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Fast Solvers for Solving Shape Matching by Time Integration

Martin Bähr, Robert Dachsel and Michael Breuß

Abstract— The main task in three-dimensional non-rigid
shape correspondence is to retrieve similarities between two or
more similar three-dimensional objects. An important building
block of many methods constructed to achieve this goal is a
simplified shape representation called feature descriptor, which
is invariant under almost isometric transformations. A recent
feature descriptor relies on the full numerical integration of
the geometric heat equation. This approach involves to solve a
system of linear equations with multiple right-hand sides. To
this end, it is necessary to find a fast and accurate numerical
scheme in conjunction with the solution of a sparse linear
system and many different right sides. In this paper we evaluate
direct, iterative and model order reduction (MOR) methods
and their influence to shape correspondence applications which
will be validated on standard shape data sets with different
resolutions.

I. INTRODUCTION
The examination of shape correspondence is a funda-

mental task in computer vision, pattern recognition and
geometry processing. Performing the shape correspondence
process is a key component for problems such as 3D scan
alignment or space-time reconstruction and is essential in
various applications including shape interpolation and sta-
tistical modelling, see [21]. The fundamental task of shape
correspondence is to identify an explicit relation between the
elements of two or more given shapes, whereby the shape
of a three-dimensional geometric object can be described by
its bounding surface. In this context, a challenging setting
is that of non-rigid shape correspondence, where the shapes
are almost isometric. Almost isometric shapes lead to a large
variety of possible deformations such as poses of human or
animal bodies.

An important solution strategy is to achieve a pointwise
non-rigid shape correspondence using so called descriptor
based methods. For this, a feature descriptor has to be
developed which characterizes each element on the shape
regarding its geometric relation. An interesting type of
descriptors is based on the spectral decomposition of the
Laplace-Beltrami operator, see e.g. [17], [20]. However, these
methods rely on the expansion of eigenfunctions of the
Laplace-Beltrami operator, which is for instance used to
approximate the solution of the geometric heat equation, cf.
[2]. A recent alternative compared to eigenfunction expan-
sion methods is based on the full numerical integration of
the underlying partial differential equations (PDEs), cf. [3].
Experiments based on time integration methods confirm a
substantially higher accuracy compared to spectral methods
in many cases.
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Application of time integration methods leads to a new
non-negligible challenge – solving a system of linear equa-
tions with multiple right-hand sides. Dealing with large
sparse systems implicates two main issues, the accuracy
of the solution and the computational efficiency of the
numerical solver. Generally, direct and iterative methods are
the most common solvers to compute the solution. However,
almost always it remains an open question, which of both
is the best choice to solve the underlying problem. Direct
methods for solving the same system for different right sides,
are fast and offer an extremely high accuracy. However, this
type of solvers may use substantial memory and appears
to be rather impractical for shapes with many thousands
of points. In contrast, iterative methods are naturally not
tweaked for extremely high accuracy but are very fast in
computing approximate solutions. They require less memory
space and are thus inherently more attractive candidates
for this application. Nevertheless, the runtime of iterative
methods depends on the data, size, sparsity and required
accuracy and makes a tool that is not straightforward to use.

Let us mention, that the number of the right-hand sides
of the underlying system are directly related to the number
of points of the regarded shapes. Therefore, the increase of
the size of the point cloud defining a shape leads to an
extreme rise of the computational effort. Due to this fact,
an alternative approach is the use of model order reduction.
Such techniques can be used to approximate the full system
by a significantly reduced model, that is much faster to
solve than the original system. In this work, we consider
the modal coordinate reduction (MCR), which involves the
use of projection matrices to approximate the geometric heat
equation. The accuracy of MCR for a given problem depends
on the number and structure of equations. In case of shape
matching we compare the correspondence of several shapes.
Therefore, a correct matching depends on a good numerical
quality of the physical process on each of the regarded
shapes. For this reason, the application of the MCR method
could lead to a more sensitive result with respect to the
quality of the matching.

