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Abstract

Pipeline Analog-to-Digital Converters (ADCs) cover a wide field of broadband communication.
They combine both high resolution and high sampling rate with low power consumption. This
type of ADC is among the most attractive approaches for medium-high resolution (8-14 bits)
and medium-high speed (10-200 MHz) applications. Different error compensation techniques
are used to increase the resolution of pipeline ADCs or to relax the requirements for precision in
order to save power. An attractive approach to compensate for the errors introduced by a finite
DC gain is the use of analog error compensation techniques such as dual path amplification. In
dual path amplification, each pipeline stage is split into a coarse stage and a fine stage. The DC
gain that is required for a pipeline stage can be split over two Operational Amplifiers (op-amps).
This thesis investigates dual path amplification for 40 nm technology both analytically and in
Matlab simulations. Error sources are considered separately for the Dual Path Amplification
(DPA) Multiplying Digital-to-Analog-Converter (MDAC) with 1.5 bits and the DPAMDAC with
2.5 bits. The residue error of a single pipeline stage is compared with linearity considerations
for the pipeline ADC using the dual path amplification technique. The DPA approach makes
it possible to reach the needed equivalent DC gain with two simple Miller op-amps in 40 nm
technology. The noise performance and the error due to capacitor mismatch of an ADC built
of DPA MDAC stages are similar to the noise performance of an ADC built of Single Path
Amplification (SPA) MDAC stages. Errors of the coarse stage can be compensated by the fine
stage but errors of the fine stage cannot be compensated. The fine stage is the dominant error
source for noise and errors due to capacitor mismatch. The chip size is increased with respect to
SPA MDACs, because of additional capacitors and switches. Moreover, two op-amps are used
instead of one. Digital calibration can be avoided unless capacitor mismatch of the technology
used limits the resolution. Resolution limits for the pipeline ADC using DPA can be increased
with 2.5 bit MDAC stages instead of 1.5 bit MDAC stages. DPA pipeline ADCs built of 2.5 bit
MDACs have, with respect to 1.5 bit, relaxed requirements for capacitor mismatch, DC gain and
noise sources. Furthermore power can be saved because fewer pipeline stages are required.





Kurzfassung

Pipeline Analog/Digital-Umsetzer (A/D-Umsetzer) decken ein weites Feld von Breitbandkom-
munikation ab. Sie verbinden hohe Auflösungen und Abtastraten mit niedrigem Energiever-
brauch. Dieser Umsetzertyp ist eine der attraktivsten Lösungen für Anwendungen mit mittel-
hohen Auflösungen (8-14 Bit) und mittelhohen Abtastraten (10-200 MHz). Um die Auflösung
von Pipeline A/D-Umsetzern zu erhöhen oder die Anforderungen an Fehler zu relaxen um En-
ergie zu sparen, werden verschiedene Fehler-Kompensation Techniken eingesetzt. Analoge Fehler
Kompensation, wie die Dual Path Amplification Technik, ist ein vielversprechender Ansatz um
den Fehler zu kompensieren der durch endliche Gleichspannungsverstärkung entsteht. Bei der
Dual Path Amplification Technik wird jede Pipeline-Stufe in eine Grob- und in eine Fein-Stufe
aufgeteilt. Die benötigte Gleichspannungsverstärkung der Pipeline-Stufe kann dadurch auf zwei
Operationsverstärker (OPVs) aufgeteilt werden. Diese Arbeit untersucht Dual Path Amplifica-
tion für die 40 nm Technologie einerseits analytisch und andererseits mit Matlab Simulationen.
Die Fehlerquellen werden getrennt für Dual-Path-Amplification (DPA) Multiplying Digital to
Analog Converters (MDACs) mit 1,5 Bit und 2,5 Bit analysiert. Der Residuum Fehler einer
Pipeline-Stufe wird mittels Linearitätsbetrachtungen des gesamten Pipeline ADCs mit DPA ver-
glichen. Die DPA Technik macht es möglich, die benötigte Gleichspannungsverstärkung mit zwei
einfachen Miller OPVs in der 40 nm Technologie zu erreichen. Die Rauscheigenschaften und die
Eigenschaften bezüglich Kapazitäts-Fehlanpassung von DPA A/D-Umsetzern und Single-Path-
Amplification (SPA) A/D-Umsetzern sind ähnlich. Fehler der Grob-Stufe können durch die Fein-
Stufe kompensiert werden, während Fehler der Fein-Stufe nicht kompensiert werden können. Die
Fein-Stufe ist die dominante Fehlerquelle. Die Chipfläche ist im Vergleich zu SPAMDACs größer,
da zusätzliche Kondensatoren und Metal Oxide Semiconductor (MOS) Schalter benötigt werden.
Außerdem werden zwei Operationsverstärker anstelle von einem verwendet. Digitale Fehlerkor-
rektur kann vermieden werden solange die, der Technologie inhärente, Fehlanpassung der Kon-
densatoren die Auflösung nicht begrenzt. Die Auflösung von DPA Pipeline A/D-Umsetzern
kann durch die Verwendung von 2,5 Bit MDACs anstelle von 1,5 Bit MDACs verbessert werden.
DPA Pipeline A/D-Umsetzer mit 2,5 Bit haben im Vergleich zu 1,5 Bit geringere Anforderungen
in Bezug auf die Fehlanpassung von Kapazitäten, die Gleichspannungsverstärkung und in Bezug
auf Rauschquellen. Außerdem kann Energie eingespart werden, da weniger Pipeline-Stufen zum
Einsatz kommen.
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1
Introduction

1.1 Motivation

The importance of digital signal processing is continuously increasing and most communication
systems today use digital signal processing techniques. These techniques can typically better deal
with variations in the power supply and are less sensitive to noise than their analog counterparts.
Further, variations in the production process are tolerated well and scaling the systems to more
compact technologies (e.g., from 65 nm to 40 nm) has less impact on the design of digital circuits
than for analog circuits. [2]

Nevertheless, physical signals are analog and are typically measured by sensors that produce
an analog signal. In order to digitally process the signal it must be translated, i.e., an interface
between the analog circuits and the digital circuits is required. One of these interfaces is the
Analog to Digital Converter (ADC) . The design of ADCs is a major challenge for designers
due to rapidly evolving digital systems that require increasingly accurate and fast converters.
The current trend to integrate ADCs into digital technologies makes the design even more
sophisticated. [2]

An important representative of ADCs is the so-called pipelined ADC. Pipelined ADCs cover
a wide range of broadband applications such as Digital Video Broadcasting (DVB), Power Line
Communications (PLC), or Very high-bit rate Digital Subscriber Line (VDSL). They combine
both high resolution and high sampling rate with low power consumption and are among the
most attractive approaches for medium-high resolution (8-14 bits) and medium-high speed (10-
200 MHz) applications. [2]

At the same time, pipeline ADCs are also very complex structures that depend on highly
accurate switched capacitors, other sub-ADC architectures, and precise timing. One source
of imprecision that must be dealt with is linearity errors. To compensate for linearity errors,
digital and analog calibration techniques have been developed. One promising analog compen-
sation technique is dual path amplification (DPA). Recently, a new high-performance low-power
pipelined ADC based on DPA was proposed. This ADC uses standard 65 nm technology and
reaches 10 bit resolution and a sampling rate of 200MS/s at a low power consumption of only
5.37mW [1].

