
Metadata
Visualisation

Visual Exploration of File Systems
and Search Result Sets based

on Metadata Attributes

Erwin Weitlaner

Metadata Visualisation

Visual Exploration of File Systems
and Search Result Sets

based on Metadata Attributes

Master’s Thesis

at

Graz University of Technology

submitted by

Erwin Weitlaner

Institute for Information Processing and Computer Supported New Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

December 1999

c Copyright 1999 by Erwin Weitlaner

Advisor: Univ.Ass. Dr. Keith Andrews

Visualisierung von Metadaten

Graphische Darstellung von File Systemen
und Suchergebnissen

basierend auf deren Metadaten

Diplomarbeit

an der

Technischen Universit¨at Graz

vorgelegt von

Erwin Weitlaner

Institut für Informationsverarbeitung und Computergest¨utzte neue Medien (IICM),
Technische Universit¨at Graz

A-8010 Graz

Dezember 1999

c Copyright 1999, Erwin Weitlaner

Diese Arbeit ist in englischer Sprache verfaßt.

Betreuer: Univ.Ass. Dr. Keith Andrews

Abstract

Current Internet search tools often provide too many search results, are often lacking in recall and
precision, and typically present search results only in the form of a textual list ranked by estimated
relevance.

This thesis describes the Search Result Explorer, a program which visualises search result sets by
plotting matching documents on a two-dimensional display. Metadata attributes of the search results
such as document size, modification date, relevance, and number of links can be selectively mapped
to the display axes. Further attributes can be mapped to the size and colour of a document’s graphic
representation in the display itself. The overall result is an explorable visualisation of a search result
set with the possibility to compare them regarding to different attributes.

A second visualisation tool for file systems, the File Attribute Explorer, served as a prototype and
is also described in this thesis.

Kurzfassung

Gängige Internet Suchdienste liefern typischerweise zu viele Ergebnisse, geben keine oder unzurei-
chende Zusatzinformationen und pr¨asentieren die Dokumente ausschließlich in einer Liste geordnet
nach abgesch¨atzter Relevanz.

Diese Diplomarbeit beschreibt den Search Result Explorer, ein Programm, das Suchergebnisse
mit Hilfe einer zweidimensionalen Darstellung visualisiert. Verschiedene Metadaten der Dokumen-
te, wie zum Beispiel Gr¨oße des Dokuments, Zeitpunkt der letztenÄnderung, Relevanz und Anzahl
der Verweise k¨onnen auf den beiden Achsen aufgetragen werden. Weiters h¨angen Gr¨oße und Farbe
der graphischen Darstellung von weiteren Dokument-Eigenschaften ab. Dadurch erh¨alt man eine in-
teraktive Darstellung von Suchergebnissen mit der M¨oglichkeit, die einzelnen Dokumente bez¨uglich
verschiedener Eigenschaften zu vergleichen.

Eine zweite Anwendung zur Visualisierung von File Systemen, der File Attribute Explorer, diente
als Prototyp und wird ebenfalls in dieser Diplomarbeit beschrieben.

I hereby certify that the work presented in this thesis is my own and that work performed by others is
appropriately cited.
Ich versichere hiermit, diese Arbeit selbst¨andig verfaßt, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient zu haben.

Acknowledgments

I am indebted to my colleagues at the IICM, who have provided invaluable help and feedback
during the course of my work.

I especially wish to thank my advisor, Keith Andrews, for his immediate attention to my questions,
and for correcting the draft versions of this thesis.

Special mention to the xFIND team, Christian G¨utl for his support in describing xFIND and
Josef Moser for his answers and help concerning Java related xFIND questions.

Last but not least, without the great support and understanding of my family, girlfriend, and
friends, this thesis would not have been possible.

Erwin Weitlaner
Graz, Austria, December 1999

i

Credits The following figures are used to explain different visualisation techniques and they

are used with permission.

� Figure 3.1 was taken from [Cha95b] a Parallel Visual Explorer resource page.

� Figure 3.2 was taken from [CRO99].

� Figure 3.3 was taken from [NFH+96] the Envision homepage.

� Figure 3.4 was taken from [TSDS96], a paper about the Influence Explorer.

� Figure 3.5 was taken from [BF93] a resource at the Columbia University.

� Figure 3.6 was taken from [KK95].

� Figure 3.7 was taken from [CIP96].

� Figure 3.8 was taken from [VIS98].

ii

Contents

1 Introduction 1

2 Metadata 3

2.1 Introduction. 3

2.2 Metadata on the Net .. 3

2.3 Categories of Metadata. 4

2.4 The Dublin Core (DC) . 5

2.4.1 History . 5

2.4.2 Elements of the Dublin Core . 5

2.4.3 Storage of Dublin Core Metadata. 7

2.4.4 Outlook 8

2.5 Learning Object Metadata (LOM). 9

2.5.1 Basic Structure. 10

2.5.2 Example: . .. 10

2.6 xFIND Quality Metadata Scheme (xQMS). 11

2.6.1 Introduction .. 11

2.6.2 Attribute Set . 11

2.6.3 Rating Process. 11

2.7 Resource Description Framework (RDF) .. 12

2.7.1 Introduction .. 12

2.7.2 Data Model .. 13

2.7.3 Example . .. 14

2.7.4 Transporting RDF . 16

2.8 Hyperwave Metadata. 16

2.9 Introduction. 16

2.9.1 Hyperwave Object Attributes 16

2.10 Summary . 17

iii

3 Multidimensional Visualisation 18

3.1 Introduction. 18

3.2 Interface Issues 18

3.3 Visualisation Techniques. 19

3.3.1 Parallel Coordinates. 20

3.3.2 Scatterplot Techniques. 21

3.3.3 Permutation Matrix - Data Histograms. 25

3.3.4 Worlds Within Worlds . 25

3.3.5 Pixel Representation and Distance Functions. 27

3.3.6 Force-Based Methods. 30

3.3.7 Combined Systems. 30

3.4 Summary . 33

4 Java 34

4.1 Introduction. 34

4.2 Java History. 34

4.3 The Java Programming Language. 34

4.4 The Java Foundation Classes (JFC). 37

5 File Attribute Explorer 38

5.1 Introduction. 38

5.2 Design Principles for the File Attribute Explorer. 38

5.3 File Attribute Explorer Implementation .. 39

5.4 Usage of the File Attribute Explorer 40

5.5 User Interface . 40

5.5.1 The Button Toolbar. 42

5.5.2 The Location Field. 42

5.5.3 The Drawing Area. 43

5.5.4 The Status Bar. 48

5.5.5 Table of Files. 49

5.5.6 File Attribute Window . 50

5.5.7 Group of Files Window. 51

5.5.8 The Options Panel. 51

5.5.9 The About Window. 52

5.5.10 The Configuration File. 52

5.6 Selected Implementation Details. 52

5.6.1 Formatting Date and Time. 52

5.6.2 Changing the Look and Feel 54

5.7 Future Work. 55

iv

6 Search Engines 56

6.1 Introduction. 56

6.2 Types of Search Tools. 56

6.3 Relevance Calculation. 57

6.4 Intelligent Agents . .. 59

6.5 The Z39.50 Protocol. 59

6.5.1 Codifying Mechanics. 59

6.5.2 Content Semantics. 60

6.5.3 Future Use .. 60

6.6 Result Set Visualisation. 60

6.6.1 Tile-Bars . .. 60

6.6.2 Arrow-Spheres. 61

6.6.3 Metadata Visualisation on Axes .. 61

6.6.4 Force-Based Methods. 62

6.7 Summary . 62

7 xFIND eXtended Framework for Information Discovery 63

7.1 Introduction. 63

7.2 Concept. 63

7.3 Implementation 64

7.3.1 The Gatherer. 64

7.3.2 The Indexer .. 66

7.3.3 The Knowledge Broker. 66

7.4 Query Communication Format (QCF) . .. 67

7.5 xFIND Quality Metadata Scheme (xQMS). 67

7.6 xFIND on the Web .. 67

7.6.1 Operating fields. 68

8 Search Result Explorer 69

8.1 Introduction. 69

8.2 Design Principles . .. 69

8.3 Options Window . .. 72

8.4 Communication with the xFIND Server .. 72

8.4.1 Query Language. 72

8.4.2 Receiving Document Attributes .. 74

8.5 Selected Implementation Details. 75

8.5.1 Controlling a WWW Browser . .. 75

8.5.2 Customising Table Display and Event Handling. 76

8.6 Future Work. 78

9 Concluding Remarks 79

v

A File Attribute Explorer User Guide 81

A.1 Installation . 81

A.2 Functions . 81

A.2.1 File Menu . 82

A.2.2 Navigation Menu . 83

A.2.3 View Menu . 83

A.2.4 Options Menu . 84

A.2.5 About Menu . 84

A.2.6 Flatten Option . 84

A.2.7 Search and Filter. 84

A.2.8 Zoom . 84

A.2.9 Axis Settings. 84

A.2.10 Display Settings Panel. 85

A.2.11 Mouse Functionality. 85

A.2.12 Sort Functions . 85

B Search Result Explorer User Guide 87

B.1 Installation . 87

B.2 Functions . 87

B.2.1 File Menu . .. 88

B.2.2 Navigation Menu . 88

B.2.3 View Menu . 88

B.2.4 Options Menu . 88

B.2.5 About Menu . 90

B.2.6 Search and Filter. 90

B.2.7 Zoom . 90

B.2.8 Axis Settings. 91

B.2.9 Display Settings . 91

B.2.10 Mouse Functionality. 91

B.2.11 Sort Functions. 91

Bibliography . 93

vi

List of Figures

2.1 A simple RDF statement.. 13

2.2 RDF directed labeled graph.. 15

3.1 The Parallel Visual Explorer uses parallel coordinates.. 21

3.2 Visualisation using a scatterplot matrix. .. 23

3.3 Visualisation using Envision. 24

3.4 Histogram visualisation of a 4D function.. 26

3.5 World Within Worlds.. 28

3.6 VisDB visualising a large database.. 29

3.7 Bead using force-based layout.. 31

3.8 Visulab using different visualisation techniques.. 32

4.1 Java Program Execution.. 36

5.1 File Attribute Explorer Main Window. . .. 41

5.2 The FAE button toolbar.. 42

5.3 Current settings of the Drawing Area. . .. 43

5.4 The Display Settings Panel.. 44

5.5 Placement Algorithm using a Sweep Stripe.. 46

5.6 Removing a file from the tree.. 47

5.7 Adding a new file to the tree.. 47

5.8 Rotation and grouping of items.. 47

5.9 Table of Files.. 50

5.10 File Attributes Window.. 50

5.11 Group of Files Window.. 51

5.12 File Attribute Explorer Options Panel. . .. 52

5.13 File Attribute Explorer About Window. .. 53

6.1 TileBar visualisation of 5 documents. . .. 61

6.2 Arrow-sphere visualisation of 3 documents.. 61

7.1 xFIND Architecture .. 65

7.2 xFIND Query Window.. 68

8.1 The Search Result Explorer Main Window.. 70

vii

8.2 Table of Documents.. 70

8.3 Document Detail Window.. 71

8.4 Search Result Explorer Options Window.. 72

A.1 File Attribute Explorer Main Window. . .. 82

B.1 File Attribute Explorer Main Window . .. 89

viii

List of Tables

2.1 Typology of Metadata Formats.. 4

2.2 Dublin Core Information Classes.. 6

2.3 Learning Metadata Structure.. 10

2.4 Quality Attributes in xQMS. 11

2.5 Hyperwave Object Attributes (system-defined, excerpt).. 17

3.1 Multidimensional data visualisation techniques.. 19

5.1 Possible zooming actions.. 45

5.2 Runtime of placement operations.. 48

5.3 Date formats using different locales. 54

5.4 Time formats using different locales. 54

6.1 Internet Search Tools Overview.. 58

8.1 Return Attributes requested by the Search Result Explorer. 74

A.1 Keyboard shortcuts. .. 83

A.2 Possible Zooming actions.. 85

A.3 Mouse Functionality in the File Attribute Explorer.. 86

B.1 Keyboard Shortcut for the Search Result Explorer.. 89

B.2 Possible Zooming actions.. 90

B.3 Mouse Functionality in the Search Result Explorer. 92

ix

Chapter 1

Introduction

This thesis describes two programs which visualise metadata. It contains the theoretical basics which
influenced the development of the applications, describes similar approaches, the languages and sys-
tems used, and explains the usage of the programs themselves. One motivation to develop the pro-
grams is the failure of currently available information discovery systems to present explorable results.
Some reasons for this fact and possible steps to overcome these shortcomings are also covered in this
thesis.

Chapter 2 covers the field of metadata. After a short definition of the term itself, the chapter
focuses on metadata used to characterise electronic resources. Examples of currently used and devel-
oped schemes and standards, with their advantages and shortcomings, are described. Richer metadata
can be a first step to deal with the huge, exponentially growing information on the World Wide Web.
Only a few of many interesting formats are analysed. The fact that there are different formats fitting
different kinds of data lead to the realisation that an intelligent system has to implement an open con-
cept to benefit from many kinds of metadata. Another related issue is the question of who provides,
keeps up to date, and guarantees the trustworthiness of the metadata. Quality and audience ratings
require both an expert who does the rating and a method to verify the data. The existence of meta-
data is especially important in search result visualisation, however it does not in itself protect against
retrieving thousands of search results as a linear list.

Graphical presentation allows the visualisation of hundreds of results in one display. Chapter 3
gives an overview of existing multidimensional visualisation techniques. The difference to standard
textual output, problems arising from high dimensionality, and the general advantages of graphical
presentations are also issues in this chapter. The variety of different multidimensional data sets leads
to an enormous number of different approaches and systems. Some fundamental technologies are
explained and their suitability for document visualisation is discussed. Furthermore possible display
manipulation techniques and their effect on understanding and handling large data sets are listed for
each system. Once retrieved or extracted from given resources such information has to be displayed
in a user friendly manner. The representation should benefit from the enormous capacity of human vi-
sual information processing. In a few tenths of a second, humans can recognise features in megapixel
displays, recall related images, and identify anomalies, which would take much more time if the
output were textually presented. Concepts of known multi-dimensional visualisation techniques and
some interesting implementations are explained and presented in Chapter 3. The possibilities of the
different techniques and their suitability for specific datasets are also discussed there.

Chapter 4 describes Java, the high level programming language, used in the implementations. The
main reason for choosing Java is its platform-independence. Other characteristics are also described

1

CHAPTER 1. INTRODUCTION 2

briefly. One section covers the Java Foundation Classes, which are used to build the user interfaces
of the programs and to configure their look and feel, and their date and time formats during program
execution.

Chapter 5 describes the first of two presented programs. The File Attribute Explorer (FAE)
presents file systems in a two dimensional plot with two further dimensions mapped to colour and
size of the displayed graphic primitives. The program provides an intuitive, powerful interface with
many features and functions, which gives an overview and understanding of the hierarchy and the con-
tained files. The design decisions were influenced by the facts and guidelines presented in Chapter 3,
whereby the attribute values of the files are seen as metadata.

Current search engine tools in the World Wide Web are analysed in Chapter 6. Information
discovery is one of the most important tasks and it is not yet sufficiently addressed. Often the result
sets are too large and the ranking is inappropriate. How the tools deal with metadata now, and how
they should do in future is one factor to their further success. One key to improve the search process
is to present the metadata of the resources in an intuitive, explorable fashion.

The xFIND search system is described in Chapter 7. Its future oriented concept tries to overcome
many problems of other commonly available tools. One of those is its special treatment of different
metadata formats, and its ability to provide this data to other applications. It is a scalable, distributed
information system, which offers more than a common search engine. With xFIND useful information
can be found in a wide range of information sources inside and outside organisational units. xFIND
improves search results using metadata sets, quality rating labels, and Web site descriptions.

The second application benefits from the capabilities of the xFIND search system. It is called
Search Result Explorer (SRE) and is presented in Chapter 8. It sends queries to, and visualises search
result sets from xFIND. The dimensionality of the data increases compared to the file system explo-
ration tool, because xFIND offers richer metadata. These additional attributes and their possibilities
to create a meaningful result set visualisation can be one way to improve the search process.

In Appendix A and B user guides for the applications are found. Their similarities and differences
especially in their usage are pointed out. These appendices are complete descriptions of the two
applications and deliberately overlap parts of Chapters 5 and 8.

Chapter 2

Metadata

2.1 Introduction

Information which describes a data set is known as “metadata”. It is not the data itself, but rather
“data about the data”. As the amount of information continues to grow exponentially and espe-
cially as the needs for learning expand equally dramatically, the lack of this information or metadata
produces a critical and fundamental constraint on the ability to discover, manage and use information.

According to the Second World Wide Web conference [Cro95], metadata has two main functions:

� “To provide a means to discover that the data set exists and how it might be obtained or ac-
cessed.”

� “To document the content, quality, and features of a data set and so give an indication of its
fitness for use.”

Typically, metadata supports a number of functions including location, discovery, documentation,
evaluation and selection. These activities may be carried out by human end users or their (human or
automated) agents. There is a variety of types of metadata. Traditional descriptive information, of
the kind found in library catalogues, typically includes such attributes as author, title, some indication
of intellectual content, and so on. Other types cover a variety of different research disciplines like
physics, mathematics, or geography where standards are already defined, or will be defined in the
near future. This chapter looks especially at metadata formats and schemes for resources found in the
World Wide Web.

2.2 Metadata on the Net

Used in this context, metadata is the background information which describes the content, quality,
condition, and other appropriate characteristics of the data. The aim is that the prospective user
should be able to find out information about the data set without needing to access and investigate
the data itself. It is recognised that, in an indefinitely large resource space, effective management
of networked information will increasingly rely on effective management of metadata. The need
for metadata services is already clear in the current Internet environment. It is unlikely that some
monolithic metadata format will be universally used. The variety of different formats represent an
attempt to meet the diverse requirements of different users.

3

CHAPTER 2. METADATA 4

Band One Band Two Band Three
Characteristics Simple Formats Structured Formats Rich Formats

Proprietary Emerging Standards International Standards
Full Text Indexing Field Structure Elaborate Tagging

Examples Lycos Dublin Core ICPSR
Altavista IAFA templates CIMI
Yahoo etc. RCF 1807 EAD

SOIF TEI,LOM
LDIF MARC,xQMS

Table 2.1: Typology of Metadata Formats.

2.3 Categories of Metadata

For purposes of analysis three groups along a metadata spectrum which become successively richer in
terms of fullness and structure is suggested by the metadata initiative of the World Wide Web Consor-
tium [MET99]. The three bands within this spectrum allow the comparison of characteristics across
groups of formats. Any one metadata format may not have all the characteristics of the band in which
it is placed, but this grouping has proved beneficial in identifying the differences and similarities
between formats.

Band One includes relatively unstructured data, typically automatically extracted from resources
and indexed for searching. The data has little explicit semantics and does not support searching
by field. Many Web services exist based on such data, and several global services are in heavy
use. The metadata is not full enough to allow the user to make an objective relevance judgement
in advance of actually retrieving the resource. It is seldomly possible to retrieve such data from
the services and the information would be difficult to use in different applications.

Band Two includes data which contains full enough description to allow a user to assess the potential
utility or interest of a resource without having to retrieve it or connect to it. The data is struc-
tured and supports fielded searching. Typically these records are simple enough to be created by
non-specialist users, or not to require significant domain specific knowledge. Descriptions tend
to be of discrete objects and do not capture multiple relationships between objects. Typically,
but not essentially, descriptions are manually created, or are manual enhancements of automati-
cally extracted descriptions, and they include a variety of descriptive and other attributes. They
may be created to be loaded directly into a discovery service or to be harvested.

Band Three includes fuller descriptive formats which may be used for location and discovery, but
also have a role in documenting objects or, very often, collections of objects. Typically, they
are associated with research or scholarly activity, require specialist knowledge to create and
maintain, and cater for specialist domain specific requirements.

The following sections present the Dublin Core (DC), the Learning Objects Metadata (LOM), the
xFIND Quality Metadata Scheme (xQMS, see Chapter 7) and the Resource Description Framework
(RDF) in detail. The first is located in Band Two (see Table 2.1) and influenced substantially the
development of RDF. LOM and xQMS are richer formats and belong to Band Three. Dublin Core
and Learning Object Metadata are presented because they give a good overview of the purpose of
metadata. The xQMS format provides the ability to classify Internet resources depending on their
quality and fitness for use. A further reason is that these three standards are supported by the xFIND

CHAPTER 2. METADATA 5

search system. RDF is an initiative of the World Wide Web Consortium [W3C99] and promises
to provide a flexible syntactic foundation for Web based metadata including a variety of metadata
association models that go beyond embedding descriptive metadata within resources.

2.4 The Dublin Core (DC)

The Dublin Core initiative is an international and interdisciplinary effort to define a core set of ele-
ments for resource discovery. Effective interchange of resource discovery information requires that
there is an underlying architecture that supports conventions for the semantics, structure, and syntax
of generalised metadata [Wei98].

2.4.1 History

The Dublin Core initiative has resulted in consensus concerning a base set of elements for descriptive
metadata. The Dublin Core which emerged at a workshop held in Dublin in March 1995 were a core
set of elements judged to be a reasonable foundation for the description of electronic resources. The
initial workshop focused on description semantics directed expressly to the problem of discovery of
electronic documents. A conceptual foundation for an architecture for metadata was laid at the second
meeting, the so called Warwick Framework. “This framework, along with the Meta Content Frame-
work, formed the nucleus for the development of the Resource Description Framework” [RDF98].
This Dublin Core Standard was broadened and improved in three further workshops, the last held
in Helsinki in November 1997. A short summary of the results of this process is presented in this
section. In the future the DC and RDF communities together want to provide a common architecture
to support generalised metadata.

2.4.2 Elements of the Dublin Core

The Dublin Core consists of fifteen metadata fields, called the base elements. Each element has a
descriptive name intended to convey a common semantic understanding of the element, as well as a
formal single word label intended to make the syntactic specification of elements simpler for encoding
schemes. Each of the fifteen elements is optional and repeatable. Furthermore, the DC elements may
appear in any order, and with no significance being attached to that order. One design goal of the DC
is global interoperability. Thus a controlled vocabulary for the element values is suggested with the
element descriptions. Other controlled vocabularies are, and will be developed for interoperability
within certain local domains. A metadata element’s meaning is unaffected by whether or not the
element is embedded in the resource that it describes. The metadata elements fall into three groups
which roughly indicate the class or scope of information stored in them (Table 2.2) [Wei98]:

� Elements related mainly to the Content of the resource.

� Elements related mainly to the resource when viewed as Intellectual Property.

