
Hierarchy Browsers

Integrating Four Graph-Based Hierarchy Browsers
into the Hierarchical Visualisation System (HVS)

Alexander Nussbaumer





Hierarchy Browsers

Integrating Four Graph-Based Hierarchy Browsers
into the Hierarchical Visualisation System (HVS)

Master’s Thesis

at

Graz University of Technology

submitted by

Alexander Nussbaumer

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

23th August 2005

c© Copyright 2005 by Alexander Nussbaumer

Advisor: Ao.Univ.-Prof. Dr. Keith Andrews





Hierarchiebrowser

Integration von vier graphbasierten Hierarchiebrowsern
in das Hierarchical Visualisation System (HVS)

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Alexander Nussbaumer

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

A-8010 Graz

23. August 2005

c© Copyright 2005, Alexander Nussbaumer

Diese Arbeit ist in englischer Sprache verfasst.

Betreuer: Ao.Univ.-Prof. Dr. Keith Andrews





Abstract

Information visualisation seeks to transform abstract information structures into a visually under-
standable form. Hierarchical structures are particularly prevalent and widely used. This thesis presents
four hierarchy browsers developed using the Java framework provided by the Hierarchical Visualisation
System (HVS).

The four hierarchy browsers are all graph-based and use node-link visual representations. The Walker
layout browser implements a classic tree drawing algorithm and is used as common basis of the other
three visualisations. The hyperbolic browser is based on hyperbolic geometry, which achieves a focus
plus context effect and highly efficient usage of two-dimensional space. The Magic Eye browser achieves
its focus plus context effect as a result of spherical projection. Finally, the InfoLens browser makes use
of a two-way fish-eye distortion technique.





Kurzfassung

Informationsvisualisierung befasst sich mit der Umwandlung abstrakter Informationsstrukturen in ei-
ne visuell verstehbare Form. Hierarchische Strukturen sind besonders gebräuchlich und weit verbreitet.
Die vorliegende Diplomarbeit stellt vier Hierarchiebrowser vor, die unter Benutzung des vom Hierarchi-
cal Visualisation System (HVS) bereitgestellten Java Framework entwickelt wurden.

Die vier Hierarchiebrowser sind alle graphbasiert und verwenden ein Knoten-Kanten-Modell für die
visuelle Darstellung. Der Walker Layout Browser implementiert einen klassischen Baumdarstellungsal-
gorithmus und wird als gemeinsame Basis der drei anderen Visualisierungen verwendet. Der hyperboli-
sche Browser basiert auf hyperbolischer Geometrie, mit der ein focus plus context Effekt bei hocheffizi-
enter Verwendung des zweidimensionalen Raums erzielt wird. Der Magic Eye Browser erreicht seinen
focus plus context Effekt durch sphärische Projektion. Der InfoLens Browser schließlich verwendet eine
Zweiwege-Fischaugenverzerrung.
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Chapter 1

Introduction

The topic of information visualisation is introduced in Chapter 2 in terms of its origins and characteristics.
Information is classified into several different types depending on its structure. Each type is explained
with the use of examples.

Chapter 3 focuses on hierarchical information and explains the term hierarchy and how it is used
in this thesis. An enumeration of properties which are usable for classifying hierarchies is followed by
several visualisation methods implementing these properties.

Chapter 4 discusses the Hierarchical Visualisation System (HVS), which is an extensible toolkit for
hierarchical visualisations. The features of HVS are described focusing on the usage and the synchroni-
sation of the visualisations. An explanation of the software design advances the understanding of HVS.

The integration of a visualisation into HVS is described in Chapter 5 using the example of the Walker
layout browser. Furthermore, this chapter describes the Walker layout algorithm and the implementation
of a general graph-based browser, which the following browsers build.

Chapter 6 starts with an explanation of hyperbolic geometry followed by a method for laying out a
tree in the hyperbolic plane. The features of the hyperbolic browser resulting from hyperbolic geometry
characterise the functionality of this browser. Implementation details complete the discussion in this
chapter.

Chapter 7 describes the Magic Eye browser and the underlying technique of three-dimensional pro-
jection from a tree laid out on a hemisphere onto a 2d disc. The features and functionality of this browser
are explained. Some extensions to the original Magic Eye View and implementation details complete
this chapter.

Chapter 8 introduces the InfoLens, which is a new visualisation method based on several properties
and ideas of the Magic Eye View and the hyperbolic browser. The visualisation technique and the
resulting features are described in detail.

A comparison of the four hierarchy browsers summarises the essential features and contrasts the
strengths with weaknesses of each browser in Chapter 9. A table gives an overview of these properties
for direct contrast.

A user guide in Appendix A explains the practical usage of the four presented hierarchy browsers.
The menus, navigation facilities, and mouse functions are explained for each browser. Rendering settings
and dialogues are listed.
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Chapter 2

Information Visualisation

Research in information visualisation was started by scientific communities to handle their increasing
amount of scientific data (Gershon et al., 1998). The enormous accretion of data resulted from the use of
modern scientific instruments and supercomputer simulations. Since the explosive growth of the internet
and the widespread use of computers, a rapid increase of digital data can be observed. Thus a need for
visualisation techniques is emerging for non-scientific sectors.

Often, scientific data represents a specific structure with a given 2d or 3d geometry. Therefore,
the visual representation of these data is a mapping into the given structure. Large information spaces
on the internet or on desktop PCs often have no obvious geometric structure. They are abstract and
can be visualised in many ways. The goal is to find an appropriate visual representation. Information
visualisation seeks to visualise abstract information spaces. Since information visualisation is a new area
in computer science it is comparatively easy to invent new techniques.

Both modern computers and the human mind are powerful information processing systems. Visu-
alisation is the transformation of abstract data and information into a form that can be recognised and
understood by humans. In this sense, information visualisation can be seen as an interface to abstract
information spaces. So exploring large volumes of data can be done effectively by humans.

The abilities of humans to recognise visual information are highly developed (Shneiderman, 1996).
Patterns, colours, shapes and textures can rapidly be detected. Movements and changes in size are
observable without any difficulty. On the other hand, the perception of text-based content is much more
effort than the perception of visual information. Information visualisation systems should take these
human characteristics into account.

2.1 General Principles

Searching for information is different in textual and visual information systems. Textual information is
often given as an alphabetical list in which the user can scroll up and down. Visual systems are more
complex and offer many diverse strategies to seek for items of interest. Shneiderman (1996) introduces
the Visual Information Seeking Mantra, which is a basic principle for visual designs of information
visualisation systems:

“Overview first, zoom and filter, details on demand.”

Shneiderman (1996) classifies seven tasks which users try to perform on information visualisation
systems. They are at a high level of abstraction, further tasks are refinements of these tasks:

• Overview: an overview of the entire information

3
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• Zoom: zoom in on a point of interest

• Filter: filter out uninteresting information

• Details-on-demand: get details of an information when needed

• Relate: view relationships among pieces of information

• History: provide undo possibilities

• Extract: extraction of a domain of interest

Based on these tasks some characteristics of visual information system at a higher level can be enu-
merated (Herman et al., 2000; Andrews, 2002). They are not necessarily needed all in the same system,
but do assist in information seeking. They do not replace the support for the tasks described above, but
enhance visual systems:

• Visual Interaction. In comparison to the amount of information the computer screen is extremely
small. A simple visual representation does not fulfil the task very well to bring much information to
the mind. An interactive design of the interface that makes use of the human perceptual behaviour
is an essential requirement of information visualisation systems. Animated transitions help the
user to understand the change of visual representation. This reduces loss of orientation.

• Focus plus Context. When a user zooms on a point of interest, contextual information is normally
lost. The loss of context often causes a loss of orientation. There are some techniques that provide
both a focus on a special item and the view of the context. The term focus plus context is used
to describe such a technique. Examples are the hyperbolic layout (see Chapter 6) and the fish-
eye view (see Chapter 8). Focus plus context is not intended to replace zooming, but rather to
complement it.

• Space-filling displays. To show a huge amount of information, a computer display would need to
be as large as a dining room table. Screen space should be used very efficiently.

• Direct Manipulation. When navigating through an information space, a need for manipulation of
the visualised data often arises. It would be circumspect to manipulate the data somewhere else.
Systems should provide the capability to manipulate the data which users see at the moment.

Following the discussion in Shneiderman (1996) and Andrews (2002), information classification can
be done by considering the structure of the data. The subsequent types can be enumerated:

• Linear data: textual documents, alphabetical lists, etc.

• 2d data: planar or map data (such as geographic maps)

• 3d data: real-world objects (such as buildings)

• Hierarchical data: trees with links between parents and children

• Networked data: general graphs with an arbitrary number of links

• Multi-dimensional data: items (such as documents) with attributes, whereby each attribute means
one dimension.

• Content-based vector space: content extracted from text documents are represented as a vector
space.

Hierarchies are described in detail in Chapter 3, since this thesis is based on hierarchically structured
data. 2d and 3d data visualisation are not further treated here, since they do not represent abstract
information structures. The other types are described in the next four sections.
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Figure 2.1: Document Lens. An entire document is shown in the Document Lens. The central
panel magnifies the text part in the focus, the surrounding parts give an overview of the entire
document. [Figure extracted from Proc. of UIST ’93. Copyright by the Association of
Computing Machinery, Inc.]

2.2 Linear Information

Linear information is organised in a sequential manner. Examples are text documents, program source
code, or alphabetical lists of names. With ordinary visualisation techniques (such as scrolling), problems
may arise if the amount of information is huge.

Mackinlay et al. (1991) proposed the Perspective Wall to achieve a better overview of the whole
information. The information is mapped onto a 3d wall with three panels. Then the wall is projected into
a 2d visual space. The two panels on the sides are smaller for perspective. Thus the information in the
central panel is larger than on the sides. In this way, a natural focus plus context effect is achieved.

The Document Lens (Robertson and Mackinlay, 1993) concept extends the Perspective Wall to a
five panel display (see Figure 2.1). This makes better use of the available space. The text document is
laid out onto a large rectangular region. A special rectangular lens is used, which can be moved over
the text area. The lens magnifies a rectangular focus area which contains the text of interest. Uniform
magnification on the focus is done to keep the text readable. The other four sides contain the rest of the
document.

2.3 Networked Information

For networked information a node-link model is used for the visualisation, where each piece of informa-
tion is a node and the relations between them are links. Networked information has an inherent graph
structure. For example, web pages are networked by hyperlinks or in a city map the crossings are linked
by streets. Hierarchies are special cases of general graphs. However, a general graph can be transformed
to a spanning tree plus hyperlinks.

Following the discussion in Herman et al. (2000) and Tatzmann (2004), in information visualisation
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Figure 2.2: An example of an orthogonal graph drawing.

the layout of graphs is important. How a graph is drawn influences the perception of the contained
information by the user. Good layouts help to better understand the hierarchical structure. Therefore
aesthetic rules are often imposed on the layout, which are automatically applied by the graph drawing
algorithm. However, it is often not possible to satisfy all rules in one graph. Sometimes the improvement
of one rule causes a worsening of another. The most important rules are:

• Angle. The angle between the edges of one node should be maximised.

• Length of edges. Edges should all have the same length and the average of all edge lengths should
be as small as possible.

• Edge lines. Edges should be drawn as straight lines.

• Crossings. Edge crossings should be avoided if possible, since they make it difficult for humans to
grasp the structure.

• Graph area. The area for the whole graph should be minimised. This ensures space-filling at a
certain zoom factor.

Many graph drawing algorithms were developed which satisfy the aesthetic rules more or less. In
orthogonal graph drawings, nodes are placed on an orthogonal grid and edges are drawn along the grid
lines (see Figure 2.2). Many aesthetic rules are accomplished, such as the maximisation of angles and
the minimisation of edge crossings.

Layered-based algorithms, which implement an idea of Sugiyama (Eades and Sugiyama, 1991), are
used for directed graphs. They organise the graph in several levels with the restriction that no edges
between nodes at the same level are allowed. A modified algorithm of Sugiyama is implemented in the
Harmony Local Map (Schipflinger, 1998). Besides the improvement of cycles in the graph, the layout
can be focused around a specific node (see Figure 2.3). The focused node is always visualised in the
centre of the display and no other nodes are in the same layer.

Another approach of graph drawing methods is to use physical analogies. These sorts of graph
drawing algorithms place the nodes freely on the plane and use straight lines to connect the nodes.
Since they use physical analogies like springs or magnetic fields, their result is intuitive for the user.
Furthermore they are easy to implement. There are two types of physical analogies: force-directed
placement and energy-based placement.

The first force-directed placement method was published by Eades (1984). The graph is modelled
as a physical body, whereby the nodes are iron rings and the edges are springs. There are two different
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Figure 2.3: Harmony Local Map. An example of layered based graph drawing in the Harmony
Local Map. [Image used with kind permission of Keith Andrews, Graz University of Tech-
nology.]

kinds of forces which have effect on the node placement, one which connects the nodes by springs, the
other prohibiting collision of nodes. The algorithm works iteratively until the total stress in the system is
below a certain threshold. This method is also called spring embedder.

The prefuse (Heer et al., 2005) toolkit for interactive information visualisation has implemented the
spring embedder algorithm from Eades. Figure 2.4 shows a graph with relationships between people.
Another example for a spring embedder implementation is HyperSpace (formerly Narcissus) (Hendley
et al., 1995). It visualises web pages in a self-organising structure.

Energy-based placement algorithms are similar to the spring embedder. The potential energy of each
spring is modelled. An objective function sums up all potential energies. Then the energy of the system
is minimised by directly minimising this sum. This is done with a numerical function. In this way the
position of each node is calculated.

A related technique is the simulated annealing method. This algorithm approximately minimises the
energy of the system step by step. A temperature parameter is introduced which indicates the current
energy of the system. In this way new arrangements of the graph can be compared with the previous
one. The temperature is slowly reduced. This algorithm is powerful, but can be very slow. SemNet
(Fairchild et al., 1988) uses the simulated annealing algorithm for visualising a complete knowledge
base. A semantic graph is laid out in 3d space. The nodes are positioned by using the simulated annealing
technique, their relations are visualised by coloured edges.

A further approach is the hierarchical visualisation of general graphs. The graph is reduced to a tree
plus hyperlinks. The tree layout can be done by one of the layout techniques described in Chapter 5. The
residual edges are added afterwards.

2.4 Multidimensional Information

In documents and files metadata attributes are often used in addition to the content. Metadata attributes
span a multidimensional space, whereby each attribute represents one dimension. For example, the
attributes author, title, modification date, type, and size span a 5d space. Documents are placed within
this space, according to the attribute values of them. Then the multidimensional space is mapped on a
2d or 3d visual representation. There is a variety of visual representations, which can be viewed and
explored by the user.

In a parallel coordinates visualisation the axes of the multidimensional space are drawn vertically,
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Figure 2.4: prefuse. A graph laid out with the original spring embedder algorithm of Eades.

whereby each vertical line represents an attribute. The documents are drawn as polylines from left
to right. The crossings with the vertical attribute lines are determined by the attribute values of the
document. Documents with similar attribute values have similar polylines, which can be detected by the
user as visual pattern. One implementation of the parallel coordinates system is done by Goel (1999).
Figure 2.5 shows a dataset with six dimensions and eleven documents in a parallel coordinates display.

Some information visualisation techniques use scattergrams to represent multidimensional data. In
scattergrams points of a graph are plotted but not connected. An example for this method is FilmFinder,
published by Ahlberg and Shneiderman (1994). Dynamic queries are used to filter out information by
adjusting sliders and other graphical widgets. The result sets from the database are plotted on the 2d
graphical display (see Figure 2.6). The parameters of the axes are the year of production and a measure
of popularity. Furthermore the documents are plotted in different colours according to their genre. When
seeing the graphical result, the query can be refined.

The Table Lens (Rao and Card, 1994) implements a technique for visualising large relational datasets.
This method makes use of focus plus context when exploring a large table. Users can view details of
arbitrary cells while the overview of the whole table is remained (see Figure 2.7). The distortions in the
two dimensions are independent from each other. The support of multiple focus areas enables users to
compare distal areas of the table. The graphical layout can be changed by sorting the data by a certain
attribute. The Table Lens is a space-filling technique, which empowers users to explore much larger
tables than conventional spreadsheet approaches.

The Attribute Explorer (Tweedie et al., 1994) uses vertical lines for the attributes, like the parallel
coordinates technique. For each attribute a histogram of the population spread of documents is assigned
to the corresponding line. The user can filter out documents by interacting with the attributes. Selecting a
range of values for a certain attribute causes appearing or disappearing of documents in the other attribute
histograms.
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Figure 2.5: Parallel Coordinates. Metadata attributes are plotted along each vertical line. A
document is represented by a polyline connecting each of its attribute values. A dataset with
six attributes and eleven documents is shown.

Figure 2.6: FilmFinder. A database of film from 1920 to 1995 is plotted on a scattergram. They
are arranged according to their popularity value and colour coded according to their genre.
[Copyright University of Maryland, all rights reserved.]
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Figure 2.7: Table Lens. Two separate areas in the table are magnified showing the focused cells.
[Figure extracted from Proc. of Proc. CHI ’94. Copyright by the Association of Computing
Machinery, Inc.]

2.5 Content-Based Vector Spaces

Large collections of text documents can be characterised according to their content. The vector space
model (Salton et al., 1975) is often used to characterise documents. All words contained in the whole
collection of the documents span an n-dimensional vector space, where n is the total number of all unique
words. Even if common words such as “is” and “the” are excluded, the number of words used is very
large. Thus the vector space is very high-dimensional. Each document is a point in the n-dimensional
space. The similarity of two documents can be calculated by the inner product of the two vectors. There
are also other similarity metrics, such as euclidean distance. As for multidimensional information (see
Section 2.4), a mapping from the high-dimensional space to the display is needed and several methods
have been developed.

The similarity data of the documents can be interpreted as a weighted graph. The similarity value of
two documents is used as the weight of the edge. No edge exists if the similarity value is zero. To visu-
alise a content-based vector space, graph drawing techniques can be used, as described in Section 2.3.
VxInsight (Davidson et al., 1998) is an implementation of this method. A combination of force-directed
and energy-based placement is used for the layout. Figure 2.8 shows a bibliographic set of more than
thousand articles. The shapes in the landscape indicate a higher density of similar documents.

An approach based on neural networks is implemented in WEBSOM (Lagus et al., 2004). The self-
organising map (SOM) algorithm is used to organise large collections of text documents onto a 2d map
displays. A document landscape is formed by arranging similar documents closely to each other. Areas
of the landscape can be labelled with automatically identified descriptive words. Colour coding is used
as a measure for the density of documents.

InfoSky (Kienreich et al., 2003) empowers users to explore large collections of documents. In addi-
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Figure 2.8: VxInsight. A bibliographic set of more than a thousand articles is visualised. The
mountains indicate a high density of similar documents.

tion to similarity values of documents, the hierarchical structure of documents is utilised by this tech-
nique. Documents of similar content are placed close to each other and form a recognisable cluster on
the display (see Figure 2.9). Bounding polygons are drawn for documents at the same level, the size of
this shape depends on the number of the contained documents.
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Figure 2.9: Infosky. Archived articles of a newspaper publisher are visualised as white stars. They
are clustered according to their content similarity. [Image used with kind permission of Keith
Andrews, Graz University of Technology.]



Chapter 3

Visualising Hierarchies

Hierarchical structuring is an approved and traditional method of organising information. A large quan-
tity of the world’s information is hierarchically structured, for example library catalogues, file systems,
or corporate organisations. These structures are easily understandable, as long as they are small. Since
the amount of information has heavily increased, the usage of hierarchies causes difficulties. Many new
visualisation techniques have arisen to support managing hierarchical information. This chapter gives an
overview of the most important methods.

A hierarchy, usually called tree, is a special case of a general graph. In trees there is one special node
called the root node. All other nodes have a parent node and a unique path to the root node. Nodes with
the same parent are called siblings. Each node including the root node can have child nodes. The number
of branches from the root node to a specific node is called depth or level of a node. Usually, a tree has an
order from top to down, in which the root node is at the top (see Figure 3.1(a)).

