
Masters’s Thesis in Telematics, Graz University of Technology

Institut for Information Processing and Computer Supported New Media

The Design and Implementation of
the Harmony Session Manager

Jürgen Schipflinger

Advisior: O. Univ. -Prof. Dr. Dr. h. c. Hermann Maurer

21st December 1998

Supervisor: Dr. Keith Andrews

Diplomarbeit in Telematik, TU Graz

Institut für Informationsverarbeitung und Computergestützte neue Medien

The Design and Implementation of
the Harmony Session Manager

Jürgen Schipflinger

Gutachter: O. Univ. -Prof. Dr. Dr. h. c. Hermann Maurer

21. Dezember 1998

Betreuer: Dr. Keith Andrews

Abstract

This thesis describes the Harmony session manager. Harmony is a graphical client and
authoring tool for the Hyperwave information server. Harmony provides an intuitive interface
to Hyperwave’s underlying infrastructure, such as hierarchical structuring, rich metadata, so-
phisticated search functionality, and user management.

The Harmony session manager provides the central navigational and authoring function-
ality of Harmony. The collection browser visualises the hierarchical collection structure in a
dynamically generated tree and provides location feedback for all visited documents. The lo-
cal map visualises hyperlink structures between documents in the form of a dynamically gen-
erated graph. Simple and extended search dialogues interface to Hyperwave’s powerful search
facilities.

The Harmony session manager’s authoring functionality includes interactive structuring,
insertion, and deletion of documents, and interactive editing of document and link metadata.
Individual document viewers are started by the Harmony session manager to display docu-
ment contents. The session manager, in cooperation with the document viewers, supports
document content editing and interactive link creation. Finally, extensibility is provided
through a programmable API and user-configurable menus.

Ich versichere, diese Arbeit selbständig verfaßt, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt zu haben und mich auch sonst keiner unerlaubter Hilfsmittel bedient
zu haben.

Die Diplomarbeit ist in englischer Sprache verfaßt.

Acknowledgements

I would like to thank everyone who has helped me in my work and also those who gave
suggestions for problem solutions encountered during the writing of this thesis. In particular I
want to thank Dr. Keith Andrews and Prof Frank M. Kappe for their help with various prob-
lems and the ideas they brought into our discussions. Univ.-Prof. Dr. Hermann A. Maurer and
all the people at the IHM and IICM for their support.

Index

1 INTRODUCTION...1

2 HYPERTEXT, MULTIMEDIA, HYPERMEDIA...3

3 NETWORK INFORMATION SYSTEMS ...5

3.1 INTERNET..5
3.1.1 TCP/IP - the Transmission Control Protocol/Internet Protocol ...5

3.2 BASIC INTERNET APPLICATIONS..6
3.3 ARCHIE ...6
3.4 WAIS ...6

3.4.1 Scoring ..7
3.4.2 Relevance Feedback..7

3.5 GOPHER ..8
3.5.1 Access to Gopher...8
3.5.2 Browsing through Gopher...9

3.6 WORLD WIDE WEB (WWW)..9
3.6.1 HTTP...9
3.6.2 URL ...10
3.6.3 HTML ..10

4 HYPERWAVE ..12

4.1 HYPERLINK NAVIGATION ..12
4.2 OBJECT ATTRIBUTES...12
4.3 COLLECTION HIERARCHY ...13

4.3.1 Collections...14
4.3.2 Cluster ...14
4.3.3 Sequence..15
4.3.4 MultiCluster ..15
4.3.5 AlternativeCluster ...16

4.4 PURPOSES OF THE COLLECTION HIERARCHY...16
4.5 MULTILINGUALITY ..17

4.5.1 Multilinguality in Hyperwave..17
4.6 SEARCH FACILITIES IN HYPERWAVE ...18

4.6.1 Full Text Search ..18
4.6.2 Search on Attributes ..18
4.6.3 Search Scope ...19

4.7 USER MANAGEMENT ..19
4.8 HYPERWAVE MESSAGES...20
4.9 INTEROPERABILITY ...20
4.10THE ARCHITECTURE OF HYPERWAVE ...21

4.10.1 Full Text Server ...22
4.10.2 The Document Server ..22
4.10.3 The Object Server..23

5 THE HARMONY SESSION MANAGER..27

5.1 THE ARCHITECTURE OF HARMONY...27
5.2 USER INTERFACE ..28

5.2.1 The Collection Browser...29
5.2.2 The Local Map ..33
5.2.3 The Search Dialog...35
5.2.4 The History Browser ...40
5.2.5 The Information Landscape ..41
5.2.6 Server Status Browser ...44
5.2.7 Multilinguality...46

5.3 THE HARMONY DOCUMENT VIEWERS ..49
5.3.1 Text Viewer..50
5.3.2 Image Viewer...51
5.3.3 Film Player..51
5.3.4 Audio Player..52
5.3.5 PostScript Viewer ..52
5.3.6 VRweb 3D Viewer ...53

5.4 AUTHORING WITH HARMONY..54
5.4.1 Inserting New Collections or Clusters...54
5.4.2 Inserting Documents ...55
5.4.3 Creating Remote Objects...56
5.4.4 Editing Documents ..57
5.4.5 Moving and Copying Objects ..58
5.4.6 Deleting Objects..59
5.4.7 Editing Object Attributes...60
5.4.8 Creating Links ...63

5.5 EXPANDABILITY..65
5.5.1 Expandability of the Harmony Menu ..66
5.5.2 The Harmony API..67

6 SELECTED DETAILS OF THE IMPLEMENTATION ..73

6.1 IMPLEMENTATION OF THE LOCAL MAP ...73
6.1.1 A Hierarchical Graph Layout Algorithm ..73

6.2 LOCATION FEEDBACK...79

7 EXTENSIONS AND FURTHER WORK...81

8 CONCLUDING REMARKS ...82

9 BIBLIOGRAPHY...83

APPENDIX A. HARMONY KEY BINDINGS ...86

APPENDIX B. CONFIGURING EXTERNAL TOOLS IN THE MENU...89

APPENDIX C. SEARCH SYNTAX IN HARMONY ...91

ATTRIBUTE SEARCH...91
CONTENT SEARCH ...91

APPENDIX D. THE HARMONY API ..93

THE HARMONY TOOL API ...93
HARMONY SESSION MANAGER API...94

APPENDIX E. RULES FOR DOCUMENT SELECTION IN AN ALTERNATIVECLUSTER97

APPENDIX F. THE HARMONY ICONS ...100

List of Figures

Figure 1 : Linear text and hypertext. ...3
Figure 2: Node, Links and Anchors comprising a Hyperdocument...4
Figure 3: Page designed using HTML 4.0. ...11
Figure 4: Collection Hierarchy. ..13
Figure 5: Sequence in Hyperwave...15
Figure 6: Architecture of Hyperwave. ...22
Figure 7: The Harmony Collection Browser. ..29
Figure 8: Harmony Sort Order Dialog..32
Figure 9: Local Map options. ..34
Figure 10: The Harmony Local Map...35
Figure 11: The Harmony Search Dialog. ..36
Figure 12: Harmony Search with "location feedback" in the Collection Browser..37
Figure 13: Harmony Extended Search. ...39
Figure 14: Harmony Active Collections. ...39
Figure 15: The Harmony History Browser..41
Figure 16: Information Landscape Overview Map. ..42
Figure 17: The Harmony Information Landscape...43
Figure 18: The Harmony Information Landscape with activated link structure. ..43
Figure 19: The Harmony Server Status Browser...44
Figure 20: The Harmony User Connection Browser...45
Figure 21: Harmony Status Browser, Send Message. ...46
Figure 22: Language Preference Dialog...48
Figure 23: Harmony session in Japanese..49
Figure 24: The Harmony Text Viewer. ..50
Figure 25: The Harmony Image Viewer..51
Figure 26: Harmony Film Player with moving links. ..52
Figure 27: Harmony PostScript Viewer. ...53
Figure 28: The Harmony VRweb 3d Viewer..54
Figure 29: Insert Collection Dialog. ...55
Figure 30: Insert Dialog..56
Figure 31: Insert Remote Document Dialog. ..57
Figure 32: Harmony Editing Text with Emacs. ...58
Figure 33: Harmony Copy Object Dialog. ..58
Figure 34: Delete Document Dialog. ..59
Figure 35: Delete Collection Dialog with Database Object Query...60
Figure 36: Harmony Attributes Dialog. ..61
Figure 37: Harmony Edit Attributes Dialog..62
Figure 38: Harmony Link Creator, Source set. ...64
Figure 39: Harmony Collection Browser with Tools Menu. ...67
Figure 40: HyGen Vocative Link Generator. ..69
Figure 41: HyGen Glossary Generator. ..70
Figure 42: The HarSearch...71
Figure 43: Architecture of Harmony. ..27
Figure 44: Nomenclature for layout algorithm. ..74
Figure 45: Local Map after step one, before level optimisation..76
Figure 46: Local Map after step one, after level minimisation. ..77
Figure 47: Local Map after step two. ..78
Figure 48: Local Map laid out from left to right. ..79
Figure 49 : Collection Browser with no path to root collection..80

Credits
Figures 1, 2 and 40 were drawn by Keith Andrews.
Figure 6 was drawn by Frank Kappe.

1

1 Introduction

Modern information systems contain text, graphics, sound, animation and other kinds of
information. However, multimedia documents consume a great amount of (disk) space. The
physical location of the information may be distributed and can be accessed over a network.
Furthermore, links (references) between several documents may exist and may be presented
with the original information. When peoples use such systems and browse through the infor-
mation by following links, issuing searches and considering matching documents, they may
become “lost in Hyperspace” [EH89]. In particular, it is hard to remember the location of in-
formation in the information universe, and therefore it is hard to refind information. A serious
system should address these issues and try to avoid or at least reduce the disorientation of the
user in the masses of information. It also should present the structure of the information as
clearly as possible, in order to help the user to understand the information.

Hyperwave is a large, networked hypermedia system which was originally developed at
the IICM (Institute for Information Processing and Computer supported new Media), an in-
stitute of the Graz University of Technology, under the original name Hyper-G. Now Hyper-
wave is a commercial product. People can connect to a Hyperwave server from every where
over the world, assuming their computer has access to the Internet or at least to their intranet if
they are behind a firewall. Access to a Hyperwave server can take place identified or anony-
mous, entrance to several areas of the information can be granted or denied. Documents can
be structured in a collection hierarchy or linked in a hyperlink structure. Sequences of docu-
ments and a powerful search complete the rich feature list of Hyperwave.

Hyperwave also is a multimedia system and supports many types of documents. For ex-
ample text, image, movie, sound, 3D and postscript as well as a generic type for other docu-
ment types are managed. In Hyperwave attributes can be stored for every document in the da-
tabase. This meta-data can be used to add information such as keywords or the time where the
object is created or modified. As a special feature, Hyperwave supports documents in different
languages. This means, that one document can be stored in the database in several different
languages, and displayed in the most appropriate language version depending on the user pref-
erences.

This thesis describes the Harmony session manager. The Harmony session manager is the
original UNIX - X11 client for Hyperwave and takes advantage of all the features Hyperwave
offers, to supply the user with a convenient interface to browse the stored information. The
Harmony collection browser visualises the collection hierarchy in a dynamically generated
tree. The collection browser is further used to provide location feedback for documents visited
during a Harmony session. In the Harmony local map hyperlink structure is visualised. It is
further possible to selectively add child-parent relations and inline images to the map. The
level of the structure depth and the number of displayed documents can be configured. A
powerful user interface to the Hyperwave search functionality completes the navigational
features of the Harmony session manager. The whole user interface can be displayed in a user
configured language. The interface is currently available in German, English, and Japanese.

2

The Harmony session manager further has rich online authoring functionality. In the col-
lection browser documents and collections can be inserted into the collection hierarchy.
Documents can be moved and copied within the hierarchy. It is further possible to delete sin-
gle documents and also whole collections performing complex searches before deletion.

The Harmony session manager starts independent viewer processes to display document
contents. The Harmony session manager provides linking functionality to its document view-
ers. Links can be created defining source and destination anchors in the several viewers. This
functionality is provided for document formats without native linking capabilities.

In order to allow to develop independent modules, Harmony supports an API (Application
Programmable Interface). This API can be used by the modules to access the rich features of
Harmony. The API defines functions to use Harmony’s navigational features. It is further pos-
sible to use Harmony to visualise and edit documents.

3

2 Hypertext, Multimedia, Hypermedia

Most documents stored in information systems are text documents. In printed material,
like books or newspapers, the structure is strictly limited to one page after another, so-called
linear text. Hypertext, used in modern information systems, comprises of many pages of text,
called nodes or documents. These documents are connected by so-called hyperlinks. Figure 1
shows hypertext in contrast to linear text. While reading documents links can be followed to
other documents, parts of them, or also to other parts of the same document. Following links
is just like navigating through the information universe.

Figure 1 : Linear Text and Hypertext.

Hypermedia is the generalised form of hypertext. Links can not only point to text docu-
ments, they can also reference images, film or audio clips, so-called multimedia documents.
With advanced systems and browsers it is further possible to create links in such multimedia
documents. These may, for example, be areas in image documents or time slices in film clips.
In this way, a hyperdocument, such as that shown in Figure 2, is constructed. Hyperlinks can
also point to other services on the Internet such as FTP, Gopher, WAIS or News-resources.

4

Figure 2: Node, Links and Anchors comprising a Hyperdocument.

5

3 Network Information Systems

From 1992 until 1996, the time when Harmony was being developed, there were several
relevant information system in the Internet. There were Archie, WAIS, Gopher, WWW and
Hyperwave. In the meantime the WWW has become the most important information system
in the Internet. Hyperwave, due to its structure and facilities, has been targeted towards intra-
net use.

The following pages describe the information systems which were relevant at the time
Harmony was developed.

3.1 Internet

The Internet was born about 20 years ago as a research project of the US Department of
Defense’s “Advanced Research Projects Agency” (ARPA). It was built to connect the ARPA
and various radio and satellite networks together. A particular goal of the Internet was to build
a network which is able to withstand the breakdown of several nodes during a nuclear attack.
This was fulfilled by automatically rerouting messages depending on the existence of connec-
tions. The idea was to build a network where every computer can talk to any computer on the
whole network. Services were added to the ARPAnet to complete it. These included remote
login (telnet), file transfer (ftp), and electronic mail (email). In order to connect networks from
different vendors, the Transmission Control Protocol/Internet Protocol (TCP/IP), was devel-
oped. In 1983 the whole ARPAnet was switched to this new protocol and the name Internet
was born.

3.1.1 TCP/IP - the Transmission Control Protocol/Internet Protocol

The Internet is a packet switched network. The IP part of the protocol takes the message
data and adds an envelope called packet. Each of these packets is provided with a source and
destination address. They are routed over the Internet from one host to another.

The Transmission Control Protocol is based on the IP. It splits large messages into se-
quences of small packets, and numbers them. At the destination host, the packages are col-
lected and if not in the correct sequence, reordered to build the original message.

On the Internet every host (or computer) has a unique address. These Internet addresses
are 32 bit numbers, split into four 8 bit parts. A sample Internet address is 129.27.153.18.
Since the Internet has to be used by humans it is inadequate to use numbers as addresses.
Therefore a hierarchical naming scheme, the Domain Name System (DNS) was introduced. In
this system each computer has an own human readable name. For example fiicmal01.tu-
graz.ac.at is the name for the host with the address 129.27.153.18. With this naming scheme it
is also possible to move services like FTP from one physical computer to another. The name
where the service can be accessed stays the same, but the Internet address for the DNS name
can be changed.

6

Each level in the DNS, the parts separated with dots, is called a domain. The top level
domains (the right most) currently in use are; com (commercial), edu (educational), gov
(government), mil (military), org (organisations) and net (network resources). Furthermore
there exist around 150 country codes like at for Austria.

3.2 Basic Internet Applications

With the beginning of the Internet four basic Internet applications were introduced.

- Remote Login (telnet): Telnet is used to log into a remote host. It provides a basic, ter-
minal style interface to the remote interface.

- File Transfer Protocol (FTP): FTP is used to transfer files from and to remote comput-
ers. There exist two modes to transfer data. ASCII to transfer text data and binary for
program files. There are also two different access modes in FTP. Anonymous access and
identified access with account and password. Usually FTP sites operates in anonymous
mode.

- Electronic Mail (email): Email is the most used Internet application. It provides the pos-
sibility to send messages to other people in an easy to use and intuitive way and is much
faster than surface mail and can be used from the computer at home. Email is not an “end
to end” service like the previous applications. It is a “store and forward” service. Mes-
sages are sent from one computer to the next until the destination computer is reached.
There exist many mail programs on the Internet. Most of them use the “Simple Mail
Transfer Protocol” (SMTP). Most of the programs support features like forwarding, car-
bon copies, aliases and reply.

- Network News (news): News is a medium for people to discuss any topic on the Inter-
net. There exists thousands of so-called news groups, dealing with nearly every topic.
There are for example the groups comp.lang.javascript for the JavaScript language or
alt.culture.at for discussions about Austria.

3.3 Archie

Archie was developed at the MC Gill University in Canada. It was a world wide search
engine, for files public available on FTP servers. It was also possible to search in the indexes
of Archie for files, which contains certain words in their description. The system of Archie
was very simple. Operators of FTP servers were requested to register their server. In turn
Archie contacted these servers via FTP and issued a directory listing using standard FTP
commands in regular time intervals. The result was stored in local indexes and could be que-
ried using Archie clients.