� Elements related mainly to the Instantiation of the resource.

The following list is taken from [Wei98], a report from the DC Workshop 1997 held in Helsinki and
describes the fifteen elements of the Dublin Core in detail:

1. Title Label: “Title” The name given to the resource, usually by the Creator or Publisher.

CHAPTER 2. METADATA 6

Content Intellectual Property Instantiation
Title Creator Date
Subject Publisher Type
Description Contributor Format
Source Rights Identifier
Language
Relation
Coverage

Table 2.2: Dublin Core Information Classes.

2. Author or Creator Label: “Creator” The person or organisation primarily responsible for
creating the intellectual content of the resource. For example, authors in the case of written
documents, artists, photographers, or illustrators in the case of visual resources.

3. Subject and Keywords Label: “Subject” The topic of the resource. Typically, subject will be
expressed as keywords or phrases that describe the subject or content of the resource. The use
of controlled vocabularies and formal classification schemes is encouraged.

4. Description Label: “Description” A textual description of the content of the resource, includ-
ing abstracts in the case of document like objects or content descriptions in the case of visual
resources.

5. Publisher Label: “Publisher” The entity responsible for making the resource available in its
present form, such as a publishing house, a university department, or a corporate entity.

6. Other Contributor Label: “Contributor” A person or organisation not specified in a Creator
element who has made significant intellectual contributions to the resource but whose contri-
bution is secondary to any person or organisation specified in a Creator element (for example,
editor, transcriber, and illustrator).

7. Date Label: “Date” A date associated with the creation or availability of the resource. Such
a date is not to be confused with one belonging in the Coverage element, which would be
associated with the resource only insofar as the intellectual content is somehow about that date.

8. Resource Type Label: “Type” The category of the resource, such as home page, novel, poem,
working paper, technical report, essay, dictionary. For the sake of interoperability, Type should
be selected from an enumerated list that is currently under development in the workshop series.

9. Format Label: “Format” The data format of the resource, used to identify the software and
possibly hardware that might be needed to display or operate the resource. For the sake of
interoperability, Format should be selected from an enumerated list that is currently under de-
velopment in the workshop series.

10. Resource Identifier Label: “Identifier” A string or number used to uniquely identify the re-
source. Examples for networked resources include URLs and URNs (when implemented).
Other globally unique identifiers, such as International Standard Book Numbers (ISBN) or
other formal names are also candidates for this element.

11. Source Label: “Source” Information about a second resource from which the present resource
is derived. While it is generally recommended that elements contain information about the

CHAPTER 2. METADATA 7

present resource only, this element may contain a date, creator, format, identifier, or other
meta data for the second resource when it is considered important for discovery of the present
resource; recommended best practice is to use the Relation element instead.

12. Language Label: ”Language” The language of the intellectual content of the resource. Where
practical, the content of this field should coincide with RFC1 1766 (Tags for the Identification of
Languages,http://ds.internic.net/rfc/rfc1766.txt). Examples include en,
de, es, fi, fr, ja, th, and zh.

13. Relation Label: “Relation” An identifier of a second resource and its relationship to the present
resource. This element permits links between related resources and resource descriptions to
be indicated. Examples include an edition of a work (IsVersionOf), a translation of a work
(IsBasedOn), a chapter of a book (IsPartOf), and a mechanical transformation of a dataset into
an image (IsFormatOf). For the sake of interoperability, relationships should be selected from
an enumerated list that is currently under development in the workshop series.

14. Coverage Label: “Coverage” The spatial or temporal characteristics of the intellectual content
of the resource. Spatial coverage refers to a physical region (e.g., celestial sector); use coor-
dinates (e.g., longitude and latitude) or place names that are from a controlled list or are fully
spelled out. Temporal coverage refers to what the resource is about rather than when it was
created or made available (the latter belonging in the Date element).

15. Rights Management Label: “Rights” A rights management statement, an identifier that links
to a rights management statement, or an identifier that links to a service providing information
about rights management for the resource.

2.4.3 Storage of Dublin Core Metadata

As already described, the metadata element’s meaning is not effected by the way it is stored. The two
most common ways to assign DC metadata description to a resource are listed next:

Metadata may be included as part of the resource. Embedded HTML tags is probably the sim-
plest example. The<meta> element should be used, with name and content attributes set to
the metadata element’s name and value respectively. Example:

<html>
<head>

<title>Metadata and Visualization</title>
<meta name="title" content="Metadata and Visualization">
<meta name="creator" content="Erwin Weitlaner">
<meta name="date" content="10/6/99">

</head>

<body>
...

</body>

</html>

Advantages: No change is needed to existing browsers or search engines. Any set of attribute
values can be represented.

1Request for Comment

CHAPTER 2. METADATA 8

Disadvantages: No constraint can be imposed on the semantics of the attributes names used,
and name clashes may occur.

Metadata may sit separately from the resource it describes. The metadata is kept in an external
document and a reference is made from within the HTML<head> element.

Example:

<html>
<head>
<title>Metadata and Visualization</title>
<link rel = ’metadata’
href = ’MetaVisualization.meta’>

</head>

<body>
...

</body>

</html>

Advantages: Metadata is cleanly separated from the data. More powerful structuring abilities
(e.g. nesting, repetition) are potentially available.

Disadvantages: There may be significant additional costs, in ensuring that metadata and
data are kept in step and consistent. Conventions need to be established about how the
metadata descriptions are to be mapped to HTML elements.

2.4.4 Outlook

As work on unqualified Dublin Core concludes, there is substantial momentum gathering behind the
specification of qualifiers. This is partly in recognition of additional sub elements that have already
appeared in many deployment projects (and the desire to formalise them), and partly in recognition
of the need for substructure to support scheme qualifiers that are expected to provide the means for
improving the precision of the Dublin Core.

Work on these subjects can be expected to change substantively as the work of the Dublin Core
data model matures, and additional functionality will be essential for effective applications. Although
simplicity remains one of the fundamental tenets of the Dublin Core metadata initiative, the option to
refine the semantics of the element set through the addition of qualifiers is essential to allow effective
deployment of the Dublin Core for resource discovery. To address these shortcomings, the quali-
fiersSUBELEMENT, SCHEME andLANG were proposed at the fourth Dublin Core workshop in
Canberra, Australia. These optional qualifiers, now known as the “Canberra Qualifiers”, are:

� SUBELEMENT, which allows the refinement and clarification of an element’s content, such
as, for example, refining the definition of DATE into Date Created, Date Acquired, etc.
Example:
CREATOR The Dublin Core CREATOR element has the following subelements:

– PersonalName The name of an individual associated with the creation of the resource.
The PersonalName subelement itself has the following subelement:

– Address An electronic or physical address for the individual in question. This could be
an electronic mail address, web page URL, postal address, etc.

CHAPTER 2. METADATA 9

– CorporateName The name of an institution or corporation associated with the creation
of the resource. The CorporateName subelement itself has the following subelement:

� Address An electronic or physical address for the institution or corporation in ques-
tion. This could be an electronic mail address, web page URL, postal address, etc.

� SCHEME, which allows an element’s value to be identified as part of an existing classification
system, coding scheme, glossary or thesaurus, such as the Dewey Decimal Classification for
books or the Art and Architecture Thesaurus for cultural heritage.

� LANG, which specifies the base language of an element’s attribute values and text content; it
is recommended that the values for this element are compliant with the scheme for creating
language tags described by RFC 1766.

By optionally applying any or all of these qualifiers to the 15 elements of the Dublin Core, more de-
tailed and semantically specific information about a resource can be encoded, thus assisting precision
in the discovery and retrieval process for systems that support the use of these qualifiers.

As mentioned in the description of some of the DC elements their content should be taken from
enumerated lists to provide and improve interoperability. These lists are currently under development
in the workshop series.

2.5 Learning Object Metadata (LOM)

Learning Object metadata is defined as the attributes required to adequately describe a Learning Ob-
ject. Any entity, digital or non-digital, which can be used, re-used or referenced during technology-
supported learning can be seen as a Learning Object. Examples of technology-supported learning
applications include computer-based training systems, interactive learning environments, intelligent
computer-aided instruction systems, distance learning systems, web-based learning systems and col-
laborative learning environments [LOM99].

The IEEE2 Learning Objects Metadata specification focuses on the minimal set of properties
needed to allow Learning Objects to be managed, located, and evaluated. Relevant properties of
Learning Objects include among others type of object, author, owner, terms of distribution, and for-
mat. Where applicable, Learning Object Metadata may also include pedagogical properties, such
as:

� Teaching or Interaction Style

� Grade Level

� Mastery Level

� Prerequisites

It is possible for any given Learning Object to have more than one description, i.e. Learning Ob-
ject Metadata set or instance of other metadata schemes. The standard supports security, privacy,
commerce, and evaluation, but only to the extent that metadata fields are provided for specifying de-
scriptive tokens related to these areas; the standard does not concern itself with how these features
are implemented. The standard conforms to, integrates with, or references existing open standards
and existing work in related areas. For example, the data scheme takes into account the efforts to
standardise the description of content objects in general, as developed in the Dublin Core group.

2Institute of Electrical and Electronical Engineering

CHAPTER 2. METADATA 10

LOM Levels Fields
Categories Characteristics, Educational Use Dependent, General, Life Cycle

Meta-Meta-Data, Relation, Rights Management, Technical
Data Elements Amount, Attribution, Approach, Catalog Entry, Concept, Conditions, Contact,

Contribute, Coverage, Create, Date, Description, Difficulty, Discipline,
Duration, Educational Objective, Format, Granularity, Identifier,
InstallationRemark, Interaction Quality, Keywords, Kind, Language, Level,
LocSpec, Maximum Version, Meta meta data, Minimum Version,
Monetary Unit, Operating System, Organization, OSRequirements,
OtherPlatformRequirements, Person, Prerequisite, Price, Publish, Resource,
Reciprocity, Role, Schema, Semantic Density, Size, Source, Structure,
Support, TaxonPath, Terminate, Title, Type, Unit of Pricing, Validation, Version

Abstract Data DBoolean, DCoverage, DDate, DDecimal, DEntry, DFormat, DItenifier
Types DInteger, DLangString, DLocSpec, DOrganisation, DPerson,

DSource, DTimespan, DVocabulary

Table 2.3: Learning Metadata Structure.

2.5.1 Basic Structure

LOM is a hierarchical model with three levels:

1. Categories can have only data elements. Only categories can be used at the top level. Obliga-
tions are applied to categories.

2. Data Elements can have values of either Data Elements or Abstract Data Types. Obligations
are applied to data elements.

3. Abstract Data Types define values. They do not contain Data Elements.

The general form of the structure is a top level of categories, each category contains a middle level
of data elements which in turn are defined by the final level of abstract data types. The categories,
there are eight currently, provide the top level of organisation of the data elements, and create the
context within which the data elements are evaluated. The actual metadata values appear at the level
of the final data elements, i.e. the data elements that draw their value from an abstract data type. A
sequence of a category, one or more data elements, and a terminating abstract data type comprise a
property.A data element has either one or more sub-data elements or exactly one abstract data type.
The values of a data element are defined through abstract data types. All abstract data types have a first
character of “D” to clearly differentiate them from the data elements and categories. An abstract data
type is a semantic description of the value. A particularly useful abstract data type is DVocabulary.
DVocabulary can be used to attach specific vocabularies within contexts in a schema.

2.5.2 Example:

� Technical

– OS Requirements

� Operating System: DVocabulary

� Minimum Version: DDecimal

� Maximum Version: DDecimal

CHAPTER 2. METADATA 11

Label xQMS Field
kind of resource tech.resourcekind
MIC message integrity checktech.MIC-md5
topic subject.topic
additional topic subject.topic
authority (in science) authority.sci
depth of information accuracy.depth
width of information accuracy.width
rater rating.creator.person
rater service rating.creator.organisation
label bureau rating.creator.publisher
rating language rating.language.nation
date of rating rating.date.lastmodified
signature rating.signature-rsa-md5

Table 2.4: Quality Attributes in xQMS.

This structure describes the data elementOSRequirementsof theTechnicalcategory. This Require-
ments are described via three further data elements and their corresponding abstract data types.

2.6 xFIND Quality Metadata Scheme (xQMS)

2.6.1 Introduction

This standard is used by the xFIND search System described in Chapter 7. It extends existing meta-
data schemes by storing fields that describe the quality of the resources. The set of attributes and
labels is influenced by Dublin Core and LOM formats, by suggestions made in classification cata-
logues, and by existing schemes used to classify articles in scientific journals [xFI99].

2.6.2 Attribute Set

xQMS is a more general format than Dublin Core in that it is not limited to documents, it can be used
to describe servers, indexers, brokers, sites, pages, and paragraphs. A paragraph can be everything
from an image, a table or a written text paragraph. Table 2.4 shows the attributes of xQMS used to
describe the quality of resources, and the following description shows how the rating could be done.
A list of the complete attribute set can be found on [xFI99].

2.6.3 Rating Process

While xQMS provides the fields to describe resource quality, the rating itself has to be done manually.
At the moment, this information is held in the search engines database, and can be accessed via a
special protocol. It seems possible that in the future similar services will be available on the World
Wide Web (e.g. for specific topics). Especially for quality information these services will have to
specify equal or corresponding values like those listed below for xQMS.

Authority The fieldauthority can have different suffixes (“.gov”, “.edu”, “.sci”, “.org”, “.com”)
depending on the area the data comes from. The value specified is a number between -3 which

CHAPTER 2. METADATA 12

means not applicable to 9 which indicates high quality (e.g. a PhD Thesis). This field addresses
a major shortcoming of the present WWW by giving information about the quality of resources.

Accuracy The accuracy describes resources with regard to the depth and width of information
given in a resource. The information with measures the coverage of different subthemes in
the resource. The depth specifies the amount of detail information in the subthemes. The
accuracy.depthandaccuracy.widthfields present this information and range from -3 for less
coverage or information to +5 for full coverage and detailed information.

Rating Information The following fields specify information about the rating. In fact they can be
seen as metadata about metadata. The fieldrating.creator.personnames the person, who did
the rating. This person can either be the author itself or a qualified person who rates resources.
rating.creator.organisationspecifies the name of the rating organisation andcreator.publisher
names the organisation which makes the rating public. Often the two last named fields will have
the same entries but that is not a condition. The fieldrating.date.lastmodifiedspecifies the
date when the resource was qualified. If this date is older than the value ofdate.lastmodified
(specifying the date when the resource itself was changed) the rating is not up to date and
probably not accurate. Finally therating.language.nationgives the language of the rating.

Security The user must be sure that the given metadata is trustworthy. This is guaranteed by the
use of digital signatures: The rating organisation signs the metadata. It calculates the MD5
Message Digest and encodes it with its private key. This value is converted to a human readable
format and stored in the fieldrating.signature-rsa-md5. Users who want to verify the metadata
execute the same procedure in reverse order. If the Digest equals the MD5 Message Digest of
the current resource it is (almost) sure, that the rating is trustworthy.

2.7 Resource Description Framework (RDF)

2.7.1 Introduction

The Resource Description Framework is a foundation for processing metadata. It provides interop-
erability between applications that exchange machine understandable information on the Web. RDF
emphasises facilities to enable automated processing of Web resources. RDF metadata can be used in
a variety of application areas [RDF98]:

� Resource Discovery: To provide better search engine capabilities.

� Cataloguing: For describing the content and content relationships available at a particular Web
site, page, or digital library.

� Intelligent Software Agents: To facilitate knowledge sharing and exchange.

� Content Rating

� Describing Collections of pages that represent a single logical “document”.

� Describing Intellectual Property Rights of Web pages and resources.

RDF with digital signatures will be a key to build the “Web of Trust” for electronic commerce, col-
laboration, and other applications. RDF encourages the view of “metadata being data” by usingXML
(the eXtensible Markup Language) as its encoding syntax. The resources being described by RDF

CHAPTER 2. METADATA 13

are, in general, anything that can be named via a URI3. The broad goal of RDF is to define a mecha-
nism for describing resources that makes no assumptions about a particular application domain, nor
defines the semantics of any application domain. The next section describes the RDF data model in
brief, followed by an example describing a Web resource via RDF.

2.7.2 Data Model

RDF is a model for representing named properties and property values. Properties may be thought
of as attributes of resources. In this sense properties correspond to traditional attribute-value pairs.
Additionally properties can represent relationships between resources. In object-oriented design ter-
minology, resources correspond to objects and properties correspond to instance variables. The RDF
data model is a syntax-neutral way of representing RDF expressions. According to [RDF98] the basic
data model consists of three object types:

Resources: All things being described by RDF expressions are called resources. A resource may
be an entire Web page, such as the document “http://www.test.com/some.doc” for example.
Unlike in DC, where resources are Web pages, a resource may also be a part of a Web page,
a whole collection of pages, or an object that is not directly accessible via the Web (e.g. a
printed book). Resources are always named by URIs and the extensibility of URIs allows the
introduction of identifiers for any entity imaginable.

Properties: A property is a specific aspect, characteristic, attribute, or relation used to describe
a resource. Each property has a specific meaning, defines its permitted values, the types of
resources it can describe, and its relationship with other properties.

Statements: A resource together with a property and the value of that property form a RDF state-
ment. These three individual parts of a statement are called subject, predicate and object. The
object of a statement can be another resource or it can be a literal, or a simple string, or other
primitive datatype defined by XML (see Figure 2.1 for a simple example).

Subject Object
Predicate

Figure 2.1: A simple RDF statement.

Frequently it is necessary to refer to a collection of resources. For example, to say that a work was
created by more than one person, or to list the students in a course, or the software modules in a
package needs such a construct. RDF containers are used to hold such lists of resources or literals.
RDF defines three types of container objects:

Bag: An unordered list of resources or literals. Bags are used to declare that a property has multiple
values and that there is no significance to the order in which the values are given. Bag might
be used to give a list of part numbers where the order of processing the parts does not matter.
Duplicate values are permitted.

Sequence: An ordered list of resources or literals. Sequence is used to declare that a property has
multiple values and that the order of the values is significant. Sequence might be used, for
example, to preserve an alphabetical ordering of values. Duplicate values are permitted.

3Uniform Resource Identifier

CHAPTER 2. METADATA 14

Alternative: A list of resources or literals that represent alternatives for the (single) value of a
property. Alternative might be used to provide alternative language translations for the title of
a work, or to provide a list of Internet mirror sites at which a resource might be found. An
application using a property whose value is an Alternative collection is aware that it can choose
any one of the items in the list as appropriate.

RDF statements can be shown using directed labeled graphs (also called “nodes and arcs diagrams”).
In this data model both the resources being described and the values describing them are represented
as nodes in a directed labeled graph. The arcs connecting pairs of nodes correspond to the names
of the property types. Each arc is said to be labeled by the corresponding property type. The triple
composed of a property type, a resource, and a value is an RDF property. Such a property can itself
be the target node of an arc (i.e. the value of some other property) or the source node of an arc (i.e.
it can have properties). In these cases, the original property must be “reified”, that is, converted into
additional nodes and arcs. The term “reification” means converting the relation expressed by the arc
into a concrete node. Reification allows the expression of modalities (e.g. beliefs about properties) or
simply the attachment of properties to other properties.

2.7.3 Example

With the core defined, directed graph models of arbitrary complexity can be constructed and ex-
changed. Simple things, such as “Erwin Weitlaner” is the author of the document with the title “How
to write java applications” whose URL is “http://www.test.com/some.doc” can be exchanged in the
XML serialisation syntax as:

<?xml:namespace name="http://docs.r.us.com/bibliography info/" as="BIB"?>
<?xml:namespace name="http://www.w3.org/TR/WD rdf syntax" as="RDF"?>

<RDF:RDF>
<RDF:Description RDF:HREF="http://www.test.com/some.doc" RDF:BAGID="D_001">

<BIB:Author>Erwin Weitlaner</BIB:Author>
<BIB:Title>How to write java applications</BIB:Title>

</RDF:Description>
</RDF:RDF>

This serialisation can be modeled with a directed graph. As shown in Figure 2.2, the description itself
becomes a bag node where the contents of the collection list the individual properties that were part of
that particular description. The graph has ten nodes and thirteen arcs. The first three nodes are the re-
source “http://www.test.com/some.doc” and the property (string) values “Erwin Weitlaner” and “How
to write java applications”. Arcs labeledBIB:AuthorandBIB:Title respectively connect thesome.doc
node with these string value nodes. The other seven nodes are added to fit into the RDF scheme. The
bag node, identified asD 001, is the source of three arcs; one arc labeledRDF:InstanceOfpointing to
the node identified asRDF:Bagand two arcs labeledRDF:1andRDF:2 respectively pointing to two
unnamed nodes. From each of these two unnamed nodes there are four arcs. One arc from each node
is labeledRDF:PropObjand points to thesome.docnode. A second arc from each unnamed node
is labeledRDF:InstanceOfand points to the node identified asRDF:Property. The remaining two
arcs from each of the unnamed nodes are labeledRDF:ValueandRDF:PropName. TheRDF:Value
arcs point respectively to the node containing the string “Erwin Weitlaner” and “How to write java
applications”. TheRDF:PropNamearcs point respectively to theBIB:Authornode and theBIB:Title
node.

CHAPTER 2. METADATA 15

RDF:Property

http://www.test.com/some.doc

BIB:Author BIB:Title

RDF:Bag

RDF:PropName

RDF:Value

RDF:PropName

Erwin Weitlaner
How to write

java applications

BIB:Author BIB:Title

RDF:InstanceOf RDF:InstanceOf

RDF:1 RDF:2

RDF:PropObj

RDF:PropObj

D_001

RDF:InstanceOf

RDF:Value

Figure 2.2: RDF directed labeled graph.

CHAPTER 2. METADATA 16

2.7.4 Transporting RDF

Descriptions may be associated with the resource they describe in one of four ways:

1. The Description may be contained within the resource (“embedded”; e.g. in HTML).

2. The Description may be external to the resource but supplied by the transfer mechanism in the
same retrieval transaction as that which returns the resource (“along with”; e.g. via HTTP).

3. The Description may be retrieved independently from the resource, including from a different
source (“service bureau”; e.g. using HTTP).

4. The Description may contain the resource (“wrapped”; e.g. RDF itself).

All resources will not support all association methods. In particular, many kinds of resources will not
support embedding, and only certain kinds of resources may be wrapped.

