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Abstract

In this thesis a special stochastic optimal control problem is investigated.
The problem under study arose from a dynamic cash management model
in finance, where decisions about the dividend and the financing policy of
a firm have to be made. The control problem regarding this model con-
tains, in addition to the ordinary stochastic control part stemming from the
financing opportunity, a singular stochastic control part caused by the di-
vidend control. Furthermore, due to the fact that the firm can be liquidated
by its management, a stopping problem is included. The main discourse
is about the theoretical solution of stochastic optimal control problems, us-
ing the dynamic programming approach. For that purpose and due to the
features of stochastic optimal control problems, the theoretical background
with a focus on Markov processes is provided. For the considered model the
Hamilton-Jacobi-Bellman equation is formally derived and the verification
step is carefully examined. Finally the problem is solved numerically using
the policy iteration algorithm.
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Zusammenfassung

In dieser Arbeit wird ein spezielles stochastisches Kontrollproblem unter-
sucht. Dieses Problem entstand durch ein dynamisches Gelddispositionsmod-
ell in der Finanzwissenschaft, in welchem Entscheidungen über die Dividenden-
und die Finanzierungspolitik einer Firma getroffen werden müssen. Das
Kontrollproblem bezüglich dieses Modells enthält, über den gewöhnlichen
stochastischen Kontrollteil, stammend von der Finanzierungsmöglichkeit, hinaus,
einen singulären Kontrollteil, veranlasst durch die Kontrolle der Dividenden.
Da die Firma liquidiert werden kann ist auch ein Stoppproblem beinhaltet.
Der größte Teil der Arbeit behandelt die theoretische Lösung des stochas-
tischen optimalen Kontrollproblems unter der Verwendung der Methode des
dynamischen Programmierens. Zu diesem Zweck und durch die Eigenschaften
des Kontrollproblems wird der theoretische Hintergrund, speziell Markov
Prozesse, betrachtet. Die Hamilton-Jacobi-Bellman Gleichung wird für das
herangezogene Modell formal hergeleitet, außerdem wird die Verifikation un-
tersucht und ausgearbeitet. Schließlich wird das Problem unter der Ver-
wendung des Policy-Iteration Algorithmus numerisch gelöst.
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Chapter 1

Preliminaries

1.1 Introduction

This thesis is primarily concerned with a special stochastic optimal control
problem based on the paper “Capital supply uncertainty, cash holdings, and
investment” authored by Julien Hugonnier, Semyon Malamud and Erwan
Morellec [6]. In particular for the considered problem, we want to provide
the underlying theory about stochastic optimal control, extend and discuss
the existing material in the mentioned paper about the theoretical solution
and finally solve it numerically.

This first chapter contains the basic mathematical theory with which
questions and problems in finance and insurance can be handled. In the
following chapters we will specify the conditions of the considered problems
in order to use the tools which will be provided here. The starting point
builds some introductory theory about Markov processes, especially we are
looking at Markov diffusion processes, which play an important role in the
context of stochastic optimal control problems. To prepare the theory about
these problems is the main goal we want to achieve in this first chapter. The
following is mainly based on two books namely on the book by Rolski et al.
[14] and on the book by Fleming and Soner [5]. In particular on the one
hand, regarding Markov processes, we refer to [14, p. 269 - 270 and p. 437 -
443] and [5, p. 125 - 136]. On the other hand concerning stochastic optimal
control theory it is referred to [5, p. 136 - 151], which covers this topic in a
more general view and to [5, p. 157 - 177], which provides the theory about
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2 CHAPTER 1. PRELIMINARIES

controlled Markov diffusions in Rn.

1.2 Markov processes

Starting with Markov processes in discrete time will make it easier to un-
derstand how these processes will behave in continuous time. The prob-
ability space we are working on is (Ω,F , P ). We consider a finite state
space Σ such that Σ = {1, 2, . . . , l} and a so called initial distribution
α = {α1, α2, . . . , αl} ∈ [0, 1]l. αi is the probability that the Markov pro-
cess in discrete time (Xn)n∈N0 , which is called Markov chain, starts in state
i at time 0:

P (X0 = i) = αi.

Next it is common that this Markov chain has a possibility to evolve from
the initial state to another state and so we set pij ∈ [0, 1] the probability
such that Xn moves in one time step from state i to state j:

P (Xn = j|Xn−1 = i) = pij.

Note that pij does not depend on n, therefore the considered Markov chain is
called homogeneous, in contrast to an inhomogeneous one, where the trans-
ition probabilities pij depend on n. Moreover in this context we call a matrix
P = (pij)i,j∈Σ a stochastic matrix, if it fulfills

pij ≥ 0 ∀ i, j ∈ Σ and
l∑

j=1

pij = 1,∀ i ∈ Σ.

A Markov chain has the special property that its evolution at a time step
only depends on the last state which the process has achieved and not on the
whole history. The next definition makes this argument precise.

Definition 1. A homogeneous Markov chain is a sequence of random vari-
ables (Xn)n∈N0 with values in Σ = {1, 2, . . . , l}, for which there exists a vector
of probabilities α = {α1, α2, . . . , αl} ∈ [0, 1]l with

∑l
i=1 αi = 1, which is called

initial distribution and a stochastic matrix P = (pij)i,j∈Σ, which is called one
step transition matrix, such that ∀ n ∈ N0 and i0, i1, . . . , in ∈ Σ

P (X0 = i0, X1 = i1, . . . , Xn = in) = αi0pi0i1 · · · pin−1in .
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For our purposes it is necessary to consider Markov processes in con-
tinuous time and with continuous state space. Therefore we introduce some
general definitions and results about stochastic processes in continuous time,
which are taken from the lecture notes “Stochastic analysis” by Müller [9]:

Definition 2. Let (Ω,F , P ) be a probability space, (Ft)t≥0 be a filtration and
Σ be a finite dimensional state space.

• A stochastic process X = (Xt)t≥0 can be viewed as a function of both
variables X : [0,∞)×Ω→ Σ such that (t, ω) 7→ Xt(ω), where [0,∞)×Ω
is equipped with the σ-algebra B([0,∞))⊗F .

• (Xt)t≥0 is called adapted to the filtration (Ft)t≥0 if Xt is Ft measurable
∀ t ≥ 0 and it is always adapted to its canonical filtration (FXt )t≥0,
where FXt = σ(Xs : s ≤ t).

• (Xt)t≥0 is called càdlàg, if its paths are right-continuous with existing
left-hand limits.

• (Xt)t≥0 is called measurable if (t, ω) 7→ Xt(ω) is measurable,
i.e. {(t, ω) ∈ [0,∞)× Ω : Xt(ω) ∈ B} ∈ B([0,∞))⊗F ∀ B ∈ B(Σ).

• (Xt)t≥0 is called progressive if for every t ≥ 0 the map

Ψt : [0, t]× Ω→ Σ, (s, ω) 7→ Xs(ω)

is B([0, t])⊗Ft measurable.

• Denote by P the sub σ-algebra of B([0,∞)) ⊗ F generated by all left
continuous adapted processes. P is called the σ-algebra of predictable
events. A process X is called predictable if it is P-measurable.

• Given a probability space (Ω,F , P ), a filtration (Ft)t≥0 is said to fulfill
the usual conditions if on the one hand it is right-continuous i.e. Ft+ =
Ft ∀ t ≥ 0. Moreover on the other hand it is P complete, which means
that F0 (and hence all Ft) contains all sets of measure 0, i.e. N ⊆ F0,
where N := {A ∈ F|P (A) = 0}, in other words Ft must be equal to
σ(Ft ∪N ) for all t ≥ 0.

Lemma 1. [12, p. 182]
With the definitions above it holds that

predictable ⇒ progressive ⇒ adapted and measurable.
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The proof is left out. Note that in [8, p. 10] it is mentioned that due
to the definition of predictable processes every left-continuous and adapted
process is predictable. Subsequently there are listed some notations and
assumptions, which will be necessary for the further proceeding:

• we consider the probability space denoted by (Ω,F , P ) with filtration
(Ft)t≥0,

• we restrict ourselves to the case Σ = Rd (or disconnected components
in Rd), where d ≥ 1, in a more general setting it would be enough to
allow Σ to be any complete separable metric space,

• the stochastic process (Xt)t≥0 is assumed to be càdlàg,

• let B(Σ) be the σ-algebra of Borel sets in Σ,
M(Σ) = {f : Σ→ R|f measurable },
Mb(Σ) = {f : Σ → R|f measurable and bounded } such that the su-
premum norm ∀g ∈Mb(Σ) is defined as ‖g‖ = supx∈Σ |g(x)|,

• the following notation considers conditional expectations, for s ≤ t:
E(Xt|Xs = x) = Esx(Xt) and E(Xt|X0 = x) = Ex(Xt).

The next definition is the analogue to the previous one, the transition
kernel takes the part of the transition probability in the continuous time and
continuous space situation.

Definition 3. Let P̂ : R+ × Σ× B(Σ)→ [0, 1] be a function which satisfies
∀ h, h1, h2,≥ 0, x ∈ Σ, B ∈ B(Σ) :

P̂ (h, x, ·) is a probability measure on (Σ,B(Σ)), (1.2.1)

P̂ (0, x, {x}) = 1, (1.2.2)

P̂ (·, ·, B) ∈M(R+ × Σ) and (1.2.3)

P̂ (h1 + h2, x, B) =

∫
Σ

P̂ (h2, y, B)P̂ (h1, x, dy). (1.2.4)

Then P̂ is called transition kernel.

The property (1.2.4) can be seen as the analogue to the so called Chapman-
Kolmogorov equation for more details especially in the more restrictive cases
see [14, p. 271 and p. 309].
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Definition 4. Let (Xt)t≥0 be a stochastic process with values in Σ and let P̂
be its transition kernel and α be a probability measure on (Σ,B(Σ)), which
we call initial distribution, such that ∀ n ∈ N0, B0, B1, . . . , Bn ∈ B(Σ),
t0 = 0 ≤ t1 ≤ · · · ≤ tn:

P (X0 ∈ B0, Xt1 ∈ B1, Xtn ∈ Bn)

=

∫
B0

∫
B1

. . .

∫
Bn

P̂ (tn − tn−1, xn−1, dxn) . . . P̂ (t1, x0, dx1)α(dx0),
(1.2.5)

then (Xt)t≥0 is called a (homogeneous) Markov process.

The interpretation of the transition kernel is the following the probability
that Xt goes from state x to a state which is contained in B in time h is
meant to be P̂ (h, x,B). Just as a remark it is worth to mention that it
is possible to show if Σ = Rd (or more general if Σ is a complete separable
metric space) and for given (α, P̂ ) there exists a Markov process (Xt)t≥0 with

initial distribution α and transition kernel P̂ , see [14, p. 438].
The next Theorem states the better known conditional independence

property about Markov processes.

Theorem 1 ([14, p. 438 - 439]). A stochastic process (Xt)t≥0 with values in

Σ is a (time homogeneous) Markov process if and only if ∃ P̂ = (P̂ (h, x,B))
a transition kernel such that ∀ t, h ≥ 0, B ∈ B(Σ)

P (Xt+h ∈ B|FXt ) = P̂ (h,Xt, B) (1.2.6)

or equivalent to that ∀ t, h ≥ 0, g ∈Mb(Σ)

E(g(Xt+h)|FXt ) =

∫
Σ

g(y)P̂ (h,Xt, dy). (1.2.7)

Furthermore a process (Xt)t≥0 is said to be a strong Markov process with
respect to its history (FXt )t≥0 if the time t in (1.2.6) can be replaced by any
(FXt )t≥0-stopping time τ

P (Xτ+h ∈ B|FXτ ) = P̂ (h,Xτ , B) P − a.s. (1.2.8)

on {τ <∞} and ∀ h ≥ 0, B ∈ B(Σ).
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In the next step we want to go further and introduce some interesting
facts about these class of stochastic processes, which made them so import-
ant in the theory of stochastic optimal control. In particular we will find
some requirements such that a somehow modified Markov process becomes
a martingale. This leads us to the consideration of the infinitesimal gener-
ator of the transition kernel and to a generalization of the so called Dynkin
formula.

Definition 5. We call (T (h))h≥0 a contraction semigroup on Mb(Σ) if it is a
family of mappings T (h) : Mb(Σ)→ Mb(Σ) ∀ h ≥ 0 such that ∀h, h1, h2 ≥ 0
and g ∈Mb(Σ) it holds that

T (0) = I, (1.2.9)

T (h1 + h2) = T (h1)T (h2) and (1.2.10)

‖T (h)g‖ ≤ ‖g‖, (1.2.11)

where I is the identity mapping.

Lemma 2. For the Markov process (Xt)t≥0 with values in Σ, a transition

kernel P̂ = (P̂ (h, x,B)) and a function g ∈Mb(Σ) it holds that

T (h)g(x) :=

∫
Σ

g(y)P̂ (h, x, dy) = E(g(Xh)|X0 = x) (1.2.12)

is a contraction semigroup on Mb(Σ).

Proof. Let g ∈ Mb(Σ), x ∈ Σ and h1, h2 ≥ 0 then the first equation (1.2.9)
holds because with (1.2.2) we get

T (0)g(x) = E(g(X0)|X0 = x) = g(x)⇒ T (0) = I.

The property (1.2.4) gives (1.2.10) as follows

T (h1 + h2)g(x) =

∫
Σ

g(y)P̂ (h1 + h2, x, dy)

=

∫
Σ

g(y)

∫
Σ

P̂ (h2, z, dy)P̂ (h1, x, dz)

=

∫
Σ

(∫
Σ

g(y)P̂ (h2, z, dy)

)
P̂ (h1, x, dz)

=

∫
Σ

T (h2)g(z)P̂ (h1, x, dz) = T (h1)T (h2)g(x).



1.2. MARKOV PROCESSES 7

Finally with (1.2.1) we have ∀ x ∈ Σ that

|T (h)g(x)| =
∣∣∣∣∫

Σ

g(y)P̂ (h, x, dy)

∣∣∣∣ ≤ ∫
Σ

‖g‖P̂ (h, x, dy) = ‖g‖

which yields (1.2.11), ‖T (h)g‖ ≤ ‖g‖.

Definition 6. Let D(A) ⊆ Mb(Σ) and (T (h))h≥0 a contraction semigroup,
then the mapping A : D(A) → Mb(Σ) is defined for every g ∈ Mb(Σ) such
that

Ag := lim
h↘0

1

h
(T (h)g − g), (1.2.13)

exists. A is called the infinitesimal generator of (T (h))h≥0 and
D(A) = {g ∈ Mb(Σ)|the limit (1.2.13) exists in the supremum norm and Ag ∈
Mb(Σ)} its domain.

Furthermore it is referred to [5, p. 129], where it is stated that the
Hille-Yosida Theorem provides sufficient conditions such that D(A) contains
enough functions and that the transition distributions P̂ are determined by
A in the case of (1.2.12).

Moreover if we consider functions of the form F : (a, b) ⊆ R → Mb(Σ),
then the derivative and the Riemann integral are defined in the common

way
[
∂T (t)g
∂t

∣∣
t+=0

respectively
∫ t

0
T (s)gds

]
, where the convergence in the sense

of the supremum norm is used. It is stated that such integrals exist for
right-continuous semigroups. For g ∈ Mb(Σ) such that limh↘0 T (h)g = g
with the special contraction semigroup (1.2.12) the mapping h 7→ T (h)g is
right-continuous and the Riemann integral

∫ t
0
T (s+ h)g ds exists ∀ t, h ≥ 0.

[Note that
∑n

i=1(tni − tni−1)T (tni−1)g −→
∫ t

0
T (s+ h)g ds and T (s+ h)g(x) =

E(g(Xs+h)|X0 = x) ∀ x ∈ Σ.] With that we can formulate the next theorem
about contraction semigroups.

Theorem 2. The statements (a), (b) and (c) below hold for a contraction
semigroup (T (h))h≥0 and its infinitesimal generator A:

(a) Let g ∈ Mb(Σ) such that the mapping h 7→ T (h)g is right continuous
at h = 0, this yields that ∀ t ≥ 0

∫ t
0
T (v)gdv ∈ D(A) and

T (t)g − g = A

∫ t

0

T (v)g dv. (1.2.14)
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(b) Let g ∈ D(A) and t ≥ 0, then T (t)g ∈ D(A) and

d+

dt
T (t)g = AT (t)g = T (t)Ag, (1.2.15)

note that d+

dt
equals the derivative from the right.

(c) Let g ∈ D(A) and t ≥ 0, then
∫ t

0
T (v)gdv ∈ D(A) and

T (t)g − g = A

∫ t

0

T (v)g dv =

∫ t

0

A T (v)g dv =

∫ t

0

T (v) Ag dv. (1.2.16)

Proof. (a) The mapping v 7→ T (v)g is right continuous ∀ v ≥ 0 and hence
the Riemann integral

∫ t
0
T (v + h)g dv exists ∀ t, h ≥ 0, because we have

assumed that (T (h))h≥0 is a contraction semigroup. Further for tni = t i
n

we
have

lim
n→∞

t

n

n∑
i=1

T (tni )g =

∫ t

0

T (v)g dv.

Moreover it holds that

T (h)

∫ t

0

T (v)g dv
(∗)
=

∫ t

0

T (h)T (v)g dv
(∗∗)
=

∫ t

0

T (v + h)g dv,

where (∗∗) is true because of (1.2.10) and (∗) since

T (h)

∫ t

0

T (v)g dv

= T (h)

(∫ t

0

T (v)g dv − t

n

n∑
i=1

T (tni )g

)
+
t

n

n∑
i=1

T (h)T (tni )g

and by property (1.2.11)∥∥∥∥∥T (h)

(∫ t

0

T (v)g dv − t

n

n∑
i=1

T (tni )g

)∥∥∥∥∥ ≤∥∥∥∥∥
∫ t

0

T (v)g dv − t

n

n∑
i=1

T (tni )g

∥∥∥∥∥→ 0.
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Hence we obtain that

1

h
(T (h)− I)

∫ t

0

T (v)g dv =
1

h

∫ t

0

(T (v + h)g − T (v)g) dv

=

∫ t+h

t

T (v)g dv − T (v)g) dv − 1

h

∫ h

0

T (v)g dv.︸ ︷︷ ︸
→T (t)g−g for h↘0, because v 7→T (v)g is right continuous.

Considering the limit h↘ 0 yields the equation (1.2.14).

(b) The following term

1

h
(T (h)T (t)g − T (t)g) =

1

h
(T (h+ t)g − T (t)g)

=
1

h
(T (t+ h)g − T (t)g) =

1

h
(T (t)T (h)g − T (t)g) = T (t)

1

h
(T (h)g − g)

together with (1.2.11) yields that T (t)g ∈ D(A) and that AT (t)g = T (t)Ag.
And the statement concerning the derivative from the right is obtained by
evaluation of the limit h↘ 0 in the equation

1

h
(T (h+ t)g − T (t)g)︸ ︷︷ ︸

→ d+

dt
T (t)g

=
1

h
(T (h)− I)T (t)g︸ ︷︷ ︸

→AT (t)g

.

(c) For g ∈ D(A) we get that T (h)g → g for h ↘ 0 and hence for
t ≥ 0

∫ t
0
T (v)gdv ∈ D(A), because of (a). With part (b) and the equation

(fundamental theorem of calculus)∫ t

0

d+

dv
T (v)g︸ ︷︷ ︸

=AT (v)g=T (v)Ag

dv = T (t)g − T (0)g,

we get the statement of part (c).

In order to construct martingales out of Markov process we exploit the
connection between martingales and infinitesimal generators. Subsequently
one has to show the following property called Dynkin‘s formula for the con-
sidered process in order to solve stochastic optimal control problems.
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Theorem 3. Let (Xt)t≥0 be a Markov process with values in Σ and transition

kernel P̂ = (P̂ (h, x,B)) and let (T (h))h≥0 be the corresponding contraction
semigroup (1.2.12) and A its generator. Then it holds for every g ∈ D(A)
that the stochastic process (Mt)t≥0 with

Mt = g(Xt)− g(X0)−
∫ t

0

Ag(Xv)dv (1.2.17)

is a (FXt )t≥0 martingale.

Proof. First of all we get that Ag ∈Mb(Σ) since g ∈ D(A) and so Ag is meas-
urable and bounded. Further (Xt)t≥0 is cadlag and hence Ag(Xt(ω)) is also

measurable. Moreover knowing Ag is bounded the integral
∫ t

0
Ag(Xs(ω))ds is

(pathwise) well-defined as Lebesgue integral for every ω ∈ Ω. With t, h ≥ 0
one obtains

E[Mt+h|FXt ] + g(X0)

= E

[
g(Xt+h)−

∫ t+h

t

Ag(Xs)ds

∣∣∣∣FXt ]− ∫ t

0

Ag(Xs)ds

=

∫
Σ

g(y)P̂ (h,Xt, dy)−
∫ t+h

t

∫
Σ

Ag(y)P̂ (s− t,Xt, dy)ds−
∫ t

0

Ag(Xs)ds

= T (h)g(Xt)−
∫ h

0

T (s)Ag(Xt)ds−
∫ t

0

Ag(Xs)ds
(?)
= g(Xt)−

∫ t

0

Ag(Xs)ds

= Mt + g(X0).