In contrast to this strict definition, hierarchies are often extended to directed acyclic graphs (DAG).
In a DAG the nodes (except the root) may have more than one parent. Hence, there can also be more than
one path from each node to the root. For example, such data structures are found in file systems, where
files can be linked to several locations. In the following discussion the terms hierarchy and tree are used
synonymously to mean directed acyclic graphs (see Figure 3.1(b)).

Nodes which actually have children are called inner nodes, nodes which do not have children are
called leaf nodes. In a file system directories which have children are inner nodes and documents are
leaves. There is a distinction between structural and content information. The structural or organisational
information is built by the parent-child relationship of the tree, the content information is contained in
the leaves.

3.1 Classification Issues

A taxonomy of tree visualisation methods can barely be done, since many techniques feature more than
one possible classification term. Therefore the most important terms are listed and explained separately
in this section. Then the visualisation methods are characterised individually in the following sections.
The classification follows the discussion of the resources cited in this chapter, chiefly Johnson and Shnei-
derman (1991), characteristics of the visualisation methods include:

• Listing. Listings can provide detailed content information, but hardly any structural information.
The paths are often provided as content, which forces the user to parse the path information and to
build a mental model of the structure. An example of a listing is the result of the UNIX command
ls -lR.

13
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Root

(a) A strict tree.

Root

(b) A directed acyclic graph.

Figure 3.1: The illustrations show a strict tree according to the classic tree definition and a directed
acyclic graph which extends the classic tree by the property that a node can have more than
one parent.

• Outline. Outline methods can show both structural and content information. To visualise the
structure, indentation is applied to a listing. For deep or wide trees, the outlined visualisation can
be very long. The necessary amount of vertical space is proportional to the number of nodes. The
left panel of the Microsoft Windows Explorer is an example for an outline view (see Figure 3.2).

• Diagram. A tree diagram, also called a tree drawing, is a graph based view, which represents
the tree as a node-link model. Nodes are drawn on a 2d area, the structural relationships are
illustrated by connecting lines. This is an excellent visualisation method for small trees. However,
for large trees the diagrams are very extended. Examples are the classic tree drawings described
in Section 3.3.

• Radial. Radial tree views are determined by the fact that the root node is placed in the centre of a
circle and the descendants are placed around the centre on concentric circles. The higher the level
of a node, the more distant the nodes are from the centre. A semi-circle can also be used instead
of the whole circle. The illustration can either be done as a node-link model (see Figure 3.4) or by
drawing areas (see Figure 3.14).

• Inclusive. In inclusive visualisations the each parent graphically contains all its descendants. Ob-
viously, the nodes are extended in two or three dimensions. Examples are the Treemap (see Fig-
ure 3.8), in which the nodes are rectangles, or the Information Pyramids method (see Figure 3.17),
which uses 3d pedestals.

• Space-filling. Space-filling methods make use of (almost) all of the 2d space. They satisfy as far as
possible the often mentioned need for effective use of the display area. Examples are the Treemap
method (see Figure 3.8) and the Information Slices technique (see Figure 3.14).

• Distortion oriented. Distortion oriented techniques address the often discussed problem, that large
trees need more space than available on the screen. They offer a solution by illustrating the whole
tree on the drawing area and magnifying the point of interest, which leads to a fish-eye view.
This method is one of several focus plus context techniques (see Chapter 2). Examples are the
Hyperbolic Browser (see Figure 3.9) and the Magic View (see Figure 3.15).

• 3D models. Hierarchies can be transformed to three-dimensional models representing the struc-
tural and content information. They can be explored by rotating, scaling and zooming in 3d space.
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Figure 3.2: Tree Browser. A focused directory with some documents are shown in the right panel,
its contextual hierarchy structure as an outline in the left panel.

Examples are the Cone Tree (see Figure 3.12) and the Information Pyramids method (see Fig-
ure 3.17).

• 3D landscape. Visualising trees as three-dimensional landscape metaphors is used to provide free
navigation through 3d space. Examples are the File System Navigator (see Figure 3.16) and the
Harmony Information Landscape (see Section 3.16).

3.2 Tree Browsers

Tree browsers are very popular and are used by most people working on computers. The Microsoft
Windows Explorer (Figure 3.2) or the KDE Konqueror (on Linux) are traditional examples for this tree
visualisation technique. Tree browsers use an outline method to visualise the hierarchical information
structure.

Tree browsers provide an intuitive and easily understandable interface to hierarchical data. Usually,
they consist of two panels, the left one for the structural data, which are the inner nodes, and the right
panel, where content data such as document files are located. Focused documents at an arbitrary level
are shown beside their context in the other panel (see Figure 3.2). Detailed information is provided by
tooltips and context menus.

To navigate through the hierarchy, users expand and collapse inner nodes. Since the expanded nodes
need vertical space, the visualised tree can become very large. Thus scrollbars are needed as additional
graphical element. However, large hierarchies cause a huge amount of scrolling for the user. Much
interaction with the browser has to be done to navigate to the items of interest.
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3.3 Classic Tree Drawings

Classic tree drawing techniques deal with aesthetically pleasing drawings of trees. Wetherell and Shan-
non (1979) presented a tree drawing algorithm for ordered binary trees which use as little space as
possible. The algorithm works in linear time and satisfies the following aesthetic rules:

• Aesthetic 1: Nodes of a tree at the same level should lie along a straight line, and the straight lines
defining the levels should be parallel.

• Aesthetic 2: In a binary tree, each left son should be positioned left of its father and each right son
right of its father.

• Aesthetic 3: A parent should be centred over its children.

Reingold and Tilford (1981) addressed some deficiencies in this algorithm. Isomorphic subtrees
are not drawn identically, but depending on their position in the tree. Therefore they introduced a new
aesthetic rule and presented a modified algorithm which satisfies this new rule:

• Aesthetic 4: A tree and its mirror image should produce drawings that are reflections of one an-
other; moreover, a subtree should be drawn the same way regardless of where it occurs in the
tree.

The tree is recursively drawn in a bottom-up pass. Leaves are placed at an arbitrary x-coordinate, the
y-coordinate is determined by the the level of each node. After drawing a subtree, it is moved towards
the adjacent subtree as close as possible. The subtrees are drawn independently, parent nodes are placed
centrally above their children. The edges are inserted at the end. The algorithm performs these steps in
linear time for binary trees. This very popular algorithm is called the Reingold-Tilford algorithm.

Since only binary trees are dealt with by the Reingold-Tilford algorithm, Walker II (1990) extended
the algorithm to trees of arbitrary degree. The nodes are traversed from left to right. The corresponding
subtrees are placed and shifted as done by the binary algorithm. In an analogous second step the nodes
are traversed from right to left taking average positions of the subtrees. This leads to a well balanced tree
layout (see Figure 3.3). The algorithm is described more detailed in Chapter 5.

As published in Buchheim et al. (2002), the Walker algorithm needs quadratic time, even though
Walker claims linear time for it. An improved algorithm is presented by Buchheim et al. (2002) which
creates the same layout in linear time.

3.4 Radial Tree Layout

In a radial tree layout the nodes of a tree are put on concentric circles depending on the level of the
node. The root node, which is at level zero, is drawn at the centre. A recursive algorithm (Herman et
al., 1999) places the children of a subtree into circular wedges (see Figure 3.4). Each parent node has
its own wedge, which prohibits overlapping with adjacent subtrees. The spanning angle of a wedge is
proportional, for example to the total number of leaves. The algorithm is very simple and intuitive, but
it is not optimal in using the available space. Furthermore it is suitable for small and compact trees, but
malfunctions for large trees, because nodes at higher levels can hardly be seen.

An implementation based on radial tree layout was done by Sheth and Cai (2003) (see Figure 3.4),
which is designed to display large hierarchies. Therefore a new focus plus context technique was de-
veloped. The focus node is always placed in the centre of the layout circle, its children are rendered on
the appropriate concentric circles. If the focus node is not the root node, its parent and siblings are also
drawn on the concentric circles, but smaller wedges are assigned to them. When a new focus node is
selected, a smooth animation does the transition to a new layout.
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Figure 3.3: Walker Layout. A balanced tree drawing laid out by the Walker algorithm. The nodes
at the highest level (at the bottom of the drawing) have the same distance to each other on the
x-coordinate.

(a) A radial tree layout drawing. (b) A schematic illustration of a radial tree layout.
Wedges are outlined for two larger drawn nodes in
the first and second level.

Figure 3.4: The radial tree layout illustrated by a drawing and a schematic illustration.
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(a) A balloon view implemented by prefuse (2004). (b) A schematic illustration of the smaller circles in the
balloon view.

Figure 3.5: A balloon view, also called a circular tree layout. The subtrees are laid out in recur-
sively smaller circles.

3.5 Balloon View

A similar visualisation technique is the circular tree layout, which is also called the Balloon View. An
algorithm for the layout was published by Melancon and Herman (1998). Circles with smaller radii than
the layout circle are assigned to nodes at higher levels. Each node is surrounded by its children, which
are placed on the circumferences (see Figure 3.5). This process is repeated recursively. Every node is a
local root node of its subtree. In contrast to radial tree layouts the circles are not concentric and are used
instead of wedges to assign an area to every subtree. The performance time of the algorithm is linear.

In order to modify the radius for the circle of a node, a scaling factor is assigned to it. The effect
of this modification will influence the rest of the layout automatically. In this manner, subtrees can be
zoomed and explored by users. The circular layout gives a good overview of the tree, but is not suitable
for large trees.

3.6 Bubble Tree

A similar method to Balloon View is the Bubble Tree, introduced in Boardman (2000), which uses
structure-based clustering of hierarchical information for the tree visualisation and navigation. Each
subtree at any level is represented as a bubble, which contains the local root node and all its descendants.
Initially the root bubble is opaque, so only this node is visible. To explore the hierarchy three detail-
increasing interactions are available, which apply a higher level of detail to the bubble. An analogue
set of three detail-decreasing interactions is supported, which provides a zoom-out functionality. The
Bubble Tree method is an inclusive information visualisation technique.

The fist detail-increasing interaction is the revealing of the content of a bubble. The mouse is used
to burst the bubble in order to show its children. Child bubbles which are inner nodes can also be burst
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Figure 3.6: Bubble Tree. Each subtree at any level is represented as a bubble, which contains the
local root node and all its descendants. To explore the hierarchy the content of a bubble is
revealed and the other bubbles are downsized and moved towards the edge. [Figure extracted
from Proc. of CHI 2000. Copyright by the Association of Computing Machinery, Inc.]

to disclose their immediate descendants. This leads to the second detail-increasing action. The selected
bubbles are spacial expanded, while the other bubbles are downsized. A further mouse click applies the
third detail-increasing action, which focuses the selected bubble. Focusing means in a bubble tree, that
the selected bubble is further expanded and moved to the centre, while the other bubbles are abstracted
to an opaque bubble (see Figure 3.6).

3.7 Dendrograms

Traditionally, dendrograms are used to visualise hierarchically clustered multidimensional information.
For an explanation of multidimensional information (see Section 2.4). A cluster is a set of items with
similar attributes with respect to a similarity function. In a first step, such a function seeks to detect
similarities between items and builds clusters. In a second step, similar clusters are joined to form new
clusters, thus creating a hierarchical structure from multidimensional data (see Figure 3.7).

The inner nodes represent clusters and groups of clusters. The leaves in the dendrogram tree are the
items, which are placed on a straight line at the bottom of the drawing. Their distances on the x-axis to
each other indicate their similarity distance. The dendrogram visualisation can also be rotated to have
the leaves on the right on a line from top to bottom. This has the advantage that labels can be better
attached to the nodes. Beside the described bottom-up approach, there is also a top-down algorithm to
create a hierarchically structured cluster. Hierarchical clustering is only one method among a variety of
other clustering techniques. Dendrograms are widely used to analyse and explore large sets of data. This
visualisation technique empowers users to rapidly recognise patterns in multidimensional information.
Natural groups can easily be detected. Application areas are for example statistics and data mining.
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Figure 3.7: A dendrogram view in the Hierarchical Clustering Explorer (HCE). A set of five
hundred items with sixteen attributes is visualised as a dendrogram. The colour map at the
bottom represents the attributes for each item.

The Hierarchical Clustering Explorer (HCE) (Seo and Shneiderman, 2002) was implemented to find
patterns in genomic microarray data (see Figure 3.7). This approach finds pairs of genes with the most
similar expression profiles. It iteratively builds a hierarchy by pairing genes or existing clusters. The
HCE creates a binary tree of similar genes and groups of genes.

The TreeJuxtaposer (Munzner et al., 2003) makes use of dendrograms to visually compare large
trees. Unlike the above described method of hierarchical clustering, the TreeJuxtaposer visualises pre-
existing trees as dendrograms. Trees are laid out from left to right, where the root is on the left and the
labelled leaves are on the right. There are two panels for the two trees which should be compared. A
focus plus context technique is used to magnify particular leaves and their labels. Colour coding is used
to emphasise differences in the tree. The user can navigate to different nodes and structures by dragging
the focus vertically along the leaf nodes. This system is capable of real-time interaction with a single
tree of 775.000 nodes nodes.

An enhancement of the TreeJuxtaposer is the TJC (Beermann et al., 2005), which allows interactive
browsing of trees of up to 15 million nodes. Having analysed the weaknesses of the TreeJuxtaposer, new
drawing and culling algorithms were implemented and memory usage was refined.

3.8 Treemaps

The Treemap visualisation technique maps hierarchically structured information onto a rectangular 2d
display in a space-filling manner. Unlike other methods, Treemaps use the complete available space.
The entire structural and content information is drawn in a single panel. The drawing area is partitioned
into rectangles representing tree nodes. Rectangle which are inner nodes are also partitioned in order to
contain their child nodes. This is recursively done until the whole tree is drawn (see Figure 3.8).
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Figure 3.8: Treemap. A directory structure laid out by the slice and dice algorithm. [Copyright
University of Maryland, all rights reserved.]

The sizes of rectangles represents the weight of the corresponding nodes. The weight is calculated
from the attribute information, such as file size or creation date, if the items are files. This makes it easy
for users to rapidly detect large or old files. There are different layout algorithms which determine how
the rectangles are partitioned.

The original Treemap algorithm described in Johnson and Shneiderman (1991), is called slice and
dice. Partitioning is done alternately horizontally and vertically. The root node, which lies on the whole
drawing area, is divided into a number of vertical slices, where the number is determined by the number
of its children. Then each child is divided in horizontal slices, also according to the number of its
children. This is recursively done until all nodes are drawn. The deeper the tree, the smaller the rectangles
representing the nodes (see Figure 3.8).

The slice and dice algorithm often produces long thin rectangles which are difficult to see. The
Squarified Treemaps method (Bruls et al., 2000) overcomes this problem. An algorithm is introduced
which forces the slices to be more square. The partitioning is not done either horizontally or vertically,
but a combination is used. Thus, child nodes are placed as sub-rectangles into nested parent rectangles.
This method loses any ordering of the tree, therefore refinements were later made to produce ordered
squarified Treemaps.

3.9 Hyperbolic Browser

The hyperbolic browser, introduced in Lamping et al. (1995), uses a focus plus context technique to
visualise large trees. The method is based on hyperbolic geometry, which provides infinite space within
a drawing circle. The tree is laid out as a node-link model, and the root node is initially placed in the
centre of the circle.
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Figure 3.9: A hyperbolic layout. The nodes placed in the centre of the drawing circle are focused,
towards the border the distances of the nodes become smaller. [Figure extracted from Proc.
of CHI ’95. Copyright by the Association of Computing Machinery, Inc.]

The hierarchy is laid out radially on an infinite hyperbolic plane. In hyperbolic space each node can
allocate nearly the same amount of space for its children, independent of how deep they are in the tree.
This layout is then mapped onto the unit disc with in euclidean space. Due to the mapping the unit circle
is characterised by varying density. The central area has low density, therefore there is enough space for
the tree. Towards to the border the density grows, which leads to the tree being very compact near the
border. Nodes at higher levels are drawn more distant from the centre. Due to the growth of density
of space, distant nodes and branches are smaller. Infinite space at the border can contain branches and
nodes of any level. Thus the tree never actually reaches the edge of the disc (see Figure 3.9). A detailed
description of the geometric background is given in Chapter 6.

The unit circle and the contained nodes and edges are scaled to screen size. The central area provides
the focus, the area near the border shows the context of the tree. To browse the hierarchy, the tree is
dragged around. The part which is in the centre of the drawing circle is focused. By this means the
whole tree can be explored. Smooth animations are featured, which automatically drag the tree to bring
the selected node into the focus. Further explanation of hyperbolic browsers can be found in Chapter 6.

3.10 3D Hyperbolic Browser

A 3d hyperbolic browser, published by Munzner (1997) and called H3, is designed to draw large directed
graphs in three-dimensional hyperbolic space. In a first step, the graph is transformed to a spanning tree.
Links which are not part of the tree are selectively drawn by user request. The transformation algorithm
is developed to detect underlying hierarchical structure of the graph, on which it builds the tree. For
example, web sites are often designed hierarchically and are connected by hyperlinks afterwards.

The tree is then laid out in hyperbolic space on a hemisphere. The H3 algorithm lays out child nodes
on the surface of a hemisphere in hyperbolic space. Then the nodes are projected to euclidean space,
where each subtree has its own part of the global hemisphere. The child parts lie side by side with the
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Figure 3.10: A hyperbolic view of a tree. The screenshot was taken from MagniFind, a free
hyperbolic browser demo from InXight.

parent parts of the global hemisphere. In hyperbolic space, each parent node has the same space on a
hemisphere, in euclidean space, the radii become smaller the deeper the nodes are in the tree.

The pole of the hemisphere is the focus where the nodes and links nearly have normal size. To browse
the hierarchy, the interesting nodes are dragged to the pole. Double clicking on a node starts a smooth
animation which automatically drags the clicked node to the focus (see Figure 3.11).

3.11 Cone Trees

The Cone Tree, introduced by Robertson et al. (1991), is similar to classic tree drawings, however, it is
laid out in three-dimensional space. The tree is built top down with nodes drawn as cones. The root node
is placed at the top in the centre, its children circularly below in the next layer. Each layer represents
one level in the tree. This is recursively done for the whole tree. The body of each cone is shaded
transparently to enable the user to see the whole tree (see Figure 3.12).

When a node is selected, the branches from the root to the selected node are smoothly rotated, so
that every node on this path is in front and highlighted. The rotations of each substructure are done in
parallel and are smoothly animated to maintain the user’s orientation.

The Cone Tree method provides a perspective view on the three-dimensional tree. Lighting tech-
niques and shadows are used to produce a realistic view, which reinforces a sense of spatiality. The
selected node and its path are larger, brighter, and closer to the user. This provides a natural focus plus
context effect, similar as described for the Perspective Wall (see Section 2.2). Screen Space is used very
effectively because of the three-dimensional visualisation. Cone Trees utilise spatial depth to fill up the
screen with information.

An alternate layout is the Cam Tree, which is horizontally oriented. This has the advantage, that
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Figure 3.11: The 3d hyperbolic browser H3. A hierarchy is laid out in 3d hyperbolic space on a
sphere.

labels fit better to the aspect ratio of the horizontal cones.

3.12 Cheops

Cheops, published in Beaudoin et al. (1996), is a compressed visualisation of a tree in order to deal with
large and complex hierarchies. The nodes are represented as triangles and are laid out in a top-down
manner, similar to the classic tree drawings. However, in contrast to them, the used display space is
optimised by overlapping and overloading the drawn nodes. In this way the whole tree gains a triangular
shape. Overloading of nodes results in many triangles which are ambiguous. This is resolved by selecting
nodes (see Figure 3.13).

When a node is selected, the whole subtree is selected. The siblings and their subtrees of the selected
node are disabled. The colours of the affected nodes are changed in order to emphasise the different
states of the nodes. The colour coding includes selected nodes, children of selected nodes, non-selected
nodes and their subtrees. In the new selection state, only nodes within the subtree of the selected node
can be clicked by the mouse. In this way the user can navigate through the hierarchy, from top to bottom.

