


AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used. 

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis.

Date Signature



Acknowledgements

I would like to express my gratitude towards my supervisor Professor Elsholtz
for his support during the research and writing of this thesis and for intro-
ducing me to many interesting mathematical topics, which will stay on my
mind for a long time even after my departure from university.

I would like to thank my friends Leonardo Alese and Stefan Lendl for
their invaluable cooperation, during which we managed to prove the results
given in Chapter 2, and for the many fun afternoons of interesting discussions
on problems discussed in and related to this thesis.

I am very grateful to my friend Manfred Scheucher for his many insightful
comments and suggestions.

My sincere thanks to my parents Brigitta Tabatabai-Stocker and Behnam
Tabatabai for their continuous support and encouragement throughout my
studies.

Special thanks to my friends Jakob Saqri, Isabella Pototschnig, Benjamin
Marko, Michael Cano, Leonardo Alese, Stefan Lendl and Manfred Scheucher
and to my parents Brigitta Tabatabai-Stocker and Behnam Tabatabai for
their help with proofreading this thesis.

3



Abstract

Let s(n) denote the smallest positive integer with the property that
there exists a sequence S of length s(n) over the alphabet {1, . . . , n}
such that S contains every subset of {1, . . . , n} as a block of consecu-
tive elements. We provide the previously unknown values s(6) = 24
and s(7) = 40 by means of a backtracking algorithm, utilizing an
efficient early-pruning condition. Further, we give an integer pro-
gramming formulation for calculating values of s(n). We introduce a
probabilistic heuristic algorithm, which provides the currently small-
est known upper bounds for the values s(n) for n = 8, . . . , 20. Finally
we analyze constructions by Jukna and Lipski—the latter giving the
currently smallest known asymptotic upper bound for s(n). We intro-
duce a simple greedy algorithm, outperforming Lipski’s construction
for all values of n where computation is feasible, which indicates that
the bound obtained from Lipski’s construction may not be asymptot-
ically tight.

Let a(n) denote the smallest positive integer with the property
that there exists a colouring f of {1, . . . , a(n)} such that for every
subset R ⊆ {1, . . . , n} there exists an arithmetic |R|-progression A in
{1, . . . , a(n)} with {f(a) : a ∈ A} = R.
Further, let a(n, k) denote the smallest positive integer with the prop-
erty that there exists a colouring f of {1, . . . , a(n, k)} such that for
every k-subset R ⊆ {1, . . . , n} there exists an arithmetic k-progression
A in {1, . . . , a(n, k)} with {f(a) : a ∈ A} = R.
Determining the behaviour of the functions a(n) and a(n, k) is a previ-
ously unstudied problem. Using a genetic algorithm, we calculate up-
per bounds for a(n) for small values of n. In joint work with Leonardo
Alese and Stefan Lendl, we use the first moment method to give an
asymptotic upper bound for a(n, k) for the case where k = o(n1/6).

We introduce the following problem: In a fixed class of graphs we
want to find a graph G with the least possible number of vertices that
can be vertex-coloured in such a way that every subset of {1, . . . , n}
appears as the vertex colours of a connected subgraph of G. We give
examples for several classes of graphs.



Contents

1 Sequences covering all subsets of a finite set 6
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Exact values and bounds for small n . . . . . . . . . . . . . . 11

1.2.1 Backtracking Algorithm . . . . . . . . . . . . . . . . . 13
1.2.2 Heuristic approaches . . . . . . . . . . . . . . . . . . . 20
1.2.3 Integer Programming . . . . . . . . . . . . . . . . . . . 24

1.3 Asymptotic bounds . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 Jukna’s construction . . . . . . . . . . . . . . . . . . . 32
1.3.2 The length of Jukna’s construction . . . . . . . . . . . 33
1.3.3 Lipski’s construction . . . . . . . . . . . . . . . . . . . 35
1.3.4 The length of Lipski’s construction. . . . . . . . . . . . 40
1.3.5 Overlap-Greedy Algorithm . . . . . . . . . . . . . . . . 41

2 Generalization to arithmetic progressions 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Exact values and bounds for small n . . . . . . . . . . . . . . 47

2.2.1 Genetic Algorithm and Backtracking approach . . . . . 47
2.3 Asymptotic bounds . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Asymptotic upper bound . . . . . . . . . . . . . . . . . 53
2.3.2 Asymptotic lower bound . . . . . . . . . . . . . . . . . 61

3 Generalization to graphs 63

4 References 68

List of Algorithms

1.10 Backtracking Algorithm . . . . . . . . . . . . . . . . . . . . . 16
1.11 Procedure: extend(S) . . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Procedure: makeValid(S) . . . . . . . . . . . . . . . . . . . . . 17
1.14 Element Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.15 Randomized Element Greedy . . . . . . . . . . . . . . . . . . 21
1.17 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 23
1.20 Symmetric Chain Partition (Greene and Kleitman [8]) . . . . 29
1.29 Overlap-Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 49

5



1 Sequences covering all subsets of a finite

set

1.1 Introduction

In 1977 Witold Lipski [14] studied the combinatorial problem of finding short
sequences containing every subset of a finite set as a block of consecutive
elements.
Let S be a finite sequence. We call a collection of consecutive elements of S
a block. If a block consists of k elements, we may call the block a k-block. Let(
[n]
k

)
denote the family of all k-subsets of [n] = {1, . . . , n} and let Y ∈

(
[n]
k

)
be

a k-subset of [n]. We say a k-block B = (b1, . . . , bk) covers Y if the elements
of the block B are pairwise distinct and {b1, . . . , bk} = Y. We say S covers Y
if there exists a block of S that covers Y .

Example. The sequence (1, 2, 3, 4, 1, 2) covers the set {1, 3, 4} because it
contains the block (3, 4, 1). 4

Let n ∈ N and let P be a family of subsets of [n]. We say a sequence S
over the alphabet [n] is a P-covering sequence (or S covers P) if S covers
every set in P . The problem of finding a shortest P-covering sequence is P-
complete if we allow P to be an arbitrary family of subsets of [n]. This was
shown in 1977 by L. T. Kou [12]. For n ∈ N, let P (n) denote the powerset
of [n] except for the empty set, i.e,

P (n) = 2[n] \ {∅},

and for pairwise distinct positive integers k1, . . . , kr ≤ n define

Pk1,...,kr(n) =

(
[n]

k1

)
∪
(

[n]

k2

)
∪ · · · ∪

(
[n]

kr

)
,

the family of all subsets X ⊆ [n] with |X| ∈ {k1, . . . , kr}. We are interested
in the cases P = P (n) and P = Pk1,...,kr(n). We define s(n) to be the length
of a shortest P (n)-covering sequence and sk1,...,kr(n) to be the length of a
shortest Pk1,...,kr(n)-covering sequence.

Example. The sequence (1, 2, 3, 1, 4, 2, 3, 4) is a P (4)-covering sequence be-

6



cause it covers all subsets of {1, . . . , 4}:

{1, 2} : (1,2, 3, 1, 4, 2, 3, 4)
{1, 3} : (1, 2,3,1, 4, 2, 3, 4)
{1, 4} : (1, 2, 3,1,4, 2, 3, 4)
{2, 3} : (1,2,3, 1, 4, 2, 3, 4)
{2, 4} : (1, 2, 3, 1,4,2, 3, 4)
{3, 4} : (1, 2, 3, 1, 4, 2,3,4)
{1, 2, 3} : (1,2,3, 1, 4, 2, 3, 4)
{1, 2, 4} : (1, 2, 3,1,4,2, 3, 4)
{1, 3, 4} : (1, 2,3,1,4, 2, 3, 4)
{2, 3, 4} : (1, 2, 3, 1,4,2,3, 4)
{1, 2, 3, 4} : (1, 2, 3,1,4,2,3, 4)

4

Note that sk(n) ≤ s(n) holds for all k ≤ n. Lipski [14] used Propositions
1.1 and 1.2 to give lower bounds for s(n).

Proposition 1.1 (Lipski [14]). For n, k ∈ N (where k ≤ n) we have

sk(n) ≥ n ·
⌈(

n− 1

k − 1

)
/k

⌉
.

Proof. For each fixed i ∈ [n] there are
(
n−1
k−1

)
k-subsets of [n] containing i.

Let S be a sequence covering all k-subsets of [n]. Each element of S appears
in at most k k-blocks of S (elements of S that appear close to the beginning
or the end of S are contained in less than k k-blocks). Hence, every i ∈ [n]
must appear at least d

(
n−1
k−1

)
/ke times in S, which implies

|S| ≥ n ·
⌈(

n− 1

k − 1

)
/k

⌉
.

Proposition 1.2 (Lipski [14]). For n, k ∈ N (where k ≤ n), we have

sk(n) ≥ k +

(
n

k

)
− 1.

Proof. Since there are
(
n
k

)
k-subsets of [n], a sequence covering all k-subsets

of [n] must consist of at least
(
n
k

)
k-blocks. A sequence consisting of exactly(

n
k

)
k-blocks has length k+

(
n
k

)
−1; the first k elements form a single k-block,

and each of the remaining
(
n
k

)
− 1 elements induces another k-block.

7



Setting k = dn/2e in the above proposition, Lipski obtained the lower
bound

s(n) ≥ dn/2e+

(
n

dn/2e

)
− 1 (for all n ≥ 1).

Since
(

n
dn/2e

)
= 2n

√
2
πn

(1 + o(1)) as n tends to infinity, we obtain the follow-

ing corollary:

Corollary (Lipski [14]). There exists a real-valued function ψ1 : N 7→ R with
ψ1(n) = o(1) as n tends to infinity, such that for all sufficiently large n ∈ N

s(n) ≥ 2n
√

2

πn
(1 + ψ1(n))

holds.

In Section 1.3.3 we present an upper bound for s(n), which was obtained
by Lipski [14] using a clever construction:

Theorem (Lipski [14]). There exists a real-valued function ψ2 : N 7→ R with
ψ2(n) = o(1) as n tends to infinity, such that for all sufficiently large n ∈ N

s(n) ≤ 2n
2

π
(1 + ψ2(n))

holds.

The true asymptotic behaviour of s(n) is not known. The closely re-
lated problem of determining sk(n) is well studied, but in a slightly different
context:

Definition 1.3 (Universal sequences and universal cycles). A sequence S
over the alphabet [n] is called (n, k)-universal sequence if S consists of exactly(
n
k

)
k-blocks, each covering a unique k-subset of [n]. A cycle is a sequence

where we extend the definition of consecutive elements by allowing wrap-
around along the ends of the sequence (for example, the 3-blocks of the cycle
C = (1, 2, 3, 4) are (1, 2, 3), (2, 3, 4), (4, 1, 2) and (3, 4, 1)). A cycle C is called
(n, k)-universal cycle if C consists of exactly

(
n
k

)
k-blocks, each covering a

unique k-subset of [n]. 4

Equivalently, a sequence S is an (n, k)-universal sequence if it covers all
k-subsets of [n] and has length k +

(
n
k

)
− 1. A cycle C is an (n, k)-universal

sequence if and only if it covers all k-subsets of [n] and has length
(
n
k

)
.

The following conjecture by Chung, Diaconis and Graham [4] has been the
main focus of research on this subject.

8



Conjecture 1.4 (Chung, Diaconis, Graham [4]). Let k ∈ N. There exists a
positive integer nk such that for all n ≥ nk, there exists an (n, k)-universal
cycle if and only if

n |
(
n

k

)
,

or equivalently k |
(
n−1
k−1

)
.

Because of symmetry, all elements 1, . . . , n must appear an equal number
of times in an (n, k)-universal cycle. Thus, the condition in Conjecture 1.4
is necessary for all k, n ∈ N (where k ≤ n).
For k = 2, the condition 2 |

(
n−1
1

)
is equivalent to n being odd. An (n, 2)-

universal cycle corresponds to an Eulerian tour in the complete graph Kn

on n vertices, and since the graph Kn is Eulerian if and only if n is odd,
Conjecture 1.4 is true for the case k = 2 (observed by Chung, Diaconis,
Graham [4], and by D. Curtis et al. [5]).
For k = 3, Jackson [10] proved that Conjecture 1.4 holds (with n3 = 8) and
further gave a partial positive result for the case k = 4 (missing the case where
n ≡ 2 mod 8, which remains unresolved to this date). Glenn Hurlbert [9]
proved Conjecture 1.4 for k = 6 for the case where n is relatively prime to k.

For n and k where an (n, k)-universal cycle does not exist, it is natural
to consider the problem of finding a shortest cycle covering all k-subsets of
[n]. Let ck(n) denote the length of such a shortest cycle.

In 2016, Micha l Dȩbski and Zbigniew Lonc [6] gave the following asymp-
totic results:

Theorem (Dȩbski and Lonc [6]). For fixed k ∈ N, as n tends to infinity,

ck(n) =

(
n

k

)
+O(ndk/2e)

holds. Let 0 < α ≤ 1
3

be fixed. Let k = k(n) ≤ nα for all n ∈ N. As n→∞,
we have

ck(n) =

(
n

k

)
+ o

((
n

k

)β)
,

where β = 1+α
2−2α .

Note that since ck(n) ≤ sk(n) ≤ ck(n) +n for all k, n ∈ N (where k ≤ n),
the asymptotic results in the above theorem also apply to sk(n). Lipski con-
jectured that asymptotically, s(n) ∼ sbn/2c(n). Unfortunately, the asymp-
totic behaviour of ck(n) seems to be unknown in the case where k = k(n) is
a linear function of n.

Determining sk(n) for k = 2 and k = n − 1 is easy. In Propositions 1.5
and 1.6 we give the corresponding results.

9



Proposition 1.5. For all n ≥ 2

sn−1(n) = 2n− 2

holds.

Proof. Proposition 1.2 implies sn−1(n) ≥ 2n− 2. We claim that

Sn−1(n) = (1, 2, . . . , n, 1, 2, . . . , n− 2)

is a Pn−1(n)-covering sequence, showing sn−1(n) ≤ 2n− 2.
The sets in Pn−1(n) are exactly the sets of the form {1, . . . , n} \ {j}

for 1 ≤ j ≤ n. The first n elements of Sn−1(n) contain the two (n − 1)-
blocks (1, . . . , n − 1) and (2, . . . , n), covering the sets {1, . . . , n} \ {n} and
{1, . . . , n} \ {1}, respectively. For each i ∈ {1, . . . , n − 2} the sequence
S(n) contains the block (i + 2, i + 3, . . . , n, 1, . . . , i), which covers the set
{1, . . . , n} \ {i+ 1}.

Proposition 1.6. For all n ≥ 2,

s2(n) =

{(
n
2

)
+ 1 if n is odd(

n
2

)
+ n

2
if n is even

holds.

Proof. Let Kn be the complete (undirected) graph on n vertices. Each edge
in Kn corresponds to a 2-subset of [n]. A walk v1, . . . , vr in Kn that tra-
verses every edge exactly once thus corresponds to a shortest P2(n)-covering
sequence. If n is odd, Kn is Eulerian and there exists a walk that traverses
every edge exactly once, corresponding to a P2(n)-covering sequence of length(
n
2

)
+ 1.

For even n, Proposition 1.1 implies s2(n) ≥
(
n
2

)
+ n

2
. We construct a P2(n)-

covering sequence of length
(
n
2

)
+ n

2
. In general, a connected graph has an

Eulerian walk if and only if at most two of its vertices have odd degree. For
even n, all vertices of Kn have odd degree. By adding n−2

2
mutually disjoint

edges to Kn, we obtain a graph K∗n, in which all but two vertices have odd
degree. The P2(n)-covering sequence corresponding to an Eulerian walk in
K∗n has length

(
n
2

)
+ n−2

2
+ 1 =

(
n
2

)
+ n

2
.

10



1.2 Exact values and bounds for small n

Until now, exact values of s(n) were known only up to n = 5. The values
listed in Table 1 were already known to Lipski [14].

n s(n)

1 1
2 2
3 4
4 8
5 13

Table 1: Previously known values of s(n).

