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Abstract— For high quality steel products it is essential to
have specific understanding of the underlying steel production
process such as the electric slag remelting process (ESR). To
assist the currently manual assessment there is a high need
for objective quality measures and standardized evaluation
methods. A set of relevant parameters can be derived from
the so-called pool profiles that give insight to the remelting
process. Based on texture segmentation and ridge detection a
computer-vision based automated evaluation of the pool profiles
is achieved. A comparison with manually extracted pool profiles
from expert metallurgists shows the feasibility of the approach
and the good performance of the automated analysis. Further
evaluation on different types of steel blocks will yield valuable
insight to and improve the overall steel production process.

I. INTRODUCTION AND MOTIVATION

The field of quality management and improvement in
high quality steel production is one of the deciding reasons
whether a steel producer remains competitive or not. In
the production of high quality steel products for demanding
applications it is essential to remelt conventional produced
ingots. In order to yield specific understanding of the remelt-
ing process as well as to improve the process, there is a high
need for an objective and standardized evaluation of remelted
blocks.

The advantage through technology is to be able to sub-
stitute pure manual quality control and, thus, very time-
consuming work flows. Furthermore, it is possible to provide
repeatable calculations of quantitative measurements. This
paper presents a vision-based solution to be able to automate
those processes.

Currently, most of the structure evaluation is done man-
ually and the information is stored in different analog and
digital files. In order to be able to store all information in
one place, a software was developed where various different
kinds of meta data can be directly mapped to the analyzed
steel block.

After a short introduction of the data material (Section II)
and a brief overview of related work (Section III), Section
IV gives insight into the quality assessment of steel ingots.
Section V presents the automated segmentation, Section VI
an objective method to derive steel quality parameters and
Section VII gives some final conclusions and an outlook on
future work.
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II. DATA MATERIAL

Figure 1 shows the scheme of an ESR. Those remelted
high quality steel blocks have a weight up to 20 tons. To
analyze the inner solidification of such blocks, it is necessary
to saw out longitudinal slices from the center of the block.
Furthermore, these plates are cut into pieces to be able to
handle size and weight as illustrated in Figure 2.

Fig. 1: Scheme of electric slag remelting process.

Fig. 2: Preparation of steel blocks for evaluation.

In order to gain deeper knowledge of the remelting process
those plates are ground, polished and etched to reveal the
inner crystalline solidification structure. Those structures
provide information directly linked to the remelting param-
eters and as a consequence are essential for optimizing
these parameters. Changes within the remelting process are
directly related to the solidification structure [11], [8]. As a
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last step, the prepared steel specimen are scanned by a 4k
line scan camera. The problem with conventional assessment
approaches is that the preparation of the data material is very
costly and time consuming. Thus, the available data material
for this work consisted of only three blocks with manually
annotated ground truth.

III. RELATED WORK

Vision-based approaches are already well established in
assessment of material surface characteristics. As well there
are also several approaches related to steel quality assess-
ment.

A computer vision based microstructure analysis and
classification approach is introduced in [3]. The strategy is
to set up a complex histogram representing a ’fingerprint’
of a microstructure. With the aid of those histograms it is
possible to classify similar texture patterns by calculating
the χ2 distance.

Characterization of steel specimen surfaces are also pre-
sented in [2]. Signatures of surface profiles are extracted with
multiresolution wavelet decomposition. Furthermore, surface
roughness parameters are derived from those signatures.

Another feature extraction from micrographs is elaborated
in [7]. The focus within this paper lies on extracting features
like grain size, anisotropy of grains and the amount of δ
phase.

Further research on vision-based steel surface inspection
mainly focuses on the detection of defects. A summary of
detectable surface defects and approaches to identify them
can be found in [5].

Nevertheless, the proposed methods focus on the analysis
of microscopic scale specimens (few mm2) with their specific
microscopic structures or the detection of defects. In contrast,
the approach presented in this paper aims at the inspection
and analysis of a full steel block with its macroscopic
features. Those features exhibit completely different appear-
ances than the microscopic structures.

IV. QUALITY ASSESSMENT OF STEEL INGOTS

Significant parameters for the quality of steel can be
derived from so-called pool profiles, which can be derived
from inspection of the remelted steel blocks. With the aid of
those pool profiles it is possible to determine certain quality
attributes within the whole steel block. Therefore the equality
of the individual pool profile lines with their surroundings
are taken into account. Figure 3 shows manually derived pool
profiles of an example steel block plate. These are generated
by human experts (metallurgists) who try to identify the
growth direction of the dendrites1 in the image. Based on
those direction vectors, lines in predefined distances are
estimated perpendicular to the vectors. This process is very
time consuming and prone to human error. Furthermore, the
results are influenced by subjective interpretation and, thus,
experts easily end up with diverse results.

1Dendrites are complex three-dimensional tree-like structures. Dendritic
morphology is the most commonly observed solidification structure [9], p.
78.