Colour coding is also used to distinguish between single and ambiguous nodes. Large hierarchies
can be visualised by the Cheops method, however it is difficult to gain an overview of the structure of
the tree because of the ambiguous node shapes.

3.13 Information Slices

Information Slices is a space-filling, radial, and inclusive approach (Andrews and Heidegger, 1998). One
or more semi-circular discs are used to visualise large hierarchies. Each disc contains a user-configurable
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Figure 3.12: The Cone Tree. A hierarchy is visualised in 3d space using cones to represent
inner nodes. When a node is selected, the respective branches are rotated, so that they are in
front. [Figure extracted from Proc. of CHI ’91. Copyright by the Association of Computing
Machinery, Inc.]

(a) A full tree with a selected root
node. The bright grey triangles are
single nodes, the grey triangles are
overloaded nodes.

(b) A tree with a selected node at
the second level. The dark grey tri-
angles are disabled, the blue ones
show the selection path.

Figure 3.13: Two Cheops visualisations with different selection states.
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Figure 3.14: Information Slices. A tree is visualised on two semi-circular discs. The right disc
shows a subtree of a selected inner node in the left one. [Image used with kind permission of
Keith Andrews, Graz University of Technology.]

number of levels of the tree. At each level, the nodes are fanned out in the available space on the disc.
As described for Treemaps, the space for each node depends on its weight. Deep trees are cascaded on
multiple discs, with subtrees visualised in further discs (see Figure 3.14).

Navigating through a tree is done by clicking on inner nodes. When a user expands an inner node,
it is fanned out on the adjacent disc. Therefore, deep trees can easily and rapidly be explored. However,
broad hierarchies can result in dense, thin slices.

3.14 Sunburst

Building on the method of Information Slices, an approach called Sunburst was published in Stasko and
Zhang (2000). Sunburst uses a full disc for the layout and features different kinds of fan-out of subtrees.
Size, angle, and colour of the slices correspond to the attributes of the represented item. Three interaction
techniques which provide flexible browsing through the hierarchy are implemented.

When a node is selected, the angular detail method causes the entire hierarchy to shrink and to move
to the boundary. The selected item expands outward from the overview visualisation. The detail outside
method shrinks the hierarchy in the centre and the selected item expands to be a new complete ring
around the overview. The detail inside method pushes the overview outward and expands the selected
item in the centre of the ring. All three methods can be used alternately to focus a node. The transitions
are smoothly animated.
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Figure 3.15: Magic Eye View. The focus is on the right side of the projection circle. [Figure
extracted from Proc. of NPIV ’99. Copyright by the Association of Computing Machinery,
Inc.]

3.15 Magic Eye View

The Magic Eye View (Bürger, 1999; Kreuseler and Schumann, 1999) is a focus plus context hierarchy
browser which uses a node-link representation of the tree. The hierarchy is laid out radially using the
Walker layout algorithm (see Section 3.3). Then the radial layout is mapped onto the surface of hemi-
sphere using the polar circle length of the nodes as spherical angle. The tree on the surface is projected
onto the equatorial circle of the hemisphere. There is a special point called projection centre, which
lies on the equatorial circle and which determines the focus area. The tree is moved on the hemisphere
using the angles of the intersection lines connecting the projection centre with the node points on the
hemisphere. If the projection centre does not lie in the point of origin, distortion is achieved. This kind
of projection achieves a grater magnification in the focus area than a simple orthogonal projection. The
technique is described in detail in Chapter 7.

To explore the hierarchy the user can move the projection centre by dragging the mouse. The focus
area is always on the opposite side of the projection centre to the point of origin. If the user moves the
projection centre to the border, the part of the tree at a deeper level is magnified, which lies graphically
on the other side of the circle. Figure 3.15 shows a magnification of a particular part of the tree.

3.16 File System Navigator

The File System Navigator (FSN) (Tesler and Strasnick, 1992) is a three-dimensional directory browser,
which was developed for the Silicon Graphics IRIX operating system. A landscape metaphor is used
for the tree layout and the navigation through the tree. The layout is done by a conventional algorithm.
Directories are displayed as pedestals. FSN makes a distinction between child nodes which are files and
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Figure 3.16: A landscape metaphor is employed by the File System Navigator (FSN). A directory
with its contained files is shown, its subtrees recede into the background. [Image used with
kind permission of Keith Andrews, Graz University of Technology.]

child nodes which are directories. The files are placed atop of the parent pedestals and are visualised
as columns. The directories are laid out spatially, similar to classic tree drawings, and are connected by
lines with their parent node (see Figure 3.16).

The height of a column represents the size of the corresponding file, the colour symbolises the cre-
ation date. The file type is expressed by an image on top of its column and the file name is drawn in front
of its column. In this manner four attributes of a file are visually illustrated. The height of a pedestal
depends on the number of the contained files, the directory names are drawn in front of each pedestal.

Exploring the hierarchy is done by virtually flying through the landscape. The user has the possibility
to freely fly around using the mouse. Selected nodes are highlighted with a spotlight and an animated
zoom is provided by the system. Documents are opened by the appropriate viewer with a double-click.
Other 3d navigational features are supported, such as remembering viewpoints, navigation undos, and a
3d overview window. The user can easily gain an overview of the structural information of the hierarchy
including some attributes of the files. A natural context plus focus effect is achieved by the 3d perspective
view. Navigating to a point of interest enlarges these directories and files, distant directories recede to
the background.

A similar visualisation technique is used by the Harmony Information Landscape (Andrews et al.,
1996; Eyl, 1995), which is part of Harmony, the former hypermedia client of the Hyperwave web server.
As well as displaying hierarchical structure in the landscape plane, hyperlink relationship is superim-
posed on the spatial layout. Texturing of the 3d elements is supported for an appleasing visualisation of
document types and content.
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Figure 3.17: Information Pyramids. A hierarchy is visualised as a pyramid model in 3d space.
The pedestals represent the inner nodes, the columns on them are leaf nodes. [Image used
with kind permission of Keith Andrews, Graz University of Technology.]

3.17 Information Pyramids

Information Pyramids (Andrews, 2002) is a technique to model hierarchical information in a three-
dimensional pyramid object. Nodes are visualised as pedestals, similar to the File System Navigator
(see Section 3.16). However, in contrast to FSN, all nodes are placed atop a parent node. Each inner
node contains all its children, leaves are final nodes. Thus a compact pyramid visualisation is created,
where the plateaus represent the levels of the hierarchy (see Figure 3.17). Obviously, the size of the
nodes shrink, when the pyramid grows. Leaves nodes are marked with icons, which represent additional
information such as the node type. Exploring the hierarchy is done by navigating through 3d space.

The first implementation of the information pyramids approach was the 3D Explorer, published in
Wolte (1998) and shown in Figure 3.17. The visual representation of nodes regarding their size, colour
coding and layout is similar to the FSN. A rich set of navigational aids are featured for exploring the file
system hierarchy. The user can freely fly through the 3d scene (explore mode) or rotate and scale the
pyramid (examine mode). Navigating closely to a particular node means zooming to a point of interest
in the file system hierarchy.

Information pyramids provide a good overview of the hierarchy and are wellsuited to exploring both
broad and deep hierarchies. However, users often have problems to freely navigate through the scene. A
further development resulted in the Java Pyramids Explorer (Welz, 1999). The extensive 3d navigational
facilities were replaced by three sliders to control the navigation. One slider is used for rotating around
the x-axis, one for rotating around the z-axis, and one for zooming.

3.18 Botanical Visualisation

The Botanical Visualisation (Kleiberg et al., 2001) uses a three-dimensional tree metaphor to represent
abstract tree information. The method is based on the observation that the perception of branches, leaves,
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Figure 3.18: Botanical View. An abstract tree is modelled as a botanical tree. The fruits rep-
resent the leaves, the branches represent the hierarchical structure. [Image used with kind
permission of Keith Andrews, Graz University of Technology.]

and their arrangement in a botanical tree is easy for humans, even if the number of elements is great and
the structure complex. Inner nodes are represented as branches, their children as fruit hanging from them.
To support perception and to improve aesthetics, continuing branches are emphasised, long branches are
contracted, and sets of leaves are shown as fruit (see Figure 3.18).

Since modelling of botanical trees has been intensively studied by the computer graphics community,
there are many methods available The strand model of Holton (1994) is used to generate the 3d model
from the hierarchical information structure. This method is convenient, because the strands enable a
simple mapping of the size of elements to the radii of branches.



Chapter 4

The Hierarchical Visualisation System
(HVS)

The Hierarchical Visualisation System (HVS), introduced by Putz (2005), is an extensible framework
for integrating and synchronising different types of tree visualisations. The framework provides key
infrastructure such as hierarchical data import and management, which various visualisations can then
build upon.

This chapter describes the main features of HVS, followed by the software design and its compo-
nents. The term framework is used for all parts of HVS except the pluggable components, which are the
visualisations and the data source modules.

4.1 Features of HVS

HVS is designed as a visualisations toolkit, which provides a multiple view environment. This is a
benefit for both users and developers. Hierarchical information is visualised in various manners, so
users see complementary aspects of data. For better orientation the views are synchronised. Developers
of visualisations can focus on visualisation methods and do not have to attend to the underlying data
structure and operations on it.

4.1.1 Hierarchical Data Model

Unlike other visualisation toolkits, HVS focuses on hierarchical data. The internal data model is designed
to process hierarchies in the sense of directed acyclic graphs (see Chapter 3). The terms hierarchy and
tree are used synonymously in this discussion to mean DAGs. Figure 4.1 shows an illustration of the
HVS data model.

The data model consists of both structural and content information. The structural information is
represented by inner nodes, which contain parent-child relationship information. Content information is
chiefly contained in leaf nodes as sets of attributes. There are various attributes, which can be divided
into three types:

• textual: node name, author, title, subject, and keywords.

• numerical: number of pages, document type (enumeration number).

• chronological: creation and modification date.

Importing tree data into the HVS data model is done by pluggable modules. HVS provides an
interface for data source modules, which import data from any source. Currently there are two data
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Figure 4.1: The HVS Data Model. The diagram shows an example hierarchy (actually a directed
acyclic graph). The leaf nodes illustrated as rectangles contain attribute data. The grey nodes
have two parents and therefore two paths to the root node.

source modules, one for reading data from the local file system, the other to read hierarchical data from
XML files. However, pluggable modules can be developed and added, for example, a module which
gathers hierarchical data from web content.

The hierarchical data can be modified by the user. The visualisations provide a user interface to
insert, rename, or remove tree nodes. A flag controls whether only the internal data structure is modified,
or whether changes are propagated to the source hierarchy.

4.1.2 Synchronised Views

HVS provides different types of views of the same data structure (see Figure 4.2). The views are opened
and closed by user request. Through a plug-in interface, views can be integrated into HVS independent
of the visualisation method. It depends on each view how information is visualised and how events from
the framework are interpreted. The framework only defines the interactions at a logical level.

A distinction of three synchronisation types can be made with respect to the initiation of an event.
The first synchronisation type concerns events which are initiated by the user in a visualisation panel
as a consequence of navigational actions. To keep the user oriented, the views are synchronised by the
framework. If the user performs an action in a visualisation, the framework and the other visualisations
are notified. The following actions are included by this type:

• selection: changing of selection states of nodes.

• expansion: expanding and collapsing nodes.

• navigation: setting a focus node, scrolling, and maximising.
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Figure 4.2: HVS Visualisations. Five different visualisations of the same hierarchical data are
opened and synchronised by the HVS framework.

HVS provides selection and navigation state processing. If nodes are selected in a view, a message is
sent to the framework containing the new selections. The framework updates its internal selection state
and sends this to all visualisations. An analogous behaviour is applied to focused nodes, except that only
one node can be focused, but an arbitrary number of nodes can be selected.

The second synchronisation type concerns actions of the user made in the HVS framework to search,
filter, and modify the hierarchical data. Due to these actions, synchronisation events are sent to all
visualisations by the HVS framework. The following events are assigned to this synchronisation type:

• hierarchy data: setting a new explorable tree, continuously reading of tree data by a data source
thread, adding, removing, or renaming a node.

• search result: displaying the result of a search performed in the framework.

• filtering: filtering out data by user request.

• render settings: update render settings such as colours.

The third synchronisation type is related to individual views controlling the synchronisation be-
haviour of single views. The user can set three synchronisation modes for each view independently from
the others:

• Synchronised versus Independent:
To explore a hierarchy without changing other views, the synchronisation of a visualisation can be
turned off.

• Overview versus Detailed View:
In detailed view mode, only the selected nodes and their paths to the root are visualised.
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Figure 4.3: The HVS search and property panels. A search is done for the subject word ‘thesis’,
the result is highlighted by blue and red rectangles around the nodes. The property panel
displays the currently selected nodes in a table, which are the root node and the three search
result nodes.

• Show Documents versus Hide Documents:
Documents can be hidden, so that only the structure is shown.

The framework provides a properties panel for each visualisation. This panel consists of a table, in
which all currently selected nodes with their attributes are listed (see Figure 4.3). The synchronisation
of the selection state and this panel is done by the synchronisation mechanism of the framework. Since
multiple selections of nodes are possible, items and attributes can easily be compared in this panel. This
behaviour is a detail-on-demand characteristic of HVS.

4.1.3 Searching

Textual search functionality is provided by the HVS framework. Since the data model is capable of
processing items and attributes, search can be performed on various attribute fields. The HVS search
panel with fields for all attributes allows the input of the search query by the user (see Figure 4.3).

The framework executes the query and sends the result to the visualisations. It depends on the views
how they visualise the search result, usually they draw coloured bounding boxes around the found nodes.
Among these nodes there is one node which is marked. This node is usually visualised differently, for
example with a different colour. In this way, the user can browse through the result list by stepping from
one node to the next using the next and previous buttons in the search panel. Additionally, an optional
search result window is provided by the framework, where the result list is presented as a table. The
items are listed there together with their attributes.
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4.1.4 Filtering and Sorting

Filtering is an important task in information visualisation systems. HVS provides textual filtering, which
is similar to textual searching. The user can input the filter criteria in the filter panel with attribute fields.
A filter result list of found nodes is created internally analogously to the search result list.

According to this result list the data model is modified. All found nodes and the nodes on their paths
to the root are contained in the new data model. Then the data model instructs the visualisations to update
their views based on the new filtered hierarchy data.

HVS supports ordered trees, where the order is determined by the name, the size, or the type in either
ascending or descending order. The user can configure the order type and direction in the sort panel
beside the visualisations. The effect can be seen in the visualisations, which recreate their tree layout
according to the current sort order.

4.1.5 Rendering Control

The framework provides a user interface for various rendering settings. A colour dialogue defines colours
for various graphical elements in the views, such as nodes of different types, the background, highlighting
of selected nodes, or nodes which are in the search result. A font dialogue is implemented to choose the
label font, size, and type globally for all visualisations. Icons for different item types can be chosen in a
list box.

4.2 Software Design of HVS

4.2.1 Software Architecture

HVS has an object-oriented and open software architecture, which supports extension by visualisations
and data source modules. The implementation is in Java (Java, 2005). The software architecture is based
on the model-view-controller (MVC) design pattern, which is often used by graphical user interfaces,
such as the Java Swing components. A diagram of the software architecture can be seen in Figure 4.4.
This design pattern is a good solution for systems which implement multiple views of the same data. A
synchronisation of views and data and a coordination of the user input with views and data is included in
this design concept. The modules shown in Figure 4.4 can be assigned to the MVC pattern as follows:

• Model: a model of the underlying data.
The according component in HVS is the data model.

• View: the views presented to the user.
The corresponding modules in HVS are the visualisations, the search result window, and the win-
dows and dialogues of the application.

• Controller: the module which coordinates the user input, the views and the data model.
The module in HVS with this functionality is also named controller.

4.2.2 Application Module

The application module starts HVS, which includes several tasks, such as creating instances of classes
and initialising configurable user settings. Furthermore it manages the basic event handling, which does
not comprise the synchronisation of the views with the data model. Examples are opening dialogue
windows, starting data import, or choosing a colour.
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Figure 4.4: The software architecture of HVS containing the modules and plug-in components.
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An important task is plug-in management. There are two types of plug-in modules, visualisations
and data source modules. Both kinds must be inherited from specific super classes in order to provide
an interface for the framework (see below in this Section). The application loads them from a particular
directory, where they reside in common with plug-in configuration files. A configuration file for a plug-in
module determines its name, the class that has to be started, and optionally any software libraries.

The application also provides the dialogues for rendering settings, which are a colour and colour
scheme chooser, a font chooser, and an item selection box. A configuration comprising a data source and
some visualisations can be saved and reloaded in a later HVS session.

4.2.3 Input Modules

Input modules import hierarchical data from a specific source, such as the local file system or an XML
file, and create an internal data hierarchy from these data. Furthermore, they gather attributes from the
data and include them in the internal data model. Since manipulating the data by user interaction is a
design goal of HVS, these data can be modified after import.

To enable the framework to access these data, the input modules have to implement some abstract
classes (in Java they are called interfaces). These are defined in the package iicm.hvs.inputfactory .
The most important classes and method declarations include:

• DataSource

This class defines access methods to the meta information about the data source. For example, the
attribute keys or the available document types.

• Node

A node class defines the access methods for both the inner nodes and the leaf nodes, such as a
request for its name or its metadata.

• Collection

A collection is inherited from a node and represents an inner node.

• Document

A collection is inherited from a node and represents a leaf node.

• InputDataModel

This class defines the access to hierarchical data, for example to get parents or children of a node.

• MutableInputDataModel

This interface is needed for the declaration of methods which modify the tree data.

• InputFactory

In order to create new instances of collections and documents, suitable methods are defined in this
class.

4.2.4 Data Model Module

The data model is a wrapper class for the hierarchy data created by an input module. Thus it reads the
data from the underlying module and provides them to the visualisations and the search engine. The data
model acts as the model in the MVC design pattern.

In addition to data forwarding, filtering, and sorting are also processed in the data model. Following
an user request, a command to filer or sort by the certain attributes comes from the application. The data
model applies filtering and sorting on the data retrieved from the input module. Then the modified tree
data are provided for the other modules. Filtering and searching are described in Section 4.1.
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The interface to read hierarchy data is defined in the package iicm.hvs.datamodel in the class
DataModel. The classes Node, Collection, and Document are equivalent to those of the input mod-
ules. The method declarations of the class DataModel are:

• getRoot ()

The root node of the hierarchy is returned.

• getSubCollections (Collection parent)

The inner nodes of the given collection are returned.

• getDocuments (Collection parent)

The leaves of the given collection are returned.

• getChildren (Collection parent)

The inner nodes and leaves of the given collection are returned.

• getTreePaths (Node node)

The paths of the given node to the root node are returned.

An interface to modify the hierarchy data is provided in the class MutableDataModel, which is
inherited by DataModel. When data have changed a notification is sent to the controller, the visualisa-
tions, and the search engine. This is done with the help of a listener mechanism, which sends the events
to the registered components.

4.2.5 Search Module

A search query is entered by the user and is sent from the application to the search module. A search
mechanism traverses the hierarchy in order to find nodes which match the search query. The found nodes
are added to the search result list, which is also a model component in the sense of the MVC design
pattern. If a result is complete, events are sent to the listening modules, analogously to the data model.

The class SearchResult in the package iicm.hvs.search provides the interface for the visu-
alisations and the search result window. The views require information for each node, if it is in the
search result list, and if it is the currently selected search result. Two method declarations are important
therefore:

• isSearchResult (Node node)

whether the node is in the search result list is returned.

• isSelectedSearchResult (Node node)

whether the node is the currently selected search result is returned.

4.2.6 Visualisations

A visualisation is a pluggable module which visualises the tree data. It consists of two parts, the frame-
work part and the plug-in part. The framework part provides the interface to the controller and the data
model, provides the properties panel at the bottom of the window, and supports access to rendering and
visualisation properties. The plug-in part consists of the visualisation of the hierarchy and the implemen-
tation of the interface.