In Section 1.2.1 we provide a backtracking algorithm, which allows us to
prove s(6) = 24 and s(7) = 40. Showing s(6) = 24 can be done by other
means as well; the lower bound in Proposition 1.1 implies s(6) ≥ s3(6) ≥ 24,
and a P (6)-covering sequence of length 24 can easily be found by the ran-
domized heuristic algorithms introduced in Section 1.2.2; one such sequence
is (commas omitted):

S∗6 = (123456125362415364136254).

For n = 7, the backtracking approach was necessary; the lower bound in
Proposition 1.2 only implies s(7) ≥ 38, and running the heuristic algorithms
from Section 1.2.2 a large number of times, we were only able to find se-
quences implying s(7) ≤ 42. Using the backtracking algorithm, we showed
s(7) > 39 and found the following P (7)-covering sequence of length 40
(commas omitted):

S∗7 = (1237612531467254173526347563124651724356).

We use the heuristic algorithms from Section 1.2.2 to give new upper
bounds for s(n) for n = 8, 9, . . . , 20, where the backtracking approach was
not computationally feasible.

Lipski [14] left it as an exercise to the reader to prove s(5) = 13. It is
easy to calculate s(5) by exhaustive search, but we give a combinatorial proof
here.

Proposition 1.7. We have s(5) = s3(5) = 13.

11



Proof. The sequence

(1, 2, 3, 4, 5, 1, 2, 4, 1, 3, 5, 2, 4)

covers all subsets of {1, . . . , 5} and hence s3(5) ≤ s(5) ≤ 13.
To show s3(5) > 12, assume that there is a sequence S = (a1, . . . , a12) of

length 12 that covers all 3-subsets of {1, . . . , 5}. Without loss of generality,
we can assume that the first three elements of S are 1, 2, 3:

S = (1, 2, 3, a4, a5, a6, a7, a8, a9, a10, a11, a12).

Note that in a sequence of length 12, there are exactly
(
5
3

)
= 10 3-blocks.

Therefore, each 3-block of S must cover a unique 3-subset of {1, . . . , 5}. For
each fixed i ∈ {1, . . . , 5}, the number of 3-sets containing the element i is(
4
2

)
= 6. Thus, for each i ∈ {1, . . . , 5}, there must be exactly six 3-blocks

in S that contain i exactly once. Since every occurrence of an element i can
be part of at most three 3-blocks, every i ∈ {1, . . . , 5} has to appear at least
twice in S. The elements 1 and 2 have to appear at least three times:
Since a1 (= 1) appears in only a single 3-block (the block (a1, a2, a3)), the
sequence S must contain at least two more occurrences of the element 1,
otherwise S could contain at most four 3-blocks containing the element 1.
Similarly, a2 (= 2) appears only in two 3-blocks (the blocks (a1, a2, a3) and
(a2, a3, a4)) and S thus has to contain at least two more occurrences of the
element 2, otherwise S could contain at most five 3-blocks containing the
element 2.
Since |S| = 12, we have thus accounted for all elements; S contains exactly
two occurrences of the elements 3, 4, 5 and exactly three occurrences of the
elements 1 and 2.

Note that s12 is only part of one 3-block in S and that s11 is only part of
two 3-blocks in S. We show that a12 = 2 and a11 = 1 must hold. Assume that
a12 ∈ {3, 4, 5}. Then, arguing similarly to before, S would have to contain
more than two occurrences of some element j ∈ {3, 4, 5}, contradicting the
fact that only the elements 1 and 2 appear three times in S. Thus a12 ∈ {1, 2}
and similarly, a11 ∈ {1, 2}. Assume that a12 = 1. Then the two occurrences
a1 and a12 of the element 1 each appear in only a single 3-block of S, and S
would have to contain two more occurrences of the element 1, contradicting
the fact that there must be exactly three occurrences of the element 1 in S.
Hence the only possible configuration is the following:

S = (1, 2, 3, a4, a5, a6, a7, a8, a9, a10, 1, 2).

Further, a10 6∈ {1, 2, 3}. For each of these choices for a10, S contains a block
that does not cover a unique 3-subset of {1, . . . , 5}:

12



for s10 = 1, the sequence S contains the block (1, 1, 2), for s10 = 2, the se-
quence S contains the block (2, 1, 2), and for s10 = 1, the sequence S contains
the blocks (1, 2, 3) and (3, 1, 2), both covering the same subset. Without loss
of generality, a10 = 4:

S = (1, 2, 3, a4, a5, a6, a7, a8, a9, 4, 1, 2).

The set {1, 2, 5} has to be covered by a block in which the elements 1 and
2 are separated: (1, 5, 2) or (2, 5, 1). All other {1, 2, 5}-covering blocks place
1 and 2 next to each other, forcing a fourth block in S that contains both 1
and 2, which can not cover a unique 3-set. There are four possibilities:

a) S = (1, 2, 3, a4, 1, 5, 2, a8, a9, 4, 1, 2).

b) S = (1, 2, 3, a4, a5, 1, 5, 2, a9, 4, 1, 2).

c) S = (1, 2, 3, a4, 2, 5, 1, a8, a9, 4, 1, 2).

d) S = (1, 2, 3, a4, a5, 2, 5, 1, a9, 4, 1, 2).

All other possible configurations (for example (1, 2, 3, 1, 5, 2, a7, a8, a9, 4, 1, 2))
contain a block that does not cover a unique 3-set. In the above example the
set {1, 2, 3} is covered by both of the blocks (1, 2, 3) and (2, 3, 1).

We analyze case a). The sequence S must consist of exactly three occur-
rences of the elements 3, 4 and 5, and thus {a4, a8, a9} = {3, 4, 5} must hold.
We have a4 = 4; for a4 = 3, the sequence S contains the block (2, 3, 3) and
for a4 = 5, the sequence S contains the block (5, 1, 5). Arguing similarly, we
have a8 = 3. It follows that a9 = 5 and

S = (1, 2, 3, 4, 1, 5, 2, 3, 5, 4, 1, 2).

The above sequence does not cover the set {2, 4, 5}. Using similar arguments,
in each of the remaining cases b), c) and d) we also end up with a sequence
not covering all of the 3-subsets of {1, . . . , 5}. This contradicts the existence
of a sequence of length 12 covering all 3-subsets of {1, . . . , 5}.

1.2.1 Backtracking Algorithm

Backtracking algorithms have been successfully used to calculate exact values
of combinatorially defined functions. For example, backtracking algorithms
for calculating small van der Waerden Numbers are described in Landman’s
and Robertson’s book Ramsey Theory on the Integers [13]. In this section
we present a similar approach for calculating values of s(n) and sk1,...,kr(n).

For given n ∈ N and N ∈ N we want to find a P (n)-covering sequence
of length N or prove that no such sequence exists. This can be done by

13



searching the set of all sequences of length N over the alphabet [n]. To show
that s(7) = 40 one would have to partially search a space of size 740 (to
find a suitable sequence) and exhaust a search space of size 739 ≈ 9 × 1032

(to show that no P (7)-covering sequence of length 39 exists). There are two
observations that immediately help us reduce the search space.

1. We only need to generate sequences up to isomorphism; a sequence S is
a P (n)-covering sequence if and only if any permutation of the element
labels of S again results in a P (n)-covering sequence.

2. We do not need to generate sequences where an element appears in two
consecutive positions.

Further, sometimes it suffices to look at the initial part of a sequence to
recognize that it can not be a P (n)-covering sequence of length N . Consider
the following example. Say we want want to check whether the following
sequence can be extended to become a P (5)-covering sequence of length 13:

S = (1, 2, 3, 1, 3).

The set {1, 2, 3} is covered twice by S. It is covered by both the block (1, 2, 3)
and the block (2, 3, 1). Further the block (3, 1, 3) does not cover any 3-subset.
Hence two 3-blocks do not cover a new 3-subset, and arguing similarly as in
Proposition 1.2, an extension S ′ of S that covers all 3-subsets of {1, . . . , 5}
must consist of 2 +

(
5
3

)
= 12 or more 3-blocks, implying |S ′| ≥ 14.

We call a sequence bad if it can not be extended to become a P (n)-
covering sequence of length N . Whenever we detect such a bad sequence,
we know we do not have to check any extensions of that sequence, further
reducing the search space.

In Proposition 1.8 we give a sufficient condition by which we can recognize
bad sequences. Let S be a sequence over the alphabet [n] . For k ≤ n and
i ∈ [n] define ak,i to be the number of k-subsets of [n] containing i that are
not covered by S. Further we define li to be the number of elements in S
that appear after the last occurrence of i.

Proposition 1.8. Let S be a sequence over the alphabet [n]. If for some
k ≤ n the inequality

|S|+
∑
i∈[n]

⌈
ak,i −max(k − li − 1, 0)

k

⌉
> N

holds, then S is a bad sequence, i.e., S can not be extended to become a
P (n)-covering sequence of length N .

14



Proof. We show that each term⌈
ak,i −max(k − li − 1, 0)

k

⌉
is a lower bound for the number of additional occurrences of the element i that
have to be added to S in order for S to cover all k-subsets of [n] containing i.
If there are less than k−1 elements trailing the last occurrence of i in S, then
new k-blocks containing i can be created by appending elements of [n] \ {i}
to S. In this case, the number k − li − 1 counts how many new k-blocks
can be created this way. If there are k− 1 or more elements trailing the last
occurrence of i in S, appending elements of [n] \ {i} to S can not create any
new k-blocks containing i. Note that in this case k − li − 1 < 0.

Each newly generated block containing i can at most cover one previ-
ously not covered k-set containing i. Thus, after potentially appending some
number of elements of [n] \ {i} to S, the number of k-sets containing i that
are not covered by S is at least

ak,i −max(k − li − 1, 0).

Since each occurrence of i appears in at most k k-blocks—each covering at
most one k-set—we need to add at least⌈

ak,i −max(k − li − 1, 0)

k

⌉
additional occurrences of the element i to S in order for S to cover all of the
remaining k-sets containing i.

Definition 1.9. We call a sequence invalid if the inequality from Proposition
1.8 holds for some k ≤ n. We call a sequence valid if it is not invalid. 4

Note that while an invalid sequence is always a bad sequence, a valid
sequence may or may not be bad.

Without loss of generality, we can fix the first three elements of our se-
quence to be 1, 2, 3.
In rough terms, the algorithm works as follows. We start with S = (1, 2, 3).
We keep extending S with the smallest possible element (1 if the last element
of S is not 1, and 2 otherwise), until S becomes invalid or until S has reached
the goal length N . If S has length N and is a P (n)-covering sequence, we
return S and terminate. Otherwise we call the procedure makeValid, which—
by potentially backtracking—finds the next valid sequence; first we iteratively
increment the last element of S. If S does not become valid this way, we

15



remove the last element from S (backtracking) and again iteratively incre-
ment the last element and repeat this procedure. If we end up with the
sequence S = (1, 2, 3), we have exhausted the whole search space. If we end
up with a valid sequence (which is not of goal length N), we go back to the
extending-phase and repeat this whole process.

In summary, we keep alternatingly calling the procedures extend and
makeValid, and whenever we reach goal length, we check whether we have
found a P (n)-covering sequence.

Algorithm 1.10 Backtracking Algorithm
Input: n,N ∈ N.
Output: A P (n)-covering sequence of length N , or proof that no such
sequence exists.

1: S = (1, 2, 3).
2: while True do
3: extend(S).
4: if |S| = N then
5: if S is a P (n)-covering sequence of length N then
6: return S.
7: makeValid(S).
8: if |S| = 3 then
9: return No covering of length N exists.

10: if |S| = N then
11: if S is a P (n)-covering sequence of length N then
12: return S.

By S[−1] and S[−2] we denote the last and second-to-last elements of S,
respectively. The extend -procedure is very simple.

Algorithm 1.11 Procedure: extend(S)

1: while |S| < N and isValid(S) do
2: if S[−1] = 1 then
3: Append the element 2 to S.
4: else
5: Append the element 1 to S.

The makeValid -procedure is where we make sure to generate sequences
only up to isomorphism. Consider this example. Let S = (1, 2, 3, 4, 5, 3) be
a sequence over the alphabet {1, . . . , 8}. Iteratively incrementing the last

16



element of S gives the following sequences:

(1, 2, 3, 4, 5, 4),
(1, 2, 3, 4, 5, 6),
(1, 2, 3, 4, 5, 7),
(1, 2, 3, 4, 5, 8).

Note that we do not consider the incremented sequence (1, 2, 3, 4, 5, 5) since
it contains the element 5 in two consecutive positions. Further, the sequences
(1, 2, 3, 4, 5, 6), (1, 2, 3, 4, 5, 7), (1, 2, 3, 4, 5, 8) are pairwise isomorphic to each
other; the trailing elements 6, 7 and 8 occur exactly once in their respective
sequences. In general, let R1 be the set of elements that do not appear in
our current sequence S. Whenever we want to increment the last element of
S, we only need to consider the elements that do appear in S and a single
representative for the set R1. If R1 is nonempty, we choose the largest element
in R1 as a representative for R1.

Algorithm 1.12 Procedure: makeValid(S)

1: while True do
2: if (S[−1] = n) or (S[−1] = n− 1 and S[−2] = n) then
3: Remove last element from S.
4: if |S| = 3 then
5: return. (Search space exhausted.)

6: if isValid(S) then
7: return.
8: R1 = {i ∈ [n] : i /∈ S}.
9: R2 = {i ∈ [n] : i ∈ S ∧ i 6= S[−2] ∧ i > S[−1]}.

10: R = {max(R1)} ∪R2.
11: Sort R in ascending order.
12: for r ∈ R do
13: S[−1] = r.
14: if isValid(S) then
15: return.

Algorithm 1.10 can also be used to compute values of sk1,...,kr(n). In this
case we define a sequence to be valid if the inequality from Proposition 1.8
holds for some k ∈ {k1 . . . , kr}. Further we do validity-checking only for
values included in {k1 . . . , kr} and check whether S is a Pk1,...,kr(n)-covering
sequence whenever S is of goal length N .

17



Implementation details. During the execution of the backtracking algo-
rithm, S is changed often, and we need to keep track of the sets that are
covered by the current sequence S. Further, for all i ∈ [n] we need to keep
track of the number of sets containing i that are covered by S. This can be
done efficiently because whenever we change S, we need to consider at most
the n trailing elements of S to check for newly covered sets or sets that are
not covered anymore.

It is a good strategy to do validity-checking by only considering values of
k that are close to n/2, since usually the invalidity condition is fulfilled for
these values first. Not checking small and large values of k leads to a few
unnecessarily generated sequences, but the time lost by that is outweighed
by having to keep track of covered k-sets for fewer values of k.

Results. Using Algorithm 1.10 we calculated s(6), s(7) and sk(n) for vari-
ous values of k and n. The algorithm generated 126704677 sequences to prove
that no P (7)-covering sequence of length 39 exists, i.e., s(7) > 39. Table 2
lists the values of s(n) and sk(n) we managed to calculate.

n s(n) s2(n) s3(n) s4(n) s5(n) s6(n) s7(n) s8(n)

1 1 - - - - - - -
2 2 2 - - - - - -
3 4 4 3 - - - - -
4 8 8 6 4 - - - -
5 13 11 13 8 5 - - -
6 24 18 24 20 10 6 - -
7 40 22 37 38 28 12 7 -

Table 2: Known values of s(n) and sk(n).

Below, we list the values of sk1,...,kr(n) we calculated. Since s3(5) = s(5)
and s3(6) = s(6), we have sk1,...,kr(n) = s(n) for n ∈ {5, 6} and 3 ∈ {k1, . . . , kr}.
Further, we calculated s3,4(7) = s(7) and hence sk1,...,kr(7) = s(7) for
3, 4 ∈ {k1, . . . , kr}.