2.8 Hyperwave Metadata

2.9 Introduction

Hyperwave [HYP99, Mau96] is the name of a hypermedia server, developed at the IICM4 since 1990.
Many intranet and Internet Web servers use a static, filebased architecture of HTML pages logically
connected by static hyperlinks. In contrast, Hyperwave Information Server dynamically generates
HTML pages and provides additional structuring elements. Hyperlinks are automatically generated
without the need for programming. Thus they can not point to nowhere like as the static approach.
Hyperwave Information Server is a broad and feature-rich application development platform that has
been used to build applications in the areas of knowledge management, generalpurpose intranets and
extranets, document management, web based training, project management, content management,
and more. In fact, its customisability is one of the major strengths of Hyperwave Information Server.
Hyperwave’s Object Model contains many different object attributes which can be realized as object’s
metadata.

2.9.1 Hyperwave Object Attributes

Unlike many other Web-based systems, Hyperwave does not store documents (which can be of any
type) as plain files in a file system. Rather, it keeps them in an object-oriented repository (a kind of
database), together with other information objects. These objects carry metadata, i.e. attribute names
and values. The attributes differ in how, and by whom they are created. Each attribute has additional
characteristics (e.g. if it is editable, or if it is indexed to enable rapid searching) [Kap99].

System-defined attributes:

These attributes have meaning to the system, i.e. they are set and/or interpreted by the system itself.
The system also defines which of them need to be indexed. These attributes can be read-only if their
values are set and maintained by the system (e.g. TimeCreated, TimeModified, FileSize) or read-
write attributes which can be set by the user and are only interpreted by the system (e.g.the URL of
the object).

4Institute for Information Processing and Computer Supported New Media

CHAPTER 2. METADATA 17

Attribute Object class Editable Indexed Multiple
Author User system/server no no
Document Type Document no no no
Group User system no yes
Home User system no no
Keyword HGObject user yes yes
Name Collection no yes no
Parents HGObject server yes no
Rights HGObject user no no
Subdocs Collection synthetic no no
TimeCreated HGObject user yes no
TimeExpire HGObject user no no
TimeModified HGObject server yes no
TimeOpen HGObject user no no
Title HGObject user yes yes
Type HGObject no no no

Table 2.5: Hyperwave Object Attributes (system-defined, excerpt).

User-defined attributes:

The user in this case is the application developer, who may define any number of attributes that should
be attached to documents and other objects. The attributes can be indexed by the system administrator
to make them searchable. The other “nonindexed” attributes cannot be searched for and have only
informational purpose. Table 2.5 shows some system-defined Hyperwave attributes with their location
in the class hierarchy and their other properties. “Object class” gives the “highest” object class in the
class hierarchy where this attribute is applicable. “Editable” describes who may set this attribute. The
value “User” means the attribute can be set by users with write access, “System” means the attribute
can be set by the system user only, “Server” means the attribute is generated and stored by the server
itself, “Synthetic” means that the attribute is not directly stored but set by the server on the fly. The
“Indexed” field specifies whether or not the attribute is indexed (indexing allows rapid searching on
the attributes values), while “Multiple” specifies whether the attribute may appear more than once in
a single object record.

2.10 Summary

Metadata can be one key to provide effective information discovery on the Internet. Unfortunately
metadata usage is far behind the possibilities. However poviding rich trustworthy metadata for re-
sources is tricky and time-consuming. In future maybe there will be inexpensive (but probably not
free) services who guarantee for their metadata and, in combination with search tools, offer effective
knowledge management.

It is obvious that the Hyperwave attribute structure provides richer metadata than the Dublin Core
Standard requires. An advantage of the authoring process in Hyperwave is that every document has
appropriate metadata because the creation of this data is an integral part of the authoring itself. It
is reasonably straightforward to extract the elements of the Dublin Core from existing Hyperwave
attributes.

Chapter 3

Multidimensional Visualisation

3.1 Introduction

Multidimensional information visualisations present data that is not primarily spatial. The number of
attributes of the given data is more than three. These visualisations benefit from the fact that users
can distinguish positions, colours, textures, shapes and relationships. Relationships can be shown
in such displays by proximity, by containment, by connected lines, by colour-coding, etc. Displays
containing hundreds or thousands of data elements can be scanned rapidly and efficiently for clusters,
outliers, trends, and gaps.

For a visualisation to be effective, it must provide the user with a sense of the overall composition
and layout of the space. Several questions have to be answered, when a data set is to be mapped to
an interface, such as how to make the best mapping from attributes of the data to attributes of objects
in the interface. Another issue that arises when addressing the overview of visualisations is how to
fit large spaces on the screen and still allow some appreciation of the detail that resides there. Direct
manipulation of visualisations can be accomplished with a variety of methods, such as pointing to
select, dragging, and zooming. Feedback is immediate and intuitive in such environments. “The
eye, the hand and the mind seem to work smoothly and rapidly as users perform actions on visual
displays” [Shn97, p. 340].

Due to the extremely varying types of multidimensional data many approaches were and are
made to provide meaningful visualisations of the information. Most methods are suitable only for
some types of data (e.g. hierarchies can be viewed as trees or networks as graphs), but there exists
no general solution for all kinds of data. Example applications of multi-dimensional visualisation
schemes may use stock market statistics, factory production line data sets, a set of books in a library,
a movie database, and almost any abstract and statistical information about any phenomenon. The
used techniques are different but often the visualisations support similar functions in their displays,
for example overview, detail view, relation between or history of the data sets. The most common
functions are presented in the next section.

3.2 Interface Issues

� Overview Understand or get an overview of the whole or a part of the n-dimensional data. For
example, finding patterns, relationships, clusters, gaps, and outliers of the data.

� Zooming is the technique for allowing a user to select a smaller region of the screen for display.
Zooming includes any change in view from a larger portion to a smaller portion of a field or

18

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 19

Technique Dimensions Data Examples Implementations
Parallel Coordinates 4 ... 10 financial data Parallel Explorer
Scatterplot Matrix 4 ... 20 social data Crossgraphs
Histograms tens relational databasesDataSplash
Rule Based Methods tens mathematical data World within Worlds
Nested Dimensions tens financial data n-Vision
Pixel Representation tens scientific data VisDB
Force Based Methodsthousands sets of documents Bead
Combined Systems tens many kinds VisuLab

Table 3.1: Multidimensional data visualisation techniques.

vice versa. Usually such views are available simultaneously to help users to preserve their sense
of place.

� Filtering is the activity of weeding out uninteresting elements in a collection.

� Details on Demand At some point in interacting with a visualisation system, the user may
decide to take a closer look at one or more objects in the field of view. When the requested
view provides the content of the object, detail-on-demand has been provided. Most systems
support this function and it is usually invoked by clicking on an item or group of items or by
allowing the cursor to dwell on an object. In the former case, a dialog pops up that contains
detailed information. In the latter case, a lens might be provided.

� Relate The relate function seeks to make explicit the relationships between objects in a display.
It can also refer to representing relationships between data in multiple associated windows.

� History Maintaining histories is important for several reasons including place-keeping and
supporting the ability to undo actions. Exploration in visualisations is a creative process and
involves many sequential user actions to arrive at a satisfactory solution. The ability to retrace
steps on a particular path is important.

3.3 Visualisation Techniques

The following techniques and projects are only a small selection of existing visualisations. Interested
readers can find more information in [CMS98], a collection of papers describing different techniques
and systems. Special interest is given to systems which try to visualise textual documents e.g search
results or collections of topic specific papers. As a result of the existence of many kinds of different
multidimensional datasets differing in size and dimensionality many approaches were, and are made
to provide visualisations that do the above listed tasks. The usefulness depends on finding the best
scheme for the data to visualise. Table 3.1 lists some concepts with their possible data dimensionality,
area of application, and examples of implemented products. All of the shown visualisations provide
several interactive manipulation and query features to improve imageability, exploration of and navi-
gation through the given data. Some of the presented projects use more than one technique to provide
the best possible overview over the data.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 20

3.3.1 Parallel Coordinates

Display Concept

The display is obtained by taking the dimensions as vertical axes thereby arranging them parallel to
each other. The individual data values are then marked off for each dimension onto the corresponding
coordinate. The representation of a vectorx = (x1; x2; :::; xn) is thus obtained by markingx1 on axis
1, x2 on axis2 and so on throughxn on axisn. The resulting points on the axes are then joined by
line sequences such that each vector is represented by a polygonal line. A point inn� dimensional

space is hence equivalent to a broken line throughn parallel coordinates in this particular visuali-
sation. From the structure of the resulting display one can draw conclusions for the relationship of
the corresponding data values. A group of lines with a similar gradient can, for example, indicate
that their data records correlate positively. Since each vector is represented in a planar diagram, each
vector component has essentially the same representation. Another advantage of this visualisation
method is that the representation of all vectors in the same diagram means that a comparison of two
vectors can easily be made. Different publications have referred to the parallel coordinate display as
a method to solve problems from all kinds of domains, e.g. representing polytopes and hyperplanes,
finding line neighbourhoods or detectingp flats inn dimensional space [Ins98].

Possible Operations

In the parallel coordinate display the following operations are possible and used in many systems:

� Operations on Dimensions

1. Exchange Dimensions: The selected axes are exchanged, that is, the corresponding di-
mensions are permuted.

2. Dimension Hide/Unhide: The selected dimension is hidden (one axis in the display dis-
appears) or is shown again.

� Operations on Data Items

1. Data Hide/Unhide: The selected data items (or broken lines) are hidden or become visi-
ble.

2. Data Pick: Only selected data items (or broken lines) stay visible, the other data items
are hidden. Flexible selection possibilities improve the overview. Often an interval on
one axis is specified and all the data items in this interval (their lines) are colour coded.

Example

Figure 3.1 shows financial data taken from the global money markets from 1985 to 1993. Data sets of
different years have different colour codings. The years 1986 and 1992 are being examined. In 1986,
the Yen was the most volatile currency among the three, stocks were low, bonds were medium, and
there was a gap in the gold prices. In 1992, the British Pound Sterling was the most volatile currency,
bonds and gold were low, and stocks were high.

Projects

Projects using parallel coordinates to visualise multidimensional data include:

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 21

Figure 3.1: The Parallel Visual Explorer uses parallel coordinates.

� Parallel Visual Explorer [Cha95b]

� WinViz [WIN99, OL96]

� SPSS [SPS98]

3.3.2 Scatterplot Techniques

Display Concept

The classic scatter diagram is a fundamental visualisation method, showing the relationship between
two variables. An individual scatterplot does, however, not generalise readily beyond three dimen-
sions. For the visual representation of multivariate data a more elaborate construct is needed: In the
Scatterplot Matrixn dimensions are projected onton � (n � 1) scatterplots, where each pair of di-
mensions has two scatterplots showing their relation. The visualisation consists of an array of scatter
diagrams arranged in the form of an �n matrix. Each dimension of the original data defines one row
and one column of the matrix. The entry where rowi intersects columnk is a scatter diagram ofx

i

versusxk where the data records aren dimensional vectorsx = (x1; x2; :::; xn). Sincexk versusxi
shows the same relationship with only the axes interchanged, the scatterplot matrix is symmetrical.
The data values for a particular dimension are shown both in the respective row on the y-axis and in
the respective column on the x-axis. The dimension names are often written into the main diagonal
of the matrix. Due to the projection ofn dimensions onton � (n � 1) scatterplots each data record
(that is, each row of the original table) appears as a point in all these 2-dimensional plots, each value
therefore appears2 � (n� 1) times. Variants of this approach use fewer plots but the attributes which
are mapped to the axes in these plots can be changed by users. The result is more resolution with

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 22

less overview over the data. The higher resolution is often used to display more information (e.g
by iconic representations of data items and colour encoding) about the displayed items to the user.
Particularly in document visualisations the mapping from attributes to graphic primitives is becoming
more sophisticated, for example the graphics itself may indicate similarities to certain keywords.

Possible Operations

The following manipulation techniques are commonly used in visualisations using Scatterplot Matri-
ces:

� Axis Setting The user may set and change the categories and their ordering assigned to the
axis.

� Direct Manipulation The user interface provides abilities (e.g. sliders or filters) to set ranges
in each dimension. Items which lie within the same range have different colour codings than
other items.

Examples

� Classic Scatterplot Matrix: Figure 3.2 shows the scatterplot matrix of a four dimensional data
set.

� Plot with Axis Selection: For example Envision [NFF96] uses the variant with only one plot
with switchable axes to display “multidimensional” metadata of documents. The programs File
Attribute Explorer and Search Result Explorer use a similar display concept to visualise their
display items.

Projects

The following list shows projects which use scatter plots to visualise multidimensional data:

� CrossGraphs [CRO99]

� xGobi [DB98]

� Envision [NFH+96, NFF96] provides powerful information visualisation by displaying search
results as a matrix of icons, with layout semantics under user control. Envision’s Graphic View
(see Figure 3.3) interacts with an Item Summary Window giving users access to bibliographic
information, abstracts, and full content. While many visualisation interfaces for information
retrieval systems depict ranked query-document similarity, Envision graphically presents a va-
riety of document characteristics and supports an extensive range of user tasks. Formative
usability evaluation results show great user satisfaction with Envision’s style of presentation
and the document characteristics visualised. Its uniqueness in the variety of document char-
acteristics visualised and in the flexibility afforded users to change the visualisation to suit
their current information needs was an impulse to implement an application with at least this
flexibility.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 23

Figure 3.2: Visualisation using a scatterplot matrix.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 24

Figure 3.3: Visualisation using Envision.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 25

3.3.3 Permutation Matrix - Data Histograms

Display Concept

The numerical values of the contingency table are transformed into a matrix of simple graphical
elements such that the structure of the data set becomes immediately visible. The basic structure of
the permutation matrix consists of the rows and columns and the labels of these rows and columns.
The data values can be displayed with multiple column charts, bars, coloured rectangles or other
appropriate graphical objects where colour represents individual data values. The permutation matrix
is a visualisation method suited to show the overall appearance of the data as a collection and not so
much the individual quantitative values.

Possible Operations

The listed operations and manipulations are possible especially in the permutation matrices.

� Automatic Permutation The program will permute the rows and columns of the matrix au-
tomatically such that a pattern emerges if one exists. It can detect similarities or relationships
between variables itself and therefore avoid bias.

� Range Definition The user can place exploratory limits on parameters, thereby defining ranges
of those quantities. This action leads to colour linking those items that lie within the selected
range on all histograms.

Example

The example graph shown in Figure 3.4 plots example values of the abstract mathematical function:
0
BBB@

x1

x2

x3

x4

1
CCCA = f(s1; s2; s3; s4)

with limits set to the parameterss1 : : :s4 and colour encoded results forx1 : : :x4.

Projects

The following list contains projects which use the Permutation Matrix as their display concept.

� Influence Explorer is an interactive visualisation tool to support engineering design. “This
interactive visualisation allows fluent exploration of such problems and subsequent acquisition
of insight” [TSDS96].

� ViSta [HMV96]

3.3.4 Worlds Within Worlds

Display Concept

“Worlds within Worlds” is a powerful method, capable of displaying many dimensions, and yet is
readily understandable. One common approach to reducing the complexity of a multivariate function

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 26

Figure 3.4: Histogram visualisation of a 4D function.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 27

is to hold one or more of its independent variables constant. Each constant corresponds to taking an
infinitely thin slice of the world perpendicular to the constant variable’s axis, reducing the world’s di-
mension. If the dimensionality is reduced to 3D, the resulting slice can be manipulated and displayed
using conventional 3D graphics hardware. Although this simple approach effectively slices away the
higher dimensions, it is possible to add them back. To do this, the 3D world is embedded in another
3D world. The position of the embedded world’s origin relative to the containing world’s coordinate
system specifies the values of up to three variables that were held constant in the process of slicing
the world down to size. This process can then be repeated by further recursive nesting.

Possible Operations

User can create these virtual worlds by specifying the assignment of variables to coordinate system
axes. They can deposit multiple copies of the same world, or copies of different worlds within a
containing world, to allow the copies to be compared visually. Each copy has a different constant set
of values of the containing world’s variables, based on its position. Worlds may be rotated and scaled
about their origins, and viewed from different positions [BF93].

Example

As an example a functionf(x1; x2; x3; x4; x5) is considered. Following the description above, first
constant values for three variablesx3; x4; x5, calledc3; c4; c5 are selected. This selection results in
a new functionf 0

(x1; x2) = f(x1; x2; c3; c4; c5). The functionf 0
(x1; x2) is easy to graph in 3D as

a surface plot, withx1 on the x-axis,x2 on the z-axis, and the value of the function on the vertical
y-axis. This graph is shown in Figure 3.5. The values ofx 3; x4 andx5 are shown on a separate set of
axes to let the user select particular values for these parameters. Selecting a point within this larger
graph determines the particular values ofc3; c4 andc5 used in the smaller graph. Thus, the contents
of the smaller graph depend on the location of some interactive mark in the larger graph.

Project

� AutoVisual [BF93]

3.3.5 Pixel Representation and Distance Functions

Display Concept

The major goal of this concept is to visualise large amounts of arbitrary multidimensional data. In
this approach reference points (or regions) in multidimensional space are introduced and only the data
items that are “closest” to the reference point are visualised. The “closeness” is determined using
distance functions for each of the dimensions. The distance functions are datatype and application
dependant and must be provided by the application. Having calculated the distances for each of the
dimensions which are part of the reference point specification, the distances are combined into the
closeness factor. Important aspects such as normalising and weighting the distances of the different
dimensions speed up the layout process and make it more flexible. The basic idea for visualising the
data items is to map the value ranges of the different dimensions to colour and represent each data
item by multiple pixels being coloured according to the distance values for each of its dimensions.
The coloured pixels are then displayed on the screen with data items fitting into the reference region
centred in the middle of the window and the other data items are arranged rectangular spiral shaped

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 28

Figure 3.5: World Within Worlds.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 29

around this region according to the overall closeness factor. A separate window is provided for each
of the dimensions. In these separate windows, the pixels for each data item are placed at the same
relative position, allowing the user to relate the visualisation of the different dimensions [KK95].

Possible Operations

� Reference point selection the user may interactively change the reference point (or region).

Example

Figure 3.6: VisDB visualising a large database.

Project

� VisDB: is a system developed at the University of Munich and is a sophisticated tool for vi-
sualising and analysing large databases. The key idea of the VisDB system is to support the
exploration of large databases by using the abilities of the human vision system to analyse visu-
alisations of large amounts of data very efficiently. The goal of the VisDB system is to provide
visualisations of large portions of a database, allowing properties of the data and structure in
the data to become perceptually apparent. By arranging and colouring the pixels according to
the relevance of the data items with respect to the query, the user gains a visual impression of
the resulting data set. Using sliders for each condition of the query, users may change queries

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 30

dynamically and receive immediate feedback from the visual representation of the resulting
data set [KK94].

3.3.6 Force-Based Methods

Display Concept

This concept tries to visualise data where dimensionality may be in the thousands.Examples are sets
of documents or financial data. The layout is produced by using a metric of similarity or “data
distance” between data pairs. In the case of sets of documents, this metric is often based on word
co-occurrence. In this process the members of the set of documents iteratively push and pull on each
other to create an emergent structure. Similar documents which are far apart pull towards each other.
Dissimilar documents which are too close together push away from each other. The system works to
reduce these forces and energies i.e. tries to minimise the total stress of the system. As these forces
gradually ease off, the model of the corpus settles into shape. By defining a distance metric and
employing a similar layout/optimisation algorithm, other types of information can be laid out. Due to
the layout process, the axes of the resulting two dimensional space have no inherent meaning.

Example

Figure 3.7 shows an example from Bead, a view from far above on an “island” of about 500 docu-
ments.

Projects

� Bead [Cha93, Cha95a] is a visualisation system which has evolved over years in both the
layout and presentation of “maps” of multidimensional data. Layouts are built using physically
based force models with special effort to enhance legibility and the model of how past searches,
selections etc. relate to each other within the layout.

� MDS [ZC87]

3.3.7 Combined Systems

Many existing projects and systems use the idea of having various of the above described visualisa-
tions at the same time. Users can see changes on all visualisations simultaneously by just manipulat-
ing one. Further dimensions are pushed into the system, by colour encoding, iconic representations,
3D visualisation approaches etc. but all of the systems use kinds of the above described techniques.

Example

Figure 3.8 is a screenshot taken from [VIS98] and shows a multidimensional dataset, visualised with
different techniques.

Projects

� DEVise [LRB+97]

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 31

Figure 3.7: Bead using force-based layout.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 32

Figure 3.8: Visulab using different visualisation techniques.

CHAPTER 3. MULTIDIMENSIONAL VISUALISATION 33

� Spotfire is a database exploration system based on interactive information visualisation, dy-
namic queries, brushing and linking, and other interactive graphics techniques. The target is to
minimise the mental effort for information retrieval, i.e. for building queries, recognising and
evaluating relations. Starfield displays, node and link diagrams, and cocktail maps are used as
visualisation techniques [Ahl96].

� Visulab [VIS98]

3.4 Summary

A good overview of exiting projects and systems is presented in the Olive (The Online Library for
Information Visualisation) [RHS97] homepage. The screenshots presented in the previous section are
partly taken from this page and it is recommended to the interested reader.

This chapter presented common functions provided in existing multidimensional visualisation
systems. Although the data differs in kind and dimensionality, these functions are found in many
existing systems.

The two main possibilities to visualise documents are scatterplots (matrices) with metadata values
on the axes, or force based methods. The former was the method of choice in the later described
Search Result Explorer. The latter displays the documents in two or three dimensional spaces, where
the distance between documents grows according to their dissimilarity.

Chapter 4

Java

4.1 Introduction

Java is a high-level programming language designed to meet the challenges of application develop-
ment in the context of heterogeneous, network-wide distributed environments. Paramount among
these challenges is the secure delivery of applications which consume the minimum of system re-
sources, can run on any hardware and software platform, and can be extended dynamically. Java
incorporates the best features of existing languages. It embodies thirty years of learning about pro-
gramming languages and tools, software engineering and distributed systems. It focuses on network-
ing and application safety - two very challenging issues not well addressed by other languages.

4.2 Java History

The history of the Java language goes back to April 1991, when a group of Sun Microsystem employ-
ees began to work on a project to develop advanced software for a wide variety of network devices
and embedded systems. The goal was to develop a small, reliable, portable, distributed, real-time
operating platform. Java was fulfilling a view that the world would be filled with intelligent devices
that would all need a common mechanism for controlling their behaviour. The developers initially
attempted to extend the C++ language, but over time the difficulties encountered with C++ grew to
the point where the problems could best be addressed by creating an entirely new language platform.
Design and architecture decisions drew on experience with a variety of languages such as Eiffel,
SmallTalk, Objective C, and Cedar/Mesa. The result is a language platform that has proven ideal for
developing secure, distributed, network-based end-user applications in environments ranging from
network-embedded devices to the World-Wide-Web and the desktop. Java is unique because it is the
first language that can be used for writing general-purpose programs, as well as programs that run
within Web clients.

