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Kurzfassung

Die Lebensdaueranalyse ist ein Teilbereich der Statistik der sich mit der genauen Auf-
bereitung von Beobachtungen aus dem Bereich der Lebensdauer beschéftigt. Diese konnen
allein oder in Relation zu gegebenen Pradiktoren analysiert werden. In dieser Arbeit geben
wir einen Uberblick iiber einen parametischen und einen nicht-parametrischen Ansatz der
Lebensdaueranalyse. Wir konzentrieren uns hierbei nicht nur auf den theoretischen Hin-
tergrund, sondern auch auf die praktische Anwendung in R. Weiters werden wir das neu
erworbene Wissen in der Analyse von Implantatsdaten fiir Brustimplantate anwenden,
welche aus dem Osterreichischen Silikonregister entnommen wurden.

Abstract

Survival analysis (also referred to as failure time analysis) focuses on the analysis of sur-
vival time observations, which can be considered by themselves or in relation to given
predictors. In this thesis we give an overview of two major approaches in survival analy-
sis (a parametric and a non-parametric approach), including theoretical background and
practical application in R. Furthermore, we will use the described approaches to fit survival
time models for survival times of breast implants, which are observations taken from the
Austrian Silicone Registry.
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Chapter 1

Introduction

Survival time analysis (or failure time analysis) refers to the practice of analyzing survival
time observations either by themselves or in relation to given predictors. The need for
such models is clear as day; not only is it imperative to be able to tell whether the survival
time of a subject is related to any given set of predictors, it is also not uncommon to be
interested in the actual shape of the survival distribution which indicates the probability
of survival for a test subject after a certain amount of time has passed. Clearly, such
models need to be approached with a delicate hand, taking into account the actual nature
of observations of this type.

On a more practical note, the data that inspired this thesis actually fits the theory of
survival times perfectly. In the Austrian Silicone Registry, several thousand surgeries all
across the country are documented, all of which in some way relate to implants on the
human body. This thesis was created in collaboration with Prof. S. Spendel and Dr. Paul
Wurzer from the Department of Surgery at the Univ.Klinikum in Graz, specifically the
Department for Plastic, Aesthetic and Reconstructive Surgery. The question we asked
ourselves in the very beginning was simple enough: How long do breast implants last in
the human body and can we find out which predictors influence the length of the survival
in which way? This question inspired lengthy research into the world of survival time
analysis, the results of which we describe in this thesis.

In Chapter 2, we give a detailed introduction into the nature of survival times before we
move on to describe the arguably most popular approach in survival time analysis: the
non-parametric models and the Cox proportional hazards model. By using very few as-
sumptions on the actual shape of the distribution of the survival times, we deduce simple
methods in order to analyze such observations both on their own as well as in relation
to given predictors. Furthermore, we give an overview on diagnostic methods commonly
used for such models.

In Chapter 3, we use the theoretical results of Chapter 2 in order to fit Cox models for the
breast implant data taken from the Austrian Silicone Registry. We start off by describing
our data and noting preliminary conjectures on the influence of the chosen predictors,
before we diligently fit several models for the implant survival times. Furthermore, we
take care to specify the influence of each predictor in a detailed manner.
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Chapter 4 describes the parametric approach of survival time analysis, in which we de-
scribe commonly used distributions for the survival times as well as the process of fitting
parametric models. Taking a more detailed look into the so-called accelerated failure time
models, we decide that those actually fit our data quite nicely. Furthermore, we give
a short overview on the diagnostic aspect of parametric models as well as the practical
application in R.

In Chapter 5 we apply the theory of accelerated failure time models to the breast implant
data in a more detailed manner. We choose a proper distribution for the survival times
and move on to fit several models in that fashion. We also compare said models with their
counterparts found in Chapter 3 and point out the differences in the results. Finally, in
Chapter 6 we note our conclusions and try to summarize our findings.



Chapter 2

Non-Parametric Survival Time
Models

2.1 Introduction to Survival Data

The concept of survival data in itself isn’t particularly complex. One can easily visualize
survival data by considering a fixed time frame, wherein a fixed set of test subjects is
continuously monitored to see whether a previously agreed upon event transpires for each
subject. For some of these subjects this event may happen within the time frame and the
amount of time from the onset of the monitored time frame to the event is denoted by t;,
where ¢ ranging from 1 to n refers to the i-th subject.

In a more concrete example, let us consider the breast implant data we're going to analyze
further in this thesis. Every patient undergoes surgery to get an initial breast implant,
which indicates the beginning of our time frame. From thereon, we count the days it takes
for this implant to be either removed indefinitely or replaced by another implant. In this
case, t; refers to that amount of time for the i-th implant.

Survival data also often deals with the concept of censored data. An observation is called
censored if the study ends before the event had the chance to transpire. In our breast
implant example, one might say that an observation is censored if a patient passes away
before the implant needs to be replaced. We may never know whether the implant will
have needed replacement or not, all we know is that it “survived” from the initial surgery
to the time of death of the patient. Handling censored observations is common practice
when dealing with real life datasets.

2.2 Kaplan-Meier Estimators

In this section, we want to define survival functions and hazard functions. Furthermore we
will move on to provide options to estimate both by introducing well-known the Kaplan-
Meier approach.

From now on, we want to assume that 7; u f(t), where Tj; refer to an iid random sample of
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survival times. Subsequently, let ¢; for ¢ = 1,...,n be a realization of the above mentioned
random sample. We define our survival function S(t) as the following:

S(t)=P(T >t)=1—-F(t),

where F(t) = P(T <t) = f(f f(x)dx as usual. To remain loyal to the example of breast
implants, S(t) describes the probability that an implant doesn’t need to be replaced for
more than t days. In the theory of survival data, it is often more convenient to consider
the hazard function A(t), which is defined as the following;:

< >
A(t) = lim P(t_T<t+h!T_t).
h—0 h

One can easily visualize A(t) as the instantaneous amount of events at time ¢. Thus, the
alternative form
L dS() _ f(®)

A =—So~at ~ s

follows immediately. Rewriting the hazard function in this manner

A(t) = —dloif(t), (2.1)

gives immediate insight into the behavior of a hazard function. By its nature, a survival
function is a non-negative monotonically decreasing function that maps on [0,1]. Thus,
A(t) is also non-negative. It is important to note that a random variable is uniquely de-
fined by its hazard function A(t) or its survival function S(t). This follows simply from
the definition of the survival function. Since any random variable is uniquely defined by
its distribution function F'(t) or its density f(¢), the same can be concluded for A(t) and
S(t).

While these expressions are all based on the continuousness of the distribution of 7', one
can easily imagine how S(¢) and A(¢) would change if T followed a discrete distribution
instead. In that case, the time axis can be easily split up into a finite number of time
intervals t; of the same length. For example, one would have

S(t) = Z f(t;) with f(t;) = P(T € t;).

We are now interested in finding an estimate for S(¢). From result (2.1) it follows directly
that

S(t) = exp (— /0 t )\(m)da:) = ™M), (2.2)

Thus, finding an estimate for S(t) directly results in finding an estimate for A(t¢), which
is often referred to as the cumulative or integral hazard.

In order to introduce the Kaplan-Meier estimate for S(t), consider for a sample of n sub-
jects the times t; <ty < --- < t,, which refer to the times at which the previously agreed
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upon event transpires (e.g. removal of the breast implant). Notice that these times may
also be censored and that two subjects can have the same survival times. Dealing with
censored times is particularly simple in the Kaplan-Meier approach, which justifies its
immense popularity.

Let d; denote the number of events at t; and let n; the number of survivors at the time
t;. Then the Kaplan-Meier estimate for S(t) is given as:

sty =TI ni —di (2.3)

e
it <t v

Formula (2.3) is highly flexible with regards to taking tied and censored observations into
consideration. An observation ¢; is referred to as tied with other observations ¢;,. .., if
t; =t; = --- = t}, which of course means that the associated test subjects all experienced
their respective events at the same time. So, if say two other events ¢; and ¢; are tied
with ¢;, d; = 3. If the i-th observation is censored (e.g. the i-th test subjects drops out of
the trial and one can no longer monitor them), then one can still take the observation into
account. In that case, d; = 0 since no event has transpired at time ¢ and n; =n;_1 — 1 in
order to ensure that the conditional probability of survival to the time ¢; is 1.

Given an estimate for S(¢) we can immediately find an estimate for A(t), which is given
as

Ay=—10g [ T] ”n_ L 3 log <1 - Z) . (2.4)

1:t; <t t; <t

One must remind oneself that for a very small z, the approximation of log(l + z) = =
holds. Thus, equation (2.4) transforms to:

Ay~ ) % (2.5)

i<t

Turning this back onto our estimate S(t), it follows that

(1) = exp(—A(t) ~ exp | — Z% . (2.6)

i<t

There are a lot of packages in R that deal with survival functions and their visual rep-
resentation, yet we will be focusing on the survival library as introduced by Therneau
(2015). In this instance t is again the vector of survival times for our breast implant data.
By using the survfit function and fitting a null-model, we get S (t) as previously dis-
cussed. Using the option type="kaplan-meier" ensures that the right estimate is used—
other options are "flemming-harrington" or "fh2". The summary function provides a
deeper insight into the estimate. Take t; = 0 for example. According to the estimate,
S(0) = ’“T_ldl. We see that n.risk, which reflects n; and n.event which reflects d; are

given in the output. Thus, S(0) = 9050_720 = 0.97795, just as seen in the summary.
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> library(survival)
> kme <- survfit(Surv(t) ~ 1, type="kaplan-meier", conf.type="plain")
> summary (kme)

Call: survfit(formula = Surv(t) ~ 1, type = "kaplan-meier",
conf.type = "plain")

time n.risk n.event survival std.err lower 95} CI upper 95J CI

0 907 20 0.97795 0.00488 0.968392 0.98751
1 887 6 0.97133 0.00554 0.960475 0.98219
3 881 1 0.97023 0.00564 0.959171 0.98129
4 880 1 0.96913 0.00574 0.957872 0.98039
5 879 2 0.96692 0.00594 0.955285 0.97856

Plotting the resulting survival function and cumulative hazard can be easily achieved by
using plot, just as shown below.

> par (mfrow=c(1,2))

> plot(kme,xlab="t", ylab="Survival", conf.int = FALSE)

> plot(kme,xlab="t", ylab="cumulative hazard", fun="cumhaz",
+ conf.int = FALSE)
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Figure 2.1: The resulting Kaplan-Meier estimates S (t) and A(t) using the implant data.

2.2.1 Variance Estimates and Confidence Intervals

Naturally, we are now interested in finding a way to estimate the variance of S (t). For a
large data sample it is known that the Kaplan-Meier estimate is consistent and its distri-
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bution converges in each point to a normal one (see Lawless 2003). While this seems to
be good news in terms of wanting to estimate the variance, we are forced to take a detour
in order to get a proper estimate. Kaplan and Meier (1958) argued that under certain
circumstances S (t) is no longer defined for large ¢. Let t* be the largest observation and
assume that t* is censored. Then, by definition of n;, ny41 has to be 0, yet S(t*) > 0. As
a result, S (t) is undefined for any t > t*, which proves to be problematic when attempting
to find a nonparametric estimate of the variance of S(t).

By employing the popular delta method, one can compute a good estimate for the variance
anyway. As a quick reminder of the delta method, let us consider a series of random
variables Y,, that satisfy the property

VY, —0) 25 N(0,02).

Furthermore consider a real function g such that ¢’(6) # 0. Then it follows that

Vi(g(Ya) — g(0)) 25 N(0,0%[g'(6)]%).

By performing a series of log-transformations on the individual conditional survival prob-
abilities in each time segment (¢;_1,?;) (as seen in Liu 2012), we are going to obtain an
estimate for the variance of S(¢). To that end, let §(¢;) := "ln;fll and consider

log S(t) = > log §(t:).

it <t

A variance estimate for §(¢;) is easily found— §(¢;) can be interpreted as the estimate for
the conditional probability of survival in the time interval (t;_1,t;), given that the subject
has survived up until ¢;_1. Due to the fact that it is also an estimate of a proportion, more
explicitly the surviving fraction out of the n; test subjects still at risk at time ¢;, one can
estimate its variance by
Plste)) = =0,
(2

We can then apply the delta method, which yields

S L 3(t) (A= 8(8) 1= 38(t) g
_ o d
B (nz dz)nz
Thus, we obtain
R . d;
Voz ()] = 32 -t
i<t~ LA

By yet again applying the delta method using g(log S’(t)) = exp log S’(t) = S’(t) we finally
yield the desired variance estimate
o . d;
VIS(t)] = [5(1)] Z m

it <t

(2.7)
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The above estimate (2.7) is referred to as the Greenwood formula. Following similar steps,
one can derive a similar variance estimate for A(¢), which is

NN d;
VIAW = > ﬁ (2.8)
it <t t
Let us return our focus back to R for a moment and see whether our algebraic calculations
match the output.