• s3,4(4) = 6

• s2,4(5) = 11

• s2,5(5) = 11

• s5,6(6) = 10

• s2,6(6) = 18

• s4,5(6) = 20

• s4,6(6) = 20

• s2,4(6) = 21

• s2,5(6) = 28

• s2,5,6(6) = 18

• s4,5,6(6) = 20

• s2,4,5(6) = 21

• s2,4,6(6) = 21

• s2,4,5,6(6) = 21

• s2,3(7) = 37

18



• s2,4(7) = 38

• s2,5(7) = 29

• s2,6(7) = 22

• s2,7(7) = 22

• s3,4(7) = 40

• s3,5(7) = 37

• s3,6(7) = 37

• s4,5(7) = 38

• s5,6(7) = 28

• s6,7(7) = 12

• s2,4,6(7) = 38

• s5,6,7(7) = 28

• s2,5,6,7(7) = 29

• s2,3,5,6,7(7) = 37

• s2,4,5,6,7(7) = 38

One can ask which subset-sizes k1, . . . , kr ≤ n are the ones “responsi-
ble” for the value of s(n), i.e., what integers k1, . . . , kr ≤ n have the prop-
erty sk1,...,kr(n) = s(n). Lipski [14] conjectured, that as n tends to infinity,
s(n) ∼ sbn

2
c(n) holds. For n = 3, . . . , 6 we have s(n) = sdn

2
e(n):

s2(3) = s(3) = 5,

s2(4) = s(4) = 8,

s3(5) = s(5) = 13 and

s3(6) = s(6) = 24.

For n = 7, we calculated s4(7) = 38 < 40 = s(7), which breaks the above
pattern, but we can see that s3,4(7) = s(7) = 40, giving rise to the optimistic
conjecture that for all odd n

sbn
2
c,dn

2
e(n) = s(n),

and for all even n either

sn
2
−1,n

2
,n
2
+1(n) = s(n),

or—even more optimistically—sn
2
(n) = s(n) holds. Unfortunately calculat-

ing s(n) for n ≥ 8 is out of reach of our backtrackig algorithm, so we were
not able to check whether this pattern continues for n ≥ 8.

On the number of solutions. We are interested in the number of solu-
tions to our problem, i.e., the number of shortest P (n)-covering sequences.
We say two sequences S1, S2 over the alphabet [n] are isomorphic to each
other (S1 v S2) if there exists a permutation π : [n] → [n] such that
(π(s) : s ∈ S1) = S2. The backtracking algorithm described in this sec-
tion can easily be modified to generate all P (n)-covering sequences. While it
creates solutions only up to isomorphism, it generates some solutions twice;
note that if a sequence S is a shortest P (n)-covering sequence, then the re-

verse of the sequence,
←−
S is a also a shortest P (n)-covering sequence, and in

general S 6v ←−S . In this case our algorithm will output both S and
←−
S . If

a solution is isomorphic to its own reverse, our algorithm generates it only

19



once. We are interested in the number of different solutions. To make this
precise, we define v(n) to be the size of a maximal family of shortest P (n)-
covering sequences {S1, . . . , Sv(n)} such that for all i < j the sequences Si

and Sj fulfill Si 6v Sj and Si 6v
←−
Sj . Further we define w(n) to be the total

number of shortest P (n)-covering sequences (up to isomorphism) that are
isomorphic to their own reverse.

Table 3 lists the values of v(n) and w(n) for n = 1, . . . , 7. Interestingly,
there are many shortest P (6)-covering sequences, but only a single shortest
P (7)-covering sequence exists (commas omitted):

S∗7 = (1237612531467254173526347563124651724356).

n v(n) w(n)

1 1 1
2 1 1
3 1 1
4 3 1
5 2 0
6 57 1
7 1 0

Table 3: Known values of v(n) and w(n).

1.2.2 Heuristic approaches

The backtracking algorithm described in the previous section was only com-
putationally feasible for up to n = 7. In this section we describe three
heuristic approaches to generate short P (n)-covering sequences for larger
values of n. To our knowledge, the sequences found by Algorithm 1.17 give
the smallest known upper bounds for s(n) for n = 8, . . . , 20.

The first heuristic algorithm we describe, Element Greedy, is very simple.
We start with the empty sequence S = () and in each step we append an
element to S that maximizes the number of newly covered sets. In case of a
tie between candidate elements, we pick one candidate uniformly at random
from the set of candidates.

Definition 1.13. Let S and T be sequences over the alphabet [n]. We define
ξ(S, T ) to be the set of subsets of [n] that are covered by the concatenation
ST of S and T , but not by S. In the case where T = (i) (for some i ∈ [n])
consists of a single element, we write ξ(S, i) instead of ξ(S, (i)). 4

20



Algorithm 1.14 Element Greedy
Input: n ∈ N.
Output: A P (n)-covering sequence.

1: S = ().
2: Q = P (n).
3: while Q 6= ∅ do
4: Z = {i ∈ [n] \ {S[−1]} : |ξ(S, i)| is maximal}.
5: Choose z uniformly at random from Z.
6: Q = Q \ ξ(S, z).
7: Append the element z to S.

8: return S.

Running this algorithm a large number of times for n = 6, the shortest
P (6)-covering sequence we found was of length 25 (while in fact s(6) = 24).
This led to the idea of adding another random element to the algorithm. In
each step, with some small probability ρ, instead of choosing an element that
maximizes the number of newly covered sets, we add an element to S that
is chosen uniformly at random from the set of all elements, except for the
trailing element of S.

Algorithm 1.15 Randomized Element Greedy

Input: n ∈ N, ρ ∈ (0, 1).
Output: A P (n)-covering sequence.

1: S = ().
2: Q = P (n).
3: while Q 6= ∅ do
4: with probability ρ do
5: Choose z uniformly at random from {1, . . . , n} \ {S[−1]}.
6: otherwise do
7: Z = {i ∈ [n] \ {S[−1]} : |ξ(S, i)| is maximal}.
8: Choose z uniformly at random from Z.

9: Q = Q \ ξ(S, z).
10: Append the element z to S.

11: return S.

Running Algorithm 1.15 for n = 6 and ρ = 0.01, we find a P (6)-covering
sequence of length 24 on average after about 2618 runs of the algorithm—
which takes about one second with our implementation of the algorithm.

It is in fact impossible for Algorithm 1.14 to find a P (6)-covering sequence
of length 24. It is easy to check whether a given sequence S = (a1, . . . , ar)

21



could have been the output of Algorithm 1.14; for each i ∈ {2, . . . , r} check
whether ai maximizes |ξ ((a1, . . . , ai−1), ·) |. In Section 1.2.1 we used a back-
tracking algorithm to generate all P (6)-covering sequences of length 24. For
each shortest P (6)-covering sequence (a1, . . . , a24) there exists some index d
such that ad does not maximize |ξ ((a1, . . . , ad−1), ·) |.

The main issue with Algorithms 1.14 and 1.15 is the following; if at some
point during the execution of the algorithm, no possible extension of the
current sequence S results in a newly covered set, i.e., if

|ξ(S, i)| = 0 for all i ∈ [n],

the algorithm picks an element at random. If only few subsets are not covered
by S, the algorithm will append random elements to S for many iterations,
until—by chance—S covers one of the rare not-yet covered subsets. To coun-
teract this issue, we implemented a variant of the heuristic, where whenever
no possible extension of the current sequence results in a previously not cov-
ered set, we append the minimum amount of elements to the sequence such
that at least one new set is covered.

Definition 1.16 (Overlap and non-overlap). Let S be a sequence over the
alphabet [n] and let X ⊂ [n]. Let OL(S,X) be the elements of the maximal
final part of S such that all elements of that part are pairwise distinct and
included in X. We define the non-overlap between S and X by

NOL(S,X) = X \OL(S,X).

4

Example. Let S = (1, 2, 5, 4, 2, 1, 3, 1) and let X = {1, 2, 3, 5}. Then the
overlap OL(S,X) is {1, 3} and the non-overlap NOL(S,X) is {2, 5}. 4

22



Algorithm 1.17 Heuristic Algorithm
Input: n ∈ N.
Output: A P (n)-covering sequence.

1: S = ().
2: Q = P (n).
3: while Q 6= ∅ do
4: if |ξ(S, i)| = 0 for all i ∈ [n] then
5: K = {X ∈ Q : |NOL(S,X)| is minimized}.
6: Choose Z uniformly at random from K.
7: Let R be a random ordering of NOL(S,Z).
8: Q = Q \ ξ(S,R).
9: Append the elements of R to S.

10: else
11: Z = {i ∈ [n] \ {S[−1]} : |ξ(S, i)| is maximal}.
12: Choose z uniformly at random from Z.
13: Q = Q \ ξ(S, z).
14: Append the element z to S.

15: return S.

In Table 4 we list the lengths of shortest P (n)-covering sequences found by
Algorithm 1.17 for the values n = 8, . . . , 20, where the backtracking approach
from Section 1.2.1 was not computationally feasible. We also list the number
of times we ran the algorithm, and the time it took to find the corresponding
sequences. Note that we found a P (8)-covering sequence of length 81 within
28 minutes. This seems to have been a very lucky find; afterwards, during
many more hours of running Algorithm 1.17, we did not find another such
sequence of length 81 or less.

23



n s(n) iterations time

8 ≤ 81 554642 28 min
9 ≤ 164 1131135 2 h 36 min
10 ≤ 331 340095 1 h 47 min
11 ≤ 652 103733 1 h 24 min
12 ≤ 1287 94963 3 h 39 min
13 ≤ 2522 5657 42 min
14 ≤ 4913 14274 4 h 2 min
15 ≤ 9579 2480 2h 34 min
16 ≤ 18628 151 58 min
17 ≤ 36384 66 1 h 40 min
18 ≤ 70803 51 6 h 42 min
19 ≤ 138327 3 53 min
20 ≤ 270156 16 16 h 10 min

Table 4: Upper bounds for s(n) obtained by Algorithm 1.17.

The P (8)-covering sequence of length 81 we found is given below (commas
omitted):

S∗8 = (123456781325684173264875126

387245167358241635841357268

153742657412834671285743861).

Algorithm 1.17 (and all other algorithms described in this thesis) have
been implemented in Python 2.7 and were run with PyPy (pypy.org), which
features a Just-in-Time compiler, often allowing for faster execution of Python
code. The calculations were done on a desktop computer using an Intel i3-
4130T dual core processor and 16 gigabytes of memory.

1.2.3 Integer Programming

For given n, k,N ∈ N, we want to check by computer whether a Pk(n)-
covering sequence of length N exists.

Below we describe a formulation using binary variables and linear con-
straints. We can then use commercial solvers like Gurobi or open-source
solvers like GLPK (GNU Linear Programming Kit) to find a Pk(n)-covering
sequence of length N or to prove that no such sequence exists. In order

24



to extend this formulation to P (n)-covering sequences, the constraints given
below have to be added to the program for all k ∈ {2, . . . , n}.

The number of variables and constraints of the binary integer program
formulation we describe is very large, and therefore this approach is only fea-
sible for very small values of n. A binary integer program formulation is still
interesting, since many meta-heuristics exist for solving such formulations.
Finding the right meta-heuristic might make this approach feasible for larger
n.

Let S = (a1, . . . , aN) be a sequence of length N . We define

Wk = {(i, i+ 1, . . . , i+ k − 1) : 0 ≤ i ≤ N − k + 1}

to be the set of the indices of all k-blocks of S. We call Wk the set of k-
windows of S. We say a k-window W ∈ Wk covers a k-subset Q ⊆ [n] if the
k-block corresponding to W covers Q.

Example. For N = 8 and k = 4, we have

Wk = {(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7), (5, 6, 7, 8)}.

4

For every element i of the alphabet [n] and every position p ∈ [N ] we
introduce a binary variable xi,p. The variable xi,p will equal 1 if and only if
ap = i.

For every set Q ∈ Pk(n) and every k-window W we introduce a binary
variable yW,Q. The variable yW,Q will equal 1 if and only if W covers Q.

To make sure we get a valid sequence, the elements of our sequence must
be well defined. To this end, we add the following family of constraints:∑

i∈[n]

xi,p = 1 ∀p ∈ [N ].

Since we want our sequence to cover all sets in Pk(n), we add the following
family of constraints enforcing every set Q to be covered at least once:∑

W∈Wk

yB,Q ≥ 1 ∀Q ∈ Pk(n).

A k-window can cover at most one k-set. We model this fact by adding
the following family of constraints:∑

Q∈Pk(n)

yW,Q ≤ 1 ∀W ∈ Wk.

25



We have to make sure that our x variables and y variables do not contra-
dict each other, i.e., if a y variable encodes that a subset Q is covered by a
window W , then the block corresponding to W must be some permutation
of the set Q. In the language of our variables, for every set Q ∈ Pk(n) and
every k-window W , we need the following implication:

yW,Q = 1⇒ (
∑
p∈W

xi,p = 1 ∀i ∈ Q).

Note that the above implication can be written as a family of k implications:

(yW,Q = 1⇒
∑
p∈W

xi,p = 1) ∀i ∈ Q.

We express each of these k implications by two linear constraints (due to
Manfred Scheucher in personal communication):∑

p∈W

xi,p − yW,Q ≥ 0, and

∑
p∈W

xi,p + (|Q| − 1)yW,Q ≤ |Q|.

The first linear constraint is equivalent to

(yW,Q = 1⇒
∑
p∈W

xi,p ≥ 1) ∀i ∈ Q,

and the second is equivalent to

(yW,Q = 1⇒
∑
p∈W

xi,p ≤ 1) ∀i ∈ Q.

We only care about feasibility in our problem. We minimize over the
constant 0 to ensure we have a program in correct syntax. The final binary
integer programming formulation is the following.

26



max 0

such that:∑
i∈[n]

xi,p =1 ∀p ∈ [N ].

∑
W∈Wk

yW,Q ≥1 ∀Q ∈ Pk(n).∑
Q∈Pk(n)

yW,Q ≤1 ∀W ∈ Wk.∑
p∈W

xi,p − yW,Q ≥0 ∀Q ∈ Pk(n) ∀i ∈ Q ∀W ∈ Wk.∑
p∈W

xi,p + (|Q| − 1)yW,Q − |Q| ≤0 ∀Q ∈ Pk(n) ∀i ∈ Q ∀W ∈ Wk.

xi,p ∈{0, 1} ∀i ∈ [n] ∀p ∈ [N ].

yW,Q ∈{0, 1} ∀Q ∈ Pk(n) ∀W ∈ Wk.

27



1.3 Asymptotic bounds

A trivial upper bound for s(n) is the following. The sequence created by
concatenation of the elements of each subset of {1, . . . , n} (in any order) has
length

n∑
i=2

(
n

i

)
i = n2n−1 − n,

and thus s(n) ≤ n2n−1 − n for all n ≥ 1. To this date, the shortest known
construction for general n ∈ N is due to Lipski [14]. Lipski gave a clever
construction, using the fact that the powerset of an n-element set can be
partitioned into

(
n
bn
2
c

)
mutually disjoint symmetric chains.

Jukna [11] gave a simpler construction, which is inspired by the technique
Lipski used. While both constructions are asymptotically of size

2

π
2n(1 + o(1)),

Lipski’s construction is shorter for all values of n, and for certain values of
n, Lipski’s construction implies s(n) < 2

π
2n.

Before we present both constructions, we discuss how to find a partition
of the powerset of a finite set into symmetric chains, which is used by both
constructions.