Our Contributions. In this work, we address the men-
tioned challenges by investigating numerical methods for
computing feature descriptors based on time integration
methods. To this end, we will compare direct, iterative
and MCR methods in terms of accuracy and computational
efficiency for shape matching by application of the classic
feature descriptor defined via the geometric heat equation.
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II. THEORETICAL BACKGROUND

In this section, we introduce the basic facts that are
necessary to define the shape matching framework.

A. Almost Isometric Shapes

The shape of a three-dimensional geometric object can be
described by its bounding surface. This is a two-dimensional
curved object, embedded into a three-dimensional Euclidean
space. In this paper, we model shapes as compact two-
dimensional Riemannian manifolds M , equipped with met-
ric tensor g ∈ R2×2.

In this setting, two shapes M and M̃ may be considered
as isometric if there is a map T that unfolds one surface
onto the other by preserving the intrinsic distance. From the
mathematical point of view there exists a smooth homeo-
morphism T : M → M̃ with

dM (x1,x2) = dM̃ (T (x1),T (x2)) ∀x1,x2 ∈M (1)

where dM (x1,x2) is the intrinsic distance. The intrinsic
distance can be thought as the shortest curve along the
surface M connecting x1 and x2.

The notion of purely isometric shapes appears too re-
strictive. Many shapes include an additional small elastic
deformation. These occur by either the transformation itself,
noisy datasets or by transferring the continuous shape into a
numerical framework. This acts as a “small” distortion for
the intrinsic distance. We call two shapes M and M̃ almost
isometric, if there exists a transformation S : M → M̃ with

dM (x1,x2)≈ dM̃ (S(x1),S(x2)) ∀x1,x2 ∈M (2)

B. The Heat Equation on Shapes

The heat equation that yields a useful descriptor involves
the Laplace operator when considering the Euclidean plane.
In order to respect the curvature of a manifold in 3D,
techniques from differential geometry are employed [5].
The resulting Laplace-Beltrami operator is defined on a
smooth manifold M . In this context, let us recall that for
a given parameterisation of a two-dimensional manifold,
the Laplace-Beltrami operator applied to a scalar function
u : M → R can be expressed in local coordinates:

∆M u =
1√
|g|

2

∑
i, j=1

∂i

(√
|g|gi j∂ ju

)
(3)

where gi j are the components of the inverse of the metric
tensor and |g| is its determinant.

The geometric heat equation describes how heat would
propagate along a surface M and can be formulated as





∂tu(x, t) = ∆M u(x, t) x ∈M , t ∈ I

u(x,0) = exp
(
− dM (x−xi)

2

2σ2

)

〈∇M u,n〉= 0 x ∈ ∂M

(4)

where the initial condition u(x,0) is a given by a highly
peaked Gaussian heat distribution. In this context σ2 is the
variance parameter and xi ∈M is the centre of the Gaussian
distribution. Many shapes appear as a closed manifold with

∂M = /0, where boundary conditions do not appear. For the
case M has boundaries, we additionally require u to satisfy
homogeneous Neumann boundary conditions, where n is the
normal vector to the boundary.

C. The Feature Descriptor and Shape Correspondence

a) Feature Descriptor: Considering the surface itself
is unsuitable for many shape analysis tasks. A simplified
representation is needed which is often called a feature
descriptor. In this context, the feature descriptor stores the
geometry of the surface at a certain local region. We restrict
the spatial component of u(x, t) to

fxi(t) = u(x, t)|x=xi
with u(x,0) = exp

(
−dM (x− xi)

2

2σ2

)
(5)

and call the fxi the feature descriptors at the location xi ∈M .
Let us note that there exists a physical interpretation of the
feature descriptors. The heat based feature descriptor de-
scribes the rate of heat transferred away from the considered
point xi. Since we used an intrinsic approach, let us note,
the feature descriptor can not distinguish between intrinsic
symmetry groups.

b) Shape Correspondence: To compare the feature de-
scriptors for different locations xi ∈ M and x̃ j ∈ M̃ on
respective shapes M and M̃ , we simply define a distance
d f (xi, x̃ j) using the L1 norm

d f (xi, x̃ j) =
∫

I

| fxi − fx̃ j |dt (6)

The tuple of locations (xi, x̃ j) with the smallest feature dis-
tance should belong together. This condition can be written
as a minimisation problem for all locations:

(xi, x̃ j) = argmin
x̃k∈M̃

d f (xi, x̃k) (7)

By using x̃ j = S(xi) = xi, the map S can pointwise be restored
for all xi. Let us mention, that without further alignment the
restored map S is neither injective nor surjective because the
minimisation condition is not unique.