> library(survival)
> kme <- survfit(Surv(t) ~ 1, type="kaplan-meier", conf.type="plain")
> summary (kme)

Call: survfit(formula = Surv(t) ~ 1, type = "kaplan-meier",
conf.type = "plain")

time n.risk n.event survival std.err lower 95} CI upper 95J CI
0 907 20 0.97795 0.00488 0.968392 0.98751
1 887 6 0.97133 0.00554 0.960475 0.98219

Following result (2.7) in order to obtain V [S(¢1)], one would have to calculate [S”(tl)]Q(m_dW.
Plugging in our obtained estimates that means we obtain [0.97795]2W, the square

root of which is about 0.004876, just as calculated by R.

Regarding the computation of confidence intervals for S’(t), there are plenty of ways to

obtain one. The simplest method is to look at S(t) zl,a/m/f/[ﬁ(t)]. In order to choose
this option, one must add conf.type = "plain" into the initiation of the model like so.

> library(survival)
> survfit(Surv(t) ~ 1, type="kaplan-meier", conf.type="plain")

There is however a price to pay for the simplicity of the plain method. Sometimes it gives
boundaries that are below 0 or above 1. Popular options to bypass that issue include using
transformations like log (which is the default setting for survfit) or log-log.

library(survival)

kmeplain <- survfit(Surv(t) ~ 1, type="kaplan-meier",
conf.type="plain")

kmeloglog <- survfit(Surv(t) ~ 1, type="kaplan-meier",
conf.type="log-log")

par (mfrow=c(1,2))

plot (kmeplain, xlab="t", ylab="Survival")

plot(kmeloglog,xlab="t", ylab="Survival")

VvV VV + V 4+ V V
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SurvivalS(t)
N
Survival S(t)

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time t Time t

Figure 2.2: Kaplan-Meier estimates for S(¢) with plain and log-log 95% confidence inter-
vals.

2.3 The Cox Proportional Hazard Model

Up until now we’ve done nothing but try to draw conclusions by analyzing the survival
times ¢ by themselves. Now we’re interested in trying to interrelate our survival times with
predictors to see whether the predictors have any significant influence on ¢. By introducing
his take on the proportional hazard model in his 1972 paper, Cox provides the foundation
of the following approach.

To that end, let us consider X;(t) to be the i-th row of design matrix. As it is common
in regression approaches, X;(t) corresponds to the predictors for subject i. Thus, X(¢)
is a matrix of dimenson n X p, where n is the number of subjects and p refers to the
number of predictors. For the Cox model, we will also need an arbitrary and unspecified,
yet nonnegative function A\y(t), which we shall refer to as the baseline hazard. Then, the
Cox model states that the hazard function for subject ¢ can be written as

Ai(t) = Xo(t)eXi P, (2.9)

The fact that A\o(¢) remains unspecified throughout the analysis is a key property of the
Cox model. The lack of a proper depiction for the baseline hazard proves to be less
cumbersome than initially expected, when we consider that the hazard ratio between two
subjects can be written as

Ailt) _ do®et P x-x008
() Ao(t)eXi®p

Evidently, the hazard ratio is independent of the baseline hazard. Furthermore, if the
design vector X;(t) for each subject remains unchanged over the course of time, as it is
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the case with the dataset we're considering, the ratio will be constant over time for two
subjects ¢ and j. Thus, the Cox model is also referred to as the proportional hazards model.

The Cox model puts its focus on the question whether the predictors X;, now for simplic-
ity’s sake assuming that they remain constant over time for each subject, show significant
influence on the behavior of the survival time ¢;, while parametric models prefer to focus
on the shape of the distribution of the survival times. Since we don’t specify A\o(t), we are
merely interested in how the predictors factor into the behavior of ;.

To further analyze the model, let’s take a look at the likelihood, for which we need to
know what the density of T looks like in this model. As previously discussed

A(t) = gg

holds. Consequently, f(t) = A(¢)S(t) follows. As we already have a description for the
hazard function, we now just need to take a look at S(¢) within the Cox model. We remind
ourselves that

S(t) = e AW
holds, where A(%) is the integral of the hazard. Thus

t t

At) = / A(s)ds = / No(s)eXPds = Ao(t)e P
0 0

follows for a given survival time ¢ and the associated vector of predictors X for time ¢t. As

a result, we get
S(t) = e A = g~ho®e™”

and finally
f(t) — )\(t)S(t) = )\O(t)BX’Be_AO(t)exﬁ.

For a given realization of a random sample of n variables t1,...,t, from the population
of survival times, we get the likelihood

L(BIt) = [] do(t)e X Pemtote™?,

=1

where as per usual X; refers to the vector of predictors for the i-th survival time ¢;. Even
considering the log-likelihood, we realize that there is no way we can merely ignore the
unknown baseline hazard or its integral Ag(¢) when searching for a MLE for 5. Cox (1972)
proposed a different approach— by maximizing a partial likelihood L, with respect to 3
instead of the full likelihood as mentioned above, he managed to cleverly circumvent the
problem of the missing and unspecified baseline hazard.

For a more specific description of the partial likelihood, please refer to Appendix A. For
now, let it be known that partial likelihoods just like the one we will use to estimate
behave similarly to full likelihoods under some general assumptions (Cox, 1975).



CHAPTER 2. NON-PARAMETRIC SURVIVAL TIME MODELS 16

2.3.1 Estimating 3

A logical next step would be to try to find a good estimate B for the coefficients. Cox (1972)
utilizes the above mentioned partial likelihood approach when it comes to estimating (.
To that end, let us consider that there are no tied observations, i.e. the survival times
have the format ¢; < --- < t,. Furthermore, let R(¢;) denote the risk set at time ¢;, which
consists of all subjects that are still at risk of experiencing the event at the time t;; those
would be any subjects with a survival or censored time larger or equal to ;. Let us also
assume that we have no censored observations for the time being. Cox then suggests the
following partial likelihood function in order to estimate 3.

) T exp{ X;3}
Ly(Blt) = H Z]eR At YR exp{X;3}

This follows from asking the following question: Given that a subject i is at risk for the
particular event at time t;, what is the probability for i to actually experience the event at
time t; ¢ Indeed, this probability is expressed by the quotient of the hazard rate of subject
i and the sum of the hazard rates of all subjects at risk at the time t;, namely all subjects
in R(t;) (see Liu, 2012 for further details). Calculating the partial log-likelihood I, and
differentiating with respect to /3 yields the score function U () as follows:

() = 200 = 3w - tosl 3 esnxiah]

JER(t:)

Naturally, the maximum likelihood estimate 3 is found by solving the equation U (B) =0.
Traditionally this is done by using the Newton-Raphson method, which starts off with an
initiative point Sy. In the k-th iteration, one computes

Bt = B + 171 (Br)U(Br).

Hereby I denotes the negative second derivative of the log-likelihood. /3’ seems to have the
properties one would hope for; it is not only consistent, but also asymptotically normally
distributed. As a matter of fact, it can be shown that

V(B - B8) 2 N, 171(5))

holds. Thus, a variance estimate for 5 is easily obtained by regarding the negative second
derivative of the log-likelihood, which seems to be reminiscent of the properties found
in estimates for generalized linear models. Continuing that thought, one is tempted to
construct hypothesis tests for the resulting MLE B Indeed, a classic Wald Test seems
appropriate when examining the hypothesis Hy : §; = 0 versus H; : §; # 0 for any
j=1,...,p. By the above mentioned asymptotic distribution of the MLE, it follows that

sz Hy 9
— . X1
var(f;)

holds asymptotically for each j. Similarly, one can consider Hy : 8 = 0 versus H; : 8 # 0.
Keeping the above mentioned property in mind, one can directly conclude that

BTIY(B)B 2 X2
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holds. In the corresponding R output for such models, one will find the Wald tests exe-
cuted for each coefficient of the model.

Naturally, there are also other ways to test for Hy : 8 = 0 versus Hy : 5 # 0. One classic
test that comes to mind would be the Likelihood-Ratio Test. As we have estimated our 3
using a partial likelihood approach, it is only fitting to review

Ly(y|B
N )
sﬁuE%Lp(ylﬂ) Ly(y|B)

whereas L, refers to the partial likelihood function. As mentioned above, the commonly

known property of —2log A,(y) 2, X% holds for the partial likelihood as well.

When attempting to fit proportional hazard models in R, the library survival is a good
way to start. Let us consider yet again our breast implant data— we now want to investigate
whether the survival time of an implant (that is, the time between the surgery in which the
implant is implanted and the surgery in which the implant is removed) has got anything
to do with the volume of the implant itself. The function coxph fits a proportional hazard
model in the following manner.

> library(survival)

> volmod <- coxph(Surv(t) ~ vol)
> volmod

Call:

coxph(formula = Surv(t) ~ vol)

coef exp(coef) se(coef) z P
vol 0.002557 1.002560 0.000366 6.99 2.8e-12

Likelihood ratio test=45.1 on 1 df, p=1.88e-11
n= 903, number of events= 903

One yet again has the option of including censored data. If t were censored and if there
existed a factor status indicating which observation is censored and which isn’t, one could
include this information by using Surv(t, status) in the above formula.

Now let us consider the summary of our above fitted model, which will give us more details.

> summary (volmod)
Call:
coxph(formula = Surv(t) ~ vol)

n= 903, number of events= 903

coef exp(coef) se(coef) z Pr(>lzl)
vol 0.002557 1.002560 0.000366 6.987 2.82e-12 ***
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exp(coef) exp(-coef) lower .95 upper .95
vol 1.003 0.9974 1.002 1.003

Concordance= 0.573 (se = 0.011 )

Rsquare= 0.049 (max possible= 1 )

Likelihood ratio test= 45.09 on 1 df, p=1.883e-11
Wald test = 48.81 omn 1 df, p=2.817e-12
Score (logrank) test = 48.48 on 1 df, p=3.344e-12

As we can see here, the above summary gives a lot more information. We conclude that
the estimate B for volume is around 0.002557. That means, if the volume is raised by one
unit, the hazard is multiplied by the exponent of 3, which indicates a growth of around
0.256%. The hypothesis Hy : § = 0 is tested multiple ways in this output, especially
since there is only one predictor. Due to that, the Wald Test at the end of the output
and the z-statistic regarding vol are identical; the z-statistic tests for the significance of
the coefficient of vol only, meanwhile the Wald Test tests the overall significance of all
B together. We can conclude that vol truly seems to be a significant predictor when it
comes to investigating the survival time of our breast implants. We are also shown the
results of the Likelihood Ratio Test as well as a Score Test, which both corroborate the
results of the Wald Test.

2.3.2 Diagnostics

One is now left to wonder just how a proportional hazard model can be assessed. Can
we find visual and statistical tools to determine whether a Cox model is any good and
whether the assumptions taken when fitting such a model are fulfilled in the first place?

Indeed, such tools exist and there are many different variants of evaluating a model of
this type— as one might expect, the concept of residuals takes center stage in diagnostics.
There are plenty of different types of residuals that can be computed and each one of them
can be used to answer a specific question. By using residuals(fit) on a model fit of
the type coxph, one can compute many of these residuals. We will focus here on four of
those options to give a little insight in the diagnostic tools that are provided.

Cox-Snell Residuals: Testing Goodness of Fit

Cox-Snell residuals are perhaps the easiest type to determine— their entire theory is based
on the following theorem.

Theorem 1 Let T be a continuous non-negative random variable with associated distri-
bution Fr and density fr. Let A be its cumulative hazard and consider A(T'), which is a
random variable as well. Then it follows that A(T) ~ exp(1).

Proof This proof will be done in two steps. First, we shall prove that Z = Fp(T) ~
U(0,1), from which we shall go ahead and prove the theorem’s statement.
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In order to determine the density of Z, we must utilize the transformation theorem, which
states that the density of a transformed random variable can be determined by multiplying
the density of the un-transformed variable with the determinant of the Jacobian of the
inverse of the transformation. More specifically, this yields for the density of Z as

Z=Fp(T)
ENZ)=T
OF; ' (2)

L2 = 17M2) = £ ()
= fz = fr(PD) fr (F(T) = 1.

Thus, we have proven that Z = F(T') ~ U(0, 1). Furthermore by the definition of the sur-
vival function S(t), we get S(T) =1— F(T) ~ U(0,1). Finally, to obtain the distribution
of A(T') = —log S(T), consider:

FA(t) = Pr(A(T) < ) = Pr(~log S(T) < 1
— PHS(T) > exp(—1))
=1—Pr(S(T) <exp(—t)) =1 —exp(—t).

Thus, A(T) indeed follows an exponential distribution with parameter 1. O

Armed with this knowledge, one now wants to compare A(ti), the so-called generalized
Coz-Snell residuals, with the exp(1)-distribution in a manner that is reminiscent of QQ-
Plots in linear regression. Indeed, A(tz) is rather easy to compute given the fitted model
as shown below.

ti ti . ti . . .
A = / Ayt = / So(t)eX Bt — / So(t)dt - €57 = Ao (t;)e X,
0 0 0

Alternatively, one can also compute the Cox-Snell residuals by

riCS = A(t;) = —log S(t;).
In order to use the Cox-Snell residuals, one should plot A(r? ) against 7¢°. If the model
is proper, the plot should approximate a straight line through the origin with slope one.
Cox-Snell residuals are generally used to assess the goodness of fit for a model- these
types of residuals have to be enjoyed with caution, due to the fact that the correlation
structure between fi and the estimated cumulated hazard tends to mess with the results.
That being said, looking at the Cox-Snell residuals in itself isn’t a problem as long as one
makes sure to use other diagnostic tools as well.

volmod <- coxph(Surv(t) ~ vol)
mvres <- residuals(volmod, type="martingale")
csres <- rep(l, times=length(mvres)) - mvres
csfit <- survfit(Surv(csres) ~ 1, type="kaplan-meier")
plot(csfit$time, -log(csfit$surv),

xlab=expression(r[i]~"CS), ylab=expression(hat(Lambda) (r[i]~CS))
abline(a=0, b=1, col="red")

V + V V V Vv V
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Figure 2.3: The Cox-Snell residuals for the volume model, calculated by using the mar-
tingale residuals.

