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Abstract— In industrial quality inspection, it is often the
case that a lot of data of desired product appearance can be
provided at training time, while very little erroneous examples
are available. Thus, in order to train an inspection system,
the target appearance has to be learned independently from
the availability of defect samples. Defects have to be identified
as anomalies w.r.t. the trained data distributions in the online
inspection phase. In deep learning, autoencoders are a well
known choice to realize anomaly detection scenarios, where
significantly larger reconstruction errors of objects’ images
indicate defects. However, as the latent code contains enough
information to reliably reconstruct good example images, the
question arises if a decision about the validity of an input
image can already be drawn in that latent space during online
inspection. This would speed up the system by more than a
factor of 2 by sparing the processing of the autoencoder’s
decoder part. Variational Autoencoders (VAE) are a modern
variant of the classical autoencoder architecture, which could
facilitate this purpose, because of its imposed regularization
term, that forces the latent codes to be standard normally
distributed.

I. INTRODUCTION

In quality inspection of highly optimized industrial pro-
duction processes, e.g. textile industries, a low rate of flaws is
usually observed. This results in small and unrepresentative
samples of defects. In such cases, inspection systems have to
learn the valid product appearances only by means of valid
product samples. Only later during actual inspection, some
defects occur occasionally, which then have to be identified
as anomalies or novelties w.r.t. the trained data distributions.
Such a setting is referred to as one-class learning, anomaly
detection, or novelty detection [8]. For image processing
tasks, this kind of inspection is difficult for patterns that are
on the one hand regular and contain repetitive structures on
different scales, while on the other hand local variations and
distortions are possible, which let each object region appear
slightly different than its neighboring regions. An example
of such a product type are textiles (Fig.1).

The majority of object regions are valid but vary slightly
w.r.t. a trained area. An appropriate representation of the
object structure under inspection should reflect a distinct
deviation of defective areas, but at the same time it should
be robust w.r.t. allowed distortions occurring due to inherent
perturbations in the production processes.

A number of algorithms have been proposed to handle
one-class learning problems. Very popular are one-class
SVM [11], which separate the training data from the origin of
the feature space using a hyperplane with maximum margin.
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SVMs can implicitly be applied to nonlinear and high-
dimensional feature spaces. Sparse coding or convolutional
sparse coding (CSC), respectively, was proposed to tackle
the problem of novelty detection in images of nanofibrous
material production [3] [4] by learning dictionaries to yield
accurate and sparse representations.

We aim to process images of product parts, where the rele-
vant, representative features have to be implicitly determined
by the method itself in the course of the training procedure
on multiple scales. Thus nowadays, Convolutional Neural
Networks (CNN) are a reasonable choice. In deep learning,
autoencoders [9] are a well known tool to perform unsu-
pervised learning of object representations. They were ex-
tensively investigated and used for unsupervised pretraining,
representation learning, data compression, etc. (e.g. [13]).
Autoencoders are trained to reconstruct the input data as
exactly as possible through a bottleneck layer of neurons,
spanning the so called latent space. As a consequence, the
autoencoder has to come up with internal representations of
the trained patterns (e.g. images) that allow it to reconstruct
input data only from those internal compressed vector codes,
the so called latent variables or latent codes. They can be
seen as a non-linear version of Principle Component Analysis
(PCA) [2], because data are projected to an appropriate sub-
space in a non-linear manner, e.g. CNN layers, whereas the
re-projection error is minimized. Alain and Bengio showed
that autoencoders are capable of implicit recovery of the data
generating density [1].

Consequently, autoencoders are a well-suited means to
handle the image one-class learning task at hand. Cascades
of convolutional layers (encoder) enable the identification of
relevant pattern features on multiple scales, so that a charac-
teristic, compressed latent representation can be obtained for
trained good example images, that enables another cascade
of transposed convolutional layers to decode that latent code
into a reconstructed image. Good examples, similar to the
trained patterns can be significantly better reconstructed than
images comprising a deviation w.r.t. to the trained images,
i.e. a defect. The autoencoder’s decoders are capable of
reconstructing input reliably only from the latent codes. Thus
the entire structural information about an input image must
already be coded in that latent variable. This raises the
question, if the decoder part could be fully omitted in the
online inspection phase after training is fully accomplished.
The final decision about input validity could be solely drawn
by evaluating the latent codes, which would spare more than
half of the processing effort.