III. DISCRETISATION ASPECTS

As indicated we will construct a feature descriptor by
direct discretisation of the geometric heat equation. In order
to approximate the equation on a shape we have to take
care of three aspects. First, a discrete approximation of our
continuous and closed surface as well as of the time domain
is needed. Second, a suitable discrete Laplace-Beltrami op-
erator has to be defined. Third, quadrature formulas need to
be used to approximate the time integration.

We start with the integrated form of the geometric heat
equation in (4) over time and space

∫

I

∫

M

∂tu(x, t)dxdt =
∫

I

∫

M

∆M u(x, t)dxdt (8)
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Fig. 1. Continuous and discrete representation of a shape. The discrete
approximation of a shape is given by non-uniform and linear triangles. The
construction of volume cells is done by using the barycentric area around
a vertex.

A. Discrete Space and Time Domain

A suitable surface representation is given by a triangular
mesh, cf. Figure 1. In more detail, a triangulated surface
is given by the tuple Md = (P,T ). The point cloud P :=
{x1, . . . ,xN} contains the finite number of vertices (given
as coordinate points) a shape consists of. The entire mesh
can be formed by connecting the vertices xi so that one
obtains two-dimensional triangular cells. Therefore, the set
of linear triangles T contains the neighborhood relations
between vertices forming a triangle.

Further, we sub-divide the meshed surface and the time
axis as follows:

Md =
N⋃

i=1

Ωi and I =
M⋃

i=1

Ik (9)

where Ωi is the barycentric cell volume surrounding the i-th
vertex. For time, let Ik = [tk−1, tk] and t0 = 0, where the time
increment τ = tk− tk−1 for all k ∈ {1, . . . ,M} is uniformly
chosen.

B. Finite Volume Approach

Now we restrict the integrated geometric heat equation to
Ωi and Ik. For values x ∈Ωi and t ∈ Ik we have

∫

Ik

∫

Ωi

∂tu(x, t)dxdt =
∫

Ik

∫

Ωi

∆M u(x, t)dxdt (10)

Further we use the definition of the cell average

ui(t) = u(x̄i, t) =
1
|Ωi|

∫

Ωi

u(x, t)dx (11)

where |Ωi| is the surface area of the i-th cell. Now, we apply
the divergence theorem to substitute the volume integral on
the right-hand side into a line integral over the boundary of
the volume cell to define the averaged Laplacian of the i-th
cell

Lui(t) =
1
|Ωi|

∫

Ωi

∆M u(x, t)dx (12)

A function defined on all cells is represented by an N-
dimensional vector u(t) = (u1(t), . . . ,uN(t))>. Using the

βi j

αi j αi j

i

j

i

j

wi j wi j

Fig. 2. The cotangent weight scheme as discretisation of the Laplace-
Beltrami operator. Left: interior edge Right: boundary edge

mean value expression for equation (10), we obtain a system
of integrated ODEs:

∫

Ik

∂tu(t)dt =
∫

Ik

Lu(t)dt (13)

C. Discrete Spatial Operator

Many schemes have been proposed to estimate the
Laplace-Beltrami operator for a triangular meshed surface
[13], [15]. A commonly used method is the cotangent weight
scheme introduced in [11]. As a result, for a function u
defined on a triangular mesh the discrete Laplace-Beltrami
operator L ∈ RN×N reduces to the following sparse matrix
representation

L = D−1W (14)

The symmetric weight matrix W reads component-wise

Wi j =





− ∑
j∈Ni

wi j if i = j

wi j if i 6= j and j ∈ Ni

0 else

(15)

where Ni denotes the set of points adjacent to xi. The weights
wi j of the edge (i, j) can be classified into interior Ei and
boundary edges Eb respectively

wi j =

{
cotαi j+cotβi j

2 if (i, j) ∈ Ei
cotαi j

2 if (i, j) ∈ Eb
(16)

as shown in Figure 2. Furthermore, αi j and βi j denote the
two angles opposite to the edge (i, j), for details we refer to
the mentioned source. The Matrix

D = diag(|Ω1|, . . . , |Ωi|, . . . , |ΩN |) (17)

contains the local cell areas. Let us note that L is not
symmetric after computing the matrix product.