At (?) the equation (1.2.16) of Theorem 2 part (c) was used.

Note that the martingale (Mt)t≥0 from above has expectation zero since
M0 = 0 and E(Mt) = E(M0) = 0. Further we consider some special types of
Markov processes and some useful results, which we exploit in the subsequent
chapter.

1.2.1 Diffusion processes

First of all we consider a quite simple example namely a one dimensional
diffusion process, here Dynkin’s formula can be directly verified. For that
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reason let (Bt)t≥0 be a Brownian motion and µ, σ : R → R Lipschitz con-
tinuous. Then the equation

dXt = µ(Xt)dt+ σ(Xt)dBt, X0 = x

defines a homogeneous diffusion process fulfilling the strong Markov property
as we will see few lines below. Further let f ∈ C2

b (denoting the twice
continuously differentiable and bounded functions) with compact support
then

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t

= (µ(Xt)f
′(Xt) +

1

2
σ2(Xt)f

′′(Xt)︸ ︷︷ ︸
=Af(Xt)

)dt+ f ′(Xt)σ(Xt)dBt

and we obtain that

f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds =

∫ t

0

f ′(Xs)σ(Xs)dBs.

Because the term on the right-hand side is a local martingale and if we
assume that Ex

[∫∞
0
||f ′(Xs)σ(Xs)||2ds

]
< ∞ it follows that this process is

a martingale and hence Dynkin’s formula holds by taking expectations on
both sides. This will be also true if t is replaced by an almost surely finite
stopping time τ . As a conclusion we can assume

D(A) = {f ∈ C2
b |f has compact support and Ex

[∫ ∞
0

||f ′(Xs)σ(Xs)||2ds
]
<∞}.

Now the above example is generalized by showing that Dynkin’s formula
holds for general diffusion processes and a further interesting result is proven,
the so called Feynman-Kac formula. The following considerations are based
on [5, p. 126 - 129, p. 134 - 135 and p. 397 - 401] and on [15, p. 9 - 11].
The starting point will be the d-dimensional stochastic differential equation
for t0 ≤ t < t1:

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, t ≤ s ≤ t1,

and Xt = x ∈ Rd,
(1.2.18)
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where (Ws) t ≤ s ≤ t1, is a n-dimensional standard Brownian motion and

b : [t, t1]× Rd → Rd,

σ : [t, t1]× Rd → Rd×n

are functions fulfilling the requirements of the Theorem for SDE’s ensuring
existence, uniqueness and the strong Markov property of the continuous solu-
tion Xs of (1.2.18) and for m = 1, 2, . . . there exists a constant Bm, which
depends on m and t1 − t, such that

Etx(|Xs|m) ≤ Bm(1 + |x|m), (1.2.19)

in particular the component functions have to be Lipschitz continuous and
satisfy a linear growth condition.

In fact we are working here with time-inhomogeneous Markov processes
and therefore one has to extend the definition of the infinitesimal generator.
Everything considered above can be reviewed just where the transition dis-
tribution is able to change in time. The following is a quick overview on the
important facts about time-inhomogeneous Markov processes.

Definition 7. The transition distribution of a Markov process (Xr)r≥0 has
the following form for t < s, where s, t ∈ [t0, t1) and x ∈ Σ:

P̂ (t, x, s, B) = P (Xs ∈ B|Xt = x), ∀B ∈ B(Σ), (1.2.20)

where

• for s, t, B fixed P̂ (t, ·, s, B) is B(Σ) measurable,

• for s, t, x fixed P̂ (t, x, s, ·) is a probability measure and

• for t < r < s and t, r, s ∈ [t0, t1) the Chapman-Kolmogorov equation
holds true

P̂ (t, x, s, B) =

∫
Σ

P̂ (r, y, s, B)P̂ (t, x, r, dy). (1.2.21)

With that definition one can write down the usual Markov property in an
equivalent form as follows. For FXr = F(Xθ, θ ≤ r) the smallest σ-algebra
such that for all θ ≤ r (θ, r ∈ I, where I is a subinterval of [t0, t1]), the
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random variables Xθ with vales in Σ are measurable. It holds that for r < s
r, s ∈ I and B ∈ B(Σ)

P (Xs ∈ B|FXr ) = P̂ (r,Xr, s, B). (1.2.22)

The linear operators are analogously defined as in the above case just with
respect to the changed transition distribution P̂ . In this setting we are able
to define the analogue of the infinitesimal generator namely the backward
evolution operator A. In general the definition is analogous to the previous
one but in order to work with this operator in the framework of the theory of
stochastic optimal control one assumes that the domain of the operator D(A)
is quite restricted as it is done in [5, p. 127, 128]. In fact some properties
are demanded in addition to the natural assumption that the respective limit
exists.

Definition 8. Let Φ : [t0, t1]×Σ→ R be a function, then the linear operator
A is defined by

AΦ(t, x) = lim
t↘0

1

h
[Etx (Φ(t+ h,Xt+h))− Φ(t, x)], (1.2.23)

given that the limit exists for all x ∈ Σ and all t ∈ [t0, t1) where the domain
D(A) contains all functions Φ such that AΦ exists.

Nevertheless it is additionally assumed that for all Φ ∈ D(A) it holds
that

• Φ, ∂Φ
∂t

and AΦ are continuous on [t0, t1]× Σ,

• for t < s (s, t ∈ [t0, t1]) it holds that Etx(|Φ(s,Xs)|) <∞ and
Etx(

∫ s
t
|AΦ(r,Xr)|)dr <∞ and

• Dynkin’s formula holds for t < s

Etx(Φ(s,Xs))− Φ(t, x) = Etx

(∫ s

t

AΦ(r,Xr)dr.

)
(1.2.24)

In order to obtain Dynkin’s formula one can assume that

Φ(s,Xs)− Φ(t, x)−
∫ s

t

AΦ(r,Xr)dr (1.2.25)
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is a martingale with respect to {Fs, P}, where the filtration {Fs} is such that
Xs is adapted to it, i.e. Xs is Fs measurable.

Now we reveal the connection between the above considered operators.
For time - homogeneous Markov processes we consider the time interval
[0,∞) and obtain that the transition distribution written in terms of Defin-
ition 7 satisfies for 0 ≤ t ≤ s, B ∈ B(Σ) and x ∈ Σ

P̂ (t, x, s, B) = P̂ (0, x, s− t, B),

which means that

P (Xs ∈ B|Xt = x) = P (Xs−t ∈ B|X0 = x).

That means that the transition distribution does not depend on the actual
time point of the process but only on the state of the process and the time
lapse which goes by. Because of that reason time - homogeneous Markov
processes are always considered starting in time point 0, which is in fact just
a time shift of the process. Furthermore this justifies the definition of the
transition kernel above taking only three arguments. On top of this we ought
to think in a formal framework that for the backward evolution operator A
and the infinitesimal generator A the relation

AΦ =
∂Φ

∂t
+ AΦ(t, ·) (1.2.26)

holds, whereby A operates in the second variable x.
Next we are able to write down the so called backward evolution equation.
Let l(t, x) and ψ(x) be continuous functions on [t0, t1]×Σ respectively on Σ,
then the linear and inhomogeneous equation

AΦ + l(t, x) = 0, t0 ≤ t ≤ t1,

Φ(t1, x) = ψ(x)
(1.2.27)

is called a backward evolution equation. Let Φ ∈ D(A) be the solution of
this backward evolution equation provided that it exists, then we obtain by
Dynkin’s formula (for that reason one has to assume that Dynkin holds, but
in this framework this was an additional property of the domain D(A))

Φ(t, x) = Etx

(∫ t1

t0

l(s,Xs)ds+ ψ(Xt1)

)
. (1.2.28)
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This expression can be considered as the total expected gain respectively cost
over the time period [t, t1], whereby l denotes the running gain respectively
cost function and ψ the terminal gain respectively cost function. This is a
common designation in stochastic optimal control theory.

For the next theorem we need the following definition.

Definition 9. [10, p. 110]
A (time-homogeneous) Itô diffusion is a stochastic process Xt(ω) = X(t, ω) :
[0,∞)× Ω→ Rd satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dWt, s ≤ t,Xs = x

where Wt is a n-dimensional Brownian motion and b : Rd → Rd, σ : Rd →
Rd×n satisfy the conditions in the first part of the next theorem, which in this
case simplify to:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|; x, y ∈ Rd,

where |σ|2 =
∑
|σij|2.

The following theorem is split up into two main parts. For another version
of the first part of the theorem we refer to [7, p. 289].

Theorem 4. 1. Existence and uniqueness theorem for stochastic differential
equations [10, p. 66]:
Let T > 0 and

b(·, ·) : [0, T ]× Rd → Rd,

σ(·, ·) : [0, T ]× Rd → Rd×n

be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); x ∈ Rd, t ∈ [0, T ]

for some constant C, (where |σ|2 =
∑
|σij|2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; x, y ∈ Rd, t ∈ [0, T ]

for some constant D. Let Z be a random variable which is independent of
the σ-algebra F (n)

∞ generated by Ws, s ≥ 0 and such that

E
[
|Z|2

]
<∞.
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Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T,X0 = Z

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is
adapted to the filtration FZt generated by Z and Ws, s ≤ t and

E

[∫ T

0

|Xt|2dt
]
<∞.

2. The strong Markov property for Itô diffusions [10, p. 113]:

Let f be a bounded Borel function on Rd, τ a stopping time w.r.t. F (n)
t ,

τ <∞ a.s.. Then

Ex
[
f(Xτ+h)|F (n)

τ

]
= EXτ [f(Xh)] ∀h ≥ 0.

Next we assume that D(A) = C1,2
p ([t0, t1] × Rd), where the subscript p

states that this is the space of all Φ ∈ C1,2([t0, t1]×Rd) where Φ,Φt,Φxi ,Φxixj

for i, j = 1, . . . , d fulfill the following polynomial growth condition:

∃ K,m such that ∀ (t, x) ∈ [t0, t1]× Rd :

|Φ(t, x)| ≤ K(1 + |x|m). (1.2.29)

With that we can show Dynkin’s formula directly in the case of time-
inhomogeneous processes for a function Φ ∈ D(A) and the solution Xs of
(1.2.18). Itô’s formula gives

dΦ(s,Xs) =

Φtds+
d∑
i=1

ΦxidX
i
s+

1

2

[
d∑
i=1

Φtxid[t,X i]s + Φttd[t, t] +
d∑
i=1

d∑
j=1

Φxixjd[X i, Xj]s

]
,

where

dX i
s = bi(s,Xs)ds+

n∑
l=1

σil(s,Xs)dW
l
s,

since d[t,X i] = 0, ∀ i = 1, . . . , d, d[t, t] = 0 and

d[X i, Xj]s = (
n∑
l=1

σil(s,Xs)dW
l
s)(

n∑
k=1

σjk(s,Xs)dW
k
s ) =

n∑
l=1

σil(s,Xs)σjl(s,Xs)ds.
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Moreover one obtains with
∑n

l=1 σil(s,Xs)σjl(s,Xs) = aij(s,Xs) for i, j =
1, . . . d:

dΦ(s,Xs) =Φtds+
d∑
i=1

Φxi

(
bi(s,Xs)ds+

n∑
l=1

σil(s,Xs)dW
l
s

)

+
1

2

[
d∑
i=1

d∑
j=1

Φxixj

(
n∑
l=1

σil(s,Xs)σjl(s,Xs)

)
ds

]

=

(
Φt +

d∑
i=1

Φxib
i(s,Xs) +

1

2

[
d∑
i=1

d∑
j=1

Φxixjaij(s,Xs)

])
ds

+
d∑
i=1

Φxi

n∑
l=1

σil(s,Xs)dW
l
s.

(1.2.30)

Which has the following form changing the notation to vector valued
functions and processes

dΦ(s,Xs)

=

(
Φt + 〈DxΦ, b(s,Xs)〉+

1

2

[
d∑

i,j=1

Φxixjaij(s,Xs)

])
ds+ ((DxΦ)Tσ)T (s,Xs)dWs

= AΦ(s,Xs)ds+ ((DxΦ)Tσ)T (s,Xs)dWs,

(1.2.31)

where with (aij(s,Xs))1≤i,j≤d = a(s,Xs) = σ(s,Xs)σ(s,Xs)
T we have

AΦ(s,Xs) = Φt +
d∑
i=1

Φxib
i(s,Xs) +

1

2

[
d∑
i=1

d∑
j=1

Φxixjaij(s,Xs)

]

= Φt + (DxΦ)T b(s,Xs) +
1

2
tr((D2

xΦ)a(s,Xs)).

(1.2.32)

Moreover using the integral representation

Φ(s,Xs)− Φ(t, x)−
∫ s

t

AΦ(r,Xr)dr =

∫ s

t

((DxΦ)Tσ)T (r,Xr)dWr,

(1.2.33)
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we obtain Dynkin’s formula by taking expectations on both sides

Etx (Φ(s,Xs))− Φ(t, x) = Etx

(∫ s

t

AΦ(r,Xr)dr

)
, (1.2.34)

because the right-hand side in (1.2.33) is a local martingale and because σ
is assumed to grow linearly and hence (DxΦ)Tσ has polynomial growth we
get with (1.2.29) that the right-hand side is a true martingale. In fact one
has to ensure that E

[∫∞
t
||((DxΦ)Tσ)T (r,Xr)||2dr

]
< ∞ to verify that the

local martingale is a true martingale. Note that the partial derivatives e.g.
Φt = Φt(s,Xs) depend on (s,Xs), but this was left out in order to simplify the
notation. Furthermore note that the infinitesimal generator A for diffusion
processes (as solutions of (1.2.18)) is in fact a partial differential operator
as already seen in (1.2.32), provided that for the integrals the following hold
(e.g. assuming that Φ has compact support)

Et,x

[∫ s

t

|AΦ(r,Xr)|dr
]
<∞ and Et,x

[∫ ∞
t

||((DxΦ)Tσ)T (r,Xr)||2dr
]
<∞.

Finally we state and prove a version of the well-known Feynman-Kac
formula [5, p. 400 - 401], which reads as follows.

Theorem 5. Let V ∈ C1,2(Q), where Q = [t0, t1)×O, O an open and bounded
set such that O ⊂ Rd and (Xs) be the solution of (1.2.18). Furthermore let

Γs = exp

(∫ s

t

crdr

)
,

where c is Fs - progressive and ∃ M sucht that cr ≤M <∞ and let τ be the
exit time of (s,Xs) from Q and θ be a {Fs}-stopping time with t ≤ θ ≤ τ .
Then it holds that

V (t, x) = E

[
−
∫ θ

t

Γs(AV (s,Xs) + csV (s,Xs))ds+ ΓθV (θ,Xθ)

]
, (1.2.35)

where we have as in (1.2.32)

AV (s,Xs) = Vt(s,Xs)+(DxV (s,Xs))
T b(s,Xs)+

1

2
tr((D2

xV (s,Xs))a(s,Xs)).
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Proof. First of all the partial integration formula respectively also called
product rule is applied to ΓsV (s,Xs):

d(ΓsV (s,Xs)) = V (s−, Xs−)dΓs + Γs−dV (s,Xs) + d[Γ, V (·, X)]s

and since the sample paths of Γ are of bounded variation and all protagonists
are at least left-continuous we obtain

d(ΓsV (s,Xs)) = V (s,Xs)dΓs + ΓsdV (s,Xs).

Furthermore we get for the single differentials

dΓs = csΓsds

and analogously to (1.2.22)

dV (s,Xs) = AV (s,Xs)ds+ ((DxV )Tσ)T (s,Xs)dWs.

In its entirety we have

d(ΓsV (s,Xs))

= V (s,Xs)csΓsds+ Γs
(
AV (s,Xs)ds+ ((DxV )Tσ)T (s,Xs)dWs

)
= Γs (AV (s,Xs) + V (s,Xs)cs) ds+ Γs((DxV )Tσ)T (s,Xs)dWs.

Now integrating from t to θ and using the fact that Γt = 1 yields

ΓθV (θ,Xθ)− V (t, x) =∫ θ

t

Γs(AV (s,Xs) + csV (s,Xs))ds+

∫ θ

t

Γs((DxV )Tσ)T (s,Xs)dWs.

Taking expectations on both sides and using that the expectation of the last
term is zero yields the statement.

The Theorem 5 is extending the backward evolution equation (1.2.27),
which follows if V solves AV + cV + l = 0 and gives (1.2.28), where l(t, x) =
Γtl(x).
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1.2.2 Compound Poisson processes

Up next we consider (Xt)t≥0, which is a compound Poisson process with
drift c > 0, (Nt)t≥0 the corresponding Poisson process with intensity λ > 0

and (Yi)i∈N
iid∼ FY (FY (0) = 0). (Xt)t≥0 has independent and stationary

increments and is therefore a Markov process, analogously as argued in [14, p.
442]. For h > 0 one has that the first jump-time is exponentially distributed
with E(T1) = 1

λ
. Thus, the law of total probability gives

Ex(f(Xh∧T1)) = f(x+ ch)e−λh +

∫ h

0

∫ ∞
0

f(x+ ch− y)dFY (y)λe−λtdt,

and

1

h
Ex(f(Xh∧T1)− f(x))

= e−λh
f(x+ ch)− f(x)

h
+
e−λh − 1

h
f(x) +

1

h

∫ h

0

∫ ∞
0

f(x+ ch− y)dFY (y)λe−λtdt.

Now we let h↘ 0 and obtain

Af(x) = cf ′(x)− λf(x) + λ

∫ ∞
0

f(x− y)dFY (y).

Hence we get that the following is a martingale with expectation zero

f(Xt)− f(X0)−
∫ t

0

[
cf ′(Xs) + λ

∫ ∞
0

f(Xs − y)− f(Xs)dFY (y)

]
ds,

where in the most general case f ′ here denotes the right-hand derivative of
f . Finally, following the lines of [14, p. 442 - 443, 449] and considering the
requirements which were needed in the above treatment, we set
D(A) = {f ∈Mb(R)|f is differentiable with f ′ ∈Mb(R)}.

1.3 Optimal control of Markov processes

As we have seen in the last section Markov processes have some useful prop-
erties which, will be applicable in the theory of stochastic optimal control.
In fact Markov processes are of special interest because they are very often
the natural modeling choice, but note that this does not has to be always the



1.3. OPTIMAL CONTROL OF MARKOV PROCESSES 21

case. Hence only controlled Markov processes are considered and later on we
will restrict ourselves to some classes of Markov processes namely diffusion
processes. The following is based on the discourse in [5, p. 136 - 151] about
controlled Markov processes. The subsequent section is very general and for
explicit problems one has to think about the real mathematical requirements
in greater detail.

At the beginning some additional assumptions and notations will be in-
troduced:

• (Xt)t≥0 will denote a (time-homogeneous) Markov process as before
with state space Σ, but now the behaviour of the distribution of (Xt)t≥0

depends on a stochastic process (ut)t≥0 and is therefore called the con-
trolled process or state process,

• (ut)t≥0 is called the control process or briefly the control and assumes
values in the control space U , which will be a complete separable metric
space,

• if it is essential, we will express the dependence of (Xt)t≥0 on the control
(ut)t≥0 as X = Xu as it is done in [4, p. 27],

• the information which is available to choose the control us will contain
all states Xr for r ≤ s and will be modeled by the canonical filtration
of X in particular (FXt )t≥0, where FXt = σ(Xs : s ≤ t).

In general it is assumed that for a given constant control v ∈ U the
corresponding controlled process Xv is a Markov process with infinitesimal
generator Av, with the domain D(Av) depending on v. One has to assume
that there exists D ⊂ D(Av) ∀ v ∈ U with D sufficiently large.

Because X is considered to be a Markov process and the information flow
is modeled via (FXt )t≥0 one would expect that the control policies are of the
form

us = u(s,Xs), (1.3.1)

such that they depend only on the last state Xs at time s. These controls
are called Markov control policies. Moreover in such cases Xu

s is given by a
Markov process and its infinitesimal generator, ∀ Φ ∈ D

AuΦ(t, x) = Au(t,x)Φ(t, x). (1.3.2)
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In general the assumptions which have to be made depend on the considered
problem, in order to ensure that Au really defines a Markov process. In
subsequent considerations the notion of Markov control policies will be gen-
eralized via admissible control systems, which depend on the probabilistic
ingredients in a more complex way than as in (1.3.1), in general they depend
additionally on the underlying probability space.

