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Abstract

Automatic film restoration tools are increasingly demanded by film archives due
to the huge amount of data and due to the high cost of manual restoration. In this
work we focus on automatic detection of single-frame-defects. Related work lacks
in considering motion estimation errors and motion discontinuities, which result
in high false alarm rates. The main issue resulting from false detections is the risk
of introducing disturbing artifacts into the restored results. We propose a novel
single-frame-defect detector which addresses this issue by considering pathological
motion. First, a primary response measure is presented, which indicates the like-
lihood of each single pixel to be defected. Due to the probability based detection
measure, essential information can be kept throughout the entire process. Second,
the co-support operator is integrated, which effectively reduces false detections
due to noise. Furthermore, the operator completes dust spots by adapting pixels
based on their neighborhood. Finally, areas of pathological motion are obtained
by analyzing the motion vector field. Based on deductions made from the motion
field, a variety of measures are inferred which decreases the probability values of
pixels in affected areas. A comparative evaluation has been performed and the
results are illustrated using receiver operator characteristics (ROC) curves, where
the novel approach is compared against several state of the art techniques. Exper-
imental results show that the proposed technique outperforms all other techniques
regarding accuracy and robustness to motion estimation issues.

Keywords: Film restoration, single-frame-defect detection, motion estimation,
motion field analysis, pathological motion, occlusion and uncovering, co-support
operator, noise suppression, ROC analysis.
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Kurzfassung

Riesige Datenmengen und hohe Kosten für manuelle Restaurierung haben zu einer
verstärkten Nachfrage an automatisierten Werkzeugen für die Filmrestaurierung
geführt. In der vorliegenden Arbeit liegt der Fokus auf die automatische De-
tektion von Defekten in Einzelbildern. Vorgängerarbeiten waren vor allem mit
Problemen in der Bewegungsschätzung und Bewegungsunstetigkeiten konfrontiert,
aus denen üblicherweise eine hohe Rate an Falschdetektionen resultiert. Daher
fehlte in vielen Ansätzen die ausreichende Berücksichtigung solcher Fehler der Be-
wegungschätzung, oder sie wurden überhaupt ignoriert. Das Hauptproblem von
Falschdetektionen ist das erhöhte Risiko im restaurierten Ergebnis störende Arte-
fakte wieder zu finden. Wir präsentieren einen neuartigen Detektionsansatz, der
diesem Problem durch Berücksichtigung von pathologischer Bewegung entgegen-
wirkt. Zuerst wird ein Maß für die Primärdetektion vorgestellt, das für jedes
einzelne Pixel die Wahrscheinlichkeit angibt, defekt zu sein. Aufgrund dieses
Wahrscheinlichkeitsbasierten Detektionsmaßes kann über den ganzen Detektion-
sprozess hinweg auf wichtige Information jedes Bildpunktes zugegriffen werden.
Weiters wird ein neuartiger Operator präsentiert, der die Fähigkeit hat, Falschde-
tektionen aufgrund von Rauschen effektiv zu eliminieren. Zusätzlich vervollständigt
dieser Operator potentialle dust spots, indem er jedes Pixel basierend auf seiner
Umgebung adaptiert. Zuletzt werden Regionen die pathologische Bewegung bein-
halten durch eine ausführliche Analyse des Motionfeldes ermittelt. Aufgrund dieser
Analyse werden verschiedene Indikatoren von pathologischer Bewegung abgeleitet,
die die Wahrscheinlichkeitswerte für die Pixel in den betroffenen Arealen senkt.
Der präsentierte Detektionsalgorithmus und ausgewählte state of the art Meth-
oden wurden mittels ROC (Receiver Operator Characteristics) Kurven evaluiert
und zusätzlich qualitativ analysiert. Die Ergebnisse dieser Experimente zeigen,
dass dieser Detektionsalgorithmus alle anderen Methoden im Hinblick auf Präzi-
sion und Robustheit gegenüber Problemen in der Bewegungsschätzung übertrifft.
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Chapter 1

Introduction

1.1 Motivation

According to UNESCO estimates, some 2.2 billion meters of 35mm films are cur-
rently stored at national and international film archives. This film collection con-
sists of fundamental contributions to the world’s cultural heritage, including for
example records of history, politics, sports and entertainment [1].

All 35mm films recorded before 1950 were produced as nitrate films. In the
Austrian film archive for example, the nitrate film collection represents the fun-
damental stock of Austria‘s contemporary and cultural history from 1896 into the
50s of the 20th century. Nitrate is a highly combustible and chemically volatile
substance and threatened by continuing auto catalytic processes of decomposition
[2]. Additionally, subsequent storage conditions, improper handling practices and
even poorly maintained projectors have contributed to a continuing degradation
of the material [1].

Hence, more than 100 years after the invention of film the audio-visual heritage
of today‘s most important type of culture is imminent to disappear [2]. 90% of the
movies shot in the silent era and half of all films produced before 1950 are already
unrecoverably disrupted [3].

In order to stop the gradual disappearance, the storage conditions have to be
improved and the remaining material needs to be preserved [4]. Nitrate films in
particular are copied onto safety films and, more recently, onto polyester films, by
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Video Standard Resolution
SD 720 × 576
HD(720p) 1280 × 720
HD(1080p)(Full-HD) 1920 × 1080
2K 2048 × 1536
4K 4096 × 3072
8K 8192 × 6144

Table 1.1: Video standard resolutions, in which archived film material is typically
scanned for digitalization and accordingly for the restoration.

using specialist processing laboratories [2].
The environmental impacts, however, have left physical marks on the film strips

[1], which would be simply recopied onto the new storage media. Hence the natural
conclusion is to remove those defects before copying them to renewed storage, as
they are impairing the viewing experience. By suppressing such impairments, the
viewers aesthetic expectations can be met and the commercial value of the film
and video sequences can be increased. Furthermore, it leads to more efficiency of
video-coding algorithms [5] and since the originals are available in digital form,
the films can be copied any number of times [1].

1.2 Digital film restoration

In traditional, analogue film restoration photochemical techniques are applied,
which mostly avoid further decay. However, such techniques cannot remove many
of the defects. Modern techniques, in contrast, are supposed to provide a complete
digital manipulation and correction system. First, archived films are digitalized
by a high resolution film scanner. Generally, the resolution of the scanned images
range from SD to 8K (see Table (1.1)).

The digital film restoration process is a two step approach. In the first step
digital images are analyzed by using modern techniques of digital image processing
in order to improve their quality and to detect corrupted regions.
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(a) dirt & sparkle (blotches) (b) dust

(c) holes (d) hair

Figure 1.1: Overview of typical single-frame-defects occurring in archived films.

This is followed by the generation of a binary mask, which indicates corrupted
regions by set pixels. In the next step, corrupted pixels are reconstructed based
on surrounding spatio–temporal information e.g. by spatio-temporal interpolation,
while uncorrupted ones stay untouched [6]. Ideally, the resulting restored images
are as close as possible to the original.

In this master’s thesis, the focus lies on the first part of digital film restoration
process, the detection of one-frame-defects, including dirt and sparkle (blotches),
dust, cuts, tears, holes, scratches, hairs, etc., illustrated in Figure (1.1). They are
the most frequent and annoying artifacts in archived films. Dependend on wheater
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Characteristics utilized for spatial utilized for temporal
filtering filtering

random distribution ×
high contrast to ×
uncorrupted background
smooth interior ×
high intensity difference ×
to neighborhood

Table 1.2: Common characteristics of single-frame-defects. Those characteristics are
utilized by different single-frame-defect detectors in order to find as much as possible of
present defects.

particles adhered on positive or negative film stock, they appear as dark or bright
spots at different positions and have a varying size and shape.

One-frame-impairments have valuable characteristics, which can be exploited
by detection algorithms. In the first place, blotches appear randomly distributed,
so the assumption of a temporal discontinuity is applied, which means corrupted
parts hardly ever appear at the same spatial location in consecutive frames. Gen-
erally, they have arbitrary shape, size, a varying range of intensity and opacity.
Furthermore, blotches hardly are spatially consistent at their borders. Hence the
intensities of the interior of a blotch are significantly different from those of its
uncorrupted neighborhood. Finally, blotches are local artifacts and form coherent
regions with almost the same brightness [7]. These common characteristics are
summarized in Table (1.2).

Serious problems are the influence of local/global motion and the presence of
other film degradations such as vibration, flickering or film grain noise at various
levels. Therefore the challenge lies in the correct detection of corrupted regions
even though the input images have varying characteristics. At the same time the
aim is to keep the number of false alarms (FA), which represents uncorrupted
pixels falsely detected as dirt, as low as possible. A further difficulty is the huge
amount of data to be processed at high resolution (2K or higher) [8]. Due to the
large amount of films to be restored, automated techniques are required.
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This master’s thesis was motivated by the need of a new state of the art single-
frame-defect detection algorithm for DIAMANT, which is a well-established prod-
uct in the marketplace of digital film restoration, developed by JOANNEUM RE-
SEARCH1. The software already offers film restoration tasks in order to eliminate
undesirable artifacts, such as removal of single-frame defects, images stabilization
and correction of brightness and color instabilities. Among others, DIAMANT has
already been used for the restoration of the classic TV detective series Derrick or
the cult film Metropolis.

However, despite having a great variety of different approaches from literature
available, to date, no satisfying solution exists for the problem of single-frame-
defect detection and removal. In this master’s thesis, the dirt and dust detection
algorithm used in the DIAMANT film restoration tool should be improved. In
particular, we want to focus on motion estimation (ME) problems in order to
avoid misdiagnoses of defects and true data disruption caused by ME failures.

1.3 Outline of the thesis

This thesis is organized as follows: In the next chapter an overview of related
work is presented. Related methods are divided in spatial, temporal and spatio-
temporal single-frame-defect detection approaches, which are described and dis-
cussed in detail. Furthermore, previous work concerning various post processing
mechanisms and the detection of pathological motion (PM) is addressed. The
third chapter explains general assumptions and the main issues of motion esti-
mation (ME) methods. In addition, a brief survey of four ME algorithms, which
manifests different characteristics, is given. In the fourth chapter the proposed
single-frame-defect detection algorithm is presented. We elaborately describe the
developed components consisting of primary detection measure, an effective noise
suppression method and several protection measures. These measures focus on the
detection of precarious regions emerged from ME errors and are mainly inferred

1http://www.joanneum.at/
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from analysis of motion vector fields. Experimental results are given in the fifth
chapter, where the novel approach is evaluated against well known state of the art
methods and the detector integrated in the DIAMANT film restoration software.
A comparative, quantitative evaluation is performed by using the well known ROC
approach. Additionally, we provide a qualitative performance analysis of all ex-
amined techniques followed by a detailed discussion of the obtained results. The
last chapter gives a conclusion and an outlook for future work.



Chapter 2

Related Work

2.1 Introduction

In literature, detection algorithms commonly model the corruption of a frame as
a binary mixture between the original, clean image and an opaque dust mask [9].
Thus the degradation of a clean image can be modeled as

In(z) = (1− b(z))En(z) + b(z)c(z) + µ(z) (2.1)

where En(z) and In(z) denote the intensity at each site z = (x, y)T in the original
and the degraded input frame n, respectively. b(z) specifies a binary blotch mask
that determines whether a defect is present, b(z) = 1, at pixel location z or absent,
b(z) = 0. c(z) is the pixel intensity in the corrupted frame and µ(z) indicates the
additive Gaussian noise with variance σ2 [10]. In this master’s thesis, the model
from Equation (2.1) will be slightly adapted and will be examined in Chapter (4).

2.2 Detection of single-frame-defects

The detection of missing data from the original frame En is mostly done by es-
timating b(z) from Equation (2.1) at each pixel. Existing algorithms mainly use
heuristics and generally try to exhibit the temporal and spatial discontinuity char-
acteristic of single-frame-defects, already mentioned in Section (1.2) and listed in
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(a) frame (n− 1) (b) frame (n) (c) frame (n+ 1)

Figure 2.1: Subset of 3 succeeding frames of image sequence Dance2 (frame number
63 - 65).

Table (1.2). Hence existing work can be arranged in the following three categories:

1. Spatial filtering methods

2. Temporal filtering methods

3. Spatio-temporal filtering methods

2.2.1 Spatial filtering methods

Considering single-frame-defects as spatially impulsive events, they can be detected
and recovered via filtering. Consequently, spatial filtering methods are often used
as an alternative or, as later explained, as a complement to motion compensation.
Prominent are those methods using median or morphological filtering [5].

In 1987 Nieminen et al. [11] proposed a multi-level median filter (MLF), which
uses hierarchical median operations to reduce the influence of outliers while pre-
serving edges [12]. Buisson et al. [13] used a top hat morphological filter, because
of its ability to detect specific patterns such as dust and hair [14].

Two conventional methods of this group are standard spatial median filter
(SSMF) [15] and Lower–Upper–Middle (LUM) filtering [16]. In both methods for
each pixel z = (x, y)T in the current frame In, a window W of radius r is defined
as
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(a) Window size: 5x5 (b) Window size: 7x7 (c) Window size: 11x11

Figure 2.2: Detection results of LUM: Obtained dust mask by using a varying window
size. For all shown results the threshold τ = 10, k = 5 and l = 10.

W (x, y, r) = {I(x1, y1)}, |x1 − x| ≤ r, |y1 − y| ≤ r, ∀x1, y1 (2.2)

so that the total number of pixels in W is N = (2r + 1)2 and N0 = (N+1)
2 .

Furthermore, W = z(1), z(2), . . . z(N) and the rank ordered set is then given by
z(1) ≤ z(2) ≤ · · · ≤ z(N).

The central pixel in the original, current frame is denoted as z′ and the corre-
sponding central pixel in the filtered image as z′filtered. In SSMF z′filtered is set to
z(N0).

In LUM the output is assigned to the upper or to the lower local median
values, defined in Equation (2.4). Two parameters, k and l, are introduced for
smoothing and sharpening, where 1 ≤ k ≤ l ≤ N0. The corresponding outputs of
the smoothing and sharpening processes are given by

zL = median{z(k), z
′, z(l)} (2.3a)

zU = median{z(N−k+1), z
′, z(N−l+1)}, (2.3b)

the filtered output is then specified as
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(a) Window size: 5x5 (b) Window size: 7x7 (c) Window size: 11x11

Figure 2.3: Detection result of SSMF: Obtained dust mask by using a varying window
size. For all shown results the threshold τ is set to 10.

z′filtered =

 zL, if z′ ≤ (zL+zU )
2

zU , otherwise.
(2.4)

If Ifiltered,n is the output image after filtering and τ is a predefined threshold, the
dirt mask b can be determined as

b(z) =

 1, if |Ifiltered,n(z)− In(z)| > τ

0, otherwise.
(2.5)

In both, SSMF and LUM, the detection results are very sensitive to the selected
size and shape of W . Although it was reported in [5] that SSMF has a better
detection performance than LUM, the resulting false detections are of unacceptable
degree. FA particularly occur close to sharp edges or in textured regions [14].

In Figure (2.2) the detection results of the LUM method are illustrated. For all
shown results the threshold τ is chosen to be 10, and the smoothing and sharpening
parameters k and l are set to 5 and 10, respectively. In Figure (2.3) the results of
the SSMF method are shown, where threshold τ was chosen to be 10 as well.
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2.2.2 Temporal filtering methods

Methods belonging to this category are based on the hypothesis that single-frame-
defects are temporally impulsive and thus randomly distributed over frames, hence
they can be detected by inter frame processing [17]. In most cases 3 frames are
considered.

The overall first contribution to the electronic detection and concealment of
film dirt was done by Storey [18] as early as 1983. The idea of his hardware-based
system was to flag a pixel as dirt if its corresponding absolute pixel differences
between the current frame and each of its neighbors were high. However, the
moving objects in the scene were not taken into account, thus it cannot correctly
separate moving areas from blotched regions [19].

An expansion of this idea was presented by Kokaram [20], who extended Story’s
work by introducing motion compensation. He presented the Spike detection index
(SDIa), which allows the detection of temporal discontinuities between the current
frame In and the motion compensated preceding Cn− and subsequent Cn+ frames,
under the assumption that those neighboring frames are uncorrupted. The two
difference images Dn− and Dn+ are obtained using

Dn−(z) = In(z)− Cn−(z),
Dn+(z) = In(z)− Cn+(z)

(2.6)

at each pixel z = (x, y)T . The dust mask bSDIa for the SDIa-detector results from
computing the binary value at each pixel z

bSDIa(z) =

 1, if Dn−(z) > τ and Dn+(z) > τ

0, otherwise,
(2.7)

where τ is a predefined threshold, which measures the discontinuity of the two
frames, and bSDIa(z) is a detection field variable set to 1 at sites that are corrupted.

The SDIp method [20], which is a further extension to SDIa, additionally im-
plies the constraint that corruption does not occur in identical locations in con-
secutive frames, hence, it requires sign consensus of the two frame differences
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Dn−, Dn−. Thus, a pixel in SDIp is declared as dirt if it satisfies Equation (2.8).

bSDIp(z) =


1, if

|Dn−(z)| > τ and |Dn+(z)| > τ

and Dn−Dn+ > 0
0, otherwise.

(2.8)

Schallauer et al. [21] extended the SDIa method in a similar way. They even
strengthened the constraint that the two motion compensated neighboring frames
have to be similar as well. Hence a pixel is taken as dirt if both, its absolute
differences between current frame and the two motion compensated images, exceed
a first (higher) threshold, as already used in SDIa and SDIp, while at the same
time the absolute difference between the two motion compensated neighbors is
less than a second (lower) threshold defined in Equation (2.9). Consequently, this
method is often denoted as a double-threshold median filter (DTMF) [22]. As
this method was developed at JOANNEUM RESEARCH it is here referred to as
SDIjrs. Note that this method is the basic detection algorithm which is used in
the DIAMANT film restoration tool [21].