The scope of this thesis is to investigate the DPA architecture for pipelined ADCs for the newer
40 nm technology, which is gaining importance for logic circuits and is expected to supersede
the older 65 nm technology in many applications.
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1.2 Analog Error Compensation Approach

To achieve high resolutions for ADCs, various error compensation approaches have been applied.
A powerful approach that is able to compensate for a wide range of errors is based on complex
digital calibration techniques [3]. However, digital calibration comes at the cost of additionally
required chip area and higher power consumption, which makes this approach less attractive for
some applications.

One important error source is caused by the finite DC gain of the operational Amplifiers (op-
amps). The problem is only partially solved by using complex op-amps with high DC gain such
as cascaded op-amps or op-amps with feedback loop, since these op-amps have higher power
consumption and worse noise behavior than a simple Miller op-amp.

An attractive alternative to compensate for the errors introduced by a finite DC gain is the
use of analog error compensation such as dual path amplification [1]. In dual path amplification,
each pipeline stage is split into a coarse stage and a fine stage. Both perform the same operation
and calculate the residue voltage. The fine stage also has, in addition to the common inputs with
the coarse stage, the inverted output of the coarse stage as an input. The fine stage calculates
the error caused by the coarse stage. The overall residue of the pipeline stage is the sum of
the coarse output and the fine output. A key feature of this approach is that the op-amps of
the coarse and the fine stage have different requirements and can be optimized separately. The
coarse op-amp has a wide swing output signal and can be relaxed regarding noise and capacitor
mismatch. The fine op-amp, on the other hand, must have good noise performance and low
mismatch error, but only needs to perform a small swing output. The DC gain required for
the MDAC can be split across both op-amps, which allows simple op-amps with low power
consumption to be used.

1.3 Research Contribution

The scope of this thesis is to investigate the DPA architecture for use with 40 nm technology.
Previously, DPA had only been discussed for the older 65 nm technology [1] and it was not
obvious whether this technique would also prove to be useful for the 40 nm technology. Due to
the changed physical properties of the electronic modules, moving from 65 nm to 40 nm is not
straightforward and essentially requires redesigning the circuit.

This thesis investigates DPA for 40 nm technology both analytically and in Matlab simulations.
The following error sources are considered separately for 1.5 bit and 2.5 bit bit DPA MDACs:

finite DC gain

capacitor mismatch

noise sources

offset voltage

The analytic approximations of the error sources are verified in Matlab simulations, which meant
that the corresponding transfer functions had to be derived

For the simulations, the Matlab model of a 1.5 bit DPA MDAC with flip around architecture,
which had been developed as part of a previous project, was extended to a 1.5 bit DPA MDAC
with non-flip around architecture and to a 2.5 bit DPA MDAC. A Matlab model of the over-
all pipelined ADC was constructed based on the individual MDAC model stages, which were
cascaded, and the ADC performance was analyzed in the frequency domain. The SPA struc-
ture with 1.5 bits and 2.5 bits was compared to the DPA approach, and requirements for the
mentioned error sources were determined.
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1.3 Research Contribution

The goal of dual path amplification is to reach a high resolution without digital calibration
or complex op-amps, i.e., to save chip area and keep the power consumption low. The main
findings of this thesis with respect to this goal as follows:

1. DC gain: It is possible to achieve the needed equivalent DC gain with two simple op-amps
of about 45 dB. The sum of the coarse DC gain and the fine DC gain is higher than the
DC gain required for the SPA approach.

2. Noise performance and capacitor mismatch: The noise performance and the error due to
capacitor mismatch of an ADC using DPAMDAC stages is similar to the noise performance
of an ADC built of SPA MDAC stages.

3. Chip area: Additional capacitors and switches are needed, which increases the chip size
with respect to SPA MDACs.

4. Digital calibration: No digital calibration is needed for resolutions covered by the capacitor
mismatch of the technology used.

5. Resolution limits: In 40 nm technology, the resolution using DPA is limited to an absolute
maximum of 10.7 bits for 1.5 bit MDACs and of 11.2 bits for 2.5 bit MDACs.

The thesis is organized as follows: Chapter 2 introduces the basics of analog to digital con-
verters and of pipelined ADCs. Chapter 3 derives error approximations and transfer functions
for a single 1.5 bit MDAC stage and verifies the approximations in Matlab simulations, Chapter
4 extends the results to 2.5 bit MDAC stages. 1.5 bit and 2.5 bit MDAC are compared. The cas-
cading of multiple MDAC stages to an overall pipelined ADC is discussed in Chapter 5 based on
Matlab simulation results. The digital output of the ADC is analyzed in the frequency domain.
The key findings are summarized in Chapter 6 and final conclusions are drawn.

Villach, February 28, 2014 – 21 –





Pipeline ADC with Dual Path Amplification

2
Basics

This chapter contains important basics about analog to digital conversion, and about the
pipelined ADC and its error sources. First the discretization in time and amplitude is shown
in time and frequency domain and noise occurring while sampling, kT/C Noise, is explained.
Then the impact of jitter on the analog to digital conversion is discussed. The last section of
this chapter deals with error sources of the pipelined ADC and performance metrics. The entire
chapter is taken from the dissertation ’Low Noise High Speed Analog Video Frontends for PC
and HDTV Applications in 90nm and 65nm’ [4] written by Dr. Martin Trojer. It contains no
research contributions but theoretical basics to the topic. It was carried over because of time
reasons, with friendly permission of the author.

2.1 Sampling and Quantization

Sampling and quantization are the basics for the analog to digital conversion which is a key
function in modern systems. This is valid for each converter topology.