We investigate the opportunities of one-class learning with
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Fig. 1. Two cutouts from the investigated example web patterns with examples of weaving flaws indicated by white arrows. ”Pattern 1” (left) and ”Pattern
2” (right).

autoencoders, more specifically the reliability of drawing
decisions already in the latent space for online applications
of autoencoders in one-class learning for image anomaly
detection tasks. In Section II, we describe autoencoders and
the usage of the latent space in more detail. Results of ex-
periments on two textile examples comprising weaving flaws
are presented in Section III. We summarize and conclude in
Section IV.

II. ONE-CLASS LEARNING WITH (VARIATIONAL)
AUTOENCODERS

Autoencoders are an age-old concept in the area of neural
networks (e.g. Rumelhart et al [9]). An autoencoder is a
function f : Rn→Rn, implemented as a neural network, that
is trained to optimally reconstruct input data - images of
good product appearance in our case - by minimizing the
so-called reconstruction loss function

Lrec = ∑
i
||xi− f (xi)||22. (1)

f consists of an encoder part c : Rn → Rl , where l < n,
and a decoder part d : Rl → Rn, such that f = c ◦ d. As
l < n, the autoencoder’s weights have to adjust in such a
way during the optimization process, that the l-dimensional
latent codes contain all the information of the trained input
patterns in order that the decoder d can reconstruct input
images xi of the training data distribution. Additionally, we
make use of convolutional layers’ expressive capabilities to
extract representative image features. Thus we implement the
encoder and the decoder as deep CNNs or tranposed CNNs,
respectively.

In one-class learning, training data only contain examples
of valid object appearance. When an image comprising a
defect, e.g. weaving flaw, is presented to the fully trained
autoencoder, the corresponding reconstruction error will be
significantly larger than reconstruction errors of trained valid
examples, by which the defect is detectable in the online
phase.

However, as the total information about the training pat-
terns and naturally deviations of which must already be
mapped in the corresponding latent codes, there should be
a way to already draw the decision from those latent codes.
Such an early decision would speed up inspection processing
in the online phase. Schlegl et al [10] managed to exactly

implement this idea by means of Generative Adversarial Net-
works (GAN), which had been trained to generate artificial
samples of the valid image data. Defects could be detected
by the discriminator network, which was trained to detect
anomalies w.r.t. to the training distribution. Makhazani et
al [7] presented the Adversarial Autoencoder, a variant of
a more classical autoencoder, where an adversarial network
was trained to match the distribution of the latent codes
with a predefined appropriate data distribution, e.g. standard
normal distribution, by means of an added regularizing loss
term to the reconstruction loss. Such a simple-shaped latent
distribution would simplify the evaluation of latent codes in
the one-class learning setting, because deviations from it can
easily be detected.

The so-called Variational AutoEncoder (VAE) was intro-
duced by Kingma et al [6]. Similarly to the Adversarial
Autoencoder, the VAE is realized by adding a regularizing
loss term to the reconstruction loss. This latent loss measures
the dissimilarity of the latent codes’ distribution to a pre-
defined well-shaped target distribution, i.e. standard normal
distribution, by means of the Kullback-Leibler divergence
(KL):

L = Lrec +λ ·Llat , with

Llat = KL(Q(z|X),N (0, I)),
(2)

where Q(z|X) is the PDF of the distribution of latent
codes zi = c(xi) ∈ Z ⊂ Rl given training examples xi ∈ X .
Usually, Q(z|X) := N (µ(X ;θ),Σ(X ;θ)), where µ and Σ
are estimated by a neural network, in our case the encoder
c. Although a regularization parameter λ is generally not
required for VAE, in our application it was necessary in order
to decrease the influence of the latent loss Llat . Otherwise,
Llat dominates Lrec in the training process and the latent
codes collapse to zero mean. That violates the main objective
of optimal reconstruction, as those flattened latent codes do
not have the expressive power to code pattern structures
for reconstruction anymore. Doersch [5] provides a good
tutorial over VAE, where he also discusses the requirement
of regularization parameters for VAE.

