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Multi-camera Array Calibration for Light Field Depth Estimation

Bernhard Blaschitz1, Doris Antensteiner1 and Svorad Štolc1

Abstract— At the core of stereo methods for depth estimation
and 3D reconstruction lies geometric calibration, i.e. the deter-
mination of intrinsic and extrinsic camera parameters and con-
secutive image rectification, such that the epipolar constraints
are met in all views. In this spotlight paper, we present a
multi-camera array calibration that fulfills the requirements
for 3D reconstruction. The method is based on an optimization
procedure that minimizes the reprojection error. We used it to
calibrate the Xapt Eye-sect XA camera array with 4x4 camera
modules equipped with identical wide-angle lenses. For this
particular setup, we analyzed the algorithm’s precision step by
step, from initial pairwise multi-view stereo calibration to final
bundle adjustment, to assess influence of each individual step.
The conducted quantitative analysis based on the reprojection
error revealed superiority of the bundle adjustment over all
other considered intermediate steps yielding accuracy as much
as 33x higher than the initial pairwise method. In order to
demonstrate real-world performance of the calibrated camera
array, we present a number of acquisitions of different physical
objects along with estimated disparity maps and corresponding
texture images generated by a light field multi-view stereo
algorithm.

I. INTRODUCTION

In recent years, there has been a boom of commercially
available stereo and multi-camera systems for both consumer
as well as industrial applications. Geometries of existing
multi-camera systems are very diverse: from matrix cameras
such as Xapt Eye-sect XA used in this paper, through
plenoptic cameras such as Lytro or Raytrix, to unstructured
multi-camera systems that make use of multiple free camera
modules. Capturing multiple views of a scene by multi-
camera systems is often interpreted as light field, which is
the 4D radiance function of 2D position and 2D direction
of each light ray propagating thorough space in regions free
from occluders [1].

The steady improvement of stereo matching algorithms
creates a high need for automated tools for calibrating such
light field systems, consecutively allowing highly accurate
depth estimation and 3D reconstruction.

The basis of multi view calibration is the geometric
calibration, i.e. the determination of intrinsic and extrinsic
camera parameters [2], as well as multi-view stereo and
bundle adjustment [3] and image rectification.

In this case study, we present a multi-camera array
calibration pipeline that fulfills the requirements for 3D
reconstruction, such as epipolar constraints. The method is
based on an optimization procedure which minimizes the
reprojection error.

1all three are with AIT Austrian Institute of Technology, Giefingasse 4,
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Fig. 1. Top: Estimated positions of the 16 camera modules of Xapt Eye-
sect XA as well as estimated poses of the presented calibration patterns
as a result of the proposed optimization procedure minimizing reprojection
errors. Note that each camera module has a resolution of just 480× 480
pixels. Bottom: Example of a depth model (left: disparity map; right: texture
image) obtained by a light field multi-view stereo algorithm making use
of the calibrated system. See also Figs. 4 and 5 for further examples of
reconstruction from the same setup.

For a multi-view system, which is positioned in an un-
structured manner and thus results in a irregular light field,
it is favorable to implement a generic multi-view matching
scheme. In this paper we considered an algorithm inspired
by [4] and [5], extended by a real-time discrete-continuous
optimizer [6] for a globally consistent depth map under the
generalized first-order total variation (TV) prior.

In Sec. II we describe our multi-view calibration pipeline,
which improves existing methods. In this case study, the cal-
ibration of the Xapt Eye-sect XA camera array, its accuracy
as well as a number of depth reconstructions generated by a
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Fig. 2. Left: The input image taken by the Xapt Eye-sect XA camera. Middle: The undistorted rectified image. Note that all edges of the chessboard
are bent in the left image (with distortion) and straight unbent (without distortion) in the middle image. Right: The rectified view of Camera 9 and the
associated horizontal EPI image; the corresponding 3d reconstruction is in Fig. 1.

light field multi-view stereo algorithm are shown in Sec. III.
Finally, in Sec. IV we conclude this study.

II. CALIBRATION METHOD

We present a methodology, which was implemented in
Matlab and relies on the Complete Camera Calibration
Toolbox for Matlab [8], mainly for the intrinsic calibration.
Our contribution improves over the prior art in the following
points:
• It makes use of a high precision calibration target

and accompanying algorithms [7], which improve the
accuracy of automated pattern detection (see Fig. 3) and
is stable to defocusing and sensitive to mirroring.

• It computes a true multi-view calibration instead of
a pairwise stereo calibration. For this we use bundle
adjustment [3], which optimizes intrinsic and extrinsic
camera parameters by minimizing the overall reprojec-
tion error (see Sec. II-A). It can also cope with patterns
that are not visible in all cameras.

• It allows image rectification suitable for light field
processing, such as depth measurement and 3D recon-
struction (see Sec. II-B).

