methods should be powered to meet the criteria of the statistical 

testing to be performed. 

Introduction 

Sensomics is an accepted approach to identify the key odorants in food with more 

than 100 publications determining odorants in over 200 different foods [1]. Sensomics is 

an established technique, however there is limited literature available for its validation. 

The sensomics approach to odour analysis is stepwise, combining: (1) The bioactivity 

guided detection of key odorants using GC-O, where the method of Aroma Extract 

Dilution Analysis generates FD factors, which are used to prioritise odorants for 

quantitation. (2) Accurate quantitation, which is used to calculate an odorants’ Odour 

Activity Value (OAV), the ratio of the concentration of an odorant in the food and its 

odour detection threshold in a suitable matrix. OAV is assumed to relate to an odorants’ 

overall importance in a food. (3) Accurate reconstitution, using odorants with OAV > 1, 

to create an odour simulation. This simulation is then validated by comparison to the 

original material (OM) using the human sensory method of Flavour Profiling®. (4) 

Sensory omission studies to reduce the simulation to the smallest number of odorants. 

There is a wealth of literature validating methods for the quantitation of odorants [2] 

and odour detection thresholds [3]. There are previous publications on the applicability 

of sensory omission studies [4]. However, there is limited information on the ability of 

FD factors to determine and prioritise importance of odorants and the ability of Flavour 

Profiling® to validate odour simulations. Here, a meta-analysis is conducted on results 

from a sample of sensomics publications focusing on the prediction of an odorant’s OAV 

from the FD factor, and the use of Flavour Profiling® to compare odour simulations to the 

OM. 

Experimental 

Meta-analysis was conducted on a selection of sensomics publications [5-19]. 

Covering a period from 1993 to 2017, the selection included analysis of fish, meat, coffee, 
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nuts and fruit, using the sample preparation techniques of Solvent Assisted Flavour 

Evaporation, High Vacuum Distillation and Static Headspace. For each publication the 

odorant data was tabulated with other available information on the odorant and food 

product [20-22]. Statistical analysis was carried out using R version 3.3.3 and the ranger 

library. 

Two statistical modelling methods were used to assess the ability of FD factors to 

predict OAV. The first was a simple linear model with OAV as response and FD factor 

as fixed effect, both on the log10 scale. The second was a random forest approach, with 

200 trees and 4 variables selected per tree. Additional predictors (variables) were used for 

the random forest model, including odorants’ vapour pressure (VP), air/water partition 

coefficient (Kaw) and odour detection threshold. The models were fitted to 70% of the 

data. The remaining data was then predicted, and used to calculate root mean square error 

(RMSE), as a measure of fit. Within the reviewed publications there was little statistical 

information (e.g. variance) available for the comparison of the odour simulation to the 

OM. Therefore, the data used to first assess Flavour Profiling® and then investigate an 

alternative approach, Napping®, is from unpublished work on liver and tuna. 

Results and discussion 

Results for the prediction of OAV from FD factor using a simple linear model are 

displayed in Fig. 1A. The figure shows that prediction of OAV from FD factor alone is 

very poor, RMSE 1.14. It is therefore recommended that FD factors alone are not used to 

select or prioritise odorants for quantitation. Previous publications have noted that there 

are differences between FD factors and OAVs. The reasoning was two-fold. Firstly, that 

FD factors are not corrected for losses in sample preparation [23]. Secondly, that in GC-

O the whole aroma extract is vaporised, whereas OAVs are calculated using odour 

thresholds in a matrix, i.e. considering only the amount of an odorant in the headspace. 

The example given is that polar compounds are often overestimated by AEDA, because 

they are quite soluble in water, and thus their vapour pressure is comparatively low [11]. 

  

Figure 1: A, left, prediction of OAV from FD factor alone, using a simple linear model. B, right, prediction of 

OAV from FD factor along with additional measures 

Results for the prediction of OAV from FD factor and additional variables, using the 

machine learning model, is shown in Fig. 1B. The figure shows a great improvement in 

prediction, RMSE 0.58, showing that by incorporating other variables odorants can be 

selected or prioritised for quantitation. The variables that have highest importance in the 



 

 

Scope for improvement in the sensomics approach 497 

model are displayed in Table 1. Additional variables with their importance were: the 

amount of water (19.7), protein (15.8), fat (14.8) in the food matrix; the physical chemical 

constants, VP (23.0), LogP (14.1), exact mass (12.1); Linear Retention Index (LRI) on a 

standard non-polar column (21.0); the percentage abundance of the odorant in studied 

food (12.8) as defined by Dunkel et al [1]; FD factor (23.3). The results show that within 

the model, FD factor is not the best predictor of OAV, even when normalised by taking 

into account the amount of food used for sample preparation. In fact, LRI on a normal 

polar column is the best single predictor of OAV. A possible explanation is that LRI is a 

good correlator of odour release from foods. Whereas, VP and Kaw are calculated within 

systems at equilibria, LRI is calculated within a dynamic system, as is odour release. GC-

O can identify odorants, but multiple additional measures are required to predict an 

odorant’s importance. 

Table 1: Highest importance score of variables used with the machine learnt random forest model. 

Variable Importance  

LRI Standard Polar Column  52.3 

Kaw 39.8 

Carbohydrate (% wt.) 37.6 

Normalised FD factor (g-1) 34.17 

Odour Detection Threshold (mg /L ) 33.05 

LRI Semi-Standard Non-Polar Column 24.57 

In the absence of statistical data from published work using Flavour Profiling®, the 

data reviewed is from previously unpublished work on liver (Fig. 2a). In statistical testing, 

by analysis of variance (ANOVA), there was no significant difference between simulation 

and OM for each odour attribute. Power analysis of the data showed that, for each 

attribute, a difference of 0.5 would be detected 80% of the time (if present), at a 

significance level of 5% with 25 assessors. The results therefore show that Flavour 

Profiling® is able to test odour attribute differences of 0.5 between the simulation and 

OM. Within Flavour Profiling® this is equivalent to half way between a moderate to 

strong odour attribute. But what about differences in overall odour? Using a sensory 

discrimination test, Triangle testing, a significant difference in overall odour was 

observed (p<0.01) with 60 participants. In sensomics publications simulations are 

described as characteristic (and not similar) to the overall odour of the OM. Indeed, a 

previous review commented that there are difficulties in producing flavour simulations 

for solid foods as it is not possible to recreate the composition and distribution on the 

non-volatiles components in a suitable odourless matrix [23]. In effect, the simulation 

matrix causes a difference. Since Flavour Profiling® does not assess overall odour the 

assessment of the overall odour of a canned skipjack tuna odour simulation was carried 

out by the human sensory method of Napping®. The odour simulation was compared to 

the OM (Skipjack 1) and other tuna samples of different species (Albacore), manufacturer 

(Skipjack 2) and samples that had been opened and left in a fridge for 24 h (Aged). The 

results show that the overall odour of the simulation clusters with tuna samples from the 

same manufacturer and tuna species. The overall odour is characteristic of a specific 

manufacturer’s canned skipjack tuna product. However, the overall odour is not similar 

as Triangle testing showed a significant difference (p<0.01). In addition to the previous 

explanation on why simulations are not similar, the Napping® shows that the overall 

odour of canned tuna changes over time from opening. Food does not have a constant 
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stable odour. Reviewing the results, it is recommended that for odour simulation 

assessment Flavour Profiling®, with additional methods such as Napping®, are used. All 

sensory methods should be powered to meet the criteria of the statistical testing to be 

performed. 