Today popular browsers, such as the Netscape Navigator and Internet Explorer, incorporate Java-
based technology and small Java programs, called applets run within these Web clients. General-
purpose Java programs which run standalone in the Java Virtual Machine are called Java applications.

4.3 The Java Programming Language

The design requirements of Java are driven by the nature of the computing environments in which
software must be deployed. Java is a powerful applications-development language, and usually re-

34

CHAPTER 4. JAVA 35

quires a complete book to cover it effectively. In this short chapter, only some basic characteristics
of the Java language are described, followed by an overview of tools and possibilities for building
graphical user interfaces. A number of books are available for further details [SWM+97, Jaw98].

Sun describes Java as being all of the following:

� Simple: Java was designed with the intent of keeping the language simple, but, at the same
time, powerful enough to perform network computing tasks for the Web. Java can be pro-
grammed without extensive programmer training while being attuned to current software prac-
tices. To meet the goal of simplicity, the designers of the language kept the number of language
constructs as small as possible without compromising power.

� Architecture-neutral: Java is designed to support applications that will be deployed into het-
erogeneous network environments. In such environments, applications must be capable of
executing on a variety of hardware architectures. To accommodate this diversity of operating
environments, the Java compiler generates bytecodes, an architecture neutral intermediate for-
mat designed to transport code efficiently to multiple hardware and software platforms. As
shown in Figure 4.1, bytecode can be generated on different operating systems, distributed
over networks, and executed in any Java Runtime Environment regardless of where they were
compiled.

� Object-oriented: The needs of distributed, client-server based systems coincide with the en-
capsulated, message-passing paradigms of object-based software. To function within increas-
ingly complex, network-based environments, programming systems must adopt object-oriented
concepts. Java provides a clean and efficient object-based development platform. The notion of
an object in Java is implemented by the class construct. The use of classes is so fundamental to
the Java language that it is not possible to write a Java program that does something meaningful
without using the class construct.

� Portable: The primary benefit of the interpreted byte code approach is that compiled Java lan-
guage programs are portable to any system on which the Java interpreter and run-time system
have been installed. The architecture-neutral aspect is one major step towards being portable.
Further, Java eliminates the defect of designating many fundamental data types as “implemen-
tation dependent” by defining standard behaviour that will apply to the data types across all
platforms. Java specifies the sizes of all its primitive data types and the behaviour of arithmetic
on them. Programs are the same on every platform - there are no data type incompatibilities
across hardware and software architectures.

� Distributed: The architecture-neutral and portable aspects of the Java language make it the
ideal development language to meet the challenges of distributing dynamically extensible soft-
ware across networks. Java provides network capabilities by using a predefined language pack-
age called java.net. This package contains many classes to simplify network communications
between applications running on different computers on a network. Using Java, access of re-
mote or local files can be done with equal ease.

� High-performance: Java achieves superior performance by adopting a scheme by which the
interpreter can run at full speed without needing to check the run-time environment. The auto-
matic garbage collector runs as a low-priority background thread, ensuring a high probability
that memory is available when required, leading to better performance. This strategy leads to
high-performance compared to other scripting languages. Using a Just in Time Compiler (JIT),
performance can be further improved with the disadvantage that the compiled programs are
operating system dependent.

CHAPTER 4. JAVA 36

� Interpreted: The Java compiler does not produce the machine-language instructions that make
up the executable Java program. Instead, the Java compiler produces an intermediate code
called byte-code. This code is read by a Java interpreter that executes it by using an internal
model of an abstract machine. The Java interpreter can execute Java bytecodes directly on
any machine to which the interpreter and run-time system have been ported. In an interpreted
platform such as the Java system, the link phase of a program is simple, incremental, and
lightweight.

� Multithreaded: Java is one of the few languages that provides support for multitasking in the
form of multithreading within the language itself. This multithreading capability provides the
means to build applications with many concurrent threads of activity, which results in a high
degree of interactivity for the end user.

� Robust: Robustness in a language means the support for eliminating error-prone constructs
both at compile and run time. Java provides extensive compile-time checking, followed by a
second level of run-time checking. Java is a strongly typed language, which means that there are
well-defined rules on how objects are to be used. Java supports explicit exception handling in
the language, which provides the programmer with an additional tool to write robust programs.

� Dynamic: While the Java compiler is strict in its compile-time static checking, the language
and run-time system are dynamic in their linking stages. Classes are linked only as needed.
New code modules can be linked in on demand from a variety of sources, even from sources
across a network. The runtime class definitions perform dynamic linking of classes.

� Secure: Java is designed to operate in distributed environments, which means that security is
of big importance. With security features designed into the language and run-time system, Java
applications can not be invaded from outside.

Figure 4.1 shows the progression of a Java source file from creation to execution.

Java
Source
(.java)

Java Compiler Java Compiler Java Compiler
PC Sun Sparc Apple

Hardware
PC

Operating System
Hardware

Operating System
Hardware

Operating System

Sun Apple

Java bytecodes
move locally or
through network

Java
Bytecode
(.class)

Runtime System

Java Virtual Machine

Interpreter
Java

Compiler

Just in Time

Class Loader
Byte Code

Verifier

Java Class
Libraries

Figure 4.1: Java Program Execution.

CHAPTER 4. JAVA 37

4.4 The Java Foundation Classes (JFC)

The Java Foundation Classes represent a significant introduction of new functionality to the Java de-
velopment environment. They are a group of features whose implementation began with JDK1 1.1
and is continued in JDK 1.2. One of the most significant parts of the JFC is the Swing component
set. The Swing components are all graphical user interface controls that replace most of the platform-
native components provided by older versions of the JDK. The Swing components are written in pure
Java. They include both Java versions of the older AWT (Abstract Windowing Toolkit) component
set (Button, Scrollbar, Label, etc.), plus a rich set of higher-level components (such as TreeView,
ListBox, ColourChooser, FileChooser, ProgressBar, etc.) [WC99].

Additional new features first introduced with the JFC are:

Pluggable Look and Feel: The Look and Feel of a program consistsof the way the program presents
itself to the user (its look) and the way the user interacts with it (its feel). The system indepen-
dence of Swing gives any program that uses Swing components a choice of its Look and Feel,
it becomes pluggable. This is done in terms of the model-view-controller (MVC) architecture.
MVC is a software architecture that separates the status of an object (the model), the way the
object is displayed to the user (the view), and the way that the object’s state is updated. By
separating these three perspectives, it is possible to define GUI components that are equiva-
lent in terms of information state, but are displayed and respond to the user in different ways.
The procedure how to implement the pluggable Look and Feel in a Java program is shown in
Section 5.6.2.

Accessibility API: These technologies provide non-standard ways of interacting with software ap-
plications. They enable Java applications to scale to encompass the physically challenged users.
Two of the most important features are Screen Readers and Screen Magnifiers. The Screen
Reader creates an off screen representation of the GUI components enabling the information to
be provided via a text to speech and/or a Braille terminal. The user can then interact with the
GUI through the alternate computer input and output device. The Screen Magnifier enables the
user to adjust the magnification of the screen.

Java 2D API: The Java 2D API enables developers to incorporate high-quality two dimensional
graphics, text, and images in applications and in applets. It enables the development of richer
user interfaces and new types of Java applications. The Java 2D API also supports enhanced
colour definition and composition, hit detection on arbitrary geometric shapes and text, and a
uniform rendering model for printers and display devices. Paths, text, and images are treated
uniformly, they can all be rotated, scaled, skewed, and composited using the newGraphics2D
class [WC99].

Drag and Drop Support: Provides the ability to drag and drop within Java applications, between
Java applications, and between Java and native platform applications. It is typically used to
organise desktops, manage files, open documents, and execute applications.

The programs described later in this thesis make extensive use of the Java Foundation Classes. In
particular the user interface code consists completely of Swing classes. Some interesting code sam-
ples and implementations which are part either of the File Attributes Explorer or the Search Result
Explorer are described in detail in Section 5.6 and Section 8.5.

1Java Development Kit

Chapter 5

File Attribute Explorer

5.1 Introduction

The intent of developing this tool was to provide a powerful hierarchy explorer for file systems. From
the beginning an open concept which should also fit for other kinds of multivariate data was kept
in mind. In other applications problems occured if the view was to complicated. The goal was to
provide a tool that is easy to use, and a display that is easy to understand. The visual complexity and
the difficulties in orientation and navigation of displays using more than two spatial dimensions led
to a concept of using a two-dimensional plot. Further dimensions are brought to the system using
colour, size and shape. Interactivity, flexibility in scaling, and functions for details on demand were
implemented.

5.2 Design Principles for the File Attribute Explorer

This tool was designed to explore files and their attributes, located in any given directory hierarchy.
It should become possible, to analyse and navigate through the whole file system with immediate
overview over the contained files. Additional search and filter functions improve this overview and
can be used to focus on specific types of data. For example, it is possible to view all images larger
than a certain size and older than one year.

Graphical presentations take advantage of the enormous capacity for human visual information
processing. In a few tenths of a second, humans can recognises features in megapixel displays,
recall related images, and identify anomalies. This should help to reduce users fear of the flood of
information and make browsing fun. The following principles used in many visualisations were the
starting point for the File Attribute Explorer design:

� Operating system independence has the advantage that a single software distribution can be
installed on a wide range of platforms.

� Iconic, point or circle representation of files to display as many objects as possible in the
given space. The size of the displayed items can be changed interactively, so users can respond
to cluttered displays.

� Flexible scaling of axes was a design goal from the beginning. The user can change the scale
on any axis. The sort order of an axis is changed with a single click on a button.

38

CHAPTER 5. FILE ATTRIBUTE EXPLORER 39

� Zooming to any part of the display is possible to further analyse regions of special interest. If
the number of displayed items becomes too high in such a region they are grouped together into
a single icon. Such groups can be further explored by zooming in on them.

� Selection by pointing (not typing) and obtaining details on demand is a principle which im-
proves usability, and is implemented by making each item active (like a button). When pressed
the item shows its attributes textually in a special window.

� Output can be used as input to explore contained directories. Every displayed directory can
become the next root of visualisationby simply choosing it with the mouse. A history list offers
the possibility to navigate back to previous directories.

� Immediate and continuous display of the file system by implemented the loading procedure
in its own thread and giving the user a feedback.

� Display as many file attributes as possible by mapping icon colour and size to selectable file
attributes enables users to build their own visualisations with respect to the attributes they are
interested in.

� Searching is done by making files which match selectable constraints visible by colour coding.

� Filtering means temporarily excluding non-matching documents from the view. In this case
the removed documents can be redisplayed by turning the filter off.

� Presenting different views with the possibility to display the files and their attributes in a
traditional table. Much work was done to make the table sortable by any displayed attribute
and to synchronise selection, searching, and filtering in both the graphic and the table displays.

Many of these issues were already mentioned in Chapter 3.

5.3 File Attribute Explorer Implementation

The program is implemented in Java to achieve platform independence. All source files, java classes,
and the used icons are packed into one single Java Archive (jar) file to make it easier to distribute.
This file is namedfae.jarand consists of about forty base classes. The Java concept of inner classes
is used heavily in the program, because various user interface events are handled by these classes.
The icons used in the interface and as representations for files are also included. This single file and a
Java Runtime Environment are the only two things necessary to run the File Attribute Explorer. The
program is an implementation of the scatterplot visualisation technique described in Section 3.3.2 and
its display concept is quite similar to Envison (see Section 3.3).

Users specify the directory they want to start from and the program displays icons representing the
files located in this directory. If theFlatten Directoriesoption is selected, all files in all subdirectories
are also included in the display. Files and their attributes are also shown in a second tabular display.
In this second view, every file occupies one line and actions (e.g selections) are synchronised between
both displays.

The file system hierarchy is loaded recursively from top to bottom. To avoid too long load times
and too extensive memory usage, a maximum directory depth can be specified. Selected file attributes
can be mapped to the x and y axes in either ascending or descending order. Further attributes can be
mapped to the size and colour of the individual file and group icons.

Group icons are created if sets of documents are displayed at the same point in space. In this
case, the number of collected files is shown in these icons and users can zoom in to explore this part

CHAPTER 5. FILE ATTRIBUTE EXPLORER 40

of the display in detail. The drawing area becomes scrollable and the labels on the axes are also
automatically updated as zooming occurs. This is done either by double clicking a group icon or by
dragging a rectangle in either the drawing area or the zoom overview window. If only a part of the
whole area is visible in the main window the entire display is shown in the zoom overview in the
bottom left corner. The currently displayed part is indicated by a black rectangle. To move the visible
part without changing its size, the rectangle in the overview window can be moved with the mouse or
the scroll bars can be used.

To obtain more information about a particular file, users move the mouse pointer to that icon.
Clicking the icon causes the program to show all the file’s attributes. If a group of icons is selected,
a list of files in the group is displayed. This list can be sorted on any attribute and clicking on a file
name shows the attributes of that file.

Once installed, the program can help to solve a variety of common problems arising in large
hierarchies:

� Finding the newest and largest file(s) of a particular type in an entire directory tree, which is
not that straightforward with other explorers.

� Analysing file history; which files were updated which remained unchanged since a given date.

� Finding file duplicates which are hidden somewhere in the hierarchy because such files will
often form a group of two files.

� Marking all files matching certain conditions in size, age, and location, which also can be used
to discover lost files.

� Finding preferred locations of differing file types.

These and other tasks are not that simple with other file explorers and can be helpful for both the PC
user and the system administrator.

5.4 Usage of the File Attribute Explorer

The File Attribute Explorer was developed with the Java Development Kit (JDK) 1.2. It works on
every operating system (Unix, Windows95, WinNT, MacOs,. . .) where the Java Virtual Machine
1.2 (or higher) is installed. The program is packed into one executable jar file and is run typing the
following statement on the command line:

java -jar fae.jar

5.5 User Interface

During the loading and initialising process the welcome window is presented on screen. After these
processes the File Attribute Explorer main window appears. Figure 5.1 shows the FAE’s main win-
dow. The following sections of this chapter describe the usage and effects of the various GUI com-
ponents. The drawing area located in the bottom right corner is shown and explained in detail in
Section 5.5.3.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 41

Figure 5.1: File Attribute Explorer Main Window.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 42

5.5.1 The Button Toolbar

Figure 5.2: The FAE button toolbar.

As a feature of the Java Foundation Class JToolBar this toolbar can be hidden (in the View menu)
or dragged to any side in the File Attribute Explorer, or it can be put in a separate window. All the
actions caused by these buttons are also provided by corresponding menu items. In the View menu
the toolbar can be hidden by deselecting the corresponding CheckBox for users who prefer working
only with menus. The five buttons in the first column of the main window are image buttons and, if
they are active, they cause the following actions:

� Open Directory: This button brings up a file chooser for navigating the file system, and choos-
ing a directory from a list or entering a directory name. This is implemented with the JFile-
Chooser class provided by the Java Swing library. It is a modal dialog which uses an appropriate
filter accepting only directories.

� Back Button: Goes back to the directory which was previously explored. The back and for-
ward buttons become active, if the user navigates through the directory tree either by double-
clicking on directory icons in the drawing area or by simply choosing another directory via the
file chooser.

� Forward Button: Goes forward to a directory which was previously explored. This button
becomes active, if a back operation has been performed. The directories held in the history list
are cached and navigating back or forward is faster than loading and analysing a directory for
the first time.

� Options: Opens a panel to see or change program settings. Users may choose their favourite
interface look and feel, date and time formats, and the state of the simultaneous panning option.
The new settings are accepted with theOk Button or the old settings remain if the dialog is
closed with theCancelButton. The options panel is described in detail in Section 5.5.8.

� Stop Button: If user choose a directory to be displayed, a thread which loads attributes of files,
located in the current directory, is started. The functionality of theStopButton is to interrupt
this process. With this button users can always regain control over the interface, even if the
loading process lasts too long.

� About: Displays the About File Attribute Explorer window which gives informations about
the program and shows the license agreement. This window is closed with theQuit Button.

� Exit: This button closes all windows and exits the program. All settings changed by users are
stored in their private configuration file and are reused as parameters for later program starts.

5.5.2 The Location Field

This field is implemented as a JComboBox provided by the Swing library. It is a second possibility
to directly specify the directory which should be explored next. It also holds a history list of the

CHAPTER 5. FILE ATTRIBUTE EXPLORER 43

five previously explored directories which can be redisplayed by choosing them from the list. These
previously explored directories are held in a cache to provide fast redisplay. A third possibility to
open subdirectories is to double-click directory icons in the Drawing Area. In both cases a thread
which loads the directory is started.

5.5.3 The Drawing Area

All functions concerned with the visualisation are implemented in this part of the tool. In this area
the files are represented as icons, squares or circles. The positions of these objects depend on the
attributes of the corresponding files and the settings of the axes. Size and colour depend on other user
selected attribute values. The main parts and tasks of the Drawing Area are:

� Axis Settings: The following interesting attribute values can be displayed on each axis:

– File Size

– File Date

– File Name

– Directory Depth the relative depth of the file in the hierarchy.

The buttons in the upper corners determine whether the axes are in ascending or descending
order.

� Axis Labels: The axis labels dynamically adapt to current range of values when zooming oc-
curs. The labels differ depending on the type of data represented on the axis. Their format also
depends on the preferred date, time and number formats. To improve legibility the background
of axes is drawn in slightly different colours.

� Display Settings Panel: At the top of the Drawing Area a line of text indicates the current
display settings. The button to the right of this line brings up the Display Settings Panel.
The text in the first line (see Figure 5.3) of the Drawing Area describes the selected mapping
settings for size and colour and the group display behaviour. The panel is implemented as a

Figure 5.3: Current settings of the Drawing Area.

modal dialog which allows to switch between main window and settings dialog and results in
simultaneous visualisation update when changing display settings. The following settings can
be changed:

– Icon Shape: Users can choose the graphical representation for files in the Drawing Area.
The files can be displayed as icons, squares or circles.

– Icon Size: Gives users choice which file attribute is mapped to the size of its icon. The
numbers are pixel values and the text field components accept only integers as their values.

– Icon Colour: Again, the user can choose which file attribute to map to icon colour. The
range of attribute values is smoothly interpolated between two colours. The used colours
are displayed as two small image buttons. These buttons bring up a JColourChooser
dialog which provides a comfortable user interface for selecting a desired colour.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 44

Figure 5.4: The Display Settings Panel.

– Group Display Behaviour: A group contains the number of files shown in the middle
of the icon. The selected size and colour settings normally depend on attributes of single
files. Grouped files have inherently similar values for the attributes scaled on the axes,
however the attributes mapped to size or colour may differ. The chosen solution gives the
user control over how to aggregate values for all files in a group into a single value for
display:

� Minimum: The file in the group with the minimum attribute value determines the
size and colour of the whole group icon.

� Medium: The values for size and colour are calculated as the average value of all
contained files. The mediums are calculated during the layout process for all groups
and all their attributes.

� Median: The file with the median attribute value determines the size and colour of
the whole group. This value can be obtained from the group object because the files
inside the groups are held sorted by their attributes in the data structure.

� Maximum: The file with the maximum attribute value determines the size and colour
of the whole group.

– Grouping Distance: This integer value is used to decide whether two side by side lying
objects are represented as one group or as two items. Choosing a higher number forces the
display to show less single file objects and to group more objects. Decreasing this number
results in a display of many single file objects which are possibly overlapped by other
icons. This setting is unique in this dialog in terms that changing it forces the program
to do a new layout process (see 5.5.3) which lasts noticeably longer than changing other
settings.

� Mouse functionality in the Drawing Area: In the Drawing Area the graphic primitives are
placed. Following the concept, this area is filled with powerful functions to gain overview,
zoom in and out, navigate and get details-on-demand. How to perform these tasks using the
mouse is described next. The mouse events differ from the position where they occur:

– Mouse events in the blank area are used to control the display. Two mouse events are
possible:

� Right Mouse Click: A context menu which controls the current view is brought up.
It offers possibilities to control the zoom status, the history list and the used graphic
representation.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 45

� Mouse Drag: A rectangle from the position where the mouse was pressed is drawn.
Releasing the mouse zooms into the rectangle.

– Mouse events on icons: These three events can be used to display details-on-demand. To
provide this functionality each graphic representation has its own listener which reacts to
the following events:

� Enter: If the mouse pointer enters an icon, it becomes an image button and the
corresponding filename is shown in the bottom line. If the mouse pointer leaves the
icon, the button functionality is removed, the icon becomes a normal image again.

� Mouse Click: Clicking on an icon selects the corresponding file. The attributes of
the file are shown in the Current Object Window and the filename is highlighted in
the Table of Files.

� Double Click: Double clicking is implemented for graphic primitives that represent
directories or group objects.

� Directory: This directory is explored now. This means that the user moves
down one (or more if the hierarchy is flattened) step(s) in the directory tree. The
directory which was explored until this happened, is put in the history list and
can be accessed via theBackbutton.

� Group: The group is zoomed into. The new display range is calculated from the
attribute range of the group.

� Zoom Control: As already mentioned the ability to zoom guides the user from overview to
detail and vice versa. It is an important feature in many visualisations and it is in particular in
the File Attribute Explorer. Table 5.1 summarises the possible zooming operations and where
they are offered. TheZoom-Outbutton withdraws the last zoom-in action and theZoom-Reset
button returns to initial settings without zoom.

Zoom in Zoom out Zoom reset
Drawing Double click on group. Popup menu via Popup menu via
Area Dragging a rectangle right mouse button. right mouse button.
Overview Dragging a rectangle. Popup menu via Popup menu via
Window right mouse button. right mouse button.

Table 5.1: Possible zooming actions.

� Positioning of Icons: The position of the icons depend on the attributes of the corresponding
files and the axes settings. A suitable algorithm which splits the items into single file objects

and group objects is used. The straightforward method would calculate all(
n

2
) distances.

These distances could then be tested whether they are smaller than the given grouping distance
to decide if the involved files are drawn as single objects or form groups. This process would
result in a runtime ofO(n

2
).

