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Abstract

The connective constant of a quasi-transitive infinite graph is a measure for
the asymptotic growth rate of the number of self-avoiding walks of length n
from a given starting vertex. It is the reciprocal of the radius of convergence
of the ordinary generating function counting self-avoiding walks. Using the
known connective constant of the honeycomb lattice we derive its value for
the Archimedian lattice (3, 122). We define unimodular graph height functions
and bridges on quasi-transitive graphs and use them to achieve the connective
constant of the integer lattice strips Z× {0, 1, 2} and Z× Z/3Z.

By labelling the edges we introduce the language of self-avoiding walks on
a graph. We derive context-free grammars generating the language of self-
avoiding walks and bridges on the integer strip Z× {0, 1} and solve a system
of equations to get the corresponding generating functions. For any k we give
a grammar for the language of self-avoiding walks on Tk × {0, 1}, where Tk
denotes the k-regular tree, and achieve the ordinary generating function of
self-avoiding walks and the connective constant of the graph.
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Chapter 1

Introduction

Imagine the following discrete process: You are starting at a vertex of a given
undirected graph. In every step you can choose any edge leaving the current
vertex and follow this edge to a new vertex. The only rule is that you must
not return to any vertex already visited during the process. We call such walks
self-avoiding. This process leads to the following question:

For a given number n, how many possible paths of length n could you have
followed?

The answer to this question for all n is only known for some special graphs,
the general case seems very difficult to solve. A less difficult question would
be to ask for the asymptotic behaviour of the number of paths for n going
to infinity. Clearly this is only interesting for graphs having infinitely many
vertices. Although this new question is easier to answer than the original one,
it is still provides a hard task. The most important graphs in this theory are
the integer lattices Zd (especially d = 2 and d = 3). A lot of work has been
dedicated to getting the asymptotic growth rate of the number of self-avoiding
walks, but still much remains unknown. Many interesting results on this topic
can be found in [19].

Self-avoiding walks were introduced in 1953 as a model for long-chain poly-
mer molecules by the famous chemist Paul J. Flory in [9]. Polymer scientists
want to know how many different configurations a polymer chain consisting of
nmonomers can have. Although polymer chains live in the continuum, in many
cases a lattice approximation is good enough. The self avoidance models the
excluded volume effect: No two monomers can be at the same position. Since
then, self-avoiding walks have become very important in statistical physics, for
example in percolation theory. More about percolation can be found in [10].

In this thesis we start by introducing the notions of self-avoiding walks and
the connective constant of quasi-transitive graphs. We will prove the existence
of the connective constant following a result of Hammersley [16] from 1957. We
give some examples of graphs where the connective constant or good bounds
for it are already known and also some general bounds holding for graphs of
certain types. One of the most important results in this topic was the paper
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CHAPTER 1. INTRODUCTION 2

[7] of Duminil-Copin and Smirnov, which was published in 2010 and contained
the first rigorous proof for the connective constant of the honeycomb lattice

being
√

2 +
√

2. In this thesis we use this result and generating function to
calculate the connective constant of the Archimedian lattice (3, 122). This
result without the detailed proof was given by Grimmett in [11].

Another important concept when working with self-avoiding walks are
bridges. Bridges are a subclass of all self-avoiding walks and under certain
circumstances it can be shown that the bridge constant of a graph, which is
defined similarly to the connective constant, equals the connective constant.
The statement is called Bridge Theorem and was proved by Grimmett and Li
in [13]. We use it to calculate the connective constants of the integer strips
Z × {0, 1} and Z × {0, 1, 2}, which are sub-lattices of the integer lattice Z2.
We also prove, mostly following Beffara and Huynh in [2], that the connective
constants of these integer strips Z × {0, 1, . . . n} converge to the connective
constant of the integer lattice Z2, when sending n to infinity.

In Chapter 4 we follow the work of Alm and Janson in [1] to prove that for
any one-dimensional lattice, the connective constant is an algebraic number.
It is still an open problem whether this is also true for the integer lattice Z2.

Our goal in the next part of this thesis is to use context-free languages to
describe the set of all self-avoiding walks on a given graph. We start in Chapter
5 by introducing different types of grammars and their generated languages.
We also give an introduction into the theory of generating functions of context-
free languages, which was developed by Chomsky and Schützenberger in [4].

In Chapter 6 we start by defining ”good labellings” of graphs and what we
mean when talking about the language of self-avoiding walks. We will then
use the theory about context free languages to get unambiguous grammars
for the language of bridges and the language of self-avoiding walks on the
ladder graph produced by these grammars and their corresponding generating
functions. Finally we consider the resulting graph when taking two copies
of the infinite k-regular tree Tk for arbitrary k and connecting every pair of
vertices corresponding to the same vertex in the original tree. Again we give an
unambiguous grammar generating the language of self-avoiding walks and solve
the resulting system of equations to get the generating function and thereby
the connective constant depending on k. This idea of using language theory
and grammars to get generating functions for the number of self-avoiding walks
is quite new and has not been studied so far. Hopefully it can be used to get
some new interesting results.



Chapter 2

SAWs and the connective
constant

Definition 1. A graph G = (V,E) consists of a finite or countably infinite set
of vertices V and a set of edges E ⊂ V ×V connecting the vertices. We call G
simple, if there are no loops, i.e. no edges of the form (v, v) for v ∈ V , in G.
For an edge e = (u, v) we denote by e− = u its starting point and by e+ = v
its endpoint. We call G undirected if for all v, w ∈ V

(v, w) ∈ E if and only if (w, v) ∈ E.

In this case we will denote the undirected edge corresponding to the pair (v, w),
(w, v) by {v, w}.
A walk on G = (V,E) is a sequence π = (v0, v1, . . . , vn) with vi ∈ V for
0 ≤ i ≤ n and (vi−1, vi) ∈ E for 1 ≤ i ≤ n. The length of the walk π is
denoted by |π| = n and we call π an n-step walk connecting v0 and vn. We say
that G is connected if for all v, w ∈ V there is a walk connecting v and w in G.
The distance d(v, w) of v and w is equal to k, if the shortest walk connecting
v and w has length k.
Let now G be an undirected graph. For any vertex v ∈ V and edge e ∈ E we
say that v and e are incident, if e = {v, w} for a w ∈ V . We denote the number
of w ∈ V with {v, w} ∈ E by deg(v) and call it the degree of v. G is said to
be locally finite, if deg(v) <∞ for each v ∈ V and k-regular, if deg(v) = k for
all v ∈ V .

If not mentioned otherwise the graphs used here are simple, undirected,
locally finite and connected. As already mentioned we are mostly interested
in graphs with infinitely many vertices. To make sure that the connective
constant exists on graphs considered in this thesis, we want them to be quasi-
transitive as defined next.

Definition 2. The automorphism group of a graph G = (V,E), denoted by
Aut(G), is the group of all permutations σ : V → V such that for all u, v ∈ V
we have: {u, v} ∈ E if and only if {σ(u), σ(v)} ∈ E.
A subgroup Γ ≤ AUT (G) is said to act transitively on G if, for any u, v ∈ V ,

3



CHAPTER 2. SAWS AND THE CONNECTIVE CONSTANT 4

there exists γ ∈ Γ with γu = v. It is said to act quasi-transitively if there
exists a finite set W ⊂ V such that for any u ∈ V there exist v ∈ W and γ ∈ Γ
with γu = v.
A graph G is called transitive (respectively quasi-transitive) if AUT (G) acts
transitively (respectively quasi-transitively) on G.
The Γ-stabilizer StabΓ

v of v ∈ V is the set of γ ∈ Γ for which γv = v. The orbit
Γv of v ∈ V under the action of Γ is defined as the set of all γv for γ ∈ Γ.

Remark 1. For a given graph G = (V,E) we can define an equivalence relation
∼ on V by u ∼ v if and only if there is a γ ∈ AUT (G) such that γu = v. By
definition the orbit AUT (G)v of a vertex v ∈ V under the action of AUT (G)
is an equivalence class of this relation. If there are only finitely many orbits,
we can choose any set of representatives of the equivalence classes as the set
W in the definition of quasi-transitivity. Therefore G is quasi-transitive if and
only if the number of orbits is finite. For transitive graphs there is exactly one
orbit.

Definition 3. A walk on a graph G = (V,E) is called self-avoiding (SAW) if
it visits no vertex more than once.
We denote by Σn(v) the set of SAWs of length n ≥ 0 on G starting at the
vertex v ∈ V and by σn(v) = |Σn(v)| its cardinality.

For graphs of interest, the number of self-avoiding walks σn(v) grows expo-
nentially fast for every v ∈ V . First we want to show that the limit of σn(v)1/n

for n going to infinity exists and that it is independent of the choice of v under
the condition of G being quasi-transitive. For this we need Fekete’s Lemma
about the limit of subadditive sequences.

Lemma 1. Let (an)n≥1 be a sequence of real numbers which is subadditive,
i.e., an+m ≤ an + am for all integers n,m ≥ 1. Then the limit limn→∞n

−1an
exists in [−∞,∞) and we get

lim
n→∞

an
n

= inf
n≥1

an
n
. (2.1)

Proof. It suffices to show that

lim sup
n→∞

an
n
≤ ak

k
for every integer k ≥ 1 (2.2)

since we get the existence of the limit by taking the lim infk→∞ in (2.2) and
then (2.1) can be seen by taking the infk≥1 in (2.2).

For showing (2.2), we fix some k ≥ 1 and let

Ak := max
1≤r≤k

ar.

For a given integer n ≥ 1 let the integers q ≥ 0 and r ∈ {1, . . . , k} be such
that n = qk + r. By subadditivity we have

an ≤ qak + ar ≤
n

k
ak + Ak.
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Dividing by n and taking the lim supn→∞ proves (2.2):

lim sup
n→∞

an
n
≤ ak

k
+ lim

n→∞

Ak
n

=
ak
k
.

Using this result it is not difficult to prove the existence of the connective
constant for transitive graphs. Here we want to have the following more general
result proved by Hammersley [16] in 1957, which shows the existence of the
connective constant for all quasi-transitive graphs.

Theorem 1. Let G = (V,E) be an infinite quasi-transitive graph. Then there
exists µ = µ(G) ∈ [1,∞), called the connective constant of G, such that

µ = lim
n→∞

σn(v)
1
n for all v ∈ V.

Proof. The action of AUT (G) on G admits finitely many orbits Γ1,Γ2, . . . ,ΓN
because G is quasi-transitive. Let {v1, v2, . . . , vN} with vi ∈ Γi be a set of
representatives of the N orbits. We define

σn := max
1≤i≤N

σn(vi) for all integers n ≥ 0 (2.3)

and note that σ1 is the max degree of G.

Our first goal is to show that σn(v) ≥ 1 for all v ∈ V and integers n ≥ 0.
Let Bn(v) = {w ∈ V | d(v, w) ≤ n} be the ball of radius n centered in v.
Then 1 ≤ |Bn(v)| ≤ σn1 + 1, where the right inequality holds because σ1 is
the max degree in G. Since G is infinite and connected, there are x ∈ Bn(v)
and y ∈ V \ Bn(v) such that {x, y} ∈ E. There is a walk π of length ≤ n
connecting v and x in G. Then |π| = n as otherwise we would get y ∈ Bn(v).
Also π is a SAW, because if π visits a vertex twice we can remove the cycle
and get a shorter walk connecting v and x. Using the fact that v is in Γi for
some 1 ≤ i ≤ N and therefore σn(v) = σn(vi) we get

1 ≤ σn(v) ≤ σn for all v ∈ V, n ≥ 0. (2.4)

Now for given v ∈ V and integers n,m ≥ 0 each (m+n)-step SAW starting at
v can be seen as a concatenation of an m-step SAW starting at v and ending
at some w ∈ V and an n-step SAW starting at w. We get

σn+m(v) ≤ σm(v)σn ≤ σmσn for all v ∈ V, m, n ≥ 0. (2.5)

This naturally holds for the v maximizing the left hand side, so we get

σm+n ≤ σmσn for all m,n ≥ 0,

which is equivalent to log σn being a subadditive sequence. Using Lemma 1
and (2.4) we get

lim
n→∞

log σn
n

= inf
n≥1

log σn
n
≥ 0.
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We can define the connective constant µ as the exponential of the above limit:

µ := lim
n→∞

σn
1
n ≥ 1.

For every λ > µ there exists a constant C = C(λ) ≥ λ ≥ 1 such that

σn(v) ≤ σn ≤ Cλn for all v ∈ V, n ≥ 0. (2.6)

Using (2.5) and (2.6) we get

σn+m(v) ≤ Cλnσm(v) for all v ∈ V, m, n ≥ 0. (2.7)

Let u, v ∈ V with e = {u, v} ∈ E. Let π be a 2n-step SAW starting in u. We
can distinguish two cases:

1. If π does not meet v, we add e in front of π and get a (2n+ 1)-step SAW
starting at v.

2. If π meets v after k ≤ 2n steps, we can view the first part of π as a
k-step SAW connecting v and u and the second part as a (2n − k)-step
SAW starting in v (possibly with length 0).

