
A Model-Based Fault Detection, Diagnosis and Repair for Autonomous
Robotics systems

Stefan Loigge1 and Clemens Mühlbacher1 and Gerald Steinbauer1 and Stefan Gspandl2 and Michael Reip2

Abstract— Autonomous robots comprise of several complex
software and hardware components which interact with the en-
vironment to fulfill a certain task. Due to the non-determinism,
inherent of the environment and complexity of the components
one cannot expect that the robot will never show a fault. Instead
one needs to deal with the occurrence of faults in the robotics
system. As we focus on autonomous robots the robot should
deal with faults in an automated fashion.

In this paper, we present a model-based fault detection and
diagnosis method with a simple but powerful method to repair
faults. Using this method, the robot can detect and react to
faults in a timely manner. Furthermore, no human intervention
is necessary thus allowing the robot to be autonomous. As not
every repair can be performed by the robot itself the system
allows the robot also to inform the maintenance staff which
repairs are necessary. Thus, this approach reduces the time for
fault localization of the maintenance staff.

I. INTRODUCTION

Autonomous robots perform tasks in (partly) open envi-
ronments. To perform such a task, the robot uses several
complex software and hardware components which interact
with each other. Due to the (partly) open environment and
the complex components, one cannot assume that no fault
will occur. Instead one needs to design the robotic system
with faults in mind. Thus, one either add fault handling in
each component or one uses a more general approach. One
such general approach is the use of a model-based approach
as outlined in [1]. The model is used to describe the system
behavior and to allow the system to detect a fault.

The use of a model-based approach allows the robot to
determine if a fault has occurred. Furthermore, the robot
can determine which component most likely caused this
fault. Using the information which component is faulty the
robot can determine which action to perform to react to this
fault. Besides the possibility that the robot detects and reacts
to a fault a model-based approach also allows to separate
the current system description from the fault detection and
localization components. As the model is used to describe
the system the fault detection and localization can be done
on the model only. Thus, one can use the software to
perform this reasoning for many different robots without
changes. The only thing which needs to be changed for a
robot is the model of the robot. As many robotic system

1Stefan Loigge, Clemens Mühlbacher and Gerald
Steinbauer are with the Institute for Software Tech-
nology, Graz University of Technology, Graz, Austria.
{sloigge,cmuehlba,steinbauer}@ist.tugraz.at
This work is partly supported by the Austrian Research Promotion Agency
(FFG) under grant 843468.

2Stephan Gspandl and Michael Reip are with incubedIT, Hart bei Graz,
Austria. {gspandl,reip}@incubedit.com

reuse components of other robots, or have similar robot
components one can often reuse parts of already existing
models. Thus, further decreasing the effort to perform fault
detection and localization.

In this paper, we present such a model-based diagnosis
approach. The method uses several different observers to ob-
serve properties of the system. These properties are observed
to detect a fault. With the help of the observed properties, the
system can derive a diagnosis which component caused the
fault. This allows pinpointing the fault without extra costs as
the only information necessary for the diagnosis is already
provided through the definition of the observations. To allow
the robot to react to a detected fault a simple rule engine can
be used. The rule engine allows the robot to react fast to a
fault and to trigger more complex repair actions. Through
this fast reaction, one can reduce the chance that a robot
will endanger itself or pose a threat to its surrounding.

The remainder of the paper is organized as follows. In the
next section, we will give an overview of the fault detection,
diagnosis, and repair system. The proceeding section dis-
cusses the different observers which check system properties
in more detail. Afterward, we discuss the diagnosis engine
which is used to identify the faulty component. In Section
V we discuss the rule engine and how it can be used to
react to faults. In Section VI, we show a use case where the
system was used on an industrial robotics system. Before
we conclude the paper, we discuss some related research.
Finally, we conclude the paper and point out some future
work.