The similarity between the layout task and the “Line Segment Intersection Problem”, well
known in the field of computational geometry led to the used strategy which is described and
analysed below [dBvKOS97]. The algorithm first sorts the items according to their attribute
values on the x-axis. Then a stripe is “swept” along the x-axis. The widthb of this stripe
can be changed in the Settings Dialog, where it is namedGrouping Distance. If the distance
between items is smaller thanb they are grouped together into one display item. This type of

CHAPTER 5. FILE ATTRIBUTE EXPLORER 46

algorithm could be called a “plane sweep algorithm” and the stripeb could be called the “sweep
stripe”. Figure 5.5 illustrates the algorithm. The squaresfx represent files. The previous

b

x

y

sweep

f1

f2

f3

f4

f5

fx ... display items

b ... with of sweep stripe

x1 x2

f6

f7

f8

event points

Figure 5.5: Placement Algorithm using a Sweep Stripe.

calculated array of the sorted x-values are calledevent points. The moments, when the sweep
stripe reaches or leaves an event point are the only moments when the algorithm actually does
something. The items currently lying in the sweep stripe are stored in a balanced binary search
tree sorted by their y-values. At an event point two things may occur:

– A file leaves the stripe: This means that the difference between the file’s x-coordinate
and the right border of the stripe is more thanb. This item (a single file or a group)
can be stored in the vector of display objects and is deleted from the binary search-tree.
Figure 5.6 shows the sweep stripe leaving event pointx 1 and removing the filef3 from the
tree. This file is added to the vector that holds the items which will finally be displayed in
the Drawing Area. To keep the tree balanced it is sometimes necessary to force a rotation
operation.

– An item hits the sweep stripe on its right border: The new item is inserted into the
tree(see Figure 5.7). Again the balance must be kept and the distances between the in-
serted file and its neighbours is checked. If one of them is smaller thanb than these two
objects form a group object and the tree is updated again (see Figure 5.8).

Insertion,deletion, and rotation takeO(log(n)) time. Every display item is inserted once into
the tree. The number of deletions from the tree also equals the number of files, because if a file
leaves the stripe, a deletion will be forced and if files are grouped this is the case, too. Insertion
and deletion can potentially destroy the balance of the search tree. In these cases rotation of the
tree has to be done. If the balance condition is hurt after one insertion or deletion operation it

CHAPTER 5. FILE ATTRIBUTE EXPLORER 47

f4

s4

f3 f5 f6

s4

s5
f4

sweep line leaves x1
s4

f3 is removed
s5

f5 f6

items in the stripe sorted according to their y values

Figure 5.6: Removing a file from the tree.

f6

f4

f5f7
f5 f6

y4

y4

y4sweep line reaches x2

f7 is inserted

f4 y5

items in the stripe sorted according to their y values

y7

Figure 5.7: Adding a new file to the tree.

f4 f5 f6 f5 f6f7

balanced binary tree after left rotation

Distance tests

f4 and f7 are grouped

g1

y4

y4 y5 y5

y(g1) = (y4 + y7)/2

items in the stripe sorted according to their y values

Figure 5.8: Rotation and grouping of items.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 48

Time for Number of Worst Case
Operation one Operation Operations Overall Time
Insertion O(log(n)) n n �O(log(n))

Deletion O(log(n)) n n �O(log(n))

Grouping O(log(n)) n n �O(log(n))

Rotation O(log(n)) 2 � n 2n �O(log(n))

Table 5.2: Runtime of placement operations.

can be re-established by at most two rotations. As shown in Table 5.2 the complexity for one
operation is alwaysO(log(n)) in time and every operation occursn times (except there can
be2 � n rotations which does not influence the upper border of the runtime). Thus the layout
algorithm calculates the display objects inO(n � log(n)) time which is the best reachable
runtime.

� Realised File Types: At the moment the program recognises the following file types by
analysing the suffix of filenames:

– Text Document: The document is a text document.

– Picture: The document is an image.

– Audio File: The document is a sound file.

– Postscript: The document is a postscript file.

– Unknown Format: The document has no known format.

– Word File: The document is a Microsoft Word file.

– Excel File: The document is a Microsoft Excel file.

– Java Source: The document is a Java file.

– Latex File: The document is a Latex file.

– Html File: The document is a Html file.

– Group This icon represents a group of files. The distance between the icons is too small
to show each icon. The number of files contained in this object is displayed in the middle
of the group icon. A double click on this icon causes a zoom-in action in order to show
more items as single files, and make their attributes accessible.

5.5.4 The Status Bar

This part is divided into three areas, which show important information about ongoing tasks and
statistical characteristics of the explored directory.

� Left Panel: The text gives status information about what is going on during calculations or
shows the name of the object beneath the mouse in the Drawing Area.

� Middle Panel: The text lists the characteristics of the currently displayed directory. The three
properties listed are the number of displayed files, directories and the total size of the viewed
hierarchy. In the case a filter is active, only the items which pass this filter are taken into
account.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 49

� Right Panel: The progress bar shows the progress of loading, calculating, and drawing opera-
tions. If a new directory is loaded, the bar is informed about the number of files contained in
this directory, having one as their depth relative to the explored directory. If theFlatten Direc-
tory option is set, this number increases with every directory that is visited during the analysis.
This process causes the flickering of the bar. Thus it is no quantitative indicator of how long
the analysis will last, but it shows that the program is still working.

Zoom Overview

This area in the bottom left corner (above the Status Bar) is a small view of the Drawing Area. If a
zooming action is performed, this area shows the currently viewed part of the display area as a black
rectangle. This rectangle can be moved by dragging it to the desired new position with the mouse. A
mouse click in the overview centres the viewing rectangle in the mouse position. If theSimultaneous
Panningoption is activated, this move process is simultaneously shown in the Drawing Area, which
gives a good overview but it may be very slow. This window also offers a popup menu to change the
current zoom status. The intent of this window is to show the data as a whole and to inform about the
performed zooming actions. It does not provide the other functionality of the Drawing Area.

Filter and Search

These functions offer possibilities to concentrate on specific file types, and to narrow size or date
attributes of the displayed files. Filenames are matched using theFNMatchclass. This class is based
on the GNU-Library fnmatch routine which provides an intuitive “file name matcher” rather than
using regular expression matching. This class can be configured to either respect or ignore case. It
also provides possibilities to match whole worlds only. The user can specify how the actual search or
filter operation should work via a popup menu. The buttons in the search and filter panels bring up
this popup menu. To clearly indicate whether search and filter are active, theSearchandFilter labels
are coloured red when active.

The results matching a search are outlined with a red border and can be viewed in succession
using four navigation buttons. The currently viewed icon is outlined with a blue border, and a blue
arrow pointing to it. All file attributes are displayed in the separate File Attribute Window shown in
Figure 5.10. If a filter is applied, only the files which pass this filter are displayed in the visualisation
and listed in the Table of Files,but the original display ranges remain in force.

5.5.5 Table of Files

This table (see Figure 5.9) displays all files located in the current directory and shown in the Drawing
Area. The currently selected file is highlighted. This selection can be changed by clicking on another
file with the left mouse button. If multiple selections occur, a group object has been selected in the
Drawing Area. In this case, all files contained in this object become highlighted. If a line in the table
is selected, the corresponding item in the graphic view is drawn with a blue border and a blue arrow
pointing to it. The selection process is the same in the Drawing Area and in the Table of Files. Due
to this implementation a double click on a line holding a directory forces the program to analyse this
selected directory and a right mouse click shows the File Attribute Window of this file.

If a search was applied the results in the table are given a red background and in the Drawing
Area the found items are outlined with red borders. If a filter is applied, files which do not pass this
filter are removed from the table.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 50

Figure 5.9: Table of Files.

The files in the table can be sorted based on the clicked column. The small arrow in one of the col-
umn headers shows the current sort column and sort direction. It can be changed by clicking another
column header which will cause this column to become the new sort column. If this column header
is clicked again, the sort order changes, and the arrow changes its direction. The same functionality
is provided by the popup menu which is displayed when users right-click a column header.

5.5.6 File Attribute Window

This window holds a table where all attributes of one file are displayed. If users right-mouse-click an
image button representing a single file or a line in the Table of Files the corresponding file becomes
selected. The following attributes of the selected file are displayed in the File Attributes Window

Figure 5.10: File Attributes Window.

(shown in Figure 5.10):

� Name: The name of the file or directory.

� Size: The size of the file, respectively the size of all contained files if the item represents a
directory.

� Date: The last modification time of the file or directory in the user selected format.

� Type: The type of the file if the program is able to determine it from the suffix of the file name.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 51

� Directory Depth: The depth in the hierarchy relative to the explored directory.

� Parent: The directory where the file or directory is located.

5.5.7 Group of Files Window

If the selected icon represents a group object, the file names of the contained objects are displayed in
the Group of Files Window (see Figure 5.11). A right mouse click on the table header brings up a

Figure 5.11: Group of Files Window.

popup menu which allows to select one attribute to become the new sorting attribute. The ordering of
files can also be changed by choosing either ascending or descending in this menu. Clicking on one
file name causes this table to get two new columns which now display all attributes of this selected
file.

5.5.8 The Options Panel

This panel (see Figure 5.12) gives the user the possibility to customise the program’s look and feel,
date and time format, and graphical navigation behaviour.

The three possible settings for the look and feel are:

� Java also called cross-platform look and feel. This selection provides good looking compo-
nents on all platforms.

� Windows: The program’s appearance is looking like any standard windows application. Due
to restrictions this look and feel is not allowed on other operating systems than Windows.

� Motif: The appearance and behaviour of the user interface is like on Unix and Linux systems.

A detailed description of functions and procedures which implement the pluggable look and feel
and make it changeable during program execution is given in 5.6.2. Java also provides powerful
possibilities to format Date and Time values. These features are used to let users specify the format
they are familiar with. How to use thejava.textpackage is described in 5.6.

The Simultaneous Panningoption has its effects only if the user has zoomed into a particular
region of the Drawing Area. In this case a black rectangle in the Zoom Overview Window shows this
region and its position relative to the overall display borders. This rectangle can be moved with the
mouse. If the option is selected the update in the Drawing Area is done simultaneously. This gives
the impression of “flying over the surface”, but it may be intolerably slow on some machines.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 52

Figure 5.12: File Attribute Explorer Options Panel.

5.5.9 The About Window

This window (Figure 5.13) shows the current project status. The author, the supervisor, and the license
agreement of the IICM are also contained.

5.5.10 The Configuration File

Any program which wants to offer usability and comfort in use has to be configurable. In the File
Attribute Explorer this mechanism is implemented via a property object. On start up this object loads
the settings from a file namedFAEsettings.par. This file is stored in users home directories to ensure
that this personal settings file can not be overwritten by other users. If users run the File Attribute
Explorer for their first time, normally no configuration file will exist in their home directory. This
exception is caught, the program uses defaults and creates the file to hold the settings for the future.

During program execution, if settings like the used display shape, the look and feel, the chosen
date and time formats, mapped colours, window positions or sizes are changed, they are stored and
remembered in the property object and its configuration file. The file itself stores the date it was
accessed and, in the present version of the File Attribute Explorer, about fifty key value pairs, each
representing one setting.

5.6 Selected Implementation Details

5.6.1 Formatting Date and Time

Java measures date and time values in milliseconds since 1.1.1970. To display date or time objects
they have to be converted into strings that are in the proper format. First, the format should conform
to the conventions of the end user’s locale. For example, Austrians recognise 20.4.98 as a valid date,
but Americans expect that same date to appear as 4/20/98. Second, the format should include the

CHAPTER 5. FILE ATTRIBUTE EXPLORER 53

Figure 5.13: File Attribute Explorer About Window.

necessary information. This section explains how to format dates and times in various ways and in
a locale-sensitive manner. Following these techniques the File Attribute Explorer displays dates and
times in the appropriate format chosen by users in the Options Panel. Formatting dates and times
depending on a selected locale with theJava.text DateFormatclass is a two-step process. First, an
instance of theDateFormatclass is created with thegetDateInstancemethod. The formatted date
string is then obtained by invoking theformatmethod. The following example is taken from the File
Attribute Explorer classRule.javawhich does the labeling on the axes in the Drawing Area. If the
file date is drawn on one of the axis, this class puts the date in the chosen format on the axis with the
drawStringmethod.

import java.text.*;
...
DateFormat dateFormatter;
DateFormat timeFormatter;
...
dateFormatter = DateFormat.getDateInstance(DateFormat.SHORT,LocalDateString);
timeFormatter = DateFormat.getTimeInstance(DateFormat.SHORT,LocalDateString);
...
text = timeFormatter.format(new Date((long)currentValue*65536));
text = dateFormatter.format(new Date((long)currentValue*65536));
g.drawString(text, i+pixelGap+4+timelength-fontMetrics.stringWidth(text), 8);

The preceding code example specified the SHORT formatting style. This style is just one of the
predefined formatting styles that theDateFormatclass provides. In Table 5.3 the different date styles
depending on format and locale settings are displayed. For time values and even for numbers the
process is analogous. The possible time formats are listed in Table 5.4.

CHAPTER 5. FILE ATTRIBUTE EXPLORER 54

Style US Locale British Locale German Locale
DEFAULT 10-Apr-98 10-Apr-98 10 Apr.98
SHORT 4/10/98 10/4/98 10.04.98
MEDIUM 10-Apr-98 10-Apr-98 10 Apr.98
LONG April 10, 1998 April 10, 1998 10 April 1998
FULL Friday, April 10, 1998 Friday, April 10, 1998 Freitag, 10 April 1998

Table 5.3: Date formats using different locales.

Style US Locale British Locale German Locale
DEFAULT 3:58:45 PM 3:58:45 PM 15:58:45
SHORT 3:58 PM 3:58 PM 15:58
MEDIUM 3:58:45 PM 3:58:45 PM 15:58:45
LONG 3:58:45 PM PDT 3:58:45 PM PDT 15:58:45 GMT+02:00
FULL 3:58:45 o’clock PM PDT 3:58:45 o’clock PM PDT 15.58 Uhr GMT+02:00

Table 5.4: Time formats using different locales.

5.6.2 Changing the Look and Feel

In Java the Swing user interface manager must figure out which look and feel to use. In the File
Attribute Explorer users specify their preferred look and feel in the Options Panel. To specify it,
theUIManager.setLookAndFeelmethod is invoked with the desired look and feel as parameter. The
following code is part of theFAExplorerclass and shows how the program sets its look and feel at
program start or when the user selects a new look and feel.

...
static String winString = "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";
static String javaString = "javax.swing.plaf.metal.MetalLookAndFeel";
static String motifString = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";
...
public void setLookAndFeel()
{

String command;
switch(selectedLookAndFeel)
{

case 0 : command = javaString;break;
case 1 : command = winString;break;
default: command = motifString;break;

}
try
{

UIManager.setLookAndFeel(command);
}
catch (Exception exept) { }
if (!init)
{

SwingUtilities.updateComponentTreeUI(window);
if (filesTable!=null) SwingUtilities.updateComponentTreeUI(filesTable);
DrawArea.changeLookAndFeel();

}
}

CHAPTER 5. FILE ATTRIBUTE EXPLORER 55

To be able to change the look and feel during program usage, again thesetLookAndFeelmethod
with the new selected parameter is called. Finally this change is reported to the UI-Components by
performing theupdateComponentTreeUImethod with these components as parameter.

5.7 Future Work

A visualisation tool always can be improved in many ways. In File Attribute Explorer problems can
occur when to many files have exactly the same attributes. During tests this occurred sometimes when
“program directories” were analysed, because all contained files had the installation time as their last
modification time attribute. Users of course want to zoom into these groups wondering why they do
not get the contained files spread over the whole display. To overcome this problem, these files where
layed out side by side if zooming did not help. The results were not really satisfying because the
labels on the rules were no longer correct, and a better solution should be found.

For the FAE to become a real alternative to existing file explorers two main shortcomings have
to be removed. First typical not implemented authoring functions like delete, cut, copy, paste, move,
etc. should be added. All these functions change the current display and have to be handled with
appropriate events.

A Preview or Open capability would improve functionality and usability, however is seems diffi-
cult to implement. The two problems that have to be solved are:

� Determine the file type: It seems impossible to implement a file type recognition algorithm
which works on all platforms. Existing approaches for example try to match file type suffixes
against types without guaranty that a file ending with “.gif” is an image file. A so called
“magic number test” tries to find informations about the file type in the file header, but many
files without such file header information exist.

� Determine the application: This issue needs to write operating system specific code. Know-
ing the file type would be enough to raise the standard application on Microsoft Windows sys-
tems (under the condition, that an application is registered as standard for this type). However
this is not possible using other operating systems. To overcome this problem a configurable
application registration could be written.

Chapter 6

Search Engines

6.1 Introduction

Chapter 3 centred on what multidimensional visualisation means and why it is interesting to provide
graphical views as an alternative to textual output of information. This chapter pertains to the process
of searching for documents and resources on the World Wide Web, including why and how result
sets are visualised, and how the extraction of displayable information from metadata, content, and
structure is done. Many existing search engines do this extraction in one of many possible ways and
use it to calculate estimated relevances. The found resources are then displayed as a linear list sorted
by their estimated relevance. Unfortunately, much of the information about the result set which is
collected from search engines is not presented to users.

Documents are important sources of information. Document metadata consists of elements such
as author, publisher, and date of publication (see Chapter 2). Keywords comprise an intermediate form
of document data. They can be viewed as both content and metadata. Metadata forms the primary type
of information in library systems. The World Wide Web contains large volumes of documents which
are poorly characterised in terms of both metadata and content descriptions. Automated methods
for indexing documents have become an important research issue since there are not enough human
resources available to index the documents that are published either in paper or in electronic formats.
The methods for indexing documents are normally lexically-based but this is not the only kind of
information available in the native full-text. Questions in this context are, how to prepare adequate
document representations or surrogates, and how to integrate metadata and derived indexes. Another
part of this chapter focuses on how to request, and how to retrieve information on certain documents.

Unfortunately, it is not an aim of existing Web search tools to standardise their query languages
or their format of returned results. As a contrast, the Z39.50 protocol is described. This standard
provides a protocol for information retrieval, which is independent of database and computer envi-
ronment. The use of this format could improve and speed up the process of searching for information
on the World Wide Web and would allow visualisation applications to build on search result sets
delivered from arbritrary search engines.

6.2 Types of Search Tools

A variety of different services are currently offered on the Internet. They can be subdivided into
the following categories which differ in how they gather the information and whether they are topic-
specific or not.

56

CHAPTER 6. SEARCH ENGINES 57

Search Engines A search engine is a database system designed to index Internet addresses (URLs,
usenet, ftp, image locations etc). The typical search engine contains a special program often
called a spider (also sometimes called a “bot” or “crawler”), the spider accepts a URL, it then
goes to that web site and retrieves a copy of the file found there. Sometime later the search
engine processes that copy of the file, distilling it down to the essential data and storing it in
a data base. The richness of stored attributes and the speed of searching its database is what
determines the quality of the search engine. In short, given a URL, an automated process
occurs which results in including Web sites into the search engines database also called its
index. Much effort is spent on improving data structures, information extraction, and page
ranking by the different search engines. Problems still remain with the exponential growth,
dynamic resources and ranking pages. (See Section 6.3).

Meta-Search Engines: A meta search engine is a search tool that does not create its own database of
information, but instead searches those of other engines. “Metacrawler”, for instance, searches
the databases of each of the following engines: Lycos, WebCrawler, Excite, AltaVista, and
Yahoo. Using multiple databases will mean that the search results are more comprehensive, but
slower to obtain.

Subject Directories: Subject directories organise Internet sites by subject, allowing users to choose
a subject of interest and then browse the list of resources in that category. Users conduct their
searches by selecting a series of progressively more narrow search terms from a number of
lists of descriptors provided in the directory. In this fashion, users “tunnel” their way through
progressively more specific layers of descriptors until they reach a list of resources which meet
all of the descriptors they had chosen. A subject directory will not have links to every piece of
information on the Internet, since they are built by humans (rather than by computer programs),
and are much smaller than search engine databases. Moreover, every directory is different and
their value will depend on how widely the company searches for information, their method of
categorising the resources, how well information is kept current, etc.

Subject Guides: Subject Guides are Web pages of collections of hypertext links on a subject. Thus
they are a specialisation of the above described Subject Directories. and they are maintained
by “expert” subject specialists, agencies, associations and hobbyists who are familiar with the
topic, which guarantees high quality. A disadvantage for users who just want to discover in-
formation on a certain topic is, that they have to find a Subject Guide on this topic first. To
overcome this problem so-called “Guides to Guides” are available.

Several Internet sites look at performance, index size and effectiveness of common search tools
[Ost99, Bar98]. These sites take also an in-depth look at currently used crawling and ranking meth-
ods and compare them. All of the search tools typically produce textual organised output. Documents
which match a certain query are displayed, ranked by relevance, starting with the document with the
highest estimated relevance.

6.3 Relevance Calculation

One of the keys to offer a popular search engine is to calculate appropriate relevances. This compari-
son between search terms and document content is quite difficult. Often this is done by just counting
occurrences of search terms in the content but there is no guarantee that a simple occurrence of a
term really makes the document relevant. So they also check if the terms appear near the top of a
web page, such as in the headline or in the first few paragraphs of text. They assume that any page

CHAPTER 6. SEARCH ENGINES 58

Search Tool Type Characteristics Examples
Search Engines Full-text indexing of Web pages. Alta Vista, Northern Light,

Search by keyword with exact match Fast Search, Infoseek,
compiled by robot programs. Hotbot, Lycos, Excite,
No browsing, no subject categories, Google.
minimal human oversight.

Meta Search Engines Search many individual search engines. Metacrawler, Inference Find,
Results compiled into convenient format. Dogpile, Metafind,

Savvy Search.
Subject Directories Hand-selected sites picked by editors Librarians’ Index, Infomine,

more or less carefully. Yahoo!, Galaxy
Organized in hierarchical categories. Lycos’s A2Z, Looksmart.
Annotated with descriptions.
Search only in categories and descriptions.

Subject Guides Collections of hypertext links on a subject.Argus Clearinghouse,
Compiled by “expert” subject specialists, WWW Virtual Library.
agencies, associations, and hobbyists.

Table 6.1: Internet Search Tools Overview.

relevant to the topic will mention those words right from the beginning. This method is often called
location/frequency method. Many major search engines follow it to some degree but they differ in
some details. To begin with, some search engines index more web pages than others. Some search
engines also index web pages more often than others. The result is that no search engine has the exact
same collection of web pages to search through.

Other search engines use link popularity to determine the estimated relevance. These systems
make the assumption that pages which have a lot of links pointing at them have higher relevance
than others because documents with many links to them are probably well-regarded on the Internet.
A major disadvantage of this attempt is the fact, that new documents (although they are potentially
relevant) do not get high ranks because they are not referenced often when they are new.

Trustworthy metadata could help to improve relevance calculation, but in current search engines
they are often left out of consideration which has its reason in the attempt of users who try to push
their documents by listing much, often not correct metadata. All these versions lack in some way,
they can not guarantee up-to-date data and they are often deceived by advertisers who try to increase
their hits.

