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Abstract

We review known results on linearly edge-reinforced random walk (LRRW), a
non-Markovian stochastic process on infinite graphs G = (V, E). The process is
shown to be a mixture of Markov chains, both in the recurrent and the general
case. We use de Finetti’s results on exchangeable sequences to prove existence
and uniqueness of the mixing measure in the recurrent case, following the proof
lines of Diaconis and Freedman. For the general case we follow Merkl and Rolles’
proof on the existence of a mixing measure. Showing recurrence or transience on
certain graphs is non-trivial, the existence of a phase transition is conjectured but
not proved. However, in case G is a (K + 1)-regular tree it is well-known that
a phase transition occurs at a certain parameter ag(/K). On general graphs this
matter is much more difficult. Angel, Crawford and Kozma proved recurrence for
sufficiently small intial weights on graphs with bounded degrees and transience for
sufficiently large initial weights on non-amenable graphs. We only concentrate on
the first result. In the last section we state and prove some results on the mixing
measure, which have been obtained in the course of the elaboration of this the-
sis. We consider mixing measures for different initial vertices and show that these
are mutually absolutely continuous. The respecitive derivatives have a closed and
simple form. We prove the uniqueness of the mixing measure on a sub-o-algebra
of the space of Markov chains. This gives reason to believe in the uniqueness of
the mixing measure even in the general case while the problem of showing this
remains open.

Keywords: reinforced random walk; edge-reinforced random walk; random
walks on graphs; mixture of Markov chains; mixing measure; stochastic processes
with reinforcement; Polya urn; partial exchangeability; de Finetti
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Chapter 1

Introduction

Imagine travelling to an unknown city and exploring it on foot. One will usually
walk along the safer streets, occasionally also choose dark and dangerous alleys
by coincidence. However, using a street over and over again will become routine
after some time and will thus make it more likely to walk along the street again.
So, when modelling the walk, we need to take the last idea into account. Indeed,
the probability of using a street will increase with the number of walks on it. In
this setting the term ’reinforced’” may be understood as the development of some
routine. The street map will be modelled as an undirected graph G = (V) E).
Crossings correspond to vertices v € V(T') and streets to edges e € E(G). The
safety of the streets at the beginning of the walk is modelled by a vector of positive
initial weights (ac)cer(c), usually we take a, = a for some a € R*. The develop-
ment of a routine corresponds directly to a set of non-decreasing functions w,(-) on
edges e € E(G). The main purpose of Section 2 is to introduce a general model for
the above issue and to specify what is meant by linearly edge-reinforced random
walk on G with initial weights a, in the following abbreviated by LRRW (G, a).
Instead of exploring a city we might also consider a salesman moving from one
market place to a neighboring one every day. In this case the reinforcement does
not concern the streets (neighborhood relation) but the market places (vertices).
The model associated with this type is known as vertex-reinforced random walk.
Since this thesis does not investigate this kind of process the term 'reinforced’ will
be used instead of ’edge-reinforced’.

Generally speaking, throughout the last decade there has been a lot of research
concerning stochastic processes with reinforcement. The study is not only of the-
oretical interest. Certain bacteria modify the chemical environment in their sur-
roundings and are therefore either more or less likely to move to the same place
again. Myxobacteria produce a slime on which they are able to glide. Once edge-
reinforced random walk gives hope to understand the latter. We will just introduce
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the model and one result by Codling, [3], in Section 2.

Another purpose is to understand tumour-induced angiogenesis. In tumour-like
tissues the growth of vessels is enhanced and thus the migration of vessel-like cells
can be modelled as a reinforced stochastic process, see Levine, [12].

The development of opinions as well as evolutionary processes may be modelled
taking into account some reinforcement. A very famous and well-studied model for
the first is Polya’s urn. Take an urn containing a finite number of balls of different
types. A ball is drawn from the urn according to some probability distribution
and the content is modified according to the type of the ball. In the basic model
the probability of the choice of a type is proportional to the number of balls of the
type. Many generalizations of Pélya’s urn have been studied assuming different
distributions as well as positive real numbers of balls or uncountably many balls,
see for instance Pemantle, [16, p.22-25]. The simple generalization for positive
real initial ball numbers will be introduced to study linearly reinforced random
walk on trees in Section 3.1. This model has a few useful properties. One of them
is that the probability of a finite sequence of balls stays the same when permut-
ing the sequence, called exchangeability. A rigorous definition of exchangeability
and a generalization for the case of walks on graphs, partial exchangeability, are
introduced in Section 3.1. A consequence of the first property is almost sure con-
vergence of the urn’s relative content to a Dirichlet distributed random variable.
We are going to exploit this in various ways. The proof of this fact is given later
in Section 3.3.

All processes mentioned above are non-Markovian, their future depends not only
on the current state but on the entire history. Curiously, some of them may
still be represented, not by a single Markov chain, but as an integral w.r.t. some
chains. This representation, in the following called mixture, is introduced in Section
3.2. The concept of mixtures is, of course, easier assuming that a process considers
only random variables defined on the same space. In this case we establish the
representation via de Finetti’s representation theorem on exchangeable sequences
of random variables. To appeal on intuition the Hewitt-Savage 0-1-law for the ex-
changeable o-algebra of sequences of i.i.d. random variables is stated and proved
in advance in Section 3.3. We then give a rigorous proof of de Finetti’s theorem.
The representation for recurrent LRRW is then constructed from the latter in
Section 3.4. The theorem and its proof are due to Diaconis and Freedman, [6].
The key property is partial exchangeability. For 2-connected graphs G the class
of partially exchangeable random walks coincides with the class of the linearly
reinforced one. However, if GG fails to be 2-connected this does not hold true. A
counterexample in the case of a tree and a rigorous proof for the 2-connected case
have been obtained in the course of the elaboration this thesis and may be found
at the end of Section 3.1.
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Without the assumption of returning infinitely often to the starting point the proof
technique of Diaconis and Freedman breaks down. Merkl and Rolles, [15], used
a tightness argument to prove the existence of a representation of LRRW as a
mixture of Markov chains even if it is transient. We will state and prove this
in Section 3.6. For this purpose the usual notation of reversible Markov chains
by their associated transition matrices will be cumbersome. We describe these
Markov chains and introduce the new notation in chapter 3.5. In the focus of
the remaining part of the thesis are results on recurrence and transience. In the
case of trees a dichotomy between recurrence and transience for LRRW is a mi-
nor result at the beginning of Section 4.1. For equal initial weights a, = a and
(K + 1)-regular trees we give a proove the existence of a phase transition. The
phase transition occurs at a certain parameter ag(K ), LRRW being almost surely
positive recurrent if a < ag(K) and almost surely transient if a > ao(K). In this
context the term ’almost sure’ has to be understood w.r.t. the mixing measure pu.
The material of this section is due to Pemantle, [17]. He proved the last result
not only for fixed trees but Galton-Watson trees. On general graphs LRRW turns
out to be much more difficult. In 2012 Angel, Crawford and Kozma, [1], studied
LRRW on graphs with bounded vertex degree K. They proved the existence of a
parameter ao(K) so that LRRW (G, a) is almost surely recurrent if a < ag. The
assumption a, = a is not needed. We will give a proof of this result in Section 4.2.
Many problems concerning L RRW remain unsolved. For instance, it appears only
natural to believe that for all graphs LRRW is either recurrent or transient for
fixed initial weights. It seems that neither a rigorous proof of this nor a coun-
terexample has been found yet. It is as well conjectured that for a fixed graph
increasing a may only make the process 'more transient’ in the sense that the
process does not switch between recurrence and transience while increasing a.



Chapter 2
The Model

2.1 Preliminaries

On a graph G = (V, E) we may define a stochastic process as follows. Let P =
p(+, ) be a row stochastic matrix on V(G) x V(G) satisfying

p(v,w) >0 < {v,w} e E(G).

We generate sequence of vertices (X;)en by the following scheme. Start at a fixed
vertex xg. At each time step t + 1 we choose a follower X;,; of X; among the
vertices adjacent to X;. We choose X;,; according to the transition probabilities
in Px,, the X;-th row of P. The following properties hold for the process resulting
from the above.

P(Xir1 =v|Xy, ..., Xy) = P(Xp41 = v[Xy) and (2.1)
P(Xip1 = v[Xy) = P(Xpsp41 = 0[Xpr)-

Processes fulfilling these properties are called discrete, time homogenous Markov
chains. The term time homogenous refers to the second equation, the transition
matrix does not change over time. In the following we will omit the terms discrete
and time homogenous. The Markov chains we will need to represent LRRW fulfill
two more properties. This will be shown later on in Section 3.4.

Definition 2.1.1 (Cycles, Reversibility and Irreducibility). Let G be a graph.

A cycle ¢ = (xg,21,29,...,2, = x0) in G is a path starting and ending in the
same vertexr xo and containing each vertex at most once. Its reversal is ¢~ =
(xo = 21,211, %12, . .., o). We say that a Markov chain is reversible if the follow-

ing holds for any cycle ¢, for any index t € N

P((Xi, Xig1,. ., Xip) =¢) =P ((XthtJrla s X)) = Ci) . (2.3)

4



CHAPTER 2. THE MODEL )

It is called irreducible if for each ordered pair (v,w) of vertices there is some N € N
so that the probability of visiting w from v within N steps is positive.

The above definition of reversibility is less restrictive than in most definitions
that can be found in literature but will be convenient for the rest of this assignment.
For non-reinforced irreducible random walk visiting a state once almost surely
implies that all states are visited infinitely often almost surely. This does not
hold a priori for reinforced random walk. We will therefore choose the following
definitions of (positive) recurrence and transience.

Definition 2.1.2. A state is called recurrent (transient) if it is visited infinitely
(finitely) often almost surely. We call it positive recurrent if the expected return
time to the initial vertex is finite. A stochastic process on a discrete state space
is called (positive) recurrent (transient) if all its states are (positive) recurrent
(transient).

The following model of reinforced random walk is due to Kozma, [11].

Definition 2.1.3 (Reinforced Random Walk). Let G = (V, E) an undirected lo-
cally finite connected graph and (we)ecpe) : N — (0,00). The w, are sometimes
called conductances or weights. To avoid confusion, the notion “initial weight’ de-
notes a positive vector a, while ‘weights’ is reserved for random variables. We call
the w.(-) reinforcement functions and a value we(t) routine. For a vertex v let
Ng(v) denote the set of vertices adjacent to v in G. Let X be an infinite path in
G, i.e. a sequence of adjacent vertices. Lett € N,v := Xy, e € E(G) and define for
any edge e
N(e,t):=|{neN:1<n<t,{X,_1,X,} = e}

the number of transversals of edge e up to time n. Note that we do not care about
the direction of transversal. Define for all u € Ng(v)

Wiu,v} (N({u7 U}a t))

P(Xpo1 = u|Xo, X1, ..., X)) 1= :
( t+1 u| 0 ’ t) erNG(v)w{xrv}(N({x’v}7t)

(2.4)

If X satisfies (2.4), we say it is reinforced random walk with reinforcement (we)eep(q)-

With this definition the probability of choosing an edge is proportional to the
value of w.(N(e,t)). We will only deal with non-decreasing functions we(-) in
this assignment. Local finiteness of GG is not only a simplifying condition but also
ensures that the walk X is well-defined. If, for instance, there are infinitely many
edges incident to a vertex v, the denominator in (2.4) need not be a finite number.
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2.2 Once Reinforced Random Walk

Consider the reinforcement function

we(n):{a n=>0

a+1 else.

This simplified model was introduced by Davis, [5], due to the long absence of
theoretical results for LRRW . While intuitively much simpler the problem turned
out to be anything but easy. In April 2016 Kious and Sidoravicius, [10, p.2|, were
able to prove the existence of a phase transition in a on Z%like trees, the first
result of this kind for once reinforced random walk.

2.3 Superlinear Reinforcement

We call a reinforced random walk superlinear if the reinforcement functions w, are
non-decreasing and for all e € E(G)

i L < . (2.5)

i=0 we(7)
Superlinearly reinforced random walk on a locally finite graph turns out to get
stuck almost surely on one edge under some minor assumptions, the result is due
to Limic and Tarres, [13]. We will not give the entire proof but only concentrate
on a proof idea.

Theorem 2.3.1. Let G be a locally finite graph, let e be the first edge traversed,
let w := w, be a non-decreasing function satisfying

Z ﬁ < 0. (2.6)

Then
P(The process gets stuck on e for eternity.) > 0.

Proof. Let e = {u, v} be the first edge traversed and let K := max(degq(u), degq(v)).

Then
P(The process gets stuck on one edge for eternity) >
- w(i) R (K = 1)£(0)
U w&=peoran -1 (- & 70 ) 7

since all factors are strictly positive and the infinite product is a positive number
if and only if the sum in (2.6) converges. O
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2.4 Linear Reinforcement

We will only consider one type of function, namely w,(n) = a. + n for all edges
e for positive constants a.. If the increment was different, say for instance d > 0,
we would easily transform o’ = §. By looking at (2.4) it is obvious that this
transformation has no impact on the resulting process. If the w, are increased
by 1 after each transversal the sum in (2.6) does not converge. But it diverges
very slowly, the partial sums are of order O(In(n)). We denote linearly reinforced
random walk on a graph G by LRRW (G, a) where a = (ac)eer() are the initial
weights. We will at first not make any assumptions on the initial vertex, but just

assume that some initial vertex xzq is given.

2.4.1 Expected Return Time is not Finite

The following example implies that the expected return time is not finite, except
for trivial cases where |V(G)| < 3. It is inspired by Angel, Crawford and Kozma,

i

Example 2.4.1. Let G be a locally finite graph, let a. = a. Let xy be the
initial verter and e = {x1,x9} some edge at distance 1 from xy. Let K :=
max{degq(zo), degs(x1),dega(z2)}. For M € N denote by Ey the event that
LRRW (G, a) moves from o to x1 and then traverses edge e M times back and
forth. Of course, P(Ty = 2M) = P(Ey;). The probability of Ey may be estimated
from below by

M-1 M-1

1 21+ a — 21+1+a
P(Ey) > — - 2.7
(Ewr) KQ2¢+1+K6LH2¢+1+K@ (2.7)
1M (K —1)a 1\\?
S 1- =" 0= > C(K)M~E-Da
KH( 5it1 (22)) (K)

for some C(K) > 0. Now observe that for a < Il(__el for some € > 0 we have

E[Ty] = 2MP(Ty = 2M) = 2MC(K)M ¢ = 2C(K)M*

for some C(K) > 0. Thus the expected return time cannot be finite for sufficiently
small a.