  

Figure 2: A, left, radar plot showing Flavour Profiling® comparison of odour attributes for liver (black) to liver 

odour simulation (grey). Solid line represent mean, dashed lines 95% confidence limits, n = 20, p-value from 

testing significant difference between each odour attribute for liver and liver odour simulation. B, right, PCA 
of Napping® result for the comparison of a canned skipjack tuna odour simulation to skipjack tuna from different 

manufacturer and species (albacore). All tuna samples were analysed freshly opened and after aging in a fridge 

for 24 hours. n= 10, ellipsoids represent 95% confidence intervals, line style represents clustering determined 
by hierarchical cluster analysis: solid black cluster 1, dotted grey cluster 2, dashed cluster 3. 
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Abstract 

Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy is 

a rapid and non-destructive technique that provides an overall infrared fingerprint of a 

matrix and/or sample. It can prevent time consuming analysis for monitoring changes in 

an aroma profile and/or aroma compounds transfer (1).  

In this study, clove essential oil (EO), previously identified by GC-MS, was 

encapsulated into an organic solid matrix mainly composed of proteins and 

polysaccharides. The controlled release of major aroma compounds of the essential oil 

was followed using a FT-IR method and compared to conventional gas chromatography 

methodology. The quantification by FTIR was performed after a calibration procedure 

carried out by depositing pure clove oil and its major components at different 

concentrations on a constant mass of matrix without essential oil. Several Partial Least 

Squares (PLS) regression calibration models were optimized on the specific bands of 

aroma compounds to determine the best correlation (R2>0.90) between the predicted and 

reference values of clove essential oil major compounds. The limit of detection (LOD) 

and limit of quantification (LOQ) were determined and the release of major compounds 

of clove EO proved to be similar as the results obtained using GC-FID. Such ATR-FTIR 

method can be used as an alternative rapid method for the identification and quantification 

of major aroma compounds in complex organic samples. 

Introduction 

The common method for essential oils (EOs) quantification is extraction followed 

by a gas chromatography analysis which is expensive and time consuming. Fourier 

transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy is a rapid and 

non-destructive technique which provides an overall fingerprint of a sample and can be 

considered as an interesting alternative way for the rapid quantification of EOs or 

monitoring their evolution in a complex medium (1). ATR-FTIR has already been 

successfully used for EOs characterization but to our knowledge there are no previous 

investigations that have been conducted on the quantification of EO encapsulated in an 

organic complex matrix. Indeed, the presence of complex matrices can compromise the 

analysis by affecting the sensitivity and the specificity of method due to spectra 

superposition of the targeted compounds with the matrix fingerprint. 

The aim of this study was to assess the potential of ATR-FTIR method applying a 

partial least square (PLS) model and a cross validation with a GC quantitative analysis to 

monitor the release of clove EO encapsulated in a complex matrix. 
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Experimental 

Matrices elaboration and GC-MS analysis of Clove EO 

An organic powder with high content in polysaccharides and proteins was mixed 

with distilled water and clove EO (Golgemma, Esperza, France). The mixture was 

processed and dried at a low temperature to obtain a matrix with the ability to retain and 

release aroma compounds. Clove EO was characterized by a GC-MS (ISQ, 

ThermoScientific, Austin, Texas, USA) equipped with a DB-WAX polar capillary 

column (30 m, 0.25 mm i.d. x 0.25 µm of thickness). Helium was used as carrier gas with 

a flow rate of 1.2 ml/min. The GC-MS oven temperature was kept at 40 °C for 5 min and 

programed to 260 °C at a rate of 2 °C/min. One µL of diluted sample (dilution 1/100) was 

injected at constant temperature of 250 °C via split injector (1:20). Spectra were obtained 

in the electron impact mode (70ev) in full scan mode with a range between 40-500 amu. 

Identification of components was based on the calculated Kovats indexes estimated by 

simultaneous injection of alkanes and comparison of spectra with mass spectra libraries 

(NIST 2.0/Wiley/INRA). Quantification of the identified compounds was expressed as 

percentage by directly calculating from peak areas. 

ATR-FTIR method 

A FTIR Nicolet 6700 spectrometer (Thermo Scientific) in Attenuated Resonance 

mode has been used. Clove EO major aroma compounds used as standards were 

purchased from Sigma-Aldrich and analyzed directly by deposing around 13 mg of aroma 

compound over the diamond crystal of a Smart DuraSamplIR accessory (Thermo 

Scientific). Spectral data were recorded from 64 scans with a resolution of 2 cm-1 in the 

range of 800-4000 cm-1 wavenumbers.  

For establishment of standard curves, organic matrices free of clove EO were 

elaborated. Different known amounts of clove essential oil were deposited into the several 

matrices by using a precision pipette and stored in closed glass jars at room temperature 

until analysis. The matrices were grinded using a laboratory mortar and analyzed directly 

by the ATR-FTIR spectrometer. In parallel, the EO was extracted from the matrix (18h 

at constant stir and room temperature) using hexane in the presence of 100 µL of 2-

heptanol at 3 g/L as internal standard. The organic extracts were analyzed and the major 

components previously identified using standard components were quantified by a GC-

FID (Varian CP-3800 GC, Les Ulis, France). 

Controlled release of EO from matrices and validation of FTIR method 

The organic matrices loaded with clove EO were put into a Memmert oven HPP IPP 

plus (Buchenbach, Germany) maintained at controlled temperature of 25 °C and relative 

humidity at 72 % during a period of 34 days. At interval times, samples were removed 

and analyzed by the ATR-FTIR method and the GC-FID method for comparison purpose. 