D. Discrete Time Integration

Discrete time integration of ODEs can be done by using
standard numerical methods through time step methods.
Common time integration schemes are the explicit Euler
method, the implicit Euler method and the trapezoidal
rule known as Crank-Nicolson method. The Crank-Nicolson
method is also an implicit method, however it is second-order
in time and will only produce slightly more computational
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cost than the implicit Euler method. For this reason, we
consider only the explicit Euler method and the Crank-
Nicolson method.

a) Explicit Euler Method: As a first step we apply the
fundamental lemma of calculus for the left-hand-side of (13)

∫

Ik

∂tu(t)dt =

tk∫

tk−1

∂tu(t)dt = u(tk)−u(tk−1) (18)

Finally we approximate the integral on the right-hand side
by using the rectangle method

tk∫

tk−1

Lu(t)dt ≈ τLu(tk−1) (19)

and by using the notation u(tk) = uk we obtain

uk =(I + τL)uk−1 (20)

where k ∈ {1, . . . ,M} and u0 = u0. Due to the fact that
the values of uk−1 are known, we can easily compute
the corresponding values uk at time k by simple matrix-
vector multiplication. This explicit scheme is known to be
just conditionally stable, see [19]. The stability requirement
yields a limitation on the size of the time step τ .

b) Crank-Nicolson Method: If we apply the trapezoidal
rule at the integral of the right-hand-side of (13)

tk∫

tk−1

Lu(t)dt ≈ τ
2
(Lu(tk)+Lu(tk−1)) (21)

we obtain finally
(
I− τ

2 L
)

uk =
(
I + τ

2 L
)

uk−1 (22)

To compute the values uk at time k it requires solving
a system of linear equations as well as a matrix-vector
multiplication in each time step. Therefore, it is numerically
more intensive than the explicit Euler method, however it has
second-order accuracy in time. The considerable advantage
of an implicit scheme is the numerical stability independently
of the time step size τ , cf. [19]. However, the Crank-Nicolson
method is sensitive for problems with discontinuous initial
conditions.

IV. NUMERICAL SOLVERS

An essential key requirement for a correct shape matching
is a sufficient accuracy of the computed numerical solution.
However, the geometric heat equation has to be solved for
each point and on each shape for a fixed time interval
t ∈ (0, tM]. Consequently, the computational costs are directly
related to the number of points of the regarded shapes. This
fact suggests that one may forego high accuracy in exchange
for a faster computational time. Therefore, a qualitative anal-
ysis of numerical methods for the geometric heat equation
in context to shape matching is absolutely essential.

As seen in the last section, the temporal integration can
either be done explicitly or implicitly. For both approaches
there exist several numerical solvers, which have different

advantages in terms of computational effort and accuracy
of the computed solution. In the following, we give a short
overview.

A. Explicit Methods

Explicit schemes are simple iterative schemes of the form
uk = (I+τL)uk−1 such as (20). The typical time step restric-
tion has a rather small upper bound and makes these methods
unsuitable for shape matching. An alternative is the usage
of the Fast Explicit Diffusion (FED) or Fast Semi-Iterative
(FSI) scheme, which is well-known in image processing.
For a detailed presentation of FED or FSI we refer to [6],
[7]. The core idea behind FSI is to consider an explicit
scheme and interleave time steps that significantly violate
the upper stability bound with small stabilising steps. To
decrease numerical rounding errors and simultaneously in-
crease the approximation quality, FSI uses cycles of varying
time steps. The cyclic FSI scheme, which accelerates the
explicit diffusion scheme (20), for the m-th cycle with cycle
length n is given by

um,k = αk · (I + τL)um,k−1 +(1−αk) ·um,k−2 (23)

n =

⌈√
3tM

τmax ·C
+

1
4
− 1

2

⌉
, τ =

3tM
C ·n(n+1)

(24)

αk =
4k+2
2k+3

, um,−1 = um,0, k = 1, . . . ,n (25)

where C is the number of outer FSI cycles, tM the diffusion
time and τmax the theoretical upper bound for a stable explicit
finite difference scheme. The FSI scheme can be applied
whenever the matrix L in (20) is negative semidefinite
and symmetric. The underlying matrix L is not symmetric,
however by multiplication of D to equation (20) we have

Duk =(D+ τW )uk−1 (26)

where W is symmetric and negative semidefinite.

