
Michael KALAB, BSc

Linearly Edge-Reinforced Random Walk

MASTER’S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme:
Operations Research and Statistics

submitted to

Graz University of Technology

Supervisor
Univ.-Prof. Dipl.-Ing. Dr. rer. nat. Wolfgang WOESS

Institute of Discrete Mathematics

Graz, February 2018



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used. 

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis.

Date Signature





Abstract

We review known results on linearly edge-reinforced random walk (LRRW ), a
non-Markovian stochastic process on infinite graphs G “ pV,Eq. The process is
shown to be a mixture of Markov chains, both in the recurrent and the general
case. We use de Finetti’s results on exchangeable sequences to prove existence
and uniqueness of the mixing measure in the recurrent case, following the proof
lines of Diaconis and Freedman. For the general case we follow Merkl and Rolles’
proof on the existence of a mixing measure. Showing recurrence or transience on
certain graphs is non-trivial, the existence of a phase transition is conjectured but
not proved. However, in case G is a pK ` 1q-regular tree it is well-known that
a phase transition occurs at a certain parameter a0pKq. On general graphs this
matter is much more difficult. Angel, Crawford and Kozma proved recurrence for
sufficiently small intial weights on graphs with bounded degrees and transience for
sufficiently large initial weights on non-amenable graphs. We only concentrate on
the first result. In the last section we state and prove some results on the mixing
measure, which have been obtained in the course of the elaboration of this the-
sis. We consider mixing measures for different initial vertices and show that these
are mutually absolutely continuous. The respecitive derivatives have a closed and
simple form. We prove the uniqueness of the mixing measure on a sub-σ-algebra
of the space of Markov chains. This gives reason to believe in the uniqueness of
the mixing measure even in the general case while the problem of showing this
remains open.

Keywords: reinforced random walk; edge-reinforced random walk; random
walks on graphs; mixture of Markov chains; mixing measure; stochastic processes
with reinforcement; Pólya urn; partial exchangeability; de Finetti
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Chapter 1

Introduction

Imagine travelling to an unknown city and exploring it on foot. One will usually
walk along the safer streets, occasionally also choose dark and dangerous alleys
by coincidence. However, using a street over and over again will become routine
after some time and will thus make it more likely to walk along the street again.
So, when modelling the walk, we need to take the last idea into account. Indeed,
the probability of using a street will increase with the number of walks on it. In
this setting the term ’reinforced’ may be understood as the development of some
routine. The street map will be modelled as an undirected graph G “ pV,Eq.
Crossings correspond to vertices v P V pT q and streets to edges e P EpGq. The
safety of the streets at the beginning of the walk is modelled by a vector of positive
initial weights paeqePEpGq, usually we take ae ” a for some a P R`. The develop-
ment of a routine corresponds directly to a set of non-decreasing functions wep¨q on
edges e P EpGq. The main purpose of Section 2 is to introduce a general model for
the above issue and to specify what is meant by linearly edge-reinforced random
walk on G with initial weights a, in the following abbreviated by LRRW pG, aq.
Instead of exploring a city we might also consider a salesman moving from one
market place to a neighboring one every day. In this case the reinforcement does
not concern the streets (neighborhood relation) but the market places (vertices).
The model associated with this type is known as vertex-reinforced random walk.
Since this thesis does not investigate this kind of process the term ’reinforced’ will
be used instead of ’edge-reinforced’.

Generally speaking, throughout the last decade there has been a lot of research
concerning stochastic processes with reinforcement. The study is not only of the-
oretical interest. Certain bacteria modify the chemical environment in their sur-
roundings and are therefore either more or less likely to move to the same place
again. Myxobacteria produce a slime on which they are able to glide. Once edge-
reinforced random walk gives hope to understand the latter. We will just introduce
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CHAPTER 1. INTRODUCTION 2

the model and one result by Codling, [3], in Section 2.
Another purpose is to understand tumour-induced angiogenesis. In tumour-like
tissues the growth of vessels is enhanced and thus the migration of vessel-like cells
can be modelled as a reinforced stochastic process, see Levine, [12].
The development of opinions as well as evolutionary processes may be modelled
taking into account some reinforcement. A very famous and well-studied model for
the first is Pólya’s urn. Take an urn containing a finite number of balls of different
types. A ball is drawn from the urn according to some probability distribution
and the content is modified according to the type of the ball. In the basic model
the probability of the choice of a type is proportional to the number of balls of the
type. Many generalizations of Pólya’s urn have been studied assuming different
distributions as well as positive real numbers of balls or uncountably many balls,
see for instance Pemantle, [16, p.22–25]. The simple generalization for positive
real initial ball numbers will be introduced to study linearly reinforced random
walk on trees in Section 3.1. This model has a few useful properties. One of them
is that the probability of a finite sequence of balls stays the same when permut-
ing the sequence, called exchangeability. A rigorous definition of exchangeability
and a generalization for the case of walks on graphs, partial exchangeability, are
introduced in Section 3.1. A consequence of the first property is almost sure con-
vergence of the urn’s relative content to a Dirichlet distributed random variable.
We are going to exploit this in various ways. The proof of this fact is given later
in Section 3.3.
All processes mentioned above are non-Markovian, their future depends not only
on the current state but on the entire history. Curiously, some of them may
still be represented, not by a single Markov chain, but as an integral w.r.t. some
chains.This representation, in the following called mixture, is introduced in Section
3.2. The concept of mixtures is, of course, easier assuming that a process considers
only random variables defined on the same space. In this case we establish the
representation via de Finetti’s representation theorem on exchangeable sequences
of random variables. To appeal on intuition the Hewitt-Savage 0-1-law for the ex-
changeable σ-algebra of sequences of i.i.d. random variables is stated and proved
in advance in Section 3.3. We then give a rigorous proof of de Finetti’s theorem.
The representation for recurrent LRRW is then constructed from the latter in
Section 3.4. The theorem and its proof are due to Diaconis and Freedman, [6].
The key property is partial exchangeability. For 2-connected graphs G the class
of partially exchangeable random walks coincides with the class of the linearly
reinforced one. However, if G fails to be 2-connected this does not hold true. A
counterexample in the case of a tree and a rigorous proof for the 2-connected case
have been obtained in the course of the elaboration this thesis and may be found
at the end of Section 3.1.
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Without the assumption of returning infinitely often to the starting point the proof
technique of Diaconis and Freedman breaks down. Merkl and Rolles, [15], used
a tightness argument to prove the existence of a representation of LRRW as a
mixture of Markov chains even if it is transient. We will state and prove this
in Section 3.6. For this purpose the usual notation of reversible Markov chains
by their associated transition matrices will be cumbersome. We describe these
Markov chains and introduce the new notation in chapter 3.5. In the focus of
the remaining part of the thesis are results on recurrence and transience. In the
case of trees a dichotomy between recurrence and transience for LRRW is a mi-
nor result at the beginning of Section 4.1. For equal initial weights ae ” a and
pK ` 1q-regular trees we give a proove the existence of a phase transition. The
phase transition occurs at a certain parameter a0pKq, LRRW being almost surely
positive recurrent if a ă a0pKq and almost surely transient if a ą a0pKq. In this
context the term ’almost sure’ has to be understood w.r.t. the mixing measure µ.
The material of this section is due to Pemantle, [17]. He proved the last result
not only for fixed trees but Galton-Watson trees. On general graphs LRRW turns
out to be much more difficult. In 2012 Angel, Crawford and Kozma, [1], studied
LRRW on graphs with bounded vertex degree K. They proved the existence of a
parameter a0pKq so that LRRW pG, aq is almost surely recurrent if a ď a0. The
assumption ae ” a is not needed. We will give a proof of this result in Section 4.2.
Many problems concerning LRRW remain unsolved. For instance, it appears only
natural to believe that for all graphs LRRW is either recurrent or transient for
fixed initial weights. It seems that neither a rigorous proof of this nor a coun-
terexample has been found yet. It is as well conjectured that for a fixed graph
increasing a may only make the process ’more transient’ in the sense that the
process does not switch between recurrence and transience while increasing a.



Chapter 2

The Model

2.1 Preliminaries
On a graph G “ pV,Eq we may define a stochastic process as follows. Let P “

pp¨, ¨q be a row stochastic matrix on V pGq ˆ V pGq satisfying

ppv, wq ą 0 ô tv, wu P EpGq.

We generate sequence of vertices pXtqtPN by the following scheme. Start at a fixed
vertex x0. At each time step t ` 1 we choose a follower Xt`1 of Xt among the
vertices adjacent to Xt. We choose Xt`1 according to the transition probabilities
in PXt , the Xt-th row of P . The following properties hold for the process resulting
from the above.

PpXt`1 “ v|X1, . . . , Xtq “ PpXt`1 “ v|Xtq and (2.1)
PpXt`1 “ v|Xtq “ PpXt`k`1 “ v|Xt`kq. (2.2)

Processes fulfilling these properties are called discrete, time homogenous Markov
chains. The term time homogenous refers to the second equation, the transition
matrix does not change over time. In the following we will omit the terms discrete
and time homogenous. The Markov chains we will need to represent LRRW fulfill
two more properties. This will be shown later on in Section 3.4.

Definition 2.1.1 (Cycles, Reversibility and Irreducibility). Let G be a graph.
A cycle c “ px0, x1, x2, . . . , xl “ x0q in G is a path starting and ending in the
same vertex x0 and containing each vertex at most once. Its reversal is c´ “

px0 “ xl, xl´1, xl´2, . . . , x0q. We say that a Markov chain is reversible if the follow-
ing holds for any cycle c, for any index t P N

P ppXt, Xt`1, . . . , Xt`lq “ cq “ P
`

pXt, Xt`1, . . . , Xt`lq “ c´
˘

. (2.3)

4
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It is called irreducible if for each ordered pair pv, wq of vertices there is some N P N
so that the probability of visiting w from v within N steps is positive.

The above definition of reversibility is less restrictive than in most definitions
that can be found in literature but will be convenient for the rest of this assignment.
For non-reinforced irreducible random walk visiting a state once almost surely
implies that all states are visited infinitely often almost surely. This does not
hold a priori for reinforced random walk. We will therefore choose the following
definitions of (positive) recurrence and transience.

Definition 2.1.2. A state is called recurrent (transient) if it is visited infinitely
(finitely) often almost surely. We call it positive recurrent if the expected return
time to the initial vertex is finite. A stochastic process on a discrete state space
is called (positive) recurrent (transient) if all its states are (positive) recurrent
(transient).

The following model of reinforced random walk is due to Kozma, [11].

Definition 2.1.3 (Reinforced Random Walk). Let G “ pV,Eq an undirected lo-
cally finite connected graph and pweqePEpGq : N Ñ p0,8q. The we are sometimes
called conductances or weights. To avoid confusion, the notion ’initial weight’ de-
notes a positive vector a, while ’weights’ is reserved for random variables. We call
the wep¨q reinforcement functions and a value weptq routine. For a vertex v let
NGpvq denote the set of vertices adjacent to v in G. Let X be an infinite path in
G, i.e. a sequence of adjacent vertices. Let t P N, v :“ Xt, e P EpGq and define for
any edge e

Npe, tq :“ |tn P N : 1 ď n ď t, tXn´1, Xnu “ eu|

the number of transversals of edge e up to time n. Note that we do not care about
the direction of transversal. Define for all u P NGpvq

PpXt`1 “ u|X0, X1, . . . , Xtq :“
wtu,vupNptu, vu, tqq

ř

xPNGpvqwtx,vupNptx, vu, tq
. (2.4)

If X satisfies (2.4), we say it is reinforced random walk with reinforcement pweqePEpGq.

With this definition the probability of choosing an edge is proportional to the
value of wepNpe, tqq. We will only deal with non-decreasing functions wep¨q in
this assignment. Local finiteness of G is not only a simplifying condition but also
ensures that the walk X is well-defined. If, for instance, there are infinitely many
edges incident to a vertex v, the denominator in (2.4) need not be a finite number.
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2.2 Once Reinforced Random Walk
Consider the reinforcement function

wepnq “

#

a n “ 0

a` 1 else.

This simplified model was introduced by Davis, [5], due to the long absence of
theoretical results for LRRW . While intuitively much simpler the problem turned
out to be anything but easy. In April 2016 Kious and Sidoravicius, [10, p.2], were
able to prove the existence of a phase transition in a on Zd-like trees, the first
result of this kind for once reinforced random walk.

2.3 Superlinear Reinforcement
We call a reinforced random walk superlinear if the reinforcement functions we are
non-decreasing and for all e P EpGq

8
ÿ

i“0

1

wepiq
ă 8. (2.5)

Superlinearly reinforced random walk on a locally finite graph turns out to get
stuck almost surely on one edge under some minor assumptions, the result is due
to Limic and Tarres, [13]. We will not give the entire proof but only concentrate
on a proof idea.

Theorem 2.3.1. Let G be a locally finite graph, let e be the first edge traversed,
let w :“ we be a non-decreasing function satisfying

8
ÿ

i“0

1

wpiq
ă 8. (2.6)

Then
PpThe process gets stuck on e for eternity.q ą 0.

Proof. Let e “ tu, vu be the first edge traversed and letK :“ maxpdegGpuq, degGpvqq.
Then

PpThe process gets stuck on one edge for eternityq ě
8
ź

i“0

wpiq

pK ´ 1qwp0q ` wpiq
“

8
ź

i“0

ˆ

1´
pK ´ 1qfp0q

pK ´ 1qfp0q ` wpiq

˙

ą 0

since all factors are strictly positive and the infinite product is a positive number
if and only if the sum in (2.6) converges.
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2.4 Linear Reinforcement
We will only consider one type of function, namely wepnq “ ae ` n for all edges
e for positive constants ae. If the increment was different, say for instance d ą 0,
we would easily transform a1 “ a

d
. By looking at (2.4) it is obvious that this

transformation has no impact on the resulting process. If the we are increased
by 1 after each transversal the sum in (2.6) does not converge. But it diverges
very slowly, the partial sums are of order Oplnpnqq. We denote linearly reinforced
random walk on a graph G by LRRW pG, aq where a “ paeqePEpGq are the initial
weights. We will at first not make any assumptions on the initial vertex, but just
assume that some initial vertex x0 is given.

2.4.1 Expected Return Time is not Finite

The following example implies that the expected return time is not finite, except
for trivial cases where |V pGq| ď 3. It is inspired by Angel, Crawford and Kozma,
[1].

Example 2.4.1. Let G be a locally finite graph, let ae ” a. Let x0 be the
initial vertex and e “ tx1, x2u some edge at distance 1 from x0. Let K :“
maxtdegGpx0q, degGpx1q, degGpx2qu. For M P N denote by EM the event that
LRRW pG, aq moves from x0 to x1 and then traverses edge e M times back and
forth. Of course, PpT0 ě 2Mq ě PpEMq. The probability of EM may be estimated
from below by

PpEMq ě
1

K

M´1
ź

i“0

2i` a

2i` 1`Ka

M´1
ź

i“0

2i` 1` a

2i` 1`Ka
“ (2.7)

“
1

K

M´1
ź

i“1

ˆ

1´
pK ´ 1qa

2i` 1
`O

ˆ

1

i2

˙˙2

ě CpKqM´pK´1qa

for some CpKq ą 0. Now observe that for a ď 1´ε
K´1

for some ε ą 0 we have

ErT0s ě 2MPpT0 ě 2Mq ě 2MCpKqM´1`ε
“ 2CpKqM ε

for some CpKq ą 0. Thus the expected return time cannot be finite for sufficiently
small a.
The situation is not much different if we drop the conditions a ď 1´ε

K
and ae ” a.

(2.7) is increasing in ae. Denote by δGpvq the set of edges incident to v. Let a1
be different intial weights, let a˚ “ maxta1e, e P δGpx1q Y δGpx2qu. For N P N we
define EN analogously to EM . Assuming that EN ocurs we may as well adjust the
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initial weights and suppose that the process starts at x1, still having the focus on
the first visit of x0. Choosing N sufficiently large we observe that

PpEM |EN , a1q ě PpEM |aq

holds for all M P N. Since the probability of EN is positive the expected return
time is infinite also in the general case.



Chapter 3

Exchangeability and Mixtures

3.1 LRRW on Trees and Pólya’s Urns
Pólya’s urn model works the following way. We start with an urn containing 2 balls
of different colour. At each time step we draw a ball from the urn with probability
proportional to the number of its kind. It is returned, followed by an extra ball of
its kind. This stochastic process has many convenient properties. We are going to
compare it with LRRW on a star graph first.
The material of the following paragraph is due to Pemantle, [17]. Consider the
star graph S5 consisting of the center x0 and 5 additional vertices. LRRW pS5, 1q
for initial vertex x0 may be modelled as a Pólya’s urn process. It starts with an
urn containing 5 balls of 5 different colours. Each colour may be understood as
an edge. Again, at each time a ball of a is drawn from the urn with probability
proportional to the number of its kind, i.e. an edge is chosen with probability
proportional to its routine. It is returned, but now followed by two extra balls of
its kind. This is clear viewing that an edge must be traversed back and forth by
lack of other possibilities. We may, of course, choose a different initial vertex v. In
this case we still take the center x0 as the initial vertex, but initially with two balls
of the colour corresponding to tx0, vu instead of one. For the model corresponding
to LRRW pS5, 1q let Ūn be the relative content at time n, i.e. a stochastic vector
whose entries are the probabilities for the next colour chosen. Let Bn be the colour
of the ball drawn in the n-th step.