The situation is not much different if we drop the conditions a < % and a, = a.
(2.7) is increasing in a.. Denote by dg(v) the set of edges incident to v. Let o
be different intial weights, let a* = max{al,e € 0¢(z1) U dg(x2)}. For N € N we
define En analogously to Eyr. Assuming that En ocurs we may as well adjust the
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wnitial weights and suppose that the process starts at xy, still having the focus on
the first visit of xg. Choosing N sufficiently large we observe that
]P)(EM|EN, CL,) = ]P)(EM|Q)

holds for all M € N. Since the probability of Eyn is positive the expected return
time is infinite also in the general case.
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Exchangeability and Mixtures

3.1 LRRW on Trees and Poélya’s Urns

Polya’s urn model works the following way. We start with an urn containing 2 balls
of different colour. At each time step we draw a ball from the urn with probability
proportional to the number of its kind. It is returned, followed by an extra ball of
its kind. This stochastic process has many convenient properties. We are going to
compare it with LRRW on a star graph first.

The material of the following paragraph is due to Pemantle, [17]. Consider the
star graph S5 consisting of the center zy and 5 additional vertices. LRRW (S5, 1)
for initial vertex zy may be modelled as a Polya’s urn process. It starts with an
urn containing 5 balls of 5 different colours. Each colour may be understood as
an edge. Again, at each time a ball of a is drawn from the urn with probability
proportional to the number of its kind, i.e. an edge is chosen with probability
proportional to its routine. It is returned, but now followed by two extra balls of
its kind. This is clear viewing that an edge must be traversed back and forth by
lack of other possibilities. We may, of course, choose a different initial vertex v. In
this case we still take the center x( as the initial vertex, but initially with two balls
of the colour corresponding to {xg, v} instead of one. For the model corresponding
to LRRW (S5, 1) let U, be the relative content at time n, i.e. a stochastic vector
whose entries are the probabilities for the next colour chosen. Let B,, be the colour
of the ball drawn in the n-th step.

1. U, satisfy equation (2.1)! This follows directly from interpreting U,, as the
vector of transition probabilities. Notably, (2.2) does not hold.

2. The probability of any finite sequence (Bi, Bs,...,B,) is invariant w.r.t.
finite permutations, i.e. for all p € G,,.

P(By = by,..., By = by) = P(By = byay, -, Bn = byy).  (3.1)
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Now let T = (V, E) be a locally finite tree. We attach an urn U" at each
vertex v € V(T containing deg,(v) different balls (i.e. one for each edge) and
perform LRRW (T, 1) for a fixed initial vertex zo. We assume that it is recurrent.
Let TV denote the time of the n-th visit of a vertex v. Let U} denote the relative
content of the urn attached at vertex v at time 7,'. Leaving a vertex v via edge e
implies returning to v via e. Observe that the edge by which v is visited first is
determined by the tree structure of 7" and xy. Thus we may split up LRRW (T',1)
into a set of independent processes LRRW (.S,, ) corresponding directly to urns
U", so for each collection of vertices vy, vq, ..., v, the sequences

(U:L)l)neNa RIS (U:l]k)neN

are jointly independent.

This model can easily be extended to LRRW (T, (ac)cer(r)) for any initial weight
vector a > 0 as long as recurrence holds true. The foregoing discussion and the
following theorem are due to Pemantle, [17].

Theorem 3.1.1. Suppose an urn contains u; balls of type i at the beginning for
1 <i < m and that at each step one ball is added to the urn. Again we denote by
Up = (Una, ..., Unpm) the vector containing the amounts of balls of each colour in
the n-th step. Define by

= Un _ Uy

U, = U = =7
Zi:1 U;

the relative number of balls after the n-th chosen ball. At each step a ball is added
to the urn, with probability for being of type i equal to U,,;. The u; need not be
integers, this is well-defined for any positive u;. Then U, converges almost surely
to a random variable U whose distribution has density

m m—1

uz Uj— Um,
fopr, - pm) = D2y ) ]_[p (L=pr— = pm)"

Hz lF i=1

The proof of this Theorem is delayed until the end of Section 3.2.

A process B satisfying (3.1) is called exchangeable. The definition of partial
exchangeability is not consistent in literature. Diaconis and Freedman as well
as Rolles defined partial exchangeablity by the number of directed, respectively
undirected edge transversals. We will choose the latter by Rolles, [19], since we
only observe the process on undirected graphs. The definition of exchangeability
may be extended to random variables on general spaces, see for instance Hewitt
and Savage, 8], and Diaconis, [21]. Hewitt and Savage use the term ’'symmetric’
instead of ’exchangeable’.
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Definition 3.1.2 ((Partial) Exchangeablity). 1. Let Z be some countable state
space, X be a ZN-valued random variable. We call X and its probability
measure P exchangeable if P is invariant w.r.t. finite permutations, i.e. for
alln e N for all pe G,,,1

IP)(XO = Zgy.-- 7Xn = iL'n) = P(XO = $p(0), Ce 7Xn = xp(n))

2. Let G = (V,E) be a graph, X a V(G)N-valued random variable on the set of
paths in G. We call two finite directed paths y, vy’ equivalent,

y=v,

if they start in the same vertex and for each edge e, y and iy traverse e
equally often. In this context e is considered to be undirected. Naturally, y
and y' need to have the same length. We call X and its probability measure
P partially exchangeable if for all y,vy', y=1vy

In other words P is constant on equivalence classes w.r.t. =.
Lemma 3.1.3. LRRW 1s partially exchangeable.

Proof. The probability of a specific path is a product of expressions of the form
n (2.4). All denominators (and of course all numerators) are determined by the
number of edge transversals and these are the same for equivalent paths. O

However, an exchangeable reinforced random walk need not be LRRW . If
|[V(G)| = 2, any reinforced random walk is partially exchangeable. But also for
general trees there are partially exchangeable processes that are not LRRW as the
following example shows. Let T' be a locally finite tree, xy be the initial vertex.
For all edges e define the reinforcement function recursively by

(0) (n) we(n — 1) +d; if n even
we(0) = ag, we(n) =
’ we(n —1)+dy ifnodd.

It is easy to see that the resulting process is partially exchangeable although it
is not LRRW. We would need to extend the definition of LRRW to directed
graphs. But still, each time leaving v, the total routine >, ;.. we(N(e,t)) of
edges incident to v must be determined by the number of times v has been visited.
The following characterization of LRRW on 2-connected graphs has been obtained
in the course of the elaboration of this thesis.
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Theorem 3.1.4. Let X be some reinforced random walk with reinforcement func-
tion (We)eer(c) on a graph G = (V, E), |V(G)| = 3. If X is partially exchangeable
then for all e € E(G), for alln e N

we(n +2) —we(n) = 2d (3.2)
for a non-negative constant d. If, additionally, e is contained in a cycle then

we(n +1) —we(n) =d

Proof. Let y = (xg,21,...,x) be a finite path in G and let Xy = z( almost
surely. By abuse of notation let y also be the event of performing y in the first
steps of X. Its probability is
A Wz, x; }(N({xlaxz-‘rl}az))
]P)(y) — H iy Li41

i=0 erNG(xi) Wiz, 2} (N ({2, T}, i) (3.3)

We only look at denominators

Y Wy (N ({2, 2},7)) (3.4)

zeNg(z;)

for z; € V(G), the numerators being determined anyway by the transition numbers.
We are going to prove the first part by choosing two paths y; = y». G contains
the line Lo = ({zo, x1, 22}, {{x0, 21}, {x1,22}}) as an induced subgraph, eventually
renaming the vertices in G. Suppose the process has already been walking along
a path y of length n — 1 > 0 and is at z; right at the moment. Let N;; =
N({z;,z;},n) be the number of transversals of {x;,z;} up to time n. Denote by
w_y = szeNG(m)\{xom} wyj(Ny;) the sum of routines over all edges incident to
x1 and not in F(Lg). Denote by [y,v/,...] the concatenation of paths y,v/,....
Define
Y1 = (v1, 20, 21, T2, 21) and yo = (11, 22, 71, To, T1).

Clearly y; = yo. By partial exchangeability P([y,y1]) = P([y,y2]). As we do not
want to write the probabilitiy of [y, y;] and of [y, y2]| in terms of the form in 3.3
we observe:

1. All terms that correspond to transitions within y and to the transition from
the last vertex of y and x; are equal and cancel out.

2. All numerators on the left side appear exactly once on the right side, so all
numerators cancel out.
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3. The denominators corresponding to the following transitions within y; and
12, Tespectively, are pairwise equal.

e 1| — xo within y; and x; — x5 within ys
e 1y — x; within y; and x¢y — x; within ys

e 1y — xp within y; and z9 — x1 within s
Cancelling out these terms in P([y, y1]) = P(|y, y2]) yields

w_y, + 'LU12(N12) + wm(Nm + 2) = w_y, + wlg(ng + 2) + wm(Nm) =
wo1(Nor + 2) — wo1(No1) = wi2(Niz + 2) — wia(Ni2).

Since this holds true for all pairs of edges incident to each other the first claim of
the theorem holds.

To prove the second part let ¢ = (xg,x1 ..., %k, Tpr1 = To) beacyclein G. W.l.o.g.
the process starts in xo (or else let xy be the node in ¢ visited first). Let ys be
a path that runs n > 0 times through the whole cycle and traverses the edge
{x)_1, 21} s times additionally back and forth. We denote this path by y,. Take
y1 = (To,x1,..., Tk, T, Tk), Y2 = (To, Tk, o, T1,...,Tx). Partial exchangeability
implies P([y& yl]) = P([ysa yQ])v 50

[wor(n) + wr—1 (25 +n+1)] - [wor(n + 1) +wo1(n+1)] =
[wor(n + 1) + wr—1,(2s +n)] - [wor(n +2) +wy1(n)]

Simplifying wy_1 (25 + -) =: ws, W =: g, wo1 = h yields

[g(n) +ws(n+1)]- [gn+ 1)+ h(n+1)] = (3.5)
[9(n+ 1) + ws(n)] - [g(n + 2) + h(n)].
By taking y1 = (2o, 21, Zo, Tk, - - -, ¥1), Y2 = (To, T, - - -, T1, To, T1), i.e. swapping w
and h, we obtain a second equation.
[g(n) +h(n+1)]-[g(n+1)+ws(n+1)] = (3.6)

ly(n) + h(n + 1] - [g(n +2) + ws(n)]
Subtracting (3.6) from (3.5), reordering and simple calculation steps lead to
ws(n+1)—h(n+1) gn+2)—gn+1)

ws(n) — h(n) g(n+1) —g(n)
Now manipulating w by s finishes the proof. The left side tends to 1 for s — oo,
the right side can take but two values (for n odd resp. even) and thus needs to

be equal to 1. Hence g(n +2) —g(n+1) = g(n + 1) — g(n) and the second claim
holds true. L




CHAPTER 3. EXCHANGEABILITY AND MIXTURES 14

We finish this chapter with a corollary to 3.1.4.

Corollary 3.1.5. Let G = (V, E) be a locally finite connected graph. Let X be
some partially exchangeable reinforced random walk on G. If G is 2-connected then

X is LRRW .

Proof. Each edge in a 2-connected graph is contained in a cycle. O]

3.2 Mixtures of Markov Chains

For many results in probability theory concerning sequences of random variables it
is assumed that these random variables are i.i.d. or at least pairwise independent.
Already for the simplest reinforced process in this assignment, Polya’s urn model,
this assumption clearly does not hold. Due to the various results following from
independence a useful technique is to represent a sequence of dependent random
variables by integrating over the space of sequences of i.i.d. random variables.

Definition 3.2.1 (Mixtures of i.i.d. sequences). Let (X, ) be a Polish space, let
B(X) be the Borel-o-algebra generated by sets in 7. We write B(X)Y := &), . B(X)
for its product-c-algebra. Let Y be a random variable with image contained in
X and (Y, )nen+ be a sequence of not necessarily independent X-valued random
variables, let P be the probability measure associated with (Yy,).

Let P < m(X) be a family of probability distributions on B(X) and B(P) be the
o-algebra generated by the sets in its weak topology. (Y,) is called mizture of i.i.d.
sequences if there exists a measure 1 on B(P) so that for all A€ B(X)N

P(A) = Ll N (A)du(r)

where T is the product @ of countably many identical replicas m e P.

In Bayesian statistics, the law of p is usually called the prior of P. It may be
interpreted as a ’density on a density’. For a stochastic path process on a graph
the analogue of 7 is the transition matrix of a Markov chain. For a given state v
the conditional random variables

Xt+1|Xt =V

may be regarded as a (maybe finite) sequence of i.i.d. random variables. Markov
chains are a big field of study by themselves. Therefore we introduce the notion
of mixture of Markov chains. The following definition is due to Diaconis, [6].
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Definition 3.2.2. Let G = (V, E) be a graph, X a V(G)"-valued random variable,
Xo =z for some xg € V(G). Let P be the probability measure associated with X .
Denote by P the space of stochastic matrices P = (p(v,w))ywev () on V(G)xV(G)
for which

p(v,w) > 0= {v,w} e E(G). (3.7)

We denote by B(P) the o-algebra generated by all sets of the form
{PePlpv,w)e A, A< [0,1], A open,{v,w} € E(G)}. (3.8)

X is called a mizture of Markov chains if there exists a probability measure p on

B(P) that satisfies for all n € N

n—1
P i=0

We are typically interested in ergodic properties. In the case of Markov chains
these are, due to 0-1-laws, well-understood. For mixtures these break down. Pos-
sibly, some ergodic events happen with probability 1 one some Markov chains but
with probability 0 on others. Showing recurrence in case of a mixture is thus a
much more difficult task.

3.3 De Finetti and the Exchangeable o-Algebra

To make the connection between mixtures of i.i.d. random variables and Markov
chains explicit some notation is required. Let X be a the space of finite paths
starting and ending in zy and not visiting zy in between. If X is some recurrent
walk we may cut it into pieces, each piece belonging to X'. Thus we refer to X as
a sequence of X'-valued random variables. Due to its countability we equip X with
the discrete topology. As a consequence the Borel-o-algebra B(X') is simply the
power set of X. If X is partially exchangeable, the pieces are exchangeable. By
Lemma 3.1.3 this holds especially true if X is LRRW . This property motivates
the definition of the exchangeable o-algebra.

Definition 3.3.1. Let X, B(X), P and (Y, )nen as in Definition 3.2.1. For N € N*
define by Ex the o-algebra containing all sets E € B(X)N for which

P((Ya) € E) = P((Yym) € E)

for all permutations p on N* that leave all but 1,2,..., N unchanged. The ex-
changeable o-algebra is € = [\ oy EN-
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Like many results in probability theory de Finetti’s representation theorem is
the consequence of a result on almost sure convergence. To appeal first a bit on
intuition we begin investigating £ in the i.i.d. case. The result is from Kallenberg,
[9]. It is known as the 0-1-law of Hewitt-Savage. In this setting the Y,, are general
random variables.