Because Cox-Snell residuals aren’t given as an option in R, one of the swiftest ways to get
them is to use the martingale residuals which are readily available with the residuals
function— we’ll elaborate on the details of their relationship in the section on martingale
residuals. As we can see above for our volmod, it appears as though the Cox-Snell residuals
approximate a straight line with slope 1 quite nicely. This speaks for the goodness of fit.

Schoenfeld Residuals: Testing the Proportional Hazard Assumption

In order to test the assumption that the hazards are proportional in the first place, Schoen-
feld defined these types of residuals in his 1982 paper. His idea was to construct residuals
that don’t depend on the change in time. Let us remind ourselves of the partial likelihood
function we maximize to get B , which is defined as

B n exp{X;0}
Lo =15 otz

In order to estimate 3, we proceeded by differentiating the partial log-likelihood in order
to obtain the score.

MBl) 0 [ s ,
93 _%[;Xﬁ ;log[ Z eXP{XJﬁ}]}

JER(t:)
_ i [Xi  2jer) Xi eXP{XJﬂ}} _
i=1 2 jert:) xP{X;0}
Then the Schoenfeld residuals ris = (risl, e ,7“5)) are defined as the corresponding sum-

mands in the above result for g = B , indicating that the rf actually measure the contri-
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bution of the ¢-th individual to the score. Indeed, for the MLE B, the TZS all sum up to
zero, since for the MLE

B & [ ,_ZjeR(ijeXp{XjB}] s
2| > jer() exp{X;0} B2k

op ‘5/3 =
holds. This seems to be a desirable property for any type of residual. The Schoenfeld
residuals represent the amount of weight each specific subject contributes to the overall
score. Now, if the assumption of proportional hazards is fulfilled, the expected value of
ris should be around the zero vector. Thus, a plot of each of the rfj withi=1,...,n and
7 =1,...,p against the time ¢; should yield a plot centered around zero. If the resulting
residuals show no clear structure and are relatively randomly arranged around zero, we can
assume that the proportional hazard assumption isn’t violated for that specific predictor.

=1

> schres <- residuals(volmod, type="schoenfeld")
> plot(yvalues, schres,

+ xlab="Time", ylab="Schoenfeld Residuals")
> abline(h=0, col="red")

300

100

Schoenfeld Residuals
-100

-300

0O 1000 2000 3000 4000
Time t

Figure 2.4: Schoenfeld residuals for the volume model.

Looking at the Schoenfeld residuals in Figure 2.4, we can observe that they seem to be
rather randomly distributed around zero— while there are a few larger residuals around the
400 mark especially within the 0 to 3000 day interval, it appears to be nothing to worry
about. Thus, we are reaffirmed in our beliefs that the hazards are proportional.

The survival package makes testing for the proportional hazards assumption even easier—
by applying the function cox.zph on a Cox model, one performs Chi-squared tests for inde-
pendence for each covariate as well as the entire model, which means that the correlation
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between a scaled version of the Schoenfeld residuals and a transformed version of ¢ is
tested. The respective significance levels are then displayed alongside the estimated corre-
lation coefficient in a compact table. One also has the option to plot the above mentioned
scaled version of the Schoenfeld residuals for each predictor against a transformation of
t using this function. Again one is supposed to look for any and all forms of structure
within these plots— if the scaled residuals appear to follow no specific structure, one can
assume that the proportional hazard assumption is not violated.

> lumenvolmod <- coxph(Surv(t) ~ vol + lumen)
> summary (lumenvolmod)

Call:

coxph(formula = Surv(t) ~ vol + lumen)

n= 903, number of events= 903

coef exp(coef) se(coef) z Pr(>lzl)
vol 0.002451 1.002454 0.000372 6.589 4.44e-11 *x*x*
lumensingle -0.323640 0.723510 0.152374 -2.124  0.0337 *
> anova(lumenvolmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)
NULL -5246.9
vol -5224.3 45.0891 1 1.883e-11 #*x*x
lumen -5222.3 4.1263 1 0.04222 *

Consider the model lumenvolmod, which fits the survival times ¢ against the two predictors
vol and lumen. The latter is a factor with two levels single and double, which specify
a certain type of implant. It is especially interesting to see the Schoenfeld plots for these
types of predictors.

> test.ph <- cox.zph(lumenvolmod)

> test.ph

rho chisq P
vol -0.0612 3.563 0.0591
lumensingle -0.0122 0.134 0.7141
GLOBAL NA 3.569 0.1679

As one can observe in the above output, none of the predictors show significant levels—
thus, the null-hypothesis, which claims that the proportional hazard assumption is fulfilled,
cannot be rejected. The same can be said for the test of the overall model. In fact,
the model lumenvolmod seems to fulfill the proportional hazard assumption quite nicely.
Furthermore, one can obtain plots for the Schoenfeld residuals by using the function
ggcoxzph on the actual result of cox.zph.

> ggcoxzph(test.ph)
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Global Schoenfeld Test p: 0.1679

Schoenfeld Individual Test p: 0.0591
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Figure 2.5: Schoenfeld residuals for the model including lumen and volume.

Martingale Residuals: Testing for Linearity

Martingale residuals stem from a different formulation for survival functions which uses
counting processes. Defined by R
M; = 6; — Ai(ti),

the martingale residual can be understood as a measure for the difference between the
actually observed number of events for individual ¢ minus the estimated number of events
following the fit, where §; is a binary indicator stating whether ¢; is a censored observation
or not. The name martingale residuals stems from the fact that M; indeed define a mar-
tingale if the Cox model is specified correctly. A stochastic process is called a martingale
if the following two properties hold:

o E[M;|M, ..., Mi_1] = M,

How does one go about utilizing the martingale residuals? Now, if one is interested in
finding out whether a specific predictor X; is included in a linear form (say XjTﬂ), one
should go ahead and fit a coxph model without X; and build the martingale residuals for
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this model. Then, by laying through any kind of smoothing function (for example, lowess
is a popular choice), one can find out what kind of a form X; should have in the model-
if the smoothed line appears to be somewhat close to linearity, X; should be included in
linear form.

> nullmod <- coxph(Surv(t) ~ 1)

> mres <- residuals(nullmod, type="martingale")

> plot(vol, mres,

+ xlab="Volume", ylab="Martingale Residuals")
> lines(lowess(mres~vol), col="red")

Martingale Residuals

| | | | | | | |
0 100 300 500 700
\Volume

Figure 2.6: Martingale residuals for the predictor volume.

The martingale residuals as shown in Figure 2.6 seem to reaffirm our plans to include vol
as a linear predictor— the lowess smooth gives an almost linear function, which indicates
that vol should be included in a linear manner.

Deviance Residuals: Testing for Outliers

One monumental drawback of martingale residuals is their asymmetry. Deviance residuals
seem to fix that particular problem. In generalized linear models, the (unscaled) deviance
is defined by X
D = 2(l(yly) — 1(Bly)),

where I(y|y) is the log-likelihood of the saturated model and I(3|y) is the log-likelihood
of our model. One particularly useful property of the deviance is the asymptotic x?
distribution, which we’re going to make use of in this instance since the square-root of the
deviance thus approximates a normal distribution. The deviance residual for a Cox model
can be expressed via the martingale residuals as

rP = Slgn(Ml)\/—Q[Ml + 6; log(&z — Mz)]

7
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As a result, 7P has a mean of about zero and a variance of about one while also having a
more symmetric distribution than M;. Thus, outliers can be detected much more easily,
if one plots 7 against the linear predictor.

> dres <- residuals(volmod, type="deviance")

> plot(vol, dres,

+ xlab="Volume", ylab="Deviance Residuals")
> abline(h=0, col="red")
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Figure 2.7: Deviance residuals for the predictor volume.

And lastly, the deviance residuals seem to be entirely inconspicuous as well- aside from
maybe one or two residuals around the 310 volume mark, we can’t particularly detect any
drastic outliers that could distort the fit.



Chapter 3

Application of the Cox Model

3.1 Austrian Silicone Registry Implant Data

The breast implant dataset we will be analyzing further within this thesis is a subset of
the Austrian silicone registry, which has been established by surgeons all over the country
in an attempt to elevate the standard of care for their patients. As of 2017, there are more
than 22500 entries in the registry. Each one of these entries in the registry consists of 68
columns which relate to a surgery in which an implant has either been implanted into a
patient or removed. The registry has data on plenty of different types of implants, yet for
the sake of consistency we will be focusing on breast implants on female patients only.

The main focus will be trying to analyze the duration with which these implants stay in
the body. To that end, we have constructed 903 pairs of entries out of the registry, where
one part of the pair refers to the primary surgery in which the implant was inserted into
the body and the second half refers to the surgery in which the implant was removed
from the body for whatever reason. The time passing between those two observations,
counted as days, will be the survival time t for that particular implant. We intend to use
t as response. The task in this instance is to fit models for t by using predictors that
come from the row in the dataset associated to the primary surgery in order to figure out
whether assumptions about the survival time t of a certain implant can be made judging
by the data from its primary surgery.

All in all, we will be focusing on the following predictors in order to fit models for our
response t:

e vol, which refers to the volume of each implant in cm3.

e surface, which refers to the surface of the implant. surface is a factor with the
levels smooth, textured or polyurethan.

e lumen, which specifies a certain type of implant. lumen is a factor with the levels
single or double.

e fill, which refers to the substance used to fill the implant. £ill is a factor with
the levels hydrogel, siliconegel, saline solution, mixed and other.

26
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e drainage, which indicates whether drainage was required during the primary surgery.
Thus, drainage is a factor as well with the levels yes and no.

Response t

> summary(t)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 167.5 412.0 881.5 1351.0 4498.0

Taking a closer look at our response t, we see that the median of the survival times is
around 412 days, which is a little over a year. We thus have a large mass of short survival
times at the very beginning. Contrary to that, the third quantile lies at around 1351 days,
which equals a little over 3 and a half years. The maximum of 4498 days, which equals
about 12 years, seems to be rare a occasion as the following plots in Figure 3.1 show.
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Figure 3.1: Boxplot and histogram of the survival times t.

Predictor vol

3

As for the predictor vol, the volume of each breast implant measured in ¢m?, we obtain

the following structure.

> summary(vol)
Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 215.0 260.0 276.4 325.0 700.0
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Figure 3.2: Survival times ¢ in relation to volume and histogram of volume.

A clear first impression shows that implants with larger volumes tend to not last as long
as implants with smaller volumes. As we can see in Figure 3.2, implants with volume over
about 500 ¢m? tend to not survive until the 3 year mark. The longest survival times are
achieved by implants with volumes between 200 and 350 cm?.

Predictor surface
With regards to surface, we obtain the following frequencies:

> summary(surface)
smooth polyurethan
10 36

textured
857

Obviously, an overwhelming amount of implants appear to be of the textured variety, with
only ten implants having a smooth surface. Thus, one should be careful not to interpret
too much into the differences between the different surfaces. Still, one can observe that
within Figure 3.3, the medians for the survival times of every level appear to be in the
same ballpark.

> median(t[surface == "smooth"])

[1] 318.5

> median(t[surface == "polyurethan"])
[1] 244.5

> median(t[surface == "textured"])
[1] 416

Still, as it is expected with the massive difference in quantity between textured implants
and the other two types of implants, the former shows more potential outliers. It is
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interesting to note that for implants with a smooth surface or a polyurethan surface, the
survival times tend to be on the shorter side compared to the third level. From that point
of view alone, one could say that implants with a textured surface are to be preferred.
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Figure 3.3: Survival times ¢ in relation to surface and histogram of surface.

Predictor lumen

The predictor lumen indicates a special type of implant. As we can observe from the
summary of this predictor, the overwhelming majority of considered implants are of the
single variety.

> summary (lumen)
double single
47 856

From a strictly visual point of view, not much can be said about lumen. All in all, we
know that the interquartile range for the survival times of implants of the double va-
riety seems to be much shorter than its counterpart, but we cannot say for sure that
these differences cannot be lead back to the fact that there are more than 18 times as
many implants of the type single than double in our dataset. Further inquiries into
the significance of this predictor will have to be made later, even though judging by the
plots alone it seems that implants of the single variety are preferable to their counterpart.
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Figure 3.4: Survival times t in relation to lumen and histogram of lumen.

