hitzung verbundenen Beeinträchtigung der Festigkeitseigenschaften (317) darf man aber mit der Glühtemperatur nicht höher gehen, als diese Umwandlung verlangt.

Von Einfluß auf die Festigkeitseigenschaften des Stahlgusses ist nun bei der Abkühlung die Geschwindigkeit des Durchgangs durch die Umwandlungstemperatur. Um bei der Abkühlung nicht neue Spannungen hervorzurufen, darf man die Abkühlung nicht allzu rasch vor sich gehen lassen, damit alle Teile des Gußstücks möglichst gleiche Temperatur besitzen. Dieser Forderung stellt sich die andere entgegen, die Abkühlung zu beschleunigen, weil dadurch feinkörnigeres Gefüge erzielt wird, das günstigere Festigkeitseigenschaften liefern kann, als gröbere Kornbildung. Zwischen diesen beiden Forderungen muß ein Ausgleich gesucht werden (336).

Man darf nicht glauben, daß das Glühen von Gußstücken in allen Fällen zur Verbesserung der Festigkeitseigenschaften führt. Es kann unter Umständen auch die gegenteilige Wirkung eintreten. Die Bronzen machen unterhalb der Erstarrung eine Umwandlung bei einer Temperatur t_u durch. Die Festigkeit und Dehnung wird in der Regel gesteigert, wenn die Abkühlung durch t_u so schnell vor sich geht, daß nur unvollkommenes Gleichgewicht entsteht (135–138). Würde man nun z. B. einen Schreckguß von Bronze wieder bis über die Temperatur t_u erhitzen und dann langsam abkühlen, so würde man Bruchgrenze und Dehnung wieder vermindern. Wohl aber könnte man allenfalls durch Abschrecken von Wärmegraden oberhalb t_u die Festigkeitseigenschaften des Gusses verbessern. In allen diesen Fällen ist vorausgesetzt, daß das Gußstück einfache Gestalt und nicht zu große Masse besitzt, weil sonst die angegebene schnelle Abkühlung zu Wärmespannungen Anlaß geben kann.

c) Das Recken.

293. Unter Recken wollen wir die Herbeiführung bleibender Formänderungen in festen metallischen Stoffen ohne Zerstörung des Zusammenhanges verstehen. Es ist hierbei gleichgültig, ob die Formänderung unter Verringerung des Querschnitts und Vergrößerung der Länge (Strecken), oder unter Verminderung der Länge und Vergrößerung des Querschnitts (Zusammendrücken, Stauchen), ob sie infolge von Zug, Druck, Biegung, Verdrehung usw. erfolgt. Geschieht das Recken bei höheren Wärmegraden, so soll es als Warmrecken bezeichnet werden. Hierher gehören das Schmieden, Walzen, Warmpressen, Warmziehen usw., kurz alle Formgebungsarbeiten, die unter Herbeiführung bleibender Formänderungen bei höheren Temperaturen vorgenommen werden. Erfolgen diese bleibenden Formänderungen dagegen bei Wärmegraden in der Nähe der atmosphärischen Temperatur, so wollen wir den Vorgang Kaltrecken nennen. Hierher gehören Arbeiten wie das Kaltschmieden, Kaltwalzen, Kaltpressen, Kaltziehen, Kaltdrücken, Kaltprägen usw.

Gewöhnlich hat man für das Kaltrecken die Bezeichnung Kaltbearbeitung. Dieser Ausdruck soll hier vermieden werden, weil er zweideutig ist und gelegentlich zu Verwechslung mit der Bearbeitung der Metalle mittels schneidender Werkzeuge (Drehen, Bohren usw.) Anlaß geben kann. Damit soll nicht etwa gesagt sein, daß bei dieser Bearbeitung mit schneidenden Werkzeugen nicht etwa Kaltrecken nebenher gehen kann.

Das Ausgangsmaterial sowohl für das Warm- wie auch für das Kaltrecken ist in der Regel der gegossene Block, der in der Mehrzahl der Fälle durch Warmrecken der endgültigen Gestalt des zu erzeugenden Gebrauchsgegenstandes näher gebracht oder unmittelbar in diese übergeführt wird. Auf das Warmrecken kann dann noch Kaltrecken hinterher folgen. So wird z. B. bei der Erzeugung von (293-295)

Eisen- und Kupferdraht der gegossene Block bis auf die Dicke des Walzdrahtes warm heruntergewalzt. Dieser wird dann durch Kaltziehen auf den gewünschten Durchmesser gebracht. In selteneren Fällen wird das gegossene Material ohne weiteres dem Kaltrecken unterworfen, wie z. B. beim Messing und ähnlichen Metallen, die bei niederen Temperaturen sehr großes Formveränderungsvermögen besitzen.

Zwischen Warm- und Kaltrecken besteht keine scharfe Grenze; sie gehen beide unmerklich ineinander über, wie bereits aus den Erörterungen über die Änderung des Kleingefüges durch diese Behandlungen hervorgeht (279, 280). Beide bewirken Störung des Gefügegleichgewichtes der Korngröße. Geschieht das Kaltrecken bei Wärmegraden, bei denen die Beweglichkeit der Teilchen nicht mehr groß genug ist, um die gestreckten Körner in gleichachsige umzuwandeln, so kann auch noch Störung des Gefügegleichgewichts der Korngestalt hinzukommen. Besitzt der metallische Stoff unterhalb der Temperatur, bei der das Recken beendet wird, noch einen Umwandlungspunkt, so wird das infolge des Reckens beeinflußte Gefüge wieder verdeckt durch das bei der Umwandlung neugebildete Gefüge. Die Größe der Körner ist dann nicht mehr von der Temperatur und dem Grad des Reckens abhängig, sondern von der Geschwindigkeit, mit der die Abkühlung durch die Umwandlungstemperatur erfolgt. Dieser Fall ist bei den warm gewalzten Eisen-Kohlenstoff-Legierungen verwirklicht; das Walzen ist hierbei oberhalb der Umwandlungstemperatur beendet. In Ausnahmefällen kann es auch bis unterhalb dieser Umwandlungstemperatur fortgesetzt werden; dann hat die Abkühlungsgeschwindigkeit keinen Einfluß mehr auf das Gefüge.

1. Das Kaltrecken.

294. Wie früher besprochen, ist das durch Kaltrecken gestörte Gefügegleichgewicht metastabil. Es strebt einem stabileren Gleichgewicht zu und wird durch die innere Reibung des Materials daran verhindert, diesem Streben zu folgen. Erwärmung kann die Annäherung an den stabilen Gleichgewichtszustand begünstigen, ebenso zuweilen Erschütterungen, soweit sie nicht mit bleibenden Formveränderungen verbunden sind (I, 314).

Es ist aber auch noch denkbar, daß das durch Kaltrecken erzeugte metastabile Gleichgewicht nach Aufhören der die Formänderung herbeiführenden Kraftwirkungen noch nicht sein höchstes Maß erreicht hat, sondern in der darauffolgenden Zeit der Ruhe diesem Höchstmaß noch um einen bestimmten Betrag weiter zustrebt. Die Gleichgewichtsverschiebung würde dann nach Aufhören der äußeren Beanspruchung zunächst in der Richtung des metastabilen Gleichgewichts weiter schreiten, dann zum Stillstand kommen, um schließlich wieder rückwärts einem stabileren Gleichgewicht zuzustreben. Auf die hiermit verbundenen Erscheinungen und Änderungen in den Eigenschaften metallischer Stoffe soll hier nicht näher eingegangen werden, da sie bereits in I, 313—314 besprochen wurden (vgl. auch Rudeloff, L_{4} 2).

Im folgenden sollen im wesentlichen nur die Änderungen der Eigenschaften der metallischen Stoffe infolge Kaltreckens besprochen werden, die sich einstellen, nachdem auf das Kaltrecken eine längere Ruhepause gefolgt ist.

α) Änderung der Festigkeitseigenschaften, der Härte, des Gefüges und des spezifischen Gewichtes durch Kaltrecken.

295. Als fast allgemein gültige Regel kann man folgende betrachten: Durch Kaltrecken werden die S- und B-Grenze erhöht, und zwar die S-Grenze in stärkerem Maße als die B-Grenze, so daß das Verhältnis $\frac{\sigma_S}{\sigma_B} \cdot 100$

sich seinem Grenzwert 100 zu nähern sucht. Gleichzeitig wird die Bruchdehnung δ vermindert. Bereits geringe Grade des Kaltreckens

Abb. 252. Einfluß des Kaltwalzens auf Elektrolytkupfer. (Nach Grard.)

bewirken sehr kräftige Änderungen von σ_S , σ_B und δ . Bei weiter fortgesetztem Kaltrecken wird die Änderung dieser Größen immer kleiner.

Abb. 253. Einfluß des Kaltwalzens auf Messing mit 67 % Kupfer und 33 % Zink. (Nach Grard.)
δ₁₀: Bruchdehnung bei Meßlänge von 10 cm. Die durch das Kugeldruck- oder Ritzverfahren bestimmte Härte wird durch Kaltrecken gesteigert.

Abb. 252 (Grard, L_4 4, A. Martens, L_4 3) bezieht sich auf sehr reines Kupfer, das auf elekrolytischem Wege gewonnen, dann umgeschmolzen und zu Draht von 8 mm Durchmesser entsprechend dem Querschnitt

$$f_0 = \frac{\pi}{4} \cdot 64 \text{ qmm}$$

verarbeitet worden war. Nach dem Glühen wurde dieser Draht bei gewöhnlicher Temperatur vom Querschnitt f_0 auf den kleineren Querschnitt f heruntergewalzt. Die Verhältnisse f_0/f (Streckzahlen) sind als Abszissen, die Werte für σ_S , σ_B , δ_x^{-1}) und $\sigma_S/\sigma_B \cdot 100$ als Ordinaten eingetragen. Als σ_S ist $\sigma_{0,01}$ angegeben, d. h. die Spannung, die eine bleibende Dehnung von mindestens 0,01 mm auf 100 mm Meßlänge liefert.

Ähnlich liegen die Verhältnisse bei einem Messing mit 67 $^{0}/_{0}$ Kupfer und 33 $^{0}/_{0}$ Zinn, wie Abb. 253 lehrt (Grard, L_{4} 4). Die Bezeichnung ist dieselbe wie in Abb. 252. Geglühte Bleche von verschiedener Dicke wurden kalt auf die Enddicke von 6 mm gewalzt.

Über das Verhalten von Eisenlegierungen beim Kaltrecken geben folgende Angaben Aufschluß.

¹) δ_x bedeutet Bruchdehnung ermittelt an einer Meßlänge x, deren Verhältnis zum Querschnitt des Stabes in der Quelle nicht angegeben ist.

Flußeisen ¹)	σs at	σ _B at	$\frac{\sigma S}{\sigma B} \cdot 100$	δ º/o	q º/o
a) Ursprünglicher Zustand; warm gewalzt auf 51,5 mm Durchmesser	1860	3890	48	34,6²)	42,9
b) Von 51,5 mm Durchmesser kalt gezogen auf 49,1 mm Durchmesser	4300	4950	87	15,6 ³)	33,5
c) Von 51,5 mm Durchmesser kalt gezogen auf 45,9 mm Durchmesser		5750		0,75	16,7

Mittel aus 5 Versuchsreihen mit Eisen ⁴)	σ_S	σΒ	$\frac{\sigma S}{\sigma B} \cdot 100$	δ ⁵)
a state of the second s	at	at	0/0	0/0
a) Ursprünglicher Zustand	1940	3390	57	23,2
b) Kaltgewalzt $f_0/f = 1,10$	4210	4820	87	5,5
c) Kaltgewalzt und geglüht	2260	3450	65	12,9

- 1) Nach L₄ 5.
- 2) Meßlänge 12,7 cm.
- ³) Meßlänge 50,8 cm.

⁴) Nach Thurston, L_4 6 und L_4 21. Die Zugversuche wurden an den Stäben unmittelbar, ohne vorheriges Abdrehen ausgeführt.

5) Meßlänge 254 cm.

In Abb. 254 ist die Wirkung des Kaltziehens auf einen Walzdraht von 5 mm Durchmesser dargestellt (nach Untersuchungen von Speer und Winter, L_4 7). Als Abszissen sind wieder die Streckzahlen f_0/f gewählt, die das Verhältnis von Anfangsquerschnitt zum jeweiligen durch Kaltrecken erzielten Querschnitt angeben. Als Ordinaten sind eingezeichnet die Werte σ_S , σ_B , δ und $\frac{\sigma_S}{\sigma_B}$ 100. Das verwendete Martinflußeisen hatte die Zusammensetzung:

C: 0,09 Si: 0,01 Mn: 0,49 P: 0,088 S: 0,07 Cu: 0,024 Ni: 0^o/₀.

Die Wirkung des Kaltziehens auf kohlenstoffreicheren Martinstahl zeigt Abb. 255. Die chemische Zusammensetzung des Stahles war:

C: 0,84 Si: 0,30 Mn: 0,75 P: 0,05 S: 0,036 Cu: 0,14 Ni: Spur.

Die mit 0 bezeichneten Punkte der Schaulinien beziehen sich auf den warm-

Abb. 254. Einfluß des Kaltziehens auf die Festigkeitseigenschaften und die Löslichkeit von Flußeisen. (Nach Speer und Winter.)

- 0: Walzdraht von 5,0 mm Durchm., gebeizt. I-III: Aufeinanderfolgende Züge.
 - c. Streckungsverhältnis der Ferritkörner.
- L a100: Löslichkeitsverhältnis nach 96 Stunden.
- L_0 L_0 : Löslichkeit des geglühten Walzdrahtes.
 - δ_{30} : Bruchdehnung auf Meßlänge von 30 cm.

gewalzten Draht von 5,0 mm Durchmesser, der in einem Zug kalt heruntergezogen wurde entsprechend den Punkten I. Alsdann wurde der Draht geglüht und einem besonderen, später zu besprechenden Vergütungsverfahren (II B) unterworfen, wobei er von einer Temperatur oberhalb 700 C^o in einem Bleibad von etwa 500 C^o abgeschreckt wurde. Dieser Zustand ist in Abb. 255 mit 0' bezeichnet. Von da aus geschah das Kaltziehen hintereinander in 5 Zügen II—VI. Ob der eigentümliche Verlauf der Linie $\frac{\sigma_S}{\sigma_B} \cdot 100$ (erst ansteigend und dann wieder etwas abnehmend) tatsächlich auf die Vergütung des Materials oder nur auf die nicht sehr sicher zu ermittelnde Lage der Streckgrenze zurückzuführen ist, muß in Zukunft aufgeklärt werden.

Abb. 255. Einfluß des Kaltziehens auf die Festigkeitseigenschaften von Flußstahl. (Nach Speer und Winter.)

0: Walzdraht 5,0 mm Durchmesser.

I: Erster Zug.

O': Nach dem ersten Zug geglüht und in Blei von etwa 500 C° abgeschreckt. II-VI: Aufeinanderfolgende Züge.

Die Abb. 254 und 255 geben die Wirkung starker Grade des Kaltreckens auf die Eigenschaften des Flußeisens wieder; sie lassen aber keinen Schluß auf die Änderungen bei Streckzahlen f_0/f unterhalb 1,6 zu. Diese Lücke wird ausgefüllt durch die Abb. 256 (nach Versuchen von Rudeloff, L_4 2). Die Abbildung bezieht sich auf Material für Flußeisenkesselbleche mit einer *B*-Grenze von etwa 4000 at. Die Versuche wurden so ausgeführt, daß das Material in Form von Zerreißstäben in der Zerreißmaschine um bestimmte als Abszissen eingetragene Beträge f_0/f kalt vorgestreckt wurde. Alsdann wurde nach längerer Ruhepause (21-63 Tage) ein Teil der vorgestreckten Stäbe aufs neue unter Zugbeanspruchung weiter gestreckt bis zum Eintritt des Bruches. Die Werte σ_P , σ_S , σ_B sind auf den durch das Vorstrecken verminderten Querschnitt bezogen, nicht auf den ursprünglichen Querschnitt. Aus einem anderen Teil der vorgestreckten Stäbe wurden kleinere Zugproben herausgeschnitten und dem Zugversuch bis zum Bruch unterworfen.

Die sämtlichen in Abb. 256 angegebenen Zahlenwerte für die Festigkeitseigenschaften gelten für Zugbeanspruchung in der Walzrichtung des Bleches. Bei

Flußeisenblech. Sämtliche Zerreißproben parallel zur Walzrichtung.

- A: Material vor dem Zerreißen parallel zur Walzrichtung vorgestreckt; teils wurde der vorgestreckte Stab nach 21 bis 63 tägiger Ruhe dem Zerreißversuch unterworfen, teils wurden aus dem vorgestreckten Material neue Zerreißstäbe angefertigt und geprüft (Ruhezeit nach dem Strecken 21--63 Tage).
- B: Material vor dem Zerreißen senkrecht zur Walzrichtung vorgestreckt. Nach längerer Ruhepause wurden aus dem vorgestreckten Material Zerreißproben parallel zur Walzrichtung entnommen und geprüft.

der Versuchsreihe A erfolgte das Vorstrecken der Stäbe ebenso, wie das endgültige Zerreißen in der Walzrichtung. Bei der Versuchsreihe B dagegen geschah das Vorstrecken quer zur Walzrichtung des Bleches, während die endgültigen Zerreißproben in der Walzrichtung zerrissen wurden.

Die Abb. 256 läßt sehr deutlich die starken Änderungen von σ_P , σ_S , σ_B und δ bei verhältnismäßig kleinen Streckzahlen f_0/f erkennen. Bei weiter fortgesetzter Streckung wird der An- bzw. Abstieg der Schaulinien immer langsamer.

Der Vergleich der Versuchsreihe A und B deutet darauf hin, daß die Art der Vorstreckung, ob längs oder quer zur Richtung des schließlichen Zerreißversuchs, auf σ_B und δ keinen oder nur unmerklichen Einfluß ausübt, dagegen auf den Verlauf der Schaulinien für σ_P und σ_S deutlich einwirkt. Bei geringen Streckzahlen f_0/f wird die P-Grenze in der Versuchsreihe B anfänglich heruntergedrückt

(295)

Die Festigkeitseigenschaften und die Härte.

und erst später wieder gesteigert. Die Hebung der S-Grenze ist in Versuchsreihe B geringer als in Reihe A, was sich auch in der Linie für $\frac{\sigma_S}{\sigma_R}$. 100 zu erkennen gibt.

Das Verhalten von Zinn und Blei beim Kaltrecken wird veranschaulicht durch die Tabelle III. Diese Metalle bieten besonderes Interesse, da sie ja nach früherem (279) trotz weitgehenden Kaltreckens keine Streckung der Kristallkörner erleiden. Die in der Tabelle angegebenen Zahlen sind im Kgl. Materialprüfungsamt, Groß-Lichterfelde, gewonnen. Die Geschwindigkeit der Belastung war in allen Fällen die gleiche, so daß die einzelnen Versuchswerte miteinander vergleichbar sind. Die Zahlen sind Mittel aus je zwei Versuchen.

Tabelle	III.
---------	------

Metall	Zustand	$\frac{f_0}{f}$	σ_B at	$\frac{\delta_{9,35}\sqrt{f}}{0/0}$	$P_{0,05}^{3}$ kg
Zinn ¹)	Kaltgewalzt von 30×30 auf $2 \times 35 \text{ mm}$ Querschnitt Desgl. 1 Std. bei 200 C ⁰ geglüht	12,86 —	95,5 66,0	57,7 51,0	_
Blei	Kaltgewalzt von $30 > 35$ auf $3 > 40 \text{ mm}$ Querschnitt Desgl. 3 Std. bei 275 C ⁰ geglüht	8,75	99,2 92,7	39,5 51,0	5,3 4,3
Zinn ²)	Gegossen	 1,25 			$10,7^{4})$ $7,2^{5})$ $9,4^{6})$

¹) Sehr reines Zinn.

²) Cu: 0.04 Pb: 0.02 As: 0,05 Sb: Spur Fe: Spur S: Spur.

3) Kugeldruckhärte nach Martens-Heyn (351).

⁴) Nachwirkung vorhanden. Messung nach 10 Minuten.

⁵) Sehr starke Nachwirkung. Messung nach 60 Minuten.
 ⁶) Nachwirkung vorhanden. Messung nach 10 Minuten.

Während das Blei regelmäßiges Verhalten zeigt entsprechend der eingangs dieses Absatzes gegebenen Regel, nämlich Steigerung von σ_B und Verminderung von δ durch das Kaltrecken, liegt bei Zinn der Fall verwickelter. Hier wird durch Kaltrecken zwar σ_B erhöht, aber auffälligerweise auch die Dehnung. Die Kugeldruckhärte ist im kaltgereckten Metall kleiner als nach dem Glühen, und auch kleiner als im gegossenen Ausgangsmaterial. Wie wir später sehen werden (II B), tritt das Zinn in verschiedenen Allotropien auf, und es wäre möglich, daß durch die Umwandlungen die Wirkung des Kaltreckens überdeckt wird. Hier muß jedenfalls noch mehr Klarheit geschaffen werden.

Für die Steigerung der Kugeldruckhärte durch Kaltrecken seien noch folgende Beispiele gebracht.