Definition 1.18. Let X be a set. The powerset 2X of X together with the
set-inclusion relation ⊆ forms the poset (2X ,⊆).
A sequence (X1 ( X2 ( · · · ( Xk), where Xi ⊆ X for all i ∈ {1, . . . , k} is
called a chain. If |X1| + |Xk| = |X| and |Xi+1| = |Xi| + 1 for all i ≤ k − 1,
the chain is called symmetric.
A family of sets in 2X in which no set is a subset of any of the other sets is
called an anti-chain. 4

Sperner’s [17] theorem states that the size of a largest anti-chain in the
powerset of an n-element set is

(
n
bn/2c

)
. From this it follows by Dilworth’s [7]

theorem that the powerset of an n-element set can be partitioned into
(

n
bn/2c

)
chains. In fact, one can construct such a partition into

(
n
bn/2c

)
symmetric

chains. This was (in a slightly different context) already known to De Bruijn,
Tengenberg and Kruyswijk [2] and others.

28



We say a collection

C1 =(X
(1)
1 ( X

(1)
2 ( · · · ( X(1)

r1
)

C2 =(X
(2)
1 ( X

(2)
2 ( · · · ( X(2)

r2
)

. . .

Cm =(X
(m)
1 ( X

(m)
2 ( · · · ( X(m)

rm )

of chains is a partition of the powerset 2X of some set X if

2X =
r⋃
i=1

{X(i)
j : 1 ≤ j ≤ ri}.

In this case, we also write

2X =
m⋃
i=1

Ci.

Lemma 1.19 (De Bruijn, Tengenberg and Kruyswijk [2]). Let X be a set
consisting of n elements. Then 2X can be partitioned into

(
n
bn/2c

)
pairwise

disjoint symmetric chains.

Algorithm 1.20 was described in the following formulation by Lipksi [14]
and is due to Greene and Kleitman [8]. Lemma 1.19 follows from the proof
of correctness of Algorithm 1.20.

Algorithm 1.20 Symmetric Chain Partition (Greene and Kleitman [8])

Input: n ∈ N.
Output: A partition C of 2[n] into

(
n
dn/2e

)
mutually disjoint symmetric

chains.

1: C = {(∅, {1})}.
2: for i ∈ {2, . . . , n} do
3: N = ∅.
4: for C = (X1, . . . , Xr) ∈ C do
5: Add (X1, . . . , Xr, Xr ∪ {i}) to N .
6: if r ≥ 2 then
7: Add (X1 ∪ {i}, . . . , Xr−1 ∪ {i}) to N .

8: Set C = N .
9: Return C.

We give a detailed proof for the correctness of Algorithm 1.20.

29



Proposition 1.21. Algorithm 1.20 outputs a partition of 2[n] into
(

n
dn/2e

)
mutually disjoint symmetric chains.

Proof. We prove this fact by induction. Initially, C = {(∅, {1})} is a partition
of 2[1] = {∅, {1}} into one symmetric chain. Now let C be a partition of 2[k]

into
(

k
dk/2e

)
mutually disjoint symmetric chains. We claim that after the

execution of the for-loop for i = k + 1, the set N is a partition of 2[k+1]

into
(

k+1
d(k+1)/2e

)
mutually disjoint symmetric chains. First we show that each

generated chain is in fact a symmetric chain. Let C = (X1, . . . , Xr) be a
symmetric chain of sets in 2[k].
If r = 1, k must be even (for odd k, each symmetric chain contains one set of
size bk/2c and one set of size dk/2e). Thus, |X1| = k/2, and (X1, X1∪{k+1})
is in fact symmetric:

|X1|+ |X1 ∪ {k + 1}| = k + 1, and

|X1 ∪ {k + 1}| = |X1|+ 1.

If r ≥ 2, we have to verify that both chains (X1, . . . , Xr, Xr ∪ {k + 1}) and
(X1 ∪ {k + 1}, . . . , Xr−1 ∪ {k + 1}) are symmetric. Obviously both chains
fulfill the property that the sizes of their sets increase in steps of exactly one.
Since |X1|+ |Xr| = k and |Xr−1| = |Xr| − 1, we have

|X1|+ |Xr ∪ {k + 1}| = k + 1, and

|X1 ∪ {k + 1}|+ |Xr−1 ∪ {k + 1}| = (k + 1) + (k − 1 + 1) = k + 1.

We now show that exactly
(

k+1
d(k+1)/2e

)
symmetric chains are generated.

First consider the case where k is odd. Then every symmetric chain in C
consists of at least two sets, and thus for every C ∈ C, two new chains are
created. Thus, for odd k,

|N | = 2

(
k

dk/2e

)
=

(
k + 1

dk/2e+ 1

)
=

(
k + 1⌈
k+1
2

⌉).
For even k, there are exactly

(
k
k/2

)
−
(

k
k/2+1

)
chains of size 1 in C; there are(

k
k/2+1

)
chains in C that contain a set of size k

2
+ 1, and thus—because of

symmetry—also a set of size k
2
− 1. The remaining

(
k
k/2

)
−
(

k
k/2+1

)
chains

must thus be of size 1. For every chain of size 1 in C, only one (instead of
two) new chain is created. Thus, for even k,

|N | =
((

k

k/2

)
−
(

k

k/2 + 1

))
+ 2 ·

(
k

k/2 + 1

)
=

(
k

k/2

)
+

(
k

k/2 + 1

)
=

(
k + 1⌈
k+1
2

⌉).
30



We show that the chains in N form a partition of 2[k+1]. Each set in
2[k+1] that does not contain the element k + 1 is part of exactly one chain
(X1, . . . , Xr, Xr ∪ {i}), generated in line 5 of the algorithm. Let Z ∈ 2[k+1]

be a set containing the element k + 1. There exists a unique chain CZ′ ∈ C
such that Z ′ = Z \ {k + 1} ∈ CZ′ . Consider the code within the for-loop
for C = CZ′ . If Z ′ is the maximal set of CZ′ then Z is contained as the
maximal element of the sequence generated in line 5 of the algorithm. If Z ′

is not the maximal set of CZ′ (this implies in particular that CZ′ consists of
at least two sets), then Z is contained in the chain generated in line 7 of the
algorithm.

It follows from Definition 1.18 that a symmetric chain in the powerset of
an n-element set contains exactly one set of size n

2
if n is even, and exactly

one set of size
⌊
n
2

⌋
and exactly one set of size

⌈
n
2

⌉
if n is odd. It follows

further that in every symmetric chain the number of sets of size less than⌊
n
2

⌋
is equal to the number of sets of size larger than

⌈
n
2

⌉
.

Example. For n = 5, Algorithm 1.20 yields the following partition of the
powerset of {1, . . . , 5} into

(
5
2

)
= 10 mutually disjoint symmetric chains

C1, . . . , C10.

C1 = (∅ ⊂ {1} ⊂{1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4} ⊂ {1, 2, 3, 4, 5}).
C2 = ({5} ⊂{1, 5} ⊂ {1, 2, 5} ⊂ {1, 2, 3, 5}).
C3 = ({4} ⊂{1, 4} ⊂ {1, 2, 4} ⊂ {1, 2, 4, 5}).
C4 = ({4, 5} ⊂ {1, 4, 5}).
C5 = ({3} ⊂{1, 3} ⊂ {1, 3, 4} ⊂ {1, 3, 4, 5}).
C6 = ({3, 5} ⊂ {1, 3, 5}).
C7 = ({3, 4} ⊂ {3, 4, 5}).
C8 = ({2} ⊂{2, 3} ⊂ {2, 3, 4} ⊂ {2, 3, 4, 5}).
C9 = ({2, 5} ⊂ {2, 3, 5}).
C10 = ({2, 4} ⊂ {2, 4, 5}).

Note that each chain is of even size and contains exactly one set of size 2 and
exactly one set of size 3. 4

Definition 1.22. Let n ∈ N and let C = (X1 ( · · · ( Xr) be a chain in 2[n].
Let Seq(C) denote a sequence obtained from the following construction.
Initially let Seq(C) consist of the elements of X1 in any order. Then, for
i = 2, . . . , r iteratively append to Seq(C) the elements of Xi \ Xi−1 in any
order. 4

31



The sequence Seq(C) covers all sets in C. In fact, Seq(C) contains all
of the sets in C as an initial part, i.e., for every X ∈ C, the block consisting
of the first |X| elements of Seq(C) covers X. Note further that Seq(C)
consists of exactly max{|X| : X ∈ C} = |Xr| elements.

Example. Consider the chain

C = ({1, 2, 3} ( {1, 2, 3, 5, 7} ( {1, 2, 3, 5, 6, 7} ( {1, 2, 3, 4, 5, 6, 7}).
The associated sequence is Seq(C) = (1, 2, 3, 5, 7, 6, 4). 4

We are now ready to describe the constructions given by Jukna [11] and
Lipski [14].

1.3.1 Jukna’s construction

Let n ∈ N. If n is even, let k1 = k2 = n
2
. If n is odd, let k1 = bn

2
c and

k2 = dn
2
e. We split [n] into two parts by setting

S = {1, 2 . . . , k1} and

T = {k1 + 1, . . . , n}.
Jukna applies Lemma 1.19 to both S and T , obtaining a partition into pair-
wise disjoint symmetric chains of the powersets of each S and T , respectively:

2S =

m1⋃
i=1

Ci, where m1 =

(
k1
bk1

2
c

)
,

2T =

m2⋃
j=1

Dj, where m2 =

(
k2
bk2

2
c

)
.

Jukna associates a sequence Si = Seq(Ci) to every chain Ci and a sequence
Tj = Seq(Dj) to every chain Dj.

Every subset R ⊆ [n] can be written as R = E ∪ F , where E ⊆ S and
F ⊆ T . From the remark after Definition 1.22 we know that there exist
two indices i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m2} such that E appears as the
initial part of the sequence Si and that F appears as the initial part of the

sequence Tj. We define
←−
Tj to be the reverse of the sequence Tj. Note that F

appears as the final part of
←−
Tj . Since E appears as initial part of Sj and F

as final part of
←−
Tj , the sequence

←−
TjSi covers R.

The sequence

J(n) =
←−
T1S1

←−
T1S2 . . .

←−
T1Sm1

←−
T2S1 . . .

←−
T2Sm1 . . .

←−−
Tm2S1 . . .

←−−
Tm2Sm1

contains the sequence
←−
TjSi for all i ∈ {1, . . . ,m1} and j ∈ {1, . . . ,m2} and

thus covers all subsets of [n].

32



1.3.2 The length of Jukna’s construction

As first noticed by Markus Hartmair, Jukna [11] made a small miscalculation
when he attempted to show that |J(n)| ∼ 2n 2

π
as n tends to infinity. In this

section we give an exact formula for the length of J(n), from which we then
derive the desired asymptotic behaviour of |J(n)|.

For every j ∈ {1, . . . ,m2}, the sequence J contains exactly m1 copies

of the sequence
←−
Tj and for every i ∈ {1, . . . ,m1}, the sequence J contains

exactly m2 copies of the sequence Si. Thus,

|J(n)| = m1 (|T1|+ · · ·+ |Tm2|) +m2 (|S1|+ · · ·+ |Sm1|) . (1)

Definition 1.23. For k ∈ N let C = {C1, . . . , Cm} be a partition of 2[k] into
m =

(
k
b k
2
c

)
symmetric, mutually disjoint chains. Let b(k) denote the sum of

the lengths of the sequences Seq(Ci), i.e., let

b(k) =
m∑
i=1

|Seq(Ci)|.

4
Note that |T1|+ · · ·+ |Tm2| = b(k2) and |S1|+ · · ·+ |Sm1| = b(k1). Lemma

1.24 gives an exact formula for b(k).

Lemma 1.24. We have

b(k) = k +
k−1∑

j=dk/2e

j

((
k

j

)
−
(

k

j + 1

))
. (2)

Proof. Let C = {C1, . . . Cm} be a partition of 2[k] into mutually disjoint
symmetric chains. Since the length of each sequence Seq(Ci) is equal to the
size of the largest set in Ci, we have

b(k) =
∑
C∈C

max {|X| : X ∈ C} .

Since C is a partition of the powerset of [k], there is exactly one chain in C
that contains the set {1, . . . , k}. The length of the corresponding sequence
contributes the term k to the sum in equation (2).

We claim that for each j ∈ {dk/2e, . . . , k−1}, the number of chains C ∈ C
with max{|X| : X ∈ C} = j is(

k

j

)
−
(

k

j + 1

)
.

33



There are
(
k
j+1

)
subsets of [k] of size j + 1. For each subset of size j + 1

there is exactly one chain in F that contains this subset. Each of these(
k
j+1

)
chains also contains exactly one subset of [k] of size j. Therefore, the

remaining
(
k
j

)
−
(
k
j+1

)
subsets of size j each appear in a chain whose largest

set has size j. Since C is a partition of the powerset of [k], there are exactly(
k
j

)
−
(
k
j+1

)
chains C ∈ C with max{|X| : X ∈ C} = j.

For every such chain C, the corresponding sequence Seq(C) has length j,

in total contributing the term j
((

k
j

)
−
(
k
j+1

))
to the sum in equation (2).

This concludes the proof.

Using the representation for b(k) from Lemma 1.24, the sequence (b(k))k≥1
can be seen to be equal to the integer sequence A014314 in Sloane’s OEIS
[16]. V. Kotěšovec [16] used the generating function of that sequence to give
the following simplified formula for b(k).

Lemma 1.25 (V. Kotěšovec). For all k ∈ N,

b(k) = 2k−1 +

{
(k − 1)

(
k−1
k/2

)
if k is even,

k−1
2

(
k
bk/2c

)
if k is odd.

Since for even k, we have
(
k
k/2

)
= 2
(
k−1
k/2

)
, this simplifies to

b(k) = 2k−1 +
k − 1

2

(
k

bk/2c

)
.

Using the formula given in Lemma 1.25, we obtain an exact formula for
|J(n)| from equation (1):

|J(n)| =
(

k1
bk1/2c

)(
2k2−1 +

k2 − 1

2

(
k2
bk2/2c

))
+

(
k2
bk2/2c

)(
2k1−1 +

k1 − 1

2

(
k1
bk1/2c

))
,

(3)

where k1 = k2 = n
2

if n is even, and k1 = bn
2
c and k2 = dn

2
e if n is odd.

As k →∞, (
k

bk/2c

)
= 2k

√
2

πk
(1 + o(1)) ,

and we can thus easily obtain the asymptotic behaviour of |J(n)| from (3).

34



As n→∞, we have

|J(n)| ∼ 2k1
√

2

πk1
· 2k2−1

√
2k2
π

+ 2k2
√

2

πk2
· 2k1−1

√
2k1
π

= 2n
√
k2
k1

1

π
+ 2n

√
k1
k2

1

π

= 2n
1

π

(√
k2
k1

+

√
k1
k2

)
.

Since
√

k2
k1

+
√

k1
k2

= 2 + o(1) as n→∞, we have |J(n)| ∼ 2n 2
π
.

Below we give some values of |J(n)| and |J(n)| − 2n 2
π
, showing that in

general |J(n)| > 2n 2
π
. This holds in fact for all n ≥ 4, but requires a lot of

calculation to show.

n |J(n)| |J(n)| − 2n 2
π

|J(n)|−2n 2
π

|J(n)|

4 12 1.81 0.15
5 23 2.63 0.11
6 42 1.26 0.03
7 93 11.51 0.12
8 204 41.03 0.20
9 387 60.05 0.16
100 9.25 · 1029 1.18 · 1029 0.13
250 1.26 · 1075 1.06 · 1074 0.08
500 2.24 · 10150 1.53 · 10150 0.07
1000 7.18 · 10300 3.62 · 10299 0.05

Table 5: Approximate values of |J(n)|, |J(n)| − 2n 2
π and the ratio

|J(n)|−2n 2
π

|J(n)| for
n = 4, . . . , 9, 100, 250, 500, 1000.

1.3.3 Lipski’s construction

Lipski uses the partition of the powerset of [n] into mutually disjoint sym-
metric chains as an intermediate building block to construct what he calls a
special collection of permutations.

Definition 1.26. Let k, t ∈ N and let R1, . . . , Rt be sequences, each encoding
a permutation of the set [k], i.e., the sequences Ri are each of length k and
contain every element j ∈ [k] exactly once.

