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A Study of Spectral Expansion for Shape Correspondence

Robert Dachsel, Michael Breuß and Laurent Hoeltgen

Abstract— The main task in three dimensional non-rigid
shape correspondence is to retrieve similarities between two or
more similar three dimensional objects. A useful way to tackle
this problem is to construct a simplified shape representation,
called feature descriptor, which is invariant under deformable
transformations. A successful class of such feature descriptors is
based on physical phenomena, concretely by the heat equation
for the heat kernel signature and the Schrödinger equation for
the wave kernel signature. Both approaches employ the spectral
decomposition of the Laplace-Beltrami operator, meaning that
solutions of the corresponding equations are expressed by
a series expansion in terms of eigenfunctions. The feature
descriptor is then computed at hand of those solutions. In
this paper we explore the influence of the amount of used
eigenfunctions on shape correspondence applications, as this is a
crucial point with respect to accuracy and overall computational
efficiency of the method. Our experimental study will be
performed at hand of a standard shape data set.

I. INTRODUCTION

In many tasks, it is useful to describe a three dimensional
geometric object by its bounding surface, often referred as
shape. Thereby, the investigation of shape correspondence
is a fundamental operation in visual computing, with many
potential fields of applications including medical imaging,
geometric modeling and digital heritage [8], [10], [12]. For
a general shape correspondence scenario there are two or
more shapes given, and it is the task to find a reasonable
relation/pairing between them. In the context of rigid shape
correspondence, shapes may be considered similar if there
exists a rigid transformation between them. Since those
transformations can be represented compactly as a rotation,
translation and reflection, many solution techniques are well
established such as Iterative Closest Point methods, cf. [3],
[6] among others. A more challenging yet oftentimes more
realistic setting is that of non-rigid shape correspondence,
where the shapes are able to undergo almost isometric
transformations, leading to a large variety of possible de-
formations such as poses of human or animal bodies.

An important solution strategy to obtain pointwise shape
correspondence is to employ a feature descriptor computed
over each shape, and to attempt to match the values of the
feature descriptor. The task of the feature descriptor is to
characterize each element on the shape regarding its geo-
metric properties. Ideally, this feature descriptor is invariant
under deformable transformations, which is challenging to
achieve in its construction.

Related Work. In this paper we consider a modern class
of feature descriptors that can handle almost isometric trans-
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formations, namely the so-called spectral methods that are
based on the spectral decomposition of the Laplace-Beltrami
operator. In the framework of shape analysis these spectral
methods were first proposed in [11]. Based on developments
in [16], the heat kernel signature (HKS) has been introduced
[17]. It assigns each point on an object surface a unique
signature based on the fundamental solution of the geometric
heat equation. The latter is a partial differential equation
(PDE) that contains in its spatial part the Laplace-Beltrami
operator and describes the time evolution of heat on an
objects’ surface. Later, a scale invariant extension of this
approach was developed in [5]. In [1] another feature de-
scriptor inspired by the Schrödinger equation was proposed.
This feature descriptor is called the wave kernel signature
(WKS) and represents the average probability of measuring a
quantum mechanical particle at a specific location. For both
descriptors, the spectral decomposition of the incorporated
Laplace-Beltrami operator leads to a series expression of its
eigenfunctions and eigenvalues. The contributions in such
a series are ordered in the sense that especially the first
terms contain the low frequency components describing the
macroscopic (global) properties of a shape. Thus, taking into
account a corresponding part of the spectral components
yields a feature descriptor robust to local errors such as (high
frequent) noise but vulnerable to global distortions such as
e.g. changes in shape topology.

Our Contributions. In this paper we report on our ongo-
ing investigation of the number of eigenfunctions employed
for constructing the HKS and WKS, evaluated with respect
to the shape correspondence task. We are not aware of a
thorough study of this aspect in the previous literature. In
many publications the number of eigenfunctions is set to
a fixed value (e.g. first 300 eigenfunctions) without further
explanations, representing a very defensive, heuristic choice
by our computational experience. With our paper we make an
attempt to fill this gap in the current literature. Furthermore,
we especially evaluate the HKS and WKS using a much
smaller amount of eigenfunctions than usually employed,
leading to some interesting conclusions and potential new
challenges.

II. THEORETICAL BACKGROUND

In this section we introduce the basic facts that are
necessary to define the shape correspondence framework.