The dust mask is obtained by using the following equation

bSDIjrs(z) =


1, if

|Dn−(z)| > τ1 and |Dn+(z)| > τ1

and |Cn−(z)− Cn+(z)| < τ2

0, otherwise
(2.9)

where τ1 and τ2 are two given thresholds with τ1 > τ2.

Temporal median filtering is a common approach in dirt detection using the
current frame and mostly the previous and the next neighbor, either motion com-
pensated or not. If no motion compensation is included, the result is commonly
worse, as a lot of FA occur in areas of moving objects. However, by using the
additional constraint, the SDIp detection algorithm is able to achieve a significant
improvement in detection performance when compared with the results of the SDIa
detector [10]. Although different strategies are used to filter FA, SDIp and SDIjrs
produce similar results. SDIp, however, seems a better solution than SDIjrs as it
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(a) SDIa (b) SDIp (c) SDIjrs

Figure 2.4: Detection results of the SDIx methods. For all algorithms a threshold of
τ = 10 was used, for the SDIjrs the thresholds are set to ~τ = (10, 7).

is more controllable due to its single threshold [5]. In Figure (2.4) the detection
results of each of the SDIx methods are illustrated. For each of the shown results
we have used motion compensated neighboring frames, by applying TV-L1 optical
flow (see Section (3.2.1) for details).

2.2.3 Spatio-temporal filtering methods

Spatio-temporal methods extend spatial filtering to the temporal domain thus
they combine useful features from both groups. Several attempts have been made,
to simply extend the spatial filtering methods to three consecutive frames. Arce
et al. [23] introduced a multi-stage order statistic (MOS) filter as an extension
to the min/max MLF [11]. Four groups of sub-windows in three non-motion-
compensated frames are used. MOS filtering has proven very useful in image
processing, as well for image sequence noise suppression, because of the additional
temporal information [12]. At the same time, Arce [23] also proposed a three-
frame LUM variant, also denoted as LUM’, for image smoothing purposes, where
the filter was further applied to a 3 x 3 x 3 spatial-temporal window. MOS and
LUM’ methods were effectively designed for spatio-temporal filtering, although
the performance of both is sensitive to the designed shape of sub-windows. LUM’
seems superior to MOS due to the fact that it takes more pixels from neighboring
frames in filtering. However, this may also cause more FA. In general, LUM’
performs better only in the absence of moving edges in the images [5]. In the
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same manner, Alp et al. presented another multi-level median filter, the ML3D
filter [24], which utilizes two-stage median filtering in three consecutive frames
[5]. For this algorithm two groups of sub-windows are defined in three frames and
their median values are calculated. The output is obtained by taking the median
of those two values and the current pixel value. This filter is applicable for noise
removal in image sequences as well [25]. A. Kokaram [20] improved the ML3D filter
by extending the method to 5 groups of sub-windows and motion compensated
neighbors, which is denoted as ML3Dex. According to Kokaram, the ML3D filter
provides better impulse noise rejection than the LUM’ method proposed by Arce.
Hamid et al. [26] proposed soft morphological filtering (SMF) in three non-motion-
compensated frames. They used a genetic algorithm to learn the size and shape
in the filters, supervised by corrupted and uncorrupted sequences [14]. A detailed
description can be found in [25]. SMF was introduced to prevent the high FA
rates at edges, caused by median and morphological filters. It results in less FA
than LUM’ and ML3Dex for fast moving objects. However, SMF is impractical
for most film restoration applications. Firstly, the learning step is very slow as
the filter parameters have to be adapted to each new sequence [14]. Secondly,
it needs a sufficient number of representative dirt samples for training purposes
in order to optimize the filters [25]. In 1996, the rank-ordered difference (ROD)
detection method was presented by Nadenau et al. [27]. The algorithm works by
measuring the “outlierness” of the current pixel in comparison to a set of others.
A spatio-temporal window is used to arrange 6 pixels from neighboring (three
from previous and three from next) frames in a ranked order and then a three-
stage thresholding strategy is applied. The choice of the shape of the region from
which the other pixels are chosen is arbitrary. Let In(z) denote the intensity of a
pixel at a spatial location z = (x, y)T in frame n. Let Rn;i(z) form a set of i = 6
reference pixels, obtained from spatially co-sited pixels and their vertical neighbors
in motion compensated previous and next frames. The elements of the set Rn;i(z)
are ranked in a list [r1, r2, ..., r6] so that r6 is the maximum element. Then the
median is extracted as mr = (r3+r4)

2 . Three thresholds need to be defined so that
τ1 ≤ τ2 ≤ τ3. Furthermore the ek values are obtained by
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ek =

 In(z)− r(7−k), if In(z) > mr

rk − In(z), otherwise

where k ∈ 1, 2, 3. A pixel is then detected as dirt if Equation (2.10) is satisfied:

bROD(z) =

 1, if e1 > τ1 or e2 > τ2 or e3 > τ3

0, otherwise.
(2.10)

ROD is generally more robust to ME errors, it achieves higher correct detection
rates and lower FA than the other methods mentioned above [28]. The three
thresholds control the number of correct detections and FA. However, the difficulty
of defining these thresholds constrains the effectiveness of the ROD method [29].

Thus a simplified ROD detector (sROD) which uses only one threshold has
been proposed by Roosmalen [30]. By letting τ2, τ3 →∞ the output of the sROD
detector is completely determined by τ1. The output dn(z) is given as:

dn(z) =


min(Rn;i(z))− In(z), if min(Rn;i(z))− In(z) > 0
In(z)−max(Rn;i(z)), if In(z)−max(Rn;i(z)) > 0
0, otherwise .

(2.11)

A blotch is detected if the intensity of the current pixel lies far enough outside
that range. What is considered “far enough” is determined by τ1:

bsROD(z) =

 1, if dn(z) > τ1

0, otherwise
(2.12)

with τ1 ≥ 0.
The sROD detector takes local motion changes into consideration and has an

improved blotch detection performance over the SDIx detectors [29]. Basically, it
compares the current pixel to the range of values, determined by the minimum
and maximum of the set, using the same set of pixels as the ROD method [14].
The simplified version does not order the reference pixel by rank, hence it is com-
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(a) ROD, ~τ = (11, 13, 15) (b) sROD, τ = 10

Figure 2.5: Detection results of the methods ROD and sROD.

putationally more efficient. The drawback of the sROD detector is the higher false
alarm rate (FAR) when choosing a smaller threshold in order to achieve a higher
correct detection rate (CDR) [28].

Gangal et al. [19] extended the ROD method to five consecutive frames to im-
prove the detection accuracy in heavily corrupted, occluded and uncovered areas.

Combined Methods

Buisson et al. [13] presented a combination of SDIa and a morphological detector
which uses spatial properties of deteriorations. In contrast, Ren and Vlachos [12],
[31] tried to disclaim motion compensation. Based on a combined method they
incorporated confidence weighting to avoid information loss. They argued, that
motion-based approaches often fail in areas where the motion cannot be accurately
estimated. This approach has a low complexity due to the lack of motion com-
pensation, but for the same reason it seems to be only applicable to sequences
with limited local motions [14]. However, in [5], they extended their method by
additional global motion compensation. A better modeling of the combination of
temporal and spatial detection is proposed by Tilie et al. [14]. Temporal detection
is used to exclude FA in the spatial domain due to the ambiguity between dirt
clusters and objects of a similar spatial structure. Spatial detection is used to
either confirm the detections from the first step or to discard them if they were
falsely detected e.g. due to failing ME. The presented fusion method also promises
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lower computational costs.
In order to increase the ratio between correct detections and FA by using

the sROD method Wei et al. [28] introduced adaptive multi-thresholding. Their
detector uses the most appropriate threshold for each blotch by convergence con-
finement. To avoid deviations caused by inaccurate motion vectors also texture
matching is applied.

In [32] it is shown that the performance of blotch detectors can be improved
significantly by taking statistical influence of noise on the detection mechanism
into account. Further improvements are achieved first by using a double-stage
detection strategy and second by a constrained dilation technique.

Model based approaches

According to [10] a common problem with approaches to dirt and dust detection
is, that they always address single issues separately. Statistical methods, e.g.
a Bayesian framework using a Markov random field (MRF) prior, are able to
model context dependent entities such as image pixel intensities and other spatially
correlated features. Thus the Bayesian approach has been evolved into a unifying
framework that treats motion, defects and noise jointly [20], [33], [34]. To resolve
the problem of combining different sorts of prior information about common frame
defects, also auto-regressive (AR) [35] models have been used.

In the MRF based approach proposed in [36], the detection of the blotches
in image sequences is formulated as a maximum a posteriori (MAP) estimation
problem. They incorporated a moving-edge detector to address the problem of
incorrect detection due to poor motion compensation at the moving edges [36].
By separating the blotch-edges from the moving edges the degree of FA in the
detection can be effectively reduced.

Although these methods perform well in real situations, the main problem with
model based approaches are the resulting mis-detections in cases of motion discon-
tinuity [10], such as occlusion and the high computational cost, which becomes in-
tractable when the neighborhood order exceeds first or second order [14]. Kokaram
et al. [37] reported, that model-based approaches using MRF and AR yield minor
improvements compared to SDIa. This was confirmed by the results in [5], where
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MRF methods perform equal or worse than SDIp in all tested image sequences. In
[38], Nam et al. presented an improved MRF model with lower computational cost
and higher blotch detection performance than the existing MRF-based methods.
They promised a fast and efficient method by using diamond search (DS) based
on a new matching criterion, a modified cost function and a moving edge detector.

Reduction of false alarms (FA) by post processing

High detection rates are desirable, but only useful if the number of false alarms
(FA) is acceptable as well. Falsely detected pixels may produce visible artifacts in
the corrected image frame. Several techniques have been applied to the restoration
process, in order to examine this problem and to remove FA from the preliminary
detected blotch candidates.

FA due to noise are addressed in [6], where a scale-space based noise reduction
filter is presented. The filter is configured to get an optimal separation between
signal and noise. Furthermore, three variants of post-processing to improve the
general detection performance are proposed. They manipulate candidate blotches
as objects rather than individual pixels. First, they compute the probability that
the detector gives a specific response due to noise, which offers to compute the
probability that a blotch of given size is wrongly detected. Depending on the
given probability, the size and the corresponding detector response for each can-
didate blotch, it is decided whether to keep it in the detection mask or not. The
second method completes blotches which are only partially detected by applying
a technique called hysteresis thresholding. Blotches are detected in two stages, by
using a varying threshold. Then candidate blotches are preserved if corresponding
candidate blotches in the other set exist as well, otherwise they are discarded. The
last method is an iterative, constrained dilation technique, which fills small holes
in candidate blotches that were missed by the detector. If a pixel’s neighbor is
flagged as being corrupted and its intensity difference to the certain neighbor is
small the pixel will also be flagged as defected.

Similarly, morphological post processing, such as a constrained dilation algo-
rithm, has been proposed in [39] in order to reduce FA which usually arise from
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edges. Furthermore, a combination of SDIa and autoregressive (AR) method for
the detection of rather large blotch regions is presented. This post-processing
improves the detection rate of SDIa but FA caused by local object motion and
incorrect global motion compensation are not eliminated adequately [29].

Instead of a pure pixel-based blotch detector, the OFST technique [40] uses
an object-detector index (ODI) to detect temporal discontinuities, as the methods
described in Section (2.2.2) do. Statistical object features such as the internal
contrast, i.e. the difference between minimal and maximal intensities, and the
difference of internal and external mean values are computed to further identify
the blotch candidates.

In [8] and later in [41] a two-step FA reduction method is proposed. They use
a semi-automatic neuronal network based detection followed by pixel- and object-
based post-processing. The pixel-based algorithm compensates motion in order to
decrease FA, while the object based method further classifies each detected blotch
by machine learning techniques using image features.

A new post processing method based on region labeling is presented in [42],
where noise is removed while the connectedness of blotches can be preserved. They
also apply a motion vector correction method based on the blotch mask for im-
proving the result.

A novel pixel-based correction method, presented by Güllü et al. [29], itera-
tively calculates correction priorities for each pixel on the contour of the blotch
mask. It also corrects pixels with high priorities, updates the blotch mask and
recalculates priorities until the blotch mask is either empty or nothing changes
any more.

Spatio-temporal methods achieve a better performance than spatial or temporal
methods alone. Derived from recent work, the detection performance of spatial,
temporal and spatio-temporal methods has to be improved by post processing
methods in order to achieve acceptable results. Although, additional methods
can improve the detection results, they often lead to a higher computational cost.
Generally, FA due to noise can be significantly reduced, when previously mentioned
post processing techniques are applied. Techniques, in order to correct incorrectly
estimated motion vectors have already been proposed, such as in [42], but the
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correction is mainly limited to motion vectors in blotched regions. Incorrectly
computed motion vectors as a result of complex motion, motion discontinuities
(occlusion and uncovering), etc. cannot be repaired. Thus FA due to so called PM
persist [14].

2.3 Detection of Pathological Motion (PM)

The term “Pathological Motion” (PM) subsumes all kinds of object motion that
cannot be easily modeled by current motion estimation (ME) algorithms. Some
common examples for PM are fast and irregular motion, occlusion and uncovering,
motion blur, strong zooming, etc. A taxonomy of PM is presented in [43].

For dealing with PM existing approaches can largely be categorized in two
classes [44]. The first one rather detects regions which are likely to be part of
PM. In most cases a segmentation of foreground and background is performed in
order to find motion discontinuities, which indicate occlusion and uncovering areas.
Then blotch treatment is adapted appropriately in these areas, as it is done e.g.
in the work of Kent et al. [45]. In the second class color statistics of PM are used.
The facts, that blotches typically appear as regions consisting of similar intensity
values and that motion blur is the smearing of an object in the foreground over
the background are effectively utilized in [46]. Complex events resulted from PM
and those caused by image artifacts are classified based on inter-frame segment
matching.

To prevent mis-diagnosis of missing data due to PM, Corrigan et al. [44] also
propose the consideration of more temporal information such as 5 frames. They
estimate four temporal discontinuity fields as binary masks by exploiting the local
smoothness assumption of motion fields. The violation of the local smoothness as-
sumption is indicated by high divergence values in the motion field. Independent
of the blotch detection process, the problem of the detection of motion discontinu-
ities was addressed already in related work. In [47] the motion is computed in the
forward and the reverse direction in order to find occlusion areas. The obtained
flow fields are constrained to be compatible, thus these areas where the compat-
ibility is not achieved, indicate occlusions. A symmetric stereo matching model
to handle occlusion is proposed by Sun et al. [48]. They utilize the visibility con-
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straint, which enforces consistency between occlusion in one image and disparity
in the other. It is a iterative optimization algorithm, by alternating updating the
disparity map and the occlusion map.

A motion segmentation method including an occlusion detector is developed
in [49] which is based on differential properties, such as corners and edges, of the
spatio-temporal domain. These structures are detected by a Harris corner detector
in order to extract motion boundaries.

Probabilistic approaches were presented as well, such as the work of Lim et al.
[50], in which the ME error is integrated within a bi-directional Bayesian frame-
work. In [51] an iterative occlusion aware refinement step was introduced jointly to
the ME. By using the mapping uniqueness criterion, occluded pixels are detected,
if more than one reference pixels mapping to the same position when following the
motion vectors of one frame to the subsequent one.

2.4 Discussion

As shown in this chapter, several attempts have been made to address the problem
of single-frame-defect detection. Spatial median [16] and morphological filters [13]
have been extensively used because of their ability to eliminate outliers while
preserving edges. They result in a low computational cost, as they do not include
temporal information. However, these spatial detectors fail to detect low-contrast
or exceeding filter size botches. It may generate many FA on sharp and textured
regions [17], which may lead to heavy degradation of visually significant edges [52].
In most cases the resulting images of spatial filtering are of unacceptable quality
[12].

Temporal median filtering, on the other hand, is a common approach comple-
mentary to bi-directional motion compensation. Commonly, the current frame and
its two (motion-compensated) neighbors are used. Also, more temporal support
is possible, as shown in [19], where the proposed detection method provides an
increased robustness to PM, noise and blotched areas, but it produces more FA
along moving edges. Consequently, increasing the temporal aperture does increase
the computational cost, while it does not necessarily increase the detection per-
formance [30]. Although temporal filtering methods are capable of achieving a
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high CDR they commonly result in too many FA [39], in particular at presence of
noise, textured background or complex motion. Thus the detection performance
in temporal filtering methods is very sensitive to the used ME algorithm.

Spatio-temporal methods achieve better performance than spatial or temporal
methods alone. Although they consider both the spatial and temporal discon-
tinuity characteristics of blotches, they are likely to produce FA in presence of
noise or complex motion as well. According to a comparative evaluation in [5],
ROD resulted in the highest accuracy while its computational cost was lower than
that of MRF but higher than SDIp. The ROD detector, however, requires the
setting of three thresholds, which are hard to define. In recent work, [6], [8] the
sROD detection technique has turned out to be an appropriate method for the
film restoration process. The sROD detector takes local motion changes into con-
sideration [29] and, moreover, it involves only one threshold. The sROD detection
method has the drawback of producing more FA when reducing the threshold in
order to achieve a higher correct detection rate (CDR) [28]. Thus, it seems to be
necessary to apply a post processing step, e.g. an adequate method presented in
Section (2.2.3).

The incorporation of confidence weighting [12] offers a possibility to measure
the likelihood of corruption for each pixel. Having probability values available
instead of binary values is advantageous, since the final decision by applying a
threshold can be postponed until post processing was performed.