In the online phase of the inspection with VAE, the
decision, if an image contains a defect or is similar to the
trained valid image distribution, could be made by means
of the latent loss Llat , which is at least in the average
significantly larger for anomalies than valid data, just like
for the reconstruction loss with classical autoencoders. We
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analyze the applicability and reliability of decision making
in one-class learning on the basis of latent VAE loss rather
than the reconstruction loss in the next section on the basis
of two textile examples.

III. EXPERIMENTS

We present experiment results for two different web pat-
terns (Fig. 1). The webs comprise regular structures, but
also swirling local variations, which are typical for textiles.
The autoencoders have to capture the distribution of allowed
pattern variation from a set of sampled patches, where no
weaving defects occur (training set). From another region
of valid product appearance, patches were sampled which
are not used in training, but only for validation (validation
set). Around defect regions, i.e. weaving flaws, we extracted
randomly distributed patches containing those defect patterns
(defect set). In the setting of one-class learning, those were
naturally also not used for training, as they are assumed to
be not available in sufficient amounts for training in real
scenarios. The size of all patches was fixed to 64× 64
pixels, a field of view (FOV) where regular structures and
disruptions of which are apparent.

According to the size of image patches, the input size of
the autoencoder has a FOV of 64×64 as well. The autoen-
coder architecture is a U-shaped CNN with a bottleneck in
the middle, yielding the latent codes c(X), which is inspired
by architectural elements from VGG[12] architectures, where
only small filters are used, e.g. 3×3 to stick with the VGG
scheme. In the encoder part c, the resolution of feature maps
is decreased at every convolutional layer by strides of 2,
while the number of feature maps is increased by a factor of
2. The decoder d, which generates the reconstruction of the
input images from the latent codes, is structured analogously,
only in a transposed manner, i.e. the number of feature maps
is reduced and resolution of feature maps is increased. For
all convolutional layers and all except the last transposed
convolutional layers, the ReLU non-linearity was chosen.
The last transposed convolutional layer is complemented by
a tanh non-linearity.

The search for an optimal regularization parameter λ ,
balancing the influences of reconstruction and latent losses
Lrec and Llat , respectively, was conducted by repeating the
training process with different values of λ and choosing
the one, for which the reconstruction loss and the latent
loss deviate most significantly between valid and the few
available defective patches. For both experiment patterns,
λ = 10−5 was optimal. For a real scenario, where absolutely
no defective examples are available in the training phase, this
λ search is not applicable.

The appropriate learning rate was 10−3 and all autoenoders
were trained for 10000 iterations. The training curves ap-
peared to be very smooth and precisely reproducible between
different runs with varying random training sets.

In Figs. 2 and 3, we visualize the distributions of re-
construction losses and latent losses of individual training
(blue), validation (green), and defect (red) patches after
the corresponding autoencoders were fully trained. We have

augmented those histograms with Gaussian approximations
in order to emphasize the gross distribution structures.
Moreover, we computed the cross-entropy distances H(p,q)
between the training, validation, and defect distributions,
respectively, according to

H(p,q) =−∑
i

pi · log2(qi), (3)

which measures the dissimilarity between two distributions
p and q (Tab. I).

0.000 0.005 0.010 0.015 0.020 0.025
Reconstruction Loss

55 60 65 70 75 80
Latent Loss

Fig. 2. Distributions of reconstruction loss (top) and latent loss (bottom)
of individual patches sampled from Pattern 1. Training patches (blue),
validation patches (green), defect patches (red). Histogram distributions of
loss values augmented with Gaussian approximations.
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Fig. 3. Distributions of reconstruction loss (top) and latent loss (bottom)
of individual patches sampled from Pattern 2. Training patches (blue),
validation patches (green), defect patches (red). Histogram distributions of
loss values augmented with Gaussian approximations.