It follows that

σ2n(u) ≤ σ2n+1(v) +
2n∑
k=1

σk(v)σ2n−k(v). (2.8)

Application of (2.6) and (2.7) on the right hand side of (2.8) gives

σ2n(u) ≤ Cλn+1σn(v) +
n∑
k=1

CλkCλn−kσn(v) +
2n∑

k=n+1

Cλk−nσn(v)Cλ2n−k

≤ (2n+ 1)C2λnσn(v) for all {u, v} ∈ E, n ≥ 0.

(2.9)

Let u, v ∈ V be two vertices with d(u, v) = d. Consecutively using (2.9) along
a walk of length d connecting u and v in G gives

σ2dn(u) ≤ σn(v)
d∏
i=1

[(2in+ 1)C2λ2i−1n] ≤ σn(v)
d∏
i=1

[3inC2λ2i−1n]

= 3d(d+1)/2C2dndλ(2d−1)nσn(v) for all n ≥ 0.

(2.10)

Fix a vertex v ∈ V and let D = D(v) := max
1≤i≤N

d(v, vi). Then for u ∈ V with

d(u, v) = d ≤ D it follows from (2.7) and (2.10) that

σ2Dn(u) ≤ Cλ(2D−2d)nσ2dn(u) ≤ ĈnDλ(2D−1)nσn(v),

where Ĉ is a constant depending only on D(v) and C(λ). By 2.3 and the
definition of D, in particular

σ2Dn = max
1≤i≤N

σ2Dn(vi) ≤ ĈnDλ(2D−1)nσn(v). (2.11)
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Using the definition of µ and (2.11) we get

log µ = lim
n→∞

1

2Dn
log σ2Dn

≤ lim inf
n→∞

1

2Dn
[log Ĉ +D log n+ (2D − 1)n log λ+ log σn(v)]

≤ log λ+
1

2D
[− log λ+ lim inf

n→∞

1

n
log σn(v)].

Because D is independent of λ, by letting λ→ µ we get

log µ ≤ lim inf
n→∞

1

n
log σn(v)

and therefore also
µ ≤ lim inf

n→∞
σn(v)

1
n . (2.12)

But we already know from (2.4) that

lim sup
n→∞

σn(v)
1
n ≤ lim

n→∞
σ

1
n
n = µ. (2.13)

By (2.12) and (2.13), lim
n→∞

σn(v)
1
n exists and is equal to µ.

We can start to calculate the connective constant for some simple graphs
by counting SAWs starting at some fixed vertex v. By Theorem 1 the choice
of v does not change the result.

Example 1. For two integers k, l ≥ 2 the bi-regular tree Tk,l is an infinite
tree where the vertex degree is constant on each of the two bipartite classes,
with values k and l, respectively. We count the number of SAWs of length n
starting at a given vertex of degree k. For the first step, we have k possibilities,
for all subsequent steps alternately l − 1 and k − 1, because we can never go
back and visit a vertex again. This gives

σn(v) = k(k − 1)b
n−1
2 c(l − 1)d

n−1
2 e.

We can now calculate the connective constant:

µ(Tk,l) = lim
n→∞

σn(v)
1
n =

√
(k − 1)(l − 1).

Remark 2. Quasi-transitivity plays an important role in this theory. The
following example shows that there are (non-quasi-transitive) graphs for which
the connective constant does not exist in [1,∞).
Let T be a rooted tree with root v, where v has degree one and every vertex u
at distance d > 0 from v has degree d+ 2 as shown in Figure 2.1.

Obviously T is not quasi-transitive as it contains vertices with arbitrary big
degrees and therefore infinitely many orbits. By counting SAWs as in Example
1 we get

lim
n→∞

(σn(v))1/n = lim
n→∞

(
n∏
i=1

i)1/n =∞.
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v

Figure 2.1: Infinite tree T: The number of children is increasing by 1 in every
step.

2.1 Some known values and simple bounds

There are a number of graphs for which the connective constant is already
known. The most famous ones are the ladder L and the honeycomb lattice H
(see Figure 2.2), for which

µ(L) =
1

2
(1 +

√
5), µ(H) =

√
2 +
√

2.

For the ladder, it is not very difficult to count the number of SAWs directly
(for example by using generating functions [22]). On the other hand, the
connective constant of the honeycomb lattice is a lot harder to get and the
first mathematical proof was provided in [7] by Duminil-Copin and Smirnov
in 2010 using the so-called parafermionic observable and bridges, which will
be introduced in Chapter 3.

Figure 2.2: The ladder graph L and the honeycomb lattice H.

In contrast, the connective constants of the square lattice Z2 and more
general the higher dimensional integer lattices Zd for d ≥ 2 are still unknown
and a lot of work has been dedicated to finding good bounds for it. Some
currently known good bounds for the two dimensional cases are

2.6256 ≤ µ(Z2) ≤ 2.6792.

The lower bound was given by Jensen [18] by enumeration of bridges. Pönitz
and Tittmann [21] proved the upper bound using finite automata to construct
SAWs with finite memory, which are walks where vertices can reappear after
a given number of steps.
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Remark 3. We see that the connective constants of the ladder and the honey-
comb lattice are algebraic numbers. For the square lattice this question is still
open. Using numerical estimations from the 1980s it was believed for about
30 years, that µ(Z2) could be a root of the polynomial 13x4− 7x2− 581. This
however does not seem to be true using current good estimates, for example
the one in [17] by Jacobsen, Scullard and Guttmann, which differ from the
predicted value in the twelfth digit.

Of great interest are also the integer strips SQ0,n = Z × {0, 1, . . . , n} for
n ≥ 1. In Section 3 we will show that the sequence of connective constants
µ(SQ0,n) converges to µ(Z2) for n going to infinity. Table 2.1 is taken from [1];
parts of the method Alm and Janson used to find the values will be discussed
in Chapter 4.

n µ(SQ0,n) n µ(SQ0,n)

0 1 5 2.276379
1 1.618034 6 2.332779
2 1.914627 7 2.375451
3 2.087285 8 2.408709
4 2.198966 9 2.435258

Table 2.1: Connective constants of SQ0,n (rounded values).

2.2 Connective constants of regular graphs

Now we want to give bounds for the connective constant of regular graphs. It
is easy to see that for any infinite quasi-transitive ∆-regular graph G we have

1 ≤ µ(G) ≤ ∆− 1. (2.14)

The second inequality is obtained by the following upper bound on the number
of SAWs of length n in G as in Example 1:

σn(v) ≤ ∆(∆− 1)n−1.

Both of these bounds are already tight for quasi-transitive graphs. For the
upper bound we can just consider the regular tree T∆ of degree ∆. As in
Example 1 we get µ(T∆) = ∆ − 1. For showing the tightness of the lower
bound we consider a graph where an infinite line is decorated with finite graphs
attached by exactly one vertex as shown in Figure 2.3. This is possible for all
degrees ∆ ≥ 3.

Let the attached graphs have k vertices. They are attached to the line at
exactly one vertex, so SAWs of length n starting at some vertex v of the line
cannot leave the line and come back to it, otherwise a vertex would appear
twice. So for large n, the SAWs need to follow the line (in one of the two
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Figure 2.3: Infinite quasi-transitive regular graphs of degree 3 and 4.

directions) and can maybe have an end-piece of length ≤ k in one of the
attached graphs. Therefore we have

µ = lim
n→∞

σn(v)1/n ≤ lim
n→∞

(2(∆− 1)k)1/n = 1.

The upper bound in (2.14) is only achieved by the ∆-regular tree. This
follows from the following theorem proved by Grimmett and Li in [14].

Theorem 2. Let G = (V,E) be an infinite, quasi-transitive graph and let
∆ ≥ 3. Then we get µ(G) < ∆− 1 if one of the following conditions holds:

(a) G is ∆-regular and contains a cycle,

(b) deg(v) ≤ ∆ for all v ∈ V , and there exists a vertex u ∈ V with deg(u) ≤
∆− 1.

Improved lower bounds may be achieved when considering only transitive
graphs. Grimmett and Li showed in [14] the following theorem:

Theorem 3. Let for an integer ∆ ≥ 2 and G be an infinite ∆-regular transitive
graph. Then

µ(G) ≥
√

∆− 1.

The only value of ∆ for which the lower bound is known to be tight is 2.
For ∆ = 3 there is evidence for the improved lower bound

µ(G) ≥ 1

2
(1 +

√
5)

being true for all transitive 3-regular graphs G. It has been shown in [15] that
this inequality must hold for some specific types of graphs, but the general
question is still open. Moreover we already know that this value is achieved
by the ladder graph.

2.3 Generating functions

A common tool for counting combinatorial objects of a certain size are gener-
ating functions. We will give some basic definitions here; more about analytic
combinatorics can be found in [8].

Definition 4. A combinatorial class (A, | · |) is a finite or countably infinite
set A on which a size function | · | satisfying the following conditions is defined:
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(a) The size of an element is a non-negative integer.

(b) The number of elements of any given size is finite.

We denote the size of an element α ∈ A by |α|, by An the subset of elements
of A having size n and by an its cardinality |An|.
The ordinary generating function FA(z) of the combinatorial class A is the
formal power series

FA(z) =
∞∑
n=0

anz
n =

∑
a∈A

z|a|.

Remark 4. Let two combinatorial classes (A, | · |A) and (B, | · |B) and their
generating functions FA(z) and FB(z) be given.
The combinatorial sum of the classes A and B is the class (S, | · |S), where
S = A ∪B is a disjoint union and for ω ∈ A

|ω|S =

{
|ω|A if ω ∈ A,
|ω|B if ω ∈ B.

Then we get the ordinary generating function FS(z) of S as the sum of the
generating functions of A and B,

FS(z) = FA(z) + FB(z).

The cartesian product of the classes A and B is the class (P, | · |P ) where
P = A×B and for ω = (α, β) ∈ P

|ω|P = |α|A + |β|B.

Then the ordinary generating function FP (z) of P is the product of the gen-
erating functions of A and B,

FP (z) = FA(z) · FB(z).

Given the class A not containing the element ε of size 0 we define A∗ =⋃
k≥0A

k, where A0 denotes the class containing only ε and Ak denotes the
k-fold cartesian product A× · · · × A for k ≥ 1. In other words, we have

A∗ = {(α1, . . . , αk) | k ≥ 0, αi ∈ A for 1 ≤ i ≤ k}.

The sequence class of A is (A∗, | · |A∗), where

|(α1, . . . , αk)|A∗ = |α1|A + · · ·+ |αk|A.

For the ordinary generating function FA∗ of A∗ we get that

FA∗(z) = 1 + FA(z) + (FA(z))2 + (FA(z))3 + · · · = 1

1− FA(z)
.
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Clearly for a given graph G = (V,E) and a vertex v ∈ V , the set of self-
avoiding walks Σ(v) starting at v together with the size function | · | mapping a
path to its length is a combinatorial class. We introduce its ordinary generating
function

FΣ(v)(z) =
∞∑
n=0

σn(v)zn.

Remark 5. Using the existence of the limit and the definition of the connective
constant µ(G) in Theorem 1 and the Cauchy Hadamard formula we get that
the power series F (t) has radius of convergence

R =
1

lim
n→∞

|σn(v)|1/n
=

1

µ(G)
.

Therefore the FΣ(v)(z) defines an analytic function in the complex parameter
z if |z| < 1/µ. When considering FΣ(v)(x) for x ∈ R+ we get

FΣ(v)(x)

{
<∞ if x < 1/µ

=∞ if x > 1/µ
. (2.15)

This fact can be used to check that a given value in R+ is the connective
constant of a graph. This idea was used by Duminil-Copin and Smirnov in their

proof that the connective constant of the honeycomb lattice equals
√

2 +
√

2,
which was already predicted by Nienhuis in [20].

We also know that our generating functions have only positive coefficients.
So the following theorem known as Pringsheim’s theorem can be applied yield-
ing a singularity at z = R = 1/µ(G).

Theorem 4. If the complex function f(z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence
R, then the point z = R is a singularity of f(z).

The result of the following example without the detailed proof was given
by Grimmett in [11]. Now we give a detailed proof of the below statement to
give an example of how generating functions can be used to verify the value of
the connective constant of a given graph.

Example 2. The Archimedian lattice (3, 122) here denoted by A is obtained
by replacing each vertex of the honeycomb lattice H by a triangle as shown in
Figure 2.4. This process is often called Fisher Transformation.

We will now show that µ(A) satisfies the equation

1

µ(A)2
+

1

µ(A)3
=

1

µ(H)
. (2.16)

This equation has a unique positive solution for µ(A) as the polynomial x2 +x3

is bijective when seen as a function from R+ to R+. Grimmett and Li proved
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FT

Figure 2.4: Fisher Transformation (FT) gives Archimedian lattice (3, 122).

in [12] that this equation holds for every infinite quasi-transitive connected
3-regular graph G and its Fisher Transformation F (G).

Edges of A lying in a triangle are called triangular. For a given v ∈ V (H)
let ΣH be the set of all SAWs starting at v and for a fixed vertex w ∈ V (A)
in the triangle corresponding to v let ΣA be the set of all SAWs starting at w.
Then

FH(x) =
∑
π∈ΣH

x|π| and FA(x) =
∑
π∈ΣA

x|π|

are the generating functions of SAWs in H and A respectively. Let Σ∗A ⊂ ΣA
be the subset of SAWs of length ≥ 1 starting and ending at a triangular edge
and F ∗A(x) its generating function. As Σ∗A ⊂ ΣA clearly

F ∗A(x) ≤ FA(x) for all x ∈ R+. (2.17)

Next we want to have an upper estimate for the generating function FA(x) in
terms of F ∗A(x). To achieve this we shorten paths in ΣA to get paths π in Σ∗A
in the following way shown in Figure 2.5 :

(a) If π starts with a triangular edge, leave the beginning, else remove the
first edge {w,w′} and get a path starting with a triangular edge at w′.