B. Implicit Methods

Implicit schemes result in a linear system of equations
(compare (22)) and lead theoretically to an unconditionally
stable scheme without a time step restriction. However,
solving linear equations requires significant computational
effort and therefore a fast solver for large sparse linear
systems of equations is necessary.

Standard methods for solving linear systems are direct and
iterative solvers. Direct methods compute highly accurate
solutions and are predestined for solving a system with
multiple right-hand sides. In that case, the underlying matrix
will be factorised one-time, and subsequently each right
hand side is solved by forward and backward substitution.
Due to the fact that the underlying system matrix is sparse
the computational costs for the substitution step will be at
most O(n2), where n is number of equations. In contrast,
iterative solvers can compute approximate solutions in a very
fast way. A particular class of iterative solvers designed for
use with large sparse linear systems is the class of Krylov
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subspace solvers; for a detailed exposition see [18]. The
main idea behind the Krylov approach is to search for an
approximative solution of Ax= b, with A∈Rn×n a large reg-
ular sparse matrix and b ∈Rn, in a suitable low-dimensional
subspace Rl of Rn that is constructed iteratively with l being
the number of iterates. The aim in the construction is thereby
to have a good representation of the solution after a few
iterates. Let us note that this construction is often not directly
visible in the formulation of a Krylov subspace method.

We propose to employ the well-known conjugate gradient
(CG) scheme of Hestenes and Stiefel [8], which is still
an adequate iterative solver for problems involving sparse
symmetric and positive definite matrices. Let us note, if we
multiply the matrix D to equation (22), we obtain

(
D− τ

2W
)

uk =
(
D+ τ

2W
)

uk−1 (27)

such that
(
D− τ

2W
)

is symmetric positive definite. With
A =

(
D− τ

2W
)
, b =

(
D+ τ

2W
)

uk−1 and x = uk the latter
equation corresponds to solving a system Ax = b at time
k. For the CG method, one can show that the approximate
solutions xl (in the l-th iteration) are optimal in the sense that
they minimise the so-called energy norm of the error vector.
In other words, the CG method gives in the l-th iteration
the best solution available in the generated subspace [10].
Since the dimension of the Krylov subspace is increased in
each iteration, theoretical convergence is achieved at latest
after the n-th step of the method if the sought solution
is in Rn. The CG algorithm requires in each iteration a
sparse matrix-vector-multiplication. One main advantage is
that a practical solution can be reached quickly after a small
number l of iterations, which yields to a quick termination of
the CG method and total costs of at most O(ln2). However, in
practice numerical rounding errors appear and one may suffer
from convergence problems for very large systems. Thus, a
preconditioning is recommended to enforce all the beneficial
properties of the algorithm, along with fast convergence [1].
Moreover, it may require fine-tuning of parameters in the
preconditioned conjugated gradient method (PCG) and in
addition increase potentially the computational cost.

C. Model Order Reduction

The introduced explicit and implicit methods have to
handle large sparse systems, whereby the computational costs
depends on the point cloud size. Model Order Reduction
(MOR) techniques can be used to approximate the full ODE
system by a very low dimensional system, while preserving
the main characteristic of the original ODE system. Existing
MOR techniques [12], [14] are polynomial, projection and
non-projection based methods. In this work, we apply the
widely used modal coordinate reduction (MCR) method,
which is a projection based approach. The concept of MCR
is to transform the full model from physical coordinates
in physical space to modal coordinates in modal space by
using the eigenvector matrix of this system. Subsequently, it
removes those modes that have less important contributions
to the system responses. Generally, only a few modes have

a significant effect on the system dynamics within the
frequency range of interest.