A. Optimizing camera parameters
The notation complies with the camera model introduced

in OpenCV Toolbox [9] and builds on the toolbox from [8].

Fig. 3. We use an improved central element [7] for the calibration target,
which has the advantage that only three dots in the center have to be visible
in order to recognize the pattern, with a high robustness w.r.t. defocusing.

The intrinsic camera model has 10 degrees of freedom: two
focal lengths fx, fy, two principal point coordinates cx,cy,
camera skew α , three radial distortion parameters k1,k2,k3
and two tangential distortion coefficients p1, p2, which com-
prise the distortion parameters d = (k1,k2, p1, p2,k3). Fur-
thermore, there are 6 degrees of freedom for extrinsic camera
parameters T , which comprise the position and rotation of
the camera in a global coordinate system.

The bundle adjustment [3] is a non-linear method for
refining extrinsic and intrinsic camera parameters, as well as
the structure of the scene. It is characterized by minimizing
the reprojection error by a standard least-squares approach

E(C,X) =
n

∑
i=1

m

∑
j=1

dist(xi j,Ci(X j)))
2, (1)

where Ci(X j) = C(Hi,Ti,di,X j) is the reprojected point, i.e.
the image of a point X j ∈R3 as observed by the i-th camera.
Furthermore, xi j is the corresponding detected point of the
calibration pattern and dist(xi j,Ci) is the point’s reprojection
error.

We initialize the minimization with a single view calibra-
tion, choose one camera as the central view and initialize the
other cameras’ extrinsic parameters T by factoring out the
average difference in pose of the detected calibration pattern.
This is inspired by the initialization of the stereo calibration
in [8], hence the assigned designation pairwise in Tab. I.

The quadratic objective function of Eq. 1 is minimized
with a standard least squares solver. To avoid getting stuck
in a local minimum, due to many degrees of freedom, an
outer iteration for different optimization phases keeps certain
parameters fixed.

For the phase patterns in Tab. I, only the positions and
rotations of calibration patterns are optimized and all camera
specific parameters remain unchanged. For the next phase,
extrinsics, poses of calibration patterns as well as intrinsics
are fixed and only the positions and rotations of all cameras
are optimized. Finally, in the phase bundle adjustment all
parameters are allowed to change.
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B. Image rectification for light field processing

In order to facilitate light field / multi-view correspon-
dence analysis methods, images captured by the system need
to be rectified making use of the obtained calibration model.
Since all cameras usually point to different directions and
their locations are rarely coplanar, the standard stereo image
rectification [10], which is defined for two cameras, cannot
easily be generalized.

As described in [5], all camera views need to be repro-
jected to a common regression plane ε , which turns the costly
warping necessary for cross-comparison between multiple
images to simpler translation and scaling operations. If all
camera centers are coplanar and ε is chosen parallel to the
camera plane, the entire image manipulation needed for the
correspondence analysis between multiple cameras reduces
just to a translation, which poses a significant computational
and algorithmic advantage over the standard stereo approach.

The rectified images have been computed as follows: the
regression plane ε has been chosen parallel to the plane
fitted through the camera centers and minimizing the squared
distance to all calibration patterns. Then, all camera images
have been projected onto ε and resampled with the same
regular pixel grid. The obtained images form the rectified
light field which is required to perform depth estimation.

III. CALIBRATING XAPT EYE-SECT XA

With regard to demonstrating real-world performance of
the proposed calibration model, we have taken an example
of the Xapt Eye-sect XA camera array with 4x4 camera
modules equipped with identical wide-angle lenses. Initially
a number of images of AIT’s calibration target [7] were
acquired for estimating the camera’s calibration model, see
Fig. 1 (top) for a visualization.

A. Comparison of the reprojection errors

In order to compare the results of our method comprising
bundle adjustment with the original method of Bouguet [8],
we have conducted a quantitative accuracy analysis based on
the reprojection error. The results of this analysis are shown
in Tab. I.

For a typical set of calibration images, the reprojection
errors resulting from Eq. (1), which are computed per camera
after a pairwise optimization with respect to Camera 6, are
shown in row pairwise. The reprojection errors after further
optimization of the calibration pattern poses are given in row
patterns. The row extrinsics shows errors after additional
optimization of extrinsic parameters for all cameras. Finally,
the reprojection errors after the full bundle adjustment,
which also includes optimizing the intrinsic parameters of
all cameras, are provided in row bundle adjustment.

This exemplary application shows that the biggest drop
in the reprojection error occurs in the first step after the
initialization, which is when the optimization of the cali-
bration pattern poses took place. Nevertheless, the bundle
adjustment showed superior results over all other considered
intermediate steps yielding an accuracy which is 33x higher
than the initial pairwise method.