2.1.1 Sampling Function

The sampling function represents a sequence of equidistant Dirac impulses.

t

T

-2 -1 0 1 2 3 4 5

Figure 2.1: Sampling function
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△(t) =

+∞
∑

n=−∞

δ(t− n · T ) (2.1)

The sampling function can be evaluated in the frequency domain, where a Fourier series expan-
sion is performed. Hence the sampling function is interpreted by the sum of fundamental wave
and harmonics. (fs = sampling frequency)

△(t) =
+∞
∑

n=−∞

Cn · ej·ωs·n·t =⇒ t =
2 · π
ωs

(2.2)

Cn =
1

T
·
+

T
2

∫

−T
2

△(t) · e−j·ωs·n·t · dt = 1

T
·
+0
∫

−0

δ(t) · e0 · dt = 1

T
(2.3)

δ(t) is a Dirac pulse with infinitely short duration impulse and amplitude.

△(t) =
1

T

+∞
∑

n=−∞

ej·ωs·n·t (2.4)

In equation 2.4 an infinite series of sine waves is shown. In the frequency domain it is given as:

△(f) =
1

T

+∞
∑

n=−∞

δ(f − n · fs) (2.5)

Next a transformation pair between time and frequency domain is obtained.

△(t) =
+∞
∑

n=−∞

δ(t− n · T ) ⇔ △(f) =
1

T

+∞
∑

n=−∞

δ(f − n · fs) (2.6)
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Figure 2.2: Transformation between time and frequency domain for the sampling function

Sampling means multiplication of the continuous time input signal x(t) with the sampling
function△(t). In time domain an impulse series is obtained which is weighted by the input signal
amplitude. A multiplication in time domain corresponds to a convolution in frequency domain,
which results in a reproduction of X(f) at integer multiples of the sampling frequency. Therefore,
a periodical spectrum is obtained illustrated in figure 2.3. In the frequency domain a convolution
of the analog signal spectrum and the spectrum of the sampling function is obtained. In equation
2.7 the sampling theorem is shown. If the bandwidth of X(f) increases then overlapping of the
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Figure 2.3: Sampling in time and frequency domain

baseband and images occurs, which is called aliasing. Consequently, frequencies larger than half
the sampling frequency must not be present in the input signal, which can be realized by a
low-pass filter.

X(f) ∗ △(f) =
1

T

+∞
∑

n=−∞

X (f − n · fs) (2.7)

2.1.2 Amplitude Quantization

The analog input samples are rounded to discrete values corresponding to a set of limited
numbers, suitable for further digital modification. Although the quantization is non-linear, it
can be approximated by a linear model. In many cases the rounding error is represented by a
random signal, which is added to the ideal not quantized signal. The rounding error is assumed
to be white and uncorrelated with the input signal. To meet these assumptions of the linear
model, the input signal must be ”busy” and many quantization intervals must be occupied by
the signal. In contrast, constant input signals result in non-zero correlation of the rounding
error, and the white noise model is obviously not valid.
The noise signal has a constant probability density from -q/2 to +q/2. It is uncorrelated with
the signal s(t) and has a wideband noise spectrum. From the difference of the quantization noise

pe(q)

1/q

q/2-q/2
f

Figure 2.4: Equally distributed quantization noise
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power before quantization and after quantization the quantization noise power is obtained.

Pq =
q2

12
(2.8)

By sampling the power density spectrum the noise is concentrated to the range of 0 to fs/2.
Consequently, the noise power is equally distributed shown in figure 2.5.

Figure 2.5: Noise density spectrum of the quantization noise

2.1.3 kT/C Noise

Every switch action contains resistive elements with thermal noise: This thermal noise is sampled
on the capacitor each cycle. The overall noise power of the switch depends on the temperature,

Vnoise

Ron_switch

Csample

Figure 2.6: The equivalent circuit of a sample switch and capacitor

the Boltzmann constant k and the considered bandwidth.

Pnoisesw = 4 · k · T ·R ·BW (2.9)

For calculating the noise power of the sampling circuit the noise power of the resistor can be
multiplied by the square of the low pass transfer function.

Pnoise =

f=∞
∫

f=0

4 · k · T ·R · δf
1 + (2 · π · f)2 ·R2 · C2

=
k · T
C

(2.10)
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2.2 SNR due to Jitter

2.2 SNR due to Jitter

The influence of the uncertainty of the sampling clock leads to a decreasing of the SNR. In figure
2.7 this uncertainty results in an error in the voltage amplitude du.

du

dt

n*Ts

Figure 2.7: Jitter at the sampling process

dt =
dV

SRmax
=

2 · V inp

V inp · 2 · π · f · 2N+1
=

1

π · f · 2N+1
(2.11)

If dt is an event from a Gaussian distributed jitter then equation 2.12 is valid. Moreover it
can be seen that the signal amplitude doesn’t influence the signal to noise ratio (cf. 2.8).

SNR =

∫

(V inp · sin (ω · t))2 · dt
∫

σ2
dV dt

=
1

(ω · σdt)2
(2.12)

2.3 Pipeline ADC and Error Sources

A pipeline ADC consists of similar ADC stages which are connected in a pipeline [5]. Each
stage has a resolution of n-bit where a redundancy is used for error correction. The overall
resolution of this ADC depends on the amount of stages and input reflected noise at the first
stage. A maximum resolution of 16 bit at medium sample rates like 100MS/s can be achieved
by calibration. Figure 2.9 shows the principle topology of a pipeline stage. First the input is
sampled and amplified by 2 for 1.5 bit per stage architecture. The comparator which performs
the analog to digital conversion can be connected in front or behind the sample and hold.

After the amplification the reference voltage must be subtracted or added depending on the
result of the comparator. The analog output is led to the next pipeline stage where the same
process is started again. Each stage works with the same sample rate. So the conversion speed
is the same as for a Flash ADC but a delay is generated depending on the amount of pipeline
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Figure 2.8: SNR due to jitter

stages. Compared to a two step Flash ADC the power consumption and the amount of com-
parators is smaller. Also from the design point of view only one stage has to be developed and
scaled for the following pipeline stages.

S/H x2

Vref

Vin

Out 

(Shiftregister)

Vref

Next stage

Figure 2.9: Pipeline ADC principle

The residue (analog output) of a 1 bit and 1.5 bit stage is demonstrated in figure 2.10. The
1.5 bit stage reduces the headroom by a factor of 2 for the output to use it for the correction
of an error of the comparator. Therefore saturation of the multiplying DAC (MDAC) amplifier
is avoided. The principle transfer function of the MDAC can be seen in equation 2.13 where D
depends on the decision of the comparator and corresponds to -1, 0 or 1.