After discretisation of the PDE (4) in space, we obtain a
system of ODEs (compare (13)) in format

u′(t) =Au(t) (28)

with a system matrix A ∈Rn×n. For A being diagonalisable,
there exists a matrix S ∈ Rn×n with eigenvectors of A
and a diagonal matrix Λ ∈ Rn×n with the corresponding
eigenvalues λi such that

A = SΛS−1 (29)

Inserting of (29) in (28) and the subsequent multiplication
of S−1 leads to

S−1u′(t) =ΛS−1u(t) (30)

The latter equation is the starting point for a strategic
selection of eigenvalues and eigenvectors (modes). It is well-
known, that the low frequencies (corresponding to small
eigenvalues) dominate the dynamics of the underlying phys-
ical system. Suppose m� n ordered eigenvalues 0 = λ1 <
λ2 ≤ ·· · ≤ λm are deemed of interest. Consequently, we
obtain with Λ̃∈Rm×m of Λ and S̃∈Rn×m the reduced model
of order m

w′(t) =Λ̃w(t) (31)

where w = S̃−1u. This low dimensional system is much
faster to solve than the original one. Applying the Crank-
Nicolson method to (31) based solely on diagonal matrices,
such that implicit method can solved by only matrix-vector-
multiplications.

V. EXPERIMENTAL RESULTS
In general, we perform a dense point-to-point correspon-

dence, involving all vertices the shapes are made off. In
detail, the experiments are evaluated as follows:

a) Hit Rate: The percentage Hit Rate is defined as
T P/(T P+FP), where TP and FP are the number of true
positives and false positives, respectively.

b) Geodesic Error: For the evaluation of the corre-
spondence quality, we followed the Princeton benchmark
protocol [9]. This procedure evaluates the precision of the
computed matchings xi by determining how far are those
away from the actual ground-truth correspondence x∗. There-
fore, a normalised intrinsic distance dM (xi,x∗)/

√
AM on

the transformed shape is introduced. Finally, we accept a
matching to be true if the normalised intrinsic distance is
smaller than the threshold 0.25.

c) Dataset: For experimental evaluation, we compare
datasets at three different resolutions, namely small, middle
and large. For the small (N = 4344) and medium (N = 27894)
shapes, examples of the wolf and cat class are used, taken
from the TOSCA data set [2]. The Fat Baby shapes have a
large resolution (N = 59727) and are taken from the KIDS
dataset [16]. The datasets are available in the public domain
as shown in Figure 3. All shapes provide ground-truth and
degenerated triangles were removed.
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d) General Parameters: We set the stopping time to
tM = 25 and the variance parameter σ = 1 for the still
free parameters of the geometric diffusion process in (4).
For the implicit methods the time increment τ = 1 was
fixed for all experiments. All three parameters are chosen
without a fine-tuning, since we are interested to figure out the
differences of the numerical methods compared to accuracy
and computational costs.

All experiments were done in MATLAB R2017b on a
recent Desktop Computer with an Intel Xeon(R) CPU E5-
2609 v3 CPU running at 6x 1.9GHz and XGB of 15.6 GB
RAM. The sparse linear system for the direct method was
prefactorised with the SuiteSparse package [4]. The com-
puted eigenvalues and eigenvectors for MCR are computed
by the Matlab internal function eigs.

Wolf Cat Baby

Fig. 3. For experimental evaluation, we compare shapes at three different
resolutions, namely small, middle and large. These are represented by the
“wolf”, “cat” and “baby” , taken from the TOSCA dataset.