Model-based schemes are able to consider how the characteristic of blotches
can be incorporated in the problem definition itself [10]. However, since definitive
statistical models are difficult to obtain, such methods have occasional constraints
and will fail if the underlying statistical modeling assumptions cannot be satisfied
or if accurate and robust motion compensation cannot be achieved [5]. So far,
pixel based detectors have shown to achieve similar detection results as object
based detectors at a fraction of the computational cost [6], which are intolerable
in the domain of automatic film restoration.

Generally, the performance of methods that use motion compensation is better
than of those which do neither motion compensation, nor any kind of false alarm
reduction [5]. Non-motion-compensated approaches cannot easily distinguish be-
tween genuine dirt clusters and moving objects of a similar spatial structure and
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also fail when such clusters exceed the filter size. Motion-compensated approaches
on the other hand yield a worse performance when motion cannot be precisely
estimated [12]. Thus, the motion estimate must be robust to the presence of dust
spots and motion discontinuities, and the detector should work in tandem with the
interpolation process [10]. Usually the motion compensated neighbors are used in
the correction stage as well. Therefore, PM or noise falsely detected as blotches
are a particular problem in restoration systems, because they possibly generate
new visible artifacts that are more disturbing than the dust spots themselves [17].
Having areas of PM available, the detection of one-frame-defects can be adapted
in this areas or even rejected.



Chapter 3

Motion Estimation

3.1 Introduction

Motion estimation (ME) is a vital component in many digital video processing
algorithms, so it is in digital film restoration applications. The main objective of
ME algorithms is to automatically estimate the transformation of one frame to the
neighboring one within an image sequence. In local ME the transformation of one
frame to another is represented as a dense field of two-dimensional displacement
vectors, with components u and v for horizontal and vertical direction respectively,
indicating the motion for each single pixel [53]. A motion field is obtained, which
projects a 3D scene of moving objects (rotation, translation) onto a 2D image
plane [54]. In this way, the motion of every individual object can be measured
[55]. This dense field of motion vectors, also denoted as optical flow [53], gives
essential information about relative motion of objects and the movement of the
camera [56].

3.1.1 The translational model

Commonly three frames are considered in order to find single-frame-defects. Thus,
motion compensated neighboring frames are computed by applying bi-directional
motion compensation between the actual frame n and each of its two neighbors,
(n + 1) and (n − 1). The same was applied to the temporal filtering methods
described in Section (2.2.2). In general, ME algorithms assume that each im-



25 Motion Estimation

age can be constructed by displacing the pixels from the previous neighboring
frame [34]. Consequently, Kokaram et al. [10] proposed the translational model.
As bi-directional motion compensation is applied, the model is adopted for both
directions as follows

In(z) = In−1(z + dn,n−1(z)) + e(z)
In(z) = In+1(z + dn,n+1(z)) + e(z)

(3.1)

where In is the intensity function for the frame n at every pixel z = (x, y)T ,
dn,n−1(z) and dn,n+1(z) are the two-component motion vector mappings of pixel
z between the current frame n and the neighboring frames (n − 1) and (n + 1)
respectively, and e(z) is the Gaussian distributed error of the model [55].

3.1.2 Motion estimation constraints

In state of the art algorithms, dense optical flow is dominated by global variational
models based on the work of Horn and Schunck [56], where they came up with a
variational formulation of the optical flow problem.

min
u
{

∫
Ω
|∇u|2 + |∇v|2dΩ + λ

∫
Ω

(In(x+ u(x))− In−1(x))2dΩ} (3.2)

In−1 and In are the two images, between which the motion should be estimated,
u = (u(x), v(x))T is a 2D displacement field, x = (x, y)T denotes the spatial image
coordinated and λ defines a free parameter.

State of the art algorithms are designed in order to fulfill two constraints,
namely the brightness and the smoothness constraint. The first one demands,
that the actual pixel has a similar intensity value as the one, the motion vector
points to. Secondly, neighboring points within a frame in general have similar
velocities [56], thus in a neighborhood, the motion field has to be smooth. This
observation is also known as the Smooth Local Flow Assumption [55].

In order to obtain a smooth motion field the regularization term (first term) of
Equation (3.2) penalizes high variations in u. The optical flow constraint or the
data term (second term) assumes, that the intensity values of I0(x) are similar to
I1(x+ u(x)) [57].
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3.1.3 Challenges for motion estimation

The accurate optical flow estimation is a challenging problem in computer vision as
images commonly contain severe occlusion and non-rigid motion [58]. ME failures
occur when the estimated motion vector does not point to the true displacement
of a pixel [55]. They are likely to be caused in one of the following settings:

1. Presence of artifacts: As artifacts are impulsive defects, the containing pixels
obviously cannot be matched within two consecutive frames and will result
in failures. In particular large blotches, especially those exceeding the block
size of the motion estimator, significantly impair the performance of the ME
algorithm [55].

2. Presence of certain spatial textures: In regions of low texture, e.g. a cloud-
less sky, discriminative image features are absent in both the current and
reference frame, thus an unambiguous match cannot be found [53]. Another
well-known example of so called ill-conditioned image data [20] is represented
by the aperture effect. This effect arises in textures showing only a single
orientation or in periodic patterns. Even though such areas are textured,
the motion direction is ambiguous and matching is difficult as the problem
does not have a unique solution [53], [55].

3. Presence of PM: The phenomenon of PM has already been explained in
Section 2.3. Problems emerge when a pixel’s matching point is occluded in
the reference frame. Such kind of occlusions often occur at motion discon-
tinuities. Consequently, the precise identification of motion boundaries is
specifically challenging in those areas [53].

Other problems appear when the ME method is supposed to deal with large
motion, as usually, large motion vectors cannot be matched by ME methods or
they are avoided due to the smoothness constraint. Another difficulty arises with
scenes including illumination changes. In this situation the ME method is forced
to violate the brightness constancy assumption.
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3.2 Motion estimation algorithms

For the single-frame-defect-detection approach presented in this master’s thesis,
different ME algorithms are used, which are described in the following subsections.
Although the problem of ME is not the subject of this work, an evaluation of
mainly two algorithms is included, in order to compare restored results, when
applying different ME methods. An overview on optical flow methods is given e.g.
in [59] and [60]. All four algorithms were tested on the same machine in terms
of computational cost. An eight-core Xeon processor, 2.67 GHz, 4GB RAM and
a NVIDIA GeForce GTX 460 on a 64 bit Windows 7 Professional system was
used. For each method we measured the average time for computing the motion of
one image taken from a 2K (2048 × 1536) image sequence. The obtained motion
results computed from the 3-frame-sequence shown in Figure (2.1) are visualized
in an 8 bit gray scale image, so that positive translations, either in x or y direction,
are coded in gray values ≥ 128 and negative translations in gray values < 128.
In Figure (3.1 - 3.4) the estimated motion fields of each method are illustrated,
where the upper parts of the two images show the translation in x and the under
parts in y direction.

3.2.1 GPU based TV-L1 optical flow

The total variation (TV)-L1 optical flow algorithm [57], [61] developed at the
Institute for Computer Graphics and Vision1 was chosen in the first place, as
variational methods to date represent the most accurate optical flow estimation.
The algorithm is based on the TV-L1 energy functional, similarly to the method
of Horn and Schunck [56], and uses the classical optical flow constraints already
presented earlier in this chapter. Variational optimization is used to minimize a
TV-L1 energy functional that assumes the fulfillment of these constraints.

In [57] the TV-L1 energy functional is given as

∫
Ω
{λφ(I0(x)− I1(x+ u(x))) + ψ(u,∇u|, . . . )}dx, (3.3)

where φ(I0(x)− I1(x+ u(x))) is the image date fidelity, ψ(u,∇u|, . . . ) is the regu-
1Graz University of Technology (Austria), www.icg.tugraz.at



28 Motion Estimation

(a) center → previous (b) center → next

Figure 3.1: Motion fields computed by GPU-based TV-L1 optical flow. On the left,
the motion field, computed from the center frame of previously shown subset of sequence
Dance2 to the previous one and on the right, the forward motion to the next frame is
visualized.

larization term and λ weights between data fidelity and regularization force. The
functional is based on the robust L1 norm in the data fidelity term and a dual
formulation of the TV energy. The TV regularization is image-driven and consid-
ers the strength and the direction of underlying image edges [61]. This algorithm
is able to preserve discontinuities, can deal with illumination changes and occlu-
sions, and offers an increased robustness against noise. Additionally, it can be
effectively accelerated by modern graphics processing units (GPUs) [57]. The re-
sulting visualized motion can be seen in Figure (3.1). The runtime of the GPU
implementation for one 2K frame is 594,8 ms.

3.2.2 Pixel motion

The Pixel motion is used in the DIAMANT restoration tool. As there is no source
code available, detailed information to the algorithm is not accessible. However,



29 Motion Estimation

(a) center → previous (b) center → next

Figure 3.2: Motion fields computed by Pixel motion. The left visualization shows the
motion of the chosen subset of frames from image sequence Dance2 in previous direction
and the right one in forward direction.

in Figure (3.2) the visualized motion of this algorithm is presented. The average
computation time of one 2K frame for the CPU implementation of this algorithm
is 2.57 sec.

3.2.3 HFVM

The HFVM method [62] was developed at JOANNEUM RESEARCH and can also
be applied to the presented single-frame-defect detection method. The HFVM
method is a feature based matching technique. Appropriate features for this ap-
proach are gray-level statistics, such as mean filters or variance measures, and other
more sophisticated ones, like local frequency, edge gradient, Fourier-features, etc.
Using a certain selection of these, a set of feature images is obtained by applying
each feature to both images, the current frame and the reference one. A feature
is derived from local properties of a pixel including its surrounding, defined by a
search window. By using a variety of local image features, possible disadvantages
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(a) center → previous (b) center → next

Figure 3.3: Motion fields computed by HFVM method. On the left the motion in the
backward direction is demonstrated, and on the right, the motion in forward direction,
applied to the same subset of image frames as the previously demonstrated algorithms.

of single features are equalized. For correspondence matching, a feature vector is
obtained from the feature images for each pixel.

Then, feature vectors of the left and right image are compared to get homol-
ogous points: Once the feature images are created, a feature vector ~f(i, j) exists
at each pixel location (i, j). The feature vectors ~r(i, j) in the reference frame are
created in the same way. To find the best correspondence the Euclidean distance
metric is used. In a final step errors are removed and remaining undefined dis-
parities are interpolated. Paar et al. [62] use a well-known pyramid-based data
structure for each of the images, namely a 3 × 3/4 Gaussian pyramid. 3 × 3 de-
notes the filter window and 4 is the reduction factor of one level to the next one.
The number of levels depend on the maximum expected disparity. The method is
applied to all images of the pyramid, beginning at the top level. In order to remove
salt and pepper noise, median filtering is carried out on the disparity map. In ad-
dition, back-matching is provided. The HFVM is applicable to nearly all of the
pixels, thus a dense disparity map is obtained in any case, and it is robust against
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unknown scaling and rotation differences between the images to be matched. The
proposed HFVM method requires 6.24 s for ME. In Figure (3.3) the resulting
motion fields are illustrated.

3.2.4 FOLKI

The fourth algorithm is FOLKI [63], which is a local approach based on Lucas-
Kanade (LK). It is a modified and convergent scheme for an accurate estimation
including also large displacements. FOLKI performs fast correlation optimization
over local windows by iterative registration. The used registration criterion is the
displaced frame difference (DFD) criterion. Each component of optical flow is
chosen in order to minimize this local criterion [63]. The minimization is achieved
by using an iterative Gauss-Newton (GN) descent, as its convergence is known
to be fast for small displacements [64]. Since larger displacements are possible as
well, a multi-resolution scheme is applied in order to avoid local minima. An image
pyramid is built by successively performing low-pass filtering and decimation. The
GN iterations are initialized with a displacement equal to zero, which leads to first
rough estimates. By descending the pyramid levels, those values are then refined
one by one [64]. Such a coarse-to-fine multi-resolution scheme brings a dramatic
improvement over an iterative one-resolution scheme and has also proven very
efficient in many optical flow methods [63].

A key feature of FOLKI is its efficiency as it was designed as a massively
parallel architecture. The three main types of computation (image interpolation,
pixel-wise operations and separable convolution) can be accelerated on a graphics
processing unit (GPU). FOLKI is a highly regular and parallel algorithm which is
much more efficient than previous sparse LK techniques, and moreover, specially
suited to GPU architectures. The computational costs depend on the window
radius used for local registration and on the number of iterations at each image
level [64]. The computed flow fields can be seen in Figure (3.4). On the GPU this
algorithm takes 420.7 ms on average for one 2K frame.
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(a) center → previous (b) center → next

Figure 3.4: Motion fields computed by FOLKI. On the left, the motion field, demon-
strating the motion from frame 64 of sequence Dance2 to the previous one. On the right,
the forward motion, from center to the next frame is visualized.

3.3 Discussion

In this chapter four motion algorithms were discussed. Each of them can be
applied to the single-frame-defect detection approach presented in this work. The
evaluation of the proposed method in Chapter 4, will include two of them. Firstly,
the TV-L1 optical flow is applied, as it uses a state of the art algorithm and
produces a smooth motion field, shown in Figure (3.1). Due to the hardware
requirements (GPU) of the TV-L1 optical flow, Pixel motion is provided as an
alternative. It is able to utilize several CPU cores, thus an acceptable speed can
be achieved. When comparing the results in Figure (3.2) with those of the GPU
based optical flow, two differences are noticeable: The motion field which the TV
algorithm produces is much smoother than that of Pixel motion, especially motion
edges are detected precisely. Furthermore, the TV-L1 optical flow is able to deal
with homogeneous regions, while the Pixel motion often deviates in such areas.

Although the resulting motion field of HFVM motion is similar to that of Pixel
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motion, it is not further examined as its computational cost is too high and thus
not applicable in the film restoration domain. Pixel motion has been used in
DIAMANT for years, thus we concentrate on Pixel motion rather than on HFVM
due to its interactivity in restoration tools. Finally, FOLKI has the best runtime,
however, the estimated motion is much worse than that of the others.

As already mentioned, a detection algorithm requires a reliable ME, which
is itself an ill-posed problem. It needs to know the motion at every position in
an image, while this information is neither reliable in defected regions nor in oc-
cluded areas [40]. All of the described ME algorithms have difficulties in accurately
matching such challenging parts. When one object occludes another, motion dis-
continuities are expected. Consequently, algorithms based on a smoothness con-
straint are likely to fail in areas of occluded edges [56]. As a result we have to deal
with the fact, that optical flow algorithms only yield an approximate estimation
of real motion. In general, the temporal and spatio-temporal methods, presented
in Section (2.2.2) and (2.2.3) simply ignored the fact that ME can fail and that
occlusions can occur. Thus, there is a need to improve the robustness of applica-
tions dependent on ME, especially those in the restoration domain [55]. This can
be achieved by detecting regions of unreliable ME and by treating such regions as
special cases [55]. Our approach is based on this idea. Our main objective is to
consider motion failures in the detection approach, which is further examined in
the following chapter.



Chapter 4

Dirt and Dust Detection
Approach

4.1 Introduction

In this master’s thesis, we propose a novel approach based on the reduction of
FA by analyzing the Motion estimation followed by an Extraction of Damping
functions (rFAMED) in order to provide reliable dust masks.

The quality of an obtained dust mask can usually be judged by two quantities,
the good or correct detections (CD) and the false detections or false alarms (FA).
Desirably, the resulting dust mask has a high number of good detections, since
every missed defect won’t be restored and at the same time a low number of false
detections, since FA endanger artifacts. Basically, related approaches regularize
these two terms by a chosen threshold. Mostly, the right balance cannot be found,
since dependent on the characteristic of the film material, either the FA are over-
balanced or an acceptable CDR cannot be afforded. More recent work concentrates
on post processing where falsely detected defects are identified and removed from
the dust mask in a following step. Due to thresholding of the dust mask, valuable
information of each pixel is lost. A better way is proposed by Ren and Vlachos in
[25], where they extract a confidence signal. This confidence measure is a probabil-
ity measure for each pixel indicating the likelihood of being defected. By keeping
this information, FA can be controlled in a post processing step.



35 Dirt and Dust Detection Approach

The presented approach was chosen systematically, since we first figured out,
why FA occur. Possible reasons are noise, motion estimation (ME) and accordingly
warping errors, and occlusion/uncovering areas. Related work regarding analysis
and detection of pathological motion provide quite good results. As a result, we
have developed a novel dirt and dust detection technique as a three-step approach:

1. Primary dust response: In contrast to most related work we first infer re-
sponse values for each pixel instead of making an early binary decision.
For the primary measure, we use a sROD based detection method, since
simplified rank-ordered difference (sROD) has been excessively used in re-
cent work and has outperformed other techniques.

2. Noise suppression: The so-called co-support operator is presented. It “sup-
ports” pixels that are in a blotchy neighborhood by increasing their likelihood
to belong to a dust spot while reducing response values of pixels that are in
a clean neighborhood.

3. Damping functions: Several novel measures are applied in order to find areas
of pathological motion (PM), since motion cannot be reliably estimated in
such regions. The functions are mainly extracted from motion field analysis.
Responses which reside in these areas are preemptively damped down, in
order to avoid further disturbing artifacts caused by the replacement of true
image data during the removal process.

In the following subsections each step of the dirt and dust detection algorithm is
illustrated and explained in detail. At the end of this chapter the final combined
approach is presented, consisting of empirically selected methods which appeared
to produce the best results.