(b) If π ends with a triangular edge, leave it, else remove the last edge to get
a path which ends with a triangular edge.

w
w′

w
w′

Two cases how π can start,
in the second case remove
the first edge.

x x

Two cases how π can end, in
the second case remove the
edge after x.

Figure 2.5: Different cases for initial and final part of paths in ΣA.

Observe that the set of SAWs starting at w′ with a triangular edge and
ending with a triangular edge has the same generating function as Σ∗A since A
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is transitive. Therefore all walks in ΣA can be decomposed into an initial part
having generating function 1 + x , a walk in Σ∗A and a final part of length 0 or
1 also having generating function 1 + x. We get the inequality

FA(x) ≤ (1 + x)2F ∗A(x) for all x ∈ R+. (2.18)

Now using (2.17) and (2.18) we get for all x ∈ R+

FA(x) <∞ ⇐⇒ F ∗A(x) <∞

and by using (2.15) we conclude

F ∗A(x)

{
<∞ if x < 1/µ(A),

=∞ if x > 1/µ(A).
(2.19)

Let Σ∗H ⊂ ΣH be the set of walks on H not starting with the edge of H
which is incident to w in A. In Σ∗H exactly one third of all SAWs of length ≥ 1
are missing, because the number of walks starting in each of the three possible
directions is equal. The generating function of Σ∗H is

F ∗H(x) = 1 +
2

3
(FH(x)− 1).

We can conclude that the radii of convergence of F ∗H(x) and FH(x) are
equal. By (2.15), we get

F ∗H(x)

{
<∞ if x < 1/µ(H),

=∞ if x > 1/µ(H).
(2.20)

Now we can associate every SAW π∗ in Σ∗A with a SAW π in Σ∗H by shrinking
all triangles introduced by the Fisher Transformation. We note that this is
only possible because π∗ starts and ends with a triangular edge and therefore
can visit every triangle at most once. Every walk π of length n in Σ∗H arises
from 2n+2 SAWs in Σ∗A. This follows from the fact that any π∗ associated to π
contains edges of exactly n+1 triangles, where each triangle contributes either
1 or 2 edges to π∗ and for the last triangle there are altogether 4 possibilities,
which edges it can contribute. We do not get any walks in ΣH \Σ∗H as all walks
in Σ∗A need to start with a triangular edge incident to w and therefore cannot
contain the non-triangular edge incident to w. An example for a path π∗ in
Σ∗A and its associated path π in Σ∗H is shown in Figure 2.6.

This association of SAWs leads to

(2x+ 2x2)F ∗H(x(x+ x2)) = F ∗A(x) (2.21)

where the term (2x + 2x2) in front of the generating function corresponds to
the removed edges in the last visited triangle and (x+ x2) corresponds to the
lost 1 or 2 edges when shrinking the first n triangles of the walk. Now clearly,
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w
v

Figure 2.6: Example for a SAW π∗ in Σ∗A and its associated SAW π in Σ∗H.

the left hand side is < ∞, if and only if F ∗H(x(x + x2)) < ∞. Using (2.20) in
(2.21) we get

F ∗A(x)

{
<∞ if x2 + x3 < 1/µ(H)

=∞ if x2 + x3 > 1/µ(H)
. (2.22)

Thus the claim (2.16) follows from (2.19) and (2.22). Using this claim we get
for the connective constant of the Archimedian lattice (3, 122)

µ(A) ≈ 1.711041.



Chapter 3

Graph height functions and
bridges

Counting SAWs in a graph can be rather difficult. We want to reduce the
number of walks to be counted by only considering so-called bridges, which
form a subclass of all SAWs. The number of bridges of a given length lead
to the bridge constant of a graph. Under certain conditions on the graph, its
bridge constant is equal to its connective constant. To define bridges and the
bridge constant we need the following preparations.

Definition 5. A graph height function on a graph G = (V,E) with respect to
a given origin-vertex o ∈ V is a pair (h,H) such that

(a) h : V → Z, and h(o) = 0,

(b) H ≤ AUT (G) acts quasi-transitively on G and h isH-difference-invariant
in the sense that

h(αv)− h(αu) = h(v)− h(u) for all α ∈ H, u, v ∈ V,

(c) for v ∈ V , there exist u,w ∈ V neighbours of v such that h(u) < h(v) <
h(w).

A graph height function (h,H) is called unimodular if the action of H on G is
unimodular, i.e. if

|StabHu v| = |StabHv u| for any v ∈ V, u ∈ Hv,

where StabHu v = {γv | γ ∈ StabHu }.

Definition 6. Assume that G = (V,E) is an infinite quasi-transitive graph
with graph height function (h,H). Let v ∈ V and π = (v0, v1, . . . , vn) ∈ Σn(v).
We call π a bridge if

h(v0) < h(vi) ≤ h(vn) for all 1 ≤ i ≤ n.

For a given integer n ≥ 0 the set of n-step bridges starting in v is denoted by
Bn(v) and its cardinality by bn(v).

16
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The following theorem by Grimmett and Li [13] serves as the definition of
the bridge constant of a quasi-transitive graph with a given height function.

Theorem 5. Let G = (V,E) be an infinite, quasi-transitive graph possessing
a graph height function (h,H). Then there exists β = β(G, h,H) ∈ R, called
the bridge constant such that

β = lim
n→∞

bn(v)
1
n for all v ∈ V.

Proof. We will only prove the case where G is transitive.
As G is transitive bn := bn(v) is independent of the choice of v for all integers
n ≥ 0. Note that bn ≥ 1 for all n ≥ 0 as each vertex has a neighbour of bigger
height.
The concatenation of a bridge π(1) = (v

(1)
0 , v

(1)
1 , . . . , v

(1)
m ) of length m ≥ 0

starting at v ∈ V and ending at some w ∈ V and a second bridge π(2) =
(v

(2)
0 , v

(2)
1 , . . . , v

(2)
n ) of length n ≥ 0 starting at w ∈ V is again a SAW as

h(v
(1)
i ) ≤ h(w) for all 0 ≤ i ≤ m and h(w) < h(v

(2)
j ) for all 1 ≤ j ≤ n and

therefore also a bridge as h(v
(1)
0 ) < h(u) ≤ h(v

(2)
m ) for all inner vertices u of

the concatenated walk. Therefore we have

bmbn ≤ bm+n for all integers m,n ≥ 0.

This is equivalent to − log(bn) being a subadditive sequence and by using
Lemma 1 we get that

lim
n→∞

− log bn
n

= inf
n≥1

− log bn
n

∈ [−∞, 0].

We can therefore define the bridge constant β by

β := lim
n→∞

b1/n
n ≤ µ <∞.

The upper bound µ follows from the simple observation that bn(v) ≤ σn(v)
holds for every v ∈ V .

We are now able to formulate the Bridge Theorem by Grimmett and Li
[13], which shows that the bridge constant with respect to unimodular height
functions is equal to the connective constant and also that the bridge constant
does not depend on the choice of the (unimodular) height function.

Theorem 6. Let G = (V,E) be an infinite, quasi-transitive graph possessing
a unimodular graph height function (h,H). Then β(G, h,H) = µ(G).

We give an example showing that in the Bridge theorem (Theorem 6) the
assumption of the height function being unimodular is indeed necessary. This
example was given without any details by Grimmett and Li in [13]. We will
need the following definition about ends of trees.
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Definition 7. Let T = (V,E) be an infinite tree. A ray starting at v ∈ V is
an infinite sequence π = (v = v0, v1, v2, . . . ) with vi ∈ V and {vi, vi+1} ∈ E for
all i ≥ 0, where no vertex appears more than once in π.
We say that two rays of T are equivalent if they share all but finitely many
vertices. This defines an equivalence relation on the set of all rays of T and
we call the equivalence classes of this relation the ends of the tree.
We say that γ ∈ AUT (T ) fixes an end ξ of T , if γξ = ξ, i.e., for a ray π ∈ ξ,
also γπ ∈ ξ.

Example 3. Let T3 = (V,E) be the regular tree with vertex degree 3. From
Example 1 we already know that µ(T3) = 2. We will define a non-unimodular
height function on T3.

Let v0 ∈ V be a given vertex, π0 = (v0, v1, v2, . . . ) be a ray in T3 starting
at v0 and ξ be the end of T3 represented by π0.
We denote by πv the ray starting at v ∈ V and representing ξ and call its
vertices ancestors of v (v is an ancestor of itself).
Let h : V → Z defined by h(vk) = k for all k ≥ 0 and h(v) = h(vj) − d(v, vj)
where j is such that vj is an ancestor of v as shown in Figure 3.1. Obviously
the definition does not depend on the choice of the ancestor.

v2

v1

v0

π0

ξ

2

1

0

-1

height

Figure 3.1: Non-unimodular height function on T3.

For H we pick the subgroup of AUT (T3) fixing ξ. Then H acts transitively
on T3: Let u, v ∈ V and w ∈ V be a common ancestor of u and v (exists as
πu and πv are equivalent and therefore share all but finitely many vertices).
We pick for σu an element of AUT (T3) sending πu to πw (there exist infinitely
many of them). Then clearly σu is in H as πu and πw both represent ξ. In the
same way we get σv ∈ H and therefore the automorphism σuσ

−1
v ∈ H sending

u to v.

The pair (h,H) defines a graph height function on T3: Clearly, (a) and (c)
of Definition 5 are fulfilled. For (b) let γ ∈ H and u, v ∈ V be given. Let
i, j ≥ 0 such that vi ∈ π0 is a common ancestor of u and v and vj ∈ π0 is a
common ancestor of γu and γv. Then πvi ∩ πγ−1vj is non-empty, as both rays
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represent ξ. Also γ−1πvj is a ray starting in γ−1vj and representing ξ, therefore
equals πγ−1vj . Let l ≥ 0 such that vl ∈ πvi ∩ γ−1πvj . Then vl is a common
ancestor of u and v and γ(vl) ∈ π0 is a common ancestor of γu and γv. Using
that h(u) = h(vl) − d(u, vl) and h(γu) = h(γvl) − d(γu, γvl) and the similar
statements for v we get

h(γu)− h(γv) = −d(γu, γvl) + d(γv, γvl) = −d(u, vl) + d(v, vl) = h(u)− h(v).

The height function (h,H) is not unimodular. We consider StabHvi and note
that every γ ∈ H fixing vi also needs to fix πvi as γ maps rays onto rays and
would otherwise map ξ to a different end of T3. Also, there is an element in
StabHv1 mapping v0 to the second vertex of height 0 having v1 as an ancestor.
We conclude

|StabHv1v0| ≥ 2 > 1 = |{v1}| = |StabHv0v1|
and therefore (h,H) is not unimodular.

We will now calculate the bridge constant β = β(T3, h,H). Let ν be a
bridge starting at v0. Then ν needs to end in π0 as otherwise it would contain
an ancestor of its endpoint and therefore a vertex with bigger height than its
endpoint. Also ν cannot leave π0 because the considered graph is a tree and
therefore a SAW is defined uniquely by its two ends. Therefore bn(v0) = 1 for
all n ≥ 0. We get that 1 = β 6= µ = 2.

3.1 Bridges on strips of the integer lattice

We will calculate the connective constant of the ladder graph L by using the
bridge theorem.

Example 4. Let L = (V,E) where V = Z × {0, 1} and two vertices u, v are
connected by an edge if and only if |u− v| = 1, where the absolute value is the
usual euclidean norm in R2.
We pick (0, 0) as origin, h : V → Z, (x, y) 7→ x and for H the set of all
horizontal translations (x, y) 7→ (x + k, y) for some k ∈ Z. Then the pair
(h,H) is a graph height function and it is unimodular as StabHv = {idV } (the
identity map from V to V ) for all v ∈ V .
For counting bn, the number of bridges of length n stating in (0, 0), we use
ordinary generating functions. Let the generating function of the number of
bridges be

FB(t) =
∞∑
n=0

bnt
n.

By using the same method as in Remark 5 and the bridge theorem we get for
the radius of convergence R of FB(t) that µ = β = 1/R.
We will use the same kind of ”linguistic method” as Zeilberger in [22], who
counted the number of n-step SAWs on L.

We start at (0, 0) and denote a step right by r, a step up or down (depending
on the current position) by s and a step left by l (we will not need these). Then
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every bridge π has to start with a final positive number of steps r, as all vertices
of π except its starting vertex need to have positive height. Then we can only
have a step s, and afterwards r again (we cannot have l, as otherwise π would
not end at a point with maximal height). This implies that every bridge is of
the form L∗I, where L∗ denotes a concatenation of any non-negative number
of walks of type L and

(a) L is a walk of the form ris, i ≥ 1,

(b) I is a walk of the form ri, i ≥ 0.