Chemometric analysis  

Spectra treatments were performed using Omnic v7.3 and TQ Analyst v7.3 softwares 

(Thermo electron). The most prominent spectral band specific of clove EO was selected 

for the PLS analysis. Calibration models were validated by a cross validation (leaving 

40% out) using a regression PLS calibration algorithm. Limit of detection (LOD) and 

limit of quantification (LOD) was calculated with the guidelines of the International 

Conference on Harmonisation (ICH) (2). 
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Results and discussion 

Essential oil characterization 

The major components of clove essential oil and their relative proportion were 

identified by GC-MS. Eugenol represents 62.52 % ± 0.35 of total oil, acetyleugenol 23.62 

% ± 0.42, β-caryophyllene 9.77 % ± 0.18, α-caryophyllene 1.39% ± 0.02, caryophyllene 

oxide 0.98% ± 0.01, methyl salicylate 0.91% ± 0.014 and allylphenol 0.47% ± 0.01. These 

components are the most outstanding major compounds in the EO composition as 

generally described in literature (3).  

ATR-FTIR method.  

First, the FTIR spectral bands of clove EO were compared with the spectra of an 

uncharged matrix. As no overlapping with the pure matrix spectra are observed for the 

ranges of the spectra from the 1250 to 1600 cm-1 wavenumbers, a band was selected in 

this region allowing a good sensitivity of the analysis. For quantification, the 1514 cm-1 

stretching aromatic C=C vibration (4) was preferentially selected. This band was found 

for three of the clove EO major compounds (eugenol, acetyleugenol and 4-allyphenol) 

according to the aroma compounds characterization by ATR-FTIR. These 3 phenolic 

compounds represent 86% of the essential oil, which explains the proportional increase 

of the 1514 cm-1 peak to 5 concentrations included in the standard curve (Figure 1). This 

stretching band was chosen to elaborate the PLS regression, a normalization was carried 

out according to the peak height of CH2 stretching band at 2853 cm-1 that corresponds to 

the organic pure matrix.  

 
Figure 1: Increase of the spectroscopic selected band (1514 cm-1) proportionally to concentration. 

Quantitative analysis of trapped EO by ATR-FTIR. 

For the development of the quantification model, averaged spectra issued from 35 

samples were correlated with a GC-FID standard curve for which average values were 

obtained from 5 samples (Figure 2). Although the different amounts of analyzed samples 

between the two methods (13 mg of matrix for ATR against 300 mg for GC) the 

correlation between the ATR-FTIR and GC-FID analysis was satisfactory since PLS 

regression model produced a high coefficient of determination (R2) and RMSECV and 

RMSEP values were 0.0120 and 0.0162 g/g respectively, indicating that the residuals of 

the calibration data are low and the model gives a good estimation on how it built the data 

for unknown samples. LOD (0.003 g of clove EO/g matrix) and LOQ (0.010 g of clove 
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EO/g matrix) were determined by multiplying the standard deviation measured on 15 

blank samples by 3 and 10 times respectively, and dividing the result value by the slope 

of the ATR-FTIR standard curve.  

Controlled release of EO from matrices and validation of the ATR-FTIR method 

The release of clove EO at controlled relative humidity and temperature was 

followed both GC-FID and ATR-FTIR methods. It was found that the chemometric 

method could be applied to predict the release of major compounds of clove essential oil, 

including eugenol, acetyl eugenol and 4-allylphenol. The fact that the quantification does 

not cover the totality of the compounds and that small changes in aromatic profile 

occurred as observed by GC analysis could result from variability within samples. 

 

 

Figure 2: Results of PLS cross validation essay: ●PLS calculated value, ○ PLS validated value, ▲ GC-FID 

validation. 

The proposed ATR-FTIR protocol demonstrated to be a reliable and robust 

quantitative method compared to the GC despite the complexity of the organic matrix 

studied. The ATR-FTIR method can be used to survey the release of the selected aroma 

compounds of essential oils trapped in an organic matrix or study the influence of specific 

external factors over the matrix. 
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Abstract  

The typical flavour characteristics of cocoa are related to the cocoa bean genotype 

and the growing environmental conditions. However, the flavour does not exist in freshly 

harvested beans. Flavour is generated by a series of procedures that begins with 

occasional pod storage (PS) after harvesting, followed by fermentation of the beans, and 

roasting. PS implies storing harvested cocoa pods for a period of time before opening. 

The effect of PS is believed to be beneficial for the subsequent development of cocoa 

flavour in the cocoa beans [1]. During roasting, several volatile heterocyclic compounds 

are formed, among them alkylpyrazines. These newly formed compounds are considered 

to be key odour components. Among alkylpyrazines, tetramethylpyrazine and 

trimethylpyrazine, are the most abundant ones. Other alkylpyrazines with different sub-

stituents also contribute to the aroma profile. Hence, monitoring pyrazines can be helpful 

in optimizing roasting conditions of cocoa beans for attaining the desired aroma of the 

cocoa liquors. In several studies, cocoa volatiles have been measured using gas 

chromatography mass spectrometry (GC-MS), frequently using headspace solid-phase 

microextraction (HS-SPME) to concentrate the volatiles. 

The purpose of this study was to investigate the effect of PS (0, 3, 7 days PS) and 

roasting temperature (100°C, 120°C, 140°C and 160°C) on the formation of alkylpyra-

zines in Ghanaian cocoa liquors. HS-SPME extraction of the alkylpyrazines was carried 

out with a DVB/CAR/PDMS fibre. The identified compounds were measured semi-

quantitatively and the results were statistically processed by multivariate analysis. In 

total, 18 different alkylpyrazines were determined. Higher roasting temperatures resulted 

in the formation of more complex alkylpyrazine profiles, compared to lower roasting 

temperatures. Moreover, an extended PS time of 7 days leads to highest formation of 

alkylpyrazines. 

Introduction 

During roasting, the typical roasty and chocolate flavours are developed and 

undesired flavours are eliminated, at least to some extent. Flavour precursors (free amino 

acids, oligopeptides and reducing sugars) participate in non-enzymatic browning 

(Maillard) reactions. An important route is the Strecker degradation, which leads to 

volatile aldehydes, pyrazines and other heterocyclic compounds. Pyrazines are the main 

class of nitrogenous heterocyclic volatiles and they are also key odour components in 

cocoa aroma. Several pyrazines contribute to the overall cocoa flavour, especially the 

alkylpyrazines with different substituents, of which tetramethylpyrazine and 

trimethylpyrazine are the most abundant ones. Roasting temperature is a critical factor 
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that influences the concentration of pyrazines. The aim of this study was to investigate 

the effect of pod storage (0, 3, 7 days of PS) of Ghanaian cocoa liquor, followed by 

roasting at 4 different temperatures (100°C, 120°C, 140°C and 160°C), on the formation 

of alkylpyrazines. 