II. SYSTEM OVERVIEW

To create a robotic system, the robot operating system
(ROS) [2] is often used as a framework. With the help of
ROS one can use several software components, which are
called nodes, and interact with each other. This interaction
can be performed with the help of publisher-subscriber
principle which allows exchanging message between each
ROS node. To define and identify for such communication
channel ROS uses so-called topics. These are strings defining
an n-to-n communication channel. Furthermore, one can use
service calls to provide a service from one component to
another. In the remainder of the paper, we will focus on
messages exchanged by topics as these are used more often
as services and allow an easy introspection.

Using ROS, a robotic system can be created which uses
several software components interacting with each other. As
we are interested in detecting and identifying faults and react
to these faults we use the system depicted in Figure 1. The

Proceedings of the OAGM&ARW Joint Workshop 2017 DOI: 10.3217/978-3-85125-524-9-03

9

Fig. 1. Monitoring, diagnosis, and fault handling overview: observer
(yellow), diagnosis engine (blue), rule engine (green), [4]

system consists of three parts. A set of observers which is
used to detect a fault. A diagnosis engine which identifies the
component which caused the fault. The usage of observers
and a diagnosis engine for a ROS was already proposed in
[3] and was extended in this paper. Finally, a rule engine is
used to react to faults.

To allow the method to be applied for already existing
software, it is of interest that the used software components
are not needed to be altered. Thus, instead of detecting a
fault in the software components directly, we use information
provided by the interaction of the software components.
This allows that we can detect a fault without changing
existing software components. This can be simply achieved
in ROS by introspection on the topics which are used for
the communication. By observing properties of a topic, e.g.
frequency of communication on a topic, the system can be
checked if it conforms to the given model. This observation
is provided using different observers where each observer is
used to determine if a specific property hold. We will discuss
in the next section in more detail which observers exist.

With the observations, only the robot would only be able
to detect that a fault has occurred. But the robot needs
also to determine which component caused the fault. This
is of special interested if several malfunctions are detected
at the same time. With the help of the model of the system
and a reasoning process, the diagnosis engine determines
which components are faulty. The reasoning performed uses
a consistency-based diagnosis [5] approach which searches
for a minimal set of components which are blamed for being
faulty explain the observations. We discuss the diagnosis
engine in more detail in Section IV.

After the robot, has determined which components might
have caused the fault the robot needs to react to this fault.
This is achieved with the help of a rule engine which uses
the current diagnosis of the system together with the obser-
vations. By combining the diagnosis and the observations the
rule engine can determine which rule should be triggered to
execute a specific repair. This allows the robot to react in a
timely manner. If a planning system would be used as it was
described in [3] a possible high planning time may not allow
such a fast reaction. Due to this reaction, the robot can bring
itself into a safe state which can be used afterward to perform

a more complex repair. Let’s consider a simple example.
The robot detects that the laser scanner used for navigation
is malfunctioning. After determining this malfunction, the
robot can react and stop immediately. Thus, the robot will
not drive into an obstacle. After the robot, has stopped, the
robot can perform a more complex reasoning which repair
should be performed with another method [3]. Or it may
even try to reconfigure itself to deal with the fault [4]. In
this paper, we will focus only on a quick reaction to a fault
and not a complex repair or reconfiguration mechanism. We
will discuss the rule engine in more detail in Section V.

The complete system as it is described in this paper is
public available under http://git.ist.tugraz.at/
ais/model_based_diagnosis.

III. OBSERVERS

As outlined above we use several observers to check
if a certain property of the robotic system holds. These
observers are used to mediate between the concrete messages
send in the robotic system and the abstract model of the
system. This allows that the model of the system uses a
predicate based representation of the robotic system which
simplifies the diagnosis process. Furthermore, the observers
can use specifically design methods to observe a certain
property allowing a small computation overhead to provide
the observations.

To properly supervise the system different types of ob-
servers are used. Some observers observe the behavior of
a node directly where others observe the behavior or the
message exchanged. To observe the behavior of the node
directly two observers can be used.
• The activated observer checks if a node is present in the

robotic system. Thus, allowing to check if the system
is properly configured.