This implies that the generating function of L is

FL(t) = t2 + t3 + t4 + · · · = t2

1− t
(3.1)

and the generating function of I is

FI(t) = 1 + t+ t2 + · · · = 1

1− t
. (3.2)

Using (3.1) we get for the generating function FL∗(t) of L∗, which clearly is
the sequence class of L as defined in Remark 4:

FL∗(t) = 1 + FL(t) + FL(t)2 + · · · = 1

1− FL(t)
. (3.3)

(3.2) and (3.3) then give for the generating function of bridges

FB(t) = FL∗FI(t) =

(
1− t

1− t− t2

)(
1

1− t

)
=

1

1− t− t2
.

This function has exactly two poles at t1,2 = (−1±
√

5)/2, where the one with
plus has the smaller absolute value. So we can conclude that

µ(L) =
1

R
=

2√
5− 1

=
1 +
√

5

2
.

As we have already seen, the concatenation of two bridges is again a bridge.
So there are bridges which can be decomposed into shorter bridges. This
observation leads to the following definition.

Definition 8. We call an n-step bridge π irreducible if it cannot be decom-
posed into smaller bridges, i.e. there are no bridges π1, π2 of length < n such
that π is the concatenation of π1 and π2.

Lemma 2. Let G be a quasi-transitive graph and (h,H) be a graph height
function on G. A bridge π = (v0, v1, . . . vn) is irreducible if and only if there is
no integer k with 0 < k < n such that

h(vi) ≤ h(vk) < h(vj) for all 0 ≤ i ≤ k, k + 1 ≤ j ≤ n. (3.4)
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Proof. Let π = (v0, v1, . . . vn) be a bridge and assume there is an integer k with
0 < k < n such that (3.4) holds. Using the assumption and that π is a bridge,
we get

h(v0) < h(vi) ≤ h(vk) < h(vj) ≤ h(vn) for all 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

We conclude that π is not irreducible as it can be decomposed into the two
bridges π1 = (v0, . . . vk) and π2 = (vk, . . . vn).

Conversely suppose that there is an integer k with 0 < k < n such that
π can be decomposed into the bridges π1 = (v0, . . . vk) and π2 = (vk, . . . vn).
Then by the definition of bridges, (3.4) holds.

Corollary 1. Every bridge can be uniquely decomposed into a finite number
of irreducible bridges.

Proof. Let π = (v0, v1, . . . vn) be a bridge and denote by K the set of all k
such that 0 < k < n and (3.4) holds. Decomposing π at the |K| vertices vk for
k ∈ K gives a decomposition into |K|+ 1 bridges.

Let L ⊂ {1, . . . , n− 1} be a set of vertices such that we can decompose π
at the |L| vertices vl for l ∈ L into |L|+ 1 irreducible bridges. Then for every
l ∈ L (3.4) holds. We get L ⊂ K and by the irreducibility of the resulting
bridges also L = K. Therefore our decomposition at the vertices vk for k ∈ K
is the unique decomposition into irreducible bridges.

Dangovski calculated the generating functions of SAWs on the integer strip
SQ−1,1 = Z × {−1, 0, 1} in [6]. To achieve this he used the same ”linguistic”
method as Zeilberger in [22]. He divided the walks into sub-walks of certain
types and first solved some smaller problems. Clearly there are a lot of cases
to be distinguished and a lot of work has to be done. Although there were
some mistakes in his proof, he got the following correct result:

Theorem 7. Let W(t) be the generating function of all SAWs on SQ−1,1 start-
ing in (0, 0). Then

W (t) =
N(t)

D(t)

where

N(t) = 4t22 + 4t21 + 4t20 − 4t18 + 26t17 + 24t16 + 3t15−
38t14 − 16t13 + 32t12 + 31t11 − 10t10 − 35t9 − 11t8+

21t7 + 14t6 − 2t5 − 10t4 − 3t3 + 2t2 + 3t+ 1

and

D(t) = (2t6 + 2t5 + t4 + 2t3 + t− 1)(t4 + 1)2(2t2 − 1)2(t2 + t+ 1)(t− 1).

Moreover
µ(SQ−1,1) = 1/vmin ≈ 1.914626790719

where vmin is the root of D(t) having minimal absolute value.
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A much shorter approach to get the connective constant of SQ−1,1 is again
by calculating the generating function of bridges. Our method here uses some
ideas from the work of Dangovski and Lalov in [5], but the combinatorial part
is different.

Example 5. Consider SQ−1,1 = Z× {−1, 0, 1} together with the unimodular
graph height function (h,H) where h : V → Z, (x, y) 7→ x and H the set of
all horizontal translations (x, y) 7→ (x + k, y) for any k ∈ Z. Similar to 4, we
denote a step right by r, left by l, up by u and down by d. We will split any
bridge π on SQ−1,1 starting at (0, 0) in its irreducible bridges. By Corollary 1
this procedure is unique.

We call the line Z× {0} inner line and the lines Z× {±1} outer lines and
divide the set of irreducible bridges into the following 4 types:

(a) II : starts at inner line and ends at inner line.

(b) IO: starts at inner line and ends at outer line.

(c) OO: starts at outer line and ends at outer line.

(d) OI : starts at outer line and ends at inner line.

The following Table 3.1 lists the form of the elements and its generating func-
tion for each type. For types starting with O we assume the bridge starts at
the bottom line.

Form of bridge Generating function

II r FII (t) = t

IO ru, rd FIO(t) = 2t2

OO r, ri+1uliuri for i ≥ 0 FOO
(t) = t+ t3

1−t3

OI ru FOI
(t) = t2

Table 3.1: Irreducible bridges on SQ−1,1 and their generating functions.

We want to count bridges starting in (0, 0) at the inner line. The idea is
to build the bridge by concatenating all possible irreducible bridges. First we
build all minimal bridges starting and ending at the inner line and get the
class A (minimal here means that we cannot decompose it into two bridges of
this type). Its elements are of the form

A :

{
II

IO(OO)∗OI .

Therefore its generating function FA(t) satisfies

FA(t) = FII (t) + FIO(t)
1

1− FOO
(t)
FOI

(t) =
t− t2 + t5 − 2t7

1− t− 2t3 + t4
.
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Now we get for the class B of all bridges in SQ−1,1 the characterization

B :

{
A∗

A∗IO(OO)∗.

Here the first line describes all bridges ending at the middle line and the second
line describes all bridges ending at an outer line. The generating function FB(t)
corresponding to B satisfies

FB(t) =
1

1− FA(t)

(
1 + FIO(t)

1

1− FOO
(t)

)
=

1− t+ 2t2 − 2t3 + t4 − 2t5

(1− t− 2t3 − t4 − 2t5 − 2t6)(1− t)
.

By Pringsheim’s Theorem the smallest positive root of the denominator must
have the smallest absolute value of all roots of the denominator. By taking
the reciprocal of this root and then using Theorem 6 we get

µ(SQ−1,1) ≈ 1.91462679.

Obviously SQ−1,1 is not a transitive graph, as vertices on the inner line
have degree 4 while the vertices at the outer line have degree 3. It seems
natural to also study the transitive graph SQc

−1,1 resulting from SQ−1,1 when
adding all edges {(x,−1), (x, 1)} for x ∈ Z. In the next example we calculate
the generating function of bridges and the connective constant of SQc

−1,1.

Example 6. We will use the unimodular height function defined in Example
5 and again denote steps up, down left and right by u, d, l and r respectively.
The difference is that we can now also go up from a vertex (x, 1) to get to
the vertex (x,−1) and down from (x,−1) to reach (x, 1). Furthermore we will
again build all bridges starting at (0, 0) by concatenating irreducible bridges.
Using Lemma 2 it is not difficult to show that every irreducible bridge is of
one of the forms listed in table 3.2:

Form of bridge Generating function

I r FI(t) = t

L ru, rd FL(t) = 2t2

S ri+1uliuri, ri+1dlidri for i ≥ 0 FS(t) = 2t3

1−t3

Table 3.2: Irreducible bridges on SQc
−1,1 and their generating functions.

We start by building the class A of all bridges containing exactly one irre-
ducible bridge of type S which has to be at the end. Previous to the bridge of
type S, there can be arbitrary many walks of type L, which can have arbitrary
many I-bridges between them. We get the following characterization:

A : (I∗L)∗I∗S.
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With this we can build any bridge on SQc
−1,1 starting in (0, 0) by concatenating

arbitrary many bridges of type A and then maybe adding some final part not
containing any walk of type S. Thus we get for the class of all bridges B the
characterization

B : A∗(I∗L)∗I∗.

The resulting generating functions corresponding to the classes A and B are

FA(t) =
1

(1− 1
1−FI(t)

FL(t))(1− FI(t))
FS(t)

=
2t3

(1 + t+ t2)(1− 2t)(1 + t)(1− t)
,

FB(t) =
1

(1− FA(t))(1− 1
1−FI(t)

FL(t))(1− FI(t))

=
1− t3

1− t− 2t2 − 3t3 + t4 + 2t5
.

Using Theorem 6 we get the connective constant as the reciprocal of the small-
est modulus root of the denominator of FB(t):

µ(SQc
−1,1) ≈ 2.28965789.

3.2 Convergence of connective constants

Consider again the lattice Z2 and the sub-lattices SQ0,L = Z × {0, . . . , L} of
Z2. Following the approach of Beffara and Huynh in [2] we will now prove
that the sequence µ(SQ0,L) converges to µ(Z2) for L going to infinity. As in
Example 5 we take for any given L as unimodular height function on SQ0,L

the pair (h,H) where h : V → Z, (x, y) 7→ x and H the set of all horizontal
translations (x, y) 7→ (x+ k, y) for k ∈ Z.

Lemma 3. For integers L, n ≥ 1 let B
(L)
n be the set of bridges in SQ−L,L

starting at the origin (0, 0) and ending in some (x, y) with y ≥ 0 and let b
(L)
n

be its cardinality |B(L)
n |. Then

∀L, n, k ≥ 1 : b
(3L)
kn ≥ (b(L)

n )k. (3.5)

Proof. We will use induction on k to prove the following Claim:

For a sequence of k given bridges π1, . . . , πk ∈ B
(L)
n we can concatenate the

bridges or their reflection on the line Z × {0} such that we get a new bridge

π1,k ∈ B(3L)
kn ending in some (xk, yk) with 0 ≤ yk ≤ 2L.

Clearly the claim holds for k = 1: π1,1 = π1 is in B
(L)
n , therefore also in

B
(3L)
n and is ending in some (x1, y1) with 0 ≤ y1 ≤ 2L. Assume the claim holds

for k − 1. Then we can concatenate the bridges π1, . . . , πk−1 ∈ B(L)
n to get a
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bridge π1,k−1 ∈ B(3L)
(k−1)n ending in some (xk−1, yk−1) with 0 ≤ yk−1 ≤ 2L. Let

πk ∈ B(L)
n end at (x, y). We distinguish 2 cases:

(a) If yk−1 ≤ L, concatenate π1,k−1 and πk to get π1,k, which is a bridge in

B
(3L)
kn , its end-vertex (xk, yk) satisfies

0 ≤ yk−1 ≤ yk = yk−1 + y ≤ yk−1 + L ≤ 2L.

(b) If yk−1 > L, concatenate πk−1
1 and the reflection of πk on Z× {0} to get

πk1 , which is a bridge in B
(3L)
kn , its end-vertex (xk, yk) satisfies

0 < yk−1 − L ≤ yk−1 − y = yk ≤ yk−1 ≤ 2L.

This concludes our induction. An example for the construction is shown in
Figure 3.2.

-L

0

L

2L

3L

Figure 3.2: Concatenation of four bridges in B
(L)
n , result is in B

(3L)
4n .

In the above construction we cannot get a bridge in B
(3L)
kn more than once.

This fact together with the above claim proves the statement (3.5) of the
Lemma.

Theorem 8. Let L ≥ 1 be an integer and µ(SQ0,L) and µ(Z2) be the connective
constants of the integer strips SQ0,L and the integer lattice Z2. Then

lim
L→∞

µ(SQ0,L) = µ(Z2). (3.6)

Proof. Let Bn be the set of all n-step bridges on Z2 starting in (0,0), bn = |Bn|
its cardinality and b′n be the number of bridges in Bn ending in some (x, y)
with y ≥ 0. Also let bLn defined as in Lemma 3. By Theorem 6 we know

lim
n→∞

(bn)1/n = µ(Z2). (3.7)

Using that every bridge on Z2 either has some endpoint (x, y) for y ≥ 0 or its
reflection on Z× {0} does, we get

bn ≤ 2b′n ≤ 2bn,
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which together with 3.7 proves

∀L ≥ 1 : lim
n→∞

(b′n)1/n = µ(Z2). (3.8)

The same argument as above used on SQ−L,L gives us

lim
n→∞

(bLn)1/n = µ(SQ−L,L). (3.9)

Every bridge counted in b′L contains only vertices (x, y) with −L ≤ y ≤ L as

it has length L. Therefore it is also counted in b
(L)
L . This gives

∀L ≥ 1 : b
(L)
L = b′L. (3.10)

Let ε > 0 be given and by using (3.8) take n0 such that

|(b′n)1/n − µ(Z2)| ≤ ε for all n ≥ n0. (3.11)

By Lemma 3 and (3.10) we know that

(b
(3n0)
kn0

)
1

kn0 ≥ (b(n0)
n0

)
1
n0 = (b′n0

)
1
n0 . (3.12)

Using (3.9) we get that

lim
k→∞

(b
(3n0)
kn0

)
1

kn0 = µ(SQ−3n0,3n0). (3.13)

Now sending k to infinity in (3.12) and using (3.11), (3.13) and that µ(SQ0,L)
is strictly increasing in L we get

µ(SQ0,L) > µ(SQ−3n0,3n0) ≥ µ(Z2)− ε for all L > 6n0.