1. Ūn satisfy equation (2.1)! This follows directly from interpreting Un as the
vector of transition probabilities. Notably, (2.2) does not hold.

2. The probability of any finite sequence pB1, B2, . . . , Bnq is invariant w.r.t.
finite permutations, i.e. for all ρ P Sn.

PpB1 “ b1, . . . , Bn “ bnq “ PpB1 “ bρp1q, . . . , Bn “ bρpnqq. (3.1)

9
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Now let T “ pV,Eq be a locally finite tree. We attach an urn U v at each
vertex v P V pT q containing degT pvq different balls (i.e. one for each edge) and
perform LRRW pT, 1q for a fixed initial vertex x0. We assume that it is recurrent.
Let T vn denote the time of the n-th visit of a vertex v. Let U v

n denote the relative
content of the urn attached at vertex v at time T vn . Leaving a vertex v via edge e
implies returning to v via e. Observe that the edge by which v is visited first is
determined by the tree structure of T and x0. Thus we may split up LRRW pT, 1q
into a set of independent processes LRRW pSv, ¨q corresponding directly to urns
U v, so for each collection of vertices v1, v2, . . . , vk the sequences

pU v1
n qnPN, . . . , pU

vk
n qnPN

are jointly independent.
This model can easily be extended to LRRW

`

T, paeqePEpT q
˘

for any initial weight
vector a ą 0 as long as recurrence holds true. The foregoing discussion and the
following theorem are due to Pemantle, [17].

Theorem 3.1.1. Suppose an urn contains ui balls of type i at the beginning for
1 ď i ď m and that at each step one ball is added to the urn. Again we denote by
Un “ pUn,1, . . . , Un,mq the vector containing the amounts of balls of each colour in
the n-th step. Define by

Ūn :“
Un

řm
i“1 Un,i

, ūi “
ui

řm
i“1 ui

the relative number of balls after the n-th chosen ball. At each step a ball is added
to the urn, with probability for being of type i equal to Ūn,i. The ui need not be
integers, this is well-defined for any positive ui. Then Ūn converges almost surely
to a random variable U whose distribution has density

fUpp1, . . . , pmq “
Γp
řm
i“1 uiq

śm
i“1 Γpuiq

m´1
ź

i“1

pui´1
i p1´ p1 ´ ¨ ¨ ¨ ´ pm´1q

um .

The proof of this Theorem is delayed until the end of Section 3.2.
A process B satisfying (3.1) is called exchangeable. The definition of partial
exchangeability is not consistent in literature. Diaconis and Freedman as well
as Rolles defined partial exchangeablity by the number of directed, respectively
undirected edge transversals. We will choose the latter by Rolles, [19], since we
only observe the process on undirected graphs. The definition of exchangeability
may be extended to random variables on general spaces, see for instance Hewitt
and Savage, [8], and Diaconis, [21]. Hewitt and Savage use the term ’symmetric’
instead of ’exchangeable’.
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Definition 3.1.2 ((Partial) Exchangeablity). 1. Let Z be some countable state
space, X be a ZN-valued random variable. We call X and its probability
measure P exchangeable if P is invariant w.r.t. finite permutations, i.e. for
all n P N for all ρ P Sn`1

PpX0 “ x0, . . . , Xn “ xnq “ PpX0 “ xρp0q, . . . , Xn “ xρpnqq.

2. Let G “ pV,Eq be a graph, X a V pGqN-valued random variable on the set of
paths in G. We call two finite directed paths y, y1 equivalent,

y ” y1,

if they start in the same vertex and for each edge e, y and y1 traverse e
equally often. In this context e is considered to be undirected. Naturally, y
and y1 need to have the same length. We call X and its probability measure
P partially exchangeable if for all y, y1, y ” y1

Ppyq “ Ppy1q.

In other words P is constant on equivalence classes w.r.t. ”.

Lemma 3.1.3. LRRW is partially exchangeable.

Proof. The probability of a specific path is a product of expressions of the form
in (2.4). All denominators (and of course all numerators) are determined by the
number of edge transversals and these are the same for equivalent paths.

However, an exchangeable reinforced random walk need not be LRRW . If
|V pGq| “ 2, any reinforced random walk is partially exchangeable. But also for
general trees there are partially exchangeable processes that are not LRRW as the
following example shows. Let T be a locally finite tree, x0 be the initial vertex.
For all edges e define the reinforcement function recursively by

wep0q “ a0, wepnq “

#

wepn´ 1q ` d1 if n even
wepn´ 1q ` d2 if n odd .

It is easy to see that the resulting process is partially exchangeable although it
is not LRRW . We would need to extend the definition of LRRW to directed
graphs. But still, each time leaving v, the total routine

ř

ePδGpvq
wepNpe, tqq of

edges incident to v must be determined by the number of times v has been visited.
The following characterization of LRRW on 2-connected graphs has been obtained
in the course of the elaboration of this thesis.
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Theorem 3.1.4. Let X be some reinforced random walk with reinforcement func-
tion pweqePEpGq on a graph G “ pV,Eq, |V pGq| ě 3. If X is partially exchangeable
then for all e P EpGq, for all n P N

wepn` 2q ´ wepnq “ 2d (3.2)

for a non-negative constant d. If, additionally, e is contained in a cycle then

wepn` 1q ´ wepnq “ d

.

Proof. Let y “ px0, x1, . . . , xkq be a finite path in G and let X0 “ x0 almost
surely. By abuse of notation let y also be the event of performing y in the first
steps of X. Its probability is

Ppyq “
k´1
ź

i“0

wtxi,xi`1upNptxi, xi`1u, iqq
ř

xPNGpxiqwtxi,xupNptxi, xu, iqq
. (3.3)

We only look at denominators
ÿ

xPNGpxiq

wtxi,xupNptxi, xu, iqq (3.4)

for xi P V pGq, the numerators being determined anyway by the transition numbers.
We are going to prove the first part by choosing two paths y1 ” y2. G contains
the line LG “ ptx0, x1, x2u, ttx0, x1u, tx1, x2uuq as an induced subgraph, eventually
renaming the vertices in G. Suppose the process has already been walking along
a path y of length n ´ 1 ě 0 and is at x1 right at the moment. Let Nij “

Nptxi, xju, nq be the number of transversals of txi, xju up to time n. Denote by
w´L “

ř

xjPNGpx0qztx0,x2u
w1jpN1jq the sum of routines over all edges incident to

x1 and not in EpLGq. Denote by ry, y1, . . . s the concatenation of paths y, y1, . . . .
Define

y1 “ px1, x0, x1, x2, x1q and y2 “ px1, x2, x1, x0, x1q.

Clearly y1 ” y2. By partial exchangeability Ppry, y1sq “ Ppry, y2sq. As we do not
want to write the probabilitiy of ry, y1s and of ry, y2s in terms of the form in 3.3
we observe:

1. All terms that correspond to transitions within y and to the transition from
the last vertex of y and x1 are equal and cancel out.

2. All numerators on the left side appear exactly once on the right side, so all
numerators cancel out.
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3. The denominators corresponding to the following transitions within y1 and
y2, respectively, are pairwise equal.

• x1 Ñ x0 within y1 and x1 Ñ x2 within y2

• x0 Ñ x1 within y1 and x0 Ñ x1 within y2

• x2 Ñ x1 within y1 and x2 Ñ x1 within y2

Cancelling out these terms in Ppry, y1sq “ Ppry, y2sq yields

w´L ` w12pN12q ` w01pN01 ` 2q “ w´L ` w12pN12 ` 2q ` w01pN01q ô

w01pN01 ` 2q ´ w01pN01q “ w12pN12 ` 2q ´ w12pN12q.

Since this holds true for all pairs of edges incident to each other the first claim of
the theorem holds.
To prove the second part let c “ px0, x1 . . . , xk, xk`1 “ x0q be a cycle in G. W.l.o.g.
the process starts in x0 (or else let x0 be the node in c visited first). Let ys be
a path that runs n ě 0 times through the whole cycle and traverses the edge
txk´1, xku s times additionally back and forth. We denote this path by ys. Take
y1 “ px0, x1, . . . , xk, x0, xkq, y2 “ px0, xk, x0, x1, . . . , xkq. Partial exchangeability
implies Pprys, y1sq “ Pprys, y2sq, so

rw0,kpnq ` wk´1,kp2s` n` 1qs ¨ rw0,kpn` 1q ` w0,1pn` 1qs “

rw0,kpn` 1q ` wk´1,kp2s` nqs ¨ rw0,kpn` 2q ` w0,1pnqs

Simplifying wk´1,kp2s` ¨q “: ws, w0,k “: g, w0,1 “ h yields

rgpnq ` wspn` 1qs ¨ rgpn` 1q ` hpn` 1qs “ (3.5)
rgpn` 1q ` wspnqs ¨ rgpn` 2q ` hpnqs.

By taking y1 “ px0, x1, x0, xk, . . . , x1q, y2 “ px0, xk, . . . , x1, x0, x1q, i.e. swapping w
and h, we obtain a second equation.

rgpnq ` hpn` 1qs ¨ rgpn` 1q ` wspn` 1qs “ (3.6)
rgpnq ` hpn` 1qs ¨ rgpn` 2q ` wspnqs

Subtracting (3.6) from (3.5), reordering and simple calculation steps lead to

wspn` 1q ´ hpn` 1q

wspnq ´ hpnq
“
gpn` 2q ´ gpn` 1q

gpn` 1q ´ gpnq

Now manipulating w by s finishes the proof. The left side tends to 1 for s Ñ 8,
the right side can take but two values (for n odd resp. even) and thus needs to
be equal to 1. Hence gpn` 2q ´ gpn` 1q “ gpn` 1q ´ gpnq and the second claim
holds true.
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We finish this chapter with a corollary to 3.1.4.

Corollary 3.1.5. Let G “ pV,Eq be a locally finite connected graph. Let X be
some partially exchangeable reinforced random walk on G. If G is 2-connected then
X is LRRW .

Proof. Each edge in a 2-connected graph is contained in a cycle.

3.2 Mixtures of Markov Chains
For many results in probability theory concerning sequences of random variables it
is assumed that these random variables are i.i.d. or at least pairwise independent.
Already for the simplest reinforced process in this assignment, Pólya’s urn model,
this assumption clearly does not hold. Due to the various results following from
independence a useful technique is to represent a sequence of dependent random
variables by integrating over the space of sequences of i.i.d. random variables.

Definition 3.2.1 (Mixtures of i.i.d. sequences). Let pX , τq be a Polish space, let
BpX q be the Borel-σ-algebra generated by sets in τ . We write BpX qN :“

Â

nPN BpX q
for its product-σ-algebra. Let Y be a random variable with image contained in
X and pYnqnPN˚ be a sequence of not necessarily independent X -valued random
variables, let P be the probability measure associated with pYnq.
Let P Ă mpX q be a family of probability distributions on BpX q and BpPq be the
σ-algebra generated by the sets in its weak topology. pYnq is called mixture of i.i.d.
sequences if there exists a measure µ on BpPq so that for all A P BpX qN

PpAq “
ż

P1

πN
pAqdµpπq

where πN is the product bπ of countably many identical replicas π P P.

In Bayesian statistics, the law of µ is usually called the prior of P. It may be
interpreted as a ’density on a density’. For a stochastic path process on a graph
the analogue of π is the transition matrix of a Markov chain. For a given state v
the conditional random variables

Xt`1|Xt “ v

may be regarded as a (maybe finite) sequence of i.i.d. random variables. Markov
chains are a big field of study by themselves. Therefore we introduce the notion
of mixture of Markov chains. The following definition is due to Diaconis, [6].
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Definition 3.2.2. Let G “ pV,Eq be a graph, X a V pGqN-valued random variable,
X0 “ x0 for some x0 P V pGq. Let P be the probability measure associated with X.
Denote by P the space of stochastic matrices P “ pppv, wqqv,wPV pGq on V pGqˆV pGq
for which

ppv, wq ą 0 ñ tv, wu P EpGq. (3.7)

We denote by BpPq the σ-algebra generated by all sets of the form

tP P P |ppv, wq P A,A Ă r0, 1s, A open, tv, wu P EpGqu. (3.8)

X is called a mixture of Markov chains if there exists a probability measure µ on
BpPq that satisfies for all n P N

PpXi “ xi, 0 ď i ď nq “

ż

P

n´1
ź

i“0

ppxi, xi`1qdµpP q.

We are typically interested in ergodic properties. In the case of Markov chains
these are, due to 0-1-laws, well-understood. For mixtures these break down. Pos-
sibly, some ergodic events happen with probability 1 one some Markov chains but
with probability 0 on others. Showing recurrence in case of a mixture is thus a
much more difficult task.

3.3 De Finetti and the Exchangeable σ-Algebra
To make the connection between mixtures of i.i.d. random variables and Markov
chains explicit some notation is required. Let X be a the space of finite paths
starting and ending in x0 and not visiting x0 in between. If X is some recurrent
walk we may cut it into pieces, each piece belonging to X . Thus we refer to X as
a sequence of X -valued random variables. Due to its countability we equip X with
the discrete topology. As a consequence the Borel-σ-algebra BpX q is simply the
power set of X . If X is partially exchangeable, the pieces are exchangeable. By
Lemma 3.1.3 this holds especially true if X is LRRW . This property motivates
the definition of the exchangeable σ-algebra.

Definition 3.3.1. Let X ,BpX q, P and pYnqnPN as in Definition 3.2.1. For N P N˚
define by EN the σ-algebra containing all sets E P BpX qN for which

PppYnq P Eq “ PppYρpnqq P Eq

for all permutations ρ on N˚ that leave all but 1, 2, . . . , N unchanged. The ex-
changeable σ-algebra is E “

Ş

NPN EN .
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Like many results in probability theory de Finetti’s representation theorem is
the consequence of a result on almost sure convergence. To appeal first a bit on
intuition we begin investigating E in the i.i.d. case. The result is from Kallenberg,
[9]. It is known as the 0-1-law of Hewitt-Savage. In this setting the Yn are general
random variables.

Theorem 3.3.2. Let pYnqnPN˚ be a sequence of i.i.d. random variables. Let E be
the exchangeable σ-algebra. Then PpEq “ t0, 1u.

Proof. Let E P E . Let En “ CnpEq ˆ X N where CnpEq is the projection of E
to the first n coordinates. Since En P En it is measurable. The sequence pEnq
is monotonic and thus converges to E. We write Ẽn for the set X n ˆ En ˆ X N.
For sets A and B denote by A∆B the symmetric difference pAzBq Y pBzAq. By
exchangeability

PpẼn∆Eq “ PpEn∆Eq Ñ 0

and thus
PpEn X Ẽnq Ñ PpEq.

Observe that by joint independence of pYnqnPN˚ , PpEn X Ẽnq “ PpEnqPpẼnq. We
have that

PppYnq P Eq Ð PppYnq P En X Ẽnq “ PppYnq P EnqPppYnq P Ẽnq Ñ P2
ppYnq P Eq.

Hence PpEq “ t0, 1u.

In the last theorem E was defined for i.i.d random variables. Of course, the def-
inition of E is not restricted to i.i.d. or exchangeable sequences; the concept easily
translates to arbitrary sequences of random variables defined on the same space.
Observe that any sequence of i.i.d. random variables is trivially exchangeable. The
converse does not hold true in general. Without assuming that the variables are
i.i.d., the statement of the last lemma breaks down. But observe the similarity be-
tween the last theorem and Kolmogorov’s 0-1-law for the shift-invariant σ-algebra.
Suppose that we are already aware of the ocurrence of an event E in E and move
the second element Y2 to a different place N far ahead, leaving the order of the
other Y ’s unchanged. By this we may hold Y2 back further and further. So it is
only natural to suspect that deleting Y2 has no impact on E. By doing so we do
not care much about Y2, E is still true if we leave the rest of the Y ’s unchanged.
Hence knowing that E occurs we might as well assume that Y1 is independent of Y2

since Y2 was deleted anyway. The above reasoning leads to the following definition.

Definition 3.3.3. Let X ,BpX q and pYnq be as in Defininition 3.2.1. Let F Ă

BpX qN be some sub-σ-algebra. We say that pYnq are conditionally i.i.d. if for all



CHAPTER 3. EXCHANGEABILITY AND MIXTURES 17

N P N, for all Ai P BpX q, i “ 1, . . . , N

P

˜

n
č

i“1

rYi P Ais|F

¸

“

N
ź

i“1

PpY1 P Ai|Fq.