4.2 Primary dust response measure

The first step of our novel approach is to obtain the primary dust response measure.
Similar to the confidence measure of Ren and Vlachos [12], the detector response
R is indicating the likeliness of being defected for each pixel. Basically, it is a
difference of two corresponding intensity values.
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Figure 4.1: Spatial and temporal neighborhood of zn. The spatial neighborhood is
restricted to the actual frame, the temporal neighborhood only includes pixels from
neighboring frames, that have exactly the same position as the actual observed pixel. The
spatio-temporal neighborhood involves both, the temporal neighbors and the appropriate
neighborhood of the temporal neighbors.

Considering three consecutive frames, for each pixel zn = (x, y)T of the middle
frame n, a response measure r(zn) is inferred by including the temporal and spatial
neighborhood, as shown in Figure (4.1). This measure allows to keep important
information of each pixel, and later it is used to infer the defect-probability. Due
to the requirement of a low computational cost, an efficient method is needed to
compute the primary dust response measure.

Pixel based methods, such as SDIa, SDIp and sROD, are very fast, have good
detection results and can easily be adapted in order to provide probabilities instead
of binary values. For the SDIa based method [20] for example, the response value
r(z) for the current pixel in frame n is obtained by using combined differences as
defined in the following:

rn,SDIa(z) := min{|In(z)− Cn−(z)|, |In(z)− Cn+(z)|} (4.1)

where Cn− and Cn+ are the motion compensated previous and next frames respec-
tively. The result of the SDIa based method is illustrated in Figure (4.2).

In order to gain probability values and also for visualization purposes, seen in
Figure (4.2 - 4.5), a rmax is defined. All response values are clipped to a range of
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(a) Original image

(b) Response encoded in red channel (c) Response encoded as intensities

Figure 4.2: SDIa based response measure, indicating the probability of each pixel of
being defected. (a) a zoomed part of the original frame taken from sequence JazzMan,
(b) probabilities are distributed over the red channel and overlaid with the gray scaled
center image, (c) probabilities are visualized as an 8-bit gray-scaled image, distributed
over the intensity channel.

[0, rmax] and are linearly transformed into a probability measure of [0, 1].
Due to the sign constraint, the SDIp detector [20] produces lower FAR than

the SDIa. A penalty term for different signs can be introduced in our formulation
as well. The basic idea is, to dampen down the response value of the current pixel
if the forward and backward differences do not have the same sign. Different signs
indicate the presence of noise or motion estimation (ME) errors. Thus, Equation
(4.1) is extended to

rn,SDIp(z) := min{|D−|, |D+|} · ((1− λ) sign(D−, D+)), (4.2)
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(a) Response encoded in red channel (b) Response encoded as intensities

Figure 4.3: SDIp based response measure: Additionally, the sign consensus of SDIp is
integrated in the response measure.

where λ ∈ [0, 1] defines the damping factor, D− = In(z)−Cn−(z) is the backward
difference, D+ = In(z) − Cn+(z) is the forward difference and sign is a function
that returns 1 if the signs of the differences are equal or 0 otherwise. The resulting
response is illustrated in Figure (4.3).

In order to take the spatial neighborhood of the previous and the succeeding
frame into account, the sROD detector [6] can be adapted as well. Let

NLR ⊆ (N8(zn−1) ∪N8(zn+1)),

where N8(zn−1) and N8(zn+1) is the 8-neighborhood of zn−1 and zn+1 respectively.
Furthermore, vi ∈ NLR and s is the min difference of the center element and each
of its neighbors. Thus, by using

t := rn,SDIa and (4.3a)

s := min{|vi − zn| | ∀vi ∈ NLR}, (4.3b)

we obtain the result for the sROD based method by
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(a) Response encoded in red channel (b) Response encoded as intensities

Figure 4.4: sROD2 based response measure: Two vertical neighbors are additionally
considered in each temporal neighboring frame.

RsROD := min{t, s}. (4.4)

The result for the sROD2, which includes the two vertical neighbors (classical
variant described in [6]), is illustrated in Figure (4.4).

Any possible configuration of neighbors can be considered when using this
formulation. The more neighboring pixels are included, the stricter the response
measure turns out to be. To regularize the strictness of the response measure we
introduce an additional term λ. A general sROD based response measure RgsROD

is then defined as follows

RgsROD := min{t, λ · s}, (4.5)

where λ ≥ 1. In Figure (4.5) the RgsROD examining first order neighborhood
(4-neighborhood) of each reference pixel, zn−1 and zn+1 is illustrated.

As a consequence,

λ = 1  RgsROD = RsROD,

NLR = ∅  RgsROD = RSDIa

and
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(a) Response encoded in red channel (b) Response encoded as intensities

Figure 4.5: sROD4 based response measure by using 4-neighborhood: Two vertical and
horizontal neighbors are additionally considered in each temporal neighboring frame.

RsROD ≤ RgsROD ≤ RSDIa if NLR is fixed,
R′gsROD ≥ RgsROD if N ′LR ⊆ NLR.

Thus, the general sROD, taking all 8 neighbors into account, is most robust against
single outliers. It means, this method has the least false alarms (FA) due to
noise. However, as shown in Figure (4.6), when considering an 8-neighborhood,
the detection of fine structured dust spots turns out to be insufficient. Although,
noise is significantly reduced, fine structures are not detected in its whole extend
either. The best balance between reduction of noise and preserving fine structured
dust spots has to be found. Therefore, the sROD2 or sROD4 based response
measures, shown in Figures (4.4) and (4.5), seem to be the better choice.

4.3 Noise suppression

As already shown in the previous section, the presence of noise is an substantial
problem in film restoration applications. A common consequence of the single-
frame-defect detection is a high FAR. Pixel based detectors are not able to distin-
guish between noise and small dust spots or low contrast blotches, which challenges
the detection process.

In Section (4.2) it was already shown, that FA due to noise can be significantly
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(a) SDIa based response measure (b) sROD8 based response measure

Figure 4.6: Comparison between SDIa and sROD8 based response measure, showing
the improvement regarding noise suppression due to considering more spatial informa-
tion.

reduced by including a certain spatial neighborhood. However, when considering
a high number of neighbors, response values of fine structured dirt and dust are
damped down radically as well. In this section an efficient technique is proposed
in order to counteract this effect.

4.3.1 Co-support operator

The co-support operator was motivated by the characteristic of blotches, that dust
spots form coherent regions and that the occurrence of single dust spots is rather
rare. Similarly to the post processing methods proposed in [6], we need to keep
the FAR due to noise low, dust spots have to be completed if single pixels within a
dust spot have low responses and an overall dilation is advantageous for the border
cases arranged at dust spot edges. All these steps are combined in one with the
co-support operator, which further shares some similarity with the histogram of
template (HOT) features, proposed in the work of Tang and Goto [65]. In their
work they propose a novel feature for human detection in still images, named HOT.
In a 3×3 pixel region various templates are given in order to define the positional
relationship of three pixels, the center pixel and two of its neighbors. The HOT
feature verifies if pixels meet one of the predefined templates by using intensity
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and gradient information.
We follow a similar approach by using only intensity information. The co-

support operator adapts pixels by checking for similarity to its neighbors, consid-
ering also a 3×3 pixel region. Basically, the idea of this operator is the following:
The response value of a pixel and consequently its probability to be part of a
defect should be increased if the pixel is a neighbor of dust spot pixels that are
supposed to have a high response. A dust spot in the center frame which does not
have overall significant response values, is triggered to be “filled up”. Vice versa, if
pixels do not have neighbors with high responses, they are likely to be outliers. In
such a case, the operator will decrease the response. The resulting effect is, that
noisy, small-sized outliers are eliminated if their response is not significant.

General co-support operator Ck

Let vc be a value, representing e.g. the response, intensity, homogeneity, etc., of a
pixel at position z = (x, y)T and vn ∈ N(vc) is the value of each of its n neighbors.
Furthermore, f(·, ·) computes a similarity measure and function g is used to adapt
the value of the center pixel due to the observed neighborhood. Mainly, g will be set
to mink or maxk, which represents the k-highest or k-smallest value, respectively.

Then, the general co-support operator ck(z) is defined as

ck(z) = g{f(vc, vn)|vn ∈ N(vc)}, (4.6)

Additionally, this operator can be extended in such a manner as to consider
the direction of vc to vn, as it is done in the work of Tang and Goto [65]. In this
way, the comparison of center and each neighbor can be weighted individually.

Co-support operator for dirt and dust detection

The co-support operator ck is applied to the response measure in order to improve
the response measure in relation to noise and incomplete dust spots. The chal-
lenge is to choose an adequate operator f . Choosing max or average as similarity
operator f , the result will show a growing effect. Vice versa, min would result in
an erosion effect.
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Thus, we define a weighted combination of min and average:

f(rc, rn) = α1 · (min(rc, rn)) + α2 · (φ(rc, rn)), ∀rn ∈ N8(rc) (4.7)

where φ is the average function: φ = rc+rn

2 . Finally, the updated value is obtained
by using ck(z) = maxk{f(rc, rn)}.

As already explained, the response r(z) is obtained by using combined differ-
ences such as e.g. the SDIa based method, see Equation (4.1). We clip the response
values to a range [0, t · τ ] and subtract τ in order to obtain response values in a
range of [−τ, (t− 1) · τ ] by using

r′c(z) = min(r(z), t · τ)− τ, (4.8)

where τ is the dust threshold. Therefore, negative values indicate pixels which are
rather no dust spots, positive values correlate with pixels that are likely to belong
to a dust spot, and values around 0 are border cases. It appears to work best to
set t to a value of 2 in order to limit the response values to 2 · τ . The reason for
that will be clear later on, when we introduce the damping functions.

Ideally, the similarity function f(rc, rn) should correspond with functionmin(rc, rn),
if rc is rather low, i.e. rc < 0, and it should be ≈ φ(rc, rn) if rc is significant, i.e.
rc > 0, as at this point the probability of pixels being a dust spot increases.

Let d = |min(max(r′c,−τ), 0)| be a function to minimize the ‘growing effect’ at
boundaries, which will be used to compute the weights for the co-support operator.
Consequently, function f which has to be computed for every neighbor rn ∈ N8(rc)
is defined as

f(rc, rn) = d

τ
·min(rc, rn) + (1− d

τ
) · φ(rc, rn). (4.9)

Note that the co-support operator mainly damps responses of outliers and slightly
increase response values of pixels, which have a neighborhood of high responses.
Due to the average function, the increasing of responses will always be limited to
the average of center and highest neighbor response, which may be too weak. We
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(a) Response based on SDIa (b) Result of co-support operator

Figure 4.7: Resulting effect of the co-support operator. Comparison of SDIa based
response, in (a) without and in (b) with co-support operator applied.

have found that a non convex weighting function, where the average function is
constantly assigned a higher weight than the min function, will counteract this
issue.

In Figure (4.7) the result of the co-support operator is demonstrated. Single
outliers in the response measure are effectively reduced, while the response values
of small, higher contrasted parts are not decreased. Additionally, as desired, the
response values at the border of potential dust spots are effectively increased.

4.4 Damping functions

Most false alarms (FA) occur due to pathological motion (PM), close to moving
edges or simply as a result of ME errors. Consequently, areas, that are likely to
result in false detections, have to be found and treated separately. By a compre-
hensive analysis of the motion field, provided by the used ME algorithm, and the
appropriate warped neighboring frames, we derive measures, that indicate precari-
ous areas. Precarious areas are occlusion or uncovering areas, moving edges, areas
of complex motion, etc. The obtained measures are transformed to a probability
distribution for each pixel and further utilized to damp down the response values
in the precarious regions. Finally, the response measure is thresholded in order to
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(a) Original frame (b) Restored by DIAMANT

(c) Original frame (d) Restored by DIAMANT

Figure 4.8: Samples for undesired restoration artifacts: Due to ME errors, particularly
in areas of complex motion, artifacts may be introduced to the restored result.

obtain a binary detection mask. In the removal process, the detected image re-
gions are replaced by using information of the motion compensated neighbors. If
defects are detected due to motion estimation (ME) errors, image data is replaced
by values from image parts that are not reliably matched. The obvious effect is
the generation of artifacts, which is illustrated in Figure (4.8). For those samples,
the detection as well as the removal of defects was done by the DIAMANT film
restoration algorithm.
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We define X measures in order to assign an appropriate probability to all parts
of the current image. Each of the measures is presented in detail in the following
subsections. For each measure x ∈ X, ‘dangerous’ regions (i.e. PM, unreliably
estimated motion, moving edges, etc.) are tagged with high probability values
p ∈ [0, 1]. The final probability distribution is then obtained by combining all x
measures using

pfinal =
∏
px, (4.10)

where px is the probability distribution of each single measure x. In the last
step we multiply the inverse damping probability pfinal by the obtained response.
Ideally, FA due to ME errors and due to PM are now below the threshold τ

and consequently, are not detected. The damping function approach obviously
does not improve detection accuracy, but it represents an effective mechanism for
controlling FA.

As mentioned earlier, the detection of dirt and dust is particularly challenging
in areas of complex motion, since ME algorithms are likely to fail in such areas.
The idea of our approach is to analyze the motion field in both directions, from
the center to both neighboring frames. In this way we find regions in the current
image which were not estimated reliably.

In the following we list the used measures, which can be combined in the end
and consequently indicate parts of the frame, where blotch candidates are likely
to be detected due to ME errors. In such areas we rather damp down the re-
sponse values than clear the detection mask, as it should be still possible to detect
high contrasted blotches. Some of the following measures are exclusively inferred
from the motion field, while others are computed by including also the center and
warped neighbors. The following damping functions can be computed either as a
combination of both directions (backward and forward) or by choosing one direc-
tion. If only one direction is considered, the function might be less reliable and
partial, but the computational cost is lower. In order to depart from single-pixel-
decisions we apply a box filter of varying size to all damping measures.
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As already mentioned in the previous chapter, we mainly use TV-L1 optical
flow and Pixel motion for ME. Thus, each of the visualizations of the damping
function measures include both algorithms.

4.4.1 Motion velocity

We assume that an object movement from one frame to the next one is finite,
dependent on the image width. Excessively large motion vectors are commonly
measured if the current position is arranged in an occluded region and the referring
position cannot be found or if the motion is very complex. Therefore, motion
vectors exceeding a predefined vmax are likely to be wrongly estimated.

Let v(z) be the magnitude or also denoted as velocity of the motion vector at
spatial position z = (x, y)T , where the range [0, ε] represents proper velocities of
a motion vector, and let vmax be the maximum velocity an object is supposed to
move within two consecutive frames.

The probability of a pixel being unreliably estimated due to a high magnitude
of its motion vector, pvelocity(z) ∈ [0, 1], is then obtained by

pvelocity(z) = ωvelocity ·min{max{v(z)− ε, 0}
vmax − ε

, 1} (4.11)

The damping can still be regularized by ωV elocity ∈ [0, 1]. For the Pixel motion
we use a slightly bigger ε as the Pixel motion is less smooth and therefore has
more outliers. The resulting probability density function is illustrated in Figure
(4.9), where the probability values pvelocity are encoded in the green channel and
are overlaid with the center image. For both ME methods, the velocity measure
shows similar results. As shown in the image sequence, the cat shakes its head
very fast, so the right parts of the image are affected.

This measure has to be applied considerably, since all defects that are placed
on the moving object might be damped down as well, although the reference pixel
are available in both directions. Another issue of this measure is, that fore- and
background are not distinguished. If fast motion occur due to camera motion, the
whole image might take effect. Thus, assigning a low ωV elocity might be advanta-
geous instead of a higher one, as real blotches would be damped down radically as
well.
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.9: Probability measure inferred from the velocity of motion vectors, illustrated
for image sequence Cat. (a) - (c) shows the three succeeding image frames, (d) shows
the magnitude measure when using TV-L1 optical flow and in (e) the measure is shown
when Pixel motion is used for the ME.

4.4.2 Density of motion vector fields

The density of a motion vector field offers valuable information regarding occlusion
and uncovering areas. This finding was already utilized in the literature in a similar
way, e.g. in the work of Bartels et al. [66]. If several motion vectors point to the
same position in one particular region, high density is observed. High density
indicates an occlusion area. As the actual reference pixels are occluded, all motion
vectors point to the boundaries of the occluded area. Vice versa, regions have
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(a) Step 1 (b) Step 2

Figure 4.10: Computation of density measure, by applying 2 steps: In the first step,
the motion vectors are followed and the number of references are accumulated for every
pixel. In the second step, the number of references are inserted back into the appropriate
position of the center frame.

low density if no or few motion vectors are pointing to it. Low density indicates
areas of uncovering. The computation of the density image is illustrated in Figure
(4.10). In a first step, an ‘accumulator image’, denoted as numref , is built, where
the number of references is incremented at the neighbor’s target positions by using

∀z : numref (z + ~mz) = numref (z + ~mz) + 1,

where z = (x, y)T is the pixel position in the center frame and ~mz its motion vector.
The indexes of the accumulator image correlate with those of the neighboring
frame. Then numref is slightly blurred by applying a box filter. In the second
step, the density image is constructed by taking the corresponding values from
the accumulator image, as explained in Figure (4.10). The indexes of the density
image correlate with those of the center frame.

The density image md(z) is obtained by using the following equation:

md(z) = fb(numref (z + ~mz)), (4.12)
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(a) backward direction (b) forward direction

Figure 4.11: Logarithmic visualization of expanded and compressed parts, indicating
the density of the motion field. For this visualization the motion was estimated by using
TV-L1 optical flow.

where fb is a box filter, numref (z) indicates the number of references at position
z in the neighboring frame fn+1.