Predictor fill

The predictor £i11, which specifies the type of filling for the associated implant, seems to
be rather diverse as well. Again, we can observe that the vast majority of implants are
filled with siliconegel.
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Figure 3.5: Survival times ¢ in relation to fill and histogram of fill.
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> summary(£ill)
siliconegel other mixed hydrogel saline solution
815 3 21 20 44

In Figure 3.5 we observe that implants with saline solution as a filling seem to tend to
have shorter survival times than all the others. All in all, there seems to be a tendency of
implants filled with siliconegel having the largest survival times. Again, such claims are
to be taken with a grain of salt due to the large difference in amounts for each of the levels.

Predictor drainage

For the predictor drainage, which indicates whether during the initial surgery there was
any drainage or not, we can see that there are far more observations with drainage than
there are observations without.

> summary(drainage)
yes no
743 160

In Figure 3.6, we see that the medians of both of these levels are in about the same range,
whereas no proves to have a much shorter interquartile range than yes. Furthermore, we
see that the bulk of observations without drainage lean towards shorter survival times with
a few outliers— that leads us to believe that drainage is in fact beneficial to the survival
time of an implant.
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Figure 3.6: Survival times ¢ in relation to drainage and histogram of drainage.
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3.2 Cox Models

In this particular section, we will describe and analyze several models for the survival
times t. Each one of these models includes the predictor vol, due to the high significance
of volume as established in Section 2.3.1.

3.2.1 Volume and Surface

Recalling our first observations regarding the influence of vol and surface on the survival
times t, we believe that the hazard will increase with increasing implant volume. Fur-
thermore, we believe that textured implants will prove to be superior to implants of the
smooth or polyurethan variety. In order to corroborate these assumptions, we consider a
proportional Cox model that includes both of these predictors.

> surfacevolmod <- coxph(Surv(t) ~ vol + surface)
> anova(surfacevolmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chil)
NULL -5246.9
vol -5224.3 45.089 1 1.883e-11 *xx
surface -5220.0 8.633 2 0.01335 *

The analysis of deviance table clearly states that both surface as well as vol are signif-
icant predictors. Their interaction however proves to be insignificant with a p-value of
about 0.8 and thus we decide not to include it in further analysis.

Before we go into too much detail with regards to the results of the model, we first want to
ensure that the model’s assumptions are satisfied. Namely, we want to test the goodness
of fit and the proportional hazards assumption. Furthermore, we will try to identify any
outliers. In order to assure the goodness of fit, we consider the Cox-Snell residuals of the
model. As one can see in Figure 3.7, the residuals follow the required straight line with
unit slope quite nicely. We have also not detected any outliers, as indicated by the plot
of the deviance residuals, shown in the right part of Figure 3.7 for the predictor vol. In
total, the plots don’t appear to be suspicious. As for the test of the proportional hazards
assumption, we yet again use the function cox.zph to gain insight into the behavior of
the Schoenfeld residuals.
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Figure 3.7: Cox-Snell residuals for surfacevolmod (left) and deviance residuals (right).

> cox.zph(surfacevolmod)

rho chisq P
vol -0.0638 3.83 0.0505
surfacepolyurethan -0.0355 1.14 0.2856
surfacetextured -0.0449 1.83 0.1759
GLOBAL NA 5.23 0.1557

None of the predictors show any suspicious significance levels in the Schoenfeld test, thus
we cannot reject the assumption of proportional hazards with level & = 5%. Owverall the
model appears to adequately represent the survival times t and we can now go into further
detail with regards to the results.

From the summary, we can conclude that under this particular model for t an increase in
vol results in an increase in the hazard, just as previously assumed. As a matter of fact,
an increase of one ¢m? in volume implies an increase of 0.2% in the hazard. An increase
of 100 em? in volume in turn translates to a 27.9% increase in hazard, which can be easily
computed by considering exp(Bvol)wO. The reference level for surface in this case is the
level smooth. From the output we can conclude that an implant with a surface made out
of polyurethan increases the hazard for said patient by about 22.7% in comparison to a
smooth implant. Compared to a textured implant however, smooth is clearly inferior; in
the case of a textured implant, the hazard reduces around 27%, just as expected.

> summary (surfacevolmod)
Call:
coxph(formula = Surv(t) ~ vol + surface)

n= 903, number of events= 903
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coef exp(coef) se(coef) z Pr(>lzl)
vol 0.0024645 1.0024675 0.0003691 6.677 2.44e-11 **x
surfacepolyurethan 0.2046081 1.2270441 0.3580238 0.571 0.568
surfacetextured -0.3151719 0.7296634 0.3203187 -0.984 0.325

As seen in Figure 3.8, the survival function of t decreases much more quickly for implants
with smooth and polyurethan surface in comparison to textured. One should note that
Figure 3.8 shows the influence of surface on the survival times t without including vol.
The probability of survival for an implant with a textured surface falls to about 50% after
just about 500 days. After 1000 days however, only about a third of the subjects are left.
In turn, patients with smooth implants suffer a much more difficult fate; none of those
implants survive past the first 1000 days. Still, the massive difference in quantities in each
level of surface makes it difficult to fault smooth or polyurethan implants too much.
Still, we find that in conclusion implants of the textured variety are to be preferred.

> ggsurvplot (survfit(Surv(t) ~ surface, data=df), risk.table = TRUE)
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Figure 3.8: Survival function for ¢ as a function of surface only.
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3.2.2 Volume and Lumen

Judging by the discoveries of Section 3.1, the influence of lumen on the survival times t
should favor implants of the single variety over their counterparts. We shall consider yet
another model including the predictor vol, now adding the predictor of lumen into the
model. Again, the interaction of these two predictors proves to be insignificant, which is
why we stick to the simplified model.

> lumenvolmod <- coxph(Surv(t) ~ vol + lumen)
> anova(lumenvolmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)
NULL -5246.9
vol -5224.3 45.0891 1 1.883e-11 #x¥x
lumen -5222.3 4.1263 1 0.04222 *

Before we want to continue our analysis of the model, we should check the assumptions.
Both the deviance residuals as well as the Cox-Snell residuals are entirely inconspicuous,
as one can see in Figure 3.9. With regards to the proportional hazards assumption, one
can yet again refer to the output of the Schoenfeld tests, which show that for none of
the predictors the hypothesis of proportional hazards can be rejected with level a = 5%.
Thus, we feel confident in pursuing with an in-depth analysis of this model.
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Figure 3.9: Cox-Snell residuals for lumenvolmod (left) and deviance residuals (right).

> cox.zph(lumenvolmod)
rho chisq P
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vol -0.0612 3.563 0.0591
lumensingle -0.0122 0.134 0.7141
GLOBAL NA 3.569 0.1679

For this model, the reference level of 1lumen is double. With regards to the predictor vol
not much seems to change in comparison to the previously discussed model—- yet again we
can find that per increase of 100 ¢m?, the hazard of the implant grows by about 27.7%,
which is a subtle decrease compared to the model including both vol and surface. As
expected, we find that implants of the form single prove to be the significantly better
choice (p = 0.0337)— compared to a double implant, a single shows a 27.6% decrease in
the hazard.

> summary (lumenvolmod)
Call:
coxph(formula = Surv(t) ~ vol + lumen)

n= 903, number of events= 903

coef exp(coef) se(coef) z Pr(>|z|)
vol 0.002451 1.002454 0.000372 6.589 4.44e-11 *x*x
lumensingle -0.323640 0.723510 0.152374 -2.124  0.0337 *

Concordance= 0.575 (se = 0.011 )

Rsquare= 0.053 (max possible= 1 )

Likelihood ratio test= 49.22 on 2 df, p=2.056e-11
Wald test 53.55 omn 2 df, p=2.359%e-12
Score (logrank) test = 53.54 on 2 df, p=2.362e-12

Taking a closer look into the survival function of t dependent on the predictor lumen in
Figure 3.10, which shows the behavior of the survival function of t in relation to lumen
only, we find that the survival function for double dips much lower than the survival
function of single within the first 1000 days. This fact can be lead back to the fact that
out of 47 implants only 5 remain intact the first 1000 days, which is barely more than
10%. In the case of single implants, about 30% of implants remain intact beyond the
first 1000 days. Yet again the large difference in observations for these levels suggests that
double might not be as bad as the model makes it out to be, but still implants of the type
single and with lower volume are to be preferred to their counterparts.
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Figure 3.10: Survival function for ¢ as a function of lumen only.

3.2.3 Volume and Filling

The predictor £i11 which describes the filling of its associated implant, has already shown
in Section 3.1 that there are massive differences in the quantities of each level. Keeping
that in mind, we continue to consider the model fillvolmod, which includes both vol
as well as £i111 as predictors. We also test the signficance of the interaction of those two
predictors. Despite the p-value of 0.09 (not shown), we decide to not include it in further
analysis for simplicity’s sake.

> fillvolmod <- coxph(Surv(t) ~ vol + fill)
> anova(fillvolmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chil)
NULL -5246.9
vol -5224.3 45.089 1 1.883e-11 *xx*
£ill -5208.0 32.757 4 1.340e-06 *+*
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When checking the model’s assumptions we run into a few problems. While neither the
Cox-Snell residuals (compare Figure 3.11) nor the deviance residuals appear to be too
suspicious, we realize that the proportional hazards assumption isn’t fulfilled for each
level of £i11.
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Figure 3.11: Cox-Snell residuals for fillvolmod (left) and deviance residuals (right).

> cox.zph(fillvolmod)

rho chisq P
vol -0.0640 4.01 0.0452
fillother 0.0435 1.71 0.1913
fillmixed 0.0388 1.35 0.2452
fillhydrogel 0.0803 5.91 0.0151
fillsaline solution 0.0706 4.84 0.0278
GLOBAL NA 13.95 0.0159

Considering the output of cox.zph for the model fillvolmod, we realize that not all
levels of the predictor fulfill the proportional hazards assumption. In fact we reject the
assumption for the predictors vol, hydrogel, saline solution as well as for the overall
model with o = 5%. Thus we cannot confidently state that the model is adequate. Still,
we want to take a closer look at the associated estimates B as well as the influence of £i11
on the survival function of t, always keeping in mind that these observations are to be
taken with a grain of salt.

> summary(fillvolmod)
Call:
coxph(formula = Surv(t) ~ vol + £fill)

n= 903, number of events= 903
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coef exp(coef) se(coef) z Pr(>lzl)
vol 0.0021935 1.0021959 0.0003817 5.746 9.14e-09 *x*x*
fillother 0.1541564 1.1666733 0.5829298 0.264 0.7914

1
fillmixed 0.1281474 1.1367206 0.2225255 0.576  0.5647
fillhydrogel 0.4869177 1.6272927 0.2286492 2.130 0.0332 *
fillsaline solution 1.0043824 2.7302205 0.1637388 6.134 8.57e-10 **x*

Concordance= 0.585 (se = 0.011 )

Rsquare= 0.083 (max possible= 1 )

Likelihood ratio test= 77.85 on 5 df, p=2.331e-15
Wald test 94 on 5 df, p=0

Score (logrank) test 100.6 omn 5 df, p=0

Yet again we find that a 100 ¢m? increase in volume results in an increase of the hazard.
This time we have a lower increase of only about 24.52%. As for the different levels of
£i11 whose reference level is siliconegel, we see that indeed all other levels appear to
be inferior. Compared to siliconegel, fillings of the type mixed and other only show
a small increase of the hazard of 13.67% and 16.67% respectively. In that case however,
one should not take the increase for other too seriously, as there are only 3 observations
in total. Hydrogel shows a significant increase of about 62.73% in the hazard in compar-
ison to siliconegel- still, the clear worst choice in this model is a filling made out of
saline solution. Those actually show a 173% increase in the hazard.

Considering Figure 3.12, which shows the behavior of the survival function of t in rela-
tion to £ill without considering vol, we see why saline solution seems to be so much
worse than the other fillings. While for saline solution, other as well as hydrogel no
implant remains intact beyond the first 1000 days, saline solution has almost double
the amount of observations than the other two combined. We can yet again see why other
should not be taken too seriously as a level within this model, due to the fact that there
are only 3 observations in that category. Contrary to that, mixed implants tend not to
last very long either— after the first 1000 days only 3 out of 21 implants are left intact, only
one of which survives beyond the 3000 day mark. Furthermore, we notice that implants
filled with siliconegel are by far the sturdiest, since even after 4000 days there are still
13 intact, despite the amount of intact implants being reduced to a third after 1000 days.

In conclusion, we need to remind ourselves that the analysis of fillvolmod is to be taken
with a grain of salt. With the proportional hazards assumption not fulfilled for each level
of the predictor £ill, we cannot confidently stand behind the calculated percentages; still,
the overall conclusion of siliconegel implants being the clear superior type of implants
in this instance seems to be true regardless.
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Figure 3.12: Survival function for ¢ as a function of the filling only.

3.2.4 Volume and Drainage

Initial observations regarding the predictor drainage in Section 3.1 lead us to believe that
it is beneficial to the survival time t of a certain implant to have had a drainage during
the primary surgery. Now we want to corroborate these observations by fitting a model
for t using the predictors vol and drainage. Including the interaction of the predictors
proves to be insignificant, which is why we stick to the simple model below.