Conditional independence is the key property linking the two notions of ex-
changeability and mixture. The following two theorems have first been proved by
de Finetti for sequences of Bernoulli variables. Ryll-Nardzewski proved it for gen-
eral Polish space random variables, see [9]. A version for locally compact Hausdorff
spaces was stated and proved by Hewitt and Savage, [8]. We apply the theorems
with the sequence pYnqnPN˚ from the beginning of the section. The notion of back-
wards martingales turns out to be useful. The approach of Hewitt and Savage is
based on functional analysis while Ryll-Nardzewski’s requires a rigorous proof of
the reasoning above.

Theorem 3.3.4 (De Finetti, Ryll-Nardzewski). Let X “ LRRW pG, aq for some
locally finite graph G and positive initial weights a. Assume that X is recurrent,
so X “ pYnqnPN, where the Yn are x0-x0-paths. Then pYnqnPN are conditionally
independent given the exchangeable σ-algebra E.

Theorem 3.3.5. Let the assumptions of the last theorem hold. Then pYnqnPN˚ is
a mixture of i.i.d. sequences.

Definition 3.3.6. A backwards filtration is a sequence of σ-algebras

. . . ,F´n Ă ¨ ¨ ¨ Ă F´1 Ă F0. (3.9)

Let M “ p. . . ,M´2,M´1,M0q be a sequence of integrable, adapted, real-valued
random variables. We call M a backwards martingale if

EpM´n|F´n´1q “M´n´1 (3.10)

holds almost surely.

There is a version of the martingale convergence theorem for backwards mar-
tingales. The use of negative indexing in (3.9) and (3.10) is little more than a
formality. We will not give the whole proof but only the outlines. A version may
be found in Rogers and Williams, [18].

Theorem 3.3.7. Let pM´nqnPN be a uniformly integrable backwards martingale.
Then M´n converges almost surely to a random limit.
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Proof. Clearly, ErM0|F´ns “M´n by the tower property of martingales, we may
see pMkqk“´n,...,0 as a martingale. For a ă b P Q denote by Unpa, bq the number of
upcrossings of the interval ra, bs by pM´n,M´n`1, . . . ,M0q.

ErUnpa, bqs ď
Er|M0|s ` a

b´ a

holds by Doob’s upcrossing inequality. Hence the number of upcrossings stays
almost surely finite. Thus M´n converges almost surely to a random limit M´8.

We are going to apply the theorem only using indicator functions on the space
of finite paths. The following proof is due to Diaconis, [6, p.26–28].

Proof of Theorem 3.3.4. Denote by Yn the projection of pYkqkPN to the n-th
coordinate. Let A P BpXq. Define

MA
n “

1

n

n
ÿ

i“1

1YiPA.

For any set A P BpY q exchangeability yields

MA
n “ Er1Y1PA|Ens. (3.11)

By substituting M̃A
´n :“ MnpAq we note that pM̃A

n q is a backwards martingale.
Since indicator functions are bounded this backwards martingale is uniformly in-
tegrable. Thus the limit MA

8 exists and is given by

MA
8 “ lim

nÑ8

1

n

n
ÿ

i“1

1YiPA “ Er1YiPA|Es.

We now show conditional independence of the Yk. For A1, . . . , Ak P BpX q we define

f : Y k
Ñ t0, 1u, fpy1, . . . , ynq “

k
ź

i“1

1yiPAi .

Write npkq for npn´ 1q ¨ ¨ ¨ pn´ k ` 1q and define

M´n “
1

npkq

ÿ

ρPSn

fpYρp1q, . . . , ρpnqq.

Like before, pM´nqnPN is a uniformly integrable backwards martingale and thus

ErfpY1, . . . , Ykq|Es “ lim
nÑ8

1

npkq

ÿ

ρPSn

fpYρp1q, . . . , Yρpnqq “

“ lim
nÑ8

1

nk

ÿ

ρPSn

fpYρp1q, . . . , Yρpnqq
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Since all appearing terms are non-negative and the function
řn
i“1 1YiPA is of order

Opnq we may exchange summation, limit and product to get

PpY1 P A1, . . . , Yk P Ak|Eq “
k
ź

i“1

lim
nÑ8

1

n

n
ÿ

i“1

1YiPAi “

k
ź

i“1

PpYi P Ai|Eq

which finishes the proof.

The idea of the following proof of Theorem 3.3.5 by construction is based loosely
on Kallenberg, [9], and Hewitt and Savage, [8].

Proof of Theorem 3.3.5. We construct the measure space pP ,BpPqq via P. For
λ P r0, 1s XQ the event

Mλ
A “

“

MA
8 ď λ

‰

(3.12)

is E-measurable as well as countable unions and intersections of events of the form
in (3.12). Let P be again the set of distributions on BpX q and define BpPq as the
smallest σ-algebra containing all sets of the form

PA,λ :“ tπ P P : πpAq P r0, λsu.

for all A P BpX q, for all λ P r0, 1s X Q. For pAiqiPN Ă BpX q and pλjqjPN Ă r0, 1s
define for P 1 “

Ť8

i“1

Ş8

j“1PAi,λj

µpP 1q :“ P

˜

8
ď

i“1

8
č

j“1

M
λj
Ai

¸

.

Clearly, µ is a probability measure. Let B “ B1ˆ ¨ ¨ ¨ ˆBkˆX N where Bi P BpX q
for i “ 1, . . . , k. Now, by Theorem 3.3.4, for any B of the form above

PpB|Eq “
k
ź

i“1

Ep1YiPBi |Eq.

holds almost surely. If we choose E ‰ H of the form

Eε :“
k
č

i“1

rMBi
8 P rpi ´ εi, pi ` εiss

for pi, εi P p0, 1q, i “ 1, . . . , k then, for the above

k
ź

i“1

ppi ´ εiqP pEεq ď
n
ź

i“1

PpB|Eεq ď
k
ź

i“1

ppi ` εiqP pEεq .
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Now let P ε
B be the set of probability distributions π on BpX q for which pi ´ εi ď

πpBiq ď pi ` εi, i “ 1, . . . , k. With this notation the last equation simplifies to
˜

k
ź

i“1

pπpBiq ´ εiq

¸

µpP ε
Bq ď PpB|Eq ď

˜

k
ź

i“1

pπpBiq ` εiq

¸

µpP ε
Bq.

Summing up for
Ţ8

i“1Ei,ε “ X N and letting εÑ 0 leads to

PpBq “
ż

P

k
ź

i“1

πpBiqdµpπq “

ż

P
πN
pBqdµpπq. (3.13)

Since all B P BpX qN may be approximated by finite unions of finite intersections
of sets in BpX qk ˆ X N for some k P N the existence of the measure µ with the
disired properties is proved. We show almost sure uniqueness of µ on a generator.
By (3.13)

PpMλ
Aq “

ż

P
πpMλ

Aqdµpπq “

ż

P
1πpAqPr0,λsdµpπq “ µpPA,λq,

where the equality in the middle follows by the strong law of large numbers. Since
the sets PA,λ generate BpPq, µ is unique.

Now that it is proved that sequences of exchangeable random variables are mix-
tures of i.i.d. sequences we may apply this to show Theorem 3.1.1. The sequence of
chosen balls is exchangeable and thus a mixture of i.i.d. sequences. Alternatively
the relative content (i.e. the probability of choosing a specific ball) converges al-
most surely to a random limit by the Martingale Convergence Theorem. Hence
to prove Theorem 3.1.1 it suffices to show that the density of the mixing measure
coincides with the one of a Dirichlet distribution. The following proof has been
obtained in the course of the elaboration of this thesis.

Proof of Theorem 3.1.1. We will prove the theorem by induction on m. The
base is m “ 2, let us just have red and white balls. For simplicity of notation let
Ur be the amount of red balls and ur and uw the initial amounts of red and white
balls, respectively. Denote by p the realization of the limit of Ūr,n, the relative
amount of red balls. Since the sequence of chosen balls is exchangeable, we may
write the probability of an event in terms of i.i.d. random variables and the mixing
measure. The probability of an event Ur,n “ ur`nr in terms of mixtures (denoting
by µ the mixing measure) is

PpUr,n “ ur ` nrq “

ˆ

n

nr

˙
ż 1

0

pnrp1´ pqn´nrdµppq. (3.14)



CHAPTER 3. EXCHANGEABILITY AND MIXTURES 21

Elementary combinatorial probability leads to

PpUr,n “ ur ` nrq “

ˆ

n

nr

˙

śnr´1
j“0 pur ` jq

śn´nr´1
j“0 puw ` jq

śn´1
j“0 puw ` ur ` jq

“ (3.15)

“

ˆ

n

nr

˙

βpur ` nr, uw ` n´ nrq

βpur, uwq
(3.16)

with β being the Beta-function defined by

βpa, bq “
ΓpaqΓpbq

Γpa` bq

Knowing that (3.14) and (3.15) are equal we may write
ż 1

0

pnrp1´ pqn´nrdµppq “
βpur ` nr, uw ` n´ nrq

βpur, uwq
“

“
1

βpur, uwq

ż 1

0

pur`nr´1
p1´ pquw`n´nr´1dp “

ż 1

0

pnrp1´ pqn´nr
pur´1p1´ pquw´1

βpur, uwq
dp

Hence we obtain fppq “ Γpur`uwq
ΓpurqΓpuwq

pur´1p1 ´ pquw´1 or for p “ ppr, pwq essentially
fppr, pwq “

Γpur`uwq
ΓpurqΓpuwq

pur´1
r ppwq

uw´1. Note that writing fppr, pwq instead of fppq
does not change anything since pr ` pw “ 1. Now that the theorem is proved for
m “ 2 let us make the induction step.

mÑ m` 1
Suppose that we are suffering from red-green-blindness, the first colour is red and
the second green, i.e. p1 “ pr ` pg and u1 “ ur ` ug. Thus we have

fUppr ` pg, p2, . . . , pm´1, pmq “

Γp
řm
i“1 uiq

śm
i“1 Γpuiq

ppr ` pgq
ur`ug´1

m´1
ź

i“2

pui´1
i p1´ pr ´ pg ´ p2 ´ ¨ ¨ ¨ ´ pm´1q

um . (3.17)

By omitting all but red and green balls we obtain the same process as for two
colours. Thus the probability of rŪr ď z|Ūr ` Ūg “ p1s is

ż
pr
p1

0

sur´1p1´ squg´1

βpur, ugq
ds “

ż pr

0

´

t
p1

¯r´1 ´

1´ t
p1

¯g´1

βpur, ugq

dt

x1

“

“
1

βpur, ugqp
ur`ug´1
1

ż pr

0

tur´1
pp1 ´ tq

ug´1dt
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Differentiating w.r.t. pr and multiplying with (3.17) yields

fUppr, pg, p2 . . . , pmq “

“
Γpur ` ug `

řm
i“2 uiq

ΓpurqΓpugq
śm

i“2 Γpuiq
pur´1
r pug´1

g

m´1
ź

i“2

pui´1
i p1´ pr ´ pg ´ p2 ´ ¨ ¨ ¨ ´ pm´1q

um´1

Renaming

u11 “ ur, u
1
2 “ ug, u

1
3 “ u2, . . . , u

1
m`1 :“ um,

p11 :“ pr, p
1
2 :“ pg, p

1
3 :“ p2, . . . , p

1
m`1 :“ pm

finishes the proof.

3.4 Diaconis, Freedman and the Recurrent Case
In the last section we obtained a representation of exchangeable sequences of ran-
dom variables as a mixture of i.i.d. random variables. To generalizes the concept
we consider these i.i.d. random variables to be paths on a graph. For the proof
strategy the condition recurrence is crucial. The first part of the proof is due to
Diaconis, [6], the part about reversibility due to Rolles, [19].

Theorem 3.4.1. Let X “ LRRW pG, aq be recurrent. Then X is a unique mixture
of reversible Markov chains.

Proof. Recall the meaning of X , BpX q and Y from the beginning of the last sec-
tion. By recurrence, X is almost surely a sequence of X -valued random variables.
Consider the process pY1, Y2, . . . q which arises naturally by cutting X into pieces,
each piece contained in X . This sequence is a mixture of i.i.d. random variables.
For the rest of the proof we assume that such a sequence of i.i.d. random variables
with values in X is given and denote their probability distribution by P . We need
to show that this sequence corresponds to a reversible Markov chain. Let y1, y2 be
finite paths that end in the same state z and let xj P NGpzq. Although y1 and y2

are not contained in X they correspond to a set of paths in X and thus may be
seen as P -measurable events. We show the Markov property

P pry1, xjs|y1q “ P pry2, xjs|y2q

or, avoiding division by 0,

P py1qP pry2, xjsq “ P py2qP pry1, xjsq.
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Let X z be the set of finite paths starting in z, ending in x0 and not visiting x0 in
between. Since X is recurrent

P py1q “
ÿ

yPX z

P pry1, ysq.

Observe that for y1, y2 P Y , P pry1, y2sq “ P py1qP py2q and hence for y P X z

P pry1, ysqP pry2, xjsq “ P pry1, y, y2, xjsq “

“ P pry2, y, y1, xjsq “ P pry2, ysqP pry1, xjsq.

Summing up for y P X z we get

P py1qP pry2, xjsq “
ÿ

yPX z

P pry1, ysqP pry2, xjsq

“
ÿ

yPX z

P pry2, ysqP pry1, xjsq “ P py2qP pry1, xjsq.

Since the lengths of y1 and y2 are arbitrary, also time homogeinity holds.
To prove reversibility we will make use of cycles c in Y . Note that by partial
exchangeability the probability of any cycle starting and ending in x0 does not
depend on the orientation. Let c be a cycle and c´ be its reversal. By recurrence
one will arrive upon an element of c. Denote by QP pcq the probability w.r.t. the
Markov chain with transition matrix P that the process performs c. We denote
by µ the mixing measure. By partial exchangeability

q :“

ż

P
Q2
P pcqdµpP q “

ż

P
QP pcqQP pc

´
qdµpP q “

ż

P
Q2
P pc

´
qdµpP q.

Thus we may write
ż

P
pQP pcq ´QP pc

´
qq

2dµpP q “ q ´ 2q ` q “ 0.

Since the integrand is non-negative we conclude that QP pcq “ QP pc
´q almost

surely for all cycles c. We still need to show that µ is a Borel-measure. We refer
to Pv,w as the set reversible stochastic matrices P “ pp¨, ¨q for which ppv, wq P B
for some Borel set B Ă r0, 1s. Pv,w is exactly the set of distributions π on X for
which

πpw is visited after the first visit to vq P B

since the event rv is visiteds is an almost sure one. Sets of this form generate
BpPq.

Remark 3.4.2. If we choose the definition of partial exchangeabiliy in the sense
of Diaconis and Freedman everything works fine up to reversibility.
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3.5 The Set of Reversible Markov Chains
There is no need to represent a reversible Markov chain by its associated transition
matrix. We may as well define a reversible chain if we choose the weight of one
edge e1 to be 1 and arbitrary positive weights W “ pWeqePEpGq for all other edges.
By setting

ppu, vq “
Wtu,vu

ř

wPNGpuqWtu,wu

(3.18)

the resulting matrix is the transition matrix of a reversible Markov chain. Let G
be a locally finite connected undirected graph. Since the notation is easier in terms
of directed graphs we substitute each edge in G by a pair of oppositely directed
edges. We will denote by δ`Gpvq the set of edges going out of a vertex v. P “ pp¨, ¨q
is the transition matrix of a reversible chain if and only if it is a solution to the
system

@v P V pGq :
ÿ

ePδ`Gpvq

ppeq “ 1

@ cycles c P G :
ź

ePc`

ppeq “
ź

ePc´

ppeq

@e P EpGq : ppeq ě 0.

Indeed, the system is quite easy to solve for trees since no cycles exist. Choosing
an arbitrary set Pv of degGpvq ´ 1 transition probabilities ppv, ¨q for each vertex
v P V pGq that fulfill

ř

pPPv
p ď 1, this determines the other transition probabilities.

But already in case G is a triangle the situation gets much more complicated. For
graphs containing cycles the set of non-linear equations in the second line become
cumbersome. However, irrespective of the last paragraph, µ is a mixing measure
on BpW q, where W “ p0,8qEpGqzte1u and BpW q is the σ-algebra generated by sets
of the form

tw “ pweqePEpGq|we0 P A Ă p0,8q, A open, e0 P EpGqu. (3.19)

for e0 P EpGq. By the above isomorphism we may always choose the more conve-
nient notation.