This together with µ(SQ0,L) ≤ µ(Z2) for all L ≥ 0 proves the claim (3.6).



Chapter 4

SAWs on one dimensional
lattices

In this chapter we will mostly follow the approach of Alm and Janson [1], who
showed that the generating function of SAWs on one dimensional lattices can
be explicitly expressed in terms of a rational function and that therefore the
connective constant is algebraic as the reciprocal of a root of the denominator.
We start by defining lattices and their dimension in a convenient way.

Definition 9. For an integer d ≥ 1, a d-dimensional lattice is an infinite graph
G such that there is a group Γ ≤ AUT (G) of translations with Γ ∼= Zd and the
number of orbits of Γ acting on G is finite. In other words, the vertices may
be represented by Zd × F , where F = {1, 2, . . . , |F |} is a finite set and two
vertices (m, a) and (n, b) are connected by an edge if and only if n−m ∈ Ea,b,
where for each pair (a, b) ∈ F 2, Ea,b is a finite subset of Zd. We say that a
vertex (m, a) has longitude m and latitude a.

For a better understanding of the definition we will give a simple example
of a lattice of dimension 1.

Example 7. Consider the triangular strip TRI2 as in Figure 4.1. We will
state two different ways for defining the sets F and Eab from Definition 9.

(a) We set F1 = {1, 2} and V = Z × F1. Then a possible set of edges of
TRI2 is given by E1,1 = E2,2 = {−1, 1}, E1,2 = {0,−1}, E2,1 = {0, 1}.
As we only consider undirected graphs, it is clear that Ea,b = −Eb,a,
where the minus is applied on each element of the set. Therefore the
lattice is defined by the sets Ea,b where a ≤ b.

(b) Let F2 = {1, 2, 3, 4} and V = Z × F2. Then we can define the set of
edges by E1,1 = E2,2 = E3,3 = E4,4 = ∅, E1,2 = E2,3 = E3,4 = {0},
E1,3 = E2,4 = {0,−1} and E1,4 = {−1}.

Clearly there are infinitely many other ways of describing TRI2 in the same
way as above. It is also possible to get a set F with |F | = 1, but then

27



CHAPTER 4. SAWS ON ONE DIMENSIONAL LATTICES 28

Ea,b ⊂ {−1, 0, 1} cannot be satisfied anymore.

(0, 2)

(0, 1)

(1, 2)

(1, 1)

(2, 2)

(2, 1)

(3, 2)

(3, 1)

(0, 2)

(0, 1)

(0, 4)

(0, 3)

(1, 2)

(1, 1)

(1, 4)

(1, 3)

(2, 2)

(2, 1)

(2, 4)

(2, 3)

Figure 4.1: Ways of defining F and Va,b, dashed lines are between different
copies of F .

From now on we will only consider one-dimensional lattices. As we have
seen in the example, there are many different ways to represent a lattice. The
following lemma will grant us the existence of a particularly beneficial type of
representation.

Lemma 4. For every one-dimensional lattice G there is a representation such
that

(a) Ea,b ⊂ {−1, 0, 1} for all a, b ∈ F , i.e., edges occur only between successive
longitudes and

(b) each vertex v of longitude i ∈ Z is connected to a vertex w of longitude
i+ 1 by a walk in which all vertices besides w have longitude i.

Proof. Consider a representation of a one-dimensional lattice as in Definition
9 with vertices (n, a) where n ∈ Z, a ∈ F and let

H = max
a,b∈F

max
k∈Ea,b

|k|.

We want to group H successive longitudes into a single new longitude. To
achieve this we can use the following map ϕ from Z×F to Z×{1, 2, . . . , H|F |}:

ϕ((Hn+ k, a)) = (n, k|F |+ a) for 0 ≤ k ≤ H − 1, a ∈ F

giving us a new representation with H|F | latitudes. Let (Hn + k, a) and
(Hm+ l, b) be two vertices connected by an edge in the original lattice. Then
|Hn+ k − (Hm+ l)| ≤ H which implies that |n−m| ≤ 1. So the new lattice
ϕ(G) now satisfies Ea,b ⊂ {−1, 0, 1}.

Now suppose that we have a representation of G with Ea,b ⊂ {−1, 0, 1}.
Consider the subgraph G0 of G induced by the vertices of longitude 0. We call
the connected components of G0 clusters. Suppose there is a cluster C not
directly connected to a vertex of longitude 1 and let I be the set of latitudes
of all vertices in C. Then C is directly connected to a vertex (−1, a) with
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a ∈ F \ I because G is connected and Ea,b ⊂ {−1, 0, 1}. We use the map ψ
from Z× F to Z× F defined for all integers n by

ψ((n, a)) =

{
(n− 1, a) if a ∈ I
(n, 1) else

to reduce the longitude of C (and its translates) by one. The new graph has
one cluster less in G0. Thus, by choosing a representation with a minimal
number of clusters every cluster of longitude 0 has to be connected to a vertex
with longitude 1.

Let G be a one-dimensional lattice and choose a representation as provided
by Lemma 4. We will describe G in the following way (see Figure 4.2). We
divide the graph into segments, each of them consisting of all vertices of a
single longitude, all edges connecting two vertices in the segment and all edges
connecting the segment and the preceding segment.

Furthermore we will divide each segment into two parts, a section, com-
prising only the connections (edges) to the preceding segment, and a hinge,
containing all vertices of the segment and all edges between these vertices.

segm

sec h

Figure 4.2: Segment (segm), section (sec) and hinge (h) of a lattice.

Let π be a SAW connecting two vertices S (start) and E (end) on the
one-dimensional lattice G. Then we can see π as a sequence of directed edges,
ordered by its appearance in π. The appearance of π in a particular section of
G is called a configuration. So a configuration is a sequence of directed edges
ordered by its appearance in π. Let C be the set of all possible configurations
that may appear in a SAW on G. For convenience, we include two different
empty configurations φL and φR in C.
Similarly the appearance of the SAW π in a particular hinge is called a shape,
which is a sequence of vertices and their incoming and outgoing edges of π.
Here we order the vertices by their appearance in π.

We note that the shape of a hinge is not necessarily determined by the
configurations of the adjacent sections. On the other hand a shape completely
determines the configurations on both sides.

We call a configuration even (odd) if it contains an even (odd) number of
edges. Furthermore it is called left or right according to the direction of the
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first edge. Note that if S lies to the left of E, the configurations to the left of
S are even left, the configurations between S and E are odd and those to the
right of E are even right. We think of φL (φR) as an empty configuration to
the left (right) of π and therefore define it to be even left (right). So we have
a partition of all configurations into 4 sets

C = CEL ∪ COL ∪ COR ∪ CER, (4.1)

where EL,OL,OR and ER stands for even left, odd left, odd right and even
right. A Self-avoiding walk on the one-dimensional lattice SQ0,3 and the types
for each configuration are shown in Figure 4.3. Note that no configurations of
type OL occur in this example. We will show in the proof of Lemma 5 that
this is the case, whenever the start S lies to the left of the end E. On the
ladder graph L there are already 10 possible configurations and 38 possible
shapes, which are shown in Figure 4.5 and Figure 4.6 sorted by their type.

φL φR

S E

EL OR ER

Figure 4.3: SAW from S to E with types of all occurring configurations.

We say that the shape s correctly connects the configurations c1 and c2,
if the edges leaving s to the left are exactly the edges in c1, their order is
preserved and the same holds for the edges leaving s to the right and the edges
of c2.

So we can describe a SAW π by a sequence of configurations ci and shapes
si of the form (φL = c0, s1, c1, . . . , sm, cm = φR) where si correctly connects
ci−1 and ci for all 1 ≤ i ≤ n. We will show next that the converse holds.

Lemma 5. A correctly connected sequence (φL = c0, s1, c1, . . . , sm, cm = φR)
defines a self-avoiding walk π.

Proof. We can distinguish 4 different types of shapes depending on whether
they contain S, E, both or none of them. A shape containing neither S nor E
can only connect two configurations of the same type (EL, OL, OR or ER) as
the edges leave in the same order and quantity they enter. A shape containing
S can only have a left configuration at the left and a right configuration at the
right. A shape containing E but not S keeps the orientation (left or right) of
its neighboured configurations but changes even to odd and vice versa. If a
shape contains both E and S it has a configuration of type EL at the left and
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of type ER on the right. So the only possible sequences can be represented by
the following diagram (Figure 4.4), where edges represent the transitions from
one configuration to the next one and their label tells us if the corresponding
shape contains S, E or both of them.

CEL

COL

COR

CER
S + E

S

E

E

S

Figure 4.4: Possible connections of configurations.

Conversely, let (φL = c0, s1, c1, . . . , sm, cm = φR) be a correctly connected
sequence of configurations and shapes. We assumed that we start with φL ∈
CEL and end with φR ∈ CER. Therefore we need to start at the leftmost node
in the diagram and get to the rightmost node. This shows us that the pattern
defined by our correctly connected sequence contains exactly one starting point
S and one endpoint E.

Suppose there exists a cycle C of edges in the pattern. Each configuration
containing an edge of C needs to contain at least 2 edges of C as C is a cycle.
So for each configuration we get an ordering on the edges of C contained in it.
But then at some point a shape has to connect an edge of higher order with an
edge of lower order, which contradicts the assumption of our sequence being
correctly connected. Hence there are no cycles in the pattern.

We conclude that the pattern defined by our correctly connected sequence
contains only a single walk which has to be self-avoiding and connects the two
vertices S and E.

In the following example we will list all configurations and shapes that can
occur in a SAW on the one-dimensional lattice L.

Example 8. We consider the ladder L with vertices {(x, y) | x ∈ Z, y ∈ {0, 1}}
and pick the starting point S = (0, 0). The 10 possible configurations and the
38 shapes and their types are shown in Figure 4.5 and Figure 4.6 .
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2

1

1

2

2

1

1

2

φL φR

EL OL OR ER

Figure 4.5: Possible configurations including order of edges and type.

EL,EL EL,OL

ER,ER OR,ER

EL,ER EL,OR OL,ER

OL,OL OR,OR

1

2 1

2 1

1

2

2

2

1 2

1

1

1

2

2

1

2

1

2

Figure 4.6: Possible shapes including order of vertices and type of configura-
tions it can connect.

4.1 The generating matrix of SAWs on one

dimensional lattices

Let G = (V,E) be a one dimensional lattice, v ∈ V a fixed vertex, σn the
number of SAWs of length n starting in v and F (t) their ordinary generating
function as in Definition 4.

Let i, j ∈ C be two configurations. We denote by η(i) the number of edges
in i and by S(i, j) the set of all shapes correctly connecting i on the left with
j on the right. For s ∈ S(i, j) let ν(s) be the number of edges with both
endpoints in s. We define the three C × C square matrices H(t), V (t) and
M(t), whose entries are polynomials in the variable t. M(t) will be called
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generating matrix of self-avoiding walks.

H = H(t) = (Hij)i,j∈C where Hij =

{
xη(i) for j = i

0 else
,

V = V (t) = (Vij)i,j∈C where Vij =
∑

s∈S(i,j)

xν(s) and

M = M(t) =H(t)V (t).

Then the following theorem provides a connection of the generating func-
tion F (t) and the matrices H(t), V (t) and M(t).

Theorem 9. Let G = (V,E) be a one-dimensional lattice and F (t), H(t),
V (t) and M(t) be defined as above. Then

F (t) = VφLφR +(V HV )φLφR +(V (HV )2)φLφR + · · · = (V (I−M)−1)φLφR , (4.2)

where I is the identity matrix and Aij denotes (i, j)-entry of matrix A.

Proof. Let π be a n-step SAW which has horizontal width m, i.e., contains m
non-empty configurations and is of the form

(φL = c0, s0, c1, . . . , sm, cm+1 = φR)

where the ci are configurations and the si are shapes correctly connecting ci
and ci+1. Then π appears in (V (HV )m)φLφR as

tν(s0)

m∏
i=1

tη(ci)tν(si) = exp

(
log(t)

(
m∑
i=0

ν(si) +
m∑
j=1

ν(cj)

))
= tn.

So every SAW π of length n contributes tn to both sides of (4.2).

Conversely every term tn in (V (HV )m)φLφR of (4.2) corresponds to a prop-
erly connected sequence

(φL = c0, s0, c1, . . . , sm, cm+1 = φR)

containing exactly n edges. But by Lemma 5 such a sequence corresponds to
a SAW and therefore also appears in F (t).

Applying this theorem we immediately get the following interesting corol-
lary, which providing that the connective constant of a one-dimensional lattice
is an algebraic number. Currently it is not known if this is also true for arbi-
trary graphs.

