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Abstract— We present a simple and practicable approach to
segment organized point clouds gathered with RGBD sensors
into planar elements. The algorithm proves to execute extremely
fast while delivering all the dominant planes of a scene. As
an integral part of our segmentation algorithm we examined
two off the shelf and one heavily modified filtering algorithms
to increase the quality of the point cloud before the actual
segmentation process. The results of two of these algorithms
were promising. One provides a favorable tradeoff between
speed and quality while the other delivers superior quality at
high computational cost.

I. INTRODUCTION

In mobile robotics many tasks have to be fulfilled in indoor
environments. More specifically one task could e.g. include
the search or classification of objects lying on the floor.
Instead of processing all the points captured by the RGBD
sensor it would be beneficial to early on discard some of
the points that can not be part of the task. Removing the
dominant planes from the scene is one common measure to
achieve this. This becomes obvious when we observe that
indoor environments are dominated by planar surfaces.
While other plane segmentation algorithms operate on unfil-
tered depth data, our algorithm utilizes a filtering step. Data
as it is captured by an RGBD sensor tends to have multiple
sources of noise, all of which tend to make the fitting
of planes difficult. Reducing the noise upfront therefore
is a prerequisite to a fast and simple plane segmentation
approach.
To create ideal conditions for our plane segmentation algo-
rithm we discuss three filter approaches. With these filters
we aim to refine planar regions while keeping the geometric
details where they are needed. We show the results generated
by the standard Bilateral Filter [7], the Sigma Adaptive
Bilateral Filter [2] and the adapted Bilateral Mesh Denoising
algorithm [4]. A discussion shows how these filters relate to
each other and how they behave in specific situations. We
describe the modifications necessary to apply the Bilateral
Mesh Denoising algorithm to depth data and demonstrate its
effectiveness.
Regarding the core of our plane segmentation, we offer a
comparison to two other algorithms: The comparably slow
approach shown by Holz [5] which uses RANSAC to refine
a rough normal based plane segmentation and an approach
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shown by Wang [8] where a rough segmentation is improved
on a point-wise basis. Both algorithms start with clustering
the points into a 3 D voxel grid. By doing this they are re-
placing the inherent neighborhood information with a costly
spacial relation. Finding the nearest neighbors to a specific
point no longer is a simple access to the neighboring depth
pixels but a search of all points in the adjacent voxel blocks.
For our segmentation we follow a similar two-step approach
as in [8] but make use of the neighborhood information
contained in the organized point cloud.