3.4 WAIS

WAIS (Wide Area Information Service) was a distributed text searching system, used in
the Internet to find information in a collection of data .The WAIS server used an index built of
(key)words. This index was independent of the kind of data which should be searched. It
could be a collection of images as well as, typically an index for textual articles. The docu-
ment data itself could reside elsewhere on the Internet.

7

In order to present data to people on the Internet through a WAIS server, an index Had to
be created by someone. For textual information, normally all words of the articles were in-
dexed. The index could be queried by a WAIS capable client. The resulting list of matching
objects was typically presented as a linear list, sorted by the score of the match. On this list
further operations could be performed.

3.4.1 Scoring

Scoring was done by a number between zero and a thousand, where a thousand means the
best match to the query and zero the worst. As an example to explain how this scoring was
done, consider the query “University Graz and Telematik”. WAIS looked in its indexes,
counts how often the word “University”, the word “Graz”, the word “and “ and the word
“Telematik” appear in a document. The sum of these counts weighted on “how interesting” a
word is, was used to calculate the score. After all sources were searched, a list of the docu-
ment titles was displayed. This list was sorted by the score and normally truncated after about
15 to 50 entries. If a list entry was a text document, this document could be displayed by
WAIS.

One problem of queries in this form was that words like “and” are used to built the score
too. It may happen, that documents with many “and”’s will result in a high score, also if it
does not contain the words “University”, “Graz” or “Telematik” and therefore will not be of
any interest.

It was further impossible to search for items added to the index after a specific time (for
example last visited) and so it was hard to compute meaningful searches in growing databases
with many matching documents.

3.4.2 Relevance Feedback

Nevertheless WAIS had a very powerful and useful feature, called relevance feedback.
The result of a first search perhaps contained articles which perfectly matched the query but
contained not enough information. WAIS could than be used to mark such articles or parts of
them as relevant and extracted words for use in future searches. These searches could be per-
formed on the same or on a different source. So with WAIS it was possible to begin with a
simple search term, consider the results and use the features of WAIS to build more sophisti-
cated queries to get the information someone was interested in.

In order to use WAIS for searches for some information, a search source (WAIS server)
had to be specified. Specifying sources helps the user to find proper information by narrowing
the search. The source could be one or more servers. But normally the proper servers were not
known. This problem was solved with WAIS as well.

There existed a list of all public WAIS servers, which itself was a WAIS server. So this
server, normally called “directory-of-servers” could be searched to find a proper list of WAIS
servers to search in. The search in such a server should be more general than the real query,
since the names of the servers normally did not contain words like “Telematik”. To find a
proper list of servers, a broad search term had to be used to find not only specialised servers.
The result of the query was a list of servers more or less matching the key words. This servers
in turn could be used as source for future searches.

8

3.5 Gopher

Gopher [MA95] was introduced by the University of Minnesota. The goal was to build an
information service with the main function to “go fer” things. This system was first aimed as a
computer service, which gave several departments of the campus the possibility to offer in-
formation specific to themselves. This information should be maintained by the departments,
but the several services could be accessed as if they where in one big database. Each depart-
ment could had their own server and had full control over the server and the offered informa-
tion.

As the next step, an application was developed which served these demands. To handle
the amounts of data and to differentiate the services, information was structured in menus re-
lated to their topic. It was clear that this system could not only be used campus wide, but also
world-wide. The only condition to satisfy was to connect the remote servers with one network,
the Internet.

The great advantage of Gopher was that many services of the Internet, as for example
FTP, WAIS, Telnet etc, were combined in one interface. All of the information, independent
of type or protocol was structured in menus. The items could be menus again, data of some
kind or also entry points to other Internet services just as Telnet and nevertheless other Go-
pher servers. But the user had not to know this details, Gopher handled this transparent and in
a unique way.

3.5.1 Access to Gopher

It normally did not matter which Gopher server was accessed, but a server geographically
near should be chosen. Nevertheless there existed two ways to connect to a Gopher server.
1. Public Gopher Access Sites

 In order to connect to such Gopher sites, no Gopher client was necessary. The only you
had do to, was to telnet to the host and login with the corresponding login name. In turn
gopher automatically started and the Gopher session could begin.

 Accessing gopher in this form was the simplest form, and it provided the user with all in-
formation, since Gopher not really needed a graphic terminal to operate correct. Only the
interface was restricted to what a terminal offered. But they were able to give the feeling
how Gopher works.

2. Gopher Clients
Another form to access Gopher was to use a Gopher client. Such clients existed for

many platforms as for example UNIX, Macintosh, DOS or WINDOWS. This clients nor-
mally used the possibilities of their platform and offered a more convenient interface than
the terminal based Public Gopher Access.
Independent of which platform or client was used, the information was always presented

in the same form. So also when the environment had changed the information looked familiar.

9

3.5.2 Browsing through Gopher

3.5.2.1 Menus

All of the information in Gopher was structured in menus. A menu was typically a collec-
tion of items witch were related in some manner.

The entry menu of a Gopher server normally gave you an overview about what services
the server offers. Selecting one of the items led you to more specific information. This could
be continued until a data item was reached. The information in the item could be displayed
and, depending on the client, processed in some form, for example the information could be
mailed to someone.

For access to other Gopher servers in general a menu item like “Other Gopher and Infor-
mation server” existed somewhere in the menu structure. This menu item contained lists of
other servers, structured possibly on location or content. But for the user, access to other serv-
ers was transparent and equal to access to local menu items or data.

3.6 World Wide Web (WWW)

The World Wide Web (WWW or W3) was originally developed at CERN in Geneva in
1989 as an information system for the particle physics community. WWW is a distributed,
heterogeneous hypermedia information system. Hypertext documents are linked together with
hyperlinks to build a large information universe. Hyperlinks are presented in browsers as “hot
spots” which can be activated by clicking on them and in turn leading to related information.
But not only textual information is available, also multimedia documents such as images,
sound or movies can be accessed via the WWW.

The WWW consists of three key specifications. HTTP, URL and HTML described in the
next sections.

3.6.1 HTTP

HTTP (Hypertext Transfer Protocol) is an ASCII protocol to define the communication
between a WWW server and client. The client sends a request message to the server which
replies with a respond message. The whole protocol is simple and mainly defined to transfer
documents from a server to a client.

In the first version of HTTP, for every transaction an Internet connection was opened and
closed after the end of the transaction. With version 1.1 of HTTP there exists the possibility to
request more than one data item without closing the connection. This is especially useful for
text documents with embedded inline images. The browser can transfer the text and the in-
cluded images without having to reconnect, which leads to a speedup for the whole document
transfer.

Sometimes it is desirable to set preferences for browsing a Web server, such as the pre-
ferred language or the last visited page. HTTP supports a mechanism, cookies where such
information can be stored. Typically the server sets the information in the coockie. The next
time the browser connects to the server, the coockie is presented and the server can react in an
appropriate way. Nevertheless there exists no way for the server to initiate data transfer from
the server to the client.

10

Modern browsers support a technique called “push technology”. Here the browser con-
tacts the server depending on a user-defined schedule, to query the server for information
changed since the last visit. If the information has changed, the appropriate pages are down-
loaded to a local file system. The user can in turn browse this local information in a fast way,
or after the computer has been disconnected from the Internet.

3.6.2 URL

The URL (Uniform Resource Locator) is used in the WWW to uniquely identify pages on
the Internet. But URL’s also can point to other Internet services such as FTP, Telnet, News,
Gopher or WAIS. URL’s for the respective services are shown below.

• HTTP: http://host:port/selectorstring

• Hyperwave: hyperg://host:port/selectorstring

• FTP: ftp://host/filename

• TELNET: telnet://user@host

• News: news://newsgroup/article

• Gopher: gopher://host:port/selectorstring

• WAIS: wais://host:port/selectorstring

3.6.3 HTML

HTML (Hypertext Markup Language) [BCG94] is the most used document format in the
WWW. It defines in an SGML (Structured Generalized Markup Language) [Gol90] like form,
the structures in a document. In HTML so-called tags mark headings, paragraphs and text to
be displayed in a bold font, for example.

<HTML>
<HEAD>
<TITLE>The title of the document</TITLE>
</HEAD>
<BODY>
<H1>The heading of the document</H1>
<P>The first paragraph in the document</P>
and some bold text.
</BODY>
</HTML>

Until version 4.0 of HTML there was no possibility to define the exact look and feel of
the document. There was only mark-up to set some parts of the document to be displayed em-
phasised, but what exact emphasised means, was a matter of the browser. HTML 4.0 now also
defines styles for the document.

This is done with CSS (Cascading Style Sheets). With CSS it is possible to define the ex-
act look of a document and it’s content. Some of the parameters which can be set are.

• FONT: For fonts the size, font family, weight or colour can be specified

11

• (Text)Blocks: For text the used margin, border, padding, or line spacing can be speci-
fied.

With HTML 4.0 it is not only possible to define the look of elements on the page, it is
also possible to set the position of text or blocks of text. Figure 3 shows a HTML page created
utilising the capabilities of HTML 4.0, CSS and JavaScript. The drawback for the moment of
CSS and positioned text is that there exists no browser which supports the full standard.

Figure 3: Page designed using HTML 4.0.

12

4 Hyperwave

Hyperwave [Mau92][KM93] is a large, networked hypermedia system which was origi-
nally developed at the IICM (Institute for Information Processing and Computer supported
new Media), an institute of the Graz University of Technology, under the original name Hy-
per-G. Now Hyperwave is commercial product.

Hyperwave combines the features of WAIS, Gopher and World Wide Web as well as
some additional features to offer the user a convenient way to find information. Hyperlink
navigation, hierarchical structuring of information, sequences and various search facilities are
provided as standard.

4.1 Hyperlink Navigation

In Hyperwave the user has the possibility to navigate, by simply browsing through the in-
formation and following hyperlinks to other documents. This is done by activating a link by
clicking on a “hot spot”, a so-called source anchor. In turn, a certain document, where the link
is connected to is displayed. The destination may be a collection, cluster or a whole document,
but it is also possible to point to an area in a destination object, the destination anchor. In ad-
dition, Hyperwave has the possibility to follow links in the reverse direction. In other words, it
can answer the question, “which other documents refer to the current document”. This feature
can be used by a client to present a list of documents which refer to the current document or
display a map of the “link environment” around the current document. It is also useful for
maintaining database consistency.

Browsing through information rather than searching for it is an easy way to have a look at
information and has already successfully been used in a number of information systems, for
example WWW, and is indeed very well suited for applications such as encyclopaedias, user
manuals, computer based teaching material, presentations, on-line help systems and the like.
In Hyperwave links are supported from and to text, images, movie, sound, postscript and
VRML documents. Nevertheless, navigation in this manner raises some problems when ap-
plied to large amount of data. This effects has already been discussed in earlier sections (“lost
in Hyperspace” for the user, and “spaghetti links” for the author). In order to reduce such
problems Hyperwave provides some additional structuring and navigation facilities. In Hy-
perwave all documents are members of collections. Collections group releated documents in
different information areas. Additionally all documents are automatically searchable by there
content or a set of attributes. Guided tours in Hyperwave, called sequences, are a further facil-
ity to present information in a structured way.

4.2 Object Attributes

In Hyperwave all documents have an assigned set of attributes. These attributes describes
the document just like the entries in the card files in a library. Some of the attributes are pre-
defined by Hyperwave such as Title, Keyword, Author, TimeCreated and some more. Other

13

attributes are used by the system to identify and manage the information stored in the Hyper-
wave server. The Rights attribute, for example, defines a set of users or a group which can
access information. TimeCreated and TimeModified are created and updated by the system to
allow finding information created or modified in, after or before some given time.

For the administrator it is further possible to define custom attributes to fit the require-
ments of the particular information system. These attributes can be used to visualise the
documents in lists and are also used to search for specific documents. The search mechanism
will be described later. For a detailed list of Hyperwave attributes and their values refer to
[Mau96].

4.3 Collection Hierarchy

Orthogonal to the hyperlink structure every Hyperwave document is contained in one or
more collections. These collections themselves are members of other collections. Inserting
documents and collections into one or more parent collections leads to a collection structure
as for example shown in Figure 1. Since it is possible to insert the same document in more
than one collection, the hierarchy is not simple a tree, but in general an acyclic directed graph
of information.

university

informatics mathematics

systems networks numerics

Figure 4: Collection Hierarchy.

Some of the collections in the Hyperwave server have a special meaning. The nomencla-
ture used for these collections is as follows.

Root Collection

The topmost collection in the hierarchy is a server-generated collection, the so-called root
collection. All objects belong to the root collection .

Hyperroot

14

If the server is in the so-called distributed mode, there is one further collection above the
root collection, the Hyperroot. This collections contains as artificial members all Hyperwave
servers which are known by the system, the server pool.

Home Collection

Every Hyperwave user may have theire own home collection. This home collection can be
compared with home directories in a UNIX [Gil92] environment. Data of personal interest as
well as links to other collections and documents on the Hyperwave server, and also links to
information systems can be placed into the home collection. In this form the home collection
can also be seen as a “Hot List” or “Bookmarks” stored on the server. Not only a sequential
list of documents can be built. Documents and links can also be placed in sub-collections and
in this form built a hierarchy of Bookmarks. For unidentified users, a default home collection
is used typically the root collection of the server.

The current implementation of Hyperwave defines several types of collections with dif-
ferent behaviour when visualised.

4.3.1 Collections

Ordinary collections as described above are used to structure information. When visited
typically all documents and collections are presented as an ordered list of items. If one of the
documents contains the special attribute ContentHint the behaviour of the collection can be
changed. The document with the value “CollectionHead” for this attribute is opened if the
collection is entered. The order of the items in which they appear in the list my be defined
statically by the “Sortorder” attribute in the parent collection, or dynamically by the client.
Sorting is based on attributes of the collection members such as Title, Author, Sequence num-
ber, CreationTime and other attributes.

4.3.2 Cluster

A cluster is a collection with the attribute:

 CollectionType=Cluster

When a cluster is visited all or some of its members are visited/displayed too, dependent
on the type of the members. This collection type serves two purposes.

1. Multimedia documents: A cluster may contain different types of documents, which
are visualised at the same time. For example a text document and a image document
are shown, while a film document is played.

2. Multilanguage documents: If a cluster contains one document in different languages,
the document in the most appropriate language for the user is visualised.

Multimedia and multilanguage documents can be combined in one cluster and so form
multilanguage multimedia documents. The exact rules for the treatment of clusters can be
found in Appendix E.

15

4.3.3 Sequence

A sequence is a collection with the attribute:

 CollectionType=Sequence

A sequence collection is like a guided tour prepared by an expert. A set of documents
with an predefined visiting order comprises the tour. The tour is taken by following automati-
cally generated “next” and “previous” interface elements. Several tours may contain the same
document and therefore when meeting this document, the user has the decision which tour to
follow. Also every time there is the ability to use one of the other navigation methods. Se-
quences are typically used to present a compilation of highlights about a particular topic, very
much like taking a guided tour of the sights of a city. They are also useful for preparing hy-
permedia presentations of existing material. An example of a sequence is shown in Figure 5.

Figure 5: Sequence in Hyperwave.

4.3.4 MultiCluster

A MultiCluster is a collection with the attribute:

 CollectionType=MultiCluster

16

A MultiCluster is a document consisting of many sub-documents, which are concatenated
together to form the whole document. A document containing a list of addresses and phone
numbers of the employees of a company can be implemented using a MultiCluster. Each ad-
dress entry is maintained by an employee in a separate document with appropriate access
rights. All the files are inserted into the MultiCluster. When opening the MultiCluster, all the
documents are concatenated together to comprise a single list. The order in which the files
appear can be determined by the Sortorder attribute set on the MultiCluster.

4.3.5 AlternativeCluster

An AlternativeCluster is a collection with the attribute:

 CollectionType=AlternativeCluster

An AlternativeCluster is a collection of documents from which one or zero documents are
chosen by certain criteria. The behaviour of such a cluster is more like that of a simple docu-
ment than a collection. This makes it possible to make inline image links to Alternative-
Clusters. The settings for how documents should be chosen can be set in the user’s user record
in the server. It is also possible to set default values in the configuration files for the server.
Two typical applications of an AlternativeCluster are:

1. To allow a choice between documents which have different levels of quality but the
same type (MimeType). A typical application are images with different resolutions or
colour depth which represent the same content, but consume different amounts of
space. A user with low network bandwidth is able to receive an image with less quality
in a reasonable amount of time. Others which are locally connected to the server (intra-
net) will choose images with full resolution and colour depth.

2. To allow a choice between documents in different representations which do not have
the same type (MimeType)
Sometimes it is necessary to offer information in different data formats or media types.
For instance, an announcement may be available in PostScript, HTML, sound or even
video. For a user it is possible to set a preferred document type.

When the user accesses an AlternativeCluster, one of its members is chosen by the speci-
fied criteria. In the Attribute PrefMimeTimes of the user’s user record, a list of preferred Mi-
meTypes with corresponding qualities can be specified. The exact rules for document selec-
tion in an AlternativeCluster are described in Appendix E

4.4 Purposes of the Collection Hierarchy

Documents or better the information stored in documents, can be structured using the
collection types introduced in the previous section. The hierarchy defined by these collections
serves the following purposes.

• Navigation: A user may navigate through the information using the collection hierarchy.
When entering the server an initial list of collections and documents is presented. Users
visit a collection by opening it, and all its sub-collections and documents are displayed.