Ein Zugstab aus Kupfer, der nach der Bearbeitung geglüht worden war, wurde in der Zerreißmaschine unter verschiedenen Lasten bei gewöhnlicher Temperatur um bestimmte Beträge bleibend gestreckt. Die Streckzahlen f_0/f sind in Abb. 257 als Abszissen eingezeichnet. Als Ordinaten wurden verwendet a) die Werte

$$\mathfrak{H}_{600} = rac{600}{rac{\pi}{4} d^2} ext{kg/qmm},$$

264

(295)

Der Einfluß der Vorbehandlung auf Festigkeit, Härte usw.

worin d der Durchmesser des durch eine Stahlkugel von 10 mm Durchmesser unter einem Druck von 600 kg hervorgebrachten Eindruckkreises in Millimetern ist (vgl. 350). b) Die Werte \mathfrak{H}_1 , d. h. derjenige mittlere Druck auf die Flächeneinheit in kg/qmm, für den der Durchmesser des Eindruckkreises gleich 1 mm ist (350). (Die Versuchswerte sind entlehnt von Kürth, L_4 8.) Man erkennt aus der Abbildung, daß mit wachsender Streckzahl f_0/f die Härte des Kupfers steigt, und zwar anfangs sehr rasch, später langsamer. Weiter sind in Abb. 257 noch die Werte von a und n in ihrer Abhängigkeit von den Streckzahlen eingetragen. Die Bedeutung von a und n ergibt sich aus der Gleichung

$$P = a d^n$$
,

die nach Rasch $(L_4 9)$ und E. Meyer $(L_4 10)$ die Beziehung angibt zwischen dem Durchmesser des Eindruckkreises d, der mit einer Stahlkugel von bestimmtem

Abb. 257. Einfluß des Kaltreckens auf die Kugeldruckhärte des Kupfers. (Nach Kürth.)

Durchmesser D unter der Last P in einem Material erzeugt wird (350). a und n sind in der Gleichung unveränderliche Größen für ein Metall in einem bestimmten Zustand der Vorbehandlung. a gibt außerdem die Kraft P in kg, die nötig ist, um einen Eindruck vom Durchmesser 1 mm zu erzeugen. Sie wächst mit dem Grade des Kaltreckens. Der Exponent n dagegen nimmt mit steigender Streckzahl f_0/f ab und nähert sich dem Werte 2.

Die Härtezunahme infolge Kaltreckens von Flußeisen zeigt Abb. 258, die nach Versuchen von E. Meyer $(L_4 10)$ zusammengestellt ist. Das verwendete Flußeisen hatte im ursprünglichen Zustand folgende Festigkeitseigenschaften:

 $\sigma_{S} = 2600 \text{ at}$ $\sigma_{B} = 4650 \text{ at}$ $\delta_{11,3\sqrt{f}} = 30^{\circ}/_{\circ}$ $q = 59^{\circ}/_{\circ}.$

Ein Zugstab wurde in der Zerreißmaschine stufenweise um bestimmte Beträge bleibend gestreckt. Im Anfangszustand und nach jeder Streckung wurde an ver-

(295)

schiedenen Stellen des Stabes die Kugeldruckhärte 5/1000 ermittelt (350). Die Abb. 258 gibt die Versuchsergebnisse an der Stelle der größten Einschnürung des 210

Kugeldruckhärte von Flußeisen. (Nach Versuchen von E. Meyer.) Kugeldurchmesser D = 10 mm. Druck P auf Kugel = 1000 kg.

Stabes wieder, und zwar für gleichbleibende Belastung P = 1000 kg einer 10-mm-Stahlkugel.

Wie nicht anders zu erwarten, macht sich die Steigerung der Härte der metallischen Stoffe infolge Kaltreckens auch in der Ritzhärte geltend. So betrug z. B. die Ritzhärte \mathfrak{F}_r (Belastung in Gramm für 0,01 mm Ritzbreite (s. I, 357 bis 359) in einer gegossenen Kupferprobe 3,9. Nach dem Kaltschmieden des einen Endes der Probe zu einer Schneide war die Ritzhärte an dieser Stelle auf 7,5 gestiegen.

296. Das Kaltrecken bedingt bei der Mehrzahl der metallischen Stoffe Streckung der Körner, aus denen der Stoff aufgebaut ist, parallel zur Richtung der Zugbeanspruchung und senkrecht zur Richtung der Druckbeanspruchung. Bei starken Formänderungen können sich sogar die Körner teilen, so daß die Zahl der Körner vergrößert, die durchschnittliche Korngröße verringert wird. Es bleibt aber noch eine Streckung der Körner wahrnehmbar, wenn die Formänderung nur durch Zug oder nur durch Druck bewirkt wurde. Dagegen braucht diese Streckung

nicht ohne weiteres zu bestehen, wenn abwechselnd Zug- und Druckbeanspruchungen bleibende Formänderung herbeiführten (264-280).

Bei Metallen wie Blei und Zinn, bei denen die Beweglichkeit der Teilchen bei gewöhnlichen Wärmegraden bereits genügend groß ist, bringt Kaltrecken bei dieser Temperatur keine Streckung der Körner hervor. Die Gründe hierfür s. 279-280. Hier hat das Recken bei gewöhnlicher Temperatur bereits die Wirkung des Warmreckens.

Bezeichnet man die durchschnittliche Abmessung der Körner in der Streckrichtung mit c, diejenige in einer dazu senkrechten Richtung mit a, so gibt c/adas mittlere Streckungsverhältnis der Körner an.

Dieses Verhältnis kann in folgender Weise ermittelt werden: Man legt durch die Metallprobe einen Schliff parallel zur Streckrichtung. In einem größeren Gesichtsfeld fertigt man eine Zeichnung oder ein Lichtbild der Körner in der früher angegebenen Weise an (259). Durch diese Zeichnung legt man parallel und senkrecht zur Streckrichtung der Körner je ein System von Parallelen in möglichst geringem Abstande. Ein solches System von Parallelen, und zwar parallel zur Streckrichtung, ist in Abb. 259 wiedergegeben. Auf den Parallelen mißt man nun die Strecken l_1, l_2, l_3, \ldots in mm und teilt jede einzelne durch die Zahl der Körner, die sie schneidet. Unter Zugrundelegung des Gefüges wie

266

in Abb. 259 ergibt sich $l_1/1$, $l_2/3$, $l_3/4$, $l_4/3$ usw. Aus allen diesen Quotienten bildet man schließlich das Mittel, und dieses gibt die Größe c. Zur Ermittelung des Wertes von a verfährt man auf dem zweiten Liniensystem senkrecht zur Streckrichtung ganz analog. Die Umgrenzung des Gesichtsfeldes muß natürlich so gewählt werden, daß nur ganze Körner von ihr umschlossen werden, daß also die Grenzlinie nicht durch Körner hindurchgeht.

Abb. 259.

Ist die Streckrichtung der Körner nicht ohne weiteres ersichtlich, so muß man Netze von senkrecht aufeinanderstehenden Parallenscharen unter verschiedenen Winkeln durch das Gesichtsfeld legen. Diejenige Richtung, in der die durchschnittliche Länge der Körner ihren Höchstwert erreicht, ist dann die gesuchte Streckrichtung. In ihr ist der Wert c und senkrecht dazu der Wert a zu messen.

Folgendes Beispiel soll die Nutzanwendung der Messung erläutern (E. Heyn, L. 11):

Aus einem 10 mm dicken Flachstab eines sehr kohlenstoffarmen basischen Martinflußeisens wurden durch Halbieren in der Längsrichtung nach Abb. 260 zwei Biegeproben I und II ausgeschnitten. Beide Proben wurden in der Mitte der Länge auf einer Seite mit Kerb versehen. Probe I wurde bei gewöhnlicher Temperatur über einen Dorn von 10 mm Durchmesser bis zu der in Abb. 261 in 3/4 der natürlichen Größe angedeuteten Krümmung gebogen (Krümmungshalbmesser der neutralen Schicht 18 mm). Nach der Biegung wurde längs der Linie ab in Abb. 260 ein Längsschliff hergestellt, poliert und geätzt. An den in Abb. 261 mit 1, 2 und 3 bezeichneten Stellen wurden hierauf die in Abb. 262-264 in 245 facher Vergrößerung wiedergegebenen Handzeichnungen aufgenommen, aus denen Größe und Form der Ferritkörner hervorgeht. Stelle 1 entspricht der Zugseite unmittelbar am Kerb, Stelle 3 der Druckseite, Stelle 2 ungefähr der Mitte zwischen beiden. Aus den Abb. 262-264 geht ohne weiteres hervor, daß auf der Zugseite die Eisenkörner in der Längsrichtung LL der Probe gestreckt wurden. Auf der Druckseite sind die Körner ebenfalls gestreckt, aber in einer Richtung QQ senkrecht zur Längsachse der Proben. In der Mitte bei 2 ist keine Streckung sichtbar. Die Abb. 262-264 sind in der Lage angeordnet, wie sie der Abb. 261 entspricht. Das Streckungsverhältnis c/a der Eisenkörner ist in Tabelle IV angegeben.

Probe II aus demselben Flacheisen wurde in einem Ölbad auf 260 C^o (sogenannte Blauwärme, vgl. 314 und II B) erhitzt und dann sofort, ehe Abkühlung eintrat, über einen Dorn von 10 mm gebogen. Sie bekam sofort am Kerb einen Riß und brach glatt durch, lange bevor die in Abb. 261 dargestellte Krümmung erreicht war. Abb. 265 gibt eine Stelle auf der Zugseite dicht am Kerb in 245 facher Vergrößerung wieder. Das Streckungsverhältnis der Körner ist in Tabelle IV mit angegeben, es beträgt ungefähr 1; d. h. die Körner sind nicht ge-

(296)

267

Tabelle IV.

	Stelle	Abmessu Körner in	ngen der Richtung	Streck-		
one wirrieg, stat stati Street fanderenseler:	all same of the new bios	<i>LL</i> ¹) mm×365	QQ ¹) mm ≫ 365	richtung	c/a	
Kaltbiegeprobe I	1. Zugseite am Kerb 2. Mitte	13,5 11,9 8,3	6,6 11,1 12,6	LL - QQ	2,04 1,07 1,52	
Blauwarmbiegeprobe II	1. Zugseite unmittelbar am Kerb	11,3	11.4	_	1.01	

¹) Die Abmessungen erscheinen mit 365 multipliziert, weil die ursprünglichen Handzeichnungen in 365 facher Vergrößerung angefertigt waren, und in diesen die Abmessungen unmittelbar festgestellt wurden. Die wirkliche Abmessung z. B. an der Stelle 1 bei Probe I in der Richtung LL ist som t 13,5:365 = 0,037 mm = 37μ .

Abb. 262. Kaltbiegeprobe I. Zugseite, Stelle 1.

Abb. 264. Kaltbiegeprobe I. Mitte, Stelle 2.

Abb. 263. Kaltbiegeprobe I. Druckseite, Stelle 3.

Abb. 265. Blauwarmbiegeprobe II. Zugseite dicht am Kerb. (296 - 297)

streckt. Wenn also Streckung auf der Zugseite stattgefunden hat, so kann sie sich nur auf eine sehr geringe Entfernung zu beiden Seiten des Kerbs erstrecken. Das heißt mit anderen Worten, daß an der Formänderung nur ein außerordentlich kleiner Teil des Eisenvolumens teilgenommen hat, im Gegensatz zur Kaltbiegeprobe, wo sich die Formänderung auf ein größeres Eisenvolum ausdehnte.

In Abb. 254 ist die Wirkung des Kaltziehens von kohlenstoffarmem Flußeisendraht auf das Streckungsverhältnis c/a der Eisenkörner mit eingezeichnet. Mit steigendem Grad des Kaltreckens, also mit wachsender Abszisse f_0/f wächst auch das Verhältnis c/a.

297. Durch Glühen oberhalb einer untersten Grenztemperatur t_r , die von der Art des metallischen Stoffes abhängt, lassen sich die durch Kaltrecken erzielten Wirkungen wieder rückgängig machen. Die S- und B-Grenze sowie die Härte werden verringert, die Bruchdehnung wird gesteigert. Die Streckung der den Stoff aufbauenden Körner wird wieder beseitigt.

Bei der Materialauswahl für Bauteile, die bei höheren Temperaturen Dienst leisten müssen, ist die eben genannte Änderung der Festigkeitseigenschaften kaltgereckter metallischer Stoffe durch Erwärmen wohl zu beachten.

Ferner ist das obige Gesetz von hoher technischer Bedeutung für die Bearbeitung metallischer Stoffe durch Kaltrecken. Durch fortgesetzte Annäherung von σ_s an σ_B und Verringerung von δ beim Kaltrecken besteht schließlich die Gefahr, daß das Formänderungsvermögen beim Versuche, das Kaltrecken weiter zu treiben, erschöpft wird, und Bruch eintritt. Um dies zu verhüten, muß nach bestimmten Graden des Kaltreckens Glühen des Metalls eingeschaltet werden. Dadurch wird das ursprüngliche Formänderungsvermögen wieder hergestellt, und man kann aufs neue fortfahren, durch Kaltrecken Formänderung herbeizuführen. Beim Drahtziehen wird ja in der Regel hiervon Gebrauch gemacht. Wie oft Ausglühen während des Kaltreckens zu geschehen hat, und nach welchen größten Formänderungen es vorzunehmen ist, hängt von der Eigenart des Metalls ab.

Die Wirkung des Glühens auf Flußeisendraht (vgl. Abb. 254 und Absatz 295) ergibt sich aus Tab. V.

Vorbehandlung	σ_S at	$\sigma_B^{}$ at	δ ₃₀ ¹) ⁰ / ₀	$\frac{\sigma_S}{\sigma_B} \cdot 100$
Walzdraht vor dem Ziehen und Beizen	•2430	4060	18,77	60
	7380	7680	0,77	96
	2950	4340	18,70	68

Tabelle V.

¹) Meßlänge l = 30 cm.

Abb. 266 zeigt den Einfluß des halbstündigen Glühens bei verschiedenen Wärmegraden auf die Festigkeitseigenschaften des kaltgezogenen Flußeisendrahtes IDI (274 und 275). Als Abszisse sind die Glühtemperaturen t in C⁰, als Ordinaten die Werte von σ_B in at und δ in $^{0}/_{0}$ eingetragen. Man erkennt, daß bis zu 417 C⁰ keine wesentlichen Änderungen der Bruchgrenze und der Dehnung zu verzeichnen sind, dagegen ist bei 616 C⁰ σ_B stark erniedrigt und δ kräftig gehoben. Glühen bei höheren Wärmegraden bis 900 C⁰ bedingt keine weiteren wesentlichen Änderungen der Zahlen für σ_B und δ . In Abb. 266 ist außerdem noch

Abb. 266. Einfluß des Glühens bei verschiedenen Wärmegraden auf die Eigenschaften kaltgezogenen Flußeisendrahtes.

- v: Gewichtsabnahme in Gramm nach 96stündiger Einwirkung von 1 proz. Schwefelsäure.
- $\frac{c}{a}$: Streckungsverhältnis der Eisenkörner.

 σ_B : Bruchgrenze at.

- δ : Bruchdehnung 0/0.
- t: Glühtemperatur Cº.

das Streckungsverhältnis der Eisenkörner c/a eingezeichnet. Auch dieses hat bis 417 C^o keine Änderung erfahren; es hat noch den Wert 1,8 wie im kaltgezogenen

Draht. Bei 616 C^o dagegen ist es auf den Wert 1 gesunken. Die Körner sind nach Glühen bei dieser Temperatur wieder gleichachsig ohne bevorzugte Streckrichtung. Die Änderung der Festigkeitseigenschaften und des Streckungsverhältnisses c/a gehen parallel.

Ich möchte noch auf einen Fall hinweisen, bei dem die Ermittelung des Verhältnisses c/a von Nutzen war. Es handelte sich darum, bei zwei Kupfersorten, die nahezu den gleichen Grad des Kaltreckens durchgemacht hatten, festzustellen, bei welcher niedrigsten Temperatur der Einfluß des Kaltreckens verschwindet. Es wurde zunächst daran gedacht, diesen

Wärmegrad aus dem Verhältnis $\frac{\sigma_S}{\sigma_B}$ · 100 festzustellen, das ja durch das Kaltrecken gesteigert und durch das Glühen wieder

herabgesetzt wird. Leider ging während

Abb. 267.

dieser Versuche das Probematerial aus, und so mußte notgedrungen die Messung des Streckungsverhältnisses c/a herangezogen werden (E. Heyn, L_4 11).

Von den in Form zweier Flachstäbe I und II vorliegenden beiden Kupfersorten wurden im Anlieferungszustand und nach dem Glühen bei verschiedenen Wärme-

graden Quer- und Längsschliffe angefertigt. Gemäß Abb. 267 wurde die der kürzesten Stabseite parallel liegende Richtung mit a, die Achsenrichtung des Stabes mit c und die der längeren Querschnittsseite parallei laufende Richtung mit b bezeichnet. In jedem Querschliff lag somit die Richtung a und b. Die Längsschliffe waren so gelegt, daß in ihnen die Richtungen a und c zu liegen kamen. Die Schlifflächen wurden poliert und mit ammoniakalischem Kupferammoniumchlorid geätzt. An verschiedenen Stellen der Schliffe wurden Handzeichnungen der Körner angefertigt. Unmittelbare Lichtbilder sind für den vorliegenden Zweck nicht geeignet, weil die Korngrenzen erst bei sehr starken Vergrößerungen auf Grund der Ätzfiguren deutlich unterscheidbar sind, bei diesen Vergrößerungen aber das zur Messung gelangende Gesichtsfeld zu klein wird. Zwei solche Zeichnungen sind in den Abb. 268 und 269 in 123 facher Vergrößerung wiedergegeben. Die Werte c/a der Kupferkörner sind in Tabelle VI enthalten. Gleichzeitig sind darin noch die Ergebnisse der Zugproben mit angeführt, soweit die Zahlen festgestellt werden konnten.

Aus Tabelle VI folgt, daß das Kupfer I bei 480 C⁰ bereits so weit geglüht ist, daß die Folgen des Kaltreckens, höheres Verhältnis $\frac{\sigma_S}{\sigma_B}$ ·100 und $\frac{c}{a} > 1$, wieder beseitigt sind. Bei Kupfersorte II genügt Glühen bei 480 C⁰ bei weitem noch nicht, denn sie ergibt $\frac{\sigma_S}{\sigma_B}$ ·100 = 74 (gegenüber 12 bei

Kupfer I) und c/a = 1,35, also von 1 noch stark abweichend. Kurzes Erhitzen bis 500 C^o genügt

wegen des Verhältnisses c/a = 1,4 auch noch nicht. Erst bei Temperaturen zwischen 500 und 660 C^o konnte die Wirkung des Kaltreckens vollständig beseitigt werden; die Körner wurden wieder gleichachsig, da c/a = 0,94 also nahezu gleich 1 geworden ist (vgl. Abb. 269). Die in der Abbildung sichtbaren schmalen Streifen sind keine gestreckten Körner, sondern Zwillingslamellen innerhalb gleichachsiger Körner.

Material	Vorbehandlung	σ_S at	σ_B at	$\frac{\delta_{11,3\sqrt{f}}}{0/0}$	9 º/o	$\frac{\sigma_S}{\sigma_B} \cdot 100$	$\frac{c}{a}$
Flachstab {	Zustand der Einlieferung; kaltgereckt Geglüht bei 480 C ^o ., ,, 660 C ^o	2350 250 n. b.	2560 2130 n. b.	16,6 48 n. b.	34,5 48 n. b.	92 12 n. b.	1,74 1,04 0,97
$\operatorname{Flachstab}_{II}$	Zustand der Einlieferung; kaltgereckt (Abb. 268) Geglüht bei 480 C ^o Bis 500 C ^o erhitzt Bis 600 C ^o erhitzt (Abb. 269)	2270 1770 n. b. n. b.	2480 2390 n. b. n. b.	27,9 30,4 n. b. n. b.	46,5 45 n. b. n. b.	90 74 n. b. n. b.	1,68 1,35 1,40 0,94

Tabelle VI.

Die niedrigste Temperatur t_r , bei der die Wirkung des Kaltreckens soeben beseitigt wird, hängt wesentlich von der Reinheit des Metalles ab. Dies geht aus dem Vergleich der beiden Abb. 270 und 271 hervor. Die erstere (Kudriumow, L_4 12) bezieht sich auf ein kaltgerecktes Metall mit 99.66°/₀ Kupfer, Abb. 271 auf ein kaltgerecktes Elektrolytkupfer von großer Reinheit (Grard, L_4 4). Der Grad des Kaltreckens ist für beide Kupferarten in den Quellen nicht sicher angegeben. Beim Elektrolytkupfer beträgt die Streckzahl f_0/f wahrscheinlich 3,5. In beiden Abbildungen sind die Glühtemperaturen als Abszissen, σ_B , σ_S und δ als Ordinaten eingetragen. In Abb. 271 ist die angegebene Streckgrenze die 0,01-Grenze (287), die Streckgrenze σ_S in Abb. 270 ist in der Quelle nicht definiert; der Verlauf der beiden Linien für σ_S in den beiden Abbildungen ist daher nicht

Abb. 270. Einfluß des Glühens auf die Festigkeitseigenschaften kaltgereckten Kupfers. (Nach Kudriumow.) Kupfer 99,66%.

 $\bigcirc \\ \times \} \text{ langsam, } \bigsqcup_{+} \text{ schnell abgekühlt, } \sigma_s \text{ nicht definiert.}$

Glühdauer 1/2 Stunde. Bei den mit Pfeil bezeichneten Punkten ist die Glühdauer länger; ihr Betrag in Stunden ist beigeschrieben.

(297 - 298)

vergleichbar, da sie jedenfalls zwei verschiedenen Grenzen entsprechen. Die Glühdauer betrug für das 99,66 prozentige Kupfer 1/2 Stunde. In den Fällen, wo die Glühdauer größer war, sind die Punkte in Abb. 270 mit einem Pfeil ausgezeichnet; die neben diesem stehende Zahl gibt die Glühdauer in Stunden an. Für das Elektrolytkupfer in Abb. 271 sind in der Quelle über die Glühdauer keine Angaben gemacht.