> drainagevolmod <- coxph(Surv(t) ~ vol + drainage)
> anova(drainagevolmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)
NULL -5246.9
vol -5224.3 45.0891 1 1.883e-11 *%*x*
drainage -5221.2 6.3105 1 0.012 *
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The model appears to be adequate when tested for Goodness of Fit as well as outliers using
the usual methods described in Section 2.3.2. Furthermore, we find that the Schoenfeld
residuals appear to be independent of t for each predictor as shown in the output of
cox.zph. The p-values for each predictor as well as the p-value for the overall model show
that we cannot reject the proportional hazard assumption with o = 5%. In conclusion,
drainagevolmod represents the survival times t adequately.
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Figure 3.13: Cox-Snell residuals for drainagevolmod (left) and deviance residuals (right).

> cox.zph(drainagevolmod)

rho chisq p
vol -0.0592 3.273 0.0704
drainageno 0.0114 0.118 0.7312
GLOBAL NA 3.339 0.1884

Again we find that an increase in vol is counterproductive to the survival times t. In this
case however, the hazard grows slightly stronger than it did in the other models— for an
increase of 100 ¢m? in volume, the hazard increases by 28.58%. As previously expected,
having no drainage is not beneficial to the hazard. In this case, the reference level for
drainage is yes, which means that having no drainage increases the hazard immediately
by 25.36%. Indeed, this change of the hazard is highly significant with p = 0.0101.

> summary(drainagevolmod)
Call:
coxph(formula = Surv(t) ~ vol + drainage)

n= 903, number of events= 903

coef exp(coef) se(coef) z Pr(>lzl)
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vol 0.0025138 1.0025170 0.0003664 6.861 6.84e-12 **x*
drainageno 0.2260197 1.2536003 0.0878577 2.573 0.0101 *

Concordance= 0.578 (se = 0.011 )

Rsquare= 0.055  (max possible= 1 )

Likelihood ratio test= 51.4 on 2 df, p=6.898e-12
Wald test = 55.56 omn 2 df, p=8.668e-13
Score (logrank) test = 55.27 on 2 df, p=9.955e-13

42

It is interesting to note that in Figure 3.14, which shows the survival function of t in
relation to drainage by itself, the survival function for drainage as no runs similarly to
the function for yes at the very beginning and at the very end. After about a year, the
survival function for no dips below its counterpart, yet they meet again around the 3000
day mark. After 1000 days, the number of intact implants with drainage yes reduces
to about a third, meanwhile only about 19% are left for drainage no at that time. At
about 3000 days, the both survival functions have a similar amount of intact implants left
with about 6% for yes and 5% for no. In conclusion we find that having drainage in the

initial surgery is to be preferred.
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Figure 3.14: Survival function for ¢ as a function of the drainage only.
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3.2.5 Full Model

After including all of the different predictors individually, one is tempted to consider a
model that includes all predictors at once. Indeed, such a model proves to be highly
significant— every mentioned predictor (vol, surface, lumen, fill and drainage) is
highly significant to the model, as has been checked diligently by utilizing the step func-
tion provided by R (not shown). The resulting model is given below.

> finalmod <- coxph(Surv(t) ~ vol + surface + lumen + fill + drainage)
> anova(finalmod)
Analysis of Deviance Table
Cox model: response is Surv(t)
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)

NULL -5246.9

vol -5224.3 45.0891 1 1.883e-11 **x*
surface -5220.0 8.6330 2 0.013346 *
lumen -5217.6 4.7681 1  0.028992 x
fill -5200.7 33.8048 4 8.171e-07 **x*
drainage -5197.3 6.7995 1 0.009118 =*x

> summary(finalmod)
Call:
coxph(formula = Surv(t) ~ vol + surface + lumen + fill + drainage)

n= 903, number of events= 903

coef exp(coef)  se(coef) z Pr(>lzl)
vol 0.0020165 1.0020186 0.0003838 5.254 1.49e-07 *x*x
surfacepolyurethan 0.6564823 1.9279983 0.3690523 1.779 0.07527 .
surfacetextured 0.0157394 1.0158639 0.3299402 0.048 0.96195
lumensingle -0.4356794 0.6468251 0.2061193 -2.114 0.03454 *
fillother 0.2683088 1.3077509 0.5835382 0.460 0.64566
fillmixed -0.2472961 0.7809094 0.2991898 -0.827 0.40849
fillhydrogel 0.3266258 1.3862827 0.2408827 1.356 0.17511
fillsaline solution 1.0236867 2.7834374 0.1721053 5.948 2.71e-09 *x*x
drainageno 0.2501705 1.2842444 0.0933700 2.679 0.00738 *x

Due to the nature of the anova function, we are not given the right p-values in its output.
Indeed, when interpreting the output of anova, one can only look at the very last line,
whose p-value indicates the significance of the associated predictor given all above men-
tioned predictors are already in the model. In order to get the actual signficance of each
predictor, we can utilize the function drop1, which performs a series of likelihood ratio
tests in order to test the relevance of each predictor by comparing the likelihood of the
model including said predictor and the model without that predictor. Thus, the actual
significance levels of each predictor in this model can be found in the output below.
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> dropl(finalmod, test="Chisq")
Single term deletions

Model:

Surv(t) ~ vol + surface + lumen + fill + drainage
Df AIC LRT Pr(>Chi)

<none> 10413

vol 10437 26.076 3.282e-07 **x
surface 10420 11.481 0.003213 *x*
*

£ill 10437 32.746 1.346e-06 x**

1
2

lumen 1 10415 3.971 0.046300
4

drainage 1 10418 6.799 0.009118 x*x*

The model itself doesn’t appear all too conspicuous, but when it comes to checking the
model assumptions, we realize that the proportional hazards assumption is not fulfilled for
the entire model— indeed, it is fulfilled for only one level of one predictor, which of course
means that we cannot truly use this model to express the influence of each predictor on
the hazard.

> cox.zph(mod)

rho chisq P
vol -0.06237 3.7709 0.0522
surfacepolyurethan -0.03871 1.3376 0.2475
surfacetextured -0.04895 2.1514 0.1424
lumensingle 0.00966 0.0873 0.7676
fillother 0.04265 1.6402 0.2003
fillmixed 0.03460 1.0959 0.2952
fillhydrogel 0.07989 5.8088 0.0159
fillsaline solution 0.05483 2.9329 0.0868
drainageno -0.01072 0.1035 0.7477
GLOBAL NA 15.7257 0.0728

The cox.zph output shows that the proportional hazards assumption is violated for almost
every level of every predictor. In an effort to find a different method to fit a survival model
for the breast implant data, we abandon the non-parametric world and attempt parametric
models instead. These prove to be a bit more restrictive in their assumptions, given that
they assume a specific distribution for the survival times T— whether the restrictions pay
off in the end remains to be seen in Chapter 5.



Chapter 4

Parametric Survival Time Models

As the name suggests these types of regression models fit survival time data by assuming
that the survival times follow a certain distribution. Contrary to nonparametric survival
models, these models focus on estimating the full distribution of the survival times as a
byproduct of the estimates for the influence of predictor variables, whereas nonparametric
survival models are not interested in the actual shape of the hazard function. We will
largely follow Kalbfleisch and Prentice (1980) in this chapter, as they provide the theo-
retical foundation for the associated R functions we will be using later on. Also, Lawless
(2003) and Liu (2012) provide most of the necessary theory regarding accelerated failure
time models.

4.1 Common Life Time Distributions

We are yet again going to focus our attention on survival times, where by 7" we denote
the random variable associated with the survival times and ¢ is a realization of T'. Logic
dictates that T > 0 has to hold. In the following sections, we will take a look at a few
classic distributions used to estimate survival times. Furthermore, we will attempt to find
out whether any of these distributions can be used to fit our breast implant data. For that
purpose, let f(t) denote the density function of T, S(t) the survival function of 7" and A(t)
the hazard function. Again, the hazard has to be a non-negative function mapping onto
[0, 1] as already described in Chapter 2.

It is common practice to consider a logarithmic transformation of the survival times.

Indeed, all models we will discuss utilize this transformation in order to find a good fit for
the survival times.

4.1.1 Extreme Value Distribution

Before we focus on distributions that will help us describe the behavior of T itself, we want
to introduce the extreme value distribution, which will be useful in terms of modeling log T'.

For a random variable Y that follows an extreme value distribution with parameters u € R

45
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for location and b > 0 for scale

L
S(y) = exp(—e"7")
My) = 3¢5

holds. Also commonly referred to as the Gumpel distribution, the extreme value distri-
bution holds great value when it comes to parametrically modeling survival times, as will
be explained later on. It is worth noting that for v = 0 and b = 1 the standard extreme
value distribution follows, for which

fly) =
S(y)=e
AMy) = e’

hold for obvious reasons.

4.1.2 Exponential Distribution

As a classic distribution used for survival times, the exponential distribution is known
to be a good way to start. With the parameter A\ > 0, which is not to be confused
with the actual hazard function A(¢), it is well-known that for T following an exponential
distribution, the density f(¢), the survival function S(¢) and the hazard function \(¢) are
given by

ft) = xe
S(t) =e M
A(t) = A,

The fact that the hazard function does not depend on the time ¢ shows why the exponen-
tial distribution is referred to as a “memoryless” distribution— indeed, the hazard for a
subject that has been in the trial for a longer period of time is equal to the hazard for a
subject that just entered surveillance.

In order to empirically check whether a set of observed survival times ¢ follows an expo-
nential distribution, one could plot the logarithm of an estimate of the survival function
(for example the Kaplan-Meier Estimate explained in Section 2.2) against ¢. This follows
directly from the fact that

S(t) = e M = log(S(t)) = =\t

holds. Thus, if the associated random variable T follows an exponential distribution, the
resulting plot will be a straight line through the origin.

Armed with that knowledge, we want to now see whether the survival times ¢ from our
breast implant data is exponentially distributed. It is advisable to make sure to check the
survival times beforehand, since there is the possibility of an accidental log 0 happening;
thus, we have excluded such entries in the lowess function we use to smooth.
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> kme <- survfit(Surv(t) ~ 1)

> plot(kme$time, -log(kme$surv), xlab = "time", ylab = "-log(S(t))")
> lines(lowess (kme$time[1:1length(kme$surv)-1],

+ -log(kme$surv) [1:1ength(kme$surv)-1]), col="red")

~log(S())
4
]
S

T T T T T
0 1000 2000 3000 4000
Time t

Figure 4.1: Plot of —log(S(t)) against ¢ to check for exponential distribution.

As we can see in Figure 4.1, the breast implant survival times ¢ could very well follow
an exponential distribution, as they resemble a straight line through the origin. The plot
is far from perfect though, since one can also see that towards the end of the plot there
seems to be a curve in the points, leading away from the reference line. Other distributions
might fit better, but the exponential distribution is a good place to start.

Since in parametric survival models a logarithmic transformation of 7" is often used as re-
sponse, let us now consider Y = log T" and its distribution. By utilizing the transformation
theorem, given that 7'~ Exp(\), we obtain the following density for Y:

fy(y)

e e Y

= exp(log A — Ae¥ +y)
= exp(y + log X — e¥Flogl)
= exp((y — (—log \)) — ev~ (7182,
This however is the density of an extreme value distribution with location parameter

—log A and scale 1. Thus, we conclude that for a standard extreme value distributed

random variable W,
Y =(—log\)+W

follows.
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4.1.3 Weibull Distribution

A generalization of the exponential distribution that allows for more flexibility in terms of
the hazard function is the Weibull distribution, characterized by two parameters A, p > 0.
For Weibull distributed 7', we know that

() = APptrtem OO
S(t) = e~
A(t) = APptP~L

holds. Thus, we see that the hazard in this case is influenced by ¢ in a polynomial
manner. One can easily see that the exponential distribution is a special case of the
Weibull distribution for p = 1. In order to check whether a set of observed survival times
t follows a Weibull distribution, we consider S(t), for which we know that

S(t) = e A = 10g(S(t)) = —(A)? = log (—log(S(t))) = plog A + plog ¢

holds. Thus, we realize that for a Weibull distributed random variable, log (—log(S(t)))
should be a linear function in logt¢. Thus, we can easily use the Kaplan Meier estimate for
S(t) and plot log (—log(S(t))) against logt. If the plot resembles a straight line, a Weibull
distribution for T" seems justified.

Since the breast implant survival times ¢ already appear to follow an exponential distri-
bution quite nicely, we don’t expect them to misbehave when it comes to the comparison
to a Weibull distribution, since it is a generalization for the exponential distribution.

0
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log(~log(5(1)))
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Figure 4.2: Plot of log(—log(S(t))) against logt to check for Weibull distribution.

> plot(log(kme$time), log(-log(kme$surv)),
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+ xlab = "log(time)", ylab = "log(-log(S(t)))")
> lines(lowess (log(kme$time) [2: (length (kme$surv)-1)],
+ log(-log(kme$surv)) [2: (length (kme$surv)-1)]1), col="red")

As expected, we see that the survival times t follow a Weibull distribution very well.