17

This step is continued until the necessary information is found. In this way the user gets an
overview of which and how much information is available in a collection. In turn the user
can decide to have a closer look at a specific part by visiting further collections or docu-
ments. It also helps the user to keep track the position of the information, since every
document is contained in at least one collection. With this structure it is possible to deter-
mine the position of a document or collection in the collection hierarchy. The probability
to “become lost in Hyperspace” is reduced. In Figure 8 the implementation of this kind of
navigation in the Harmony collection browser is shown. Navigation is not restricted to this
navigation metaphor. At every point Hyperwave users may use search facilities, hyper-
navigation or sequences, to retrieve the appropriate information.

• Access Rights: Hyperwave is a multi-user system and can be accessed by many users.
Assigning access rights to objects allows the restriction of read and/or write operations for
parts of the information to authorised users or user groups. A collection is not displayed in
collection listings, if there is no right to access the collection. This mechanism is neces-
sary when Hyperwave should be used for “secret” and public data on the same server.
Hiding data by assigning access rights is also appropriate for private data which other us-
ers should not see.

• Search Scope: By activating or deactivating collections, search operations can be per-
formed on certain parts of the information hierarchy, and in this way reduce the matches
of a search operation. Only members of “active” collections and members of them are re-
turned as the result of the search. For example, by not including collections with diction-
aries when knowing the meaning of the search term, can drastically reduce the number of
found items.

• Access Limitations: By limiting the simultaneous access to collections to a specified
count of users, it is possible to simulate library functionality. In this form only a certain
number of users can access the members of a collection, for example a dictionary or an
encyclopaedia, at the same time. If too few licences are available, more have to be ob-
tained, by buying further licences of the book from the distributor.

4.5 Multilinguality

Users typically prefer to read documents written in their native language. An information
system therefore ideally should support a mechanism for multilinguality of documents. This
means that the system should be able to store documents in different language but with the
same content in an easy to use and intuitive way. The system should also be configurable to
retrieve documents in a user-specified language if available. If the document is not available
in the preferred language, some fallbacks should be defined. Hyperwave meets these require-
ments in the following way.

4.5.1 Multilinguality in Hyperwave

In Hyperwave each object is defined by a set of attributes. One of the attributes is the Title
attribute, which is a language-dependent attribute. A language shortcut defining the language
of the title is added to beginning of the title value. Valid prefixes include:

• en for English

• ge for German

18

• jp for Japanese

The language-dependent title attribute can be utilised by a collection browser. Every col-
lection and document can be visualised using the title attribute. The language of the title can
be chosen from those available according to a user-provided language priority list.

A similar mechanism can be applied to display the content of a document in a preferred
language. In Hyperwave this functionality is covered by a special collection, the Cluster.
Clusters may contain documents in several languages but with the same content. A document
is language-dependent if it has only one language-dependent title attribute. A client can select
one of the members of a cluster considering the language information in the title attribute and
display it.

4.6 Search Facilities in Hyperwave

Documents which are inserted into a Hyperwave server are automatically searchable. Just af-
ter insertion the document can be found using the Hyperwave search mechanisms.
There exist two basic methods for indexing and searching documents in Hyperwave.

4.6.1 Full Text Search

Text documents are automatically entered into a full text index upon insertion into the
database. This means that every text document and documents with extractable text is exam-
ined and every word is put into a full text index. Full text queries can than be performed on
these documents. Hyperwave offers two full text search engines.

• The native Hyperwave full text engine. This engine supports fuzzy boolean queries and
WAIS-like nearest-neighbour searches based on the vector space model. For more infor-
mation about full text search refer to [Fas93]. Supported document types are text docu-
ments in the formats HTML and HTF. For other document types there exists a method to
configure an external filter to extract the words to be indexed.

• The Verity Search 97 engine. Verity supports many types of documents, including HTML
and many Windows Office formats like Word and Excel. Image documents are indexed by
the comment stored in the files and the publishing format PDF and many more are sup-
ported. For more information about Verity Search 97 engine refer to [VER98].

4.6.2 Search on Attributes

A second method to search for documents in Hyperwave is to search on the attributes of a
document. Every object stored in Hyperwave has assigned a set of attributes. Some of these
attributes are for system use only, but many of them are also used for searching. Title, Author,
Keywords, Name, Modification Time and Creation Time are some of the attributes automati-
cally indexed by the server .

If the system-defined searchable attributes are not enough to fulfil search requirements,
the administrator of the server can configure some freely definable attributes to be indexed by
the server. With this extension it is possible to create personalised servers with specialised
search capabilities.

19

The Hyperwave server in turn offers a rich set of functions to search for these attributes.
Search values for one attribute can be combined with boolean operators, as can search on sev-
eral attributes. Typical queries might be:

“Give me all documents with Hyperwave and Graz in the title”
“Give me all object with multimedia in the keyword(s) where the author is Nielson”
“Give me all images with keyword Dali”
“Give me all documents which have been created between 98/01/01 and 98/01/31”.

4.6.3 Search Scope

The above introduced search capabilities offer a wide range for searches performed on
one server but Hyperwave support further facilities for searching.

Distributed Search

The search can be expanded to search across several Hyperwave servers. In this case, the
server where the search is initiated broadcasts the search parameters to the other servers in-
volved. The search is also performed in the local database if requested and the result collected.
In the meantime the remote servers perform the same search in parallel. When each search has
finished the result is transferred to the requesting server. When all remote servers have sub-
mitted their results, the combined list of matching objects presented as one search result.

With this distributed search mechanism bandwidth and computing time is saved. Band-
width because only the search parameters are transmitted to the remote servers, and only the
list of matching documents is returned. In contrast, search engines on the WWW have to peri-
odically request the document, and if changed transmit it, in order to index the document.
User time is saved because the search is performed in parallel at all servers at the same time.

For all the above presented search facilities the search scope for both fulltext search and
attribute search can be defined in a flexible way. The search can be performed on

• The local Hyperwave server. All documents on the local server are possible candidates.

• A single collection on a single Hyperwave server. Only documents contained in the col-
lection or a sub-collection are found.

• A set of collections on a number of Hyperwave servers.

• A number of Hyperwave servers in their entirety.

4.7 User Management

Hyperwave is not only a simple document storage and retrieval system, Hyperwave also
can store and manage user information. Data records of a user are stored as Hyperwave ob-
jects, the user object. The information stored includes:

• Login name

• Passwords

• Auto identification hosts

• Group membership (see below)

20

• Accounts
Several users can form a user group which is also handled by Hyperwave. User groups

help managing access rights in systems with many users. For a more detailed discussion of
users and groups see [Win95]. Hyperwave also can facilitate external user databases for iden-
tification and authentication of users. Up to now, gateways to LDAP, X.500, and Windows
NT user database exist.

The major purpose of users is to login as a user. This is necessary to control access to
documents and collections. Every object in Hyperwave is owned by one user. The owner of an
object, and also the privileged “system” user can regulate access to this object. By assigning
read, write and delete rights for one or more users and one or more groups.

It is also possible to assign a “Home collection” to a user. This home collection can be
compared with the “home directory” in an UNIX system. It serves the same purposes. Users
can store private data in their home collections.

The documents stored in the home collection can also be used like folders with book-
marks. When these bookmarks are further grouped, for example by category, and stored in
different collections, the home collection or a sub-collection of it, forms a hierarchical tree of
links to documents of the user’s interest.

4.8 Hyperwave Messages

In contrast to HTTP, the protocol between Hyperwave and its clients is connection-
oriented. A client initiates a session with one server. All further operations are sent to this
server. This means that the server is aware of all clients currently connected, and if they are
identified, of the users or at least their synonyms.

In this manner the Hyperwave server and the connected clients have the possibility to send
messages from the server to the client and vice versa. Such messages could be used to:

• Pass notes between two or more clients or users.

• Send broadcast messages for updates or changes in a collection.

• Send a warning message about an upcoming server shutdown.

Harmony used these messages to build a chat system. See Section 5.2.6 for more details.

4.9 Interoperability

Interoperability is a very important feature of information systems. Much information is
already stored in other legacy systems. Transparent interoperability improves the usability of
an information system, since the whole mass of data can be accessed trough one interface.

Hyperwave has gateways to Gopher, WAIS, WWW and FTP in order to retrieve informa-
tion from them. Hyperwave servers are able to store and handle objects which operates as an
entry point to the different information systems or also as pointer to remote documents. Cli-
ents do not have to know the details of the external protocols, they only have to connect the
Hyperwave server, which in turn handles the request, translates the protocol and passes the
retrieved data to the client. Hyperwave also has a built-in cache which stores recently received
documents from other Hyperwave servers or from Gopher, WAIS, WWW of FTP servers in
the local document cache. When requested again by a client, the data is transmitted from the

21

local store to reduce access time and save bandwidth. For Gopher severs the menu structure is
transformed into a Hyperwave collection hierarchy. WAIS queries are treated as Hyperwave
queries and WWW documents as if they are stored within Hyperwave.

When Hyperwave is accessed by WWW clients, a HTML document is created dynami-
cally for each collection. This document contains links to sub-collections and documents. For
all document types except text and image documents, the hyperlink information is lost. How-
ever, the hyperlink information can be accessed by dynamically generated HTML pages. The
Document Reference Pages contains links to documents which refer to the current document,
or are referred by the current document. For Hyperwave clients, documents stored in the
WWW look like normal objects stored in the Hyperwave server.

4.10 The Architecture of Hyperwave

Due to the demand of many concurrent users and the large number of documents, the cli-
ent / server model is used in Hyperwave. In contrast to terminal-based systems, where every
keystroke have to be sent to the host, and also all of the computations, formatting or scrolling
text, entering keywords, decoding information etc., has to be done at the host, these actions
are performed by the client in the client / server model. This model has some principle ad-
vantages:

• The response time to keystrokes is normally small, since they are processed in the client
and in turn reasonable feedback (time) for user actions can be achieved. This is very im-
portant for user interfaces, where response times to actions over 0.1 seconds are confusing
for the user, and therefore normally not accepted.

• Bandwidth is saved, because keystrokes or mouse movement do not have to be transmitted
to the (remote) host. Only if new data is required, is it fetched from the server, usually in
large blocks. Transmitting large blocks causes less overhead then small packages would.

• The individual capabilities of the local hardware and software environment (for example
windows, icons, true colour displays, graphic accelerators, “unorthodox” in- and output
devices etc.) can be used by the client. In terminal based systems the smallest common
denominator of the capabilities have to be used.

• When many users are connected to the host at the same time, in the client/server model,
the necessary computing work is shared among several computers. This results in small
server machines. The server does not have to be a “super computer”.

Figure 6 shows the architecture of an Hyperwave server. The Hyperwave server contains
three different servers. The full text, document and object servers, but for a client appears to
be a single server.

22

Figure 6: Architecture of Hyperwave.

4.10.1 Full Text Server

The full text server maintains inverted indexes of keywords. These keywords are collected
from the textual contents of documents during the insertion process. The words are of course
removed from the indexes if a document is deleted. For every new language, a separate index
is maintained. In all languages a set of words which are not indexed is defined. These words,
the stop list, are frequently used words, and unsuitable for searching.

For documents types where Hyperwave does not know how to extract words, external fil-
ters can be configured. These filters extract words from the document which are then added to
the indexes. External filters can also be used to index documents in “strange” languages. In
Japanese documents, for example words are not separated with spaces, and therefore hard to
identify and extract.

The native full text server is able to handle fuzzy boolean queries and WAIS-like nearest-
neighbour searches based on the vector space model. For more information about the full text
server see [Fas93].

It is also possible to configure the full text server to use the Verity Search 97 [VER98]
engine. Verity is able to process and index about 200 document types, but at the moment is
not available on all platforms.

4.10.2 The Document Server

The document server stores all local documents. It processes the transfer of documents to
the client. The document server is also responsible for receiving documents from clients and
storing them in the local file system. It also fetches and caches files from remote servers.

When a client requests documents, the document server checks whether the data is in the
local server and if so, transmits it to the client. Otherwise, if the document is stored on a re-
mote server, the responsible server is contacted and the data is fetched. The incoming data is

23

forwarded to the client as well as stored in the local document cache. Thus, often used docu-
ments are held in the local cache and on further requests transmitted directly from the cache.

4.10.3 The Object Server

The object server is the most visible part of Hyperwave. Clients connect the object server
in order to retrieve object descriptions, fetch children, perform queries or initiate the transfer
of documents. The object server stores descriptions of documents, links, anchors, collections,
users, sequences, remote servers etc., in an object-oriented manner. Descriptions consist of
several attributes and are stored in a database. For more information on Hyperwave objects
see [Kap91] [Mau96]. Relations between the objects are also stored in the database. Typical
relations are:

• Which objects belong to a collection (child parent-relation).

• Which source anchors are connected to which destination anchors or documents.

• Which source anchors are part of which document.

As the object server has knowledge about these relations, it is able to maintain the con-
sistency of the database and the relations between the documents. For example, it can remove
source and destination anchors when the corresponding document is removed.

In this manner “dangling links” in the database are prevented, or more exactly, are known
by the server and for viewing purposes are not shown. It is further possible to automatically
maintain and generate “next” and “previous” elements, when a document is deleted from or is
inserted into a sequence. For an example see Figure 5.

The Link Database

In Hyperwave links are strictly separated from documents. The link information of hy-
pertext documents is extracted during the insertion into the database. Links in documents,
where links are not part of the format specification can be created and deleted using Hyper-
wave and Harmony. The link information is stored as an object in its own right and is main-
tained by the object server. All Hyperwave mechanisms, such as access rights, custom attrib-
utes, and attribute search can also be used with links. The advantages of a link database in-
clude:

• Links can be created and modified in documents, even if the document itself is not modi-
fiable. For example, when documents are stored on a CD-ROM, or the document resides
on another write-protected medium. It is further possible to create public or private notes
or annotations to documents where no write access is possible.

• A second advantage of separate link storage is the ability to support bi-directional links. In
contrast to “normal” links, links in Hyperwave can be followed and tracked in both direc-
tions. Unlike traditional web servers, Hyperwave therefore has capabilities to answer
questions like:

- Which documents refer the current document?
- Are there annotations to the current documents?

24

Some problems can be solved with this model, which is hardly possible in systems with
uni-directional links.

1. Whenever a document is deleted, the system is able to generate information about
other documents referring to the document in question. Hence references to to-be-
deleted documents can automatically be identified and if requested removed from the
link structure, thus maintaining link integrity. This is especially important in large
multi-user systems, where the person deleting a document can not be expected to
know all the links to the document. The same problem occurs when a document is
automatically removed or inaccessible because of its expiration date. A system with
bi-directional links may flag or delete links to such documents automatically.

2. Bi-directional links allow advanced user interfaces to draw local maps like the one
shown in Figure 8. Documents and references between them are visualised. Such
maps can also be created without bi-directional link databases. However, every refer-
enced document has to be fetched and parsed for links, which is time consuming
wastes bandwidth. With the help of a link database this can be done using a single re-
quest do the database.

3. A further advantage of the storage of link objects in a separate database is the ability
to assign keywords or titles to link objects, or more exact to source or destination an-
chors. These attributes are, as for all other Hyperwave objects, indexed and search-
able.

4. Link objects can also be members of collections and are visualised when visiting the
collection. In this manner, different entry points into one large document can be de-
fined and put together in a collection as a kind of index.

5. Links in Hyperwave can also have assigned access rights. This means when docu-
ments are visited by two users with different access rights some links may not be
visible for one of the users.

6. It is possible to create typed links in Hyperwave. A link in Hyperwave therefore not
only is a reference to another object, it also specifies the type of reference. A link, or
rather the document behind the link, can be an annotation to part of a document or
also a question about the document. This information is also used in the Harmony lo-
cal map to restrict the map to special types of link.

Object ID‘s

One of the major task of the object server is to assign identifiers to every object in the da-
tabase. It has to ensure that no ID is reused for a second object. The Object ID is used as an
identifier for the object when specifying objects for operations.

With the mechanism of ID’s one problem arises. Objects on different servers may use the
same IDs and the uniqueness of IDs between server boundaries can not be guaranteed. To dis-
tinguish between objects with the same ID but residing on different servers a second ID, the
server ID, is added to the object ID when accessed by a client. These two ID`s are concate-
nated to one server-embracing ID. The server ID is built from the IP address of the birthplace

25

server. An object on the local server has the server ID zero. With this Global Object ID, every
Hyperwave object spread over the world is identifiable unambiguously.

The descriptions of the documents stored in the object server consists of several attributes,
for example author, title, keywords, creation time, modification time, access rights, etc. Some
of these attributes are assigned by the user. Others, such as creation time and modification
time are automatically generated and maintained by the server, when a document is inserted or
modified.

A description exists for every document in the database and when an attribute search is
performed, the queries are based on these descriptions. Every kind of document is searchable,
as long as the author assigns proper attributes. For example, image documents may have as-
signed keywords like “museum” and will be found by an attribute query for “museum”.

The object server supports complex boolean queries on different attribute values, as well
as boolean combinations for several attributes. Typical queries may be “Give me all docu-
ments with Hyperwave in the title, created by user fkappe and created between 98/01/01 and
98/6/12” or “Give me all images with Dali and Escher in the keywords”.

In contrast to Gopher where special “search items” have to be created for searches, in Hy-
perwave the client and in turn the user decides where and how to search. The search is inde-
pendent of the information the user is currently browsing. The client only has to provide an
interface for the search.

Searches can be performed by the object server on different areas in the server:

• The search can be performed on one specific collection, for example a dictionary. When
one, or as described later, more collections are named to search in, all members of these
collections are searched. When a child is itself a collection, its members are also searched
recursively.