Die Wirkung des Kaltreckens wird, wie die Abbildungen erkennen lassen, durch Glühen zwischen zwei Temperaturgrenzen t_u und t_r beseitigt. Für das Elektrolytkupfer liegt t_u bei 100, t_r bei 200 C°; für das Kupfer (99,66°/₀) liegt t_{μ} bei 200 und t_{μ} bei 300 C^o. Unterhalb t_{μ} ist die Wirkung der Erhitzung auf

die Festigkeitseigenschaften kaum bemerkbar; oberhalb t, bewirkt das Glühen keine durchgreifende Änderung mehr. (Auf den geringen Abfall von σ_s und σ_B oberhalb t_r wird in 316 zurückgekommen werden.)

Bei kaltgezogenem Kupferdraht (7,1 mm Durchmesser) von vermutlich sehr unreinem Kupfer fand A. Martens $(L_4 3)$ die in Abb. 272 dargestellten Verhältnisse. Für dieses Kupfer liegt t_{μ} bei 300 C⁰ und t_{r} bei 400 C⁰.

Kaltgereckte Metalle, die bei der Temperatur t_r oder oberhalb dieser geglüht worden sind, wollen wir als "vollständig ausgeglüht" bezeichnen. Wenn das Glühen dagegen nur innerhalb der Grenzen t_{u} bis t_{u} geschieht, so daß die Wirkung des Kaltreckens noch nicht völlig aufgehoben ist, so wollen wir von "teilweise ausgeglühtem" Metall sprechen. Da mit dem Ausglühen auch die Härte des Metalls verkleinert wird, so spricht man auch davon, daß das kaltgereckte (,,harte", hartgezogene, hartgewalzte, hartgehämmerte usw.) durch das Glühen "weich" gemacht wird,

Abb. 272. Einfluß des Glühens auf die Festigkeitseigenschaften kaltgezogenen Kupferdrahtes (7,1 mm Durchm.). (Nach A. Martens.) $\sigma_{\rm S}$: Spannung, bei der die Gesamtverlängerungs-Zunahme für 130 at Spannungszunahme 0,02 mm auf 100 mm Meßlänge beträgt

Glühdauer: 2 Minuten, darauf in Wasser abgeschreckt.

298. Einfluß von Reckgrad und Glühdauer auf die Eigenschaften des kaltgereckten und darauf geglühten metallischen Stoffes. In 276 wurde auf die Möglichkeit hingewiesen, daß die Grenztemperatur t,, bei der die durch Kaltrecken bewirkte Streckung der Metallkörner wieder beseitigt wird, um so tiefer liegen kann, je stärker der Grad des Kaltreckens war. Ob dies tatsächlich eintrifft oder nicht, konnte aus Mangel an Versuchsmaterial nicht entschieden werden. Auch darüber, ob die Temperaturen tu und tr, die auf Grund der Änderung der Festigkeitseigenschaften feststellbar sind, durch den Grad des vorausgehenden Kaltreckens beeinflußt werden, sind mir beweiskräftige Versuchsergebnisse nicht bekannt worden.

Analog dem in 260 über den Einfluß der Zeit und der Temperatur auf das Wachstum der Metallkörner Gesagten ist auch zu erwarten, daß die Zeitdauer des Glühens von kaltgereckten metallischen Stoffen Einfluß auf das Streckungsverhältnis c/a und auf die Festigkeitseigenschaften ausübt. Über den Einfluß

Martens-Heyn, Handbuch II. A.

der Glühdauer auf c/a liegen zurzeit keine Untersuchungsergebnisse vor. Dagegen sind über den Einfluß der Glühdauer auf die Festigkeitseigenschaften kaltgereckten Kupfers Versuche von A. Martens $(L_4 3)$ und von A. Le Chatelier $(L_4 13)$ ausgeführt. Die Ergebnisse sind in den Abb. 273 und 274 zusammengefaßt. Als Abszissen dienen die Glühdauern z in Minuten bzw. Stunden, als Ordinaten die Werte von σ_S , σ_B , δ in Abb. 273 und von σ_B in Abb. 274. Die Glühtemperaturen sind den einzelnen Schaulinien beigeschrieben. Die Streckzahl des ursprünglich kaltgereckten Kupfers ist in beiden Fällen in der Quelle nicht angegeben. Die verwendeten Kupfersorten sind verhältnismäßig unrein. Ihre Analyse ist nicht bekannt. Die Schaulinien, namentlich die in Abb. 274, verlaufen

Abb. 273. Einfluß der Glühhitze und Glühdauer auf die Festigkeitseigenschaften von kaltgezogenem Kupferdraht (7,1 mm Durchm.). (Nach A. Martens.)

analog denen in Abb. 206 und 207 für die Änderung der Korngröße (260), nur daß die Richtung der positiven Ordinaten vertauscht ist.

Auf Grund der in den Abb. 273 und 274 niedergelegten Versuchsergebnisse käme also der Zeitdauer des Glühens ein wesentlicher Einfluß auf den Grad der durch das Glühen bei bestimmten Temperaturen erreichten Wirkung zu. und zwar zeigt sich der Einfluß namentlich bei den niedrigeren Glühtemperaturen.

Bei größeren Werkstücken wird sich der Einfluß der Glühdauer nicht so deutlich zeigen. Taucht man z. B. einen dünnen Draht in ein Wärmebad von genügender Masse, das bei einer bestimmten Temperatur t erhalten wird, so nimmt er sehr schnell die Temperatur des Bades an, und die Zeitdauer, die bis zum Erreichen der Temperatur t nötig ist, kann vernachlässigt werden gegenüber der Zeitdauer des Verweilens im Bade. Hat dagegen das zu erhitzende Werkstück gegenüber dem Wärmebade eine große Masse, so ist der Versuch praktisch gar nicht mehr durchführbar, da ja die Zeit, die vergeht, um den Körper von der Temperatur der Umgebung auf die Temperatur t zu bringen, einen wesentlichen (298 - 299)

Teil der Glühdauer ausmacht, außerdem durch die Masse der eingetauchten Probe die Temperatur t des Bades unter t herabgedrückt wird.

Es besteht noch die Möglichkeit, daß bei allen, oder wenigstens bei einigen Metallen auch bereits bei gewöhnlicher Temperatur Glühwirkung ausgeübt wird, daß aber die entsprechende Schaulinie in den Abb. 273 und 274 sich nur sehr

wenig und erst nach sehr langer Zeit merkbar unter den Anfangspunkt senkt. A. Le Chatelier hat diesen Vorgang als "freiwilliges Ausglühen" bezeichnet. Vielleicht ist der Ausdruck "freiwilliges Entrecken" für diese Wirkung vorzuziehen; sie ist der Wirkung des Kaltreckens entgegengesetzt und sucht diese aufzuheben. Das früher festgestellte Fehlen der Streckung der Körner bei kaltgerecktem Blei und Zinn deutet darauf hin, daß der Vorgang des "freiwilligen Entreckens" bei diesen Metallen recht erhebliche Beträge erlangen kann und wahrscheinlich mit großer Geschwindigkeit bereits während des Kaltreckens einsetzt. Bei Metallen wie Kupfer, Eisen usw. kann der Betrag der Eigenschaftsänderung durch "freiwilliges Entrecken" nur sehr gering sein und erst nach langer Zeitdauer eintreten. Be-

Abb. 274. Einfluß der Glühhitze und Glühdauer auf die Festigkeitseigenschaften kaltgereckten Kupfers. (Nach A. Le Chatelier.) Kupfer unrein. Vermutlich kaltgezogener Draht.

weiskräftige Versuche liegen hierüber nicht vor. Gewisse Änderungen können zwar festgestellt werden; es ist aber möglich, daß sie mehr die Folge einer teilweisen Beseitigung von Spannungen im kaltgereckten Metall, als eine Folge einer teilweisen Annäherung des metastabilen an das stabile Gleichgewicht sind (301 und 307).

299. Veränderung des spezifischen Gewichts infolge Kaltreckens. Durch die Arbeiten Springs (L_4 14) Grunmachs (L_4 15), Kahlbaums und Sturms (L_4 16) ist festgestellt, daß Kaltrecken das spezifische Gewicht der überwiegenden Mehrzahl der metallischen Stoffe verringert, vorausgesetzt, daß die Stoffe vor dem Kaltrecken frei von Hohlräumen waren, also den Dichtigkeitsgrad 1 besaßen. Es ist hierbei gleichgültig, ob das Kaltrecken durch Kaltziehen, Kaltpressen, Kaltwalzen, Kaltschmieden usw. oder gar durch Pressung unter allseitigem Druck erfolgt. Durch das Kaltrecken wird sonach das Gesamtvolumen des metallischen Stoffes um einen bestimmten Betrag vergrößert, während darauffolgendes Glühen oberhalb einer bestimmten Temperatur das Volumen wieder vermindert, das spezifische Gewicht also wieder erhöht.

Daß bei Dichtigkeitsgraden kleiner als 1 (also bei Vorhandensein von Hohlräumen, I, 21 bis 22) die Wirkung der Verkleinerung dieser Hohlräume, die auf Steigerung des spezifischen Gewichts hinwirkt, und die Wirkung des Kaltreckens,

Die Festigkeitseigenschaften und die Härte.

die das Gegenteil anstrebt, sich überdecken können, ist einleuchtend. Um diese störende Wirkung auszuschalten, vergleicht man zweckmäßig das spezifische Gewicht des kaltgereckten Stoffes s mit dem des kaltgereckten und geglühten s_0 . In Tab. VII ist eine Übersicht über die von Kahlbaum und Sturm erhaltenen Versuchsergebnisse enthalten. Als Ergänzung zu den in dieser Tabelle mitgeteilten Werten können die von E. Heyn und O. Bauer (L_4 17) für Eisen gefundenen Ergebnisse dienen. Sie beziehen sich auf kaltgezogenen Flußeisendraht ID (274 und 275) und sind in Abb. 275 schaubildlich dargestellt. Als Abszissen sind die

s: Kaltgereckt. so: Nach dem Kaltrecken 1/2 Stunde bei 900 C° geglüht.

Streckzahlen f_0/f der verschieden weit heruntergezogenen Drähte, als Ordinaten die spezifischen Gewichte verwendet. Die Streckzahl 1 entspricht dem ursprünglichen Walzdraht von 5,22 mm Durchmesser. Aus diesem sind ohne zwischengeschaltetes Glühen Drähte auf folgende Durchmesser kaltgezogen: 3,65, 3,10, 2,65, 2,25, 1,90, 1,60, 1,40, 1,25 mm. Die spezifischen Gewichte aller dieser Drähte einschließlich des Walzdrahtes wurden vor und nach dem Glühen bestimmt. Das Glühen geschah 1/2 Stunde bei 900 C^o unter möglichstem Ausschluß von Luft. Die Oberfläche der geglühten Drähte wurde vor der Ermittelung des spezifischen Gewichts abgeschmirgelt, um etwaige Oberflächenänderungen des Metalls infolge des Glühens zu beseitigen. Der mittlere Fehler der Einzelbestimmung des spezifischen Gewichts beträgt durchschnittlich + 0,003.

Abb. 275 lehrt, daß das spezifische Gewicht s_0 der geglühten Drähte (gestrichelte Linie) durchweg oberhalb des spezifischen Gewichts *s* der kaltgezogenen Drähte (ausgezogene Linie) liegt. Der Verlauf der Linie für *s* ist zwar unregelmäßig; im allgemeinen hat die Linie aber doch Neigung, vom Walzdraht $(f_0/f=1)$ nach dem dünnsten Draht hin $(f_0/f=17,43)$ abzufallen. Die Unregelmäßigkeiten sind wahrscheinlich auf den ungleichförmigen Grad des Kaltreckens innerhalb der einzelnen Schichten der Drähte zurückzuführen.

Zur Erläuterung des Einflusses der Glühtemperatur auf die Änderung des spezifischen Gewichtes kaltgereckten Materials wurde einer der kaltgezogenen Eisendrähte der obengenannten Gruppe mit 1,25 mm Durchmesser bei den verschiedenen in Abb. 276 als Abszissen gegebenen Temperaturen 1/2 Stunde lang geglüht. Die erhaltenen Werte von s_0 sind als Ordinaten verwendet. Das spezifische Gewicht s_0 des Eisendrahtes steigt mit wachsender Glühtemperatur an; der Anstieg beginnt bereits bei sehr niedrigen Wärmegraden. Zwischen 700 und 900 C⁰ scheint er etwas rascher vor sich zu gehen, als bei niedrigeren Temperaturen. Die mittleren Fehlergrenzen der spezifischen Gewichtsbestimmung für die

(299)

	Nach Kan	IDaum und Stur		and consider	entreback Appres
Metall	Art des Kaltreckens	Art des Glühens	Spezifiso wio	$\frac{s_0-s}{s_0}\cdot 100$	
			8 ⁶)	80 ⁷)	
Werkplatin	Kaltgezogener Draht Verwunden ¹)	Weißglut "	21,4152 21,4024	21,4316 21,4284	0,07 0,12
Reinplatin	Draht Verwunden ¹)	25 27	21,4133 21,3985	21,4403 21,4312	0,1 3 0,15
Platiniridium	Draht Verwunden ¹)	57 59	21,4766 21,3150	21,4938 21,3309	0,08 0,07
Gold	Draht Verwunden ¹)	>> >>	19,2504 19,2220	19,2601 19,2324	0,05 0,05
Aluminium	Draht Blech	470 C ^o 470 C ^o	2,6995 2,7107	2,7030 2,7132	0,13 0,09
Kadmium	Draht	270 C ^o	8,6379	8,6434	0,06
Nickel	Draht Verwunden ¹)	Rotglut, Vac. ²)	8,7599 8,8273	8,8439 8,8412	0,95? 0,16
Eisen	Klavierdraht	800 C ⁰ Vac. ²)	[7,7772]	[7,7970]	[0,25]
K upfer a) ³)	Draht	In Stickstoff	8,8633 8,8609	8,8769 8,8772	0,15 0,18
"b) ⁴)	""	" { 350 C ⁰ Vac. Hellrotglut, Vac.	8,8648 8,8502 8,8845 8,8998	8,8649 8,8593 8,8861 8,9028	0,00 0,10 0,02 ⁸) 0,03 ⁸)
" c) ⁵)	27 27 27 27 27 27 27 27 27 27 27 27 27 2	In Stickstoff	8,8406 8,8498 8,8305 8,8322	8,8411 8,8520 8,8313 8,8324	0,01 0,02 0,01 0,00
Zinn	kaltgewaltzter Draht	$ \begin{array}{c} 10 \text{ Min. } 200 \text{ C}^{0} \\ \text{Vac.}^{2} \end{array} \right\} $	7,2840 7,2807 7,2833	7,2840 7,2816 7,2838	0,00 0,01 0,01
Aluminiumbronze 4,7% Al	Draht	10 Min. 800 C ⁰ { Vac. ²)	8,2286 8,2188	8,2388 8,2366	0,12 0,22
Woods Metall, Bi: 50, Pb: 25, Cd: 12,5, Sn: 12,5 %	Zu Draht gepreßt durch Matrize bei 10 000 at	³ / ₄ —1 Stunde in sied. Aceton	9,6659 9,6658	9,6760 9,6756	0,10 0,10

Tabelle VII. hlhoum und Sti T2

1) Geglühter Draht verwunden bis zum Bruch.

²) Luftleere.

- ³) Konverterkupfer, raffiniert: Cu: 99,92, Ag: 0,02, Ni: 0,04, Fe: 0,02.
- 4) Elektrolytkupfer.
- ⁵) Werkkupfer. Zusammensetzung unbekannt.
 ⁶) Spezifisches Gewicht des kaltgereckten Stoffes.
- 7) Spezifisches Gewicht des kaltgereckten und geglühten Stoffes.
- 8) Gewecke, L4 18.

einzelnen in Abb. 276 eingezeichneten Punkte sind durch die schraffierte Fläche angedeutet. Um Betrachtungen über die Gründe des Verlaufs der Schaulinie in Abb. 276 anzustellen, erscheint das Versuchsmaterial noch nicht ausreichend, zumal beim Eisen leicht störende Nebenerscheinungen (Austreiben von Gasen, Entkohlung, Gasaufnahme, Ungleichmäßigkeiten in der Abkühlung nach dem Glühen

Abb. 276. Flußeisen ID8. Einfluß der Erhitzung auf das spezifische Gewicht des kaltgezogenen Drahtes.

und infolgedessen unvollkommene Gleichgewichte) vorkommen können. Um besseren Einblick in die Verhältnisse zu gewinnen, würden wohl Versuche mit edlen Metallen auszuführen sein.

300. Ursachen der Verminderung des spezifischen Gewichts durch Kaltrecken. Kahlbaum und Sturm (a. a. O.) kommen zu dem Schluß, daß die Veränderung des spezifischen Gewichts beim Kaltrecken "die Folge einer durch mechanische Einwirkung veranlaßten Änderung des molekularen Aufbaus der Stoffe ist, der allem Anschein nach zu allotropen Modifikationen führt".

Ich kann mich dieser Ansicht nicht ohne weiteres anschließen. Es kommen für die Verringerung des spezifischen Gewichts durch Kaltrecken noch andere Umstände in Frage.

Denken wir uns einen Stab aus einer vollkommen bildsamen Masse, wie z. B. Kitt. Er werde durch äußere Kräfte gereckt, beispielsweise durch Pressen unter Verminderung des Querschnitts. Solange der Stoff vollkommen bildsam ist, wird die innere Reibung der Teilchen beim Recken unter Umwandlung von Arbeit in Wärme überwunden. Der Vorgang ist hierbei wie in allen Fällen, in denen Arbeit durch Reibung in Wärme übergeht, nicht umkehrbar. Änderung der Dichte ist nicht zu erwarten, solange der Stoff vor dem Recken vom Dichtigkeitsgrad 1 ist. Die durch das Recken vergrößerte Länge des Stabes wird nach Aufhören der äußeren Kräfte beibehalten; es wird keine potentielle Energie in dem gereckten Körper aufgespeichert. Wir wollen eine solche bleibende Formveränderung, die diese Bedingungen erfüllt, eine rein plastische Formänderung nennen. Der Gegensatz dazu ist eine rein elastische Formänderung, wie sie z. B. eine Schraubenfeder aus Stahl unter der Einwirkung einer die Streckgrenze des Materials nicht überschreitenden Beanspruchung erleidet. Sie ist vollkommen um-Nach Aufhören der äußeren Kräfte nimmt die Feder wieder ihre kehrbar. ursprüngliche Länge an.

Die Metalle sind rein plastischer Formänderung nicht fähig; plastische Formänderungen sind bei ihnen stets von elastischen begleitet, wenn auch die Größenordnung der letzteren gegenüber der der plastischen Formänderungen sehr klein sein kann. Beim Kaltrecken eines metallischen Stoffes muß also außer der (300)

bleibenden Formänderung noch elastische Formänderung erzielt werden. Beim Drahtziehen werden z. B. die einzelnen Teilchen des Stoffes um einen gewissen Betrag elastisch gestreckt. Nach Aufhören der das Recken verursachenden Kräfte wird ein Teil dieser elastischen Formänderung wieder rückgängig werden, ein anderer Teil kann aber infolge der Reibungswiderstände, die sich dem Zurückgehen der elastisch gestreckten Teilchen in die Gleichgewichtslage entgegenstellen, im kaltgereckten Metall verbleiben.

Man kann sich den Vorgang durch folgenden Vergleich grob versinnlichen: In eine Stange aus plastischem Kitt denke man sich viele kleine Schraubenfedern aus einem elastischen Stoff eingebettet. Die Stange werde durch Pressen unter Vergrößerung der Länge auf einen kleineren Querschnitt gebracht, also gereckt. Die Schraubenfedern werden hierbei elastisch gedehnt. Hört die äußere Kraft auf zu wirken, so gehen die Federn um einen bestimmten Betrag zurück, können aber wegen der Reibung ihrer Windungen an dem plastischen Füllmaterial nicht vollständig in ihre Gleichgewichtslage zurückgehen, sondern bleiben um einen bestimmten Betrag elastisch gestreckt. Diesem Betrag entspricht ein bestimmtes Maß von potentieller Energie, das in dem gereckten Stoffgemisch aufgespeichert wird. Das aus dem plastischen Kitt und den elastischen Federn gebildete System befindet sich dann in einem metastabilen Gleichgewichtszustand; es strebt dem stabileren zu, bei dem die Federn entspannt sind, bei dem also der Betrag an potentieller Energie seinen Mindestwert hat. Diesem Streben kann das System nur nachkommen, wenn die Reibung zwischen Federn und Füllmasse vermindert wird. Dem verminderten Betrag der Reibung entspricht ein neues metastabiles Gleichgewicht entsprechend einer um ein bestimmtes Maß verminderten Spannung der Federn.

Überträgt man den Fall auf ein kaltgerecktes Metall, so haben wir nicht, wie bei dem oben besprochenen System aus Kitt und Federn, zwei verschiedene Stoffe, einen plastischen und einen federnden, sondern wir haben es mit einem einzigen Stoff zu tun, der aber beide Formänderungsarten, plastische sowohl wie elastische, zuläßt. Wir haben also nur eine Phase, die aber wegen des noch nicht erreichten stabilen Gleichgewichts an verschiedenen Stellen verschiedene Mengen von Energie besitzt. Der Fall liegt ähnlich wie in einem Stück Eisen, das an verschiedenen Stellen ungleiche Temperaturen besitzt, weil das Temperaturgleichgewicht noch nicht erreicht ist. Das reine Eisen besteht aus einer einzigen Phase, dem Ferrit, der aber hier an verschiedenen Stellen verschiedene Beträge von Energie enthält.