Theorem 3.3.2. Let (Y,,)nen+ be a sequence of i.i.d. random variables. Let € be
the exchangeable o-algebra. Then P(E) = {0, 1}.

Proof. Let £ € £. Let E, = C,(E) x XY where C,(E) is the projection of E
to the first n coordinates. Since E, € &, it is measurable. The sequence (E,)
is monotonic and thus converges to £. We write En for the set X" x E, x XN,
For sets A and B denote by AAB the symmetric difference (A\B) u (B\A). By
exchangeability

P(E,AE) = P(E,AE) — 0

and thus .
P(E, n E,) — P(E).

Observe that by joint independence of (Y, )nens, P(E, n E,) = P(E,)P(E,). We
have that

P((Y,) € E) — P((Y,) € E, n E,) = P((Y,) € E,)P((Y,) € E,) — P*((Y,) € E).
Hence P(E) = {0, 1}. O

In the last theorem & was defined for i.i.d random variables. Of course, the def-
inition of £ is not restricted to i.i.d. or exchangeable sequences; the concept easily
translates to arbitrary sequences of random variables defined on the same space.
Observe that any sequence of i.i.d. random variables is trivially exchangeable. The
converse does not hold true in general. Without assuming that the variables are
i.i.d., the statement of the last lemma breaks down. But observe the similarity be-
tween the last theorem and Kolmogorov’s 0-1-law for the shift-invariant o-algebra.
Suppose that we are already aware of the ocurrence of an event E in £ and move
the second element Y; to a different place N far ahead, leaving the order of the
other Y’s unchanged. By this we may hold Y; back further and further. So it is
only natural to suspect that deleting Y5 has no impact on E. By doing so we do
not care much about Ys, F is still true if we leave the rest of the Y’s unchanged.
Hence knowing that F occurs we might as well assume that Y; is independent of Y5
since Y, was deleted anyway. The above reasoning leads to the following definition.

Definition 3.3.3. Let X, B(X) and (Y,) be as in Defininition 3.2.1. Let F
B(X)N be some sub-c-algebra. We say that (Y,,) are conditionally i.i.d. if for all
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NeN, forall A;je B(X),i=1,...,N

P (ﬁ[Yz € Az‘]|f> = ﬁp(yl € Al F).

i=1 i=1

Conditional independence is the key property linking the two notions of ex-
changeability and mixture. The following two theorems have first been proved by
de Finetti for sequences of Bernoulli variables. Ryll-Nardzewski proved it for gen-
eral Polish space random variables, see [9]. A version for locally compact Hausdorff
spaces was stated and proved by Hewitt and Savage, [8]. We apply the theorems
with the sequence (Y},)nen+ from the beginning of the section. The notion of back-
wards martingales turns out to be useful. The approach of Hewitt and Savage is
based on functional analysis while Ryll-Nardzewski’s requires a rigorous proof of
the reasoning above.

Theorem 3.3.4 (De Finetti, Ryll-Nardzewski). Let X = LRRW (G, a) for some
locally finite graph G and positive initial weights a. Assume that X is recurrent,
so X = (Y.)nen, where the Y, are xo-zo-paths. Then (Yy)nen are conditionally
independent given the exchangeable o-algebra £.

Theorem 3.3.5. Let the assumptions of the last theorem hold. Then (Y;,)nen+ 18
a mizture of i.i.d. sequences.

Definition 3.3.6. A backwards filtration is a sequence of o-algebras
o Fo,crc Fopc K. (3.9)

Let M = (..., M_o, M _1,My) be a sequence of integrable, adapted, real-valued
random variables. We call M a backwards martingale if

EM_,|F 1) =M_, 4 (3.10)
holds almost surely.

There is a version of the martingale convergence theorem for backwards mar-
tingales. The use of negative indexing in (3.9) and (3.10) is little more than a
formality. We will not give the whole proof but only the outlines. A version may
be found in Rogers and Williams, [18].

Theorem 3.3.7. Let (M_,)nen be a uniformly integrable backwards martingale.
Then M_,, converges almost surely to a random limit.
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Proof. Clearly, E[My|F_,] = M_, by the tower property of martingales, we may

see (Mg)k=—n,. o as a martingale. For a < b € Q denote by U, (a,b) the number of
upcrossings of the interval [a,b] by (M_,, M_,11,..., Mp).
E{| M,
E[U,(a,b)] < W
—a

holds by Doob’s upcrossing inequality. Hence the number of upcrossings stays
almost surely finite. Thus M_,, converges almost surely to a random limit M_,.
O

We are going to apply the theorem only using indicator functions on the space
of finite paths. The following proof is due to Diaconis, [6, p.26-28|.

Proof of Theorem 3.3.4. Denote by Y,, the projection of (Yj)ren to the n-th
coordinate. Let A € B(X). Define

1 n
M2 = - ; Ty,ca.
For any set A € B(Y') exchangeability yields
M2 = E[ly,ea|&0]- (3.11)

By substituting M# := M,(A) we note that (M) is a backwards martingale.
Since indicator functions are bounded this backwards martingale is uniformly in-
tegrable. Thus the limit M2 exists and is given by

1y
My = lim ﬁgnyﬂ — E[Ly.c4|E].

We now show conditional independence of the Y. For Ay, ..., Ay € B(X) we define

f: _){O 1}fy177yn H]lyleA
Write n®) for n(n —1)---(n — k + 1) and define

M= 5 S i),
pEGH
Like before, (M_,)nen is a uniformly integrable backwards martingale and thus

E[f(iﬁ,..-,Yk)lg]:lim— D TV Vo) =

n—0 n
peG,
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Since all appearing terms are non-negative and the function ), | ly,e4 is of order
O(n) we may exchange summation, limit and product to get

k n k
o1
P(YieAr,.... Ve Ale) = | [ lim =3 lyea, = [ [P(Yie Aif€)
i=1 =1 =1

which finishes the proof. ]

The idea of the following proof of Theorem 3.3.5 by construction is based loosely
on Kallenberg, 9], and Hewitt and Savage, [8].

Proof of Theorem 3.3.5. We construct the measure space (P, B(P)) via P. For
A€ [0,1] n Q the event
My =[M2 < )] (3.12)

is £-measurable as well as countable unions and intersections of events of the form
in (3.12). Let P be again the set of distributions on B(X') and define B(P) as the
smallest o-algebra containing all sets of the form

Par:={mreP:7w(A) € [0,\]}.

for all A e B(X), for all A € [0,1] n Q. For (4;)ien < B(X) and (\;)jen < [0, 1]
define for P’ = | J;, ﬂ;il Pa,x

p(P') =P (U N Mz::) -

Clearly, p1 is a probability measure. Let B = By x - -+ x By x XN where B; € B(X)
for i =1,...,k. Now, by Theorem 3.3.4, for any B of the form above

=N

P(B|E) = [ [E(ly.es,|E).

i=1

holds almost surely. If we choose E # &F of the form
k
Ee = ﬂ[]\/[fji € [pi — €, pi + €]
i=1

for p;,e; € (0,1), 9 =1,...,k then, for the above

n

H(pi — )P (Ee) < HP(BWJ S H(Pz +6)P(E).

i=1 i=1
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Now let Pg be the set of probability distributions = on B(X') for which p; — ¢; <
m(B;) < p; + €,i=1,..., k. With this notation the last equation simplifies to

(H(W(BZ-) - 61)) u(Pp) < P(BIE) < (H(W(Bi) + Gi)) #(Pp).

i=1 i=1

Summing up for 4,2, E; . = X" and letting e — 0 leads to

P(B) = Lﬂwwndu(w) _ L N (B)dp(r). (3.13)

Since all B € B(X)Y may be approximated by finite unions of finite intersections
of sets in B(X)* x AN for some k € N the existence of the measure p with the
disired properties is proved. We show almost sure uniqueness of ;1 on a generator.
By (3.13)

PO - |

7)7T(Mﬁ)cl,u(7r) = f La(ayeondp(m) = (Pay),

P
where the equality in the middle follows by the strong law of large numbers. Since
the sets P4\ generate B(P), u is unique. O

Now that it is proved that sequences of exchangeable random variables are mix-
tures of i.i.d. sequences we may apply this to show Theorem 3.1.1. The sequence of
chosen balls is exchangeable and thus a mixture of i.i.d. sequences. Alternatively
the relative content (i.e. the probability of choosing a specific ball) converges al-
most surely to a random limit by the Martingale Convergence Theorem. Hence
to prove Theorem 3.1.1 it suffices to show that the density of the mixing measure
coincides with the one of a Dirichlet distribution. The following proof has been
obtained in the course of the elaboration of this thesis.

Proof of Theorem 3.1.1. We will prove the theorem by induction on m. The
base is m = 2, let us just have red and white balls. For simplicity of notation let
U, be the amount of red balls and w, and u,, the initial amounts of red and white
balls, respectively. Denote by p the realization of the limit of U, ,, the relative
amount of red balls. Since the sequence of chosen balls is exchangeable, we may
write the probability of an event in terms of i.i.d. random variables and the mixing
measure. The probability of an event U,.,, = u, +n, in terms of mixtures (denoting
by p the mixing measure) is

(U = n) = () [ o=ty (314
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Elementary combinatorial probability leads to

ny—1 . n—nmyr—1 .
o (U o Uqy +
P(Unn = U, + nr) = (n) HJ—O ( n_lj) l_[]_O ( ]) — (315)
n [ [0 (e + ur +4)
() Bluy + 1yt + 10— 1) (3.16)
B nT ﬁ(uTa uw) ’
with 8 being the Beta-function defined by
_ P(a)I'(b)
Bla,b) = T(ath)

Knowing that (3.14) and (3.15) are equal we may write

' Nr(1 _ o \n—nr _5(“7" + Ny Uy + 10— nr) B
Jy =ty R -
1

1
Ur+1p—1 Uy +n—np—1
— p T T 1 _ p w s dp —

| (1-2)

Jl n—nrpuril(l _p>uw71

pr(l—p
0 ( ) ﬁ(u’!‘a uw)
Hence we obtain f(p) = %p“”l(l —p)*~1or for p = (pr, pw) essentially
f(prypw) = %p}f“l(pw)“w_l. Note that writing f(p.,p.) instead of f(p)
does not change anything since p, + p, = 1. Now that the theorem is proved for

m = 2 let us make the induction step.

dp

m—m+1
Suppose that we are suffering from red-green-blindness, the first colour is red and
the second green, i.e. p; = p, + py and u; = u, + u,. Thus we have

fU(pr +pg7p27 < 7pm71>pm) =

m(? +p )“T*“g‘lﬁlp”il(l —Pr—Pg—P2— —Dpmt). (317)
H?il F(ul) ! i=2 ' !
By omitting all but red and green balls we obtain the same process as for two
colours. Thus the probability of [U, < z|U, + U, = p1] is

P

fp; LD r (7%>r1 (1 _ p%)gl B
0

5(“7"7“9) 1

0 B(uraug) 1
1

DPr
" B, ug)p ! f £ (py — )t
7y g 1
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Differentiating w.r.t. p, and multiplying with (3.17) yields

fU(prapg7p2~~7pm) =

F(uT + Ug + ZZH—Q ul) wr—1_ ug—1 s w;—1 1
= = DY Dy P (L =pr—pg—DP2— = Pm1)""
U(u ) (ug) [ T2y Tug)™ 77 @ '
Renaming
/ / / / X
UlZUT,UQZUQ,U3=U2,...,um+1 a— um,
DL = PriDy = Dgs Py 1= P2, s Doyl 1= Pm
finishes the proof. O

3.4 Diaconis, Freedman and the Recurrent Case

In the last section we obtained a representation of exchangeable sequences of ran-
dom variables as a mixture of i.i.d. random variables. To generalizes the concept
we consider these i.i.d. random variables to be paths on a graph. For the proof
strategy the condition recurrence is crucial. The first part of the proof is due to
Diaconis, [6], the part about reversibility due to Rolles, [19].

Theorem 3.4.1. Let X = LRRW (G, a) be recurrent. Then X is a unique mizture
of reversible Markov chains.

Proof. Recall the meaning of X', B(X) and Y from the beginning of the last sec-
tion. By recurrence, X is almost surely a sequence of X-valued random variables.
Consider the process (Y7, Ys,...) which arises naturally by cutting X into pieces,
each piece contained in X’. This sequence is a mixture of i.i.d. random variables.
For the rest of the proof we assume that such a sequence of i.i.d. random variables
with values in X is given and denote their probability distribution by P. We need
to show that this sequence corresponds to a reversible Markov chain. Let y,ys be
finite paths that end in the same state z and let z; € Ng(z). Although y; and ys
are not contained in X they correspond to a set of paths in A and thus may be
seen as P-measurable events. We show the Markov property

P(lys, zilly1) = P(ly2, 2;]ly2)

or, avoiding division by 0,

P(y1) P([y2, z;]) = P(y2) P([y1, z5])-
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Let X* be the set of finite paths starting in z, ending in xy and not visiting zq in
between. Since X is recurrent

P(y) = > P([y1,y])-

YyeX®

Observe that for ¢/, y" € Y, P([y,y"]) = P(y')P(y") and hence for y € X*

P [y 9]) P(ly2, 7;51) = P(ly1, 95 92, 75]) =
= P([y2,y,y1,251) = P(ly2, y) P [y, 5]).

Summing up for y € X* we get

P(y0)P([y2.2]) = ) P([yr-y)) P([e. ;)

yeX®

= 3 Py y) Pl ;) = Plyo) Py, ).

yeX?

Since the lengths of y; and y, are arbitrary, also time homogeinity holds.

To prove reversibility we will make use of cycles ¢ in Y. Note that by partial
exchangeability the probability of any cycle starting and ending in xy does not
depend on the orientation. Let ¢ be a cycle and ¢~ be its reversal. By recurrence
one will arrive upon an element of ¢. Denote by Qp(c) the probability w.r.t. the
Markov chain with transition matrix P that the process performs c. We denote
by p the mixing measure. By partial exchangeability

q—pr Jaju(P fczp )Qp(c)dpu(P fQP )dpu(P).