II. RELATED WORK

Most plane segmentation approaches can be assigned to
two categories. A direct approach, where planes are directly
matched with the existing points, and indirect approaches
where the scene is transformed into another representation.
RANSAC [3] is a direct approach that iteratively tests
randomly generated plane hypothesis against a point cloud
and is often used to find the ground plane of a scene. To
extract multiple planes from a scene RANSAC has to be used
repeatedly to assign points to different planes. The outcome
of this approach is highly dependent on the order in which
the RANSAC algorithm finds the planes. Thus the affiliation
of points to planes is ambiguous.
The approach shown in [5] therefore does not use RANSAC
for the segmentation itself but uses it to refine already
existing plane hypothesis. These hypothesis are generated
by clustering normal vectors in normal space or spherical
coordinates. This delivers clusters of points, each of which
is assembled by multiple planes facing the same direction.
Averaging the normals within each of these clusters leads
to a plane hypothesis which allows to separate the points
into their according planes. Calculating the distance of the
points to these plane hypothesis directly allows to cluster
these points into their according planes.
A more direct approach was chosen in [8] is based on
roughly clustering plane patches within a 3 D voxel grid.
Some of these blocks within the voxel grid are containing
enough points to approximate planes. In the following step
it is possible to connect neighboring grid blocks to bigger
surfaces wherever these planes are facing in roughly the same
direction. The approach chosen by Zhang [10] is to find
lines along the horizontal scan-lines which are cuts trough
planes. In a second step the normals get estimated along
these line segments to find corresponding segments between
scan-lines. Fitting line segments can then be connected to a
planar region.
The V-disparity algorithm [11] transforms the 3 D data into
a V-disparity map and therefore reduces the 3 D plane fit to
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a 2 D line fit which greatly reduces the computational effort.
While not being as straight forward as any of the presented
direct algorithms it is capable of finding planes where noise
is dominant or in rough outdoor environments [9].
To improve results of certain plane segmentation algorithms
it is vital to reduce noise of the input data by proper filtering.
While a Gaussian Blur might be sufficient to remove noise
from some intensity images it is not fit to be applied to
depth maps. Besides not being able to handle areas where
the sensor was unable to capture data this filter would destroy
any information on discontinuities. Bilateral filtering [7]
therefore is more selective and reduces over-smoothing along
discontinuities. It is therefore a possible candidate for point
clouds but has serious issues regarding our task since this
filter introduces a bending along edges of tilted planes. This
so called ski effect can be tackled by restraining the filter
from working on edges [2], or by applying a bilateral filter,
that is specifically designed for 3D geometry [4].
Approaches as the Total Variation [6] and the Total Gen-
eralized Variation [1] based algorithms do not inherit their
principle from convolution. Instead they minimize a cost
function to fulfill a tradeoff of being close to the input
and minimizing a smoothness measure. The Total Variation
image denoising algorithms work well for intensity images
but do have downsides as a tendency to frontoparalell planes
when applied to depth-maps. This tendency in particular
can be countered by using the Total Generalized Variation
algorithm which allows for more refined regularization with
higher order derivatives but at the cost of increased compu-
tational complexity.

III. FILTER

The quality of depth images obtained from the Kinect is
moderate, especially in distances bigger than 3 meter (see
Figure 2). To reduce the noise and other artifacts like
quantization, the raw data has to be filtered.

A. Bilateral Filter

The bilateral filter is a suitable candidate. It preserves dis-
continuities and smooths out noise.

D∗p =
1

Wp
∑

q∈Sp

Gσs(‖p−q‖)Gσc(|Dp−Dq|)Dq (1)

Wp = ∑
q∈Sp

Gσs(‖p−q‖))Gσc(|Dp−Dq|) (2)

p: the coordinate of the resulting pixel.
q: the coordinate of a surrounding pixel.

Gσ : Gauss function.
Dp,q: depth values of p or q.

Sp: the neighborhood of p where |p−q|< rSth.
Wp: a normalization term.
σs: standard deviation for difference in depth.
σc: standard deviation for pixel distance.
This filter unfortunately introduces the unpleasant ski effect
as shown in Figure 1.

(a) Unfiltered kinect image of a
desk.

(b) After filtering the edge of the
plane is bent upwards.

Fig. 1: The ski effect (red) is introduced by Bilateral Filter-
ing.

B. Sigma Adaptive Bilateral Filter

Andreas Deutschmann [2] introduced the Sigma Adaptive
Bilateral Filter which got rid of the ski effect and is contain-
ing edges, by reducing sigma around corners and edges.

D∗p =
1

Wp
∑

q∈Sp

Gσs,p(‖p−q‖)Gσc,p(|Dp−Dq|)Dq (3)

Wp = ∑
q∈Sp

Gσs,p(‖p−q‖))Gσc,p(|Dp−Dq|) (4)

Where

σs,c,p = σs,c,max +msat,p ∗ (σs,c,min−σs,c,max) (5)

is depending on the depth-maps curvature

msat,p =





1 if m > (1− kth)

0 if m < kth

m else
. (6)

With

mp =
m̃p− m̃min

m̃max− m̃min
(7)

and

m̃p =

∥∥∥∥∥
1
|Rp| ∑

q∈pR
(Pp−Pq)

∥∥∥∥∥ . (8)

The terms are described the following:

m̃: is the raw curvature.
m: is the normalized curvature of the surface see Figure 5a.

msat : is a curvature that is saturated by kth and (1− kth).
σs,p: standard deviation of the Gauss filter. Weighing depend-

ing on the difference in depth.
σc,p: standard deviation of the Gauss filter. Weighing depend-

ing on the pixel distance.
Pp,q: the point at p or q, given as vector Pp,q =

[
xp yp zp

]T
Rp: like S a neighborhood around p where

∥∥Pp−Pq
∥∥< rRth.

