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Image texture classification with morphological amoeba descriptors

Franz Schwanninger1 and Martin Welk2

Abstract— We investigate the applicability of quantitative
texture descriptors based on morphological amoebas in the
context of a machine learning approach to texture classification.
Morphological amoebas are a type of contrast-adaptive struc-
turing elements originally designed for adaptive morphological
image filters, and they stand in a close relation to local edge-
weighted pixel graphs of an image. A recently introduced
class of texture descriptors is obtained by applying graph
indices from quantitative graph theory to those pixel graphs.
Additionally we consider descriptors that refer to the geometric
shape of the amoebas. In our approach, these descriptors are
histogram encoded and fed into a linear support vector machine
(SVM). We demonstrate our approach using a small number of
texture samples from the VisTex database as training data. In
further experiments, we study how selected parameters of the
amoeba construction influence the classification performance.

I. INTRODUCTION

In this paper we consider texture-based image classifi-
cation. Textures are intrinsic structures of image regions
and can be classified into different categories. Machine
learning as well as other approaches that aim at classifying
images depending on their textural content often make use
of quantitative texture descriptors [10]. In this paper, we
focus on descriptors that are constructed from morpholog-
ical amoebas. Originally introduced as structuring elements
in adaptive mathematical morphology [15], morphological
amoebas are of interest for texture analysis as they encode
local image structure [22]. Their construction is inherently
related with subgraphs of the edge-weighted pixel graph of
an image in which edge weights are computed from image
contrast. Using these subgraphs as input for the computation
of graph indices gives rise to a class of graph-based texture
descriptors [22] from which part of the descriptors in this
paper are chosen. To these, we add descriptors obtained
by evaluating geometric information of the amoebas. The
descriptors are then encoded and forwarded to Support
Vector Machines (SVMs) [3] where they are aggregated in
order to enhance the classification performance. This scalable
approach is demonstrated by two graph-index based texture
descriptors and one texture descriptor encoding geometric
amoeba properties.
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II. RELATED WORK

Image texture analysis has been investigated for a long
time. Haralick [9] shows an early overview of structural and
statistical approaches; others show frequency-based mod-
els [14], filter banks [16], or fractals [20].

Morphological amoebas as spatially adaptive neighbor-
hoods have been introduced by Lerallut et al. [15]. Our short
recap on the amoeba construction follows the presentation in
[23] which is already adapted to the combination with graph
indices in order to construct texture descriptors.

Graph indices have their roots in the analysis of molecular
graphs [25], [1], [19] but have meanwhile developed into an
important tool for a broad range of network analysis tasks
[5]. Although graph models have been widely used in image
analysis, see [17], methods originating from quantitative
graph theory – like graph indices – have not played a signif-
icant role in texture analysis so far. By the construction of
texture descriptors from graph indices and amoebas in [22], a
first step into this direction has been made. The applicability
of these descriptors to image texture segmentation with
geodesic active contours has been investigated in [24]. In
these works, the texture descriptors are evaluated by simple
local statistics and thresholds.

On the other hand, machine learning approaches play an
important role in modern image processing [12], [4], [13].
During the past two decades, SVMs [3] have been used for
virtually all kinds of classification tasks in image processing.

III. AMOEBA CONSTRUCTION

In this section we describe in more detail the construction
of amoebas. We assume that images are represented by a
regular grid of pixels. The pixels can be interpreted as the
vertices of an edge-weighted graph, the pixel graph, the
edges of which connect adjacent pixels. Regarding what
pixels are considered as adjacent, the most common choices
are 4-neighborhoods, where adjacency is restricted to vertical
and horizontal neighbors, and 8-neighborhoods that include
also diagonal neighbors. Figure 1 shows two pixel graphs for
the local environment of the seed pixel v0 highlighted in the
center according to the methods described later on in this
section: one resulting from a 4-neighborhood and one from
a 8-neighborhood.