Fig. 3: Manually derived pool profiles.

Further ground truth data analysis revealed that some
blocks show much more irregularities on top, bottom and
in the middle due to the globular solidification in those
areas. To be still able to extract meaningful pool profiles,
metallurgists disregard those areas and simply classify pool
profiles in regions with trans-crystalline solidification only.
This basically means that trans-crystalline solidification areas
provide representative information, whereas globular areas
are basically unstructured and as a result do not provide
meaningful information for the pool profiles. Thus, for an ob-
jective evaluation it is essential to automatically distinguish
between globular and trans-crystalline solidification areas.

V. STEEL SPECIMEN SEGMENTATION

The consequential first step of the automated quality as-
sessment is the segmentation of globular and trans-crystalline
solidification areas. The main idea for automated segmenta-
tion is based on the different textural appearance (regular
and irregular patterns) of the different solidification regions.
Therefore, various algorithms for the description of the
surfaces were selected. The resulting classification gives
information about where the actual extraction of information
used for pool profile generation/calculation can be retrieved
from.

Due to the lack of extensive ground truth data, it was
necessary to find suitable texture features and to implement
customized classification methods rather than to train already
existing classifiers. The following sections give an overview
about the selected algorithms and the respective evaluation
results.

A. Gabor Filter

The basic idea of using Gabor filters was to analyze spatial
frequencies and their orientations within image patches.
Trans-crystalline solidification areas represent areas with
clearly visible frequencies and orientations whereas globular
solidification areas do not. 2D Gabor filters are sinusoid
functions combined with a Gaussian (see Figure 4) [6].

Two classes of training patches were created for globu-
lar and trans-crystalline solidification areas. These patches
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Fig. 4: Gabor filter composition: (a) 2D sinusoid oriented
at 30◦ with the x-axis, (b) a Gaussian kernel, (c) the
corresponding Gabor filter [6].

were used to generate covariance descriptors of Gabor filter
outputs with one frequency and six orientations. Nearest
neighbor classification was used for evaluation.

Figure 5 shows a whole steel block and the segmentation
results. From Figure 5b it is obvious that the classification
output delivers plausible results for the trained type of
steel, although the trans-crystalline areas are not perfectly
classified if the orientation of the solidification structure does
not perfectly match the trained ground truth data.

B. Spatial Filter Bank

The paper presented by Ahmadvand and Daliri [1] intro-
duces a way to perform invariant texture classification by
using a spatial filter bank in multi-resolution analysis. The
generated features comprise l1-norm, standard deviation and
entropy calculated from the spatial filter bank results of the
original patch and the discrete wavelet transformed patch.
Proposed filters are Gaussian, Laplacian of Gaussian and
local standard deviation.

Same as for Gabor filters, two different patch classes are
used to set up two feature matrices. For classification simple
Mahalanobis distances between the feature vector and the
matrices are calculated to determine class affiliation.

Although certain regions (middle and bottom in Figure
5c) are extracted more homogeneously than in the Gabor
filter approach, the classification output does not yield a
satisfactory result as it is too dependent on selection of
training patches. The filter bank matches good within direct
surroundings of training patch areas, whereas other areas
cannot clearly be separated.

(a) Original image. (b) Gabor filter output
with nearest neighbor
classification.

(c) Spatial filter
bank output with
Mahalanobis distance
classification.

Fig. 5: Original image and segmentation output.

C. Local Binary Patterns (LBP)

LBP [10] are used to describe the surrounding of a pixel.
This is done by comparing a pixel to each of its neighbors
(which [10] defines by radius and number of points on the
consequential circle). Given eight neighbors LBP result in an
eight digit binary number where each digit gives information
about whether the center point value is greater/equal or
smaller than its neighbor. To retrieve information about a
larger area LBP for each pixel in that area are summed up
in a histogram illustrated in Figure 6.

Fig. 6: LBP histogram generation.

To be able to determine certain edge and line infor-
mation of an area’s histogram, we decided to summarize
inverted patterns, same orientation patterns or patterns that
just describe noise. Overall dominating bins like noise and
white/black dots are deleted from the histogram. Following
those steps, it is possible to determine features (histogram
bins) that correlate with the desired regions.
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Fig. 7: LBP dominating feature/bin output.

Figure 7 shows a color coded image on the left hand
side where each color matches a bin from the summarized
histogram. The output image on the right hand side was
generated by using a majority filter calculating the dom-
inating feature for a specified area around a center pixel
and then plotting its assigned color in the output image.
The background colors of the illustrated patterns (in the
middle) correlate with the colors in the left image. Together
they represent the orange area within the final binary output
image on the right. It is clearly evident that horizontal lines
(line endings) smoothly correlate with globular solidification
areas whereas trans-crystalline areas are dominated by other
orientations.

D. Feature Comparison

Experiments with different steel compositions have shown
that the Gabor, as well as the spatial filter bank approach, do
not deliver generic solutions. Even for equal types of steel
with other block dimensions, those algorithms do not deliver
satisfying results.