35



The collection R1, . . . , Rt is called a special collection of k-permutations
if every subset of [k] appears as an initial or final part of at least one of the
sequences R1, . . . , Rt. 4

Using the symmetric chain partition of 2[k], Lipski shows the following
Lemma.

Lemma 1.27. Let k ∈ N. There exists a special collection of k-permutations
R1, . . . , Rt, where

t = t(k) =

{
1
2

(
k
k/2

)
if k is even,

1
2

(
k
bk/2c

) (
1 + 1

k

)
if k is odd.

Proof. First, let k be even. We start by partitioning 2[k] into mutually disjoint
symmetric chains,

2[k] =
m⋃
i=1

Ci, where m =

(
k
k
2

)
.

For each i ∈ {1, . . . ,m} we set Si = Seq(Ci). Since every chain Ci contains
exactly one set of size k

2
, there exists a bijection

Φ : {Si : i ∈ {1, . . . ,m}} →
(

[k]
k
2

)
, (4)

mapping each sequence Si to the k
2
-subset that is covered by the initial part of

Si. Each of the sequences Si consists of at most k elements. We extend each
sequence Si of length less than k to a sequence of k elements, by appending
to Si (in arbitrary order) the elements of {1, . . . , k} not appearing in Si. Note
that every sequence Si now contains every element in {1, . . . , k} exactly once.
By extending the sequences Si, the first k/2 elements remain unchanged, and
thus the mapping (4) is still a well defined bijection. Since k is even, for a
fixed element η ∈ [k], exactly half of all k

2
-subsets of [k] contain η. Without

loss of generality, the initial part of the first t = 1
2

(
k
k/2

)
chains contains the

element 1; for all i ∈ {1, . . . , t} we have 1 ∈ Φ(Si).
The complement of each set Φ(Si) in [k] is also of size k/2, and thus for

every i ∈ {1, . . . , t} there exists a unique index j(i) ∈ {t + 1, . . . , 2t}, such
that

Φ(Sj(i)) = {1, . . . , k} \ Φ(Si).

For each i ∈ {1, . . . , t} let Ri consist of the first k/2 elements of Si followed
by the first k/2 elements of Sj(i) in reverse order.

We claim that the resulting sequences R1, . . . , Rt form a special collection
of k-permutations. Let X ⊆ [k]. If |X| ≤ k/2 and 1 ∈ X, then X appears

36



as initial part of one of the sequences Ri. If |X| ≤ k/2 and 1 /∈ X, then X
appears as final part of one of the sequences Ri. Thus, each subset X ⊂ [n]
with |X| ≤ k/2 appears as final or initial part in one of the sequences Ri.
Let Y ⊆ X with |Y | > k/2. Since X = [k] \ Y appears in some Rj as initial
(final) part, the set Y appears in the same Rj as final (initial) part.

Let now k be even. Then k− 1 is odd and we use the above construction
to obtain a special collection of (k − 1)-permutations R1, . . . , Rt(k−1) of size

t(k − 1) = 1
2

(
k−1

(k−1)/2

)
.

For each i ∈ {1, . . . , t(k − 1)} replace Ri by the two sequences

R+k
i = Ri + (k) and

R−ki = (k) +Ri.

We claim that the resulting collection of sequences is a special collection
of k-permutations. If a subset X ⊂ {1, . . . , k − 1} appears as initial part
of some sequence Ri, then X appears as initial part of R+k

i . Similarly, if
X appears as final part of Ri, then X appears as final part of R−ki . Let
Y ⊆ {1, . . . , k} with k ∈ Y . We write Y = X ∪ {k}. Since X appears as
initial (final) part of some Ri, the set Y appears as initial (final) part of R−ki
(of R+k

i ). Thus, the sequences R−k1 , R+k
1 , . . . , R−kt(k−1), R

+k
t(k−1) form a special

collection of k-permutations. The number of sequences in this collection is

t(k) = 2t(k − 1) =
1

2

(
k

bk/2c

)(
1 +

1

k

)
.

Remark. Note that in the previous Lemma, for the case where k is even, t(k)
is the smallest possible size of a special collection of k-permutations. To see
this, note that there are

(
k
k/2

)
k
2
-subsets of [k]. Each sequence in a special

collection of k-permutations can contain at most two of these subsets as
initial or final part. Thus a special collection of k-permutations must consist
of at least 1

2

(
k
k/2

)
sequences. Lipski asked whether for all odd k a special

collection of k-permutations of size
⌈
1
2

(
k
dk/2e

)⌉
exists, and gave an example

for k = 5, where a special collection of k-permutations of size
⌈
1
2

(
5
3

)⌉
= 5 in

fact exists:

(1, 2, 3, 4, 5)
(2, 3, 5, 1, 4)
(3, 4, 2, 1, 5)
(1, 3, 4, 2, 5)
(2, 4, 1, 3, 5)

37



For k = 7, using a randomized search algorithm, we found a special collection
of k-permutations of size

⌈
1
2

(
7
4

)⌉
= 18:

(5, 4, 1, 2, 3, 7, 6) (2, 4, 7, 3, 1, 6, 5)
(6, 4, 1, 5, 7, 2, 3) (7, 3, 1, 4, 6, 2, 5)
(4, 5, 3, 7, 2, 6, 1) (6, 4, 2, 3, 7, 5, 1)
(1, 3, 5, 4, 7, 2, 6) (1, 2, 4, 6, 3, 7, 5)
(6, 4, 5, 3, 7, 2, 1) (1, 5, 2, 6, 4, 7, 3)
(2, 7, 5, 1, 3, 4, 6) (3, 1, 2, 4, 5, 7, 6)
(4, 5, 7, 1, 2, 3, 6) (3, 4, 2, 5, 6, 7, 1)
(6, 7, 4, 1, 2, 3, 5) (5, 2, 4, 7, 6, 3, 1)
(3, 6, 5, 2, 1, 7, 4) (5, 2, 6, 7, 3, 1, 4)

4
Lipski now constructs a P (n)-covering sequence from the special collec-

tion of k-permutations. First consider the case where n = 2k is even. Let
R be a special collection of k-permutations and let Q be the collection of
sequences obtained from R by incrementing every element in each sequence
in R by k:

Q = {(a1 + k, . . . , ak + k) : (a1, . . . , ak) ∈ R}.
We write R = {R1, . . . , Rt(k)} appending Q = {Q1, . . . , Qt(k)}. Note that
every subset of {k + 1, . . . , 2k} appears as final or initial part in at last
one sequence in Q. Let X be a subset of {1, . . . , n} = {1, . . . , 2k}. Then
X = E ∪ F , where E ⊂ {1, . . . , k} and F ⊂ {k + 1, . . . , 2k}. The set E
appears as initial or final part of some sequence Ri, and F appears as initial
or final part of some sequence Qj. Thus, one of the sequences

RiQj

QjRi

Ri

←−
Qj←−

QjRi

must cover X. The goal is to create a sequence that contains each of the

sequences RiQj, QjRi, Ri
←−
Qj,
←−
QjRi as subsequence for all i, j ∈ {1, . . . , t(k)}.

For 0 ≤ r ≤ t− 1, Lipski defines

Ar = R1Qshiftr(1)R2Qshiftr(2) . . . RtQshiftr(t), and

Br = R1

←−
Q shiftr(1)R2

←−
Q shiftr(2) . . . Rt

←−
Q shiftr(t),

where shiftr denotes the function performing a cyclic shift along the indices
1, . . . , t by r units, i.e., for i ∈ {1, . . . , t}

shiftr(i) = 1 + (i+ r − 1 mod t).

38



Example. For t = 4, we have

A0 = R1Q1R2Q2R3Q3R4Q4,

A1 = R1Q2R2Q3R3Q4R4Q1,

A2 = R1Q3R2Q4R3Q1R4Q2,

A3 = R1Q4R2Q1R3Q2R4Q3.

4

It is easy to see that for each pair i, j ∈ {1, . . . , t}, the sequence RiQj is
contained in one of the sequences Ar. Further, for each j ∈ {1, . . . , t} and
each i ∈ {2, . . . , t}, the sequence QjRi is contained in one of the sequences
Ar. Note that for each j ∈ {1, . . . , t}, the sequence RjQ1 does not appear in
any sequence Ar, but does appear in the the concatenation of the sequences
A0, . . . , At−1. To see this, note that for i ∈ {0, . . . , t−2}, the sequence AiAi+1

contains the sequence QiR1 (let here Q0 = Qt) because Qi is the final block
of Ai and R1 is the first block of Ai+1. The only sequence of the form QjRi

that is not contained in A0 . . . At−1 is Qt−1R1. Since the sequence At−1 ends
with the sequence Qt−1, this is fixed by adding R1 to the concatenation of the
sequences. The sequence A0A1 . . . At−1R1 thus contains all of the sequences
RiQj and QjRi. Similarly, B0B1 . . . Bt−1R1 contains all of the sequences

Ri

←−
Qj and

←−
QjRi.

Since the sequence B0 starts with R1, the sequence

L(n) = L(2k) = A0A1 . . . At−1B0B1 . . . Bt−1R1

contains both the sequences A0A1 . . . At−1R1 and B0B1 . . . Bt−1R1 and thus
covers all subsets of [n].

In the case where n = 2k + 1 is odd, for t = t(k), let the sequences Ar
and Br be defined as before. Further, for each r ∈ {0, . . . , t − 1}, we define
sequences obtained from Ar and Br by inserting the element n after each
occurrence of one of the sequences R1, . . . , Rt:

A∗r = R1nQshiftr(1)R2nQshiftr(2) . . . RtnQshiftr(t), and

B∗r = R1n
←−
Q shiftr(1)R2n

←−
Q shiftr(2) . . . Rtn

←−
Q shiftr(t).

The sequence L(2k) = A0A1 . . . At−1B0B1 . . . Bt−1R1 covers all subsets of
[2k + 1] not containing the element n = 2k + 1, and the sequence

L(2k)∗ = A∗0A
∗
2 . . . A

∗
t−1B

∗
0B
∗
2 . . . B

∗
t−1nR1

39



covers all subsets of [2k+ 1] containing the element n = 2k+ 1. Since L(2k)
ends with the sequence R1, and L(2k)∗ starts with the same sequence R1, we
can omit one occurrence of R1 in their concatenation and thus the sequence

L(2k + 1) = A0A1 . . . At−1B0B1 . . . Bt−1A
∗
0A
∗
2 . . . A

∗
t−1B

∗
0B
∗
2 . . . B

∗
t−1nR1

covers all subsets of [n].

1.3.4 The length of Lipski’s construction.

In the case where n = 2k is even, L(2k) consists of t = t(k) sequences Ai
and Bi—each consisting of 2t(k)k elements—plus the trailing sequence R1

(which is of length k). In total,

|L(2k)| = 2t · 2tk + k = 4t2k + k.

In the case where n = 2k+ 1 is odd, L(2k+ 1) consists of t = t(k) sequences
Ai and Bi, each consisting of 2tk elements, and t sequences A∗i and B∗i —each
consisting of 2tk + t elements—plus the trailing sequence nR1 (which is of
length k + 1). In total,

|L(2k + 1)| = 4t2k + 2t(2tk + t) + k + 1 = 8t2k + 2t2 + k + 1.

We show that |L(n)| ∼ 2n 2
π
. Since

(
k
bk/2c

)
= 2k

√
2
πk

(1 + o(1)) as k tends to

infinity, we have

t(k) =

{
1
2

(
k
k/2

)
if k is even

1
2

(
k
bk/2c

) (
1 + 1

k

)
if k is odd

∼ 1

2
2k
√

2

πk
.

For even n = 2k, we thus have

|L(n)| ∼ 4t(k)2k = 22k 2

πk
k = 2n

2

π
.

For odd n = 2k + 1, we have

|L(n)| ∼ 8t(k)2k = 2 · 22k 2

πk
k = 2n

2

π
.

In fact, whenever k is even and n = 2k or n = 2k + 1 (which holds for
n = 8, 9, 12, 13, 16, 17, . . . ), we have

|L(n)| < 2n
2

π
.

40



It follows from a result mentioned by Banakh et al. [1] that for all even k ≥ 4,(
k

k/2

)
≤ 2k

√
2

πk

(
1− 2

9k

)
,

and thus

|L(2k)| = 4t2k + k ≤ 2n
2

π

(
1− 2

9k

)2

+ k

= 2n
2

π
− 2n

2

π

2

9k
+ 2n

2

π

4

36k2
+ k.

For n ≥ 8,

−2n
2

π

2

9k
+ 2n

2

π

4

36k2
+ k < 0,

proving the claim.
For the case where n = 2k + 1 (with k even),

|L(2k + 1)| = 8t2k + 2t2 + k + 1

≤ 2n
2

π

(
1− 1

4.5k

)2

+
1

4
2n

2

πk

(
1− 1

4.5k

)2

+ k + 1.

Similar to before, this upper bound can be shown to be less than 2n 2
π

for all
n ≥ 9.

Although Lipski’s construction is currently the shortest known construc-
tion for general n ∈ N, it seems to be far from optimal. To demonstrate this,
we introduce a simple greedy algorithm of deterministic nature.

1.3.5 Overlap-Greedy Algorithm

In this section we introduce a very simple greedy algorithm. While this algo-
rithm is outperformed by the heuristic approach described in Section 1.2.2,
the greedy algorithm is completely deterministic, and one might thus have a
chance to analyze the lengths of the P (n)-covering sequences it creates. Evi-
dence suggests that the P (n)-covering sequences generated by this algorithm
are of length strictly less than 2

π
2n for all n.

Algorithm 1.29 starts with the empty sequence S = () and iteratively
adds the least amount of elements needed such that S covers a previously
not covered set. These elements are added to S in increasing order. If the
choice of elements is not unique, the algorithm picks the elements to be
added in such a way that the newly covered set is minimal with respect to
the size-lexicographic order, which is defined below.

41



Definition 1.28 (Size-lexicographic order). Let P be a family of subsets of
[n]. We define the relation ≤sl on P as follows. For X, Y ∈ P :

X ≤sl Y ⇐⇒ |X| < |Y | or (|X| = |Y | and X ≤lex Y ).

4

Example. The size-lexicographic order on P (3) is the following:

{1} ≤sl {2} ≤sl {3} ≤sl {1, 2} ≤sl {1, 3} ≤sl {2, 3} ≤sl {1, 2, 3}.

4

We repeat the definition for the overlapping, and non-overlapping part
between a sequence and a set.

Definition (Overlap and non-overlap). Let S be a sequence over the al-
phabet [n] and let X ⊂ [n]. Let OL(S,X) be the elements of the max-
imal final part of S such that all elements of that part are pairwise dis-
tinct and included in X. We define the non-overlap between S and X by
NOL(S,X) = X \OL(S,X).

Example. Let S = (1, 2, 5, 4, 2, 1, 3, 1) and let X = {1, 2, 3, 5}. Then the
overlap OL(S,X) is {1, 3} and the non-overlap NOL(S,X) is {2, 5}. 4

Algorithm 1.29 Overlap-Greedy
Input: n ∈ N.
Output: A P (n)-covering sequence.

1: S = ().
2: P = P (n).
3: while P 6= ∅ do
4: Z = { Y ∈ P : |NOL(S, Y )| is minimized}.
5: X = minslZ.
6: Append the elements of NOL(X) to S in increasing order.
7: P = P \ {X}.
8: return S.

Note that by adding elements to the current sequence S, the updated
sequence S might cover more than one previously not covered set. Such sets
Y will be detected in the subsequent iterations of the while-loop, where the
non-overlap NOL(S, Y ) will be the empty set.