Now we define the general two objectives which are considered in the
context of this theory. In the first case the problem is considered on the
finite time interval t ≤ s ≤ t1 and one has the objective:

J(t, x, u) = Etx

[∫ t1

t

L(s,Xs, us)ds+ ψ(Xt1)

]
. (1.3.3)

So in this setting the problem is called the finite time horizon problem. J
is called either gain function if one wants to maximize one’s yield or cost
function if one wants to minimize the costs. The function L(s, x, v) is called
running gain/cost function and ψ(x) terminal gain/cost function. Addition-
ally, if L(s, x, v) ≡ 0 the problem is said to be in Mayer form and if ψ(x) ≡ 0
it is said to be in Lagrange form. Of course the technical assumptions on L
and ψ have to be specified such that J is well defined. L and ψ are generally
assumed to be continuous and such that the integral (1.3.3) exists. Note that
these kind of problems can also be considered in the case, where the Markov
process is time-inhomogeneous, see [5].

In the alternative case the problem is called infinite time horizon problem
or more precisely the infinite horizon discounted gain/cost problem. It is
considered on the time interval [0,∞) and the objective reads as follows

J(x, u) = Ex

[∫ ∞
0

e−βsL(Xs, us)ds

]
, (1.3.4)

where the function L is analogously as above and β > 0 is the preference or
interest rate.

1.3.1 Dynamic programming

Here the formal dynamic programming principle (DPP) is stated and the dy-
namic programming equation (DPE) is derivated. This approach leaves out
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the proof of the DPP, because this has to be done separately for every spe-
cific task. In a subsequent step a so called Verification Theorem is stated and
proven, for which one has to assume that the dynamic programming equation
has a sufficiently smooth classical solution, which suffices the former heuristic
derivation. If there is no such solution then solutions have to be considered
in some weaker sense, one possibly relies on so called viscosity solutions. In
order to consider that topic it is referred to [5, p. 53 - 123 and p. 213 - 251].
An alternative to the verification approach above is mentioned in the paper
by Albrecher and Thonhauser [2, p. 307 - 308], namely one also can prove
that the “[. . . ] obtained solution of the HJB equation actually dominates the
values of all other possible strategies (usually by martingale arguments).”

Finite time horizon problem:

We start with the finite time horizon problem formulated above with object-
ive (1.3.3). So we start at time t and know the initial state Xt = x ∈ Σ, with
that we can define the value function, which is a function of the initial data:

V (t, x) = sup
u∈C

J(t, x;u), (1.3.5)

where J is supposed to be the gain function and the supremum is taken
over the set C of admissible controls. Again C has to be specified in every
specific problem, hence this formulation is a heuristic one. The dynamic
programming principle or Bellman’s principle of dynamic programming is
then stated as follows for t ≤ t+ h ≤ t1 it holds that

V (t, x) = sup
C
Etx

[∫ t+h

t

L(s,Xu
s , us)ds+ V (t+ h,Xu

t+h)

]
. (1.3.6)

This means to be optimal one has to optimize the running gain on the interval
[t, t+ h] and continue in an optimal way from t+ h to the endpoint t1 with
initial data (t+h,Xt+h). As a next step we state the dynamic programming
equation (1.3.7) and show heuristically how it is obtained from the DPP:

0 = max
v∈U

[AvV (t, x) + L(t, x, v)] , (1.3.7)

considered in [t0, t1]× Σ with terminal (Cauchy) data

V (t1, x) = ψ(x), x ∈ Σ. (1.3.8)
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Considering a constant control us = v on the time interval s ∈ [t, t + h]
one gets from (1.3.6)

V (t, x) ≥ Etx

[∫ t+h

t

L(s,Xv
s , v)ds

]
+ Etx

[
V (t+ h,Xv

t+h)
]
. (1.3.9)

The inequality is equivalent to

0 ≥ 1

h
Etx

[∫ t+h

t

L(s,Xv
s , v)ds

]
+

1

h
Etx

[
V (t+ h,Xv

t+h)− V (t, x)
]
.

Then consider the limit h→ 0 from above and we obtain

lim
h→0+

1

h
Etx

[∫ t+h

t

L(s,Xv
s , v)ds

]
= L(t, x, v)

and

lim
h→0+

1

h
Etx

[
V (t+ h,Xv

t+h)− V (t, x)
]

(∗)
= lim

h→0+

1

h
Etx

[∫ t+h

t

AvV (s,Xv
s )ds

]
= AvV (t, x).

Note that on has to think about the requirements needed such that all these
steps are verified, in particular one has to assume something like V ∈ D in
order to ensure using Dynkin’s formula at (∗). Note that in this context it is
more restrictive to say that for a function f the term limh↘0

1
h
Etx[f(Xt+h)−

f(x)] is considered with respect to the supremum norm than to assume that
f fulfills Dynkin’s formula and hence it is required that Dynkin holds. This
will give us for all v ∈ U the inequality

0 ≥ AvV (t, x) + L(t, x, v). (1.3.10)

Assuming existence of an optimal Markov control policy u∗ and the Markov
process X∗ generated by Au

∗
we obtain equality in (1.3.9)

V (t, x) = Etx

[∫ t+h

t

L(s,X∗s , u(s,X∗s ))ds

]
+ Etx

[
V (t+ h,X∗t+h)

]
.

Analogously, as above one obtains

0 = Au
∗
V (t, x) + L(t, x, u∗(t, x)), (1.3.11)
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assuming that all considered steps must be accompanied by requirements on
the used mathematical objects, e.g. continuity of u∗ at (t, x). And finally
we see that inequality (1.3.10) and equality (1.3.11) are equivalent to the
dynamic programming equation (1.3.7). Moreover the above argumentation
yields that for an optimal Markov control policy it should hold that

u∗(t, x) ∈ arg max[AvV (t, x) + L(t, x, v)], (1.3.12)

whereby

arg max g(v) = {u∗ ∈ U : g(u∗) ≥ g(v) ∀v ∈ U}.

Infinite horizon discounted gain problem:

In this case the considered objective is (1.3.4):

J(x, u) = Ex

[∫ ∞
0

e−βsL(Xs, us)ds

]
, for some β > 0

and the formal value function has the form

V (x) = sup
u∈C1

J(x;u). (1.3.13)

Similar as above C1 denotes the set of admissible controls and the data is
given by the initial state X0 = x. The proceeding here is analogous to the
previous case and one obtains for the infinite time interval [0,∞) the dynamic
programming equation

βV (x) = max
v∈U

[AvV (x) + L(x, v)]. (1.3.14)

In this framework it is natural to consider so called stationary Markov con-
trol policies u(x). As above the formal approach yields that for an optimal
stationary Markov control policy u∗ it should hold that

u∗(x) ∈ arg max[AvV (x) + L(x, v)]. (1.3.15)
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1.3.2 Verification step

In the former derivation one gets that the value function should fulfill the
dynamic programming equation, under the restriction that the dynamic pro-
gramming principle holds. So if one wants to solve stochastic optimal control
problems the starting point in order to obtain information about the value
function will be the corresponding dynamic programming equation, provided
that the DPP is fulfilled. Therefore solving the DPE generates a candidate
for the value function, but in fact one has to verify that this really is the value
function. This is done in the so called verification step, the corresponding
statement about the solution is called verification theorem. This theorem
claims that if a classical solution of the DPE has been found, than this is
the minimum, respectively the maximum, of the considered expected value
among the set of all admissible control systems, which are defined below.
Nevertheless the assumptions of the theorem are very strong, it is not always
possible that a solution in the classical sense does exist. Hence also solutions
in a weaker sense are maybe considered (e.g. viscosity solutions). For this
purpose it is referred to [5, p. 53 - 123 and p. 213 - 251] as mentioned above.
For example in the case of controlled Markov diffusion processes one needs
that W ∈ C1,2 (one has to apply Itô’s formula) and W and AvW need to
fulfill a polynomial growth condition.

Finite time horizon problem:

We are now in the first setting with the finite time interval [t0, t1]. W (t, x)
is called a classical solution of the DPE (1.3.7) with data (1.3.8) if

W ∈ D, (1.3.16)

where D was defined above,

0 = max
v∈U

[AvW (t, x) + L(t, x, v)] , (1.3.17)

for (t, x) ∈ [t0, t1]× Σ and

W (t1, x) = ψ(x), ∀x ∈ Σ. (1.3.18)

Furthermore for given initial data (t, x), let

π = (Ω, (Fs), P,X, u).
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π is called an admissible control system if

• (Ω,Ft1 , P ) is a probability space,

• (Fs) for t ≤ s ≤ t1 is an increasing family of σ-algebras,

• X = (Xs) and u = (us) are stochastic processes on [t, t1] such that:

(i) Xs ∈ Σ for t ≤ s ≤ t1 and Xt = x,
X is càdlàg and adapted w.r.t. (Fs);

(ii) us ∈ U for t ≤ s ≤ t1,
u is adapted and as a process measurable w.r.t. (Fs);

(iii) the Dynkin formula

Etx(Φ(t1, Xt1))− Φ(t, x) = Etx

(∫ t1

t

AusΦ(s,Xs)ds

)
(1.3.19)

holds for all Φ ∈ D such that the properties

Etx(|Φ(t1, Xt1)|) <∞ and Etx

(∫ t1

t

|AusΦ(s,Xs)|ds
)
<∞

are fulfilled.

It is worth to mention that regarding π these technical points have to be
verified, when tackling a specific problem. In this setting we get that

J(t, x; π) = Etx

(∫ t1

t

L(s,Xs, us)ds+ ψ(Xt1)

)
(1.3.20)

is the total expected gain (respectively cost) associated to π.

Theorem 6. If (1.3.17)-(1.3.18) has a classical solution W with W ∈ D,
then ∀ (t, x) ∈ [t0, t1]× Σ it holds that

(a) W (t, x) ≥ J(t, x; π) for every admissible control system π.

(b) If ∃ π∗ = (Ω∗, (F∗s ), P ∗, X∗, u∗) an admissible control system such that

u∗(s) ∈ arg max[AvW (s,X∗s ) + L(s,X∗s , v)]

for λ⊗ P ∗ - almost all (s, ω) ∈ [t0, t1]× Ω∗, then

W (t, x) = J(t, x; π∗),

where λ denotes the Lebesgue-measure.
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Proof. Consider an admissible control system π, because of the assumptions
we have that us ∈ U and therefor

AusW (s,Xs) + L(s,Xs, us) ≤ 0.

Moreover we get

W (t, x) = Etx

(∫ t1

t

−AusW (s,Xs)ds

)
+ Etx(W (t1, Xt1))

= Etx

(∫ t1

t

−AusW (s,Xs)ds+ ψ(Xt1)

)
≥ Etx

(∫ t1

t

L(s,Xs, us)ds+ ψ(Xt1)

)
= J(t, x; π),

using first Dynkin’s formula (1.3.19) and the terminal data (1.3.18) and then
the above inequality.

And on the other hand if, we take π∗ instead of an arbitrary control system
π one obtains equality instead of inequality and hence (b) holds too.

Analogously, as above, let C be the class of all admissible control systems,
then we consider

VAS(t, x) = sup
C
J(t, x; π).

For W such that the assumptions of the Verification Theorem are fulfilled,
we obtain

VAS = W.

The requirements in this Theorem are very restrictive, but a procedure to
obtain an optimal Markov control policy would be the following one. We
have to choose a Markov control policy u∗ with the property that for each
(t, x) ∈ [t0, t1]× Σ it holds that

u∗(t, x) ∈ arg max[AvW (t, x) + L(t, x, v)].

Additionally, if for any initial data (t, x) the process u∗ determines a Markov
process X∗s with infinitesimal generator Au

∗
, one is able to take

u∗s = u∗(s,X∗s ). (1.3.21)

If the associated control system π∗ is admissible, then π∗ is optimal. u∗ is
said to be an optimal Markov control policy, provided the method is working,
see [5, p. 142].
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Infinite time horizon problem:

Now we consider the above type of problem in another framework. The
objective is of the form (1.3.4):

J(x, u) = Ex

[∫ ∞
0

e−βsL(Xs, us)ds

]
, β > 0.

One has to assume for the generator Av for v ∈ U of a time-homogeneous
Markov process, that D ⊂ D(Av) for all v, such that D contains sufficiently
many functions.
For an initial state x

π = (Ω, (Fs), P,X, u)

is called an admissible control system if

• (Ω,F∞, P ) is a probability space,

• (Fs) for s ≥ 0 is an increasing family of σ-algebras, Fs ⊂ F

• X = (Xs) and u = (us) are stochastic processes on [0,∞) such that:

(a) Xs ∈ Σ for s ≥ 0 and Xt = x,
X is càdlàg and adapted w.r.t. (Fs);
us ∈ U for s ≥ 0,
u is adapted and as a process measurable w.r.t. (Fs);

(b) the Dynkin formula

Etx(Φ(t1, X
u
t1

))− Φ(t, x) = Etx

(∫ t1

t

AusΦ(s,Xu
s )ds

)
(1.3.22)

holds for Φ(t, x) = e−βtφ(x) for all φ ∈ D such that the properties

Etx(|Φ(t1, X
u
t1

)|) <∞ and Etx

(∫ t1

t

|AusΦ(s,Xu
s )|ds

)
<∞

for 0 < t1 <∞ are fulfilled and

(c)

Ex

(∫ ∞
0

e−βs|L(Xu
s , us)|ds

)
<∞.
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For Φ(t, x) = e−βtφ(x) the Dynkin formula has the following form

e−βt1Ex(φ(Xu
t1

))− φ(x) = Ex

(∫ t1

0

e−βs[Ausφ− βφ](Xu
s )ds

)
. (1.3.23)

Further, the DPE reads as follows compare (1.3.14):

βW (x) = max
v∈U

[AvW (x) + L(x, v)]. (1.3.24)

If W fulfills the DPE (1.3.24) for all x ∈ Σ and W ∈ D, then it is called a
classical solution.

Lemma 3. For W ∈ D a classical solution of (1.3.24) it holds that:

(a) W (x) ≥ J(x; π) for those admissible π for which

lim sup
t1→∞

e−βt1Ex(W (Xt1)) ≥ 0. (1.3.25)

(b) If an admissible system π∗ exists with

u∗s ∈ arg max[AvW (X∗s ) + L(X∗s , v)],

for λ⊗ P ∗ - almost all (s, ω) ∈ [0,∞)× Ω∗, and

lim inf
t1→∞

e−βt1Ex(W (X∗t1)) ≤ 0, (1.3.26)

one obtains that

W (x) ≤ J(x; π∗),

where λ denotes the Lebesgue-measure.

Proof. For an admissible control system π we know by assumption that us ∈
U and therefore

AusW (Xs)− βW (Xs) + L(Xs, us) ≤ 0.
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Now Dynkin’s formula is used with Φ = e−βtW and with formula (1.3.23)
one obtains

W (x) = e−βt1Ex(W (Xt1)) + Ex

(∫ t1

0

e−βs[−AusW + βW ](Xs)ds

)
≥ Ex

(∫ t1

0

e−βsL(Xs, us)ds

)
+ e−βt1Ex(W (Xt1)).

(1.3.27)

Now consider a subsequence such that t1 → ∞ and e−βt1Ex(W (Xt1)) tends
to a limit larger or equal than 0, this can be done according to (1.3.25).
Hence (a) is proven.

For (b) the only difference to the proof of (a) is that the inequality in
(1.3.27) becomes an equality and one has to consider a subsequence such
that t1 → ∞ and that e−βt1Ex(W (Xt1)) tends to a limit smaller or equal
than 0, which is possible due to (1.3.26).

Similarly to the first case we call C1 the class of admissible controls sys-
tems π which additionally fulfill (1.3.25) and set

VAS = sup
C1

J(x; π). (1.3.28)

Theorem 7. For a classical solution W of (1.3.24) with W ∈ D it holds
that

W (x) ≥ VAS(x).

Furthermore, we have if ∃ π∗ ∈ C1 such that (1.3.26) is fulfilled and

u∗s ∈ arg max[AvW (X∗s ) + L(X∗s , v)]

for λ⊗ P ∗ - almost all (s, ω) ∈ [0,∞)× Ω∗, then

W (x) = VAS(x) = J(x; π∗),

where λ denotes the Lebesgue-measure.

The theorem follows by applying Lemma 3. Note that π∗ is the optimal
control system in the class of admissible control systems C1. Analogously,
to the former case the main task is to identify an optimal stationary Markov
control policy u∗ fulfilling

u∗(x) ∈ arg max[AvW (x) + L(x, v)], (1.3.29)

u∗s = u∗(X∗s ) and

(X∗s )s≥0 is a Markov process, with initial state X∗0 = x and generator Au
∗
.
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Chapter 2

A singular stochastic control
problem

2.1 Introduction

In this chapter the main focus lies on investigating and reproducing the paper
“Capital supply uncertainty, cash holdings, and, investment” by Hugonnier
et al. [6]. This paper models a financial environment, where the considered
firm has to optimize its capital policy under some assumptions about avail-
ability of outside financing and investment opportunities. This optimization
is done due to control of the dividends paid to the shareholders and of the
financing strategy respectively the investment strategy. They start with a
discussion about the economic impact on the posed problem and how such
models are considered in different economic environments, meaning to al-
low several assumptions, which somehow rely on observed scenarios in the
real world, as for example a financial crisis, to be incorporated. We will
lay the focus on the mathematical aspects of the problem and verify those
steps, where the paper refers to the literature. In the paper the descriptive
part and the rigorous mathematical part, where the proofs are carried out,
are separated. In fact all mathematical verifications are gathered in vari-
ous parts of an appendix. Some statements and additional assumptions are
justified and written down in the so called “Supplementary Appendix”, see
e.g. [6, p. 8, footnote 5]. We have to comment that this “Supplementary
Appendix” was not considered in this framework, because at this point it
was not available. In our treatment there will be no segregation of these two

33
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parts, because of the better understanding of the mathematical implications
and proofs. Furthermore we will evaluate the problem, which is in fact a sin-
gular stochastic control problem, mainly under the use of the corresponding
chapter “Singular Stochastic Control” in [5, p. 315 - 362] as it is referred
to at [6, p. 38]. Nevertheless also other chapters of the book [5] were used,
because the singular stochastic control theory is obviously strongly related
to the already considered aspects of the optimal stochastic control theory.
Furthermore we use the paper [16] by Shreve et al. in order to investigate the
considered model. The way of proceeding will be to implement the theory in
coincidence with the provided problem.

2.2 Model assumptions

Lets begin with some general assumptions about modeling uncertainty and
the financial background, which is based on [6, p. 8 - 12].

• The time is assumed to be continuous.

• The probability space is denoted by (Ω,F ,F, P ), where the filtration
is F = (Ft)t≥0, with F∞ ⊂ F and fulfills the usual conditions.

• The involved agents are acting risk neutral.

• The discount rate is constant and denoted by ρ > 0.

Concerning the firm we have the following conditions. First of all note that
the management of the firm represents interest of the shareholders and works
therefore with steering mechanisms in order to manipulate the investment,
payout, liquidation and financing strategy. How this is done can be easily
seen by considering the cash reserves of the firm (2.2.4).

We have that the assets in place of the firm generate a continuous cash
flow stream X = (Xt)t≥0, that satisfies

dXt = µ0dt+ σdBt, (2.2.1)

where B = (Bt)t≥0 is a Brownian motion with respect to (Ft)t≥0, µ0 is a con-
stant, denoting the mean of the cash flow, and σ is also a constant, denoting
the volatility of the cash flow.
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Moreover the firm has the opportunity to invest, which has a positive
impact on the mean income of the firm, namely the cash flow then satisfies

dXt = µ0dt+ σdBt + (µ1 − µ0)dt,

where µ1 > µ0 in order to have an increase. The firm can decide when it
uses this growth option, but at time of investment, denoted by the stopping
time T , it has to pay a lump sum cost K > 0.

The firms payout policy is managed by a nondecreasing, adapted and left-
continuous process D = (Dt)t≥0 with D0− = 0, which denotes the cumulative
dividends paid out to the shareholders up to time t. Note that in the paper
it is assumed that (Dt)t≥0 is only adapted and nondecreasing, but to ensure
that it is progressive in order to be in line with the theory about singular
stochastic control, we assume that it is left-continuous. Since it is assumed
that it is adapted and left-continuous we make sure that the dividend process
is even predictable. Hence with Lemma 1 we get that (Dt)t≥0 is therefore
progressive.

The financing in this model stands in contrast to other model approaches
of similar type. In fact the provision of fresh capital is not unrestrictedly
possible. The capital supply uncertainty is modeled as follows. If the firm is
willing to accept outside financing, it has to search for investors. This search-
ing procedure follows a Poisson process (Nt)t≥0 with intensity λ. Meaning
that conditional on searching, the jump times of the Poisson process are the
occurrence times of investors and hence these are the times where financing
happens. The hight of the funding at time t ≥ 0 is denoted by a nonnegative
predictable process f = (ft)t≥0.
The intensity λ of the Poisson process represents the arrival rate of investors.
Considering extremal values for λ leads to different capital market conditions.
On the one hand if λ = 0, then there will not be one single investor avail-
able at any time and hence the firm has to finance losses or investment with
capital of the aggregated cash holdings. On the other hand if we let λ→∞,
then investors are always on-hand and hence the firm can use outside fund-
ing all the time. This situation implies that cash reserves are redundant and
issuing new equity is able to cover losses and costs of investment.
In this environment where availability of capital respectively investors is not
always given one has that at these times of refinancing, the new investors can
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acquire part of the arising surplus. This is done in a bargaining procedure
over the conditions of the corresponding new issue in order to set the “[. . . ]
cost of capital or, equivalently, the proceeds from the stock issue”, see [6, p.
11]. The resulting distribution of the surplus between new investors and the
established shareholders is determined via, so-called Nash bargaining. The
corresponding protagonists are the following.