A. Numerical Evaluation

a) Experiment - Wolf: First of all we analyse the wolf
shape with a point cloud size of only N = 4344 points.
In case of an explicit method (20) we get the time step
restriction τmax≈ 0.0085s, which corresponds to around 2900
iterations. The CPU time (in seconds) of the explicit method
with around 360s offers unacceptable running costs and is
consequently quite inefficient. In contrast, the FSI scheme for
(26) takes control over the individual time steps. Due to the
fact, that the final stopping time is fix we can only specify the
number of cycles C. Increasing C, whereby the cycle length
n becomes smaller, improves the accuracy of FSI compared
to the geodesic error of the standard explicit method, see
Figure 4. Already for C = 2 we can achieve respectable
results with an additional dramatic speed up of the explicit
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Fig. 4. Results on the dataset wolf. We compare the geodesic error up
to 0.25 (left) and the performance time (right) between the explicit method
and the FSI scheme for different number of cycles C.
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Fig. 5. Results on the dataset wolf. We compare the geodesic error up to
0.25 (left) and the performance time (right) between the direct method and
the CG method for different ε (top) and different number of CG iterations
l (bottom) for ε = 10−1 and ε = 10−2. We observe a dint-like effect (first
down, then up) w.r.t. the hit rate when increasing CG iterations.

method. However, we will see that the computational costs
of FSI of around 50s are still not too efficient.

The CPU time can be reduced to around 33s by using the
direct method for (22) and generates the same geodesic error
accuracy as the explicit method. Solving the linear system
(27) with the CG method requires a stopping criterion.
In general the relative residual ‖b−Ax‖2

‖b‖2 ≤ ε will be used.
Increasing ε leads to a faster CG approximation, however the
accuracy remained almost unchanged also for the relatively
large value ε = 10−1 cf. Figure 5. For this reason we
tested CG for ε = 10−1,10−2, and different number l of CG
iterations, see also Figure 5. In this case, the reduction of
l compared to the geodesic error accuracy leads to slight
oscillations, which are still acceptable, yet with a fast CPU
time of around 10s.

Finally, we explore the MCR technique. The whole MCR
process includes the computation of eigenvalues, eigenvec-
tors and the subsequent solving of the resulting reduced
system. For this experiment we increase the number of
used ordered modes, starting from Nmax = 1 and end up
to Nmax = 3000. The evaluation in Figure 6 shows that the
accuracy of the geodesic error depends on the number of used
modes. For a larger amount of modes the accuracy increases
significantly. However, it is remarkable that the results for
the small spectrum Nmax ≈ 10 are similar to the large spec-
trum Nmax ≈ 1000. Only from a certain size (Nmax ≈ 2000)
upwards we receive an acceptable matching result, however
in unacceptable running time. Nevertheless, the CPU time
by using a smaller number of modes is unbeatable. For
Nmax = 100 modes the approximative solution is computed
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Fig. 6. Results on the dataset wolf. We compare the geodesic error up to
0.25 (left) and the performance time (right) between the direct method and
the MCR technique for different number of modes Nmax.

in 3s under consideration of a much less geodesic error
accuracy.

b) Experiment - Cat: In the following, we consider the
medium dataset cat with a cloud point size of N = 27894
points. Although the FIS scheme outperforms the explicit
method, it is quite inefficient in consequence of the large
spectrum of eigenvalues, which depends on the mesh size of
the discretised shape. The mesh size is here very small, as is
often the case in shape matching applications, and therefore
the allowed time step 0 < τmax� 1 is also extremely small-
sized. Consequently, the dramatic rise of the computational
effort can not intercept the low costs of matrix-vector-
multiplication.

The direct method solves the linear system in around
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Fig. 7. Results on the dataset cat. We compare the geodesic error up to
0.25 (left) and the performance time (right) between the direct method and
CG respectively IC(10−2), IC(10−2) for different ε (top). In addition, we
present a comparison between the direct method and the CG method for
the first few CG iterations l (bottom) for ε = 10−1 and ε = 10−2. Let us
comment, that we observe here only the first part of the dint-effect, compare
Figure 5, the hit rate increase of the dint will start with iteration l = 14.
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Fig. 8. Results on the dataset cat. We compare the geodesic error up to
0.25 (left) and the performance time (right) between the direct method and
the MCR technique for different number of modes Nmax.