42



For n ∈ N, let Gn denote the length of the P (n)-covering sequence gener-
ated by Algorithm 1.29, and let Ln denote the length of Lipski’s construction.
Table 6 compares Gn to Ln and to the quantity 2n − 1 for n = 3, . . . , 20.

n Ln Gn Gn/Ln Gn/(2
n − 1)

3 12 4 0.3333 0.5714
4 10 9 0.9000 0.6000
5 21 15 0.7143 0.4839
6 51 33 0.6471 0.5238
7 108 60 0.5556 0.4724
8 148 123 0.8311 0.4824
9 311 230 0.7395 0.4501
10 725 481 0.6634 0.4702
11 1518 909 0.5988 0.4441
12 2406 1790 0.7440 0.4371
13 5007 3470 0.6930 0.4236
14 11207 6714 0.5991 0.4098
15 23208 13161 0.5671 0.4017
16 39208 25686 0.6551 0.3919
17 80859 50317 0.6223 0.3839
18 176409 98553 0.5587 0.3760
19 362610 193994 0.5350 0.3700
20 635050 382160 0.6018 0.3645

Table 6: Comparison of the length of Lipski’s construction to the length of the
sequences generated by the Overlap-Greedy Algorithm for small values of n.

Note that for n ≥ 10, the ratio Gn/(2
n − 1) seems to be strictly decreas-

ing. Figure 1 plots Gn/(2
n − 1) for n = 3, . . . 20. The red line plots the value

2
π
. The family P (n) consists of 2n − 1 sets and thus the ratio Gn/(2

n − 1)
can be interpreted as the average size of NOL(S,X) (taken over all steps of
Algorithm 1.29). Showing that the mean length of the non-overlap tends to
zero as n→∞, would prove Gn = o(2n) and thus s(n) = o(2n), which would
be an asymptotic improvement over Lipski’s result. Even showing that for
sufficiently large n, the average size of NOL(S,X) is bounded from above by
some constant c < 2

π
would imply s(n) ≤ c2n (for large n).

43



5 10 15 20

n

0.40

0.45

0.50

0.55

0.60

0.65

R
at

io
be

tw
ee

n
G

n
an

d
2n

−
1

Figure 1: Plot of the ratio Gn/(2
n − 1) for n = 3, . . . , 20. The red line corresponds

to the ratio 2/π.

44



2 Generalization to arithmetic progressions

2.1 Introduction

A natural generalization of the problem described in Chapter 1 is to ask for
the length of a shortest sequence over the alphabet [n] = {1, . . . , n}, covering
each nonempty subset of {1, . . . , n} by an arithmetic progression. We make
this precise in Definitions 2.2 and 2.3.

Definition 2.1. Let a, k, d ∈ N. The set A = {a, a+d, a+2d, . . . , a+(k−1)d}
is called an (arithmetic) k-progression. We say A has common distance d.

4

In Chapter 1 we studied the length of a shortest sequence S = (a1, . . . , a|S|)
over the alphabet [n] such that for all 1 ≤ k ≤ n, every k-subset of {1, . . . , n}
is covered by a k-block (ar, ar+1, . . . , ar+k−1); that means we required the in-
dex set {r, . . . , r + k − 1} to be a k-progression with common distance 1.
The generalization discussed in this chapter is equivalent to asking the same
question as before, but allowing sets to be covered by arithmetic progressions
of any common distance.

If S = (a1, a2, . . . , aN) is a sequence over the alphabet [n], we can repre-
sent S by the n-colouring f of [N ] defined by

f(1) = a1, f(2) = a2, . . . , f(N) = aN ,

and vice-versa. In problems concerning arithmetic progressions, most authors
talk about n-colourings of an integer-interval, rather than about sequences
over the alphabet [n]. We follow this convention and state the problem in
the language of colourings.

Definition 2.2. Let n,N ∈ N (n ≤ N) and let f : [N ] → [n] be an n-
colouring of [N ]. Let R ∈

(
[n]
k

)
be a k-subset of [n]. We say a k-progression

A in [N ] is R-coloured if {f(a) : a ∈ A} = R. We say f covers R if there is
a k-progression that is R-coloured. If P is a family of subsets of [n], we say
f covers P , if f covers all sets in P .

Remark. Note that since A consists of k elements and |R| = k, the condition
{f(a) : a ∈ A} = R implies that no two elements of A are coloured with the
same colour.

4

Example. The 6-colouring

f = (6, 6, 5, 2, 1, 3, 4, 3, 2, 5, 6, 1, 3, 4)

45



of the interval {1, 2, . . . , 14} covers P (6) because for every subsetR ⊆ {1, . . . , 6}
there is a progression in {1, 2, . . . , 14} that is R-coloured; we give examples
for some subsets:

{1, 4, 6} : (6,6, 5, 2, 1, 3,4, 3, 2, 5, 6,1, 3, 4)
{1, 3, 5} : (6, 6, 5, 2, 1, 3, 4,3, 2,5, 6,1, 3, 4)
{1, 2, 3, 4} : (6, 6, 5,2,1,3,4, 3, 2, 5, 6, 1, 3, 4)
{1, 2, 4, 6} : (6, 6, 5, 2,1, 3,4, 3,2, 5,6, 1, 3, 4)

{1, 2, 3, 4, 5, 6} : (6,6,5,2,1,3,4, 3, 2, 5, 6, 1, 3, 4)

4
Definition 2.3. For n ∈ N, let a(n) denote the smallest positive integer such
that there exists an n-colouring f of [a(n)] = {1, 2, . . . , a(n)} that covers
P (n) = 2[n] \ {∅}, i.e., for every R ⊆ [n] there exists an arithmetic
|R|-progression in [a(n)] that is R-coloured.

For n, k ∈ N (where k ≤ n), let a(n, k) denote the smallest positive
integer such that there exists an n-colouring f of [a(n, k)] = {1, 2, . . . , a(n, k)}
covering Pk(n) =

(
[n]
k

)
, i.e., for every R ∈

(
[n]
k

)
there exists a k-progression in

[a(n, k)] that is R-coloured.
4

Remark. Anti Van-der-Waerden Numbers.
An arithmetic k-progression whose elements are coloured with k distinct
colours is called a rainbow k-progression. A well-studied problem in Ramsey
Theory concerning rainbow progressions is the following:
The Anti-Van-Der-Waerden number aw([N ], k) is defined to be the smallest
positive integer r such that every surjective r-colouring of [N ] contains at
least one rainbow-progression. In their 2016 paper, Butler et al. [3] calculate
exact values of aw([N ], k) for small values of N and k and gave the following
important asymptotic result.

Theorem (Butler et al. [3]). There exists a positive integer N0 and positive
real numbers c1, c2 such that

c1 logN ≤ aw([N ], 3) ≤ c2 logN

for all N ≥ N0. For fixed k ≥ 4, as N tends to infinity,

aw([N ], k) = N1−o(1)

holds.

46



The problem of studying Anti Van-der-Waerden numbers is about find-
ing colourings avoiding all rainbow k-progressions. Conversely, the problem
studied in this chapter is about finding colourings that do not avoid any
rainbow-progressions.

In Section 2.2.1 we use a genetic algorithm to find colourings giving upper
bounds for a(n) for some small values of n.

We are also interested in the asymptotic behaviour of a(n, k), in particular
for the case where k = k(n) is a function growing in n. In Section 2.3 we
analyze the asymptotic behaviour of a(n, k) for the case where k = o(n1/6).

2.2 Exact values and bounds for small n

To find upper bounds for a(n) for small n, we used a genetic algorithm to
find n-colourings of short integer intervals covering all subsets of [n].

The technique presented in the following Section 2.2.1 is described well
in Melanie Mitchell’s book An Introduction to Genetic Algorithms [15] and
our implementation follows that description.

2.2.1 Genetic Algorithm and Backtracking approach

The general idea of genetic algorithms is the following. Let S be a set and
let fit : S → R. Consider the optimization problem

find x ∈ argmax{fit(x) : x ∈ S}.

If it is not clear how to traverse the feasible set S, one can use heuristic ideas
motivated by biology to find points in S that have a high fitness-value. This
idea is applicable if the set S has the property that—roughly speaking—
modifying and combining elements in S results in elements that themselves
are members of S. In every iteration i, one has a multiset (list) Fi ⊂ S (the
multiset F0 is usually created by picking elements from S at random), called
current population. From Fi pairs of elements (parent elements) with high
fitness-values are selected to generate new elements in S, called offspring.
This is motivated by the idea from biology that in a breeding population,
fit individuals will be more likely to breed. Afterwards, each element in
the offspring might—with some probability—be slightly modified by what
is called a mutation. This is motivated by the idea that in a population
of organisms, external factors might cause slight changes in the DNA of
individuals. From the offspring of Fi, the fittest elements are chosen to form
the population of the next generation, Fi+1 (survival of the fittest).

47



In our case S will be the set of all n-colourings of the interval [N ]. The
fitness value fit : S → R is designed such that colourings that cover many
subsets of [n] have a large fitness-value.

Definition 2.4. Let f be an n-colouring of the interval [N ] (where n ≤ N).
We define the fitness of f , fit(f), to be the number of subsets of [n] that
are covered by the colouring f . Different fitness functions can be defined by
assigning weights to the covered subsets, according to their size. Reasonable
options include:

fit(f) =
∑

R⊆[n]: R is covered by f

|R|,

and
fit(f) =

∑
R⊆[n]: R is covered by f

(⌈n
2

⌉
−
∣∣∣⌈n

2

⌉
− |R|

∣∣∣) .
The second option assigns a high fitness-value to colourings that cover many
subsets of [n] that have size close to

⌈
n
2

⌉
. 4

For any of the above choices, an n-colouring of [N ] covers all subsets of
[n] if and only if it has the maximum possible fitness-value.

We first describe the main procedure in Algorithm 2.5. The opera-
tions SelectParent, Crossover, InsertionMutate, ReversionMu-
tate and ChangeMutate are described afterwards.

48



Algorithm 2.5 Genetic Algorithm

Input: n,N,POP,GEN,OFF ∈ N, γ1, γ2, γ3, τ ∈ [0, 1].

1: i = 0.
2: F0 = Randomly created multiset of n-colourings of [N ], |F0| = POP.
3: while i ≤ GEN do
4: Offspring = [ ].
5: while |Offspring| < OFF do
6: Parent1 = SelectParent(Fi).
7: Parent2 = SelectParent(Fi).
8: with probability τ do
9: Child1,Child2 = Crossover(Parent1,Parent2).

10: otherwise do
11: Child1 = Parent1.
12: Child2 = Parent2.

13: Add Child1 and Child2 to Offspring.
14: for C ∈ Offspring do
15: with probability γ1 do
16: C = InsertionMutate(C), (and update C in Offspring).

17: with probability γ2 do
18: C = ReversionMutate(C), (and upd. C in Offspring).

19: with probability γ3 do
20: C = ChangeMutate(C), (and update C in Offspring).

21: Set Fi+1 to be the POP fittest colourings in Offspring.
22: If Fi+1 contains a colouring of maximum possible fitness, return that

colouring and terminate.
23: i = i+1.

We describe the process for selecting parent colourings.

Definition 2.6 (SelectParent(F)). Let B = [fit(f1), . . . , fit(f|F|)] be the
list of fitnesses of the colourings in F . We define

wi = fit(fi)−minB,

giving a list of nonnegative weights W = (w1, . . . , w|F|), where the weight
wi corresponds to the deviation of the fitness of fi from the fitness of the
member of F with the worst fitness.
We return a colouring that is chosen at random from F with probability
according to the list of weights W , i.e., the colouring fk ∈ F is chosen with

49



probability
wk∑|F|
i=1wi

.

4
Remember that an n-colouring f of [N ] can be represented as a sequence

of length N over the alphabet [n] by setting Sf = (a1, a2, . . . , aN), where
we write ai = f(i) for i ∈ {1, . . . , N}. For the following definitions, let the
input-colouring f be given by such a sequence.

The operation responsible for creating offspring is Crossover.

Definition 2.7 (Crossover). The function Crossover takes as input two
colourings (a1, . . . , aN) and (b1, . . . , bN), picks an index i ∈ {1, . . . , N − 1}
uniformly at random and returns the colourings

Child1 = (a1, . . . , ai, bi+1, . . . , bN),

Child2 = (b1, . . . , bi, ai+1, . . . , aN).

4
Whenever offspring is created, each colouring in the offspring is—with

some probability—slightly changed (mutated) by one or multiple of the mu-
tation operations InsertionMutate, ChangeMutate and Reversion-
Mutate.

Definition 2.8 (InsertionMutate). The operation InsertionMutate
picks two distinct indices i, j ∈ {1, . . . , N} uniformly at random, deletes the
element ai from the input sequence, and re-inserts it such that ai is now at
position j of the sequence.

InsertionMutate :

(a1, . . . , aN) 7→ (a1, . . . , aj−1, ai, aj+1, . . . , ai−1, ai+1, . . . , aN)

(for j < i, and similarly for j > i).

4
Definition 2.9 (ChangeMutate). The operation ChangeMutate picks
an index i ∈ {1, . . . , N} and an element c ∈ {1, . . . , n} uniformly at random
and changes the value of ai to c.

ChangeMutate :

(a1, . . . , aN) 7→ (a1, . . . , ai−1, c, ai+1, . . . , aN).

4

50



Definition 2.10 (ReversionMutate). The function ReversionMutate
picks two indices i, j ∈ {1, . . . , N} (where i < j) uniformly at random and re-
places the subsequence (ai, ai+1 . . . , aj−1, aj) by its reverse (aj, aj−1, . . . , ai+1, ai).

ReversionMutate :

(a1, . . . , ai, ai+1 . . . , aj−1, aj, . . . , aN) 7→ (a1, . . . , aj, aj−1, . . . , ai+1, ai, . . . , aN).

4

Results. For n up to 6, we managed to calculate a(n) by means of exhaus-
tive search, i.e., checking every possible n-colouring of [a(n)− 1] to see that
no such colouring is a solution. Using the genetic algorithm described in this
section, we managed to find colourings giving upper bounds for a(7), a(8),
and a(9), which are listed in Table 7.

n a(n)

1 1
2 2
3 3
4 6
5 9
6 14
7 ≤ 23
8 ≤ 39
9 ≤ 78

Table 7: Known values and bounds for a(n) for small values of n.

We conjecture 23 to be the true value of a(7), while we believe the bounds
for n = 8, 9 not to be tight.

A note on a possible backtracking approach. Unfortunately, we did
not manage to prove optimality for the colourings we found for n ≥ 7. In
order to prove a(7) = 23, we implemented a backtracking algorithm similar to
the one used in Section 1.2.1, but failed to find an early-pruning criterion that
helped narrow down the search space sufficiently. We describe the progress
we made with this approach.
The most natural pruning mechanism is the following. Let f be a partial n-
colouring (some elements may not be coloured) of the integer interval [N ] and

51



let Kf be the number of fully coloured progressions in [N ] plus the number of
progressions in [N ] that are not fully coloured but that contain at least two
elements that are coloured with the same colour. If the number of k-subsets
that are not covered by f is larger than |APk(N)|−Kf , the current colouring
can not be extended to become a P (n)-covering colouring.

The order in which the elements of [N ] are coloured during backtracking
is important. Instead of backtracking through all possible n-colourings of
[N ] by colouring the elements in their natural ordering 1, 2, . . . , N (like we
did in Section 1.2.1), we can fix a permutation of [N ] and backtrack in the
order according to that permutation. We chose an ordering of [N ] such
that in every step the newly coloured element is part of many arithmetic
progressions that have the property that at least one of their elements is
already coloured. This idea helped to reduce the search space considerably,
but we still were not able to calculate a(7) with this approach.

52



2.3 Asymptotic bounds

In this section we give two results about the asymptotic behaviour of a(n, k).
The proof for Theorem 2.11 was found in cooperation with Leonardo Alese
and Stefan Lendl and is given in the following Section 2.3.1.

Theorem 2.11. For fixed k ∈ N we have

a(n, k) = O
(
log n · nk/2

)
as n→∞. If k = k(n) = o(n1/6) tends to infinity as n→∞, we have

a(n, k) = O
(

log n · e k2 · k−k2 + 5
4 · n k

2

)
.