B. Depth estimation using light fields

Light field data is captured with the Xapt Eye-sect XA
camera by measuring the irradiance values from different
viewpoints on the object. For each observation we thereby
obtain 4×4 images with different viewpoints, each of which
has a resolution of 480× 480 pixels. For the multi-view
correspondence analysis we considered 32 random camera
pairs out of all 120 (i.e.

(16
2

)
) possible pairs.

Since the Xapt Eye-sect XA shows irregularities in the
system geometry, namely camera positions were off the grid
by as much as 3% of the baseline, the implementation
of a robust matching algorithm for 3D reconstruction is
essential. Therefore we implemented a robust multi-view
matching algorithm for a qualitative evaluation of the camera
calibration as described below.

We generate normalized gradient features for comparing
local image structures, which we compare using the sum of
absolute differences (SAD). This approach proved more per-
formant compared to the traditional Census transform / Ham-
ming distance [11] tandem, especially when coupled with a
subsequent regularizer.

Using the resulting features of the rectified light field
images (which we obtained with the calibration model as
described in Sec. II-B), we perform a correspondence analy-
sis inspired by [4] in each spatial location (x,y)∈ X×Y of a
chosen reference view of the camera matrix. The analysis is
conducted separately for pairs of cameras. Each hypothesis
for a defined camera pair contributes to one global cost
function. The resulting cost volume describes the matching
quality of visual structures for defined disparity hypotheses
within the light field views.

A globally consistent depth solution was obtained under
the total variation (TV) prior, using a real-time discrete-
continuous optimizer proposed in [6]. This algorithm shows
exceptional performance, both concerning the speed as well
as the solution quality. Further depth refinement methods can
be implemented as described in [12].

Figs. 4 and 5 show qualitative reconstruction examples.

IV. CONCLUSIONS

We presented a pipeline for geometric multi-view calibra-
tion, which includes bundle adjustment. With our routines we
have calibrated a multi-view camera and used it for capturing
depth information.

The conducted quantitative analysis based on the reprojec-
tion error revealed superiority of the bundle adjustment over
all other considered intermediate steps yielding an accuracy
as much as 33x higher than the initial pairwise method. The
largest refinement of the reprojection error was observed in
the first step after the initialization during the optimization
of the poses of the calibration pattern.

For a qualitative assessment of the calibration model we
implemented a multi-view stereo matching algorithm which
includes a real-time discrete-continuous optimizer which
allows a globally consistent depth map under the generalized
first-order total variation (TV) prior.
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TABLE I
Comparison of the mean reprojection errors (in pixel) per camera of Xapt Eye-sect XA array for different phases of the proposed algorithm. Note that
the algorithm was initialized with the pairwise method and reference camera 6, subsequently different parameters were optimized: in patterns poses of

the calibration patterns, in extrinsics only the 16 cameras’ poses and in bundle adj. all parameters, including camera intrinsics.
Phase/Camera c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 Avg.
pairwise 2.28 8.75 9.32 10.29 2.27 0.09 8.49 16.64 6.21 1.91 13.47 12.73 4.06 8.18 9.01 8.44 7.63
patterns 0.37 0.44 0.57 0.41 0.44 0.54 0.62 0.42 0.38 0.41 0.51 0.77 0.46 0.34 0.49 0.93 0.51
extrinsics 0.16 0.24 0.33 0.22 0.24 0.54 0.58 0.25 0.22 0.15 0.29 0.28 0.29 0.24 0.37 0.29 0.29
bundle adj. 0.12 0.19 0.30 0.18 0.23 0.15 0.55 0.19 0.19 0.13 0.26 0.21 0.27 0.21 0.33 0.22 0.23

1

63

5

9
11

63

Fig. 4. The performance of the presented multi-camera array calibration was tested by means of a 3D printed staircase object with seven 1 mm steps.
The object was acquired with the Xapt Eye-sect XA camera at the working distance of approx. 340 mm. The estimated system’s baseline and the average
focal length was approx. 90 mm and 710 mm, respectively. The corresponding depth resolution was ∆z ≈ 1mm. Despite a low camera resolution and
limited baseline, the obtained disparity map generated by the calibrated camera array accurately reproduced each individual step of the staircase, hence
we consistently operate at or above the predicted depth resolution of this system. That is additional evidence of the calibration model’s high accuracy
additionally to low reprojection errors.
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[12] D. Antensteiner, S. Štolc, and T. Pock, “A review of depth and normal
fusion algorithms,” Sensors, vol. 18, no. 2, 2018.

Fig. 5. Examples of the estimated disparity maps (left) and corresponding
texture images (right) for several real-world objects. The disparity maps are
displayed in pseudo colors, where blue stands for areas further away and
red for areas closer to the camera. In order to increase readability of surface
details, slight shading was applied to disparity maps.

33