Again we would like to classify the density of Y = logT for T' ~ Weibull(\, p). Utilizing
the transformation theorem yet again, we obtain

fr(y) = p)\(eyA)p_le—(Aey)pey
=pexp(log A\ + (p — 1)y + (p — 1) log A — P18 |y
= pexp(p(y + log A) — eP(UFlog V),

Again, we are faced with an extreme value distribution with location parameter — log A

I Thus, we conclude that for a standard extreme value distributed

and scale parameter p~
W, we have

Y = (—log\) 4+ p ' W.

4.2 Accelerated Failure Time Models

While there are plenty of possibilities to utilize a parametric approach when it comes to
modeling survival times, we want to put specific focus on accelerated failure time models,
from now on referred to as AFT models. Such models tend to be rather flexible when it
comes to picking a proper underlying distribution for 1" and the process of fitting them is
rather straight-forward. In the following theoretical exploration of AFT models, we follow
the example of Liu (2012) and Lawless (2003) closely.

Suppose for a survival time 7T; there exists a set of p — 1 predictor variables X; and we’re
interested in the relationship between T; and X; for i = 1,...,n. Let X be the pxn design
matrix, namely the matrix resulting with X; as ¢-th column of said matrix. Let T" be the
random variable vector formed by all n individual survival times. For simplicity’s sake,
let the first row of X consist of a 1-vector of size 1 X n in order to include an intercept for
the model automatically. Then suppose that the following equation holds

logT =Y = XT84+ oW,

where ¢ is an unknown scaling parameter, W follows a known parametric distribution
entirely independent of X and ( refers to the vector of the regression coefficients, which
will provide insight into how the predictors X factor into the behavior of Y and thus also T'.

We will now provide two alternative yet equivalent depictions for the hazard function
A(t|x), the first of which will give proper insight into why these models are referred to as
accelerated failure time models. To that end, observe that

T = X BeoW — XTBY
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holds for obvious reasons, where W = ¢ . Then the survival function S(¢|X) results by

XTB+oW) >1)
oW) > texp (=X "))

exp

(
(

@

Xp

where S5 (w) refers to the survival function for the random variable W, whose distribution
is known. As a result, due to the close relationship between hazard functions and survival
functions, we obtain

A(tX) = A (texp (—=XTB)) exp (=X )

and consequently
S(tX) = exp(—Ag; (texp (=X7 5))).

Here, Aj;(w) and Ag;(w) refer to the hazard function and the cumulated hazard of w,
respectively. The important bit of information here is seen in the way A(¢|X) is depicted.
For exp(—X73) < 1, X decelerates the failure time, whereas for exp(—X73) > 1 we see
an acceleration of the failure, which is where AFT models get their name from.

Equivalently, we characterize S(t|X) by considering

S(t|X) = P(logT > logt)
(XTB + oW >logt)
logt — X7
(w222 2F)
o

SW<logt ;XTB).

P
P

Yet again, Sy (w) refers to the survival function associated with the random variable W,
whose parametric distribution we assume to know; for Weibull distributed T of course, W
would follow a standard extreme value distribution for example. By the definition of the
cumulative hazard A(t), we obtain

B B logt — XT3 B logt — XT3
A(tX) = —log S(t|X) = — log Sy (f) = Aw (f) (4.1)
and finally by differentiating the cumulative hazard, we get

1 logt — XT3
At X) = —A <7> 4.2
(11%) = o (2 (42)
Furthermore, by considering the relationship between hazard function and density function

as well as remembering that Y is defined as Y = logT', we obtain

logt—XTﬂ)

g

F(the) = v
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as well as

Flolo) = g (20,

g

The latter follows from simply repeating the above mentioned steps for S(y|z) as well as
A(y|z) respectively. These functions tie heavily into the process of estimation for both the
regression coeflicients 5 as well as the scale o.

In order to estimate the unknown parameters, let y; = logt; and define

_ Y —2l'p
=i

Zi

Let §; be an indicator for the survival time ¢; in the sense that §; = 1 if ¢; is not censored
and §; = 0 if it is. Furthermore, let r = Z?:l d; be the number of uncensored survival
times. We will give a very short overview of the estimation of the unknown parameters
here, relying heavily on the description found in Lawless (2003), whose work we refer to
for any further details.

As can be found in Lawless (2003), the likelihood for a potentially censored sample y =
(Y1, ..,Yn) of log-survival times can be given by

L(B,oly) = [ £ wilx)® S(yilx)" H
=1 =1

Basically, one can see that for an uncensored survival time ¢; (or the uncensored log-
survival time y;) the contribution to the likelihood is given by the actual density function
for y under the model. For a censored survival time, the contribution is given by the
survival function at this point. For completely uncensored survival times, as it is the
case for the breast implant data we will be analyzing later on, the likelihood consists of
the product of the value of the density function at each log-survival time, as one would
expect. When it comes to estimating the parameters, it is of course beneficial to consider
the log-likelihood given by

)% Sy (2) 1%

1(B,0]y) = —rlogo + Y _[6;log fw(2:) + (1 — &) log Sw ()]
=1

As a next step, one needs the derivatives of the log-likelihood with respect to each indi-
vidual §8; with j =0,...,p — 1 as well as 0. These are given by

oL 772[ 810ng Zl) +(1—6)8IOgSW(Z”)}Xﬁ

6/6)] 0z; 0z;
ol 0log fw zz) 0log Sw(z;)
— = 1—6)———————| 2.
80 Z |5 P E
These follow from applying the chain rule and remembering that ggj = —X;ji and % =

—Z holds. The above described results appear highly theoretical at a first glance, but
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one must keep in mind that the very first step when applying AFT models is assuming
a distribution for the survival times 7T'. For an assumed distribution of 7', for example a
Weibull distribution, the density for W as well as the associated survival function can be
explicitly given; in case of a Weibull distributed 7T, W follows a standard extreme value
distribution, whose density and survival function are of course known. In order to compute
the maximum likelihood estimate for both S and o, one must solve

ol
25 "
ol
90

The solutions of these non-linear equations are the MLEs B and &, which can be computed
by the Newton-Raphson method similarly to the way we explained in Section 2.3.1. As a
reminder, in the k-th iteration, we compute

(Bt 5111) = (Brs %) + I (B, 1)U (Br, 61,

where . .
621(,31@7?7;@) 621%35(5@@)
A ~y_ _ | opop Boc
1(Br, o) PUBrorly)  0°U(Br.only)
0c0BT 002

and

A (Br:0kly)
do

R AN(Br,bly)
U(Bk,o1) = Z

For the full computation of the second derivatives, refer to Lawless (2003). As one would
expect for a larger data sample, it can be shown that for § = (8, 0)

V(@ —0) 2 N, 171(0))

holds. Thus, the asymptotic behavior of the estimates proves to be somewhat easy to
handle.

As a logical next step, one is interested in performing hypothesis tests on the parameters
using the computed estimates. For each individual §;, one could yet again use the Wald
test. So, for Hy : 3; = 0 versus H; : 3; # 0, one could use the test statistic

)
5j Hy X2
var(B;) ~

which is the most common way of testing Hy. A more generalized approach would be
stating a hypothesis for a certain subset of coefficients of 5. To that end, let 8 = (51, B2),
where we want to test Hy : 81 = (Y for £ a vector of length k (see Lawless, 2003). A
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good first instinct would be to use the likelihood-ratio-test, whose test statistic is based
on

sup L(y|B,0)
o B1=p?

Aw) = sup L(y|B,0)
B1ER

As it is common with this test, —2log A(y) N X%, which one can use to either reject or
accept the hypothesis Hy.

When it comes to the implementation of AFT models in R, the function survreg proves
to be an excellent option. As described briefly in Venables & Ripley (2002) the function
survreg, which is included in the library survival, can fit AFT models of with the dis-
tributions exponential, weibull (which is the default), lognormal, gaussian, logistic
and loglogistic. It is important to note that not all types of survival times work for
all distributions— indeed, our survival times t need to be adapted, since the weibull and
exponential options do not allow for survival times of zero. As already shown in Figure
4.2, we believe the survival times t follow a Weibull distribution quite nicely. Thus, we
want to fit them accordingly, using vol as predictor.

> t0 <- tlwhich(t>0)]

> vol0 <- vol[which(t>0)]

> volparam <- survreg(Surv(t0) ~ vol0O, dist="weibull")

> summary(volparam)

Call:

survreg(formula = Surv(t0) ~ vol0, dist = "weibull")
Value Std. Error z p

(Intercept) 7.5551 0.126260 59.84 0.00e+00

volO -0.0032 0.000433 -7.39 1.51e-13

Log(scale) 0.1725 0.026293 6.56 5.33e-11
Scale= 1.19

Weibull distribution

Loglik(model)= -6848.7 Loglik(intercept only)= -6873
Chisq= 48.65 on 1 degrees of freedom, p= 3.1le-12
Number of Newton-Raphson Iterations: 6

n= 885

As seen in the above output, survreg provides plenty of information as well as coefficient
estimates and separate Wald tests for each predictor and an estimate for the scale . Con-
sider the coefficient Bvol, which is given as —0.0032. As described before, we now know
that the influence of volume on the behavior of ¢ is given by exp (—Bml) = 1.003205. That
corresponds to an acceleration of the failure time with a factor of 1.003205 per one e¢m?
increase in volume.
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In order to give the estimated hazard function A\(¢|z), consider again that in this instance,
W is standard extreme value distributed, which means that Ay (w) = e". Thus, following
Equation (4.2), we obtain

N 1 logt — Bo - Bvolvol
) oy (1

1 <logt — 7.56 + 0.0032110[)
p

= ex
1.19¢ 1.19

0.0015 logt
= —2°)1.0027v°.
¢ Xp<1.19) 0027

That means that an increase of one ¢m? in vol corresponds to a 0.27% increase in the

hazard. Consequently, an increase in 100 ¢m?3 corresponds to a 30.9% increase in the
hazard.

4.2.1 Diagnostics

When evaluating an AFT model there are generally two aspects that should be consid-
ered. First, one should make sure that the basic assumptions of the model are fulfilled—
that means that the previously chosen distribution matches the observed survival times
t1,...,t, in the first place. This of course depends on the chosen distribution itself, but
generally such assumptions can be checked by a plot of a transformation of the survival
times against a transformation of an estimate of the survival function. For the details on
that refer to Section 4.1, where we have discussed common distributions as well as the
methods used to check whether they fit a given sample of observed survival times.

Another important aspect to be considered is the so-called Goodness of Fit, which is a
general measure of how well the chosen model fits the observations that are being modeled.
In Section 2.3.2, we already discussed the theory of Cox-Snell residuals. Indeed, they also
prove to be an appropriate way to check the Goodness of Fit of an AFT model, as their
theory uses no assumptions on the way a model is fit.

As a reminder, the Cox Snell residuals are based on the fact that the random variable
A(T) follows an exponential distribution with parameter 1. Since

A(T) = —1log S(T)
holds, the Cox-Snell Residuals are defined as

r& = A(t;) = —log S(t;).

7

In order to check whether they indeed follow an exponential distribution with parameter
1, one should plot 7¢S against A(r{®). If the plot resembles a straight line with unit slope
it speaks for the adequacy of the model.

When implementing the Cox-Snell residuals in R, one has to yet again go about it the long
way, since there are no specific functions that calculate these residuals for survreg. We
will demonstrate the Cox-Snell residuals for the model volparam, fitted with a Weibull
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distribution. As described in Section 4.1, for Weibull distributed T" the logT" follows an
extreme value distribution. By Equation (4.1) and the fact that for a standard extreme
value distribution

w

Aw (w) = —log Sw(w) = —logexp(—e®) =e

holds, we obtain that the Cox-Snell Residuals riC S are given by

logt; — XI5
T?S__exp<(¥§ZAzﬁ>.
g

sigmahat <- volparam$scale
predhat <- volparam$linear.predictors
csresv <- exp((log(t0) - predhat)/sigmahat)
csresvfit <- survfit(Surv(csresv) ~ 1, type="kaplan-meier")
plot(csresvfit$time, -log(csresvfit$surv),

xlab=expression(r[i] “CS), ylab=expression(hat(Lambda) (r[i]~CS)))
abline(a=0, b=1, col="red")
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Figure 4.3: Cox-Snell Residuals for the parametric Weibull model with predictor volume.

As one can see in Figure 4.3, the Cox-Snell residuals for volparam follow the straight line
with unit slope quite well until the very end, where a few observations seem to stray from
the reference line. Overall, the model appears to be adequate, since we believe that the
outliers, few as they are, do not indicate a drastic problem with the model fit.
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Application of AFT models

5.1 Preliminary Observations

The first step when fitting parametric models is always to find a suitable distribution for
T. As already seen in Section 4.1, the exponential and Weibull distributions seem to be
acceptable choices for T. We also took the time to try other distributions, for example the
log-normal or log-logistic distribution, both of which can also be fit using survreg. As it
turns out however, neither one of the two is an acceptable choice for our given data— we
will not go into great detail as to how we have arrived at this conclusion, but we’ll give a
short overview.

Normal Q-Q Plot
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Figure 5.1: QQ-Plot of logt (left) and Cox-Snell residuals for the log-logistic model (right).