• Let η ∈ [0, 1] be the bargaining power of the new investors, further η
is set to depend on the availability of investors and hence we assume
η = a

a+λ
with a > 0,

• V (c) be the value of the firm given as a function of the cash reserves c,

• SfV (c) be the financing surplus, which satisfies

SfV (c) := V (c+ f)− f − V (c) (2.2.2)

and

• π∗ be the amount new investors obtain, if funding in the height of f ≥ 0
is raised, so we have

π∗ = arg max
π≥0

[
πη(SfV (c)− π)1−η] = ηSfV (c). (2.2.3)

Note that the bargaining power and hence the corresponding surplus of the
investors respectively the cost of capital declines if the supply of capital re-
spectively λ increases.

The firm’s rulers are able to retain gains, which therefore increases the
cash reserves. These cash holdings generate interest at a constant rate r such
that r < ρ. The corresponding carry cost of cash is therefore denoted by δ
and satisfies δ = ρ− r > 0. The corresponding cash reserves are denoted by
Ct at time t ≥ 0, which evolves as follows

dCt =
(
rCt− + µ0 + 1{T≤t}(µ1 − µ0)

)
dt+ σdBt + ftdNt − dDt − 1{T=t}K.

(2.2.4)
So we have that on the one hand cash reserves increase due to gaining in-
terest, earnings of the assets in place and outside funding and on the other
hand decrease due to paying dividends to the shareholders and due to the
lump sum cost of the investment opportunity. In the paper it is stated that
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in this model “[. . . ]T , D, and f are endogenously determined”, see [6, p. 10].

Finally, it is possible that the firm is liquidated. This is done if the cash
holdings hit the value zero. That situation can have two potential reasons.
Primarily, they can reach zero due to a negative evolution of the cash flows
and this form of liquidation is in some sense unintended or in other words
not directly intended. On the contrary the management has the force to pay
a so called liquidating dividend, which means that all cash reserves are paid
out to the shareholders. The liquidation value of a firm’s assets li related to
the current corresponding mean cash flow rate µi satisfies

li =
ϕµi
ρ

= ϕ

∫ ∞
0

e−ρtµidt, (2.2.5)

where ϕ < 1 denotes the tangibility of assets, that is the fraction of the
assets which can be converted into cash in case of liquidation. Therefore
1−ϕ denotes the haircut which stands for the part of the investment that is
not returned. These are economically based assumptions for the liquidation
value, which seem to be quite reasonable, but there is also some mathematical
point of view in this context. Let a(x) denote the drift of the stochastic
differential equation for the state process, which yields in our case a(x) =
rx+µi. In fact, if one compares this model to the absorption problem in the
paper by Shreve et al. [16], then we notice that the condition at [16, p. 65]
namely

a′(x) = r ≤ ρ

is fulfilled. And moreover we realize that the drift at time zero a(0) in the
considered SDE for the state process in our model fulfills

a(0) = µi > ϕµi = ρli

too, which gives in the the absorption problem a condition such that the
optimal strategy is of barrier type. On the other hand if this condition is not
fulfilled, then the corresponding theorem for the absorption problem at [16,
p. 67] states that the optimal strategy would be an initial jump to zero with
reward in our notation li + c, if we start with the cash reserves c. Note that
in the absorption problem there is no outside financing considered.

The stochastic liquidation time of the firm is called τ0, where

τ0 = inf{t ≥ 0|Ct = 0}.
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Because of capital supply uncertainty and the omnipresent possibility of pay-
ing a liquidating dividend, liquidation automatically occurs if cash holdings
hit the value zero. That means we can either stop, if a liquidating dividend
is payed out or the cash reserve process hits the value zero. That is why
we obtain Ct− −∆Dt ≥ 0, which stands in contrast to the general dividend
problem in the respective literature, where it must hold that Ct−−∆Dt > 0.

Hence the firm’s management faces the following task. It controls the
payout (Dt)t≥0, the funding (ft)t≥0 and the time of investment (T ) in or-
der to maximize the present value of future dividends. The problem the
management has to solve is precisely described by the following terms:

V (c) = sup
(f,D,T )

Ec

[ ∫ τ0

0

e−ρt (dDt − (ft + ηSftV (Ct−))dNt)

+ e−ρτ0
(
l0 + 1{τ0>T}(l1 − l0)

) ]
.

(2.2.6)

Note that this equation is implicit in V, but in the further proceeding we
are switching to an auxiliary problem where η = 0 and therefore the implicit
representation disappears. Further note that the value in zero of V depends
whether the investment opportunity was exploited or not. The description
of the above term is as follows. The dDt - term stands for the present value
of the paid amount to current shareholders up to the liquidation time τ0, the
dNt-term is representing the “[. . . ] net of the claim of new (outside) investors
on future cash flows”, see [6, p. 12]. Moreover the last term stands for the
discounted liquidation value, which depends on the condition if investment
takes place before liquidation or not.

Note that the firm is not allowed to fund the investment with debt. This
restriction is described in the paper to have no effect on the obtained results
in the environment, where the supply of credits is uncertain.

In the end we discuss the crucial fact that the above supremum is taken
of an expression, which contains itself, the value function namely, in the term
of the surplus in case of a funding. Due to this fact in the paper it is stated
that the optimization problem is similar to a so called rational expectations
problem. Furthermore it is proclaimed that in the Supplementary Appendix,
which is, as mentioned above, not available, the authors of the paper showed
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that “[. . . ] introducing bargaining in the model and solving the correspond-
ing rational expectations equilibrium is equivalent to reducing the arrival
rate of investors from λ to λ∗ ≡ λ(1−η) in an otherwise similar model where
outside investors have no bargaining power”, see [6, p. 12]. So a new model
is considered where some parameters are changed. The new parameters are
labeled with a star. So we have the new bargaining power η∗ = 0 and the
intensity of the Poisson process changes to λ∗ ≡ λ(1 − η) and hence one
obtains for the objective:

V (c) = sup
(f,D,T )

Ec

[∫ τ0

0

e−ρt (dDt − ftdNt) + e−ρτ0
(
l0 + 1{τ0>T}(l1 − l0)

)]
.

(2.2.7)
Note that we only consider the model where the firm has no growth option,
because otherwise this would go beyond the scope of this thesis. As a remark
we just want to mention that the resulting switching problem, where the firm
is able to change the drift of the underlying cash flow process as described
above, is considered in the respective paper by Hugonnier et al. [6].

2.3 Singular stochastic control theory

This section serves as introduction to singular stochastic control theory. The
main purpose is that we want to provide some theoretical background in or-
der to evaluate the above problem in the corresponding context.

We start as before with a formal and heuristic derivation of some import-
ant properties. The considered problem will be a restricted version of the
infinite horizon problem of a Markov diffusion process in Rd. That is why
we are beginning with a general description of this type of problem, which is
based on [5, p. 171 - 172] and then make some further assumptions in order
to start a formal discussion of the singular stochastic control case, which is
based on [5, p. 315 - 321]. The starting point will be the following stochastic
differential equation in the time - homogeneous case similar to (1.2.18) for
the state process and a objective function similar to (1.3.4).
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2.3.1 The infinite time horizon problem for Markov
diffusions in Rd

Let (Xs)s≥0 be a d-dimensional stochastic process, namely the state process,
satisfying

dXs = b(Xs, us)ds+ σ(Xs, us)dWs, s ≥ 0,

and with initial data X0 = x ∈ Rd.
(2.3.1)

It is assumed that (Ws)s≥0 is a n-dimensional standard Brownian motion,
us ∈ U is the control at time s and

b : Rd × U → Rd,

σ : Rd × U → Rd×n

are continuous functions, where U ⊂ Rm for some m is closed. Moreover
b(·, v) and σ(·, v) are C1(Rd) and for some constant C it holds that

|bx| ≤ C, |σx| ≤ C,

|b(x, v)| ≤ C(1 + |x|+ |v|) and

|σ(x, v)| ≤ C(1 + |x|+ |v|).
(2.3.2)

Note that bx denotes the gradient with respect to x and σx denotes the
differential Dxσ because σ is a matrix valued function. With |σ| we consider
the operator norm. Furthermore let O ⊆ Rd be open and we have that either
O = Rd or ∂O is a compact (d − 1)-dimensional C3 manifold. The state
process is controlled up to the first time it leaves the open set O. The exit
time of Xs from O is denoted by τ and if Xs ∈ O ∀ s ≥ 0 we have τ = ∞,
in particular τ = inf{s ≥ 0 : Xs /∈ O} is a stopping time. Additionally let

L : Rd × U → R,

g : Rd → R
continuous functions such that L satisfies the following polynomial growth
condition

|L(x, v)| ≤ C̃(1 + |x|k + |v|k) (2.3.3)

for appropriate constants C̃ ≥ 0 and k ≥ 0. Note that regarding the defin-
ition in [5] a function f : Σ 7→ R, where Σ is a metric space, is called
polynomial growing if for constants M, l ≥ 0 it holds that

|f(x)| ≤M(1 + |x|l),∀ x ∈ Σ.
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Now with β ≥ 0 a discount factor, the objective function reads as follows

J(x;u) = Ex

[∫ τ

0

e−βsL(Xs, us)ds+ 1{τ<∞}e
−βτg(Xτ )

]
. (2.3.4)

Now we want to establish the considered optimal stochastic control problem
accurately. Therefore the notion of a reference probability system is intro-
duced similar to the admissible control system in the more general view.

Definition 10. A 5-tupel

ν = (Ω,F , {Fs}, P,W )

is called a reference probability system, if

• (Ω,F , P ) is a probability space,

• {Fs} is a filtration such that {Fs} ⊂ F and

• W = (Ws)s≥0 is a Fs-adapted Brownian motion on [0,∞).

In order to restrict the set of controls to some extent that all considered
objects are defined and make sense we consider the following.

Definition 11. The set Aν contains all Fs - progressively measurable pro-
cesses (us)s≥0 with values in U such that

E

[∫ t1

0

|us|pds
]
<∞ (2.3.5)

for t1 <∞ and p = 1, 2, 3, . . . and it holds that

Ex

[∫ τ

0

e−βs|L(Xs, us)|ds
]
<∞. (2.3.6)

Now we distinguish between the supremum over all controls in Aν :

Vν(x) = sup
Aν

J(x;u) (2.3.7)

and the supremum over all reference probability systems:

VPM(x) = sup
ν
Vν(x). (2.3.8)



42 CHAPTER 2. A SINGULAR STOCHASTIC CONTROL PROBLEM

The terminology reads as follows, if Vν(x) = J(x;u∗) for u∗ ∈ Aν , then u∗

is called ν − optimal. On top of this if VPM(x) = J(x;u∗), where u∗ ∈ Aν∗

for some reference probability system ν∗ = (Ω∗, {F∗s}, P ∗,W ∗), then u∗ is
called an optimal admissible progressively measurable control process. In
this context it is referred to [5, p. 160], where it is moreover stated that
Vν = VPM if specific conditions are satisfied.

In the following we use previously stated results especially from Section
1.2.1 and Section 1.3 in order to obtain the dynamic programming equation
also called the Hamilton-Jacobi-Bellman equation of this type of infinite time
horizon problem. The starting point is the DPE (1.3.14), (1.3.24):

βW (x) = max
v∈U

[AvW (x) + L(x, v)].

This equation is transformed, using for the operator Av the analogous oper-
ator as in the uncontrolled case (1.2.32). We obtain the following (2.3.9) just
by using (2.3.1) instead of (1.2.18) in the derivation of (1.2.32). So now the
coefficient functions do not depend on the time t, which means that we are in
the time-homogeneous setup. Additionally, the coefficient functions depend
now on the control u, but following the lines in the derivation of (1.2.32)
with the changed setting should lead us to the analogous results. This gives
us that Dynkin’s formula holds as above and the operator has the form

AvW (x) =
d∑
i=1

Wxib
i(x, v) +

1

2

[
d∑
i=1

d∑
j=1

Wxixjaij(x, v)

]

= (DxW )T b(x, v) +
1

2
tr((D2

xW )a(x, v)),

(2.3.9)

where a(x, v) = σ(x, v)σ(x, v)T . For further details see [5, p. 160 - 161].

Up next with these results we obtain the Hamilton-Jacobi-Bellman equa-
tion, which is here a second-order nonlinear partial differential equation

− βV + sup
v∈U

[
(DV )T b(x, v) +

1

2
tr((D2V )a(x, v)) + L(x, v)

]
= 0, x ∈ O

(2.3.10)
and the boundary condition

V (x) = g(x), x ∈ ∂O. (2.3.11)
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Further the HJB equation is uniformly elliptic if ∃ c > 0 such that

d∑
i,j=1

aij(x, v)ξiξj ≥ c|ξ|2 ∀ ξ ∈ Rd and v ∈ U. (2.3.12)

In this case, regarding to the literature, the HJB equation (2.3.10) together
with the boundary data (2.3.11) is expected to have a smooth solution that is
even unique if one additionally assumes that O is bounded. In the opposite if
the condition (2.3.12) is not fulfilled the HJB equation is degenerate elliptic.
Here it is not so easy to derive the desired conclusions. But it is possible
with other restrictions to consider the task in some weaker sense and one is
able to verify the existence of a viscosity solution.

2.3.2 The singular stochastic control case

Now we have to make additional assumptions on the considered objects of
the above infinite time horizon setting in order to admit that the variation of
the state through the control is not continuous. Which stands in opposition
to the classical view of control problems, where this variation is differenti-
able in time. The following is, as already mentioned at the beginning of this
section, based on [5, p. 315 - 321].

The considered setting is the one from above and we make on the back
of this, the following assumptions. Consider the reference probability system
ν = (Ω,F , {Fs}, P,W ), but now additionally to the requirements in the
above definition the filtration {Fs} is assumed to be right continuous. Further
let as above O ⊂ Rd and let U ⊂ Rd such that

∀v ∈ U, λ ≥ 0 it holds that λv ∈ U, (2.3.13)

which means that U is a closed cone in Rd. Moreover we set

b(x, v) = b̂(x) + v, (2.3.14)

σ(x, v) = σ̂(x), (2.3.15)

L(x, v) = L̂(x) + ĉ(v), (2.3.16)

and
ĉ(λv) = λĉ(v), ∀ λ ≥ 0, (2.3.17)
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where x ∈ Rd and v ∈ U . Further let b̂, σ̂ ∈ C1(Rd), where their first order
partial derivatives are bounded and let L̂, ĉ ∈ C(Rd). Note that the set U of
controls is not bounded anymore.

Now we consider the related HJB equation, we obtain from (2.3.10) plug-
ging in the previous terms:

− βV (x) + sup
v∈U

[
(DV )T (x)b̂(x) + (DV )T (x)v

+
1

2
tr((D2V )(x)â(x)) + L̂(x) + ĉ(v)

]
= 0, (2.3.18)

where x ∈ O, â(x) = σ̂(x)σ̂(x)T and the boundary condition

V (x) = g(x), x ∈ ∂O. (2.3.19)

So we can rewrite (2.3.18) such that

− βV (x) + (DV )T (x)b̂(x) +
1

2
tr((D2V )(x)â(x))

+ L̂(x) + sup
v∈U

[
(DV )T (x)v + ĉ(v)

]
= 0, (2.3.20)

where x ∈ O. We look at the term with the supremum more closely by
setting

H(DV (x)) := sup
v∈U

[
(DV )T (x)v + ĉ(v)

]
. (2.3.21)

Then we have, if there exists a v ∈ U such that (DV )Tv + ĉ(v) > 0, by
the property (2.3.13) of U and by (2.3.17) of ĉ that H(DV (x)) = +∞.
Considering only normalized controls in the set

K := {v ∈ U : |v| = 1}, (2.3.22)

which contains, loosely speaking, the allowed directions in that the control
is able to move. Further set

H(DV (x)) := sup
v∈K

[
(DV )T (x)v + ĉ(v)

]
(2.3.23)

and finally we deduce that

H(DV (x)) =

{
+∞ if H(DV (x)) > 0,

0 if H(DV (x)) ≤ 0.
(2.3.24)
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With these results we see that in some cases parts of the HJB equation
explode. In order to handle this fact it is formally assumed that for the value
function V it holds that

H(DV (x)) ≤ 0, x ∈ O. (2.3.25)

On top of this we define the following differential operator

LV (x) := −βV (x) + (DV )T (x)b̂(x) +
1

2
tr((D2V )(x)â(x)) (2.3.26)

with these notations we have that the HJB equation (2.3.20) reads as follows

LV (x) + L̂(x) +H(DV (x)) = 0, x ∈ O, (2.3.27)

with (2.3.25) and due to the properties of the supremum, we have that V
formally fulfills

LV (x) + L̂(x) ≤ 0, x ∈ O. (2.3.28)

Next, if we consider the case where there exists a x ∈ O such that the
inequality is strict H(DV (x)) < 0, then we obtain that the unique maximizer
in (2.3.21) is zero in a neighborhood of x. So this yields that in a formal way
around x the optimal feedback control should be zero. So it is stated that
due to the relation of the uncontrolled diffusion processes to linear equations
one should get

LV (x) + L̂(x) = 0, if H(DV (x)) < 0. (2.3.29)

So using (2.3.25) together with (2.3.28) and using (2.3.29) one can conclude
that

max{LV (x) + L̂(x), H(DV (x))} = 0, x ∈ O, (2.3.30)

and from above we have the boundary condition

V (x) = g(x), x ∈ ∂O. (2.3.31)

For a rigorous basis see the Verification Theorem 4.1 of the DPE (2.3.30)
with boundary data (2.3.31) at [5, p. 322].

Following the lines of [5, p. 315 - 319] it is stated that considering the
above quantities generally does not lead to optimal controls respectively al-
most optimal ones become arbitrary large. The key point is to integrate
over us and take this as the control process. First of all we write down the
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stochastic differential equation (2.3.1) for the state process X with the above
assumptions on the coefficient functions:

dXs = b̂(Xs)ds+ usds+ σ̂(Xs)dWs, s ≥ 0,

with initial data X0 = x ∈ Rd.
(2.3.32)

Because of this special form of the SDE we consider the following, set

ûs =

{
|us|−1us if us 6= 0,

0 if us = 0,
(2.3.33)

and

ξt =

∫ t

0

|us|ds. (2.3.34)

As a consequence (2.3.32) transforms to

dXs = b̂(Xs)ds+ σ̂(Xs)dWs + ûsdξs, s ≥ 0. (2.3.35)

The considered control at time t is therefore

zt =

∫
[0,t)

ûsdξs. (2.3.36)

The class of controls has to be extended in order to admit the control zt be-
cause this does not necessarily need to be absolutely continuous with respect
to t. Further assumptions are that on every interval [0, t], zt is a function
of bounded variation, which means that every component of zt is the differ-
ence of two monotone functions of t. Further let µ be the the total variation
measure of z and

ξt =

∫
[0,t)

dµs. (2.3.37)

We have:

ξ is nondecreasing, real-valued and

left continuous furthermore ξ0 = 0.
(2.3.38)

The process z is identified with the pair (ξ, û). In fact by the Radon-Nikodym
theorem one has ∃ûs ∈ Rd such that (2.3.36) holds and further |ûs| ≤ 1.
Moreover for z given, ξt is determined uniquely ∀t ≥ 0 and ûs is also determ-
ined uniquely for µ-a.e. s ≥ 0. Concerning the progressive-measurability
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we have that zs is Fs-progressively measurable implies that first ξs is Fs-
progressively measurable and second that there exists a version of ûs which
is again Fs-progressively measurable, see [5, p. 318] and [5, Appendix D, p.
397 - 402]. Hence zs is assumed to be Fs-progressively measurable, and we
assume that the function ûs is Fs-progressively measurable and additionally
fulfills the relation (2.3.36). Moreover the following conditions are assumed

ûs ∈ U, for µ-a.e. s ≥ 0, (2.3.39)

and
E (|zt|m) <∞ for m ∈ N. (2.3.40)

Definition 12. Let Âν be the set of all z = (ξ, û), which are progressively
measurable and fulfill (2.3.38), (2.3.39)and (2.3.40).