Experimental  

Ghanaian cocoa beans from 31-year old trees (hybrid type Forastero) were obtained 

from a farm in Jachere farming community (Brong Ahafo region). The beans were 

harvested in September-October; the cocoa beans have different times of PS: 0, 3 and 7 

days. After PS, the beans were fermented for 6 days, and sun-dried for two weeks. 1 kg 

of cocoa beans was weighed and roasted in a conventional oven (Termarks, Lien 79, N-

5057 Bergen, Norway) at 100°C, 120°C, 140°C and 160°C for 35 min. After cooling to 

room temperature, the cocoa beans were wrapped in aluminium foil and stored in 

odourless buckets. Prior to sample preparation, the beans were manually deshelled. For 

grinding the de-shelled cocoa beans to liquor an ECGC-12SLTA Cocoa T melanger 

(CocoaTown, Roswell, USA) was used.  

The volatile aroma profiles were recorded using a Multi-Purpose Sampler (Gerstel, 

Mülheim an der Ruhr, Germany) equipped with a HS-SPME unit. Cocoa liquor (2 g) was 

weighed in a 20 ml vial and 0.792µg of 1-octen-3-ol was added as internal standard. 

Afterwards, the vials were sealed airtight with a magnetic cap equipped with a PTFE 

septum. Prior to extraction, each vial was heated at 60°C for 10 min for headspace 

equilibration in a thermostatic agitator. Next, the volatiles compounds were extracted for 

25 min at 60°C using a 50/30µm DVB/CAR/PDMS fiber (1 cm) (Supelco, Sigma-Aldrich 

N.V., Bornem). Volatile components were desorbed (5 min) into the splitless injector 

(250°C) of an Agilent Technologies 6890-5793 GC-MS system (Agilent Technologies, 

Santa Clara, CA, USA) and separated on a Phenomenex 30m ZB-Wax plus capillary 

column (0.25 mm i.d.; 0.25 µm film thickness). The temperature program was 5 min at 

35°C; heating at 4°C/min to 182°C and heating at 7°C/min to 240°C. Compounds were 

fragmented using electron-impact ionization (70eV), with a source temperature of 230°C, 

a scan range of 40-230 amu and a scan rate of 2s-1. After injection, each time the fiber 

was baked out for 7 min at 270°C. Components were identified based on comparison of 

mass spectra with those of spectral libraries of Wiley 7N Registry of GC Mass spectral 

Data (John Wiley, NY, USA). Additionally, confirmation of identified compounds was 

done by determination of Kovats indices (KI), determined after injection of series of n-

alkane homologues using the analytical configuration as described above. The calculated 

values were compared to KI values found in literature obtained on polar columns and are 

inserted in Table 1. 

Statistical analysis was performed using SPSS 22 (SPSS Inc., Chicago, USA). One-

way analysis of variance (ANOVA) was used to investigate any significant differences 

between the samples (significance level at 0.05). Significant differences were identified 

with the Tukey’s multiple range test. Principal Component Analysis (PCA) was 

performed (using Unscrambler 6.1., Camo, Norway) to visualize complex data matrix and 

the relationship between the different cocoa beans on their volatile composition. 

Results and discussion 

Formation of different pyrazines at different roasting temperatures 

In total, 18 different pyrazines, derived from Maillard reactions, were identified in 

the cocoa liquors. In Table 1, all semi-quantitative concentrations (ng/g liquor) of the  



 

 

 

Table 2: Semi-quantitative data (expressed as ng/g liquor) of different alkylpyrazines at 3 pod storage periods (0PS, 3PS, 7PS) as a function of roasting temperature (100°C, 

120°C, 140°C, 160°C) (data are expressed as mean values of 3 replicates ± standard deviation, A-H different letters are significantly different at a significance level of P < 0.05 

according to Tukey’s test)(n.d. not detected). 

RT Pyrazine KI KI(lit) 0PS100 0PS120 0PS140 0PS160 3PS100 3PS120 3PS140 3PS160 7PS100 7PS120 7PS140 7PS160 

15.25 methyl- 1257 1251 18.7 181.0 573.1 1259.9 51.1 287.9 629.0 1243.1 35.0 182.5 510.4 1235.8 

 pyrazine   ± 5.1D ± 9.1CD ± 69.3B ± 143.3A ± 2.6D ± 30.7C ± 55.2B ± 42.5A ± 5.9D ± 15.5CD ± 55.8B ± 136.5A 

17.34 2,5-dimethyl- 1315 1290-1358 25.9 307.6 1360.8 2486.2 58.4 450.5 1175.9 2048.4 46.8 444.9 1719.1 3681.4 

 pyrazine   ± 7.4F ± 42.4F ± 144.6DE ± 234.9B ± 12.0F ± 42.0F ± 68.7E ± 145.3BC ± 9.9F ± 73.1F ± 220.4CD ± 343.0A 

17.56 2,6-dimethyl- 1321 1296-1358 39.7 192.7 593.6 1024.9 67.6 259.5 546.3 862.3 63.7 251.4 687.0 1392.2 

 pyrazine   ± 6.2G ± 23.4EFG ± 66.7D ± 107.9B ± 4.7FG ± 22.8E ± 48.5D ± 67.7BC ± 3.5FG ± 44.5EF ± 83.6CD ± 129.6A 

17.71 ethyl- 1325 1323-1343 
n.d. 

58.1 183.6 385.7 
n.d. 

69.0 205.9 330.8 
n.d. 

55.6 156.3 376.4 

 pyrazine   ± 2.5CD ± 36.6B ± 33.8A ± 7.9C ± 31.1B ± 44.7A ± 8.3CD ± 13.8B ± 5.4A 

18.17 2,3-dimethyl- 1337 1315-1344 94.1 272.9 727.4 1194.3 123.8 226.4 379.9 539.6 237.0 546.2 1655.9 2541.4 

 pyrazine   ± 12.7F ± 16.2EF ± 84.6D ± 161.0C ± 13.2F ± 22.9EF ± 35.5EF ± 71.3DE ± 10.7EF ± 78.0DE ± 243.1B ± 231.4A 

19.56 2-ethyl-6-methyl- 1376 1381-1415 
n.d. 

204.6 678.9 1295.1 
n.d. 

125.7 427.3 735.0 
n.d. 

141.2 629.2 1320.8 

 pyrazine   ± 30.5D ± 59.8B ± 119.5A ± 11.2DE ± 31.4C ± 75.7B ± 41.0DE ± 76.7B ± 110.2A 

19.76 2-ethyl-5-methyl- 1381 1386-1453 
n.d. 

115.4 1198.1 1741.0 
n.d. 

239.7 874.1 1212.6 
n.d. 

177.7 1517.0 2337.1 

 pyrazine   ± 22.3E ± 95.0C ± 141.4B ± 86.1E ± 41.5D ± 129.5C ± 28.3E ± 219.8BC ± 191.8A 

20.34 trimethyl- 1397 1381-1413 264.7 1168.9 3658.5 5417.4 282.2 778.1 1782.1 2393.8 884.5 3039.1 9230.8 15353.8 

 pyrazine   ± 28.3G ± 90.7FG ± 329.8CD ± 389.7C ± 50.6G ± 58.8FG ± 72.9EFG ± 207.6DEF ± 28.1FG ± 329.4DE ± 1166.8B ± 1606.7A 

21.59 2,5-dimethyl-3-ethyl- 1431 1435 
n.d. 