The properties panel (see Figure 4.3) shows the currently selected items together with their attributes
in a table. Synchronisation between the panel and the visualisation is done automatically by the synchro-
nisation mechanism of the framework.
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To implement the interface of the framework, the abstract superclass Visualization in the pack-
age iicm.hvs.visualization must be inherited. Furthermore it has to implement the following
interfaces with their method declarations to receive synchronisation events:

• DataModelListener:

If there are changes in the data model, an appropriate method declared in the DataModelListener
is called.

• ControllerListener:

This listener comprises the method declarations for the synchronisation of the selection and navi-
gation state.

• SearchResultListener:

When the search result has changed, a notification is sent to a method contained in this listener.

• ExpansionListener:

If an inner node is expanded or collapsed by the user in one visualisation, a message is sent to all
visualisations implementing this listener.

To send synchronisation events to the framework, there are a set of methods implemented in the
Visualization class, which can be used by the plug-in part:

• fireFocusChanged (FocusEvent event)

If the navigation sate has changed in the visualisation, this method is called to notify the other
visualisations about the new navigation state.

• fireSelectionChanged (SelectionEvent event)

If the selection state has changed, the new state is sent to the other visualisations by using this
method.

• fireCollectionExpanded (ExpansionEvent event)

This method provides the notification of an expansion of an inner node.

• fireCollectionCollapsed (ExpansionEvent event)

This method provides the notification of a collapsing of an inner node.

To have access to rendering and visualisation properties, there are several methods implemented in
the class VisualizationProperties.

• getColorForDocument (Document document)

This method is used to get the colour of a document according to the type of the document.

• getImageForDocument (Document document)

This method returns a thumbnail of the specified document, if available.

• getSelectionColor ()

The colour for the visual representation of a selected node is returned.

• getSearchResultColor ()

If a node is within the search result, it is drawn in the colour returned by this method.

• getSearchResultSelectionColor ()

If a node is the currently selected node within a search result, this colour is used for the visualising.
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4.2.7 Controller

The synchronisation mechanism of the visualisations is implemented in the controller module. Events
which the controller receives from a visualisation are forwarded to all other visualisations. The events
managed by the controller are related to user interactions and can be summarised as follows:

• Selection: One or more nodes can be selected in a visualisation. The selection state is sent by the
active visualisation to the controller, which forwards the state to the other views.

• Navigation: Navigation events are related to a focused node. Various navigational actions are
included, such as bringing the node into the visible area or maximising the node. This behaviour
guarantees analogous views in different visualisations.

• Expansion: If an inner node is expanded or collapsed in a visualisation, then all visualisations are
informed. However, not all of them support expanding and collapsing, for example graph-based
visualisations, which always provide a view in which all nodes are expanded.

4.2.8 Synchronisation Bridges

The synchronisation bridges mechanism implements the third synchronisation type described in Sec-
tion 4.1.2. There are three synchronisation modes, which can be configured by the user for each view.
To implement this functionally there are three types of bridges, which act as a filter between the visuali-
sations and the other modules (see Figure 4.4). Each view has its own instances of these bridges.

• Controller Bridge:
The controller bridge can prevent the communication between a visualisation and the controller.
This is used for the Independent mode.

• Data Model Bridge:
The data model bridge can filter out nodes for the Detailed View mode and the Hide Documents
mode.

• Search Result Bride:
The search result bridge filter out nodes from the search result for the Detailed View mode and the
Hide Documents mode.



Chapter 5

Adding a Hierarchy Browser: The Walker
Layout Browser

The previous chapter (Chapter 4) discussed the Hierarchical Visualisation System and how pluggable
visualisations can be integrated. Using the example of the Waker layout browser, the integration of a
visualisation into HVS is demonstrated. This browser is designed to visualise the classic tree drawing
laid out by the Walker algorithm (see Section 3.3).

5.1 Walker Layout Technique

The Walker layout browser is used as a basic implementation of a HVS visualisation by the browsers
discussed in the next chapters. The Magic Eye browser (see Chapter 7) and the InfoLens (see Chapter 8)
are based on the Walker tree layout, which is further manipulated by their layout techniques. All the
other browsers implemented the integration functionality in the same way.

An overview of classic tree drawings is given in Section 3.3. This browser implemented the algorithm
from Buchheim et al. (2002), which is an improved Walker layout algorithm. It works in a similar way
and produces the same result, but in contrast to the original Walker algorithm (Walker II, 1990), it works
in linear time.

To outline the concept of the Walker layout algorithm, it can be split into three parts. In the first
part, child nodes are traversed from left to right and placed at an arbitrary x-coordinate and at a y-
coordinate given by their level. A fixed distance value defines the space between two neighbour child
nodes. Then the parent node is placed centrally above its children (see Figure 5.1(a)). This procedure is
done recursively for all nodes of the tree. In this way, a preliminary tree layout is established, which may
overlapping in this phase (see Figure 5.1(b)). Each subtree is laid out independently from its position in
the tree, which is a major requirement in Reingold and Tilford (1981).

The second part of the algorithm deals with the problem of overlapping. Each subtree is shifted to
the right so that it is placed as close as possible to the right contour of the left neighbour subtree. The
minimum distance of two neighbour subtrees is the same fixed distance value used for nodes above. The
parent of the shifted subtrees again is placed centrally above its direct children again (see Figure 5.1(c)).

At this point the method is the same as the classic Reingold-Tilford algorithm, except, that it is
extended to trees of unbounded degree. However, because of the higher degree a problem arises which
does not occur in binary trees. Small subtrees between larger ones are piled to the left and a gap between
them and the right larger subtree emerges. In Figure 5.1(d) the subtrees B, C, and D are piled to the
left, and a gap emerges between subtree D and E. This causes also a violation of the Reingold-Tilford
requirement that the layout of subtrees should be independent of their location.
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(a) The layout of
a subtree.

(b) The preliminary
layout of a tree.

(c) The final layout with shifted sub-
trees.

A B C ED

(d) A layout with shifted subtrees and a gap. The
grey nodes indicate the contours of subtrees.

A B C ED

(e) A Walker layout with small subtrees, which are
spaced out. The grey nodes indicate the contours of
subtrees.

Figure 5.1: The Walker Layout Method shown in five steps.

The third part’s task is to overcome this problem, Walker II (1990) introduced a solution for this. The
number of smaller subtrees is divided by the available space between two larger subtrees, which result in
a distance value for smaller subtrees. Due to this value, the smaller subtrees are placed evenly between
the larger ones. Thereby they are spaced out evenly (see Figure 5.1(e)).

The algorithm consists of several single tasks, such as finding the left and right contour of a sub-
tree and spacing out smaller subtrees. The second one, which is called apportioning, is improved by
Buchheim et al. (2002) to run in linear time. The improvements are related to finding nodes such as
the greatest uncommon ancestors or traversing a contour. However, the principle of the algorithm is the
same.

Essentially, the technique of the Walker layout visualisation is the implementation of the algorithm
published by Buchheim et al. (2002, Appendix A). This algorithm is used for the node placement on the
2d plane. Then the nodes are connected by lines according to their parent-child relationships. No further
actions are made in the layout process.

5.2 The Walker Layout Browser

5.2.1 Rendering

After the layout algorithm has assigned a position to each node, the rendering process transforms the
abstract tree to a shape with a specific appearance. Therefore graphical elements are needed, which
represent the logical elements of the tree. The rendering algorithm draws the tree shape on a canvas,
whereby the node positions are scaled to window size (see Figure 5.2).

The nodes are rendered as icons, either as coloured circles or as symbols according to their document
type. The user can choose between these possibilities in a settings dialogue in the framework. A type
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Figure 5.2: The Walker Layout Browser. Nodes are laid out side by side and subtrees are placed as
close as possible to the right contour of the left neighbour subtree. Parent nodes are positioned
centrally above their children.

specific representation of documents gives a rapidly understandable overview of the content information
of the tree. The rendering algorithm does not influence the sizes of the icons, they are always the same,
independent of their position and zoom factor. The root node can be highlighted with a configurable
colour to emphasise it. This is not really necessary in this browser, however, it is implemented for
compatibility reasons with the browsers described in the next chapters.

The hierarchical relations of the nodes are drawn as connecting, straight lines. The colour and the
stroke width can be chosen by the user in a dialogue of this browser.

The names of the nodes are drawn as labels beside the according nodes. The font type and size can
be chosen in the framework, the colour in a dialogue of the browser. In the Walker layout the nodes of
the same level are arranged on a horizontal line. If the labels would be drawn horizontally beside their
nodes, many of them would overlap in a normal scaled tree. For this reason, the labels can be rotated
counterclockwise from zero to ninety degrees. This improves the readability of the names.

The labels can be hidden in two manners. Firstly, the user can chose this option for all labels of the
tree. This may be useful to have an overview of large trees. Secondly, a dynamic distance calculation
hides single labels, if nodes are too close to one another. This is an important feature, because otherwise,
the view on a large tree, would be cluttered with label texts. The user can choose the distance threshold,
when labels are suppressed.

Highlights of nodes are drawn as rectangular bounding boxes, whereby the colours depend on the
type of the highlight. There are selection highlights, search result highlights and a selected search result
highlight. The colour is chosen in a dialogue in the framework. The sizes of the highlights are different
due to their type, since a node can has more than one highlight.

Selecting nodes can be done by dragging a selection box over nodes. The selection box is semi-
transparent with the same base colour as the selection highlights. A semi-transparent appearance enables
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users to have an overview of the part of the tree they are selecting.

5.2.2 Navigation

Navigation and interaction are essential facilities in information visualisation. Layout and rendering of
trees alone can often not cope with large trees. Interactive techniques are necessary to explore large
hierarchies. The Walker layout browser features zoom and pan, which are very traditional tools in infor-
mation visualisation.

Zoom

The browser starts with an overview of the whole tree. In small trees the details can be seen together
with the overview. However, large trees can hardly be recognised, since there is no magnification or
focus of a selected area supported in this browser. The Walker layout browser uses the traditional zoom,
which magnifies every part of the tree with the same proportions. Thus the drawing area becomes larger
than the viewport. A detailed view of a part of the tree is presented while the rest of the tree disappears
outside of the drawing area.

Zooming can be done in three ways, with the scroll wheel of the mouse, by drawing a zooming
rectangle, and with sliders at the bottom and the right side of the visualisation window. The mouse wheel
zooms to the point where the mouse is activated. The sliders zoom to the centre of the viewport. Drawing
a zooming rectangle by dragging the mouse zooms into the content of this rectangle. Figure 5.2 shows a
zoomed view of a hierarchy.

Most of the labels are initially hidden because of the distance threshold. When zooming to a point of
interest, the nodes are arranged wider from one another, thus the labels appear. Hence, in addition to the
structural zooming, a content-based zooming is provided.

In general, zooming in these graph-based views means, that the positions of nodes and lines are
changed to be closer or wider to one another. The sizes of the graphic elements remain always in the
same size. A pixel-oriented geometric zooming would also magnify the node icons.

Pan

Since only a small part of a scaled tree can be shown in the viewport, panning is needed to explore the
context of a zoomed area. This is done by dragging the viewport around with the mouse. Obviously this
is not convenient in very large trees, because in a highly zoomed drawing it is hard to explore the tree in
this way.

Focus

If a node becomes focused it is placed in the centre of the viewport. Therefore the tree drawing is moved
correspondingly. Focusing is initiated by double clicking on the interesting node or by receiving a focus
event from the framework.

Maximise

Maximisation is related to the selected nodes. The rectangular area on which the selected nodes are lying
is zoomed in. Thus they are shown detailed in the drawing window. Maximisation is performed due to a
user request in this browser window or an event from the HVS framework.
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Figure 5.3: A zoomed view of a hierarchy is shown in the screen shot. The context of the magnified
area has disappeared outside of the drawing window.

5.2.3 Integration into HVS

Events received from the Framework

As described in Section 4.2, message events are received from the framework for synchronisation rea-
sons. The following events are initiated by the user in another HVS view and can be received by the
Walker layout browser:

• Expansion: Expansion events, in order to expand and collapse an inner node, are ignored. The
walker layout is always drawn with all nodes and links.

• Selection: Selection events change the selection state of the tree. New selections are made in the
browser according to the state received in the event. The selected nodes are marked with bounding
boxes in the colour provided by the HVS framework.

• Focus: A navigation event containing a focused node causes the layout to show this node in the
centre of the window.

• Maximise: A navigation event containing a maximise command causes the browser to change the
view, in order to show all selected nodes fully in the whole window.

This group of events occur due to user actions in the framework or changes in the data model.
Reasons therefore are a complete change of the hierarchy by the user, a modification of the hierarchy
data in a visualisation, filtering of the data initiated by the user, or continuous reading of data by a data
source thread.
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• Node Insertion: An inserted node in the framework is integrated into the internal data structure,
then the tree layout has to be recalculated and redrawn.

• Node Removal: A removed node is deleted from the internal data structure, the tree layout has to
be renewed.

• Node Renaming: Renaming a node is a simple task, only the label has to be changed in the browser.

• Data Model Changed: If the data model has changed completely, the tree has to be created anew.

• Search Result: Due to a change of a search result, all nodes in the result are surrounded by a
bounding box. The bounding box of the selected search result node is drawn in a different colour.

• Filtering: A filter action by the user causes a data model changed event, which is described below
in the next listing.

Events sent to the Framework

Performing an action in the visualisation causes the browser to send these actions to the framework. This
is necessary to keep the other views synchronised. There are three types of synchronisation events, the
first type comprises the actions performed on the navigations and selections:

• Selection Changed: If the user selects or deselects nodes, then the updated selection sate is trans-
mitted to the framework, which synchronises the other views.

• Focus Changed: Focusing nodes is a navigational action which is sent to the framework to provide
the same view on the tree in the other visualisations.

• Maximise: Maximising the view for the selected nodes is also a navigational action, which needs
to be synchronised.

The second type is related to changes of the hierarchy data, since the user can manipulate the tree
data. Unlike the type described above, the command for the action is sent to the framework, which
performs the modification on the data hierarchy, then the new data is accessible for the browser. The
single actions are as follows:

• Node Insertion: A node can be inserted as a child of an inner node. The inserted node can be a
collection or a document, which enables the user to establish a hierarchy structure.

• Node Removal: Documents and collections can be removed. If the removed node is a collection,
all descendants are also removed.

• Node Renaming: The name of a node, which is represented by the label, can be changed.

The third type causes an action outside of HVS, a synchronisation is not needed therefore.

• Open Document: A document can be opened with an external viewer. For example, images or text
files are sent to a native viewer installed on the operating system for display.
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Rendering Settings

There are some options dialogues in the HVS framework by which render options can be set by the user.
They are implemented in the framework because these settings are applied on all visualisations. The
browser requests the information in each paint process. If the user changes an adjustment, a call to repaint
the drawing is sent from the framework to the browser. Thus the new setting is updated automatically
in the browser. The settings can be accessed through the class VisualizationProperties. The
following rendering information is available:

• Colours: Colour settings can be obtained for the bounding box marks of the selected nodes, the
nodes which are in the search result set, and the node which is selected in a search result set.
Furthermore, a colour is available for the drawing background.

• Icons: The framework provides a set of icons to represent nodes in the graph. The icons can be
requested for different document types and for the inner nodes. The framework determines the
icon scheme and the sizes of the icons.

• Font: The fonts for the labels are another graphical setting from the framework. The user can set
the font type and size.

• Tooltip Text: Since the framework manages the hierarchical data with the attributes of the items,
the tooltip text is created by the framework. The browser fetches the text and visualises it on
demand for a node.

5.3 Selected Details of the Implementation

Since all hierarchy browsers discussed in this thesis are based on graph layouts, they use some parts of
the implementation in common. The following selective implementation pieces are identical for these
browsers.

5.3.1 Data Model

The data model of the framework provides structural and attribute information. However, the Walker
layout browser and the browsers described in the next chapters need more functionality. For example, the
Walker layout algorithm needs to store some temporary placement information for each node. Rendering
positions and 2d extent on the drawing plane are needed to detect a clicked node. Thus an internal data
model is established for the visualisations.

The class TreeNode is essential for the hierarchical structure. It is derived from the class Default-
MutableTreeNode, which is part of the Java Foundation Classes (Project Swing). The DefaultMutable-
TreeNode class provides all functionality to create a tree hierarchy. TreeNode classes are used for both
document and collection nodes, the information about the type is stored within the class. It stores the
following information, which can be accessed from outside:

• HVS node: The original HVS node is stored as object for data hierarchy synchronisation reasons.

• Node type: The information if a node is a document or a collection is retained.

• Synchronised states: The information if a node is selected, focused, within a search result, or
selected within a search result are saved as flags.

• Temporary layout information: For example, the Walker layout algorithm needs six fields to cal-
culate the positions of the nodes (preliminary position on the x-axis, modifier value, shift value,
change value, thread node, and ancestor node).
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/∗∗
∗ The method returns an object array of the selected TreeNodes .
∗ /

public Object [ ] getSelectedNodes ( )
{
return selectednodes_ .toArray ( ) ;

}

Listing 5.1: An effective way to receive all currently selected nodes.

/∗∗
∗ Returns a TreeNode of the linear list with the given index .
∗ @param index The index in the linear list .
∗ @return The TreeNode with the given index .
∗ /

public TreeNode getTreeNode ( int index )
{
if ( index < 0 | | index >= allnodes_ .size ( ) )

return null ;

return ( TreeNode )allnodes_ .get ( index ) ;
}

Listing 5.2: The method returns single TreeNode objects for an index value from an internal
linear list.

• Rendering position and extent size: The position and extent size on the drawing canvas are stored.
This is needed to detect if a node is hit by a mouse click.

• Scale factor: The scale factor determines the size of the drawn icon and label.

To create, access and modify the hierarchy built on TreeNode objects, there is a class named TreeGraph.
This class provides managing methods for easy and effective usage of the hierarchy data. Its task is to
hold information about the root node, the selected nodes, the focus node, the tree depth and the number
of nodes.

Furthermore it contains a list of all nodes which are selected. Obtaining all selected nodes in the tree
can be effectively provided, since only the list is returned by the method. Otherwise, an algorithm would
have to traverse the tree recursively and collect the selected nodes. This functionality is often needed,
so an effective implementation is essential. Listing 5.1 shows the implementation of the method which
returns the selected nodes.

Considering an approach of storing hierarchical tree data in a table for reasons of efficiency (Fekete,
2004), the hierarchical data are also stored as a list of references to TreeNode objects. Thus nodes can
be obtained in two ways, either by using the parent-child relationship or by accessing the list with an
index of the node. Listing 5.2 shows how to get a TreeNode object for an index value.

A use case for traversing the tree data linearly is hit detection. When the user clicks with the mouse
on a node, an algorithm has to find the node which lies under the mouse. The nodes must be queried for
their position in the reverse order they were drawn. The last drawn node is put on the top if nodes are
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/∗∗
∗ The method finds the nodes which is rendered at the given
∗ position or returns null otherwise .
∗ @param x The x−coordinate of the position
∗ @param y The y−coordinate of the position
∗ @return The node lying on the given position
∗ /

public TreeNode getTreeNodeAtPos ( int x , int y )
{
TreeNode treenode ;
TreeNodeIcon icon ;

/ / search from end to start , because the nodes were painted in
/ / the other way , the later nodes are draw over the former ones .
for ( int i = treegraph_ .getTreeNodeCount ( ) − 1 ; i > = 0 ; i−−)
{
treenode = treegraph_ .getTreeNode ( i ) ;
icon = treenode .getIcon ( ) ;

if ( icon .contains ( x , y ) )
return treenode ;

}
return null ;

}

Listing 5.3: Hit detection using the internal linear node list.

overlapping. Obviously, performing this task recursively would be more extensive than processing a list
from the tail to the head. Listing 5.3 shows this implementation.

5.3.2 Integration into HVS

The visualisations are designed to run in two modes. They may run as stand-alone applications which
read the data from the local file system. Secondly they act as plug-in view in HVS. For this reasons, most
parts are independent from HVS and its data and event model. Therefore the connecting class HVSView
manages all interface functionalities to HVS, which are described in Section 4.2. Its main tasks are:

• Derivation of the HVS Visualization Superclass: A HVS visualisation plug-in must be derived
from the Visualization superclass in order that it can be used by the framework.