For the proof of existence of (Xs)s≥0 we have that, given an initial state

x ∈ O the Picard iteration yields X
(m)
t for m = 1, 2, 3, . . . , such that X

(m)
t −

zt converges against Xt − zt, where the convergence is almost surely (with
probability 1) and uniformly for bounded t, see [5, p. 319]. Hence the
equation

Xt = x+

∫ t

0

b̂(Xs)ds+

∫ t

0

σ̂(Xs)dWs + zt, t ≥ 0, (2.3.41)

with
Xt+ −Xt = zt+ − zt,

(which means that jumps in the state process are jumps in the control pro-
cess) has a unique and left-continuous solution X. Note that we have

Xt+ = lim
s↘t

Xs = Xt + zt+ − zt = Xt + ût(ξt+ − ξt)

for every t ≥ 0, generally Xt is not continuous. Further X is left-continuous
and Ft is right-continuous yields that the exit time τ of Xs from O is a Ft -
stopping time. Finally the objective as in (2.3.4) reads as follows

J(x; ξ, û) = Ex

[∫
[0,τ ]

e−βs(L̂(Xs)ds+ ĉ(ûs)dξs)

]
(2.3.42)

and we have to maximize this term first over all pairs (ξ, û) ∈ Âν and second
over all reference probability systems ν. J(x; ξ, û) is defined ∀(ξ, û) ∈ Âν ,
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because L̂ ≥ 0 and ĉ ≥ 0, but it is possible that J becomes +∞. In the end
we set

Vν(x) = sup
Âν

J(x; ξ, û) (2.3.43)

and
V (x) = VPM(x) = sup

ν
Vν(x). (2.3.44)



Chapter 3

Establishing the solution

In this chapter we apply the dynamic programming approach with the cor-
responding HJB equation derived in the preceding parts in order to solve a
special case of the above presented model. Note that the following solution
approach is based on [6, p. 13 - 16 and p. 37 - 44]. In fact the model is
restricted such that we are only considering firms without growth option,
therefore the two main terms change. The SDE (2.2.4) becomes

dCt = (rCt− + µ) dt+ σdBt + ftdNt − dDt, with C0− = c (3.0.1)

and the value function (2.2.7) transforms to

V̂ (c) = sup
(f,D)∈Θ

Ec

[∫ τ0

0

e−ρt (dDt − ftdNt) + e−ρτ0l

]
, (3.0.2)

where τ0 denotes again the time when the process Ct equals zero for the
first time and Θ is the set of admissible strategies. In particular we have
that Θ contains all pairs (f,D) of financing and dividend strategies with the
properties listed in the Section 2.2 and additionally they need to fulfill

Ec

[∫ τ0

0

e−ρs(dDs + fsdNs)

]
<∞.

It is important to mention that now the optimal value of the firm is here
denoted with a hat and on the other hand the value of the firm corresponding
to the conjectured optimal control strategy will be denoted with V . Besides,
note that one could also let V depend on the considered mean cash flow rate
µi and therefore on li and denote it with Vi. In that notation one can solve

49
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the problem for different µi and has for all i the respective solution, but in
order to improve the readability we suppress the subscript notation and point
out that in the general case the problem can be obviously solved for V0, where
the firm has not yet used the growth option with rate µ0 and for V1 with
rate µ1, where the growth opportunity was already realized. Nevertheless,
these solutions can be used to derive a solution in the general case where the
possibility to invest exists. Further the differential operator (2.3.26) reads
now as follows:

Lφ(c) := −ρφ(c) + φ′(c)(rc+ µ) +
1

2
σ2φ′′(c). (3.0.3)

The above presented approach can be used to derive the HJB equation
for the model without the outside financing term ftdNt, where the control is
the cumulated dividend process Dt. The HJB equation for the whole model
is derived by splitting up the two problems into the part with the optimal
dividends and the part with the optimal financing height at given points in
time. Regarding the second part of the problem we define additionally the
following operator

Fφ(c) := max
f≥0

[λ∗ (φ(c+ f)− φ(c)− f)] , (3.0.4)

where λ∗ is the new intensity of the Poisson process (Nt)t≥0 as mentioned
above and the definition is reasoned in the Section 3.1. Fortunately, this
separation can be done, because we can split up the conditional expectation
in the value function and use special properties of the Poisson process, this is
implemented in the next section. Furthermore the behavior of the problem
considered with respect to a barrier strategy, which is stated to be the optimal
one, is of a special kind. Following a barrier strategy means that the firm
is paying dividends if the cash reserves reach a prespecified threshold b in
order to keep those cash holdings at the barrier level. Beneath this level it
is stated to be optimal to raise the cash reserves up to the barrier b. This
is done due to the natural evolution of the process Ct driven by interest
gains and earnings and additionally due to the possible outside financing.
This implies that beneath b the firm is always searching for investors and
given that the Poisson process Nt jumps, which means that investors are
available, the firm makes use of the financing possibility and the height is
determined via the current position of the cash reserves. In fact ft will be
exactly that amount such that the cash holdings reach the barrier level b.
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Otherwise, if the funding would let Ct exceed the barrier, then this surplus
would instantaneously be paid out in the form of dividends.

Exactly with this consideration the optimal barrier is determined, because
as long as the value function is concave, the firm is searching for investors
and tries to raise its cash reserves and exactly at the first point in time
when the concavity does not hold anymore it is optimal for the firm to start
paying dividends. Similar observations are made in the paper by Shreve
et al. [16], where a general absorption problem is considered. This type
of problem is more or less an analogue to our model problem, despite the
fact that they only can control their state process via the in our case called
dividend process analogously to the theory on singular stochastic control in
Section 2.3.2. This paper gives a very good view how general problems of
this type namely absorption problems can be solved. Nevertheless both, in
the paper [16] by Shreve et al. and in the paper [6] by Hugonnier et al., they
are choosing not to derive the Hamilton-Jacobi-Bellman equation for their
problem, but they state the HJB equation and use martingale techniques
in order to do the verification of their proclaimed solution. This method is
explained in the four steps of solving the problem declared in Section 3.1.

Moreover note that we consider singular stochastic controls because in the
above case it could be possible that c > b, which means that the reserves start
beyond the barrier and in order to compensate this, the optimal dividend
strategy will jump immediately to the barrier, hence this generates a jump
in the control D at time 0+ and as we have seen in Section 2.3.2, this yields
a jump in the cash holdings at the same point in time.

3.1 Dynamic programming approach

Now the main ingredients of the problem have been introduced and we start
with the step-wise solution of the problem. Using dynamic programming it
is very common to declare the main line of attack before tackling the problem.

We follow the steps below in order to solve the problem:

1. First of all we start with the derivation of the related Hamilton-Jacobi-
Bellman equation.

2. We must show that, if we have a smooth solution of the HJB equation,
then this solution is larger or equal than the value function V̂ .
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3. Next we make a special guess respectively a well-considered construc-
tion in order to have a candidate for the conjectured optimal policy
and additionally we have to find the related value of the firm.

4. In the end we have to verify that this firm value of the former step
solves the HJB equation and is sufficiently smooth.

At this point it is worth mentioning that the first step can be treated specific-
ally. Of course one needs to derive the HJB equation at least heuristically in
order to solve the stochastic optimal control problem, but if one has obtained
the correct equation and the subsequent steps can be carried out appropri-
ately, then it is not necessary to derive the HJB equation. Loosely speaking
that means one can even let the equation show up without any information
of its derivation. This is based on the approach, written down in the above
steps and also implemented in [16], that first states the HJB equation, then
claims that if one has a smooth enough solution, then this function dominates
the value function of the control problem. Finally, due to the shape of the
problem, one is able to formulate a conjectured solution of the control prob-
lem and verify that it is optimal by proving that it solves the HJB equation
in the desired way.

3.1.1 First step: The Hamilton-Jacobi-Bellman equa-
tion

If we use l(c) := l + c as the related value in case of liquidation of the firm
with cash holdings c, we have that in the considered paper [6, Appendix B,
p. 38] the HJB equation for the value function is stated to be

max{Lφ(c) + Fφ(c), 1− φ′(c), l(c)− φ(c)} = 0. (3.1.1)

As reported above, in the paper the derivation is more or less left out, nev-
ertheless this paper refers to the theory about singular stochastic control in
the book [5]. With the previously presented results on this topic we have
provided a basis for some parts of this gap in the discourse of the prob-
lem. In fact the equation is obtained by considering a mixture of a singular
stochastic optimal control problem and an optimal stopping problem. The
first two parts under the maximum are similar to (2.3.30) obtained in Section
2.3.2. The differential operator is extended by the term Fφ(c) which comes
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from the investment opportunity part with the Poisson process and the con-
trol f . Moreover if we compare (2.3.35) respectively (2.3.41) and (3.0.1) we
get with Dt = ξt that û ≡ −1, furthermore we get with (2.3.42) and (3.0.2)
that ĉ ≡ 1. Hence we obtain that H(DV (x)) from (2.3.23) corresponds to
1−φ′(c), whereby û ≡ −1 ∈ K = {1,−1}. For another point of view regard-
ing this topic see [2, p. 309 - 310]. The third term l(c) − φ(c) comes from
the stopping problem. We realize that φ(c) ≥ l(c) shall hold is quite reas-
onable, because the management has at any point in time the opportunity
to liquidate the firm and get the amount l(c) = l + c. Hence the firm value
is at least as large as the liquidation value l(c). For further information on
optimal stopping in this context see [4, p. 53 - 57].

In the following we give a heuristic derivation of the HJB equation includ-
ing the part, which corresponds to the financing opportunity controlled by
f . The subsequent considerations are, to some extent, a detailed accomplish-
ment of the above description. At the beginning we need some additional
results on stochastic processes with jumps, especially integrals with respect
to Poisson processes, for that reason see [11, Chapter 15: Stochastic Calcu-
lus for Jump Processes]. The stochastic integral with respect to a Poisson
process fulfills ∫ t

0

fsdNs =
Nt∑
k=1

fTk , (3.1.2)

where (T1, . . . , TNt) are the jump times of the Poisson process (Ns)s≥0 up to
time t.

Theorem 8. [11, p. 508 - 509]
Consider a process (fs)s≥0, which is adapted to the filtration generated by the
compound Poisson process (Ys)s≥0, whereby Ys =

∑Nt
k=1 Zk and Zk are i.i.d.

random variables denoting the jump heights and λ denoting the intensity,
such that

E

[∫ t

0

|fs|ds
]
<∞, t > 0.

Then, we obtain that the expected value of the compound Poisson compensated
stochastic integral has the following representation

E

[∫ t

0

fs−dYs

]
= E

[∫ t

0

fs−ZsdNs

]
= λE[Z]E

[∫ t

0

fsds

]
. (3.1.3)
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With these results we can rewrite the equation 3.0.2 concerning the value
function:

V̂ (c) = sup
(f,D)∈Θ

Ec

[∫ τ0

0

e−ρt (dDt − ftdNt) + e−ρτ0l

]
= sup

(f,D)∈Θ

{
Ec

[∫ τ0

0

e−ρtdDt + e−ρτ0l

]
− Ec

[∫ τ0

0

e−ρtλ∗ftdt

]}
.

(3.1.4)

Now we can see that the dDt term corresponds to the singular part and
the dNt term respectively the dt term corresponds to the normal stochastic
control part. Further we rewrite (3.0.1) and obtain

Ct = c+

∫ t

0

(rCs− + µ) ds+ σdBt − dDt +
Nt∑
i=1

fTi , (3.1.5)

where (T1, . . . , TNt) denote the jump times of the Poisson process (Ns)s≥0

up to time t. For the moment and in order to derive the HJB equation we
assume that Dt has a representation as Dt =

∫ t
0
dsds, and if we want to let

Dt be singular then just consider the limit ds → ∞ at some time point s̄
and we obtain that the control Dt has a jump at the point s̄. So d as a
density process could be unbounded, analogous to the considerations in the
paper by Albrecher and Thonhauser [2, p. 309]. Moreover we assume in
the subsequent part of the derivation that the controls are fixed constants
denoted by f̄ and d̄ on a small interval [0, h] for h > 0. This leads to the
representation

C f̄ ,d̄
h = c+

∫ h

0

(
rC f̄ ,d̄

s− + µ− d̄
)
ds+ σdBh +

Nh∑
i=1

f̄ .

In the next step we apply Itô’s formula to the function V̂ (C f̄ ,d̄
h ) to obtain

V̂ (C f̄ ,d̄
h )− V̂ (c) =

∫ h

0

V̂ ′(C f̄ ,d̄
s− )d

(
C f̄ ,d̄
s

)cont.

+
σ2

2

∫ h

0

V̂ ′′(C f̄ ,d̄
s− )ds

+
∑

0≤s≤h

∆V̂ (C f̄ ,d̄
s ).
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Applying Itô’s formula to e−ρhV̂ (C f̄ ,d̄
h ) and using the above obtained res-

ults yields

e−ρhV̂ (C f̄ ,d̄
h )− V̂ (c) =

=

∫ h

0

e−ρsdV̂ (C f̄ ,d̄
s ) +

∫ h

0

V̂ (C f̄ ,d̄
s− )(−ρ)e−ρsds

=

∫ h

0

e−ρsV̂ ′(C f̄ ,d̄
s− )d

(
C f̄ ,d̄
s

)cont.

+

∫ h

0

e−ρs
σ2

2
V̂ ′′(C f̄ ,d̄

s− )ds

+
∑

0≤s≤h

e−ρs∆V̂ (C f̄ ,d̄
s )−

∫ h

0

e−ρsρV̂ (C f̄ ,d̄
s− )ds

=

∫ h

0

e−ρs
(
−ρV̂ (C f̄ ,d̄

s− ) + (rC f̄ ,d̄
s− + µ− d̄)V̂ ′(C f̄ ,d̄

s− ) +
σ2

2
V̂ ′′(C f̄ ,d̄

s− )

)
ds

+
∑

0≤s≤h

e−ρs∆V̂ (C f̄ ,d̄
s ) +

∫ h

0

e−ρsσdBt.

Furthermore note that the following is true

Ec

[ ∑
0≤s≤h

e−ρs∆V̂ (C f̄ ,d̄
s )

]
= Ec

[
Nh∑
i=1

e−ρs
(
V̂ (C f̄ ,d̄

Ti− + f̄)− V̂ (C f̄ ,d̄
Ti−)

)]

= Ec

[∫ h

0

e−ρs
(
V̂ (C f̄ ,d̄

s− + f̄)− V̂ (C f̄ ,d̄
s− )
)
dNs

]
= Ec

[
λ∗
∫ h

0

e−ρs
(
V̂ (C f̄ ,d̄

s− + f̄)− V̂ (C f̄ ,d̄
s− )
)
ds

]
.

Based on the dynamic programming principle

V̂ (c) = sup
(f,D)∈Θ

Ec

[∫ h∧τ0

0

e−ρs(ds − λ∗fs)ds+ e−ρ(h∧τ0)V̂ (Ch∧τ0)

]
,

we obtain the following

0 = sup
(f,D)∈Θ

Ec

[∫ h∧τ0

0

e−ρs(ds − λ∗fs)ds
]

+ Ec

[
e−ρ(h∧τ0)V̂ (Ch∧τ0)− V̂ (c)

]
.

Now we choose constant controls as above, divide by h and consider the limit
h↘ 0, hence we get

0 ≥ lim
h↘0

(
1

h
Ec

[∫ h∧τ0

0

e−ρs(d̄− λ∗f̄)ds

]
+

1

h
Ec

[
e−ρ(h∧τ0)V̂ (Ch∧τ0)− V̂ (c)

])
.
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This immediately gives

0 ≥d̄− λ∗f̄ + lim
h↘0

(
1

h
Ec

[
e−ρ(h∧τ0)V̂ (Ch∧τ0)− V̂ (c)

])
.

Further with the results from above we obtain for the last term

lim
h↘0

(
1

h
Ec

[
e−ρ(h∧τ0)V̂ (Ch∧τ0)− V̂ (c)

])
= lim

h↘0

(
1

h
Ec

[∫ h

0

e−ρs
(
−ρV̂ (C f̄ ,d̄

s− ) + (rC f̄ ,d̄
s− + µ− d̄)V̂ ′(C f̄ ,d̄

s− ) +
σ2

2
V̂ ′′(C f̄ ,d̄

s− )

)
ds

]
+

1

h
Ec

[ ∑
0≤s≤h

e−ρs∆V̂ (C f̄ ,d̄
s ) +

∫ h

0

e−ρsσdBt

])

= lim
h↘0

(
1

h
Ec

[∫ h

0

e−ρs
(
L(V̂ (C f̄ ,d̄

s− ))− d̄ V̂ ′(C f̄ ,d̄
s− )
)
ds

]
+

1

h
Ec

[
λ∗
∫ h

0

e−ρs
(
V̂ (C f̄ ,d̄

s− + f̄)− V̂ (C f̄ ,d̄
s− )
)
ds

]
+

1

h
Ec

[∫ h

0

e−ρsσdBt

])
= L(V̂ (c))− d̄ V̂ ′(c) + λ∗(V̂ (c+ f̄)− V̂ (c)),

where the last equality holds since the expectation of the integral with respect
to the Brownian motion is zero. Using this result in addition to the preceding
one we get

0 ≥ L(V̂ (c)) + λ∗(V̂ (c+ f̄)− V̂ (c)− f̄) + (1− V̂ ′(c))d̄.

Analogous to the results obtained in Section 2.3.2 for the general singular
stochastic control case, and analogous to the considerations in the paper by
Albrecher and Thonhauser [2, p. 309] in an actuarial framework, we have
the following

0 = sup
(f,D)∈Θ

{L(V̂ (c)) + λ∗(V̂ (c+ f)− V̂ (c)− f) + (1− V̂ ′(c))d},

where d and D are connected via
∫ t

0
dsds = Dt. Note that this expression

is only meaningful up to some extent. Since, as in the above mentioned
literature we have that, if 1−V̂ ′(c) > 0 at some value c the locally maximizing
control would be unbounded and hence also the above supremum would be
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unbounded. But on the contrary if 1 − V̂ ′(c) < 0 the locally maximizing
control would be equal to zero, so

0 = L(V̂ (c)) + max
f≥0
{λ∗(V̂ (c+ f)− V̂ (c)− f)} = L(V̂ (c)) + F(V̂ (c)).

As a consequence we get the following Hamilton-Jacobi-Bellman equation for
this part of the problem, compare (2.3.30):

0 = max{L(V̂ (c)) + F(V̂ (c)), 1− V̂ ′(c)}. (3.1.6)

Note that we have to formally assume that 1− V̂ ′(c) ≤ 0 for all c ≥ 0 holds
true for the value function V̂ , compare this to (2.3.25).

Finally we take into consideration the comment on the optimal stopping
part of the problem made at the beginning of this section and obtain the
entire Hamilton-Jacobi-Bellman equation for the whole model (3.1.1):

max{Lφ(c) + Fφ(c), 1− φ′(c), l(c)− φ(c)} = 0.

3.1.2 Second step: HJB solutions exceed the value
function

This step is quite important for further actions. In fact we want to check
that, if we have constructed a control strategy which is admissible, then this
control and the related firm value is the optimal one. This check can be
done, if we show that every smooth enough solution to the HJB equation
is larger or equal than the value function. Hence, considering an admissible
control policy with a firm value that is a solution of the HJB equation gives
us an admissible candidate, which then is, if it is smooth enough, in fact the
optimal one and its firm value is the value function, which is the supremum
over all firm values respectively gain functions. In the following theorem the
wanted conclusion is proven via martingale techniques, which is very common
in the framework of stochastic optimal control problems.

Theorem 9. Let φ ∈ C2(0,∞) be a solution to the HJB equation (3.1.1)
and further let φ be concave, then φ(c) ≥ V̂ (c).

Proof. Consider φ ∈ C2(0,∞) a solution of (3.1.1) and a given admissible
control (f,D) ∈ Θ. In this setting we want to apply the product rule re-
spectively Itô’s formula in order to investigate the process

Yt := e−ρtφ(Ct) +

∫ t

0+

e−ρs(dDs − fsdNs). (3.1.7)
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Analogously as proceeded in [16, p. 60 - 62] we have to make sure that the
process, to which we want to apply results from stochastic analysis [9], is
a semimartingale and hence adapted and cadlag. But in this situation the
state process C is due to the control process D not right-continuous. So we
work with the process

C̄t := Ct+,

which firstly ensures the right continuity and secondly since the underlying
filtration F = (Ft)t≥0 is right continuous, we get that C̄ = (C̄t)t≥0 is adapted
to this filtration. On top of this we have to consider some needed results for
stochastic processes. The above dividend process D is left-continuous and
satisfies [D]cs = 0, because it is assumed to be nondecreasing and therefore
has finite variation. Further by the properties of the Poisson process N , if
we consider the continuous part, it holds that N c

s = 0 and moreover we have
[N ]cs = N c

s = 0. Now we start by applying the product rule, also called
partial integration formula, as follows for 0 ≤ t1 ≤ t:

e−ρtφ(C̄t) = e−ρt1φ(C̄t1) +

∫ t

t1

(−ρ)e−ρsφ(C̄s−)ds+

∫ t

t1

e−ρsdφ(C̄s)

In the next step we use Itô’s formula to obtain

dφ(C̄s) = φ′(C̄s−)dC̄s +
1

2
φ′′(C̄s−)d[C̄]cs + ∆φ(C̄s)− φ′(C̄s−)∆C̄s,

which gives that

e−ρtφ(C̄t) =e−ρt1φ(C̄t1) +

∫ t

t1

(−ρ)e−ρsφ(C̄s−)ds

+

∫ t

t1

e−ρsφ′(C̄s−)dC̄s +

∫ t

t1

e−ρs
1

2
φ′′(C̄s−)d[C̄]cs

+
∑
t1≤s≤t

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
.