This filter essentially is a Bilateral Filter which is suppressed
in critical regions like edges (see Figure 3).
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Fig. 2: Unfiltered depth data.

(a) Bilateral Filter. Introduces ski
effect (green).

(b) But shows good results at
planes.

(c) Sigma Adaptive Filter. Pre-
serves details like edges, but
can’t filter noise at discontinu-
ities (red).

(d) Delivers good results when
applied to planar regions.

Fig. 3: Filtering results of Bilateral Filter and Sigma Adaptive
Filter.

C. Bilateral Tangential Filter

The promoted filter is based on the Bilateral Mesh Denoising
algorithm [4] which is used for meshes but not raw depth
data. The idea behind this filter is to correct each point
along its normal by a value composed by the deviation
of surrounding points to its tangent plane. We adapt this
principle to depth data by not correcting the points along
their normal as in [4] but along the camera view rays. The
filter is written as

Cp =
1

Wp
∑

q∈Sp

Gσs(‖p−q‖)Gσc(dp,q)dp,q (9)

Wp = ∑
q∈Sp

Gσs(‖p−q‖)Gσc(dp,q) (10)

where the correction term Cp,k is used to correct the depth
values

D∗p = Dp +Cp. (11)

dp,q is the distance of the point q to the tangent plane of p

dp,q = np · (Pp−Pq). (12)

It is not implied in this equation, but this filter is meant to
be used iteratively.
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Fig. 4: Filtering kernels, to calculate horizontal and vertical
derivation of x, y and z. Sizes for these kernels are 23x23
and 5x5.

The quality of this filter strongly depends on the normal
vectors np which tend to be difficult to obtain, especially
along discontinuities and in noisy data. Incorrect normal
values can make the algorithm locally unstable. Figure 6
shows a good example for how normal vectors affect the
result. The normal vector is calculated by the vertical and
horizontal derivation of x, y and z coordinates by the image
coordinates u and v.

np =
ñp

‖ñp‖
ñp =




dxp
du
0

dzp
du


×




0
dyp
dv
dzp
dv


 (13)

To obtain the needed derivatives we can not rely on a Canny
Edge detection like approach since this would lead to wrong
normals along discontinuities. We therefore have to mix the
Canny Edge detection with the idea of the Bilateral Filter. To
reduce the impact of discontinuities on the normals, points
which are further away from the center point contribute less
or not at all. This is achieved by an other Gaussian term Gσn .

d(x,y,z)p

du,v
= ∑

q∈Sp

Kq,pGσn(Dp−Dq)((x,y,z)p− (x,y,z)q)

(14)
Since the depth data along edges of objects is often distorted,
it is necessary to compensate for that by locally extending
the kernel:

Kq,p =

{
Kq,big if cp > cth

Kq,small else
(15)

The filter kernels itself are shown in Figure 4. As basis to
decide we are using a measure for how erratic the image is
(Figure 5b).

cp = ∑
q∈R′p

∣∣Dp−Dq
∣∣ (16)

One example for proper filtering kernels are shown in
Figure 4. Note that R′p is in this case the neighborhood of p
where |p−q|< rR′th.

IV. RESULTS OF FILTERING

The standard Bilateral Filter introduces the unpleasant ski
effect [2] and therefore does not preserve information on
edges (see Figure 3). On said edges the ski effect refers to a
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(a) mp. (b) cp

Fig. 5: Curvature mp and unsteadyness cp. These measures
are used to guide σ in the adaptive filter and the normal
estimation in the tangential filter.