• The search scope can be widened to include collections on remote Hyperwave servers.
When searches on remote servers are involved, the queries are sent to the remote servers
and the search actions are performed in parallel and independently from each other.

Access Rights

In the most general case, a Hyperwave server can be accessed from everywhere by any-
one. In general not every kind of information is public information. Some areas or documents
like reports or some other data should only be accessible by particular users or groups of us-
ers. In Hyperwave this problem can be solved by assigning access rights to objects.

 Rights can be granted to single users or to user groups just as is done in the UNIX file
system. One user may belong to one or more user groups. In Hyperwave access rights can be
assigned to collections, documents and links. Read and write rights are handled separately. It
is also possible to assign different rights for operations like copy or move. With this rights
schema a document can be readable but the user is not allowed to modify it. The right to see a
collection enables a client to display the collection, but this does not imply that all members of
the collection are accessible. In other words disabling a collection by assigning access rights
only disables the navigation into this collection. If members of this collection are found in an
alternative way, the access right for the object is checked independently of the right of the
containing collection. This behaviour may be more clear if it is taken in account, that it is pos-
sible for one object to be contained in more than one collection. In this way the appearance,

26

especially the number of visible members, of a collection can vary when accessed by different
users.

Hyperwave has built-in user management. Information about users and groups is stored in
objects handled by the object server. Stored information include the user name, login name,
group membership, and so on. It is further possible to utilise external user databases. Informa-
tion in the external databases is used to identify a person on the server. User management is
described in detail in Section 4.7.

Licensing

A further feature of the object server is the licensing mechanism. This mechanism is used
to grant access to a particular part of the information only to a certain number of users at the
same time. When a user visits such a collection and the configured limit of users is not already
reached, the user has the right to visit all members of the collection. However, when the limit
is reached, all further access to the information by other users is denied. After a specifiable
time of inactivity, the right to access information is taken away. Inactivity in this sense means
that no (sub)documents or (sub)collections have been requested. If so the counter for simulta-
neous users accessing the information is decremented and another user can have access to the
information tree.

This mechanism is analogous to borrowing a book in a library. When a book is frequently
requested, one copy would not be enough. The library has to buy further copies to satisfy de-
mand. The same can be implemented using Hyperwave. When someone buys further licenses,
the limit counter for simultaneous users is increased, but no further (disk) space is needed. In
this form publishing houses can sell books in electronic form online on the web, which than
can be read using the Internet, but with limited access.

Note that since version 4.0 of Hyperwave, licensing is no-longer supported using the
WWW gateway. With Harmony this mechanism is still available, but Harmony is also no
longer part of the distributed Hyperwave package.

Accounting

In Hyperwave every document can have an assigned price. When a user requests a docu-
ment with an assigned price, the price of the document is subtracted from the account of the
user. If the user’s account is too low, a warning message is displayed, and access to the docu-
ment is denied. The account of the user is stored in the user record in the Hyperwave server
and can only be set by a system administrator.

Accounting can be used to offer billable information in a publicly accessible server. Par-
ticular information can only be accessed if the user has enough credit in the account.

27

5 The Harmony Session Manager

In the first part of this chapter, the architecture of Harmony is described. In the second
part of this chapter, the user interface of the Harmony Session Manager is presented. Naviga-
tion in the collection hierarchy using the collection browser is described. The local map is
presented as a tool to retrieve and visualise relationship between documents. It is explained
how Harmony facilitates the rich search capabilities of Hyperwave. It is further shown how
Harmony treats multilinguality, using multilingual user interfaces and displaying documents
in different languages. In addition, a short description of the Harmony document viewers is
included.

5.1 The Architecture of Harmony

From the technical point of view, Harmony is divided into two software parts: the session
manager, and the document viewers. The session manager and the document viewers are im-
plemented as separate processes. The communication between each individual viewer and the
session manager is done via the Harmony native Document Viewer Protocol DVP. Figure 7
shows the Harmony software architecture.

Figure 7: Architecture of Harmony.

Session Manager

28

The session manager process is responsible for every kind of transaction with the Hyper-
wave server. At start-up it initiates the connection to the server, and in turn all operations with
the server are carried out over this connection. Further all object, collection and structure spe-
cific operations and visualisations are handled by the session manager. For example, the col-
lection browser and also the local map are part of the session manager process.

When the user initiates the display of a document, the session manager starts the appro-
priate document viewer, and forces the viewer to retrieve the document data and to visualise
the information. On the activation of a link, the viewer sends the request to the session man-
ager, which handles all necessary operations.

Document Viewer

For each document type a separate viewer process is started by the session manager.
When a document has to be displayed, the viewer retrieves the document data over a separate
connection. When received, the data is visualised by the viewer. The viewer further adds link
to the display, if any are present.

The separation of viewers and the session manager in different processes has some ad-
vantages compared to a singe process concept.

• New kinds of documents can be added by simply implementing a new viewer with the
standard communication functions.

• An old version of a viewer can be updated by replacing the program binary, without influ-
encing other viewers or the session manager.

• When loading documents, each viewer handles its own data transmission. In the mean-
time, the user can continue browsing on the server, or may peruse at other documents. The
only process which is busy is the one document viewer. All other viewer processes and the
session manager are free and ready to be used, the user does not have to wait until all
document data is transmitted.

• On multi-processor computers, different processes can be handled by different processors,
which can drastically improve the performance. This is especially of interest for movie
documents, which are particularly computing intensive, or also for 3D documents.

5.2 User Interface

Harmony, for the user a unified user interface, consists internally of two major parts. The
session manager is responsible for establishing a connection to the Hyperwave server. All
transactions with the database are carried out over this connection. The session manager is
further responsible for presenting interfaces for navigation in the collection hierarchy, for
visualising relationship between documents and for performing searches.

The Harmony document viewers display all kinds of documents, visualise links within
documents, provide aids to create such links, and also edit documents.

For the user these two parts are indistinguishable. All interface elements, both in the dif-
ferent viewers and the session manager, adopt a consistent look and feel. For example, in all
the viewers, menu items with the same meaning are placed at the same position in the menu
structure, and links are chosen and activated with the same interactions. Also user interface
elements, such as buttons or status bars are placed in the same position within the windows.
This gives the user the feeling of a single integrated interface. For further readings refer to
[MAN95] [And95].

29

5.2.1 The Collection Browser

The Harmony collection browser uses the structure information from Hyperwave’s col-
lection hierarchy and visualises this information in the form of a tree. The user has the ability
to navigate through the hierarchy in a simple and intuitive way. Figure 8 shows a collection
browser with an opened collection hierarchy.

Figure 8: The Harmony Collection Browser.

At the beginning of a Hyperwave session, after the connection to the server has been es-
tablished, the Harmony session manager maps the collection browser window. As an initial
state, the path from the Hyper-Root to the users home collection is opened, and the members
of the home collection are displayed.

Here for the first time, a special feature of Hyperwave is used. When connecting to the
server only the home collection of the user is known. Since Hyperwave also has information
about the parents collections of the home collection, and in turn the further parent collections,

30

a path to the Hyper-Root can be determined and displayed in the tree. The position of the
user’s home collection in the collection hierarchy on the server is clearly determined.

In Hyperwave it is possible for an object to have more than one parent collection. How
this problem is solved in Harmony is described in Section 6.2.

The displayed tree visualises the hierarchy of the collections. To indicate the different lev-
els, members of a collection are indented relative to this parent collection. In order to clarify
the relation between collections and their members, lines (edges) between the members and
their parent are drawn.

Now the user can start to browse through the collection hierarchy. If there is a collection
of interest, this collection can be activated and in turn the members are displayed in the tree.
To indicate that all members are shown, the collection icon is changed from closed to open.
Two behaviours of the collection browser can be chosen.

1. Full display: In this mode the user has full control over which collections to open and
which to close. When a collection is opened all members are added to the view. The user
can close this collection by again double clicking on it. All open sub-collections are col-
lapsed and only the selected collection remains in the tree. In other words, the whole sub-
tree, beginning after the collection to be closed, is removed from the tree, and the rest of
the tree is rearranged to close the gap. The view can be cleaned by double clicking on the
open Hyper-Root.
This mode is useful when more then one collection should be displayed at the same time.
For example to compare two collections, or copy (move) on collection to another. How-
ever, too many open collections may cause in extensive use of the scroll bars, and there-
fore become wearisome.

2. Partial display: This mode has not found his way into Harmony, nevertheless it is men-
tioned here.
In this mode only the members of the current collection are displayed. The user can open
further sub-collection or one of the collections in the path. Every time a new collection is
opened, the previous open collection is closed (the members are removed from the view)
and only the path to the current collection and as well their members are displayed.
The number of collections displayed at the same time remains foreseeable, since only one
collection is open. (Unless a collection contains many members).
This mode may be used for browsing through the information. Only the members of the
current collection are displayed and accessible. The user also do not lose control where a
document or collection is located in the collection hierarchy. The probability to “become
lost in hyperspace” remains low.

As an additional navigation help, a function called “home” is provided. When home is
activated, the user’s home collection is shown and its members are added to the tree.

Visualisation of Documents

In the above described form the user can navigate in the hierarchy utilising the structure
provided by the author. When a document of interest is reached, it can be visualised in the
same way collections are opened and closed, by double clicking.

For text, image, movie, sound, postscript and 3D documents Harmony native viewers are
available and are started on demand. For every type of document, a new window is opened

31

and the document is visualised in this new window. All further documents of the same type
are visualised in the same window. The Harmony native viewers are described in Section 5.3.

Hyperwave and Harmony also support a generic document type. For such generic docu-
ments an external program and the program parameter can be specified. The viewers for ge-
neric documents can be configured by the user. It is also possible for the author to define a
particular program as the viewer for the document using an object attribute.

Generic documents are used for unsupported document types, such user-defined data with
an application-dependent viewer.

Visualisation of Clusters

Multimedia documents which are composed of more than one document are stored in Hy-
perwave in so-called clusters. A cluster is a special kind of collection. It contains a set of
documents, and possibly further clusters. When visited, one or more members of the cluster
are visualised at the same time according to some rules.

For each visualised document a separate viewer is opened. For example a movie, some
descriptive text, and images of the actors can be implemented using a cluster.

Next time a document is visualised only the appropriate viewers remain on the screen and
all other, no longer necessary viewers, are unmapped. An exception to this behaviour is, when
the user specially want to “pin” the current document on the screen. In this case, the current
documents are held and all further documents are displayed in a new viewer window. The
comparison of two documents (also two different parts of the same document) is easy in this
fashion.

It is also possible that the user is only interested in which documents are members of the
cluster. To check this, the cluster can be opened by a special function, called “show children”.
This function applied to a cluster displays the members of the cluster as for a collection. All
operations can now be performed on a particular member of the cluster, for example removing
it or simply viewing it.

To indicate, that a document or cluster has already been seen, the icon in front of the title
is marked with a tick. This is especially useful for documents which belong to more than one
parent collection.

Sort Order

The members of a collection are displayed in the tree in a specific order, depending on the
Sortorder attribute. There are two different types of sort order. One can be specified by the
author of the collection, the other by the user as a parameter in Harmony.

1. Collection-specific sort order: For every collection, a sort order can be specified as an
attribute of the collection. This attribute is stored in the database and is valid for all users
who access this collection. When Harmony visits collections with a Sortorder attribute,
other settings are overruled, and the members are arranged as the attribute prescribes.
This form of sort order is very useful for collections where the author wants to state the
sort order.
A possible collection with an own sort order would be the collection: “calendar of
events“, a list of dates of theatre playings, where the members might be sorted by the
“expiry date” attribute.

2. User-specific sort order: For all collections with no pre-defined sort order, the user can
specify the preferred sort order.

32

The sort operation is performed on attributes of the objects and is very flexible. Since all
objects can have attributes the sort operation is applicable to all kind of objects. Harmony can
currently sort the objects according to the following attributes.

• Title

• Author

• Creation Time

• Expiry Time

• Sequence Number

• Name

• Open

• Score

• Document Type

The Sequence attribute is especially defined for the sort operation. It is assigned to objects
by the author and is simply a number. Sequence numbers are especially useful when sort on
other attributes is not unique or not applicable, for example pictures which should not be
sorted on title or other attributes, but on the content. This problem can be served by assigning
simple sequence numbers.

Sort attributes can be chained together and individual attributes can be decreasing or in-
creasing. One imaginable sort order could be: Sort first by title and second by decreasing
creation time.

Figure 9: Harmony Sort Order Dialog.

In Harmony the dialog shown in Figure 9 is used to select the desired sort order. The user
can select attributes of a list of possible attributes. To flip an attribute from selected to unse-

33

lected or back, the user double clicks on an item. Reordering entries within a list and also
between the two lists is possible by selecting an item with the mouse, dragging it to the de-
sired position in the list, and dropping it. The sort direction is indicated by an or icon
before the attribute, for increasing or decreasing order respectively. This can be changed by
simply clicking on the icon. When satisfied the user presses ok and the new sort order is ap-
plied.

Location Feedback

The previously listed features describe methods for navigating within the collection
browser, and changing the appearance. The collection browser also provides navigational
feedback. Every time a document is visualised in a Harmony native viewer, any hyperlinks are
visualised in an appropriate form. If interested in a link, the user has the possibility to follow it
by activating the link and in turn the destination of the link is displayed.

Applying this kind of navigation raises one serious problem. When activating links, read-
ing the destination document, following further links, stepping back some documents and
again following links, it is hard to remember the “location” of the document. This effect is
known as the “lost in hyperspace syndrome”. In Harmony and Hyperwave this effect is re-
duced. When a link is activated the destination document is visualised in the collection
browser. If the document is not already in the displayed tree, the document is added to the
view. To do this, a path to the root collection is determined, and displayed in the tree. This
mechanism is called location feedback.

With this mechanism it is easy to locate and remember the position of the document in the
server. It is also possible to open the parent collection and display the other documents in the
collection. Since all collections on the path to the root can be opened as well, it is possible to
gain an overview of other related documents. There are two different scenarios depending on
the type of destination of a link:

1. The link destination is a document: In this case the destination document is displayed
and if a destination anchor is specified, the respective part of the document is highlighted.
If the destination is not already visible in the viewer, the document is scrolled. In the Col-
lection Browser, the document is added at its position in the collection hierarchy.

2. The link destination is a collection: In this case the destination collection is displayed in
the collection browser and all members are added to the view.

5.2.2 The Local Map

In addition to hierarchical structuring of documents in collections, associative hyperlinks
are used to create relations between documents. With the help of the link structure the user
can navigate by activating, and in turn following links. One of the problems which with this
form of navigation is to find all information linked to the current document. When one link is
followed a new document is opened with further links in it. To display further documents re-
ferred to by the first document it is necessary to step back and activate the next link.

In Harmony a method to help the user gain an overview of the link structure is provided,
the Harmony local map. In Hyperwave the link structure is defined orthogonal to the collec-
tion hierarchy. As mentioned earlier, links in Hyperwave are bi-directional and are stored in
an separated link database. With this capability the database can find documents linked to a
specific document without needing to parse the document. A link is only a relation in the da-

34

tabase and thus it is easy and fast to ask which documents refer to a specific object and also to
find documents which are referred to by a document.

In a large information system there are often many hundreds or thousands of documents.
Displaying a map of the whole link information for all documents would generate an enor-
mous map. In Harmony, the local map contains documents linked in some manner to the
document of current interest.

The local map is generated for the document last activated. All documents which refer to
or can be reached by a link are displayed. Every document which was already visited is dis-
played with an check mark in front of it. By default, two levels of referencing and referenced
documents are displayed. The number of levels of incoming and outgoing links can be config-
ured interactively. Hyperwave not only supports simple hyperlinks, there exist also links to
inline images, and links to texture information in 3D scenes. Annotations are a special type of
link which is supported in Hyperwave. These types of links can be selectively added or re-
moved from the display in the local map as shown in Figure 10.

Figure 10: Local Map options.

Every object in Hyperwave has at least one parent and if the object is a collection zero or
more children. The display of parent-child relations can also be enabled or disabled in the lo-
cal map. A typical local map is shown in Figure 11.

35

Figure 11: The Harmony Local Map.

The local map can be used for navigation. When double clicking a document it is dis-
played in the proper viewer. As a result of a single click the location of the document in the
collection hierarchy is displayed in the collection browser (location feedback) and all parents
in a path to the “root collection” are added. A new local map around the new current docu-
ment can be generated. In this form it is possible to trace back the way someone has come and
it is also possible to gain an insight about of how much information is linked to a particular
document.

Information displayed in the local map is not only of interest when browsing, it is also
helpful during editing the information. An author wanting to delete a document can generate a
local map to find out if other documents are referring to it. When there are such documents
the author can decide to continue deleting the document or not. A further possibility would be
to inform the owners of these documents, although mechanisms exist in Hyperwave to handle
links to no-longer existent documents.

For an in-depth description of the algorithms used to generate the layout of the local map,
refer to Section 6.1.

5.2.3 The Search Dialog

One of the most important features of Hyperwave is a powerful, built-in search engine.
Hyperwave offers a wide range of search possibilities. These are boolean searches on attrib-
utes of an object, and also a full text search with fuzzy boolean queries and WAIS-like near-
est-neighbour searches. Both the search on attributes and the full text search can be con-
strained to selected collections or be extended to include more than one server. Figure 12
shows the Harmony search dialog.

36

Figure 12: The Harmony Search Dialog.

The search offered by Harmony facilitates all of the Hyperwave search capabilities. The
easiest way to use the Harmony search is to enter one word in the “Search for” field and press
the “Search” button. With this method, the entered word is search in the selected3 collection
on the local server. The attributes searched for are the Title and the Keyword attribute by de-
fault.