A. Almost Isometric Shapes

The bounding surface of a three dimensional geometric
object is a two dimensional curved object, embedded into
the three dimensional Euclidean space. It is natural to model
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shapes as compact two dimensional Riemannian manifolds
M , equipped with metric tensor g∈R2×2. In this setting, two
shapes M and M̃ may be considered as isometric if there is
a mapping T that unfolds one surface onto the other, thereby
preserving the intrinsic distances of the unfolded surface.
From the mathematical point of view there exists a smooth
homeomorphism T : M → M̃ with

dM (xi,x j) = dM̃ (T (xi),T (x j)) ∀xi,x j ∈M , (1)

where dM (xi,x j) is the intrinsic distance taken on manifold
M . The intrinsic distance can be thought as the shortest
curve along the surface M connecting xi and x j.

As indicated, the notation of isometric shapes appears
too restrictive for many applications [4]. Many shapes sur-
rounding us in the world appear with additional small elastic
deformations. These occur by either the transformation itself
(e.g. as in elastic bending), by geometric noise in datasets,
or by transferring a continuously described shape into a
numerical framework which may act as a small distortion on
the intrinsic distance. We call two shapes M and M̃ almost
isometric, if there exists a transformation S : M → M̃ with

dM (xi,x j)≈ dM̃ (S(xi),S(x j)) ∀xi,x j ∈M . (2)

B. Heat and Schrödinger Equation on Shapes

The common property of the considered PDEs is that
the incorporated spatial derivatives have the format of the
Laplace-Beltrami operator. Note that the latter is identical to
the standard Laplace operator when considering the PDEs
in the Euclidean plane, the Laplace-Beltrami operator just
takes additionally into account the geometric properties of
curvature of a manifold in 3D by making use of tools
from differential geometry [7]. Consequently, the Laplace-
Beltrami operator is defined on a smooth manifold M .

Turning to the mathematical formulation of the Laplace-
Beltrami operator, let us recall that for a given parameteri-
sation of a two dimensional manifold, we can express it in
local coordinates:

∆M u =
1√
|g|

2

∑
i, j=1

∂i

(√
|g|gi j∂ ju

)
, (3)

where u : M →R is a scalar function, gi j are the components
of the inverse of the metric tensor and |g| is its determinant.

The geometric heat equation describes how heat would
propagate along a surface M . The corresponding initial-
boundary value problem can be formulated as





∂tu(x, t) = ∆M u(x, t) x ∈M , t ∈ R+

u(x,0) = u0

〈∇M u,n〉= 0 x ∈ ∂M

(4)

where u0 is a given heat distribution. Many shapes appear as
closed Riemannian manifold with ∂M = /0, where boundary
conditions do not appear. For the case M has boundaries, we
additionally require u to satisfy the homogeneous Neumann
boundary conditions, where n is the normal vector to the
boundary. In this context the inner product 〈., .〉 lives in

the tangent space. This choice conserves the amount of heat
‖u‖2

L2(M ) = const ∀t ∈ R+.
The free, time-dependent Schrödinger equation





i∂tu(x, t) = ∆M u(x, t) x ∈M , t ∈ R+

u(x,0) = u0

〈∇M u,n〉= 0 x ∈ ∂M

, (5)

where i is the imaginary unit, allows to study how a free
and massive quantum particle would move on the surface
M . In quantum mechanics, the dynamics of a particle
is described by its complex wave function u(x, t) and its
probability amplitude, whose square norm ‖u‖2

L2(M ) is equal
to the probability density for finding the particle at a specific
position for a fixed t. In this context u0 has the interpretation
of an initial wave package.

Separation of Variables. First, we assume that the so-
lution will take the form u(x, t) = φ(x)T (t) due to the fact
that we are working with linear and homogeneous partial
differential equations. This approach works because if the
product of two functions φ and T of independent variables
x and t is a constant, each function must separately be a
constant. At the end, we are able to separate the equations
to get a function of only t on one side and a function of only
x on the other side

κ
∂tT (t)
T (t)

=
∆M φ(x)

φ(x)
= const =−λ , (6)

where κ summarizes both equations (κ = 1 for heat equation,
κ = i for Schrödinger equation), and −λ is called the separa-
tion constant which is arbitrary for the moment. This leaves
us with two new equations, namely an ordinary differential
equation for the temporal component

∂tT (t) =−κλT (t) t ∈ R+ (7)

and the spatial part takes the form of the Helmholtz equation
{

∆M φ(x) =−λφ(x) x ∈M

〈∇M φ ,n〉= 0 x ∈ ∂M
, (8)

where the value of the constant λ has the meaning of the
operator’s eigenvalue.