Proposition 2.12. As n→∞,

a(n, k) = Ω

(√
k

(
n

k

))

holds. If in particular k = o(n
1
2 ) tends to infinity as n→∞, we have

a(n, k) = Ω
(
k
−k
2
+ 1

4 · n k
2 · e k2

)
.

Comparing the asymptotic upper and lower bound for the case where
k = o(n1/6) tends to infinity, we see that the bounds only differ by a factor
of k log n.

2.3.1 Asymptotic upper bound

In the following pages, when using the term random colouring, we always
refer to a colouring that colours each element with a colour chosen uniformly
at random from the given set of colours.

Definition 2.13. Let k, n,N ∈ N (where k ≤ n ≤ N) and let f be a random
n-colouring of [N ]. For each R ∈

(
[n]
k

)
let XR(f) be the indicator variable

of the random event “There exists an R-coloured k-progression in [N ]”. For
each k-progression A in [N ], let YA,R(f) be the event “The progression A is
R-coloured”.
We further define

X(f) =
∑

R∈([n]
k )

XR(f),

a random variable counting the number of k-subsets of [n] that are covered
by f . 4

53



Let APk(N) denote the set of all k-progressions in [N ]. Note that XR(f)
is the indicator variable of the event

⋃
A∈APk(N)

YA,R(f).

Lemma 2.14 states the Bonferroni inequality, which can be obtained by
truncating the sum in the inclusion-exclusion principle such that only the
intersections of up to two events are considered. We will use Lemma 2.14 to
give a lower bound on the expectations EXR(f). Then, by using linearity of
expectation, we will obtain a lower bound for EX(f).

Lemma 2.14 (Bonferroni inequality). Let A1, . . . , Ak be random events.
Then

P(A1 ∪ · · · ∪ Ak) ≥
k∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj).

LetHk(N) =
(
APk(N)

2

)
denote the set of all unordered pairs of k-progressions

in [N ]. Applying the Bonferroni inequality to our setting, we directly obtain
Lemma 2.15.

Lemma 2.15. Let k, n,N ∈ N (where k ≤ n ≤ N) and let f be a random
n-colouring of [N ]. For every k-subset R of [n], the following holds.

EXR(f) = P(XR(f) = 1) = P

 ⋃
A∈APk(N)

YA,R(f)


≥

∑
A∈APk(N)

P(YA,R(f))−
∑

{A,B}∈Hk(N)

P (YA,R(f) ∩ YB,R(f))

=
∑

A∈APk(N)

P(YA,R(f))−
k−1∑
i=0

∑
{A,B}∈Hk(N)
|A∩B|=i

P(YA,R(f) ∩ YB,R(f)).

�

To evaluate the lower bound from Lemma 2.15, we need to count the
number of k-progressions in [N ] and the number of i-intersecting pairs of k-
progressions in [N ]. Asymptotic formulas are given in Lemma 2.17. Further
we need to calculate the probabilities P(YA,R(f)) and P(YA,R(f) ∩ YB,R(f)).
The exact formulas are given in Lemma 2.18.

Definition 2.16. We define h(N, k) = |APk(N)| to be the number of k-
progressions in [N ], and for i = 0, 1, . . . , k − 1 we define hi(N, k) to be the
number of pairs of i-intersecting k-progressions in [N ], i.e.,

hi(N, k) = |{ {A,B} ∈ Hk(N) : |A ∩B| = i }| .
4

54



Lemma 2.17. As N tends to infinity, the following asymptotic formulas hold
for both the case where k = k(N) ≤ N tends to infinity, and for the case
where k is constant.

• h(N, k) = N2

2k−2 +O(N).

• h0(N, k) ≤ N4

8(k−1)2 + e0(N, k), where e0(N, k) = O(N2/k).

• h1(N, k) = O (N3k) .

• hj(N, k) = O (N2k4) for j ≥ 2.

Proof. Every k-progression in [N ] is uniquely determined by its first element
s and its common distance d. Such a pair (s, d) encodes a valid k-progression
if and only if s + (k − 1)d ≤ N . For a given first element s, the largest
possible value of d is thus

⌊
N−s
k−1

⌋
. It follows that

h(N, k) =
N−k+1∑
s=1

⌊
N − s
k − 1

⌋
.

By omitting the floor function, we obtain the following upper bound:

h(N, k) ≤ N2 −N − k2 + 3k − 2

2k − 2
≤ N2

2k − 2
+

3k

2k − 2
.

Conversely, by omitting the floor function and subtracting 1 for every
term in the sum, we get the following lower bound:

h(N, k) ≥ N2 −N − k2 + 3k − 2

2k − 2
− (N − k + 1).

Thus h(N, k) = N2

2k−2 +O(N) holds. The bound for h0(N) is trivial; we just
bound h0(N) by the total number of pairs of k-progressions.

h0(N, k) ≤
(
h(N, k)

2

)
≤
(⌊ N2

2k−2 + 3k
2k−2

⌋
2

)
=

N4

8(k − 1)2
+ e0(N, k),

where e0(N, k) = O(N2/k).
Next we show that h1(N, k) = O(N3k). For each k-progression A =

(a1, . . . , ak) in [N ] and each aj ∈ A there are at most k · N k-progressions
B = (b1, . . . , bk) such that aj ∈ B; indeed, if bi = aj for some i ∈ [k], then
there are at most N valid choices for bi+1 (or bi−1 if i = k), each choice
uniquely determining B. Thus,

h1(N, k) ≤ h(N, k)k2N ≤
(

N2

2k − 2
+

3k

2k − 2

)
k2N = O(N3k).

55



Finally, we show that hi(N, k) = O(N2k4) holds for i ≥ 2. We want
to count pairs of k-progressions that intersect in at least two points. For
each pair of distinct points x1, x2 ∈ [N ] there are at most

(
k
2

)
k-progressions

containing both x1 and x2; for each pair of distinct indices j1, j2 ∈ [k] there
is at most one progression A = (a1, . . . , ak) with aj1 = x1 and aj2 = x2. Thus

there are at most
((k2)

2

)
pairs of k-progressions both containing x1 and x2.

There are
(
N
2

)
choices for the pair x1, x2 and we thus obtain

hi(N, k) ≤
(
N

2

)((k
2

)
2

)
= O(N2k4).

The following Lemma is straight-forward to prove.

Lemma 2.18. Let k ≤ n ≤ N be positive integers. Let f : [N ] → [n] be a
random n-colouring of [N ]. Then, for any k-progression A in [N ] and any
k-subset R of [n]

P (YA,R(f)) =
k!

nk

holds.
Further, for any pair A,B of k-progressions in [N ] such that |A ∩ B| = i,
where i ∈ {0, . . . , k − 1}:

P (YA,R(f) ∩ YB,R(f)) =
(k − i)!k!

n2k−i .

Proof. Let R ∈
(
[n]
k

)
. The total number of possible n-colourings of a given

k-progression is nk. The number of possible ways to colour a given k-
progression with k distinct colours is k!, thus P(YA,R(f)) = k!

nk
.

Let A and B be two k-progressions intersecting in i positions. A and B are
in total made up of 2k− i distinct elements in [N ], thus the total number of
possible n-colourings of A and B is n2k−i. Let {a1, . . . , ak−i} be the elements
in [N ] that appear in A but not in B and let B = (b1, . . . , bk). Similarly to
before, there are k! ways to colour B with the k colours in R. Each such
colouring of B determines the colours of the intersection between A and B.
Thus the remaining k − i colours in R must be used for the colouring of the
elements {a1, . . . , ak−i}. There are (k− i)! ways to colour k− i elements with
k − i distinct colours, proving the second claim.

We are ready to evaluate the lower bound from Lemma 2.15.

56



Lemma 2.19. Let k = k(n) = o(n1/6) and let N = N(n) =
⌈√

2
√

k−1
k!
· nk/2

⌉
.

There exists a function φ : N → R with φ(n) = o(1) as n tends to infinity
such that the following property holds for all n ∈ N:
Let fn be a random n-colouring of [N ]. Then, for every R ∈

(
[n]
k

)
the inequal-

ity

EXR(fn) ≥ 1

2
+ φ(n)

holds.

Proof. In Lemma 2.15 we established a bound for EXR(fn):

EXR(fn) ≥
∑

A∈APk(N)

P(YA,R(fn))−
k−1∑
i=0

∑
{A,B}∈Hk(N)
|A∩B|=i

P(YA,R(fn) ∩ YB,R(fn)).

Using the counting functions from Definition 2.16 and the probabilities from
Lemma 2.18, we can rewrite the above bound as

EXR(fn)

≥ h(N)
k!

nk
− h0(N)

k!k!

n2k
− h1(N)

k(k − 1)!

n2k−1 −
k−1∑
i=2

hi(N)
(k − i)!k!

n2k−i

≥ h(N)
k!

nk
−
(

N4

8(k − 1)2
+ e0(N, k)

)
k!k!

n2k

− h1(N)
k(k − 1)!

n2k−1 −
k−1∑
i=2

hi(N)
(k − i)!k!

n2k−i

=: L(n).

In the last inequality we used the upper bound for h0 from Lemma 2.17. We
now show that the lower bound L(n) is equal to 1/2+φ(n) for some function
φ(n) = o(1).

Plugging in the asymptotic formulas for h and hi (i = 0, . . . , k − 1) we
get

L(n) =

(
N2

2k − 2
+O(N)

)
k!

nk
−
(

N4

8(k − 1)2
+ e0(N, k)

)
k!k!

n2k

+O(N3k)
(k − 1)!k!

n2k−1 +O(N2k4)
k−1∑
i=2

(k − i)!k!

n2k−i .

We show that only the terms N2

2k−2
k!
nk

and N4

8(k−1)2
k!k!
n2k are asymptotically

relevant. To this end, we show that all other terms vanish asymptotically;

57



(i) O(N) k!
nk

= o(1),

(ii) e0(N, k)k!k!
n2k = O(N2/k)k!k!

n2k = o(1),

(iii) O(N3k) (k−1)!k!
n2k−1 = o(1), and

(iv) O(N2k4)
∑k−1

i=2
(k−i)!k!
n2k−i = o(1).

In the case where k is constant, we have N = O
(
nk/2

)
and i) - iv) hold

trivially. Below we prove i) - iv) for the case where k = o(n1/6) tends to
infinity. Using Stirling’s formula, we obtain

N =

⌈
√

2

√
k − 1

k!
nk/2

⌉
∼
√

2k(2πk)−1/4
(en
k

)k/2
. (5)

Using (5) and Stirling’s formula we see

N
k!

nk
∼
√

2k(2πk)−1/4
(en
k

)k/2√
2πk

(
k

e

)k
1

nk

= O
(
k3/4e−k/2 · kk/2n−k/2

)
= o(1),

proving (i). Similarly, we have

N3 k!k!

n2k−1 ∼ (2k)3/2 (2πk)−3/4
(en
k

)3k/2
(2πk)

(
k

e

)2k
1

n2k−1

= O
(
e−k/2kk/2+

7
4n−k/2+1

)
= o(1),

implying both (ii) and (iii). Note that the terms of the sum in (iv) are
monotonically increasing. We can thus use the bound

k−1∑
i=2

(k − i)!k!

n2k−i ≤ k
k!

nk+1

before applying (5) and Stirling’s formula; obtaining

N2k4
k−1∑
i=2

(k − i)!k!

n2k−i ≤ N2k5
k!

nk+1

∼ 2k(2πk)−1/2
(en
k

)k
k5
√

2πk

(
k

e

)k
1

nk+1

= O
(
k6

n

)
= o(1),

58



proving (iv). Note that in the last line we use the assumption k = o(n1/6).
We are thus left with the following representation of L(n):

L(n) =
N2

2k − 2

k!

nk
− N4

8(k − 1)2
k!k!

n2k
+ o(1).

Since N =
⌈√

2
√

k−1
k!
nk/2

⌉
, the above expression simplifies to

L(n) =
1

2
+ o(1).

Thus, there exists a function φ : N→ R such that for all n ∈ N

EXR(fn) ≥ L(n) =
1

2
+ φ(n),

where φ(n) = o(1).

From Lemma 2.19 we can easily derive the following fact.

Lemma 2.20. Let k = k(n) = o(n1/6) and let N = N(n) =
⌈√

2
√

k−1
k!
· nk/2

⌉
.

There exists a function φ(n) = o(1) such that the following property holds for
all n ∈ N:
Let Fn ⊆

(
[n]
k

)
be a family of k-subsets of [n]. There exists an n-colouring f ∗n

of [N ] such that the number of sets in Fn that are covered by f ∗n is at least
|Fn|

(
1
2

+ φ(n)
)
.

Proof. For each n ∈ N let fn be a random n-colouring of [N ]. From Lemma 2.19
we know that there exists a function φ(n) = o(1) such that for all n ∈ N and
R ∈

(
[n]
k

)
the inequality

EXR(fn) ≥
(

1

2
+ φ(n)

)
holds. By linearity of expectation we can compute a lower bound for the
expected number of sets in Fn that are covered by fn:

EX(fn) = E

(∑
R∈Fn

XR(fn)

)
=
∑
R∈Fn

EXR(fn) ≥ |Fn|
(

1

2
+ φ(n)

)
.

For each n ∈ N, there exists an n-colouring f ∗n of [N ] that covers at least the
expected number of covered sets in Fn, completing the proof.

We are ready to prove the main result.

59



Proof of Theorem 2.11.

Proof. For each n ∈ N let N =
⌈√

2
√

k−1
k!
· nk/2

⌉
. By Lemma 2.20 we know

that there exists an n-colouring g
(0)
n of [N ] that covers at least

(
n
k

) (
1
2

+ φ(n)
)

of the sets in F0 :=
(
[n]
k

)
, where φ is an asymptotically vanishing function.

Let F1 be the family of sets in F0 that have not been covered by g
(0)
n .

We apply Lemma 2.20 again, yielding an n-colouring g
(1)
n of [N ] covering at

least |F1|
(
1
2

+ φ(n)
)

of the sets in F1. We repeat this process r times, by
defining Fi to be the family of k-subsets of [n] not yet covered by any of the

colourings g
(0)
n . . . , g

(i−1)
n .

After r iterations, the number of k-subsets of [n] that are not covered
by any of the constructed colourings is at most |F0|

(
1
2
− φ(n)

)r
. Setting

r = r(n, k) = dα · k log ne, where α > 1
log(2)

, we get (see Proposition 2.21)

|F0|
(

1

2
− φ(n)

)r(n,k)
=

(
n

k

)(
1

2
− φ(n)

)r(n,k)
→ 0 as n→∞.

Thus, for sufficiently large n, after r(n, k) iterations, every k-subset of [n] is
covered by at least one of the colourings

g(0)n , g(1)n , . . . , g(r(n,k)−1)n .

From the colourings g
(0)
n , g

(1)
n , . . . , g

(r(n,k)−1)
n we construct an n-colouring

g of S := {1, 2, . . . , r(n, k) ·N}. We split S into r(n, k) intervals of length N

and colour each of these intervals with the corresponding colouring g
(i)
n .

Formally, we set

g (i ·N + s) = g(i)n (s) i ∈ {0, . . . , r(n, k)− 1}, s ∈ {1, . . . , N}.

The colouring g is an n-colouring of S =
[
dα · k log ne ·

⌈√
2
√

k−1
k!
· nk/2

⌉]
that covers all k-subsets of [n]. It follows that

a(n, k) = O
(
k · log n ·

√
k − 1

k!
· nk/2

)
.

If k = o(n1/6) tends to infinity as n→∞,

a(n, k) = O
(

log n · e k2 · k−k2 + 5
4 · nk/2

)
holds. If k is constant, we have

a(n, k) = O
(
log n · nk/2

)
.