Corollary 2. Let G = (V,E) be a one-dimensional lattice. Then the gener-
ating function F (t) corresponding to the number of SAWs on G is a rational
function and the connective constant µ(G) is an algebraic number.
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Proof. F (t) is an entry of the matrix (V (I −M)−1), which has only rational
functions as entries because V , I and M have only polynomials as entries.
Therefore F (t) can be seen as a rational function in its radius of convergence.
By Theorem 4 we know that F (t) has a singularity at 1/µ(G). We conclude
that 1/µ(G) is a root of the denominator of F (t) written as rational function
and therefore algebraic. So also µ(G) is algebraic as reciprocal of an algebraic
number.

Remark 6. We can use the partition of the index set C in (4.1) to get

H =


HEL 0 0 0

0 HOL 0 0
0 0 HOR 0
0 0 0 HER

 ,

V =


VEL,EL VEL,OL VEL,OR VEL,ER

0 VOL,OL 0 VOL,ER
0 0 VOR,OR VOR,ER
0 0 0 VER,ER

 and

M =


MEL,EL MEL,OL MEL,OR MEL,ER

0 MOL,OL 0 MOL,ER

0 0 MOR,OR MOR,ER

0 0 0 MER,ER

 =

=


HELVEL,EL HELVEL,OL HELVEL,OR HELVEL,ER

0 HOLVOL,OL 0 HOLVOL,ER
0 0 HORVOR,OR HORVOR,ER
0 0 0 HERVER,ER

 .

Example 9. We continue Example 8 and calculate the generating function
of SAWs FL(t) and the connective constant µ(L) of the ladder graph L. The
diagonal matrix H is determined by the 10 configurations in Figure 4.5. The
sub-matrices of H introduced in Remark 6 are

HEL = HER =

1 0 0
0 t2 0
0 0 t2

 and HOL = HOR =

(
t 0
0 t

)
.

The matrix V is given by the 38 shapes in Figure 4.6. Its submatrices as
defined in Remark 6 are

VEL,EL = V T
ER,ER =

0 t t
0 1 0
0 0 1

 , VEL,OL = V T
OR,ER =

1 + t 1 + t
1 0
0 1

 ,
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VEL,OR = V T
OL,ER =

1 t
0 1
0 0

 , VOL,OL = VOR,OR =

(
1 t
t 1

)
and

VEL,ER =

1 + t 1 0
1 0 0
0 0 0

 .

Using these matrices V and H we can then calculate M = HV and (V (I−
M)−1)φLφR . Together with Theorem 9 we get

FL(t)(t) =
1 + 2t− t3 − t4 + t7

(1− t)2(1 + t)2(1− t− t2)
(4.3)

as the generating function of SAWs on the ladder graph L. To obtain its
radius of convergence R we take the root having the smallest absolute value
of the denominator of FL(t) in (4.3) and get again

R =

√
5− 1

2
and µ =

1

R
=

1 +
√

5

2
.



Chapter 5

Context-free languages

Definition 10. An alphabet Σ is a finite set of elements called letters. A
word w is an element in some k-fold Cartesian product Σk and |w| = k is
called the length of w. We write w = a1a2 · · · ak to denote a word of length k
and Σ∗ =

⋃
k≥0 Σk for the set of all words or strings of finite length over the

alphabet Σ.
By defining a multiplication

Σ∗ × Σ∗ → Σ∗, (a1 · · · ak, b1 . . . bl) 7→ a1 · · · akb1 · · · bl

Σ∗ becomes a monoid with neutral element ε, the empty word of length zero.

Definition 11. A grammar is a tuple G = (N,Σ, P, S) where

• N is a finite set of non-terminal symbols or variables,

• Σ is a finite set of terminal symbols (alphabet of the language),

• P ⊂ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ is the set of productions,

• S ∈ N is the start symbol.

We usually write λ → ρ ∈ P if (λ, ρ) ∈ P . λ → ρ1 | ρ2 | · · · | ρk is a shorter
way to describe k productions λ→ ρ1, λ→ ρ2, . . . , λ→ ρk.

We define a binary relation ⇒ on (N ∪Σ)∗: x⇒ y if and only if there are
u, v, p, q ∈ (N ∪ Σ)∗ such that x = upv, y = uqv and p→ q ∈ P . We say that
y derives from x in a single step.

The relation
∗

=⇒ on (N ∪Σ)∗ is defined as the reflexive transitive closure of

⇒, meaning that x
∗

=⇒ y if and only if there is an integer n ≥ 0 such that there
are v0, v1, . . . , vn ∈ (N ∪ Σ)∗ with x = v0 ⇒ v1 ⇒ · · · ⇒ vn = y. We say that
y derives from x in n steps.

The language generated by the grammar G is the set L(G) = {w ∈ Σ∗ |
S
∗

=⇒ w}.

Grammars can be classified in different ways. The most common one is the
Chomsky hierarchy first described by Noam Chomsky in 1956.

36
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Definition 12. A grammar G and its generated language L(G) are said to be
of Type-i for i ∈ {0, 1, 2, 3} if the following holds:

• Type-0 (recursively enumerable): No restrictions on λ→ ρ ∈ P .

• Type-1 (context-sensitive or monotone): All productions λ → ρ ∈ P
with (λ, ρ) 6= (S, ε) must satisfy |λ| ≤ |ρ|. If S → ε ∈ P , then S must
not appear in the right-hand-side of any production.

• Type-2 (context-free): All productions λ→ ρ ∈ P satisfy λ ∈ N .

• Type-3 (regular): All productions λ → ρ ∈ P satisfy λ ∈ N and ρ ∈
Σ∗N ∪ {ε}.

Remark 7. It is known that Type-i languages form a subclass of Type-j
languages for i > j and that no two classes coincide.

Example 10. We give some standard examples for languages and the gram-
mars G = (N,Σ, P, S) generating them. For our examples we use Σ = {a, b, c}
and N = {S,B,C}.

• L0 = {akblcm | k, l,m ≥ 1} is regular. A set of productions generating
L0 is

S → aS | aB,
B → bB | bC,
C → cC | c.

• L1 = {akbkcl | k, l ≥ 1} is context-free but not regular. A set of produc-
tions generating L1 is

S → BC,

B → aBb | ab ,
C → cC | c.

• L2 = {akbkck | k ≥ 1} is context-sensitive but not context-free. A set of
productions generating L2 is

S → aSBC | aBC,
CB → BC,

aB → ab,

bB → bb,

bC → bc,

cC → cc.

We will now start working with context-free languages. Assume we have
more than one non-terminal at some step of a derivation. As there is exactly
one non-terminal at the left-hand side of each production (and nothing else), it
clearly does not matter in which order productions are used. Therefore we will
usually replace the leftmost variable first according to the following definition.
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Definition 13. Let G = (N,Σ, P, S) be a context-free grammar generating
the language L(G). We call a step of derivation as described in Definition
11 leftmost, if the leftmost non-terminal is rewritten. We denote for a word
w ∈ Σ∗ by N(G, w) the number of different derivation sequences of the form

S ⇒ · · · ⇒ w

where each step of derivation is leftmost. We say that w is generated unambigu-
ously by the grammar G if N(G, w) = 1 and call G an unambiguous grammar,
if every word w ∈ L(G) is generated unambiguously by G.

A method to study the structure of a context-free grammar is by studying
its dependency-digraph introduced in the following definition taken from [3].

Definition 14. Let G = (N,Σ, P, S) be a context-free grammar. The depen-
dency-digraph D(G) = (N,E) is a directed graph which is allowed to have
loops and has set of vertices N and oriented set of edges

E = {(A,B) ∈ N ×N | ∃(A→ ρ) ∈ P such that B occurs in ρ}.

In other words, an edge (A,B) appears in D(G) if and only if we can get to
the non-terminal B from A in one step of derivation.

A standard method to prove that a given language L is not regular, meaning
that there is no regular grammar producing L is the so-called Pumping Lemma
for regular languages. The proof is very simple and uses the fact that there
are only finitely many non-terminals in each grammar and therefore for long
enough derivation chains there is a non-terminal appearing more than once.

Lemma 6. For every regular language L over the alphabet Σ there is an integer
p ≥ 1, such that every word w ∈ L with |w| ≥ p can be written in the form
w = xyz with strings x, y, z ∈ Σ∗ such that |y| ≥ 1, |xy| ≤ p and xyiz ∈ L for
every integer i ≥ 1.

5.1 Generating functions of context-free lan-

guages

Our next goal is to use a grammar G to get a formal power series which also
generates the language L(G) generated by G. Chomsky and Schützenberger
developed the following theory in [4].

Take any finite alphabet Σ and the monoid Σ∗ defined in 10. Let r be a
mapping which assigns to each word w in Σ∗ an integer 〈r, w〉. We represent
this map by a formal power series also denoted by r:

r =
∑
w∈Σ∗

〈r, w〉w.
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We define the support of r as the set of strings with non-zero coefficients

Supp(r) = {w ∈ Σ∗ | 〈r, w〉 6= 0}

and if for every w ∈ Σ∗ the coefficient 〈r, w〉 is either 0 or 1, we say that r is
the characteristic formal power series of its support. For r and r′ formal power
series over the same alphabet Σ and n an integer define

• nr as the power series with coefficients 〈nr, w〉 = n〈r, w〉,
• r + r′ as the power series with coefficients 〈r + r′, w〉 = 〈r, w〉+ 〈r′, w〉,
• rr′ as the power series with coefficients 〈rr′, w〉 =

∑
w1,w2∈Σ∗
w1w2=w

〈r, w1〉〈r′, w2〉.

We call two formal power series r and r′ equivalent mod degree n and write
r ≡ r′ (mod deg n) if 〈r, w〉 = 〈r′, w〉 for every word w with |w| ≤ n. Suppose
now that we have an infinite sequence of formal power series r1, r2, . . . such
that for all integers n′ ≥ n ≥ 1 we have rn ≡ rn′ (mod deg n). In this case the
limit r of the sequence r1, r2, . . . can be well defined as

r = lim
n→∞

πnrn

where for each n, πnrn is the polynomial we get by replacing all coefficients
〈r, w〉 for |w| ≥ n by zero.

It is natural to associate with an unambiguous context-free grammar G =
(N,Σ, P, S) the formal power series r(G) having as coefficients

〈r(G), w〉 = N(G, w),

where N(G, w) is the degree of structural ambiguity of the word w defined in
Definition 13. We call r(G) the generating function of L(G). Then the support
of r(G) is exactly the language generated by G.

Suppose N = {S = V1, . . . , Vn} are the non-terminals of the context-free
grammar G = (N,Σ, P, S) and let P be given by

Vi → ρi,1 | ρi,2 | . . . | ρi,mi
for all 1 ≤ i ≤ n.

We will assume that the grammar G contains no productions of the form

Vi → ε,

Vi → Vj

and that for every i there must be (non-empty) words in the language of strings
derivable from Vi. It is not hard to show that for every context-free grammar
G not satisfying these assumptions and generating the language L(G), there is
a second context-free grammar G ′ which does satisfy them and also generates
L(G) (or L(G) \ {ε}, if the empty word ε is in L(G)). We associate for every i
with Vi the polynomial expression

σi = ρi,1 + ρi,2 + · · ·+ ρi,mi
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and with the grammar G the set of equations

V1 = σ1; . . . ; Vn = σn. (5.1)

For every i we can use the equation Vi = σi in (5.1) for defining a mapping
ψi taking an n-tuple (r1, . . . , rn) of formal power series to the power series
obtained by replacing all variables Vj appearing in σi by rj. Combining all of
these mappings we get a mapping ψ defined by

ψ(r1, . . . , rn) = (ψ1(r1, . . . , rn), . . . , ψn(r1, . . . , rn)). (5.2)

Consider now the infinite sequence of n-tuples (r
(k)
1 , . . . , r

(k)
n )k≥0 of power series

defined iteratively by

r
(0)
i = 0 for 1 ≤ i ≤ n,

r
(j)
i = ψi(r

(j−1)
1 , . . . , r(j−1)

n ) for 1 ≤ i ≤ n, j ≥ 1.
(5.3)

Each r
(j)
i has only finitely many non-zero coefficients. Furthermore using our

assumptions on the grammar G it can be shown that

r
(j)
i ≡ r

(j′)
i (mod deg j) for all 0 < j < j′, 1 ≤ i ≤ n.

Therefore the limit r
(∞)
i of the infinite sequence (r

(j)
i )j≥0 is well defined for

each 1 ≤ i ≤ n. It is the only n-tuple within our framework to satisfy the
equations (5.1) given by our grammar G. In particular r

(∞)
1 which is the series

corresponding to our start symbol S is the generating function of L(G), which
we called r(G) above. The following example gives an idea of the process
described above.

Example 11. Consider the context-free grammar G = (N,Σ, P, S) with N =
{S}, Σ = {a, b} and productions

S → bSS | a.

The equation described in (5.1) reads as

S = a+ bSS. (5.4)

This yields the mapping ψ from (5.2) defined on a power series r by

ψ(r) = a+ brr.

Iteration as shown in (5.3) results in the sequence

r(0) = 0,

r(1) = a+ br0r0 = a,

r(2) = a+ br1r1 = a+ baa,

r(3) = a+ br2r2 = a+ b(a+ baa)(a+ baa)

= a+ baa+ babaa+ bbaaa+ bbaabaa.