The Spatial Part. The Laplace-Beltrami operator is a self-
adjoint operator on the space L2(M ) (since we assumed
the shapes to be compact). This implies that the Helmholtz
equation
{

∆M φk(x) =−λkφk(x) x ∈M

〈∇M φk,n〉= 0 x ∈ ∂M
k ∈ {1, . . .∞} (9)

has infinite non-trivial solutions for certain (discrete) values
called eigenvalues, and corresponding eigenfunctions, which
is a result of the spectral theorem. The ordered spectrum
of eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λ∞ and correspond-
ing eigenfunctions φ1,φ2, . . . ,φ∞ form an orthonormal basis
of L2(M ), and constant functions are solutions of the
Helmholtz equation with eigenvalue 1 (only for Neumann
boundary conditions or no shape boundaries).
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It is well known that the eigenfunctions are a natural
generalization of the classical Fourier basis to functions on
shapes. Let us note that the physical interpretation of the
Helmholtz equation is the following. The shape of a 3D
object can be thought of as a vibrating membrane, the φk can
be interpreted as its vibration modes whereas the λk have the
meaning of the corresponding vibration frequencies, sorted
from low to high frequencies, as shown in Figure 4

The Temporal Part. For each k ∈ {0, . . .∞} there is an
ordinary differential equation (7) left, corresponding to λ ≡
λk, which can be solved by integrating both sides using the
indefinite integral. This leads to
∫ 1

T (t)
dT (t) =−κλk

∫
dt ⇒ T (t) = αke−κλkt , (10)

where the integration constant αk should satisfy the initial
condition of the kth eigenfunction. The final product solution
then reads as

uk(x, t) = αke−κλktφk(x) . (11)

The principle of superposition says that if we have several
solutions to a linear homogeneous differential equation then
their sum is also a solution. Therefore, a closed-form solution
of the heat equation in terms of a series experession can be
written as

u(x, t) =
∞

∑
k=1

αke−λktφk(x) , (12)

and the solution of the Schrödinger equation reads as

u(x, t) =
∞

∑
k=1

αke−iλktφk(x) , (13)

where the coefficient αk fulfill the initial condition.
Heat Kernel Signature. The coefficients αk in our expan-

sion can be computed by using the L2 inner product

αk = 〈u0,φk〉L2(M ) =
∫

M

u0(y)φk(y)dy (14)

such that we have

u(x, t) =
∞

∑
k=1



∫

M

u0(y)φk(y)dy


e−λktφk(x) (15)

=
∫

M

u0(y)

(
∞

∑
k=1

e−λktφk(y)φk(x)

)
dy . (16)

The term inside the brackets is called the heat kernel
K(x,y, t), and it describes the amount of heat transmitted
from x to y after time t. By setting the initial condition to be
a delta heat distribution at the position y with u0(y) = δx(y),
we thus obtain after [17] the heat kernel signature

HKS(x, t) =
∞

∑
k=1

e−λkt |φk(x)|2 , (17)

where the shifting property of the delta distribution f (x) =∫
M f (y)δx(y)dy was used. The quantity HKS(x, t) describes

the amount of heat present at point x at time t.

Wave Kernel Signature. The wave kernel signature [1]
is defined to be the time-averaged probability of detecting
a particle of a certain energy distribution at the point x,
formulated as

WKS(x, t) = lim
T→∞

1
T

T∫

0

|u|2dt =
∞

∑
k=1
|αk|2 |φk(x)|2 . (18)

Furthermore, αk = α(ek) becomes a function of the energy
distribution ek of the quantum mechanical particle and can
be chosen as a log-normal distribution i.e.

|αk|2 = exp
(−(e− logλk)

2

2σ2

)
, (19)

where the variance of the energy distribution is denoted by
σ , see again [1] for more details.

C. Discretization Aspects

While we have described now the analytical setting, we
have to translate the analytical set-up into a discrete format
allowing to deal with shape data.