Following [22], amoebas are constructed using Dijkstra’s
shortest path algorithm [7]. Similar to a region growing-
based approach, local neighborhoods are established by using
the neighborhood methods stated before. Starting from the
seed pixel, region growing iteratively includes new neighbors
to the graph until their distance from the seeding pixel
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(a) 4-neighborhood (b) 8-neighborhood

Fig. 1: Pixel graphs based on 4-neighborhoods and 8-
neighborhoods for the same originating pixel. The Dijkstra
tree is shown in dark red, all remaining edges in light red.

exceeds ρ . The edge weights, which enforce locally adaptive
amoeba shapes, are defined according to [22] as

wp,q :=
(
‖p−q‖2 +β 2|up−uq|2

)1/2
, (1)

where ‖p−q‖ is the Euclidian distance between the vertices
p and q; |up − uq| denotes the gray value difference of
the corresponding pixels. The contrast scale β allows to
weight between both values and will be subject to closer
investigation in Section VIII.

Figure 2 shows how amoebas evolve for varying ρ together
with their Dijkstra trees.

(a) ρ = 1 (b) ρ = 3 (c) ρ = 5

(d) ρ = 7 (e) ρ = 9 (f) ρ = 11

Fig. 2: Amoebas and Dijkstra shortest path trees for one pixel
at different ρ . The seeding pixel is in the center.

Amoebas and their respective pixel graphs can be com-
puted for each pixel in an image. However, for the texture
classification presented in this paper it might also suffice to
compute these for a subset of pixels.

In the following section, we will review some texture de-
scriptors obtained from amoebas and their respective Dijkstra
trees.

IV. AMOEBA DESCRIPTORS

Suitable descriptors for texture include graph indices as
well as other features encoding amoeba properties. As shown
in a large-scale evaluation [6], there exist hundreds of
possible candidates which are derived from vertex distances,

information-theoretic methods, or edge connectivity. For our
current investigation we only use a few selected features,
based on previous work [22]. The presented descriptors are
invariant to the pose of a texture or a respective object in
an image. This is an advantage over some other approaches,
like neural networks.

A. GRAPH INDICES

Quantitative graph descriptors can be computed for a
graph G. Here, graph indices are obtained from the Dijkstra
trees that have been extracted from amoebas before. They
can further be divided into distance-based indices, such as
the Wiener index and the Harary index, and information-
theoretic concepts, such as the Bonchev-Trinajstić informa-
tion indices or Dehmer entropies. Some of the previously
investigated graph indices in [22] are similar to each other,
such as the Wiener and Harary indices. We would like
to avoid such redundancies because we aim for encoding
distinct amoeba properties in order to achieve good classifi-
cation results.

The Wiener index is defined as

W (G) := ∑
1≤i< j≤n

d(i, j) . (2)

with d(i, j) representing the distance between vertices vi
and v j. We complement the distance-based approach of the
Wiener index by adding a functional based on a Dehmer
entropy [5] and derived in [22]. It reads

f V (v0) = eM ∑n
j=1 qd(0, j)

(3)

where v0 is the seeding vertex as used in the region growing
approach. For our current investigation, we follow [22] in
fixing the parameters to M = 1 and q = e−0.1. There are
candidates for additional descriptors, including the methods
shown in [22]. In the context of a machine learning based
approach, the texture classification does not benefit from a
high number of descriptors if they do not encode additional
amoeba properties. Depending on the pixel graph they are
based on, some graph indices, like the Bonchev-Trinajstić in-
formation indices, generate values that are extremely spread
between high or low values. That makes them harder to
handle within a machine learning framework, where a proper
scaling or normalisation of features is required. Preprocess-
ing by suitable transformations of the value range may be
necessary for these.

B. GEOMETRIC AMOEBA DESCRIPTORS

The second class of amoeba descriptors to be considered
does not rely on graph-based concepts like the graph indices
shown in the section before. Instead, geometric features
of the amoeba shapes are used. In order to compute the
eccentricity of an amoeba A given by the set V of its pixels,
we start by introducing the moments

ml,k = ∑
V

(
u(x,y) · (x− x̄) j · (y− ȳ)i) (4)
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where (x̄, ȳ) is the mass center of V ,

x̄ =
m10

m00
, ȳ =

m01

m00
, (5)

and u(x,y) represents the grayvalue in the respective location.
We write down the matrix of second order moments for the
respective combinations of l and k as

M =

[
m02 m11
m11 m20

]
. (6)

From the spectral decomposition of M, we obtain the ma-
jor moment mmax as the larger eigenvalue, and the minor
moment mmin as the smaller one. The eccentricity of the
amoeba is then given by

ε(A) =
√

1− mmin

mmax
, (7)

and serves as a geometric amoeba descriptor. Further can-
didates for descriptors of this class include other measures
derived from moments, like Hu-moments [11], but are not
included in the current investigation. Figure 3 shows the
amoeba descriptors that have been presented so far for two
exemplary gray-value images.