...
...
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Clearly for 0 < j < j′ we have r(j) ≡ r(j′) (mod deg j) and therefore the
limit r(∞) is well defined and it is the characteristic generating function of the
language L(G).

We will now get back to classical (commutative) generating functions. For
ρ and ρ′ in (N ∪Σ)∗ we write ϕρ = ϕρ′ if they contain exactly the same num-
ber of each letter and non-terminal. Clearly this map ϕ extends to a mapping
from our non-commutative formal power series onto the ring of ordinary com-
mutative formal power series with integral coefficients. For a grammar G and
its generating function r(G) we call ϕr(G) the ordinary generating function
of G. Clearly it is the solution of the commutative version of the system of
equations (5.1). This can be utilized to obtain ϕr(G) in a simple way.

Example 12. Consider again the grammar G of Example 11. From (5.4) we
get the equation

ϕr(G) = ϕa+ ϕb(ϕr(G))2

which yields the two solutions

ϕr(G) =
1±
√

1− 4ϕaϕb

2ϕb
.

We want our ordinary generating function to have only positive coefficients, so
we take the solution with minus. Using the binomial formula and simplifying
gives the series

ϕr(G) =
∑
n≥0

1

n+ 1

(
2n

n

)
(ϕa)n+1(ϕb)n.

This shows us that the number of words in L(G) containing exactly (n+ 1) a’s
and n b’s is the n-th Catalan number.

In this context the following class of grammars lying between regular and
context-free languages is of remarkable interest.

Definition 15. We call a context free grammar G = (N,Σ, P, S) linear, if
all productions contain at most one non-terminal on their right hand side.
Productions of this type are also called linear.

Now in the case of G being a linear grammar with alphabet Σ = {a1, . . . ak},
the commutative version of the system of equations (5.1) is a linear system of
equations with coefficients being polynomials in the variables a1, . . . ak. Clearly
this system can be solved and gives rise to a solution in the field of rational
functions in the commutative variables a1, . . . ak. Therefore the generating
function r(G) can be written as a rational function.

To get this property for even more context-free grammars we use the depen-
dency-digraph defined in Definition 14. Let D(G) = (N,E) be the dependency-
digraph of the context-free grammar G = (N,Σ, P, S). Assume there is a subset
C of N such that there are no edges going from C to N \C in D(G) and such
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that for all V ∈ C all productions V → ρ ∈ P are linear. Consider the sub-
system of equations of (5.1) we obtain by only taking the lines corresponding
to the non-terminals in C. By the definition of the dependency-digraph no
non-terminals of N \ C can appear in this subsystem. So we can solve the
subsystem as mentioned above and get rational ordinary generating functions
for all non-terminals in C. Now if for a non-linear production V → ρ ∈ P , all
non-terminals appearing in ρ are already known to have rational generating
functions, clearly also the generating function corresponding to V is rational
as the sum over products of rational functions. This Observation leads to the
following definition:

Definition 16. An ordered cycle of length n ≥ 1 in a directed graph which is
allowed to have loops is a sequence of edges (e1, . . . , en) such that e+

i = e−i+1

for all 1 ≤ i ≤ n− 1 and e+
n = e−1 .

In the dependency-digraph D(G) of a context-free grammar G = (N,Σ, P, S)
we call an edge (A,B) non-linear if there is a non-linear production A→ ρ ∈ P
such that B appears in ρ, else we call the edge linear.
We call the context-free Grammar G ultimately linear, if in the dependency-
digraph D(G) no non-linear edge is contained in an ordered cycle.

Let an ultimately linear grammar G = (N,Σ, P, S) be given. We denote
for a non-linear edge (A,B) by C(B) the set of all non-terminals which can
be reached from B by following a (directed) walk in D(G). Clearly there can
be no edge going from C(B) to N \ C(B). Now by the discussion above if all
non-terminals in C(B) have rational ordinary generating functions, this is also
true for A. Iteratively using this argument starting at an edge (A,B) such that
no two non-terminals in C(B) are connected by a non-linear edge we get that
the generating function corresponding to the language G is also rational. Such
an edge must always exist as the graph D(G) is finite and there are no cycles
containing non-linear edges. An ultimately linear grammar can be found in
Example 15.



Chapter 6

The language of walks on a
graph

Definition 17. A directed edge-labelled graph G is a tuple G = (V,E,Σ, l)
where

• V and E are set of vertices and edges of a directed graph,

• Σ is the label alphabet,

• l : E → Σ is the label function.

We call such a graph G

• fully labelled if for all u ∈ V and a ∈ Σ there is a vertex v ∈ V such that
(u, v) ∈ E and l((u, v)) = a,

• deterministic if any two edges e1, e2 starting at the same vertex have
different labels l(e1) 6= l(e2),

• symmetric if for every a ∈ Σ there is a letter b ∈ Σ such that (u, v) ∈ E
with l(u, v) = a if and only if (v, u) ∈ E with l(v, u) = b. In this case we
call b the inverse of a.

For a given set of walks on a labelled graph we are now able to define the
language corresponding to it.

Definition 18. Let G = (V,E,Σ, l) be a directed edge-labelled graph. A
walk of length n in G connecting two vertices u and v is a sequence of edges
π = (e1, e2 . . . , en) such that e−1 = u, e+

n = v and e+
i = e−i+1 for i = 1, . . . , n−1.

We extend the map l to walks π = (e1, e2 . . . , en) by

l(π) = l(e1)l(e2) . . . l(en) ∈ Σ∗.

So for every walk π we get a word in Σ∗ by reading the letters of the edges
contained in the walk.
Let Π be a set of walks in G. Then we call L(Π) = {l(π) | π ∈ Π} ⊂ Σ∗ the
language of Π.

43
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Remark 8. Let G = (V,E,Σ, l) be a directed edge-labelled graph which is
deterministic and let v ∈ V be given. For any set Π of paths starting at v, the
extension of the label function l is a natural bijection between Π and L(Π).
This means that for any given word w in L(Π) we can get the unique path π
in Π with w = l(π) by following the edges labelled with the letters of w.

We will now extend the notions of transitivity and quasi-transitivity onto
directed edge-labelled graphs.

Definition 19. The automorphism group of a directed edge-labelled graph
G = (V,E,Σ, l) denoted by Aut(G) is the group of all permutations σ : V → V
such that for all u, v ∈ V and a ∈ Σ we have: (u, v) ∈ E with l((u, v)) = a if
and only if (σ(u), σ(v)) ∈ E with l((σ(u), σ(v))) = a.
A subgroup Γ ≤ AUT (G) is said to act transitively on G if, for any u, v ∈ V ,
there exists γ ∈ Γ with γu = v. It is said to act quasi-transitively if there
exists a finite set W ⊂ V such that for any u ∈ V there exist v ∈ W and γ ∈ Γ
with γu = v.
The directed edge-labelled graph G is called transitive (respectively quasi-
transitive) if its automorphism group AUT (G) acts transitively (respectively
quasi-transitively) on G.

We note that when taking a given undirected transitive or quasi-transitive
graph G and adding any edge labels, we do not have to end up with a tran-
sitive or quasi-transitive directed edge-labelled graph. We also want to get a
deterministic graph as mentioned in Remark 8. So it is important to add the
labels in a convenient way. The following example shows 2 good ways to add
labels to the ladder graph L.

Example 13. Consider the ladder graph L = Z × {0, 1}. We will first label
the (directed) edges with elements of the alphabet Σ = {s, a, b} to get the
labelled directed graph L1 in the following way shown also in Figure 6.1:

l(e) =



s if e = ((x, 0), (x, 1)) or e = ((x, 1), (x, 0)) for some x ∈ Z,
a if e = ((x, y), (x+ 1, y)) or

e = ((x+ 1, y), (x, y)) for some even x ∈ Z, y ∈ {0, 1},
b if e = ((x, y), (x+ 1, y)) or

e = ((x+ 1, y), (x, y)) for some odd x ∈ Z, y ∈ {0, 1}.

The labelled graph L1 is transitive: AUT (L1) contains the reflection (x, y) 7→
(1−x, y), the horizontal translations (x, y) 7→ (x+2k, y) for every integer k and
the reflection (x, y) 7→ (x, 1−y) and these automorphisms can be concatenated
to map (0,0) onto any given vertex. Also L1 is fully labelled, deterministic and
symmetric. Moreover, each label is inverse to itself, so we could also draw this
graph as undirected graph and only add one label per edge.

The more ”natural” way to label the edges of the directed version of L is
to label the edges using their direction as done by Zeilberger in [22]. We will
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Figure 6.1: Labelled directed ladder L1.

use the alphabet Σ = {r, l, u, d} in the following way also shown in Figure 6.2
to get the labelled directed graph L2:

l(e) =


r if e = ((x, y), (x+ 1, y)) for some x ∈ Z, y ∈ {0, 1},
l if e = ((x+ 1, y), (x, y)) for some x ∈ Z, y ∈ {0, 1},
u if e = ((x, 0), (x, 1)) for some x ∈ Z,
d if e = ((x, 1), (x, 0)) for some x ∈ Z.

Now we can see that L2 is not transitive anymore: Vertices on the line Z×{0}
have an outgoing edge labelled by u, while vertices on line Z×{1} do not have
such an edge. Therefore we cannot have an element in AUT (L2) mapping
the vertex (0, 0) to the vertex (0, 1). However L2 is quasi-transitive as all
horizontal translations mapping (x, y) to (x + k, y) for some k in Z are in
AUT (L2). Clearly L2 is deterministic and symmetric (the inverse of u being
d and the inverse of l being r), but not fully labelled.
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r
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r
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Figure 6.2: Labelled directed ladder L2.

6.1 The language of SAWs and bridges on the

ladder

In this section our goal is to calculate the characteristic generating function of
the language of self-avoiding walks and the language of bridges on the edge-
labelled ladder graph. Let L = (V,E,Σ, l) be the edge-labelled ladder graph
defined by

• V = Z× {0, 1}.
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• E = Er ∪ El ∪ Es where
Er = {((x, y), (x+ 1, y)) | x ∈ Z, y ∈ {0, 1}},
El = {((x+ 1, y), (x, y)) | x ∈ Z, y ∈ {0, 1}},
Es = {((x+ 1, y), (x, y)) | x ∈ Z, y ∈ {0, 1}}.
• Σ = {r, l, s}.
• l : E → Σ defined by l(e) = a if and only if e ∈ Ea for a ∈ Σ.

As in Example 4 we take the pair (h,H) as unimodular graph height function,
where h is the map V → Z, (x, y) 7→ x and H is the set of all horizontal
translations (x, y) 7→ (x+ k, y) for some k ∈ Z.

Example 14. We start by constructing a grammar generating LB, the lan-
guage of all bridges starting at the origin (0, 0). As already mentioned in
Example 4, every bridge on L is of the form L∗I where L denotes again a sub-
walk of the form ris for some positive integer i and I stands for a sub-walk
of the form rj for some non-negative integer j. Here L∗ denotes a sequence
of length ≥ 0 of walks of type L. We can translate this into the unambigu-
ous regular grammar GB = (NB,Σ, PB, S), where Σ comes from the graph L,
NB = {S, L, I} and PB is the following set of productions generating LB:

S → VL | VI | ε,
VL → rVL | rsS,
VI → rVI | r.

(6.1)

Here S is the start symbol generating all bridges, VL generates all bridges
starting with a walk of the form L and VI generates all walks of form I of
length ≥ 1. A bridge can either be empty or start with a sub-walk of form L
or with a walk of form I (only if it does not contain a sub-walk of form L).
This corresponds to the first line of productions. The second line produces
sub-walks of type L and after finishing an L we can continue again with any
bridge. The third line corresponds to the final piece of type I of a bridge. We
note that the Grammar GB is not only context-free, but even regular. We can
use the above productions to compute the generating function of LB.

As described in Chapter 5 we get the equations for the ordinary generating
functions FS, FL and FI corresponding to our non-terminals S, VL and VI by
using the productions of GB in (6.1):

FS = FL + FI + 1, (6.2)

FL = rFL + rsFS, (6.3)

FI = rFI + r. (6.4)

Keep in mind that we are working in the non-commutative setting. However,
from (6.4) we have

FI = (1− r)−1r. (6.5)

From (6.3) by using (6.2) and (6.5) we get

FL = rFL + rs(FL + (1− r)−1r + 1).
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Solving for FL yields

FL = (1− r − rs)−1rs(1− r)−1. (6.6)

Now plugging (6.5) and (6.6) into (6.2) and simplifying gives us

FS = (1− r − rs)−1

which is the desired characteristic generating function of the language LB. We
can now translate it back to achieve

FS =
∑
n≥0

(r + rs)n = 1 + r + rs+ r2 + r2s+ rsr + rsrs+ . . . .

Every term in this series represents a word in the language LB and therefore
a bridge on L. By replacing both variable r and s by t we get again the
generating function of bridges on the unlabelled graph L we already derived
in Example 4.

In the next step we want to find a grammar for the language LW of all
SAWs on the labelled ladder graph L starting at the vertex (0, 0).