• the resource observer checks if a specific node in the
system uses a predefined amount of system resources,
e.g. CPU. This allows checking if the node neither con-
sumes too many resources, e.g. a memory leak causing
the accumulation of memory nor the consumption of
too fewer resources, e.g. no CPU usage as the node has
deadlocked itself.

To observe the behavior of the message exchange in the
system the following six observers can be used.
• The time-out observer checks if at least one message

was sent within a specified time interval. This allows
checking if a topic is used for communication and
performs a watchdog functionality for a topic. Thus,
allowing to revival problems which cause the commu-
nication to break down, e.g. the node which should send
an information can’t produce an output.

• The HZ observer checks on a topic if messages are
exchanged with a given frequency. This allows checking
if a communication is done on a regular basis. Thus,
allowing to check if the node which provides the
information is overloaded.

• The time-stamp observer checks if the timestamp of a
message send is not too old. This allows checking if

10

old data are sent in the system thus reveal problems to
produce new data.

• The timing observer checks the time difference between
one message send on one topic and one message sends
on another topic. This can be used to check if a node
produces an expected output within the expected time
frame. Thus, one can detect if a processing step takes
too long.

• The score observer checks if the float value of a topic
is within a range. This allows checking the calculated
score, specifying the performance of an algorithm out-
come.

• The movement observer uses two topics which specify
the movement of the robot for correlation. This correla-
tion can be used to check if the expected movement
differs significantly, e.g. the movement measured by
the IMU is different to the movement measured by the
odometry.

Using the different observer types different properties of
the system can be checked. As the observations, may be
subject to noise one cannot simply use the raw values to
perform the check. Instead one can apply different filter
mechanism to process the raw values before performing a
check. Thus, the raw value to check, e.g. the frequency of a
topic is treated as a signal which needs to be filtered as it is
common in signal processing [6].

After filtering the raw values of the observation one needs
to perform a check to determine if the observed values
are acceptable. This can be done by simple checks which
determine the correctness using comparison with a fixed
value. But it is also possible to use a more complex test
which uses a statistical approach. This is done by performing
a student-t-test [7] on the filtered data. Through this test one
can check if the hypothesis that the observation is acceptable
needs to be withdrawn. Thus, allowing to perform a check
considering the statistical uncertainty.

All except one observer type check the raw value observed
with a nominal value of the mode, e.g. the frequency of
a topic with the expected value. The movement observer
is the exception, as it correlates two values with each
other. The idea is to use the redundant information in the
robotic system to check for consistency. This follows the
idea of residuals [8] which create an error term between
redundant information in the system. To do so, we first derive
from each movement measurement the resulting acceleration.
Thus, if the movement is given by the current velocity the
movement is differentiated to get the acceleration. Afterward,
the accelerations of one input are subtracted from the other
input. If no fault occurs this value is zero. Due to the noise
measurement, the value follows a Gauss distribution with
zero mean. With the help of the filter methods, one can
estimate the mean of the distribution and use this estimation
to perform a check if the value is close enough to zero.

IV. DIAGNOSIS ENGINE

Using the observers one can detect if one property of the
system behaves not as defined. This allows to detect a fault

but does not allow to isolate the faulty component directly.
Instead one needs to perform a reasoning. We use the idea
of consistency-based diagnosis [5] to perform this reasoning.
The reasoning uses the information about the observations
taken from the system as well as the topology of the system.
This allows handling fault propagation properly. To specify
the system, we define a system to consists of a set N
defining the nodes of the system. These are the software
components which are running and need to be diagnosed.
Additionally, the system consists of a set M defining the
topics which are used to exchange messages between the
software components. To represent the input topics to a node
we use the function input : N → 2M. The output which is
produced by a node is defined through output : N → 2M.
Using the set N , and the functions input and output one can
describe the information flow of the system. This information
flow is of interest as a fault can be propagated along this
information flow.