V out = V in · 2−D · V ref (2.13)
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2.3 Pipeline ADC and Error Sources

2.3.1 Offset in a Pipeline ADC

The maximum correctable offset Voff1st of the first stage followed by an ideal stage corresponds
to 1/8*vref. This can be explained by the comparator levels of +/- 0.25*vref of the second stage
divided by 2. The maximum correctable offset of an N-bit ADC is calculated in equation 2.14.
For a 10 bit ADC this formula yields a maximum correctable offset of 0.25*vref. An increase of
the bit count of the stages per one decreases the correction range by a factor of two. Figure 2.11
shows the residue of the first stage if the comparator performs a wrong decision.

V offcorr(N) =
N
∑

i=2

V off1st
2i−2

(2.14)
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Figure 2.10: Residue of 1 bit and 1.5 bit stage

2.3.2 DNL and INL

The DNL stands for the differential non-linearity and corresponds to the deviation of the real
to the ideal step width related on the ideal step width. For the evaluation of the ADC a ramp
must be applied where the received characteristics are shown in figure 2.12. A DNL larger than
1LSB leads to a missing code which degrades the linearity very much.

DNLi =
LSBreal − LSBideal

LSBideal

(2.15)

The integral non-linearity (INL) equals to the distance of the measured to ideal stepcurve related
on the ideal step width. Additionally the INL is the integration of the DNL.

INLi =
xreal − xideal
LSBideal

(2.16)

In figure 2.12 the INL is demonstrated as the green difference of xreal-xideal. The difference can
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Figure 2.11: Residue of a 1.5 bit stage with comparator offset

be calculated by measuring the center of each quantization step of the ideal and real step-curve.

Figure 2.12: 4 bit ADC characteristics with DNL and INL
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2.3.3 Gain Error

The output voltage of an MDAC is calculated in equation 2.17 where the feedback capacitor of
the inverting amplifier is C1. Figure 2.13 illustrates the bottom plate sampling process with a
two phase non-overlapping clock signal where the input is disconnected after the sampling switch
is opened. Hence the influence of clock feedthrough and charge redistribution of the input switch
can be reduced. After sampling is finished the op-amp is used as inverting amplifier with gain
one. There the charge from C2 is transferred to C1. Consequently the gain of two for the 1.5 bit
stage is realized. For a 2.5 bit stage a gain of 4 will be get during amplification by one unity
capacitor in the feedback and 3 at the input branch.

Vout = Vin · C1 + C2

C1

− Vref · C2

C1

(2.17)

The gain error is caused by capacitor mismatch and low op-amp gain. Due to a very large gain

amplify

samp_vin

short_in_out

amplify

samp_vin

short_in_out

C1

C2

Vin

Vout

C1

C2

Vin

Vout

Figure 2.13: MDAC op-amp in sampling and amplification mode

error the output of the first stage is smaller than the ideal value shown in figure 2.14. Therefore
a shift of the comparator levels of the first stage in the overall ADC transfer characteristics
occurs which is demonstrated in figure 2.15. Specially the accuracy of the first stage is essential
for the overall converter performance.

The gain error of the first and second stage of a pipeline ADC is shown in figure 2.16. In-
specting this figure it can be seen that a gain error in the first stage has a large impact on
the residue of the second stage. Alternating gain errors of the pipeline stages lead to a larger
decrease of the linearity than the same gain error in each stage [6]. The shown gain errors are
not realistic and were chosen very large for demonstration.

2.3.4 Total Harmonic Distortion

The total harmonic distortion (THD) 2.18 and the signal-to-noise ratio (SNR) are used to
characterize an ADC. The THD is the ratio between the squared voltages of the signal and the
tones. It measures the linearity which influences the picture quality. 5 to 10 harmonics are
included in the THD and the rest is considered as noise.
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Figure 2.14: Residue of a 1.5 bit stage with capacitor mismatch
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Figure 2.15: Residue of the first and second 1.5 bit stage with capacitor mismatch

THD(dB) = 10 · log
(

V 12

V 22 + V 32 + V 42..

)

(2.18)
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Figure 2.16: Residue of the first and second 1.5 bit stage with capacitor mismatch

2.3.5 Signal–to–Noise Ratio

The signal to noise ratio in dB corresponds for an ADC:

SNR(dB) = 1.76 + 6.02 ·N (2.19)

N is the resolution of the ADC.

2.3.6 Signal–to–Noise and Distortion Ratio

Another important specific value is the signal-to-noise and distortion ratio (SNDR) which con-
tains the distortion and thermal noise of a system. There the signal is referred to all unwanted
components up to fs/2.

SNDR(dB) = 10 · log
(

V 12

V 22 + V 32 + V 42..+
V 2

LSB

12
+ thermalnoise

)

(2.20)

2.4 Summary of Basics

In this chapter the discretisation of signals in time and amplitude was explained. Moreover the
pipeline ADC and its error sources were discussed where the first stage is the most critical part
of this ADC.
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3
MDAC 1.5 Bit with Dual Path Amplification

This chapter introduces and analyzes dual path amplification (DPA), an analog error compensa-
tion technique for MDAC stages. After introducing the DPA technique, the transfer functions
are derived, and the following error sources are discussed:

finite DC gain,

capacitor mismatch,

noise sources, and

offset voltage.

The precision of the analog output voltage, the residue V2, and the compensation for the
error caused by finite DC gain are analyzed. With DPA it is possible to use a simple miller
op-amp with low DC gain instead of a cascaded op-amp or feedback loop, and complex digital
compensation is not required. It is also shown that the DPA MDAC behaves similarly to a SPA
MDAC regarding capacitor mismatch, noise sources, and offset voltage on op-amps.

The analytical considerations use approximations. The results are verified in a Matlab simu-
lation.

The focus in this chapter is on a single stage of a pipeline ADC, on the 1.5 bit MDAC; the
2.5 bit DPA MDAC is discussed in Chapter 4.

3.1 Dual Path Amplification Technique and Topology

This section introduces the dual path amplification technique.

Figure 3.1 shows a 1.5 bit MDAC using DPA [1]. DPA uses two op-amps instead of one for
the calculation of the residue: the coarse and the fine op-amp. The coarse op-amp produces a
residue V2C that is different from V2C,ideal because of a non-ideal op-amp. The fine op-amp is
used to compensate for the error of the coarse op-amp. It performs the same operation as the
coarse op-amp, and in addition subtracts the output V2C of the coarse op-amp. The output of
the fine op-amp V2F is the negative error of the coarse op-amp. The desired residue voltage, V2,
is obtained by the sum of coarse and fine outputs.