(a) ug (b) fV (vi) (c) ε(A) (d) W (G)

Fig. 3: Examples for texture classes Flowers2 and Food1:
Grayscale image, Dehmer entropy, Eccentricity and Wiener
index, β = 0.5,ρ = 11. The input images are converted to
grayscale, downscaled and clipped from the VisTex database
[18], see Fig. 4.

V. FEATURE ENCODING

The texture descriptors obtained in the last section do not
yield good results when directly applied to machine learning
on a pixel-based approach due to their spatial variation.
Therefore the descriptors are subjected to an encoding step
before forwarding them to SVMs.

Prior to feature encoding, we rearrange the computed
values of the ND descriptors in a matrix structure with one
column per descriptor, and M×N rows each corresponding
to one pixel of a training image. Here, M is the number of
rows, and N the number of columns of the training images.
For training, square and randomly sampled subimages with
M = 64 and N = 64 are used. Using the three amoeba-based

descriptors presented before, this results in a 4096×3 matrix.
For the following training tasks, the columns of this matrix
are interpreted as feature vectors

fff 1, . . . , fff M×N ∈ RND . (8)

The subsequent encoding is based on histograms obtained
from cluster information. Clustering is here applied to the
full training set that includes several training images for each
class. In this way, we obtain a textural vocabulary compa-
rable to the visual vocabulary as stated in [2]. It describes
all possible textural variants present in the training set, and
encodes each training sample as a histogram, composed of
the number of occurencies of the respective texture in an
image.

First of all, feature vectors are obtained for all classes, all
graph indices and all images in the training set. The training
set is encoded as

fff 1, . . . , fff M·N·NC ·NI
∈ RND . (9)

Note that for the given subimage size as well as for the
number of classes NC = 16 and for the training images
per class NI , the structure can potentially be very large.
However, this is feasible for the given small dataset with
a low number of training samples; for larger databases a
Monte-Carlo approach can be considered.

Clustering through K-means is applied to the feature
vectors from (9). The resulting cluster centers µµµ1, . . . ,µµµK ∈
RND represent the textural vocabulary on which the following
classification is based. Each of the training image samples
fff 1, . . . , fff M·N ∈ RNG is assigned to its closest cluster, with
the assignments given as q1, . . . ,qM·N ∈ {1, . . . ,K}. The his-
togram fff hist ∈ RK is then given by

[
fff hist

]
k = |{i : qi = k}|.

The training data for the entire data set then results in

fff hist,1, . . . , fff hist,NC ·NI
∈ RK , (10)

describing a K-dimensional feature space, where K is the
number of clusters chosen for the K-means clustering, that
contains training data for all NC classes and NI training
samples per class. The data set for classification testing is
obtained in the same way.

Table I shows the textural vocabulary, using the three
graph indices shown in the columns.

VI. TRAINING DATA

As our focus is on image data with rich texture infor-
mation, we choose the VisTex database [18] to test the
discriminative power of texture descriptors. This database is
well-suited for such a task as it contains many images with
pure texture information without additional objects, variation
in lighting or occlusions, which might distract from the
desired goal. A subset of the original color images from the
VisTex database, each with a resolution of 512×512 pixels,
is manually grouped by visual textural similarity prior to
classification, resulting in 16 classes. Some classes of the
original database contain visually highly dissimilar images
and are therefore split into subclasses. For instance, the
class Fabric is divided into six subclasses that can easily

82



D
ra

ft

TABLE I: Textural vocabulary, represented by cluster cen-
ters, for the selected texture descriptors, ρ = 7,β = 0.29 and
K = 16

k fV (v0) ε(A) W (G)

1 116.4 16.2 110.8
2 166.9 22.3 147.2
3 136.4 60.0 124.1
4 120.7 10.6 150.9
5 178.7 72.7 148.9
6 224.4 91.2 177.2
7 210.2 42.0 170.5
8 112.0 53.9 82.6
9 108.0 12.4 65.3
10 106.0 46.9 15.3
11 165.9 127.6 140.3
12 151.8 0.0 6.3
13 229.5 151.6 180.5
14 117.8 116.0 87.0
15 254.7 254.8 251.0
16 110.2 246.1 71.7

be distinguished visually. Our final set of training samples
is composed of 56 images. All images are converted to gray
scale according to ITU Rec. 601,

Y ← 0.299R+0.587G+0.114B , (11)

where Y , R, G, B denote the grayvalue and the red, green,
and blue intensities, respectively.