60



It only remains to verify the following calculation, which was needed for
the proof of Theorem 2.11.

Proposition 2.21. Let k = k(n) = o(n1/6) and let r(n, k) = dα · k log ne,
where α > 1

log(2)
. Let φ be a real-valued function such that φ(n) = o(1) as n

tends to infinity. Then(
n

k

)(
1

2
− φ(n)

)r(n,k)
→ 0 as n→∞.

Proof. For every ε ∈ (0, 1
2
), there exists a positive integer n0 such that for all

n ≥ n0, (
n

k

)(
1

2
− φ(n)

)r(n,k)
≤
(
n

k

)(
1

2
+ ε

)r(n,k)
.

If k = o(n1/6) = o(n1/2) tends to infinity as n→∞, we have(
n

k

)(
1

2
+ ε

)r(n,k)
∼
√

1

2πk

(ne
k

)k
·
(

1

2
+ ε

)r(n,k)
= exp

(
log

√
1

2πk
+ k log n− k log k + k + r(n, k) log

(
1

2
+ ε

))
.

If k is constant, we have(
n

k

)(
1

2
+ ε

)r(n,k)
∼ exp

(
k log n+ r(n, k) log

(
1

2
+ ε

))
.

We define r(n, k) such that in both of the above expression, the argument
of the exponential function goes to −∞ as n → ∞. Since the the terms

log
√

1
2πk

, k log k and k are o(k log n), this is achieved by setting r(n, k) such

that

k log n+ r(n, k) log

(
1

2
+ ε

)
→ −∞ as n→∞,

which is done by setting r(n, k) = dα · k log ne, where α > − 1

log( 1
2
+ε)

. Since

ε can be chosen arbitrarily small, we can choose any α > 1
log(2)

.

2.3.2 Asymptotic lower bound

We conclude this chapter with the proof of Proposition 2.12.

61



Proof of Proposition 2.12.

Proof. Let N ∈ N. If we want to colour [N ] with n colours such that for
each R ∈

(
[n]
k

)
there is a k-progression in [N ] that is R-coloured, we require

in particular that there are at least
(
n
k

)
arithmetic k-progressions in [N ].

We know from the proof of Lemma 2.17 that the number of k-progressions
in [N ] is

h(N, k) =
N−k+1∑
s=1

⌊
N − s
k − 1

⌋
.

By omitting the floor function for every term in the sum, we get the following
upper bound:

h(N, k) ≤ N2 −N − k2 + 3k − 2

2k − 2
≤ N2 + 3k

2k − 2
.

Thus, if our requirement h(N, k) ≥
(
n
k

)
holds, then

N2 + 3k

2k − 2
≥
(
n

k

)
(6)

also holds. Solving (6) for N , we obtain

N ≥
√

2(k − 1)

(
n

k

)
− 3k

= Ω

(√
k

(
n

k

))
.

If k = o(n
1
2 ) tends to infinity as n→∞, we have(

n

k

)
=

1√
2πk

(ne
k

)k
(1 + o(1)),

and thus in this case
N = Ω

(
k
−k
2
+ 1

4 · n k
2 · e k2

)
holds.

62



3 Generalization to graphs

We describe an interesting generalization of the problems described in Chap-
ters 1 and 2. Let F be a fixed family of graphs and let P be a family of
subsets of [n]. We want to find a graph G ∈ F with the least possible num-
ber of vertices such that the vertices of the graph can be coloured such that
for every set R ∈ P , there exists a connected (induced) subgraph of G—
consisting of |R| vertices—whose vertex colours are exactly the elements of
R.

Definition 3.1. Let n ∈ N and let G be a graph. Let f be a vertex colouring
V (G)→ [n]. For a family of subsets P of [n] we say f covers P if for every
X ∈ P there exists a connected subgraph H of G such that |V (H)| = |X|
and {f(v) : v ∈ V (H)} = X.
We say a graph G ∈ F can cover P if there exists a colouring f : V (G) 7→ [n],
such that f covers P . 4

We are interested in the cases P = P (n) and P = Pk1,...,kr(n).

Definition 3.2. Let F be a family of graphs. We define g(F , n) to be the
least possible number of vertices of a graph in F that can cover P (n), and
gk1,...,kr(F , n) to be the least possible number of vertices of a graph in F that
can cover Pk1,...,kr(n). 4

Example. Let K = {K1, K2, . . . } denote the class of all complete graphs.
Since any collection of vertices of the complete graph Kn induces a connected
subgraph, the graph Kn can cover P (n) and thus

g(K, n) = n

for all n ∈ N. 4

The class T of all trees is more interesting. The graph Tn given in the
proof of the following example was found during a discussion with Stefan
Lendl and Leonardo Alese.

Example. We have g(T , n) = g2(T , n) =
(
n
2

)
+ 1.

Proof. In a graph, connected subgraphs with two vertices are exactly the
edges of the graph. Thus, a tree that can cover P2(n) must consist of at least(
n
2

)
edges. A tree with

(
n
2

)
edges has

(
n
2

)
+ 1 vertices and thus we have

gn(T ) ≥ gn,2(T ) ≥
(
n

2

)
+ 1.

63



We construct a tree Tn with
(
n
2

)
+ 1 vertices and a corresponding colouring

f that covers P (n). This shows gn,2(T ) ≤ gn(T ) ≤
(
n
2

)
+ 1.

Tn consists of three layers.

V (Tn) = {r} ∪ {x2, . . . , xn} ∪ {yi,j : 2 ≤ i ≤ n, i+ 1 ≤ j ≤ n}.

There is an edge between the root vertex r and each of the vertices xi. Further
for each vertex xi, there is an edge between xi and each of the vertices yi,j,
where j ∈ {i+ 1, . . . , n}. The colouring f is defined as follows:

f(r) = 1,

f(xi) = i for i ∈ {2, . . . , n},
f(yi,j) = j for i ∈ {2, . . . , n}, j ∈ {i+ 1, . . . , n}.

Figure 2 shows Tn and f .

r

1

x2

2

y2,3

3

y2,4

4

. . .

. . .

y2,n

n

x3

3

y3,4

4

y3,5

5

. . .

. . .

y3,n

n

. . .

. . .

xn−1

n− 1

yn−1,n

n

xn

n

Figure 2: The graph Tn. The numbers in red correspond to the values of the
colouring f .

We show that every subset A ⊆ [n] appears as the set of vertex-colours of
an connected subgraph of size |A| in Tn. Let a1, . . . , ar denote the elements
of A in increasing order. If a1 = 1, set

H = {r, xa2} ∪ {ya2,aj : j = 3, . . . , r},

and if a1 6= 1, set

H = {xa1} ∪ {ya1,aj : j = 2, . . . , r}.

In both cases the subgraph induced by H is connected and the colours of the
vertices of H are exactly a1, . . . , ar.

64



Example (Hypercubes). Another interesting graph class to consider is the
class of all hypercubes H = {Q1, Q2, Q3, . . . }, where the hypercube Qk of
dimension k is defined as the graph on the vertex set

V (Qk) = {(x1, . . . , xk) : xi ∈ {0, 1}, 1 ≤ i ≤ k},

where two vertices x, y ∈ V (Qk) are connected by an edge if and only if
x differs from y in exactly one position. Note that Qk has 2k vertices and
k2k−1 edges. The hypercube Qk can also be constructed by taking two copies
of Qk−1 and adding an edge between each vertex and its copy. We define
h(n) = log2 g(H, n), the dimension of the smallest hypercube that can cover
P (n). It is easy to verify that h(3) = 2 and h(4) = 3. Corresponding
colourings are given in Figures 3 and 4.

A cube that can cover P (n) can in particular cover P2(n) and must there-
fore consist of at least

(
n
2

)
edges. Thus, if Qk can cover P (n), then

k2k−1 ≥
(
k

2

)
must hold. It follows that h(6) ≥ 4 and h(8) ≥ 5. The bound h(5) ≥ 4
was shown using an exhaustive computer search. Using a randomized search
algorithm, we found a 7-colouring of Q4, covering every subset of {1, . . . , 7}
(given in Figure 5) and a 9-colouring of Q5, covering every subset of {1, . . . , 9}
(given in Figure 6). This implies h(9) ≤ 5 and h(7) ≤ 4. This gives the
following values of h(n).

n h(n)

2 1
3 2
4 3
5 4
6 4
7 4
8 5
9 5

Table 8: Known values of h(n) for small n.

65



− (0,0): 1 − (0,1): 2 − (1,0): 3 − (1,1): 1

Figure 3: A colouring of Q2 with 3 colours. Every subset of {1, 2, 3} appears as
the colours of the vertices of a connected subgraph in Q2.

− (0, 0, 0): 1
− (1, 0, 0): 3
− (0, 1, 0): 1
− (0, 0, 1): 4

− (1, 1, 0): 4
− (0, 1, 1): 2
− (1, 0, 1): 3
− (1, 1, 1): 3

Figure 4: A colouring of Q3 with 4 colours. Every subset of {1, . . . , 4} appears as
the colours of the vertices of a connected subgraph in Q3.

4 3

6 5

7 6

1 7

5 4

2 1

2 4

3 7

− (0, 0, 0, 0): 4
− (1, 0, 0, 0): 5
− (0, 1, 0, 0): 3
− (0, 0, 1, 0): 6
− (0, 0, 0, 1): 7
− (1, 1, 0, 0): 4
− (0, 1, 1, 0): 5
− (1, 0, 1, 0): 2

− (0, 1, 0, 1): 6
− (0, 0, 1, 1): 1
− (1, 0, 0, 1): 2
− (1, 1, 1, 0): 1
− (1, 1, 0, 1): 4
− (1, 0, 1, 1): 3
− (0, 1, 1, 1): 7
− (1, 1, 1, 1): 7

Figure 5: The graph Q4 and a corresponding vertex colouring with 7 colours. Every
subset of {1, . . . , 7} appears as the colours of the vertices of a connected subgraph
in Q4.

66



− (0, 0, 0, 0, 0): 9
− (0, 0, 0, 0, 1): 8
− (0, 0, 0, 1, 0): 3
− (0, 0, 1, 0, 0): 7
− (0, 1, 0, 0, 0): 5
− (1, 0, 0, 0, 0): 4
− (0, 0, 0, 1, 1): 2
− (0, 0, 1, 1, 0): 4
− (0, 1, 1, 0, 0): 4
− (1, 1, 0, 0, 0): 8
− (0, 0, 1, 0, 1): 3

− (0, 1, 0, 1, 0): 3
− (1, 0, 1, 0, 0): 6
− (1, 0, 0, 1, 0): 1
− (0, 0, 1, 1, 1): 3
− (0, 1, 1, 1, 1): 8
− (1, 0, 1, 1, 0): 2
− (0, 1, 0, 0, 1): 5
− (1, 1, 0, 1, 1): 2
− (1, 1, 0, 1, 0): 6
− (0, 1, 1, 0, 1): 9
− (1, 1, 1, 0, 1): 6

− (1, 0, 1, 1, 1): 9
− (1, 1, 1, 0, 0): 3
− (1, 1, 1, 1, 0): 5
− (1, 0, 1, 0, 1): 5
− (1, 0, 0, 0, 1): 5
− (1, 1, 0, 0, 1): 2
− (1, 0, 0, 1, 1): 7
− (0, 1, 0, 1, 1): 6
− (0, 1, 1, 1, 0): 7
− (1, 1, 1, 1, 1): 1

Figure 6: A colouring of Q5 with 9 colours. Every subset of {1, . . . , 9} appears as
the colours of the vertices of a connected subgraph in Q5.

For all n ∈ N we have h(n + 1) ≤ h(n) + 1; the hypercube of dimension
h(n) + 1 can be constructed by taking two copies Q,Q∗ of the hypercube of
dimension h(n) (and connecting each vertex to its copy). Colour the vertices
of Q with n colours such that every subset of {1, . . . , n} appears as the colours
of the vertices of a connected subgraph in Q and colour all vertices of Q∗ with
the colour n+ 1. The resulting colouring covers all subsets of {1, . . . , n+ 1}.
From this it follows that 5 ≤ h(10) ≤ 6. 4

The generalization we introduced in this chapter offers a wealth of prob-
lems to study. Graph classes that might be of particular interest for further
research include the class of all binary trees, the class of all caterpillar graphs,
the class of all r-regular graphs (for some fixed positive integer r) and the
class of all triangulations.

67



4 References

[1] Iryna Banakh, Taras Banakh, Pavel Trisch, and Myroslava Vovk. Toe-
hold purchase problem: A comparative analysis of two strategies. 2012.

[2] N.G. De Bruijn, C. van E. Tengbergen, and D. Kruyswijk. On the set
of divisors of a number. Nieuw Archief voor Wiskunde, 23(2):191–193,
1951.

[3] Steve Butler, Craig Erickson, Leslie Hogben, Kirsten Hogenson, Lu-
cas Kramer, Richard Kramer, Jephian C.-H Lin, Ryan Martin, Derrick
Stolee, Nathan Warnberg, and Michael Young. Rainbow arithmetic pro-
gressions. Journal of Combinatorics, 7:595 – 626, 08 2016.

[4] Fan Chung, Persi Diaconis, and Ron Graham. Universal cycles for com-
binatorial structures. Discrete Mathematics, 110(1):43 – 59, 1992.

[5] Dawn Curtis, Taylor Hines, Glenn Hurlbert, and Tatiana Moyer. Near-
universal cycles for subsets exist. SIAM Journal on Discrete Mathemat-
ics, 23(3):1441–1449, 2009.

[6] Micha l Dȩbski and Zbigniew Lonc. Universal cycle packings and cover-
ings for k-subsets of an n-set. Graphs and Combinatorics, 32(6):2323–
2337, Nov 2016.

[7] R. P. Dilworth. A decomposition theorem for partially ordered sets.
Annals of Mathematics, 51(1):161–166, 1950.

[8] Curtis Greene and Daniel J. Kleitman. Strong versions of Sperner’s
theorem. Journal of Combinatorial Theory, Series A, 20(1):80 – 88,
1976.

[9] Glenn Hurlbert. On universal cycles for k-subsets of an n-set. SIAM
Journal on Discrete Mathematics, 7(4):598–604, 1994.

[10] B.W. Jackson. Universal cycles of k-subsets and k-permutations. Dis-
crete Mathematics, 117(1):141 – 150, 1993.

[11] Stasys Jukna. Extremal Combinatorics: With Applications in Computer
Science. Springer Publishing Company, Incorporated, 2nd edition, 2011.

[12] Lawrence T. Kou. Polynomial complete consecutive information re-
trieval problems. SIAM J. Comput., 6:67–75, 1977.

68



[13] B.M. Landman and A. Robertson. Ramsey Theory on the Integers:
Second Edition. Student Mathematical Library. American Mathematical
Society, 2014.

[14] Witold Lipski. On strings containing all subsets as substrings. Discrete
Mathematics, 21(3):253 – 259, 1978.

[15] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, USA, 1996.

[16] N. J. A. Sloane. A014314. The On-Line Encyclopedia of Integer Se-
quences.

[17] Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge.
Mathematische Zeitschrift, 27(1):544–548, 1928.

69


	First name and surname, university degree already held, e: 
	g: 
	 BSc: Paul Tabatabai, Bsc


	Title and subtitle of the thesis: On sequences covering subsets of a finite set
	to achieve the university degree of: to achieve the university degree of
	MASTER'S THESIS: MASTER'S THESIS
	Masterstudien: [Master's degree programme: Technical Mathematics, Operations Research and Statistics]
	submitted to: submitted to
	Graz University of Technology: Graz University of Technology
	University degree, first name and surname of the supervisor: Assoc.Prof. Dipl.-Math. Dr.rer.nat.habil. Christian Elsholtz
	Institutsname: Institut für Analysis und Zahlentheorie
	Di: [    Diplom-Ingenieur]
	Supervisor: Supervisor
	optional field: 
	Graz, month and year: Graz, January 2018