If there are matching objects, these are displayed as a list placed in an area below the
search input fields. In this list a user-definable set of the object attributes are displayed. Fur-
ther an icon representing the document type is placed in front of each matching object, as
shown in Figure 13.

Full Text Search

When an object was found through a full text search, is has an associated score. This
score is an indicator of how well the document matches the search parameters. A score of
100% is the best match, a score of 0% the least. Documents found by an attribute search are
automatically assigned a score of 100%. The score of 100% is normally not the score returned
by the fulltext server. A typical value is about 25%, but Harmony by default normalises the
scores to values between 0 and 100%. This behaviour can also be turned off and the native
values displayed. The objects in the result list are sorted by default by the score, for docu-
ments with the same score additionally by the Title attribute.

Location Feedback

The user now can scan the result. For further consideration a single click on an item of
interest activates location feedback for the selected object. In the collection browser the se-
lected matching object is scrolled into view. If it was not already present in the collection
listing, the whole path from the object up to an already visited object is opened and displayed.
With this feature it is possible to pre-categorise items by the collection they are contained in.

3 The selected collection is the last object clicked on. If this object was not a collection, this option is dis-

abled.

37

The document “TABLE” found in a sub-collection of “MS Dynamic HTML/ JavaScript
Documentation” has another meaning than found in a sub-collection of “Langenscheidts
Taschenwörterbuch Englisch”. Figure 13 shows the result of a search for “table” with location
feedback in the collection browser.

Figure 13: Harmony Search with "location feedback" in the Collection Browser.

When an object looks promising, it is of course possible to view it. By double clicking on
it, the object is displayed in the appropriate viewer.

If none of the found objects is satisfying or there are too many results, the search can be
refined. Unlike systems such as the WWW, it is not necessary to step back to the search page.
It is just possible to modify the previous search parameter and do the search again.

Boolean Operators

One possibility to refine the search parameters is to enter more than one word in the
search field. Words separated with the space character are assumed to have the boolean
“AND” operator applied. This means that all of the entered words have to be contained in the
object to match the query. The “AND” operator can be written as “&”, “&&” and also as the
word “and”.

It is also possible to combine words with the boolean “OR” operator, written as “|”, “||”
and the word “or”. When combined with the “OR” operator only one of the entered words has
to be contained in the object to match the query.

Both the “AND” and the “OR” operator as well as parenthesis “(“, “)” can be combined to
form complex boolean queries. For a closer look at the search syntax, refer to Appendix C.

38

Searched Attributes

If this doesn’t lead to satisfactory search results, it is further possible to change the set of
attributes to search in. Possibilities are the attributes Title, Keyword, and Name. The content
switch activates the full text search of the Hyperwave server.

Search Scope

Not only search words can be altered, the scope of the search is also adjustable. Combi-
nations of the following areas are allowed:

• The local server: If this option is turned on the search is performed in the whole local
server, where the local server is the server Harmony is connected to.

• The selected collection: If this option is turned on, the search is performed in the se-
lected collection. A document only matches if it is a member of this collection or one of
its sub-collections.

• The active collections: If this option is turned on, the search is performed in all active
collections. How to activate collections is described below.

All the above listed options can be used additive. In other words, it is possible to select
any combination of them. If “selected collection” and “active collections” are switched on, the
search is performed in both the selected and the active collections.

Extended Search

For more sophisticated searches it is further possible to switch on the extended search op-
tions. In this mode the search can be extended to further attributes such as Author or Modi-
fied.

• Author can be used to find only documents created by the specified author.

• Modified is used to search for objects created or modified before or after a specified
date, and also with in a range of dates. Date entries can be entered as absolute dates in
the form “year/month/day hour:mins:secs” or as a relative date in the form -ndays –
nhours –nmins where n is an number

A date entered in the last format is translated by Harmony to an date n days, hours and
mins before the actual date and time. This can be used to search for objects inserted or modi-
fied in the last n days. Figure 14 shows a search dialog with extended search enabled.

39

Figure 14: Harmony Extended Search.

These search parameters can also used to filter the number of found objects. When a
search returns too many matches, an additional entered Author or Modified parameter can
drastically improve the result.

Active Collections

As mentioned earlier, search can be performed on activated collections. In Harmony col-
lections can be added to or removed from the list of active collections in the Harmony active
collections as shown in Figure 15.

Figure 15: Harmony Active Collections.

The active collections simply displays a list of the activated collections. It provides buttons to
add and remove collections from the “activated list”. Collections can be activated by browsing
to them using the collection browser or any of the other browsing method and pressing the
“add” button. When the remove button is pressed, the selected collection is discarded from the

40

list. In the active browser “location feedback” is also available, as already discussed in earlier
sections.

Search in Result

A further option in the Harmony search is described here at the end of the search section, the
option to search in the result set. In contrast to previous options the search is only performed
on the already found objects. With this feature it is possible to reduce the number of matches
successively by applying selective queries on the objects in the current search result list.

Every search operation is recorded in the Harmony History. With the search objects in the
History it is possible step back to an earlier performed search in the Harmony session. This is
particularly useful, when search parameter alternation has not lead to the desired result.

5.2.4 The History Browser

Users typically browse through the information universe using the collection browser, hy-
perlink navigation, the local map, or navigate to documents found with the help of searches.

The other possibility is to use the Harmony history browser. During navigation all visited
collections, documents and also performed searches, are recorded in the history list. This re-
corded history can be utilised using the Back and Forward buttons in the collection browser
window. Pressing Back or Forward displays the appropriate object from the history list.

An alternative way to use the History functionality is to map the History window as
shown in Figure 16 and use its features. In the History window all recorded stages are dis-
played as a chronological list. The user can scroll through this list and directly chose the
items of interest. For further information each document is marked with a time stamp, show-
ing when it was last visited. This is useful since sometimes it is easier to remember the time
when a document was seen (just before I went to lunch) than the position in the history.

41

Figure 16: The Harmony History Browser.

If the document is a document managed by Hyperwave, it is also possible to single click
on the item and the document’s position in the collection hierarchy is shown in the collection
browser with the path to the root collection opened. When a collection is chosen out of the
history, it is shown in the collection browser and if not already, their children are displayed.
When a search is recorded, all relevant attributes are stored in the History entry, including the
query text, the active collections, the selected collection and of course the activated attributes
and scopes. When a search is activated from the history these parameters are used to perform
the search again.

5.2.5 The Information Landscape

The Harmony information landscape displays the information structure in a Hyperwave
server in a three-dimensional manner as shown in Figure 18. Collections are visualised as
pedestals on a plane. Documents in a collection are three-dimensional objects placed on the
pedestals. The size of the document’s is optionally mapped to the height of the objects.

42

The user can fly over the information landscape and can activate a document by double
clicking on the document representation. The documents are then displayed in the Harmony
viewers. It is further possible to open and close collections by double-clicking on them.

An overview map can be activated to show the structure from a view point above the
scene. This map is especially useful to gain an overview, of where documents are on the
server. Figure 17 shows an Overview map. Large rectangles indicate collections or clusters
with many documents.

Figure 17: Information Landscape Overview Map.

The hyperlink structure can also be visualised using the information landscape. Linked
documents are placed orthogonal to the collection structure above and beyond the corre-
sponding object. An information landscape with activated link structure is shown in Figure
19.

All Harmony specific features are also available. Selecting an object in the landscape up-
dates the collection hierarchy in the collection browser and vice versa. Location feedback is
implemented in the information landscape by “flying” the user automatically to the selected
object. For further information about the information landscape refer to [Eyl95][Wol96].

43

Figure 18: The Harmony Information Landscape.

Figure 19: The Harmony Information Landscape with activated link structure.

44

5.2.6 Server Status Browser

The Harmony server status browser displays current status information of the Hyperwave
server which Harmony is connected to. The information displayed includes the server name,
local time, data transfer statistics, up times and so on. The displayed information is updated
every 60 seconds by default, but can be changed to any other interval. Figure 20 shows the
Harmony server status browser.

Figure 20: The Harmony Server Status Browser.

From the status browser it is possible to open the Harmony user connection browser. This
function maps a new window, which contains a list of currently connected users. This list is
also updated periodically with the same interval as the status browser. The user’s own con-
nection is marked with an asterisk as for example, *jschipf in Figure 21. The user now can
select one or more users out of the list and start an online conference. Figure 22 shows the
Harmony status browser with a chat session between some users. In this window the upper

45

area is used to enter messages which than are sent to the selected users. The lower area is used
to display the history of the conference. All sent and received messages are recorded with in-
formation about sent messages and involved users.

This feature can also be used to send information to all connected people. It is, for exam-
ple, used by the system to inform about an upcoming server shutdown. If the Message window
is not already opened, a pop up window informs the user about the available message.

Figure 21: The Harmony User Connection Browser.

46

Figure 22: Harmony Status Browser, Send Message.

5.2.7 Multilinguality

There are two major areas, where Harmony handles information in more than one lan-
guage, multilingual documents and a multilingual user interface.

5.2.7.1 Multilingual Documents

The system should support multilinguality for the information stored in the database. Just
as user guides for electrical equipment, household utensils or cars, which are delivered typi-
cally in different languages, Hyperwave and Harmony support documents in different lan-
guages as a built-in functionality. The language which is chosen can be specified by the user.
This functionality is achieved with the help of so-called clusters.

A cluster is a special type of collection, where the members of the collection to be visual-
ised are selected according to some rules. When a cluster is visited and it contains documents
in different languages, the one in the currently selected language is visualised. This mecha-
nism is not only applicable to text documents, it may also be used for images (for example, if
the legend is in different languages), sound in the form of speech or also movies. To indicate

47

the language of a document the title of the document is preceded by a special language short-
cut and is stored in the title attribute of the database object. Some shortcuts for languages are
for example “en:” for English, “ge:” for German or “jp:” for Italian.

Since clusters are not only used to implement multilinguality, but also to implement
multi-media documents the above mechanism is extended to support all types of documents.
The precise rule for document selection within a cluster is:

• All language-independent documents are visualised. Language-independent documents are
indicated by more than one title attribute.

• For language-dependent documents the one in the currently selected language is visual-
ised, if available. This is applied to every document type. (Document types are Text, Im-
age, sound etc.) Language dependency is indicated by only having one title attribute.

• Cluster: a cluster may contain recursive other clusters. This is useful when more than one
language-dependent documents of the same type should be visualised together.

In other words, when Harmony visits a cluster, it first displays all language-independent
documents, for example a digital movie. Next it looks for language-dependent documents,
such as for example the text describing the content of the movie. If there is a document in the
current language and of a not already displayed type, Harmony visualises it.

Further documents of an already displayed type are ignored. This feature can be used as a
kind of rudimentary version control, since sort order is also taken into account in clusters. So
if the sort order of the cluster is the sequence number and the sequence attributes are set ac-
cording to the version number, the latest version of the document is chosen. Older versions are
not displayed but are available and if necessary, viewable.

When Harmony reaches a sub-cluster, the above described procedure is repeated. This
may be useful for example when some images should be displayed at the same time. In the
above example this can be used to display photos of the actors of the movie.

5.2.7.2 Multilingual User Interface

In Harmony not only the documents are displayed in the chosen language, also the whole
user interface is available in multiple languages. Elements like buttons, menus, text in dialogs,
and the representation of database objects are in the chosen language. The language can be
changed by the user interactively. The dialog for choosing the preferred languages is shown in
Figure 23.

48

Figure 23: Language Preference Dialog.

The user can specify an ordered list of preferred languages. The languages can be toggled
from chosen to unchosen and back by double-clicking on a language. Reordering the entries
within a list (and also between the two lists) is also possible by selecting an item with the
mouse, dragging it to the desired position in the list, and dropping it. When the lists are or-
dered as preferred the user presses OK and the user interface changes to the preferred lan-
guage and documents are displayed in the new language, if available. Figure 24 shows Har-
mony with Japanese as user interface language and a Japanese document shown in the Text
Viewer.

49

Figure 24: Harmony session in Japanese.

As depicted above, an ordered list of languages can be chosen. When Harmony decides
which document should be displayed, the following rules are applied.

If there is a document in the first language in the preference list, this document is chosen.
If there is no such document, the next language in the list is tested. This step is continued until
a document is found or there is no further language in the list. If there is no document found
with the preceding procedure, an arbitrary document, the first in the list retrieved from the
server, is chosen for display.

5.3 The Harmony Document Viewers

The Harmony document viewers run as separate programs. Nevertheless they are inte-
grated into Harmony as a whole, and all have a consistent user interface and the same menu
structure, as far as possible.

All viewers support an API to send commands both from the session manager to the
viewer and vice versa. The whole connection to the Hyperwave server, fetching objects, an-
chors and document data is done via the session manager. All native viewers support interac-
tive link creation. The Session Manager - viewer API functions include:

• view document

• map/unmap window

• terminate

50

• functions for location feedback

• functions for link creation

All viewers support hyperlinks, even though some of the displayed formats have no built-in
Hyperlinks. This is possible since links in Hyperwave are stored as separate objects, inde-
pendent of the format. This link information is used by the viewers to overlay the viewed
document with this links. Hence Harmony can add link functionality to formats without inher-
ent hyperlink capability.
All viewers also support interactive Hyperlink creation. Link creation is treated in detail in
Section 5.4.8. Due to the modularity of this system, all viewers can be developed independ-
ently.

5.3.1 Text Viewer

The Harmony text viewer as shown in Figure 25 is able to view text in HTML, plain text,
and Hyperwave’s original format HTF. Inline images in GIF, PNG, JPEG, and TIFF formats
are supported. Marked text can be set as source or destination anchor. For more information
about the text viewer refer to [Gai94].

Figure 25: The Harmony Text Viewer.

51

5.3.2 Image Viewer

The Harmony image viewer as shown in Figure 26 is able to view images in the formats
GIF, JPEG, TIFF and PNG. It support links from and to areas of the image. Anchors can be
created with the shapes:

• Circle

• Ellipse

• Rectangle

• Polygon

For more information about the image viewer refer to [PiP96].

Figure 26: The Harmony Image Viewer.

5.3.3 Film Player

The Harmony film player as shown in Figure 27 is able to play movies in the format
MPEG-1. It support links from and to time slices of the movie. As a special feature of this
player it is also possible to create and view links to areas of the current image. This area can
move over time. For more information about the film player refer to [Mar95].

52

Figure 27: Harmony Film Player with moving links.

5.3.4 Audio Player

The Harmony audio player is able to play audio clips in several formats. To play these
formats it uses external programs. It supports links to time slices of the audio stream. For
more information about the audio player refer to [Gei97].

5.3.5 PostScript Viewer

The Harmony PostScript viewer as shown in Figure 28 is able to view PostScript docu-
ments. It uses ghostscript as render engine and displays the output. It support links from and to
areas of the PostScript document.

53

Figure 28: Harmony PostScript Viewer.

5.3.6 VRweb 3D Viewer

The Harmony VRweb 3D Viewer as shown in Figure 29 is able to view scenes in the for-
mats VRML and SDF. Several navigation methods are provided. Objects of the scene can be
defined as source anchors and viewpoint into the scene as destination. For more information
about the VRweb 3D viewer refer to [Pic93].

54

Figure 29: The Harmony VRweb 3d Viewer.

5.4 Authoring with Harmony

In Harmony it is possible to manipulate the content and the structure of the data stored in
a Hyperwave server. The user can insert new objects into a Hyperwave server. In order to
manage the structure of the information, there are facilities to copy, move or delete objects.
Harmony supports editing of object attributes and also the content of documents. Functional-
ity is available to create hyperlinks from and to documents and collections. The user can also
create annotations to documents or collections.

In order to author a Hyperwave server the user needs the appropriate access rights. There-
fore editing is normally only possible for identified users. The right to edit is checked by the
Hyperwave server.

5.4.1 Inserting New Collections or Clusters

In order to insert a new collection or cluster, the user has to navigate in the collection
browser to the collection or cluster where the new object is to be inserted. When the target
collection is reached the user can open the Harmony insert dialog. This dialog is used to insert
collections, to upload documents from the file system and to create new documents from
scratch. Figure 30 shows the insert collection dialog.

When the insert dialog is opened for the first time, the field “insert into collection” is pre-
set to the collection currently selected in the collection browser. If the dialog has already been
mapped earlier it is also possible to press the “Current” button to set the target collection.

55

Next the “collection” or “cluster” from the “New” listbox has to be selected. In the dialog
it is necessary to enter a title. Title attributes are used in the collection browser to visualise the
object. The name attribute is also required for collections. The value of the name attribute will
appear in the URL for the new object, therefore an intuitive word should be entered. Values
for the “Keywords” and “Rights” fields can be entered, but are not required.

Figure 30: Insert Collection Dialog.

A click on “Insert” creates a new object in the database. The collection browser is updated
to reflect the new information structure. Now it is possible to alter the text for Title, Name or
other input fields, and insert further collections or also other object types.

5.4.2 Inserting Documents

Similar to inserting collections, the user has to navigate to the target collection, activate
the Harmony insert dialog and click, if not already set, the “Current” button to set the target
collection. From the “New” listbox the kind of document which should be inserted, is chosen.
Figure 31 shows the Insert Dialog with document type “Image” selected.

The user now has to fill out “Title” and optional “Keywords” and “Rights”. In contrast to
collection insertion, a “file choose” element is added to the dialog. Here the user has to enter
the local file name of the document, or choose it from the file list.