Note that the class assignment has been made without
attention to the strengths or weaknesses of the methods
investigated in this paper. There are classes that may be
discriminated easily as well as classes that may be very
hard to discriminate from others, or have large intra-class
variation, which poses a challenge to texture classification.

Table II displays the assignment of images from the
original VisTex database to classes in building the training
set. The unique identifier used as an alternative to the subset
name is found in the column idx, while the column indices
indicates the original index of the image, for instance, 7 in the
first row is the index of Bark1.0007.png. Finally, imagecount
represents the total number of images in each respective
class.

TABLE II: VisTex subclass labels

Subsetname idx indices imagecount
Bark1 a 7,8,9,10,11,12 6
Fabric1 b 0,1,2,3 4
Fabric2 c 8,9,10 3
Fabric3 d 11,12 2
Fabric4 e 13,14 2
Fabric5 f 15,16 2
Fabric6 g 18,19 2
Flowers1 h 0,1 2
Flowers2 i 2,3 2
Flowers3 j 4,5,6,7 4
Food1 k 2,3,4 3
Grass1 l 1,2 2
Metal1 m 1,2,3,4,5 5
Sand1 n 0,1,2,3,4,5,6 7
Stone1 o 4,5 2
Water1 p 0,1,2,3,4,5,6,7 8

We intend that the classification methods that are investi-
gated in the following, achieve a good performance using
small training data sizes. However, many approaches to
machine learning would require large amounts of training
data.

The training samples originate from these classes as 64×
64 subimages that have been obtained from the 512× 512
images. To compensate for the small size of the data set
and the fact that some of the subclasses consist of as few
as two images, we generate a larger data set by extracting
subimages of size 64×64 as stated in the previous section.
The subimages are taken from random locations in the large
images.

Furthermore, to avoid boundary effects, we compute
amoebas only for seed pixels which have a distance of at
least ρ from the image boundary, where ρ is the maximum
amoeba radius.

Images containing strong color information like the flower
classes could easily be distinguished from others by com-
paring their colors. As we aim for classification through
texture information only, we perform a grayvalue conversion
on all images before applying further methods. The average
grayvalue or brightness of an image will not directly influ-
ence texture descriptors presented above. Figure 4 shows one
example image in color for each class.

We employ two distinct data sets for the training and
evaluation of the machine learning framework. Thereby,
weaknesses like overfitting would be well detected: An
algorithm suffering from overfitting would perform well on
the training set but would fail to generalize, and thus achieve
bad performance on unseen test data. In generating our
training data set, the subimage extraction step as described
above takes a similar role as common alternative methods
for enlarging small data sets such as the data augmentation
techniques that are popular in the context of neural networks.
As in the shown approach both data sets are based on the
same images, they may contain the same image regions and
thus are not fully independent from each other. Another
strategy to training set organization that could be considered
in order to overcome the limitations of small data sets like
the VisTex database would be n-fold cross-validation.

VII. TRAINING ARCHITECTURE

Applying a classic machine learning approach, we start
by extracting a number of descriptors from an image. The
resulting features are encoded using histogram encoding as
described above, and then handed over to linear SVMs for
training. We refrain from using higher-order kernels, as they
suffer from overfitting in this task. To assess how well the
methods perform on the testing data set, we measure the
accuracy of the classification. Higher accuracy measures in-
dicate better performance. It is well-known that the accuracy
score does not assess classification properly if the data set is
unbalanced [21]. In our setting, this should not constitute a
problem since we use equal data set size for all classes during
training. Accuracy is therefore considered an appropriate
tool for basic performance evaluation. We refrain thus from
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(a) Bark1 (b) Fabric1 (c) Fabric2 (d) Fabric3

(e) Fabric4 (f) Fabric5 (g) Fabric6 (h) Flowers1

(i) Flowers2 (j) Flowers3 (k) Food1 (l) Grass1

(m) Metal1 (n) Sand1 (o) Stone1 (p) Water1

Fig. 4: Example images for each VisTex class obtained from
the VisTex database [18]. c©1995 Massachusetts Institute of
Technology. Developed by Rosalind Picard, Chris Graczyk,
Steve Mann, Josh Wachman, Len Picard, and Lee Campbell
at the Media Laboratory, MIT, Cambridge, Massachusetts.
Under general permission for scholarly use.

using additional values like recall, precision or mean average
precision (mAP), which are popular performance indicators
in recent research [8].