To define a software component n to be faulty we use
the predicate AB(n). Besides the software component also
a topic can be observed to be faulty thus we write AB(m)
that on observation indicate that the message exchange m
is not as expected. Please note that we are only interested
in the predicates AB(n) which are used to explain a faulty
behavior. Thus, we will search for a minimal set of AB(n)
predicates which explain the observations.

To specify the fault propagation, we use the following
logical formula which is defined for each n ∈ N .

∀mo ∈ output(n) :AB(mo)→
AB(n)

∨

mi∈input(n)
AB(mi)




The formula states that if the output of a software component
seems to be faulty either the component is faulty or one of
its inputs where faulty. Thus, one can propagate the fault
from input to output.

With the help of the above formula, we can define the fault
propagation in the system per the structure of the system.
Besides the structure of the system, we need also to define
how the observations made a link to the components in the
system. This link depends on the type of observation made.
We use the following formulas to link the observations and
the components of the system.

• If component n is observed with the help of an activated
observer (obsactivated(n)) we state the following logical
formula.

¬obsactivated(n)→ AB(n)

As we directly observe the component we can detect
that the component is faulty if the observation indicates
a fault.

• If component n is observed with the help of a resource
observer (obsresource(n)) we state the following logical
formula.

¬obsresource(n)→ AB(n)

11

As we directly observe the component we can detect
that the component is faulty if the observation indicates
a fault.

• If a topic m is observed with the help of a time-out
observer (obstimeout(m)) we state the following logical
formula.

¬obstimeout(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If a topic m is observed with the help of an HZ observer
(obshz(m)) we state the following logical formula.

¬obshz(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If a topic m is observed with the help of a time-stamp
observer (obstimestamp(m)) we state the following log-
ical formula.

¬obstimestamp(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If two topics m1 and m2 are observed with the help
of a timing observer (obstiming(m1,m2)) we state the
following logical formula.

¬obstiming(m1,m2)→ (AB(m1) ∨AB(m2)).

If the timing of the two topics does report an error one
of the topics need to cause the fault. As we only observe
that at least one of the topics need to be abnormal we
need to use the structure to determine which component
caused this fault.

• If a topic m is observed with the help of a score observer
(obsscore(m)) we state the following logical formula.

¬obsscore(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If two topics m1 and m2 are observed with the help of
a movement observer (obsmovement(m1,m2)) we state
the following logical formula.

¬obsmovement(m1,m2)→ (AB(m1) ∨AB(m2)∨
AB(movement))

The formula states that if the movement is observed to
be faulty then either one of the topics is abnormal or the
movement relation is not valid. The movement relation
may not be valid as we may observe the difference
between the IMU and the odometry. If the robot now
slips the odometry and the IMU do no longer agree but
none of the components is faulty. Instead, the model

of the environment imposing that these two sources of
information are redundant does not longer hold.

With the logical formulas from above, the model of
the system is described. Furthermore, the link between the
observations and the model of the system is defined through
the logical formulas from above. With the help of this logical
formula, one can derive which set of AB(n) predicates
is consistent. This set represents the software components
which need to be faulty to explain the observed faults. As
we are interested in the most likely explanation we follow
the idea of Occams razor and search for a minimal set of
AB(n) predicates which are consistent.

To find this minimal set we use a minimal hitting set
algorithm. The algorithm uses a sat solver to derive if a set
of AB(n) predicates is consistent. If the set of predicates is
consistent the algorithm has found a diagnosis. Otherwise,
the algorithm uses the predicates AB(n) which are part
of the conflict in the checked set of AB(n) predicates to
choose the next AB(n) to add to the set to avoid this
conflict. Due to this conflict-driven search, the algorithm
can derive a minimal set in an efficient manner [5]. To
perform the necessary calculations of the algorithm we use
the implementation of [9].