• Graphical User Interface (GUI): HVSView implements the necessary GUI components, which
are a drawing canvas and an options menu, and manges the mouse input.

• Events from HVS: Receiving of HVS events and forwarding to the appropriate component is an-
other task of HVSView .

• Event to HVS: Events from the visualisation, such as selecting nodes, are sent to the HVSView

class, which forwards it to the HVS framework.

• Accessing HVS Properties: HVSView accesses the HVS VisualizationProperties class and
forward these values to the rendering module.

• Creation of an internal data model HVSView creates an internal data model for the visualisation
and synchronises it with the HVS data model (see below).
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/∗∗
∗ A new node is inserted in the internal data model .
∗ @param event The HVS event containing the inserted HVS node .
∗ /

public void nodeInserted ( DataModelEvent event )
{

/ / get the hvs node from event
Node hvsnode = event .getNode ( ) ;

/ / get locations of node and insert the node into each location
TreePath [ ] treepaths = event .getParentPathes ( ) ;
for ( int i = 0 ; i < treepaths .length ; i++)
{

/ / create a new treenode using the hvs node
TreeNode treenode = new TreeNode (

hvsnode , hvsnode .getName ( ) , hvsnode instanceof Collection ) ;

/ / insert treenode at correct position in the internal data model
TreeNode parentnode = findTreeNode ( treepaths [i ] ) ;
Vector hvschildren = datamodel_ .getChildren (

(Collection )parentnode .getNodeObject ( ) ) ;
for ( int j = 0 ; j < hvschildren .size ( ) ; j++)

if ( hvschildren .get ( j ) = = hvsnode )
parentnode .insert ( treenode , j ) ;

/ / notify the internal data model
treegraph_ .nodeInserted ( treenode ) ;

}

/ / visualisation update
geometryengine_ .recalculate ( ) ;
renderengine_ .render ( ) ;

}

Listing 5.4: The method which handles the event received from HVS when a node has been
inserted.

There is a second analogous class for the stand-alone mode, which fulfils the same tasks, but in a
different way. The data are read from the file system and events are ignored, since the stand-alone appli-
cation is not synchronised. All other parts of the visualisation have no information about its environment,
they simply use an abstract superclass of them for the communication.

Listing 5.4 is an example how the data hierarchy is synchronised by HVSView . It shows the process-
ing of an event from the HVS framework when a node has been inserted. HVSView inserts this node in
the internal data model and updates the visualisation.

5.4 Outlook and Further Work

Animation is currently not implemented for automated transitions. Focusing a node by double clicking
it in this or another visualisation moves the drawing in a single step to centre this node. The movement
should perhaps be animated to prevent a loss of orientation. A second transition is the zooming by
dragging a zooming rectangle. The zooming from the current view area to the selected zooming area can
be animated. The same can be applied on the maximisation process.



Chapter 6

Hyperbolic Browser

The hyperbolic browser is an elegant and subtle solution to the problem of providing a focus plus context
implementation for large hierarchies. It uses a non-euclidean geometry, hyperbolic geometry, which is
mapped to the euclidean unit disc.

This chapter describes the basics of hyperbolic geometry and the mapping to euclidean space, fol-
lowed by a tree layout technique using this geometric background. Afterwards it describes a browser
built on this technique and details of its implementation.

6.1 Hyperbolic Layout Technique

The hyperbolic visualisation method was introduced in Lamping et al. (1995). An overview of this
browser type and related work is given in Section 3.9. This thesis presents an implementation of the
hyperbolic browser, which is also integrated into HVS.

The hyperbolic browser is intended to deal with large trees without loosing a detailed view on any
part of the hierarchy. Due to a mapping from hyperbolic space to the euclidean unit disc, a focus plus
context effect arises.

Following the discussion in Walter and Ritter (2002), Herman et al. (2000), Lamping et al. (1995),
Mohar (1999), and Thruston (1997), an introduction to hyperbolic geometry is presented before explain-
ing the hyperbolic layout technique. Hyperbolic geometry is based on an axiomatic system, which has
its origins in euclidean geometry.

6.1.1 The Hyperbolic Plane (H2)

Euclidean geometry is built on five axioms and defines the space which is natural in the sense of human
perception. The fifth axiom states that if a line does not intersect a point, then there is exactly one line
which is parallel and intersects this point. By definition, a line is the shortest way from one point to
another. Declining this axiom results in two types of homogeneous non-euclidean geometries. In both
geometries, traditional trigonometric equations are no longer valid. For example, the sum of the internal
angles of a triangle is no longer 180 degrees.

Depending on the angle sum there are three types of homogeneous two-dimensional geometries:
Euclidean geometry, which has an angle sum of exactly 180 degrees, spherical geometry, which has an
angle sum of more than 180 degrees, and hyperbolic geometry, which has an angle sum of less than 180
degrees. The latter is also called the hyperbolic plane or H2.

Spherical geometry can be imagined as a surface on a sphere. When drawing a triangle on a sphere,
where one angle lies on the pole and the other two somewhere distantly on the equatorial circle, it can
be easily seen that the angle sum is greater than 180 degrees. Unfortunately there is no intuitively
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Figure 6.1: A hyperbolic plane embedded into 3d euclidean space. This illustration shows that
there is more room in hyperbolic space than in euclidean space. [Figure extracted from Proc.
of KDD ’02. Copyright by the Association of Computing Machinery, Inc.]

understandable 3d visualisation for the hyperbolic plane. It is often visualised as a shape with a negative
curvature embedded into 3d euclidean space as shown in Figure 6.1.

The hyperbolic plane is a mathematical object with unusual properties. Parallel lines diverge away
from each other. This leads to the property that the circumference of a circle on the hyperbolic plane
grows exponentially with its radius. Therefore the amount of space rapidly grows with the distance. The
mathematical expression of this property is given by the equation of the circumference in the hyperbolic
plane:

c (r) = 2 π sinh (r) (6.1)

For small radii the circumference is nearly equal to a circle in euclidean space. However, for greater radii
it grows exponentially with the radius.

A mapping from 2d hyperbolic space to the euclidean plane is needed. Whereas the mapping from
spherical geometry to the euclidean plane is a well known task, the mapping from H2 is a difficult
problem because of the exponential growth of room. The embedding of H2 into 3d euclidean space helps
to understand hyperbolic geometry, however, it is not suitable to benefit from the visualisation potential
of H2. There are several mapping methods, which all have to abandon one or more characteristics, such
as angles or lengths.

The best known are the Klein model and the Poincaré model. Both of them map the infinite hy-
perbolic plane into the euclidean open unit disc. The Klein model preserves lines and distorts angles,
whereas the Poincaré model preserves angles and distorts straight lines to arcs. The following discussion
concerns the Poincaré model.

6.1.2 The Poincaré Unit Disc (PD)

The hyperbolic plane is mapped into the unit disc which is also called Poincaré unit disc (PD) in this
context. This disc shows a representation of the H2, not the hyperbolic plane per se. PD can be drawn on
the euclidean plane, but has hyperbolic metric. A model means the projection of a subset of geometric
characteristics into the euclidean unit disc.
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Figure 6.2: A hyperbolic unit disc illustrated by Maurits Escher (Circle Limit III). Escher was
fascinated by the infinite space within the disc and influenced the beginning of the hyperbolic
layout in information visualisation. The white arcs are straight lines in the hyperbolic plane.
[Figure extracted from Proc. of KDD ’02. Copyright by the Association of Computing
Machinery, Inc.]

The properties of the Poincaré model makes this mapping convenient for layout and browsing pur-
poses. A famous drawing by Laurids Escher illustrates some characteristics of the Poincaré disc (see
Figure 6.2). The most important properties are:

• Infinite space: The infinite hyperbolic space is mapped entirely into the PD. That way an infinite
space can be visualised on the display.

• Circle rim: All distant points in H2 are close to the circle rim without touching it. There is infinite
space near the rim.

• Focus plus context: Each location in H2 can be mapped to the circle centre, which magnifies this
location. All other parts are placed near the rim. A smooth transition from focus to context can be
observed.

• Lines: Straight lines in H2 become circle arcs in PD, which orthogonally intersect the border of
the disc. The lines diverge away spanning out more room than in euclidean geometry.

• Angles: Angles and therefore forms are preserved in the PD.

• Circles: Circles in H2 are mapped into circles in the PD, though they shrink in size the further they
are away from the origin. Additionally, every circle in PD is also a euclidean circle.

To change the focus point in PD, a translation operation is needed, which is fulfilled by the following
transformation equation. The values and parameters for this formula are complex numbers representing a
location in the euclidean plane. The transformation respects the hyperbolic metric in PD when modifying
position values.

T (z) =
Φz + P

1 + Pz
, |Φ| = 1, |P | < 1 (6.2)
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The formula expresses the transformation of the point z in PD to the transformed point T(z) in PD.
The complex number Φ describes the pure rotation of PD around the origin, hence the length of Φ has
to be exactly one. P describes the translation of PD, whereby the origin of PD is mapped to P and -P
becomes the new centre in PD. P is the complex conjugate of P.

A pure translation without rotation is affected by setting the rotation parameter Φ to one (Φ = 1 + 0i).
The reduced transformation formula performs only a translation:

T (z) =
z + P

1 + Pz
, |P | < 1 (6.3)

Similar to euclidean space, this translation is an isomorphic transformation, which preserves forms
and metric in H2. Circles remain circles in both H2 and PD. Straight lines are preserved in H2 and
therefore the corresponding circle arcs remain circle arcs in PD.

6.1.3 Tree Layout

To benefit from the potential of hyperbolic geometry, a technique is needed which makes it usable as an
information visualisation method. This section describes a technique based on the approach described in
Lamping et al. (1995).

The tree layout method resembles the radial tree layout described in Section 3.4. Considering the
problem with the radial layout, there is too little space for large trees. Essentially, the difference to the
radial layout is the underlying geometry. In hyperbolic space there is much more room for large trees.
Thus this layout technique yields a useful result, whereas the same tree layout in euclidean space is not
practical.

Trees grow exponentially with their depth because of their inherent structure. Considering Equa-
tion 6.1 in the last section, the circumferences of circles also grow exponentially with the radius. When
laying out the tree radially with the root in the centre, the tree grows in the same way exponentially as
the hyperbolic space, thus the tree can be incorporated in H2. The result is that there is enough space for
nodes and subtrees at an arbitrary level. This is a main characteristic, that the available space is nearly
equal for all nodes independent of their level.

At this point the question arises how to lay out the tree in H2. The crucial point is that each node is
laid out in the centre of PD and the children are placed on a circle arc which surrounds the centre. The
circle arc is separated into several wedges, where one wedge is assigned to each child. Each child node
is positioned in the middle of its wedge (see Figure 6.3(a)).

Now the child nodes are positioned relatively to the parent node. To determine the real position,
it will be translated by using Equation 6.3 with the real location of the parent node as the translation
parameter. The new position is stored for use in the initial layout.

Then each child node and its wedge is translated into the centre of PD using Equation 6.3 again. By
reason of hyperbolic geometry the angle of the wedge strongly increases. Then the children of the now
centred child node are laid out on the magnified wedge (see Figure 6.3(b)).

This procedure is recursively applied to all nodes. Since nodes have wedges and angles are preserved
in PD, the subtrees of adjacent siblings do not overlap. Circles in PD are also circles in euclidean
geometry (Mohar, 1999), so the nodes can be placed on the circle arc in the same way as in an euclidean
circle. The nodes keep this circle form of their arrangement.

A typical value for the length of the wedge radius is 0.7, in any case it must be between zero and one,
because PD is a unit disc. For greater lengths there is more room for the nodes on the arc. On the other
side the context is more pushed to the rim. For smaller radii the context is better visible, but the nodes
are placed closer to each other.



6.2. The Hyperbolic Browser 55

R

A

B

C

D

E

(a) The root node is centred and its children are
placed in a surrounding circle. The wedge of node
A is drawn in grey.
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(b) A translation has moved node A to the centre,
increasing the wedge of A. The children of node A
(node 1, 2, 3, 4) are laid out on the larger wedge.

Figure 6.3: Two schematic illustrations outline the layout of nodes in PD. A child node is drawn
on a circle arc surrounding the centre, then it is translated with its wedge to the centre, which
increases its wedge.

The sizes of the wedges are not evenly apportioned, but they depend on the extents of their subtrees.
The nodes in a subtree are summed up logarithmically for all siblings. By comparing this value with the
sum of the values of all siblings, the size of a wedge is determined for a node. That way the subtrees are
spaced out evenly.

After the recursive calculations of all node positions, the nodes are placed in PD according to their
location coordinates. Since PD lies in the euclidean plane, the positions are already usable for the layout
(see Figure 6.4)

6.1.4 Change of Focus

Changing the focus is performed by translating the tree in PD. The same equation (Equation 6.3) is used
for the translation as for the tree layout. To move a tree, the translation formula is applied on each node
with the same parameter. On the euclidean display, the nodes near the centre are moved further than
nodes near the rim. In this way dragging the tree can be implemented. The translation affects only the
current positions of the nodes. Neither a new tree layout has to be made, nor the original locations for
the first layout are needed.

To move a specific node to the centre of PD, a change of focus is performed, whereby the translation
parameter consists of the negative coordinates of the point which should be focused. Due to Equation 6.3
the new centre of a translation is the negative translation parameter.

6.2 The Hyperbolic Browser

The hyperbolic browser is based in many aspects on the Walker layout browser. However, the tree layout
and the navigation are essentially different. This section only discusses the features which are different
or extended.
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Figure 6.4: An initial hyperbolic layout drawn by the HVS hyperbolic browser.

6.2.1 Rendering

The unit disc and the node locations inside are scaled to a variable window size. In contrast to the Walker
layout browser, all nodes are drawn into the disc, so scrolling is not needed. Since most nodes are placed
near the rim, the possible problem of cluttering is avoided by scaling and hiding the node icons and
labels. Nodes near the centre are drawn in full size, near the rim they are successively scaled down with
the distance, until they are completely hidden (see Figure 6.4).

The area in the disc can be divided into three parts. The inner part around the origin up to about half
the radius is the focus area, where a small part of the tree is magnified to nearly its normal size. The
ring around the focus area represents the contextual information of the focused tree part. It is distorted
to smaller sizes and angles, but the contained structural and content information is still recognisable. All
other tree parts are placed in the outer ring bordering the rim. An overview of the structure is visualised
there. Thus the hyperbolic browser provides three levels of detail.

To achieve smooth panning and zooming, a guaranteed frame rate is provided by the rendering pro-
cess when the tree is moving. The frame rate can be chosen by the user and determines the time how
long the drawing procedure may take. If this time has elapsed before the rendering was finished, the
algorithm stops and starts drawing a new frame at the next position. This prevents unbalanced motion
with hanging frames. However, the effect is gained at the price of incomplete images during a transfor-
mation. Additionally, anti-aliasing is turned off until motion has finished. The final frame after motion
has completed, is drawn in full with anti-aliasing enabled and without time constraints.
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6.2.2 Navigation

Zoom and Pan

Due to the focus plus context effect, zooming and panning is performed in one user action. In the centre
of the disc the visualised tree is magnified. To zoom in to a particular part of the tree, this part is dragged
into the centre of the disc. The context of the newly focused subtree is also magnified and surrounds
it. Using this contextual information, users can explore the tree by panning the interesting parts into the
focus area (see Figure 6.5).

When parts are moved from the context into the focus area, a visual fan out effect can be observed.
This is caused by the hyperbolic geometry in the Poincaré disc model, which distorts the area in the
context more than in the centre. If a subtree is moved into the origin of PD, then the angles are visualised
similarly as they are. The diminished angles and length near the rim are magnified to almost normal
size, which can be observed as the visual fan out effect. For users this effect is a pleasing and aesthetic
property, while exploring the information.

To change the magnification magnitude in the focus area, the radius of the layout wedges can be
changed (see Section 6.1) using the mouse wheel. A larger radius increases the magnification, whereby
the context is moved towards the rim. Details are seen better, but the context information decreases. This
may be necessary, if a parent node has many child nodes. Decreasing the radius affects less magnification
and more contextual information. This is suitable if the focused part of the tree is not very dense (see
Figure 6.6).

Focus

Focusing a node in the hyperbolic browser means moving it to the disc centre. There a focused node is
magnified together with its direct by related nodes, surrounded by its context. The corresponding label
is drawn in full size and the content information can easily be gathered with the help of the tooltip.

The interesting node can be manually dragged into the disc origin, or be automatically moved by an
animation task to the exact centred position. Double clicking the node or an external synchronisation
event can cause a node to become focused. The guaranteed frame rate ensures a smooth transition.

Maximise

Maximisation of a number of nodes (the selected nodes), can not be fully accomplished in the hyperbolic
browser if the nodes are at distant positions in the tree. Considering that only a small part of the tree can
be emphasised while the rest is scaled down, the hyperbolic browser does not produce good results under
such conditions. However, if the nodes are close to one another, such as siblings are, then a good result
is achieved.

The maximisation algorithm collects all selected nodes and calculates the arithmetic average values
of the coordinates. Then the location with this average value is focused. Therefore, it depends on how
distant each node is from the average value, whether it is moved to the focus area.

6.2.3 Tree Layout

An alternate tree layout can be chosen, which draws the tree to a preferred direction instead of the
default radial layout. There are four directions, right, left, top, and bottom, to which the hierarchy can
be adjusted. The layout angle is restricted to ninety degrees, where the median angle of these sectors is
adjusted (see Figure 6.6) . In other respects the layout is done in the PD as for the radial layout.

Navigation in an adjusted tree is performed in the preferred direction. For example, a user navigates
from left to right to explore a tree from the root node to the leaves. An adjusted layout provides more
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(a) The root node at level 0. (b) A node at level 1.

(c) A node at level 2. (d) A node at level 6.

Figure 6.5: The four figures demonstrate navigation to a particular node. Four focused nodes
at different levels are shown with their child nodes. Even the node at the highest level has
enough space for its children.
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Figure 6.6: A hyperbolic layout which is adjusted to the right is shown in this figure. The magni-
fication magnitude is low, which provides a good overview of a small tree.

uniform layout and navigation, which can help to better find hierarchical information. In a right-adjusted
layout, the labels can be seen better, because the natural adjustment of words is the same.

6.2.4 Integration into HVS

The integration of the hyperbolic browser is implemented nearly in the same way as for the Walker
layout browser. The same events from the HVS framework are received, which cause analogous actions.
Actions performed by the user cause the corresponding events to be sent back. The rendering properties
are also processed analogously.

6.3 Selected Details of the Implementation

6.3.1 Translation

Nodes are translated in PD using Equation 6.3 (see Section 6.1). The implementation is done in the class
HBNode, which stores the location of a node and which provides the method translate (double

tx, double ty) to apply the transformation on itself. The parameter determines the change of focus
to the negative parameter coordinates, and the equation determines how far the point is moved depending
on its current location. Listing 6.1 shows the implementation of the formula using complex arithmetic.

6.3.2 Tree Layout

The principle of tree layout in hyperbolic space is discussed in Section 6.1. Listing 6.2 shows the im-
plementation of the recursive layout. The children of each node are placed around the disc origin in the
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/∗∗
∗ Translation in PD of this point by a translation parameter
∗ using the transformation formula from Lamping et al . 1 9 9 5 .
∗ @param tx The translation parameter ( x−coordinate )
∗ @param ty The translation parameter ( y−coordinate )
∗ /

void translate ( double tx , double ty )
{

/ / t (z ) = ( z + t ) / ( 1 + z ∗ conj (t ) )

/ / numerator
double numx = x_ + tx ;
double numy = y_ + ty ;

/ / denominator
double denx = ( x_ ∗ tx ) + ( y_ ∗ ty ) + 1 . 0 ;
double deny = ( y_ ∗ tx ) − (x_ ∗ ty ) ;

/ / division
double dd = ( denx ∗ denx ) + ( deny ∗ deny ) ;
x = ( ( numx ∗ denx ) + ( numy ∗ deny ) ) / dd ;
y = ( ( numy ∗ denx ) − (numx ∗ deny ) ) / dd ;

}

Listing 6.1: The method which accomplishes translation of a point in the Poincaré disc.

middle of its wedge. The node and the wedge are translated according their parent’s location and this
position is stored for the use in the final layout. The wedge is moved to the disc origin for the layout
procedure of its children.