3.6 Pólya, Merkl, Rolles and the General Case
In case of trees T “ pV,Eq the existence of a representation in the general case is
almost trivial. The measure µ˚ induced by the product of countably many Dirichlet
distributions

ś

vPV pT qDv fulfills the properties of a mixing measure since for any
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finite path we could as well assume that G is finite. In this case the reasoning
at the beginning of Section 3.1 and Theorem 3.1.1 imply that µ˚ is a mixing
measure. The existence of a representation in terms of Markov chains without the
assumption of recurrence is non-trivial in case G contains cycles. These generate
dependencies between the edge weights. But providing sufficient conditions for
recurrence or transience is much easier given a representation, so for the latter
constructing a mixing measure is highly useful, motivating the statement of the
following theorem.

Theorem 3.6.1. On any locally finite graph G, for all initial weights 0 ă a “
paeqePEpGq LRRW pG, aq is a mixture of irreducible reversible Markov chains, no
matter if it is recurrent, transient or maybe neither.

Apart from the following example the results in this section, including the
statement above, are due to Merkl and Rolles, [15]. We give a short summary of the
proof strategy. First we compare the distribution of transition probabilities from a
specific vertex v for LRRW with the distribution of transition probabilities in case
of a star graph. For this comparison we introduce a concept called convex order.
We then consider mixing measures µpnq on an increasing sequence of subgraphs
Gn of G. We will argue later that on finite graphs LRRW is recurrent and thus
these measures exist. A tightness result leads to the construction of a weak limit
µ˚ of a subsequence. We prove that µ˚ fulfills the desired properties, finishing
the chapter proving that LRRW is recurrent if and only if it contains a recurrent
state. We use the notation introduced in the last section. µ˚ will be a measure on
p0,8qEpGqzte1u.
But first, let us provide a counterexample of a partially exchangeable process that
is not a mixture of Markov chains. The example is due to Diaconis and Freedman,
[6], and shows that Theorem 3.6.1 breaks down for general partially exchangeable
processes.

Example 3.6.2. Let G “ pt0, 1u, tt0, 1u, t0u, t1uuq be the graph consisting of one
edge and two loops. Observe first the following transient process X that starts at 0
and repeats 0 finitely often before switching to 1 and staying there forever. Denote
the probability that X walks along the transient path starting with k zeroes before
switching to 1 by mkpXq. Each path is uniquely determined by its initial vertex
and the transition numbers, hence partial exchangeability holds trivially. If X is
a mixture then the mixing measure µ puts strictly positive mass δ on pp1, 1q “ 1.
Therefore mk can be written as

mk “

ż

rpp1,1q“1s

ppp0, 0qqk´1pp0, 1qdµppq “ δ

ż 1

0

ppp0, 0qqk´1
p1´ pp0, 0qqdµppp0, 0qq.
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Observe that mk is decreasing in k. Now consider the degenerate process X 1 “

p0, 0, 1, 1, 1, 1, 1, . . . q. We show that X 1 is not a mixture of Markov chains. Triv-
ially, X 1 is partially exchangeable, so mkpX

1q is decreasing in k. But m1pX
1q “ 0,

m2pX
1q “ 1 and m3pX

1q “ 0. Contradiction to monotonicity. However, X 1 is not
LRRW , it does not even meet the assumptions of any reinforced random walk.

3.6.1 Convex Order and Pólya’s Urns again

This section will deal a lot with the routines on the edges. For simplicity we denote
by

wvptq “
ÿ

ePδGpvq

weptq (3.20)

the routine of edge e at time t and the sum of routines of edges incident to v,
respectively. The following result has been elaborated in the course of this thesis.

Lemma 3.6.3. On any finite connected graph G “ pV,Eq, X “ LRRW pG, aq is
recurrent for all strictly positive paeqePE.

Proof. For an infinite path y let V8 :“ V8pyq be the set of vertices are visited
by y infinitely often. Clearly, V8 ‰ H holds always true. We show that PpV8 ‰
V pGqq “ 0. Let v, v0 P V pGq, tv, v0u P EpGq. Let t P N. We write Wvptq and
Wv,v0ptq for wvptq and wv,v0ptq, considered random variabels. We have that

PpXt1 ‰ v0 for all t1 ą t|v P V8,Wvptq,Wv,v0ptqq ď (3.21)

ď

8
ź

i“0

ˆ

1´
Wv,v0ptq

Wvptq ` 2i´ 1

˙

ď exp

˜

´

8
ÿ

i“0

Wv,v0ptq

Wvptq ` 2i´ 1

¸

“ 0. (3.22)

Observe that (3.21) holds true for all possible values of Wvptq and Wv,v0ptq. Hence

PpDT P N : Xt ‰ v0 for all t ą T |v P V8q “ 0.

Thus, if v P V8 then v1 P V8 holds almost surely for all v1 P NGpvq and, iteratively,
for all v1 P V pGq. Observing again that V8 ‰ H finishes the proof.

Consider X “ LRRW pG, aq for initial vertex x0 on a finite graph G. Let
S “ Grtvu YNGpvqs be the induced star graph with center v. Reconsider Pólya’s
urn model from Section 3.1. Note that if G is a tree the routines of the edges in
S behave essentially like a Pólya urn model with increment 2 instead of 1. Since
the mixing measure in this case has a closed form a comparison between these two
models is desirable.
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Remark 3.6.4. In the last paragraph assuming v “ x0 is not very restrictive. If
it does not hold let e˚ be the edge by which v is reached first and t˚ the first time
v is visited. Since G is finite t˚ ă 8 almost surely by the statement of the last
lemma. Take

X 1
n “ Xn`t˚ , a1e “

#

ae ` 1 if e “ e˚

ae else
(3.23)

and realize X 1 on pG, a1q. Troughout this chapter, each time we talk about an
(induced) star graph we will assume without further mentioning that the process
starts in the center.

Fix a vertex v and an edge e incident to v. Let Ti be the i` 1-st visit to v. We
define

Mn :“
wepTnq

wvpTnq
(3.24)

Now consider the star graph S “ Grtvu Y NGpvqs induced by v and its adjacent
vertices. Let XS “ LRRW pS, paeqePEpSqq with xS0 “ v. Recall remark 3.6.4. Define
wSe ptq, wSv ptq and MS

n ptq analogously to (3.20) and (3.24), i.e.

wSe ptq “ ae `
t
ÿ

i“1

1eptX
S
i´1, X

S
i uq wSv ptq “

ÿ

ePEpGSq

weptq

MS
n ptq “

wSe pT
S
n q

wSv pT
S
n q
.

Define filtrations pGnqnPN and pGSn qnPN by

Gn “ σpwepTkq : k “ 0, . . . , nq and
GSn “ σpwSe pTkq : k “ 0, . . . , nq.

Lemma 3.6.5. MS
n is a martingale w.r.t. pGSn q and Mn is a martingale w.r.t.

pGnq.

Proof. The second statement is a special case of the first, hence showing that Mn

is a martingale suffices. Let Y be the set of paths that return to v infinitely often.
Consider the following partition of Y .

• An “ rtXTn , XTn`1u “ e, tXTn`1´1, XTn`1u “ es

• Bn “ rtXTn , XTn`1u “ e, tXTn`1´1, XTn`1u ‰ es

• Cn “ rtXTn , XTn`1u ‰ e, tXTn`1´1, XTn`1u “ es

• Dn “ rtXTn , XTn`1u ‰ e, tXTn`1´1, XTn`1u ‰ es
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Denote by pFnqnPN, Fn Ą Gn, some filtration so that the elements of the partition
are measureable w.r.t. Fn. Each element of the partition corresponds to a set of
finite paths, hence Fn is exists. Note that the transformation τn that reverts the
last pv, vq-path before Tn`1 is an isomorphism on Y . An and Dn are mapped onto
themselves respectively, Bn is mapped to Cn bijectively. By partial exchangeability
τn is measure preserving, hence PpB|Fnq “ PpC|Fnq. Observe as well that by
starting from v, PpAn YBn|Fnq “Mn. So

2PpAn|Fnq ` PpBn Y Cn|Fnq “PpAn YBn|Fnq ` PpAn Y Cn|Fnq “
“2PpAn YBn|Fnq “ 2Mn,

and hence

ErMn`1|Fns “
wepTnq ` 2P pAn|Fnq ` P pBn Y Cn|Fnq

wvpTn`1q
“

“
MnpwvpTnq ` 2q

wvpTn`1q
“Mn.

By definition Mn is measureable w.r.t. Gn, so writing Gn in the first and the last
term instead of Fn does not change anything.

Let us first give an intuitive comparison of Mn and MS
n . Assume that at each

time Tn we could treat Mn as if it was a result of XS. This means, that by
coincidence X left v the same number of times via e as it returned via e, i.e.
wepTnq “ wSe pTnq, hence Mn “MS

n . For a specific v-v-path c entering and leaving
v via different edges we denote by c` and c´ directed versions and by Npc`, nq
and Npc´, nq the number of walks along c` and c´, respectively. We note again
that LRRW is a mixture of reversible Markov chains. For a fixed reversible chain
the ratio

Npc`, nq

Npc`, nq `Npc´, nq

converges almost surely to 1
2
by the law of large numbers since c` and c´ have the

same probability. However, theMn andMS
n are not defined on the same probability

space. Apart from that MS
n is much coarser than Mn. This observation motivates

the definition of convex order.

Definition 3.6.6 (Convex Order). Let U, V be integrable random variables, not
necessarily on the same probability space. Denote by d

“ equality in distribution.
We say that U and V are in convex order, U Ÿ V , if there are random variables
U1

d
“ U and V1

d
“ V on the same probability space pΩ,A, P q so that pU1, V1q is a

1-step-martingale. If µ and ν are the probability measures associated with U and
V , respectively, we also write µŸ ν.



CHAPTER 3. EXCHANGEABILITY AND MIXTURES 29

Theorem 3.6.7. Denote the random limits of Mn and MS
n by M and MS, respec-

tively. These exist by the martingale convergence theorem.

Mn ŸM
S
n

holds true for all n P N and
M ŸMS.

Obviously M0 ŸMS
0 since they are equal. Mn and MS

n are not defined on the
same space. However, the statement implies that there is a space on which it is
possible to define Mn and MS

n so they fulfill the properties of LRRW and Pólya’s
urn model, respectively. Therefore we made an attempt to find a constructive
proof of Theorem 3.6.7. The result was anything but satisfactory. Instead, it
turns out to be convenient to introduce the Pólya urn transition kernel

Kn : r0, 1s ˆ Bpr0, 1sq Ñ r0, 1s, Knpx, ¨q “ x1λnx`1´λn ` p1´ xq1λnx, (3.25)

where λn :“ av`2n
av`2n`2

. We are going to use Kn for both MS
n and Mn. In the case

of MS
n the resulting process is in fact MS

n whereas in case of Mn this results in a
new random variable M̃n, defined as follows.

M̃0 :“M0, M̃n`1 :“
wepTnq ` 2 ¨ 1AnYBn

wvpTn`1q
“ λnMn ` 1AnYBnp1´ λnq. (3.26)

GivenMn, the value of M̃n`1 depends only on the edge by which X exits v at time
Tn. We would like to show that for all n P N

Mn Ÿ M̃n and M̃n ŸM
S
n

and conclude that Mn ŸMS
n and furthermore M ŸMS. To be able to do so we

show 4 properties of Ÿ in the next lemma. It is clear that we need transitivity of
Ÿ. For the conclusion

p@n P N Mn ŸM
S
n q ñ pM ŸMS

q

we need to show that Ÿ is preserved when we pass Mn and MS
n to their respective

limits. Proving Mn Ÿ M̃n is not a difficult task and hence shown in the proof of
Theorem 3.6.7. Part 4 requires Part 3 and is needed to show

Mn ŸM
S
n ñ M̃n`1 ŸM

S
n`1. (3.27)

Lemma 3.6.8. 1. Ÿ is transitive.

2. Let pUnqnPN and pVnqnPN be uniformly integrable martingales w.r.t. their nat-
ural filtrations Fn and Gn, respectively. If Un Ÿ Vn holds true for all n P N
then their respective limits U and V satisfy U Ÿ V .
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3. For i “ 1, . . . , n let µi Ÿ νi be probability distributions on R, let p P Rn
`,

||p||1 “ 1 be a stochastic vector. Then
řn
i“1 piµi Ÿ

řn
i“1 piνi.

4. Let µ, ν be probability measures on pr0, 1s,Bpr0, 1sqq, µ discrete on a finite
set and µ Ÿ ν. Let Kn be the Pólya transition kernel introduced in (3.25).
Then µKn Ÿ νKn.

Proof. 1. Let U Ÿ V ŸW be random variables and let pU1, V1q and pV2,W2q

the corresponding 1-step-martingales. Denote by P1pV1|U1q the conditional
probability of U1 given V1. Define P2pV2|W2q analogously. Now let P3 be the
law of a 3-point process M “ pU˚, V ˚,W ˚q given by

P3pAˆB ˆ Cq “

ż

A

ż

B

P2pW2 P C|V2 “ vqP1pV1 P dv|U1 “ uqdP puq

Denote by U3, V3,W3 the projections onto the first, second and third coor-
dinate, respectively. Observe that M is a Markov chain and U3

d
“ U, V3

d
“

V,W3
d
“ W by construction. By the tower property for martingales

EP3rW3|U3s “ EP3rEP3rW3|V3, U3s|U3s “ EP3rV3|U3s “ U3

Thus U ŸW .

2. Observe first that, since Vn is uniformly integrable, ErV |Gns “ Vn and thus
Vn Ÿ V . We have Un Ÿ V because Un Ÿ Vn Ÿ V . Thus there are U 1n

d
“

U and V 1n
d
“ V so that U 1n “ EPnrV 1n|U 1ns where Pn denotes the measure

on a common probability space. Equivalently, for any bounded continuous
function f : RÑ R

EPnrfpU 1nqU 1ns “ EPnrfpU 1nqV 1ns, (3.28)

pU 1nqnPN is uniformly integrable and therefore a tight sequence, the same holds
for V 1n. Thus there is a weakly convergent subsequence pU 1nk , V

1
nk
qkPN. Denote

its limit by pU 1, V 1q and the probability measure by P . Taking the limit in
(3.28) yields

EP rfpU 1qU 1s “ EP rfpU 1qV 1s,

again equivalent to U 1 “ ErV 1|U 1s. Thus U Ÿ V .

3. For i “ 1, . . . , n let Xi Ÿ Yi be random variables on a probability space
pΩi,Ai,Piq with laws µi and νi, respectively. Since for all i “ 1, . . . , n µiŸ νi
holds there exist a sub-σ-algebras Fi so that Xi “ ErYi|Fis. W.l.o.g. we
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assume that pXiqi“1,...,n and pYiqi“1,...,n are jointly independent, respectively,
and that the Ωi are pairwise disjoint. We take

Ω :“
n
ď

i“1

Ωi, A :“ σ

˜

n
ď

i“1

Ai

¸

PpAq :“ piPipAX Ωiq, F :“ σ

˜

n
ď

i“1

Fi

¸

.

Define X “
řn
i“1Xi1Ωi , Y “

řn
i“1 Yi1Ωi .

µ “
řn
i“1 piµi, ν “

řn
i“1 piνi and thus ErY |Fs “ X.

4. Let us first prove this for µ “ 1x. We want to show that if ν has expectation
x then

µKn “ x1λnx`1´λn ` p1´ xq1λnx Ÿ νKn. (3.29)

For this purpose we introduce random variables X, Y with joint distribution
ν bKn. We observe that Y ă X is equivalent to Y “ λnX and Y ě X is
equivalent to Y “ λnX ` 1´ λn. By this we deduce that

PpY ě Xq “

ż

r0,1s

ydνpyq “ x

ErY, Y ě Xs “

ż

r0,1s

pλny ` 1´ λnqydνpyq “ pλnx` 1´ λnqx` λnVarrνs

PpY ă Xq “ 1´ x

ErY, Y ă Xs “

ż

r0,1s

λnyp1´ yqdνpyq “ λnxp1´ xq ´ λnVarrνs.

Thus we have shown that

x1
λx`1´λ`λ Varrνs

x
` p1´ xq1

λx´λVarrνs
1´x

d
“ ErY |σprY ě Xsqs Ÿ Y „ νKn

By transitivity of Ÿ it suffices to show that

x1λx`1´λ ` p1´ xq1λx Ÿ x1λx`1´λ`λ Varrνs
x
` p1´ xq1

λx´λVarrνs
1´x

(3.30)

in order to prove (3.29). Let, more generally, A ď B ď C ď D P R satisfying

xA` p1´ xqD “ xB ` p1´ xqC.