Finally, the density image md is clipped to the range [ 1
mdmax

,mdmax ], where
mdmax defines the max references, which correlates with a probability of 1. For
illustration purposes a logarithmic scaling is applied, see Figure (4.11), where all
bright values correlate with expansion and all dark values with compression of
the presented motion. All values referenced only once are assumed to be reliably
estimated. Other parts denote areas of occlusion or uncovering, since no unique
reference could have been found for these positions. The probability of a pixel
lying in an occlusion/uncovering area due to high/low density values is finally
computed by

pdensity(z) = ωdensity ·
| log(md(z))|
log(mdmax) , (4.13)

where ωdensity is the damping weight for the density function.
In Figure (4.12) the probability distribution pdensity is visualized, encoded in

the green channel. The density, estimated by the TV-L1 optical flow, see Fig-
ure (4.12d), is accurately estimated due to the smoothness of the algorithm. It
is slightly better than the result obtained when using Pixel motion, as shown in
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.12: Probability measure inferred from density of motion field, illustrated for
image sequence Stadt ohne Juden. In (d) and (e) it is shown, that the occlusion and
uncovering areas are correctly affected for both ME algorithms.

Figure (4.12e). The calculated density using Pixel motion may be badly affected
if illumination changes are present, since the Pixel motion cannot deal with illu-
mination changes and produces more ME errors.

4.4.3 Back-matching of motion vectors

For the back-matching measure the motion vectors have to be available in both,
the forward (~mf ) and the backward (~mb) directions. A reliably estimated motion
vector is assumed to be equally measured in both directions, which means that
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.13: Probability measure obtained by disparities of back-matching measure,
illustrated for image sequence Surprise. The back-matching measure affects occlusion
and uncovering areas and, in particular, areas of ME errors.

the following assumption must hold

∀zc : zn = zc + ~mf (zc) AND zc = zn + ~mb(zn), (4.14)

where zc is the actual position in the center frame and zn is the corresponding
(indicated by the motion vector), matched position in the neighboring frame. If
this assumption is violated, the motion has not been accurately estimated, which
may happen due to complex motion, occlusion, uncovering, etc.

Let u and v be the disparities in the horizontal and vertical direction, respec-
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tively, and let ε be tolerance value, the probability of a pixel being unreliably
estimated, measured by back-matching disparities, can be determined as follows:

pbm(z) = ωbm ·min{max{fb(max {u(z), v(z)})− ε, 0}
mbmmax − ε

, 1}, (4.15)

where fb is a box filter, mbmmax is the max defined disparity which will be trans-
formed into a probability of 1 and ωbm is the damping weight. The probability
distribution is linearly scaled in the range of [ε,mbmmax ].

Back-matching is a very effective feature to detect ME errors. Its drawback
is that the motion has to be calculated in both directions, which has a negative
impact on the computational cost. However, if an automatic restoration mode
is provided, motion does not have to be calculated additionally. It is rather an
issue of book-keeping, since the motion vector fields have to be saved over a longer
period of time. In Figure (4.13) the probability distribution pbm is illustrated.

The back-matching function mainly indicates ME errors as well as occluded
and uncovered parts of the image, since in such areas either the forward or the
backward target positions of the motion vector is unavailable.

4.4.4 Divergence of motion vector field

The measure of divergence was inspired by Corrigan et al. [44]. According to
Corrigan et al. PM and ME failures could be diagnosed by concentrating on the
motion field itself, since PM often violates the local smoothness assumption of a
motion field. In their work the vector field divergence is used as it is a suitable
measure of smoothness within a vector field. High divergence values correspond
to regions of the field which are not smooth and so may be associated with PM.

The divergence measure is computed by including both components of the
motion vectors, the u- and v-translation vectors. Basically, the divergence of
optical flow is the sum of the derivatives in two perpendicular directions, u- and
v-direction, and indicates motion boundaries. Therefore, the higher the difference
between the motion of each side, the higher is the divergence value. A box filter
is applied to this measure in order to slightly extend the motion boundaries.

When viewing the outcome, see Figure (4.14), a noticeable thing is that when
Pixel motion is used, the result is much less accurate. This can be explained by
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.14: Probability measure obtained by divergence of motion field, illustrated for
image sequence Hannes runs. The divergence measure mainly affects motion boundaries.
For the Pixel motion, this measure is less applicable.

the fact that the motion field produced by Pixel motion is more erratic.
The divergence of a vector field is a scalar field and in the two dimensional case

it is defined as:

div(u, v) = ∂u

∂x
+ ∂v

∂y
. (4.16)

Finally, the probability of each pixel, to be arranged in an area of ME errors due
to high divergence values, is defined as follows:
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pdiv(z) = ωdiv · div(u, v), (4.17)

where ωdiv is the damping weight for the divergence measure. In Figure (4.14) the
probability values are visualized, encoded in the green channel.

4.4.5 Difference of motion-compensated neighbors

If the motion is accurately estimated, the motion-compensated neighboring images
and the center frame are supposed to be equal. Since the center frame possibly
includes dirt and dust, while the neighbors are assumed to be clean regarding
defects, the DFD of the two warped neighboring frames indicate ME errors.

This measure is similar to the constraint used for the SDIjrs method, described
in Section (2.2.2), where this additional constraint of similarity of warped neighbors
already effectively reduced FA. The corresponding probability of each pixel is
obtained by

pwarpedDF D(z) = ωwarpedDF D ·min{max{|Cn−(z)− Cn+(z)| − ε, 0}
mwmax − ε

, 1}, (4.18)

where mwmax is the maximum difference which corresponds to a probability value
of 1 and is usually equal to the max response val, used for the response measure
in Section (4.2), ε defines the tolerated difference of the warped neighbors and
ωwarpedDF D is the damping weight. This measure mainly affects areas of complex
motion in which the ME algorithm fails to correctly compute motion vectors. To
extend the regions that are desired to be damped down a box filter is applied.

4.4.6 Moving edge detection measure

As already reported in several related work, FA are likely to occur close to sharp,
moving edges. Chong and Krishnan [36] already introduced a moving edge detec-
tor into their MRF model and it appeared to be an effective technique in order
to regularize false detections. When warping the neighboring images to the center
image, pixels are translated by following the appropriate motion vector. Motion
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.15: Probability measure based on DFD of warped neighbors, illustrated for
images sequence Dance2. ME errors are mainly affected by these measure, which often
occur in textured areas.

vectors do not always point to an exact coordinate, thus, pixels are bi-linearly
interpolated. The bi-linear interpolation schema and a simple nearest neighbor
interpolation method, for example, usually produce different results. In homo-
geneous regions the difference is not recognizable, but it is around edges. When
calculating the difference between two different interpolation modes, e.g. between
bilinear and nearest-neighbor interpolation, high values are typically measured on
moving edges, but it also take effect at noisy areas. We use
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.16: Probability measure obtained by moving edge detection, illustrated for
image sequence Surprise. This measure affects only moving edges, which are generally
likely to produce FA, other edges, such as dust spot boundaries are not affected.

mm(z) = |Cn(z)− Cn[z + ~mz + 0.5]|, (4.19)

where Cn is the warped neighbor, ~mz is the motion vector estimated for pixel z
of the center frame and [] indicate floor brackets. A probability measure is then
inferred, which indicates the likelihood for each pixel that it lies on a moving edge:

pmovEdges(z) = ωmovEdges ·min{max{mm(z)− ε, 0}
mmmax − ε

, 1}, (4.20)
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wheremmmax is the maximum difference which corresponds to a probability value of
1. ε defines the tolerated difference between the results of the two different warping
methods and ωmovEdges is the damping weight. The novelty of our proposed moving
edge detector is due to its ability to find exclusively moving edges. Static edges
or dust spot edges are not affected. In Figure (4.16) the inferred probabilities are
visualized.

4.4.7 Tracing of occluded/uncovered motion vectors

Detection of occlusion and uncovering areas can also be performed directly, since
the motion boundaries and the motion directions are available.

The divergence measure is used to obtain motion boundaries and each motion
vector which is measured at these boundaries is used to calculate the angle of the
vector. When following each of the motion vectors the intensity of all passing pixels
of the non-motion-compensated neighboring frame is compared with the intensity
value of the starting position. If the difference does not exceed ε, we assume that
there is neither an occlusion nor an uncovering area. If the intensity varies more
than ε, we calculate the probability of each pixel belonging to an occlusion or
uncovering area as follows:

Let ~mz be the motion vector estimated at position z and let zmi
be the co-

ordinates of its underlying elements. The coordinates are obtained by rotating a
same-sized vector by the calculated angle. For the probability measure a dmax is
defined, which indicate the max difference to which a value of 1 is assigned. A
box filter is applied. Then the probability measure for this damping function is
defined as

pocclusion(z) = ωocclusion ·min{max{|In±1(zmi
)− I(z)| − ε, 0}

momax

, 1}, (4.21)

where ωOcclusion is the damping weight for the occlusion measure.
In Figure (4.17) the obtained probability values are visualized. For this measure

we do not differentiate between occlusion and uncovering areas, as the probability
should be equally distributed for both. The tracing of occluded/uncovered motion
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(a) frame n - 1 (b) frame n (c) frame n + 1

(d) Result using TV-L1 optical
flow

(e) Result using Pixel motion

Figure 4.17: Probability measure obtained by detecting occlusions, illustrated by image
sequence Dance2. The measure widely affects occlusion areas, but the affected region is
less accurate than by other measures.

vectors produce an acceptable result when TV-L1 optical flow is used. Using Pixel
motion for ME, the result is worse, as motion boundaries could not be detected
satisfyingly by the divergence, see Figure (4.14e), and the motion vector directions
do not seem to be reliable either.
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(a) TV-L1 optical flow (b) Pixel motion

Figure 4.18: Response measured by the sROD based method considering the vertical
neighbors.

4.5 Combined algorithms

In the last section different methods to obtain a response measure, a noise reduc-
tion operator and several damping functions are presented. This section shows a
selection of the best methods, presented in this chapter. For each of the two ME
algorithms a set of damping functions is chosen in order to produce the best results.

We are going to use the sROD2 based response measure (considering the two
vertical neighbors) and we apply the co-support operator in any case. In this way,
a proper balance between noise reduction and preserving of fine structures, such
as hairs, is given. In Figure (4.18) the response measure is illustrated, where in-
correctly high measured responses around the hand are clearly visible. For this
illustration, two vertical neighbors where considered for the sROD response mea-
sure. We also applied a penalty term for the sign constraint, as defined in Equation
(4.2). For the visualization the max response value is set to 30.

FA should be damped down by the combination of an appropriate set of damp-
ing functions, which are discussed in the following subsections. Since the used ME
algorithms are different in many ways, an individual set is assigned to each of the
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methods.
After performing Equation (4.10) a combined probability measure is obtained,

which is multiplied by the response in order to obtain a final response measure.
Essentially, the final response R is a gray-level image whose non-zero values corre-
spond to dirt particles with an associated likelihood of being part of dirt and dust.
A final binary mask of dirt bc can be obtained by thresholding R under a given
likelihood η ∈ [0, 1], where Λ is the number of gray values per channel. Using

bc(z) =

 1, if R(z) ≥ (Λ− 1)η
0 otherwise,

(4.22)

the final binary dust mask is obtained, which can be used for the removal process.

4.5.1 Algorithm for TV-L1 optical flow

The TV-L1 optical flow offers a quite good ME. The motion boundaries are clearly
measured and the motion field is overall smooth. If choosing this ME method the
following damping functions work best:

All damping functions are blurred by a box filter with a kernel size of ≈ 1% of
the image with.

1. Density of motion vector field: As seen in Figure (4.12), occlusion and un-
covering areas are completely detected, we can clearly recognize the motion
during the 3 frame sequence. Since pixels, which lie in occlusion/uncovering
areas, do not have references in both neighbors, high response values in those
areas are not reliably classified as blotch pixels, thus those values can be
damped down justifiably. As the density measure provides quit high values,
the damping weight ωdensity is slightly decreased.

2. Divergence of motion vector field: The divergence measure results in high
values at motion boundaries. In Figure (4.14d) complex motion, in particu-
lar, is clearly detected. Similar to the density measure, the damping weight
for the divergence ωdiv is slightly decreased.
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(a) Response measure (b) combined damping function

Figure 4.19: Combined probabilities of all used damping functions, where TV-L1
optical flow was used for ME. Those areas, that are due to be damped down are clearly
recognizable by the yellow shade.

3. Difference of warped neighbors: Areas, which manifests a significant differ-
ence between the two motion compensated neighbors, are damped down,
as those areas are obviously wrongly estimated. As illustrated in Figure
(4.15), high differences were detected in areas of fine structures (stripes of
T-shirt). Remaining high response values in such fine structured areas, in-
crease the risk of introducing the construction of annoying artifacts in the
removal process. The same constrained is used in the SDIjrs [21] method
and is responsible for an improved performance when compared to the SDIa
and (in most cases) SDIp methods.

4. Moving edge detection measure: Finally, the moving edge detector damps
down all response values on and close to moving edges. This is necessary,
since response values are likely to occur close to sharp edges due to inaccuracy
of the ME algorithm. Even if the motion vector only varies slightly, the
response measure might deviate heavily.

Each of the used damping functions was illustrated separately in Section (4.4). The
combined set of used damping function is overlaid with the response measure and
illustrated in Figure (4.19). The response measure is encoded in the red channel
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and the damping probability in the green channel. Consequently, all response
values which are going to be damped down are shown in a shade of yellow. The
combined damping function is shown in Figure (4.19b), which has to be reversed
before it can be multiplied by the response measure.

4.5.2 Algorithm for Pixel motion

The Pixel motion algorithm is less accurate than the TV-L1 optical flow. It is
less smooth, has more outliers of motion vectors in homogeneous regions and can-
not deal with illumination changes. However, the best set of damping functions
appeared to be the following:

1. Difference of motion compensated neighbor: High differences of the mo-
tion compensated neighbors indicate unreliable areas and response values
are damped down. Similar to the result produced when TV-L1 optical flow
is used, fine structured areas are affected, as illustrated in Figure (4.15e).
This measure is applicable for both ME algorithms, since no significant dif-
ferences of the results are recognized.

2. Moving edge detection measure: Similar to the previous measure, where the
motion compensated neighbors are compared, the moving edge detection
measure seems to be independent of the ME algorithms. Both results accu-
rately show the moving edges and consequently damps down occurring high
responses.

3. Back-matching of motion vectors: The back-matching function, shown in
Figure (4.13e), is not an accurate measure for occlusion, uncovering and
complex motion, but generally, it takes effect in the right areas. This measure
is only applicable for the automatic mode, since the ME is required in both
directions, which will result in a higher computational cost.

4. Density of the motion field: As seen in Figure (4.12e), occlusion and uncov-
ering areas are reliably detected. But, in contrast to the result when using
TV-L1 optical flow, reliable areas might be marked as unreliable as well.
Particularly, this effect occurs in presence of illumination changes, which is
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(a) Response measure (b) combined damping function

Figure 4.20: Combined probabilities of all used damping functions, where Pixel mo-
tion was used for the ME. Those areas, that are due to be damped down are clearly
recognizable by the yellow shade.

due to a limitation of the used ME algorithm. Therefore smaller probability
values are ignored to counteract this effect.

Each of the used damping function is illustrated separately in Section (4.4). The
combination of all damping functions and the resulting effect on the response
measure is illustrated in Figure (4.20).

4.6 Discussion

In this chapter we have described the proposed detection approach single-frame-
defect detection approach based on the Reduction of FA by analysing the estimated
Motion followed by an Extraction of Damping functions (rFAMED) in detail. The
probability based response measure was chosen to keep essential information, that
was required later on in order to reduce FA. For the response measure a sROD
based detection measure was chosen, since it is fast and simple and good results
were reported in related work. The co-support operator provides an effective
method in order to avoid single outliers due to noise and to increase responses
within and close to dust spots. In addition, we have presented several damping
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functions in order to affect areas of occlusion, uncovering and complex motion,
where FA due to ME errors are likely to occur. Those damping measures were
obtained by conducting an comprehensive analysis of the computed motion field
and the appropriate warped neighbors. The whole approach is widely independent
of the used ME algorithm, thus any algorithm can be applied. The proposed
measures cover all precarious areas of an input frame that are likely to result in
false detections. The aim is to damp down high responses occurring in such areas of
PM in order to significantly reduce false detections which endanger artifacts in the
restored frame. In the next chapter experiments and evaluations are accomplished
to illustrate the performance of rFAMED, our novel detection method.



Chapter 5

Experimental Results and
Evaluation

5.1 Introduction

In this chapter a comparative evaluation of the performance of the proposed novel
dust and dirt detection algorithm is carried out. We show the results and the im-
provement over previous detectors on several different image sequences, including
material with noise, complex motion, occlusions and uncovering areas. In order to
compare the detectors against each other, a quantitative evaluation schema and an
objective ground truth is chosen. Since most detectors require predefined thresh-
olds and different parameters, we use ROC curves for comparative illustrations.

