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Abstract— The availability of highly accurate geometric
camera calibration is an implicit assumption for many 3D
computer vision algorithms. Single-camera applications like
structure from motion or rigid multi-camera systems that use
stereo matching algorithms depend on calibration accuracy.
We present an approach that has proven to deliver accurate
geometric information in a reliable, repeatable manner for
many industrial applications. The major limitation in typical
camera calibration methods is the printing accuracy of the used
target. We address this problem by modeling the calibration
target uncertainty as a line process and incorporate a lifted
cost function into a bundle adjustment formulation. The regu-
larized target deformation is incorporated directly into the non-
linear least-squares estimation and is solved in a non-iterative,
principled framework.

I. INTRODUCTION
Geometric camera calibration defines the mapping be-

tween points in world coordinates and their corresponding
image locations. These parameters model imperfections of
the camera optics, i.e. lens distortion, intrinsic parameters of
the idealized pinhole camera and extrinsic parameters like
absolute camera orientation and relative orientation for multi-
camera setups. Most calibration methods assume known
3D world points and minimize a reprojection error of the
known 3D structure into detected image correspondences.
The resulting error is a result of model imperfections, target
imperfections and feature point localization inaccuracies.

Impressive reprojection errors have been shown in [5] by
estimating feature points and 3D structure in an iterative
procedure. We argue, like [2], [4], that the most important
aspect for many applications is printing accuracy, but present
a non-iterative calibration formulation that estimates and cor-
rects for target uncertainty within a single bundle adjustment
minimization.

The geometric camera calibration process estimates the
mapping between points in world coordinates and their cor-
responding image locations. We define the image projection
using standard notation, for the pinhole model

xp = KR[I|− C̃]X = PX
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R and C̃ model the location of the camera in space and K
defines the intrinsics. Lens distortion is added to the pinhole
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projection, for example using this popular model:
xd = xp +FD(xp,δ )

FD(xp,δ ) =
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with xp = (x1p,x2p)
T , rp =

√
x2

1p + x2
2p and δ =

(k1,k2, p1, p2)
T . k1,k2 are the radial distortion coefficients

and p1, p2 the tangential distortion coefficients.

II. A LIFTED STRUCTURE ADJUSTMENT FORMULATION

Bundle adjustment (BA) minimizes the sum of the ge-
ometric distances of all image measurements xi j and their
corresponding projected 3D points PiX j in image space:

min
Pi,δ ,X j

∑C(xi j,FD(PiX j,δ ))

where Pi is the pinhole camera model, δ the distortion
parameters and C is the reprojection error, for example
with a quadratic error Cs(x,xp) =

∥∥x−xp
∥∥2 for classical

BA. Optimizing all BA parameters with all pinhole terms,
distortion terms and the structure X j simultaneously is ill-
conditioned. Therefore, related work that also adjusts the
calibration target updates the structure X j in an iterative way
by using heuristics of multiple BA runs [2] or use minimal
structure constraints [4] and suffer from convergence issues
and limitations in possible distortion models.

We want to limit the adjustment of the calibration target as
far as possible and only adjust the structure if the observed
error cannot be explained by other parameters of our model.
Suppose we have a scalar error e and rewrite the error as a
robust kernel ψ(e) by introducing an additional variable w,
i.e. a line process [3]

ψ(e) = min
w

(
2w2e2 +(1−w2)2) |w ∈ [0,1].

For small errors w→ 1 and for large errors w vanishes and
ψ(e) becomes constant, see [7] for an intuitive explanation in
the context of outlier estimation (the same kernel is used here
for simplicity) and [6] for a recent application to robust BA.
We apply this concept to camera calibration and introduce
variables to represent the correctness of the calibration target
and therefore 3D structure. Adding the lifted cost function
to represent structure imperfections leads to this extended
calibration formulation:

min
Pi,δ ,X j ,w j

{
∑C(xi j,FD(PiX j,δ ))+α ∑

j
ψ(
∥∥X j−X jc

∥∥)
}

= min
Pi,δ ,X j ,w j

{
∑
i j

C(xi j,FD(PiX j,δ ))

+2α ∑
j

w2
j
∥∥X j−X jc

∥∥+α ∑
j
(1−w2

j)
2
}
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where X jc is the original reference 3D point and
∥∥X j−X jc

∥∥
corresponds to the deviation from this reference during
calibration and α is a free parameter. Note that here each
structure point has its own lifting variable w j, it is also
possible to represent the target accuracy with just one global
scalar w. The system is solved using a standard non-linear
least squares solver [1].

III. INDUSTRIAL APPLICATIONS

The presented calibration formulation has been used in
different industrial applications for single- and multi-camera
calibration and long term calibration maintenance using
commercially printed (low cost) targets that are affected by
printing inaccuracies. A handheld stereo system calibration
has been kept by non-expert users under 0.06 pixel RMS
reprojection error for over a year. Because non-expert users
are involved, strong and robust convergence properties are
essential. Figure 1 shows rectified images of this device with
and without the proposed structure adjustment. The whole
system performs volumetric simultaneous localization and
mapping (SLAM) without opportunities for loop closing. A
3D model of the volumetric fusion can be seen in Figure
2. For the accuracy evaluation ground truth data of the
floor plan of the scene is available. Rectification errors are
accumulated through the volumetric fusion, leading to a de-
tectable influence of slight rectification errors. A rectification
error like in Figure 1a leads to drift in height of about 5cm,
the shown scene is 4 meters long.

(a) Weak calibration, 0.15px
rectification deviation from
zero mean.

(b) Rectification with proposed
method, nearly perfectly cen-
tered optical flow check.

Fig. 1: The top row shows a histogram of rectification
deviations. They are obtained by computing a histogram
of the vertical component of unconstrained optical flow
initialized with the stereo result. The histogram range is
±2 pixel. The bottom row shows the image pairs with
example epipolar lines.

Figure 3 shows a stereo based inspection application for
corrosion monitoring in hot steel components, ladles and pro-
cess chambers that can cope with up to 1.600◦C. The main
goal of the system is the detection of thinning of material
i.e. volumetric changes in registered consecutively measured
models. The typical distance to the target lies between 60 and
200cm. To cope with the varying distance range focusable
liquid lenses were used (Varioptic Caspian). The lenses are
focusable from 7cm to infinity and are newly calibrated

Fig. 2: A resulting 3D model obtained with a SLAM system
calibrated by the presented method. Rectification errors of
0.2px are clearly noticeable in this application and lead to
insufficient model accuracy.

Fig. 3: Stereo system with active speckle projection for the
inspection of red hot steel components, ladles and cham-
bers with up to 1.600◦C. ©Materials Processing Institute
supported by Dr BG Crutchley of i3D robotics Ltd.

after focus change and prior to each measurement campaign.
The calibration of the liquid lenses together with the high
temperature environment poses the greatest challenge in this
application.
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