When all necessary input elements are filled out, the user clicks on “Insert” and the
document is inserted into the Hyperwave server. The collection browser is updated to show
the new document as a member of the current collection.

56

Figure 31: Insert Dialog.

In Harmony it is not only possible to upload documents from the file system, it is also
possible to create new documents. When the insert dialog is mapped, and “Text” or “Im-
age” is selected an “Editor” button is added to the dialog. When the user clicks on this button,
the “file choose” element is removed. Instead the document viewer for the chosen type of
document is activated and also the configured editor is started. The user has now the possibil-
ity to edit the new document. In the edit mode the document viewer provides a “Pre-
view” button. When the user click on this button, the new document is displayed in the
viewer. After the content of the new document is completed, a press on “Insert” in the insert
dialog takes the new document and uploads it to the Hyperwave server.

5.4.3 Creating Remote Objects

In Hyperwave links to documents on remote servers like WWW, Gopher and FTP servers
can be stored. This objects are so-called remote objects. To insert a remote object the steps are
similar to those for inserting collections. When the insert dialog is mapped select “WWW”,
“FTP”, “Telnet” or “WAIS”. Figure 32 shows the insert Dialog with new “WWW” selected.
After entering “Title”, “Keywords” and Rights it is necessary to enter the URL of the remote
document. When the user clicks on “Insert” the remote object is inserted into the Hyperwave
server.

57

Figure 32: Insert Remote Document Dialog.

5.4.4 Editing Documents

Document editing is at the moment only implemented for text and image documents. In
order to edit a document the user has to display the document in the viewer. In the viewer the
menu entry “Edit” in the “File” menu starts editing. The Harmony document viewer in turn
writes a temporary file and starts an external editor to modify the content. Figure 33 shows a
text document being edited with Emacs started from the Harmony text viewer.

While editing, the user can save the document and click on “Preview” in the viewer. The
viewer rereads the file and displays the new document. This is especially useful for HTML
documents. Here the user can check if the HTML code written behaves as expected.

When all changes are done, the user saves the document and exits from the viewer. After
confirmation dialog, the document is uploaded to the Hyperwave server, and the changes are
committed to the database.

58

Figure 33: Harmony Editing Text with Emacs.

5.4.5 Moving and Copying Objects

Documents on a Hyperwave server are structured in collections and sub-collections. Har-
mony provides facilities to manage this structure. It is not only possible to move documents or
collections to other collections, it is also possible to copy the objects. In Hyperwave copy is
similar to the “ln” command in UNIX. The data of the object is not physically copied, but
symbolically linked into a further collection.

In order to move or copy an object, the user has to select the object in the collection
browser. Selection of the menu entry “Move” or “Copy” in the “Edit” menu opens the Har-
mony Move/Copy Dialog, as shown in Figure 34. In this dialog the user has to enter the name
or object id of the target collection and to click “Move” or “Copy”.

Figure 34: Harmony Copy Object Dialog.

59

5.4.6 Deleting Objects

To delete an object, the user has to select the object and activate the “Delete” item from
the “Edit” menu. After this the Harmony delete dialog as shown in Figure 35 is opened.

As stated earlier an object can belong to more than one collection. If the object to be de-
leted is only a member of one collection it is physically deleted. If it is a member of more than
one collection, the behaviour of the delete operation depends on settings in the delete dialog.
If the checkbox “Delete all Occurrences” is checked, the object is deleted physically. If not
checked, the object is only removed from the current collection.

In the case where the object is deleted physically, the user can decide whether all incom-
ing and/or outgoing links should also be deleted.

Figure 35: Delete Document Dialog.

The dialog for deleting collections is slightly different to that for deleting documents as
shown in Figure 36. When deleting a collection, all immediate members and also all members
of sub-collections (recursively) are deleted.

Therefore there exist two further input elements in the delete dialog for collections. One is
the “With Confirmation” checkbox. If checked the user is ask for every object to be deleted, to
confirm the delete operation.

The second is the “matching the HYPER-G DATABASE OBJECT QUERY” checkbox.
If check an input field is added to the dialog. In this field the user can specify a “Database
query”. Only objects which match this query are deleted. This can be applied to data where
only objects with specified attributes should be deleted. For example objects containing a par-
ticular phrase in their Title.

60

Figure 36: Delete Collection Dialog with Database Object Query.

5.4.7 Editing Object Attributes

Every object handled by a Hyperwave server has assigned several attributes. These attrib-
utes are stored in a separate database, separated from the object data. In Harmony attributes
can be viewed and modified (given appropriate access rights) by the user.

In order to edit object attributes, the user navigates to the object. A click with the right
mouse button on the object opens the Harmony attributes dialog. If the user has the right to
edit the object attributes, an “Edit” button is visible at the bottom of the dialog. Figure 37
shows an attributes dialog.

61

Figure 37: Harmony Attributes Dialog.

After a click on the “Edit” button, the dialog changes as shown in Figure 38. Attributes
which are not editable are arranged at the top of the dialog, editable attributes grouped at the
bottom. Attributes which are editable by the user are displayed in an edit text field. User edit-
able fields include:

• Title

• Keywords

• Name

• TimeOpen

• TimeExpire
and many more.

Some of the attributes are handled by the Hyperwave server internally and therefore are
not editable. These attributes are displayed for information only. System handled attributes
include:

• ObjectID

• Type

• DocumentType

• CollectionType

• Subdocs
and many more.

62

Figure 38: Harmony Edit Attributes Dialog.

Modify Attribute Values

The user modifies one or more attribute values, by changing the text in the edit field.
When a change is made, the background colour of the edit field changes to indicate the modi-
fication.

Adding a New Attribute

To add a new attribute the user can select the desired attribute from the “add” listbox. A
line with the attribute name and an input field is added to the dialog. The user can enter the
new value in the input field.

Deleting Attributes

If an attribute is to be deleted, the text in the edit field has to be removed. Attribute fields
with no value are removed from the object on insertion.

After all modifications have been done, the user can click the “Modify” button. All
changes are committed to the database and the dialog changes into view mode. If the object is
displayed in a browser and the modification influences the visualisation in the browser (for
example a changed title) all appearances are updated as well.

63

5.4.8 Creating Links

One of the most important feature in Harmony is the facility for interactive link creation.
A link in the sense of Hyperwave consist of a hot spot, the source anchor and a destination.
The source anchor is a specially marked area in the document. Double clicking on the source
anchor displays the destination object of the link. The destination may be a collection, cluster
or a whole document. It is also possible to point to an area in a destination object, the destina-
tion anchor.

For Hyperwave the anchor itself is simply an object, stored separately from the document
data. This means the anchor has attributes like all other objects. An anchor can therefore have
for example a Title, Author or Rights attribute. An advantage of the anchor object is that an-
chors can be defined in document formats which do not support linking inherit in their format
specification.

In Hyperwave links are supported for text, film, image, sound, 3D and PostScript docu-
ments. The position of the anchor in the document is stored as an attribute of the anchor. The
visual representation of source and destination anchors is different in the different document
types:

• In text documents anchors are a sequence of characters or an inline image.

• In film documents simple anchors are time slices of the whole area of the film. However
anchors can also be rectangular or circular areas in the current viewed scene of the film.
These areas can change their size and position over time. So for example, a moving car or
a person can be the source and indeed, the destination of a hyperlink.

• In image documents anchors are rectangles, circles, ellipses or polygons.

• In sound documents anchors are time slices.

• In 3D documents source anchors can be objects or object groups, destination anchors are
camera positions with an orientation.

• In PostScript documents anchors are rectangular areas of the document, or a given page.

A detailed description of possible link positions can be found in [Mau96].

In all viewers anchors can overlap each other and also an anchor can be a subset of an-
other anchor. For example in a map of Europe, the whole of Europe can be a link to informa-
tion to Europe, and as subset the countries and the capitals may also have such links.

5.4.8.1 Interactive Link Creation

To define a link, four steps are necessary: define a source anchor, define a destination an-
chor, assign anchor attributes and create the link with the given settings. The source and des-
tination anchor of a link can be defined interactively using Harmony’s native viewers.

Source Anchor

To define the source anchor, open the document in the viewer and mark the area for the
link. In the text viewer for example, this is done by marking the corresponding text with the
mouse.

64

 Next, clicking “Define as Source” in the “Anchors” menu of the viewer opens the Har-
mony link creator as shown in Figure 39. Parameters for the source anchor are set by Harmony
according to the area marked previously.

Figure 39: Harmony Link Creator, Source set.

Destination Anchor

Defining the destination anchor in the viewer is done the same way as defining a source
anchor. The only difference is that the destination anchor can also be a whole document (Use
Default Destination). To set a collection, cluster or a whole document as the destination an-
chor, it is also possible to use the collection browser. When the object is selected, “Define As
Destination” from the “Anchors” menu of the collection browser also sets the destination an-
chor.

Link Attributes

One of the possible attributes for an anchor is the Title attribute. To assign a title to an an-
chor is useful in Hyperwave since anchors can also be found by a search. It is further possible
to insert the anchor as member of a collection. In this case, the anchor is displayed in the col-
lection browser with an anchor sign contained in the document icon. When activating the an-
chor the corresponding position is highlighted in the document.

65

Link Creation

After entering some optional attributes for the anchor object, a click on “Create Link” in-
serts the source and destination anchor into the Hyperwave server. All involved viewers are
updated to visualise the newly created link.

Inline Images

In Harmony it is possible to interactively insert inline images into text documents. In the
text document the place where the inline image should be inserted has to be selected. The
inline image will be inserted at the beginning of the selection. The function “Define As Inline
Source” from the “Anchors” menu of the viewer sets the position in the link creator dialog.
The inline image itself has to be defined as the destination of the link. After inserting the link,
the inline image is visualised in the text viewer.

There are several advantages to this link creator concept. Since link information is pre-
sented in the creator in a separate window, all navigational features of Harmony can be used
to find the counterpart of a link. For example, it is possible to use the Harmony search and
define one of the found documents as the destination of a link.

In order to create links to the same destination, the destination has only to be set once.
Only the source anchor has to be defined for every link. For example several occurrences of
the same inline image in the same or different documents.

Furthermore, it is not necessary to first set the source and then the destination. The user
can first define the destination. This is very useful, when during browsing, a document is
found to which another document should refer.

5.5 Expandability

Harmony is a very powerful tool to insert information into Hyperwave server and ma-
nipulate the stored information. It offers possibilities to create and rearrange the collection
hierarchy. Harmony supports the editing of documents and gives the capability to create hy-
perlinks from and to documents and collections. The relationship between documents can be
visualised and messages can be sent from one user to another.

One drawback of the rich features of Harmony is the resulting code size. To implement
more and more features within one large program is very difficult. It is better to implement
some features in separate modules, which can be utilised by Harmony. Such modules can be
implemented independently from each other, and the coding task can be done by different
users.

A further advantage of separated modules is easier distribution. The main part of Har-
mony can be kept small. If some additional features are needed by a user, the appropriate
module can be downloaded on demand.

Harmony offers two methods to integrate other software and Harmony modules. One of
the possibilities is to configure the Menu of the session manager to start external programs.
Harmony further has an API (application programmable interface) which can be used to get
information on the current state of the session manager and also to control the session man-
ager and the document viewers.

66

5.5.1 Expandability of the Harmony Menu

In the Harmony session manager, it is possible to configure the menu of the collection
browser to start external programs. The menu where new items are appended is a submenu of
the “File” menu. When external tools are configured, the menu entry “Tools” appear and
contain new items.

Just starting programs is not enough for tools which want to operate in conjunction with
Harmony. It is also necessary to supply some status information and parameters along with
starting the tools, such as:

• host and port Harmony is connected to

• the currently logged in user

• information on the current object

• parameters to request interactive input from the user

• information about the Harmony API (see below)

For a more detailed description on how to configure the menu see Appendix B. There you will
find a complete list of parameters which can be passed to external programs. Figure 40 shows
the Harmony collection browser with an extended menu.

67

Figure 40: Harmony Collection Browser with Tools Menu.

5.5.2 The Harmony API

In the previous section a method was presented to start programs from within Harmony
with the help of the menu. However, simply starting a program is not enough. The tool may
want to use the capabilities of Harmony. The Harmony collection browser already has the
capability to visualise and browse the structure of the Hyperwave server. The display and ed-
iting of documents is already implemented in Harmony.

There is no sense in re-implementing these features in external programs. To support the
tools with the capabilities of Harmony, an API (application programmable interface) was im-
plemented. With the help of this API tools can be seamlessly integrated into the environment
of a Harmony session. External programs can use the API to communicate with Harmony.
The API offers several types of interaction with the tools:

• There exist functions to get information about the current object in the collection browser.
The attributes of this object can be requested and processed.

• It is possible for the tool to subscribe to state changes of Harmony. When such a change
occurs, the tool is notified. One of these state changes is the navigation of the user in the
collection browser. Every new currently selected object is reported to the tool. A possible

68

usage of this feature is to enable and disable editing buttons with respect to the document
type currently selected.

• There exist API calls to open and close collections in the collection browser.

• Documents can be visualised in the appropriate viewers.

• The Search Browser can be opened and search parameters set and retrieved.

• Tools can initiate and stop editing operations in the different viewers. It is also possible to
create links with and without interaction with the user.

• Not only can the tools initiate functions and operations, Harmony can also control the
tools. Harmony can set the language for the user interface, map and unmap, and iconify
and deiconfiy the tools.

For a more detailed description of all the API functions see Appendix D.

HyGen

A set of tools, which are implemented utilising the Harmony API, is known as HyGen (Hy-
perlink generation). HyGen offers semiautomatic generation of hyperlinks including, table of
contents generation, a vocative link generator as shown in Figure 41 and a glossary generator
as shown in Figure 42. These tools were implemented for the European Space Agency.

HarSearch

A further tool utilising the Harmony API [Rod97]. This tool extends the search functionality
of the Harmony Sessionmanager with an improved user interface as shown in Figure 43.

69

Figure 41: HyGen Vocative Link Generator.

70

Figure 42: HyGen Glossary Generator.

71

Figure 43: The HarSearch.

72

73

6 Selected Details of the Implementation

Harmony is implemented in C++ [Str91]. The user interface is built using the Interviews
toolkit [LCI91] [LVC89]. In this chapter, particularly interesting details of the implementation
are presented.

6.1 Implementation of the Local Map

The local map is a tool which generates a map of the structural information around a
document as described in Section 5.2.2. This structural information may be parent-child rela-
tions or hyperlink relations. The structure built from this information, can be regarded as a
cyclic directed graph. Documents are the nodes and links and relations form the edges. Since a
link always points from one document to another the graph is directed. The graph may be cy-
clic as well, because a document A can have a link to document B, B to C and C again can
have a link to document A. Document B already can have a link back to document A and
therefore every edge can also be bi-directional. When the information structure is laid out,
there are several issues which improve the readability and usability of the displayed graph.

1. The graph should have a hierarchical structure. These hierarchy is defined by the direc-
tion of the links. Document A which has a link to document B is the predecessor of
document B.

2. When laid out, edges should have as few crossings as possible. If there are too many
crossings, it is difficult to follow edges from one document to another. It is also difficult
to find dependencies between several documents.

3. Since the local map is generated dynamically and on demand, the layout time should be
short.

With the above restrictions, wire routing algorithms as used in VLSI design [BP83] are
not suitable for this problem. In the design of chips run-time performance is of no matter. The
quality of the layout is the most important issue, since the quality of routing directly affects
the space and time performance of the resulting chip.

For dynamic and interactive layouts, layout quality can be neglected with respect to run-
time performance. Users are willing to accept an imperfect layout, but they will not accept
long computing times. Waiting too long contradicts the aim of the local map to help users find
information and orient themselves. If a single layout of a local map takes more time than
navigating around in order to find the same information, the local map makes no sense.

6.1.1 A Hierarchical Graph Layout Algorithm

A more capable algorithm for the above described problem and applied with some
changes in Harmony, is a graph layout algorithm originally presented by Sugiyama [STT81] .
This algorithm was introduced to visualise and understand hierarchical system structures.

74

One problem of Sugiyama’s algorithm is the layout of cycles. In the algorithm cycles are
collapsed to one node with the name of all nodes building the cycle. Since hypertext structure
information which should be presented in the local map possibly include cycles, the algorithm
should be adapted to handle cycles too. Some adjustments to Sugiyama’s algorithm, which
solved the above mentioned problem, were presented in [RDM87]. With some further adjust-
ments, this algorithm was applied in the Harmony local map.

Nomenclature

The nomenclature used in this section is illustrated by the example in Figure 44. A node
and an edge are defined in the usual way for directed graphs. In the local map a node is a
document and an edge is a link. The nodes that can be reached from a given node by following
the directed edges leaving the node are called the successors of the node. The nodes from
which a given node can be reached by following directed edges are called the predecessors of
the node.

Figure 44: Nomenclature for layout algorithm.

A level is a discrete up/down position. They are numbered from top to bottom, starting
with level 0 at the top of the graph. In a strict hierarchy, each node will have all ancestors at a
lower level and all descendants at higher levels.

Edges that span more than one level are called long edges. A dummy node is added at
each intermediate level to indices where the edge crosses the level. A long edge can change
direction only at the positions of the dummy nodes. A dummy node has no size or label but is
otherwise treated like a normal node by the layout algorithm.

75

A cycle is a set of nodes such that there is a closed directed path from each node in the set
to itself that passes through the other nodes in the set. It is not possible to lay out the nodes in
a cycle hierarchically, so that the original Sugiyama algorithm collapsed all the members of
the cycle to a single node, called a proxy. The algorithm treated a proxy as single node and
labelled it with the names of all the node in the cycle. In Figure 44, {B,I,J} is a proxy replac-
ing the cycle B � I � J � B.