To achieve an evenly apportioned tree layout, weights are assigned to nodes. Nodes with wider
subtrees are weighted higher than nodes with smaller ones in order to give them more extended wedges.
The weight of a node is calculated from the logarithm of the sum of its children. Since this computation
is recursively performed, the descendants of a node at a higher level are less important then descendants
at a lower level. In other words, a node with few children and a wide subtree at a higher level has a lower
weight than a node with many children and a small subtree.

Mathematically expressed, for each inner node in the tree the following equation is used for the
calculation:

wnode = loge

(
n∑

i=1

wchild

)
, n > 0 (6.4)

where wnode is the weight of a node, wchild the weight of a child, and n the number of the children
of the node. If a node has no children, then the weight is set to one. Listing 6.3 shows the recursive
implementation.

6.4 Outlook and Further Work

6.4.1 Magnification Magnitude

In the current implementation the magnification magnitude (see Section 6.2), which determines the mag-
nification in the focus area, is fixed for the complete layout. Though it can be changed by the user during
the navigation by activating the mouse wheel, it is always applied on the whole tree. The modification is
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/∗∗
∗ The recursive layout algorithm for the layout in the Poincare disc
∗ @param treenode The treenode ( and its subtree ) to lay out
∗ @wedge The wedge in which the node and subtree are placed
∗ @length The radius of the wedge
∗ /

protected void layoutHBNode
(TreeNode treenode , HBWedge wedge , double length )

{
/ / layout the node
/ / nothing to do for the root node
TreeNode parent = treenode .getParentNode ( ) ;
if ( parent ! = null )
{
double angle = wedge .getBisectionAngle ( ) ;

/ / We first start as if the parent was the origin .
/ / We still are in the hyperbolic space .
treenode .z .x = length ∗ Math .cos ( angle ) ;
treenode .z .y = length ∗ Math .sin ( angle ) ;

/ / translate the point and the wedge by the parents coordinates
treenode .z .translate (parent .z ) ;
wedge .translate (parent .z ) ;

/ / translate the wedge by the negitive points coordinates
wedge .translate (−treenode .z .x , −treenode .z .y ) ;

}

[ . . . . . . . ]

/ / layout for the child nodes and their subtrees
double currentangle = wedge .alpha_ ;
for ( int i = 0 ; i < treenode .getChildCount ( ) ; i++)
{
TreeNode childnode = treenode .getChildNode ( i ) ;
HBWedge childWedge = new HBWedge ( ) ;

/ / calculate the wedge for the child
childWedge .alpha_ = currentangle ;
currentangle +=

(wedgeangle ∗ ( childnode .weight / treenode .childrenweights ) ) ;
if ( currentangle > 2 ∗ PI )

currentangle −= 2 ∗ PI ;
childWedge .omega_ = currentangle ;

/ / layout the child node within its wedge
layoutHBNode ( childnode , childWedge , length ) ;

}
}

Listing 6.2: The tree layout algorithm which recursively lays out the hierarchy in hyperbolic space.
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/∗∗
∗ Recursive method which computes the weights of the nodes
∗ /

protected void computeWeight ( TreeNode treenode )
{
for ( int i = 0 ; i < treenode .getChildCount ( ) ; i++)
{
TreeNode child = treenode .getChildNode ( i ) ;

/ / compute weight recusively for all descendants
computeWeight ( child ) ;

/ / add the weight to this node
treenode .childrenweights + = child .weight ;

}

/ / use the logarithmic value for further calculation
if ( treenode .childrenweights ! = 0 . 0 )

treenode .weight + = Math .log (treenode .childrenweights ) ;
}

Listing 6.3: The recursice method which computes the weights of the nodes.

needed if an inner node has a great number of children, because they are placed to close to each other in
this case.

An improvement could be made in the layout algorithm, by assigning dynamic wedge radii to the
nodes depending on the number of their children. A formula would be needed which calculates a rea-
sonable radius value by using the number of children. In this case manual modification of magnification
during navigation would be obsolete.

6.4.2 Rendering Optimisations

Label and icon sizes depend on their positions in the drawing disc. The further they are located from the
origin, the smaller they are visualised. On the one hand, this represents levels of detail and on the other
hand it is a necessity to avoid cluttering near the rim. An improvement could be made in the algorithm
which calculates the size values. Sometimes they seem too small depending on the tree structure and the
magnification magnitude. The algorithm should consider both conditions.

Moving a large tree often causes parts of the tree to disappear in order to guarantee a fixed frame
rate. Drawing nodes, labels, and lines takes much more time than calculating their positions. Therefore
an optimisation of rendering of moving trees might modify the decision, as to which parts are drawn
and which are not. Currently a fixed order determines the sequence of nodes, labels and lines to be
drawn. If the focused part of the tree is at the end of this sequence, it disappears while moving. A
more sophisticated solution would be to start the drawing with the part lying near the disc origin and
successively draw the elements at more distant positions. Since the magnified focus area only contains a
small part of the tree, this technique would avoid the disappearance of relevant tree information.



Chapter 7

Magic Eye Browser

This chapter describes the implementation of the Magic Eye browser and its integration into HVS. The
Magic Eye method is a focus plus context visualisation technique, based on a graph layout. In this chapter
the visualisation technique is explained, followed by an description of the browser implementation and
some implementation details.

7.1 Magic Eye Layout Technique

The Magic Eye technique is intended to have similar properties than the hyperbolic method, but uses
a different approach based on spherical projection. This visualisation technique and an implementation
was firstly published in Bürger (1999) and Kreuseler and Schumann (1999) and is called the Magic Eye
View. An overview of the features and a screenshot is discussed in Section 3.15.

Essentially, the Magic Eye method is based on a mapping of a tree layout to the surface of a hemi-
sphere. Due to the mapping of a plane with euclidean geometry to a plane with spherical geometry, a
focus plus context effect is achieved. The mathematical background consists of trigonometric calcula-
tions and intersecting 3d vectors.

An orthogonal projection from the surface of a hemisphere to the equatorial disc demonstrates how a
focus can be achieved by using spherical geometry. Figure 7.1 shows a projection of several rings on the
hemisphere, which are equidistantly arranged from the pole to the equator. Also, the vertical angles of
the vectors from the origin to adjacent rings are equidistant. The orthogonal projection to the equatorial
disc achieves a focus of the rings near the pole and diminishes the rings near the equator. In this way,
magnification around the pole of the hemisphere is achieved.

7.1.1 Tree Layout

The algorithm starts with a radial variation of the Walker tree layout. The x-coordinates are normalised
to 2 π radians and are used as angles in the layout disc. The levels of the nodes are used as the polar
length, which is normalised to π

2 . The lengths of the several node levels are equidistant from one another
(see Figure 7.2(a)).

The mapping of the layout on the surface of a hemisphere is the next step. In general, each point on a
hemisphere can be determined by two angles. The first angle is θ, which defines the horizontal rotation,
the second is φ, which defines the vertical rotation. When using the polar angle of the layout disc as θ
and the polar length as φ, a unique mapping can be determined. In this manner the circular tree layout is
mapped onto the hemisphere surface (see Figure 7.2(b)).

To visualise the tree with the focus on the root node, an orthogonal projection of the tree from
the hemisphere onto the equatorial disc is applied. Figure 7.1 illustrates the focus resulting from the
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Figure 7.1: An orthogonal projection from the surface of a hemisphere to the equatorial disc is
illustrated. The dashed lines symbolise the angles of the projected rings on the hemisphere.

projection. To make clear the terms in this method, the layout disc is the disc in which the tree is
originally laid out. The equatorial disc or drawing disc is the disc onto which the tree is projected from
the hemisphere.

7.1.2 Changing the Focus

To perform a change of focus, a special point on the equatorial disc is defined, which is called the
projection centre (PC). Initially the projection centre is placed at the origin of the hemisphere. For each
node, a vector is defined which starts at the PC and points to the node. The vectors have the same vertical
and horizontal angles regarding the layout disc described above (see Figure 7.3(a)).

The PC can be moved around within the equatorial disc, whereby the vectors keep their spatial
directions. By reason of translating vectors, there are new intersection points of the vectors with the
hemisphere, which are the new positions of the nodes. Finally, the new nodes are orthogonally projected
to the equatorial disc below. A new focus emerges on the opposite side of the PC to the origin (see
Figure 7.3(b)).

This method of changing the focus is characterised by the fact that all nodes are placed within the
drawing disc, even if some nodes are concentrated near the rim. This property resemble the hyperbolic
technique, which locates most of the nodes near the circle edge.

7.1.3 Focus Extensions

In addition to the original Magic Eye View three methods have been developed, which increase zooming
for the items of interest. All three are applied on the layout calculated for the layout disc. The mapping
onto the hemisphere and the projection onto the drawing disc is performed afterwards.
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(b) The point with the same location parameters as
in the layout disc on the hemisphere.

Figure 7.2: The mapping of a point from the layout disc onto the surface of a hemisphere. The
polar coordinates of the point in the left figure are used for the placement on the hemisphere
in right figure.
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(a) A projection of the nodes with the PC in the ori-
gin. The black nodes are the projections of the grey
nodes.
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(b) A projection of the nodes with the translated PC.
The focus has moved on the opposite side. The black
nodes are the projections of the grey nodes.

Figure 7.3: Orthogonal projection of nodes. In the left drawing the projection centre (PC) is in the
origin. In the right drawing the PC is translated, which causes a focus area on the opposite
side of the PC.
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Level Zoom

As described above, the φ-values in the layout disc are equidistant to each other in the original Magic
Eye View method. Increasing a particular φ-value moves this level outwards, which leads to a greater
ring corresponding to the level represented by the φ-value. Therefore, its circumference is enlarged and
the nodes on it have more space lying side by side.

Sectoral Zoom

An angular distortion increases the magnification in the focus area. A sector in the layout disc which
includes the focus area is defined by two bordering angles. Using the polar coordinate system, an angle
is assigned to each node. The angles of all nodes within the sector are distorted to increase the distances
of the nodes to one another. Thus the area of these nodes is enlarged and the area of the other nodes
shrunk.

Subtree Zoom

A selective layout emphasises the focused node and its subtree. The nodes which are under the focused
node are placed on one half of the layout disc, all other nodes on the other half.

7.2 The Magic Eye Browser

The Magic Eye browser implements the visualisation method described in the last section. Like the
hyperbolic browser (see Section 6.2) it is based on the Walker layout browser regarding rendering and
integration into HVS.

7.2.1 Rendering

In the rendering process most things are identical with the hyperbolic browser, such as drawing nodes,
lines, and labels. The guaranteed frame rate of a moving visualisation omits parts of the tree if the time
for a frame has elapsed. Nodes near the rim are represented smaller or are hidden.

The visualisation of the levels is a graphical aid in the Magic Eye browser. Since the form of the
original layout on the layout disc is essentially preserved, the levels can be visualised by ellipses. They
have the shape of ellipses if the PC is moved away from the origin of the equatorial disc, otherwise they
are represented by circles. This gives a direct overview of the levels of nodes in different subtrees as can
be seen in Figure 7.4.

7.2.2 Navigation

Pan

Panning in the Magic Eye browser means translating the projection centre within the drawing disc. The
location of the PC determines the focus area, which always lies on the opposite side of the PC through
the disc origin. If the PC is moved to the border, then parts at a successively deeper level are magnified
(see Figure 7.4).
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Figure 7.4: The Magic Eye browser. Different levels in the hierarchy are indicated by the bluish
rings. The projection centre is translated down and to the right and therefore the focus area
has moved up and to the left.

Zoom

Besides emphasising the focus area by translating the PC, two additional zooming techniques are avail-
able, level zoom sectoral zoom (see Figure 7.5(b)) and (see Figure 7.5(d)). Both are extensions to the
original Magic Eye View and are explained in Section 7.1.

Level zoom increases the distances between the particular level and adjacent levels. The circumfer-
ence of the level is enlarged and thus there is more room for the nodes on it. To choose the level which
should be magnified, a node on this level has to be focused. Then increasing a level is related to the
focused node and the level of its children. Continuously increasing a level is performed with the mouse
wheel. The other levels become proportionally smaller (see Figure 7.5(b)).

Sectoral zoom is related to the angles of the nodes in a polar coordinate system. Due to the synchro-
nisation with the PC, nodes located in the focus area are fanned out while the other nodes are contracted.
The polar lengths of the affected nodes are not modified. Sectoral zoom acts as an amplifier for the
focus area, when the PC is dragged around, a higher magnification of the focus area is achieved (see
Figure 7.5(d)).

Focus

Focusing a node changes the layout, which is also an extension to the original Magic Eye View. The
layout is rotated so that the focused node is on the right side of the root node. The subtree of the
focus node is placed on the right half of the disc, all other nodes are positioned on the left side (see
Figure 7.5(c)). This technique can be used to explore a tree by successively navigating into subtrees.
When translating the PC to the left side of the drawing disc, the subtree of the focused node is allocated
nearly the whole space of the disc.
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(a) Standard zoom of the focused area. (b) Sectoral zoom of the focused area.

(c) The focused node and its subtree is zoomed. (d) Level zoom enlarges the level of the focused
node.

Figure 7.5: The Magic Eye browser zooming modes.
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Figure 7.6: The effect on a point on the hemisphere surface after a translation of the projection
centre (PC). The vectors to the points are used for the position calculations and the orthogonal
projections. The grey points (P, P’) are the nodes on the surface, the black points (Pt, P ′

t ) are
the orthogonally projected nodes.

Maximise

Maximising works similar as it does in the hyperbolic browser. An “average” point of the selected nodes
is calculated to which the focus area is moved. The PC is moved so that the average point is emphasised.
However, it depends on the nodes, how far they are located from the average point, if they are well seen.

7.2.3 Integration into HVS

Integration of the Magic Eye browser is implemented in the same way as the Walker layout browser and
the hyperbolic browser. Event handling is implemented similarly and the caused actions are analogue.
Due to the graph-based rendering the rendering properties are fetched from the HVS framework and are
displayed in the same way as the other browsers.

7.3 Selected Details of the Implementation

7.3.1 Translation of the Projection Centre

As described in Section 7.1, translating the PC affects the position of the nodes in the drawing disc. To
obtain the exact positions of the moved nodes, calculation is done with the help of the vector analysis
shown in Figure 7.6.

~P is the vector from the origin to the node with the location P on the hemisphere, which was cal-
culated by the initial layout procedure. A translation of PC to the new location PC’ causes a position
change of P to P’. The vector ~P ′ to the new position can be obtained by the sum of the two vectors ~PC ′

and t ~P , where t is the scalar factor which changes the size of ~P in order to point to P’:



70 7. Magic Eye Browser

~P ′ = ~PC ′ + t ~P (7.1)

To solve this equation, the value of t is needed. Knowing that the length of ~P ′ is the same as the
radius of the hemisphere, the following equation based on vector lengths can be set up, where t is the
only unknown parameter:

| ~P ′ | = | ~PC ′ + t ~P | = r (7.2)

Since lengths of vectors are scalar numbers, this equation can be transformed to a polynomial of
second degree. Then the solution for t is given by the following quadratic equation:

t =
−b±

√
b2 − 4 a c

2 a
, where (7.3)

a = p2
x + p2

y + p2
z

b = 2 (px pc′x + py pc′y + pz pc′z)

c = pc′x
2 + pc′y

2 + pc′y
2 − r2

At this point, the position of P’ can be calculated by using the value of t in Equation 7.1. Then P’ is
projected to the equatorial line by setting the z-coordinate to zero.

The implementation of this algorithm is shown in Listing 7.1. The nodes are placed on the hemi-
sphere surface according to their angles in the layout disc, then the value of t is calculated with the help
of Equation 7.3 and finally the new position is computed using Equation 7.1. Projection to the drawing
disc is done by omitting the z-coordinate.

7.3.2 Layer-Based Node Positioning Algorithm

Calculating the positions of the nodes in the drawing disc needs a sequence of several layout operations.
The various operations, which are described in Section 7.1, are divided into five layers. In each layer
the node coordinates calculated by the previous layer are used as input data. Additionally, a layer has
specific parameters, which are set by the user or a synchronisation event. Due to the task of a layer, it
calculates node positions from its input data using the parameters for its operation. The result is stored
in a layer-related field of each node.

Initially, the control algorithm starts with the first layer and processes the layer-related operations
step by step until the end. The result values of each layer are stored in the fields of the nodes for fuhrer
usage. When the user interacts with the browser, type and value of the interaction is applied on the
appropriate layer, whereby the input data come from the stored result of the previous layer. Then the
control algorithm traverses all layers below the current one.

For example, dragging the PC with the mouse causes a new transformation and projection of the
points, using the actual position coordinates of the PC as parameter. The zoom operations of the layers
above are not affected, so the stored result of the previous layer is used as data input.

7.4 Outlook and Further Work

The three extensions to the original Magic Eye technique provide more zooming alternatives. Since
they are applied manually and individually, the user has to adjust the view during browsing through the
hierarchy. It would be an improvement to integrate them in the drag mechanism, providing automatic
adjustment.
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/ / a node , its parent , and their phi values
TreeNode treenode , parentnode ;
double nodephi , parentphi ;

/ / polynom parameters for the quadratic equation
double ppa , ppb ;
double ppc =

projectioncenter_ .x_ ∗ projectioncenter_ .x_
+ projectioncenter_ .y_ ∗ projectioncenter_ .y_
+ projectioncenter_ .z_ ∗ projectioncenter_ .z_
− RADIUS∗RADIUS ;

double t ;
double px , py , pz ; / / the postion of a node
double phi , theta ; / / the angles of a node

/ / compute all node positions
for ( int i = 0 ; i < treegraph_ .getTreeNodeCount ( ) ; i++)
{
treenode = treegraph_ .getTreeNode ( i ) ;
parentnode = treenode .getParentNode ( ) ;

if ( parentnode = = null )
parentnode = treenode ;

// −−− node−−−

/ / get the angles of the current node
phi = phicalculator_ .getPhi ( treenode .getLevel ( ) ) ;
theta = treenode .ppsectionzoom_ .angle_ ;

/ / calculate spatial coordinates of the node on the
/ / hemisphere ( with pc in the origine )
px = RADIUS ∗ Math .cos (phi ) ∗ Math .cos (theta ) ;
py = RADIUS ∗ Math .cos (phi ) ∗ Math .sin (theta ) ;
pz = RADIUS ∗ Math .sin (phi ) ;

/ / do the transformation
ppa = px ∗ px + py ∗ py + pz ∗ pz ;
ppb = 2 ∗ ( projectioncenter_ .x_ ∗ px

+ projectioncenter_ .y_ ∗ py + projectioncenter_ .z_ ∗ pz ) ;
t = ( −ppb + Math .sqrt ( ppb∗ppb − 4∗ppa∗ppc ) ) / ( 2 ∗ ppa ) ;

/ / calculate the points in the plane for rendering purpose
treenode .renderpos_ .x = projectioncenter_ .x_ + t∗px + RADIUS + OFFSET ;
treenode .renderpos_ .y = projectioncenter_ .y_ + t∗py + RADIUS + OFFSET ;

[ . . . ]

}

Listing 7.1: Orthogonal projection of the translated projection centre.
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Figure 7.7: The five layers of the node positioning algorithm.

In contrast to the hyperbolic browser, there are some difficulties when navigating through a large
hierarchy, though additional zoom facilities were added to the original Magic Eye technique. Maybe
further research in the technique will lead to improvements of exploring large hierarchies.



Chapter 8

InfoLens

This chapter describes a new information visualisation browser called InfoLens. In some aspects it
resembles the Magic Eye and the hyperbolic browser. However it tries to overcome some difficulties
with those browsers.

Like the Magic Eye Browser it uses the technique of projecting a tree graph with radial layout onto
the equatorial disc. In contrast to it, InfoLens supports dragging the graph around the hemisphere, not
just the projection centre in the equatorial disc. Additionally, it uses the technique of fish-eye distortion
to support a better zoom on the items of interest.