Thus we may write
| (@ete) = @rte)pautp) = a =20+ q -0

Since the integrand is non-negative we conclude that Qp(c) = Qp(c™) almost
surely for all cycles c¢. We still need to show that p is a Borel-measure. We refer
to Py as the set reversible stochastic matrices P = p(-,-) for which p(v,w) € B
for some Borel set B < [0,1]. P, is exactly the set of distributions 7 on X" for
which

m(w is visited after the first visit to v) € B

since the event [v is visited] is an almost sure one. Sets of this form generate

B(P). O

Remark 3.4.2. If we choose the definition of partial exchangeabiliy in the sense
of Diaconis and Freedman everything works fine up to reversibility.
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3.5 The Set of Reversible Markov Chains

There is no need to represent a reversible Markov chain by its associated transition
matrix. We may as well define a reversible chain if we choose the weight of one
edge e, to be 1 and arbitrary positive weights W = (W.).ep () for all other edges.
By setting

Wi}

) W)

p(u,v) = 5 (3.18)

weNg (u
the resulting matrix is the transition matrix of a reversible Markov chain. Let G
be a locally finite connected undirected graph. Since the notation is easier in terms
of directed graphs we substitute each edge in G by a pair of oppositely directed
edges. We will denote by d/;(v) the set of edges going out of a vertex v. P = p(-, ")
is the transition matrix of a reversible chain if and only if it is a solution to the
system

Yoe V(G): Z ple) =1

6665(1})
Y cycles ce G : n ple) = H p(e)
ecct eec™

Vee E(G): p(e) = 0.

Indeed, the system is quite easy to solve for trees since no cycles exist. Choosing
an arbitrary set P, of degy,(v) — 1 transition probabilities p(v,-) for each vertex
v € V(@) that fulfill Zpe p, P < 1, this determines the other transition probabilities.
But already in case G is a triangle the situation gets much more complicated. For
graphs containing cycles the set of non-linear equations in the second line become
cumbersome. However, irrespective of the last paragraph, p is a mixing measure
on B(W), where W = (0, 00)E(@\et} and B(W) is the o-algebra generated by sets
of the form

{w = (We)eer(@)|we, € A < (0,0), A open, ey € E(G)}. (3.19)

for ey € E(G). By the above isomorphism we may always choose the more conve-
nient notation.

3.6 Polya, Merkl, Rolles and the General Case

In case of trees T' = (V, E') the existence of a representation in the general case is
almost trivial. The measure p* induced by the product of countably many Dirichlet
distributions Hvevm D, fulfills the properties of a mixing measure since for any
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finite path we could as well assume that G is finite. In this case the reasoning
at the beginning of Section 3.1 and Theorem 3.1.1 imply that p* is a mixing
measure. The existence of a representation in terms of Markov chains without the
assumption of recurrence is non-trivial in case G contains cycles. These generate
dependencies between the edge weights. But providing sufficient conditions for
recurrence or transience is much easier given a representation, so for the latter
constructing a mixing measure is highly useful, motivating the statement of the
following theorem.

Theorem 3.6.1. On any locally finite graph G, for all initial weights 0 < a =
(ac)ecr@y LRRW (G, a) is a mizture of irreducible reversible Markov chains, no
matter if it is recurrent, transient or maybe neither.

Apart from the following example the results in this section, including the

statement above, are due to Merkl and Rolles, [15]. We give a short summary of the
proof strategy. First we compare the distribution of transition probabilities from a
specific vertex v for LRRW with the distribution of transition probabilities in case
of a star graph. For this comparison we introduce a concept called convex order.
We then consider mixing measures 1™ on an increasing sequence of subgraphs
G, of G. We will argue later that on finite graphs LRRW is recurrent and thus
these measures exist. A tightness result leads to the construction of a weak limit
u* of a subsequence. We prove that p* fulfills the desired properties, finishing
the chapter proving that LRRW is recurrent if and only if it contains a recurrent
state. We use the notation introduced in the last section. p* will be a measure on
(0, 00) B(G)\er}
But first, let us provide a counterexample of a partially exchangeable process that
is not a mixture of Markov chains. The example is due to Diaconis and Freedman,
[6], and shows that Theorem 3.6.1 breaks down for general partially exchangeable
processes.

Example 3.6.2. Let G = ({0, 1}, {{0, 1}, {0}, {1}}) be the graph consisting of one
edge and two loops. Observe first the following transient process X that starts at 0
and repeats 0 finitely often before switching to 1 and staying there forever. Denote
the probability that X walks along the transient path starting with k zeroes before
switching to 1 by mi(X). Each path is uniquely determined by its initial vertex
and the transition numbers, hence partial exchangeability holds trivially. If X is
a mizture then the mixing measure pu puts strictly positive mass 6 on p(1,1) = 1.
Therefore my, can be written as

my = J[ - (p(0,0))*~*p(0, 1)dp(p) = 5J0 (»(0,0))*"1(1 — p(0,0))du(p(0,0)).
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Observe that my, is decreasing in k. Now consider the degenerate process X' =
(0,0,1,1,1,1,1,...). We show that X' is not a mizture of Markov chains. Triv-
ially, X' is partially exchangeable, so my(X') is decreasing in k. But my(X') =0,
ma(X’) =1 and m3(X') = 0. Contradiction to monotonicity. However, X' is not
LRRW , it does not even meet the assumptions of any reinforced random walk.

3.6.1 Convex Order and Pélya’s Urns again

This section will deal a lot with the routines on the edges. For simplicity we denote

by
wy(t) = > we(t) (3.20)

e€dg (v)

the routine of edge e at time ¢ and the sum of routines of edges incident to v,
respectively. The following result has been elaborated in the course of this thesis.

Lemma 3.6.3. On any finite connected graph G = (V. E), X = LRRW (G, a) is

recurrent for all strictly positive (ae)eep-

Proof. For an infinite path y let V., := Vi, (y) be the set of vertices are visited
by y infinitely often. Clearly, V,, # ¢ holds always true. We show that P(V,, #
V(G)) = 0. Let v,v9 € V(G), {v,v} € E(G). Let t € N. We write W, (t) and

W, (1) for w,(t) and wy,,(t), considered random variabels. We have that
(1) < (3.21)

W0 (1) > _ 0. (3.22)

P(Xy # vg for all t' > tlv e Vi, W, (£), Wy 4
Wo(t) + 2 — 1

(- el <on (-3

=0 =0

Observe that (3.21) holds true for all possible values of W, (¢) and W, ,,(t). Hence
P(3T e N: X, # vy for all t > T'|v e V) = 0.

Thus, if v € V,, then v’ € V,, holds almost surely for all v' € Ng(v) and, iteratively,
for all ' € V(G). Observing again that V., # J finishes the proof. O

Consider X = LRRW (G, a) for initial vertex xy on a finite graph G. Let
S = G[{v} U Ng(v)] be the induced star graph with center v. Reconsider Polya’s
urn model from Section 3.1. Note that if G is a tree the routines of the edges in
S behave essentially like a Polya urn model with increment 2 instead of 1. Since
the mixing measure in this case has a closed form a comparison between these two
models is desirable.
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Remark 3.6.4. In the last paragraph assuming v = xy s not very restrictive. If
it does not hold let e* be the edge by which v is reached first and t* the first time
v 18 wvisited. Since G s finite t* < oo almost surely by the statement of the last
lemma. Take

a.+1 ife=e*

Qe else

X! = Xy, a,= { (3.23)
and realize X' on (G,d’). Troughout this chapter, each time we talk about an
(induced) star graph we will assume without further mentioning that the process
starts in the center.

Fix a vertex v and an edge e incident to v. Let T} be the ¢ + 1-st visit to v. We

define ()
w
M, = == .24
wU(Tn) (3 )

Now consider the star graph S = G[{v} U Ng(v)] induced by v and its adjacent

vertices. Let X*° = LRRW (S, (ac)ecr(s)) With x5 = v. Recall remark 3.6.4. Define
w2 (t), wd(t) and M2 (t) analogously to (3.20) and (3.24), i.e

e

_ae+2]l ({X; 17XS}) w;g(t): Z we(t)

M () =

Define filtrations (G, )neny and (G2)nen by
Gn=0(we(Ty) : k=0,...,n) and
GS = o(wd(T) : k=0,...,n).

Lemma 3.6.5. M7 is a martingale w.r.t. (GJ) and M, is a martingale w.r.t.

(Gn)-

Proof. The second statement is a special case of the first, hence showing that M,
is a martingale suffices. Let ) be the set of paths that return to v infinitely often.
Consider the following partition of ).

o Ay =[{Xr,, X141} = e, {Xn, -1, X1, } = €]
e B, =[{Xp,, Xr,41} = e, {Xr, 11, X1, } # €]
= [{ X1, X1p1} # €, { X7, 121, X100} = €]
= [{ Xz, Xz} # e {Xp 1, Xy} # €]
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Denote by (F,,)nen, Fn D Gn, some filtration so that the elements of the partition
are measureable w.r.t. F,. Each element of the partition corresponds to a set of
finite paths, hence F,, is exists. Note that the transformation 7,, that reverts the
last (v, v)-path before T}, ;1 is an isomorphism on ). A, and D,, are mapped onto
themselves respectively, B,, is mapped to C,, bijectively. By partial exchangeability
T, is measure preserving, hence P(B|F,) = P(C|F,). Observe as well that by
starting from v, P(A, u B,|F,) = M,. So

2P(A,|F,) + P(B, u C,|F,) =P(A, u B,|F,) + P(A, u Cy|F,) =
—9P(A, U By|Fy) = 2M,,

and hence
we(T),) + 2P(A,|F,) + P(B, u C,|F,
B, ] - VD) + 2P(AF) + P F)
Wy (Tn+1)
M,
Wy (TnJrl)

By definition M,, is measureable w.r.t. G,, so writing G, in the first and the last
term instead of F, does not change anything. O

Let us first give an intuitive comparison of M,, and M?. Assume that at each
time 7, we could treat M, as if it was a result of X°. This means, that by
coincidence X left v the same number of times via e as it returned via e, i.e.
we(T,) = wo(T,), hence M, = M?. For a specific v-v-path ¢ entering and leaving
v via different edges we denote by ¢t and ¢~ directed versions and by N(c*,n)
and N (¢~ ,n) the number of walks along ¢* and ¢, respectively. We note again
that LRRW is a mixture of reversible Markov chains. For a fixed reversible chain
the ratio

N(ct,n)
N(ct,n)+ N(c,n)

converges almost surely to % by the law of large numbers since ¢t and ¢~ have the
same probability. However, the M,, and M? are not defined on the same probability
space. Apart from that M? is much coarser than M,,. This observation motivates
the definition of convex order.

Definition 3.6.6 (Convex Order). Let U,V be integrable random variables, not
necessarily on the same probability space. Denote by 4 equality in distribution.
We say that U and V' are in convex order, U <V, if there are random variables
Ui LU and Vi £V on the same probability space (Q, A, P) so that (U, V1) is a
1-step-martingale. If pu and v are the probability measures associated with U and
V', respectively, we also write < v.
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Theorem 3.6.7. Denote the random limits of M,, and M? by M and M, respec-
tively. These exist by the martingale convergence theorem.

M, < M?

holds true for allm € N and
M< M®.

Obviously My < M since they are equal. M, and M? are not defined on the
same space. However, the statement implies that there is a space on which it is
possible to define M,, and M? so they fulfill the properties of LRRW and Pélya’s
urn model, respectively. Therefore we made an attempt to find a constructive
proof of Theorem 3.6.7. The result was anything but satisfactory. Instead, it
turns out to be convenient to introduce the Polya urn transition kernel

K, :[0,1] x B([0,1]) = [0,1], Kn(z,) = 21y ps1-n, + (1 —2)1y., (3.25)

where )\, = a“i;fiQ We are going to use K, for both M? and M,. In the case

of M? the resulting process is in fact M? whereas in case of M,, this results in a
new random variable M,,, defined as follows.

we(Tn> + 2- ]lAnuBn
wv(TnJrl)

Given M,,, the value of M,_; depends only on the edge by which X exits v at time
T,,. We would like to show that for alln € N

MO = M07 Mn-i—l =

= MM, 1aon (1= M), (3.26)

M, < M, and M, < M;?

and conclude that M, < M? and furthermore M < M*®. To be able to do so we
show 4 properties of <« in the next lemma. It is clear that we need transitivity of
<1. For the conclusion

(YneN M, < M) = (M < M")

we need to show that < is preserved when we pass M,, and M? to their respective
limits. Proving M, < M,, is not a difficult task and hence shown in the proof of
Theorem 3.6.7. Part 4 requires Part 3 and is needed to show

M, < M? = M,,, < M?, . (3.27)
Lemma 3.6.8. 1. < s transitive.

2. Let (Up)nen and (Vy)nen be uniformly integrable martingales w.r.t. their nat-
ural filtrations F,, and G, respectively. If U, <V, holds true for all n € N
then their respective limits U and V' satisfy U < V.
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3. Fori = 1,...,n let u; < v; be probability distributions on R, let p € RY,
[pll1 = 1 be a stochastic vector. Then Y | pip; <Y | pii.

4. Let p,v be probability measures on ([0,1],B([0,1])), u discrete on a finite
set and p<v. Let K, be the Pdlya transition kernel introduced in (3.25).
Then K, < vK,.

Proof. 1. Let U<V < W be random variables and let (Uy, V1) and (Va, W)
the corresponding 1-step-martingales. Denote by P;(V;|U;) the conditional
probability of U; given V;. Define P5(V3|W;) analogously. Now let P; be the
law of a 3-point process M = (U*,V* W*) given by

P3<A><BXC) :J f PQ(WQEC|‘/2:U>P1<‘/IEd/U|U1 :U)dP(U)
AJB

Denote by Us, V3, W3 the projections onto the first, second and third coor-
dinate, respectively. Observe that M is a Markov chain and Us 4 U, V3 4

V, Wjs < w by construction. By the tower property for martingales
Ep,[W3|Us] = Ep, [Ep,[W5|V3, Us]|Us] = Ep,[V5|Us] = Us
Thus U< W.

2. Observe first that, since V}, is uniformly integrable, F[V|G,| = V,, and thus
V., < V. We have U, <V because U, < V,, <« V. Thus there are U, 4

Uand V! £ V so that U, = Ep, [V/|U"] where P, denotes the measure
on a common probability space. Equivalently, for any bounded continuous
function f: R - R

Ep, [f(U)UL] = Ep, [f(U)V2], (3.28)

(U )nen is uniformly integrable and therefore a tight sequence, the same holds
for V. Thus there is a weakly convergent subsequence (U}, ,V,  )ren. Denote
its limit by (U’,V’) and the probability measure by P. Taking the limit in
(3.28) yields

Ep[f(UNU'] = Ep[f(U)V'],
again equivalent to U’ = E[V'|U’]. Thus U< V.
3. For i = 1,...,n let X; <Y, be random variables on a probability space

(€, A;, P;) with laws p; and v;, respectively. Since for alli = 1,...,n u;<y;
holds there exist a sub-c-algebras F; so that X; = E[Y;|F;]. W.lo.g. we
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assume that (X;);—1,. » are jointly independent, respectively,
and that the €); are pairwise disjoint. We take

Q:=UQi, A:za(OAZ)

n
=1

-----

Define X = >" | X;1q,, Y = >0 Vilg,.
=D Dili, v =y piv; and thus E[Y|F] = X.