Wird in einem solchen kaltgereckten, also in metastabilem Gleichgewicht befindlichen metallischen Stoff durch Erwärmen die Reibung der einzelnen Teilchen vermindert, so können sich die elastisch gestreckten Teilchen um einen entsprechenden Betrag dem stabilen Gleichgewicht nähern. Bei genügend großer Erwärmung kann die innere Reibung soweit abgeschwächt werden, daß das stabile Gleichgewicht erreicht wird, die elastisch gestreckten Teilchen völlig entspannt werden, und der entsprechende Betrag an potentieller Energie verschwindet.

Sind nun aber in einem kaltgereckten Metall elastisch gedehnte Teilchen vorhanden, so ist damit auch eine Verringerung des spezifischen Gewichts verbunden. Wir denken uns der Einfachheit halber ein solches Teilchen stabförmig von der Länge l und dem Durchmesser d. In der Längsrichtung sei es um den Betrag ε , bezogen auf die Längeneinheit, elastisch gestreckt. Die elastische Verlängerung des Stäbchens ist dann εl . Gleichzeitig wird wegen der Querdehnung der Durchmesser d um den Betrag $\frac{\varepsilon d}{m}$ vermindert, wobei $\frac{1}{m}$ etwa den Wert 0,3 besitzt.

(300 - 301)

Vor der elastischen Streckung war das Volumen des Stäbchens $V_0 = \frac{\pi}{4} d^2 l$; nach der elastischen Streckung $V = \frac{\pi}{4} (l + \varepsilon l) (d - 0.3 \varepsilon d)^2$. Mithin ist $\frac{V}{V_0} = (1 + \varepsilon) (1 - 0.3 \varepsilon)^2$,

woraus man unter Vernachlässigung der höheren Potenzen der sehr kleinen Zahl ϵ die Beziehung

$$\frac{V}{V_0} = 1 + 0,4 \varepsilon$$

erhält. Demnach muß das Verhältnis der spezifischen Gewichte s_0 vor dem elastischen Anspannen des Stäbchens und s nach dem Anspannen sein

Da nun sehr viele solcher Stäbchen in dem kaltgereckten Metall verteilt liegen, so muß auch das spezifische Gewicht des kaltgereckten Stoffes kleiner sein, als das des nicht kaltgereckten. Für den Fall, daß durch das Glühen des kaltgereckten Stoffes keine anderen Wirkungen hervorgebracht werden, als die Aufhebung der elastischen Spannungen im Material infolge der Verminderung der inneren Reibung und unter der Voraussetzung, daß der Stoff den Dichtigkeitsgrad 1 vor dem Kaltrecken besaß, muß nach dem Glühen des kaltgereckten Stoffes das spezifische Gewicht gleich dem vor dem Kaltrecken s_0 sein. In diesem Falle gibt s/s_0 auch das Verhältnis des spezifischen Gewichtes des kaltgereckten zu dem des kaltgereckten und vollständig geglühten Materials an.

Es kann nun auch nicht wundernehmen, daß die Verringerung des spezifischen Gewichts *s* durch Kaltrecken eintritt, gleichgültig, ob dieses durch Strecken, Stauchen, Biegen, Ziehen, Hämmern, Pressen, Walzen usw. geschieht. Selbst beim Zusammendrücken eines prismatischen Probekörpers durch Druck auf zwei parallele, einander gegenüberliegende Flächen werden die Teilchen senkrecht zur Druckrichtung gestreckt (272, 296). Man kann überhaupt keine bleibende Formänderung erzielen, ohne daß gewisse Teilchen gestreckt werden. Die dadurch bedingten elastischen Anspannungen müssen also immer auf Verminderung des spezifischen Gewichts hinwirken.

Die oben dargelegte Anschauung schließt natürlich nicht aus, daß außerdem noch allotropische Änderungen in den kaltgereckten Metallen vorkommen können. Es ist aber kein Grund dafür vorhanden, solche allotrope Umwandlungen als die ausschließliche Ursache der Verminderung des spezifischen Gewichts durch Kaltrecken anzunehmen.

β) Eigenspannungen in kaltgereckten metallischen Stoffen¹).

301. Erläuterung des Begriffs "Eigenspannung". Drei Schraubenfedern I, I', II (beispielsweise aus Stahl) mögen im ungespannten Zustand die Länge l_1 (Federn I und I') und l_2 (Feder II) haben, wie in Abb. 277 angedeutet. Befestigt man die Federn an zwei Querhäuptern QQ, wie in Abb. 278, so sind sie gezwungen, die gleiche Länge l anzunehmen, die größer als l_1 und kleiner als l_2 ist. Die Folge davon ist, daß die Federn I und I' elastisch gestreckt sind also unter Zugspannungen stehen, während die Feder II elastisch zusammen-

¹⁾ Nach E. Heyn und O. Bauer, L₄ 19.

Der Einfluß der Vorbehandlung auf Festigkeit, Härte usw.

gedrückt wird und somit Druckspannung erhält. Die beiden gezogenen Federn I und I' sind bestrebt, die Entfernung l der Querhäupter Q zu verringern, und zwar jede mit einer Kraft P_1 , während die gedrückte Feder II umgekehrt das Bestreben hat, die Entfernung l zu vergrößern, und zwar mit einer Kraft P_2 . In der Gleichgewichtslage muß sein

$$P_1 + P_1 - P_2 = 0.$$

In dem ganzen aus den drei Federn und den beiden Querhäuptern bestehenden System bestehen also Spannungen, ohne daß äußere Kräfte auf das System

einwirken. Ein ähnlicher Fall ist bei der Violine verwirklicht. Hierbei entspricht der Violinenboden der gedrückten Feder II, die Saiten entsprechen den gezogenen Federn I und I'.

Wir wollen ein solches System, dessen einzelne Teile unter Spannungen stehen, ohne daß es der Wirkung äußerer Kräfte ausgesetzt ist, als mit "Eigenspannungen behaftet" bezeichnen.

a) Schneiden wir in dem mit Eigenspannungen behafteten System der Abb. 278 die beiden Zugfedern I und I' entzwei, so werden sich die beiden Querhäupter QQ, die bisher den Abstand l besaßen, sofort bis auf den Abstand $l_2 > l$ voneinander entfernen.

b) Wären drei im spannungslosen Zustand gleichlange Federn I, I', II durch Querhäupter miteinander verbunden worden, so würde ein System ohne Eigenspannung vorliegen. Schneidet man hier die beiden Federn I und I' durch, so bleibt die Entfernung l der beiden Querhäupter unverändert.

c) Läge der Fall umgekehrt wie in Abb. 278, d. h. wären I und I' zwei Federn von gleicher Länge l_1 (im ungespannten Zustand) und l_1 größer als die Länge l_2 der ungespannten Feder II, so würde wiederum ein System mit Eigenspannungen vorliegen, bei dem die Federn I und I' auf Druck,

die Feder II auf Zug beansprucht würden. Nach dem Durchschneiden der beiden Federn I und I' würde jetzt wieder Änderung des Abstandes l der Querhäupter eintreten. Die neu angenommene Länge würde kleiner als l, nämlich gleich l_2 werden.

Betrachten wir eine Metallstange von kreisförmigem Querschnitt und der Länge l, wie in Abb. 279. Ist diese frei von Eigenspannungen, so müßte nach dem Abdrehen des Teiles I die Länge l unverändert bleiben. Wir hätten den Fall b. Vorausgesetzt ist, daß die Messung der Länge vor und nach dem Abdrehen bei gleicher Temperatur erfolgt. Da beim Abdrehen Wärme erzeugt wird, so bedingt dies, daß nach dem Abdrehen genügend lange Zeit gewartet wird, bis der Stab wiederum die Temperatur vor dem Abdrehen angenommen hat.

Wird dagegen nach dem Abdrehen des Teiles I die Länge des übrigbleibenden Stabteiles II größer als die ursprüngliche Länge l des ganzen Stabes, so liegt Fall a vor. Im ursprünglichen Stabe stand dann der Teil I unter Zug-, der Teil II unter Druckspannungen.

Falls nach dem Abdrehen des Teiles I die Länge des übrigbleibenden Stabteiles II kleiner wird, als die ursprüngliche gemeinschaftliche Länge l, so

(301)

. . . . (2)

haben wir den Fall c, d. h. vor dem Abdrehen stand Teil I unter Druck, Teil II unter Zug.

302. Verfahren zur Messung der Größenordnung der Spannungen. Die obige Überlegung gibt ein Mittel an die Hand, um durch Messung der Längenänderung des Stabes vor und nach dem Abdrehen festzustellen, ob in dem ursprünglichen Stab Eigenspannungen vorhanden waren oder nicht. Wir können mit dem Verfahren auch ein Bild von der Größe dieser Spannungen erhalten.

Es werde bezeichnet: der Querschnitt des abgedrehen Teiles 1 in Abb. 280 mit f_1' , der des übriggebliebenen Stabteiles nach dem Abdrehen von 1 mit f_1'' , die Eigenspannung, die in dem Teil 1 im ursprünglichen nicht abgedrehten Stab vorhanden war, mit σ_1 , die Eigenspannung im Teil 2 ebenfalls im ursprünglichen Zustand mit σ_2 , wobei ein positiver Wert von σ Zug-, ein negativer Druckspannung bedeutet, ferner mit l_1 die Länge des Stabes nach dem Abdrehen des Teiles 1 und mit l die ursprüngliche Länge des Stabes vor dem Abdrehen. Wir nehmen an, daß l_1 größer als l ist, daß sich also der Stab nach dem Abdrehen ausgedehnt hat. Es muß dann Teil 1 im nicht abgedrehten Stab unter Zug, der übrige Stabteil unter Druck gestanden haben. Durch das Abdrehen ist in dem System die Kraft $f'_1 \sigma_1$ weggefallen, die bewirkte, daß sich der Stabteil mit dem Querschnitt f''_1 um den Betrag $l_1 - l$ elastisch verkürzt hatte. Dieser Verkürzung entspricht

die Spannung

 $\sigma = E \cdot \frac{l - l_1}{l},$

 $f_1'\sigma_1 + f_1''\sigma = 0,$

 $f_1'\sigma_1 + f_1''E \cdot \frac{l-l_1}{l} = 0$

 $\sigma_1 = E \frac{f_1''}{f_1'} \cdot \frac{l_1 - l}{l} \quad \dots \quad$

wenn E der Elastizitätsmodul des Stabmaterials ist.

Die Gleichgewichtsbedingung erfordert, daß

mithin

Abb. 280.

 σ_1 ist Zugspannung, wenn l_1 größer ist als l, und Druckspannung, wenn l_1 kleiner als l.

Zu bemerken ist, daß σ_1 nur die mittlere Spannung im Teil 1 angibt. Die Spannung braucht nicht gleichmäßig über den Querschnitt f_1' verteilt zu sein. Man wird daher, um die Spannungsverhältnisse in einem solchen Stab möglichst vollkommen kennen zu lernen, zunächst nur eine sehr dünne Oberflächenschicht 1 abdrehen und die mittlere Spannung in dieser nach der obigen Gleichung ermitteln.

Alsdann wird eine zweite Schicht 2 von dem Querschnitt f_2' abgedreht, so daß der Querschnitt des nun übrigbleibenden Stabteiles f_2'' ist. Die nach dem Abdrehen von 1 und 2 erhaltene Länge des Stabrestes sei l_2 . Im ursprünglichen, nicht abgedrehten Stabe habe geherrscht: über den Querschnitt f_2' die Spannung σ_2 , über den Querschnitt f_2'' die mittlere Spannung σ . Es ist dann

$$\sigma = E \cdot \frac{l - l_2}{l}$$

und die Gleichgewichtsbedingung ergibt:

$$f_{1}'\sigma_{1} + f_{2}'\sigma_{2} + f_{2}''\sigma = 0$$

$$f_{1}'\sigma_{1} + f_{2}'\sigma_{2} + f_{2}''E\frac{l-l_{2}}{l} = 0.$$

(302 - - 303)

Der Einfluß der Vorbehandlung auf Festigkeit, Härte usw.

Setzt man für σ_1 den Wert aus Gl. 2 ein, so findet man:

Ist nach dem Abdrehen der dritten Schicht 3 vom Querschnitt f_3' die Länge des übrigbleibenden Stabteiles l_3 , sein Querschnitt f_3'' und die im nicht abgedrehten Stabe in ihm herrschende mittlere Spannung σ , so gilt:

$$f_1'\sigma_1 + f_2'\sigma_2 + f_3'\sigma_3 + f_3''\sigma = 0$$

$$\sigma = \frac{E}{l} (l - l_3),$$

und nach Einsetzen der Werte für σ_1 und σ_2 aus den Gl. 2 und 3:

Ist allgemein der Querschnitt der *n*ten abgedrehten Schicht f'_n , derjenige des nach Abdrehen der *n*ten Schicht übrigbleibenden Stabteiles f''_n , die Länge dieses Teiles l_n , so erhält man die mittlere Spannung σ_n , die im ursprünglichen Stabe in der *n*ten Schicht mit dem Querschnitt f'_n geherrscht hat, wie folgt:

Die Spannung σ in dem nach der letzten Abdrehung übrigbleibenden Teile war dann im nicht abgedrehten Stabe

Alle Spannungen sind Zugspannungen, wenn ihre Werte positiv, Druckspannungen, wenn ihre Werte negativ sind.

303. Ausgeführte Spannungsmessungen nach dem obigen Verfahren. Zur Untersuchung gelangte eine kaltgezogene Rundstange aus 25 prozentigem Nickelstahl, wie er zuweilen für Dampfturbinenschaufeln benutzt wird, und eine kaltgezogene Sechskantstange aus Schweißeisen.

Die Ergebnisse beweisen, daß in den beiden kaltgezogenen Materialien sehr erhebliche Eigenspannungen enthalten sind. Solche vom Kaltrecken herrührende Spannungen wollen wir kurz als "Reckspannungen" bezeichnen.

a) Nickelstahlstange. Der Stahl hatte die Zusammensetzung:

Nickel	25,,	Phosphor	0,012
Kohlenstoff	0,3,	Schwefel	0,022
Silizium	0,2,	Kupfer	0,07
Mangan	0.7.	why warding the	

Die Rundstange war von 34 mm Durchmesser auf 31 mm kaltgezogen, was

einer Streckzahl $\frac{\frac{\pi}{4} \cdot 34^2}{\frac{\pi}{4} \cdot 31^2}$ = 1,2 entspricht. Von der Stange wurden zwei Abschnitte

I und II von je 200 mm Länge untersucht. Abschnitt I befand sich im ursprünglichen kaltgezogenen Zustande, Abschnitt II war nach dem Kaltziehen 1 Stunde lang bei 850 C^o ausgeglüht und langsam abgekühlt worden.

283

					and the second sec	the second s		
2	3	4	5	6	7	8	9	10
Durch- messer des Stabes nach der <i>n</i> ten Abdrehung	fn'	fn"	Abstand der Marken a und b nach der n ten Ab- drehung	Verlängerung des Stabes zwischen den Marken <i>a</i> und <i>b</i> nach der <i>n</i> ten Ab- drehung	Abstand der Marken a' und b' nach der n ten Ab- drehung	Verlängerung des Stabes zwischen den Marken a' und b' nach der n ten Ab- drehung	Mittelwert aus Spalten 6 und 8 $l_n - l$	σ_n Spannung in der <i>n</i> ten Schicht des ursprüng- lichen Stabes
cm	qcm	qcm	cm	em	cm	em	em	at
3,1	0,000	7,548	13,56236	_	13,4924-		· · · · · · · · · · · · · · · · · · ·	
3,0	0,479	7,069	13,56429	$+0,0019_{3}$	13,4931,	$+0.0006_{5}$	$+0.0012_{\circ}$	+2910
2,9	0,464	6,60 ₅	$13,5657_1$	$+0,0033_{5}$	13,4951	$+0,0026_{2}$	+0.0029	+3510
2,8	0,447	6,158	13,56631	$+0,0039_{5}$	13,49656	$+0,0040_{0}$	$+0.0040_{0}$	+1715
2,7	0,432	5,726	13,56769	$+0,0053_{3}$	$13,4979_2$	$+0,0054_{5}$	+0.0053	+2160
2,6	0,417	5,309	13,56915	$+0,0067_{9}$	13,49973	$+0,0072_{6}$	$+0.0070_{0}$	+2350
2,5	0,400	4,909	$13,5705_4$	$+0,0081_{8}$	13,50035	$+0,0078_{8}$	$+0.0080_{2}$	+ 820
2,4	0,385	4,524	13,57147	$+0,0091_{1}$	13,5017,	$+0.0093_{\circ}$	+0.0092,	+ 890
2,3	0,369	4,155	13,57258	$+0,0102_{2}$	13,50286	$+0,0103_{\circ}$	$+0.0103_{0}$	+470
2,2	0,354	3,801	13,57341	$+0,0110_{5}$	13,50361	$+0.0111_{4}$	$+0.0110_{0}$	- 280
2,1	0,337	3,464	13,57452	$+0,0121_{6}$	13,5042,	$+0.0118_{0}$	$+0.0119_{\circ}$	- 300
2,0	0,322	3,142	13,57656	$+0,0142_0$	13,50606	$+0,0135_{\circ}$	$+0.0139_{\circ}$	+1030
1,85	0,454	2,688	13,57789	$+0,0155_{3}$	13,5075,	$+0.0151_{1}$	+0.0153	- 840
1,67	0,498	2,190	13,5801,	$+0,0178_{3}$	13,5093	$+0.0168_{7}$	+0.0173-	- 980
1,3	0,863	1,327	13,58453	$+0,0221_7$	13,5136	$+0.0211_{-}$	$+0.0216_{-}$	- 1640
1,04	0,478	0,849	13,58780	$+0,0254_{4}$	13,5168,	$+0.0243_{5}$	+0.0249	- 2440
0,00	0,849	0,000		_ *				-3810
	$\begin{array}{c} 2\\ Durch-messer des Stabes nach der n ten Abdrehung cm\\ \hline 3,1\\ 3,0\\ 2,9\\ 2,8\\ 2,7\\ 2,6\\ 2,5\\ 2,4\\ 2,5\\ 2,4\\ 2,3\\ 2,2\\ 2,1\\ 2,0\\ 1,8_{5}\\ 1,6_{7}\\ 1,3\\ 1,0_{4}\\ 0,0_{0}\\ \end{array}$	$\begin{array}{c c} 2 & 3 \\ \hline & & \\ Durch- \\ messer des \\ stabes nach \\ der n ten \\ Abdrehung \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Abschnitt II. Geglüht.

0 1 2 3 4 5	$\begin{array}{c} 3,1\\ 2,9\\ 2,5\\ 2,0\\ 1,5\\ 1,0\\ 0,0 \end{array}$	$0,00_{0}$ $0,94_{3}$ $1,69_{6}$ $1,76_{7}$ $1,37_{5}$ $0,98_{2}$ 0.78_{5}	$7,54_8$ $6,60_5$ $4,90_9$ $3,14_2$ $1,76_7$ $0,78_5$ 0.00_2	$\frac{13,5428_0}{13,5427_8}\\ \frac{13,5427_8}{13,5428_6}\\ \frac{13,5436_2}{13,5440_0}\\ \frac{13,5430_4}{13,5430_4}$	$- \\ - 0,0000_2 \\ + 0,0000_6 \\ + 0,0008_2 \\ + 0,0012_0 \\ + 0,0002_4$	$\frac{13,6814_4}{13,6815_2}\\ \frac{13,6815_2}{13,6816_8}\\ \frac{13,6825_4}{13,6827_8}\\ 13,6827_8$	$\begin{array}{c} - \\ + 0,0000_8 \\ + 0,0001_2 \\ + 0,0011_0 \\ + 0,0013_4 \\ + 0,0013_4 \end{array}$	$\begin{array}{c} - \\ + 0,0000_3 \\ + 0,0001_5 \\ + 0,0009_6 \\ + 0,0012_7 \\ + 0,0007_9 \end{array}$	++++	30 50 200 85 250
in the state	0,0	0,785	0,000	-						120

Die Form und die Abmessungen der Abschnitte I und II ergeben sich aus Abb. 281. Bei a, b, a' und b' wurden auf vorher glatt gehobelten und geschliffenen Flächen Linienkreuze eingeritzt. Die Abstände der Marken ab und a'b'wurden mittels Komparator gemessen. Sie waren bei

Abschnitt I zwischen a und b: 13,5623, und zwischen a' und b': 13,4924, cm ,, II ,, a ,, b: 13,5428, ,, ,, a' ,, b': 13,6814, ,,

Die Abdrehungen erfolgten über der Länge l, die bei Abschnitt I 12,15 und bei Abschnitt II 12,2 cm betrug. Nach den einzelnen Abdrehungen wurden die Abstände ab und a'b' wieder gemessen. Die Ergebnisse sind in Tabelle VIII zusammengestellt. Die Längen sind sämtlich auf eine und dieselbe Temperatur zurückgeführt. Der Elastizitätsmodul E ist zu 1860000 at angenommen. Die Verängerung $l_n - l$ ist zwischen den Marken ab und a'b', also auf einer größeren Länge als l gemessen. Da aber die Abdrehungen nur über der Länge l vorgenommen wurden, so können auch nur über dieser Länge Spannungen ausgelöst sein. Durch diese Auslösung wurden die Marken ab und a'b' um den Betrag - l voneinander verschoben. Die nach den obigen Gl. 5 und 6 berechneten Eigenspannungen σ_n , die im ursprünglichen Stabe in den einzelnen Schichten 1 bis *n* geherrscht haben, sind in der letzten Spalte 10 eingetragen.