703.2 1513.7 2478.3 
n.d. n.d. 

783.4 1062.4 
n.d. 

470.5 1503.6 3055.7 

 pyrazine   ± 240.1DE ± 152.9C ± 164.7B ± 58.3DE ± 67.2D ± 84.2E ± 232.3C ± 281.8A 

22.08 2,3-dimethyl-5-ethyl- 1445 1493 87.3 385.5 1001.1 1920.4 83.8 170.2 429.7 766.6 138.9 572.8 2095.8 4090.6 

 pyrazine   ± 16.7E ± 42.1DE ± 117.3C ± 162.8B ± 13.1E ± 3.5E ± 45.2DE ± 29.2CD ± 16.5E ± 45.4CDE ± 259.2B ± 574.0A 

22.53 tetramethyl- 1457 1438-1474 1116.8 1971.7 2467.5 2956.2 730.6 674.9 777.2 758.5 7215.8 10141.9 14325.2 18542.3 

 pyrazine   ± 94.5E ± 164.2E ± 269.7E ± 293.3E ± 74.9E ± 63.0E ± 27.8E ± 57.8E ± 131.0D ± 1097.3C ± 1970,2B ± 2260.2A 

22.81 2-methyl-6-vinyl- 1465 1521 
n.d. 

80.5 128.0 119.8 
n.d. 

96.6 101.5 81.5 
n.d. 

101.5 143.4 152.8 

 pyrazine   ± 14.9C ± 19.1ABC ± 13.1ABC ± 13.4BC ± 9.2BC ± 8.6C ± 6.7BC ± 41.6AB ± 16.9A 

23.16 3,5-diethyl-2-methyl- 1474 1524 
n.d. 

123.3 407.6 653.5 
n.d. 

55.9 144.9 221.0 
n.d. n.d. 

273.9 687.9 

 pyrazine   ± 14.7DEF ± 49.1B ± 67.9A ± 7.7EF ± 11.8DE ± 21.2CD ± 61.1C ± 99.5A 

23.78 2,3,5-trimethyl- 1491 
- 

85.4 476.9 876.9 1325.8 76.1 138.4 271.8 328.7 193.0 826.0 1950.7 3250.0 

 6-ethylpyrazine  ± 11.4E ± 22.1DE ± 106.5D ± 105.4C ± 10.5E ± 22.3E ± 9.8E ± 12.5E ± 10.6E ± 107.6D ± 271.1B ± 395.4A 

27.03 2-isoamyl-6-methyl- 1581 
- n.d. n.d. 

39.0 74.0 
n.d. n.d. 

40.6 43.9 
n.d. n.d. 

64.0 144.6 

 pyrazine  ± 5.9D ± 15.1B ± 3.0D ± 2.2CD ± 12.8BC ± 15.2A 

29.49 2-methyl-6,7-dihydro- 1648 
- n.d. n.d. 

92.2 225.9 
n.d. n.d. 

83.0 176.1 
n.d. n.d. 

196.2 518.5 

 5H-cyclopentapyrazine  ± 9.0C ± 14.6B ± 17.4C ± 35.9B ± 43.6B ± 55.5A 

29.99 2,3,5-trimethyl- 1662 
- n.d. n.d. 

33.5 60.4 
n.d. n.d. 

24.2 32.4 
n.d. 

56.2 116.2 218.9 

 6-propylpyrazine  ± 3.5CD ± 10.9C ± 6.3CD ± 6.8CD ± 5.9C ± 19.9B ± 39.5A 

31.89 
2,3-dimethyl-6,7-

dihydro 
1714 

- n.d. n.d. n.d. 
113.3 

n.d. n.d. n.d. 
56.3 

n.d. n.d. 
130.1 545.7 

 5H-cyclopentapyrazine  ± 29.6B ± 13.7BC ± 26.0B ± 101.6A 

 
Total 

  1732.5 6242.2 15533.5 24732.1 1473.5 3573.0 8676.6 12892.9 8814.6 17007.3 36904.7 59446.0 

   ± 174.8H ± 689.6FG ± 1549.2D ± 2023.3C ± 174.3H ± 371.0GH ± 514.0EF ± 966.2DE ± 150.0EF ± 1895.8D ± 4841.5B ± 6453.8A 
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alkylpyrazines are presented. The most abundant compound was tetramethylpyrazine (> 

18 µg/g), followed by trimethylpyrazine (> 15 µg/g) after 7PS at 160°C. Higher roasting 

temperatures resulted in the formation of more alkylpyrazines compared to lower roasting 

temperatures. In addition, at roasting temperatures of at least 140°C, four extra pyrazines 

were formed: 2-isoamyl-6-methylpyrazine, 2-methyl-6,7-dihydro-5H-cyclo-

pentapyrazine, 2,3,5-trimethyl-6-propylpyrazine and 2,3-dimethyl-6,7-dihydro-5H-

cyclopentapyrazine; the latter was only formed at a temperature of 160°C. 

At 100°C only 8 pyrazines were detected. At 120°C, already 14 pyrazines were 

formed and the total amount of pyrazines increased by a factor 3.6 for 0PS; 2.4 for 3PS 

and 1.9 for 7PS compared to a roasting temperature of 100°C. Starting from 140 °C, for 

all PS, an increase in the level of pyrazines was observed by a factor greater than 2, 

compared to a roasting temperature of 120°C. At a temperature of 160 °C, only a rise by 

a factor 1.5-1.6 for all PS was reached, compared to a roasting temperature of 140°C. In 

summary, increasing the roasting temperature gives rise to more complex alkylpyrazine 

profiles in cocoa, and quantitatively higher levels in alkylpyrazines. 

Influence of pod storage on formation of pyrazines 

Figure 1 represents the biplot from PCA on all samples and all detected alkylpyra-

zines. The amount of variance explained by the two factors in the biplot was 94% 

(PC1:84%, PC2:10%). From the PCA, it became clear that there is an influence of both 

roasting temperature and PS. Samples of 7PS were clearly distinct from all other samples. 

This was mainly due to an exponential increase in tetramethylpyrazine and trime-

thylpyrazine (Table 1). Samples of 0PS and 3PS migrated in another, but similar way as 

a function of roasting temperature. At 3 days PS, the total amount of formed pyrazines 

was always lower than after 0 days PS. Both the data shown in Table 1 and the PCA biplot 

in Figure 1, point to a pronounced impact of extended PS (7 days) on the formation of 

alkylpyrazines, independent of the roasting temperature. Even at the lowest roasting 

temperature (100°C), PS for 7 days gives rise to highly increased alkylpyrazine formation, 

compared to 0 days PS (difference by a factor 5.1). 