4. Let us first prove this for 4 = 1,. We want to show that if v has expectation
x then
Pk, = o1y pi1-a, + (1 —2)1y, . < vK,. (3.29)

For this purpose we introduce random variables X, Y with joint distribution
v ® K,. We observe that Y < X is equivalent to Y = A\, X and Y > X is
equivalent to Y = A\, X + 1 — \,. By this we deduce that

PY > X) = f ydv(y) = x
[0,1]

E[Y,Y > X] = J Ay + 1 = A\)ydr(y) = (A + 1 — \y)z + A\, Var[v]
[0,1]
P(Y <X)=1—2z

E[Y,Y < X] — f[ () = A (1 =) AVl

Thus we have shown that

21 (1 —2)1,,  verm 2 E[Y|o([Y = XD] <Y ~ VK,

Azt 1-A+ A2l +
By transitivity of < it suffices to show that
1—2)1

10 + (1 — .I')]l)\x <zl (330)

Az+1-A+ A2l + ( Az—xYarv]
in order to prove (3.29). Let, more generally, A < B < C' < D € R satisfying
tA+ (1—2)D =a2B+ (1 —2)C.

We show (3.30) by

tlp+(1—2)le<axla+ (1 —2)1p. (3.31)
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For shortness we will write A,, = 2 —y. Let Q = {B,C} x {4, D}, denote
its elements by (wy,ws). Define a measure pg on the power set of 2 by

A A 1—-—2)A 1—-—2)A
X DB]IBA+5E BA +( $) DC +( ZE) CA

= 1 NSy | Ay
R = A Apy PP N Aps P

Note that in case A = D, (3.31) is trivial. Otherwise
E|ws|w; = B] = B and E[wy|wy = C] =C

and 3.30 is proved. Now instead of u = 1, we take p = >"  p;l,.. f X ~p
and Y ~ v with X = E[Y|X] define

v;:= PlY €| X = z;]
Since the claim holds for one-point-measures,
1., K, <vyK,.

Since p is discrete on a finite set,

p= il
i=1

for some stochastic vector p € [0,1]",||p||1 = 1. Using Part 3 of the lemma,

i=0 i=1
[l

Proof of Theorem 3.6.7. The proof is by induction. Like mentioned before it
is obvious that My < M. Recall the partition {A,, B,,C,, D,,} and the isomor-
phism 7 from Lemma 3.6.5. For the induction step consider again the random
variable M,, defined in (3.26). We would like to show that M, 1 < M,.1. Indeed,
Myi114, 0D, = ]\;[nﬂ]lAnan and hence the claim holds trivially on A and on D,
which are both measureable w.r.t. G,,.1. But observe that even on B u C

M1+ Myp1 0T =2 Myyy.

Now observe that G,,; does not distinguish between the cases B and C. We
conclude

- 1 -~ -
E[Mn-i-l‘gn] = ]E[§(Mn+1 + Mn+1 S Tn+1)’gn+1] = Mn+1'
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We would like to show M, < M?, ,. Recall Part 4 of Lemma 3.6.8. By the
induction hypothesis M, < M? we get

My = K (My, ) < Ko (M) = M7,
and by transitivity of <, M, 1 < MSH. Applying Part 2 of Lemma 3.6.8 yields
M < MS.
O

To make use of Theorem 3.6.7 we need to determine the distribution of M?.
Recall Remark 3.6.4 and recall that in the two models M, and M? the initial
weights a need to be adjusted to a’ according to the edge by which v is first entered
in the case v # xy. Then in order to compare M and M?* recall that Mg behaves
like Polya’s urn with increment 2 instead of 1. Taking half the initial weight and
increment 1/2 instead of 1 leaves LRRW unchanged. Hence M behaves like

Poélya’s urn with initial amount of balls % and # Theorem 3.1.1 yields

B(e, m=te) if X, =

25 2
M5 ~ 5(%2“’ @le) if Xo # v, we(Ty) = ac + 1. (3.32)
5(“2—", a“_;e+1) if Xo # v, we(TY) = ae
Note that
We(t) . v,e v,e
Wv (t) _' maxn:T), <t t—>—o)o M

hold almost surely, where M"* is the martingale in (3.24) defined via e and v.
M"< is the almost sure limit of the probability w.r.t. a Markov chain of leaving
v via e. In the last chapter we made it clear that a reversible Markov chain may
always be defined in terms of non-negative weights on the edges.

3.6.2 Tightness of the Mixing Measures

Lemma 3.6.9. Let v e V(G) and e € 6g(v), let a = (ae)ecp(e) and M€ as above.
Then for LRRW (G, a) there exist constants ki(ae,ay), Ka(ae, ay) continuous in
both arguments so that for all ¢ > 0

P (MY <€) < Ry(ay, a)e®? and P (MY = 1 — €) < ka(ay, ac)e®™%)/2,
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Proof. We abrreviate M., =: M and Mgv —: M®. Recall that
M < M, the last being ((a, b)-distributed with where a and b depend on w,(Tp),
where T} is the time of the first arrival at v. Jensen’s inequality for conditional
expectation implies that for all convex, bounded f : [0,1] = R

E[f(M)] < E[f(M%)] = f F(2)dBos(z).

Now let 0 < e < 1. We apply this with

— 2 ife<e 0 ite<1l—c¢
f<a:>={0 : andg<x>={ b

else. 2 else

More importantly, 1jo < f < 2 and 1j;_. 1) < g < 2 and hence

2 © a—1 b—1 2 a
P(M<e) < ) Jo (1 —x)’ dr < A b)e and (3.33)
P(M=>1-¢)< 2 Jl 21— 2)"ldr < 2 e, (3.34)
ﬂ(aa b) 1—e bﬁ(a7 b)

Note that % < a < % and 25% < b < 2=%+ Therefore we may bound (3.33)
and (3.34) by

o L <% = mlana)eF and
< g2 =:Ky(a,,a.)e? an
aﬁ(a, b) = %ﬁ(%’ au—(215+1) 1 Ay, Qe
2 2 ay—ae an—ae
e < aw—a e+l ap—ae+1 e 2 = ’i2<av7ae)5T.
bB(a, ) rgte B8y, gt

Obviously, since the p-function is continuous, x; and ko are continuous in both
arguments. O

Lemma 3.6.10. Let G be a finite graph and let (ac)eepqy < C for a compact set
C < (0,00). Then there are constants ag, kg so that for all edges e, f

p(W, < eWy) < Ik’
where [ is length of a shortest path between either ends of e and f.

Proof. Lety = (xq,...,x;41) be an arbitrary path in G, denote by (e = ey, ..., ¢, =
f) the corresponding edges.

ag = inf a,>0,kg = sup K1(ae, a,) < 0.
ecE(G) veV(@),eeda(v)
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The last estimate holds since a, < sup.cp(g) Ka. and by continuity of ;. For all
e>0

p(W, <eWy)<p(@Fie{o,....01}: W,,, </'W,) <

l
Do Wery <eMWe) < 3 p(Wey,, < VW5, < lrgete/™,
i=1

]

The tightness result from the last lemma leads to construction of a mixing
measure in the transient case.

Theorem 3.6.11. Let G be a locally finite graph and let G, be an increasing
sequence of finite subgraphs of G with limit G (for all e € E(G) there exists N € N
so that e € E(Gy,) for alln = N ). Define

W
W, = —* 3.35
Wes (3:35)

where €* is the first edge traversed. Denote by ™ the unique mizing measure on
G, in terms of W.. There is a subsequence pu,y so that for all finite F < E(G)

the law of (We)eeE(G) converges weakly to a distribution p* on (0, oo)F.

Proof. Fix n € N. Let e € F(G,,) and y an (e*,e)-path of length [. Choose
ko = ko(n) so that for each vertex z in y the edge set d¢(z) belongs to G,,. Choose
K= Kg,, and a:= ag, according to lemma (3.6.10), by which we obtain

1e(We <€) < lre¥ and fe(We = e < 1ke®?,
for all k& > ko. Hence the measures (i )g=k, are tight on (W.).em(c,) and contain a
weakly convergent subsequence. Since the set of finite connected subgraphs of G is
(by local finiteness of () countable we obtain a diagonal sequence which converges
weakly to a a measure p*. O

3.6.3 A Mixing Measure Always Exists

Now that we have constructed a measure we only need to show that it fulfills the
desired properties.

Proof of Theorem 3.6.7. Let u* be a limit of a weakly convergent diagonal
sequence from the preceding lemma. Let y = (x¢,...,2;) be a finite path in G.
For k sufficiently big we obtain
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-1
P((Xo. .., X)) = ) = j P, 211 ) (0, 00) PP
(0,0)8G1) ;0

)

—_

E(®) 520

-
- J(O | p(xi, zivr) (0, 00)P(D) (3.36)

where p(-, ) denotes the transition probabilites uniquely determined by (We)eep(qy)
or (We)ee E()- The last equality needs to hold since the integrands are continuous
functions of the weights. (3.36) is the representation in terms of Markov chains.
Since the the edge weights are almost surely strictly positive these Markov chains
are irreducible. Reversibility follows from the representation in terms of weights.

]

We finish this section with a powerful result following from the theory of Markov
chains.

Corollary 3.6.12. Let G be a locally finite, connected graph, let v e V(G). For
LRRW the following statements are equivalent:

1. LRRW (G, a) visits v infinitely often almost surely.
2. LRRW (G, a) visits all vertices infinitely often almost surely.

Proof. 1. "2 = 1"
Trivial.

2. "1 = 2"
By Theorem 3.6.1 LRRW is a mixture of irreducible Markov chains, denote
the mixing measure by p*. Since v is visited infinitely often almost surely
by LRRW (G, a), p* needs to put mass 1 on the set P, of recurrent Markov
chains. Otherwise, if p*(P,) < 1 then

P(LRRW (G, a) visits v infinitely often) = p(P,) < 1

would hold. Visiting v infinitely often would not be an almost sure event, a
contradiction to the first statement in this corollary.
O



Chapter 4

Results on Recurrence and
Transience

4.1 The Dichotomy of Recurrence and Transience
on Trees

For Markov chains it is clear what positive recurrence means. For LRRW let us
make a note on this.

Definition 4.1.1. We say that LRRW is almost surely transient if its mizing
measure puts mass 1 on transient Markov chains.

We say that LRRW is almost surely (positive) recurrent if its mizing measure puts
mass 1 on (positive) recurrent Markov chains.

It is quite intuitive that for all locally finite graphs LRRW is either almost
surely recurrent or almost surely transient, but to our awareness no proof has
been given yet. For locally finite trees T', however, it is not difficult to prove a
dichotomy between almost sure recurrence and almost sure transience. Note first
that the mixing measure p* given as the product of jointly independent Dirichlet
distributions [],.y ) Dy does represent LRRW (T',a). It may or may not be
unique, for the following it does not matter. Recurrence is a measurable event,
it corresponds directly to a set P, of recurrent Markov chains. Suppose that
0 < wu(P,) < 1. Then there is a vertex v so that the projection P, of P, to
(p(v, w))wenp(v) I8 a set with measure p(D, € P,) < 1. But any Markov chain in
P, is recurrent for almost all values of D,. Thus P, contains the entire image of
D, a contradiction of u(D, € P,) < 1.

For regular trees Ty i there is a phase transition for equal initial weights
a. = a. The approximate critical values for different K are given in Table 6.1.
If not mentioned differently each result in this section is due to Pemantle,

37
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[17]. In his notation the reinforcement function is assumed to be
f(n)=1+An

for A € R*. In fact the theorem is not limited to fixed regular trees but Galton-
Watson trees, assuming i.i.d. distribution of the number of children of each vertex.
We will only formulate it for fixed (K + 1)-regular trees.

Theorem 4.1.2. For LRRW on an infinite (K + 1)-reqular tree Tk 1 = (V, E),
there exists a constant ag(K) so that the process is almost surely positive recurrent
if a < ag and transient if a > ag.

We denote by xy the initial vertex, w.l.o.g. x( is the root of the tree. For all
v e V(T) — xy we will denote by Par(v) and Par?(v) its parent and grandparent
and by Ch(v) the set of its children. For v,w € V(T') we write v < (<) w if w
is a descendant of v (a descendant of v or w = v). The density for the transition
probabilities from each vertex v except xq is given by

T ((m+1)a+1> K “;1

2 a
; 'u’ v,.“,v _ 1— ; v, g
fo(06: 1, - - Pk Fe T (o)F ( > p) (P - Pic)

2

K
pel0,1],i=0,..., K, > pl=1
i=0
where K := deg;(v) — 1, is the number of children of v for v # ¢ and py =

p(v, Par(v)). Recurrence and transience do not depend on a finite number of
vertices, so we may as well assume that the transition probabilities for all vertices
are distributed like above. We denote by D(Par(v),v) and D(Par(v), Par?(v))
the projections of Dpgr(v) to po and p; for some i € {1,..., K}, respectively. Define

B D(Par(v),v)
o(v) = 1 — D(Par(v), Par?(v))

and
¥(r) = inf{e "E[¢'] : t € R}.

The ¢(v) are not jointly independent, being obvious when looking at siblings vy, vs.
However, if a set V' < V(T') does not contain more than one child per vertex, joint
independence of ¢(v),ey holds true since the D, are independent.
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Theorem 4.1.3. Abbreviate ¥ (r) := 1 (In(r)).
1. IfE[ln(¢)] = 0 then LRRW (T, a) is almost surely transient.

2. If E[In(¢)] < 0 and sup{Kri(r) : 0 < r < 1)} < 1 then LRRW (T, a) is
almost surely positive recurrent.

3. If E[In(¢)] < 0 and sup{Kri(r) : 0 < r < 1)} > 1 then LRRW (T, a) is
almost surely transient.

4. If 1 < E[¢] < o0 then the sup in 2 and 3 occurs at r = 1.

4.1.1 The Transient Case

Parts 1 and 3 are reduced to the following lemma, constructing a transient Markov
chain.

Lemma 4.1.4. By abuse of notation we define for a Markov chain X with tran-
sition matriz P = (p(v,w))ywev (1)

p(Par(v),v)

0(v) = 60IP) = T B ), Part(0))

(4.1)

Let ke N*, L e R*,§ > 0,r € (0,1] be some fized constants. Denote by T; the set
of vertices at distance i from xy. Suppose we can find a nonempty set S < V(T)
with the following properties, writing S; :== S N Tj.