The proposed algorithm is compared against the single-frame-defect detector
integrated in the DIAMANT film restoration software, which we aim to outperform
with this work. Furthermore, it is compared against five baseline detectors which
are well known in the literature and which were already discussed in Section (2.2).
In the following, the evaluation methodology is explained in detail, in particular,
we focus on ROC analysis in order to evaluate and compare the different single-
frame-defect detectors. Furthermore, we will discuss issues and limitations arising
from the available ground truth data (GT). Finally, the performance is evaluated
quantitatively as well as qualitatively, followed by a detailed discussion of the
obtained results.
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5.2 Evaluation methodology

To afford a comparable, statistical evaluation, a representative evaluation schema
is carried out. Commonly, the well known ROC curve [67] approach is used for
evaluating a detector’s performance. The performance is dependent on both the
correctly detected parts and the false detections. Since a high accuracy is worthless
as long as the FA are high as well (following [5] a FAR < 0.1% is aspired), the right
balance between accuracy and FA has to be found. Thus, the well known ROC
curve [67] is an applicable approach, since it shows the CDR against the FAR.
For the evaluation methodology an objective GT is necessary in order to compute
these values. As a corresponding dirt free image sequence is usually not available,
another objective measure is required. In related work regarding dirt and dust
detection algorithms, e.g. in [5], [14], etc., infrared (IR) scans have been estab-
lished as objective GT. Furthermore, artificially corrupted image sequences were
often used in related approaches, e.g. in [10], [27], etc., where the corresponding
GT was inferred from the artificially corrupted test data. Similarly, e.g. in [40],
real blotches were added to the test data by copying and pasting of previously
detected ones. Although good results have been reported with these artificially
added degradations, they actually do not reflect the real situation and hence it
does not represent a reliable evaluation. Consequently, we have chosen to use IR
scans as objective GT, since they are inferred from real corrupted image sequences
and reliably show defects, that are physically present on the film.

5.2.1 Ground truth (GT)

For the comparative evaluation of the detector’s performances we have chosen IR
scans, made available from INA (Institut National de L‘Audiovisuel)1 as objec-
tive GT. Although, IR scans can yield limitations when using them as GT in a
pixel based evaluation, they allow a quantitative comparison of different detection
algorithms. Possible limitations are discussed later in this chapter.

GT masks are obtained by thresholding IR scans of archived films under an
appropriate value. An IR scan is a gray level image, as shown in Figure (5.1b), in

1http://www.ina.fr/
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(a) corrupted image data (b) corresponding IR scan (c) GT mask

Figure 5.1: GT for frame 9 of image sequence Dance2. The IR scan in (b) is thresh-
olded by a value of 170, where values smaller than 170 are classified as corrupted pixels
(displayed in white) and values greater or equal are classified as clean (displayed in black)
in the resulting binary GT mask (c).

which all physical defects are contained. Due to their non-transparency, dust, dirt
and other defected areas are detectable by an infrared sensor and always appear
darker than uncorrupted regions. The darker a defected pixel is represented, the
higher is the probability that it refers to a pixel of dirt [5]. The thresholded GT
maps are binary images, displaying dirt pixels as white and clean pixels as black,
illustrated in Figure (5.1). The GT mask is then used to calculate the CDR and
FAR, which are required for the ROC analysis.

5.2.2 Receiver operating characteristics (ROC)

The ROC curve approach provides a comprehensible way in order to assess the
accuracy of predictions. We are going to use this schema to predict a binary
outcome, i.e. the current pixel belongs to a defect region or it does not. Thus, a
pixel based evaluation is performed, where each pixel belongs to one of the four
classes, listed in Table (5.1).

The ROC curve is a graphical illustration in order to explore the trade-offs
between correct and false detections. The traditional ROC curve plots sensitivity
(true positive rate or CDR) on the vertical axis and the specificity (true negative
rate or FAR) on the horizontal axis. A quantitative variable is needed to guide the
decision [67]. In this evaluation, the threshold, which is used to obtain the final
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defected pixel not defected pixel
(tp + fn) (fp + tn)

detector classifies pixel
as defected (tp + fp) true positive (tp) false positive (fp)
detector classifies pixel
as not defected (fn + tn) false negative (fn) true negative (tn)

Table 5.1: Frequency distribution of the variables for the ROC analysis, required to
compute CDR and FAR.

binary dust mask, is chosen to be the quantitative variable. For each threshold
the CDR and the FAR are calculated by using

CDR = tp
(tp + fp) (5.1)

and

FAR = fp

(fp + fn) , (5.2)

where tp are true positives, fp are false positives and fn represent false negative
elements, further explained in Table (5.1). Thus, each point of the ROC curve
corresponds to a specific threshold. Connecting those points leads to the so-called
empirical ROC curve.

Since the measures for correct and false detections are pixel based, Equations
(5.1) - (5.2) can be rewritten as

CDR = Count(DGT &DDM)
Count(DDM) (5.3)

and

FAR = Count(DGT &DDM)
Count(DGT )

, (5.4)

where Count is a function which defines the number of set pixels in the appropriate
binary mask, DGT and DDM are the two required binary masks, which are the GT



70 Experimental Results and Evaluation

(a) corrupted image (b) corresponding IR scan (c) resulting GT mask

Figure 5.2: Problematic IR scan as GT. Firstly, there is a dust spot in the original
image, which will contribute to the FA, since it is not present in the appropriate GT
mask. Secondly, a dust spot that is located on the IR scan cannot be found by any
detector, since the dust spot is hidden due to the image content.

and the computed dust mask, respectively. The &-Operator is the logical AND, in
other words all pixels that are set in both masks, andDGT specifies the complement
of the GT, consequently “the non-set elements”.

5.2.3 Limitations

Using IR scans as GT has several limitations for the dirt and dust detection per-
formance assessment. In the first place, IR scans are not always available, since
a special scanner is necessary to produce an additional IR scan for every image
frame. Furthermore, they can only be made on color films, since the silver image
in monochrome film is opaque to infrared radiation [52]. Thus, the evaluation
often can only be done for an exclusive set of image sequences. Secondly, IR scans
typically do not contain solely single-frame-defects, but also other defects like line
scratches. Line scratches usually occur at the same position in several consecutive
frames, thus single-frame-defect detectors are not able to detect them, which will
always lead to a decreased CDR. Furthermore, defects on a film might be already
copied. IR scans only catch blotches, if they are physically located on a film reel.
Copied dust will not appear on the GT mask and will bias the result. Finally, the
result heavily depends on the chosen threshold for the IR scan, since dust pixel
only appear in the GT mask if they exceed the appropriate threshold.
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(a) Threshold 150 (b) Threshold 170 (c) Threshold 190

Figure 5.3: GT for image sequence Dance2 thresholded at different values.

Choosing an appropriate threshold for the infrared scan arises to be very sen-
sitive to the performance: a lower threshold results in a less sensitive GT and
increases the CDR while decreasing the FAR. Using a higher threshold results
in a GT containing more low contrasted and fine structured dust spots and will
decrease the overall detectors performance. This can be explained by the used for-
mula for calculating CDR and FAR defined in Equation (5.1) and (5.2). In Figure
(5.3) three binary masks of dirt are illustrated, where the IR scan from Figure
(5.1) was thresholded by three different values. When using a higher threshold,
the content of the shown GT mask is not limited to single-frame-defects only,
also line scratches are included. When using a lower threshold, line scratches are
widely excluded, but so are fine structured dust spots, e.g. hairs. Those pixels are
contributing to the FAR in the evaluation curve, even though all of them were cor-
rectly classified as defected. Since the measure is pixel-based, the fact, that dust
spots have a smooth border, can also influence the result. When using a higher
threshold, the border pixels may just fall under the threshold and thus dust spots
are displaced weaker. In contrast, a lower threshold forces dust spots to be more
extended and stronger. This does not impact the result if only small-sized dust
spots are contained in the center frame, but it surely does, in case of larger dust
spots, since only the exact overlap of dust spots in the GT and those contained in
the computed dust mask will exclusively increase the CDR and decrease the FAR.

In Figure (5.4) the impact on the resulting ROC curve is illustrated. In the
literature it was argued, that the threshold was defined to be 170 in order to
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Figure 5.4: Difficulty of choosing the right threshold for IR scans. This curves were
produced by the SDIp detector for the sequence Dance2. The blue curve represents the
result when using a GT thresholded by 150, for the green one a threshold of 170 and for
the red curve a threshold of 190 was used.

ignore the effect of scratches and other semi-transparent artifacts while keeping
dirt particles. Thus, choosing a threshold of 170 seems to be suitable.

Since IR scans appear to be problematic a qualitative evaluation of the novel
detector will be performed in addition.

5.3 Test sequences

To cover the huge diversity of film material to be restored, a variety of test data is
chosen. Today’s film scanners produce images with a resolution ranging from SD to
8K, where the content differs in its level of noise and film grain, in the complexity of
containing motion as well as in other quality aspects such as illumination changes
or image contrast. Since IR scans are required in order to do an evaluation, the
number of available test sequences is limited.

Among others, we have used six broadcast resolution (760 x 560) sequences,
which were already used in the evaluation of several related work within the
PrestoSpace project, e.g. in [5], [14]. In Table (5.2) the chosen image sequences
are listed and described in detail.
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Image sequence
Resolution Image sequence content

(# frames)

A woman next to a doll is moving her

Lady and doll SD
hand and her head: no complex motion,

(293) (720×576)
contains large dirt areas, camera zooming
and shaking, contains local motion and
partially textured back-ground.

Art SD
Presentation of works of art, strong

(84) (720×576)
translational motion, high amount of small
dust spots, no local motion.

A group of original inhabitants, shot in the

Cigaret SD
nature, smoking a cigarette: contains poor

(269) (720×576)
contrast, apparent camera shaking, non-
rigid human motion, translational motion,
strong textured background.

Surprise SD
Walking lady, in background a dancing

(264) (720×576)
couple: no complex motion, middle sized
dust spots, high amount of hairs.

Dance2 SD
A dancing couple: very challenging se-

(205) (720×576)
quence, slow camera motion, fast and
complex object motion, textured background,
severe scratches.

JazzMan 2K
A couple is walking through the streets, a

(11) (2048×1556)
man is playing saxophone on the sidewalk,
marginal object motion, high level of fine
noise.

Continued on Next Page. . .
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Table 5.2 – Continued

Image sequence
Resolution Image sequence content

(# frames)

Stadt ohne Juden SD
A waiter is serving drinks: fast and complex

(26) (720×576)
motion, illumination changes, high level of
coarse film grain.

Elvis2 SD
Elvis is blowing someone a kiss, partially

(77) (720×576)
complex motion, illumination changes, low
amount of defects.

Hannes runs HD
A person is running through the park: strong

(115) (1280×720)
and complex, local object motion, new film
material, does not contain any dirt or dust.

Cat HD
A cat in the meadow is shaking its head:

(115) (1280×720)
strong and complex, local object motion,
new film material, no defects contained.

Table 5.2: Image sequences used for the evaluation

5.4 Results

The proposed dirt and dust detection algorithm is compared against well known
single-frame-defect detection algorithms described in Section (2.2) and the previ-
ously integrated detector of the DIAMANT film restoration software.

Spatial filtering methods and methods without motion compensation are not
included in our evaluation, since in several related work, e.g. in [5], it was confirmed
that those methods produce worse results. MRF was not implemented either,
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since a high computational cost is not applicable for the practical application of
automatic film restoration. Consequently, the following evaluation contains the
performance results of seven single-frame-defect detectors, which are SDIa, SDIp,
SDIjrs, ROD, sROD, DIAMANT and our novel detector, denoted as rFAMED.

Since we have two ME algorithms at our disposal, this further aspect is also
considered and discussed. First, we will present the quantitative results by us-
ing the ROC technique, followed by a qualitative evaluation to exclude possible
misleading results due to the chosen GT for the quantitative evaluation technique.

5.4.1 Quantitative evaluation

In total, seven ROC curves are calculated for each sequence. To ensure fair perfor-
mance comparisons, we have used the same ME algorithm with an equal configura-
tion of its parameters for each evaluation run. Furthermore, one set of thresholds
was chosen for each detection algorithm, which was adopted as it stands for each
image sequence. Figures (5.5 - 5.10) illustrates the results of each examined detec-
tor for the image sequences, listed and described in Section (5.3). Note, that the
x-axis represent the FAR in a logarithmic scale and the y-axis shows the CDR,
both expressed in percentages. For a more comprehensible visualization every
chart only shows the most interesting parts of the curves, which in particular is
the part between 0.001 and 0.01% of FA, since a very high CDR is useless at the
expense of a higher FAR. We do not apply any preprocessing, such as deflicker
or image stabilization, which obviously would lead to a better performance of all
examined approaches.

The chart in Figure (5.5) shows the results for the sequence Art, which does
not include local motion, but a strong translational motion. For this sequence, the
results are widely independent of the used motion algorithms, since the curves in
both figures are similar. rFAMED outperforms all other state of the art detectors,
in particular when applying a higher threshold (arranged in the left part of the
figure). Since there is neither complex motion nor noise contained, all examined
detectors result in a similar performance. The superiority of our detector can be
mainly explained by the co-support-operator, since it excludes single outliers and
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.5: ROC analysis of image sequence Art.

expands dust spots, which are possibly not detected completely.
The Cigaret sequence is challenging due to its structured background and the

resulting low contrast between background and dust spots. In Figure (5.6) the
results obtained for this image sequence are illustrated. We can notice an overall
lower CDR and simultaneously a higher FAR. This seems to be caused by the low
frequency and the low visibility of blotches and the textured background that gen-
erates many FA. Additionally, this sequence contains camera shake. The moving
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.6: ROC analysis of image sequence Cigaret.

trees and leaves in the background seem to be difficult for both, the temporal and
the spatio-temporal detectors. The large gap between the novel detector and the
other techniques can be explained due to the fact, that a lower threshold can be
applied, since false detections can be avoided in a further step. Applying the co-
support operator and the moving edge measure further improves the result. Thus,
a lower threshold facilitates finding also low contrasted blotches. As reflected by
the result obtained for ROD and also reported in [5] more spatial support usually
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.7: ROC analysis of image sequence Dance2.

leads to a higher FAR in frames with textured background. Even though the sROD
detector includes spatial information, it has a better performance than the other
state of art methods. The advantage of sROD over ROD is a lower strictness, by
using only one threshold. Again, quite similar results are produced independent
of the used ME algorithm.

In Figure (5.7) the ROC analysis of the Dance2 sequence is presented. The
sequence has a very challenging content, i.e. very complex motion and consequently
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severe occlusion and uncovering areas. In general, our novel dirt and dust detector
is configured for lower thresholds, since it includes FA reduction measures. At the
left part of the shown figure, rFAMED is equal or worse than other techniques,
since low contrasted and fine structured dust falls under the threshold and is not
detected when using a higher threshold. In this part, the performance of the
DIAMANT is better, since it uses an adaptive dilation dependent on the size of
the appropriate dust spot. It further includes some techniques for excluding dust
if the replacement does not match with the surrounding background. Since the
motion is very complex, the damping functions should be configured very strict for
such a sequence, which means, that the tolerances should be set smaller and the
damping at the appropriate areas should be stronger, otherwise FA are left due
to occlusions, uncovering areas, motion blur, moving edges, etc. Since the Dance2
sequence contains a severe amount of line scratches, which are contained in the
GT mask, but which does not belong to single-frame-defects and consequently
cannot be detected by such a detector, the CDR values in the ROC curve are
under-estimated and the FAR values over-estimated.

When using Pixel motion, the proposed detector turns out to be better than
DIAMANT, since it additionally focus on ME errors, by applying stricter damping.
The presented curves indicate an overall lower amount of CD, which again happens
due to a higher amount of FA. The low CDR in this case can be explained by the
persistence of scratches (which cannot be found by a single-frame-defect detector)
and by the complexity of the contained object motion.

In Figure (5.8) the results for a scene showing Elvis on a balcony are illustrated.
Only a few defects are contained, but camera shake and illumination changes
are present. Due to illumination changes all the investigated single-frame-defect
detection algorithms face some further challenges and result in a higher FAR.
The IR scans do include dust spots, but in a very low contrast, thus the GT
masks barely contain any defects. Consequently, a low number of frames are
contributing to the shown results, since GT masks, that contain only zero elements,
are excluded. In the Elvis2 sequence, the consequences of the problematic GT
appear in a large extent. Many low contrasted dust spots, which are found by
the detectors are not included in the GT. In the region of local motion (moving
hand for blowing a kiss), all examined techniques produce a high amount of FA.
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.8: ROC analysis of image sequence Elvis2.

In contrast, rFAMED is able to significantly reduce FA in those areas of such
complex motion. The temporal detectors, SDIa and SDIp in particular, have
problems at moving edges. sROD is much better in this situation. The DIAMANT
detector produces many FA due to complex motion as well. The shown ROC curve
does not reflect the real performance of the novel detector. In Section (5.4.2) the
image sequence is also discussed in a qualitative analysis. The density measure is
effectively employed, which means that the right areas are damped down. When
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.9: ROC analysis of image sequence JazzMan.

Pixel motion is used for the motion compensation, rFAMED is performing even
better. This observation can be traced back to the fact, that the damping of the
density is applied to a stronger extent when Pixel motion is used. SDIa, SDIp
and SDIjrs produce much more FA when testing this sequence. In the case of
TV-L1 optical flow, the DIAMANT detector is performing the worst. This is a
surprising outcome, since it usually performs better than the baseline detectors.
We can argue, that this result was established due to the strong dilation, which is
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also performed on false detections.
In Figure (5.9) the results of the examined detectors for the JazzMan sequence

are evaluated. The JazzMan sequence is scanned in 2K and contains a very high
amount of fine noise. No challenging object motion or illumination changes are
included. The temporal filtering methods show the worst results, since they do not
include any spatial information and thus are not able to avoid false detections due
to noise. The DIAMANT detector in contrast uses a protection technique which
is able to avoid fine noise. The novel detector has the best performance due to the
sROD based response measure and the additionally applied co-support operator.
Furthermore, the moving edge detector slightly affects areas of noise and thus it
contributes to the damping of responses in noisy areas. As expected, the spatio-
temporal filtering methods are outperforming the temporal ones. Surprisingly, the
SDIjrs technique result in a worse performance than SDIa, although SDIjrs turned
out to produce much less FA, than the SDIa detector. The reason for the diverging
curves is, that the CDR of SDIa is higher than that of SDIjrs.