In den Abb. 282 und 283 ist die Spannungsverteilung in den Abschnitten I und II schaubildlich dargestellt. Als Ordinaten sind die Spannungen σ_n gewählt, wobei die Zugspannungen durch Punkte oberhalb der Nullinie, die Druckspannungen

durch solche unterhalb der Nullinie veranschaulicht sind. Als Abszissen sind die Hälften der Querschnitte f_n'' aufgetragen. Die Abszisse Null entspricht somit der Stabmitte. Die am meisten von der Mitte abgelegenen Punkte des Schaubildes entsprechen dem vollen Stabquerschnitt. Der Grund, warum nicht die Halbmesser des Stabes nach den verschiedenen Abdrehungen, sondern die mit π multiplizierten Quadrate derselben als Abszissen gezeichnet sind, liegt in der Leichtigkeit der Kontrolle der Berechnung auf ihre Richtigkeit. Nach der Gleichgewichts-Bedingung muß nämlich die Summe aller $f'_n \sigma_n$ gleich Null sein, d.h. die in den Abb. 282 und 283 schraffierte Fläche oberhalb der Nullinie muß gleich der schraffierten Fläche unterhalb dieser Nullinie sein.

Die Tabelle VIII und die Abb. 282 lassen erkennen, daß in dem kaltgezogen Stabe sehr beträchtliche Eigenspannungen herrschen, und zwar in der Stabmitte Druck-, in den äußeren Stabschichten Zugspannungen.

Wird die Bruchgrenze des Stabmaterials nach dem Kaltziehen auf etwa 7000 at geschätzt, so ist das Material im Stab stellenweise bereits bis auf die Hälfte der Bruchgrenze beansprucht, ehe noch äußere Kräfte auf den Stab einwirken. Die Festigkeitseigenschaften und die Härte.

Da mit den Spannungen in der Längsrichtung des Stabes Querdehnungen verbunden sind, so müssen auch Querspannungen innerhalb des Querschnittes bestehen. Sie werden aber bei der gewählten Art der Messung nicht mit ermittelt. Um sich über diese Aufschluß zu verschaffen, müßte man beispielsweise den Stab innen stufenweise ausbohren, und die Änderung des äußeren Durchmessers nach jeder Ausbohrung feststellen.

Nach dem Glühen des kaltgereckten Stabes sind die Eigenspannungen im wesentlichen verschwunden, wie Tabelle VIII unten und die Abb. 283 lehren.

b) Sechskantstange aus Schweißeisen, kaltgezogen. Die Marken aund b waren nur auf einer Seite angebracht, und hatten einen ursprünglichen Abstand von 13,8723₆ cm. Die abgedrehte Länge l betrug 12,0 cm. Die Streckzahl f_0/f , das Verhältnis des Querschnittes der Stange vor dem Recken zu dem nach dem Recken, ist nicht bekannt. Die Ergebnisse der Messungen und die daraus berechneten Reckspannungen finden sich in der Tabelle IX, die wohl ohne nähere Erläuterung verständlich sein wird. Auch hier sind wieder sehr kräftige Spannungen festgestellt, wie man sie früher wohl schwerlich erwartet hätte.

-				and the second se			THE REPORT OF THE TAKE OF THE PARTY
a Nr. der abgedrehten	2 Durch- messer des Stabes nach der n ten Ab- drehung cm	3 fn' qcm	4 f." qcm	5 Abstand der Marken a und b nach der <i>n</i> ten Abdrehung cm	$\begin{array}{c} 6\\ \text{Verlängerung}\\ \text{des Stabes}\\ \text{zwischen den}\\ \text{Marken } a u. b\\ \text{nach der } n \text{ten}\\ \text{Abdrehung}\\ l_n - l\\ \text{cm} \end{array}$	$\begin{array}{c} 7\\ \sigma_n\\ \text{Spannung}\\ \text{in d. }n \text{ ten}\\ \text{Schicht d.}\\ \text{ursprüngl.}\\ \text{Stabes}\\ \text{at} \end{array}$	Bemerkungen
0	_	0	9.72	13 8793	all and a second second	-	Den unen nün gliche Organite itt
1	3.32	1.08	8 64	13,8735	± 0.0012	1 1610	Der ursprungliche Querschnitt war ein
2	2 93	1.90	674	19,0705	$-0,0012_1$	+ 1010	regennabiges Sechseck mit dem einge-
2	9.55	1,00	5.10	10,07006	$+0,0002_0$	+2750	schriebenen Kreis von 3,35 cm Dmr.
0	2,00	1,04	5,10	13,88159	$+0,0092_{3}$	+ 540	Die Werte in Spalte 5 sind Mittelwerte
4	2,02	1,90	3,20	13,8841,	$+0,0118_{1}$	— 815	aus mindestens 20 Messungen. Mitt-
5	1,01	2,40	0,80	13,88404	$+0,0116_{3}$	-1975	lerer Fehler der relativen Messungist
	0,0	0,80	0,00		2000	-1950	+ 0.0001 cm

Tabelle IX.

Schweißeisen, kaltgezogen.

304. Ursache der Reckspannungen. Die Reckspannungen sind meiner Ansicht nach dadurch zu erklären, daß beim Kaltrecken die einzelnen Schichten f'_1, f'_2, \ldots, f'_n verschieden starke Reckung erfahren und demnach bestrebt sind, verschiedene Längen anzunehmen. So wirkt z. B. beim Kaltziehen der die Reckung bewirkenden Kraft in den äußeren Stabschichten die Reibung an der Wand des Zieheisens entgegen. Der Einfluß dieser Reibung wird sich nach innen zu abschwächen. Wären die äußeren und inneren Schichten des Stabes nicht durch die Kohäsion fest miteinander verkuppelt, so würden die äußeren eine kleinere Länge l_{-} , die inneren eine größere l_{+} annehmen. Da die Schichten nun sämtlich miteinander verkuppelt sind, so müssen sie sich auf eine mittlere Länge l einigen, die zwischen l_{\perp} und l_{\perp} liegt. Die Folge davon ist Zusammendrücken der inneren und Streckung der äußeren Schichten. Diese beiden Formänderungen können rein elastisch oder teils elastisch, teils plastisch sein. Elastische Formänderung muß aber auf alle Fälle ins Spiel kommen, da ja bei metallischen Stoffen rein plastische Formänderung ohne gleichzeitige elastische bei gewöhnlichen Wärmegraden nicht möglich ist. Soweit nun diese Formänderungen elastischer Art sind,

bedingen sie Spannungen, und zwar in den äußeren Schichten Zug-, in den inneren Druckspannungen.

Es ist nun aber nicht immer nötig, daß die äußeren Schichten des Stabes weniger stark gereckt sind als die inneren, und daß deswegen außen Zug und innen Druck herrscht. Es gibt auch Fälle, wo das Umgekehrte eintritt. Hämmert man z. B. eine Rundstange aus Eisen mit der Hammerfinne Fi (Abb. 284) bei gewöhnlicher Temperatur unter beständigem Drehen der Stange, so kann es vorkommen, daß die Stange in der Längsachse aufreißt.

kömmen, das die Stange in der Längsachse aufrenst, wie in Abb. 284 und 285 bei rr. Die Erklärung ist folgende: Innerhalb des Querschnitts wird die äußere Schicht a (s. Abb. 284), weil sie unmittelbar vom Hammer getroffen wird, stärker gereckt, als die innere Schicht i. Die Schicht a sucht deshalb ihren Umfang und damit auch ihren Durchmesser in stärkerem Prozentsatz zu vergrößern als die innere Schicht i. Wegen der Verkuppelung der Schichten muß a elastisch gestaucht, i elastisch gestreckt werden, damit sie, auf die Längeneinheit bezogen, gleiche Streckung annehmen können. Die äußere Schicht a wird daher unter Druck, die innere unter Zug stehen. Die Zugspannungen im Innern können ein solches Maß erreichen, daß sich in der Mittellinie der Stange ein Riß rr bildet¹).

Bei dieser Gelegenheit soll noch über einige Erscheinungen berichtet werden, die aus der Praxis stammen, und die aus dem oben Gesagten ihre Erklärung finden.

a) Überzogener Flußeisendraht. Da beim Drahtziehen die inneren Schichten in der Längsrichtung stärker gereckt werden als die äußeren, so kann bei zu weit getriebenem Ziehen das Arbeitsvermögen des Metalls im Innern früher erschöpft werden als in den äußeren Schichten. Es können dann Erscheinungen eintreten, wie sie Abb. 286-288 in 7,5facher Vergrößerung zeigen. Sie sind einem

Abb. 286.

Abb. 287.

Abb. 288.

Aufsatz von A. Martens entlehnt $(L_4 20)$. Abb. 286 entspricht einem Längsschliff, Abb. 287 und 288 entsprechen Querschliffen durch einen kaltgezogenen Draht aus Flußeisen. In der Mitte ist er an verschiedenen Stellen aufgerissen. Die Rißwandungen sind Rotationsparaboloide. Abb. 288 zeigt einen Querschnitt durch ein solches Paraboloid in der Nähe des Scheitels, Abb. 287 einen solchen in etwas größerer Entfernung vom Scheitel.

b) Im Innern gerissene Schmiedestücke. Auch beim Warmrecken, z. B. beim Warmschmieden, können ähnliche Erscheinungen wie unter a) ein-

Abb. 285. Nat. Größe.

287

¹) Unter Umständen kann dies auch beim Warmschmieden eintreten, wenn die Streckung der äußeren Schichten der der inneren sehr stark voreilt. Eine besonders geschickte Ausnutzung dieses Vorgangs ist das Mannesmannsche Schrägwalzverfahren zur Erzeugung von Hohlblöcken aus Vollblöcken.

treten. Ist z. B. eine Stange, die durch Schmieden gestreckt werden soll, nicht gleichmäßig durchgewärmt, sondern besitzt in den äußeren Schichten die richtige Schmiedehitze, im Innern dagegen eine zum Warmschmieden zu niedrige Temperatur, so werden sich die wärmeren Außenschichten unter dem Einfluß der

durch den Hammer bewirkten, in der Längsrichtung der Stange wirkenden Kraft um ein beträchtliches mehr strecken können, als die kälteren Innenschichten. Die letzteren möchten somit zurückbleiben, müssen sich aber infolge der Verkuppelung mit den äußeren Schichten mit diesen auf eine gemeinschaftliche Länge einigen. Dies ist nur dadurch möglich, daß in den Innenschichten in der Stabrichtung Zugspannungen ent-

stehen, die, wenn sie ein genügendes Maß erreicht haben, zum Aufreißen der Stange im Innern und zur stellenweisen Trennung der Schichten führen können, ähnlich wie in Abb. 286. Wird nun das Schmieden weiter fortgesetzt, so können sich große

Abb. 291. (Etwa ⁶/₁₀ d. nat. Größe.)

parabolische Trichterbildungen einstellen, die oberflächlich nicht zu erkennen sind, und sich dem Auge erst nach der Zerstörung oder dem Aufschneiden zeigen.

Beispiele aus der Praxis, die voraussichtlich auf solche Erscheinungen zurückzuführen sind, finden sich in den Abb. 289–292. Abb. 289 und 290 stellen einen

Abb. 292. (Etwa 1/2 d. nat. Größe.)

Quer- und Längsschnitt durch einen Teil einer stählernen Eisenbahnachse mit zwei Hohlräumen H_1 und H_2 im Innern dar. Abb. 291 zeigt eine warm geschmiedete Kolbenstange aus schmiedbarem Messing. Sie bestand aus zwei Teilen I und II, die mit Hohlkegel und Kegel ineinander paßten; der Zusammenhang zwischen beiden (304 - 305)

Teilen wurde nur durch den ringförmigen Querschnit von der Dicke d aufrechterhalten. Die Stange brach im Betrieb, weil dieser ringförmige wirklich tragende Querschnitt trotz des großen Querschnitts der Stange nur sehr klein war. Abb. 292 gibt einen Zerreißstab von einer geschmiedeten Bronze wieder. Die Kegelbildung ist so stark, daß der Zerreißstab in zwei Teile zerfallen ist, die wie Dolch und Scheide ineinander passen.

Die oben beschriebene Kegelbildung in geschmiedeten metallischen Stoffen kann begünstigt werden durch Gefügefehler in den inneren Schichten (Hohlräume, fremde Einschlüsse, Seigerungsstellen usw.); sie kann aber auch eintreten, ohne daß solche Fehlstellen nachweisbar sind.

305. Verschiedenheit der Festigkeitseigenschaften in den einzelnen Schichten kaltgereckter metallischer Stoffe. Wenn die Schichten innerhalb eines kaltgereckten metallischen Stabes verschiedene Grade des Kaltreckens erfahren haben, so könnte man erwarten, daß sich dies in Verschiedenheiten der Festigkeitseigenschaften (z. B. S-Grenze, B-Grenze, δ_i =Bruchdehnung gemessen auf der Meßlänge l) bemerkbar machen muß. Planmäßige Versuche hierüber sind dem Verfasser nicht bekannt geworden außer einer Versuchsreihe von Thurston ($L_4 6$, abgedruckt in Howe, Metallurgy of steel, Tab. 107, $L_4 21$). Thurston verwendete Schweißeisenstangen von 5,08 cm Durchmesser, die teils kaltgewalzt, teils "unbehandelt", also wohl warmgewalzt oder geglüht waren. Die Stäbe wurden auf die in Spalte 1 der Tabelle X angegebenen Durchmesser abgedreht und dann zerrissen, wobei die in der Tabelle angegebenen Werte erhalten wurden.

A. Kaltgewalzt					onun ed	B. "	Unbehand	lelt"		
-oliodd	2	3	4	5	6	7	8	9	10	11
Durch- messer nach dem Ab- drehen	σ_S	σB	δ_x	q	$\frac{\sigma_S}{\sigma_B} \cdot 100$	σ_S	σB	δ_x	q	$\frac{\sigma_S}{\sigma_B} \cdot 100$
cm	at	at	0/0	º/o	º/0	at	at	º/o	0/0	°/0
5,08	4050	4700		24,8	86				_	
4,45	4500	4700	6,0	29,4	96	2170	3425	30,0	41,4	63
3,81	3980	4820	7,6	28,3	82	2360	3480	25,7	40,2	68
2,54	3990	4260	6,5	31,1	94	1830	3370	21,3	39,1	54
2,22	3860	4640	11,1	31,3	83	1640	4110	26,3	34,5	40
1,90	3980	4620	9,0	29,7	86	· 1675	3480	21,6	37,8	48
1,59	3900	4690	9,2	26,5	83	1700	3560	24,6	43,9	48
1,27	3840	4660	8,1	27,8	82	1680	3590	18,6	40,4	47
0,95	3830	4460	7,3	28,9	86	1460	3690	20,6	46,2	40
0,63	3580	4550	3,4	29,6	79	1575	3020	16,9	47,3	52

Tabelle	X.
(Nach Thur	ston.)

Howe schließt aus den Ergebnissen der Tabelle, daß die kaltgewalzten Stäbe keine ausgeprägte Verschiedenheit der Werte in den inneren und äußeren Schichten zeigen. Das trifft zu. Die Ergebnisse lassen sich aber auch nicht als Beweismittel dafür anführen, daß in kaltgewalzten Stäben örtliche Verschiedenheiten im Kaltreckgrad und damit in den Festigkeitseigenschaften nicht auftreten können. Das für die Versuche gewählte Material ist Schweißeisen, das an und für sich große örtliche Verschiedenheiten der Festigkeitseigenschaften an ver-Martens-Heyn Handbuch II. A. 19

289

schiedenen Stellen aufweist, wie ja die Zahlen für das "unbehandelte" Material erkennen lassen. Es wäre also auch nur möglich, an der Hand dieses Versuchsmaterials in den verschiedenen Schichten der kaltgewalzten Stangen grobe Unterschiede kenntlich zu machen, die größer sind als die beträchtlichen Abweichungen in der Tabelle X.

Bei einigermaßen beträchtlichen Streckzahlen f_0/f (Verhältnis der Querschnitte der kaltgereckten Stange vor und nach dem Kaltrecken) sind aber so große Unterschiede gar nicht zu erwarten, selbst wenn die Unterschiede in den Streckzahlen der einzelnen Schichten sehr beträchtlich sind. Darüber belehrt z. B. ein Blick auf Abb. 256. Die Änderungen, die durch verschiedenstarkes Kaltrecken herbeigeführt werden, sind bei geringen Graden des Reckens, also kleinen Werten von f_0/f , sehr beträchtlich, werden aber bei stärkeren Werten von f_0/f immer kleiner. Wenn die Versuche über Verschiedenheiten der Festigkeitseigenschaften in verschiedenen Schichten kaltgereckter metallischer Stoffe beweiskräftig sein sollen, so würde es nach obigem wohl zweckmäßig sein, mit verhältnismäßig schwach gerecktem Metall zu arbeiten, von dessen genügender Gleichförmigkeit bezüglich der Festigkeitseigenschaften vor dem Kaltrecken man sich versichert hat.

306. Einfluß der Reckspannungen auf das spezifische Gewicht. Die in Absatz 300 besprochenen Spannungen der kleinsten Teilchen im kaltgereckten Metall wollen wir der Kürze des Ausdrucks wegen als Elementarspannungen bezeichnen. Den durch sie bedingten Kräften wird durch Reibung das Gleichgewicht gehalten. Im Gegensatz hierzu wird bei den in 301-304 bebesprochenen Reckspannungen den durch Zugreckspannungen bedingten Zugkräften durch Druckkräfte das Gleichgewicht gehalten, die Druckreckspannungen entsprechen. Die den Reckspannungen entsprechenden Kräfte halten sich kurz gesagt gegenseitig das Gleichgewicht. Es entsteht nun die Frage, wie beeinflussen die Reck- und die Elementarspannungen das spezifische Gewicht des kaltgereckten Metalls?

Wir wollen in einer Schicht n eines kaltgereckten Stabes das spezifische Gewicht, wie es in dem mit Reckspannungen behafteten ursprünglichen, noch nicht abgedrehten Stabe vorhanden ist, mit s_n bezeichnen, mit s_{0n} dagegen dasjenige spezifische Gewicht, das in der nten Schicht erhalten würde, wenn man alle anderen Schichten abdrehte und nur die nte Schicht übrig ließ. Dadurch würde diese nte Schicht frei von Reckspannungen sein. Nach Gl. 1 Abs. 300 besteht dann die Beziehung

$$\frac{s_n}{s_{0\,n}} = \frac{1}{1+0.4\,\varepsilon_n} = \frac{1}{1+0.4\,\frac{\sigma_n}{R}},$$

wenn ε_n die durch die Reckspannung σ_n bedingte Längsdehnung der *n*ten Schicht, *E* der Elastizitätsmodul ist.

Es sind nun zwei Fälle zu unterscheiden: a) die spezifischen Gewichte s_{0n} sind in allen Schichten gleich, und zwar gleich s_0 ; b) die spezifischen Gewichte s_{0n} sind in den *n* Schichten verschieden, und zwar $s_{01}, s_{02}, \ldots s_{0n}$.

Fall a) Das mittlere spezifische Gewicht s des kaltgereckten Stabes ergibt sich unter den gemachten Voraussetzungen zu

$$s = \frac{f_1's_1 + f_2's_2 + \dots}{f_1' + f_2' + \dots} = \frac{\Sigma f_n's_n}{\Sigma f_n'}.$$

Setzt man die Werte für s_n aus obiger Gleichung hier ein, so erhält man:

$$s = \frac{s_0}{\Sigma f_n'} \cdot \left[\Sigma f_n' \frac{1}{1 + 0.4 \frac{\sigma_n}{E}} \right];$$

(306)

Der Einfluß der Vorbehandlung auf Festigkeit, Härte usw.

da $\frac{0,4\sigma_n}{E}$ eine sehr kleine Zahl ist, kann man statt $\frac{1}{1+0,4\frac{\sigma_n}{E}}$ auch $1-\frac{0,4\sigma_n}{E}$

setzen. Mithin

$$s = \frac{s_0}{\Sigma f_n'} \left[\Sigma f_n' - \frac{0,4}{E} \Sigma f_n' \sigma_n \right].$$

Wegen der Gleichgewichtsbedingung muß nach früherem (302)

$$\Sigma f_n' \sigma_n = 0$$

sein. Folglich finden wir

 $s = s_0$.

Das würde unter den genannten Voraussetzungen heißen, daß das mittlere spezifische Gewicht des kaltgereckten ursprünglichen, nicht abgedrehten Stabes gleich ist dem spezifischen Gewicht des kaltgereckten spannungslosen Materials, wie man es etwa erhalten würde, wenn man den kaltgereckten Stab über einen Teil seiner Länge zerspant und das spezifische Gewicht der Späne ermittelt (vorausgesetzt, daß durch das Zerspanen nicht neuerdings Kaltrecken entsteht).

Die Gleichung $s = s_0$ würde dann für jeden unter Reckspannungen befindlichen Stab gelten, solange s_0 in allen Schichten gleich ist. Die Gleichung hat also auch Gültigkeit für jeden Stabrest nach Abdrehen einer der *n* Schichten des kaltgereckten Stabes. Das spezifische Gewicht dieser übrigbleibenden Stabreste dürfte sich also trotz des Abdrehens der einzelnen Schichten nicht ändern und unverändert $s = s_0$ bleiben. Damit sind wir in der Lage, durch den Versuch nachzuprüfen, ob die unter a) gemachte Voraussetzung, daß alle s_{0n} gleich sind, zutrifft oder nicht.

Zu diesem Zwecke wurde eine kaltgezogene Stange Aluminiumbronze verwendet (Diegel, L_4 22). Die Zusammensetzung der Stange war Cu: 88,2, Zn:

Abb. 293.

Abb. 294.

0,70, Fe: 3,31, Al: 7,65, P: 0,028, Si: 0,086. Die Stange besaß starke Reckspannungen, so daß nach längerem Lagern auf der Oberfläche Querrisse entstanden waren. Die Risse sind in Abb. 293 sichtbar. Die Tiefe ihres Eindringens ergibt sich aus Abb. 294, die einen Querbruch durch die Stange darstellt.