Next we have from (3.0.1) the evolution of the state process C that

dC̄s = (rC̄s− + µ)ds+ σdBs + fsdNs − dDs+

and
d[C̄]cs = σ2ds+ f 2

s d[N ]cs − d[D]cs = σ2ds.
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Note that all quadratic covariation continuous part terms are zero due to the
properties of the processes B, N and D, in particular we have that on the one
hand B is a Brownian motion and N is a Poisson process, so [B,N ]c = 0 and
on the other hand D is of finite variation. Using this in the above equation
we obtain

e−ρtφ(C̄t) =e−ρt1φ(C̄t1) +

∫ t

t1

(−ρ)e−ρsφ(C̄s−)ds

+

∫ t

t1

e−ρsφ′(C̄s−)(rC̄s− + µ)ds+

∫ t

t1

e−ρsφ′(C̄s−)σdBs

+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∫

(t1,t]

e−ρsφ′(C̄s−)dDs+

+

∫ t

t1

e−ρs
1

2
φ′′(C̄s−)σ2ds

+
∑
t1≤s≤t

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
=e−ρt1φ(C̄t1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

+

∫ t

t1

e−ρs
[
−ρφ(C̄s−) + φ′(C̄s−)(rC̄s− + µ) +

1

2
φ′′(C̄s−)σ2

]
ds

+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∫

(t1,t]

e−ρsφ′(C̄s−)dDs+

+
∑
t1≤s≤t

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
.

Now we exploit the fact that φ solves the HJB equation (3.1.1), which yields
that

Lφ(C̄s−) ≤ −Fφ(C̄s−) = −max
f≥0

[λ∗(φ(C̄s− + f)− φ(C̄s−)− f)

≤ −λ∗(φ(C̄s− + fs)− φ(C̄s−)− fs).

Note that the Poisson process is right-continuous and therefore Ns+ = Ns,
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together with the above inequality this yields

e−ρtφ(C̄t) ≤e−ρt1φ(C̄t1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−)− fs)ds

+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∫

(t1,t]

e−ρsφ′(C̄s−)dDs+

+
∑
t1≤s≤t

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
.

Since we are working with the process Ct+ we have to distinguish between
jumps coming from the process D, where we have Dt+ 6= Dt if and only if
Ct+ 6= Ct and on the other hand jumps coming from the right-continuous
process N , where Nt 6= Nt− if and only if Ct 6= Ct−. So we have that

Ct+ − Ct = −(Dt+ −Dt),

if D jumps and

Ct − Ct− = ft,

if N jumps. So the sum in the above term can be spitted up, which reads as
follows

e−ρtφ(C̄t) ≤e−ρt1φ(C̄t1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−)− fs)ds

+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∫

(t1,t]

e−ρsφ′(C̄s−)dDs+

+
∑

t1≤s≤t, Ds+ 6=Ds

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
+

∑
t1≤s≤t, Ns 6=Ns−

e−ρs
(
∆φ(C̄s)− φ′(C̄s−)∆C̄s

)
.
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If we go further and write the terms in greater detail, we observe

e−ρtφ(C̄t) ≤e−ρt1φ(C̄t1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−)− fs)ds

+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∫

(t1,t]

e−ρsφ′(C̄s−)dDs+

+
∑

t1≤s≤t, Ds+ 6=Ds

e−ρs

φ(C̄s− − (Ds+ − Ds−︸︷︷︸
=Ds

))− φ(C̄s−)


−

∑
t1≤s≤t, Ds+ 6=Ds

e−ρs

φ′(C̄s−)(−(Ds+ − Ds−︸︷︷︸
=Ds

))


+

∑
t1≤s≤t, Ns 6=Ns−

e−ρs
(
φ(C̄s− + fs)− φ(C̄s−)− φ′(C̄s−)fs

)
.

Note that, in accordance to this delta notation, we have the following

∆C̄s = C̄s − C̄s− = Cs+ − Cs−.

Further, analogously as in [16, p. 61], we obtain that

0 ≤ e−ρt1 [(φ(Ct1)− φ(Ct1+))− φ′(Ct1+)(Dt1+ −Dt1)] ,

since φ is assumed to be concave and note that

(Dt1+ −Dt1) = −(Ct1+ − Ct1).

We add this non-negative expression to the right hand side of the inequality,
rearrange some terms and get that the lower bound of the dD integral is now
appended:
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e−ρtφ(C̄t) ≤e−ρt1φ(Ct1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

+

∫ t

t1

e−ρsλ∗fsds−
∫

[t1,t]

e−ρsφ′(C̄s−)dDs+

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−))ds

+
∑

t1≤s≤t, Ns 6=Ns−

e−ρs
(
φ(C̄s− + fs)− φ(C̄s−)

)
+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∑

t1≤s≤t, Ns 6=Ns−

e−ρsφ′(C̄s−)fs

+
∑

t1≤s≤t, Ds+ 6=Ds

e−ρs
(
φ(C̄s− − (Ds+ −Ds))− φ(C̄s−)

)
−

∑
t1≤s≤t, Ds+ 6=Ds

e−ρsφ′(C̄s−) (−(Ds+ −Ds)) .

Now we use that φ′ ≥ 1 in order to modify the above terms and use an
approach analogously as in the paper by Azcue and Muller [3, p. 19 - 20],
which reads as follows∑

t1≤s≤t, Ds+ 6=Ds

e−ρs
(
φ(C̄s− − (Ds+ −Ds))− φ(C̄s−)

)
=

∑
t1≤s≤t, Ds+ 6=Ds

e−ρs
(∫ Ds+−Ds

0

−φ′(C̄s− − u)du

)

≤ −
∑

t1≤s≤t, Ds+ 6=Ds

e−ρs
(∫ Ds+−Ds

0

du

)
= −

∑
t1≤s≤t, Ds+ 6=Ds

e−ρs(Ds+ −Ds).

Moreover note that Dt =
∫ t

0
dDc

s +
∑

s<t, Ds+ 6=Ds(Ds+ − Ds) is a separation
in a continuous part and a discontinuous part, which holds since D is non-
decreasing and left-continuous. Therefore we get that
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−
∫

[t1,t]

e−ρsφ′(C̄s−)dDs+ +
∑
t1≤s≤t
Ds+ 6=Ds

e−ρsφ′(C̄s−) (Ds+ −Ds)

= −
∫

[t1,t]

e−ρsφ′(C̄s−)dDc
s+,

and hence

e−ρtφ(C̄t) ≤e−ρt1φ(Ct1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

+

∫ t

t1

e−ρsλ∗fsds−
∫

[t1,t]

e−ρsφ′(C̄s−)dDc
s+

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−))ds

+
∑

t1≤s≤t, Ns 6=Ns−

e−ρs
(
φ(C̄s− + fs)− φ(C̄s−)

)
+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∑

t1≤s≤t, Ns 6=Ns−

e−ρsφ′(C̄s−)fs

−
∑

t1≤s≤t, Ds+ 6=Ds

e−ρs(Ds+ −Ds).

Again with φ′ ≥ 1 we obtain

−
∫

[t1,t]

e−ρsφ′(C̄s−)dDc
s+ −

∑
t1≤s≤t, Ds+ 6=Ds

e−ρs(Ds+ −Ds)

≤ −
∫

[t1,t]

e−ρsdDc
s+ −

∑
t1≤s≤t, Ds+ 6=Ds

e−ρs(Ds+ −Ds)

= −
∫

[t1,t]

e−ρsdDs+.
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So this estimation gives

e−ρtφ(C̄t) ≤e−ρt1φ(Ct1) +

∫ t

t1

e−ρsφ′(C̄s−)σdBs

+

∫ t

t1

e−ρsλ∗fsds−
∫

[t1,t]

e−ρsdDs+

−
∫ t

t1

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−))ds

+
∑

t1≤s≤t, Ns 6=Ns−

e−ρs
(
φ(C̄s− + fs)− φ(C̄s−)

)
+

∫ t

t1

e−ρsφ′(C̄s−)fsdNs −
∑

t1≤s≤t, Ns 6=Ns−

e−ρsφ′(C̄s−)fs.

Analogously as in [16, p. 61], with 0 ≤ t1 ≤ t < t2 we consider the
limit t↗ t2 and additionally we take conditional expectations on both sides.
Moreover take into consideration that we further know from [11, Chapter 15]
and the properties of the jump process N :

∫
[t1,t2)

e−ρsφ′(C̄s−)fsdNs =
∑

t1≤s<t2, Ns 6=Ns−

e−ρsφ′(C̄s−)fs,

Ec

[∫
[t1,t2)

e−ρsλ∗fsds

∣∣∣∣Ft1] = Ec

[∫
[t1,t2)

e−ρsfsdNs

∣∣∣∣Ft1]

and

Ec

[∫
[t1,t2)

e−ρsλ∗(φ(C̄s− + fs)− φ(C̄s−))ds

∣∣∣∣Ft1]
= Ec

[∫
[t1,t2)

e−ρs(φ(C̄s− + fs)− φ(C̄s−))dNs

∣∣∣∣Ft1]

= Ec

 ∑
t1≤s<t2, Ns 6=Ns−

e−ρs(φ(C̄s− + fs)− φ(C̄s−))

∣∣∣∣Ft1
 .
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So in the end we remain with the following inequality

Ec

[
e−ρt2φ(Ct2)

∣∣∣∣Ft1]
≤Ec

[
e−ρt1φ(Ct1) +

∫ t2

t1

e−ρsφ′(C̄s−)σdBs

+

∫
[t1,t2)

e−ρsfsdNs −
∫

[t1,t2)

e−ρsdDs

∣∣∣∣Ft1].
Adding the missing integral Ec

[∫ t2
0+
e−ρs(dDs − fsdNs)

∣∣Ft1] on both sides

yields

Ec

[
e−ρt2φ(Ct2) +

∫ t2

0+

e−ρs(dDs − fsdNs)

∣∣∣∣Ft1]
≤ e−ρt1φ(Ct1) +

∫ t1

0+

e−ρs(dDs − fsdNs)

+Ec

[ ∫ t2

t1

e−ρsφ′(C̄s−)σdBs

∣∣∣∣Ft1].
We know that φ′ ≥ 1 and that φ is concave so φ′′ ≤ 0, this together implies
that 1 ≤ φ′(c) ≤ φ′(0). This gives us that

∫ t2

t1

[
e−ρsφ′(C̄s−)σ

]2
ds ≤ (φ′(0))2

∫ t2

t1

e−ρ2sσ2ds <∞.

Hence the local martingale under the last expectation is a true martingale
with expectation zero and we obtain that Y is a supermartingale.

Next we consider the stopped process

Zt := Yt∧τ0 .
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With the important result from above we obtain

φ(C0−) = φ(C0)−∆φ(C0) = Z0 −∆φ(C0)
(∗)
≥ Ec (Zτ0)−∆φ(C0)

= Ec

e−ρτ0φ(Cτ0︸︷︷︸
=0

) +

∫ τ0

0+

e−ρs(dDs − fsdNs)

−∆φ(C0)

(∗∗)
= Ec

e−ρτ0 φ(0)︸︷︷︸
=l(0)

+

∫ τ0

0

e−ρs(dDs − fsdNs)

−∆D0 −∆φ(C0)

(?)
= Ec

(
e−ρτ0l(0) +

∫ τ0

0

e−ρs(dDs − fsdNs)

)
−∆D0 − φ(C0− −∆D0) + φ(C0−)

(?)
= Ec

(
e−ρτ0l(0) +

∫ τ0

0

e−ρs(dDs − fsdNs)

)
+

∫ C0−

C0−−∆D0

(φ′(c)− 1)︸ ︷︷ ︸
≥0

dc

≥ Ec

(
e−ρτ0l(0) +

∫ τ0

0

e−ρs(dDs − fsdNs)

)
.

(3.1.8)

In the above treatment we used at (∗) the optional sampling theorem for
the supermartingale Z and at (∗∗) we used the fact that the Poisson process
N does not jump with probability one at the time point zero. In addition
to this and in coherence with the at (2.3.41) mentioned circumstance that
jumps in the control are jumps in the state process and the properties of the
state process (3.0.1) we have especially at time zero ∆C0 = −∆D0, which is
used at (?).

Finally if we take the supremum over all admissible strategies in Θ we
obtain from (3.1.7)

φ(C0−) ≥ sup
(f,D)∈Θ

Ec

(
e−ρτ0l(0) +

∫ τ0

0

e−ρs(dDs − fsdNs)

)
, (3.1.9)

which means, keeping in mind that C0− = c and l(0) = l,

φ(c) ≥ V̂ (c). (3.1.10)
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3.1.3 Third step: The conjectured optimal policy

Due to economic considerations of the underlying model assumptions it is
conjectured that there exists a threshold denoted by C∗ such that above of it
it is optimal to pay dividends and below it the firm is acting optimally if it is
searching for investors and retain earnings in order to reach the barrier C∗.
On top of this, the firm will only be liquidated if the cash reserves reach the
value zero. For further economical comments see [6, p. 13 - 16]. This barrier
strategy was also explained at the beginning of this section. For further
types of control strategies related to dividend problems, but considered in
an actuarial mathematical point of view we refer to [2, p. 302 - 304]. So
the conjectured barrier strategy defines a value of the firm following this
strategy, which has to be determined. For this purpose the starting point is
a modified version of the HJB equation (3.1.1). In fact the value of the firm
acting due to this strategy with barrier b is denoted by v(c; b). Moreover, if
we are below the barrier, an investor occurs and the current cash holdings
are equal to c, we have for the financing strategy that f = b− c, which reads
in terms of processes as follows

ft = f(Ct−) = b− Ct−,

so we arrive with the cash reserves at the barrier b. Further we want to
explain how the dividend control process will look like in the case of this bar-
rier strategy. In fact, using the corresponding funding control yields that the
cash reserve process is reflected at the barrier b. This means that the process
D, as already announced, has to compensate the cash process in order to
keep it below respectively at the barrier level. For that reason D grows if C
touches the barrier and stays constant otherwise. Analogously to the models
considered in [16], D corresponds to the local time of the state process at the
barrier level b.

Theorem 10. (Tanaka’s formula) [13, p. 96]
Let X be a continuous semimartingale. Then there exists a continuous in-
creasing and adapted process l = (lt)t≥0 such that

|Xt| − |X0| =
∫ t

0

sgn(Xs)dXs + lt,



68 CHAPTER 3. ESTABLISHING THE SOLUTION

where sgn(x) = −1, if x < 0 and sgn(x) = 1, if x > 0 and sgn(0) = −1.
The process l is called the (semimartingale) local time of X at zero. It grows
only when X = 0: ∫ t

0

1{Xs 6=0}dls = 0. (3.1.11)

So we have that v(c; b) satisfies
0 = Lv(c; b) + λ∗[v(b; b)− v(c; b)− (b− c)] if 0 < c < b,

0 = v(b; b)− v(c; b)− (b− c) if c ≥ b,

v(0; b) = l.

(3.1.12)

The second equality implies that for c > b

v(c; b)− v(b; b)

c− b
= 1

and therefore we want to have on the other hand considering the limit of c
to b from below

lim
c↗b

v′(c; b)
!

= 1. (3.1.13)

Now we focus on solving the problem (3.1.12) and due to this we start
solving the homogeneous equation. For that purpose we need some res-
ults about the solution of the homogeneous differential equation, which was
treated by Shreve et al. [16]. Therefore the following is based on [16, p. 56-
58].

For 0 ≤ a < b < ∞ let u, v : [a, b] → R be two Lipschitz continuous
functions, where v(x) > 0, for all x ∈ [a, b]. For i = 1, 2 consider stochastic
processes X i = (X i

t)t≥0, which satisfy if a < X i
t < b the stochastic differential

equation

dX i
t = u(X i

t)dt+ v(X i
t)dWt, X i

0 = x0 ∈ [a, b]. (3.1.14)

Further if X1 reaches the boundary a respectively b, then it is absorbed
and if X2 reaches the boundary, then it is absorbed at a and reflected at b.
Moreover the process W = (Wt)t≥0 is as usual a standard Brownian motion.
Concerning X1, if one has a given Brownian motion, then existence and
pathwise uniqueness of this process can be guaranteed. On the other hand
in the case of X2 we have that there exists a Brownian motion W and a
filtration F = (Ft)t≥0 which satisfy
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• W is adapted to F,

• (Ws)s≥t is independent of Ft,

• ∃ a process X2 adapted to F, for which it holds that

X2
t = x0 +

∫ t

0

u(X2
s )ds+

∫ t

0

v(X2
s )dWs − ζt, (3.1.15)

until the process reaches the absorbing boundary at a. Note that concerning
the conditions on the process ζ it is stated at [16, p. 57] that this process is
adapted to F, nondecreasing, continuous with ζ0 = 0. Moreover for a fixed
ω ∈ Ω the process ζ is constant on any time interval where X2 < b holds. So
even uniqueness is given, but as in the case of existence, Shreve et al. [16]
refer to further literature. Such kind of problems are generally known as the
Skorokhod problem. As above consider the following stopping times, which
are defined as the first time points when the process reaches the respective
boundary:

τ iy := inf{t ≥ 0 : X i
t = y},

and further we set τ iy =∞, if the point y is never reached by X i.

Now we consider the following differential equation,

βf(x) = u(x)f ′(x) +
1

2
v2(x)f ′′(x), (3.1.16)

which we are going to solve with functions depending on stopping times
respectively local times.

Theorem 11. For a solution f of (3.1.16) and x ∈ [a, b] it holds that

f(x) = Ex

[
e−β(τ1a∧τ1b )f(X1

τ1a∧τ1b
)
]

= Ex

[
e−βτ

1
af(X1

τ1a
)1{τ1a≤τ1b }

]
+ Ex

[
e−βτ

1
b f(X1

τ1b
)1{τ1b≤τ1a}

]
= f(a)Ex

[
e−βτ

1
a1{τ1a≤τ1b }

]
+ f(b)Ex

[
e−βτ

1
b 1{τ1b≤τ1a}

] (3.1.17)

and

f(x) = f(a)Ex

[
e−βτ

2
a

]
+ f ′(b)Ex

[∫ τ2a

0

e−βtdζt

]
. (3.1.18)
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Proof. We start with the proof of (3.1.17). For that purpose we apply the
partial integration formula respectively Itô’s formula to e−βtf(X1

t ) which
reads as follows

d(e−βtf(X1
t )) =− βe−βtf(X1

t )dt+ e−βtdf(X1
t )

=− βe−βtf(X1
t )dt+ e−βt

(
f ′(X1

t )dX1
t +

1

2
f ′′(X1

t )d[X1]t

)
=− βe−βtf(X1

t )dt

+ e−βt
(
f ′(X1

t )u(X1
t )dt+ f ′(X1

t )v(X1
t )dWt +

1

2
f ′′(X1

t )v2(X1
t )dt

)
=e−βt

(
−βf(X1

t ) + f ′(X1
t )u(X1

t ) +
1

2
f ′′(X1

t )v2(X1
t )

)
dt

+ e−βtf ′(X1
t )v(X1

t )dWt

=e−βtf ′(X1
t )v(X1

t )dWt.

Now we integrate from 0 to τ 1
a ∧ τ 1

b , which reads as follows

e−β(τ1a∧τ1b )f(X1
τ1a∧τ1b

)− f(x) =

∫ τ1a∧τ1b

0

e−βtf ′(X1
t )v(X1

t )dWt

and take expectations on both sides

Ex

[
e−β(τ1a∧τ1b )f(X1

τ1a∧τ1b
)− f(x)

]
= Ex

[∫ τ1a∧τ1b

0

e−βtf ′(X1
t )v(X1

t )dWt

]
.

Note that for a ≤ X1
t ≤ b the integrand of the stochastic integral with respect

to the Brownian motion W on the right hand side is bounded. Hence the
stochastic integral is a martingale with expectation zero, which yields that

Ex

[
e−β(τ1a∧τ1b )f(X1

τ1a∧τ1b
)− f(x)

]
= 0

and finally

f(x) = Ex

[
e−β(τ1a∧τ1b )f(X1

τ1a∧τ1b
)
]
.

In order to prove (3.1.18) we analogously apply the partial integration for-
mula respectively the more general version of Itô’s formula to e−βtf(X2

t ) and
obtain

d(e−βtf(X2
t )) = e−βtf ′(X2

t )
(
v(X2

t )dWt − dζt
)
.
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Since, (ζt) is a monotone function it induces a measure on [0,∞), which
assigns measure zero to the set {t ∈ [0,∞)|X2

t 6= b} we have that

f ′(X2
t )dζt = f ′(b)dζt.