2150s. Due to the large matrix size, we apply CG, and PCG
with the incomplete Cholesky (IC) decomposition, as shown
in Figure 7. For the latter decomposition often a numerical
fill-in strategy IC(γ) is used, called drop tolerance, where
the parameter γ > 0 describes a dropping criterion, cf. [18].
We have found by tests that γ ∈ [10−2,10−3] gives the best
trade-off between accuracy and CPU time. Increasing ε leads
naturally to faster computations but slightly worse results.
Compared to the time performance of the direct method we
achieve only a minor improvement. However, if we take a
closer examination of the required iterations l, for CG and
PCG with ε = 10−1, it is conspicuous that PCG needed just
about 1 iteration and CG on the other hand 20 iterations.
The latter observation again inspires the idea to perform the
CG method for a smaller number of iterations l ≤ 10, which
accordingly should be sufficient to gain acceptable results in
fast CPU time. The results of CG for ε = 10−1,10−2, and a
number l of CG iterations is shown in Figure 7. Decreasing l
reduces the time costs a lot, for instance one can save around
1500s for l = 1 compared to the direct method.

Application of MCR achieves the same solution behaviour
as the wolf dataset, see Figure 8. Increasing the amount of
used ordered modes leads to a significantly higher accuracy
of the geodesic error and to more stable performance. Never-
theless, the computational costs of MCR grow exponentially
(by increasing Nmax) and a practicable value Nmax is accord-
ingly small. It is observable that the geodesic error for the
range Nmax ∈ [20,1000] is almost equal and oscillates just
weakly. Even if the MCR technique for Nmax = 200 looses
around 35% accuracy (from 48 to 30) the simultaneous
extremely short running time of around 100s is remarkable.
Therefore, one may save around 95% of the computational
time in relation to the direct method.

c) Experiment - Baby: Finally, we investigate the large
dataset baby with a cloud point size of N = 59727 points.
As before, we will study the shape matching correspondence
in relation to the accuracy of the geodesic error and the
computational effort between the direct method, the CG
method (for ε = 10−1 and l ≤ 10) and the MCR technique.

The direct method requires around 10300s (≈ 2 hours and
50 minutes) to solve 59727 linear systems on each shape for
each time step. At this point it is recognizable, that large
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Fig. 9. Results on the dataset baby. We compare the geodesic error up to
0.25 (left) and the performance time (right) between the direct method and
CG method for different number of iterations l and ε = 10−1.
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Fig. 10. Results on the dataset baby. We compare the geodesic error up
to 0.25 (left) and the performance time (right) between the direct method
and the MCR technique for different number of modes Nmax.

datasets produce extreme highly computational costs.
The evaluation of CG for ε = 10−1 and l ≤ 10 is shown in

Figure 9. The percentage deviation of the accuracy of CG in
relation to the direct method is approximately around 10%.
In contrast, for l = 1, we can reduce the computational effort
significantly to around 2600s, which can save more than 75%
of the computational costs.

The MCR technique yields identical results as in the other
two cases, compare Figure 10. The geodesic error oscillates
in the range of Nmax = [1,20] and from Nmax = 20 up to
Nmax = 3000 it converges against the solution of the direct
method. Unfortunately, the convergence is very slow and
a huge number of modes Nmax is required. As before, for
Nmax = 200 the deviation of accuracy is around 35% (from
60 to 40), yet MCR needs around 500s. This means MCR
reduce extremely the computational effort to 5%.

VI. CONCLUSION AND FURTHER WORK

Experimental results confirm that the direct method, the
CG method and the MCR technique are predestined for
solving shape matching by time integration. Each of these
methods has its own main advantage. The direct method is
very accurate but can be inefficient. The CG method may
reduce the computational costs to around 70%, whereby
the percentage deviation of the accuracy in relation to the
direct method is still less than 10%. The MCR technique
is extremely fast and can save around 95% CPU time of
the direct method, however it looses around 35% accuracy.

Let us mention, that the underlying datasets are noise-free,
therefore a further issue to examine is the influence of noisy
data to the robustness of the numerical solvers.

The experiments show another interesting point of the
MCR technique. It is remarkable that the results for a small
spectrum are similar to the ones for a significantly larger
spectrum. Unfortunately, the small spectrum suffers by a
performance collapse at a low range of modes, roughly
Nmax ∈ [1,20]. Therefore, an interesting aspect would be to
tune the small spectrum so that it becomes more stable. One
may also consider other, more elaborated MOR techniques
to possibly obtain a better trade-off between quality and
computational effort.
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