Algorithm

The hierarchical layout algorithm has three phases. The first phase assigns nodes to levels.
The second phase sorts the nodes on each level to minimise the number of edge crossings. The
third and final phase fine tunes the positioning of nodes and routing of edges to make the lay-
out easier to understand.

Phase One:

As first step of the algorithm, the graph is examined for cycles. Cycles are found by doing
a depth-first search. Whenever a node is found to be its own descendant, a cycle is indicated.
Cycles are broken by temporarily reversing the edge that completed the cycle and proceeding
with the algorithm. When the graph is displayed, the reversed edge is drawn in the reverse
direction (i.e. in the correct direction). The nodes connected by the edge appear on the levels
that they would have occupied if the edge had been directed downwards.

The second step is to compute the transitive closure of all successors of nodes to deter-
mine which nodes have no successors, and therefore belong at the bottom of the graph. Nodes
are assigned to levels by assigning nodes with no successors to the current level, by removing
them and their edges from the closure, and performing the same operation on the next level up
the graph until all nodes have been assigned to a level.

The third step to assigning levels is to break up long edges that connect nodes that are
more than one level apart. These long edges are broken into segments, each of which goes
between adjacent levels, and dummy nodes are inserted at the intervening levels. Dummy
nodes and the segments of a long edge are treated by the algorithm as normal nodes and edges.
The reason for segmenting the edges and creating dummy nodes is to allow the edges to bend
at each level thereby providing flexibility in positioning of the two nodes connected to the
long edge and permitting a more compact graph layout.

Figure 45 shows the layout of the graph after the completion of phase one of the algo-
rithm. One problem of this algorithm is, that nodes like the nodes “up” or “help” in Figure 45
are placed at the bottom of the graph causing long edges, which makes the graph hard to read.

76

Figure 45: Local Map after step one, before level optimisation.

The algorithm used in Harmony solved this problem, performing an additional step be-
tween step two and three of phase one. This additional step minimises the level for each node
in the graph. The algorithm used is as follows.

Nodes are sorted by increasing level. For each node in the graph, the minimum of the lev-
els of all descendants of the node is computed. If the minimum + 1 is smaller than the current
assigned level, the level minimum +1 is assigned to the node. If no descendants are present
the old level is preserved. The algorithm continues with the next nodes. Figure 46 shows the
same graph as in Figure 45 with shortened levels.

77

Figure 46: Local Map after step one, after level minimisation.

Phase Two

The second phase of the algorithm makes multiple passes over the graph, changing the
order of nodes in each level to minimise the number of edge crossings. The first pass begins at
the top level of the graph and moves down. The second pass begins at the bottom level and
moves up. Subsequent passes alternate between top-down and bottom-up passes until the al-
gorithm terminates.

A metric that estimates the best horizontal position of each node, called the barycentre, is
used to order the nodes on a level. The up-barycentre (down-barycentre) of a node is the aver-
age position of its immediate predecessors (successors) including dummy nodes on the previ-
ous (next) level.

The first pass (downward) sorts by down-barycentre. The second pass (upward) by down-
barycentre. The third and subsequent passes sort by the average of the up- and down-
barycentres of a node.

The second phase of the algorithm terminates when all edge crossings have been elimi-
nated or after a fixed number of passes have been made over the graph. Figure 47 shows the
graph after the second phase. Notice that the number of crossings has been reduced.

78

Figure 47: Local Map after step two.

One problem occurs in the above described crossing minimisation phase. The algorithm
does not eliminate certain edge crossings because the level-sorting heuristic considers only
pairs of levels. Optimisations needing consideration of more than two levels are not done. The
current algorithm only uses local information (i.e. the positions of immediate predecessors
and successors) when sorting nodes on a level. The heuristic looks for a local but not a global
minimum.

This problem is not solved but reduced in the algorithm used for the Harmony local map
through an additional step before the beginning of the second phase. In Phase one, after all
nodes have assigned levels, an initial placement is applied. First, in the lowest level all nodes
are placed with a unique distance. Starting with this level, the children of nodes are placed
close to the predecessor. This leads in a starting layout with all nodes connected as far as pos-
sible in one line.

Phase Three

The third phase of the algorithm prepares the graph for visualisation. Upto now all nodes
have had a size of zero. Real nodes typically have an icon and some text and hence a size. The
positions of the nodes have to be adjusted to not overlap each other. It is also necessary to
assign distance between the different levels, taking into account the size of the nodes.

When visualising the graph, the first attempt was to arrange the nodes from top to bottom.
In other words to place the node with the level zero at the top. All further levels are placed
below the preceding level. The typical structure displayed in a local map for Hyperwave has
many nodes in one level. This nodes represent collections or documents which typically have
long titles. Arranging them non overlapping leads to a very wide map. In order to view this

79

map, extensive use of the scrollbar is necessary. Therefore, the node arrangement was changed
to place the nodes from left to right. Figure 48 shows a local map laid out from left to right. In
contrast to Figure 47 the required space is reduced.

Figure 48: Local Map laid out from left to right.

6.2 Location Feedback

In Harmony every time an object is visualised in the collection browser, location feedback
is provided using the tree. Location feedback is also provided when a link in a document
viewer is activated, or an object is found using the Harmony search. If, for example, a match-
ing document in the Harmony search result list is single clicked with the mouse, the document
is visualised in the collection browser. If the document is not already in the displayed tree, the
document is added to the view. To do this, a path to the root collection is determined, and
displayed in the tree.

When determining the path, some problems have to be taken into account. In Hyperwave,
documents can be contained in more than one collection or cluster. Furthermore, some of the
collections on the way up the hierarchy may be not accessible by the user. The algorithm used
to solve this problems is as follows.

When the current object is not in the tree get all parent collections of the objects. If one of
the parent collections is already displayed in the tree use found path and display it in the col-
lection browser. If none of the parents is already displayed in the tree add all parent collec-
tions to a stack. Take the first parent from the stack and continue the algorithm with this col-
lection.

80

This algorithm is similar to performing a depth-first search for already displayed collec-
tions and seems to lead to an arbitrary path. This effect is reduced in Harmony due to an inter-
nal object attribute cache. Every displayed object is added to this cache. When parents of an
document are queried, it is first tested if the object is already in the cache. If so, the cached
objects are added to the parent list. All other objects are appended to this list. During the
above described algorithm already visited objects are considered first, and therefore the found
path typically matches already visited objects.

A problem arises, if none of the potential paths can be followed to the root collection.
This may happen if the user has less access permissions. In this case, Harmony displays a
dotted line for the edge to the root collection as shown in Figure 49.

Figure 49 : Collection Browser with no path to root collection.

81

7 Extensions and Further Work

The Harmony project has now finished and development stopped This chapter neverthe-
less describes possible extensions to Harmony, especially improvements to the user interface.

One of the most important features not already implemented is drag and drop. At the mo-
ment all operations, such as move and copy are done by selecting an object, opening a dialog
and entering the destination. A more intuitive approach would be to move and copy objects
with drag and drop, but this requires extending the underlying InterViews user interface tool-
kit.

A further inconvenience, which leads to unnecessary work, is that it is not possible to se-
lect more than one object at the same time. In order to move four objects the same operation
has to be done four times. The solution to this problem is clear. Harmony should support multi
selection of objects.

In the collection browser a second display mode, the partial display mode could be im-
plemented. In this mode not all collections and documents are visualised, only the current
collection, their children and all collections up to the rootcollection. The advantage of this
mode would be the reduced amount of clutter, since much fewer objects are displayed.

In the local map it is possible to display the link structure around a document. If there are
more than one level of incoming and outgoing links, it is nearly impossible to display the
whole map without scrolling. As solution for this would be to implement the so-called fisheye
views [SB92] [Fur86]. A fisheye view displays the same information as the local map. The
document in the centre, the current object, is displayed in more detail than objects at some
distance from the focus. This leads to a view similar to looking at the local map through a
magnifying glass. The distance of the objects to the focus can be determined in different ways.
The simplest one is to measure the distance in co-ordinates of the original layout. A second
way would be to count the steps necessary to go from the focus to the object, following the
edges of the graph. The fisheye algorithms are already implemented in Harmony but have not
found their way into the user interface. One of the major problems was the scaling of the ob-
jects. An algorithm to choose a font according to the current size of the object would have to
be implemented.

82

8 Concluding Remarks

Hyperwave is an object-oriented document management system which can be accessed
over the Internet. Documents are stored in collections and clusters, and form a hierarchical
information structure. Every object inserted into Hyperwave has additional meta information,
the Hyperwave object attributes. These attributes can be used for visualisation or search op-
erations. Hyperwave further provides a powerful built-in search engine for both attributes and
the content of documents. Access to documents and collections can be restricted or granted to
users and user groups, facilitating the built in user management or external user databases.

Harmony is the UNIX X-11 viewer for Hyperwave and consists of two parts. The Har-
mony viewers, and the Harmony session manager.

The Harmony session manager visualises the collection structure of Hyperwave in the
collection browser, using a dynamically generated hierarchical tree. As a special feature of the
Harmony session manager, location feed feedback is provided for every document found
through searches, or activated using hyperlink navigation. The document hyperlink structure
and also child-parent relations are clearly presented in the local map. A powerful user inter-
face to the Hyperwave search is provided within the session manager.

The Harmony session manager further has rich online authoring functionality. It is possi-
ble to insert documents and collections into the Hyperwave server and also to delete them.
Documents can be moved or linked within the collection hierarchy, restructuring the informa-
tion. The attributes of documents can be viewed and modified. Hyperlinks can be edited on-
line using the session manager, by selecting source and destination of a link using the mouse
in the Harmony viewers, thereby facilitating the session manager’s navigational features.

With the Harmony session manager API it is possible to extend the session manager with
external programs, which can use the session manager for functions like search, hierarchical
navigation or attribute and document editing. The Harmony session manager further provides
a messaging system, where users can chat with each other or system messages from the Hy-
perwave server are displayed.

The Harmony session manager provides linking capabilities for its document viewers.
Document viewers exist for many common document formats, all with the capability to visu-
alise hyperlink information. Hyperlinks are even supported for document formats with no na-
tive hyperlink functionality, such as movies, audio or PostScript.

Since the commercialisation of Hyperwave, development of Harmony has finished. Har-
mony has been superseded by a WWW interface to Hyperwave, which can be accessed using
standard web browsers. Up to now many features of Harmony have been re-implemented in
the WWW interface or replaced using external viewers and editors. Nevertheless, some fea-
tures of Harmony, such as time-dependent links in movies are still unique.

83

9 Bibliography

[And95] Andrews K.: “Visualising cyberspace: Information visualisation in the
Harmony internet browser”. In Proc. of IEEE Symposium on Information
Visualization (InfoVis95), pages 97-104, Atlanta, Georgia.

[BCG94] Bernes-Le T., Cailliau R., Luotonen A., Nielson H. F., Secret A.: “Hyper-
Text Markup Language (HTML)”. Available at
http://www.w3.org/pub/WWW/Markup/Markup.html.

[BP83] Burnstein M., Pelavin R.: “Hierarchical wire routing”. IEEE Trans. Com-
puter-aided Design of Integrated Circuits & Systems. CAD-2, Pages 223-
234, 1983.

[DH95] Dalitz W. Heyer G.: “Hyper-G: Das Internet-Informationssystem der 2.
Generation”. dpunkt, Germany, October 1995.

[Eyl95] Eyl M.: “The Harmony Information Landscape Interactive, Three- Dimen-
sional Navigation Through an Information Space”. Master’s thesis, Graz
University of Technology, October 1995.

[EH89] Edwards D. M., Hardman L.: “Lost in Hyperspace: Cognitive Mapping
and Navigation in a Hypertext Environment”. In MCALEESE R. (editor),
Hypertext: Theory into Practice, Pages 105-125, Blackwell Scientific
Publications Ltd., 1989.

[Fas93] Faschingbauer H.: ”Volltextsuche in grossen Hypermediasystemen”.
Master’s thesis, Graz University of Technology, 1993.

[KM93] Kappe F., Maurer H.: “Hyper-G: Ein verteiltes informationssystem und
seine anwendungen”. In Proc. Hochschul-Computer-Forum ’93, October
1993.

[Fur86] Furnas G. W.: “Generalised fisheye views” In Proc. ACM SIGCHI`86
Conf. on Human Factors in Computing Systems, Pages 16-23, 1986

[Gai94] Gaisbauer M. J.: “Darstellung von SGML-codierten Hypertextdocument
mit einem objektorientierten Interfacetoolkit”. Master’s thesis, Graz Uni-
versity of Technology, January 1994.

[Gei97] Geiger G.: “A Digital Audio Player for the Hyperwave Internet Server“.
Master’s thesis, Graz University of Technology, 1993.

[Gil92] Gilly D.: “Unix in a Nutshell”. O’Reilly & Associates, Inc, Sebastopol,
California, June 1992.

[Gol90] Goldfarb C. F.: “The SGML Handbook”. Oxford University Press, 1990.

[Kap91] Kappe F.: “Aspects of a Modern Multi-Media Information System”. PhD
thesis, Graz University of Technology, June 1991.

84

[Kro94] Krol E.: “The whole Internet: User’s Guide and Catalog”. O’Reilly & As-
sociates, second edition, April 1994.

[LCI91] Linton M. A., Calder P. R., Interrante J. A., Tang S., Vlissides J. M.: “In-
terViews Reference Manual Version 3.0.1”. Stanford University, October
1991

[LVC89] Linton M. A., Vlissides J. M., Calder P.R.: “Composing User Interfaces
with InterViews”. IEEE Computer, 22(2): Pages 8-22, February 1998.

[MA95] McCahill M. P., Anklesaria F.X.: “Evolution of Internet Gopher”. Journal
of Universal Computer Science, 1(4): Pages 235-246, April 1995.

[MAN95] Mayerhover V., Andrews K.: “Harmony user guide: Version 1.2”, Techni-
cal Report, IICM, Graz University of Technology.

[Mar95] Marschall B.: “ Integration of digital video into distributed hypermedia
systems”, Master’s thesis, Graz University of Technology, 1995.

[Mau92] Maurer H.: “Why Hypermedia Systems are Important”. In Proc. ICCAL
’92, Pages 1-15, LNCS 602, Springer Pub. Co., 1992.

[Mau96] Maurer H.: “Hyper-G now Hyperwave. The next Generation Web Solu-
tion”. Addison-Wesley, 1996

[Pic93] Pichler M.: “Interactive Browsing of 3D Scenes in Hypermedia: The Hy-
per-G 3D Viewer”. Master’s thesis, Graz University of Technology, Octo-
ber 1993

[PiP96] Pichler P.: “ Integration von digital Bildern in verteilte Hypermedia-
Systeme”. Master’s thesis, Graz University of Technology, 1996.

[RDM87] Lawrence A. R., Michael D., Messinger E., Meyer C., Spirakis C., Tuan
A.: “A Browser for Directed Graphs”. Software-Practice and Experience,
Vol. 17(1), Pages 61-76, January 1987

[Rod97] Rodiga A.:“The HarSearch Similarity Map: Visualising Search Result
Sets Using a Maximum Similarity Spanning Tree”. Master’s thesis, Graz
University of Technology, May 1997

[SB92] Sarkar M. Brown M. H.: “Graphical Fisheye views of Graphs”. CHI,
Pages 83-91, May 1992

[Str91] Stroustrup B.: “The C++ Programming Language”. Addison-Wesley,
Reading, Massachusetts, second edition, 1991

[STT81] Sugiyama K., Tagawa S. Toda M. “Methods for visual understanding of
hierarchical system structures”. IEEE Trans. on Sys. Man, and Cyb. SMC-
1. Pages 109-125 1981

[VER98] “Developer’s Kit”. Verity, Inc., Sunnydale, California, 1998.

[Win95] Windisch C.: “HarAdmin: A Graphical Tool for Hyper-G Server Admini-
stration”. Master’s thesis, Graz University of Technology, November
1995.

[Wol96] Wolf P.: “ Three-dimensional information visualisation: The Harmony
Information Landscape”, Master’s thesis, Graz University of Technology,

85

1996.

86

Appendix A. Harmony Key Bindings

Key bindings in the session manager

Key Function

x Exit program (with confirm dialog)

^x Exit program (without confirm dialog)

Tab Next focus (used in dialogs and search)

Return Open/close collection, display collection head, display documents

+,right Open collections, go to first child, display collection head, display
documents

- Close collection/cluster

c Show/hide children of collection/cluster, do not display collection
head

Space, n When current document/collection/cluster not seen display, else go
to next in list and display. Collection head is displayed.

p When current document/collection/cluster not seen display, else go
to previous in list and display. collection head is displayed.