Now we integrate from 0 to τ 2
a to obtain

e−βτ
2
af(X1

τ2a
)− f(x) =

∫ τ2a

0

e−βtf ′(X2
t )v(X2

t )dWt −
∫ τ2a

0

e−βtf ′(b)dζt.

Moreover taking expectations and exploiting the martingale property ana-
logously as above yields that

Ex

[
e−βτ

2
af(X1

τ2a
)− f(x)

]
= −Ex

[∫ τ2a

0

e−βtf ′(b)dζt

]
, (3.1.19)

which is equivalent to

f(x) = f(a)Ex

[
e−βτ

2
a

]
+ f ′(b)Ex

[∫ τ2a

0

e−βtdζt

]
.

Finally, in order to assure that the above calculations make sense we have to
check that

Ex

[∫ ∞
0

e−βtdζt

]
<∞.

For that reason we do the similar integration as above from 0 to T for T >
0 and take expectations, so we get an analogous result as (3.1.19). But
instead of the solution f , we consider a solution g of (3.1.16), with the
special properties g(a) = 0 and g′(b) = 1 to obtain

Ex
[
e−βTg(X1

T )− g(x)
]

= −Ex
[∫ T

0

e−βtdζt

]
.

In the end we let T →∞, which yields the wanted property

Ex

[∫ T

0

e−βtdζt

]
= g(x) <∞.
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A useful corollary of this theorem is the following.

Corollary 1. For x ∈ [a, b] the functions

ϕ1(x) = Ex

[
e−βτ

1
a

]
, (3.1.20)

ψ1(x) = Ex

[
e−βτ

1
b

]
, (3.1.21)

ϕ2(x) = Ex

[
e−βτ

2
a

]
, (3.1.22)

and

ψ2(x) = Ex

[∫ τ2a

0

e−βtdζt

]
(3.1.23)

are solutions to the differential equation (3.1.16) with the boundary conditions

ϕ1(a) = 1, ϕ1(b) = 0,

ψ1(a) = 0, ψ1(b) = 1,

ϕ2(a) = 1, ϕ′2(b) = 0,

ψ2(a) = 0, ψ′2(b) = 1.

Proof. For every function assume that f is a solution to (3.1.16) which fulfills
the respective boundary conditions and apply the above theorem to verify
that f has indeed the shape as proclaimed in (3.1.20) - (3.1.23).

Considering the absorption problem (AP) in the paper by Shreve et al.
[16], which is an analogue to our considered model problem, as mentioned
above, if λ = 0, because there is no outside financing possible. Here we also
work with a barrier strategy, where the state process XU , which is of the
form (3.1.15) with control ζU , is reflected downward at a barrier U . Now the
associated reward to this strategy has the form

VU(x) :=

{
Ex

[∫ τU0
0

e−βtdζUt + e−βτ
U
0 P
]
, if 0 ≤ x ≤ U,

x− U + VU(U), if x ≥ U,
(3.1.24)

where P is a so called penalty for absorption. If x > U , ζU is meant to
jump at t = 0 with jump height U − x and further after this initial jump
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XU is a diffusion reflected at U and absorbed at 0. This is the meaning of
the definition of VU for x > U . Moreover we see that for x ∈ [0, U ], VU is a
solution to the differential equation (3.1.16) with boundary conditions

VU(0) = P and V ′U(U) = 1. (3.1.25)

A quite important fact, which can be seen here is that the first derivat-
ive V ′U(U) is equal to one, but the second derivative V ′′U (U) could be non-
existent. Nevertheless the right-hand second derivative is zero, but the left-
hand second derivative could not be equal to that. In the absorption problem
the optimal barrier U∗ has to satisfy

V ′′−U∗ (U∗) = 0,

where V ′′−U∗ denotes the left-hand second derivative. Moreover it is mentioned
that U∗ is chosen such that VU∗ becomes “[. . . ] twice continuously differen-
tiable is a manifestation of the ‘heuristic principle of smooth fit’ [. . . ]”, see
[16, p. 69]. On top of this in the absorption problem to fulfill the principle of
smooth fit is equivalent to maximize some expression of VU(x) with x ∈ [0, U ]
over all barrier levels U , which is of course exactly what is wanted in that
model. For further information we refer to [16].

Now we come back to our model and therefore we use these results to
define the following functions.

Definition 13. For the uncontrolled cash reserve process denoted by C0 =
(C0

t )t≥0, which satisfies

dC0
t = (rC0

t− + µ)dt+ σdBt,

and for y ∈ R we set τy := inf{t ≥ 0 : C0
t = y} as above, for c ∈ [0, b] we

define
L(c; b) := Ec

[
e−(ρ+λ∗)τ01{τ0≤τb}

]
(3.1.26)

and
H(c; b) := Ec

[
e−(ρ+λ∗)τb1{τb≤τ0}

]
. (3.1.27)

So we know that these functions solve the homogeneous equation

Lφ(c) = λ∗φ(c), (3.1.28)
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where u(x) = rx+ µ, v(x) = σ and β = ρ+ λ∗ have to be used to apply the
related theorem. In this framework (3.1.28) is the homogeneous differential
equation of (3.1.12) considering c ∈ [0, b].

Next in order to obtain a solution for the first equality in (3.1.12), we
have to use the above results such that we can verify the statements at [6, p.
39 - 40]. Now we are searching for a solution of the inhomogeneous equation
(3.1.12). For that reason we consider the subsequent lemma, where in the
following it is assumed that the values φ(b) and φ(0) are given.

Lemma 4. For the function

Π(c; b) :=
λ∗

ρ+ λ∗

(
φ(b)− b+ c+

µ+ rc

ρ+ λ∗ − r

)
(3.1.29)

it holds that

LΠ(c; b)− λ∗Π(c; b) + λ∗(φ(b)− b+ c) = 0. (3.1.30)

Hence the function Π(c; b) is the particular solution we are searching for.
Of course Π depends on the value φ(b), but in the most cases we omit the
notation Πφ, which would imply that Π depends on the respective value.
The proof is done just by plugging in the found equation in order to verify
that this is indeed a solution. Of course if the special form of the function
was not known we would have to apply special techniques in order to solve
the differential equation. Combining these results culminates in the next
theorem.

Theorem 12. For fixed b ≥ 0 the unique solution of{
0 = Lφ(c; b) + λ∗[φ(b)− φ(c; b)− (b− c)] if c ≤ b,

0 = φ(b)− φ(c; b)− (b− c) if c ≥ b,
(3.1.31)

has the following form

φ(c; b) = φ(b)H(c; b) + φ(0)L(c; b)− Π(b; b)H(c; b)− Π(0; b)L(c; b) + Π(c; b)
(3.1.32)

and φ ∈ C1.
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Proof. By the preceding results we know thatH and L solve the homogeneous
equation and Π solves the inhomogeneous equation, which yields that

L [(φ(b)− Π(b; b))H(c; b)]− λ∗ [(φ(b)− Π(b; b))H(c; b)] = 0,

L [(φ(0)− Π(0; b))L(c; b)]− λ∗ [(φ(0)− Π(0; b))L(c; b)] = 0

and

LΠ(c; b) + λ∗[φ(b)− Π(c; b)− (b− c)] = 0.

All these equations together prove the claim.

Moreover the solution has a representation via so called hypergeometric
functions. The following theory on these types of functions especially used
in the proof of Lemma 5 is based on the book of Abramowitz and Stegun [1,
p. 504].

Definition 14. The confluent hypergeometric function M(a, b; z) is of the
form

M(a, b; z) :=
∞∑
k=0

(a− 1 + k)!

(a− 1)!

(b− 1)!

(b− 1 + k)!

zk

k!

= 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

z3

3!
+ . . . ,

(3.1.33)

on top of this, we use the following notation for these hypergeometric func-
tions

F (x) := M

(
−(ρ+ λ∗)

2r
,
1

2
;
−(rx+ µ)2

σ2r

)
(3.1.34)

and

G(x) :=
rx+ µ

σ
√
r
M

(
−(ρ+ λ∗)

2r
+ 1,

3

2
;
−(rx+ µ)2

σ2r

)
. (3.1.35)

With these functions we are able to find an alternative expression for
our solutions L and H. As a remark in the underlying paper [6, p. 40]
there probably is in the definition of G a typing error, because in the second
argument of the function M there is written 23

2
instead of 3

2
.
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Lemma 5. For a fixed b ≥ 0 the solutions of the homogeneous differential
equation (3.1.28) satisfy

L(c; b) = Ec
[
e−(ρ+λ∗)τ01{τ0≤τb}

]
=
G(b)F (c)− F (b)G(c)

G(b)F (0)− F (b)G(0)
(3.1.36)

and

H(c; b) := Ec
[
e−(ρ+λ∗)τb1{τb≤τ0}

]
=
F (0)G(c)−G(0)F (c)

G(b)F (0)− F (b)G(0)
. (3.1.37)

Proof. The general solution to the equation (3.1.28) Lφ(c) = λ∗φ(c) is given
by

φ(c) = γ1F (c) + γ2G(c),

where γ1 and γ2 are constants. This holds because if we perform a change of
variables

φ(c; b) = g

(
−(rc+ µ)2

σ2r

)
= g(z),

where the term z = −(rc+µ)2

σ2r
corresponds to the parameter in the hypergeo-

metric functions F and G, which will be immediately clear by the following
calculation, in fact (3.1.28) is equivalent to

0 =Lg(z)− λ∗g(z)

=− (ρ+ λ∗)g(z) + (rc+ µ)g′(z)z′ +
σ2

2

[
g′′(z)(z′)2 + g′(z)z′′

]
=− (ρ+ λ∗)g(z) + (rc+ µ)g′(z)

(
−2(rc+ µ)

σ2r
r

)
+
σ2

2

[
g′′(z)

(
4(rc+ µ)2

σ4r2
r2

)
+ g′(z)

−2r

σ2r
r

]
=− (ρ+ λ∗)g(z) + g′(z)

(
−2(rc+ µ)2

σ2

)
+ g′′(z)

(
2(rc+ µ)2

σ2

)
+ g′(z)(−r)

=− (ρ+ λ∗)g(z) + g′(z)(2rz − r) + g′′(z)(−2r)z.

Next we divide the whole equation with (−2r) < 0 to get

0 =
(ρ+ λ∗)

2r
g(z) + g′(z)

(
1

2
− z
)

+ g′′(z)z.
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This equation is exactly Kummer’s differential equation, which generally
looks like

0 = −ag(z) + (b− z)g′(z) + zg′′(z), (3.1.38)

in our case we have a = −−(ρ+λ∗)
2r

, b = 1
2

and z = −(rc+µ)2

σ2r
. Now by applying

results from the theory about differential equations of this type, we know that
M(a, b; z) and z1−bM(a + 1 − b, 2 − b; z) solve Kummer’s equation (3.1.38),
which are in our case exactly F and G. Hence L and H can be written as
linear combinations of the functions F and G, determined via their special
boundary behaviour.

As before our main goal is still to prove that the barrier strategy is the
optimal one. So far we see that for fixed b ≥ 0 the firm value v(c; b) as
solution of (3.1.12) has for c ∈ (0, b) the following form

v(c; b) = v(b; b)H(c; b) + lL(c; b)− Π(b; b)H(c; b)− Π(0; b)L(c; b) + Π(c; b),
(3.1.39)

where Π satisfies

Π(c; b) =
λ∗

ρ+ λ∗

(
v(b; b)− b+ c+

µ+ rc

ρ+ λ∗ − r

)
.

Additionally, it fulfills (3.1.13) limc↗b v
′(c; b) = 1. Furthermore we have to

find the optimal barrier level C∗. This value can be achieved by considering
the first derivative of the firm value with respect to the barrier level

∂v

∂b
(c; b)

∣∣∣∣
b=C∗

= 0, c > 0. (3.1.40)

Moreover it is stated that this condition is equivalent to the so called high-
contact condition

lim
c↗C∗

v′′(c;C∗) = 0. (3.1.41)

In order to verify this statement one has to use the second equation in (3.1.12)
namely 0 = v(b; b)−v(c; b)−(b−c) if c ≥ b, (3.1.13), (3.1.39) and further the
representation of L and H as in (3.1.36) and (3.1.37). For additional informa-
tion see [6, p. 15]. Note that this high-contact condition is in general required
to make sure that the firm value v is twice continuously differentiable. Be-
cause if we consider the function v(c; b) with c ≥ b, then the right-hand second
derivative in b is zero but in general the left-hand one does not necessarily
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has to be zero. So in order to verify the optimality we have to make sure that
v ∈ C2 in order to use Theorem 9, where we needed this degree of smoothness
since we applied Itô’s formula. The analogous situation was already men-
tioned above for the case of the general absorption problem, in this context
we refer to [16, p. 69]. In conclusion we need to find a barrier level C∗ for
our control strategy such that the high-contact condition (3.1.41) is satisfied.

Furthermore if we have that the first equation in (3.1.12) holds in addition
to (3.1.13), then the condition (3.1.41) yields that

lim
c↗C∗

v(c;C∗) =
µ

ρ
+
r

ρ
C∗. (3.1.42)

So most parts of the work in this step have been done respectively have
been well prepared. Now we need that the derived firm value with respect to
the barrier strategy is concave, which is a very important property needed
when we want to prove that this firm value satisfies the HJB equation (3.1.1)
in order to apply Theorem 9 in step 4. For that purpose we consider the
function w(c; b), where b ≥ 0 remains in this context arbitrary but fixed.
Besides w is assumed to fulfill the following properties

(a) w(c; b) is the unique continuously differentiable solution to (3.1.31),

(b) it satisfies the boundary conditions

(i) w′(b; b) = 1 and

(ii) w′′(b; b) = 0,

(c) further by the above conditions, in particular these are (b)(i), (b)(ii)
and the first equation in (3.1.31), we have that (3.1.42) holds. This
determines the value of w at the boundary and reads as follows

w(b; b) =
µ

ρ
+
r

ρ
b.

Note that with these assumptions on w it is mentioned in [6, p. 41] that by
the theory of linear ordinary differential equations existence and uniqueness
is ensured. Further, it is important to notice that our conjectured optimal
firm value function v(c; b) satisfies these conditions, in particular compare
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to the first two equations of (3.1.12), (3.1.13) in addition to (3.1.41). The
next theorem, as already mentioned, deals with the special behavior of such
a function w, above all, it provides the concavity. But in order to verify the
statement, we have to make use of some auxiliary lemmas. Nevertheless, the
following results are quite interesting on their own.

Lemma 6. Let φ(c; b) be an arbitrary function and let f be a solution to the
differential equation

Lf(c) + φ(c; b) = 0. (3.1.43)

Then, if φ(c; b) ≥ 0 the function f has no local minima, which are negative
and on the other hand, if φ(c; b) ≤ 0 f has no local maxima, which are
positive.

Proof. Assume that cmin is a local minimum and φ(c; b) ≥ 0, then we have
that f ′(cmin) = 0 and f ′′(cmin) ≥ 0 so this in addition to (3.1.43) implies that

(−ρ)f(cmin) +
σ2

2
f ′′(cmin) + φ(c; b) = 0,

so we obtain
f(cmin) ≥ 0.

The proof of the second case where φ(c; b) ≤ 0 is done analogously.

Lemma 7. Let f be a solution to (3.1.43) with φ(c; b) ≤ 0 and further for
a c0 ≥ 0 assume that f(c0) ≥ 0, f ′(c0) ≤ 0 and that |f(c0)| + |f ′(c0)| +
|φ(c0; b)| > 0. Then for all c < c0 it holds that f(c) > 0 and f ′(c) < 0.

Proof. The prove is done via contradiction. Consider the function f , where
we assume that there exists at least one c ∈ [0, c0) such that f ′(c) ≥ 0. With
respect to that, let c̄ ∈ [0, c0) be the largest value where f ′ changes sign and
hence f ′(c̄) = 0, keep in mind that f ′(c0) ≤ 0. These conditions yield that
f(c̄) is a local maximum. Moreover we know that f(c0) ≥ 0 and c̄ < c0. This
yields that f(c̄) is a positive local maximum, which is indeed a contradiction
to Lemma 6 and the assertion follows.

Lemma 8. Let f be a solution to (3.1.43), where φ(c; b) satisfies φ′(c; b) ≤ 0,
further for a c0 ≥ 0 assume that f ′(c0) ≥ 0, f ′′(c0) ≤ 0 and that |f ′(c0)| +
|f ′′(c0)| + |φ′(c0; b)| > 0. Then for all c < c0 it holds that f ′(c) > 0 and
f ′′(c) < 0. If additionally for f holds that f ′′(c0) = 0, then f ′′(c) > 0 for
c > c0 and f ′(c0) = minc≥0 f

′(c).
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Proof. First of all we differentiate (3.1.43) to obtain

−ρf ′(c) + rf ′(c) + (rc+ µ)f ′′(c) +
σ2

2
f ′′′(c) + φ′(c) = 0.

So we can see that the function g = f ′ solves

Lg(c) + rg(c) + φ′(c) = 0.

So we are able to apply Lemma 7 to g = f ′ in the usual way just with φ′

instead of φ and ρ̄ = −ρ + r instead of ρ in the differential operator L,
because we still have ρ̄ = −ρ + r < 0. This verifies the case c < c0 and the
other case c > c0 can be done in an analogous way.

Theorem 13. With respect to c ≥ 0 the above considered function w(c; b) is
increasing and concave, and with respect to b it is strictly monotone decreas-
ing.

Proof. Consider the function

f(c) = w(c; b)− Πw(c; b) = w(c; b)− λ∗

ρ+ λ∗

(
w(b; b)− b+ c+

µ+ rc

ρ+ λ∗ − r

)
,

then we know that this function solves the homogeneous differential equation
(3.1.28), because it is the difference of two particular solutions, respectively
compare f to (3.1.32). Moreover it holds that f ′(b) > 0, because we have
that

f ′(b) = 1− λ∗

ρ+ λ∗ − r
> 0

⇔ 1 >
λ∗

ρ+ λ∗ − r
⇔ ρ+ λ∗ − r > λ∗

⇔ ρ > r.

And ρ > r is assumed to be true. We also used that for the denominator
ρ+ λ∗− r > 0 holds. Furthermore we have that f ′′(b) = 0, hence by Lemma
8 we have that f(c) and on top of this also w(c; b) is increasing and concave
for c ≤ b. Where we used in Lemma 8 that ρ in the differential operator is
replaced by ρ+ λ∗ and φ in (3.1.43) is considered to be zero, which does not
harm the statement respectively the proof.
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For the next part, namely to prove that w(x; b) is monotone decreasing
with respect to b, we consider b1 < b2 and let g(c) = w(c; b1)−w(c; b2). Then
we know by the properties of w in particular by item (c) that

w(b; b) =
µ

ρ
+
r

ρ
b (3.1.44)

and therefore we see that g solves the equation

Lg(c)− λ∗g(c) + λ∗
(
r

ρ
− 1

)
(b1 − b2) = 0.

Since due to the linearity of the operator L we obtain

Lw(c; b1)− λ∗w(c; b1)− [Lw(c; b2)− λ∗w(c; b2)]

= −λ∗(w(c; b1)− b1 − (w(c; b2)− b2))

= −λ∗
(
r

ρ
− 1

)
(b1 − b2).

On top of this, g satisfies the boundary conditions g′(b1) = 1−w′(b1; b2) < 0
and g′′(b1) = −w′′(b1; b2) ≥ 0, because w(c; b) is for c ≤ b increasing and
concave. Knowing these properties and if we modify Lemma 8, we get that
w is monotone decreasing, but we still have to prove that g(b1) > 0. So we
consider the following

g(b1) =w(b1; b1)− w(b1; b2) = w(b1; b1)− w(b2; b2) +

∫ b2

b1

w′(c; b2)dc

≥ w(b1; b1)− w(b2; b2) + b2 − b1 =

(
r

ρ
− 1

)
(b1 − b2) > 0.

Note that we have w′(b2, b2) = 1 and further w′′(c, b2) ≤ 0 for c ≤ b2 by the
above results and hence w′(c, b2) ≥ 1 for c ≤ b2.

The next considerations will lead to the determination of the optimal
barrier level C∗. In fact we know that for v(c; b) (3.1.12) holds, especially
v(0; b) = l(0) = l. So regarding w(c; b), where the barrier level b was arbitrary
but fixed up to now, the only thing left to do is to determine a value b such
that w(0; b) = l(0). The solution of this equation will be denoted by C∗ and
as a consequence v(c;C∗) and w(c;C∗) will coincide. This will be needed in
order to verify that v relative to that special barrier will be a smooth solution
to the HJB equation. For that purpose we consider the next theorem.
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Theorem 14. The equation

w(0;C∗) = l(0) (3.1.45)

has a unique solution C∗.

Proof. We know by Theorem 13 that w(0; b) is monotone decreasing with
respect to b. Moreover using (3.1.44) we get that

w(0; 0) =
µ

ρ
> l(0),

since by (2.2.5) we have l(0) = l = ϕµ
ρ

with ϕ < 1. On the other hand

a straightforward calculation gives us that w(0,∞) < 0. These properties
imply that (3.1.45) has a unique solution.