Discrete Surfaces. A suitable surface representation is
given by a triangular mesh. In more detail, a triangulated
surface is given by the tuple Md = (P,T ). The point cloud
P := {x1, . . . ,xN} contains the finite number of vertices (given
as coordinate points in R3) a shape consists of. The entire
mesh can be formed by connecting the vertices xi so that
one obtains two-dimensional linear triangles. Therefore, the
set of linear triangles T contains the neighborhood relations
between vertices forming a triangle. Further, we sub-divide
the meshed surface as follows:

Md =
N⋃

i=1

Ωi and Ω = diag(Ω1, . . . ,ΩN) ∈ RN×N (20)

where Ωi is the barycentric cell volume, surrounding the
vertex xi, as shown in Figure 1.

Discrete Laplace-Beltrami Operator. Many schemes
have been proposed to estimate the Laplace-Beltrami op-
erator for a triangular meshed surface [2], [14], [15]. A
commonly used method is the cotangent weight scheme
introduced in [13]. As a result, for a function defined on
a triangular mesh the discrete Laplace-Beltrami operator
L ∈ RN×N reduces to the following simple sparse matrix
representation

Li j =





− ∑
j∈Ni

wi j if xi = x j

wi j if xi 6= x j and x j ∈ Ni

0 else

, (21)

where Ni denotes the set of points adjacent to xi. As shown in
Figure 1, the weights wi j of the edge (xi,x j) can be classified
into interior Ei and boundary edges Eb, respectively,

wi j =

{
cotαi j+cotβi j

2 if (xi,x j) ∈ Ei
cotαi j

2 if (xi,x j) ∈ Eb
. (22)

as also shown in Figure 1. Furthermore, αi j and βi j denote
the two angles opposite to the edge (xi,x j), for details we
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M Md
αi j

βi j

xi

x j

Ωi

Ni

Fig. 1. Continuous and discrete representation of a shape. Left: In the continuous setting a shape is modeled by a two dimensional Riemannian manifold
M . Middle: Its discrete approximation Md is given by a point cloud P, where the points are connected by non-uniform and linear triangles T . Right:
For the construction of the discrete Laplace-Beltrami operator at the point xi, it requires the set of adjacent points Ni, the surrounding cell volume Ωi and
the two angles αi j and βi j opposite to the edge (xi,x j).

refer to the mentioned source. The eigenfunctions and eigen-
values of the discrete Laplacian are computed by performing
the generalized eigen-decomposition

Lφk =−λkΩφk , k ∈ {1, . . . ,N} , (23)

However, an important practical aspect of the eigen-
decomposition is that computing a full spectrum is very
time and memory consuming (e.g. all eigenfunctions have
to be stored in a dense RN×N matrix). Therefore, only the
first Ñ � N of the eigenvalues in increasing order and
corresponding eigenfunctions are computed. The eigenvalue
λ1 = 0 belongs to the constant eigenfunction φ1, containing
no information useful for shape correspondence.

The discrete HKS and WKS read for a given point xi
finally

HKS(xi, t) =
Ñ

∑
k=2

e−λkt |φk(xi)|2 and (24)

WKS(xi, t) =
Ñ

∑
k=2
|αk|2 |φk(xi)|2 . (25)

Discrete Time and Energy Scale. For the HKS, the
time axis is sampled at 100 samples, t1, ..., t100, where the
time is logarithmically scaled over the time interval with
t1 = 4ln10/λÑ and t100 = 4ln10/λ2. The energy scale of the
WKS becomes e1 = log(λ2)+2σ and e100 = log(λÑ)−2σ ,
and the parameters were set as described in [1].

III. THE CORRESPONDENCE PROBLEM

For two points xi ∈Md and x̃i ∈ M̃d the condition for a
point-wise correspondence can be written as a minimisation
problem:

(xi, x̃ j) ⇔ f (x̃ j) = min
k=1,...,Ñ

{dFD(xi, x̃k)} . (26)

where dFD(xi, x̃ j) is the feature distance.