(a) Correct normals. (b) Reasonable result.

(c) Poor normal calculation. (d) Poor filtering.

(e) Even along plane surfaces,
poorly calculated normals are
leading to artifacts or instabili-
ties.

Fig. 6: Filtering results of the proposed Bilateral Tangential
filter.

slight bending towards fronto-parallelity. Note that this effect
gets stronger as the planes get tilted.
The Sigma Adaptive Bilateral Filter gets rid of this effect by
not filtering in these critical regions. As seen in Figures 3c
and 3d the results are comparable to the standard Bilateral
Filter but without creating the ski defects. Spikes, as they
often appear at sharp edges, will unfortunately not undergo
any smoothing. Since we selected this filter to support our
segmentation we created an GPU (AMD Radeon HD 6750M)

implementation that computes within 25 ms.
For the Bilateral Mesh Denoising algorithm the results are
different (see Figure 6). While being equally as suitable
for the planar regions as the Bilateral and Sigma Adaptive
Bilateral Filter, this algorithm shows the best results along
discontinuities. In terms of computational complexity this al-
gorithm unfortunately is way more demanding than the other
two. This is mainly due to the complex normal estimation
but also because it needs two to three iterations the other
algorithms compute within one.

V. SEGMENTATION

Two examples for state of the art algorithms coming close
to a 30 Hz segmentation rate are [5] and [8]. The algorithm
shown in [5] utilizes a segmentation in normal space but
is slower than the other. We therefore follow the approach
shown in [8] where the points are split into a 3D voxel grid. A
coarse pre-segmentationin on these then segments a majority
of points with a relatively small amount of computations.
Although the this approach is the faster one, it still is
overly complicated for our needs. Seperating the organized
pointcloud into equally sized cubes (voxels) only creates
the need to compare these voxels to their 26 neighbouring
voxels.

A. Hierarchical Plane Segmentation

The proposed algorithm follows the idea of pre-segmentation
and splits the depth image into smaller patches similar to
[8] but does it in image space. This reduces the number of
neighbors for each patch to 8 and therefore saves computa-
tion time. The main steps of the algorithms are:

1) Patch generation: The depth data is grouped into
equally sized section with sizes like e.g. 10×10 pixel.
It is then tried to fit a plane into these points. If there
are enough points within a threshold of this plane the
patch is retained and the points will be assigned to
this patch. When this criteria is not met the patch is
discarded and the according points stay unassigned.

2) Patch Segmentation: The initially unassigned patches
get grouped together to assemble planes. This happens
according to their normal vector and position.

3) Post filtering: During this phase, no new patches will
be added, but every pixel, which is bordering onto a
plane and meets certain conditions, will be assigned to
this plane.

1) Patches: As already mentioned. Patches are small equally
sized fragments of the depth image and described by their
plane equation:

ax+by+ cz−1 = 0 (17)

The parameters can be acquired by principal component
analysis of all points. After getting the parameters, it is
necessary to test if they provide a good description of the
plane. To ensure this, at least a certain percentage (e.g. 90 %)
of the points considered for this patch should be inside the
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Fig. 7: Segmentation strategy for patches. Every valid patch
(blue) is a cluster of points e.g. 10× 10 pixel and will be
connected to an neighboring (green) existing collection of
patches if it fits to one of the existing plane hypothesis. If
it can not be added to an existing hypothesis it will become
the starting point for a new hypothesis.

approximated plane. For this the distance

d =
|ax+by+ cz−1|√

a2 +b2 + c2
< dth (18)

has to be below a threshold (e.g. 1 cm).
2) Segmentation: These patches can easily be grouped by
any clustering algorithm that supports 4 or 8 connectivity.
Neighboring planes or patches can be combined by meeting
the criteria of pointing roughly in the same direction e.g.
+-15 ◦.
In this implementation it was sufficient to run one pass with
the following strategy (see Figure 7):

1) If the current patch (blue) is not already assigned to
a plane, create a new plane with this patch as first
member.