We show (3.30) by

x1B ` p1´ xq1C Ÿ x1A ` p1´ xq1D. (3.31)
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For shortness we will write ∆xy “ x ´ y. Let Ω “ tB,Cu ˆ tA,Du, denote
its elements by pω1, ω2q. Define a measure µΩ on the power set of Ω by

µΩ “
x∆DB

∆DA

1BA `
x∆BA

∆DA

1BD `
p1´ xq∆DC

∆DA

1CA `
p1´ xq∆CA

∆DA

1CD

Note that in case A “ D, (3.31) is trivial. Otherwise

Erω2|ω1 “ Bs “ B and Erω2|ω1 “ Cs “ C

and 3.30 is proved. Now instead of µ “ 1x we take µ “
řn
i“1 pi1xi . If X „ µ

and Y „ ν with X “ ErY |Xs define

νi :“ P rY P ¨|X “ xis

Since the claim holds for one-point-measures,

1xiKn Ÿ νiKn.

Since µ is discrete on a finite set,

µ “
n
ÿ

i“1

pi1xi

for some stochastic vector p P r0, 1sn, ||p||1 “ 1. Using Part 3 of the lemma,

µKn “

8
ÿ

i“0

pi1xiKn Ÿ

n
ÿ

i“1

piνiKn “ νKn.

Proof of Theorem 3.6.7. The proof is by induction. Like mentioned before it
is obvious that M0 ŸMS

0 . Recall the partition tAn, Bn, Cn, Dnu and the isomor-
phism τ from Lemma 3.6.5. For the induction step consider again the random
variable M̃n defined in (3.26). We would like to show that Mn`1 Ÿ M̃n`1. Indeed,
Mn`11AnYDn ” M̃n`11AnYDn and hence the claim holds trivially on A and on D,
which are both measureable w.r.t. Gn`1. But observe that even on B Y C

M̃n`1 ` M̃n`1 ˝ τn`1 “ 2 ¨Mn`1.

Now observe that Gn`1 does not distinguish between the cases B and C. We
conclude

ErM̃n`1|Gns “ Er
1

2
pM̃n`1 ` M̃n`1 ˝ τn`1q|Gn`1s “Mn`1.
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We would like to show M̃n`1 Ÿ MS
n`1. Recall Part 4 of Lemma 3.6.8. By the

induction hypothesis Mn ŸM
S
n we get

M̃n`1 “ KnpMn, ¨q ŸKnpM
S
n , ¨q “MS

n`1.

and by transitivity of Ÿ, Mn`1 ŸM
S
n`1. Applying Part 2 of Lemma 3.6.8 yields

M ŸMS.

To make use of Theorem 3.6.7 we need to determine the distribution of MS.
Recall Remark 3.6.4 and recall that in the two models Mn and MS

n the initial
weights a need to be adjusted to a1 according to the edge by which v is first entered
in the case v ‰ x0. Then in order to compare M and MS recall that MS behaves
like Pólya’s urn with increment 2 instead of 1. Taking half the initial weight and
increment 1{2 instead of 1 leaves LRRW unchanged. Hence MS

n behaves like
Pólya’s urn with initial amount of balls a1e

2
and a1v´a

1
e

2
. Theorem 3.1.1 yields

MS
„

$

’

&

’

%

βpae
2
, av´ae

2
q if X0 “ v

βpae`1
2
, av´ae

2
q if X0 ‰ v, wepT

v
0 q “ ae ` 1

βpae
2
, av´ae`1

2
q if X0 ‰ v, wepT

v
0 q “ ae

. (3.32)

Note that

Weptq

Wvptq
“: M v,e

maxn:Tnďt
ÝÑ
tÑ8

M v,e

hold almost surely, where M v,e
n is the martingale in (3.24) defined via e and v.

M v,e is the almost sure limit of the probability w.r.t. a Markov chain of leaving
v via e. In the last chapter we made it clear that a reversible Markov chain may
always be defined in terms of non-negative weights on the edges.

3.6.2 Tightness of the Mixing Measures

Lemma 3.6.9. Let v P V pGq and e P δGpvq, let a “ paeqePEpGq and M v,e as above.
Then for LRRW pG, aq there exist constants κ1pae, avq, κ2pae, avq continuous in
both arguments so that for all ε ą 0

P pM v,e
ď εq ď κ1pav, aeqε

ae{2 and P pM v,e
ě 1´ εq ď κ2pav, aeqε

pav´aeq{2.
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Proof. We abrreviate Me,v “: M and MS
e,v “: MS. Recall that

M ŸMS, the last being βpa, bq-distributed with where a and b depend on wepT0q,
where T0 is the time of the first arrival at v. Jensen’s inequality for conditional
expectation implies that for all convex, bounded f : r0, 1s Ñ R

ErfpMqs ď ErfpMS
qs “

ż 1

0

fpxqdβa,bpxq.

Now let 0 ă ε ă 1. We apply this with

fpxq “

#

2´ 2x
ε

if x ď ε

0 else.
and gpxq “

#

0 if x ď 1´ ε

2´ 2´2x
ε

else

More importantly, 1r0,εs ď f ď 2 and 1r1´ε,1s ď g ď 2 and hence

P pM ď εq ď
2

βpa, bq

ż ε

0

xa´1
p1´ xqb´1dx ď

2

aβpa, bq
εa and (3.33)

P pM ě 1´ εq ď
2

βpa, bq

ż 1

1´ε

xa´1
p1´ xqb´1dx ď

2

bβpa, bq
εb. (3.34)

Note that ae
2
ď a ď ae`1

2
and av´ae

2
ď b ď av´ae`1

2
. Therefore we may bound (3.33)

and (3.34) by

2

aβpa, bq
εa ď

2
ae
2
βpae`1

2
, av´ae`1

2
q
ε
ae
2 “: κ1pav, aeqε

ae
2 and

2

bβpa, bq
εa ď

2
av´ae

2
βpae`1

2
, av´ae`1

2
q
ε
av´ae

2 “: κ2pav, aeqε
av´ae

2 .

Obviously, since the β-function is continuous, κ1 and κ2 are continuous in both
arguments.

Lemma 3.6.10. Let G be a finite graph and let paeqePEpGq Ă C for a compact set
C Ă p0,8q. Then there are constants aG, κG so that for all edges e, f

µpWe ď εWf q ď lκεaG{2l

where l is length of a shortest path between either ends of e and f .

Proof. Let y “ px0, . . . , xl`1q be an arbitrary path inG, denote by pe “ e0, . . . , el “
fq the corresponding edges.

aG “ inf
ePEpGq

ae ą 0, κG “ sup
vPV pGq,ePδGpvq

κ1pae, avq ă 8.
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The last estimate holds since av ď supePEpGqKae and by continuity of κ1. For all
ε ą 0

µ pWe ď εWf q ď µ
`

Di P t0, . . . , lu : Wei`1
ď ε1{lWei

˘

ď

l
ÿ

i“i

µpWei`1
ď ε1{lWeiq ď

l
ÿ

i“1

µpWei`1
ď ε1{lWviq ď lκGε

aG{2l.

The tightness result from the last lemma leads to construction of a mixing
measure in the transient case.

Theorem 3.6.11. Let G be a locally finite graph and let Gn be an increasing
sequence of finite subgraphs of G with limit G (for all e P EpGq there exists N P N
so that e P EpGnq for all n ě N). Define

W̃e “
We

We˚
(3.35)

where e˚ is the first edge traversed. Denote by µpnq the unique mixing measure on
Gn in terms of W̃e. There is a subsequence µkpnq so that for all finite F Ă EpGq

the law of pW̃eqePEpGq converges weakly to a distribution µ˚ on p0,8qF .

Proof. Fix n P N. Let e P EpGnq and y an pe˚, eq-path of length l. Choose
k0 “ k0pnq so that for each vertex x in y the edge set δGpxq belongs to Gn. Choose
κ :“ κGk0

and a :“ aGk0
according to lemma (3.6.10), by which we obtain

µkpW̃e ď εq ď lκεa{2l and µkpW̃e ě ε´1
q ď lκεa{2l.

for all k ą k0. Hence the measures pµkqkěk0 are tight on pW̃eqePEpGnq and contain a
weakly convergent subsequence. Since the set of finite connected subgraphs of G is
(by local finiteness of G) countable we obtain a diagonal sequence which converges
weakly to a a measure µ˚.

3.6.3 A Mixing Measure Always Exists

Now that we have constructed a measure we only need to show that it fulfills the
desired properties.

Proof of Theorem 3.6.7. Let µ˚ be a limit of a weakly convergent diagonal
sequence from the preceding lemma. Let y “ px0, . . . , xlq be a finite path in G.
For k sufficiently big we obtain
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P ppX0, . . . , Xlq “ yq “

ż

p0,8qEpGkq

l´1
ź

i“0

ppxi, xi`1qµkpp0,8q
EpGkqq

“

ż

p0,8qEpGq

l´1
ź

i“0

ppxi, xi`1qµ
˚
`

p0,8qEpGq
˘

(3.36)

where pp¨, ¨q denotes the transition probabilites uniquely determined by pW̃eqePEpGkq

or pW̃eqePEpGq. The last equality needs to hold since the integrands are continuous
functions of the weights. (3.36) is the representation in terms of Markov chains.
Since the the edge weights are almost surely strictly positive these Markov chains
are irreducible. Reversibility follows from the representation in terms of weights.

We finish this section with a powerful result following from the theory of Markov
chains.

Corollary 3.6.12. Let G be a locally finite, connected graph, let v P V pGq. For
LRRW the following statements are equivalent:

1. LRRW pG, aq visits v infinitely often almost surely.

2. LRRW pG, aq visits all vertices infinitely often almost surely.

Proof. 1. "2 ñ 1"
Trivial.

2. "1 ñ 2"
By Theorem 3.6.1 LRRW is a mixture of irreducible Markov chains, denote
the mixing measure by µ˚. Since v is visited infinitely often almost surely
by LRRW pG, aq, µ˚ needs to put mass 1 on the set Pr of recurrent Markov
chains. Otherwise, if µ˚pPrq ă 1 then

PpLRRW pG, aq visits v infinitely oftenq “ µpPrq ă 1

would hold. Visiting v infinitely often would not be an almost sure event, a
contradiction to the first statement in this corollary.



Chapter 4

Results on Recurrence and
Transience

4.1 The Dichotomy of Recurrence and Transience
on Trees

For Markov chains it is clear what positive recurrence means. For LRRW let us
make a note on this.

Definition 4.1.1. We say that LRRW is almost surely transient if its mixing
measure puts mass 1 on transient Markov chains.
We say that LRRW is almost surely (positive) recurrent if its mixing measure puts
mass 1 on (positive) recurrent Markov chains.

It is quite intuitive that for all locally finite graphs LRRW is either almost
surely recurrent or almost surely transient, but to our awareness no proof has
been given yet. For locally finite trees T , however, it is not difficult to prove a
dichotomy between almost sure recurrence and almost sure transience. Note first
that the mixing measure µ˚ given as the product of jointly independent Dirichlet
distributions

ś

vPV pT qDv does represent LRRW pT, aq. It may or may not be
unique, for the following it does not matter. Recurrence is a measurable event,
it corresponds directly to a set Pr of recurrent Markov chains. Suppose that
0 ă µpPrq ă 1. Then there is a vertex v so that the projection Pv of Pr to
pppv, wqqwPNT pvq is a set with measure µpDv P Pvq ă 1. But any Markov chain in
Pr is recurrent for almost all values of Dv. Thus Pr contains the entire image of
Dv a contradiction of µpDv P Pvq ă 1.

For regular trees TK`1 there is a phase transition for equal initial weights
ae “ a. The approximate critical values for different K are given in Table 6.1.
If not mentioned differently each result in this section is due to Pemantle,

37
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[17]. In his notation the reinforcement function is assumed to be

fpnq “ 1`∆n

for ∆ P R`. In fact the theorem is not limited to fixed regular trees but Galton-
Watson trees, assuming i.i.d. distribution of the number of children of each vertex.
We will only formulate it for fixed pK ` 1q-regular trees.

Theorem 4.1.2. For LRRW on an infinite pK ` 1q-regular tree TK`1 “ pV,Eq,
there exists a constant a0pKq so that the process is almost surely positive recurrent
if a ă a0 and transient if a ą a0.

We denote by x0 the initial vertex, w.l.o.g. x0 is the root of the tree. For all
v P V pT q ´ x0 we will denote by Parpvq and Par2pvq its parent and grandparent
and by Chpvq the set of its children. For v, w P V pT q we write v ă pďq w if w
is a descendant of v (a descendant of v or w “ v). The density for the transition
probabilities from each vertex v except x0 is given by

fvpp
v
0, p

v
1, . . . , p

v
Kq “

Γ
´

pm`1qa`1
2

¯

Γ
`

a`1
2

˘

Γ
`

a
2

˘K

˜

1´
K
ÿ

i“1

pi

¸
a`1

2

ppv1 ¨ ¨ ¨ p
v
Kq

a
2

pvi P r0, 1s, i “ 0, . . . , K,
K
ÿ

i“0

pvi “ 1

where K :“ degT pvq ´ 1, is the number of children of v for v ‰ x0 and p0 “

ppv, Parpvqq. Recurrence and transience do not depend on a finite number of
vertices, so we may as well assume that the transition probabilities for all vertices
are distributed like above. We denote by DpParpvq, vq and DpParpvq, Par2pvqq
the projections of DParpvq to p0 and pi for some i P t1, . . . , Ku, respectively. Define

φpvq :“
DpParpvq, vq

1´DpParpvq, Par2pvqq
.

and
ψprq “ infte´rtErφts : t P Ru.

The φpvq are not jointly independent, being obvious when looking at siblings v1, v2.
However, if a set V 1 Ă V pT q does not contain more than one child per vertex, joint
independence of φpvqvPV 1 holds true since the Dv are independent.
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Theorem 4.1.3. Abbreviate ψ̃prq :“ ψplnprqq.

1. If Erlnpφqs ě 0 then LRRW pT, aq is almost surely transient.

2. If Erlnpφqs ă 0 and suptKrψ̃prq : 0 ă r ď 1qu ă 1 then LRRW pT, aq is
almost surely positive recurrent.

3. If Erlnpφqs ă 0 and suptKrψ̃prq : 0 ă r ď 1qu ą 1 then LRRW pT, aq is
almost surely transient.

4. If 1 ď Erφs ď 8 then the sup in 2 and 3 occurs at r “ 1.

4.1.1 The Transient Case

Parts 1 and 3 are reduced to the following lemma, constructing a transient Markov
chain.

Lemma 4.1.4. By abuse of notation we define for a Markov chain X with tran-
sition matrix P “ pppv, wqqv,wPV pT q

φpvq :“ φpv|P q “
ppParpvq, vq

1´ ppParpvq, Par2pvqq
. (4.1)

Let k P N˚, L P R`, δ ą 0, r P p0, 1s be some fixed constants. Denote by Ti the set
of vertices at distance i from x0. Suppose we can find a nonempty set S Ă V pT q
with the following properties, writing Si :“ S X Tik.

1. v P Si`1 ñ Dv1 P Si : v1 ď v

2. v P Si ñ |tw P Si`1 : w ă vu| ě r´k

3. For all paths v “ v0 ă v1 ă ¨ ¨ ¨ ă vk with v0 P Si and vk P Si`1

k
ÿ

i“1

lnpφpviqq ě k lnprq ` δ (4.2)

4. φpvq´1 ď L for all v P S

Then X is transient.

To understand the intuition behind this look at the case r “ 1. Then a set S
contains a path v0, v1, . . . with vi ă vi`1. The sequence fpviq “

ś

văvi
φpvq´1 is

summable by the properties 3 and 4 of S. Restricting the process to the path the
expected number of visits to v0 is finite and thus the process needs to be transient.
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Proof. Define a function s : V pT q Ñ r0, 1s by

spvq “

$

&

%

|tw P Si`1 : v ď wu|

|tw P Si`1 : Parpvq ď wu|
if v P S

0 else
(4.3)

where v P Tj, ik ă j ď pi ` 1qk. Note that for each v P S,
ř

wPChpvq spwq “ 1. We
may view the pair pS, sq as a multistage experiment. Define recursively

t : V pT q Ñ R`, tpx0q “ 1

tpvq “
spvq

φpvq
tpParpvqq.

and
Mpvq :“

ÿ

wďv

tpwq.

Now let X̃, X̃0 “ x1 ‰ x0 be the Markov chain with transition matrix

p̃pv, wq “

$

’

&

’

%

ppv, wq v ‰ x0

0 v “ x0, w ‰ x0

1 v, w “ x0,

(4.4)

i.e. as X but stopped at the first arrival at x0. We show that MpX̃iq is a bounded
martingale.