 
Figure 1: PCA-biplot of different alkylpyazines in Ghanaian liquor samples as a function of pod storage and 

roasting temperatures 
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Introduction 

Sensory perception is directly related to compounds volatilization from the matrix 

to the atmosphere. From a physico-chemical point of view, this release may be described 

by partition coefficients, which correspond to the volatile concentration ratio between the 

liquid and gaseous phase. Partition coefficients may be determined thanks to Phase Ratio 

Variation (PRV) method which is based on the fact that, in a closed system, the headspace 

volatile concentration changes as a function of liquid phase volume (Ettre et al., 1993). 

This method is generally applied using HS-GC-FID. 

For the analysis of various heavy compounds, some authors proposed a design for 

low-pressure gas chromatography coupled to mass spectrometry (LP-GC-MS), consisting 

in combining a micro-bore column to a mega-bore one, resulting in faster analysis and a 

better chromatographic resolution and sensitivity (de Zeeuw et al., 2000). 

The goal of this work is to develop and optimize a new approach using multiple 

partition coefficients calculation in order to study potential modifications of headspace 

aroma distribution. 

Experimental 

The impact of various operating conditions on partition coefficients of esters and 

higher alcohols in headspace analysis was evaluated (Table 1). Five parameters were 

considered: (i) the time to achieve thermodynamic equilibrium in the gas phase (from 0 

to 2880 minutes); (ii) the filling rate of the syringe (250, 500 and 750 µL/s); (iii) the gas 

injection rate (250, 500 and 750 µL/s); (iv) the volume ratio between the gas and liquid 

phase, from 227 and 10.4, corresponding to a liquid volume from 50 µL to 5 mL; and (v) 

the type of analytical column used (micro-bore BP21 capillary column (50 m x 0.32 mm 

ID, film thickness, 0.25 µm, SGE) or a mega-bore BP21 capillary column with low-

pressure (30 m × 0.53 mm, film thickness, 0.5 μm, SGE, connected with a Siltite µ-union 

(SGE) to a 7 m x 0.25 mm ID deactivated column (SGE) at the inlet end). Each of the 

above mentioned parameters was optimized one at a time. 

For esters and higher alcohols, the equilibrium time was evaluated in diluted alcohol 

solutions containing the mix of esters and higher alcohols, all at the average 

concentrations found in red wine (Table 1). All the solutions were prepared at room 

temperature (20°C); the vials were filled with 1 mL of each solution, and loaded on a tray 

cooler at 20°C. The headspace was analyzed at 15 different times, from 0 to 2880 minutes, 

and the surface area of each compound of interest was evaluated for each time. 
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For the syringe filling rate, gas injection rate and the type of analytical column, vials 

were filled with 1mL of a solution containing the higher alcohols and the esters prepared 

at room temperature (20°C). 

Table 1: Ethyl ester, acetate, and higher alcohol concentrations used for method development. 

Ethyl Esters and Acetates (μg/L) Higher Alcohols (mg/L) 
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C3C2, ethyl propanoate; C4C2, ethyl butanoate; C6C2, ethyl hexanoate; C8C2, ethyl octanoate; 2MeC3C2, ethyl 2-
methylpropanoate; S-2MeC4C2, S-ethyl 2-methylbutanoate; 2OH4MeC5C2, ethyl 2-hydroxy-4-

methylpentanoate; C2C4, butyl acetate; C2C6, hexyl acetate; C2iC4, 2-methylpropyl acetate; C2iC5, 3-methylbutyl 

acetate; 3OHC4C2, ethyl 3-hydroxybutanoate; 3MeC4C2, ethyl 3-methylbutanoate; 2MB, 2-methylbutan-1-ol; 

3MB, 3-methylbutan-1-ol; 2MP, 2-methylpropan-1-ol; P, propan-1-ol; B, butan-1-ol. 

Partition coefficients were determined according to the “Phase Ratio Variation” 

method developed by Ettre et al. (1993), by plotting the inverse of the chromatographic 

areas against the phase ratio β, in order to obtain values for a and b. Glass vials (22.8 mL, 

Chromoptic, France) were filled with 6 amounts of volatiles solutions in diluted alcohol 

solution or in dearomatised red wine (0.05, 0.1, 0.5, 1, 1.5 and 2 mL), with phase ratios 

from 227 to 10.4 (according to the liquid samples volumes). 

Results and discussion 

Method development  

All the conditions tested and optimized did not allow the detection of all molecules 

involved in this study, as hexyl acetate and ethyl 3-hydroxybutanoate were not detected. 

For this last one, in view of its Log P value (0.31), this compound could have a high 

affinity to the matrix (diluted alcohol solution) and thus be retained in this one. Moreover, 

it could be hypothesized that these compounds were added at concentrations lower than 

their limits of detection. For hexyl acetate, this last hypothesis could also be related to its 

concentration in the matrix (2 µg/L). Chromatographic conditions, and more precisely the 

phase of the column used (BP21 capillary column, SGE, Nitroterephthalic acid modified 

polyethylene glycol) did not allow the separation of the 2- and 3-methylbutan-1-ol. The 

use of other types of columns, such as the CP-Wax 57 (50 m × 0.32 mm i.d.; film 

thickness, 0.25 μm; Agilent) allowed the separation of these two molecules, but not the 

detection of most esters used for the aromatic reconstitutions, with only 5 esters being 

detected. Consequently, the 2- and 3-methylbutan-1-ol were studied as a single peak area 

for the optimization and the validation of the method. In conclusion, except for ethyl 3-

hydroxybutanoate and hexyl acetate, the optimization and validation of the method were 

realized for the 12 other ethyl esters and acetate, and for the 5 higher alcohols (with the 

2- and 3-methylbutan-1-ol as the same peak area). 
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Optimization of the parameters showed that the thermodynamic equilibrium was 

achieved after 300 min in diluted alcohol solution for all tested compounds. The optimum 

syringe filling rate was determined at 750 µL/s and the gas injection rate at 500 µL/s. The 

investigation of the volume ratios between the gas and liquid phase highlighted that at a 

volume phase higher than 2 mL, no variation in the peak areas of esters and alcohols in 

headspace was observed. In conclusion, the volumes used for the partition coefficient 

determination ranged from 0.05 to 2 mL of liquid phase for ethyl esters and acetates and 

for higher alcohols. The use of a mega-bore column connected to a micro-bore column at 

the inlet end allowed to find more esters in the headspace, but also a better resolution for 

the chromatographic peaks. This type of chromatographic column assembly was called 

“low-pressure chromatography”. In view of these results, but also because low-pressure 

mega-bore capillary column gave greater sample loadability and ruggedness, all the 

chromatographic analysis were performed using this column coupled to low-pressure 

injection (static headspace low pressure gas chromatography coupled to mass 

spectrometry). 