“Meta tags are what many web designers mistakenly assume are the secret to propelling their web
pages to the top of the rankings. HotBot and Infoseek do give a slight boost to pages with keywords
in their meta tags. But Lycos doesn’t read them at all. Search engines may also penalise pages or
exclude them from the index, if they detect search engine spamming. An example is when a word
is repeated hundreds of times on a page, to increase the frequency and propel the page higher in the
listings. Search engines watch for common spamming methods in a variety of ways, not the least by
following up on complaints” [Ost99].

Other approaches try to combine the robot generated index with associated directories. These
systems are called “hybrid” search engines and may give a higher relevancy to documents occurring
in both the index and the directory.

CHAPTER 6. SEARCH ENGINES 59

6.4 Intelligent Agents

In connection with searching on the World Wide Web this terminus is often used for tools that
try to provide information about structure, environment and content of resources. For example,
Alexa [KG99] is a tool which suggests similar documents for each visited resource. Many other
systems use link popularity to calculate estimated relevances. Many of these agents also try to learn
from user habits and try to suggest documents that are similar to documents marked as interesting in
previous sessions.

6.5 The Z39.50 Protocol

The importance of having inter-operable information retrieval networks, to find and exchange quality
information electronically, has become paramount. To facilitate information retrieval across the di-
verse collections of data resources now available, a non-proprietary standards-based communications
protocol for information retrieval, which is independent of database and computer environment, is
essential. Z39.50 is such a standard.

“ANSI/NISO Z39.50-1995 (ISO 23950), is one of a set of standards produced to facilitate the
interconnection of computer systems” [ANS95]. The standard specifies formats and procedures gov-
erning the exchange of messages between a client and server, enabling the user to search remote
databases, identify records which meet specified criteria, and to retrieve some or all of the identified
records and is concerned, in particular, with the search and retrieval of information in databases. One
of the major advantages of using Z39.50 is that it enables uniform access to a large number of diverse
and heterogenous information sources.

Z39.50 recognises that information retrieval consists of two primary components:

� Selection of information based upon some criteria.

� Retrieval of that information.

The standard provides a common language for both activities. Z39.50 standardises the manner in
which the client and the server communicate and inter-operate even when there are differences bet-
ween computer systems, search engines, and databases.

Inter-operability is achieved through standardisation of

� Codifying mechanics: a standard way of encoding the data for shipment along the wire.

� Content semantics: a standard data model with shared semantic knowledge for specific com-
munities to allow inter-operable searching and retrieval within each of these domains.

6.5.1 Codifying Mechanics

Z39.50 is a wire protocol that simply specifies what gets sent across the wire. Z39.50 defines a
network protocol within the application layer of the OSI1 model and requires a reliable transport
service such as TCP2. The standard specifies formats and procedures governing the exchange of
messages between a client and server. The messages sent between origin and target are specified

1Open Systems Interconnection
2Transfer Control Protocol

CHAPTER 6. SEARCH ENGINES 60

in Abstract Syntax Notation One (ASN.1) [Sul99]. The Basic Encoding Rules are used to serialise
the ASN.1 structures. The protocol then defines several query languages for specifying search and
various record syntaxes that can be used for transferring records from the server to the client.

6.5.2 Content Semantics

Coupled with Z39.50 standardised message coding is the concept of shared semantic knowledge.
Various classes or domains of information content have been established by community consensus
to provide a shared understanding of structure and attributes within that domain. This enables uni-
form access to heterogeneous information sources within a domain. The basic architectural model
of Z39.50 revolves around this concept of content semantics. The server presents a record-based ab-
stract view of its database within a semantic domain, i. e. a virtual database representation containing
records with the logical structure of the underlying database being hidden. Associated with each vir-
tual database are a set of access points (or query attributes) that can be used for searching and set of
retrieval points (or schema elements) for presenting the data back to the user.

6.5.3 Future Use

Users, consumers, or providers need tools to keep up with the explosive growth of networked informa-
tion. It would be essential to use a common protocol like Z39.50 as an open standard for information
retrieval. Based on a client/server architecture and operating over the Internet, the Z39.50 protocol is
supporting an increasing number of applications - fulfilling the searching demands of the emerging
information age. However the protocol is not really widespread yet, and supporting it for a wider
distribution is unfortunately no aim of current available search tools.

6.6 Result Set Visualisation

As shown in this chapter, resources on the World Wide Web can be treated as multidimensional data.
Thus they become an interesting data source for visualisation. The principles shown in Chapter 3 are
already used in many different systems. The mapping from attributes to graphic primitives used in
the visualisations becomes more and more sophisticated. Such graphic primitives are often used in
several systems to show similarities between documents and keywords. The two presented techniques
are reused in popular document visualisation systems.

6.6.1 Tile-Bars

Tile-Bars are graphical primitives for users of information access systems, that show the relation-
ship between query terms and the documents which contain them. Tile-Bars simultaneously and
compactly indicate relative document length and query term overlap, frequency and distribution. A
Tile-Bar shows where a keyword occurs in a document, and maps the number of occurrences to colour
saturation. The patterns in a column of Tile-Bars are meant to help users make fast judgements about
the potential relevance of the retrieved documents. An unexpected benefit of the interface is that be-
cause it requires users to specify their queries as a list of topics, better rank orderings can be obtained
than with standard information retrieval ranking mechanisms. Figure 6.1 shows the Tile-Bars of five
documents matching the keywords “Osteoporosis”, “Prevention”, and “Research” [HP96].

CHAPTER 6. SEARCH ENGINES 61

Query:

FR88513-0157

AP: Older Athletes Run For Sience

AP: Groups Seek $1 Billion a Year for Aging Research

SJMN: Women´s Health Legislation Proposal

FR: Committee Meetings

Documents
Research

Prevention,

Osteoporosis,

Figure 6.1: TileBar visualisation of 5 documents.

6.6.2 Arrow-Spheres

This approach visualises each documents as a sphere with arrows emanating from within. Each arrow
corresponds to a particular keyword, and its length corresponds to the number of occurrences of this
keyword. Figure 6.2 shows one template with the different keywords “browsing”, “network”, “link”,
and “hypertext”. In the first of the three files the keywords “browsing” and “hypertext” occur, while
the second document contains the keywords “browsing”, “hypertext”, and “link”. Finally, the third
resource matches the keywords “network” and “link” [Hof96].

Template Documents

(a) (b) (c)

Figure 6.2: Arrow-sphere visualisation of 3 documents.

6.6.3 Metadata Visualisation on Axes

Once the metadata is retrieved, it is viewed as multidimensional data. The resources are presented in
a two or three dimensional object space or in matrices of plots. It is not necessary to load the content
of documents for this approach which results in relatively short load time and makes it applicable for
visualisation of search result sets. The lack of trustworthy metadata for many resources is a problem,
as is the absence of search engines which provide metadata information via well-defined interfaces.
The Search Result Explorer overcomes the second problem by using the xFIND search engine de-
scribed in Chapter 7. The problem of incorrect, incomplete, or missing metadata still remains. Many
other systems followed this approach (e.g Envision). The difference to the second category, is that in

CHAPTER 6. SEARCH ENGINES 62

the above described visualisations, the axes have an inherent meaning which they do not have in the
following category.

6.6.4 Force-Based Methods

This technique was already mentioned in Section 3.3.6. The positioning of the documents is an itera-
tive process which tries to minimise the distances between similar items. In the special case of search
result sets, the time consuming layout process is one problem. Additional difficulties arise because
content information respectively word occurrence frequency has to be known first. As mentioned,
specified meta keywords are often not trustworthy and it is better to extract appropriate keywords
from the content. Thus a search engine which provides this this term frequencies (e.g. xFIND) has to
be used, or (not recommended) the content has to be loaded and the analysis has to be done for every
document. In visualisations that follow this approach, spatial distances between documents indicate
similarity and the axes (two or maximal three) have no inherent meaning.

6.7 Summary

The result of analysing the existing tools is the fact, that although they use completely different
techniques, they often provide similar functions in their display to improve usability, understanding
and overview of the presented resources.

In summary, much research is currently being done to solve the problem of effective information
discovery but no complete solution is yet in sight. Another serious disadvantage is the isolated work
of the particular tools, which leads to high network load. Problems also occur due to the absence of
effective update mechanisms. The tools have not enough capacity to deal with the enormous number
of new documents to say nothing about keeping their index or directory consistent and up to date.

Chapter 7

xFIND eXtended Framework for
Information Discovery

7.1 Introduction

At the Institute for Information Processing and Computer Supported New Media (IICM) much re-
search has been done in the field of information discovery, information management, and computer
based training. As described in Chapter 6 commonly available search engines cause high network and
server loading because the same Web content is searched by ever more robots. Other shortcomings
are that these search engines provide no quality ratings, they can not deal with humans with different
skills and interests, and narrowing searches to specific domains is not supported. Thus the number
of delivered results is often high, but the majority of documents do not contain relevant information.
A solution to these problems is a distributed hierarchical search index, a technique developed by the
Harvest research project [BDH+94]. Such systems often try to provide additional information and
advice relevant to the particular situation with the intention to improve problem solving for users.
The possible areas of use of such systems go far beyond search abilities in the World Wide Web,
they can cover knowledge management, corporate decision systems, Web based training and many
others. Personal needs with respect to the current problem (task specific, position specific), previous
experience and references to further domain knowledge (e.g. problem base, background library and
communication with experts) are also taken into account.

Considering all these facts, points and requirements a group at the IICM has implemented the
first prototype of an advanced search system, HIKS (Hierarchical Interactive Knowledge System)
[DGK+99]. This prototype seems to meet the requirements described above in a wide range of
applications and initiated the development of the future oriented concept xFIND, which is described
in brief in this chapter.

7.2 Concept

“xFIND is a future-oriented knowledge discovery system” [GPM99]. The distributed concept of
xFIND guarantees high scalability and allows the management of a huge amount of information.
From the beginning it was designed to be an open system which means that it provides an API to
search external databases. Another improvement is the ability to deal with highly dynamic resources.
Systems with highly dynamic content can inform the system about changes and also to be re-indexed.

The modular xFIND system is subdivided into Gatherers, Indexers, and Brokers which can be

63

CHAPTER 7. XFIND EXTENDED FRAMEWORK FOR INFORMATION DISCOVERY 64

configured by users to concentrate on their favourite areas of interest or to search only certain infor-
mation locations. This concept causes a reduction of network and server loads. xFIND also improves
search results using meta data sets, quality rating labels and Web site descriptions. In contrast to other
systems, xFIND enables users to retrieve the statistical information which is collected during the in-
dexing. With help of xFIND users can influence the search process by specifying different weights for
the occurrence of search terms in different parts of the resources. The system can also take protected
data into account if the metadata information of these documents is made visible to the system. In this
case, if such a document matches a query, the system will report the provided metadata and a com-
ment, that the found resource is write protected. Another interesting feature of xFIND is the ability
to specify which attributes of matching documents should be reported. Thus users can get additional
information of particular documents on demand which makes it easier to choose the desired document
from the search result set. To provide quality information about indexed resources, the xFIND team
has defined xQMS (see Section 2.6), a meta data scheme for classification of resources depending on
their richness of information and fitness for use. As an important part of the scheme xQMS includes
fields which can be used to ensure that the quality metadata is trustworthy.

7.3 Implementation

To achieve platform-independence xFIND is implemented in Java. In order to achieve scalability it is
split into the following three main parts:

� Gatherer: This component visits servers, sites and resources and collects the metadata.

� Indexer: Responsible for the management of the knowledge repository.

� Knowledge Broker: Interacts with the user and sends queries to one or more Indexers and
retrieves the results.

7.3.1 The Gatherer

Figure 7.1 shows how these components are arranged and how they work together. Design consid-
erations, functions and possible configurations of these three parts are described next: The Gatherer
performs the task of visiting servers and gathering information from various sources as well as pre-
processing the document data. It identifies title, keywords, type, language, and creation or modifica-
tion time. In case of HTML files also links, images and other embedded objects like Java applets and
meta data fields of such documents are taken into account. As a leap ahead it is mentioned here,that
especially this information extracted from the content become an important part for visualisation in
the Search Result Explorer (see Chapter 8). It also creates an electronic fingerprint of each infor-
mation object. This fingerprint suffices to determine the trustworthiness of information in case of
replication and allows detecting the origin of every piece of information. Embedded meta data in the
document and external meta data will be processed. xFIND allows a wide range of configuration for
pre-processing this data and handling meta data sets. The first implementation supports the following
metadata sets:

� Dublin Core Metadata (DC) described in Section 2.4

� Learning Object Metadata (LOM) described in Section 2.5

� xFIND Quality Metadata Scheme (xQMS) described in Section 2.6

CHAPTER 7. XFIND EXTENDED FRAMEWORK FOR INFORMATION DISCOVERY 65

Figure 7.1: xFIND Architecture

� Special xFIND Metadata extracted from the content (e.g. number of embedded links or im-
ages).

Furthermore, the system allows the conversion between these meta data formats. The pre-processing
and the reduction of information along with the usage of additional meta data improves the retrieval
process. It should be pointed out that especially for learning environments sets of meta data are very
useful. Unfortunately authors of information rarely enrich their documents with such additional de-
scription. xFIND supports authors to define meta data for a whole document structure, a directory or
a particular document by inserting additional meta data files. More specific meta data overrides more
general. Consequently, the enrichment with meta data is easier for authors and will help to improve
the quality of information received by users. The first implementation of the xFIND Gatherer is able
to process HTTP1 sources and information stored in local file systems. The open concept allows to
handle any other protocols and information systems. Best performance and reduction of server and
network load can be reached by using a local Gatherer. A Local Gatherer can even be configured
to search for read-protected information. Only pre-processed information will be provided to the
xFIND system. This feature enables users to search for such read-protected information. They only
get a configurable predefined set of meta information, so the original information remains protected.
As already mentioned, xFIND will also serve active information systems. Therefore, an API and a
communication layer has been designed. So active information systems (e.g. highly dynamic infor-
mation like news tickers or stock rates) are able to contact xFIND and inform the system about new
and modified pieces of information. External systems for information enrichment (like expert rating
systems, announcement systems, collaboration systems, etc.) may be processed similarly. Gather-
ers also process meta descriptions about information sources and summarise statistical data about
information sources. The latter may be used for detecting highly dynamic information or may give a
summary about activities of areas of interest. This functionality is one possible approach to support
the lifecycle of information in learning environments [GPM99].

1Hypertext Transfer Protocol

CHAPTER 7. XFIND EXTENDED FRAMEWORK FOR INFORMATION DISCOVERY 66

7.3.2 The Indexer

Indexers are the connection between Gatherers and Brokers. Their task is to allow the Knowledge
Broker to assign words, phrases and meta data to documents, and to provide statistical data (e.g.
term frequencies). They store information about many kinds of resources from Web pages to Web
areas (e.g. number of changed or new documents for web areas). The indexer manages the important
communication with external systems (ranking systems, ACF2, archiving systems, etc.). The pre-
processed data can be fetched or sent compressed to one or more Indexers. An Indexer may be
specialised on a particular topic or can be dedicated to a project group or a department.

“Only authorised Indexers are allowed to operate with Gatherers. The latter, if trusted, are
allowed to send additional information to the xFIND system or can inform xFIND about new or
modified pieces of information”[GPM99].

Both, descriptions and external additional information will improve the information structure for
the learning process with respect to the information lifecycle. Furthermore, xFIND allows either the
whole set of information of the Indexer or particular parts (dependent to topics or information sources)
to be replicated from one Indexer to arbitrary others. The replication mechanism will reduce network
traffic problems and will support a global learning platform. Fingerprints for all pieces of information
and the relation to their origin will help to detect changes of contents. This feature is very important
for information sharing between several companies and research centres. It should be mentioned that
search facilities of external information systems can also be used for the distributed search process by
using an xFIND API or a corresponding wrapper.

7.3.3 The Knowledge Broker

The starting point for user interactions is the Knowledge Broker. In a centralised system, a high re-
quest rate often leads to an intolerably high response time. Taking this problem under account, the
Knowledge Broker is also following the distributed design concept of xFIND. As already discussed
any Indexer manages parts of the whole knowledge repository and therefore Knowledge Brokers must
distribute their search queries to a particular set of Indexers corresponding to the current search query.
Due to the open concept searching in existing external information sources is possible. E.g. exist-
ing Hyperwave knowledge management systems are directly searchable and results can be merged
with xFIND results. Knowledge Brokers can also be specialised for a particular topic. Furthermore,
Knowledge Brokers may consider past search results and user ratings to improve future search queries
and the quality of information. A Knowledge Broker is also able to transform search queries. Im-
proved quality of information can be achieved by searching only problem-specific Indexers or parts
of them. The feedback from users can influence the Indexers being searched. Due to the distributed
architecture, Knowledge Brokers can be individually tailored for a division, a department, a group of
employees or even for a single user.

“Unlike common push tools or agent systems for information discovering, the discussed concept
will not cause multiple network loads for any user. Quite similar to an agent system the Personal
Knowledge Broker is adaptable to user habits and their current problems”[GPM99].

Personalised Brokers will inform the user in case of new relevant information. In combination
with an ordinary web browser, such personalised Brokers can provide additional information. The
system is able to find out relevant keywords with respect to the users current interests. Such keywords
may provide dynamically generated links, which will process a search by clicking and therefore
supplying additional information. Furthermore, relations to similar documents and links to expert

2Automated Collaborative Filtering

CHAPTER 7. XFIND EXTENDED FRAMEWORK FOR INFORMATION DISCOVERY 67

or user opinions can be dynamically added to the original document. Terms of interest can then be
marked within each document’s result presentation.

7.4 Query Communication Format (QCF)

QCF is the query language standard for xFIND systems. Since this system is heavily under construc-
tion, here only an example of using this query language to get displayable search result attributes is
shown. Papers describing the QCF and xQMS formats will follow soon and will also be present on
the xFIND projects home pagexfind.iicm.edu. The query which is sent to the xFIND system is
basically an array of strings. The array length depends on the number of terms the query consists of,
the number of query attributes the user wants to specify, and the number of attributes the user wants
to retrieve. The array itself is divided into three parts:

� Query: This first part contains the query, the search words and boolean operators which com-
bine these search words. The possibility of specifying where the search words should occur
enables the user to influence the results. For example its is possible to search for a string
“Graz” in the Keywords field AND the string “IICM” in the content using one such query. All
these settings influence the estimated relevance of matching documents. Another improvement
to common search engines is the ability to provide prefix, infix and postfix notation in the search
terms. This offers the possibility to use wildcards such as ‘*’,‘?’.

� QueryAttributes: In this second part of the string array users can specify settings which also
influence the search. For example, the number of reported results or the amount of returned
keywords. The search process can be further configured by varying the weights of words which
occur in different parts of the document. For example, the system can be told to give an oc-
currence of a search term in the keywords the weight five and an occurrence in the content the
weight one.

� ReturnAttributes: In this section the user or application cooperating with xFIND specifies
which attributes of the found results to return. This very flexible procedure allows to send
various kinds of queries from general to very special with full control of the result formats.

An example of building the above listed string array parts from a query used in the Search Results
Explorer is described in Chapter 8.

7.5 xFIND Quality Metadata Scheme (xQMS)

xQMS is a metadata format under definition at the IICM. Besides the attribute set defined in the
Dublin Core Metadata Standard (Title, Description, Keywords, Author, Contributor,. . .) it will also
contain quality information about the found resources (See Section 2.6). These values will also be-
come an interesting field for information visualisation in future.

7.6 xFIND on the Web

On the project’s homepage up to date informations about the concepts, the current project status, the
team and the ongoing work can be found. A Search Query can be formed and sent to the server via
the form shown in Figure 7.2 or a servlet can be used. It shows the extended possibilities that are

CHAPTER 7. XFIND EXTENDED FRAMEWORK FOR INFORMATION DISCOVERY 68

provided by the xFIND system. The user can influence how the documents should be ranked, by
putting different weights on keywords, title, head and contents of the resource. This feature is not
possible using other search services and should be a significant improvement. Additional attributes
and meta data can also be requested via this dialog and this information is presented with the found
documents, which improves the process of choosing one of the found documents. The results are
presented in a textually oriented display which can also be configured by users. They are listed,
sorted by a chosen attribute (e.g. estimated relevance or last modification time). The form and format
of search results range from only the title or URL of the found documents to everything including
title, URL, keywords, description and other existing meta data information.

Figure 7.2: xFIND Query Window.

7.6.1 Operating fields

The development of xFIND is ongoing, but some projects already coorporate with the system or
use it to obtain descriptions of search results. These applications range from the GENTLE environ-
ment [GPM99, WBT99], a Web based training system also developed at the IICM which will use
xFIND as a dynamic background library,through classic Web applications (Steiermark Hauptserver,
Infomed, ccc-Server), to search result visualisations. The Search Result Explorer described in the
next chapter provides an alternative to classic Web search tools by displaying search results in a two
dimensional plot and providing several functions common in multidimensional visualisation systems.
Furthermore, a force-based search result set visualisation project has just been started at the IICM.

Chapter 8

Search Result Explorer

8.1 Introduction

Since the amount of data increases rapidly on the World Wide Web, it is often difficult to decide
which documents or files contain information users are searching for, and which of the results are up
to date. Even if search engines are used, they typically produce a linear list of matching documents,
ranked by estimated relevance without additional information about the documents (their metadata),
and with no possibility to compare the retrieved documents. Thus much information which could
be accessed and which would perhaps influence and speed up the next actions can not be taken into
consideration. If users are unhappy with the search results, they compose a new query and wait for
the new result. This can take dozens of steps and many minutes.

An attempt to improve this searching process is to visually present all attributes, metadata, and
statistical information of search results. If users are able to compare age, size, last modification time,
estimated relevance, authors, and other meta-information by one look at a graphical presentation,
maybe they can find the relevant documents earlier. Several programs try to display and compare
document attributes in different areas. It is possible to create meaningful two-dimensional displays
by selecting ordinal attributes of the items and using them as axes. Other attributes can be mapped to
size, colour and shape of the displayed graphic primitives.

In this chapter the Search Result Explorer is described. The user interface of the File Attribute
Explorer was adapted to display search results generated by the xFIND search engine.

8.2 Design Principles

The design principles concerning the graphical display overlap those of the File Attribute Explorer
described in Section 5.2. Comparing the user interfaces (Figure 5.1 and Figure 8.1) it can be seen, that
only necessary changes which would make no sense when visualising search result sets, were made.
For example theFlatten Directoryoption was removed. Additional information is displayed in the
Table of Documents (Figure 8.2) and in the Document Detail Window (Figure 8.3). The difference
to the corresponding components in the File Attribute Explorer program are an increased number of
columns (i.e. richer metadata) for each document in the Table of Documents and accordingly more
rows in the Document Detail Window. The sorting possibilities in both tables were adapted to make
each column sortable. In the File Attribute Explorer the axes could be mapped to size, date, name,
and directory depth. The last was removed in the Search Result Explorer and the following attributes
were added:

69

CHAPTER 8. SEARCH RESULT EXPLORER 70

Figure 8.1: The Search Result Explorer Main Window.