For the HKS the squared distance is measured by com-
puting a normalised L2-norm

dHKS(xi, x̃ j) =





t100∫

t1

( |HKS(xi,t)−HKS(x̃ j ,t)|∫
M HKS(x,t)dx

)2
dlog t





1
2

(27)

and the WKS uses a distance based on the L1-norm of the
normalised signature difference

dWKS(xi, x̃ j) =

e100∫

e1

∣∣∣∣
WKS(xi,e)−WKS(x̃ j,e)
WKS(xi,e)+WKS(x̃ j,e)

∣∣∣∣ de. (28)

IV. EXPERIMENTAL RESULTS

A. Evaluation Measure and Dataset

In general, we perform a dense point-to-point correspon-
dence, involving all vertices the shapes are made off. We
investigate the quality of the established correspondences at
hand of several quality measures that are standard in the
abovementioned literature.

The tests we discuss here are chosen so that they are in
some sense generic, as they are not tuned to a specific class
of shapes with some special property. Our aim is to study
a typical setting for the shape correspondence problem in
detail and to get an insight into typical phenomena occuring
when approaching the task. The dog shapes appear to be
suitable for this proceeding, as they show a reasonable range
of mesh widths and transformations, but not topological
changes (representing in shape matching a hard problem to
resolve by itself which is beyond the scope of this paper)
that may especially hinder to find correspondences by the
first few eigenfunctions.

We concentrate in this paper on discussing our current
findings in analyzing mutual influences of eigenfunctions,
eigenvalues (i.e. ordering of eigenfunctions), and matching
accuracy of spectral methods for shape correspondence. In
detail, the experiments are evaluated as follows.

Hit Rate. The percentual hit rate is defined as T P/(T P+
FP), where TP and FP are the number of true positives and
false positives, respectively.
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Fig. 2. The dog class of the TOSCA data set. The transformed shapes are
almost isometric modifications of the reference shape (left).

Cumulative Match Characteristic (CMC). The CMC
curve evaluates the hit rate for finding true corresponding
pairs within the first 1% of best matches. Thereby the best
matches are those with the smallest feature distance, arranged
in increasing order.

The Geodesic Error. For the evaluation of the corre-
spondence quality, we followed the Princeton benchmark
protocol [9]. This procedure evaluates the precision of the
computed matching xi by determining how far are those away
from the actual ground-truth correspondence x∗. Therefore a
normalised intrinsic distance dM (xi,x∗)/

√
AM on the trans-

formed shape is introduced. Finally, we accept a matching to
be true if the normalised intrinsic distances are smaller than
the threshold 0.25.

Dataset. For the experiment nine dog shapes are used,
taken from the TOSCA data set [4], available in the public
domain as shown in Figure 2.

B. Influence of the Amount of Eigenfunctions to Shape
Correspondence

For the first experiment we increase the number of used
ordered eigenfunctions, starting from Ñ = 3 and end up to
Ñ = 1000, and study the quality of finding correspondences.
Note that we average in this experiment over all correspon-
dence computations performed over the given data set, see
Figure 2.

The evaluation in Figure 3 shows how the matching
precision of the HKS and WKS depends on the number
of used eigenfunctions. After taking into account about
hundred eigenfunctions the performance for both descriptors
goes into saturation, i.e. it does not increase significantly
anymore. Considering especially the comparison of correct
correspondences within the geodesic threshold, displayed
in Figure 3 (left), it is remarkable that the results for a
very small spectrum Ñ ≈ 10 are similar to the ones for the
large spectrum Ñ ≈ 1000. Especially the WKS descriptor
gains already reasonable results in the regime of the small
spectrum.

We also see, however, that within the small spectrum the
correspondence quality suffers by large variations including
a performance collapse of 15%−20% at a specific range of
eigenfunctions, Ñ ≈ 3 and Ñ ≈ 20 for both descriptors. On
the other hand, the performance is stabilized and stays stable
for a larger amount of eigenfunctions.

It would surely be interesting to attempt to tune the small
spectrum in such a way that it becomes more stable, e.g. by
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Fig. 3. Here we compared both the HKS and the WKS for finding
correspondences within a geodesic error of 0.25 (left) and correct correspon-
dences at 1% of best matches (right) as a function of the used eigenfunctions.
For large Ñ, the performance goes into saturation. Small Ñ leads roughly
to a similar quality in terms of an acceptable geodesic errors but unstable
performance.

removing eigenfunctions that result in a performance loss.
In this paper, such considerations motivate us to explore
the phenomena potentially encountered when using a small
spectrum.