Zwischen zwei Rissen wurden durch Querschnitte zwei Scheiben abgetrennt, die frei von Rissen waren. Die Scheiben hatten den Durchmesser der Stange, nämlich 3,0 cm. Das spezifische Gewicht der einen Scheibe wurde im ursprünglichen Zustand festgestellt. Alsdann wurde die äußere Schicht abgedreht, so daß der Durchmesser der Scheibe nur noch 2,6 cm betrug, worauf das spezifische Gewicht aufs neue ermittelt wurde. Schließlich wurde durch weiteres Abdrehen am Umfang der Scheibendurchmesser auf 1,6 cm vermindert und auch von diesem Rest das spezifische Gewicht bestimmt. Die erhaltenen Ergebnisse finden sich in Tab. XI. Man erkennt, daß das durchschnittliche spezifische Gewicht s der Scheibe infolge des Abdrehens der Oberflächenschichten beständig abnimmt. Die

19*

291

Bedingung $s = s_0$ ist also nicht erfüllt, denn sonst hätte das spezifische Gewicht durch das Abdrehen nicht verändert werden dürfen. Es ist nun aber noch der Nachweis zu erbringen, daß die Verschiedenheit der spezifischen Gewichte nicht etwa auf Ungleichmäßigkeiten in der chemischen Zusammensetzung der Bronze außen und innen zurückzuführen sei. Deshalb wurde die zweite Scheibe von gleichen Abmessungen 1/2 Stunde bei 580 C^o geglüht und langsam abgekühlt. Das spezifische Gewicht wurde an der vollen Scheibe mit 3 cm Durchmesser und nach dem Abdrehen auf eine Scheibe mit 1,6 cm gemessen. Wie die Tabelle erkennen läßt, ändert es sich innerhalb der Fehlergrenzen des Meßverfahrens infolge des Abdrehens nicht. Ungleichmäßigkeiten in der chemischen Zusammensetzung sind sonach nicht vorhanden. Die Abnahme des spezifischen Gewichts der kaltgereckten Scheibe bei fortgesetztem Abdrehen ist sonach der Beweis dafür, daß die Voraussetzung a) nicht zutrifft, sondern daß der Fall b) vorliegt, bei dem die spezifischen Gewichte s_{0n} in den verschiedenen Schichten des kaltgereckten Materials verschieden sind. Dies dürfte auf verschiedene Grade des Kaltreckens in den einzelnen Schichten und dadurch veranlaßte verschieden große Elementarspannungen zurückzuführen sein.

Nummer der Ab- drehung n	Durchmesser nach der <i>n</i> ten Abdrehung cm	Durchschnittl. spez. Gewicht nach der n ten Abdrehung bei t° (Wasser von 4 C ^o)	t C ⁰	$\frac{s_0 - s}{s} \cdot 100$
		Kaltgereckt.	and the Dealer of	doin robo. Juniu.
0	3,0	8 7,735 ₅	17.0	0.14
$\frac{1}{2}$	2,6 1,6	$7,727_{7}$ 7.710.	17,3	0,24
	Geglül	nt $1/_2$ Stunde bei	580 C ^o .	0,47
0 1	3,0 1,6	$\frac{s_0}{7,746_2}$ 7,746 ₀	17,8 bis 18,8 17 bis 18	

1	a	h	el	e	XT
-		~	01	 	TT'

307. Aufreißen kaltgereckter metallischer Stoffe. Die Reckspannungen können unter Umständen so groß sein, daß an den Stellen mit Zugspannungen Aufreißen erfolgt. Diegel $(L_4 22)$ führt eine ganze Reihe solcher Fälle auf. Namentlich häufig sind die Fälle des Aufreißens bei Messing, Aluminiumbronze; Verfasser beobachtete auch Fälle bei Zinnbronze und vor allem bei Nickelstahl mit 25% Nickel. Das Aufreißen erfolgt oft lange Zeit nach dem Kaltrecken, zuweilen erst nach Jahren, vielfach scheinbar ohne äußeren Anlaß. Durch Glühen werden die Reckspannungen und damit auch die Gefahr des Aufreißens beseitigt. Begünstigt wird das Reißen durch folgende Umstände.

1. Zusätzliche Beanspruchungen infolge der Einwirkung äußerer Kräfte (Belastung, Stoß usw.). Ist z. B. in einer Schicht eines kaltgereckten Metalls die Streckgrenze sehr nahe der Bruchgrenze, und erreichen die Reckspannungen in dieser Schicht nahezu die Streckgrenze für Zug, so wird bei Belastung durch äußere Zugkräfte zu der bereits vorhandenen Reckspannung σ_n noch die zusätzliche Zugspannung σ_m in der betreffenden Schicht treten. Ist dann $\sigma_n + \sigma_m$ größer als die Streckgrenze, so kann die Summe die Bruchgrenze erreichen, so daß Risse in der Schicht entstehen. In einer kaltgereckten Stange oder in einem Rohr entstehen dann Querrisse, wenn die Summe $\sigma_n + \sigma_m$ in der Längsrichtung wirkt, und Längsrisse, wenn die Spannungen $\sigma_n + \sigma_m$ parallel zum Querschnitt wirken.

2. Zusätzliche Spannungen durch ungleichmäßiges Erwärmen oder Abkühlen. In jedem elastischer Formänderungen fähigen festen Körper, der an verschiedenen starr miteinander verbundenen Teilen verschiedene Temperatur besitzt, treten Eigenspannungen ein (324 bis 330). Die stärker erwärmten Stellen suchen größere Länge l_+ anzunehmen; die kälteren suchen sich auf geringere Länge l_- einzustellen. Wegen der starren Verkuppelung der verschieden erwärmten Teile muß eine Einigung auf eine zwischen l_+ und l_- gelegene gemeinschaftliche Lage stattfinden. Dies bedingt Spannungen, soweit diese nicht teilweise durch Krümmung ausgeglichen werden können. In den kälteren Teilen entsteht Zug-, in den wärmeren Druckspannung. Die Spannungen sind vorübergehend, d. h. sie verschwinden mit dem Ausgleich der Temperatur im Innern des Körpers, wenn nicht infolge der ungleichmäßigen Ausdehnung bereits bleibende Formänderungen eingetreten sind. Im letzteren Falle verschwinden sie nur teilweise.

Trifft es sich gerade, daß die durch die ungleichmäßige Erwärmung hervorgebrachten Zugspannungen σ_m sich zu den von den Reckspannungen herrührenden Zugspannungen σ_n in einer Schicht *n* eines kaltgereckten Metallstabes addieren, so kann die Summe $\sigma_n + \sigma_m$ gegebenenfalls die Bruchgrenze überschreiten und so Aufreißen in dieser Schicht herbeiführen. Ein solcher Fall ist z. B. bei den kalt-

gezogenen Schaufeln für Dampfturbinen möglich, wenn die Schaufeln auf der Seite, auf der besonders hohe Zugreckspannungen vorhanden sind, weniger hohe Temperatur haben, als auf der gegenüberliegenden vom Dampfe getroffenen Seite. Wiederholt sich die ungleichmäßige Erwärmung häufig, so haben wir häufig wiederkehrenden Spannungswechsel zwischen den Grenzen $\sigma_n + \sigma_m$ und σ_n , der in der bekannten Weise zum Bruch führen kann, wenn die Werte von σ_n und $\sigma_n + \sigma_m$ eine bestimmte Grenze σ_N überschreiten (I, 321 bis 324).

In der Tat hat Verfasser häufig Turbinenschaufeln aus kaltgerecktem Nickelstahl $(25^{\circ}/_{\circ}$ Nickel) gesehen, die auf der nicht vom Dampf getroffenen Seite A in Abb. 295 in der skizzierten Weise aufgerissen waren.

3. Verletzung der Oberfläche durch mechanische Einwirkungen oder durch chemisch angreifende Stoffe. In der äußersten Schicht 1 einer kaltgereckten Stange herrsche die Zugreckspannung σ_1 in der Längsrichtung des Stabes. Der Querschnitt der Schicht sei f_1' ; durch Verletzung an einer Stelle werde er dort um den Betrag φ verkleinert. Es muß dann sein

$$f_1'\sigma_1 = (f_1' - \varphi)\sigma,$$

worin σ die Spannung in dem verletzten Querschnitt $f_1' - \varphi$ bedeutet. Daraus folgt $f_1' \sigma_1$

$$\sigma = \frac{f_1' \sigma_1}{(f_1' - \varphi)}.$$

Durch die Verletzung wird somit die Spannung in dem verletzten Querschnitt vergrößert. War nun bereits die Spannung σ_1 vor der Verletzung sehr nahe der Bruchgrenze, so kann die Steigerung der Spannung gegebenenfalls zur Entstehung eines Risses in dem betreffenden Querschnitt führen.

Die Verletzung kann nun herbeigeführt werden durch Anritzen, durch Kratzen des kaltgereckten Materials auf harter Unterlage usw. Sie kann aber auch erfolgen durch Ätzmittel, die die Oberfläche des kaltgereckten Materials örtlich angreifen. Bei Messing wirken bereits die in der Luft enthaltenen Stoffe ätzend,

wie z. B. die Kohlensäure neben Wasser, ferner insbesondere Ammoniakdämpfe. Die Einwirkung ist im allgemeinen schwach, wenn nicht besondere Umstände hinzukommen; es kann daher längere Zeit, unter Umständen Jahre dauern, bis

Abb. 296. (Etwa nat. Größe.)

die Querschnittsverminderung so weit vorgeschritten ist, daß das Reißen auftritt. Daß z. B. Ammoniak tatsächlich die oben angegebene Wirkung zeigen kann, geht daraus hervor, daß stark mit Reckspannungen behaftete kaltgereckte Messingstangen oder -rohre unter dem Einfluß stärkerer Mengen von Ammoniak sehr schnell aufreißen können. Stärker wirkt bei Messing und Zinnbronzen als Ätzmittel Quecksilberchloridlösung oder Quecksilber als solches. Stark mit Reckspannungen behaftete Messinggegenstände platzen beim Eintauchen in diese Stoffe sofort auf. Ein Beispiel hierfür bietet Abb. 296. Sie stellt Patronenhülsen dar, denen absichtlich beim Einziehen des Halses starke Reckspannungen erteilt worden waren. Die Spannungen wirken so, daß sie den Durchmesser der Mündung der Hülse zu vergrößern bestrebt sind. Sobald die die Spannungen aufnehmende Fläche durch die Anätzung genügend verkleinert worden ist, platzt die Mündung trichterförmig auf.

Auch die in Abb. 297 dargestellten kaltgezogenen Messingrohre waren teils quer, teils längs infolge von starken Reckspannungen beim bloßen Lagern aufgeplatzt. Daß die Rohre starke Reckspannungen enthielten, konnte nachgewiesen

Abb. 297.

werden durch die Anätzung von noch rißfreien Abschnitten mit Quecksilberlösung, die sofort Aufplatzen veranlaßte.

Zuweilen kann auch eine unbeabsichtigte Ätzung eintreten, z. B. durch Anstriche, die Messing oder Zinnbronze anzugreifen vermögen. Hierher gehören vor allen Dingen die Anstriche mit Zinnober. Bei Gegenwart von Feuchtigkeit kann sich in einem Zinnober-Firnisanstrich eine chemische Umsetzung zwischen dem Kupfer des Messings oder der Zinnbronze und dem Schwefelquecksilber des Zinnobers unter Bildung von Schwefelkupfer und freiem Quecksilber vollziehen. Das Quecksilber wirkt in derselben Weise wie oben angegeben. Man konnte mittels Zinnoberanstrichs die obenerwähnten mit starken Reckspannungen versehenen Patronenhülsen in kurzer Zeit zum Aufreißen bringen. Die Zeit war um so kürzer, je magerer der Anstrich war, also je weniger er Firnis im Verhältnis zum Zinnober enthielt. Die Möglichkeit des Zutritts von Feuchtigkeit muß gegeben sein, wenn die Wirkung eintreten soll.

Eine bis zu einem gewisse Grade ähnliche Erscheinung kann bei kaltgewalzten Aluminiumblechen beobachtet werden. In gewissen Wassersorten reißen diese unter Aufbeulung und Aufblätterungen auf, so daß sehr starke Zerstörungen auf diese Weise entstehen können. Abb. 298 zeigt ein solches Blech in 7facher Vergrößerung. Das Wasser hat hierbei die Rolle des Ätzmittels gespielt. Durch die Querschnittsschwächung sind die Reckspannungen ausgelöst worden und haben

Abb. 298.

zum Aufplatzen des Bleches geführt. Glüht man das Blech vor dem Eintauchen in dasselbe Wasser aus, so tritt die Erscheinung, wie Abb. 299 lehrt, nicht mehr auf, da ja jetzt die Reckspannungen beseitigt sind (E. Heyn und O. Bauer, L_4 23).

Abb. 299.

3. Nachrecken. Diegel $(L_4 22)$ ist der Ansicht, daß sich manche Fälle des Aufreißens kaltgereckter Metalle, insbesondere bei Messing und Aluminiumbronze nicht anders erklären lassen, als daß sich in diesen Metallen nach dem Kaltrecken die Wirkung des Reckens in der darauffolgenden Ruhezeit um ein bestimmtes Maß fortsetzt (I, 313 bis 314). Damit würden aber auch die Reckspannungen noch um einen entsprechenden Betrag wachsen können. Hatten die Reckspannungen bereits unmittelbar nach dem Kaltrecken in der Nähe der Bruchgrenze gelegen, so könnten sie infolge der Nachwirkung bis an die Bruchgrenze gebracht werden, wodurch das nachträgliche Aufreißen erklärt würde.

Diese Erklärung ist an sich möglich. Wir wissen ja, daß ein Metall, wenn es einmal durch Überschreiten der Streckgrenze zum Fließen gebracht worden ist, auch nach Aufhören der Spannung weiterfließen kann. Manche Metalle zeigen die Erscheinung deutlicher als andere. Hier müßte nun aber die Fortsetzung des Fließens nach dem Recken nicht nur nach Verschwinden der die Formänderung herbeiführenden Kraft erfolgen, sondern sogar gegen eine bestimmte, sich mit dem Fortgang des Nachfließens steigernde, im entgegengesetzten Sinne wirkende Kraft. Nehmen wir z. B. an, daß kurz vor Beendigung des Kaltziehens einer Stange die mittlere Schicht stärker floß als die äußere Schicht. Nach Verlassen des Zieheisens würde dann die mittlere Schicht auch entsprechend stärker weiter fließen als die äußere. Dadurch würde sich die Zugspannung in der Außenschicht vergrößern, und zwar um so mehr, je stärker die mittlere Schicht beim nachträglichen Nachfließen der äußeren Schicht vorauseilt. Dem Nachfließen der Mittelschicht wirkt also ein wachsender Widerstand in der Außenschicht entgegen. Der Fall läge ähnlich, wie bei einer an einem Gummifaden am Boden befestigten, nach oben geworfenen Kugel. Es wäre deswegen wohl zu erwarten, daß, wenn der oben genannte Fall überhaupt vor sich gehen kann,

das endgültige Gleichgewicht in sehr kurzer Zeit erreicht werden würde und nicht erst nach Jahren.

Es wäre wünschenswert, wenn die Frage durch den Versuch nachgeprüft werden könnte. Es handelt sich hierbei ja nur darum, festzustellen, ob sich in besonderen Fällen die Reckspannungen, die nach dem oben angegebenen Verfahren meßbar sind, im Laufe der Zeit vergrößern. Man brauchte doch nur Abschnitte aus ein und derselben kaltgezogenen Stange unmittelbar nach dem Ziehen und nach bestimmten Zeiträumen zu untersuchen.

Vorkehrungen gegen Aufreißen infolge von Reckspannungen. Gewisse Metalle haben den Vorzug, daß sie bei zu weit getriebenem Kaltrecken schon während der Arbeit reißen. Hierher gehört namentlich das Eisen und der Stahl. Geschmeidigere Metalle, wie Messing, lassen sich aber bis zur äußersten Grenze störung während des Reckvorganges selbst einzutreten braucht; sie erfolgt erst später infolge der oben angegebenen Einflüsse. Muß weitgehende Querschnittsverminderung durch Kaltrecken bei solchen Metallen herbeigeführt werden, so empfiehlt es sich, das Arbeitsvermögen des Materials nicht bis zur äußersten Grenze zu erschöpfen, sondern lieber häufiger eine Zwischenglühung einzuschalten und so die gewünschte Querschnittsverminderung mit geringerem Grade des Kaltreckens im fertigen Material zu erzielen.

Vielfach sind hier allerdings die Lieferungsbedingungen von Übel, wenn sie derartig hohe Bruch- und Streckgrenzen für das Material vorschreiben, daß die Vorschriften nur infolge sehr weit getriebenen Kaltreckens erfüllbar sind. Vor solchen Vorschriften sollte man sich hüten.

Einige Bemerkungen über die sogenannte "Rekristallisation". Sehr häufig findet man in der Literatur die Frage des Aufreißens kaltgereckter Metallteile mit dem Wort "Rekristallisation" oder "Änderung der Struktur der kleinsten Teilchen" abgetan. Verfasser möchte demgegenüber erklären, daß unter den vielen bisher von ihm untersuchten Fällen kein einziger war, bei dem tatsächlich eine Änderung der Kristallisation in dem aufgerissenen kaltgereckten Material nachweisbar gewesen wäre. Sie ist bei gewöhnlicher Temperatur bei den in der Technik in Betracht kommenden kaltgereckten Metallen auch gar nicht möglich und kann erst durch Erhitzung oberhalb einer bestimmten untersten Temperaturgrenze t_r (297) erzielt werden.

γ) Änderung des elektrischen Spannungsgefälles, der Löslichkeit und des elektrischen Leitvermögens infolge Kaltreckens.

αα) Elektrisches Spannungsgefälle.

308. Taucht man zwei Stücke AA eines und desselben metallischen Stoffes im gleichen Zustand der Vorbehandlung in einen Elektrolyten und bildet eine galvanische Kette nach dem Schema A/Elektrolyt/A (218, 219), so ergibt diese ein elektrisches Spannungsgefälle e = 0. Sind aber die beiden Metallstücke Aund A' in verschiedenen Zuständen der Vorbehandlung, durch die verschiedener Energieinhalt bedingt wird, so hat die Kette A/Elektrolyt/A' ein von Null verschiedenes Spannungsgefälle e. Eine solche Kette kann z. B. gebildet werden aus demselben metallischen Stoffe, wenn dieser A im geglühten, A' im kaltgereckten Zustand verwendet wird. Nach unserer früheren Auffassung befindet sich die kaltgereckte Probe A' in einem Zustand höherer Energie, da in ihr potentielle Energie aufgespeichert ist (300). Es wäre sonach zu erwarten, daß A' als der weniger edle Stoff, A als der edlere auftritt, und daß infolgedessen bei Schließung der Kette durch einen äußeren Schließungskreis der Strom im Elektrolyten von (308 - 309)

A' nach A geht. Es würde dann A' Anode, A Kathode sein, ähnlich wie in einer Kette Zink-Platin, wo Zink das unedle, Platin das edle Metall ist und der Strom in der Flüssigkeit vom Zink (Anode) zum Platin (Kathode) geht. Versuche nach dieser Richtung hin mit Ketten aus kaltgerecktem und geglühtem Material sind meines Wissens zuerst ausgeführt von Spring (L_4 24). Seine Ergebnisse sind in Tab. XII zusammengestellt.

Tabelle XII. Nach Spring.

Metall kaltgereckt	Elektrolyt: Lösung von	Metall geglüht	Spannungsgefälle Volt bei 20 C ⁰¹)
Zinn	SnCl ₂	Zinn	+0,00011
Blei	$Pb(NO_3)_2$	Blei	+0,00012
Kadmium	$CdCl_2$	Kadmium	+0,00020
Silber	AgNO_3	Silber	+0,00098
Wismut	$\operatorname{Bi}(\operatorname{NO}_3)_2 + \frac{1}{2}\operatorname{HNO}_3$	Wismut	-0,00385

Danach trifft die obengenannte Erwartung bei den untersuchten Metallen Zinn, Blei, Kadmium, Silber zu, während Wismut eine Ausnahmestellung einnimmt.

Man könnte nun hieraus leicht den Schluß ziehen, wie es auch in der Literatur vielfach geschehen ist, daß das kaltgereckte Metall auch bei der Lösung in irgendeinem Lösungsmittel, wie z. B. Säuren, ohne weiteres schneller in Lösung geht als das nicht kaltgereckte. Dieser Schluß stimmt aber mit der Beobachtung nicht immer überein, wie im folgenden dargelegt werden soll. Der Grund hierfür liegt darin, daß die Lösungsgeschwindigkeit eines Stoffes zwar von der Stellung desselben in der Spannungsreihe abhängt, aber auch noch durch eine ganze Reihe anderer Umstände beeinflußt wird, die bei sehr geringen Spannungsunterschieden die Sachlage umdrehen können. Bei Eisen und Eisenkohlenstoff-Legierungen trifft der Schluß bezüglich ihrer Löslichkeit in Säuren zu; bei einer ganzen Reihe von Metallen dagegen ist kein deutlicher Unterschied in der Löslichkeit des kaltgereckten und nicht kaltgereckten Metalls zu finden, bei einigen Metallen ist sogar das kaltgereckte Material schwerer löslich, als das nicht kaltgereckte.

$\beta\beta$) Löslichkeit kaltgereckter Metalle.

309. Bei Flußeisen wächst die Löslichkeit in verdünnter Schwefelsäure mit dem Grade des Kaltreckens und wird durch das Glühen wieder vermindert. Bereits Osmond und Werth (L_4 25) erkannten, daß Kaltrecken die Angreifbarkeit von Eisenkohlenstoff-Legierungen in verdünnter Salz-, Salpeter-, Schwefel- und Essigsäure vermehrt.