SVMs, as introduced by Cortes and Vapnik [3], are a
standard method for binary classification, still, they can
be applied to a given multiclass classification task. For
the discrimination of two classes, one SVM is sufficient.
For multiclass classification, as shown here for 16 classes,
multiple SVM classifiers are necessary. For each SVM, the
current class is interpreted as positive, whereas all other
classes are treated as negative. Effectively, one must train
one SVM per class, which comes down to 16 SVMs in
our setting. Figure 5 summarizes all steps taken to classify
texture within this classic machine learning framework.

Fig. 5: Classic machine learning model for images applied
to texture classification with amoeba descriptors

For the following trainings we use 8 training samples per
class and histogram encoding, as well as 32 samples in a
testing set for accuracy estimation.

VIII. RESULTS
In this section we evaluate how amoeba-based texture de-

scriptors perform within the previously described architecture
with histogram feature encoding. Some of the parameters
involved have a large impact on the performance of this
approach. We will therefore subject these to a closer inves-
tigation.

The size of the textural vocabulary obtained by the training
stage depends on the number of clusters defined by the
clustering method. Figure 6 shows the classification accuracy
for different choices of K between 8 and 64. The values for
K are chosen based on the number of classes and different
textures used in this data set. As the given data set contains
16 classes, the values of K in our tests are chosen around
16.

Fig. 6: Accuracy for varying K with β = 0.29 and ρ = 7 and
4-neighborhoods

As can be seen, in general, larger K leads to better
performance, with the accuracy reaching a plateau for K = 48
and higher. For our further tests, we retain K = 48, which
warrants faster computation than larger values. Furthermore,
we avoid the problems that come with high-dimensional fea-
ture spaces and are known as “the curse of dimensionality”.
As expected, choosing K <NC results in a performance drop,
as different textures have specific cluster centers which tend
to be ignored in this case.

The construction of amoebas includes many possible de-
sign choices than can be made, while some restrictions are
given by the current implementation. Table III gives an
overview of the choices.

TABLE III: Amoeba parameters for closer investigation

Parameter choices

Neighborhood 4-nbhd, 8-nbhd
Norm type L1, L2, L∞

Patch type Euclidian patch, amoeba
Edge-weight type weighted, unweighted
Graph type fully connected, Dijkstra tree
β 0.10 . . .0.43
ρ 3 . . .9

As described in the introduction, possible choices for
the local neighborhood include 4-neighborhoods and 8-
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neighborhoods. Alternatives to the L2 norm in the compu-
tation of the distance metric are L1 or L∞ norms. Instead
of locally adaptive amoebas, fixed Euclidian patch may be
considered as mentioned already in [22], [23]. Graph indices
can be computed either from fully connected pixel graphs,
from Dijkstra trees or even from unweighted Dijkstra trees
where the edge weights have been stripped off.

For closer investigation we stick with the L2 norm in
amoeba computation as already mentioned in earlier sections,
and restrict ourselves to the Dijkstra tree with edge weights.
The amoeba parameters β and ρ have a large potential
impact on the classification. Therefore, we vary their values
within the boundaries stated in Table III. Classification
accuracies for sampled values of ρ with 4-neighborhoods
as well as 8-neighborhoods are compiled in Table IV.

TABLE IV: Classification accuracies for different neighbor-
hoods, and ρ , β = 0.29

ρ 4-nbhd 8-nbhd

3 0.533 0.548
4 0.589 0.544
5 0.529 0.595

The average values for each parameter from Table IV are
shown in Table V.

TABLE V: Average accuracies for parameter values from
Table IV

4-nbhd 8-nbhd
0.550 0.562

A closer look at the parameters ρ and β is given in
Figure 7. The accuracy as a function of β shows a maximum
at 0.29, while values in a wider range β ∈ {0.20 . . .0.40}
may still achieve good results. Each data point represents the
result of one test set. We expect that using multiple test sets
per point would improve the smoothness of the graphs. No
class discrimination is possible for β = 0, as in this case each
amoeba has a regular round shape and encodes no texture
information whatsoever.