ErMpX̃i`1q|X̃is “

“DpX̃i, ParpX̃iqqM
´

ParpX̃iq

¯

`
ÿ

wPChpX̃iq

DpX̃i, wqMpwq “

“MpX̃iq `DpX̃i, ParpX̃iqq

¨

˝´tpX̃iq `
ÿ

wPChpX̃iq

φpwqtpwq

˛

‚“

“MpX̃iq `
ppX̃i, ParpX̃iqq

tpX̃iq

¨

˝´1`
ÿ

wPChpX̃iq

spwq

˛

‚“MpX̃iq

To show that M is bounded, consider the case vk P Si. Let v0 P Si´1, v0 ă vk. By
properties 2 and 4 in Lemma 4.1.4

k
ź

i“1

spviq ď rk and
k
ź

i“1

φpviq
´1
ď e´δr´k.
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Thus tpvkq ď tpv0qe
´δ and by induction on i, tpvkq ď e´iδ. Since tpvq decreases

exponentially with the level of v, Mpvq is uniformly bounded in T . Hence by the
martingale convergence theoremMpX̃iq converges almost surely to a random limit
M8 with ErM8s “ ErMpx1qs ą 1. Thus PpM8 “ 1q ă 1 needs to hold true. More
importantly, the probability of never visiting x0 is positive. Thus the Markov chain
is transient.

We do not need to show that 1 and 3 are sufficient conditions for a set S like
in the last lemma, we only need to show that the existence of S has positive
probability. By deleting subtrees that do not contain elements in S it becomes
obvious that branching processes are a highly useful concept to eventually get a
set like S. For the following two theorems we will not give a proof. The first one
is due to Chernoff, [2]. It estimates probabilities of large deviations. We apply the
theorem with Xi “ lnpφq to construct a set S as in the last lemma. The second
one is a general result for Galton-Watson trees and is due to Harris, [7].

Theorem 4.1.5 (Chernoff, [2]). Let pXnqnPN be a sequence of i.i.d. random vari-
ables. Let Sn :“ X1 ` ¨ ¨ ¨ `Xn. For r P R let again

ψprq :“ infte´rtEretX1s : t P Ru.

Let r ą ErXns ě ´8. Then

PpSn ě nrq ď ψprqn (4.5)

and for any ψ0 ă ψprq
lim
nÑ8

ψ´n0 PpSn ě nrq “ 8. (4.6)

Further, ψ is continuous in r and strictly decreasing between ErX1s and essupX1.

Theorem 4.1.6 (Harris, [7]). Let B be a branching process. Each vertex bears a
random number I of children assumed to be i.i.d. and equal to i with probability
qi. Suppose that 1 ă λ :“ ErIs ă 8, so the probability of non-extinction is some
positive value 0 ă b ă 1. Let ε ą 0, 0 ă λ0 ă λ. Then

lim
nÑ8

Ppsize of the n-th generation ă ελn0 q “ b.

We call a tree d-infinite if it contains a subtree in which each vertex has at
least d children. We say that a vertex v has a pd, nq-subtree if n “ 0 or v has at
least d children, each having a pd, n ´ 1q-subtree. Suppose that B is a branching
process with generating function fpxq and C the branching process with generating
function f̄pxq “ fpr` p1´ rqxq. Comparing f and f̄ it becomes clear that B and
C are structurally not much different. The only difference is that in C already
existing vertices in a new generation are deleted with probability r.
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Lemma 4.1.7. Suppose that for C, the probability of a vertex having at least d
children, is at least 1´ r. Then B is d-infinite with probability at least 1´ r.

Proof. We show by induction that

PpC has a pd, nq ´ subtreeq ě 1´ r.

For n “ 0 this is trivial. The probability of a vertex having at pd, n` 1q-subtree is
the probability of having at least d children assuming that those who do not have
a pd, nq-subtree are deleted. By the induction hypothesis, children will be deleted
with probability at most r.

Lemma 4.1.8. For a branching process B denote by Bpkq the process for which

Bpkqn :“ Bkn.

Let λ, λ0 as in Lemma 4.1.6. Then there is some k P N so that

PpBpkq is tλk0u-infiniteq ě
1´ b

2
.

Proof. By Theorem 4.1.6 for some N sufficiently large

P
ˆ

size of n-th generation ą
4λn0

1´ b

˙

ą
3p1´ bq

4

holds for all n ě N . Now given a population of size ě 4λN

1´b
, if we kill each individual

independently with probability 1`b
2

for N sufficiently large

P pat least λn0 of them surviveq ě
3p1´ bq

4
.

The last inequality is just a consequence of the law of large numbers. Now we
apply Lemma 4.1.7 with BpNq and r “ 1`b

2
. For the process C the probability of a

vertex having at least λn0 children is

P
`

v has at least λN0 children
˘

ě

ě1´ P
ˆ

fewer than
4λN0
1´ b

children are born
˙

´Ppfrom more than
4λN0
1´ b

children less than λN0 surviveq ě

ě1´
1´ b

4
´

1´ b

4
“

1´ b

2

Hence BpNq is λN0 -infinite with probability of least 1´b
2
.
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Proof of Parts 1 and 3 of Theorem 4.1.3. Part 1 follows easily by the strong
law of large numbers for lnpφq and Lemma 4.1.8 choosing some r sufficiently close
to 1. Then for k and L sufficiently large we may use Lemma 4.1.8 to construct S.
We will thus only concentrate on the more difficult case of Part 3. Fix r so that
Krψ̃prq ą 1. Let δ1 ą δ2 ą δ3 ą 0 so that

ψ̃prq “
1` δ1

Kr
ą

1` δ2

Kr
ą

1

Kr
.

For shortness, write

Tnpεq “ tv P Tn :
ÿ

wăv

lnpφpvqq ą n lnprq ` εu.

By (4.5) in 4.1.5, since 1`δ2
Kr

ă ψ̃prq, for N sufficiently large and δ0 sufficiently
small

E p|TNpδ0qq|q ą K

ˆ

1` δ2

r

˙N

.

Picking L sufficiently large we may amend this to

E
“
ˇ

ˇtv P TNpδ0q : φpwq´1
ă L for all w ď vu

ˇ

ˇ

‰

| ą K

ˆ

1` δ3

r

˙N

.

We now define a branching process BpNq with initial ancestor x0 and elements of
pTkNqkPN, where v P TkN has w P Tpk`1qN , w ą v as a child if and only if

ÿ

vďv1ďw

lnpφpv1qq ě N lnprq ` δ0 and pφpv1qq´1
ă L

holds for all v1, v ď v1 ă w. By Lemma 4.1.8 the probability of the existence of
a set S like in Lemma 4.1.4 is strictly positive. Since µ˚ does not mix transience
and recurrence the process is almost surely transient.

4.1.2 The Recurrent Case

For the proof of Part 2 of Theorem 4.1.3 we construct an almost surely stationary
distribution αv by

fpvq :“
ź

x0ăwďv

φpwq

αx0 :“ 1, αv :“ pDpv, Parpvqqq´1fpvq.

Note that for w P Chpx0q the expression φpwq is not defined. But we may as
well add a vertex to x0 and define it as the root instead. This does not affect the
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process of being recurrent or transient. With this definition, α satisfies for all v
and w P Chpvq

αvDpw, vq “ αwDpv, wq.

To show that
ř

vPV pT q αv ă 8 we make use of the following lemma:

Lemma 4.1.9. Let k ą 1, 0 ă r ă 1. Suppose that Erlnpφqs ă 0. Define

Anprq :“ tv P Tn : αv ě rnu.

Then
Pp|Anprq| ě pKkψ̃prqqn for infinitely many nq “ 0.

Proof. Define
A1nprq “ tv P Tn : fpvq ě rnu.

For each v P Tn, by statement (4.5) of Theorem 4.1.5

P pfpvq ě rnq “

“P

˜

ÿ

x0ăwďv

lnpφpwqq ě n lnprq

¸

ď pψ̃prqqn.

Using linearity of expectation and noting that |Tn| “ Kn and k ą 1

Er|A1nprq|s ď pKψ̃prqqn (4.7)

and thus

E

«

ÿ

nPN

|A1nprq|

pKkψ̃prqqn

ff

ă 8. (4.8)

We conclude that at most finitely many summands in (4.8) are bigger than 1 and
so

Pp|A1nprq| ě pKkψ̃prqqn for infinitely many nq “ 0. (4.9)

We claim that (4.9) still holds true replacing A1n by An. Suppose that

Aprq :“ r|Anprq| ě pKkψ̃prqq
n f.i.m. ns

occurs with positive probability. Since ψ̃ is continuous and decreasing in p0,8q we
may choose r1, k1 r ą r1 ą 0 and k ą k1 ą 1 so that

ψ̃pr1q ă 1 and k1ψ̃pr1q “ kψ̃prq.
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Thus

Aprq “ r|v P Tn : αv ě rn| ě pKk1ψ̃pr1qq
n for infinitely many ns.

Now choose k2, k1 ą k2 ą 1 and choose N sufficiently large so that

pKk1ψ̃pr1qq
n
ě pKk2ψ̃pr1qq

n`1

holds for n ě N . Since αv “ pDpv, Parpvqqq´1fpvq, for all w P Chpvq, fpwq “
αvDpv, wq holds true. Thus the event

r|v P Tn : fpwq ě rnDpv, wq for some w P Chpvq| ě pKk2ψ̃pr1qq
n`1 f.i.m. ns

has positive probability as well. Now Dpv, wq and fpwq are not independent, but
even better. For p P r0, 1s

PpDpv, wq ě p for at least one w P Chpvq|αv ě rnq ě

PpDpv, wq ě p for at least one w P Chpvqq.

Thus the event

r|tw P Tn`1 : fpwq ě rn`1
1 u| ě pKk2ψ̃pr1qq

n`1 f.i.m. ns

has positive probability, a contradiction to (4.9).

Proof of Part 2 of Theorem 4.1.3. We would like to show almost sure finite-
ness of

ÿ

vPV pT q

αv “
ÿ

nPN

ÿ

vPTn

αv.

Then, after normalizing, α is a stationary distribution.
Let suptKrψ̃prq : r ą 0u “ 1 ´ δ1. Choose δ2, δ3 with 0 ă δ3 ă δ2 ă δ1. Let
l1 P p0, 1q so that Erlnpφqs ă lnpl1q ă ln

`

1
K

˘

. Let g : r0, 1s Ñ R be any function
satisfying

gptq ă t, Ktψ̃pgptqq ă 1´ δ3.

The purpose of g is to generate a cover tpli, uiquiPI Ytgp1q, 1u of pl1, 1s. The family
O :“ tpgptq, tqutPp0,1qYtpgp1q, 1qu contains a cover of rl1, 1s. Since rl1, 1s is compact
O contains a finite cover

tpli, uiqui“1,...,k

of pl1, 1s with li ă li`1. Take l0 :“ 0, u0 :“ l1, lk`1 :“. For all intervals pli, uiq, i “
1, . . . , k and for pgp1q, 1s we may apply Lemma 4.1.9 with r “ li and k “ 1´δ3

1´δ2
.

Thus with probability 1 there is some N so that

|Anprq| ă

ˆ

K
1´ δ3

1´ δ2

ψ̃pliq

˙n
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holds for all i, for all n ě N . Hence we may bound for all n ě N

ÿ

vPTn

αv “
k`1
ÿ

i“0

ÿ

vPTn:liďαvďui

αv ď

ďKnln1 `
k
ÿ

i“1

uni

ˆ

K
1´ δ2

δ3

ψ̃pl1q

˙n

ď pk ` 1qp1´ δqn

where the last equation follows by uiKψ̃pliq ă 1 ´ δ3. Thus α is almost surely a
stationary distribution.

4.1.3 The Calculation of the Phase Transition

The calculation of ψ̃ might be cumbersome. However, Part 4 of Theorem 4.1.3
will imply that it is not necessary to calculate ψ̃ but only ψ̃p1q “ ψp0q to obtain
the parameter at which the phase transition occurs.

Proof of Part 4 of Theorem 4.1.3 and Theorem 4.1.2. We now investigate
which case in Theorem 4.1.3 needs to be applied. We first establish Part 4. Suppose
that 1 ď Erφs ď 8. For r P p0, 1s

Krψ̃prq “ inftKr1´tErφts, t P Ru. (4.10)

Both terms r1´t and Erφts are increasing in t for t ą 1 since by Jensen’s inequality
Erφts ě Erφst ě Erφs. Thus the infimum on the right hand side occurs for t ď 1.
But for t ď 1 the expression in (4.10) is increasing in r so the supremum of the
left hand side must occur at r “ 1. Now we first determine a0pKq supposing that
Erφs ě 1. We will show later that this holds true anyway in a neighbourhood of
a0pKq. Since pp0, p1, p2 ` ¨ ¨ ¨ ` pKq is Dirichlet-distributed with parameters a`1

2
, a

2

and pK´1qa
2

,

ψp0q “ inf

#

E

«

ˆ

p1

p0

˙t
ff+

“ (4.11)

“

Γ
´

pK`1qa
2

¯

Γ
`

a`1
2

˘

Γ
`

a
2

˘

Γ
´

pK´1qa
2

¯ ¨

inf
t

"
ż ż

p
a`1

2
´t´1

0 p
a
2
`t´1

1 p1´ p0 ´ p1q
pK´1qa

2
´1dp0dp1

*

“

“ inf
t

Γ
`

a`1
2
´ t

˘

Γ
`

a
2
` t

˘

Γ
`

a`1
2

˘

Γ
`

a
2

˘ . (4.12)
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This expression is convex in t and symmetric about 1
4
which is thus the minimizer.

We define a0pKq for K “ 2, 3, . . . as the unique positive solution of

fΓpaq :“

`

Γ
`

a
2
` 1

4

˘˘2

Γ
`

a`1
2

˘

Γ
`

a
2

˘ “
1

K
. (4.13)

To see that a solution exists for K ě 2 note that fΓ is continuous in p0,8q and

lim
aÑ0`

fΓpaq “ 0, lim
aÑ8

fΓpaq “ 1.

To see that it is unique observe that the integrand for t “ 1
4
is strictly decreasing

in a. For a0 :“ a0pKq we have

ψp0q “

$

&

%

Γp
a0´1

2 qΓp
a0
2
`1q

Γp
a0`1

2 qΓp
a0
2 q

“ a0

a0`1
if a0 ą 1

8 else
.

It suffices to show that in a neighbourhood of a0pKq, Erφs ě 1. fΓ is strictly
decreasing. Taking a0pKq “ 0.9 we get

fΓp0.9q ą 0.83 ą
1

2
ě

1

K
,

so a0pKq ă 1 for K ě 2 and hence in a neighborhood of a0pKq, Erφs “ 8. Taking
K “ 1 results in the special case of LRRW pN, aq. ForK “ 1 equation (4.13) has no
solution. Thus LRRW pN, aq is recurrent for all initial weights a. Table 6.1 shows
numerical approximations of the critical values a0pKq for K “ 1, 2, . . . , 15.
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4.2 Almost Sure Positive Recurrence for Bounded
Degrees and Small Initial Weights

Until March 2012 little was known about return probabilities of LRRW in general
graphs. Angel, Crawford and Kozma, [1], managed to prove the following.

Theorem 4.2.1. Let K P N. Then there exists a constant a0pKq ą 0 so that
on any graph G with vertex degrees bounded by K, LRRW pG, aq is almost surely
positive recurrent for all a ď a0 componentwise.

The result is somewhat intuitive. For instance, it is a well-known fact that
simple random walk is transient on Z3. Hence, if the initial weights a are sufficiently
big it is natural to conjecture that the process behaves similar to simple random
walk and is thus transient. However, for small initial weights, an increment of 1
for an edge has a much bigger impact and makes it much more likely to return to
the initial (or any other) vertex. This conjecture has been proved rigorously by
Sabot and Tarrès, [20]. For d ě 3, LRRW pZd, ae “ aq is recurrent for sufficiently
small and transient for sufficiently large initial weights. For d P t1, 2u recurrence
always holds, the case of d “ 1 being a consequence of Theorem 4.1.3. The proof
by Sabot and Tarrés relies on a model called the Vertex Reinforced Jump Process.
The approach by Angel, Crawford and Kozma is completely different.
We give a short overview of the proof strategy. Like in Theorem 4.1.3 we construct
a stationary distribution. To do so we want to show that for almost all edges e the
weight We fulfills We ď cdpe,x0q where dpe, x0q is the distance of e from the initial
vertex and c P p0, 1q. This way assuming bounded vertex degrees is crucial, we
need to bound the number of edges at a certain distance l to the initial vertex which
is of order at most K l, explaining the role of K. The implication that this bound
holds for almost all weights will be a consequence of Markov’s inequality. Like
in the proof of Theorem 3.6.11 we will approximate the weights on a sequence of
finite subgraphs. The notion of convex order will not play a role, instead the path
by which the vertices are visited first is considered. We replace the dependent
normalized weights by a set of independent random variables, being the most
unconventional part of the proof. If not mentioned differently, the results in this
chapter are due to Angel, Crawford and Kozma, [1].