Das oben angegebene Gesetz ist so scharf ausgeprägt, daß es nach dem Vorgehen von E. Heyn und O. Bauer (L_4 17) sogar möglich ist, aus der Löslichkeit des Flußeisens in verdünnter Schwefelsäure Rückschlüsse auf den Grad des Kaltreckens zu ziehen. Hierfür bieten Belege die Abb. 300 bis 305, sowie die früheren Abb. 254 und 266. Da die chemische Zusammensetzung des Flußeisens einen sehr großen Einfluß auf die Löslichkeit hat, so muß darauf gehalten werden, daß die Löslichkeit eines Flußeisens in den verschiedenen Zuständen der Vorbehandlung immer nur mit der Löslichkeit desselben Eisens in einem bestimmten Zu-

¹) Positiv, wenn das kaltgereckte Metall Anode, negativ, wenn es Kathode ist.

stand (z. B. dem geglühten) verglichen wird. Auf diese Weise werden die durch die chemische Zusammensetzung bedingten Veränderlichen ausgeschaltet. Abb. 300 gibt einen Überblick über die Löslichkeit des Flußeisens ID, dessen Analyse be-

Abb. 300. Drähte aus Flußeisen ID. Einfluß des Kaltziehens auf die Löslichkeit.

reits früher (274) mitgeteilt wurde, in den verschiedenen Graden des Drahtziehens. Als Abszissen sind die Streckzahlen f_0/f eingetragen, als Ordinaten sind die relativen Löslichkeiten v verwendet. Die letzteren sind auf folgende Weise erhalten:

Da die kaltgezogenen Drähte von verschiedener Dicke verschieden große Oberflächen besaßen, so sind die unmittelbar ermittelten Gewichtsverluste A' in 1 proz. Schwefelsäure nach z Stunden nicht ohne weiteres vergleichbar. Die Gewichtsverluste wurden daher umgerechnet auf eine Oberfläche von 100 qmm nach der Formel

$$A = A' \cdot \frac{100}{F},$$

wobei F die Drahtoberfläche in qmm bedeutet. Die Länge der zum Löslichkeitsversuch verwendeten Drahtstücke betrug in allen Fällen 100 mm. In ähnlicher Weise wurden dann die Gewichtsverluste A'_g der Drähte nach dem Glühen bei 900 C^o und langsamem Abkühlen nach z-stündiger Einwirkung der 1 proz. Schwefelsäure bestimmt. Nach Umrechnung auf 100 qmm Oberfläche ergab sich dann der Wert

$$A_g = A_g' \cdot \frac{100}{F}$$

Aus der Beziehung

$$v = \frac{A}{A_a} \cdot 100$$

erhält man dann die relative Löslichkeit v, wenn der Gewichtsverlust A_g des geglühten Drahtes gleich 100 gesetzt wird.

Die Lösungsdauern z in Stunden sind in Abb. 300 den einzelnen Schaulinien beigeschrieben.

Abb. 301 gibt eine analoge Versuchsreihe für ein etwas kohlenstoffreicheres Flußeisen II D (C=0,19 $^{\circ}/_{\circ}$, Si: 0,01 $^{\circ}/_{\circ}$, Mn: 0,5 $^{\circ}/_{\circ}$, P: 0,062 $^{\circ}/_{\circ}$, S: 0,02 $^{\circ}/_{\circ}$).

Beide Abb. 300 und 301 lassen den raschen Anstieg der relativen Löslichkeit v mit steigender Streckzahl f_0/f , also mit steigendem Grade des Kaltreckens erkennen.

Abb. 302 gibt einen Überblick über die Löslichkeit bei sehr geringen Streckzahlen. Das Schaubild bezieht sich auf Versuche mit drei verschiedenen Flußeisensorten: Flußeisen S 783 (C: 0,08, Si: 0,01, Mn: 0,35, P: 0,024, S: 0,05, Cu: 0,20 °/_o, warmgewalzt), Flußeisen S 660 (C: 0,07, Si: 0,06, Mn: 0,12, P: 0,01, S: 0,019, Cu: 0,015, warmgewalzter Vierkantstab 25×25 mm), Flußeisen S 768 (C: 0,06, Si: 0,02, Mn: 0,12, P: 0,008, S: 0,021, Cu: 0,027, warmgewalzt).

Von den ersten beiden Flußeisensorten wurden Zerreißstäbe von 20 mm Durchmesser und

Abb. 301. Drähte aus Flußeisen IID. Einfluß des Kaltziehens auf die Löslichkeit.

Abb. 302. Einfluß des Kaltstreckens und Kaltdrückens auf die Löslichkeit von Flußeisen. Kurve A: Flußeisen S 783, Streckung. "BC: "S 660, """E: } Flußeisen S 768, Zusammendrückung.

200 mm Meßlänge hergestellt. Die Meßlänge war in 20 gleiche Teile eingeteilt. Die Stäbe wurden dann um verschiedene Beträge in der Zerreißmaschine kaltgestreckt. Durch Messen der Länge der einzelnen Teile der Meßlänge konnte der Grad des Kaltreckens in den einzelnen Abschnitten festgestellt werden. Aus den Stäben wurden dann an den verschieden stark kaltgereckten

Die Festigkeitseigenschaften und die Härte.

Stellen zylindrische Probekörper von gleicher Oberfläche entnommen und dem Lösungsversuch unter gleichen Verhältnissen unterworfen. Aus dem Flußeisen S 768 wurden Druckproben von 25 mm Durchmesser und 25 mm Höhe hergestellt. Diese wurden durch Druck auf die Stirnflächen um verschiedene Beträge kalt zusammengedrückt. Aus den gedrückten Zylindern wurden dann Probekörper für die Löslichkeitsversuche von gleichen Abmessungen und gleicher Oberfläche entnommen. Außerdem wurden noch aus den drei Materialien in ihrem ursprünglichen Zustand (also nicht kaltgereckt) Probekörper gleicher Abmessungen wie für obige Versuche entnommen; für jedes einzelne Material wurde mit Hilfe dieser Proben der Gewichtsverlust A_1 , A_2 , A_3 in 1 proz. Schwefelsäure nach z-stündiger Einwirkung ermittelt. Ist dann A_1' der Gewichtsverlust einer Probe des Materials S 783 nach dem Kaltrecken um ein bestimmtes Maß, so ist

$$v = \frac{A_1'}{A_1} \cdot 100$$

die relative Löslichkeit des Materials in diesem Zustand und bei z-stündiger Einwirkung der Säure. Die Werte v sind in Abb. 302 als Ordinaten verwendet. Als Abszissen sind eingezeichnet die Kaltstreckung (bei den Flußeisen S 783 und S 660) in Prozenten der ursprünglichen Länge, und (bei dem Flußeisen S 768) die Zusammendrückung in Prozenten der ursprünglichen Höhe der Probekörper. Die Zeitdauer z der Einwirkung der Säure auf die Probe in Stunden ist den einzelnen Schaulinien in Abb. 302 beigeschrieben.

Man ersieht aus dem Ansteigen der einzelnen Schaulinien, daß mit dem Grade des Kaltreckens die Löslichkeit zunimmt, und zwar gleichgültig, ob das Material durch Zusammendrücken oder durch Strecken kaltgereckt wurde. Die Schaulinie A bezieht sich auf die Versuche mit Flußeisen S 783, die Schaulinie BC auf die mit Flußeisen S 660, wobei in beiden Fällen das Kaltrecken durch Strecken erzielt wurde. Die punktierten Linien E und D zeigen die Ergebnisse mit den kaltgedrückten Proben des Flußeisens S 768.

Die Linien A und BC gehen nicht ohne weiteres ineinander über, da sie ja verschiedenen Eisensorten entsprechen.

Vereinigt man die Ergebnisse der Abb. 300 bis 302 zu einem Schaubild, so ergibt sich etwa das Schaubild 303, bei dem wieder als Abszisse die Kaltstreckung in Prozenten, als Ordinaten die relativen Löslichkeiten eingezeichnet sind. Die Zunahme der Löslichkeit mit dem Grade des Kaltreckens erfolgt anfänglich nahezu geradlinig, von einem bestimmten Streckungsgrade ab steigt die Linie plötzlich an, um dann wieder umzubiegen und verhältnismäßig langsam weiter zu steigen.

Der Einfluß des Glühens kaltgereckten Flußeisens bei verschiedenen Wärmegraden auf die relative Löslickeit v wird kenntlich gemacht durch die Abb. 304 und 305. In ihnen sind die Temperaturen, bei denen die kaltgereckten Proben 2 Stunden hindurch erwärmt wurden, als Abszissen und die relativen Löslichkeiten als Ordinaten verwendet worden. Hierbei ist die Löslichkeit des bei 750 C^o ausgeglühten Materials gleich 100 gesetzt; die übrigen Löslichkeiten vsind hierauf bezogen. Abb. 304 entspricht dem Material I D, das aus dem Walzdraht mit einer Streckzahl $f_0/f=3,88$ kaltgezogen wurde. Abb. 305 gibt die Versuche mit dem Material II D, das aus dem Walzdraht mit einer Streckzahl 3,76 kaltgezogen wurde. Wesentlich in den Abb. 304 und 305 ist, daß die Löslichkeit bereits bei sehr geringen Glühtemperaturen abnimmt. Bei Flußeisen I D ist schon Kochen in Wasser von 100 C^o von deutlichem Einfluß. Es ist nicht ausgeschlossen, daß diese Wirkung auf teilweiser Verminderung der Reckspannungen (301 bis 304) bei diesen Temperaturen beruht. (Versuche, darüber Gewißheit zu erlangen, habe

z =Lösungsdauer in Stunden.

ich bis jetzt noch nicht ausführen können.) Bei etwa 600 C^o haben beide Materialien den Mindestwert der Löslichkeit erreicht.

In der bereits früher besprochenen Abb. 266 zeigt sich ebenfalls, daß die Löslichkeit v des kaltgezogenen Drahtes mit der Glühtemperatur bis zu 600 C^o abnimmt, um von da ab nur noch unbedeutend verändert zu werden. Diese

Abb. 305. Flußeisendraht IID 3. Einfluß des Erhitzens auf die Löslichkeit kaltgereckten Flußeisens. z = Lösungsdauer in Stunden.

Temperatur ist aber gleichzeitig die Temperatur t_r des vollständigen Ausglühens des Drahtes, wie aus den Schaulinien für σ_B , δ und $\frac{c}{\sigma}$ hervorgeht.

Aus den obigen Darlegungen ergibt sich, daß man imstande ist, sich aus Löslichkeitsversuchen in verdünnter Schwefelsäure ein Urteil darüber zu bilden, ob Flußeisen im kaltgereckten Zustand vorliegt; ja man kann sich sogar bis zu

(309)

einem gewissen Grade ein Bild davon machen, wie weit das Kaltrecken getrieben ist. Das Verfahren ist sehr empfindlich, da Abb. 302 beweist, daß selbst so geringe bleibende Streckungen wie $2^{\circ}/_{\circ}$ sich in der relativen Löslichkeit v deutlich zu erkennen geben. Man wird wahrscheinlich die Genauigkeit des Verfahrens noch weiter treiben können. Bei solchen Untersuchungen muß natürlich die Vorsicht gebraucht werden, daß man immer nur die verschiedenen Behandlungszustände eines und desselben Materials vergleicht; niemals aber Vergleiche zwischen zwei verschiedenen Eisensorten zieht, weil sonst die großen durch verschiedene chemische Zusammensetzung bedingten Unterschiede mit in Frage kommen und die Sachlage vollständig verwischen.

Zur Feststellung, ob Eisen kaltgereckt ist, besitzen wir drei verschiedene Erkennungszeichen: a) das Verhälnis $\frac{\sigma_S}{\sigma_B} \cdot 100$, b) das Streckungsverhältnis c/a(295, 296), und c) die relative Löslichkeit v, verglichen mit demselben Material nach dem Glühen.

Das Verfahren b) gibt erst bei verhältnismäßig hohen Graden des Kaltreckens Aufschluß. Die Verfahren a) und c) sind bereits bei niederen Graden des Kaltreckens verwendbar und können sich beide ergänzen. Das Verfahren c) ist etwas sicherer als das Verfahren a), da das Verhältnis $\frac{\sigma_S}{\sigma_B}$ 100 von der Art des Abkühlens beim Glühen, der Temperatur des Glühens bis zu einem gewissen Grade beeinflußt werden kann, während nach den bisherigen Versuchen die Beeinflussung des Verhältnisses v durch diese Umstände nicht merkbar wird, solange nicht geradezu Abschrecken von der Glühtemperatur stattfindet.

Die Feststellung geringer Grade des Kaltreckens spielt vielfach eine große Rolle bei der Aufklärung von Brüchen in Bauwerksteilen; gelingt es, hierbei stellenweise Kaltreckung nachzuweisen, so gibt dies eine Unterlage dafür, daß Überanspruchung des Materials über die Streckgrenze stattgefunden hat. Offen bleibt freilich die Frage, wo und wann dies eingetreten ist, ob im Bauwerk, oder beim Einbau in dieses, oder bereits vorher.

310. Bei den oben angeführten Versuchen über die Löslichkeit von Eisendrähten in verdünnter Schwefelsäure wurde beobachtet, daß die kaltgezogenen Drähte nach den Lösungsversuchen rauhe, von Längsfurchen durchzogene Oberflächen, die nach dem Kaltrecken geglühten Drähte dagegen glatte Oberflächen aufwiesen. Beilby $(L_4 26)$ erwähnt einen Versuch, wonach zu Blattmetall geschlagenes Gold beim Schwimmen auf Zyankalilösung so ungleichmäßig angegriffen wurde, daß sich Teilchen herauslösten und dadurch ein schwer lösliches Skelett übrigblieb. Hieraus ist zu schließen, daß die Wirkung des Kaltreckens sich nicht gleichmäßig über das Metall verteilt. Die am meisten kaltgereckten Teile müssen sich schneller herauslösen, als die weniger stark gereckten. Der Unterschied muß noch deutlicher werden wegen des elektrischen Spannungsgefälles zwischen den stärker und schwächer kaltgereckten Metallstellen.

Demnach muß auch innerhalb der einzelnen konzentrischen Schichten 1, 2, 3, ... (Abb. 280) das Kaltrecken verschieden stark sein, so daß jede Schicht aus teils stärker, teils schwächer kaltgereckten Stoffteilchen besteht. Es sind also auch innerhalb der Schichten, selbst wenn sie von den übrigen Schichten vollständig losgelöst sind, noch Spannungen (Reck- oder Elementarspannungen) vorhanden.

311. Aluminium. Sieben Drähte, die sämtlich aus einem Draht von 15 mm Durchmesser auf den Durchmesser d in mm ohne zwischengeschaltetes Glühen kaltgezogen waren (nach den Angaben der Firma, die die Drähte hergestellt hatte), wurden mit 1 proz. Salzsäure behandelt, und zwar sowohl nach dem Kaltrecken, als auch nach halbstündigem Glühen bei 400 C°. Ermittelt wurden nach 24stündiger Einwirkung der Säure die Gewichtsabnahmen A der kaltgezogenen und A_g der geglühten Drähte, wobei wie früher die Gewichtsabnahme auf gleiche Oberfläche von 100 qmm bezogen ist. Setzt man die Gewichtsabnahme des geglühten Materials $A_g = 100$, so ergibt sich die relative Löslichkeit v des kaltgereckten Drahtes aus der folgenden Übersicht (Tab. XIII).

Durchmesser d mm	fo/f	A1) g	<i>A g</i> ¹) g	$v = \frac{A}{A_g} \cdot 100$
5	9,0	0,0276	0,0294	94
4,5	11,1	0,0325	0,0227	143
4	14,0	0,0058	0,0214	37
3,5	18,4	0,0030	0,0306	10
3	25,0	0,0024	0,0321	13
2,5	36,0	0,0014	0,0165	12
2	56,2	0,0093	0,0294	32

Tabelle XIII.

¹) Mittelwerte aus zwei gut übereinstimmenden Versuchen.

Kupfer. Als einziges Ätzmittel, das genügende Unterscheidung zwischen kaltgerecktem und geglühtem Kupfer zuließ, ergab sich Kaliumcyanidlösung (etwa 5 proz.). Zur Untersuchung wurde kaltgezogener Kupferdraht von 4 mm Durchmesser vor und nach dem 20 Minuten dauernden Glühen bei 550 C^o verwendet. Die relative Löslichkeit v des kaltgereckten Kupfers ergab sich, wenn die Löslichkeit des geglühten Kupfers gleich 100 gesetzt wird, wie folgt.

Lösungsdauer	2:	24	48	72	Stunden
v:		61	65	87	

Blei. Gegossenes Blei von 30×35 mm Querschnitt wurde kalt auf den Querschnitt 3×40 mm heruntergewalzt. Vor und nach 3 stündigem Glühen bei 275 C^o wurden mit 30 proz. Salpetersäure Lösungsversuche ausgeführt. Wird die Löslichkeit des geglühten Bleis gleich 100 gesetzt, so ergibt sich die relative Löslichkeit v des kaltgewalzten Bleis wie folgt:

Zinn. Ein gegossenes Zinnblöckchen von 30×30 mm Querschnitt wurde kalt auf 2×35 mm Querschnitt heruntergewalzt. Die Löslichkeit wurde vor und nach einstündigem Glühen bei 200 C^o in konz. Salzsäure gemessen. Setzt man die Löslichkeit des geglühten Zinns gleich 100, so ergibt sich die relative Löslichkeit v des kaltgewalzten Zinns wie folgt:

Lösungsdauer:	2	4	10	Stunden
<i>v</i> :	92	103	111	

Die obigen Versuche sind im Kgl. Materialprüfungsamt, Groß-Lichterfelde, ausgeführt und bisher nicht veröffentlicht.

Von den vier untersuchten Metallen ist sonach das Zinn das einzige, das demselben Gesetz wie das Eisen folgt. Das kaltgewalzte Zinn ist nach längerer Einwirkung des Lösungsmittels etwas leichter löslich als das geglühte. Der Unterschied ist aber wenig ausgeprägt. Dagegen ist bei den übrigen Metallen Aluminium, Kupfer, Blei die Sachlage umgekehrt. Hier ist das kaltgereckte Metall schwerer löslich als das geglühte.

Es soll noch erwähnt werden, daß die Löslichkeitsversuche in allen Fällen mit blank geschmirgelten Proben ausgeführt wurden.

yy) Elektrisches Leitvermögen.

312. Die Literatur über den Einfluß des Kaltreckens auf die elektrische Leitfähigkeit von metallischen Stoffen ist ziemlich widerspruchsvoll. Es scheint mir dies nicht überraschend. Die gemessene Leitfähigkeit ist immer ein Mittelwert aus den verschiedenen Leitfähigkeiten des Materials innerhalb der einzelnen verschieden stark kaltgereckten Schichten einer Stange oder eines Drahtes. Sie wird wahrscheinlich auch durch die Reckspannungen beeinflußt. Diese Einflüsse sind aber bisher nicht berücksichtigt worden. Man vermag sich bei dem gegenwärtigen Stande der Frage noch nicht einmal ein sicheres Urteil zu bilden, in welcher Weise sie alle zusammenwirken.

Man weiß, daß ein allseitig ausgeübter Druck von p Atmosphären den elektrischen Leitwiderstand w (401) wie folgt verändert:

$w_p = w_0 \left(1 + \gamma p + \delta p^2 \right),$

worin w_p der Widerstand während der Einwirkung des Druckes p, w_0 der Widerstand für p=0, γ und δ Unveränderliche für das betreffende Metall sind (Lisell, L_4 27, 29). Für reine Stoffe ist γ stets negativ; der Widerstand nimmt also mit dem Druck ab. Für Legierungen ist γ gleichfalls im allgemeinen negativ, aber seinem Zahlenwert nach kleiner als bei den die Legierung bildenden Metallen. Für Kupfer-Mangan-Legierungen kann γ sogar positiv werden. Lisell schlägt die Änderung von w unter Druck als Mittel vor, hohe Drucke zu messen, also als Ersatz für Manometer.

Nach Lafay (L_4 28) ist für Drücke bis zu 4500 at

£	Dlatin	γ	9
Tur		$-1.86 \cdot 10^{-6}$	0
für	Platin $+ 10^{\circ}/_{\circ}$ Rhodium	$-1.7 \cdot 10^{-6}$	$+0.2 \cdot 10^{-9}$
für	Quecksilber	$-32,7 \cdot 10^{-6}$	$+1,1\cdot10^{-9}$
für	Manganin (84%, Kupfer, 4%, Nickel, 12%, Mangan)	$+ 2,23 \cdot 10^{-6}$	0

Wie die Änderung des elektrischen Leitwiderstandes ausfällt, wenn der Druck nicht allseitig, sondern nur auf bestimmte Flächen des Leiters erfolgt, ist nicht sicher festgestellt. Ebensowenig sind mir zuverlässige, planmäßige Untersuchungen darüber bekannt, wie überhaupt elastische Formänderungen verschiedener Art die Größe des Leitwiderstandes beeinflussen (L_4 32 und 33).

Durch die Untersuchungen von Becquerel $(L_4 34)$, Siemens $(L_4 35)$, Matthiessen und Bose $(L_4 36)$, Vogt $(L_4 37)$, Max Weber $(L_4 38)$, Kahlbaum und Sturm $(L_4 16)$, Gewecke $(L_4 18)$ kann als festgestellt gelten, daß

durch das Drahtziehen der elektrische Leitwiderstand erhöht, durch das darauffolgende Glühen wieder vermindert wird.

Ob das Gesetz dahin verallgemeinert werden darf, daß Kaltrecken überhaupt den elektrischen Leitwiderstand erhöht, ist noch eine offene Frage. Die Ergebnisse von Kahlbaum und Sturm sind in der Tabelle XIV vereinigt, die sich ausschließlich auf kaltgezogene Drähte bezieht. Der elektrische Leitwiderstand der kaltgezogenen Drähte ist hierbei 100 gesetzt.