^c Close all collections, open path to the local server

^l Delete links

Up/down Select previous/next object

^up/^down Scroll one line up/down

Shift up/

Shift down

Select previous/next object (also object with no title)

Page up/ page down

Alt v/^v

Scroll one page up/down

Left Select parent collection

a Show object attributes

e Edit object attributes

^e Edit multiple object attributes dialog

i Map identify dialog

s Map/unmap search dialog

87

b One step back in history

f One step forward in history

Shift l (L) Generate local map

Shift r (R) Show references

Shift a (A) Show annotations

Shift p (P) Show parents

^a Annotate object

h Map/unmap history window

Shift h (H) Go to home

g Go to object

^d, delete Remove objects dialog

^i, insert Insert object into collection

^s Display database status

^u Display users online

Shift m (M) Move object

Shift c (C) Copy object

Alt s Display the hostname where the object is located

Key bindings in the search dialog

Key Function

<ESC> Close search dialog

Alt e Toggle extended search

Alt l Toggle local server

Alt a Toggle active collections

Alt s Toggle selected collections

Alt t Toggle in title

Alt k Toggle in keyword

Alt c Toggle in content

Return Start search when focus on search input

Key bindings in the status browser

Key Function

<ESC> Close the status browser

88

ENTER Map the send message window

Alt a Select all users

Alt d Unselect all users

Key bindings in the send message dialog

Key Function

<ESC> Close the send message dialog

Alt s Send the message

Alt c Clear the message windows

Alt m Save the content of the received messages window

Key bindings in the insert dialog

Key Function

<ESC> Close the insert dialog

Alt i Insert new object

Alt r Reset dialog

Alt h Show online help

89

Appendix B. Configuring External Tools in the Menu

A user-configurable menu for starting external programs is integrated in the session man-
ager menu. The following X11 resources are used to control the menu.

Harmony*tools tool1|tool2| | tooln

Harmony*Tool.tool1.commandline Commandline

Harmony*Tool.tool1.menuentry Menuentry

Harmony*Tool.tool2.commandline Commandline

....

Whereby:

Menuentry String appearing in the File/Tools menu

commandline command line to execute

The following variables are supported in the command line and are substituted with their
value.

$user The users current login name

$host The current Hyperwave host Harmony is connected to

$port Port of the current connection to the Hyperwave server

$localhost Host where Harmony is running

$apiport Port of the API interface

$filename A file browser is displayed and $filename is replaced by the chosen file

$filenames A file browser with multi-select is displayed and $filenames is replaced by
the chosen files

$title Title of the current object

$id ID of the current object

$goid Global object ID of the current object

$name Name of the current object

$url URL of the current object

90

$display Display Harmony is running on

$arg0 Is substituted by the file name of the temporary file containing document
data

$interactive A dialog is displayed to let the user enter the value which replaces this
variable. For each occurrence of this variable a new dialog is presented.
No variable substitution is performed on the input string.

?(term) Term is displayed before the input field e.g. ?(Enter Prefix:)

?[term] Same as ?(term) but command line is displayed as well

$generic Has the same function as $interactive but also does variable substitution in
the entered string.

91

Appendix C. Search Syntax in Harmony

Attribute Search

Entering a single search term (for example ’foo’) will find all objects (documents, collec-
tions, destination anchors) with the word ’foo’ in the title or as a keyword. The search is not
case-sensitive. National character sets can be entered as 8-bit codes (ISO Latin 1). The output
is a list of matching objects, sorted in decreasing order of score.

Multiple search terms are ANDed together, for example ’foo bar’ will match only objects
with both ’foo’ and ’bar’. The OR operator is ’|’, for example ’foo | bar’ will match all objects
having either ’foo’ or ’bar’. These operators may be combined, but without brackets. There is
no NOT operator.

Prefix search is supported, for example ’foo*’ matches anything containing a word starting
with ’foo’. You may use the AND and OR operators as above (for example ’uni* california’).

Due to a (deliberate) limitation in the server, you cannot use ’*’ to match all objects.

Content Search

Content or full text search performs searches on the content of text documents on one or
more Hyperwave servers. The Hyperwave full text engine is able to perform a combination of
ranked, boolean, weighted, fuzzy, and nearest-neighbour searches.

Query Syntax

Literals are enclosed in single apostrophes (’’). Expressions in square brackets [] are op-
tional, braces {} denote 0 or more occurrences, and a vertical bar | denotes alternatives:

 expr ::= term {orop term}

 term ::= factor {andop factor}

 factor ::= node [’{’float’}’]

 node ::= word {word} | ’(’expr’)’

 orop ::= ’||’ | ’|’

 andop ::= ’&&’ [optionlist] | ’&’ [optionlist]

92

 optionlist ::= ’[’ option { ’,’ option } ’]’

 option ::= ’F’ | ’f’

Examples:

1. "computer"

A single search term returns a ranked list of matching documents normalised such that the
top-ranking document(s) in the set score 100%. The ranking is computed based on the number
of times the word appears in the document, where it appears (title, headings, and subheadings
count more), and the size of the document.

As the Hyperwave full text engine employs a stemmer, the above example would also
match documents containing "computers", "computing", “compute”, and the like. Certain very
common words such as "is", "was", "the", etc. (so-called stop words) are not indexed and can-
not be searched for. The stemmer and stop list are language-dependent and are currently avail-
able for English only. The search is not case-sensitive.

2. "tell me about computer conferences" (nearest neighbour)

 The first three words are stop words and are ignored. The system will search for docu-
ments containing the other two words. Matching documents are ranked according to their
score for these two words. Note that documents still match (but perhaps with a lower score),
even if they only contain one of the two words.

3. "computer & conference" (boolean search)

 Sometimes you want to specify that matching documents really contain all the search
terms. The AND operator (& or &&) accomplishes this. You may also use the OR operator (|
or ||) and parentheses to construct arbitrary boolean expressions. There is no NOT operator.

4. "computer &[f] conferencing" (fuzzy boolean search)

 The 'f' makes the AND operator a fuzzy AND, i.e. it will still match documents contain-
ing only one of "computer" and "conferencing", but with a lower ranking.

5. "computer &[f] conferencing{3.5}" (weighted boolean search)

 Similar to above, but allows you to make "conferencing" 3.5 times as important as
"computer" in the ranking.

93

Appendix D. The Harmony API

This appendix provides a list with short descriptions of the API functions for both the
API tool and the session manager API.

The Harmony Tool API

The following functions may be called by the Harmony session manager. The API tool
should react to the calls in the described way.

void iconify () Iconify the window(s)
void deiconify () Deiconify the window(s)
void moveto (float, float) Move to window to the given co-ordinates
void resize (float, float) Resize the window to the to the given dimen-

sions
void map () Map the window. (create a screen representa-

tion)
void unmap () Unmap the window. In difference to the iconify

call as response to this call all screen represen-
tations should be removed.

void raise () Bring the window to the top of all other win-
dows.

void lower () Lower the window with respect to other win-
dows on the desktop.

void terminate () This function is called if the session manager
wants the tool to be terminated.

void setLanguage (HgLanguage::Language,
const RString& langprefs)

The session manager calls this function to
change the user interface language of the tool.
langprefs is a list of languages (en: ge: ...) sepa-
rated by “ “.

void notify (Notify::NotifyEnum) The tool is notified by this function, if some
events the tool is interested in occurred in the
session manager. (the events are set by the
SMAPIclient member setNotifyMask)

void waitForNotify (BitSet& mask, int al-
lowother=1)

This is not a RPC function, it cannot be called
by the session manager.Instead, it is called by
the tool to wait for some specified events. mask
is the mask which the tool wants to wait for.
When allowother is true other notifies from the
session manager are reported as normal noti-

94

fies.
cancelEdit (long refno) The session manager calls this function to no-

tify the tool that the edit process with the num-
ber refno is no-longer active.

dataForDoc (const RString& anchors, const
RString& host, int port, long refno)

The edit process with the number refno has
finished. The data (text) can be fetched at the
host and port. The anchors of the document are
stored in anchors.The fetched data may be pre-
pented by the Hyperwave header.

reset (const RString& type) When this function is called the tool should be
reset to the initial statement (till now contains
no data)

HgViewer::VwError error () Returns the error state of the HgViewer.
static boolean isFatal (APIError
::APIErrorEnum)

Informs if the error is fatal.

static RString errorDescription (ApiEr-
ror::APIErrorEnum error, HgLan-
guage::Language = HgLanguage::Default)

Returns the error description of error in the
requested language.

Harmony Session Manager API

The following functions may be called by the API tools. The session manager will re-
spond in the way described below.

int update(const RString& object) Updates the displayed structure surrounding the
Hyperwave object in the collection browser and the
local map.

int updateConfiguration() Forces the session manager and the viewers to re-
read the their configuration files.

int setSourceAnchor(const RString&
anchordesc)

Activated the Link Creation Dialog of the session
manager and fills in the appropriate information
(source or destination information of the hyperlink).

Achordesc should be a Hyperwave object with the
additional fields

Position The position “entire document”
defines the document itself

SelectionText The text within the selection

int setDestinationAnchor(const
RString& anchordesc)

LinkType

95

 Gets the information contained in the Link Creation
Dialog.
The fields in source and dest are

DocumentID The id of the document which
contains the anchor

Title When a title is given to the anchor
this field is present. It contains the
language string.

LinkType The linktype (for referential links
the field is empty)

int getLinkCreationSettings(RString&
source, RString& dest)

Position The position field
Set the fields in the search browser.
searchdesc contains the following fields. An absent
field leaves the old value.

Text Searchtext
Author
ModifiedAfter
ModifiedBefore
LocalServer [true|false]
SelectedCollection [true|false]
Title [true|false]
Keyword [true|false]
Content [true|false]
Extended [true|false]
ActiveCollections [true|false]
Result [true|false]
Modified [after|before|between]
SearchImmedi-
ately

[true|false]

setSearchSettings(const RString&
searchsettings)

LanguagePrefs Is a list of languages (en: ...)
separated by “ “

int getCurrentObjects(RString& objects) Returns the currently selected objects (selected in
the collection browser. Objects are separated by
“\n\n”.

int getCurrentObjectsWithParents(int
depth, RString& objects)

Fetches the selected objects together with their par-
ents up to a specified depth. Objects are separated
by “\n\n”. The groups object and parents are sepa-
rated by “\n\n\n”.

int getDestObject(const RString&
srcobject, RString& destobject)

Fetches the destination object for a hyperlink. The
srcobject should have at least the “GOid=0x... 0x...”
field.

int getDestAnchor(const RString&
srcobject, RString& destobject)

Fetches the destination object for a source anchor.
The srcobject should have at least the “GOid=0x...
0x...” field.

96

int showObject(const RString& object,
const RString& position)

Displays the specified object in the appropriate
viewer. An optional position parameter forces the
viewer to show the requested part of the document.
The object should have at least the “GOid=0x...
0x...” field.

int showHelp(const RString& name) Displays the specified object in the appropriate
viewer. Name is the name of the object to be dis-
played (without Name=)

int setNotifyMask(ToolAPI* const Bit-
Set&)

 Informs the session manager about events a tool is
interested in. (on these events the member function
notify() of the ToolAPiServer/Client classpair is
called)

int lockOperation(ToolApi*, const Bit-
Set&)

Locks session manager API functions according to a
given mask. Locked functions can only be used by
the tool which activated the lock. Requests from
other tools fore these functions are rejected.
Retrieves the information necessary to identify a
user at a Hyperwave server.
identrec contains the two fields

User The user

int getAuthenticationRecor(RString&
identRec)

Password The password is in readable form
Retrieves all information necessary to establish a
connection to the Hyperwave server the session
manager is talking to.
serverRec contains the two fields

Host The Hyperwave host

int getServerRecord(RString& server-
Rec)

Port The Hyperwave port
int newDoc(ToolApi*, const RString&
objrep, APIEdi-
torType::APIEditorTypeEnum typ, long
refno&)

This function initiates an edit process in the session
manager. The returned number refno is used for
coming function calls to identify the edit process.

void cancelEdit(long refno) This function is called when the tool wants to can-
cel the edit process with the number refno.

void terminted(ToolAPI*) This function is called when the tool terminated.
APIError::APIErrorEnum error() Returns the error state.
static RString errorDescrip-
tion(APIError::ApiErrorEnum error,
HgLanguage::Language language=
HgLanguage::Default)

Returns the error description of the error in the re-
quested language.

97

Appendix E. Rules for Document Selection in an AlternativeClus-
ter

An AlternativeCluster is a collection with the attribute:

 CollectionType=AlternativeCluster

When the user accesses an AlternativeCluster, one of its members is chosen for display by
the specified criteria. In the Attribute PrefMimeTimes of the user’s user record, a list of pre-
ferred MimeTypes with corresponding qualities can be specified.

PrefMimeTypes=
 MimeType[";Quality=number"]*(,MimeType[";Quality=number"])

For example:
- PrefMimeTypes=text, image, application/postscript

This means that the user prefers documents of type text to images, and images to
postscript, and postscript to any other type.

- PrefMimeTypes=image;Quality=50

This means that images are preferred to any other type and if more than one image is
available the one with the quality nearest to 50.

Rules for choosing the document

The following rules are applied in turn.

1. If the AlternativeCluster has a MimeType set then only documents of this MimeType
are taken into account.

2. These documents are compared to the PrefMimeTypes from left to right. Documents
with the best matching MimeType are kept for further processing.

3. From these documents (all with the same MimeType) the ones with the smallest dif-
ference in quality compared to the quality given with the matching MimeType in the
PrefMimeTypes field are selected.

4. If the resulting set contains more than one document, the one with the best matching
language is chosen.

5. AlternativeClusters can be nested.

Assigning quality to an object

The quality of a document is represented by the attribute:

 Quality=number ; 1 is lowest, 100 highest quality

98

Documents without a Quality attribute have a default quality of 100.

Examples

1. Example of an AlternativeCluster (with documents of the same MimeType)

 AlternativeCluster a1 (MimeType=image)
 |
 |-Image i1 (Quality=100)
 |-Image i2 (Quality= 50)
 |-Image i3 (Quality= 25)
 |-Image i4 (Quality= 1)
 |-Text t1 (Quality= 12)

In this example, text t1 will never be picked because of the basic MimeType of Rule 1.
Depending on the quality the user has specified for MimeType image, a different image will
be chosen for display. For instance:

PrefMimeTypes=*/*;Quality=45 # image i2 would be chosen
PrefMimeTypes=*/* # image i1 would be chosen

(assuming Quality=100)
PrefMimeTypes=text;Quality=30,image;Quality=5 # image i4

would be chosen

2. Example of an AlternativeCluster (different MimeTypes)

AlternativeCluster a2
 |
 |-Image i1 (Quality=100)
 |-Image i2 (Quality= 50)
 |-Text t1 (Quality=100)
 |-Text t2 (Quality= 50)

With the following user settings:

PrefMimeTypes=text,image # t1 is chosen
PrefMimeTypes=image;Quality=35,text;Quality=100 # i2 is chosen

3. Example of an AlternativeCluster (different languages)

AlternativeCluster a3
 |
 |-Text t1e (Quality=100, Language=english)
 |-Text t1g (Quality=100, Language=german)
 |-Text t2e (Quality= 50, Language=english)
 |-Text t2g (Quality= 50, Language=german)

99

With the following user settings:

PrefMimeTypes=text;Quality=90 # t1e is chosen for english
t1g for german

100

Appendix F. The Harmony Icons

In all Harmony browsers which display a lists of documents, the visualisation is done with
a document icon and the document title. The icon indicates the type of the document. When
the object is an anchor, the icon indicates the type of the destination document. To visualise
the anchor, a green arrow is added to icon. When the document has been visited earlier in a
session, a red checkmark is additionally added. Table 1 shows the icons used in Harmony.
Object Type Icon Icon state seen Anchor to Anchor to, seen

Text

Image

Film

Postscript

Audio

Scene

CGI

Generic

Telnet

Collection

Collection Open

Sequence

Sequence Open

Cluster

Multi Cluster

Alternative Cluster

Search

Table 1. Harmony Icons

	Introduction
	Hypertext, Multimedia, Hypermedia
	Network Information Systems
	Internet
	TCP/IP - the Transmission Control Protocol/Internet Protocol

	Basic Internet Applications
	Archie
	WAIS
	Scoring
	Relevance Feedback

	Gopher
	Access to Gopher
	Browsing through Gopher
	Menus

	World Wide Web (WWW)
	HTTP
	URL
	HTML

	Hyperwave
	Hyperlink Navigation
	Object Attributes
	Collection Hierarchy
	Collections
	Cluster
	Sequence
	MultiCluster
	AlternativeCluster

	Purposes of the Collection Hierarchy
	Multilinguality
	Multilinguality in Hyperwave

	Search Facilities in Hyperwave
	Full Text Search
	Search on Attributes
	Search Scope

	User Management
	Hyperwave Messages
	Interoperability
	The Architecture of Hyperwave
	Full Text Server
	The Document Server
	The Object Server

	The Harmony Session Manager
	The Architecture of Harmony
	User Interface
	The Collection Browser
	The Local Map
	The Search Dialog
	The History Browser
	The Information Landscape
	Server Status Browser
	Multilinguality
	Multilingual Documents
	Multilingual User Interface

	The Harmony Document Viewers
	Text Viewer
	Image Viewer
	Film Player
	Audio Player
	PostScript Viewer
	VRweb 3D Viewer

	Authoring with Harmony
	Inserting New Collections or Clusters
	Inserting Documents
	Creating Remote Objects
	Editing Documents
	Moving and Copying Objects
	Deleting Objects
	Editing Object Attributes
	Creating Links
	Interactive Link Creation

	Expandability
	Expandability of the Harmony Menu
	The Harmony API

	Selected Details of the Implementation
	Implementation of the Local Map
	A Hierarchical Graph Layout Algorithm

	Location Feedback

	Extensions and Further Work
	Concluding Remarks
	Bibliography
	Appendix A. Harmony Key Bindings
	Appendix B. Configuring External Tools in the Menu
	Appendix C. Search Syntax in Harmony
	Attribute Search
	Content Search

	Appendix D. The Harmony API
	The Harmony Tool API
	Harmony Session Manager API

	Appendix E. Rules for Document Selection in an AlternativeCluster
	Appendix F. The Harmony Icons