The following sections describe in detail the mathematical basics of projecting and distorting and
how these techniques are used in the InfoLens browser. Integration into HVS is done similarly to the
other three browsers described in the previous chapters.

8.1 InfoLens Layout Technique

The basic idea of the InfoLens browser was developed by the author of this thesis during the implemen-
tation of the Magic Eye browser. The goal was to improve the Magic Eye browser by some navigational
aids which could not be integrated into the Magic Eye technique. Therefore, a new browser was created
which differs from the Magic Eye browser in the following ways:

• Instead of the projection centre, the tree is dragged and rotated around the hemisphere.

• The tree layout is adjusted to the right, navigation through the tree is done in this direction.

• An improved zoom facility based on a fish-eye technique achieves better magnification.

• A fan out effect during navigation into the hierarchy is aesthetically pleasing for the user.

• The focus area is on a fixed position in the equatorial disc.

• A more intuitive navigation facility is provided.

Most of these properties are inspired from the hyperbolic browser, but they are implemented in a
completely different way. In the focus area of the hyperbolic browser edges and angles are magnified.
This is imitated in InfoLens by applying a fish-eye distortion to the polar lengths and angles of nodes.
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Figure 8.1: A fish-eye distortion function with different distortion factors.

8.1.1 Fish-Eye View

Initially, the term fish-eye was introduced by Furnas (1986). Furnas describes the problem that there is
too much to show on a small display (which was a 24x80 character display at that time). As a result
of moving the window around by scrolling, the user can easily loose orientation easily. His idea was to
use an analogy of a zoom lens, which makes available both a global and a detailed view of a structure.
He denotes the fundamental motivation of a fish-eye strategy as to provide a balance of local detail and
global context. Humans also use this strategy to represent large structures in their heads. For example,
people in a large company know local department heads, but only the vice presidents of remote divisions.
(Furnas, 1986).

Obviously, fish-eye distortion is a focus+context technique, as described in Section 2.1. Fish-eye
views enlarge areas of interest and show other parts in less detail. The calculation of magnification of
specific areas is based on a distortion function.

Herman et al. (2000) describe the mathematics of distortion functions. The distance of each point
from the focus is distorted by a function h(x). The function maps the interval [0,1] onto [0,1], whereby
points which are located near zero are mapped away from zero. For example,

h(x) =
d + 1
d + 1

x

(8.1)

fulfils this criterion and is plotted in Figure 8.1. The parameter d is the distortion factor, which defines
the degree of magnification

The effect on images with fish-eye distortion is shown in Figure 8.2. The two images show grids
with focus points in the middle. The left image is a demonstration of a distortion in one direction. The
right image shows a polar distortion in two dimensions. In a cartesian fish-eye, distortion is applied
independently on the x and y direction.

Carpendale and Montagnese (2001) describe six different lens types (see Figure 8.3). A lens type
is mainly defined by its distortion function. The images in the figure show different degrees of mag-
nification in the focus area and in the area near the edges of the distorted region. Also the change of
magnification from the focus centre towards the edges of the focus area depends on the distortion func-
tion.
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(a) Cartesian distortion in one direc-
tion.

(b) Polar distortion in two directions.

Figure 8.2: Two fish-eye distorted grids: The left grid is distorted in one dimension, the right is a
polar distortion in two dimensions.

Another characteristic of a lens type is the visual integration into the non-distorted context. For
example, the Gaussian lens better preserves the edges of the context than the other lens types. A smooth
integration provides better orientation for the user if the focus point is moved.

Herman et al. (2000) distinguish between graphic and semantic fish-eye views. A graphic fish-eye
technique is related to the level of pixels of an image. Whereas a semantic fish-eye operation is applied
on the graph layout. In the second case only the position of graph elements are distorted, not the visual
representations of the graph symbols (such as nodes and edges). Figure 8.4 shows a graph with a distorted
layout.

8.1.2 Tree Layout

As in the Magic Eye technique the tree is laid out radially into a disc using the Walker algorithm (see
Chapter 5). However, only one quarter of the layout disc is used for the layout, whereby the tree is placed
on the right side of the disc origin. Then, following the Magic Eye technique, a mapping of the tree on
the surface of a hemisphere is performed. The polar angles of the nodes in the layout disc are used as
horizontal rotation angles in the hemisphere and the polar lengths are used as the vertical rotation angles
in the hemisphere (see Section 7.1). Afterwards the tree on the hemisphere is orthogonally mapped onto
the equatorial disc, which is also called drawing disc (see Figure 8.5). The orthogonal projection is
contrary to the Magic Eye technique, in which the tree is projected regarding a projection centre.

8.1.3 Changing the Focus

To move the tree around is done by dragging and rotating it on the hemisphere. For the purpose of
ease of use, moving on the hemisphere is restricted to two transformation types, which is illustrated in
Figure 8.6. Firstly, the tree can be rotated around the z-axis with the maximum of 90 degrees in both
directions (see Figure 8.6(a)). Secondly, the tree can be rotated around the y-axis with the maximum of
90 degrees in one direction (see Figure 8.6(b)).

The focus area in the drawing disc lies on the right side of the tree, which results from the orthogonal
projection and from the fish-eye distortion described below. Using both rotation kinds, each part of the
tree can be moved into the focus area. In the drawing disc the rotation around the y-axis appears as a
translation along the x-axis of the plane and the rotation around the z-axis appears as a rotation around
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Figure 8.3: Six different lens types: from left to right Gaussian, Cosine, Hemisphere, Linear, In-
verse Cosine and Manhattan. The symbols in the top row indicate the profile of the transition
from focus centre to distortion area, the bottom row from the distortion area to the context.
[Figure extracted from Proc. of UIST ’01. Copyright by the Association of Computing Ma-
chinery, Inc.]

Focus Area

Figure 8.4: A graph with a layout which is distorted along the x-axis, which is also an example
for a Cartesian distortion.
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Figure 8.5: A tree laid out on a hemisphere is mapped onto the equatorial disc.
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(a) Rotation around z-axis.
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(b) Rotation around y-axis.

Figure 8.6: A tree is moved around the z-axis in the left image and around the y-axis in the right
image.
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root node. Exploring the tree is performed by using a combination of both transformation types.

8.1.4 Fish-Eye Distortion

As already mentioned above, the projected tree in the equatorial disc is distorted with a fish-eye algo-
rithm, in order to increase the magnification in the zoom area. A semantic distortion is applied, which
does not distort the graphical elements, but only the positions of the nodes. Unlike the fish-eye tech-
niques described in Section 8.1.1, some modifications were made. For the distance metrics the distortion
function described in Section 8.1.1 is used.

The fish-eye lens is spread out on the whole drawing disc, which is a similar effect as in the hyperbolic
browser. In this manner the distances of nodes to one another become closer the more they are located
near the rim. The magnification area makes use of approximately a quarter of the disc area and lies on
the right side of the disc centre (see Figure 8.7(b)).

Basically a two-way polar distortion technique is applied on the tree in the drawing disc. Both angles
and lengths of nodes are distorted with respect to a distortion origin on the negative x-axis. The distortion
origin can be translated and the distortion factor can be modified by the user.

The angle of a node is related to the focus centre point in the disc (see Figure 8.7). The angular
distortion centre is the line with an angle of zero, angles with a values between 0 and 180 degree are
distorted towards 180 degree, angle with values between 0 and −180 degrees are distorted toward −180
degrees.

The length is defined by the distance from the focus centre (F) to the position of a node (P). Since
the focus centre is not positioned in the centre of the disc, the length of the straight line from F to the
intersection point (S) with the disc depends on the angle. The greater the angle, the smaller the length, if
the FC lies on the left half of the disc. To provide a length distortion, a normalised length is used to be
distorted:

lnp =
lp
ls

(8.2)

where lp is the length from the focus origin to P, ls is the the length from the focus origin to the intersec-
tion point S, and lnp is the normalised length of lp. The distorted normalised length is:

ln′
p = h (lnp) (8.3)

And the distorted absolute length l′p is:
l′p = ln′

p · l′s. (8.4)

Using both distortion types, a focus area (FA) emerges in the region on the right side of the centre of
the disc (see Figure 8.7(b)). Its distinctive pear-shape comes from the two-way distortion.

8.2 The InfoLens Browser

8.2.1 Rendering

Most of the rendering properties are identical with the other browsers. The visualisation of the nodes and
the relationships of them are implemented in the same way. A guaranteed frame rate prohibits hanging
frames while moving the tree. Label sizes and their disappearance when nodes are near the rim are also
similar to the two other focus plus context browsers in the last two chapters.

An additional graphical element in this browser is the visualisation of the fish-eye lens itself. This
visual element indicates the location and the magnification magnitude of the lens to the user. It is de-
signed to act as graphical support when dragging interesting parts of the tree into the focus area. The



8.2. The InfoLens Browser 79

x

y

P

P’

S

S’

F

αα’

(a) Polar angle and length distortion.

x

y

F
ZA

(b) Magnified focus area.

Figure 8.7: The InfoLens two-way fish-eye distortion.

size and the position of the lens visualisation correlate with the distortion factor and the distortion origin.
It has the form of a pear and is structured with ring areas, whereby the sizes of the areas indicate the
magnification magnitude (see Figure 8.9).

8.2.2 Navigation

Zoom and Pan

The InfoLens browser does not allow free transformation, three restrictions determine transformation
behaviour. Firstly, the root node always lies on the negative x-axis within the drawing disc. No trans-
formation can move the root out of this location range. Secondly, the tree can be translated to the left
and to the right, unless the root resides on the negative x-axis. The tree is adjusted from left to right and
the size of the tree is small enough, so that each level can be dragged to the centre of the drawing disc.
This rule provides the exploration from the root to the leafs. Thirdly, the tree can be rotated around the
root node, depending on its actual position. The maximum rotation angle is from −90 degrees to +90
degrees. That way each node can can be rotated onto the positive x-axis. Figure 8.8 shows a tree mapped
onto the drawing disc without distortion applied to it.

Owing to the focus plus context property of the InfoLens, there is a focus area on the right side of the
disc origin. In order to zoom into a particular part of the tree, this part has to be moved to the focus area
using the navigation facilities described above. They provide the ability that every part can be moved
into the focus area (see Figure 8.9).

The focus area is a virtual lens realised with a fish-eye technique. There are two properties of the lens
which define the distortion, the distortion factor and the distortion origin. As described in the last section,
points are distorted according to their lengths and their angles with respect to the distortion origin. The
distortion factor determines the magnification magnitude of both the lengths and the angles. This factor
can be modified by the user with the mouse wheel, in oder to zoom in deeper into interesting parts of the
tree. The distortion origin determines the location of the focus area. Both properties are visualised with
the pear-shaped lens contour described above.
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Figure 8.8: A tree mapped onto the drawing disc without distortion.

Figure 8.9: A tree mapped onto the drawing disc and distorted by the fish-eye lens. The extent of
the lens is visualised by “rings” which also define the zoom area.
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Focus

The node which is focused by the user is moved into the centre of the focus area. This is done by a
smooth animation, so users do not loose orientation. The automatic moving behaves in the same way as
the moving caused by user interaction. The tree is translated along the x-axis and rotated around the root
node, in order to position the focused node into the lens centre.

Maximise

The maximisation of selected nodes is based on the same principle as the Magic Eye browser and the
hyperbolic browser. An average position of the selected nodes is calculated, then the tree is transformed
in order to place the average position into the focus centre.

8.2.3 Integrating into HVS

The InfoLens is integrated into HVS in the same way as the other browsers discussed above. Event
handling and rendering properties are processed analogously. Navigation, selection, focus, search result,
and data model changes are synchronised with the opened visualisations.

8.3 Selected Details of the Implementation

8.3.1 Fish-Eye Distortion

As described in Section 8.1, the hierarchy in the drawing disc is distorted twice. Considering that nodes
are determined by polar coordinates, the angle and the length of each node is translated using the distor-
tion function. The implementation of the transformation of a point is done in the method distortPoint
in the class ILGeometryEngine shown in Listing 8.1.

Firstly the angle of the straight line from PC to P is calculated, followed by the intersection point
S of this line with the circle. Regarding S, the normalised length from PC to P is computed, which is
distorted just as the angle. Then new new intersection point S and its length from the PC are calculated.
The new length of P is obtained from the multiplication of the normalised length with the length to S.
The now available angle and length of P are used to compute the cartesian coordinates.

/∗∗
∗ Distorts a point by using the distortValue method .
∗ The result is stored in the parameter point
∗ @param ppoint The point to be distorted , will contain the result .
∗ /

protected void distortPoint ( PolarPoint2D ppoint )
{
double sx , sy , k , d , sflength , pflength , pfnormlength ;

/ / get cartesian coordinates of the original point
double px = ppoint .getPosX ( ) ;
double py = ppoint .getPosY ( ) ;

/ / get angle of the original point
double alpha = Math .atan (
Math .abs ( py ) / Math .abs ( px − fisheyecenterx_ ) ) ;

if ( px − fisheyecenterx_ < 0)
alpha = Math .PI − alpha ;

if ( py < 0)
alpha = −alpha ;
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/ / calculate intersection point s on the circle
k = py / ( px − fisheyecenterx_ ) ;
d = py − (px ∗ py ) / ( px − fisheyecenterx_ ) ;
if ( Math .abs ( alpha ) < Math .PI / 2 . 0 )

sx = ( −k∗d + Math .sqrt ( k∗k − d∗d + 1 ) ) / ( k∗k + 1 ) ;
else

sx = ( −k∗d − Math .sqrt ( k∗k − d∗d + 1 ) ) / ( k∗k + 1 ) ;
sy = k∗sx +d ;

/ / calculate the normalised length of p regarding the circle
sflength = Math .sqrt (

(sx−fisheyecenterx_ ) ∗ (sx−fisheyecenterx_ ) + sy∗sy ) ;
pflength = Math .sqrt (

(px−fisheyecenterx_ ) ∗ (px−fisheyecenterx_ ) + py∗py ) ;
pfnormlength = pflength / sflength ;

/ / distort angle
alpha / = Math .PI ;
if ( alpha >= 0)

alpha = distortValue ( alpha , TYPE_ANGLE ) ;
else

alpha = −distortValue (−alpha , TYPE_ANGLE ) ;
alpha ∗= Math .PI ;

/ / distort normalised length
pfnormlength = distortValue ( pfnormlength , TYPE_LENGTH ) ;

/ / calculate absolute length of p
if ( Math .abs ( alpha ) < Math .PI )

px = 1 ;
else

px = −1 ;
py = px ∗ Math .tan ( alpha ) ;
px + = fisheyecenterx_ ;
k = py / ( px − fisheyecenterx_ ) ;
d = py − (px ∗ py ) / ( px − fisheyecenterx_ ) ;
if ( Math .abs ( alpha ) < Math .PI / 2 . 0 )

sx = ( −k∗d + Math .sqrt ( k∗k − d∗d + 1 ) ) / ( k∗k + 1 ) ;
else

sx = ( −k∗d − Math .sqrt ( k∗k − d∗d + 1 ) ) / ( k∗k + 1 ) ;
sy = k∗sx +d ;
sflength = Math .sqrt (

(sx−fisheyecenterx_ ) ∗ (sx−fisheyecenterx_ ) + sy∗sy ) ;
pflength = sflength ∗ pfnormlength ;

/ / calculate cartesian coordiantes of p and store it in polar point
px = pflength ∗ Math .cos ( alpha ) + fisheyecenterx_ ;
py = pflength ∗ Math .sin ( alpha ) ;
ppoint .setCartesian ( px , py ) ;

}

Listing 8.1: The implementation of the two-way fish-eye distortion.

The implementation of the distortion function is shown Listing 8.2. The distortion factor is a member
variable, which is modified with the mouse wheel. The distortion can potentially be influenced by a type,
such as angle and length. However, this is currently not implemented.
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/∗∗
∗ The distortion function . Used for a single value in [ 0 , 1 ] .
∗ The function uses the private member zoomlevel_ as factor .
∗ @param value The value to be distorted .
∗ @param type The type , which influences the distortion strength
∗ (currently not implemented ) .
∗ @return The distorted value .
∗ /

protected double distortValue ( double value , int type )
{
if ( value < EPSILON && value > −EPSILON )
return 0 ;

return ( zoomlevel_ + 1 ) / ( zoomlevel_ + ( 1 . 0 / value ) ) ;
}

Listing 8.2: The implementation of the distortion function.

8.4 Outlook and Further Work

The zoom factor of the lens can be modified, but there is a magnification limit, which determines the
maximum amount of distortion. Trees grow exponentially with the depth, whereas the circumference of
the layout disc grows only linearly with the radius. Thus the nodes of a higher level are placed more
closely to one another. A goal of future work would be to find a dynamic solution, which places nodes
automatically distantly enough independent of their levels.

Another improvement could probably done in applying the fish-eye distortion. Currently, the distor-
tion is applied on the projected tree, whereby node positions are changed without knowledge about the
structure of the tree. Applying the distortion on the tree in the layout disc depending on the tree structure
could bring a different result. In this case the distortion would be applied before the mapping onto the
hemisphere and projection onto the layout disc.
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Chapter 9

Comparison of Hierarchical Browsers

This chapter gives an overview of the strengths and weaknesses of the visualisations described in this
thesis. Since all visualisations are implemented as views running in HVS, usability studies could be
performed. However, here the browsers are compared regarding factors such as tree layout, focus plus
context effect, handling of large trees, and navigation. An overview of the most important properties,
strengths, and weaknesses of the four browsers is given in Table 9.1.

9.1 Walker Layout Browser

The Walker layout is a classic tree drawing, which lays out the tree from top to bottom without distortion.
The layout algorithm is designed to be aesthetically pleasing, which is significant in terms of human per-
ception. Nodes and subtrees are spaced out evenly and parents are placed centrally above their children.
This helps users to better understand the tree structure. In general, the classic tree drawing facilitates an
intuitive understanding of the tree.

As long as trees are small enough, users can see the whole tree and every detail at the same time. If
trees are large, then the nodes have to be drawn very close to each other and structural details disappear.
To increase a particular part of the tree, the whole tree is magnified, whereby most parts are outside the
viewing plane, because the tree is zoomed evenly. In large trees either an overview without detail, or
detail without overview and context can be seen.

The traditional navigational tools zoom and pan are implemented in the Walker layout browser.
Zooming is done with the mouse wheel, sliders at the sides, or by drawing a zooming rectangle over the
interesting part of the tree. Since the drawing area of the tree is increased, the disappearing parts have to
be explored with the pan functionality. The user can pan the tree with the mouse in order to explore it.

9.2 Hyperbolic Browser

The hyperbolic browser uses a radial layout, whereby the space allocated to subtrees depends on the
number of nodes. In euclidean geometry this approach is not as effective as the Walker layout regarding
the usage of space. However, the tree is laid out in hyperbolic space, which offers sufficient room even
for this layout. The exponential growth of space with the radius is the main property of this browser,
because it can contain an exponentially growing tree.

The Poincaré disc offers infinite space, therefore trees can be completely drawn inside this disc,
independent of their size. In contrast to the Walker layout browser, trees are not scaled evenly, but they
are hardly scaled in the central area and strongly scaled near the rim. In this way, a focus plus context
effect is achieved.
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Waker Layout Hyperbolic Magic Eye InfoLens
Radial layout ◦ ◦ ◦
Tree always fully in drawing area ◦ ◦ ◦
Intuitive overview of small trees + + + +
Overview of large trees − ◦ + ◦
Focus plus context − + + +
Permanent focus area + − +
No manual zoom needed − + − −
Fan out effect − + − +
Exploring very large trees − + − −

Table 9.1: The table shows an overview of the compared items of the browsers. A plus sign
(+) indicates a strength, a minus sign (−) a weakness, and a circle (◦) the availability of a
property. An empty cell means that this property is not applicable to the respective browser.