Figure 8.2: Table of Documents.

CHAPTER 8. SEARCH RESULT EXPLORER 71

� Relevance: Means the estimated relevance of the document for the given query.

� Host: Specifies the server where the resource is located.

� Number of links: Can be useful to find documents that are tables of contents themselves.

� Number of images: Is the number of all images in the resource.

� Number of scripts: Can be seen as a degree of interactivity of resources.

Additional descriptive information (keywords, description, author,. . .) can not bemapped to axes
but is shown in the Document Detail Window e.g. to decide which document should be opened.
Furthermore, keywords can be used as input for search and filter operations.

� Keywords: This string contains the keywords and their number of occurrences in the resource.
As already mentioned, these keywords are extracted from metadata and content by the xFIND
search engine.

� Author: The person who created, and is responsible for the content of the resource.

� Publisher: The entity responsible for making the resource available in its present form.

� Organisation: The organisation where the resource was created.

� Description

The search and filter functions can operate case sensitive or insensitive and match whole words only.
Section 8.4 describes how the query has to be constructed.

Figure 8.3: Document Detail Window.

CHAPTER 8. SEARCH RESULT EXPLORER 72

Figure 8.4: Search Result Explorer Options Window.

8.3 Options Window

The options different from the File Attribute Explorer are:

� Maximum Result Count: Lets the user specify the number of reported documents. When the
search engine finds more than this number of resources which match the query, it delivers the
number specified here with the highest estimated relevance.

� Number of Keywords: The xFIND search engine extracts the keywords from the meta key-
words and the document content. This results in a large number of keywords which increases
the descriptive information on the one hand, but on the other hand it also increases the load
time. To give users control over this fact, they can specify the number of keywords, they want
to retrieve. The retrieved keywords are ranked themselves by xFIND and reported according to
their estimated relevance.

� Host Running xFIND: The domain name of the server where the chosen xFIND search engine
is running.

� Port: The port number where xFIND waits for search requests.

� WWW-Browser On Unix systems the WWW browser which can display the documents must
be specified (See 8.5.1 for details).

8.4 Communication with the xFIND Server

8.4.1 Query Language

This section covers the process of building the query string to obtain the attributes which are displayed
in the Search Result Explorer. The grammar of queries used in the Search Result Explorer in Bacchus
Naur Form is:

CHAPTER 8. SEARCH RESULT EXPLORER 73

query ::= operand
| operand operator operand

operand ::= term
| (operand operator operand)

operator::= _operator_
|)operator
| operator(
| ’+’
| ’-’
| ’_AND_’
| ’_ANDNOT_’
| ’_OR_’

term ::= String
| key Term
| Term key

key ::= ’*’ | ’?’ | ’%’ | ’_’

In fact this query language differs a lot from the Query Communication Format (QCF), and not all
the capabilities of xFIND are implemented yet.

Query Example

In the following example, the query is assumed to be “Graz AND Marathon”. The three parts of the
string array are:

Query: This part of the array holds the strings an the operators between them in the format required
by xFIND. The following example shows this part for the above chosen example:

{"3","Query","1.0","6","","Graz","op","+","","Marathon"}

The first number specifies the number of parts of the string. The second term, “Query”, gives
the current part its name and is followed by the current version number (“1.0”). The following
term holds the number of key value pairs in the Query part. The two empty strings in front
of “Marathon” and “Graz” tells xFIND to search for these terms in every part of the indexed
documents. A non empty string would force the search engine to narrow its search to certain
parts of resources. (E.g. “K”,“Graz” would find only documents where “Graz” is part of the
keywords). The term “op” is the key of an operator and is followed by an boolean operator or
by a parenthesis.

QueryAttributes: In QCF this part offers possibilities to influence the search (e.g by specifying
different weights for different parts of resources). In the Search Result Explorer the following
syntax is used:

{"QueryAttributes","1.0","6","Object.ResultLimit","200",
"Object.keywords.Resultlimit","10"}
"Object.keywords.percentagelimit.maximum","1"}

This part consist of its name (“QueryAttributes”), its version number (“1.0”) and the num-
ber of returned documents (“200” in the example). This number determines how many

CHAPTER 8. SEARCH RESULT EXPLORER 74

document-attribute-records are returned if the number of hits is larger than this limit. This
value can be specified by the user in the Options Dialog. TheObject.Keywords.Resultlimit
determines the number of returned keywords (“10” in the example). The third key/value pair
Object.keywords.percentagelimit.maximumis necessary to retrieve object keywords. It speci-
fies, that only keywords are reported, which occur in less than this percentage of documents.

ReturnAttributes Finally the interesting attributes which will be visualised have to be requested.
This part of the query string starts with:

"ReturnAttributes","1.0","26"

specifying the name of this part of the query string, its version number, and the number of
requested attributes. The attributes requested from xFIND and afterwards used in the Search
Result Explorer are listed in Table 8.1. Between each attribute an empty string is inserted, to
strictly follow the concept of key value pairs.

ReturnAttribute Name Return Value Program Terminus
Object.Title Title or Filename Title
Object.Url URL of the resource Host and URL
Object.Last-Modification-Time Time since 1/1/70 in seconds Date
Object.KeyWords Keywords and their occurrencesKeywords
Object.File-Size Size of plain file in Bytes Size
Object.Url-Reference String of URLs Link Count
Object.Scripts String of Script-Names Script Count
Object.Pictures String of Image Names Image Count
Site.Description Meta Description Description
Site.Contributor.Author, Meta author information Author
Site.Contributor.Publisher Publisher Publisher
Site.Contributor.Organization Organization Organization

Table 8.1: Return Attributes requested by the Search Result Explorer.

Once the server has accepted a new request, it matches the query to its index and delivers the attributes
of found documents back to the SRE. The SRE takes these values, calculates proper formats, sorts
the data, stores the resource attributes into its data structure, and presents the icons in its display.

8.4.2 Receiving Document Attributes

This section describes the process of reading, calculation and storage of the search results sent by
xFIND. The sent data itself also consists of three parts:

1. Header: In this part the search engine reports the number of documents which match the given
query. This value is used to initialise the data structures and to provide a meaningful output of
the progress bar.

2. Results: The search engine sends key value pairs where the key is one of the requested terms
from Table 8.1 followed by its value. This process is repeated for each document which is part
of the search result set. To provide meaningful information some of these values have to be

CHAPTER 8. SEARCH RESULT EXPLORER 75

processed into proper formats. For example the last modification time is specified in seconds
since 1st January 1970 which has no equivalent Java datatype and the number of links, images
and scripts has to be calculated from the returned URLs, image names, and script names.

3. Footer: The footer reports the search costs and closes the connection.

8.5 Selected Implementation Details

8.5.1 Controlling a WWW Browser

TheBrowserControlclass allows to control the system’s native browser from within any Java appli-
cation. With a little platform-specific Java code, the system’s default browser can be used to display
any URL. The second implementation issue is to recognise that a browser is already running, and to
use it if possible.

On Unix, for Netscape, the command is:

netscape http://+desired URL}

And, if the browser is already running it is:

netscape -remote openURL(http://+desired URL)

Under Windows, it took much exploration to find something equivalent that would not open a new
browser for each request. The used command, in fact, works better then the Unix command, because
it invokes the default browser rather than the hard-coded way to run a browser on Unix. If Microsoft’s
Internet Explorer is the default browser, then the page will be displayed in Internet Explorer.

To display a page, the following command on Microsoft Windows is used:

rundll32 url.dll,FileProtocolHandler http://+desired URL

The following code shows the staticdisplayURLmethod, which opens the URL of the double clicked
icon in an available browser on Unix or Windows.

public static void displayURL(String UNIX_PATH, String url)
{

private String WIN_PATH = "rundll32";
private String WIN_FLAG = "url.dll,FileProtocolHandler";
private String UNIX_FLAG = "-raise -remote openURL";

boolean windows = isWindowsPlatform();
String cmd = null;
try
{
if (windows)
{

cmd = WIN_PATH + " " + WIN_FLAG + " " + url;
Process p = Runtime.getRuntime().exec(cmd);

}
else
{

CHAPTER 8. SEARCH RESULT EXPLORER 76

cmd = UNIX_PATH + " " + UNIX_FLAG + "(" + url + ")";
Process p = Runtime.getRuntime().exec(cmd);
try
{

int exitCode = p.waitFor();
if (exitCode != 0)
{

cmd = UNIX_PATH + " " + url;
p = Runtime.getRuntime().exec(cmd);

}
}
catch(InterruptedException x)
{

System.err.println("Error bringing up browser, cmd=’" +cmd + "’");
System.err.println("Caught: " + x);

}
}

}
catch(IOException x)
{
System.err.println("Could not invoke browser, command=" + cmd);
System.err.println("Caught: " + x);

}
}

The isWindowsPlatformfunction determines the operating system, on which the program is run.
Under Unix, Netscape has to be running already for the “-remote” command to work.

8.5.2 Customising Table Display and Event Handling

The Table of Documents provides features which makes each line in the table equivalent to a graphic
primitive in the Drawing Area. In order to achieve this behaviour the detection of row selections and
deselections in the table, handled by a selection listener, had to be implemented.

ListSelectionModel rowSM = table.getSelectionModel();
rowSM.addListSelectionListener
(

new ListSelectionListener()
{
public void valueChanged(ListSelectionEvent e)
{

ListSelectionModel lsm = (ListSelectionModel)e.getSource();
if (!lsm.isSelectionEmpty())
{

if (e.getValueIsAdjusting()) return;
if (!init)
{

if (!dontSetFocus)
{

int selectedRow = lsm.getMinSelectionIndex();
SRExpl.setFocus(data2tableIndex[selectedRow]);
if (e.getClickCount() > 1) SRExpl.exploreInBrowser(

data2tableIndex[selectedRow]);
}

}
}

}
}

CHAPTER 8. SEARCH RESULT EXPLORER 77

);

In this part of theTableOfFilesclass, a list selection listener is registered to the table. If the user clicks
on one row thesetFocus(int)method of theSRExplclass is called causing the selected document to
show its attributes in the Document Detail Window. If a double click is performed, the corresponding
document is opened in a WWW browser.

The Table of Documents also provides sorting possibilities for each column ascending or descending.
To indicate the current sort column an arrow is drawn in its header, showing the current sort order.
To implement this behaviour a “renderer” for the column headers had to be written. To detect mouse
clicks on a column header, a “mouse listener” is registered on the table header and causes sorting
when a click is performed.

ImageIcon sortAscendingIcon, sortDescendingIcon;
...
sortAscendingIcon = new ImageIcon(TableDemo.class.

getResource("icons/upTableArrow.gif"));
sortDescendingIcon = new ImageIcon(TableDemo.class.

getResource("icons/downTableArrow.gif"));
...
class HeaderRenderer extends JLabel implements TableCellRenderer
{

public HeaderRenderer()
{
super();
setForeground(Color.black);
setHorizontalAlignment(LEFT);
setBorder(BorderFactory.createRaisedBevelBorder());

}
public Component getTableCellRendererComponent(JTable ta,Object ti,

boolean sel,boolean fo,int row, int col)
{
setText(ti.toString());
if (col == sortby)
{

if (fallend) setIcon(sortDescendingIcon);
else setIcon(sortAscendingIcon);

}
else setIcon(null);
return this;

}
}

This “custom renderer class”HeaderRendereris a subclass of the Swing classJLabel. It also has to
implement theTableCellRendererinterface and it’sgetTableCellRendererComponentmethod. In this
method the text of the label is set via itssetTextmethod and it is displayed in the column header. The
labels icon is set to the “sortDescendingIcon” if the table is sorted descending by this column, it is set
to the “sortAscendingIcon” if the table is sorted ascending or it is set to null if the table is sorted by
another column.

The things which remain to do are:

1. Setting the “tables header renderer” to the customisedHeaderRendererclass:

for (int i=0;i<11;i++)

CHAPTER 8. SEARCH RESULT EXPLORER 78

{
TableColumn currentColumn = table.getColumnModel().getColumn(i);
currentColumn.setHeaderRenderer(new HeaderRenderer());

}

2. Register an “mouse event listener” which processes sort events:

MouseAdapter listMouseListener = new MouseAdapter()
{

public void mouseReleased(MouseEvent e)
{

// code to determine which column is affected
...
sorter.sortByColumn(column, ascending);

}
}
JTableHeader th = table.getTableHeader();
th.addMouseListener(listMouseListener);

8.6 Future Work

Many improvements should follow to support all capabilities of the xFIND search engine. The short-
comings which concern the user interface were already discussed in 5.7 an remain an important issue
for this application. The xFIND system is not complete and will grow in future. Many of the planed
xFIND possibilities to specify queries are not taken into account in the current version of the Search
Result Explorer. A search query dialog which supports these features should be implemented to guide
users to submit intuitive well-formed queries which can use all those capabilities.

In the current version it is not really possible to bring discrete values to the axis and use the
corresponding values as labels on the axis. This seems to be tricky, because taking care of many
different types of discrete values is necessary.

The xQMS Quality Information metadata format will be used in the xFIND search system to
classify resources according to their quality and fitness. One problem arises providing and holding
such data up to date. A meaningful comparison is only possible when each resource is classified.

It will be possible to index other document types as HTML (such as PDF, Word) with the xFIND
search engine. Such file types can not be opened with a double click in the current version. The
search engine will hopefully deliver the file type. Thus the problem to solve is to find the appropriate
application for particular file types.

Chapter 9

Concluding Remarks

In Chapter 2 it is argued, that appropriate metadata can be useful to address the exponential
growth of information on the World Wide Web. The work of defining qualifiers is already done
(DC 2.2,LOM 2.5), problems arise when the metadata information should be provided in machine
understandable formats. This is solved by defining frameworks (RDF 2.7) which use a labeled graph
to store the information. Thus the technical conditions are in place, however users rarely enrich their
documents with meaningful metadata. This would be a first step however problems to ensure trust-
worthiness and keeping the metadata up to date still remain. Newer proposed metadata standards
(xQMS 2.6, RDF with digital signatures) provide fields to address these problems but are not in use
yet. Additional fields which describe the quality and suitability for use are also provided by xQMS.

To find an appropriate visualisation mechanism an overview of multidimensional visualisation is
given in Chapter 3. The advantages of useful visualisationsare shown, ranking from high interactivity
to good overview and are a noticeable improvement to textual output. The question of which docu-
ment visualisation systems already exist and how they work was especially examined. As one result
it was found that no general method can be given to find the best visualisation for a given data set. It
depends highly on the data, but most of the systems support similar functions, which were found to
be useful and were implemented in the two programs.

Chapter 4 describes the Java programming language. Much work was done in the implemen-
tations to provide a powerful user interface. The Java Foundation Classes had to be customised in
many ways to get the desired behaviour. As Java is supported in modern Web browsers, it will be
possible to run the program as an applet in such browsers. The requirement for running Java Virtual
Machine would be avoided and the Search Result Explorer could become a real alternative to existing
search tools. Since the capabilities of browsers always lag behind the Java Runtime Environment this
integration is directed to future work.

The File Attribute Explorer (Chapter 5) is the first program which emerged during the work on this
thesis. It takes the metadata attributes delivered from common file systems and displays them in a two
dimensional plot. Additional attributes are mapped to size and colour, making it a multidimensional
visualisation tool. To improve the usability of this tool, it is currently (December 1999) being tested
by students at Graz University of Technology.

Current Internet search tools are compared in Chapter 6. Unfortunately, they are far away from
being the key to effective information discovery. There are diverse reasons for this fact. The tools can
not effectively deal with huge numbers of documents which are additionally changing their contents
and locations. The resources itself provide too little or wrong metadata, the calculation of correct
estimated relevances is not straightforward and search tools do not provide interfaces for other appli-
cations to benefit from their data. The Z39.50 protocol, which could be used to exchange data about

79

CHAPTER 9. CONCLUDING REMARKS 80

such search result sets, is not widely used.

The xFIND project is the subject of Chapter 7. It provides the functionality to return the metadata
of search result sets which is then visualised in the Explorer. The open concept and possibilities to
configure the system for different fields of use makes it an interesting alternative to existing search
engines.

The Search Result Explorer (Chapter 8) in its presented version is the conclusion of this thesis.
It provides an alternative to current search tools on the Internet. The program benefits from rich
metadata which is made available by the xFIND search engine to provide an explorable interface to
a search result set. Eight different metadata attributes can be mapped to one of two axes or to the
document icon’s size or colour.

Appendix A

File Attribute Explorer User Guide

The intent of developing this tool was to provide a powerful hierarchy explorer for file systems. The
goal was to provide a tool that is easy to use, and a display that is easy to understand. The visual
complexity and the difficulties in orientation and navigation of displays using more than two spatial
dimensions led to a concept of using a two-dimensional plot. Further dimensions are brought to the
system using colour, size and shape. Interactivity, flexibility in scaling, and functions for details on
demand were implemented. The hierarchy can also be flattened to compare the contained files without
regard to their depth in the directory tree. Additional search and filter functions improve the overview
and can be used to scope on specific types of data.

A.1 Installation

The File Attribute Explorer was developed with the Java Development Kit (JDK) 1.2. It works on
every operating system (Unix, Windows95, WinNT, MacOs,. . .) where the Java Virtual Machine
1.2 (or higher) is installed. The program is packed into one executable jar file and is run typing the
following statement on the command line:

java -jar fae.jar

Several program settings are configurable and stored in a configuration file. During program execu-
tion, if settings like the used display shape, the “look and feel”, the chosen date and time formats,
mapped colours, window positions or sizes are changed, they are stored and remembered in the prop-
erty object and its configuration file.

A.2 Functions

The main functions of the program can be performed using one of the GUI-components menu bar,
tool bar or popup menus. Figure A.1 shows the main window of the File Attribute Explorer and labels
particular parts as they are named in this user guide.

Users specify the directory they want to start from and the program displays icons representing the
files located in this directory. If theFlatten Directoriesoption is selected, all files in all subdirectories
are also included in the display. Files and their attributes are also shown in a second tabular display.
In this second view, every file occupies one line and actions (e.g selections) are synchronised between
both displays.

81

APPENDIX A. FILE ATTRIBUTE EXPLORER USER GUIDE 82

Drawing Area

Overview
Window

Search
Panel

Flatten
Option

Filter
Panel

Toolbar

Menubar

Axes Settings

Display Dialog

Figure A.1: File Attribute Explorer Main Window.

The functions are described in the order they appear in the menubar. From left to write the
menubar provides the following menus:

� File

� Navigation

� View

� Options

� About

Some menu functions can also be executed via the toolbar or via popup menus. All functions from
the menus can be alternatively performed with the shortcuts listed in Table A.1.

A.2.1 File Menu

Contained Functions:

Open: Brings up a Filechooser. The used filter only accepts directories as possible input. This
dialog can also be opened via the first button of the toolbar. A second possibility to specify a
new directory to be loaded next, is typing in into the Location field.

Exit: Brings up the exit dialog. After selectingyes, the program terminates. This action can also be
performed using the last button of the toolbar.

APPENDIX A. FILE ATTRIBUTE EXPLORER USER GUIDE 83

Shortcut Function
Alt-O Opens the JFilechooser to select a new directory.
Alt-E Exits the File Attribute Explorer.
Alt-S Stops a currently running load thread.
Alt-Z Forces a Zoom Out action.
Alt-R All Zoom actions are undone.
Alt-B Goes Back to the previously explored directory.
Alt-F Goes Forward to the previously explored directory.
Alt-P Opens the Options Panel.
Alt-A Opens the About Window.
Alt-L Opens (closes) the Table of Files.
Alt-T Shows (hides) the toolbar.

Table A.1: Keyboard shortcuts.

A.2.2 Navigation Menu

The three functions located in this menu provide the ability to move between previously explored
directories, which were “cached” in a special data structure. The functions can be accessed alterna-
tively, using the popup menu in the Drawing Area, or via the corresponding toolbar button, or by
typing a keyboard shortcut.

Forward: Goes forward to a directory which was previously explored. This is only possible, if a
back operation was performed first.

Back: Goes back to the directory which was previously explored. This function is the opposite of
the above described Forward action and is provided in the same GUI-components.

Stop: The analysis of the hierarchy can be stopped, e.g. if it lasts too long. In this case, specifying
a search depth border can help.

A.2.3 View Menu

Settings, which can be changed in this menu influence the user interface and the zooming behaviour.

Show Toolbar: As already mentioned, the program provides different possibilities to access the
main function. All the button actions of the toolbar can alternatively be performed using actions
and shortcuts. If users prefer these ways, they can hide the tool bar using the checkbox.

Show Files Table: The Table of Files is holding the attributes of the displayed files sorted according
to a selectable column. This view can be switched on or off using the second checkbox.

Zoom Out: The last zoom in action is un-done.

Zoom Reset: All previous zoom in actions are cleared and all file items are visible (in a group or as
single file) on the surface.

APPENDIX A. FILE ATTRIBUTE EXPLORER USER GUIDE 84

A.2.4 Options Menu

Settings which can be changed in this menu influence the look and feel, the date format and the view
on the hierarchy. and .

Look and Feel: In the current version the three settings Java (Metal), Windows, and Motif (Unix)
are possible.

Date Format: Whenever a date value is presented in the program, it is written in the chosen format.

Scan Depth: The analysis of the directory hierarchy stops at the given depth. If no depth is specified,
the whole hierarchy is loaded.

Simultaneous Panning: This option has its effects only if the user has zoomed into a particular
region of the Drawing Area. In this case a black rectangle in the Zoom Overview Window
shows this region and its position relative to the overall display borders. This rectangle can
be moved with the mouse. If the option is selected the update in the Drawing Area is done
simultaneously. This gives the impression of “flying over the surface”, but it may be intolerably
slow on some machines.

A.2.5 About Menu

This menu button opens the About Window. It shows the current project status. The author, the
supervisor, and the license agreement of the IICM are also contained.

A.2.6 Flatten Option

If this option is selected, all files in subdirectories are also displayed.

A.2.7 Search and Filter

These functions offer possibilities to concentrate on specific file types, and to narrow size or date
attributes of the displayed files. Filenames are matched using theFNMatchclass. This class is based
on the GNU-Library fnmatch routine which provides an intuitive “file name matcher” rather than
using regular expression matching. This class can be configured to either respect or ignore case. It
also provides possibilities to match whole worlds only. The user can specify how the actual search or
filter operation should work via a popup menu. The buttons in the search and filter panels bring up
this popup menu. To clearly indicate whether search and filter are active, theSearchandFilter labels
are coloured red when active.