Application of the new SHS-LP-GC/MS method 

The new SHS-LP-GC/MS method developed and optimized in this work was used 

to calculate partition coefficients of various ethyl esters and acetates but also higher 

alcohols. Partition coefficients for 9 esters were calculated in diluted alcohol solution 

alone or supplemented with average concentrations of 5 higher alcohols.  

As shown in Figure 1, in diluted alcohol solution, the addition of higher alcohols led 

to a significant decrease of the partition coefficients for esters (p = 0.05), except for ethyl 

propanoate (p > 0.05). Partition coefficients for higher alcohols were also calculated at 

average concentrations found in red wines in dilute alcohol solution alone or 

supplemented with a pool of 13 esters at average levels. Unlike the effects observed on 

esters, partition coefficients of higher alcohols were not impacted by the addition of these 

last ones (p > 0.05) (results not shown). 

As the partition coefficient represents the distribution of molecules between gas and 

liquid phases, a decrease of this parameter indicates a decrease of the volatilization in the 

gas phase. These results therefore indicated that the addition of higher alcohols led to a 

decrease of esters concentrations in the gas phase. These observations could be explained 

by the fact that the addition of these 5 higher alcohols was added in the dilute alcohol 

solution at concentrations not included in the infinite dilution region. In the present study, 

the 5 higher alcohols were added at molar fractions from 4.7.10-3 to 5.7.10-1. Alessi et al. 

(1991) have introduced the concept of "infinite dilution" which correspond to the 

conditions “were the addition of an infinitesimal amount of the component 1 does not 

modified the thermodynamic behavior of the mixture, that is like the component 2 does 

not notice the addition of the component 1”. It was also defined that the range of infinite 

dilution in mixture started at a mole fraction less than 10-4 (Alessi et al., 1991). These 

data could explain why in our context the addition of higher alcohols, at concentrations 

higher than the infinite dilution area, modified esters volatility. 

Previous sensory analyses have demonstrated that the addition of higher alcohols led 

to an increase of the olfactory thresholds of the pool of 13 esters, as well as a decrease of 

the perception of fruity notes and increase the perception of butyric and solvent notes 

(Cameleyre et al., 2015). The diminution of the volatility of esters (responsible of the 

fruity character in red wines) in the presence of higher alcohols is a physicochemical fact, 

which is totally in agreement with the olfactory decrease of fruity perception as a 

consequence of the addition of higher alcohols. 
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Figure 1: Impact of 5 higher alcohols found in red wines on partition coefficient of ethyl esters and acetates in 

dilute alcohol solution (12% v/v.) 

A new approach to calculate multiple partition coefficients in complex mixture has 

been developed and particularly validated regarding esters and higher alcohols. This 

approach used a combination of different methods usually found for headspace analysis 

and characterization on the one hand (static headspace) and for pesticide analysis on the 

other hand (low-pressure gas chromatography). This methodology consisted in analyzing 

vial headspace at the thermodynamic equilibrium using a short guard capillary column 

connected to an analytical mega-bore column finishing at the MS detector. The 

association of these two techniques led to an increase of the injection volume and to the 

detection of more compounds compared to a simple micro-bore column, and additionally 

to a decrease of the run time. 

Thanks to this method, it was possible to calculate partition coefficients for a multi-

components mixture, and it was highlighted that the addition of higher alcohols in 

different matrices led to a decrease of the release of esters in the headspace.  
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Abstract 

To deal with possible consequences of climate change, new varieties of grapes are 

needed that are resistant to some of the most common diseases that can arise from the 

changing growing conditions. One possibility is fungus resistant grape (FRG) varieties. 

Wines produced from these varieties might have different sensory features than wines 

from conventional cultivars. To characterize FRG wines we used different analytical 

techniques to quantify odorants in various concentrations. Additionally, a sensory study 

was done comparing the new wines to common Styrian wines. Using both analytical and 

sensory tools, a description could be achieved that might reduce consumer bias towards 

new products. 

Introduction 

Wine as an agricultural product is subject to the climatic conditions in its growing 

area allowing winemakers to cultivate similar grape varieties but still achieve very 

different wines. However, the changing climate (in Styria a rise of the annual average 

temperature of +1.5 °C until 2050 is predicted [1]) affects the growing conditions, 

influencing the vegetation period and might increase the risk of losses because of various 

plant diseases leading to a larger use of plant protection agents. One possibility to reduce 

these problems are fungus resistant grape varieties. FRGs are a cross between American 

and European wine cultivars that are resistant to some of the most common fungal 

diseases. Earlier attempts to establish FRGs have mostly failed due to unfavourable 

sensory properties like a ‘foxy note’ (methyl anthranilate; sweet, candy-like strawberry 

smell). Newer attempts eliminated this and several other problems and the new cultivars 

are better suited for the production of wines. Nevertheless, a comprehensive 

characterization of wine can help to find wines that reach the consumers’ expectations 

and fulfil the winemakers’ needs. Volatile organic compounds contribute to the aroma of 

a wine depending on their odour thresholds and their concentrations. This means 

compounds with very low odour thresholds can have an impact even at very low 

concentrations resulting in the need of analytical techniques with different selectivities 

and sensitivities to identify and quantify these compounds. 

Experimental 

Wine samples 

Grapes of the FRG varieties Blütenmuskateller, Bronner, Cabernet Blanc, CAL 6-

04, Chardonel, Muscaris, Solaris, Souvignier gris and VB 32-7 were grown in an 

experimental vineyard in the southern Styrian wine region. Out of these, wines were 

produced at the Fruit Research Station in Haidegg in microvinification using single strain 

yeasts. This was done to minimize the influence of parameters other than grape variety. 
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GC analysis of the volatile compounds 

Based on the large differences in sensory thresholds for the relevant aroma 

compounds, the respective instrumental methods had to be adjusted to the required 

sensitivity. In the following, a few of these techniques are described shortly. In general, 

volatiles were enriched using headspace solid phase microextraction (HS-SPME) with 

volumes of 0.1-1 mL of wine. Different methods were applied for some interesting 

volatile compounds that occur in different quantities (Table 1). 

Table1: Instrument setting 

 

Principal component analysis (PCA)  

With the raw data from the aroma profiles were created using the MASstat software 

in the 3.02u version. m/z ratios excluded from the calculations were: 28, 32, 77, 133, 151, 

207 and 281. 

Sensory evaluation 

To characterize the sensory properties of the FRG wines a tasting with a panel of 11 

trained experts (10 men, 1 woman; 24-56 years) was conducted at the Agricultural 

Research Center using comparative descriptive analysis. The wines were compared to 

typical regional varieties like Muskateller, Pinot Blanc, Welschriesling and Sauvignon 

Blanc. In addition, a collection of characteristic descriptors was provided. 