Draht aus	Durchmesser	Elektrischer Leitwiderstand		
ak. Der Widerfand ere	mm	kaltgezogen	geglüht	
Aluminium	0,55	100	97,78	
Silber	0,27	100	91,39	
Kupfer	0,4	100	99,37	
Kadmium	0,54	100	98,80	
Platin	0,4	100	99.39	
Gold	0,35	100	99.74	
Aluminiumbronze (95%, Cu,	nin nele n	dad maniet	and a state of the	
$5^{0}/_{0}$ Al)	0,55	100	84.96	
Platiniridium $(10^{\circ}/_{0} \text{ Iridium})$.	0,4	100	97.86	

100

Tabelle XIV. (Nach Kahlbaum und Sturm.)

Die Ergebnisse Geweckes sind mit Drähten aus Elektrolytkupfer (vermutlich elektrolytisch erzeugt und dann umgeschmolzen) erhalten. Sie sind von be-

sonderem Interesse, da sie einen Vergleich zwischen der Änderung der B-Grenze und dem elektrischen Leitwiderstand des kaltgezogenen Drahtes mit steigender Glühtemperatur gestatten. Sie sind in Abb. 306 schaubildlich dargestellt. Die Abszissen geben die Glühtemperatur t Die Glühdauer betrug etwa an. 2 Minuten. Der Draht hatte einen Durchmesser von 0,5 mm. Das Glühen der Drähte wurde in der Luftleere durch Erhitzung mittels eines elektrischen Stromes vorgenommen. Als Ordinaten sind aufgezeichnet die Werte σ_B (Bruchgrenze), der elektrische Leitwiderstand w, wenn der Leitwiderstand des kaltgezogenen Drahtes gleich 100 gesetzt wird, und schließlich der Temperaturkoeffizient des Leitwiderstandes a (401) entsprechend der Gleichung

$$w_2 = w_1 [1 + a (t_2 - t_1)].$$

Hierin ist w_2 der Widerstand bei t_2 , w_1 der bei t_1 C^o. Die Temperatur t₂ liegt bei den Geweckeschen Versuchen zwischen 51 und 54, die Temperatur t_1 zwischen 17 und 18 C^o.

Die Schaulinie für σ_B ergibt das bereits früher erwähnte Gesetz über den Einfluß des Glühens auf die Festigkeit kaltgereckten Kupfers.

Martens-Heyn, Handbuch II. A.

Glühdauer: 2 Minuten bei t Cº.

w: Elektrischer Leitwiderstand, wenn der Widerstand des Drahtes vor dem Glühen gleich 100 gesetzt wird. a: Temperaturkoeffizient des Leitwiderstandes

 $w_2 = w_1 \left[1 + a \left(t_2 - t_1 \right) \right]$

 t_2 zwischen 51 und 54 C^o. t_1 zwischen 17 und 18 C^o. Die Werte für σ_B sind unwahrscheinlich; die Angaben sind durchweg zu hoch.

Die Wirkung des Kaltreckens wird beseitigt zwischen $t_u = 170 \text{ C}^{\circ}$ und $t_r = 250 \text{ C}^{\circ}$, wenn die Glühdauer 2 Minuten beträgt. Bei 250 C° kann der Draht als vollständig ausgeglüht gelten. Von 250 bis 600 C° sinkt die *B*-Grenze langsam ab. Der Grund hierfür wird später besprochen (316). Der elektrische Leitwiderstand verringert sich zwar bereits bei sehr niedrigen Wärmegraden um kleine Beträge, die Hauptänderung geschieht aber ebenfalls von $t_u = 170 \text{ C}^{\circ}$ ab. Der Widerstand erreicht einen Mindestwert bei 350 C°, von da ab steigt er wieder etwas. Der Temperaturkoeffizient *a* steigt zwischen 170 und 300 C° rasch an und erreicht bei 300 C° einen Höchstwert, um dann abzusinken.

(Zu bemerken ist, daß die von Gewecke angegebenen Zahlen für σ_B für ein Elektrolytkupfer durchweg zu hoch sind. Wegen der wenig gut durchgebildeten Vorrichtung zur Bestimmung der Festigkeit sind wohl Fehler in die Werte von σ_B hineingekommen. Diese haben also höchstens relative Gültigkeit, dürfen aber nicht etwa als die dem Elektrolytkupfer zukommenden Festigkeitszahlen betrachtet werden.)

Innerhalb des Temperaturbereichs 170 bis 300 C⁰, in dem die Wirkung des Kaltreckens beseitigt wird, ändern sich also σ_B , w und a beträchtlich. Jenseits der Temperatur des vollständigen Ausglühens (etwa 300 C⁰) sinkt σ_B schwach ab, der Widerstand w steigt wieder, während der Temperaturkoeffizient sich vermindert.

Wesentlich für die Erkenntnis der Art des Gleichgewichts in kaltgereckten metallischen Stoffen ist Abb. 307, die auf Grund der Geweckeschen Versuche

Abb. 307. Einfluß von Glühhitze und Glühdauer auf den elektrischen Leitwiderstand von kaltgezogenem Kupfer. (Nach Gewecke.)

Widerstand des kaltgezogenen Drahtes (0,5 mm Durchmesser) = 100 gesetzt.

zusammengestellt ist und die Änderung des elektrischen Leitwiderstandes kaltgezogenen Kupferdrahtes in Abhängigkeit von Glühtemperatur und Glühdauer z zeigt. Die Glühdauer z in Minuten ist als Abszisse verwendet. Als Ordinaten sind die elektrischen Leitwiderstände w eingezeichnet, wenn der Leitwiderstand des kaltgezogenen Drahtes gleich 100 gesetzt wird. Das Gesetz der Änderung von w ist ganz ähnlich dem für die Änderung der Korngröße (Abb. 206 und 207, Abs. 260, 276, 277) und der Änderung der Bruchgrenze (Abb. 273 und 274, Abs. 298). Einer bestimmten Glühtemperatur entspricht eine bestimmte Höchstwirkung, die bei genügend langer Glühdauer erreicht wird. Diese Höchstwirkung wird um so schneller erzielt. je höher die Glühtemperatur ist. Unterhalb einer bestimmten Grenztemperatur ist keine Wirkung vorhanden, oder sie ist wenigstens in endlicher Zeit nicht merkbar. Leider sind die Wärmegrade zwischen 100 und 200 C° nicht zur Untersuchung gelangt, die in Abb. 307

das Gesetz deutlicher zum Vorschein gebracht haben würden. Die Schaulinie für 350 C° in Abb. 307 zeigt etwas abweichenden Verlauf. Hier tritt eine Nebenwirkung hinzu, nämlich der Beginn der Überhitzung des Metalles (316), durch die der Widerstand wieder etwas vergrößert wird.

(312)

306

(313 - 314)

d) Zusammenfassung.

313. Wenn auch das vorliegende Versuchsmaterial noch lückenhaft ist, um die Tatsachen nach jeder Richtung hin sicher festzulegen, so darf doch das bisher Ermittelte dahin zusammengefaßt werden, daß die Störung des Gefügegleichgewichts der Korngröße und der Korngestalt, wie sie durch das Kaltrecken hervorgebracht wird, sich auch in der Veränderung der Festigkeitseigenschaften und des elektrischen Leitwiderstandes zu erkennen gibt. Durch Glühen wird das durch Kaltrecken gestörte Gefügegleichgewicht einem stabileren Gleichgewicht entgegengeführt, und zwar in um so stärkerem Maße, je höher die Temperatur und je länger die Glühdauer ist. Damit geht dann auch Änderung der Festigkeitseigenschaften und Änderung des elektrischen Leitwiderstandes parallel.

Alle bisherigen Beobachtungen weisen darauf hin, daß das kaltgereckte Material in einem metastabilen Gleichgewicht vorliegt, das bestrebt ist, sich dem stabileren Gleichgewicht zu nähern. Der Annäherung wirkt die innere Reibung entgegen. Sobald diese durch Erwärmung um einen bestimmten Betrag vermindert wird, kann sich ein neuer Gleichgewichtszustand einstellen, der dem stabilen um so näher kommt, je höher die Temperatur und je länger die Glühdauer ist.

2. Das Recken bei höheren Wärmegraden.

314. Bereits bei der Besprechung der Änderung der Korngröße (279, 280) wurde darauf hingewiesen, daß beim Recken zwei Einflüsse zur Geltung kommen: 1. Der Einfluß des Reckens, der darauf hinwirkt, daß das Gefügegleichgewicht der Korngröße und der Korngestalt gestört wird, so daß die Körner kleiner werden und in der Streckrichtung langgestreckte Gestalt annehmen. 2. Der Einfluß des Glühens (Entreckens), der bestrebt ist, das Gefügegleichgewicht der Korngröße und Korngestalt wieder herzustellen, also eine der betreffenden Temperatur entsprechende durchschnittliche Korngröße zu erzielen und gestreckte Körner wieder gleichachsig zu machen. - Die beiden Einflüsse 1 und 2 wirken einander entgegen. Je nach der Temperatur, bei der das Recken erfolgt, überwiegt der eine oder der andere. Beim Kaltrecken, also beim Recken bei gewöhnlichen Wärmegraden, überwiegt der Einfluß 1 in der Regel stark, der Einfluß 2 tritt zurück. Bei gewissen Metallen, wie z. B. Blei und Zinn, ist dagegen auch bei gewöhnlichen Wärmegraden die innere Reibung so gering, daß der Einfluß 2 deutlich in die Erscheinung tritt, wenigstens insofern, als dadurch die Streckung der Körner durch das Kaltrecken verhindert wird. Je höher die Temperatur ist, bei der das Recken vor sich geht, um so mehr wird infolge der verminderten inneren Reibung der Einfluß 2 in den Vordergrund treten, so daß bei jedem metallischen Stoff von einer bestimmten Temperatur an Streckung der Körner durch das Recken gar nicht mehr und Verkleinerung der Korngröße nur in beschränktem Umfang möglich ist.

Jedenfalls wird auch hier die Zeit eine Rolle spielen, während welcher der zu reckende Stoff der betreffenden Temperatur ausgesetzt wird.

Es wäre dann nach dem im Abs. 313 Gesagten zu erwarten, daß die Änderung von σ_s , σ_B , δ , q und den übrigen physikalischen Eigenschaften durch das Recken um so geringer wird, je mehr der Einfluß 2 überwiegt und der Einfluß 1 zurücktritt.

Bei metallischen Stoffen, die unterhalb der Erstarrungstemperatur noch Umwandlungen erleiden, kommen, wie bei der Korngröße, noch die Einflüsse der Abkühlung nach dem Recken hinzu, wenn das Recken bei Wärmegraden oberhalb der Umwandlungstemperaturen beendet ist. So wird z. B. in Eisen-Kohlenstoff-Legierungen, die oberhalb der eutektischen Temperatur $t_e = 700 \text{ C}^{\circ}$ gereckt werden, das Gefüge in dem oben angegebenen Sinne verändert. Bei der Abkühlung findet aber Umwandlung und damit Umkristallisation statt, die wesentlich von der Abkühlungsgeschwindigkeit beeinflußt wird (259). Es ist demnach auch zu erwarten, daß bei solchen Stoffen die Wirkung des Reckens bei Wärmegraden oberhalb des Umwandlungspunktes ganz oder teilweise überdeckt wird durch den Einfluß der Abkühlungsgeschwindigkeit im Temperaturbereich der Umwandlung.

Abb. 308. Einfluß des Reckens bei verschiedenenWärmegraden auf die Festigkeitseigenschaften warmgewalzten

Deltametalls. (Nach Rudeloff.) t: Temperatur, bei der das Recken erfolgte. Die der Schaulinie für σ_B beigeschriebenen Zahlen geben die mittleren Streckzahlen f_0/f an.

Sehr deutlich zeigt sich das Gegeneinanderwirken der beiden Einflüsse 1 und 2 beim Deltametall, s. Abb. 308. Die Abbildung ist einem Aufsatz von Rudeloff entlehnt (L_4 2). Als Abszissen sind die Temperaturen t eingezeichnet, bei denen das Recken vorgenommen wurde. Als Ordinaten sind die Festigkeitseigenschaften σ_P , σ_S , σ_B , δ , $\frac{\sigma_S}{\sigma_B} \cdot 100$ verwendet¹). Die beim Recken erzielten Streckzahlen f_0/f sind der Schaulinie für σ_B beigeschrieben. Als Anfangszustand sind auf der Ordinatenachse die Eigenschaften für das warmgewalzte Metall eingetragen (Recken bei Rotglut). Der Abszisse 20 C° entspricht Kaltrecken bei gewöhnlicher Temperatur. Hier erkennen wir das bereits bekannte Gesetz: Starke Hebung der S- und der B-Grenze, starkes Ansteigen des Verhältnisses $\frac{\sigma_S}{\sigma_B} \cdot 100$, Verminderung von δ . Es würde hier also Einfluß 1 kräftig überwiegen. Recken bei 100 C° ergibt gegenüber dem Recken bei gewöhnlicher Temperatur nur geringfügige Unterschiede in bezug auf σ_s und σ_B ; stärkere Unterschiede zeigen sich in der herbeigeführten Dehnung δ . Beim weiteren Steigen der Temperatur beginnt nun Einfluß 2 sich

stärker geltend zu machen. Das Verhältnis $\frac{\sigma_S}{\sigma_B}$. 100 sinkt, ebenso σ_S und σ_B . Die

Dehnung δ steigt an. Bei 400 C^o ist der Einfluß 2 bereits so stark, daß das Recken bei dieser Temperatur wesentliche Unterschiede gegenüber dem Anfangszustand (bei Rotglut gereckt) nicht mehr zu erzeugen imstande ist.

Beim kohlenstoffarmen Flußeisen (Abb. 309 nach Rudeloff, L_4 2) sind leider die Versuche nicht genügend weit fortgesetzt. Abszissen und Ordinaten sind gewählt wie bei Abb. 308. Der Verlauf der Schaulinien ist unerwartet. Man könnte vermuten, daß wegen der Abnahme der inneren Reibung mit der Temperatur der Einfluß 2 bei steigenden Wärmegraden allmählich immer deutlicher hervortritt, also die Wirkung des Reckens auf Hebung der S-Grenze und Verminderung

¹) Sie sind in allen Fällen durch Zerreißversuch bei gewöhnlicher Temperatur ermittelt.

der Bruchdehnung immer geringer würde. Die Schaulinien verlaufen aber dieser Erwartung entsprechend nur zwischen Zimmerwärme (20 C^o) und 100 C^o. Das Recken bei 100 C^o hat beim vorliegenden Eisen (es darf nicht auf alle Eisensorten verallgemeinert werden) geringere Wirkung als das Recken bei 20 C^o; daraufhin

deutet das Sinken der Linie $\frac{\sigma_S}{\sigma_B}$. 100 und der schwache Anstieg von δ .

Oberhalb 100 C° tritt aber Störung im regelmäßigen Verlauf der Linien ein; die Schaulinie für $\frac{\sigma_S}{\sigma_B} \cdot 100$ erreicht bei 200 bis 300 Cº ihren Höchstwert, die Dehnung δ nimmt ihren Mindestwert an. Dies würde darauf schließen lassen, daß die innere Reibung in dem vorliegenden Eisen oberhalb 100 C° (zwischen 100 und 300 C⁰) nicht ab-, sondern zunimmt. Infolgedessen muß auch der Einfluß 1 bei diesen Wärmegraden stärker zur Geltung kommen, als bei den darunterliegenden. Erst jenseits 300 C° findet nun wieder Verminderung der inneren Reibung statt. weswegen Einfluß 2 stärker in die Er-

scheinung tritt, die Linie $\frac{\sigma_S}{\sigma_B} \cdot 100$ sinkt, die für δ steigt. Es ist auf Grund der Erfahrung anzunehmen, daß sich dieser Verlauf bei weiter steigenden Wärmegraden fortsetzt, bis schließlich für Rotglut (800 bis 900 C^o) die Werte erreicht werden, wie sie für das warmgewalzte Metall auf der Ordinatenachse verzeichnet sind.

Der Verlauf der Schaulinien in Abb. 309 läßt darauf schließen, daß das Eisen bei Temperaturen zwischen 150 und 300 C^o der bleibenden Formänderung den größten Widerstand ent-

gegensetzt, weswegen das Recken bei diesen Wärmegraden auch die stärksten Wirkungen auf die Festigkeitseigenschaften bei annähernd gleicher Streckzahl ausübt. Man nennt dieses Temperaturbereich bei Eisen in der Regel die Blauwärme, weil bei einem innerhalb dieser Zone gelegenen Wärmegrad das Eisen an der Oberfläche infolge Bildung eines Oxydhäutchens blau anläuft.

Leider liegen noch keine Messungen über die Reckspannungen vor, die durch Recken des Eisens bei Temperaturen oberhalb Zimmerwärme erzielt werden. Es wäre nach Obigem wohl zu erwarten, daß die Reckspannungen innerhalb der Blauwärmezone bei gleichem Grad des Kaltreckens größer¹) sind, als bei allen anderen Temperaturen von Zimmerwärme aufwärts. Sollte sich dies bestätigen, so wäre da-

Abb. 309. Einfluß des Reckens bei verschie-

denen Wärmegraden auf die Festigkeits-

eigenschaften warmgewalzten Martinflußeisens. (Nach Rudeloff.)

t: Temperatur, bei der das Recken erfolgte.

Die der Schaulinie für σ_B beigeschriebenen Zahlen geben die mittleren Streckzahlen f_0/f an.

309

¹) Inzwischen ist durch Versuche im Kgl. Materialprüfungsamt tatsächlich festgestellt, daß die Reckspannungen bei gleichem Reckgrade innerhalb der Blauzone wesentlich größer werden als bei Zimmerwärme.

mit die einfachste Erklärung gegeben für die praktisch festgestellte Tatsache, daß das Recken der Eisen-Kohlenstoff-Legierungen innerhalb der Blauwärme besonders schädlich ist. Es kann einmal bereits während des Reckens Bruch eintreten. Dies würde weiter nicht besonders gefährlich sein, weil dann eben ein blauwarm gereckter Teil nicht in Dienst genommen wird. Gefährlicher aber ist der Umstand, daß in der Blauwärme gerecktes Eisen unter Umständen die bleibende Formänderung bei Blauwärme noch vertragen kann, daß es sich aber nach Abkühlung auf die gewöhnliche Temperatur ähnlich wie stark kaltgerecktes Messing mit sehr hohen Reckspannungen verhält (307), und wie dieses unter plötzlicher stoßweiser Beanspruchung, oder infolge von Wärmespannungen bei ungleichmäßiger Abkühlung oder Erwärmung, oder beim Versuch, bei gewöhnlicher Temperatur noch weitere Formänderung herbeizuführen, plötzlich bricht. So können z. B. gebördelte Kesselböden, wenn das Bördeln entgegen den zu beobachtenden Vorsichtsmaßregeln von Rotglut herab bis in die Blauwärme hinein fortgesetzt wird, so empfindlich gegen zusätzliche Spannungen werden, daß ein auf den erkaltenden Boden treffender kalter Luftzug plötzliches Reißen unter Knall bewirken kann.

d) Glühen und Überhitzen.

315. Beim Glühen können die mannigfaltigsten Nebeneinflüsse in die Erscheinung treten. Hierher gehören: Oxydation der Oberfläche, teilweise auch Eindringen von Sauerstoff auf größere Tiefe und Zwischenlagerung von Oxyden zwischen die Metallkörner, Änderung der chemischen Zusammensetzung längs der Oberfläche infolge von Oxydation bestimmter Bestandteile (z. B. Entkohlung von Eisen-Kohlenstoff-Legierungen), Aufnahme gewisser Stoffe aus der Umgebung (z. B. Aufnahme von Kohlenstoff durch die Eisenlegierungen, Aufnahme von Gasen usw.). Alle diese Einflüsse müssen bei den einzelnen metallischen Stoffen besprochen werden.

Die Änderungen, die das Glühen in kalt- und warmgereckten, sowie in gegossenen metallischen Stoffen hervorbringen kann, sind bereits früher erwähnt.

Wird die Temperatur soweit gesteigert, daß Teile der Legierung flüssig werden, so findet wieder eine Annäherung an den Zustand statt, in dem sich die gegossene Legierung befand. Es können dann alle die Erscheinungen eintreten, die in Abs. 257 erwähnt sind. Eine solche Behandlung bewirkt dann in der Regel Verschlechterung der Festigkeitseigenschaften, und zwar Verminderung von σ_B und δ zugleich.

Aber auch noch unterhalb der Temperatur, bei der sich bereits ein Teil der Legierung verflüssigen kann, treten Änderungen ein. Es war bereits früher daraufhingewiesen, daß mit steigender Glühhitze und Glühdauer die Körner beständig wachsen (260), und dieses Wachstum kann sich in den Festigkeitseigenschaften geltend machen.

316. Die Abb. 270 und 271 lassen den Einfluß des Glühens von kaltgerecktem Kupfer bei höheren Wärmegraden erkennen. Die Wirkung des vollständigen Ausglühens ist in beiden Fällen bei 300 C° sicher erreicht. Trotzdem sinken die Schaulinien für σ_S , σ_B bei weiterer Temperatursteigerung langsam weiter ab, und auch die Bruchdehnung δ vermindert sich nach Überschreiten einer bestimmten Temperaturgrenze (600 bis 700 C°). Erhitzen der beiden kaltgereckten Kupfersorten auf Temperaturen oberhalb 600 C° würde also nicht nur keinen Nutzen mehr haben, sondern im Gegenteil die Festigkeitseigenschaften verschlechtern. Man nennt eine solche Wirkung: Überhitzen. (Bei anderen Kupfersorten kann die Temperatur des vollständigen Ausglühens höher als 300 C° liegen, s. früher 297.)