1.ve S =es; vV <w

2.veS; = [{we S w<v}| =rF

3. For all paths v = vy < vy < -+ < v with vy € S; and vy € S;41
k
D In(¢(vi)) = kln(r) + 6 (4.2)
i=1

4. d(v)L < L forallve S
Then X 1is transient.

To understand the intuition behind this look at the case r = 1. Then a set S
contains a path vg,vi,... with v; < viy;. The sequence f(vi) =[], d(v)~t is
summable by the properties 3 and 4 of S. Restricting the process to the path the
expected number of visits to vy is finite and thus the process needs to be transient.
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Proof. Define a function s : V(T') — [0, 1] by

Hw e Siy1 1 v < wl .
foesS
s(v) = { [{w € Si+1 : Par(v) < w}| nue (4.3)
0 else

where v € T}, ik < j < (i + 1)k. Note that for each v € 5,3 oy, s(w) = 1. We
may view the pair (5, s) as a multistage experiment. Define recursively

t:V(T) - R* t(xg) =1

t(v) = ;((Z;t(Par(v)).

and

w<Y

Now let X, )N(O = x1 # Tg be the Markov chain with transition matrix

p(v,w) v # xg
plv,w) =10 V= T, W # To (4.4)
1

v, W = X,

i.e. as X but stopped at the first arrival at xq. We show that M (Xl) is a bounded
martingale.

E[M(Xz+1)|)~(z] =
—D(X;, Par(X:))M <Par( )) + Y DXy w)M(w) =

—M(X;) + D(X;, Par(Xy)) | —t(X)) + Z~ p(w)t(w) | =

A p(X;, Par(X;)) B s(w) | — o
=M (X;) + ) L+ Y s(w) | = M(X;)

To show that M is bounded, consider the case vy € S;. Let vg € S;_1, vg < vp. By

properties 2 and 4 in Lemma 4.1.4

k k
s(v;) < r* and H¢(vi)_1 <eOrh

=1

=1

7
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Thus t(vy) < t(vg)e™® and by induction on i, t(v},) < e ®. Since t(v) decreases
exponentially with the level of v, M(v) is uniformly bounded in 7. Hence by the

martingale convergence theorem M (X;) converges almost surely to a random limit
My, with E[My] = E[M(x)] > 1. Thus P(M, = 1) < 1 needs to hold true. More
importantly, the probability of never visiting x is positive. Thus the Markov chain
is transient. O

We do not need to show that 1 and 3 are sufficient conditions for a set S like
in the last lemma, we only need to show that the existence of S has positive
probability. By deleting subtrees that do not contain elements in S it becomes
obvious that branching processes are a highly useful concept to eventually get a
set like S. For the following two theorems we will not give a proof. The first one
is due to Chernoff, [2]. It estimates probabilities of large deviations. We apply the
theorem with X; = In(¢) to construct a set S as in the last lemma. The second
one is a general result for Galton-Watson trees and is due to Harris, |7].

Theorem 4.1.5 (Chernoff, [2]). Let (X, )nen be a sequence of i.i.d. random vari-
ables. Let S, := X1+ -+ X,,. ForreR let again

Y(r) = inf{e "E[e*'] : t € R}.

Let r > E[X,,] = —0. Then

P(S, = nr) < ¢(r)" (4.5)
and for any vy < ¥ (r)
li_r)rolo o "P(S,, = nr) = . (4.6)

Further, 1 is continuous in r and strictly decreasing between E[X;]| and essup X .

Theorem 4.1.6 (Harris, |7]). Let B be a branching process. Each vertex bears a
random number I of children assumed to be i.1.d. and equal to i with probability
¢i. Suppose that 1 < X\ := E[I] < o0, so the probability of non-extinction is some
positive value 0 < b < 1. Let € > 0,0 < A\g < A. Then

,}h%) P(size of the n-th generation < e\y) = b.

We call a tree d-infinite if it contains a subtree in which each vertex has at
least d children. We say that a vertex v has a (d, n)-subtree if n = 0 or v has at
least d children, each having a (d,n — 1)-subtree. Suppose that B is a branching
process with generating function f(x) and C' the branching process with generating
function f(z) = f(r 4+ (1 —r)z). Comparing f and f it becomes clear that B and
C' are structurally not much different. The only difference is that in C already
existing vertices in a new generation are deleted with probability r.
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Lemma 4.1.7. Suppose that for C, the probability of a vertex having at least d
children, s at least 1 —r. Then B is d-infinite with probability at least 1 — r.

Proof. We show by induction that
P(C has a (d,n) — subtree) > 1 —r.

For n = 0 this is trivial. The probability of a vertex having at (d,n + 1)-subtree is
the probability of having at least d children assuming that those who do not have
a (d,n)-subtree are deleted. By the induction hypothesis, children will be deleted
with probability at most r. O]

Lemma 4.1.8. For a branching process B denote by B*) the process for which
BW .= By,.

Let X\, \g as in Lemma 4.1.6. Then there is some k € N so that

1-5
P(B®) is | \E|-infinite) > —

Proof. By Theorem 4.1.6 for some N sufficiently large

4N\ _301-b)
1—b 1

P (size of n-th generation >

holds for all n = N. Now given a population of size > %, if we kill each individual
1+b

independently with probability == for N sufficiently large

3(1—b)
—.

P (at least Ay of them survive) >

The last inequality is just a consequence of the law of large numbers. Now we
apply Lemma 4.1.7 with B®™) and r = ITH’. For the process C' the probability of a
vertex having at least A children is

P (v has at least A’ children) >
ny
>1 — P | fewer than - children are born

/\N
0 7 children less than A}’ survive) >

4
—P(from more than 1

1-b 1-b 1-b

=1
4 4 2

Hence B™) is A'-infinite with probability of least 15°. O
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Proof of Parts 1 and 3 of Theorem 4.1.3. Part 1 follows easily by the strong
law of large numbers for In(¢) and Lemma 4.1.8 choosing some 7 sufficiently close
to 1. Then for k and L sufficiently large we may use Lemma 4.1.8 to construct S.
We will thus only concentrate on the more difficult case of Part 3. Fix r so that

Krip(r) > 1. Let 6; > 85 > 03 > 0 so that
1401 1+0 1
= > >

Kr Kr Kr’

o(r)
For shortness, write

T.(e) ={veT,: Z In(¢p(v)) > nlin(r) + €}.

w<v

By (4.5) in 4.1.5, since 2 < 4)(r), for N sufficiently large and &, sufficiently
small

Kr
1 +52)N

r

E ([T (60))]) > K(

Picking L sufficiently large we may amend this to

E[[{ve Tn(d) : ¢(w)™ < L for all w < v}|]| > K (1 —’7:53) .

We now define a branching process BN) with initial ancestor zy and elements of
(TN )ken, Where v € Ty has w € Tik+1yn, w > v as a child if and only if

D1 In(¢(v')) = Nln(r) + 6 and (¢(v')) ™' < L

v<v'<w

holds for all v/,v < v < w. By Lemma 4.1.8 the probability of the existence of
a set S like in Lemma 4.1.4 is strictly positive. Since pu* does not mix transience
and recurrence the process is almost surely transient. O

4.1.2 The Recurrent Case

For the proof of Part 2 of Theorem 4.1.3 we construct an almost surely stationary
distribution «, by

fy= ] o)

o<WV

QU = 1,0, := (D(v, Par(v))) " f(v).

Note that for w € Ch(xy) the expression ¢(w) is not defined. But we may as
well add a vertex to zy and define it as the root instead. This does not affect the
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process of being recurrent or transient. With this definition, « satisfies for all v
and w € Ch(v)
a,D(w,v) = ay, D(v,w).
To show that Zvev(T) a, < o we make use of the following lemma:
Lemma 4.1.9. Let k> 1, 0 <r < 1. Suppose that E[In(¢)] < 0. Define
Ap(r) :={veT, o, =r"}.

Then .
P(|An(r)| = (KEkp(r)" for infinitely many n) = 0.

Proof. Define
Al(r)y={veT,: f(v)=r"}.

For each v € T},, by statement (4.5) of Theorem 4.1.5

P(f(v) = ") =

=IP< > In(g(w)) = nln(r)) < (P(r)™.

To<WKV

Using linearity of expectation and noting that |7,,| = K™ and k > 1

E[ 4, ()] < (Kd(r))" (4.7)

E [Z M] < 0. (4.8)

and thus

neN (Kki;(?“))"

We conclude that at most finitely many summands in (4.8) are bigger than 1 and
SO
P(|A’ (r)| = (Kki(r))™ for infinitely many n) = 0. (4.9)

We claim that (4.9) still holds true replacing A/, by A,. Suppose that
A(r) :=[|An(r)| = (Kk(r)™ fim. n]

occurs with positive probability. Since @ is continuous and decreasing in (0, c0) we
may choose 71,k r>ry > 0and k > k; > 1 so that

15(7’1) <1 and ]ﬁl[}(rl) = /{:1;(7’)
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Thus
A(r) = [[ve T, : ay = r"| = (Kkyb(ry))™ for infinitely many n].
Now choose ks, k1 > ko > 1 and choose N sufficiently large so that

(Kk:ﬂﬁ(rl))” > (Kkﬂ;(ﬁ))nﬂ

holds for n > N. Since o, = (D(v, Par(v)))~!f(v), for all w € Ch(v), f(w) =
a,D(v,w) holds true. Thus the event

[lveT,: f(w)=r"D(v,w) for some w e Ch(v)| = (Kkytp(r1))"*! fim. n]

has positive probability as well. Now D(v,w) and f(w) are not independent, but
even better. For p € [0,1]

)

w) = p for at least one w € Ch(v)|a, = r") =
P(D(v,w)

=
> p for at least one w € C'h(v)).

Thus the event

[{w € Ty = f(w) = ri™}| = (Kkydh ()™ £im. n]
has positive probability, a contradiction to (4.9). ]
Proof of Part 2 of Theorem 4.1.3. We would like to show almost sure finite-

ness of
S - N Y

veV(T) neN veT,

Then, after normalizing, « is a stationary distribution.
Let sup{Kri(r) : r > 0} = 1 — &. Choose 8,83 with 0 < d3 < J; < d;. Let
l; € (0,1) so that E[ln(¢)] < In(l;) < In(%). Let g : [0,1] — R be any function
satisfying .

glt) <t, Ktd(g(t)) <1- 3.

The purpose of g is to generate a cover {(l;, u;)}ier U {g(1), 1} of ({1, 1]. The family
O = {(9(t),t) }e0,1) v {(9(1), 1)} contains a cover of [l;,1]. Since [/, 1] is compact
O contains a finite cover

{(liywi) iz, ok

of (I1,1] with [; < l;41. Take ly := 0,uq := Iy, ;41 :=. For all intervals (;,u;),7 =
1,...,k and for (g(1),1] we may apply Lemma 4.1.9 with r = [; and k = }:gz.
Thus with probability 1 there is some /N so that

a0 < (K120 )
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holds for all #, for all n > N. Hence we may bound for all n > N

k+1
PICTEDINED I
veT, 1=0 veTy:l; <o, <u;

k n
<K'} + )l <K1 ; 5212}@1)) < (k+1)(1-6)"
3

i=1

where the last equation follows by u; K Q/NJ(ZZ) < 1 —03. Thus « is almost surely a
stationary distribution. O

4.1.3 The Calculation of the Phase Transition

The calculation of 1; might be cumbersome. However, Part 4 of Theorem 4.1.3
will imply that it is not necessary to calculate ¥ but only ¢(1) = ¢(0) to obtain
the parameter at which the phase transition occurs.

Proof of Part 4 of Theorem 4.1.3 and Theorem 4.1.2. We now investigate
which case in Theorem 4.1.3 needs to be applied. We first establish Part 4. Suppose
that 1 < E[¢] < o0. For r € (0,1]

Kri(r) = inf{ Kr''E[¢'],t € R}. (4.10)

Both terms r'~* and E[¢'] are increasing in ¢ for ¢ > 1 since by Jensen’s inequality
E[¢'] = E[¢]" = E[¢]. Thus the infimum on the right hand side occurs for ¢ < 1.
But for ¢ < 1 the expression in (4.10) is increasing in r so the supremum of the
left hand side must occur at r = 1. Now we first determine ay(K') supposing that
E[¢] = 1. We will show later that this holds true anyway in a neighbourhood of
ao(K). Since (po, p1,p2 + -+ + px) is Dirichlet-distributed with parameters 1, ¢

and @’ H g
! :inf{E [<%)t” - (4.11)
F (K+1)a
) %)r( >r<< iy
{ J | £+t 1(1—290—]31) K21)a_1dp0dp1} _
- F%(_ ;igf ) (4.12)
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This expression is convex in ¢ and symmetric about }1 which is thus the minimizer.
We define ao(K) for K = 2,3,... as the unique positive solution of

M L (4.13)

To see that a solution exists for K > 2 note that fr is continuous in (0, c0) and

lim fr(a) =0, lim fr(a) =

a—0t a—0

To see that it is unique observe that the integrand for ¢ = % is strictly decreasing
in a. For ag := ao(K) we have

L )r(e+1)
p(0) = TEE(E) e Heol
0 else

It suffices to show that in a neighbourhood of ao(K), E[¢] = 1. fr is strictly
decreasing. Taking ao(K) = 0.9 we get

1 1

2 K’

so ag(K) < 1 for K > 2 and hence in a neighborhood of ay(K), E[¢] = co. Taking
K = 1results in the special case of LRRW (N, a). For K = 1 equation (4.13) has no

solution. Thus LRRW (N, a) is recurrent for all initial weights a. Table 6.1 shows
numerical approximations of the critical values ag(K) for K =1,2,...,15. O

£(0.9) > 0.83 >
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4.2 Almost Sure Positive Recurrence for Bounded
Degrees and Small Initial Weights

Until March 2012 little was known about return probabilities of LRRW in general
graphs. Angel, Crawford and Kozma, 1], managed to prove the following.

Theorem 4.2.1. Let K € N. Then there exists a constant ao(K) > 0 so that
on any graph G with vertex degrees bounded by K, LRRW (G, a) is almost surely
positive recurrent for all a < ag componentwise.