If T was log-normal distributed, logT" would follow a normal distribution. As can be seen
in Figure 5.1 (left), the QQ-Plot for logt doesn’t seem to support that fact. Indeed, the

56



CHAPTER 5. APPLICATION OF AFT MODELS o7

curved structure of the quantiles doesn’t follow the required reference line of the normal
distribution quantiles, which means that we reject the idea of a log-normal distribution
for T'. As for the log-logistic distribution, we realize that while this particular distribution
for T isn’t far-fetched (plot not shown here), the Cox-Snell residuals for even the simplest
models don’t make us feel confident in the use of a log-logistic distribution for T' (see
Figure 5.1 on the right).

Thus, we believe that our choice is between the exponential distribution and the Weibull
distribution for 7. Due to the fact that the exponential distribution is a special case of the
Weibull, we ultimately chose the latter for our models since the Weibull distribution is more
flexible. Furthermore, the exponential distribution is memoryless and thus the hazard for
such a model would be constant over time, which is a rather restrictive assumption. Thus,
we choose to move on with a Weibull distribution for 7. One has to keep in mind that when
using survreg with dist="weibull", none of the survival times can be zero— thus, we
from now on exclude such survival times. In total, we have to remove 18 such observations
from the dataset and reduce to a total of 885 observations.

5.2 Weibull AFT Models

In this section, we fit and analyze AFT models by using a Weibull distribution for the
distribution of T'. Due to the high significance of the predictor vol as already established
in Section 4.2, we decide to include it as a predictor in every model and now analyze what
happens when we include further predictors. For a short data analysis on the predictors
surface, lumen, fill and drainage which will be used in the models, refer to Section
3.1.

5.2.1 Volume and Surface

As already established in Section 3.2, we assume that an increase in vol will result in an
increase of the hazard— furthermore, we assume that a textured surface is to be preferred
compared to its counterparts. We fit an AFT model using the two predictors vol and
surface, where again surface is a factor with baseline setting smooth.

> volsurfaceparam <- survreg(Surv(t0) ~ vol0 + surface0O, dist="weibull")
> anova(volsurfaceparam)

Df Deviance Resid. Df -2*LL Pr(>Chi)
NULL NA NA 883 13745.98 NA
volO 1 48.646555 882 13697.33 3.065063e-12
surface0 2 9.318328 880 13688.01 9.474378e-03

We see that both vol and surface appear to be significant for the model. The interaction
of the two is insignificant with p = 0.84 (not shown) and thus can be omitted from the
model. As per usual, we want to check the Goodness of Fit before we move to a more in
depth analysis of the model. To that end, we analyze the Cox-Snell Residuals as described
in Section 4.2.1. As observed in Figure 5.2, the resulting model volsurfaceparam appears
to be adequate enough; the rare few outliers towards the right in the residual plot are to be
expected and, while inconvenient, do not lead us to believe that the model is inadequate.
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Figure 5.2: Cox-Snell Residuals for the parametric Weibull model with volume and surface.

In order to further analyze the model, let us take a closer look at the summary.

> summary(volsurfaceparam)

Call:

survreg(formula = Surv(t0) ~ volO + surfaceO, dist = "weibull")
Value Std. Error z P

(Intercept) 7.10839  0.406369 17.492 1.64e-68

vol0 -0.00306 0.000435 -7.029 2.08e-12

surfaceOpolyurethan -0.20341  0.424251 -0.479 6.32e-01

surfaceOtextured 0.43563 0.378056 1.152 2.49e-01

Log(scale) 0.16649 0.026333 6.322 2.58e-10

Scale= 1.18

Weibull distribution

Loglik(model)= -6844 Loglik(intercept only)= -6873
Chisq= 57.96 on 3 degrees of freedom, p= 1.6e-12
Number of Newton-Raphson Iterations: 6

n= 885

At the first glance, we notice that the Intercept is estimated to be around 7.108 and the
estimate ¢ = 1.18. The estimated coefficient Bwl is given by —0.00306, which indicates
that with exp(—(—0.00306)) = 1.003065 for each cm? increase in vol, the time t is ac-
celerated with a factor of approximately 1.003. Similarly, the acceleration factor of the
level polyurethan of the factor surface is given by 1.2256 in comparison to smooth, thus
clearly a deterioration from the baseline. As expected, textured is to be preferred, since
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the associated factor is given by 0.6469, which of course corresponds to an deceleration of
the failure time.

In order to understand the influence of each predictor on the hazard, we explicitly compute
the estimate A(t|z), using Equation (4.2), and get

~

g

logt — 7.10839 + 0.00306vol + 0.203411 0, — 0.43563[t6xt>
1.18

log t
exp (%) 1.00259v°11.18813 14691302 ¢e=

A 1 logt — Bo — Buorvol — BootwIvory — Brext Lex
)‘(t‘$)27)\w 8 Po — Buorvo 'Bplyply Brextlieat
to
1

18t P (
~0.00205

t

where I, and I, are indicator variables defined as

1 surface is polyurethan 1 surface is textured
oly = text —

0 otherwise 0 otherwise.
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Figure 5.3: The estimated hazard function (right) and survival function (left).

Here we see the actual effect of each predictor on the hazard. As it seems, for each cm?
increase of vol, the hazard increases by 0.26%, which corresponds to an increase of 29.52%
in the hazard per 100 ¢m?. For an implant whose surface is made out of polyurethan
we see an increase of about 18.81% in the hazard. Clearly, an implant fo the textured
variety is to be preferred, since in that case the hazard is actually reduced by 30.87%
compared to its smooth counterpart. Below we compare the results of the corresponding
Cox model described in Section 3.2 and the AFT model.
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Predictor Change in A(t) for Cox mod | Change in A(¢) for AFT mod
volume per 100 cm? +27.9% +29.52%
polyurethan +22.7% +18.81%
textured —27.03% —30.87%

Unsurprisingly, the two models tend to have similar results. In general, the in- and decrease
of the hazard for each individual predictor is in the same ballpark for both models, as it
should be. There are subtle differences in just how much the hazard is affected by each
predictor, but we see that the tendency is the same.

5.2.2 Volume and Lumen

When it comes to including the predictor lumen, which is a factor with two levels single
and double, we yet again expect an increase in vol of the implants to have a negative
effect on the survival times. We also expect to see a preference for single implants in
comparison to the double, which is the baseline.

> vollumenparam <- survreg(Surv(t0) ~ volO + lumenO, dist="weibull")
> anova(vollumenparam)

Df Deviance Resid. Df -2%LL Pr (>Chi)
NULL NA NA 883 13745.98 NA
volO 1 48.646555 882 13697.33 3.065063e-12
lumen0 1 5.213548 881 13692.12 2.241156e-02

The interaction of vol and lumen proves to be insignificant with a p-value of 0.58 (not
shown) and thus is of course excluded in the resulting model vollumenparam. Moving
forward with vol and lumen, both of which are significant, we want to first check the Cox-
Snell residuals before moving ahead and analyzing the model in a more in depth manner.
As seen in Figure 5.4, the structure of the residuals appears to be rather similar to Figure
5.2, which corresponds to the model including vol and surface. We will see later that
this is a common theme with these models. In general, the residuals are far from perfect
given the little cluster of outliers towards the very right of the plot, but they aren’t cause
for too much concern.
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Figure 5.4: Cox-Snell Residuals for the parametric Weibull model with volume and lumen.

> summary(vollumenparam)

Call:

survreg(formula = Surv(t0) ~ volO + lumenO, dist = "weibull")
Value Std. Error z P

(Intercept) 7.10062 0.22917 30.98 8.71e-211

volO -0.00304 0.00044 -6.92 4.51e-12

lumenOsingle 0.43336 0.18016 2.41 1.62e-02
Log(scale) 0.16935 0.02629 6.44 1.19e-10

Scale= 1.18

Weibull distribution

Loglik(model)= -6846.1 Loglik(intercept only)= -6873
Chisq= 53.86 on 2 degrees of freedom, p= 2e-12

Number of Newton-Raphson Iterations: 6

n= 885

As expected, we are faced with a significant difference for the influence of the level single
(p = 0.0162) compared to double. Thus, single appears to be the preferred option in
comparison to double. Indeed, the acceleration factor for volume is given by 1.0031,
whereas the factor 0.6483 for single actually indicates a deceleration of the failure time.
A closer look at the estimated hazard function 5\(t|:1c) provides more insight, where Igngie
is defined as
I ~J1 lumen is single
single {O otherwise.
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Then it follows that A(t|x) is given by

5\(t|$> _ iA)\W (10gt - /BO - /B’UOZ/UAOZ - Bsinglelsmgle>
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Figure 5.5: The estimated hazard function (right) and survival function (left).

As a result, we see that a 100 ¢m? increase in vol results in a 29.39% increase in the
hazard. Furthermore, for implants of the same volume, the hazard of an implant of the
type single is decreased by 30.74% compared to an implant of the type double. Thus,
we clearly prefer a single lumen. The comparison of the results obtained by the Cox
model and the AFT model yields the following table.

Predictor Change in A(t) for Cox mod | Change in A(t) for AFT mod
volume per 100 cm? +27.7% +29.39%
single —27.6% —30.74%

The differences between the two are rather small this time, showing that both models have
the same tendencies. Still, for the predictor vol the AFT model has a slightly stronger
increase in the hazard, whereas for the level single, the model shows a stronger decrease
in the hazard compared to the Cox model.

5.2.3 Volume and Filling

The predictor £111, which has the baseline siliconegel and describes the type of filling
for each implant, should be added next to the model. Again, we test the interaction for vol



CHAPTER 5. APPLICATION OF AFT MODELS 63

against £i11, but find it to be insignificant with p = 0.07 (not shown). Thus, proceeding
with the simplified model, we see that both individual predictors are significant on their
own.

> volfillparam <- survreg(Surv(t0) ~ vol0 + £fillO, dist="weibull")
> anova(volfillparam)

Df Deviance Resid. Df -2xLL Pr(>Chi)
NULL NA NA 883 13745.98 NA
vol0 1 48.64655 882 13697.33 3.065063e-12
fill0 4 39.63321 878 13657.70 5.154288e-08

A quick check of the Cox-Snell residuals (as seen in Figure 5.6) shows that the model
itself appears to be more or less adequate. Again we deal with a cluster of outliers to the
very right of the model that deviate from the reference line with unit slope, but we don’t
consider this to be a violation of the goodness of fit.
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Figure 5.6: Cox-Snell Residuals for the parametric Weibull model with volume and filling.

The summary of volfillparam provides much needed insight into the detailed effects of
each predictor. As expected, the failure time for an increase in vol is accelerated by a
factor of 1.00262. We can also immediately tell that in this model, siliconegel is the
preferable choice, as all other levels of fill accelerate the failure time; for other the
failure time is accelerated by a factor of 1.35412, for mixed by a factor of 1.23823, for
hydrogel by factor of 2.11446 and finally for saline solution by 3.49076, which is the
largest factor by far.

> summary(volfillparam)

Call:
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survreg(formula = Surv(t0) ~ vol0 + fill0, dist = "weibull")
Value Std. Error z P

(Intercept) 7.47125 0.125383 59.588 0.00e+00
volO -0.00262 0.000442 -5.936 2.92e-09
fillOother -0.30315 0.671176 -0.452 6.52e-01
fillOmixed -0.21368 0.255906 -0.835 4.04e-01
fillOhydrogel -0.74880 0.261582 -2.863 4.20e-03
fillOsaline solution -1.25012 0.184178 -6.788 1.14e-11
Log(scale) 0.14098 0.026582 5.303 1.14e-07
Scale= 1.15

Weibull distribution

Loglik(model)= -6828.8 Loglik(intercept only)= -6873
Chisq= 88.28 on 5 degrees of freedom, p= 0O

Number of Newton-Raphson Iterations: 6

n= 885

Now let Iothers Tmizeds Ihydro and Isqiine be indicator variables for each level. Then, an
estimate for the hazard function A(t|x) is given by
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Figure 5.7: The estimated hazard function (right) and survival function (left).

In this model, we see that an increase of 100 em? of vol corresponds to a direct 25.58%
increase in the hazard function. Furthermore, our suspicions about the superiority of
siliconegel are proven to be correct— other results in an increase in the hazard function
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of 30.16%, mixed causes an increase of 20.42%, hydro increases the hazard by 91.77% and
finally saline solution filling increases the hazard by a rather shocking 196.56%. When
comparing these results with the results of the Cox model, it is important to note that the
corresponding model described in Section 3.2.3 did not necessarily fulfill the proportional
hazards assumption required for a Cox model. Thus, the following table is to be taken
with a grain of salt.

Predictor Change in A(t) for Cox mod | Change in A(¢) for AFT mod
volume per 100 cm? +24.52% +25.58%
other +16.67% +30.16%
mixed +13.67% +20.42%
hydro +62.73% +91.77%
saline solution +173.02% +196.56%

We observe that the increase in the hazard for volume is rather similar in both models—
when it comes to the levels of £i11 however, there are massive differences in the individual
percentages. This speaks to the previously discussed inadequacy of the Cox model; while
of course the tendency remains the same with siliconegel being the clear favourite, the
AFT model collectively has higher percentage increases of the hazard than the Cox model
does.