V2 = V2C + V2F (3.1)
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Figure 3.1: MDAC stage with dual path amplification architecture

Thus, the errors of the coarse op-amp are compensated for by the fine op-amp. The fine op-amp
determines the accuracy and noise performance of the MDAC, but only needs to generate a
small-swing signal.

Figure 3.2: Schematic of the 1st pipeline stage of dual path amplification in sampling mode, 1.5 bit MDAC

The MDAC in the 1st pipeline stage must be treated differently from the 2nd stage MDAC
(and all following stages).

First stage. Figure 3.2 shows the schematic of a 1st stage MDAC with DPA in sampling
mode. The architecture investigated in this thesis is non-flip around, i.e., the feedback capacitor
is fixed. This brings advantages for the settling behavior of the MDAC. In sampling mode, the
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input voltage V1C is loaded on capacitors CC1 and CF1. The coarse output voltage V2C is loaded
to CFc. In amplification mode, the op-amp loop is closed. The inputs at CC1 and CF1 are
connected with Vsub ; the input at CFc is connected with ground. Vsub is the output of sub-DAC
realized by a multiplexer, it is calculated by

Vsub = Dout ·
Vref

2
(3.2)

for this architecture.

Note that the capacitors CC1 and CF1 are two times larger than the feedback capacitance, i.e.,
CC1 = 2CF1, CF1 = 2CFf . This causes a gain of 2 for V1C and V1F sampled on the capacitors as
well as for Vsub connected to the capacitors during the amplification phase. The coarse output
voltage -V2C is transferred with gain 1 to the fine output V2F . The coarse output yields

V2C = 2 (V1C − Vsub) + Verr,C (3.3)

where Verr,C is the deviation from the ideal residue V2,ideal:

Verr,C = V2C − V2,ideal (3.4)

Also the fine stage is not ideal and produces an error Verr,F . The fine output is calculated by

V2F = 2 (V1C − Vsub)− V2C + Verr,F

= 2 (V1C − Vsub)− {2 (V1C − Vsub) + Verr,C}+ Verr,F

= −Verr,C + Verr,F (3.5)

With (3.1) the residue voltage of the 1st stage is obtained as:

V2 = V2C + V2F = 2 (V1C − Vsub) + Verr,F = V2,ideal + Verr,F (3.6)

Second stage. The 2nd MDAC stage has two inputs, V2C and V2F , which are added in the
MDAC. The schematic of the 2nd MDAC stage is depicted in Figure 3.3. Note that capacitors

Figure 3.3: Schematic of the 2nd pipeline stage of dual path amplification in sampling mode, 1.5 bit MDAC
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CC1, CC2, CF1, and CF2 have twice the capacitance of the feedback capacitor, and CFc = CFf

are the same size. The coarse output of the 2nd MDAC stage can be calculated by

V2C = 2 (V1C + V1F − Vsub) + Verr,C (3.7)

the fine output is obtained by

V2F = 2 (V1C + V1F − Vsub)− V2C + Verr,F (3.8)

The residue voltage of the 2nd stage is computed as:

V2 = V2C + V2F = V2,ideal + Verr,F (3.9)

Note that the output of the 2nd coarse stage and the output of the 1st coarse stage are
required for the fine stage and are sampled on the capacitors CFc and CF1. As a consequence,
the capacitor CF1 must be sampled during the amplification phase of the fine stage. Two
capacitor sets are required.

3.2 Transfer Functions

The Matlab model is based on transfer functions describing the input-output behavior of MDAC
stages. In this section the transfer functions are derived. Assuming the MDAC is a linear system,
the impact of inputs on the system can be considered in isolation, and the outputs added together
(additivity property). As the MDAC with DPA is a Multiple Input Multiple Output (MIMO)
system, it has a transfer function from each input to each output.

3.2.1 Derivation of Basic Relations

This section shows the basic equations for calculating the transfer functions of MDAC. First the
transfer function of a voltage V1C is calculated; second the transfer function of a voltage Vsub

applied during the amplification phase on the MDAC is treated. In the following sections the
transfer functions of the 1st stage and the 2nd stage DPA MDAC are discussed.

To obtain the transfer function from a voltage sampled on capacitor CC1 to the output of the
MDAC, consider the coarse stage of the 1st MDAC depicted in Figure 3.2. When the transfer
function from the sampled voltage V1C to the output V2C is derived, Vsub is assumed to be zero.
Figure 3.4 illustrates the calculation on a schematic. The input voltage V1C is sampled on

Figure 3.4: Right: sampling phase Φ1, left: amplifying phase Φ2
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capacitor CC1 during Φ1 . The charge on CC1 during Φ1 is:

Q1 = V1CCC1 (3.10)

The ground connection is removed from the negative op-amp input and CC1 is connected to
ground during the amplification phase Φ2 . This causes a difference Vd between positive and
negative op-amp inputs and results in the output voltage

V2C = VdGC (3.11)

where GC describes the transfer function of the op-amp. The charge Q1 is now shifted to CCf .
The op-amp has finite open loop gain and Vd is not equal to zero. Therefore some charge is also
on CCp and CC1. The sum of the charges on the capacitors CC1, CCf , and CCp is:

Q1 = ∆Q1 +∆Qf +∆Qp (3.12)

The charges on the capacitors are

∆Q1 = CC1Vd, ∆Qf = CCf (V2C + Vd), ∆Qp = CCpVd. (3.13)

Using (3.11) and summing up equations (3.13) yields:

∆Q1 +∆Qf +∆Qp =
V2CCC1 + V2CCCp + V2CCCf

GC

+ V2CCCf (3.14)

Using (3.12) and (3.10) yields:

VC1CC1 = V2C

CC1 + V2CCCp + V2CCCf

GC

+ CCf (3.15)

After a few conversions the desired transfer function is obtained:

V2C

V1C

= TCC =
CC1

CC1+CCf+CCp

GC
+ CCf

(3.16)

Lets move on to the transfer function of a subtraction voltage Vsub applied during the am-
plification phase Φ2 on the MDAC input. It is Vsub = Vref/2 because CC1 = 2CCf . Figure 3.5
shows the schematic of the coarse stage of a 1.5 bit MDAC. Only the subtraction voltage Vsub is
considered as an input. All capacitors are assumed to have zero charge at the beginning of the
amplification phase, thus

∆Q1 +∆Qf +∆Qp = 0. (3.17)

Figure 3.5: Transfer of Vsub to the coarse output, amplifying phase Φ2

The op-amp now tries to balance its positive and negative inputs according to (3.11). The
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charges on the capacitors are given by

∆Qf = CCf (V2C + Vd), ∆Q1 = CC1(Vsub + Vd), ∆Qp = CCpVd. (3.18)

According to (3.17) the sum of all charges must be zero, and Vd can be substituted using (3.11).
We obtain now the equation between Vsub and V2C :

V2CCC1 + V2CCCp + V2CCCf

GC

+ V2CCCf + Vsub = 0 (3.19)

After a few conversions the transfer function is obtained:

V2C

Vsub

= TsubC =
−CC1

CC1+CCf+CCp

GC
+ CCf

(3.20)

Compared to the transfer function of the sampled voltage it can be seen that TCC and TsubC

differ only in the sign. The finite open loop gain and the parasitic capacitance are considered
with a disruptive term added in the denominator of the transfer functions. It is the sum of
all involved capacitors in the wiring of the op-amp divided by the transfer function G of the
op-amp. This term vanishes if the open loop gain of the op-amp is driven towards infinity.