The Lady and Doll sequence does not include challenging parts, such as com-
plex motion or noise. Mainly translational motion and low object motion is con-
tained. In Figure (5.10) the corresponding ROC analysis is visualized. There is
no significant difference between any of the seven examined detection algorithms.
All of them have a rather low detection rate, which can be explained by the fol-
lowing: The sequence includes several low contrast hairs and other fine structured
dust spots, which cannot be detected by the examined techniques. In addition,
many small-sized dust spots are present, which do not appear in the GT mask.
The problem of the GT is clearly demonstrated: All techniques produce very good
result when comparing the original image with the resulting dust mask. This is
not reflected in the presented ROC curve, shown in Figure (5.10). All detectors
produce FA in structured areas, i.e. the striped clothes of the lady. The temporal
filtering methods, in particular, show false detections in the region where the lady
is moving her hand.
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(a) Using TV-L1 optical flow

(b) Using Pixel motion

Figure 5.10: ROC analysis of image sequence Lady and doll.

5.4.2 Qualitative evaluation

In the following several selected detection results are presented qualitatively, in
order to demonstrate for selected frames the effectiveness of the novel approach.
For the results shown in Figures (5.11 - 5.17) the threshold (or the sensitivity in
case of the DIAMANT detector) has been adapted for each sequence in order to
produce a high quality result. For all following samples, we show the original and
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(a) Original image (b) GT mask (c) SDIa, τ = 10

(d) SDIp, τ = 10 (e) SDIjrs, ~τ = (10, 8) (f) ROD, ~τ = (9, 11, 13)

(g) sROD, τ = 9 (h) DIAMANT, s = 16 (i) rFAMED, τ = 13

Figure 5.11: Qualitative performance analysis of frame 27 of sequence Art.

the computed dust masks by all examined detectors. Since the available GT does
not always represent a reliable reference for the computed dust mask we provide
the corresponding GT as well in the comparative, qualitative analysis.

In Figure (5.11) we show the resulting dust masks of frame 27 of image sequence
Art. There are several mentionable facts regarding this frame. First, the GT
is incomplete, therefore the corresponding CDR and FAR cannot be calculated
correctly. The obtained dust masks are similar, but the novel dirt and dust detector
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(a) Original image (b) GT mask (c) SDIa, τ = 10

(d) SDIp, τ = 10 (e) SDIjrs, ~τ = (10, 8) (f) ROD, ~τ = (9, 11, 13)

(g) sROD, τ = 9 (h) DIAMANT, s = 16 (i) rFAMED, τ = 13

Figure 5.12: Qualitative performance analysis of frame 48 of sequence Dance2.

is able to detect the fine structures as well, such as the containing hair.
In Figure (5.12) the qualitative analysis of a frame chosen from sequence

Dance2 is illustrated. This sequence contains very complex motion, thus a high
FAR can be expected. rFAMED has the lowest FAR, since the density and the
moving edge measure target the occlusion, uncovering and complex motion areas
and damp down the response in those parts.

For the sequence Stadt ohne Juden, a higher threshold results in a better per-
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(a) Original image (b) GT mask not available (c) SDIa, τ = 20

(d) SDIp, τ = 20 (e) SDIjrs, ~τ = (20, 12) (f) ROD, ~τ = (19, 21, 23)

(g) sROD, τ = 20 (h) DIAMANT, s = 8 (i) rFAMED, τ = 20

Figure 5.13: Qualitative performance analysis of frame 7 of sequence Stadt ohne Juden.

formance. Thus, we have adapted the thresholds appropriately, as listed in Figure
(5.13), where the obtained dust mask for frame 7 are shown. Even when using a
high threshold (or a low sensitivity in case of DIAMANT), FA due to noise or film
grain persists. An even higher threshold would result in a lower CDR, which is
not desirable.

In the next analysis, illustrated in Figure (5.14), frame 5 of sequence JazzMan
was selected and a dust mask was calculated by each of the examined detectors.
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(a) Original image (b) GT mask (c) SDIa, τ = 16

(d) SDIp, τ = 16 (e) SDIjrs, ~τ = (16, 10) (f) ROD, ~τ = (15, 17, 19)

(g) sROD, τ = 16 (h) DIAMANT, s = 12, entsp
th=16

(i) rFAMED, τ = 16

Figure 5.14: Qualitative performance analysis of frame 5 of sequence Jazzman.

Since a high level of fine noise is contained in this sequence, we have increased
the thresholds. Although, we have adapted the threshold for every detector, a
high number of FA remained, which may lead to undesired effects in the removal
step. Small dust detections due to noise will be dilated and may lead to an erratic,
restored result. The novel detector results in the lowest FAR due to noise, since
the co-support operator is applied and effectively lowers these false detections.

The evaluation of the sequence Surprise is shown in Figure (5.15). Since this
sequence do not contain complex motion, all detectors provide acceptable results.
However, the novel dirt and dust detector manage to detect all of the fine struc-
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(a) Original image (b) GT mask (c) SDIa, τ = 10

(d) SDIp, τ = 10 (e) SDIjrs, ~τ = (10, 8) (f) ROD, ~τ = (9, 11, 13)

(g) sROD, τ = 9 (h) DIAMANT, s = 16 (i) rFAMED, τ = 13

Figure 5.15: Qualitative performance analysis of frame 143 of sequence Surprise.

tured hairs, in contrast to all other techniques. Closer inspections of the density
damping function may lead to the assumption that larger dust spots are endan-
gered to be damped down as well. This frame proves the contrary, since the large
dust spot at the bottom right was detected to its whole extend.

The following sequence contains highly complex motion. Frame 239 of sequence
Cat and all corresponding dust masks are shown in Figure (5.16). The sequence
was shot with a digital camera, therefore no film grain and dust spots are contained.
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(a) Original image (b) GT mask (c) SDIa, τ = 16

(d) SDIp, τ = 16 (e) SDIjrs, ~τ = (16, 10) (f) ROD, ~τ = (15, 17, 19)

(g) sROD, τ = 16 (h) DIAMANT, s = 12 = th 14 (i) rFAMED, τ = 16

Figure 5.16: Qualitative performance analysis of frame 239 of sequence Cat.

It is a very challenging sequence, not only because it includes highly complex
motion, but also due to its highly textured background, which is likely to lead to a
hight FAR. When comparing the obtained dust masks, we can conclude, that all
temporal and spatio-temporal filtering techniques face severe difficulties. Only the
SDIjrs method can avoid a large area of false detection due to its strict condition,
that the motion compensated and warped neighboring images have to be similar.
The DIAMANT detector results in a lower but still high FAR, especially close
to edges. The proposed detector, using the damping functionality in difficult and
dangerous areas clearly produce the best result. In the first place, the density
measure and its damping technique is essential in such a sequence full of nonrigid
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(a) Original image (b) GT mask (c) SDIa, τ = 20

(d) SDIp, τ = 20 (e) SDIjrs, ~τ = (20, 12) (f) ROD, ~τ = (19, 21, 23)

(g) sROD, τ = 20 (h) DIAMANT, s = 8 (i) rFAMED, τ = 20

Figure 5.17: Qualitative performance analysis of frame 32 of sequence Hannes runs.

motion. The divergence, as well as the moving edge measure further improve the
outcome.

The last example frame, which we want to analyze is chosen from the sequence
Hannes runs and shown in Figure (5.17). Similar to the previous shown example,
this frame also turned out to be challenging due to its difficult background. Each
of the examined detector has troubles to discriminate between textured structures
and dust spots. However, again, our novel detector results in the best performance,
even though false detections still remain in the background. Actually, this sequence
contains two kind of motions: Firstly, the local object motion of the running
person, and secondly, a translational motion, since the camera is following the
moving object. Due to the complicated texture in the moving background, the
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(a) Original image frame (b) Restored by DIAMANT (c) Restored by rFAMED

(d) Original image frame (e) Restored by DIAMANT (f) Restored by rFAMED

Figure 5.18: Qualitative comparison of restored results. (a) and (d) shows two selected
original frames, in (b) and (e) the images were restored by the DIAMANT detector,
which results in artifacts, in particular at the head of the cat and in the area of the
striped T-shirt, and (c) and (f) show the superior results produced by rFAMED.

motion cannot be estimated correctly. As a consequence, the density measure
mainly affects the moving object and mainly damps the responses in this part.
By choosing a higher threshold (for DIAMANT a lower sensitivity, respectively)
FA in the background area can be reduced but not eliminated completely. The
DIAMANT detector even enforces false detections in the background. The SDIjrs
detector also yields a relatively low FAR, shown in Figure (5.17e). This observation
leads to the conclusion that a strict check for similarity of warped neighboring
frames can effectively improve the outcome.

5.4.3 Comparison of restored results

The removal of the dust spots is not part of this diploma thesis, but we have
integrated the novel single-frame-defect detector in the DIAMANT restoration
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tool in order to show the final result and the superiority of the novel detector
over the old technique, denoted as DIAMANT in this diploma thesis. In Figure
(5.18), a frame of sequence Cat was restored by both approaches DIAMANT and
rFAMED and the visually different results are demonstrated.

5.5 Computational Complexity

We have implemented the proposed algorithm in C++. On our machine, an eight-
core Xeon processor, 2.67 GHz, 4GB RAM and a NVIDIA GeForce GTX 460 on a
64 bit Windows 7 Professional system, the actual runtime for 2K input frames is
on average 780 ms. The DIAMANT detector has an average runtime of 1.57 s for
the same input images, which means that the proposed detector is 2 times faster
than the previously integrated DIAMANT detector.

5.6 Discussion

In this chapter we have demonstrated the superiority of our novel single-frame-
defect detector over all examined techniques. Furthermore, we have achieved the
aim, to gain an improvement over the algorithm used in the DIAMANT film
restoration software. Mainly, we have succeeded to further remove FA by anal-
ysis of PM while preserving fine structured dust spots. Even though, the ROC
based evaluation has its limitations due to the used GT, we have given a com-
parable overview over a variety of detection algorithms, quantitatively as well as
qualitatively.

The superiority over other techniques was achieved due to several elements of
the novel approach. First we did a primary response measure, which was obtained
by a sROD based detection technique. It can be seen in each of the ROC curve, pre-
sented in Section (5.4.1), especially in Figures (5.5 - 5.8), that the sROD detector
outperforms all other temporal and spatio-temporal filtering methods. Further-
more, in the qualitative performance analysis, which was done in Section (5.4.2),
sROD provides a quite good performance. Less single outliers are included and
fine structures are better conserved than by any of the temporal filtering methods.
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The same principle is followed by the co-support operator, which further improves
the results of the sROD based detection. Thus, the response measure of pixels
close to potential dust pixels is increased, which mainly results in an expansion of
dust spots, and the response values of pixels close to clean pixels are decreased.
In other words, this operator controls FA which occur due to noise. The effect
of the co-support operator was clearly demonstrated e.g. in Figure (5.15i), where
the response of fine structured dust spots has been increased and thus, appears
much stronger than in other resulting dust masks. Furthermore, in Figure (5.14i),
FA due to noise were clearly reduced when compared with the results of other de-
tectors. The damping functions, such as the density and divergence measure, the
moving edge detection measure and the protection measure due to dissimilarity of
warped neighbors, bring an essential further improvement. In Figures (5.16i) and
(5.17i) the shown results demonstrates the improvements for sequences containing
complex motion.

When using challenging image sequences, such as Dance2, Cat or Hannes runs
both ME algorithms produce a lot of ME errors and are not able to correctly
match and warp the neighboring frames. The resulting effect is a higher FAR
in such areas and consequently, there is a higher risk to insert artifacts. The
proposed measures damp responses in those areas to a large extent. Remaining
FA do not necessarily degrade the quality of the restored result, depending on the
size of the false detection and the underlying motion vectors, that are used for the
replacement.

For temporal and spatio-temporal filtering methods, we can overall report sim-
ilar results to those reported in related work. The SDIa method, which was the
first motion compensated technique, uses pure pixel differences for the detection.
SDIa is able to achieve a high CDR but only at the cost of an increased FAR. The
performance further degrades at presence of noise, ME errors or textured regions.
The follower, SDIp, performs better, in particular it significantly reduces the num-
ber of false detections at presence of noise. Due to its additional constrain of sign
consensus between the two warped neighbors it even show an improvement over
SDIa close to edges and for small ME errors, which was observed in Figures (5.12)
and (5.16). In the qualitative analysis, e.g. in Figure (5.13) or (5.16), it was shown
that SDIjrs and sROD produce less FA due to complex motion. An explanation
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for that may be, that sROD provides robustness against single outliers, e.g. due to
ME errors. The SDIjrs method additionally requires similarity of the two warped
neighboring frames. SDIjrs generally is more robust against ME errors, since parts,
in which the warped neighbors differ, are treated as unreliable. ROD produces a
high amount of FA close to moving edges. The performance of ROD at presence of
noise is slightly better than that of SDIp, which can be seen in Figure (5.14), but
at presence of textured background, the produced result is even worse than that of
SDIa, shown in Figures (5.16f) and (5.17f). The conclusion, that considering more
spatial support from temporally neighboring frames leads to a worse performance,
was already drawn in [5] and can be confirmed by our results. ROD is said to
be generally more robust to ME errors than any of the SDI detectors [10], which
we cannot confirm, since the opposite is reflected, e.g. in Figure (5.13). Many
FA were caused in textured regions as well as when motion was not accurately
estimated. The main limitation of the ROD method is the fact, that it requires
the setting of 3 thresholds. sROD in contrast, only uses one threshold and is more
robust in textured regions. In recent works, the sROD detection method has been
established as basic detection method prior to diverse post processing methods,
since it is more robust against noise and small ME errors.

When comparing the results of the novel detector with those of the DIAMANT
detector we can observe that the FA due to noise and due to complex motion are
significantly lower, which is demonstrated in Figure (5.18), where the restored
results by using the computed dust masks of DIAMANT and rFAMED are com-
pared. We have found, that a slight dilation of the dust mask is advantageous,
since dust spots usually appear with a smooth transition to the background. Thus,
the completeness of the detection depends on the used threshold of the detector.
Therefore, the overall performance of these methods can be summarized as fol-
lows. The worst ones include SDIa and ROD, followed by SDIp. Then, the others
are SDIjrs, sROD, DIAMANT and finally, the best performance is provided by
rFAMED.

An interesting aspect is that surprisingly, the detector’s performance obviously
is not dependent on the used ME algorithms. Even though we slightly adapted the
parameterization for the Pixel motion, in order to apply the damping in a stricter
way, the curves are overall similar for every sequence.
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In addition, the runtime is satisfying since we avoid complex calculations and
the costly motion compensation was accelerated on a GPU. All other image op-
erations were implemented efficiently as well.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this master’s thesis a novel approach for single-frame-defect detection in archived
film material is proposed. The aim was to develop a new state of the art method,
which particularly focuses on minimizing false detections since falsely detected re-
gions might introduce artifacts into the restored result to contain artifacts. At the
same time, the correct detection rate has been kept clearly in mind.

Generally, dirt and dust detection appears to be difficult in areas of complex
motion or in areas of motion discontinuities. To gain a satisfying result for all kind
of archived film material, ME is an essential component for the detection method.
Although, many FA may occur due to ME errors, we use motion compensated
neighboring frames, since otherwise, the consideration of complex motion, occlu-
sion and uncovering areas of locally moving objects is simply impossible. Four ME
algorithms have been used within this work and two of them were further exam-
ined within the evaluation of varying detection methods. Experiments have shown
that the dependency between the chosen ME algorithm and the obtained results
is less than expected, since overall a similar performance has been demonstrated
for the different ME approaches.

The novelty of our approach lies in the consideration of PM when detecting
single-frame-defects. We present a combined solution, consisting of three inde-
pendent steps. First, a primary detection method based on the sROD detector
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is integrated, which results in a probability distribution indicating the likelihood
for each pixel of being defected. This information about each single pixel is kept
and utilized over the whole detection process. The sROD method effectively re-
duces single outliers and at the same time, it is robust against noise and small ME
errors. Furthermore, we introduce the co-support operator, which is an effective
tool to increase the robustness against noise and film grain. The dilatation effect
completes dust areas and further improves the results. Finally, we have applied
several measures indicating areas that are likely to produce FA. Those measures
are inferred by analyzing the motion vector fields and the warped neighboring
frames. As a result of deductions made from the motion field, areas of PM are
obtained and the response measure is damped within these areas. Consequently,
for all potential dust spots found in these areas, the probability of being defected
is decreased, dependent on the strength of the applied measure. Several measures
are incorporated, which have been configured in order to best fit the characteristics
of the chosen ME algorithm.

The rFAMED technique has been tested on real corrupted image sequences
and experiments have shown an overall better performance for rFAMED, than for
all other examined techniques including the DIAMANT detector. The benefit of
the proposed detection method is twofold: First, rFAMED provides the ability to
detect fine structured defects without involving an exploding number of FA and
secondly, areas of PM are correctly found, which leads to a significant reduction
of annoying artifacts in the restored results. The superiority against other tech-
niques has been demonstrated in terms of ROC performance and visually as well.
Furthermore, rFAMED convinces by its low computational complexity.

6.2 Future work

We have presented several measures in order to detect areas of PM, however only
a subset was chosen for the final algorithm. Some measures, such as the measure
of tracing of occluded/uncovered motion vectors as well as the magnitude measure
have potential to be further examined. The magnitude measure could be extended
to a discrimination between local and global motion, in order to deal with both
separately.
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The majority of the proposed damping measures, in particular those indicating
occlusion areas, behave similar around large-sized blotches (e.g. 5% of image size)
as well as in areas of occlusions and uncoverings. Since those response values are
damped down, large defected areas are not detected. This is a limitation of the
novel detection technique, which has to be further investigated in future work.