C. Shape Correspondence Using a Small Spectrum

The test just discussed above shows that it may be worth
the effort to inspect in more detail the situation of the small
spectrum of eigenfunctions. To this end we will also employ
a finer sampling of the error behaviour for the small range
of eigenfunctions as in the first test.

First of all we study the eigenfunctions itself for the
reference dog shape and three arbitrarily selected almost
isometric counterparts from our test data set. We pay at-
tention to the small spectrum where Ñ is ranging from 3
to 25. By comparing the eigenfunctions on the reference
shape and transformed shape, they should be similar since
eigenfunctions belonging to low frequencies are stable under
almost isometric transformations. However, as visualized
in Figure 4 for selected examples of eigenfunctions, not
all appear to be similar. In order to make this impression
quantitative, we define an averaged error with respect to the
reference shape (dog0),

e(φi, φ̃i) =
1
N

N

∑
k=1

∣∣|φi(xk)|− |φ̃i(xk)|
∣∣ , (29)

where φi and φ̃i are the ith eigenfunctions on the reference
and transformed shape, respectively. Then, we compare the
matching performance of the HKS and WKS for the selected
shapes as a function of eigenfunctions, considered at the
small spectrum, as shown in Figure 5.

The results show that there is a surprisingly large error
when comparing the first few eigenfunctions of the Laplace-
Beltrami operator, as seen in Figure 5. For interpretation one
may consider the analogy to approximate a given signal by
the first few terms of a Fourier series; it seems that the
dog shape incorporates in the low frequency range a few
frequencies that are not highly significant and therefore not
captured equally well by shape variations. We conjecture that
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Fig. 4. Comparing selected eigenfunctions on the dog and their error under almost isometric transformations. Left: The absolute value of the eigenfunction
of the Laplace-Beltrami operator computed on examples of the dog dataset. The colors represent the values of the eigenfunctions, pink being the most
positive and yellow are almost zero values. Right: Error of the eigenfunctions of the reference shape (dog 0) and the almost isometric counterparts (dog
1, dog 3, dog 5). The smaller the error, the more stable are the eigenfunctions under almost isometric transformations.
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Wave Kernel Signature
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Fig. 5. The evaluation of shape correspondence for the selected dog shapes
using the HKS and WKS. The performance is plotted as a function of the
used small spectrum.

this is a phenomenon that can be found in a similar way for
some low frequencies in other shapes. The phenomenon gets
stabilized after taking into account a few more eigenfunctions
here. Let us stress that this interesting aspect is not visible
in tests as performed usually in the literature where error
averages over large data sets with many different shapes are
computed.

Secondly, we also observe a correlation between the error
in matching eigenfunctions of the Laplace-Beltrami operator
and the shape matching performance with HKS and WKS
when comparing Figure 5 to results given in Figure 3.
After the discussion above, it is evident that this is mainly
observable in the first few eigenfunctions, yet the WKS

may still achieve in some cases high accuracy in terms of
admissible geodesic error. One may also infer that the WKS
is often more robust against differences in eigenfunctions at
low frequencies than the HKS. This appears to be physically
intuitive since solutions of the Schrödinger equation bear a
more complex wave interaction pattern (arguably the main
point leading to high accuracy) than the smoothly varying
solutions of the heat equation (where consequently the low
frequencies carry most information).

One may also conjecture that the occurence of a very low
error as for i= 9 seems to have a significant stabilizing effect,
especially concerning best matches. This effect may also be
present in the Dog3→Dog0 experiment in the range of 20 to
25 eigenfunctions. Comparing the red lines in Figure 5 and
HKS best matches in Figure 3 (top right), we see that the
hit rates in the other two experiments deteriorate as they do
not benefit from the conjectured mechanism.

V. CONCLUSION AND FURTHER WORK

The computation of shape correspondences is a computa-
tionally intensive task. Therefore it would be highly desirable
to develop a spectral method relying only on the first few
terms of the corresponding series expansion. We have pointed
out some aspects of approximations using such small spectra
at hand of a typical shape correspondence experiment. We
think that our discussion illuminates some points that can be
important for the construction of such a method.

In the future we plan to pursue this open issue. For this it
will be imperative in a first step to perform more experiments
with other shapes, and to validate the aspects we found in
this paper also at hand of simple, specifically constructed
shapes.
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