3.2.2 1st MDAC stage

The disruptive term for the coarse stage is according to (3.16) and (3.20):

HC,1st =
ΣCC,1st

GC

=
CC1 + CCp + CCf

GC

(3.21)

The fine stage has one additional capacitor. The disruptive term yields:

HF,1st =
ΣCF,1st

GF

=
CF1 + CFc + CFp + CFf

GF

(3.22)

The transfer functions of the coarse stage describe the impact of input signals on the coarse
output. The transfer function of the coarse input voltage V1C is:

TCC =
V2C

V1C

=
CC1

ΣCC,1st

GC
+ CCf

(3.23)

The transfer function of subtraction voltage Vsub is:

TsubC =
V2C

Vsub

=
−CC1

ΣCC,1st

GC
+ CCf

(3.24)

The transfer functions of the fine stage describe the impact of input signals on the fine output.
The transfer function of the coarse input voltage V1C is:

TCF =
V2F

V1C

=
CF1

ΣCF,1st

GF
+ CCf

(3.25)

The transfer function of subtraction voltage Vsub is:

TsubF =
V2F

Vsub

=
−CF1

ΣCF,1st

GF
+ CCf

(3.26)
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The transfer function of the coarse output voltage V2C to the fine output is:

T2CF =
V2F

V2C

=
−CF2

ΣCF,1st

GF
+ CCf

(3.27)

All partial outputs of the coarse MDAC stage can be superposed to obtain V2C :

V2C =
CC1(V1C − Vsub)
ΣCC,1st

GC
+ CCf

(3.28)

The output of fine MDAC stage is obtained by:

V2F =
CF1(V1C − Vsub)− CFcV2C

ΣCF,1st

GF
+ CFf

(3.29)

Assuming an ideal MDAC with G = ∞ and CC1 = CCf we get the following simple equation:

V2C = 2(V1C − Vsub) (3.30)

V2F = 2(V1C − Vsub)− V2C (3.31)

3.2.3 2nd MDAC stage

At the 2nd MDAC, coarse and fine stage have additional capacitors CC2 and C2F for the fine
input V1F . The schematic is shown in Figure 3.3. The disruptive terms are given by:

HC,2nd =
ΣCC,2nd

GC

=
CC1 + CC2 + CCp + CCf

GC

(3.32)

HF,2nd =
ΣCF,2nd

GF

=
CF1 + CC2 + CFc + CFp + CFf

GF

(3.33)

In the following, the transfer functions of the 2nd 1.5 bit MDAC stage are introduced. The
transfer functions of the coarse stage describe the relationship between the input signals and
the coarse output. The transfer function of the coarse input voltage V1C is:

TCC =
V2C

V1C

=
CC1

ΣCC,2nd

GC
+ CCf

(3.34)

The transfer function of subtraction voltage Vsub is:

TsubC =
V2C

Vsub

=
−CC1

ΣCC,2nd

GC
+ CCf

(3.35)

The transfer function of the fine input voltage V1F is:

TFC =
V2C

V1F

=
CC3

ΣCC,2nd

GC
+ CCf

(3.36)

The transfer functions of the fine stage describe the relationship between the input signals and
the fine output. The transfer function of the coarse input voltage V1C is:

TCF =
V2F

V1C

=
CF1

ΣCF,2nd

GF
+ CFf

(3.37)
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The transfer function of subtraction voltage Vsub is:

TsubF =
V2F

Vsub

=
−CF1

ΣCF,2nd

GF
+ CFf

(3.38)

The transfer function of the coarse input voltage V1F is:

TFF =
V2F

V1F

=
CF3

ΣCF,2nd

GF
+ CFf

(3.39)

The transfer function of the coarse output voltage V2C to the fine output is:

T2CF =
V2F

V2C

=
−CF2

ΣCF,2nd

GF
+ CFf

(3.40)

The output as a function of the inputs of the MDAC is

V2C =
CC1(V1C − Vsub + CC2V1F

ΣCC,2nd

GC
+ CCf

(3.41)

for the coarse state, and

V2F =
CF1(V1C − Vsub) + CC2V1F − CFcV2C

ΣCF,2nd

GF
+ CFf

(3.42)

for the fine state. These equations are the basis of the Matlab simulations in this thesis performed
for MDAC stages and for the pipeline ADC. Assuming an ideal MDAC, the functions can be
simplified to:

V2C = 2(V1C + V1F − Vsub) (3.43)

V2F = 2(V1C + V1F − Vsub)− V2C (3.44)

3.3 Finite DC Gain

The finite DC gain of the op-amps, as described in Section 2.3.3, causes a gain error at the
MDAC. The error is proportional to the output of the MDAC. This will be shown in the following
for the SPA and for the DPA MDAC. Furthermore, the relationship between the errors resulting
from the finite DC gain and the loop gain will be investigated. The analytical considerations
will be completed with simulation results.

3.3.1 Analytical Considerations

The transfer functions of a 1.5 bit SPA MDAC are shown in (3.23) and (3.24), they correspond
to the coarse stage of the DPA MDAC. The settling behavior is ignored for these considerations,
and the transfer function of the op-amp is assumed to be a constant Gop = A0. The ideal gain
of the MDAC is corrupted by the additional disruptive term (3.21) in the denominator. This
causes a gain error that is the same for all inputs. The residue error is shown in Figure 3.6.