The result is somewhat intuitive. For instance, it is a well-known fact that

simple random walk is transient on Z®. Hence, if the initial weights a are sufficiently
big it is natural to conjecture that the process behaves similar to simple random
walk and is thus transient. However, for small initial weights, an increment of 1
for an edge has a much bigger impact and makes it much more likely to return to
the initial (or any other) vertex. This conjecture has been proved rigorously by
Sabot and Tarrés, [20]. For d > 3, LRRW (Z%, a. = a) is recurrent for sufficiently
small and transient for sufficiently large initial weights. For d € {1, 2} recurrence
always holds, the case of d = 1 being a consequence of Theorem 4.1.3. The proof
by Sabot and Tarrés relies on a model called the Vertex Reinforced Jump Process.
The approach by Angel, Crawford and Kozma is completely different.
We give a short overview of the proof strategy. Like in Theorem 4.1.3 we construct
a stationary distribution. To do so we want to show that for almost all edges e the
weight W, fulfills W, < ¢¢?0) where d(e, xo) is the distance of e from the initial
vertex and ¢ € (0,1). This way assuming bounded vertex degrees is crucial, we
need to bound the number of edges at a certain distance [ to the initial vertex which
is of order at most K', explaining the role of K. The implication that this bound
holds for almost all weights will be a consequence of Markov’s inequality. Like
in the proof of Theorem 3.6.11 we will approximate the weights on a sequence of
finite subgraphs. The notion of convex order will not play a role, instead the path
by which the vertices are visited first is considered. We replace the dependent
normalized weights by a set of independent random variables, being the most
unconventional part of the proof. If not mentioned differently, the results in this
chapter are due to Angel, Crawford and Kozma, [1].

4.2.1 Bounding the Edge Weights

For the next results we will make use of the mixing measure p on the space
(0, OO)E(G). Normalizing W, := VI{/‘;@ for the initial vertex of the process zy does
not have any impact on the chosen Markov chain. For two vertices u,v de-
note by d(u,v) the length of a shortest path from u to v. Analogously, define

d(v,e) := minge, d(v, x). We state exponential decay in the following way.
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Theorem 4.2.2. Let G be an infinite connected graph satisfying

SUDyev () degq(v) < K for some K € N. Let s € (0, 3). Let zg be the initial vertex
and ey the first edge traversed. Then there exist constants ag := ag(s, K) and C
so that

E[W:]<E [(MM//) ] < 2K (C/ag)™™ . (4.14)
€1

It would be nice to prove Theorem 4.2.2 for s = 1 since fractional s may
only complicate any computation. However, even if G is a tree the ratio of edge
weights does not need to have finite first moment. The proof of Theorem 4.2.2 will
make use of directed edges instead of undirected ones, substituting each undirected
edge in G by two directed ones. For a directed edge et = (u,v) we will denote
by e~ = (v,u) its reversal. Now let e™ = (u,v) be traversed by the walk. For
simplicity of notation we suppose that the path in the following construction has
length [. Let e;” = (u;,u) be the edge through which u is visited first and e;” | =
(u;—1,w;) the edge through which w; is visited first and so on. This results in a path
Yi = (xo = uy,uz,...,u) = (ef,...,¢e) starting in the initial vertex and ending
in . On the fact that, in the recurrent case, this path determines the distribution
of va and M. Clearly, by construction, each edge e, ..., e is traversed by
LRRW before its corresponding inverse e; . We will call v© = (zg = uy,...,u),
a random variable itself, the path of domination. For a directed edge e we will
denote by D, the event that + is the path of domination of e*.

. 1 1—1 WeiJrl . . .
Since W:l = L5 W, bounding each of the factors will be sufficient, so
. . We, . . -
we would like to estimate —<—. For shortness we will write e := e |, f = ¢;

€i+1
throughout the remaining part of this chapter. We introduce two random variables

N(e) and N(f) as follows. If e is traversed before f then take N(e) to be the
number of times that e is traversed before the first appearance of f and N(f) = 1,
else vice versa. We define

2 N(e)
R(e) :=
=)
Hence we are estimating the ratio of weights R by the ratio of numbers of directed
edge traversals R.

Now let g be an arbitrary undirected edge in E(G). Denote by Yr the set of
paths of domination, by Yy the set of paths of domination terminating in g. The

identity ) .
2| (w2) |- S el () 1)

g
YEYR

We

, R(e) = W,

(4.15)

holds under recurrence and in particular if G is finite. Note that without the
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. . W, .
assumption of recurrence we cannot ensure that the random variable % is well-
€1

defined. For any fixed event D, we telescope

Wg _ AN R(e/) (!
W [T Re)= T] 7o) [T RE).

e'ey—eq e'ey—e; e'ey—e;

Applying the Cauchy-Schwarz inequality yields

/W, \°
E )1 <
_<W€1) D'v]

a1 G ] e gy o]

| e’'ev—eq e'ev—e;

It suffices to establish sufficiently small bounds for each of the terms on the right
hand side of the last equation. We will show this in the two following independent
lemmas. The main idea in both is to ignore the event D, at some suitable step.

Lemma 4.2.3. For any instance (G,a) so that LRRW (G, a) is recurrent, any
inital verter xo, any vy € Yr with lenght | and any s € (0,1) there exists a constant
c(s) depending only on s so that

E [1:_[ <%)81m] < cefs) 7L (4.16)

Lemma 4.2.4. Let (G,a) be a recurrent instance, degs(v) < K, a < ag for a
constant ag. For any initial vertex xqy, any v € Yr with length | nd any s € (0, %),
there exists a constant C(s, K) depending only on s and K so that

]E[ H R(el)s]lD,y

e'ey—e;

< (C(s, K)ag) ™. (4.17)

Proof of Lemma 4.2.3. The first thing to note is, since we want to show ex-
ponential decay, we do not really care about exponentially growing terms like for
instance K!, we will still be able to keep the expectation bounded in (4.17) by
adjusting ag. Thus the first step is to ignore the event D, in (4.16). It is straight-

forward that
o| 11 () v == I (D) |

e'ev—ey e'ey—e;
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Let again e := e}, f := ¢; . Observe that recurrence is still assumed and that the
definition of R(e) is not tied to D, so R(e) and, especially, R(e) are well-defined.
Now let W be one realization of the edge weights. Conditioning on W makes
R(e) degenerate and R(e).e, independent, the second being a consequence of the
Markov property. We will show that

2| (&)
R(e)

holds uniformly in W. Note that the expression is almost surely (w.r.t. W) well-
defined, for instance by Lemma 3.6.10. Denote by v the vertex incident to e and
f. We are only interested in transversals of e and f from v. Neither transversals
of other edges from v nor transversals of e or f in the opposite direction have any
impact on R(e) and R(e), given W. Since v is visited infinitely often anyway we
may as well assume deg,(v) = 2. Denote the probabilities of transversals of e and

f from v w.r.t. W by p and ¢, respectively. Of course, p + ¢ = 1. But =— = N

Re) _ N(e)
& Kgg) W} - <§>s (Z n'g"p+ ) n_sp”q) ,

n=>1 n>1
This expression converges for all p,q € (0,1). The first sum is the (fractional)
s-moment of a geometric random variable with parameter p and is of order p—%q.
The second term is the —s-moment of a geometric random variable with parameter
g and is of order pg®. Those two facts can be proved using the representation of
the polylogarithm function

W] < C(s)

and so

P Y R A
Lig(2) = ), = = f = dt,Re(s) > 0
nx=1 k F<S) U 1
and SLiL2)
is(z
Lis— = )
is1(2) =z 2,

S
see for instance Cvijovié, [4]. Together with the factor (p ) they reduce to a term

2| ()

for some suitable ¢(s) independent of p and ¢. Putting that together yields

S|

W] <c(s)(¢" 4+ p'0) < c(s)
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Proof of Lemma 4.2.4. The first problem we have to bring the focus to is the
dependence of the edge weights. We are going to construct independent random
variables R(e) e, With R(€)eey1p, = R(€)ee,1p, that satisfy inequality (4.17). For
e €y — ey and k € N define independent Bernoulli variables

. 1+
B; = Bern a : B,J: —Bem |4 .
E+1+ac+ay 2k + 1+ a,

f is again the edge preceding e in the path of domination v and v the vertex
incident to e and f. Similarly to (4.15) we define

N(e) = min{k > 1: Bf =1}, N(f) =1, if Bl =0
N(f) = min{k > 1: Bf = 1}, N(e) =1, if B =
and, accordingly, -
_ N{e)
R(e) = =
= 0

Using this technique we may estimate R(e). For n > 1 we have

]P(Bf_ON(e)_n)_av—CLf 1—|—af ﬁ 1— 1+af <
o 7 a1l 204140, 0 2%k +1+a,)

n—1 [ao/2+n—1]
Ay 1+ Ay 2k + ao ao 2k
< < —K <
a, +1 2n H<2k+1+a0> 2n 1_[ 2k +1

k=1 k=[ao/2+1]
[a0/2] L
omn 2k + 1 Lok +1
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Observe that, since ag is bounded and the term in the middle of the third line is
increasing in ag, we may choose C' independent of ag. Now the condition s < 1/2
becomes clear.

E|R(e)' 1| < Y0P (B =0,N(e) =n) < C(K)ag Y, =2

n>=1 n=1

< C(s, K)ao,
since the sum converges for s < 1/2.
E [R(e)s]lBgzl] < Z P(BS =1)n"* < Z an~ 1) < C(s)a,
n=1 nz=1
since s > 0. . .
Taking C(s, K) = C(s, K) + C(s) proves the claim
E(R(e)®) < C(s, K)ay.
We still need to show that
R(€)eer1p, = R(€)eey1p, . (4.18)

For this purpose we direct LRRW (G, a) according to the values of Bf and Bj.
Let v € V(G) be some vertex. If v ¢ v nothing needs to be proved. If v € v and
both directed edges e and f have already been traversed from v, R(e) and R(e)
are already determined and the proof follows from the cases below. Hence, at least
one of e and f has not been traversed yet and since D, holds, f has been traversed
at least once and e has not been traversed yet.

Case 1 v is visited the first time. Let ¢; be the time of the first arrival at v. Since
D., holds true, this must be along f~, so e has still routine w,(t1) = a. and
f has routine w¢(t1) = ay + 1. Hence the probability of exiting via f is
1+ af
1+a,

If B{ = 1, we exit through f (and with suitable probability if B{ = 0).

Case 2 Later visits to v, B{ = 0. Let ¢, be the time of the n-th visit to v. The
current routine of f is (since D, holds) at least w¢(t,) = 1 + as and the
current routine of v is w,(t,) = 2n — 1+ a,. Hence the probability of exiting
via f is

wy (tn) < 1+ ay
on—14a, 2n—1+a,

If B/ | =1 then we exit via f (and with suitable probability also if B | =
0).
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Case 3 Later visits to v, B] = 1. The edge e has not been traversed and still has
initial weight a.. We are going to ignore transversals of other edges than e
and f. So if LRRW (G, a) exits v via one of the edges e and f we direct
according to the decisions strategy above. Let ¢,, be the n-th time v is exited
via f. Since f is in the path of domination, the current routine of f is at
least wy(t,) = ay + n. Hence the probability of exiting via e is

Qe O _ Qe
wit,) —ap+a, n+a, n+a.+ap

If B, =0, we exit via f (and with suitable probability also if BS_; = 1).

Let us now check that taking the decisions above, R(e)1 p, < R(e)1p, holds.

Let B(]; = 0, so either Case 1 or Case 2 needs to be applied. If n = min{k > 1 :
B! =1} then LRRW has exited v via f by the (n + 1)-st exit and hence

R(e) < N(e) <n = R(e).

Let B = 1. Case 3 holds. If n = min{k > 1 : Bf = 1} then f has been used
at least n times. Hence

Rle) = —— <

GRS

S|

We are now ready for the proof of Theorem 4.2.2.

Proof of Theorem 4.2.2. At first, remember that by normalizing W,, = 1, so

— Wg
W, = .

Y]] Sl ]

yeYy¥
" 0 1/2 1/2
<)), ]E[ I (~<e)> 1107] E[ 11 R(e)%]lDJ <
’yEYFg eey—eq R(e) eey—e1
1/2
< 3 [C@) @] | (s K| =
ey
= > (Cov/ag) ™! (4.19)
ey

by setting Cy(s, K) = \/C(ZS)C(QS,K). The inequality from the second to the
third line follows by lemmas 4.2.3 and 4.2.4. Choosing s € (0,1/4) is the best we
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can do, otherwise Lemma 4.2.4 does not work. Now we choose aq sufficiently small
so that

1
KCo/ag < 5. (4.20)

This is still not our final ag, but for the moment it will do. Since the number of
simple paths of length [ in G is at most K' and any path to a fixed edge g has
length at least d(g,zo) + 1 we may bound (4.19) by

D (Covag) Dt < Y K (Cov/ag) ™! (4.21)

yeYy? 1=d(g,x0)+1
= ) K(KCyy/ag)' < 2K(KCyy/ag)"@™). (4.22)
1=d(g,20)
Redefining C' = Cy K proves Theorem 4.2.2. ]

4.2.2 Tight Measures, Borel-Cantelli and Markov’s Inequal-
ity

Proof of Theorem 4.2.1. Let G,, = G[{v € V(G) : d(v,G) < n}]. Again we
denote the mixing measure for G, by u™. Denote the weight for an edge g in
G, by W7. Recall from Theorem 3.6.11 that the measures ™ are a tight on
(0,0)F(@) and thus there exists a convergent subsequence with limit ;*. Now let
s € (0,1/4). Note that for any edge g € E(G,) we have by Markov’s inequality
and Theorem 4.2.2

s 2K (C\/ag)9:=)
HO W > w) = ) (W2 > we) < VI

This inequality holds for all (™ and hence also for any weak limit p*. Take
w = (2K)~%9:%)  Observe that the number of edges at distance [ is at most K'*'.
Hence the probability of having an edge ¢g at distance | = d(g,zo) with weight
W, > w can be bounded by

P(3e e E(G) : d(e,x0) = I, W, > w) < K" (2K)*2K (Cy/ap)' =
= 2K (2° K 8¢\ /ag)'. (4.23)
Now re-choose ag so that 2°K'**C\/ag < 3. This is our final ay.

(4.23) may be bounded by
K22t

The sequence K22'~! is summable. Thus by the Borel-Cantelli lemma, p-almost
surely the number of edges e violating W, < (2K)~%®) is finite. The total weight
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of the edges is almost surely a finite number and hence a stationary measure mw
exists almost surely, given explicitly in terms of a realization of the weights W by

W,
(Tw(v))vev(@) = W :
ve Y/ vev(G)



Chapter 5

Properties of the Mixing Measure

5.1 Initial Vertices and Measures

Needless to say, the mixing measure depends on the initial vertex. It would be
nice to find an explicit expression, i.e. a density w.r.t. some invariant measure.
In the finite case this has been done by Merkl, Ory and Rolles, see [14]. However,
for infinite trees the mixing measure is in general not absolutely continuous w.r.t.
Lebesgue measure on a cartesian product of simplices. This follows directly by
arguing that the product of infinitely many Dirichlet densities is, except for some
special cases, not a bounded function. But it is still reasonable to compare the
mixing measures for different initial vertices. At first we will focus on two adjacent
initial vertices xy and x;. Let ag and a; be the total initial weight of edges incident
to z¢ and x1, respectively. For trees the identity

()T (%) [P
dpo(P) T (a_;) T (aOTH> po,1d'ul<P) (5.1)
is not too difficult to prove, thinking about each vertex and the star graph having
v as its center as an urn. In the finite case the mixing measure has a density w.r.t.
Lebesgue measure, given explicitly by the product of some Dirichlet densities.
Thus to show (5.1) all factors but one cancel out, passing to the limit (5.1) holds
still true. For general graphs we need a different approach. The following result
has been obtained in the course of the elaboration of this thesis.