Remark 9. We have already seen that the language of bridges LB is regular.
This is not true for LW . We can use the Pumping Lemma for regular languages
to prove this:
Take any integer p ≥ 1 and consider the walk w = rpslp+1s ∈ LW . Then for
every decomposition w = xyz with |y| ≥ 1 and |xy| ≤ p we have that y is of
the form rk for some k ≥ 1. But then xy2z = rp+kslp+1s corresponds to a path
containing its end-vertex twice and is therefore not in LW . So LW does not
satisfy the statement from Lemma 6 and thus cannot be regular.

Example 15. It is convenient to use the following notation for sub-walks of
certain types:

• Ur is a walk of the form risli for some i ≥ 1,

• Lr is a walk of the form ris for some i ≥ 1,

• Ir is a walk of the form ri for some i ≥ 1.

We define Ul, Ll and Il as Ur, Lr and Ir, but by replacing every l by r and vice
versa. We give an unambiguous context-free grammar GW = (NW ,Σ, PW , S)
generating the language LW : Our set of non-terminals is

NW = {S, V (r)
A , V

(r)
B , V

(r)
L , V

(r)
I , V

(r)
U , V

(l)
A , V

(l)
B , V

(l)
L , V

(l)
I , V

(l)
U }

and the set of productions PW is given by the following productions together
with the productions we get when replacing every r by l and vice versa in
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every production but the first one:

S → V
(r)
A | V (l)

A | V
(r)
B | V (l)

B | sV
(r)
B | sV (l)

B | s | ε,
V

(r)
A → lV

(l)
U rV

(r)
B | lsrV (r)

B | lV (l)
U r | lsr,

V
(r)
B → V

(r)
L | V (r)

I ,

V
(r)
L → rV

(r)
L | rsV (r)

L | rsV (r)
I | rs,

V
(r)
I → rV

(r)
I | rV (r)

U | r,
V

(r)
U → rV

(r)
U l | rsl.

(6.7)

The non-terminals defined above generate the language of all SAWs having
the following properties:

• S: All SAWs.

• V (r)
A : Walks starting with Ul.

• V (r)
B : Walks starting with r, not containing the vertex above/below of

the start vertex.

• V (r)
L : Walks starting with Lr.

• V (r)
I : Walks starting with Ir.

• V (r)
U : Walks of the form Ur.

We note that because of the rule V
(r)
A → V

(l)
U rV

(r)
B the grammar is not linear.

So we can not directly conclude that the ordinary generating function of LW
can be written as a rational function. This is where the dependency-digraph
D(GW ) shown in Figure 6.3 comes into play. The only non-linear edges from

Definition 16 in are (V
(r)
A , V

(r)
B ), (V

(r)
A , V

(l)
U ), (V

(l)
A , V

(l)
B ) and (V

(l)
A , V

(r)
U ). There

are no edges going from C(i) = {V (i)
B , V

(i)
L , V

(i)
I , V

(i)
U } to N \C(i) for i ∈ {l, r}, so

our language is ultimately linear. Therefore all appearing ordinary generating
functions are rational.

Using the productions in (6.7) we get the following equations for the ordi-
nary generating functions corresponding to the non-terminals of GW :

FS = F
(r)
A + F

(l)
A + F

(r)
B + F

(l)
B + sF

(r)
B + sF

(l)
B + s+ 1, (6.8)

F
(r)
A = lF

(l)
U rF

(r)
B + lsrF

(r)
B + lF

(l)
U r + lsr, (6.9)

F
(r)
B = F

(r)
L + F

(r)
I , (6.10)

F
(r)
L = rF

(r)
L + rsF

(r)
L + rsF

(r)
I + rs, (6.11)

F
(r)
I = rF

(r)
I + rF

(r)
U + r, (6.12)

F
(r)
U = rF

(r)
U l + rsl. (6.13)

Again the equations for generating functions with superscript (l) are defined
similar by exchanging l and r. As mentioned above the subsystem of equations



CHAPTER 6. THE LANGUAGE OF WALKS ON A GRAPH 49

S

V
(r)
A

V
(r)
B

V
(r)
I

V
(r)
L

V
(r)
U

V
(l)
A

V
(l)
B

V
(l)
I

V
(l)
L

V
(l)
U

Figure 6.3: Dependency-digraph D(GW ).

(6.10) - (6.13) is linear and can be solved without considering the other equa-
tions. The following result is the ordinary (commutative) generating function
of our language LW and was obtained by using Sage for the calculations:

FS =
N

D

where

N = 1 + s− 3lr − 3lrs− 3lrs2 + 3l2r2 − lrs3 + 3l2r2s +

2l2r2s2 − l3r3 + l2r3s2 + l3r2s2 − l3r3s− l3r3s2 − l3r3s3,

D = (1− lr)2(1− l − ls)(1− r − rs).

Replacing all elements of Σ by the new variable t we get the following result
for the ordinary generating function FW (t) of all SAWs on the ladder graph L:

FW (t) =
1 + 2t− t3 − t4 + t7

(1− t)2(1 + t)2(1− t− t2)
. (6.14)

Calculating the absolute values of all roots of the denominator and taking the
reciprocal of the minimal result we receive the connective constant

µ(L) =
1 +
√

5

2
.

Using the partial fraction expansion ofW (t), it is also possible to get an explicit
formula for the number of n-step SAWs σn on L starting in (0, 0). This was
done by Zeilberger in [22] and results in σ0 = 1, σ1 = 3 and

σn = 8Fn −
n

2
(1 + (−1)n)− 2(1− (−1)n) for all n ≥ 2

where Fn denotes the n-th Fibonacci Number.
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6.2 The language of SAWs on the k-ladder-

tree

Consider for a fixed integer k ≥ 2 the k-regular tree Tk = (V (Tk), E(Tk)),
where the edges are labelled with a1, a2, . . . , ak, such that no two edges having
the same label start at the same vertex and each pair of edges corresponding to
an undirected edge has the same label. Clearly the labelled Tk is a transitive
graph, by Example 1, its connective constant is µ(Tk) = k − 1.

We take two copies of Tk and connect two vertices of different copies if
they correspond to the same vertex in Tk and label these new edges with s.
We denote the result shown in Figure 6.4 by LTk and call it k-ladder-tree. A
formal definition of the k-ladder-tree is LTk = (V,E,Σ, l), where the set of
vertices is V = V (Tk)× {0, 1}, the set of edges is E(LTk) = ET ∪ EL,

ET = {((u, x), (v, x)) | (u, v) ∈ E(Tk), x ∈ {0, 1}},
EL = {((v, x), (v, 1− x)) | v ∈ V (Tk), x ∈ {0, 1}}

and the label alphabet is Σ = {a1, a2, . . . , ak, s}. Edges in ET are called tree-
edges and inherit their labels from Tk and edges in EL are link-edges labelled
by s.

Figure 6.4: The 3-ladder-tree, dashed edges are link-edges.

The resulting directed labelled tree LTk clearly is deterministic and sym-
metric, where each label is inverse to itself and it is also transitive.

We fix a vertex (v, 0) of LTk and want to find the language LW of SAWs
starting at (v, 0). First we try to find a characterization of SAWs. It is again
convenient to use the following notation similar to the one in Example 15:

• U is a walk of the form b1 . . . bisbi . . . b1,

• L is a walk of the form b1 . . . bis,

• I is a walk of the form b1 . . . bi,

where in every case i ≥ 1, bj ∈ Σ \ {s} for all 1 ≤ j ≤ i and bj 6= bj+1 for all
1 ≤ j ≤ i− 1.
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Consider for a SAW π on LTk the ”projection” π′ of π onto the tree Tk
we get by removing all link-edges from the path. Now clearly π′ does not
have to be self-avoiding anymore, but every vertex can appear at most twice.
Whenever a vertex v appears twice in this walk, the subwalk between the first
and second appearance of v has to be of the form b1 . . . bibi . . . b1 for some i ≥ 1,
otherwise a vertex would appear more than twice. We denote by U ′ such paths
from v to v. Now between two walks of type U ′ there has to be a walk of type
I. So all walks π′ not containing the start vertex twice have to be of the form
(IU ′)∗I0, where I0 denotes a walk of type I or the empty path. Going back
to LTk, every walk starting at (v, 0) and not containing (v, 1) has to be of the
form (L∗IU)∗L∗I0, as a walk of type U ′ translates back to U and a walk of
type I translates back to L∗I. This gives us the following characterization for
all SAWs on LTk:

• SAWs not containing (v, 1): (L∗IU)∗L∗I0,

• paths starting with U : U(L∗IU)∗L∗I0,

• paths starting with s: s(L∗IU)∗L∗I0.

We use this characterization to find an unambiguous grammar GW generating
LW . We use the following notation: Let K = {1, . . . , k}. Then our grammar is
given by the set of the following productions, where for every rule i ∈ K, j, j′ ∈
K \ {i} and l ∈ K \ {i, j}:

S → V
(i)
A | V

(i)
B | sV

(i)
B | s | ε,

V
(i)
A → aiV

(j)
U aiV

(j′)
B | aisaiV (j)

B | aiV (j)
U ai | aisai,

V
(i)
B → V

(i)
L | V

(i)
I | V

(i)
E | V

(i)
F ,

V
(i)
L → aiV

(j)
L | aisV (j)

L | aisV (j)
I ,

V
(i)
I → aiV

(j)
I | aiV (j,i)

C ,

V
(i,j)
C → aiV

(j)
U aiV

(l)
L | aiV

(j)
U aiV

(l)
I | aiV

(j)
U aiV

(l)
E | aiV

(j)
U aiV

(l)
F | aiV

(j)
U ai |

aisaiV
(l)
L | aisaiV

(l)
I | aisaiV

(l)
E | aisaiV

(l)
F | aisai,

V
(i)
U → aiV

(j)
U ai | aisai,

V
(i)
E → aiV

(j)
E | aisV (j)

E | aisV (j)
F | ais,

V
(i)
F → aiV

(r)
F | ai.

(6.15)
The following list shows the properties of the walks generated by each non-
terminal

• S: Start symbol generating all SAWs starting at v0.

• V (i)
A : Walks of the form U(L∗IU)∗L∗I0, first step ai.

• V (i)
B : Walks of the form (L∗IU)∗L∗I0, first step ai.

• V (i)
L : Walks of the form (LL∗IU)(L∗IU)∗L∗I0, first step ai.

• V (i)
I : Walks of the form (IU)(L∗IU)∗L∗I0, first step ai.
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• V (i,j)
C : Walks of the form U(L∗IU)∗L∗I0, first step ai, first step after

initial U not aj.

• V (i)
U : Walks of the form U , first step ai.

• V (i)
E : Walks of the form LL∗I0, first step ai.

• V (i)
F : Walks of the form I, first step ai.

We observe that our grammar GW is not linear, but by using the dependency-
digraph the same way as in 15, we can conclude that it is ultimately linear and
that the ordinary generating function of our language is a rational function.
This was not clear up to this point, as LTk is not a one-dimensional lattice.

The number of non-terminals of our language depends on k, so we do not
directly solve the system of equations we achieve from (6.15). To reduce the
number of variables, we use the following idea: If we replace every letter of Σ
by the new letter t, by symmetry of LTk we clearly get the same equation for
V

(i)
A and V

(j)
A for i, j ∈ K. So we can associate the ordinary generating function

FA in the variable t with the set of our non-terminals V
(i)
A for all i ∈ K. Doing

the same for all non-terminals (6.15) translates into the following system of
equations containing the parameter k:

FS = (k − 1)FA + (k − 1)FB + (k − 1)tFB + s+ 1,

FA = (k − 1)2t2FUFB + (k − 1)t3FB + t2FU + t3,

FB = FL + FI + FE + FF ,

FL = (k − 1)tFL + (k − 1)t2FL + (k − 1)t2FI ,

FI = (k − 1)tFI + (k − 1)tFC ,

FC = (k − 1)(k − 2)t2FU(FL + FI + FE + FF ) + (k − 1)t2FU+

(k − 2)t3(FL + FI + FE + FF ) + t3,

FU = (k − 1)t2FU + t3,

FE = (k − 1)tFE + (k − 1)t2FE + (k − 1)t2FF + t2,

FF = (k − 1)tFF + t.

Again we used Sage to solve the above system of equations and obtain the
ordinary generating function

FS =
N

D
(6.16)

where

N = 1 + 2t+ (4− 2k)t2 + (5− 3k)t3 + (3− 4k + k2)t4+

(2− 3k + k2)t5 − (1− k)t7,

D = (1 + (1− k)t+ (2− 2k)t2 + (1− 2k + k2)t3 − (1− k)t4)(1 + (1− k)t2).

We note that the variable t corresponds to a single step of any form. So the
result for FS is the generating function of SAWs we introduced in Definition
4. Using this generating function we can calculate the connective constants



CHAPTER 6. THE LANGUAGE OF WALKS ON A GRAPH 53

k µ(LTk) k µ(LTk)

2 1.618034 10 9.981284
3 2.825955 20 19.995146
4 3.896361 50 49.999208
5 4.930990 100 99.999801
6 5.950746 1000 999.999998

Table 6.1: Connective constants of µ(LTk) (rounded values).

µ(LTk) for given values of k. The results for some values of k are contained in
Table 6.1.

Clearly the 2-regular tree T2 is the line graph Z, hence LT2 is the ladder
graph L. Plugging k = 2 into (6.16) yields again the generating function of
the ladder which we also got in Example 15.
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