Assuming an ideal matching CC1 = 2CCf , the input to output equation shown in (3.28) can
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Figure 3.6: Ideal residue (gray dashed) and residue with error (blue) of 1st stage, 1.5 bit MDAC with DPA

be written as:

V2C = 2V1C(1− α)− 2Vsub(1− α) = V2,ideal(1− α) (3.45)

where α is the gain error of the MDAC and

(1− α) =
CCf

ΣCC,1st

A0C
+ CCf

(3.46)

Considering the MDAC with DPA of Figure 3.2, the fine stage also has the same gain error for
all inputs,

V2F = 2V1C(1− β)− 2Vsub(1− β)− VC2(1− β) = (V2,ideal − V2C)(1− β), (3.47)

where β is the gain error of the fine MDAC stage. The factor (1− β) can be expressed by:

(1− β) =
CFf

ΣCF,1st

A0F
+ CFf

(3.48)

The sum of coarse and fine output yields:

V2C + V2F = (V2,ideal − V2,ideal(1− α))(1− β) + V2,ideal(1− α)

...

= V2,ideal(1− αβ) (3.49)

Figure 3.7 illustrates the MDAC as a system with feed forward amplification A0. The transfer
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function (3.23) can be written as:

TCC =
V2C

V1C

=
CC1

CC1 + CCp + CCf

A0C

1 +
CCf

CC1+CCp+CCf
A0

=
CC1

ΣCC,1st

A0C

1 +
CCf

ΣCC,1st
A0C

(3.50)

Introducing loop gain LC , the transfer function TCC is:

TCC =
CC1

ΣCC,1st

A0C

1 + LC

(3.51)

Figure 3.7: MDAC as a system: 1.5 bit 1st stage, SPA

There is a connection between loop gain LC and gain error α:

(1− α) =
CCf

ΣCC,1st

A0C
+ CCf

=
ΣCC,1st + CCfA0C

ΣCC,1st + CCfA0C

+
−ΣCC,1st

ΣCC,1st + CCfA0C

≈ 1− ΣCC,1st

CCfA0C

= 1− 1

LC

(3.52)

The gain errors α and β can be approximated with:

α ≈ 1

LC

β ≈ 1

LF

(3.53)

Consequently, the gain error of the overall MDAC output V2C + V2F yields [1]:

αβ ≈ 1

LCLF

(3.54)

The output of the coarse stage can then be expressed as:

V2C ≈ V2,ideal(1−
1

LC

) (3.55)

Using (3.49) the overall output of the MDAC yields:

V2 = V2C + V2F ≈ V2,ideal(1−
1

LCLF

) (3.56)
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3.3.2 Simulation Results

To evaluate the performance of the MDAC corrupted by finite DC gain, a Matlab model was
implemented using the transfer functions introduced in Section 3.2. Capacitor mismatch and
other error sources were ignored. The model of the MDAC shown in Figure 3.2 contains parasitic
capacitors CCp and CFp at the input of the op-amp. This is because the parasitic capacitor
influences the loop gain of the MDAC, as shown in Section 3.3.1. Moreover there are also errors
such as noise and offset, not only the error caused by finite DC gain. All errors should be below
±LSB12/4 to get 12 bit resolution but in our case a larger error is allowed. Table 3.1 shows the
contribution of pipeline stages to the input referred residual error and requirement for the error
on the output of the MDAC stage. The sum of all residual errors (3.57) converges to LSB/2.

LSB

2
=

N
∑

i=1

LSB

2 · 2i (3.57)

Table 3.1: Accumulation of residue errors

Stage number 1 2 3 4 5 ...

Input referred error LSB
4

LSB
8

LSB
16

LSB
32

LSB
64

...

Error at MDAC output LSB
2

LSB
2

LSB
2

LSB
2

LSB
2

...

According to (3.57) only the last stage can be scaled for a residual error within LSB/2. The
allowed residue error at the output of the MDAC was assumed to be LSB12/2 according to
Table 3.1. The simulation algorithm looked for {A0C , A0F } pairs to get a maximum residue
error of exactly ±LSB/2.

|V2,ideal − (V2C + V2F )|max
=

LSB

2
(3.58)

Figure 3.8 shows the DC gain of the coarse op-amp versus on the DC gain of the fine op-amp for
different resolutions to meet constraint (3.58). The parasitic capacitor is assumed to be equal
to the feedback capacitor for both coarse and fine stage:

CCp = CCf

CFp = CFf

Using the same DC gain for coarse and fine op-amp, with 12 bit resolution the DC gain is:

A0C = A0F = 49dB (3.59)

7 The sum of both is 98 dB. An SPA MDAC requires DC gain A0 = 84.3 dB for the same residue
error. Moving on the black continuous curve of Figure 3.8 by 10 dB to the left or to the right,
the sum of DC gains keeps nearly constant. For A0F = 60dB, coarse DC gain A0C = 37.2 is
needed. It yields a sum of 97.2 dB. Moving further, the sum decreases. The distance between
the curves is approximately 6 dB. This is because of the factor of 2 for the LSB of different
resolutions. Figure 3.8 (below) shows the linear dependency of DC gain on the resolution for an
SPA MDAC.

The dependency of the DC gain on the parasitic capacitor can be seen in Figure 3.9. The
parasitic capacitor of coarse and fine stage are assumed to be the same related to the respective
feedback capacitor. A parasitic capacitor of Cxf costs 4.4 dB if A0C ≈ A0F . A parasitic capacitor
of 2Cxf costs only 7.9 dB. This is due to loop gain L, which is not proportional to Cxp, but to
(Cxp + Cx1 + Cxf )

−1.
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Figure 3.8: Above: Constant error LSB/2 on MDAC output, 1.5 bit MDAC, 1st stage. Continuous lines:
DPA MDAC, dashed lines: SPA MDAC. Below: Open-loop gain that produces LSB/2 on MDAC
output, dependent on ADC resolution. 1.5 bit SPA MDAC, 1st stage

In Figure 3.10, the impact of the parasitic capacitance on the coarse and fine stage are illus-
trated separately. It can be seen that parasitic capacitor of CCp = 2CCf on the coarse stage
has more impact on the residue error than CFp = 2CFf on the fine stage. The reason is again
the relationship between parasitic capacitor and the sum of input capacitors that appear in loop
gain L.

Remember that in Section 3.3.1 the gain error was approximated to show the relationship
between gain error and loop gain (3.56). Figure 3.11 compares the approximation with the
simulation using exact transfer functions. It can be seen that the approximation features the
worst case: the blue curve is always above the magenta curve. Furthermore it can be seen that
it is a linearization for the exact behavior at A0C ≈ A0F .