V. RULE ENGINE

After detecting a fault and identifying the faulty compo-
nents the robot needs to react to this fault. To deal with faulty
components the robot needs either to perform a repair action
[3] or change the configuration of the robotic system [4] to
deal with this problem. In either case, it takes some time
to deal with the fault properly. This can cause the robot to
operate in an unknown state in an unsafe manner. Thus, the
robot needs first to react swiftly to bring the robotic system
in a known a safe state. This imposes that the robotic system
will not harm itself or its environment. Additionally, often
such a reaction is sufficient as some faults cannot be fixed
by the robot itself, e.g. a broken wheel.

To allow the robot to perform a fast reaction we propose
a simple but powerful rule engine. The simplicity of the rule
engine is not only due to the simple model how the robot
should react but also due to the limited reasoning which is
performed to choose the reaction. This restricts the possible
reactions of a robot but allows to perform the reactions fast
without a large computation overhead. The reaction triggered
by the rule engine is a kind of reflex of the robot. Thus, only
preventing it from further harm if possible.

To perform the reaction, the rule engine uses a set Obs of
the observations made so far. The set is updated with each
incoming observation to ensure that only one observation per
component/topic for a specific type is present. This update
also ensures that only the newest information is used. To
trigger the rules an additional set is used, the set PosAb
of components which are possibly faulty. The set defines
those components which are part of a minimal diagnosis.
Thus, if one has two diagnoses {{m1}, {m2}} the set of
possibly faulty components consist of the elements of both
diagnosis ({m1,m2}. This set simplifies reasoning as one

12

does not reason over different diagnosis but only over the set
of components which may be faulty. The components which
may be the faulty need either to be observed more closely
or need to be repaired. Additionally, one cannot assume that
this component works properly with the information given
so far. Thus, this set is sufficient to decide which action to
execute.

The rule engine consists of a set of rules R where each
rule r is a tuple comprising the following elements.
• A set posObs defining observations which should have

been made
• A set negObs defining observations which should not

have been made
• A set posPosAb which is a set of components which

should have been diagnosed as possibly faulty
• A set negPosAb which is a set of components which

should not have been diagnosed as possibly faulty
• α an action to execute.
Due to the use of the sets, one can simply perform the

reasoning by intersecting the sets to determine if the rule
should be triggered. As some observations, may be missing
one may face the problem that neither obsresource ∈ Obs nor
¬obsresource ∈ Obs holds, thus one cannot take a decision
if the observation of the resource is true or false. If one
would strictly perform the reasoning a rule may not triggered
because obsresource 6∈ Obs holds although ¬obsresource 6∈
Obs holds. This is of special interest as not every observer
may state regularly which observations are true but only state
which observations are false. To deal with this problem we
trigger a rule if no contradicting information is observed.
This is achieved by the following simple procedure.

Trigger the rule if neither of the following holds.
• posObs ∩ Obs 6= ∅, where posObs = {¬po|po ∈

posObs}
• negObs ∩Obs 6= ∅
• posPosAb ∩ PosAb 6= ∅, where posPosAb =
{¬posAb|posAb ∈ posPosAb}

• negPosAb ∩ PosAb 6= ∅
As only set operations are performed one can perform
an efficient reasoning which allows a fast reaction. Espe-
cially as one can assume that the sets posObs , negObs ,
posPosAb and negPosAb are small. Thus, one can perform
this checks in O(|posObs|∗log(Obs)+|negObs|∗log(Obs)+
|posPosAb|∗log(PosAb)+ |negPosAb|∗log(PosAb)) which
allows a fast reaction even in case of many observations or
many possible faulty components.

As rules, should only be used to allow the robot to react
to faults, instead of continuously checking the rules, they
are only checked if the set of observations or possible faulty
components changes. This allows to save resources but also
prohibits to trigger a rule multiple times without any change
in the system.

After deciding that a rule should be triggered one needs
to execute the action α which is defined for this rule. The
actions range from printing a message to the console or to a
log file over changing parameters to triggering the execution

of an external script. Thus, one can trigger nearly arbitrary
behavior to react to a fault.