A.2.8 Zoom

As already mentioned the ability to zoom guides the user from overview to detail and vice versa.
Table A.2 summarises the possible zooming operations an where they are offered:

A.2.9 Axis Settings

The following interesting attribute values can be displayed on each axis:

� File Size

APPENDIX A. FILE ATTRIBUTE EXPLORER USER GUIDE 85

Zoom in Zoom out Zoom reset
Drawing Double click on group. Popup menu via Popup menu via
Area Dragging a rectangle. right mouse button. right mouse button.
Overview Dragging a rectangle. Popup menu via Popup menu via
Window right mouse button. right mouse button.

Table A.2: Possible Zooming actions.

� File Date

� File Name

� Directory Depth the relative depth of the file in the hierarchy.

A.2.10 Display Settings Panel

The panel is implemented as a modal dialog which allows to switch between main window and
settings dialog and results in simultaneous visualisation update when changing display settings.

Icon Shape: Users can choose the graphical representation for files in the Drawing Area. The files
can be displayed as icons, squares or circles.

Icon Size: The attribute which is responsible for the size can be chosen. The borders in which the
icon size lies in can also be specified in this line.

Icon Colour: Again the mapped attribute can be chosen in a ComboBox. The used colours are
displayed as two small image buttons which bring up a JColourChooser to change the colours.

Group Display Behaviour: One group contains the number of files shown in the middle of the
icon. The problem is, that the grouped files have similar values for the attributes scaled on
the axis but the attributes mapped to size or colour may differ. The chosen solution gives the
user control over what value should be mapped. The possible settings areMinimum,Maximum,
MediumandMedian.

Grouping Distance: This integer value is used to decide whether two side by side lying objects are
represented as one group or as two items.

A.2.11 Mouse Functionality

To provide a powerful application, several features were implemented. Most of them are controlled
with the mouse and they are listed in Table A.3.

A.2.12 Sort Functions

Every table of the File Attribute Explorer which contains more than one file can be sorted. The sort
column can be specified clicking on the corresponding table header. The sort order is shown as a black
arrow and can be changed with a click on the current sort column. Popup menus further improve the
usability of the sort function.

APPENDIX A. FILE ATTRIBUTE EXPLORER USER GUIDE 86

Left Click Right Click Double Click Mouse Drag
Overview - Brings up a popup - Zooms into or moves
Window menu. the drawn rectangle.
Drawing - Brings up a popup - Zooms into the
Area menu. drawn rectangle.
Table of The icon is marked Opens the detail Opens directory -
Files in the area. view of the file. icons.

Header: Brings up
a popup menu.

Detail Opens the detail Brings up a popup - -
Window view (group icons). menu (header).
Icon The file is marked Opens the detail Zooms into group -

in the table. view of the file. icons, opens
directory icons.

Table A.3: Mouse Functionality in the File Attribute Explorer.

Realized File Types

At the moment the program recognises the following file types by analysing the suffix of filenames:

� Text Document The document is a text document.

� Picture The document is an image.

� Audio File The document is a sound file.

� Postscript The document is a postscript file.

� Unknown FormatThe document has no known format.

� Word File The document is a Microsoft Word file.

� Excel File The document is a Microsoft Excel file.

� Java Source The document is a Java file.

� Latex File The document is a Latex file.

� Html File The document is a Html file.

� Group This icon represents a group of files. The distance between the icons is too small to
show each icon. The number of files contained in this object is displayed in the middle of the
group icon. A double click on this icon causes a zoom action in order to show all files and their
own icons to make their attributes accessible.

Appendix B

Search Result Explorer User Guide

This tool was designed to explore search result sets, retrieved from a xFIND search engine. It should
become possible, to analyse the result set with immediate overview over the found documents. The
basic visualisation concept is a two dimensional scatterplot, with many additional possibilities and
functions to improve and fasten the process of selecting the document with most relevant information.
Additional search and filter functions improve the overview and can be used to focus on documents
with specific attribute values.

B.1 Installation

This program was developed with the JDK 1.21. It works on every operating system (Unix, Win-
dows95, WinNT, MacOs...) where the Java Virtual Machine 1.2 (or higher) is installed. The program
is packed into one executable jar file and is run typing the following statement on the command line:
(under the condition, that thePATH variable includes the JDKbin directory.

java -jar sre.jar

Several program settings are configurable and stored in file to obtain persistence. This file is called
SREsettings.par and is stored in the personal home directory of every user. If users run the
program for their first time this file will be created and it will remember the user settings for further
executions.

B.2 Functions

The main functions of the program can be performed using one of the GUI-components menu bar,
tool bar or popup menus (See Figure B.1). The functions are described in the order they appear in the
menu bar. From left to write the menubar provides the following menus:

� File

� Navigation

� View

� Options
1Java Development Kit 1.2

87

APPENDIX B. SEARCH RESULT EXPLORER USER GUIDE 88

� About

Some menu functions can also be executed via the toolbar or using popup menus. All functions from
the menus can be alternatively performed using the keyboard shortcuts listed in Table B.1.

B.2.1 File Menu

Exit Brings up the exit dialog. After selecting yes the program terminates. This action can also be
performed using the last button of the toolbar.

B.2.2 Navigation Menu

The three functions located in this menu provide the ability to move between previously explored
result sets, which are held in a special data structure. The functions can be accessed alternatively,
using the popup menu in the Drawing Area or via the corresponding tool bar button or by typing the
keyboard shortcut.

Forward: Goes forward to a result set which was previously found. This is only possible, if a back
operation was performed first.

Back: Goes back to the result set which was previously found. This function is the opposite of the
above describedForward action.

Stop: The loading of result metadata can be stopped, e.g. if the process lasts too long. In this case,
specifying a smaller number of documents to return in the Options Panel can help.

B.2.3 View Menu

Settings which can be changed in this menu influence the user interface and the zooming behaviour.

Show Toolbar: As already mentioned, the program provides different possibilities to access the
main function. All the button actions of the toolbar can alternatively be performed using actions
and shortcuts. If users prefer these ways, they can hide the tool bar using the checkbox.

Show Table of Documents: The Table of Documents is holding the attributes of the displayed
documents sorted according to a selectable column. This view can be switched on or off using
the second checkbox.

Zoom Out: The last zoom in action is un-done.

Zoom Reset: All previous zoom in actions are cleared and all icons are visible (either in a group or
as a single document) on the surface.

B.2.4 Options Menu

Settings which can be changed in this menu influence the user interface itself, the zooming behaviour,
they determine the used search engine and their settings.

Look and Feel: In the current version the three settings Java (Metal), Windows, and Motif (Unix)
are possible.

APPENDIX B. SEARCH RESULT EXPLORER USER GUIDE 89

Drawing AreaOverview
Window

Search
Panel

Filter
Panel

Toolbar

Menubar

Axes Settings

Display Dialog

Figure B.1: File Attribute Explorer Main Window

Shortcut Function.
Alt-E Exits the Search Result Explorer.
Alt-S Stops a currently running load thread.
Alt-Z Forces a Zoom Out action.
Alt-R All Zoom Actions are undone.
Alt-B Goes Back to the previously searched Query.
Alt-F Goes Forward to the previously searched Query.
Alt-P Opens the Options Panel.
Alt-A Opens the About Dialog.
Alt-L Opens (closes) the Table of Documents.
Alt-T Shows (hides) the Toolbar.
Alt-N Reloads the current query from xFIND.

Table B.1: Keyboard Shortcut for the Search Result Explorer.

APPENDIX B. SEARCH RESULT EXPLORER USER GUIDE 90

Zoom in Zoom out Zoom reset
Drawing Double click on group. Popup menu via Popup menu via
Area Dragging a rectangle. right mouse button. right mouse button.
Overview Dragging a rectangle. Popup menu via Popup menu via
Window right mouse button. right mouse button.

Table B.2: Possible Zooming actions.

Date Format: Whenever a date value is presented in the program, its format depends on the chosen
format.

Number of returned Results: The Search Result Explorer delivers the specified number of docu-
ments. (If more documents are found, the rest is ignored)

Number of Keywords per Result: As mentioned, xFIND extracts document keywords from meta-
data and content. The number of keywords can be very high thus this number limits the amount
of returned keywords.

Host: In this field the server, which hosts the xFIND search engine, is specified (e.g.xfind.iicm.edu).

Port: Here the port number is specified (e.g. 8810).

Browser String The program which should be used to open particular documents can be specified
in this line.

B.2.5 About Menu

To bring up the About Search Result Explorer Window which gives information about the program
and shows the license agreement.

B.2.6 Search and Filter

These functions offer possibilities to concentrate on documents with specific attribute values. The
match can be configured to match case sensitive or to ignore cases. The “whole word” option and
wildcards offer further possibilities to perform selective searches. Searches and filters can be per-
formed in different attribute fields (title, keywords, URL or host) or in all of them. Users can also
specify how the actual search or filter operation should work via a popup menu.
The results, matching a search are drawn with a red border and can be viewed one after the other using
four navigate buttons. If a filter is applied, only the documents which pass this filter are displayed in
the visualisation and listed in the Table of Documents.

B.2.7 Zoom

As already mentioned the ability to zoom guides the user from overview to detail and vice versa.
Table B.2 summarises the possible zooming operations an where they are offered.

APPENDIX B. SEARCH RESULT EXPLORER USER GUIDE 91

B.2.8 Axis Settings

The Axis can be scaled with different attribute values. The possibilities areRelevance, File-Size, File-
Age, File-Name, #Links, #Images and #Scripts. The ordering of the axes-values can be ascending or
descending, which can be changed with buttons.

B.2.9 Display Settings

The current display settings are given in one line of text at the top of the Drawing Area. The following
button brings up the Display Settings Panel which controls these settings.

Icon Shape: The user can choose his favourite graphical representation: The documents can be
displayed as icons, squares or circles. When displayed as squares, no groups are formed, the
overlapping icons are drawn side by side.

Icon Size: The attribute which is responsible for the size can be chosen. The borders in which the
icon size lies in can also be specified in this line.

Icon Colour Again the mapped attribute can be chosen in a ComboBox. The used colours are
displayed as two small image buttons which bring up a JColourChooser to change the colours.

Group Display Behaviour One group contains the number of documents shown in the middle of the
icon. The problem is, that the grouped documents have similar values for the attributes scaled
on the axis but the attributes mapped to size or colour may differ. The chosen solution gives the
user control over what value should be mapped. The possible settings areMinimum,Maximum,
MediumandMedian.

Grouping Distance This integer value is used to decide whether two side by side lying objects are
represented as one group or as two items.

B.2.10 Mouse Functionality

To provide a powerful application, several features were implemented. Most of them are controlled
with the mouse and they are listed in Table B.3.

B.2.11 Sort Functions

Every table (Table Documents, Document Attributes Window) which contains more than one docu-
ment can be sorted. The sort column can be specified clicking on the corresponding table header.
The sort order is shown as a black arrow and can be changed with a click on the current sort column.
Popup menus further improve the usability of the sort function.

APPENDIX B. SEARCH RESULT EXPLORER USER GUIDE 92

Left Click Right Click Double Click Mouse Drag
Overview - Brings up a popup - Zooms into or moves
Window menu. the drawn rectangle.
Drawing Brings up a popup Zooms into the
Area menu drawn rectangle
Table of The icon is marked Opens the detail Opens the
Doc- in the area. view of the file document in
uments Header: Brings up browser.

a popup menu.
Detail Opens the detail Brings up a popup - -
Window view (group icons). menu (header).
Icon The document is Opens the detail Zooms into group -

marked in view of the icons, opens doc-
the table. document uments in browser.

Table B.3: Mouse Functionality in the Search Result Explorer

Bibliography

[Ahl96] Christopher Ahlberg. Spotfire: An information exploration environment.SIGMOD
REPORT, 25(4):25–29, December 1996.

[And95] Keith Andrews. Visualising Cyberspace: Information visualisation in the Harmony
internet browser. InProc. First IEEE Symposium on Information Visualization (Info-
Vis’95), pages 97–104, Atlanta, Georgia, October 1995.ftp://ftp.iicm.edu/
pub/papers/ivis95.pdf.

[And96] Keith Andrews.Browsing, Building, and Beholding Cyberspace: New Approaches to
the Navigation, Construction, and Visualisation of Hypermedia on the Internet. PhD
thesis, Graz University of Technology, Austria, September 1996.http://www.
iicm.edu/keith-phd.

[ANS95] ANSI/NISO. Z39.50-1995 (Versions 2 and 3) Information Retrieval: Application
Service Definition and Protocol Specification, 1995.http://lcweb.loc.gov/
z3950/agency/attrarch/attrarch.html.

[Bar98] Joe Barker. Search engines and subject directories teaching library internet workshops,
1998.http://www.lib.berkeley.edu/.

[BDH+94] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz. Harvest: A scalable, customizable discovery and access sys-
tem. Technical Report CU-CS-732-94, Department of Computer Science, Uni-
versity of Colorado, Boulder, August 1994. ftp.cs.colorado.edu in
/pub/cs/techreports/schwartz/Harvest.ps.

[BF93] C. Beshers and S. Feiner. Autovisual: Rule-based design of interactive multi-
variate visualizations., 1993.http://www.cs.columbia.edu/graphics/
projects/AutoVisual/AutoVisual.html.

[Cha93] Matthew Chalmers. Visualisation of complex information. InEast-West Interna-
tional Conference on Human-Computer Interaction: Proceedings of the EWHCI’93,
volume 2 ofInformation Visualization/Navigation, pages 38–50, 1993.

[Cha95a] Matthew Chalmers. Design perspectives in visualising complex information. In
S. Spaccapietra and R. Jain, editors,Proc. 3rd IFIP Visual Databases Conf., published
as Visual Database Systems 3: Visual InformationManagement, pages 103–111. Chap-
man and Hall, 1995.

[Cha95b] Avijit Chatterjee. Parallel visual explorer at work in the money markets, 1995.http:
//www.ibm.com/news/950203/pve-03.html.

93

BIBLIOGRAPHY 94

[CIP96] Matthew Chalmers, Robert Ingram, and Christoph Pfranger. Adding imageability fea-
tures to information displays. InProceedings of the ACM Symposium on User Interface
Software and Technology, Papers: Information Visualization, pages 33–39, 1996.

[CMS98] Stuart Card, Jock MacKinlay, and Ben Shneiderman, editors.Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann Publishers, 1998.

[Cro95] David Crossley. WAIS through the Web — discovering environmental information. In
Second International World-Wide Web Conference: Mosaic and the Web, Chicago, IL,
October 17–20, 1994, Urbana, IL 61801, USA, 1995. National Center for Supercom-
puter Applications, University of Illinois at Urbana-Champaign.

[CRO99] Crossgraphs: Multiply your Insights, 1999.http://www.belmont.com.

[DB98] Deborah F. Swayne, Dianne Cook and Andreas Buja. XGobi: Interactive dynamic
data visualization in the X Window System.Journal of Computational and Graphical
Statistics, 7(1):113–130, March 1998.

[dBvKOS97] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.Compu-
tational Geometry Algorithms and Applications. Springer-Verlag, Berlin Heidelberg,
1997.

[DGK+99] Thomas Dietinger, Christian G¨utl, Bernhard Kn¨ogler, Dietmar Neussl, and Klaus
Schmaranz. Dynamic background libraries - new developments in distance educa-
tion using HIKS (Hierarchical Interactive Knowledge System). May 1999.http:
//www.iicm.edu/jucs.

[GAM98] Christian Gütl, Keith Andrews, and Hermann Maurer. Future Information Harvesting
and Processing on the Web. InProc. European Telematics: Advancing the Information
Society, Barcelona, Spain, February 1998.http://www.iicm.edu/˜cguetl/
papers/fihap/.

[GM96] James Gosling and Henry McGilton. The Java Language Environment. May 1996.
http://www.java.sun.com/docs/white/langenv.

[GPM99] Christian G¨utl, Maja Pivec, and Hermann Maurer. An improved way for ongoing and
lifelong learning as a smart module for the GENTLE learning environment. Graz, Aus-
tria, September 1999.http://www.iicm.edu/˜cguetl/papers/icce99/.

[HMV96] M. Z. Hasan, A. O. Mendelzon, and D. Vista. Applying database visualization to the
World Wide Web.SIGMOD Record (ACM Special Interest Group on Management of
Data), 25(4), December 1996.

[Hof96] Patrick Hoffman. Visualization Seminar, 1996.http://ivpr1.cs.uml.edu/
shootout/viz/vizsem/vizsem1.htm.

[Hol97] S. Holzner.XML Complete.McGraw Hill, 1997.

[HP96] Marti A. Hearst and Jan O. Pedersen. Visualizing information retrieval results: A
demonstration of the Tilebar interface. InProceedings of ACM CHI 96 Conference on
Human Factors in Computing Systems, pages 394–395, 1996.

[HYP99] Hyperwave homepage, 1999.http://www.hyperwave.com.

BIBLIOGRAPHY 95

[HZPA+96] Mountaz Hascoet-Zizi, Catherine Plaisant, Chris Ahlberg, Matthew Chalmers, Robert
Korfhage, and Ramana Rao. Where is information visualization technology going?
In Proceedings of the ACM Symposium on User Interface Software and Technology,
Panel, pages 75–77, 1996.

[IEE] IEEE The Institute of Electronical and Electronics Engineers.http://www.ieee.
org.

[Ins98] Alfred Inselberg. A Survey of Parallel Coordinates. In Hans-Christian Hege and
Konrad Polthier, editors,Mathematical Visualization, pages 167–179. Springer-Verlag,
Heidelberg, 1998. Vismath97.

[Jaw98] Jamie Jaworski.Java 1.2 Unleashed. Sams.net, Indianapolis, IN 46268, USA, fourth
edition, may 1998.

[Kap99] Dr. Frank Kappe. Hyperwave information server 5.0 technical white paper, 1999.
http://www.hyperwave.com.

[KG99] Brewster Kahle and Bruce Gilliat. Alexa internet homepage, 1999.http://www.
alexa.com.

[KK94] Daniel A. Keim and Hans-Peter Kriegel. VisDB: Database exploration using multi-
dimensional visualization.IEEE Computer Graphics and Applications, pages 44–49,
September 1994.

[KK95] Daniel A. Keim and Hans-Peter Kriegel. VisDB: A system for visualizing large
databases. InProc. ACM SIGMOD Int. Conf. on Management of Data, page 482,
1995.

[LOM99] Learning Object Metadata, 1999.http://ltsc.ieee.org/doc/wg12/LOM3.
7.html.

[LRB+97] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande, J. Myl-
lymaki, and K. Wenger. DEVise: Integrated querying and visual exploration of large
datasets.SIGMOD Record (ACM Special Interest Group on Management of Data),
26(2), 1997.

[Mau96] Hermann Maurer, editor.HyperWave: The Next Generation Web Solution. Addison-
Wesley, May 1996.http://www.iicm.edu/hwbook.

[MET99] Metadata and Resource Description. 1999.http://www.w3c.org/Metadata.

[Mor97] Emile Morse. Document Visualization, 1997.http://www.sis.pitt.edu/
˜elm2/DocumentVisualization.htm.

[NFF96] Lucy Terry Nowell, Robert K. France, and Edward A. Fox. Visualizing search results
with Envision. InProceedings of the 19th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, System Demonstrations:
Abstracts, pages 338–339, 1996.

[NFH+96] Lucy Terry Nowell, Robert K. France, Deborah Hix, Lenwood S. Heath, and Edward A.
Fox. Visualizing search results: Some alternatives to query-document similarity. In
Proceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Visualization, pages 67–75, 1996.

BIBLIOGRAPHY 96

[OL96] Hwee-Leng Ong and Hing-Yan Lee. Software report: WinViz–a visual data analysis
tool. Computers & Graphics, 20(1):83–84, January 1996. ISSN 0097-8493.

[Ost99] James Ostell. Search Engine Watch, 1999.http://www.searchenginewatch.
com.

[RDF98] Resource Description Framework (RDF) Model and Syntax Specification, 1998. Avail-
able at http://www.w3.org/TR/WD-rdf-syntax/.

[RHS97] Michael Reed, Dan Heller, and Dr. Ben Shneiderman. Online library of information
visualization environments, 1997.http://www.otal.umd.edu/Olive.

[Shn97] Ben Shneiderman.Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley Publishing, third edition, 1997.

[SPS98] SPSS Statistical Product and Service Solutions, 1998.http://www.spss.com.

[Sul99] Danny Sullivan. Using ASN.1 (Abstract Syntax Notation 1): A data description
language, 1999.http://www.nalusda.gov/pgdic/Probe/v2n2/using.
html.

[SWM+97] Karanjit Siyan, James L. Weaver, Jim Mathis, Luke Cassady-Dorion, and Tim Ritchey.
Inside Java. New Riders Publishing, Carmel, IN, USA, March 1997.

[TSDS96] Lisa Tweedie, Bob Spence, Huw Dawkes, and Hua Su. The Influence Explorer – a
tool for design. InProceedings of ACM CHI 96 Conference on Human Factors in
Computing Systems, pages 390–391, 1996.

[VIS98] European Space Agency Visualization Laboratory, 1998.http://www.estec.
esa.nl/vislab.html.

[W3C99] The World Wide Web Consortium. 1999.http://www.w3c.org.

[WBT99] GENTLE approach to Web Based Training, 1999.http://wbt.iicm.edu.

[WC98] Kathy Walrath and Mary Campione.The JFC Swing Tutorial: A Guide to Constructing
GUIs. Addison-Wesley, Reading, MA, USA, 1998.

[WC99] Kathy Walrath and Mary Campione.The JFC Swing Tutorial. 1999.http://www.
java.sun.com/books/tutorial.

[Wei98] Stuart Weibel. DC-5: The Helsinki Metadata Workshop; A report on the workshop
andsubsequent developments. Technical report, D-Lib Magazine, February 15, 1998.

[WIN99] WinViz, a data visualisation product, 1999.http://www.krdl.org.sg/
Research/CurProj/WinViz/WinViz.html.

[xFI99] xFIND eXtended Framework for Information Discovery, 1999.http://xfind.
iicm.edu.

[XML99] eXtensible Markup Language, 1999.http://www.w3.org/XML/.

[ZC87] Monica C. Zubritzky and Bruce G. Coury. Multidimensional scaling as a method for
probing the conceptual structure of state categories: An individual differences analysis.
In Proceedings of the Human Factors Society 31st Annual Meeting, Mental Models,
Visual Displays and Complex Systems, pages 107–111, 1987.