Moreover, there are some motivations to develop further damping methods.
For example, a measure can be incorporated, that compares intensity values of
center and the target position in the appropriate neighbor by following the motion
vector. This will indicate dust spots in the neighboring frame and could be utilized
for the detection of large blotches as well. Furthermore, combined measures could
provide valuable information, such as the magnitude measure combined with an
edge detector: Motion vectors with a high magnitude indicate moving parts and
high gradients within those areas indicate textured regions. The joint occurrence
of both is likely to result in false detections.

Usually, only parts within a frame contain complex, local object motion. Thus,
a further refinement regarding computational complexity is suggested. By inferring
areas of local and complex motion from the motion vector field, the whole damping
approach and following complicated and time-consuming post processing steps
could be limited to those parts only.

Since the whole approach consists of widely independent parts, every compo-
nent could be exchanged or additional techniques could be applied, such as post
processing methods proposed in related work, which are available at an immense
diversity.

Finally, there is potential to develop a new evaluation schema specialized for the
dirt and dust detection domain. As already suggested in [5] an evaluation schema
based on the comparison of intensity values rather than of binary masks might
lead to a more reflective representation of achieved performances. Furthermore a
blotch based evaluation schema with an integrated weighting function, based on the
blotch-size, can be introduces. However, the problem of line scratches in the GT
remains, but the difficulty of choosing a threshold for the IR scan and the deviation
due to missed and falsely detected defects resulting from the incompleteness of the
GT are resolved.



List of Acronyms

AR auto-regressive

CD correct detections

CDR correct detection rate

CPU central processing unit

DFD displaced frame difference

DTMF double-threshold median filter

FA false alarms

FAR false alarm rate

FOLKI Iterative Lucas-Kanade optical flow

GN Gauss-Newton

GPU graphics processing unit

GT ground truth

HFVM Hierarchical Feature Vector Matching

HOT histogram of template

IR infrared

LK Lucas-Kanade
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LUM Lower–Upper–Middle

LUM’ 3-frame-Lower–Upper–Middle

MAP maximum a posteriori

ME motion estimation

ML3D multi-level median filter in 3 sub-windows

ML3Dex multi-level median filter in 5 sub-windows

MLF multi-level median filter

MOS multi-stage order statistic

MRF Markov random field

PM pathological motion

rFAMED single-frame-defect detection approach based on the Reduction of FA
by analysing the estimated Motion followed by an Extraction of Damping
functions

ROC Receiver operating characteristics

ROD rank-ordered difference

SDIa Spike detection index a

SDIjrs Spike detection index (version developed by JOANNEUM RESEARCH)

SDIp Spike detection index p

SMF soft morphological filtering

sROD simplified rank-ordered difference

SSMF standard spatial median filter

TV total variation



Bibliography

[1] JOANNEUM RESEARCH, “Diamant - film restoration.” http://diamant.
joanneum.at/film_restoration, Oct. 2011.

[2] Filmarchiv Austria. http://filmarchiv.at, Oct. 2011.

[3] A. Kuiper and M. Sigmund, “Simulating of Authentic Movie Faults,” The
International Conference on Computer as a Tool, EUROCON 2005, vol. 2,
pp. 1015–1018, 2005.

[4] A. Buadés, J. Delon, Y. Gousseau, and S. Masnou, “Adaptive Blotches Detec-
tion for film restoration,” 17th International Conference on Image Processing
(ICIP), pp. 3317 – 3320, 2010.

[5] J. Ren and T. Vlachos, “Detection of dirt impairments from archived film
sequences: survey and evaluations,” SPIE Optical Engineering, vol. 49, June
2010.

[6] P. van Roosmalen, J. Biemond, and R. Lagendijk, “Restoration and storage
of film and video archive material,” Signal Processing for Multimedia, 1999.

[7] R. L. Lagendijk, P. M. B. van Roosmalen, and J. Biemond, “Video enhance-
ment and restoration,” in Handbook of Image and Video Processing, pp. 227–
241, Academic Press, 2000.

[8] A. Licsar, L. Czuni, and T. Sziranyi, “Trainable Postprocessing Method to
Reduce False Alarms in the Detection of Small Blotches of Archive Films,”
International Conference of Image Processing (ICIP), pp. 562–565, 2005.

http://diamant.joanneum.at/film_restoration
http://diamant.joanneum.at/film_restoration
http://filmarchiv.at


102 BIBLIOGRAPHY

[9] M. A. Ahmed, F. Pitié, and A. C. Kokaram, “Extraction of non-binary blotch
mattes,” International Conference of Image Processing (ICIP), pp. 2757 –
2760, 2009.

[10] A. C. Kokaram, “On missing data treatment for degraded video and film
Archives: a survey and a new Bayesian approach,” IEEE Transactions on
Image Processing, vol. 13, no. 3, p. 397–415, 2004.

[11] A. Nieminen, P. Heinonen, and Y. Neuvo, “A new class of detail-preserving
filters for image processing,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. PAMI-9, no. 1, pp. 74–90, 1987.

[12] J. Ren and T. Vlachos, “Dirt detection for archive film restoration using an
adaptive spatio-temporal approach,” The 2nd IEE European Conference on
Visual Media Production (CVMP), pp. 219–228, 2005.

[13] Buisson O. and Besserer B. and Boukir S., “Deterioration Detection for digital
film restoration,” IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, pp. 78–84, 1997.

[14] Tilie S. and Bloch I. and Laborelli L., “Fusion of complementary detectors for
improving blotch detection in digitized films,” Pattern Recognition Letters,
vol. 28, no. 13, pp. 1735–1746, 2007.

[15] J. Gallagher, N. and G. Wise, “A theoretical analysis of the properties of me-
dian filters the human interaction,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 29, no. 6, pp. 1136 – 1141, 1981.

[16] R. Hardie and C. Boncelet, “LUM Filters: a class of rank-order-based fil-
ters for smoothing and sharpening,” IEEE Transactions on Signal Processing,
vol. 41, no. 3, p. 1061–1076, 1993.

[17] S. Tilie, L. Laborelli, and I. Bloch, “A contrario False Alarms Removal for
Improving Blotch Detection in Digitized Films Restoration,” 6th Conference
on Signals and Image Processing (EURASIP), pp. 410–413, 2007.



103 BIBLIOGRAPHY

[18] R. Storey, “Electronic detection and concealment of film dirt,” Journal of
Society of Motion Picture and Television Engineers, vol. 94, pp. 642–647,
1985.

[19] Gangal A. and Kayikçioglu T. and Dizdaroglu B., “An improved motion-
compensated restoration method for damaged color motion picture films,”
Signal Processing Image Communication, vol. 19, no. 4, p. 353–368, 2004.

[20] A. C. Kokaram, Motion Picture Restoration. Springer-Verlag (Berlin), 1998.

[21] P. Schallauer, A. Pinz, and W. Haas, “Automatic restoration algorithms for
35 mm film,” Journal of Computer Vision Research, vol. 1, no. 3, pp. 59–85,
1999.

[22] P. Schallauer, “Digital Image Sequence Restoration,” Master’s thesis, Univer-
sity of Technology, Graz, 1996.

[23] Arce G. R., “Multistage order statistic filters for image sequence processing,”
IEEE Transactions on Signal Processing, vol. 39, no. 5, p. 1146–1163, 1991.

[24] B. Alp, P. Haavisto, T. Jarske, K. Oistamo, and Y. Neuvo, “Median-based
algorithms for image sequence processing,” SPIE Visual Communications and
Image Processing, pp. 122–134, 1990.

[25] J. Ren and T. Vlachos, “Efficient detection of temporally impulsive dirt im-
pairments in archived films,” Signal Processing, vol. 87, no. 3, p. 541–551,
2007.

[26] M. S. Hamid, N. R. Harvey, and S. Marshall, “Genetic algorithm optimization
of multidimensional grayscale soft morphological filters with applications in
film archive restoration,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 5, no. 13, pp. 406 – 416, 2003.

[27] Nadenau M. J. and Mitra S. K., “Blotch and scratch detection in image
sequences based on rank ordered differences,” Proceedings of the 5th Inter-
national Workshop on Time-Varying Image Processing and Moving Object
Recognition, p. 27–35, 1996.



104 BIBLIOGRAPHY

[28] S. Wei, R. Zhang, P. Hao, and Y. Ding, “Blotch Detection Based on Texture
Matching and Adaptive Multi-Threshold,” 5th International Conference on
Image and Graphics, 2009.

[29] M. K. Güllü, O. Urhan, and S. Ertürk, “Blotch detection and removal for
archive film restoration,” International Journal of Electronics and Communi-
cations (AEU), p. 534 – 543, 2008.

[30] P. M. B. van Roosmalen, “Restoration of Archived Film and Video,” tech.
rep., Technical University Delft, 1999.

[31] J. Ren and T. Vlachos, “Non-motion-compensated region based dirt detection
for film archive restoration,” Optical Engineering, vol. 45, no. 8, 087004, 2006.

[32] J. P. Biemond, P. van Roosmalen, and R. L. Lagendijik, “Improved blotch
detection by postprocessing,” IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 6, p. 3101–3104, 1999.

[33] A. C. Kokaram and S. J. Godsill, “MCMC for joint noise reduction and miss-
ing data treatment in degraded video,” IEEE Transactions on Signal Process-
ing, vol. 50, no. 2, p. 189–205, 2002.

[34] A. Kokaram, “Practical MCMC for missing data treatment in degraded
video,” in Proceedings of Eur. Conf. Computer Vision Workshop Statistical
Methods Video Processing, p. 85–90, 2002.

[35] S. Kalra, M. Chong, and D. Krishnan, “A New Auto-Regressive (AR)
Model-Based Algorithm for Motion Picture Restoration,” IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4,
p. 2557–2560, 1997.

[36] M. N. Chong and D. Krishnan, “An edge-preserving MRF model for the de-
tection of missing data in image sequences,” Signal Processing Letters, vol. 5,
no. 4, pp. 81–83, 1998.

[37] A. C. Kokaram, R. Morris, W. J. Fitzgerald, and P. J. W. Rayner, “Detection
of missing data in image sequences,” IEEE Transactions on Image Processing,
vol. 4, no. 11, p. 1496–1508, 1995.



105 BIBLIOGRAPHY

[38] S.-C. Nam, M. Abe, and M. Kawamata, “Fast and efficient MRF-based detec-
tion algorithm of missing data in degraded image sequences,” International
Symposium on Intelligent Signal Processing and Communication Systems (IS-
PACS), vol. E91-A, no. 8, pp. 1898–1906, 2008.

[39] M. Ghaderi and S. Kasaei, “Novel Post-Processing Methods Used in Detection
of Blotches in Image Sequences,” International Journal of Electronics and
Communications (AEU), vol. 58, pp. 58–64, 2004.

[40] Z. Xu, H. R. Wu, and X. Yu, “Object Features Based Spatial and Tempo-
ral Blotch Detection for Archive Video Restoration,” IEEE Transactions on
Image Processing, 2010.

[41] A. Licsár and L. C. Tamás Szirányi, “Trainable blotch detection on high
resolution archive films minimizing the human interaction,” Machine Vision
and Applications, vol. 21, no. 5, pp. 767–777, 2009.

[42] Z. Xiaona, Q. Guoqing, X. Rong, and Z. Tao, “An Improved Approach of De-
tection and Restoration Blotches in Archived Films,” International Congress
on Image and Signal Processing (CISP), pp. 1–5, 2009.

[43] Rares A., Reinders J. T., and Biemond J., “Statistical Analysis of Pathologi-
cal Motion Areas,” IEEE Seminar on Digital Restoration of Film and Video
Archives, 2001.

[44] D. Corrigan, N. Harte, and A. Kokaram, “Pathological Motion Detection for
Robust Missing Data Treatment in Degraded Archived Media,” International
Conference of Image Processing (ICIP), pp. 621–624, 2006.

[45] B. Kent, A. Kokaram, B. Collis, and S. Robinson, “Two layer segmentation
for handling pathological motion in degraded post production media,” Inter-
national Conference of Image Processing (ICIP), vol. 1, pp. 299–302, 2004.

[46] A. Rares, J. T. Reinders, and J. Biemond., “Complex event classification
degraded image sequences,” International Conference of Image Processing
(ICIP), October 2001.



106 BIBLIOGRAPHY

[47] L. Alvarez, R. Deriche, T. heo Papadopoulo, and J. S. anchez, “Symmetri-
cal Dense Optical Flow Estimation with Occlusions Detection,” International
Journal of Computer Vision, vol. 75, no. 3, p. 371–385, 2007.

[48] J. Sun, Y. Li, and S. B. Kang, “Symmetric Stereo Matching for Occlusion
Handling,” omputer Vision and Pattern Recognition, pp. 399–406, 2005.

[49] D. Feldman and D. Weinshall, “Motion Segmentation and Depth Ordering
Using an Occlusion Detector,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 30, pp. 1171–1185, July 2008.

[50] K. P. Lim, A. Das, and M. N. Chong, “Estimation of occlusion and dense
motion fields in a bidirectional Bayesian framework,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 24, no. 5, pp. 712–
718, 2002.

[51] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow es-
timation,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1293 –1300, june 2010.

[52] J. Ren and T. Vlachos, “Segmentation-assisted detection of dirt impairments
in archived film sequences,” IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, vol. 37, no. 2, p. 463–470, 2007.

[53] C. Rhemann, M. Bleyer, and M. Gelautz, “A Graph-Based Approach to Opti-
cal Flow Estimation,” Junior Scientist Conference, Vienna, Austria, pp. 61–
63, 2006.

[54] C. Stiller and J. Konrad, “Estimating motion in image sequences,” Signal
Processing Magazine, IEEE, vol. 16, pp. 70–91, july 1999.

[55] D. Corrigan, “Motion Estimation Reliability and the Restoration of Degraded
Archived Film,” PhD-Thesis, 2007.

[56] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence,
no. 17, pp. 185–203, 1981.



107 BIBLIOGRAPHY

[57] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
TV-L1 optical flow,” in Annual Symposium of the German Association for
Pattern Recognition (DAGM), vol. 4713, pp. 214–223, 2007.

[58] J. Xiao, H. Cheng, H. Sawhney, C. Rao, M. Isnardi, and S. Corporation,
“Bilateral filtering-based optical flow estimation with occlusion detection,” in
European Conference on Computer Vision (ECCV), vol. 1, pp. 211–224, 2006.

[59] S. Baker, D. Scharstein, and J. Lewis, “A Database and Evaluation Method-
ology for Optical Flow,” in Proceedings of IEEE International Conference on
Computer Vision (ICCV), 2011.

[60] D. Fleet and Y. Weiss, “Optical Flow Estimation,” in Mathematical models
for Computer Vision: The Handbook, 2006.

[61] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof,
“Anisotropic Huber-L1 Optical Flow,” in Proceedings of British Machine Vi-
sion Conference (BMVC), 2009.

[62] G. Paar and W. Pölzleitner, “Robust disparity estimation in terrain modeling
for spacecraft navigation,” 11th International Conference on Pattern Recog-
nition (IAPR), pp. 738 – 741, 1992.

[63] G. L. Besnerais and F. Champagnat, “Dense optical flow by iterative local
window registration,” IEEE International Conference on Image Processing,
2005.

[64] F. Champagnat, A. Plyer, G. L. Besnerais, B. Leclaire, S. Davoust, and Y. L.
Sant, “Fast and accurate PIV computation using highly parallel iterative cor-
relation maximization,” Experiments in Fluids, pp. 1169–1182, 2011.

[65] S. Tang and S. Goto, “Histogram of template for human detection,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 2186 – 2189, 2010.

[66] C. Bartels and G. De Haan, “Occlusion Classifiers for Picture Rate Conver-
sion,” Proceedings of SPIE, pp. 72571D–72571D–8, 2009.



[67] C. D. Brown and H. T. Davis, “Receiver operating characteristics curves and
related decision measures: A tutorial,” Chemometrics and Intelligent Labora-
tory Systems, vol. 80, no. 1, pp. 24–38, 2006.


	Introduction
	Motivation
	Digital film restoration
	Outline of the thesis

	Related Work
	Introduction
	Detection of single-frame-defects
	Spatial filtering methods
	Temporal filtering methods
	Spatio-temporal filtering methods

	Detection of Pathological Motion (PM)
	Discussion

	Motion Estimation
	Introduction
	The translational model
	Motion estimation constraints
	Challenges for motion estimation

	Motion estimation algorithms
	GPU based TV-L1 optical flow
	Pixel motion
	HFVM
	FOLKI

	Discussion

	Dirt and Dust Detection Approach
	Introduction
	Primary dust response measure
	Noise suppression
	Co-support operator

	Damping functions
	Motion velocity
	Density of motion vector fields
	Back-matching of motion vectors
	Divergence of motion vector field
	Difference of motion-compensated neighbors
	Moving edge detection measure
	Tracing of occluded/uncovered motion vectors

	Combined algorithms
	Algorithm for TV-L1 optical flow
	Algorithm for Pixel motion

	Discussion

	Experimental Results and Evaluation
	Introduction
	Evaluation methodology
	Ground truth (GT)
	Receiver operating characteristics (ROC)
	Limitations

	Test sequences
	Results
	Quantitative evaluation
	Qualitative evaluation
	Comparison of restored results

	Computational Complexity
	Discussion

	Conclusion and Future Work
	Conclusion
	Future work

	References