 GC-MS Scan GC-MS SIM GC-MS/MS 

Agilent  GC 7890 Shimadzu TQ8040 

Compound Aromaprofiles 

Fatty Acid Ethyl Esters 

Linalool IBMP 

IPMP 

Sample 1 mL wine (Aroma 
profiles) 

0.1 mL Ester 

quantification 

0.1 mL wine + Standard 1 mL wine + IS Mix 

SPME Stable Flex fibre 

50/30 µm 

DVB/Carboxen/PDMS 
40°C for 30 min 

Stable Flex fibre 

50/30 µm 

DVB/Carboxen/PDMS 
40°C for 30 min 

Carboxen Wide Range 

Arrow fibre 

 
60° C for 20 min 

Column HP5-MS UI (30 m x 0.25 

mm x 1 µm) 

HP5-MS UI (27 m x 0.25 

mm x 0.25 µm) 

ZB5-MS Si (30 m x 0.25 

mm x 0.25 µm) 

Carrier Gas Helium Helium Helium 

Temperature 

program 

30 °C for 1 min to 

240 °C at 5 °C/min and to 
290 °C at 20 °C/min 

-10°C (1 min) at 20 °C/min 

to 100°C to 160 °C at  
6 °C/min and to 260 °C at  

20 °C/min 

40 °C for 1 min to 

200 °C at 40 °C/min and to 
310 °C at 25 °C/min for 1 

min 
GC settings 151 kPa, constant flow 35 

cm/s; Injector Temp. 

270°C 

8.7 kPa, constant flow 

33.25 cm/s; Injector Temp. 

270°C 

66 kPa, constant flow 40 

cm/s; Injector Temp. 

270°C 
MS settings Electron ionization 

Detector voltage relative to 

tune (2.0 kV) 
m/z: 35-300 

5.19 scans/sec 

 

 

Electron ionization 

Detector voltage: 1.4 kV 

Ion used for quantification 
of Linalool: 93 (dwell time 

20 msec) 

Electron ionization 

Detector voltage: 2.5 kV 

Transitions 
(Collision Energy): 

IBMP (RT 10.0-10.8 min): 

124.10>94.10 (11); 

124.10>81.10 (7); 

124.10>79.10 (23) 

IPMP (RT 7.5-9.5 min): 
152.10>137.10 (7) 

137.10>109.10 (7) 

152.10>124.10 (7) 
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Results and discussion 

For the analysis of the wine volatiles, three different techniques were used to get an 

overview about some of the most abundant volatiles in the upper µg/L range, like short 

chain fatty acid ethyl esters, as well as to quantify substances down to the low ng/L range 

like 3-isobutyl-2-methoxy pyrazine (IBMP). IBMP has a sensory threshold of 2 ng/L and 

is responsible for a characteristic green bell pepper aroma in Sauvignon Blanc wines and 

other varieties [4]. Higher concentrations of that compound have been associated with 

unripeness. In the same method, 2-isopropyl-3-methoxypyrazine (IPMP), which has a 

threshold of 0.32 to 2.29 ng/L [5], was quantified.  Additionally, linalool, which is a 

varietal compound of Muscat wines that has a flowery aroma and a threshold of 15 µg/L 

[3], was quantified using GC-MS in SIM mode using standard addition. 

Looking at Figure 1, three of the wines (Muscaris (with grape skin contact for 2 and 

8 h) and Blütenmuskateller) form a separate cluster. Wines from these two cultivars 

usually have a higher concentration of several terpene compounds. Looking at the data 

from Table 2, a significantly higher linalool concentration in the wines from the two 

cultivars corresponds with the PCA results. In addition, the wines of Solaris and the 

Souvignier gris cultivars show some deviations which can be explained by significantly 

higher (Souvignier gris) and lower concentrations (Solaris) of short chain fatty acid ethyl 

esters. 

 
Figure 1: PCA on the basis of relative concentrations of different FRG wines (vintage 2016) 

Table 2 shows the concentrations of the investigated compounds. Some of them help 

to explain the results of the PCA given in Figure 1 As this PCA is based on the relative 

concentrations of the investigated wines, the concentration of IBMP, which cannot be 

detected in the aroma profiles due to its low concentrations, does most probably not affect 

these results. 
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Table 2: Concentrations of selected compounds with Odour Activity Values (OAV) 

 Sum Ester 

C4-C10 

[µg/L] 

Sum 

Ester 

OAV 

Linalool 

[µg/L] 

OAV IBMP 

[µg/L] 

OAV IPMP        

OAV 

[µg/L] 

Blütenmuskateller 4555 1253 230 15 <0.001 <1 0.007 3 

Bronner 5831 1582 <15 <1 <0.001 <1 <0.001 <1 

Cabernet Blanc 5211 1476 <15 <1 0.007  4 <0.001 <1 

CAL 6-04 6232 1737 <15 <1 0.006  3 <0.001 <1 

Chardonel 4692 1392 <15 <1 <0.001 <1 <0.001 <1 

Muscaris 3668 1032 560 37 <0.001 <1 <0.001 <1 

Solaris 2261 584 <15 <1 <0.001 <1 <0.001 <1 

Souvignier gris 9735 3144 <15 <1 <0.001 <1 <0.001 <1 

VB 32-7 5904 1661 <15 <1 0.020 10 <0.001 <1 

Analytical Method GC-MS Scan GC-MS SIM GC-MS/MS MRM 

Table 3: Sensory description of the wines 

The results of the sensory evaluations showed a good correlation with the 

instrumental data. Wines that had higher concentrations of terpenes like linalool were 

classified as Muscat-type, which usually show higher concentrations of these compounds. 

Wines with higher IBMP concentrations were the ones that ranked highest in the 

Sauvignon-type descriptor. 

Different instrumental techniques are necessary for interference free quantification 

of relevant aroma compounds at different concentration levels. The analytical result can 

provide tools and methods for better understanding of the sensory properties of wine. 

Knowing the concentration and the impact of some of the key aroma compounds can help 

to classify new wines in terms that help the communication between winemakers and 

consumers.  
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Grape variety Sensory description 

Blütenmuskateller Instantly fragrant, elderberry flower, Muscat-type 

Bronner Slightly fruity, neutral, medium bodied, Burgundy-type 

Cabernet Blanc Green, spicy, pomaceous fruit, well balanced, Sauvignon-type 

Chardonel Apple, banana, neutral, tender, lean, Burgundy-type 

Muscaris Flowery, citrus, stone fruits, complex, full bodied, Muscat-type 

Souvignier gris Slightly fruity, spicy, full bodied, Burgundy-type 

VB 32-7 Green bell pepper, green apple, spicy, full bodied, Sauvignon-type 

CAL 6-04 Apricot, apple, lime, black currant 
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