Interestingly, the discovery that dominating horizontal
orientations correlate with the globular solidification area,
was also proven for further steel blocks. The validation of the
segmentation output was performed by metallurgists visually.
Thus, the segmentation based on LBP (Figure 7) is used as
basis for the quality parameter extraction.

VI. POOL PROFILES

As previously mentioned, pool profiles are used to de-
termine quality parameters. Therefore, a fast and reliable
process that can produce repeatable results with a minimum
need of human interaction is required.

The best performing method during analysis of different
steel types is based on a combination of scale-space and
ridge detection. The ridge detection is similar to a biomet-
ric fingerprint recognition approach [4] with the difference
that in this application regions with constant directions are
important, whereas in fingerprint recognition characteristics
like crossing points or ridge ends are relevant.

A. Ridges and Orientations

The algorithm for ridge preparation, extraction and orien-
tation calculation is based on a paper presented by Hong,
Wan and Jain [4]. They show a way to identify and nor-
malize ridge regions within an image and to calculate their
orientations. Figure 8 illustrates the process of pool profile
derivation on a small sample sector of a steel specimen.

Fig. 8: Pool profile detection by ridge analysis. Top: Sector
of steel specimen and derived ridges. Bottom: Derivation of
orientations and final pool profile.

B. Orientation Filtering

The cutting or etching process in preparation of the steel
sample or the imaging/scanning process itself can lead to
artifacts. In order to handle those problematic areas, it is
necessary to implement a filtering algorithm for the ridge
orientations.

The first step of optimization takes place during pre-
processing and delivers a mask of non-valid areas through
a gray scale segmentation process performed on a smoothed
and re-sampled image of the steel specimen.

The second step is the filtering of derived orientations.
This filtering relies on homogeneity properties of the ori-
entations in image areas. If an orientation vector is not in
conformity with its surrounding/neighboring orientations it
is treated as outlier and, thus, filtered before deriving the
final pool profile.

Additionally, as a third step orientations are calculated
on different scales of the image to pre-filter orientations
deviating from smaller scales.

Figure 9 shows a sample steel plate and the calculated
orientations (short blue lines) with and without filtering. It
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is clearly evident that areas with little or even no information
content were masked out. The resulting orientations are
smaller in number, but more expressive.

Fig. 9: Optimization of orientation detection. Left: Result
without filtering. Right: Result with filtering.

C. Pool Profile Results

The pool profile itself comprises of trace lines derived
from ridge orientations. Each trace line is calculated from a
given individual starting point by calculating a normal on the
underlying orientation to the consequential next one and so
forth. The calculation begins either from the outer borders
(left and right) to the middle or vice versa. Figure 10 shows
an example of automatic generated pool profiles overlaid on
automatically detected orientations. The two colors of the
trace lines represent the different starting orientations.

Fig. 10: Automatic generated pool profiles from the sample
steel block displayed in Figure 3.

Metallurgists verified the quality of this approach by
comparing the manually derived ground truth (Figure 3) with
the achieved results (Figure 10). The comparison shows the
good correspondence of manually generated ground truth
with automated derived pool profiles.

VII. CONCLUSIONS AND OUTLOOK

This paper presented algorithms to perform steel speci-
men segmentation for classification of globular and trans-
crystalline solidification areas and algorithms to automate
pool profile generation. Figure 11 displays a whole steel
block with segmentation and pool profiles. The automated
quality assessment is currently under evaluation by metallur-
gists on additional steel blocks.

Fig. 11: Final result with segmentation and pool profiles.
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First feedback indicates that the method for segmentation
and pool profile generation is applicable for a wide range of
steel products. This might require further implementations
and/or parametrization for segmentation and pool profile
generation. In the future, as image acquisition will take
place regularly and, thus, more data will be available, we
intend to investigate approaches based on deep learning, that
will enhance automated segmentation and quality assessment
even further.
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[8] W. Schützenhöfer, G. Reiter, R. Tanzer, H. Scholz, R. Sorci,
F. Arcobello-Varlese, and A. Carosi, “Experimental investigations for
the validation of a numerical pesr model,” in International Symposium
on Liquid Metal Processing and Casting. Nancy, France: SF2M,
2007, pp. 49–55.

[9] D. M. Stefanescu and R. Ruxanda, ASM Handbook Volume 9:
Metallography and Microstructures. ASM International, 2004, ch.
Fundamentals of Solidification, pp. 71–92.

[10] M. T., “The local binary pattern approach to texture analysis -
extensions and applications.” Ph.D. dissertation, Infotech Oulu and
Department of Electrical and Information Engineering, University of
Oulu, 2003, dissertation. Acta Univ Oul C 187, 78 p + App. [Online].
Available: http://herkules.oulu.fi/isbn9514270762/

[11] R. Tanzer, A. Graf, W. Schützenhöfer, and G. Reiter, “Description and
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