2) If the neighboring (green) patch to the right has the
same normal direction as the plane of the current patch,
add the patch (green) to this plane. If the patch to the
right is already assigned to a plane, and both plane
normals are similar, merge the planes.

3) Merge the patch to the bottom with the current plane
if the normal direction is similar.

3) Post-processing: The segmentation of the bigger patches
are by far not satisfying because they leave a lot of pixel
unassigned. In the last step the filter is running from top
left to bottom right and vice versa (see Figure 8) to assign
pixel to the most fitting plane. To assign a pixel to a plane
it must meet one of the following criteria, otherwise it stays
unassigned or assigned to its current plane.
• The considered point is unassigned and fits inside the

neighboring plane.
• If the point is already assigned to a plane, which size

is a lot smaller (e.g. factor of 10) than the new plane,
the point simply has to be close enough (d < dth to get
reassigned.

• If the point is already assigned to a plane, which is of
similar size (|Pnew| f > |Pcurrent |> |Pnew| 1f ) the point has
to be closer to the new plane, than to the old plane
(dPnew < dPcurrent ).

Note that small planes can’t take away points from bigger
planes but bigger planes sure can do this to smaller ones.

Fig. 8: The bottom up and top down processing steps follow-
ing the same pattern: The center point (blue) is traversing the
image pixelwise in the directions top-down (left) or bottom-
up (right). When one of the center points neighboring pixels
(green) is a suitable candidate for the center points plane
hypothesis, it will get added to this plane.

(a) Original image. (b) Raw patch clustering.

(c) The top-down post-
processing step.

(d) The bottom-up post-
processing step.

Fig. 9: Synopsis of the segmentation process.

This is a strategy to eliminate smaller planes, that might be
created in the first step due to oversegmentation. One might
replace this strategy by a more sophisticated one. An other
parameter that could additionally be taken into account is
the normal vector of each point, which should show into the
same direction as the plane it is added to.

VI. RESULTS OF SEGMENTATION

The simple plane segmentation algorithm provides useable
results for indoor scenarios as seen in Figure 9. It is notable
that the depthmap quality degrades in the image corners.
As a result the algorithm wrongly creates another plane in
this region (bottom right corner). Besides this, the algorithm
shows the desired behavior. The cylindrical regions around
the cans and boxes are approximated by smaller planes, while
smaller planar surface patches of boxes get detected as such.
In terms of frame rate our algorithm is competitive as it
runs at 22 Hz while processing a 640× 480 pixel depth
map. The algorithms described by Holz [5] (7 Hz) and Wang
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[8] (25 Hz) additionally implement some kind of obstacle
detection but do not utilize pre-filtering. Apart from this,
the conditions are reasonably similar. On the hardware side
all results where achieved on an Intel Core i7 with around
2 GHz while utilizing only one CPU core and the GPU for
pre filtering.

VII. CONCLUSION

We introduced a new plane segmentation approach for 2.5 D
data. It shows competitive results for both, quality and speed.
Our algorithm relies on a filtering step that improves the
quality of the input data. Hence, we conducted an analysis
of three filters to find a fitting candidate.
We selected the Sigma Adaptive Bilateral Filter wich bal-
ances speed and quality. Our GPU implementation of the
filter algorithm runs within 25 ms on an AMD Radeon HD
6750M. The mesh denoising algorithm [4], together with
our modifications showed promising results. To utilize this
algorithm in real-time, GPUs with higher performance could
be a possible solution. Apart from this, both filters could be
improved by adding a noise model that handles the increased
noise levels at higher distances.
The proposed segmentation algorithm shows competitive re-
sults that were achieved with a hierarchical strategy. Splitting
up the segmentation into a coarse pre-segmentation and a fine
grained post-processing step holds the run-time competitive.
Future work could extend this algorithm with a sensor model
that leads to additional rules such as e.g. depth dependent
thresholds.
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