4.2.1 Bounding the Edge Weights

For the next results we will make use of the mixing measure µ on the space
p0,8qEpGq. Normalizing W̄e :“ We

Wx0
for the initial vertex of the process x0 does

not have any impact on the chosen Markov chain. For two vertices u, v de-
note by dpu, vq the length of a shortest path from u to v. Analogously, define
dpv, eq :“ minxPe dpv, xq. We state exponential decay in the following way.
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Theorem 4.2.2. Let G be an infinite connected graph satisfying
supvPV pGq degGpvq ď K for some K P N. Let s P p0, 1

4
q. Let x0 be the initial vertex

and e1 the first edge traversed. Then there exist constants a0 :“ a0ps,Kq and C
so that

ErW̄ s
e s ď E

„ˆ

W̄e

W̄e1

˙s

ď 2K pC
?
a0q

dpe,x0q . (4.14)

It would be nice to prove Theorem 4.2.2 for s “ 1 since fractional s may
only complicate any computation. However, even if G is a tree the ratio of edge
weights does not need to have finite first moment. The proof of Theorem 4.2.2 will
make use of directed edges instead of undirected ones, substituting each undirected
edge in G by two directed ones. For a directed edge e` “ pu, vq we will denote
by e´ “ pv, uq its reversal. Now let e` “ pu, vq be traversed by the walk. For
simplicity of notation we suppose that the path in the following construction has
length l. Let e`l “ pul, uq be the edge through which u is visited first and e`l´1 “

pul´1, ulq the edge through which ul is visited first and so on. This results in a path
Y `Γ :“ px0 “ u1, u2, . . . , uq “ pe

`
1 , . . . , e

`
l q starting in the initial vertex and ending

in u. On the fact that, in the recurrent case, this path determines the distribution
of MS

e,v and M e,v. Clearly, by construction, each edge e`1 , . . . , e
`
l is traversed by

LRRW before its corresponding inverse e´i . We will call γ` “ px0 “ u1, . . . , ulq,
a random variable itself, the path of domination. For a directed edge e` we will
denote by Dγ the event that γ is the path of domination of e`.

Since W̃e

W̃e1

“
śl´1

i“1

Wei`1

Wei
, bounding each of the factors will be sufficient, so

we would like to estimate W̃ei

W̃ei`1

. For shortness we will write e :“ e`i`1, f “ e´i

throughout the remaining part of this chapter. We introduce two random variables
Npeq and Npfq as follows. If e is traversed before f then take Npeq to be the
number of times that e is traversed before the first appearance of f and Npfq “ 1,
else vice versa. We define

R̃peq :“
Npeq

Npfq
, Rpeq “

We

Wf

. (4.15)

Hence we are estimating the ratio of weights R by the ratio of numbers of directed
edge traversals R̃.

Now let g be an arbitrary undirected edge in EpGq. Denote by YΓ the set of
paths of domination, by Y g

Γ the set of paths of domination terminating in g. The
identity

E
„ˆ

Wg

We1

˙s

“
ÿ

γPY gΓ

E
„ˆ

Wg

We1

˙s

1Dγ



holds under recurrence and in particular if G is finite. Note that without the
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assumption of recurrence we cannot ensure that the random variable Wg

We1
is well-

defined. For any fixed event Dγ we telescope

Wg

We1

“
ź

e1Pγ´e1

Rpe1q “
ź

e1Pγ´e1

Rpe1q

R̃pe1q

ź

e1Pγ´e1

R̃pe1q.

Applying the Cauchy-Schwarz inequality yields

E
„ˆ

Wg

We1

˙s

1Dγ



ď

ďE

«

ź

e1Pγ´e1

ˆ

Rpe1q

R̃pe1q

˙2s

1Dγ

ff
1
2

E

«

ź

e1Pγ´e1

R̃pe1q
2s
1Dγ

ff
1
2

.

It suffices to establish sufficiently small bounds for each of the terms on the right
hand side of the last equation. We will show this in the two following independent
lemmas. The main idea in both is to ignore the event Dγ at some suitable step.

Lemma 4.2.3. For any instance pG, aq so that LRRW pG, aq is recurrent, any
inital vertex x0, any γ P YΓ with lenght l and any s P p0, 1q there exists a constant
cpsq depending only on s so that

E

«

ź

e1Pγ´e1

ˆ

Rpe1q

R̃pe1q

˙s

1Dγ

ff

ď cpsql´1. (4.16)

Lemma 4.2.4. Let pG, aq be a recurrent instance, degGpvq ď K, a ď a0 for a
constant a0. For any initial vertex x0, any γ P YΓ with length l nd any s P p0, 1

2
q,

there exists a constant Cps,Kq depending only on s and K so that

E

«

ź

e1Pγ´e1

R̃pe1q
s
1Dγ

ff

ď pCps,Kqa0q
l´1 . (4.17)

Proof of Lemma 4.2.3. The first thing to note is, since we want to show ex-
ponential decay, we do not really care about exponentially growing terms like for
instance K l, we will still be able to keep the expectation bounded in (4.17) by
adjusting a0. Thus the first step is to ignore the event Dγ in (4.16). It is straight-
forward that

E

«

ź

e1Pγ´e1

ˆ

Rpe1q

R̃pe1q

˙s

1Dγ

ff

ď E

«

ź

e1Pγ´e1

ˆ

Rpe1q

R̃pe1q

˙s
ff

.
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Let again e :“ e`i`1, f :“ e´i . Observe that recurrence is still assumed and that the
definition of R̃peq is not tied to Dγ, so Rpeq and, especially, R̃peq are well-defined.
Now let W be one realization of the edge weights. Conditioning on W makes
Rpeq degenerate and R̃peqePγ independent, the second being a consequence of the
Markov property. We will show that

E
„ˆ

Rpeq

R̃peq

˙s ˇ
ˇ

ˇ

ˇ

W


ď Cpsq

holds uniformly in W. Note that the expression is almost surely (w.r.t. W) well-
defined, for instance by Lemma 3.6.10. Denote by v the vertex incident to e and
f . We are only interested in transversals of e and f from v. Neither transversals
of other edges from v nor transversals of e or f in the opposite direction have any
impact on Rpeq and R̃peq, given W. Since v is visited infinitely often anyway we
may as well assume degGpvq “ 2. Denote the probabilities of transversals of e and
f from v w.r.t. W by p and q, respectively. Of course, p` q “ 1. But 1

R̃peq
“

Npfq
Npeq

and so

E
„ˆ

Rpeq

R̃peq

˙s ˇ
ˇ

ˇ

ˇ

W


“

ˆ

p

q

˙s
˜

ÿ

ně1

nsqnp`
ÿ

ně1

n´spnq

¸

.

This expression converges for all p, q P p0, 1q. The first sum is the (fractional)
s-moment of a geometric random variable with parameter p and is of order p´sq.
The second term is the ´s-moment of a geometric random variable with parameter
q and is of order pqs. Those two facts can be proved using the representation of
the polylogarithm function

Lispzq “
ÿ

ně1

zk

ks
“

1

Γpsq

ż 8

0

ts´1

et

z
´ 1

dt,Repsq ą 0

and
Lis´1pzq “ z

B Lispzq

Bz
,

see for instance Cvijović, [4]. Together with the factor
´

p
q

¯s

they reduce to a term

E
„ˆ

Rpeq

R̃peq

˙s ˇ
ˇ

ˇ

ˇ

W



ď cpsqpq1´s
` p1`s

q ď cpsq

for some suitable cpsq independent of p and q. Putting that together yields
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E

«

ź

ePγ´e1

ˆ

Rpeq

R̃pe1q

˙s
ff

“

ż

p0,8qEpγq
E

«

ź

e1Pγ´e1

ˆ

Rpe1q

R̃pe1q

˙s ˇ
ˇ

ˇ

ˇ

W

ff

dµpW q ď

ď

ż

p0,8qEpγq
cpsql´1dµpW q “ cpsql´1

Proof of Lemma 4.2.4. The first problem we have to bring the focus to is the
dependence of the edge weights. We are going to construct independent random
variables R̄peqePγ with R̄peqePγ1Dγ ě R̃peqePγ1Dγ that satisfy inequality (4.17). For
e P γ ´ e1 and k P N define independent Bernoulli variables

Be
k “ Bern

ˆ

ae
k ` 1` ae ` af

˙

, Bf
k “ Bern

ˆ

1` af
2k ` 1` av

˙

.

f is again the edge preceding e in the path of domination γ and v the vertex
incident to e and f . Similarly to (4.15) we define

N̄peq “ mintk ě 1 : Bf
k “ 1u, N̄pfq “ 1, if Bf

0 “ 0

N̄pfq “ mintk ě 1 : Be
k “ 1u, N̄peq “ 1, if Bf

0 “ 1

and, accordingly,

R̄peq “
N̄peq

N̄pfq
.

Using this technique we may estimate R̄peq. For n ě 1 we have

PpBf
0 “ 0, N̄peq “ nq “

av ´ af
av ` 1

1` af
2n` 1` av

n´1
ź

k“1

ˆ

1´
1` af

2k ` 1` av

˙

ď

ď
av

av ` 1

1` av
2n

n´1
ź

k“1

ˆ

2k ` a0

2k ` 1` a0

˙

ď
a0

2n
K

ra0{2`n´1s
ź

k“ra0{2`1s

2k

2k ` 1
ď

ď
a0

2n
K

˜

ra0{2s
ź

k“1

2k

2k ` 1

¸´1
n´1
ź

k“1

2k

2k ` 1
ď

a0

2n
C̃pKq

n´1
ź

k“1

exp

ˆ

´
1

2k
`O

`

k´2
˘

˙

ď C̃pKqa0n
´3{2
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Observe that, since a0 is bounded and the term in the middle of the third line is
increasing in a0, we may choose C̃ independent of a0. Now the condition s ă 1{2
becomes clear.

E
”

R̄peqs1Bf0“0

ı

ď
ÿ

ně1

nsP
´

Bf
0 “ 0, N̄peq “ n

¯

ď C̃pKqa0

ÿ

ně1

ns´3{2

ď C̃ps,Kqa0,

since the sum converges for s ă 1{2.

E
”

R̄peqs1Bf0“1

ı

ď
ÿ

ně1

PpBe
n “ 1qn´s ď

ÿ

ně1

an´p1`sq ď C̃psqa,

since s ą 0.
Taking Cps,Kq “ C̃ps,Kq ` C̃psq proves the claim

EpR̄peqsq ď Cps,Kqa0.

We still need to show that

R̄peqePγ1Dγ ě R̃peqePγ1Dγ . (4.18)

For this purpose we direct LRRW pG, aq according to the values of Bk
e and Bk

f .
Let v P V pGq be some vertex. If v R γ nothing needs to be proved. If v P γ and
both directed edges e and f have already been traversed from v, R̃peq and R̄peq
are already determined and the proof follows from the cases below. Hence, at least
one of e and f has not been traversed yet and since Dγ holds, f has been traversed
at least once and e has not been traversed yet.

Case 1 v is visited the first time. Let t1 be the time of the first arrival at v. Since
Dγ holds true, this must be along f´, so e has still routine wept1q “ ae and
f has routine wf pt1q “ af ` 1. Hence the probability of exiting via f is

1` af
1` av

.

If Bf
0 “ 1, we exit through f (and with suitable probability if Bf

0 “ 0).

Case 2 Later visits to v, Bf
0 “ 0. Let tn be the time of the n-th visit to v. The

current routine of f is (since Dγ holds) at least wf ptnq ě 1 ` af and the
current routine of v is wvptnq “ 2n´ 1` av. Hence the probability of exiting
via f is

wf ptnq

2n´ 1` av
ě

1` af
2n´ 1` av

.

If Bf
n´1 “ 1 then we exit via f (and with suitable probability also if Bf

n´1 “

0).



CHAPTER 4. RESULTS ON RECURRENCE AND TRANSIENCE 54

Case 3 Later visits to v, Bf
0 “ 1. The edge e has not been traversed and still has

initial weight ae. We are going to ignore transversals of other edges than e
and f . So if LRRW pG, aq exits v via one of the edges e and f we direct
according to the decisions strategy above. Let tn be the n-th time v is exited
via f . Since f is in the path of domination, the current routine of f is at
least wf ptnq “ af ` n. Hence the probability of exiting via e is

ae
wf ptnq ´ af ` av

ď
ae

n` av
ď

ae
n` ae ` af

.

If Be
n´1 “ 0, we exit via f (and with suitable probability also if Be

n´1 “ 1).

Let us now check that taking the decisions above, R̃peq1Dγ ď R̄peq1Dγ holds.
Let Bf

0 “ 0, so either Case 1 or Case 2 needs to be applied. If n “ mintk ě 1 :
Bf
k “ 1u then LRRW has exited v via f by the pn` 1q-st exit and hence

R̃peq ď N̄peq ď n “ R̄peq.

Let Bf
0 “ 1. Case 3 holds. If n “ mintk ě 1 : Be

k “ 1u then f has been used
at least n times. Hence

R̃peq “
1

N̄pfq
ď

1

n
“ R̄peq.

We are now ready for the proof of Theorem 4.2.2.

Proof of Theorem 4.2.2. At first, remember that by normalizing Wx0 “ 1, so
Wg “

Wg

Wx0
.

E
„ˆ

Wg

Wx0

˙s

ď E
„ˆ

Wg

We1

˙s

“
ÿ

γPY gΓ

E
„ˆ

Wg

We1

˙s

1Dγ



C.S.
ď

ď
ÿ

γPY gΓ

E

«

ź

ePγ´e1

ˆ

Rpeq

R̃peq

˙2s

1Dγ

ff1{2

E

«

ź

ePγ´e1

R̄peq2s1Dγ

ff1{2

ď

ď
ÿ

γPY gΓ

“

Cp2sqlpγq´1
‰1{2

”

pCp2s,Kqa0q
lpγq´1

ı1{2

“

“
ÿ

γPY gΓ

pC0

?
a0q

lpγq´1 (4.19)

by setting C0ps,Kq “
a

Cp2sqCp2s,Kq. The inequality from the second to the
third line follows by lemmas 4.2.3 and 4.2.4. Choosing s P p0, 1{4q is the best we
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can do, otherwise Lemma 4.2.4 does not work. Now we choose a0 sufficiently small
so that

KC0

?
a0 ď

1

2
. (4.20)

This is still not our final a0, but for the moment it will do. Since the number of
simple paths of length l in G is at most K l and any path to a fixed edge g has
length at least dpg, x0q ` 1 we may bound (4.19) by

ÿ

γPY gΓ

pC0

?
a0q

lpγq´1
ď

ÿ

lědpg,x0q`1

K l
pC0

?
a0q

l´1 (4.21)

“
ÿ

lědpg,x0q

KpKC0

?
a0q

l
ď 2KpKC0

?
a0q

dpg,x0q. (4.22)

Redefining C “ C0K proves Theorem 4.2.2.

4.2.2 Tight Measures, Borel-Cantelli and Markov’s Inequal-
ity

Proof of Theorem 4.2.1. Let Gn “ Grtv P V pGq : dpv,Gq ď nus. Again we
denote the mixing measure for Gn by µpnq. Denote the weight for an edge g in
Gn by W n

g . Recall from Theorem 3.6.11 that the measures µpnq are a tight on
p0,8qEpGnq and thus there exists a convergent subsequence with limit µ˚. Now let
s P p0, 1{4q. Note that for any edge g P EpGnq we have by Markov’s inequality
and Theorem 4.2.2

µpnqpW n
g ą wq “ µpnq ppW n

e q
s
ą wsq ď

2KpC
?
a0q

dpg,x0q

ws
.

This inequality holds for all µpnq and hence also for any weak limit µ˚. Take
w “ p2Kq´dpg,x0q. Observe that the number of edges at distance l is at most K l`1.
Hence the probability of having an edge g at distance l “ dpg, x0q with weight
Wg ą w can be bounded by

PpDe P EpGq : dpe, x0q “ l,We ą wq ď K l`1
p2Kqsl2KpC

?
a0q

l
“

“ 2K2
p2sK1`sc

?
a0q

l. (4.23)

Now re-choose a0 so that 2sK1`sC
?
a0 ď

1
2
. This is our final a0.

(4.23) may be bounded by
K221´l.

The sequence K221´l is summable. Thus by the Borel-Cantelli lemma µ-almost
surely the number of edges e violatingWe ď p2Kq

´dpe,x0q is finite. The total weight
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of the edges is almost surely a finite number and hence a stationary measure πW
exists almost surely, given explicitly in terms of a realization of the weights W by

pπWpvqqvPV pGq “

˜

Wv
ř

vPV pGqWv

¸

vPV pGq

.