VI. USE CASE

Before we discuss related research, we will show a simple
use case of the system. The use case is the simplified
odometry calculation of a robot which delivery good in a
warehouse, see [10] for a detailed description of the robot.
The odometry is calculated using the wheel encoders and an
IMU is used to improve this odometry. The IMU is fused
with the calculation by using the rotation of the IMU instead
of the calculated rotation. Thus, if the IMU is fault free the
odometry is improved. To show the impact of the proposed
system three faults is simulated. The IMU can either be stuck
to zero after some time, it can overestimate the rotation by
20% or issue that there is no rotation after rotating a certain
amount of time.

To evaluate the impact of the system the robot was
commanded to move between six waypoints in the environ-
ment, for three minutes. During the movement, the wheel
encoder the IMU measurements and the real position of the
robot were determined. The real position of the robot was
determined with the help of an OptiTrack system. After the
movement of the robot was recorded the odometry is calcu-
lated using the wheel encoders and the IMU. Additionally,
one observer is used which checks if the calculated rotation
of the wheel encoder and the IMU correlate. This allows
detecting a fault of the IMU. Using this fault detection, the
diagnosis can calculate that the IMU is faulty. In such a case
the rule engine changes a parameter to ensure that the IMU
is no longer used for the odometry calculation.

The evaluation compares the error between the ground
truth and the calculated odometry which always uses the
IMU and the calculated odometry which only use the IMU
if it is not diagnosed to be faulty. In case the IMU was stuck
to zero after several seconds the mean error was reduced by
28.1% and the root mean squared error (RMS) was reduced
by 39.9%. In case the IMU was overestimating the rotation
by 20% the mean error was reduced by 25.6% and the root
mean squared error (RMS) was reduced by 35.6%. In case
the IMU was reporting zero rotation after one second of
rotation the mean error was reduced by 39.3% and the root
mean squared error (RMS) was reduced by 50.9%. Thus, the
use of the diagnosis system could react quickly enough to
improve the odometry calculation drastically. The evaluation
was performed on an intel i5-2430M with 8 GB of RAM
and took less than 2 % of the CPU.

VII. RELATED RESEARCH

We begin our discussion of related research with the
method proposed in [11]. The method adds to each software
module so-called software sensors. These sensors supervise
the execution of a software component which is treated as
a black box. Thus, the software component can be devel-
oped and tested independently from the sensors. During the
execution, the software sensor checks for faults and report
these faults on a diagnosis port. To ease the reuse of the

13

sensors these sensors uses interfaces which are specific to
the type of information they are interested in, e.g. a state
change in the component. The information provided by these
sensors on the diagnosis port can afterward be used by
a monitor. The monitor allows to view the sensing result
and thus show which faults are present in the system. This
contrasts with the method we propose in this paper as we
use the information provided by the observer to calculate
a diagnosis. Additionally, our observers allow checking for
properties which need to hold between different components,
e.g. the movement measured by the wheel encoder and by
the IMU.

Another method to observe a robotic system was proposed
in [12]. Each module in the system is accompanied with
a detection module which checks if the module works as
expected. This check is performed with the help of a residual
calculation. If the residual is not zero a fault is detected. All
the detected faults are gathered in a fault signature and used
for fault identification. This identification is performed with
the help of an incidence matrix. The matrix describes in a
static manner which fault causes which observations. This
contrasts with our approach as we do not assume that we
can simply enumerate all possible observation and faults in
a matrix. To react to a fault, the method presented in [12]
reacts on the high-level which uses defined recovery actions,
which are chosen per the severity of the fault. This is like
our approach which use a simple rule engine to perform a
reaction but delegates the fault handling to more complex
reasoning whereas the rule engine allows a fast reaction.

A method which uses a rule system for observations was
presented in [13]. The system defines safety rules which
are checked during runtime. To define this rules a domain
specific languages is used which allows defining conditions
for the rules and which actions to trigger if a condition holds.
The rules use information which is provided on different
topics to define a safety rule. The actions are afterward
executed on the robotic hardware and can be defined in the
framework separately. The main difference to our system is
that we separate the detection and the reaction to a fault. This
allows us to use several observations to determine which
component is faulty and afterward react depending on the
faulty component.