Theorem 5.1.1. Let (G,a,xq) be a recurrent instance for LRRW with initial
verter xg, (G,a,x1) the same instance but starting from x1. Denote their mizing
measures by po and py, respectively. o and py are mutually absolutely continuous
and their derivative is given by (5.1).

Clearly, if (G, a,zg) is recurrent then (G, a,z;) needs to be recurrent, too. To
prove the theorem we will make use of paths starting and ending in zy and zq,

o7
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respectively. Recall that, if GG is finite, xy as well as x; are visited infinitely often.
Interestingly, the derivative (5.1) depends only on the total initial weights ay and
a; and the values of py; and p; ¢ but not on any other values. We first start by
expressing the probability of a certain set of stochastic matrices by a set of finite
paths. The following lemma is mainly important to introduce some new notation,
the convergence result may as well be obtained using that LRRW is a mixture
of Markov chains. In the following it is assumed that LRRW (G, a) is recurrent,
let * be some vertex, in the following called reference vertex. z* need not be
necessarily the initial one. Denote by g the unique mixing measure for initial
vertex xg. Let e; = (v, wy),...,ex = (v, wg) be a finite set of directed edges in
the directed version of G. Let Iy,...,I; < [0,1] be open nonempty intervals. We
denote by P’ the set of reversible stochastic matrices P = p(-,-) on V(G) x V(G)
that satisfy

ple))eli=1,... k. (5.2)

For a finite path y = (uq, ..., ), a vertex v and an edge e = {v, w} define
No(y) = {1 <t <l:u =}, (5.3)
Ne(y) = {0 <t <l —1:{u,upn} = {v,w} v {u, wa} = {w, v}, (5.4)

Observe that the first appearence of zy does not count for N,(zg). This is not
essential for the statement or the proof of the following two lemmas but makes
things slightly easier.

Lemma 5.1.2. Let Y, := Y *0%(P’) be the set of finite paths y that satisfy the
following.

1. y €Y, starts and ends in xy.
2. N (y) = n.
3. For e; = (v;,w;), Ny, (y) =: NY and N, (y) =: Nf satisfy

(2 (2

€

i
vEIi-
7

We call Y,, the approximating set of P’ for initial vertex xg and reference vertex
zo. Then

1o(P') = lim P(Y,,).

n—o0

. Ne¢ .
Proof. The random variables %+ converge for n. — o0 to the same random variable
[
as

we, (t) N(e; t) + ae
W, <t> Zwe./\/’g(v,-) N({Uv w}7 t) + Qo
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does for t — oo, their convergence being guaranteed since recurrent LRRW is a
unique mixture of Markov chains. The dependence on NN,, has no impact since
xo is visited infinitely often almost surely anyway. Of course, the choice of the

e

reference vertex does not have any impact either. Since the random variables %
K2

may be expressed as a function of y € Y,, the claim of the lemma holds. ]

Now that we may approximate the mixing measure by the probability of a
certain set of paths we prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Let (G, a,zy) be a recurrent instance of LRRW with
initial vertex zy, (G, a,x;) the same instance but with initial vertex x;. Clearly,
changing the initial vertex does not affect recurrence. Let eg; = (29, 21),€10 =
(x1,%0),€1,...,€, be a set of directed edges. Let 0 < po1 := p(zo,21),p10 =
p(z1,m0),p1 = pler),...,pr = plex) < 1. We assume that these p admit a re-
versible Markov chain, otherwise equation (5.1) holds trivially true. We collect
the p’s in a vector p € (0,1)*"2, let £ € (0,1)*"2 so that

O<p—e<p+e<l (5.5)

holds componentwise. Denote by P¢ the set of stochastic matrices P’ = p/(+,-) on
V(G) x V(G) associated with reversible chains that satisfy

p—e<p <p+e.
For simplicity we will assume that ¢ = e1**2, where 1**2 is the all-ones vector in
R¥*+2. This does not affect any step of the proof. Take ag := Qgy, Q1 i= Gy, o1 =
Azy2q- Denote by Py and Py the probability measures of LRRW (G, a) for initial
vertices zo and xy, respectively. Let Y0 := Y20:%0(P¢) and Y,! := Y% be the
approximating sets for P¢ and initial vertices xq and x, respectively. The reference
vertex for both approximating sets is xy. Clearly,

L B(PY)  pnolP)
s PV P) (P

—Pﬂfgﬁ)) 7- Let &; be the set of cyclic permu-

tations (p;)j—o,.; on {0,...,1} of the form

We would like to estimate of the ratio

(0 i+j—(+1) ifi+j=1+1
. Z P .
hi 1+ else

We now regard y = (vg, ..., v41) € YU as a cyclic object. We thus omit to write
V141, being equal to vy anyway. Consider the equivalence classes

W] = {(vp,00))i=0,..0 : 5 € {0,...,I}}
[y]O = {(vpj(i))i=0,...l (J € {0; ceey l},Uj = JZO}
Wl = {(vp,))i=0,..0 1 J €10,...,1},v; = 21}.

7
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It is not difficult to see that Lzl — N”O(y), so that
[yl — Nay(y)

Po([ylo)  Nay(y) Po(wo)

Py ([yl)  Noy(y1) Pi(y1)’

where yo and y; are representatives of [y]o and [y];, respectively. Note that

P1o — € < Ny () < P1o + €
pog+€ Ny (y) Po1 — €

(5.6)

But for all y € Y0, [y]o = Y0 and [y]; = Y;! holds true. Splitting up Y? and V!
into classes w.r.t. [-]o and [];, respectively, yields

pro—€. o [Polyo) 0 1 } Po (V7))
: inf YooY, ey, = < <
p071 +e {I[Dl (yl) Yo U1 [yO] [yl] ]P)l (Yn1>
Pio t€ Po(yo) 0 1 }
< — su Yo €Y, ey, = .
Po1—¢ {]Pﬁ (1) Yo 1 [yo] = [y1]
The expression % depends only on N, (yo) =: n and N,, (yo) =: N;. We only

deal with the case n > Nj, the other case works the same way. Straightforward
calculation yields

2(N;—1) 2(n—1)

Bo(yo) _ I (a1 +i)(ao +7+1) 11 Gotitl : L(Ny,n).

Pi(y1) Jizo (a0 +@)(ar +i+1) im2h (-1 0T
K __ Geven ,
=:L1(N7) :ZLQ(%W)

Since L(Ny,n) is decreasing in N; and the ratio %’ may be estimated using (5.6)
we choose

_|_ —_
N{ (e,n) := n[pl’o E-‘,Nl_(e,n) = nlpl’o 6J.
Po1 — € Po1 + €

Hence
Po(yo)
Pl(yl)

To determine the value of L we use the representation of the Gamma function

L(N{ (e,n)) <

< L(Ny (e,n)).

nln®

F(x)zrggrolox(xjtl)(xjtn)

L1(N7) converges to
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and Lo(x,n) converges pointwise to \/g :

So, letting n — o0 we obtain

_ - Pe + € + €

P1,0 6F0,1 Poy — € < fo(P°) < P1o Lo, Po,1 .

poite T\ pote p(P) poi—e€ T\ pio—e€
Letting € — 0 and observing that sets of the type P¢ generate B(P) finishes the
proof. n

For shortness we will now write

I CNCD
“T ()T ()
so for two adjacent vertices v, w
_ p(w,v)
dpin(P) = Ty mdﬂw(P)'

Write d, = degg(v). Forall t e R, 3 oty =1

dus(P) = Y tuluu %duw(P). (5.7)
weNg (v) ’

This holds especially for ¢,, = p(v, w) and hence for all v

dpu(P) = >0 Tyun/p(w,v)p(v, w)dp,(P). (5.8)

weNg(v)
Setting dyz = (dje)evicy. P = (Cown/plowlp(w,v)) - we may write
v,weV
equation (5.8) as
du(P) = Prdpu(P) < (Pr — 1)du(P) = 0. (5.9)

Now let p* be a mixing measure for initial vertex v, obtained as a weak limit of
a sequence of measures (fiyn, )rken 0N (G™ )pen. Let (13)wen(w) be weak limits of
(fwny,). Let e; = (v, w),...,ex = (vg, wy) be a finite set of directed edges, let
I ... I, e B([0,1]). If P" = (p'(v,w))vwev(c) € B(P) is a set of the form

{P'eP:ple)e I}

then equation (5.8) still holds, the functions I, ,+/p(v, w)p(w, v) being continuous.
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5.2 Uniqueness of the Mixing Measure on a Sub-
o-algebra

We would like to prove uniqueness of the mixing measure in the general case. A
way of doing so is to use Lévy’s Continuity Theorem. But to do so we need finite
moments of the respective random variables. For this purpose the notation of u as
a measure on the space of stochastic matrices is more convenient. The following
lemma and its proof have been obtained in the course of the elaboration of this
thesis.

Lemma 5.2.1. Let E, be a finite set of edges in G, |E,| = n. For an edge
e = {v,w} € E, denote by p(e) := p(v,w)p(w,v) the product of the transition prob-
abilities in either direction. The joint distribution of P, := (p(€))eer, 1S uniquely
determined by G' and a, thus independent of the choice of the mixing measure.

We first give a general idea of the proof strategy. Let xy be the initial vertex,
let x1 be adjacent to xy in G. We show uniqueness of the distribution of p :=
p(o, x1)p(x1,x0). By Levy’s continuity theorem the distribution of p is uniquely
determined by its moment generating function F,(t) = E[e'?], provided that it is
bounded in a neighborhood of 0. But p is bounded by 1, so F,(t) is finite on all
R. The moments p* are determined by (G, a) since

J prdu*
P

is exactly the probability of moving k times forth and back on {xg,z;}. This is
simply an event which may be expressed in terms of a. Thus the distribution of p
is uniquely determined.

Proof. If ;/* is a mixing measure, it induces a probability measure on P,. W.l.o.g.
we assume that F, is connected and contains an edge incident to xy, otherwise we
make F, bigger by adding some edges. We show that all moments [ ] ., p(e)*
are determined. Then the moment generating function

Mp :R* >R, Mp (t) = E[e! ]

is determined and obviously bounded on all R". Lévy’s continuity theorem then
implies uniqueness of the distribution. Now let ¥, be a finite path that starts and
ends in xy and traverses all edges in F),, at least once in both directions. Let ¢, be
some path that traverses each edge e additionally k. times back and forth. Denote

by p, = HeeE(yn)p(e) and pn, = pn|lecp, p(e)*e the probabilities of ¥, and ,,
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respectively, w.r.t. some Markov chain. Denote by y™ and y™ the concatenation
of m versions of y and g, respectively. Observe that for all [1,l5 the expression

j Pt = B(R, 52))
P

is in fact the probability of a certain path, uniquely determined by GG and a and thus
independent of the choice of the mixing measure. By Lévy’s continuity theorem
the joint distribution of (p,, p,) is unique. But hence the distribution of

Dn
[ ple) = . (5.10)
eek, n

is unique and so its expectation is determined. Since all moments are of the form
in (5.10), Mp, is determined which proves the claim of the lemma. ]

Corollary 5.2.2. The distribution of the matrixz Pr from the last lemma is unique.
Proof. Pr is a function of p(€)cer(q). H

The last two chapters give reason to believe that for any locally finite graph G
and for any initial weights a the mixing measure for LRRW (G, a) is unique.
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Table 6.1: Numerical approximations of the critical values ao(K + 1) of phase

transition for LRRW on (K + 1)-regular trees for K =0,...,14.

=

CL(](K)

O 1O Ui W N

e i e )
Tl W N~k O

o0
0.232910211931729
0.123919276013275
0.0847016129169972
0.0643922303308135
0.0519539698295227
0.0435487942006840
0.0374870609401862
0.0329079218397183
0.0293264016927345
0.0264483501283220
0.0240849558006896
0.0221094513992165
0.0204335560602396
0.0189938964084764
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Table 6.2: List of symbols

Symbol Meaning
N natural numbers including 0
N* natural numbers without 0
Z integer numbers
Q rational numbers
R real numbers
Z some countable state space
(G symmetric group on a set with cardinality n
G = (V, E) | a locally finite graph with vertex set V, edge set F
G[V'] the graph induced by a subset V' of the original vertices
T = (V,E) | alocally finite tree
S = (V,E) | a finite star graph
degs(v) | number of vertices adjacent to vertex v in G
K maximum degree in a graph or number of children in case of a tree
Ng(v) set of vertices adjacent to a vertex v in G
dc(v) set of edges incident to a vertex v in G
66 (v) outgoing edges in a directed graph
d(-,-) shortest path metric
X stochastic process on Z
(X, 1) a Polish space
B(-) o-algebra on a set
& exchangeable o-algebra
Z initial vertex for X, Xy = x( almost surely
Y a path in G
yty” a directed path and its reversal
Y random variable on the space of zg-xq-paths or
general X'-valued random variable
y set of finite paths
vy path of domination
P probability measure w.r.t. some process
E[-] expectation of a random variable or distribution
Var|[-] variance of a random variable or distribution
F. G filtrations
M martingales and backwards martingales
LRRW | linearly reinforced random walk
B, chosen ball in Pélya urn process at time n
U, relative content in Pélya’s urn process at time n

Continued on next page
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Table 6.2 — continued from previous page

Symbol Meaning
N(e,t) number of transversals of edge e up to time ¢
a initial edge weights (ac)ccr(@)
we (1) routine of edge e at time ¢, w.(t) = a. + N(e,t) for LRRW
We. the weight of an edge, seen as a random variable
We like W,, but normalized w.r.t. some constant
1 distribution or operator-valued probability measure
P transition matrix of a reversible chain
P set of probability measures or
set of reversible stochastic matrices
1, the point measure at x
1y the indicator function on the set A
< convex order
W fixed weights on the edges of a graph
() the Gamma function
(+,°) the Beta function
Kk, C,c functions continuous in all arguments serving to bound expressions
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