5.2.4 Volume and Drainage

The predictor drainage, which is a factor with the two levels yes (the baseline) and no,
indicates whether during the initial surgery drainage was required or not. We expect
implants whose initial surgeries included drainage to be preferable to their counterpart.
To show this, we fit an AFT model, excluding the interaction of the two since it proves to
be insignificant with p = 0.554 (not shown).

> voldrainageparam <- survreg(Surv(t0) ~ vol0O + drainage0O, dist="weibull")
> anova(voldrainageparam)

Df Deviance Resid. Df -2xLL Pr(>Chi)
NULL NA NA 883 13745.98 NA
volO 1 48.646555 882 13697.33 3.065063e-12
drainage0 1 8.461859 881 13688.87 3.626711e-03

A check of the Cox-Snell residuals seen in Figure 5.8 shows that the model appears to be
adequate. We see yet again the expected little cluster of outliers, but don’t consider those
to be too much of a bother.
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Figure 5.8: Cox-Snell Residuals for the parametric Weibull model with volume and
drainage.

The summary shows a significant difference between the levels no and yes of drainage
(p = 0.0027). Indeed, the failure time for an implant with drainage no is accelerated by
a factor of 1.36599 compared to its counterpart. Furthermore, for a one em? increase in
vol, we obtain an acceleration of the failure time in this model by a factor of 1.00313.

> summary(voldrainageparam)

Call:

survreg(formula = Surv(t0) ~ volO + drainage0O, dist = "weibull")
Value Std. Error z p

(Intercept) 7.58679 0.125997 60.21 0.00e+00

volO -0.00312 0.000431 -7.24 4.43e-13

drainageOno -0.31188 0.103973 -3.00 2.70e-03
Log(scale) 0.16738 0.026297 6.37 1.95e-10

Scale= 1.18

Weibull distribution

Loglik(model)= -6844.4 Loglik(intercept only)= -6873
Chisq= 57.11 on 2 degrees of freedom, p= 4e-13

Number of Newton-Raphson Iterations: 6

n= 885
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Figure 5.9: The estimated hazard function (right) and survival function (left).

By utilizing Equation (4.2) again to get an estimate for the hazard, we obtain

~0.0014

At|lz) = S XD (

logt
1.18

) 1.00265""1.302527n

where I, is an indicator variable for the level no of the factor drainage. Clearly, this
corresponds to an increase of 30.30% in the hazard for an increase of 100 ¢m? in volume.
Similarly, we see that in comparison to drainage yes, no increases the hazard by 30.25%.
Thus, we are inclined to prefer drainage yes over its counterpart. In comparison with
the associated Cox model, we see that again the values for vol are rather close. The
percentages for drainage no are a little further apart, but still there are no surprisingly
large differences.

Predictor Change in A(t) for Cox mod | Change in A(¢) for AFT mod
volume per 100 cm? +28.58% +30.30%
no +25.36% +30.25%

5.2.5 Full Model

Finally, we are interested in a model that includes all above mentioned predictors at once.
Indeed, analysis shows that every predictor (vol, surface, lumen, fill and drainage) is
significant in the resulting model finalparam, yet their interactions are not (not shown).
It is imperative to note that one wants to check the significance of each predictor in this
model and such a thing can’t be done using anova, since the anova only gives information
on whether the last predictor in the table is relevant given that all the others are already in
the model. We used the method step provided in R (code not shown) to obtain finalmod,
in which all predictors are significant. To show the significance levels of each predictor in
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the model, we use the function drop1, which performs a series of likelihood ratio tests in
order to compare the likelihood of a model including a certain predictor and the likelihood
of a model without said predictor. The results are given below.

> finalparam <- survreg(Surv(t0) ~ volO + surface0

+ + lumen0 + £ill0 + drainageO, dist="weibull")
> dropl(finalparam, test="Chisq")

Single term deletions

Model:

Surv(t0) ~ volO + surfaceO + lumenO + £ill0 + drainageO
Df AIC LRT Pr(>Chi)

<none> 13656

volO 1 13681 27.144 1.888e-07 **x*

surface0 2 13664 12.355 0.002075 *x*

lumenO 1 13658 4.328 0.037495 *

£i110 4 13686 37.981 1.131e-07 **x*

drainage0 1 13662 8.219 0.004144 x*x*

A quick look at the Cox-Snell residuals shows that finalparam doesn’t seem to have any
problems when it comes to adequacy. While the already expected outliers to the right
are still there, we find the plot of the Cox-Snell residuals shown in Figure 5.10 to be even
better than Figure 5.8 or Figure 5.4, for example. Overall, finalparam seems to be a
good fit.

o

AGE)

Figure 5.10: Cox-Snell Residuals for finalmod.

We will not go into too much detail regarding the factors for acceleration and deceleration
time for each predictor in this particular case. Instead, we would like to focus more heavily
on the resulting estimate for the hazard function, as we believe that to be a bit informative.
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> summary(finalparam)

Call:
survreg(formula = Surv(t0) ~ volO + surfaceO + lumen0 + fillO +
drainage0, dist = "weibull")
Value Std. Error z P

(Intercept) 6.94879 0.474654 14.6397 1.57e-48
volO -0.00237  0.000439 -5.4039 6.52e-08
surfaceOpolyurethan -0.74302 0.421297 -1.7636 7.78e-02
surfaceOtextured 0.02586  0.375829 0.0688 9.45e-01
lumenOsingle 0.51836  0.234185 2.2135 2.69e-02
fillOother -0.43669 0.663071 -0.6586 5.10e-01
fillOmixed 0.23406 0.340100 0.6882 4.91e-01
fill0hydrogel -0.53076  0.272887 -1.9450 5.18e-02
fillOsaline solution -1.25356 0.191684 -6.5397 6.16e-11
drainageOno -0.31523 0.106438 -2.9616 3.06e-03
Log(scale) 0.12802 0.026571 4.8180 1.45e-06
Scale= 1.14

Weibull distribution

Loglik(model)= -6816.9 Loglik(intercept only)= -6873
Chisq= 112.15 on 9 degrees of freedom, p= 0

Number of Newton-Raphson Iterations: 6

n= 885

With these coeflicients, our resulting estimate for the hazard function is given by

~0.00197 <logt
o 1.14
1.46677 other ).81439 mized 1 59294 nvaro 3 00301 satine 1,31853 e,

A(t|z) ) 1.00298°1.91894 r01v 0. 97757 et (). 63464 sinste

Considering the above mentioned output, we can see that the loglikelihood of the result-
ing model finalparam is given by —6816.9 , whereas in comparison the loglikelihood of a
model for the response t0 with just an intercept is given by —6873. Furthermore, we are
given the value of Chisq, which is by definition the test statistic for the likelihood ratio test
for the null hypothesis Hy : ; = 0 Vj. One can easily calculate this by taking double the
difference of the above mentioned loglikelihood values. Due to the fact that Chisq under
H, is supposed to approximately follow a x3 distribution, we see that the resulting value
of 112.15 is way too high and we thus reject Hy with an associated p-value of basically
0. Furthermore, we are given the number of Newton-Raphson iterations, which indicates
the number of iterations of the Newton-Raphson algorithm it took for this model to reach
convergence. Since it only took 6 iterations, we believe that there are no issues in that
regard. We also obtain an estimate for ¢ in this output, which is given by the scale 1.14.

One needs to remember that with all of these different predictors, we have a different
baseline than before; our reference in this model is an implant with smooth surface,
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double lumen, siliconegel filling and drainage yes. Thus the increase of the haz-
ard of 91.89% for an implant with polyurethan surface instead of smooth means that
all other baseline settings remain the same in that instance. We see that an increase of
100 em? of volume immediately results in an increase of 34.66% of the hazard. Picking
an implant with a textured surface is yet again to be seen as an improvement rewarded
by a decrease of 2.24% in the hazard which is far less than initially expected given the
results of volsurfaceparam; this however can be explained, since this still corresponds to
a change in surface only, leaving all the other predictors untouched. Again, single is the
preferable option for lumen, since choosing single decreases the hazard by 36.54%. When
it comes to £illing, we see increases in the hazard all around: 46.68% for other, 59.59%
for hydrogel and a record of a little over 200% for saline solution. Contrary to our
expectations however, mixed shows a decrease in the hazard of 18.56%. Unsurprisingly,
drainage no shows an increase in the hazard of about 31.85%.

o
Fi—l
7] best ) best
o ---- baseling «Q _{ ---- baseling
N o |
o —— worst \ —— worst
o “
] 1
~—~ \
N Y
\f< o \‘
— — \
= \
o \
N "
o_ N
o | teee Tl
© | S ioTmrmosoomo-msesooooooeos o Cteea
Q o -
puy T T T T

1000 2000 3000 4000
Time t

0 1000 2000 3000 4000

Time t

Figure 5.11: The estimated hazard function (right) and survival function (left).

As seen in Figure 5.11, the differences in the hazard and survival functions are astounding.
Here, best refers to implants with textured surface, siliconegel filling, single lumen
and drainage yes. The baseline setting refers to the reference setting in finalparam,
namely an implant with smooth surface, double lumen, siliconegel filling and drainage

yes. In that case, worst refers to an implant with polyurethan surface, double lumen,
saline solution filling and drainage no.

Contrary to the corresponding Cox model in Section 3.2.5, this model does not seem
to violate any assumptions. We can’t really compare the individual contribution to the
hazard of each predictor between the two models, given that the Cox model doesn’t fulfill
the proportional hazards assumptions. Still, we want to point out that in the parametric
approach, we can confidently state the individual effects of each predictor in the full model,
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which we couldn’t do in the Cox model. Thus, it seems as though in this instance the
more restrictive approach of assuming a distribution for 7" has paid off.



Chapter 6

Summary

Inspired by the the survival times of breast implants taken from the Austrian Silicone
Registry, we began this thesis by asking the question: How long do breast implants last
in the human body and can we find out which predictors influence the length of the
survival in which way? We had several predictors to our disposal, most notably the sur-
face of implants, the volume of an implant, the lumen, the type of filling of an implant
and an indicator stating whether during the implant surgery any drainage had taken place.

When picking a model for the given data, we were faced with many different options due
to the large amount of different approaches when it comes to modeling survival time obser-
vations. After eventually deciding on the Cox proportional hazards model due to its large
popularity and high flexibility it turned out that the non-parametric approach of the Cox
model was perfectly adequate to fit our given data, if we only include very few predictors
in the model at once. While the proportional hazard model performed admirably with
two predictors, a model including all of the relevant predictors failed to meet necessary
conditions.

This lead us to a parametric approach. By using a more restrictive concept that is based
on explicitly fixing a distribution for the survival times, the parametric approach gave a
different point of view on the data. For these models, we realize that we were not only
perfectly capable of fitting models with two predictors, but also fitting models with all
relevant predictors at once— something the Cox model had failed to do.

In conclusion, we find that the survival times of the implant data we analyzed depend
heavily on the above mentioned predictors. An increase in the volume of an implant has
a negative effect on the survival times; we found that an increase of 100 ¢m? in volume
can increase the hazard for a subject by 24.52% — 34.66%, depending on the model.
Furthermore, the surface of an implant is highly relevant to its survival time. A textured
surface is to be preferred, as such implants tend to reduce the hazard for a subject by
27.03% — 30.87% compared to its counterparts. The preferable filling for an implant is
without a doubt to be found in siliconegel. The alternative options tend to always
increase the hazard, some options even tripling the risk for the subject. Furthermore we
can tell that having drainage during the initial surgery is to be preferred to having no
drainage; the latter increases the hazard between 25.36% to almost 31% for the patient.
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Appendix A

The Partial Likelihood Approach

In many real life applications, one doesn’t stand a chance of fully classifying the likelihood
without making potentially overly restrictive assumptions. As Cox (1975) points out, such
issues can arise especially if there are unknown nuisance parameters involved, as it is the
case in proportional hazard models.

Simply put, let us consider a sequence of observations y that are from the population
of a random variable Y, which can be expressed by a sequence of (X1, Z21,...,Xn, Zy).
Furthermore, let the density of Y depend on a parameter 6 = (3, ¢), where ¢ represents
our nuisance parameter and S is the parameter of interest— in case of the proportional
hazard model, one may see ¢ as the baseline hazard Ay(¢) which is both unknown and
not necessarily the parameter of interest in this context. Let us also define by z(;) =
(z1,...,2;) and z() = (21,...,2;). Then one can conclude

LOly) = [[ A wilo) = T [ fix.2 (@i, 210, 21y, 26-1))
=1 =1

= 1 Fx1z(@il, 21y, 2)) f2 (2006, 251y, 2-1))

The best case scenario would be P(0) = P(f5) and Q(f) = Q(¢), namely P doesn’t
depend on the nuisance parameter and () doesn’t depend on [, which is our parameter
of interest. In this case, one can easily omit the function () and maximize P in order to
find the MLE for 8, which tends to simplify the process significantly. Even though that is
not necessarily the case when considering proportional hazard models, it is still common
practice to consider P only when searching for a proper estimate for 8. This of course
implies some information loss that needs to be taken into account. In his paper, Cox also
argues that under broad assumptions the properties of maximum likelihood estimates can
be transferred onto maximum partial likelihood estimates— namely, the use of likelihood
ratio tests and their resulting asymptotic chi-squared distributions can be applied as usual.
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