As we have briefly outlined above our method is based
on the method presented in [3]. The method presented in [3]
also uses observers to detect a fault and a diagnosis engine to
identify the fault component. Additionally, a planning system
is used to repair if a fault is detected. Instead of using a
planning system to find a proper repair we use a simple rule
engine to allow the robot a fast reaction but also restricts
the possible repairs which can be performed. To allow a
fast reaction and a proper repair one can combine both
methods and first react with the rule engine and afterward
trigger a planning step for a proper repair. The other dif-
ference between the method presented in this paper and the
method presented in [3] is the underlying implementation.
The underlying implementation presented in this paper use
plugin-based observers which are more efficient than the

implementation of the observers used in [3].

VIII. CONCLUSION AND FUTURE WORK

Autonomous robots perform tasks in a (partly) unknown
environment. This is done by using several complex software
and hardware components. These components need to proper
function and properly interact with each other to allow
the robot to achieve its task. Due to the complexity of
the components and the (partly), unknown environment one
cannot expect that the robot will perform its task without
a fault. Instead one needs to address the problem of fault
occurrence in the robotic system.

In this paper, we presented a model based approach which
allows that the robot detects and identifies a fault. This
is achieved by observing the communication between the
components and checking this communication for specific
properties. These properties are derived from the system
and specify the proper function of the system. If a property
indicates a fault a diagnosis engine is used to determine the
minimal set of components which is faulty. Using the result
of this diagnosis engine a simple rule engine can be used
to allow the robot to react to a fault. This reaction can be
used to repair the fault or to bring the robot in a safe state
to perform a more complex repair action.

The current approach uses static properties of the system
to determine if a fault has occurred. It is left for future work
to extend this approach to also consider dynamic changes of
the properties. This would allow to detect a malfunction in
the dynamic behavior of the system as well as to determine
a malfunction of a component which changes its static
behavior per a defined system state.

REFERENCES

[1] G. ”Steinbauer and C. Mühlbacher, “Hands off - a holistic model-
based approach for long-term autonomy,” in Workshop on AI for Long-
Term Autonomy, 2016 IEEE International Conference on Robotics and
Automation (ICRA).

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[3] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An
integrated model-based diagnosis and repair architecture for ros-based
robot systems,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, May 2013, pp. 482–489.

[4] S. Loigge, “Unified and dependable robot control architecture based
on ros,” Master’s thesis, Faculty of Computer Science and Biomedical
Engineering, Graz University of Technology, 2016.

[5] R. Reiter, “A theory of diagnosis from first principles,” Artificial
intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[6] A. V. Oppenheim, Discrete-time signal processing. Pearson Education
India, 1999.

[7] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[8] J. Gertler, Fault detection and diagnosis in engineering systems. CRC

press, 1998.
[9] T. Quartisch and I. Pill, “Pymbd: A library of mbd algorithms and a

light-weight evaluation platform.” in 25th International Workshop on
Principles of Diagnosis (DX-2014), 2014.

[10] C. Mühlbacher, S. Gspandl, M. Reip, and G. Steinbauer, “Improving
Dependability of Industrial Transport Robots Using Model-Based
Techniques,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016.

14

[11] A. Lotz, A. Steck, and C. Schlegel, “Runtime monitoring of robotics
software components: Increasing robustness of service robotic sys-
tems,” in Advanced Robotics (ICAR), 2011 15th International Confer-
ence on. IEEE, 2011, pp. 285–290.

[12] D. Crestani, K. Godary-Dejean, and L. Lapierre, “Enhancing fault
tolerance of autonomous mobile robots,” Robotics and Autonomous
Systems, vol. 68, pp. 140–155, 2015.

[13] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Towards rule-based
dynamic safety monitoring for mobile robots,” in International Con-
ference on Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2014, pp. 207–218.

15