Chapter 5

Properties of the Mixing Measure

5.1 Initial Vertices and Measures
Needless to say, the mixing measure depends on the initial vertex. It would be
nice to find an explicit expression, i.e. a density w.r.t. some invariant measure.
In the finite case this has been done by Merkl, Öry and Rolles, see [14]. However,
for infinite trees the mixing measure is in general not absolutely continuous w.r.t.
Lebesgue measure on a cartesian product of simplices. This follows directly by
arguing that the product of infinitely many Dirichlet densities is, except for some
special cases, not a bounded function. But it is still reasonable to compare the
mixing measures for different initial vertices. At first we will focus on two adjacent
initial vertices x0 and x1. Let a0 and a1 be the total initial weight of edges incident
to x0 and x1, respectively. For trees the identity

dµ0pP q “
Γ
`

a0

2

˘

Γ
`

a1`1
2

˘

Γ
`

a1

2

˘

Γ
`

a0`1
2

˘

c

p1,0

p0,1

dµ1pP q (5.1)

is not too difficult to prove, thinking about each vertex and the star graph having
v as its center as an urn. In the finite case the mixing measure has a density w.r.t.
Lebesgue measure, given explicitly by the product of some Dirichlet densities.
Thus to show (5.1) all factors but one cancel out, passing to the limit (5.1) holds
still true. For general graphs we need a different approach. The following result
has been obtained in the course of the elaboration of this thesis.

Theorem 5.1.1. Let pG, a, x0q be a recurrent instance for LRRW with initial
vertex x0, pG, a, x1q the same instance but starting from x1. Denote their mixing
measures by µ0 and µ1, respectively. µ0 and µ1 are mutually absolutely continuous
and their derivative is given by (5.1).

Clearly, if pG, a, x0q is recurrent then pG, a, x1q needs to be recurrent, too. To
prove the theorem we will make use of paths starting and ending in x0 and x1,
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respectively. Recall that, if G is finite, x0 as well as x1 are visited infinitely often.
Interestingly, the derivative (5.1) depends only on the total initial weights a0 and
a1 and the values of p0,1 and p1,0 but not on any other values. We first start by
expressing the probability of a certain set of stochastic matrices by a set of finite
paths. The following lemma is mainly important to introduce some new notation,
the convergence result may as well be obtained using that LRRW is a mixture
of Markov chains. In the following it is assumed that LRRW pG, aq is recurrent,
let x˚ be some vertex, in the following called reference vertex. x˚ need not be
necessarily the initial one. Denote by µ0 the unique mixing measure for initial
vertex x0. Let e1 “ pv1, w1q, . . . , ek “ pvk, wkq be a finite set of directed edges in
the directed version of G. Let I1, . . . , Ik Ă r0, 1s be open nonempty intervals. We
denote by P 1 the set of reversible stochastic matrices P “ pp¨, ¨q on V pGq ˆ V pGq
that satisfy

ppeiq P Ii, i “ 1, . . . , k. (5.2)

For a finite path y “ pu0, . . . , ulq, a vertex v and an edge e “ tv, wu define

Nvpyq “ |t1 ď t ď l : ut “ vu|, (5.3)
Nepyq “ |t0 ď t ď l ´ 1 : tut, ut`1u “ tv, wu _ tut, ut`1u “ tw, vuu|. (5.4)

Observe that the first appearence of x0 does not count for Nvpx0q. This is not
essential for the statement or the proof of the following two lemmas but makes
things slightly easier.

Lemma 5.1.2. Let Yn :“ Y x0,x0
n pP 1q be the set of finite paths y that satisfy the

following.

1. y P Yn starts and ends in x0.

2. Nx0pyq “ n.

3. For ei “ pvi, wiq, Nvipyq “: N v
i and Neipyq “: N e

i satisfy

N e
i

N v
i

P Ii.

We call Yn the approximating set of P 1 for initial vertex x0 and reference vertex
x0. Then

µ0pP 1q “ lim
nÑ8

PpYnq.

Proof. The random variables Ne
i

Nv
i
converge for n Ñ 8 to the same random variable

as
weiptq

wviptq
“

Npei, tq ` ae
ř

wPNGpviqNptv, wu, tq ` av,w
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does for t Ñ 8, their convergence being guaranteed since recurrent LRRW is a
unique mixture of Markov chains. The dependence on Nx0 has no impact since
x0 is visited infinitely often almost surely anyway. Of course, the choice of the
reference vertex does not have any impact either. Since the random variables Ne

i

Nv
i

may be expressed as a function of y P Yn the claim of the lemma holds.

Now that we may approximate the mixing measure by the probability of a
certain set of paths we prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Let pG, a, x0q be a recurrent instance of LRRW with
initial vertex x0, pG, a, x1q the same instance but with initial vertex x1. Clearly,
changing the initial vertex does not affect recurrence. Let e0,1 “ px0, x1q, e1,0 “

px1, x0q, e1, . . . , ek be a set of directed edges. Let 0 ă p0,1 :“ ppx0, x1q, p1,0 :“
ppx1, x0q, p1 :“ ppe1q, . . . , pk “ ppekq ă 1. We assume that these p admit a re-
versible Markov chain, otherwise equation (5.1) holds trivially true. We collect
the p’s in a vector p P p0, 1qk`2, let ε P p0, 1qk`2 so that

0 ă p´ ε ă p` ε ă 1 (5.5)

holds componentwise. Denote by Pε the set of stochastic matrices P 1 “ p1p¨, ¨q on
V pGq ˆ V pGq associated with reversible chains that satisfy

p´ ε ď p1 ď p` ε.

For simplicity we will assume that ε “ ε1k`2, where 1k`2 is the all-ones vector in
Rk`2. This does not affect any step of the proof. Take a0 :“ ax0 , a1 :“ ax1 , a0,1 “

ax0,x1 . Denote by P0 and P1 the probability measures of LRRW pG, aq for initial
vertices x0 and x1, respectively. Let Y 0

n :“ Y x0,x0
n pPεq and Y 1

n :“ Y x0,x1
n be the

approximating sets for Pε and initial vertices x0 and x1, respectively. The reference
vertex for both approximating sets is x0. Clearly,

lim
nÑ8

P0pY
0
n pPεqq

P1pY 1
n pPεqq

“
µ0pPεq
µ1pPεq

.

We would like to estimate of the ratio PpY 0
n q

P1pY 1
n qf

. Let Sl be the set of cyclic permu-
tations pρjqj“0,...,l on t0, . . . , lu of the form

ρjpiq “

#

i` j ´ pl ` 1q if i` j ě l ` 1

i` j else
.

We now regard y “ pv0, . . . , vl`1q P Y
0
n as a cyclic object. We thus omit to write

vl`1, being equal to v0 anyway. Consider the equivalence classes

rys “ tpvρjpiqqi“0,...l : j P t0, . . . , luu

rys0 “ tpvρjpiqqi“0,...l : j P t0, . . . , lu, vj “ x0u

rys1 “ tpvρjpiqqi“0,...,l : j P t0, . . . , lu, vj “ x1u.
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It is not difficult to see that |rys0|
|rys1|

“
Nx0 pyq

Nx1 pyq
, so that

P0prys0q

P1 prys1q
“

Nx0pyq

Nx1py1q

P0py0q

P1py1q
,

where y0 and y1 are representatives of rys0 and rys1, respectively. Note that

p1,0 ´ ε

p0,1 ` ε
ď
Nx0pyq

Nx1pyq
ď
p1,0 ` ε

p0,1 ´ ε
(5.6)

But for all y P Y 0
n , rys0 Ă Y 0

n and rys1 Ă Y 1
n holds true. Splitting up Y 0

n and Y 1
n

into classes w.r.t. r¨s0 and r¨s1, respectively, yields

p1,0 ´ ε

p0,1 ` ε
inf

"

P0py0q

P1py1q
, y0 P Y

0
n , y1 P Y

1
n , ry0s “ ry1s

*

ď
P0pY

0
n q

P1pY 1
n q
ď

ď
p1,0 ` ε

p0,1 ´ ε
sup

"

P0py0q

P1py1q
, y0 P Y

0
n , y1 P Y

1
n , ry0s “ ry1s

*

.

The expression P0py0q

P1py1q
depends only on Nx0py0q “: n and Nx1py0q “: N1. We only

deal with the case n ě N1, the other case works the same way. Straightforward
calculation yields

P0py0q

P1py1q
“

2pN1´1q
ź

i“0
i even

pa1 ` iqpa0 ` i` 1q

pa0 ` iqpa1 ` i` 1q
loooooooooooooooomoooooooooooooooon

“:L1pN1q

2pn´1q
ź

i“2N1pyq´1
i even

a0 ` i` 1

a0 ` i

looooooooooomooooooooooon

“:L2p
N1
n
,nq

“: LpN1, nq.

Since LpN1, nq is decreasing in N1 and the ratio N0

N1
may be estimated using (5.6)

we choose

N`
1 pε, nq :“ n

Qp1,0 ` ε

p0,1 ´ ε

U

, N´
1 pε, nq :“ n

Yp1,0 ´ ε

p0,1 ` ε

]

.

Hence
LpN`

1 pε, nqq ď
P0py0q

P1py1q
ď LpN´

1 pε, nqq.

To determine the value of L we use the representation of the Gamma function

Γpxq “ lim
nÑ8

n!nx

xpx` 1q ¨ ¨ ¨ px` nq
.

L1pN1q converges to
Γpa0

2
qΓpa1`1

2
q

Γpa1`1
2
qΓpa0

2
q
“: Γ0,1
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and L2px, nq converges pointwise to
b

1
x
.

So, letting nÑ 8 we obtain

p1,0 ´ ε

p0,1 ` ε
Γ0,1

c

p0,1 ´ ε

p1,0 ` ε
ď
µ0pP

εq

µ1pP εq
ď
p1,0 ` ε

p0,1 ´ ε
Γ0,1

c

p0,1 ` ε

p1,0 ´ ε
.

Letting ε Ñ 0 and observing that sets of the type Pε generate BpPq finishes the
proof.

For shortness we will now write

Γv,w :“
Γ
`

av
2

˘

Γ
`

aw`1
2

˘

Γ
`

aw
2

˘

Γ
`

av`1
2

˘ ,

so for two adjacent vertices v, w

dµvpP q “ Γv,w

d

ppw, vq

ppv, wq
dµwpP q.

Write dv “ degGpvq. For all t P Rdv ,
ř

wPNGpvq tw “ 1

dµvpP q “
ÿ

wPNGpvq

twΓv,w

d

ppw, vq

ppv, wq
dµwpP q. (5.7)

This holds especially for tw “ ppv, wq and hence for all v

dµvpP q “
ÿ

wPNGpvq

Γv,w
a

ppw, vqppv, wqdµwpP q. (5.8)

Setting dµ “ pdµvqvPV pGq, PΓ “

´

Γv,w
a

ppv, wqppw, vq
¯

v,wPV pGq
we may write

equation (5.8) as

dµpP q “ PΓdµpP q ô pPΓ ´ 1qdµpP q “ 0. (5.9)

Now let µ˚v be a mixing measure for initial vertex v, obtained as a weak limit of
a sequence of measures pµv,nkqkPN on pGnkqkPN. Let pµ˚wqwPN pvq be weak limits of
pµw,nkq. Let e1 “ pv1, w1q, . . . , ek “ pvk, wkq be a finite set of directed edges, let
I1 . . . , Ik P Bpr0, 1sq. If P 1 “ pp1pv, wqqv,wPV pGq P BpPq is a set of the form

tP 1 P P : p1peiq P Iiu

then equation (5.8) still holds, the functions Γv,w
a

ppv, wqppw, vq being continuous.
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5.2 Uniqueness of the Mixing Measure on a Sub-
σ-algebra

We would like to prove uniqueness of the mixing measure in the general case. A
way of doing so is to use Lévy’s Continuity Theorem. But to do so we need finite
moments of the respective random variables. For this purpose the notation of µ as
a measure on the space of stochastic matrices is more convenient. The following
lemma and its proof have been obtained in the course of the elaboration of this
thesis.

Lemma 5.2.1. Let En be a finite set of edges in G, |En| “ n. For an edge
e “ tv, wu P En denote by ppeq :“ ppv, wqppw, vq the product of the transition prob-
abilities in either direction. The joint distribution of Pn :“ pppeqqePEn is uniquely
determined by G and a, thus independent of the choice of the mixing measure.

We first give a general idea of the proof strategy. Let x0 be the initial vertex,
let x1 be adjacent to x0 in G. We show uniqueness of the distribution of p :“
ppx0, x1qppx1, x0q. By Levy’s continuity theorem the distribution of p is uniquely
determined by its moment generating function Fpptq “ Eretps, provided that it is
bounded in a neighborhood of 0. But p is bounded by 1, so Fpptq is finite on all
R. The moments pk are determined by pG, aq since

ż

P
pkdµ˚

is exactly the probability of moving k times forth and back on tx0, x1u. This is
simply an event which may be expressed in terms of a. Thus the distribution of p
is uniquely determined.

Proof. If µ˚ is a mixing measure, it induces a probability measure on Pn. W.l.o.g.
we assume that En is connected and contains an edge incident to x0, otherwise we
make En bigger by adding some edges. We show that all moments

ś

ePEn
ppeqke

are determined. Then the moment generating function

MPn : Rn
Ñ R, MPnptq “ EretJPns

is determined and obviously bounded on all Rn. Lévy’s continuity theorem then
implies uniqueness of the distribution. Now let yn be a finite path that starts and
ends in x0 and traverses all edges in En at least once in both directions. Let ỹn be
some path that traverses each edge e additionally ke times back and forth. Denote
by pn :“

ś

ePEpynq
ppeq and p̃n “ pn

ś

ePEn
ppeqke the probabilities of yn and ỹn,
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respectively, w.r.t. some Markov chain. Denote by ym and ỹm the concatenation
of m versions of y and ỹ, respectively. Observe that for all l1, l2 the expression

ż

P
pl1n p̃

l1
n dµ

˚
“ Ppryl1 , ỹl2sq

is in fact the probability of a certain path, uniquely determined byG and a and thus
independent of the choice of the mixing measure. By Lévy’s continuity theorem
the joint distribution of ppn, p̃nq is unique. But hence the distribution of

ź

ePEn

ppeqke “
p̃n
pn

(5.10)

is unique and so its expectation is determined. Since all moments are of the form
in (5.10), MPn is determined which proves the claim of the lemma.

Corollary 5.2.2. The distribution of the matrix PΓ from the last lemma is unique.

Proof. PΓ is a function of ppeqePEpGq.

The last two chapters give reason to believe that for any locally finite graph G
and for any initial weights a the mixing measure for LRRW pG, aq is unique.
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Chapter 6

Tables

Table 6.1: Numerical approximations of the critical values a0pK ` 1q of phase
transition for LRRW on pK ` 1q-regular trees for K “ 0, . . . , 14.

K a0pKq
1 8

2 0.232910211931729
3 0.123919276013275
4 0.0847016129169972
5 0.0643922303308135
6 0.0519539698295227
7 0.0435487942006840
8 0.0374870609401862
9 0.0329079218397183
10 0.0293264016927345
11 0.0264483501283220
12 0.0240849558006896
13 0.0221094513992165
14 0.0204335560602396
15 0.0189938964084764
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Table 6.2: List of symbols

Symbol Meaning
N natural numbers including 0
N˚ natural numbers without 0
Z integer numbers
Q rational numbers
R real numbers
Z some countable state space
Sn symmetric group on a set with cardinality n

G “ pV,Eq a locally finite graph with vertex set V , edge set E
GrV 1s the graph induced by a subset V 1 of the original vertices

T “ pV,Eq a locally finite tree
S “ pV,Eq a finite star graph

degGpvq number of vertices adjacent to vertex v in G
K maximum degree in a graph or number of children in case of a tree
NGpvq set of vertices adjacent to a vertex v in G
δGpvq set of edges incident to a vertex v in G
δ`Gpvq outgoing edges in a directed graph
dp¨, ¨q shortest path metric
X stochastic process on Z

pX , τq a Polish space
Bp¨q σ-algebra on a set
E exchangeable σ-algebra
x0 initial vertex for X, X0 “ x0 almost surely
y a path in G

y`, y´ a directed path and its reversal
Y random variable on the space of x0-x0-paths or

general X -valued random variable
Y set of finite paths
γ path of domination
P probability measure w.r.t. some process

Er¨s expectation of a random variable or distribution
Varr¨s variance of a random variable or distribution
F ,G filtrations
M martingales and backwards martingales

LRRW linearly reinforced random walk
Bn chosen ball in Pólya urn process at time n
Un relative content in Pólya’s urn process at time n

Continued on next page
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Table 6.2 – continued from previous page
Symbol Meaning
Npe, tq number of transversals of edge e up to time t
a initial edge weights paeqePEpGq

weptq routine of edge e at time t, weptq “ ae `Npe, tq for LRRW
We the weight of an edge, seen as a random variable
W̃e like We, but normalized w.r.t. some constant
µ distribution or operator-valued probability measure
P transition matrix of a reversible chain
P set of probability measures or

set of reversible stochastic matrices
1x the point measure at x
1A the indicator function on the set A
Ÿ convex order
W fixed weights on the edges of a graph

Γp¨q the Gamma function
βp¨, ¨q the Beta function
κ,C, c functions continuous in all arguments serving to bound expressions
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