3.1.4 Fourth step: Optimality of the conjectured solu-
tion

In this step we verify that choosing the control processes with respect to the
barrier strategy leads to a firm value which is indeed the optimal value V̂ .
For that purpose we use the obtained value function for our barrier strategy
with respect to the conjectured optimal barrier threshold C∗ namely v(c;C∗).

Theorem 15. Let C∗ be the unique solution of the equation w(0;C∗) = l(0),
then the function

V (c) := w(c;C∗) = v(c;C∗) (3.1.46)

is a solution to the HJB equation (3.1.1), which satisfies V (c) ∈ C2(0,∞).

Proof. We know by Theorem 12 that V (c) = w(c;C∗) ∈ C2(0,∞) solves the
first two equations of (3.1.12), in addition to (3.1.13) and (3.1.41). Further
since C∗ solves (3.1.45), the third condition of (3.1.12) is also fulfilled by
w(c;C∗) and hence w(c;C∗) = v(c;C∗).

Next we have to show that V (c) solves (3.1.1). We start with the prove
of

V ′(c) ≥ 1 ∀c ≥ 0.

Since V (c) = w(c;C∗) is concave by Theorem 13 so w′′(c;C∗) ≤ 0 for all
c ≥ 0 and the smooth pasting condition, which is another denomination of
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the high-contact condition (3.1.41), holds we get that w′′(C∗, C∗) = 0 in
addition to w′(C∗, C∗) = 1. So we further obtain that{

V ′(c) > 1, if c < C∗,

V ′(c) = 1, if c ≥ C∗.
(3.1.47)

The next part is to prove

V (c) ≥ l(c) ∀c ≥ 0.

This follows from

l(c)− V (c) =

∫ c

0

(1− V ′(x))dx ≤ 0,

note that V (0) = l. The remaining part is the proof of

LV (c) + FV (c) ≤ 0 ∀c ≥ 0.

First of all we consider the case c ≤ C∗, where by the Theorem 12 it holds
that:

LV (c) + FV (c) = −λ∗ [V (C∗)− C∗ + c− V (c)] + FV (c)

and if we want to find the maximizing f for

FV (c) = max
f≥0

λ∗ [V (c+ f)− f − V (c)] ,

then
∂

∂f
λ∗ [V (c+ f)− f − V (c)]

!
= 0.

which yields that

V ′(c+ f)
!

= 1

and therefore
f = C∗ − c ≥ 0,

since (3.1.47) holds and further V is concave, increasing and the smooth
pasting condition holds. So we have that

FV (c) = λ∗ [V (C∗)− C∗ + c− V (c)]
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and therefore
LV (c) + FV (c) = 0 ∀c ≤ C∗.

On the other hand if c > C∗, due to Theorem 12 we have that

FV (c) = max
f≥0

λ∗ [V (C∗)− C∗ + c+ f − f − V (C∗) + C∗ − c] = 0.

Using (3.1.44) and we have for the other operator

LV (c) = L(V (C∗)− C∗ + c)

= −ρ
(
µ

ρ
+
r

ρ
C∗ − C∗ + c

)
+ (rc+ µ)

= (ρ− r)(C∗ − c) < 0,

since by assumption ρ > r and C∗ < c. As a conclusion we obtain that V (c)
fulfills the HJB equation (3.1.1).

In the end almost everything is done and the last and remaining part will
be to prove the following final theorem, which states the optimality of the
conjectured solution of the stochastic control problem.

Theorem 16. For the value function in (3.0.2) denoted by V̂ (c) and the
function V (c) defined in (3.1.46) it holds that

V̂ (c) = V (c) ∀c ≥ 0. (3.1.48)

Proof. The proof is done via showing that both inequalities in (3.1.48) hold.
The first one namely V̂ (c) ≤ V (c) ∀c ≥ 0 holds true. Since knowing
Theorem 15 is true we are able to apply Theorem 9, which gives us the
correctness of the first inequality.
For the other inequality we consider the following control strategy

D∗t = Lt and f ∗t = (C∗ − Ct−)+.

Further Lt = sups≤t (bt − C∗)+, where

dbt = (rbt− + µ)dt+ σdBt + (C∗ − bt−)+ dNt

and for C it holds that

dCt = (rCt− + µ)dt+ σdBt − dD∗t + f ∗t dNt, C0− = c ≥ 0.
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First of all we have to verify that (D∗, f ∗) is admissible, i.e. (D∗, f ∗) ∈ Θ.
Note that in the following we will need that Ct ≥ 0 ∀t ≥ 0. For the financing
control we obtain from the definition of f ∗t that

Ec

[∫ ∞
0

e−ρtf ∗t dNt

]
≤ Ec

[∫ ∞
0

e−ρtC∗dNt

]
=
λ∗C∗

ρ
.

Next we use the partial integration formula for C̄t := Ct+ to get

0 ≤e−ρtC̄t = C̄0 +

∫ t

0

(−ρ)e−ρsC̄s−ds+

∫ t

0

e−ρsdC̄s

=C̄0 +

∫ t

0

(−ρ)e−ρsC̄s−ds+

∫ t

0

e−ρs(rC̄s− + µ)ds

+

∫ t

0

e−ρsσdBs −
∫

(0,t]

e−ρsdD∗s+ +

∫ t

0

e−ρsf ∗s dNs

=C̄0 +

∫ t

0

e−ρs((r − ρ)C̄s− + µ)ds

+

∫ t

0

e−ρsσdBs −
∫

(0,t]

e−ρsdD∗s+ +

∫ t

0

e−ρsf ∗s dNs

≤C̄0 +

∫ t

0

e−ρsµds+

∫ t

0

e−ρsσdBs −
∫

(0,t]

e−ρsdD∗s+ +

∫ t

0

e−ρsf ∗s dNs.

Further we have that C̄0 = C0+ = C0 − (D0+ −D0) and hence

0 ≤ C0 +

∫ t

0

e−ρsµds+

∫ t

0

e−ρsσdBs −
∫

[0,t]

e−ρsdD∗s+ +

∫ t

0

e−ρsf ∗s dNs.

Now taking expectations on both sides and rearranging the terms yields that

Ec

[∫ t

0

e−ρsdD∗s

]
≤C0 + Ec

[∫ t

0

e−ρsµds

]
+ Ec

[∫ t

0

e−ρsf ∗s dNs

]
≤C0 + Ec

[∫ ∞
0

e−ρsµds

]
+ Ec

[∫ ∞
0

e−ρsf ∗s dNs

]
≤C0 +

µ

ρ
+
λ∗C∗

ρ
,

holds for t < ∞ and with Fatou’s lemma we obtain that (D∗, f ∗) ∈ Θ.
Similarly as in the proof of Theorem 9 we consider the process:

Yt := e−ρ(t∧τ0)V (Ct∧τ0) +

∫ t∧τ0

0+

e−ρs(dD∗s − f ∗s−dNs), (3.1.49)
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where τ0 is the same as in the proof of Theorem 9, namely the first time Ct
reaches the value zero. Next we apply Itô’s formula for semimartingales to
Yt, since V (c) is a solution to the HJB equation and due to the special choice
of (D∗, f ∗), we obtain that Y is a local martingale. In contrast to the former
proof we can use the fact that Ct ∈ [0, C∗] ∀t ≥ 0 in addition to the increase
of V , which implies that for a stopping time θ

|Yθ| ≤ |V (C∗)|+
∫ ∞

0

e−ρt(dD∗s + f ∗t−dNt).

Moreover we know from above that the right hand side in particular the
integral is integrable, because (D∗, f ∗) is admissible, so as a conclusion the
process Y = (Yt)t≥0 is a uniformly integrable martingale. Here we are able to
identify quite clearly the difference between this proof and the preceding one.
In this case we have the martingale property, where in the former one the
considered process was just a supermartingale. With this important property
we can go further as follows

V (c) = Y0− = Y0 −∆Y0
(∗)
= Y0 + ∆D∗0

(∗∗)
= Ec (Yτ0) + ∆D∗0

= Ec

[
e−ρτ0V (Cτ0) +

∫ τ0

0+

e−ρs(dD∗s − f ∗s dNs)

]
+ ∆D∗0

= Ec

[
e−ρτ0l(0) +

∫ τ0

0

e−ρs(dD∗s − f ∗s dNs)

]
.

Note that we used at (∗) the special definition of V and at (∗∗) that Y is
a martingale. Finally this verifies the other equality V (c) ≤ V̂ (c) and both
inequalities together yield the desired result.
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3.2 Resulting consequences and outlook

In the end taking all these steps into account leads to the following conclusion,
see [6, p. 16].

Proposition 1. For a firm with mean cash flow rate µ and without growth
option the firm value reads as follows V (c) = v(c;C∗). The function v(c; b) is
defined by (3.1.12) respectively (3.1.39) with the properties (3.1.13), (3.1.41)
and (3.1.42), further C∗ is the unique solution to (3.1.41). This leads to the
representation

v(c;C∗) =

(
µ

ρ
+
r

ρ
C∗
)
H(c;C∗) + lL(c;C∗)− Π(C∗;C∗)H(c;C∗)

− Π(0;C∗)L(c;C∗) + Π(c;C∗).

(3.2.1)

A further quite interesting fact, which we will not prove is the next lemma
about the dependencies of the optimal barrier on the underlying parameters
of the model.

Lemma 9. [6, p. 16, 43-44]
The optimal barrier level C∗ of a firm without growth option is increasing in
the cash flow volatility σ2 and monotone decreasing in the capital supply λ∗

and the asset tangibility ϕ.

As an outlook one also is able to solve the control problem if the growth
option is possible. In that case one needs to solve our considered problem
with respect to different mean cash flow rates, in particular with respect to
the rate µ0 before and µ1 after the investment. Moreover it is stated that
the option to invest is only profitable if the lump sum cost, which has to
be paid in case of investment, is below some identified threshold and in this
case either a barrier strategy or a band strategy is optimal depending on the
investment cost, see [6, p. 16 - 23]. In fact if the investment cost is below the
threshold of profitability and rather low, then the barrier strategy is optimal.
On the other hand if the cost is larger, but still below the threshold, then
optimal strategy is of band type. If it is above the threshold, then the op-
timal control strategy for a firm with growth option is the same as for a firm
without such a possibility, because then the firm never uses its option and
remains with the mean cash flow rate µ0 and we are in the case of Proposition
1, see [6, p. 16 -17]. The optimal switching time, where we change the mean
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cash flow rate from µ0 to µ1 is τ0,1 = inf{t > 0|V1(Ct −K) > V0(Ct)}, where
Vi denotes the value function with respect to µi, i = 0, 1. These comments
were just a small outlook on the treated topics, for further information we
refer to [6].

In the end the main discourse is completed with the result of Proposition
1. We have prepared the regarding theory, considered and adapted the treat-
ment in [6] with the assistance of the below listed literature. Especially the
paper by Shreve et al. [16] and its results were of special use and therefore
crucial to the success for this discourse. Hereinafter we present a iterative
procedure, which can be used to solve the above problem numerically.



Appendix

Numerical complement

The stated aim in this chapter is to find an approximation respectively a
numerical solution to the considered stochastic optimal control problem. For
that reason we consider the so-called policy iteration algorithm, see [5, p.
363 - 388]. In the subsequent lines we explain how this iterative method is
applied to our model problem. The starting point is as in many numerical
solution approaches the discretization of the state space in which the cash
reserves process attains its values. For that purpose we primarily operate
on the interval [0, xend], for a given endpoint and discretize this interval such
that we remain with the the grid points

0 = x0 < x1 < · · · < xn = xend,

where xi = h · i, i ∈ {0, 1, . . . , n} for a prespecified number of grid points n,
an artificial upper bound xend and a given step size h = xend

n
. On top of this

we discretize the above introduced operators (3.0.3) and (3.0.4). For the first
one, the differential operator, we use forward difference quotients to approx-
imate the first derivative and the standard finite difference approximation
for the second derivative. This reads as follows

g′(x) ≈ g(x+ h)− g(x)

h

and

g′′(x) ≈ g(x+ h)− 2g(x) + g(x− h)

h2
.

Based on that the differential operator

Lg(x) = −ρg(x) + g′(x)(rx+ µ) +
1

2
σ2g′′(x)

89
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transforms to

−ρg(x) +
g(x+ h)− g(x)

h
(rx+ µ) +

1

2
σ2 g(x+ h)− 2g(x) + g(x− h)

h2
.

If we rearrange the terms an take x = xi for i ∈ {1, . . . , n − 1}, we will get
for the equation Lg = 0 the following discrete representation

0 =

[
(rxi + µ)

1

h
+
σ2

2

1

h2

]
g(xi+1)

+

[
−(rxi + µ)

1

h
− σ2

h2
− ρ
]
g(xi) +

σ2

2

1

h2
g(xi−1),

for i ∈ {1, . . . , n− 1}. On top of this we define

ai =

[
−(rxi + µ)

1

h
− σ2

h2
− ρ
]
,

bi =

[
(rxi + µ)

1

h
+
σ2

2

1

h2

]
and

c =
σ2

2

1

h2

for i ∈ {1, . . . , n− 1}. The values on the endpoints of the considered interval
are determined by g(x0) = g(0) = l and on the other one by g′(xend) = 1,
which yields g(xn) = g(xn−1) + h for the first iteration. The last condition is
due to the considerations made on singular stochastic optimal control theory.
Since defining the first derivative at the endpoint to be one corresponds to
the strategy that there are no dividend payments until the endpoint of the
interval. As usual we gather this system of equations in the common matrix
notation and obtain

a1 b1 0 . . . 0

c a2 b2
. . . 0

0
. . . . . . . . . 0

...
. . . c an−2 bn−2

0 0 0 c an−1 + bn−1




g(x1)
g(x2)

...
g(xn−2)
g(xn−1)

 =


−cl
0
...
0

−bn−1h

 .
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Further we denote the above matrix with L, the vector on the left-hand side
with ḡ and the one on the right-hand side with b̄ in order to obtain Lḡ = b̄.

The discretization of the second operator (3.0.4)

Fg(x) = max
v≥0

[λ∗ (g(x+ v)− g(x)− v)] ,

will be done as follows. First of all, if x0 = 0 we assumed that outside
financing is not possible, so we search for the funding of height j · h which
maximizes

g(xi + j · h)− g(xi)− j · h

for every i ∈ {1, . . . , n−1} representing the actual height of the cash reserves
respectively the actual state and every j ∈ {1, . . . , n − i} representing the
height of the financing in state i. This can be understood as follows, if in
state i the optimal financing amount equals j ·h = xj, then the cash holdings
jump to the state i+ j, since xi+j = xi+xj. The highest permitted financing
in state i is thus (n− i) ·h, because with this funding amount one reaches the
last state xend. There would be no reason to go beyond the last state, because
in that area we are paying dividends so the outside funding above this level
would lead to an dividend payout of this part of the financing amount. Again
we collect the terms in the more compact matrix notation:

Fg :=


Fg(x1)

...
Fg(xi)

...
Fg(xn−1)

 =


max0≤j≤(n−1) {λ∗(g(x1 + j · h)− g(x1)− j · h)}

...
max0≤j≤(n−i) {λ∗(g(xi + j · h)− g(xi)− j · h)}

...
max0≤j≤1 {λ∗(g(xn−1 + j · h)− g(xn−1)− j · h)}

 .

For the first iteration step we take as control strategy doing nothing until
we reach the endpoint of the interval and from that point on the dividend pay-
ments are started. Then within this first iteration we compute the approxim-
ative value function via solving Lg = 0, which has as discrete representation
Lg = b̄. Next we investigate the object g and detect the area denoted by A,
where g′ > 1 holds. For that purpose we use further on as approximation
for the first derivative the forward difference quotient. Regarding the second
solution iteration we shave to solve the equation L(1)g(1) + F (1)g = 0 on the
area A. This leads to a second approximation for the value function denoted
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by g(1). As already mentioned in the former sections we know from stochastic
singular control theory that if the first derivate is strictly larger than one in
a point x, then the optimal control has to be zero in a neighborhood of x,
see [5, p. 317]. Due to that we are looking for areas where we either do
nothing or use the control to manipulate the state process. Of course we
need some termination argument, for that reason we state that we will stop
the iterative procedure, if the value function does not change anymore up to
a small variation.

Figure 1: Second solution iteration

In the above picture we have that the green line corresponds to the first
solution iteration and the blue line with the circles to the second one. The
area where the equation was solved is marked by the circles on the curve and
the remaining straight blue line corresponds to the linear extension of the
obtained solution.

In iteration step k we have to solve the following equation

L(k)g(k) + F (k)g(k−1) = 0.

Where g(k) denotes the new solution of this step and g(k−1) denotes the solu-
tion of the preceding step. Furthermore the matrices L(k) denote the modi-
fied versions of the matrix L in order to solve the differential equation on the
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new area determined by making use of the solution g(k−1). Concerning the
second operator we have that F (k) denotes the latest operator analogous to
F searching for the maximal financing control on the new area. Starting the
next iteration step we again investigate the last obtained approximation g(k)

in order to determine the region where the first derivative of the obtained
function is greater than one and in addition to this we consider the second
derivative and search for the first point when it reaches the value zero. Using
these informations we rethink the upper bound for the interval on which the
equation is solved and modify it appropriately. In addition to this we select
this upper bound in such a way that the sequence of approximations of the
value function is non-decreasing. This is done since, due to the features of
the policy iteration algorithm, exactly the control has to be chosen, which en-
larges the value function, in order to have an improvement in every iterative
step.

Figure 2: Auxiliary iteration

Note that as already mentioned above the F operator can only be applied
to the solution from the preceding step. But in fact we want to determine
the optimal funding control for the current solution approximation. Based
on this consideration we do the following. We introduce an auxiliary iter-
ation after every main iteration step, which will ensure that we work with
the best approximation for the corresponding financing control of the current
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approximative value function. This means that we have to solve the current
equation on the same region until the obtained approximation for the value
function does not change anymore up to some small error. This approach is
illustrated especially in the fourth iteration of our numeric example. Indeed
by looking at the Figure 2 we observe that the first obtained approximative
solution on the new area, which corresponds to the curve in orange, is much
larger than the curve in yellow, which represents the solution obtained after
twenty times solving on the same area. Moreover the solutions of the auxili-
ary iteration are represented by the plotted black curves. Based on this we
decide to reject the initially obtained orange solution for the benefit of the
yellow one in order to use the better related financing control for the current
step.

Finally following this iteration procedure we arrive with the below graph-
ically illustrated solutions:

Figure 3: Convergence of the iteration

At this point we can observe that the six solutions of this iterative proced-
ure build a non-decreasing sequence of functions, where the pink represents
the last solution. The procedure stopped since, as the euclidean norm of the
difference of the last two iterative solutions was below a prespecified con-
stant, the termination criterion was fulfilled. Note that there was applied a



95

slightly modified version of the usual policy iteration algorithm. In fact in
the common algorithm every admissible control strategy has to be considered
and further, in order to identify the optimal one, every associated gain func-
tion has to be evaluated. In this numerical example we tried to focus only on
those control strategies which improve the respective gain function. For that
purpose and in order to obtain a non-decreasing sequence of approximative
value functions in accordance with the algorithm, we used the additional in-
formation about the behavior of the derivatives.

Finally we should have some benchmark function in order to review our
numerical result. To this end we use the theoretical solution, in particular
we have to solve a similar equation as above using the optimal dividend
and financing policy. The correspond system of equations is written down
subsequently.

1 0 0 0 . . . 0 0
c a1 − λ b1 0 . . . 0 λ

0 c a2 − λ b2
. . .

...

0 0
. . . . . . . . . 0 λ

...
...

. . . c an−1 − λ bn−1 + λ
0 0 . . . 0 −1 1





V (x0)
V (x1)
V (x2)

...
V (xn−2)
V (xn−1)
V (xn)



=



l
−λ(x1 − xn)

...

−λ(xn−1 − xn)
h


.

We solve this equation in matrix notation for a sequence of different bar-
riers b = xend. In a next step we select exactly the barrier which leads
to the maximum representation of the value function. The computation of
the theoretical value function is done in such a way, because the confluent
hypergeometric functions, which are stated to be the solution of this prob-
lem, turned out to be numerically unstable with respect to the given set of
parameters. Due to this fact the most practicable way was to choose this al-
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ternative to compute the value function. In Figure 4 below the two solutions
are displayed graphically. In particular the value function is plotted in gold,
whereas the numerical solution is plotted in black with its linear extension.

Figure 4: Comparison of the value function and the numerical solution

For the numeric example we have used the parameters as given at [6,
Table 1]:

Discount rate: ρ = 0.06, Interest rate on cash: r = 0.0055,
Mean cash flow rate: µ = 0.05, Volatility of cash flow: σ = 0.1,
Asset tangibility: ϕ = 0.00, Arrival rate of investors: λ = 2.

Moreover we have used the following parameters for the discretization in
the first step:

Number of steps n = 100
End of grid interval xend = 1.

The above described iteration has been performed six times with these
parameters and in the end we arrived with the already presented solution.
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