For both patterns, from Figs. 2 and 3 as well as from Tab. I,
it is apparent that the training and validation histograms are
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TABLE I
CROSS-ENTROPY DISTANCES (EQU. 3) BETWEEN DEPICTED LOSS

DISTRIBUTIONS OF TRAINING (T), VALIDATION (V), AND DEFECT (D)
DATA SETS (FIGS. 2, 3) INDICATING THE DISSIMILARITY OF LOSS VALUE

DISTRIBUTIONS BETWEEN DIFFERENT DATA SETS T, V, AND D,
RESPECTIVELY.

Cross entropy H(p,q) H(T,V) H(T,D) H(V,D)
Pattern 1 - Reconstruction Loss 0.67 20.35 20.30
Pattern 1 - Latent Loss 0.10 7.64 6.95
Pattern 2 - Reconstruction Loss 1.15 19.70 19.27
Pattern 2 - Latent Loss 0.17 6.98 9.38

more similar for the latent loss. Reconstruction losses of
validation patches tend to be slightly larger than those of
the training patches. However, that is not so disconcerting,
as the autoencoders are explicitly optimized to tightly fit the
training distributions, mainly by optimizing the reconstruc-
tion error. Thus a minor increase of reconstruction errors for
not trained valid samples is to be expected and acceptable.
More important is that the defect distributions are distinctly
deviating from both the training and validation distributions
in order to make defect detection feasible at all. While the de-
fect distributions according to the latent loss are overlapping
with both valid distributions, defects obviously comprise
consistently, significantly larger reconstruction losses than
the valid examples. This makes defect detection on the basis
of reconstruction loss more reliable. Both observations are
also confirmed by the cross-entropy distances in Tab. I.

IV. CONCLUSIONS

In industrial image inspection tasks, one-class learning is
a common scenario, where target product appearances have
to be learned solely on the basis of valid product examples,
because examples of defects are not available in sufficient
amounts for training. Autoencoders are a well investigated
means in deep learning for learning data distributions in
an unsupervised manner. Thus they are appropriate methods
for one-class learning, where they are trained to reconstruct
input training images through a bottleneck layer of neurons
as precisely as possible. In online inspection, input defects
result in measurably larger reconstruction errors than valid
examples by which they are identifiable. We investigated the
opportunities to speed up that process by drawing the in-
spection decision already from the outputs of that bottleneck
layer, the latent codes. In order to simplify the structure of
distributions of valid latent codes and therefore the decision
making procedure, we applied VAE regularization, where the
latent codes are forced to possibly follow a standard normal
distribution by means of an added regularization term.

Our experiments with two textile examples show, that in
the average, defective images actually comprise larger latent
errors by which they could be identified over valid patches.
However, an analysis of the distributions of reconstruction
errors and latent errors over individual patches, the results
indicated that defect images are not as reliably distinguish-
able form valid images on the basis of latent VAE codes than

on the basis of reconstruction errors. In a real inspection
task, it would be difficult to set a threshold, which serves
as decision boundary between valid and defect images on
the basis of latent codes. While drawing the decision from
latent codes would speed up computations in the online phase
by more than a factor of 2, it seems to be insufficiently
reliable. Either more false positives or overseen defects are
the consequence. Probably because the reconstruction loss
is the main workhorse of autoencoder training and it is
explicitly optimized to extract latent codes to images, the
decoder is the distinctly smarter tool for analyzing latent
codes in one-class learning. If reliability counts, then it
is better to invest the computational effort and go for the
reconstruction loss as the decision measure. In addition, the
training procedure becomes simpler, because the search for
an appropriate regularization parameter steering the influence
of the latent codes’ distribution can be omitted.
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