Due to the focus plus context property of the hyperbolic geometry, zoom and pan are combined to
one pan tool. When the user drags the tree around, the part of the tree lying in the centre of the disc is
magnified, the rest is scaled down. An automatic zoom while dragging is achieved in this way, whereby
the zoom is always strong enough to visualise all details. Subtrees which are dragged into the focus
area fan out their children the more they are placed centrally, which is an aesthetic and elegant way of
zooming into details. If a node has a very great number of children, then they are placed very close to
each other, because even in hyperbolic space a circle has only a finite amount of room on it.

9.3 Magic Eye Browser

Layout in the Magic Eye browser is performed radially, whereby the Walker layout algorithm is used.
The more effective layout is needed since room is not as available as in hyperbolic geometry. A focus
plus context effect is achieved by an orthogonal projection from a hemisphere.

The Magic Eye technique is suitable for small and medium-sized trees, but has problems with large
trees. Since the tree is always mapped onto a constant-sized hemisphere and projected to the equatorial
disc, large trees must be laid out closer. The focus area achieved by the orthogonal projection magnifies
a part of the tree, however, this magnification factor is not sufficient for large trees. Some zooming
techniques are integrated into the original Magic Eye technique, however, they require manual interaction
by the user.

In contrast to the hyperbolic browser, the focus area is moved instead of the tree. Zooming is per-
formed by panning the focus area, in this way the tree can be explored. While navigating, the global
overview of the tree is preserved better than in the other browsers. To overcome the problem of a too low
magnification magnitude, the tree layout can be modified by focusing particular nodes. Then the subtree
of this node obtains half the disc for the layout of its children. This method can be used for successively
browsing into a subtree. The disadvantage of this method is the loss of global overview and the need for
additional manual interaction with the browser.

9.4 InfoLens

The InfoLens layout technique is similar to the Magic Eye technique. The tree is laid out radially using
the Walker layout algorithm, whereby the tree is adjusted to the right side using only a quarter of the
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layout disc. Then it is mapped onto the hemisphere and projected onto the equatorial disc. Additional to
the Magic Eye technique, a polar two-way fish-eye distortion is applied on the projected tree to increase
magnification of the focus area.

Due to the fish-eye distortion, larger trees can be explored with this method. The user can control the
magnification magnitude with the mouse to adapt it for the tree size. However, the InfoLens also has a
limit regarding the tree size, since magnification can not be increased infinitely.

Navigation is performed by dragging the tree from right to left. The part which lies currently in the
central part of the drawing disc is magnified. Similar to the hyperbolic browser, the lengths and the edges
of the focused part of the tree are increased, which produces a fan out effect. Zooming into a particular
part is done by dragging this part into the focus area, which is always located in the middle of the drawing
disc.
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Chapter 10

Concluding Remarks

Information visualisation provides an interface to abstract information spaces, which have no natural
2d or 3d geometry. It transforms abstract data into a form which can be recognised and understood by
humans. Information is classified regarding the structure of data, which can be linear, hierarchical, net-
worked, multi-dimensional, or content-based vector spaces. There are numerous visualisation techniques
for each type, whereby this thesis focused on hierarchical information visualisation.

An overview of diverse hierarchy visualisation methods indicates the comprehensive and lively na-
ture of research in this topic. Each visualisation technique is qualified with one or more classification
terms and explained using implementation examples. For instance, there are outliners, graph-based dia-
grams, radial views, inclusive and space-filling techniques, distorted oriented methods, and visualisations
in 3d space.

To ease the implementation of hierarchy viewers the Hierarchical Visualisation System (HVS) was
developed as an extensible framework. HVS fulfils several tasks which are not directly related to the
visualisation, such as managing hierarchal data and loading and synchronisation of the multiple visual-
isations. Viewers which are developed to be integrated into HVS benefit from theses properties, their
implementation focuses on the visualisation method and the interface to HVS.

The development of four graph-based viewers are presented in the second part of this thesis. For
each technique the technical background is explained, followed by an detailed description of the applied
technique. The navigational and rendering features resulting from the according visualisation method
and implementation details are explicated.

The Walker layout browser is a classic tree drawing viewer using the Walker layout algorithm. Nav-
igation is implemented with the traditional zoom and pan tools, which leads to navigational difficulties
for large trees. Furthermore this browser is an implementation basis for the other browsers, since the de-
velopment of the HVS interface and the rendering of the node-link model is equal to all other browsers.

The hyperbolic browser implements a technique based on hyperbolic geometry. A simple tree layout
leads to an excellent visualisation result when it is laid out in the hyperbolic plane. A focus plus context
effect is achieved, whereby the focus can be moved to every part of the tree using a transformation
formula. Nodes can be fanned out at each level in order to explore the hierarchy.

The Magic Eye browser makes use of a focus plus context technique based on the spherical projection
of a tree onto the 2d equatorial circle. The focus is changed by moving the projection centre within
this circle. An overview of the tree structures is always kept, however, exploring large trees leads to
difficulties. Three additional techniques are presented, which advances the original Magic Eye View.

The InfoLens essentially implements the ideas of the Magic Eye browser, but modifications are made
to achieve better navigation properties with large trees. A fan out effect similar to the hyperbolic browser
is achieved by the use of a two-way fish-eye distortion, which is applied to the projected tree.
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Appendix A

User Guide

This chapter describes the usage of the visualisations within HVS. Since all browsers are plug-in visual-
isations, HVS has to be installed and started first. A user guide for HVS was published in Putz (2005,
Appendix A).

A.1 HVS Integration

A.1.1 Installation

To install the four browsers in HVS, a folder with arbitrary name has to be created in the HVS plugin
directory. Then the two files graphview.jar and HvsPlugin.xml have to be copied (or extracted) into this
folder. The file graphview.jar contains all Java class files of the four applications. The file HvsPlugin.xml
is the plug-in configuration file, which connects the visualisations with HVS and which has the following
content (see Lising A.1).

A.1.2 Starting

In the File menu of HVS a dialogue box can be opened which lists all plug-in visualisations (see Fig-
ure A.1). Each listed browser can be chosen, and is then opened. A data source has to be opened first.

A.1.3 HVS Options Menu

Global rendering settings can be chosen in the HVS Options menu (see Figure A.2). These settings
affect all currently opened visualisations in HVS. The graph-based views process these settings in the
same way.

Colour: This menu item opens the colour dialogue, where colours for the selection boxes, the search
result boxes, the selected search result boxes, and the node types can be chosen (see Figure A.2).

Font: The Font menu item opens die font dialogue, where the font type and size of the labels can be set
(see Figure A.3).

Icons: The Icons menu item opens the icons dialogue, where the icons for the document types can be
chosen in a list box (see Figure A.3).

Display Icons: This menu item controls whether the nodes are represented by coloured circles or by
document type icons.
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<plugin>
<runtime>

<library name=”graphview .jar”/>
<path name= ” . / ” / >
<extension

name=”Walker Layout”
point=”iicm .hvs .visualization .Visualization”
class=”iicm .hvs .visualization .graphview .basictree .BasicTreeHvsView”

/>
</runtime>

<runtime>
<library name=”graphview .jar”/>
<path name= ” . / ” / >
<extension

name=”Hyperbolic”
point=”iicm .hvs .visualization .Visualization”
class=”iicm .hvs .visualization .graphview .hyperbolic .

HyperbolicHvsView”
/>

</runtime>

<runtime>
<library name=”graphview .jar”/>
<path name= ” . / ” / >
<extension

name=”Magic Eye”
point=”iicm .hvs .visualization .Visualization”
class=”iicm .hvs .visualization .graphview .magiceye .MagicEyeHvsView”

/>
</runtime>

<runtime>
<library name=”graphview .jar”/>
<path name= ” . / ” / >
<extension

name=”InfoLens”
point=”iicm .hvs .visualization .Visualization”
class=”iicm .hvs .visualization .graphview .infolens .InfoLensHvsView”

/>
</runtime>

</plugin>

Listing A.1: The content of the plug-in configuration file HvsPlugin.xml, which determines the
integration of a visualisation into HVS.
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Figure A.1: The dialogue to open a new visualisation. The four graph-based browsers are listed
beside other visualisations.

Figure A.2: The HVS colour settings dialogue and the effect on the nodes. Colours for the various
node types and the selection boxes can be chosen in the dialogue. In the visualisation window
these colours are used for the rendering.
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Figure A.3: The HVS font and icon settings and the effect on the nodes. Font type and size
and icons for the various node types can be chosen in the dialogues on the left side. In the
visualisation window these settings are used for the rendering.

A.1.4 Visualisation View Menu

The View menu of the visualisation frame is provided by HVS and is the same in all browsers (see
Figure A.4(a)). The menu items and their meanings are as follows:

Independent: Determines the synchronisation mode of the respective visualisation. If the mode is
turned on, navigational actions in other visualisations do not affect this one, otherwise the view is
fully synchronised.

Detailed View: Determines the filtering state of the hierarchy data. If it is turned on, then a new root is
set which is the smallest common parent of all currently selected nodes, otherwise the root is the
root node of the chosen data source.

Hide Documents: Determines weather documents should be displayed or not. If turned on, the docu-
ment nodes are temporary removed from the hierarchy data.

Show Properties: Determines if the properties panel on the bottom of the visualisation frame should be
shown or not. The properties panel contains a table of all selected nodes and their attributes.

Close: Closes the view.

A.1.5 Visualisation Context Menu

The context menu of the visualisation is provided by HVS to modify the hierarchy data (see Fig-
ure A.4(b)). They are enabled, if the user clicks with the right mouse button on a node. If the click
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(a) The view menu is used for
synchronisation and filter set-
tings.

(b) The context menu is used for data ma-
nipulation and maximisation of the currently
selected nodes.

Figure A.4: The view and context menus of a visualisation are provided by HVS.

hits no node, the menu items are disabled. The last item Maximise is handled differently by the respec-
tive visualisation.

Insert: A new folder or document can be inserted under the clicked folder. If a document was clicked,
HVS refuses this operation.

Remove: The clicked node will be removed from the hierarchy data.

Rename: The clicked node can be renamed in a dialogue.

Open: If the hit node is a document, then this document will be opened by an external program.

Maximise: A maximisation of the selected nodes will be done by the visualisation (see the section of
the mouse buttons for each view.

A.2 Walker Layout Browser

The Walker layout browser lays out a hierarchy using the classic tree drawing algorithm of Walker (see
Figure A.3).

A.2.1 Options Menu

The Options menu of the Walker layout browser is shown in Figure A.5. The particular menu items are
explained in the following list:

Show Tooltips: If this option is turned on, a tooltip are shown, when the mouse is moved over a node.
The tooltip gives information about the name, the size, and other attributes of nodes.

Show Labels: If this option is turned on, the names of each node is drawn beside the node icons.

Highlight Root Node: If this option is turned on, the root node is highlighted, in order to keep orienta-
tion.
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Figure A.5: The options menu of the Walker layout browser is used for rendering and navigation
settings.

Rendering Settings: Opens the rendering settings dialogue, in which the following render settings can
be chosen (see Figure A.6): line colour, line width, label colour, root highlight colour, and label
distance threshold value. The last one determines the distance value, when labels are hidden if the
nodes are too near.

Frame Rate: Opens a dialogue with the render frame rate setting, which determines the guaranteed
number of frames to be drawn per second.

Tree Layout Algorithm: Beside the Walker layout algorithm, there is a second tree layout algorithm
called Simple for demonstration purposes. In this layout, each node allocates the same space
independent of the number of its descendants. Obviously the result is rather bad, which should
show the advantages of the Walker layout.

Reset Zoom: This menu item resets the current zoom to the default value, which shows the whole tree
in the window.

Label Angle: A dialogue is opened in which the rotation angle of the labels can be set. The same angle
can be changed with the mouse wheel.

A.2.2 Mouse Functions

Left Button:

Single Click: Selects the clicked node and deselects all other nodes.

Control + Click: Toggles the selection state of the clicked node, the selection states of the other
nodes are not affected.

Double Click: Focuses the clicked node, which means that this node is moved to the centre of the
window and a synchronisation event is sent to the HVS framework.

Drag: A selection box is painted from the start point to the current mouse point. When the mouse
button is released, all nodes within this box are selected and the other nodes are deselected
(see Figure A.7).

Middle Button:
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Figure A.6: The rendering settings dialogue, which is provided by all graph-based browsers to
modify label and line rendering.

Single Click: If the clicked node is a document, it will be opened with an external program.

Drag: A zooming box is painted from the start point to the current mouse point. When the mouse
button is released, this area is zoomed.

Right Button:

Single Click: The context menu is popped up, which is described in Section A.1. The Maximise
menu item activates the maximisation of the selected nodes. In this browser, the area used by
these nodes is zoomed.

Drag: Moves the tree around.

Mouse Wheel:

Normal Rotation: A normal rotation zooms in to the point where the mouse is currently located.

Control + Rotation: Rotates the labels.

A.2.3 Scroll Bars and Sliders

Scroll Bars: The vertical and horizontal scroll bars are used to move the tree. The size of the bars
indicates the current zoom factor.

Sliders: The sliders are used to zoom the tree, whereby the zoom centre is the centre of the window.

A.3 Hyperbolic Browser

The hyperbolic browser lays out the tree in the Poincaré disc, which offers infinite space. Figure A.7
shows a hyperbolic layout with a currently drawn selection box.
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Figure A.7: A tree laid out in the hyperbolic browser. The box is the selection box, which is
currently dragged over some nodes.

A.3.1 Options Menu

The Options menu of the Hyperbolic browser is shown in Figure A.8. The particular menu items are
explained in the following list:

Show Tooltips: If this option is turned on, a tooltip are shown, when the mouse is moved over a node.
The tooltip gives information about the name, the size, and other attributes of nodes.

Show Labels: If this option is turned on, the names of each node is drawn beside the node icons.

Highlight Rootnode: If this option is turned on, the root node is highlighted, in order to keep orienta-
tion.

Render Settings: Opens the render settings dialogue, in which the following render settings can be
chosen (see Figure A.6): line colour, line width, label colour, root highlight colour, and label
distance threshold value. The last one determines the distance value, when labels are hidden if the
nodes are too near.

Framerate: Opens a dialogue with the render frame rate setting, which determines the guaranteed num-
ber of frames to be drawn per second.

Tree Layout Direction: Determines the adjustment of the tree. The radial layout means, that the chil-
dren are placed 360 degree around the root. If one of the other layout options are chosen, the
children are placed on a quarter of a disc around the root, either to the right, to the left, to the top,
or to the bottom.
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Figure A.8: The options menu of the hyperbolic browser, where rendering and tree layout settings
can be made.

A.3.2 Mouse Functions

Left Button:

Single Click: Selects the clicked node and deselects all other nodes.

Control + Click: Toggles the selection state of the clicked node, the selection states of the other
nodes are not affected.

Double Click: Focuses the clicked node, which means that this node is moved to the centre of the
window and a synchronisation event is sent to the HVS framework.

Drag: A selection box is painted from the start point to the current mouse point. When the mouse
button is released, all nodes within this box are selected and the other nodes are deselected
(see Figure A.7).

Middle Button:

Single Click: If the clicked node is a document, it will be opened with an external program.

Right Button:

Single Click: The context menu is popped up, which is described in Section A.1. The Maximise
menu item activates the maximisation of the selected nodes. In this browser, the geometric
average point is moved to the centre.

Drag: Moves the tree around.

Mouse Wheel:

Normal Rotation: A normal rotation changes the zoom factor, which means that the length of the
lines between the nodes are increased or decreased. The longer a length is, the wider nodes
are placed from each other. The currently focused node is fixed on its position, the other
nodes change their position according the modification of the zoom factor.
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Figure A.9: A tree is laid out in the Magic Eye browser. A node is focused and its descendants
allocate the right side of the drawing circle.

A.4 Magic Eye Browser

The Magic Eye browser visualises a hierarchy using a modified spherical projection (see Figure A.9).

A.4.1 Options Menu

The Options menu of the Magic Eye browser is shown in Figure A.10. The particular menu items are
explained in the following list:

Show Tooltips: If this option is turned on, a tooltip are shown, when the mouse is moved over a node.
The tooltip gives information about the name, the size, and other attributes of nodes.

Show Labels: If this option is turned on, the names of each node is drawn beside the node icons.

Highlight Rootnode: If this option is turned on, the root node is highlighted, in order to keep orienta-
tion.

Render Settings: Opens the render settings dialogue, in which the following render settings can be
chosen (see Figure A.6): line colour, line width, label colour, root highlight colour, and label
distance threshold value. The last one determines the distance value, when labels are hidden if the
nodes are too near.

Framerate: Opens a dialogue with the render frame rate setting, which determines the guaranteed num-
ber of frames to be drawn per second.
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Figure A.10: The Options menu of the Magic Eye Browser, where rendering settings can be made.

A.4.2 Mouse Functions

Left Button:

Single Click: Selects the clicked node and deselects all other nodes.

Control + Click: Toggles the selection state of the clicked node, the selection states of the other
nodes are not affected.

Double Click: Focuses the clicked node, which means that this node is moved to the centre of
the window and a synchronisation event is sent to the HVS framework. Furthermore, the
descendants of the focused node are placed on the right side and all other nodes are placed
on the left side of the focus node.

Drag: A selection box is painted from the start point to the current mouse point. When the mouse
button is released, all nodes within this box are selected and the other nodes are deselected
(see Figure A.7).

Middle Button:

Single Click: If the clicked node is a document, it will be opened with an external program.

Right Button:

Single Click: The context menu is popped up, which is described in Section A.1. The Maximise
menu item activates the maximisation of the selected nodes. In this browser, the geometric
average point is moved to the centre.

Drag: Moves the projection centre and the root node, which changes the location of the focus. In
this way the tree can be explored.

Mouse Wheel:

Normal Rotation: Zooms the level of the focused node.

Control + Rotation: Zooms the angle of the focus area.

A.5 InfoLens

The InfoLens browser visualises a hierarchy using a spherical projections and a two-way fish-eye distor-
tion afterwards (see Figure A.11). The fish-eye distortion area is represented as a pear-shape on the right
side of the browser window.
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Figure A.11: A tree is laid out in the InfoLens browser. The lens is visualised as a pear-shaped
contour outline to indicate the magnification in this area.

A.5.1 Options Menu

The Options menu of the InfoLens is shown in Figure A.12. The particular menu items are explained in
the following list:

Show Tooltips: If this option is turned on, a tooltip are shown, when the mouse is moved over a node.
The tooltip gives information about the name, the size, and other attributes of nodes.

Show Labels: If this option is turned on, the names of each node is drawn beside the node icons.

Highlight Rootnode: If this option is turned on, the root node is highlighted, in order to keep orienta-
tion.

Render Settings: Opens the render settings dialogue, in which the following render settings can be
chosen (see Figure A.6): line colour, line width, label colour, root highlight colour, and label
distance threshold value. The last one determines the distance value, when labels are hidden if the
nodes are too near.

Framerate: Opens a dialogue with the render frame rate setting, which determines the guaranteed num-
ber of frames to be drawn per second.

Lens Colour: A dialogue in which the colour of the lens can be set.

Reset Zoom: This menu item resets the current zoom to the default value, which leads to an average
magnification of the lens area.



A.5. InfoLens 103

Figure A.12: The Options menu of the InfoLens, where rendering and navigation settings can be
made.

A.5.2 Mouse Functions

Left Button:

Single Click: Selects the clicked node and deselects all other nodes.

Control + Click: Toggles the selection state of the clicked node, the selection states of the other
nodes are not affected.

Double Click: Focuses the clicked node, which means that this node is moved to the centre of the
window and a synchronisation event is sent to the HVS framework.

Drag: A selection box is painted from the start point to the current mouse point. When the mouse
button is released, all nodes within this box are selected and the other nodes are deselected
(see Figure A.7).

Middle Button:

Single Click: If the clicked node is a document, it will be opened with an external program.

Right Mouse:

Single Click: The context menu is popped up, which is described in Section A.1. The Maximise
menu item activates the maximisation of the selected nodes. In this browser, the geometric
average point is moved to the centre.

Drag: Moves the tree around. A drag to the left or the right, moves the tree in this direction. A
drag to the top or the bottom rotates the tree around the root node.

Mouse Wheel:

Normal Rotation: A normal rotation zooms the lens magnification magnitude and therefore the
focus area, which is represented as a pear-shapes contour outline.
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