Based on the results, we can summarize our findings
regarding the parameters as follows:
• Single values for accuracy vary when using 4-

neighborhoods or 8-neighborhoods, there is no clear
trend which performes better. Since 8-neighborhoods
come with higher computational demand, further inves-
tigation will be based on 4-neighborhoods.

• β is best set to lower values. In the test runs shown,
best outcomes were observed for β = 0.29. A more
detailed analysis showed that smaller or larger values
may still lead to good results. The performance almost
continuously decreased for β > 0.3.

• In most test cases, large values for ρ performed better
than smaller ones, with ρ = 7 ranging best among the
investigated cases. Larger values may perform better,

(a) Accuracy for varying ρ , β = 0.29 and 4-
neighborhoods

(b) Accuracy for varying β , ρ = 6 and 4-neighborhoods

Fig. 7: Accuracy for varying ρ and β and their second order
polynomial regression

but their use is currently precluded by excessive com-
putational expense.

• Computational expense also increases when β de-
creases. Note that amoeba shapes get more roundish and
approach Euclidian patches for β → 0, thus for smaller
β amoebas contain more pixels.

• Optimal values of β and ρ show no obvious depen-
dency from each other for β ∈ {0.10, . . . ,0.43} and
ρ ∈ {3, . . . ,9}.

Finally, we investigate how classification performs on a
smaller number of classes. To this end, we train SVMs on
subsets of the 16 classes. Due to the high number of possible
combinations only a small selection will be displayed here.
Table VI shows the results from choosing random subsets
from the training set. Throughout these experiments, 8 train-
ing samples per class were used, and 32 samples per class
were used for testing.

As expected, the training sets consisting of only two
classes are discriminated easily, and the accuracy generally
decreases as more classes are involved. For some combina-
tions of two classes, the accuracy may even reach 100%.

However, not all sets containing a certain number of
classes result in the same accuracy, as some classes are
discriminated more easily from each other, while others are
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TABLE VI: Classification accuracies for 30 random class
subsets for 2, 4, and 8 different classes. Classes are named
according to Figure 4. All tests used ρ = 7, β = 0.29, and
4−neighborhoods

classes accuracy classes accuracy
b l 1.0 c e j n 0.843
n o 1.0 a d i p 0.820
m p 1.0 a e h j k l o p 0.800
c e 1.0 a g j k 0.796
b c e l 0.992 a g j m 0.796
d p 0.968 b c d e i l m o 0.785
h n 0.937 j m 0.781
d l 0.937 a b d g h k n p 0.777
i m 0.921 a b c e f j l o 0.765
d e f o 0.875 c g h j l n o p 0.765
a o 0.875 a g m p 0.765
b c e g h i k o 0.867 b f g i j l m o 0.757
f j l p 0.859 a b d g i j k n 0.738
a h n o 0.851 e h j p 0.734
a b e f g k l o 0.847 a d g j l m n p 0.683

harder. The strategy used to create this table may also be
used to measure how good individual pairs of classes can
be distinguished. A thorough investigation would require to
train

(16
2

)
= 120 class pairs.

IX. CONCLUSION

In this paper we have demonstrated that texture descriptors
derived from morphological amoebas can be used within a
classic machine learning approach to texture classification,
and achieve a reliable discrimination of textures. A small
number of selected features based on graph indices and
geometric properties of amoebas was combined in order to
encode texture. Feature values were histogram encoded and
fed into a SVM.

By additional experiment series, we have investigated the
influence of important parameters of the feature computa-
tion on the classification performance. Finally the relation
between the number of classes and the classification per-
formance was tested. As expected, fewer classes can be
distinguished more accurately.

This work represents a first step into the combination
of amoeba-based texture descriptors with machine learning
techniques. Future work will be needed to better assess the
capabilities of this approach in comparison with other texture
descriptors and other machine learning techniques. Alter-
native clustering methods as well as strategies for optimal
parameter choice could be studied in more detail. Moreover,
it will be interesting to investigate the applicability of the
proposed technique for more advanced texture analysis tasks
such as texture-based image segmentation.
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