Figure 3.12 compares the topology of the 1st MDAC stage with the topology of the 2nd or
a following MDAC stage. The output of each MDAC stage was forced to be LSB/2. The
2nd MDAC stage has additional capacitors CC2 and CF2 for the input of the fine signal V1F . This
decreases the feedback factor k and thus open-loop gain L. With Cxp = Cxf and A0C ≈ A0F ,
the distance between the curves on the x-axis is 6.4 dB. This means that the 2nd MDAC stage
has stronger requirements regarding DC gain because of its different topology.
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Figure 3.10: Parasitic capacitor at coarse stage vs. parasitic capacitor at fine stage, 1.5 bit MDAC, 1st stage

The most important findings about the error introduced by the finite DC gain are:

The error is proportional to the MDAC output for both SPA and DPA MDAC. This means
that the greatest absolute error is always obtained for the inputs ±Vref .

The error is approximately proportional to the loop gain of the MDAC for SPA and to the
product of both loop gains for DPA. Thus also the product A0C · A0F is proportional to
the error. It must be higher than 98 dB to keep the error below LSB/2 for the 1st stage
DPA MDAC of a 12 bit ADC.

The error decreases with increasing feedback factor kX and with increasing DC gain A0X.
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Figure 3.11: Open loop gain for constant error LSB/2 calculated with transfer function (magenta) and with
the approximation: α = 1/(LCLF ) [1](blue).
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Figure 3.12: Comparison of 1st and 2nd MDAC stage, 1.5 bit MADC

The feedback factor is the ratio of feedback capacitor Cxf and all capacitors involved in
the op-amp wiring. More capacitors involved in relation to Cxf yield a larger error.

3.4 Capacitor Mismatch

The capacitor mismatch affects the precision of the MDAC residue. The gain for each single
input signal is adjusted by capacitor ratios. The capacitor mismatch of the 40 nm technology
has a minimum at about 200 fF and cannot be improved by increasing the capacitance. This is
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visible from the simulation result in Figure 3.13, there is a minimum for mismatch. The residue
error caused in the fine stage cannot be compensated by DPA. The mismatch error is depending
on the used topology, which is shown in this section.
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Figure 3.13: Capacitor mismatch for CMOS 40 nm technology, Spice simulation

In the following analytical part the residue error caused by capacitor mismatch will be ap-
proximated. The analytic approximation will be evaluated with a simulation using a Matlab
model.

3.4.1 Analytical Considerations

Capacitor mismatch σc is the relative deviation of two capacitors from each other:

σc = σ

{

2(C1 − C2)

C1 + C2

}

(3.60)

The capacitor mismatch is Gaussian distributed, and capacitors vary statistically independent
from each other. The capacitor mismatch can be written as the squared sum of the deviations
σabs from the nominal values of C1 and C2:

σc =
√

σ2
abs + σ2

abs =
√
2σabs (3.61)

The deviation σabs from the nominal value is:

σabs =
1√
2
· σc (3.62)

This value is suitable for analytical considerations and for introducing the capacitor mismatch
into the Matlab model.

Consider the schematic of a 1.5 bit SPA MDAC stage shown in Figure 3.14. Each capacitor
is normally distributed around its nominal value Cnom with the standard deviation Cnom · σabs.
It can be written as:

C = Cnom (1 + ǫ), (3.63)
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where ǫ is a Gaussian distributed random variable with zero mean and standard deviation σabs.
Assuming an ideal op-amp, the MDAC output can be approximated by:

V2 =
V1 · C1(1 + ǫ1)− Vsub · C1(1 + ǫ1)

Cf (1 + ǫf )
=

2 (V1 − Vsub) (1 + ǫ1)

(1 + ǫf )

≈ 2(V1 − Vsub) · (1 + ǫ1 − ǫf − ǫ1ǫf ) ≈ 2(V1 − Vsub) · (1 + ǫ1 − ǫf )

V2 ≈ V2,ideal · (1− (ǫf − ǫ1)) (3.64)

Figure 3.14: Schematic of 1st pipeline stage, 1.5 bit MDAC, with single path amplification (SPA)

The resulting error can be approximated as gain error (ǫf−ǫ1). This gain error is also Gaussian
distributed with standard deviation

σ {ǫ1 − ǫf} =
√

σ2
abs + σ2

abs =
√
2 · σabs. (3.65)

The residue of an MDAC with capacitor mismatch is depicted in Figure 3.15. The deviation of
the capacitors is overdrawn to make the effect visible. The ideal residue is denoted by the dashed
line. The largest error occurs at V1 = 1. Assuming a 12 bit ADC and a mismatch σc = 0.1%,
the residue error has a standard deviation

σ {V2 − V2,ideal} = 1 ·
√
2

1√
2
σc = 0.001 = 2.0LSB12. (3.66)

Lets look at the error made by the 1.5 bit DPA MDAC depicted in Figure 3.2. The residue
error of the coarse stage is compensated, while the errors made by the fine stage are affecting
the residue. To keep calculations simple, the coarse stage is assumed to be ideal:

V2C = V2,ideal = 2 (V1C − Vsub) (3.67)

The fine stage would then produce zero output if it was ideal. Since the fine stage suffers from
mismatch, the output of the fine stage is equal to the residue error. No parasitic capacitor
appears since ideal op-amps are assumed.

V2F = (V1C − Vsub) ·
CF1(1 + ǫF1)

CFf (1 + ǫFf )
− V2C · CFc(1 + ǫFc)

CFf (1 + ǫFf )

= 2 (V1C − Vsub)

(

(1 + ǫF1)

(1 + ǫFf )
− (1 + ǫFc)

(1 + ǫFf )

)

V2F ≈ V2,ideal(ǫF1 − ǫFC) (3.68)
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Figure 3.15: Residue of 1.5 bit DPA MDAC with capacitor mismatch (continuous line), ideal residue (dashed
line)

The overall residue is calculated by:

V2 = F2F + V2C ≈ V2,ideal(1− (ǫFC − ǫF1)) (3.69)

It can be seen that the gain error (ǫFc−ǫF1) is constant, because the residue error is proportional
to V2,ideal. It has a standard deviation of:

σ{ǫFC − ǫF1} =
√

σ2
abs + σ2

abs =
√
2 σabs (3.70)

This corresponds to the result obtained for the SPA MDAC.

3.4.2 Simulation Results

To evaluate the analytical results and to get more details, the DPA MDAC is simulated in
Matlab. All capacitors of the MDAC are deviated randomly with Gaussian distribution and
standard deviation σabs = 1√

2
σc, according to the mismatch σc. The simulation is performed

with 103 different capacitor sets and with 103 input samples. It yields a distribution of 106 residue
values. As shown in Section 3.4.1, residue errors are approximately Gaussian distributed. For
plotting the results, the standard deviation of the residue errors is calculated.

Figure 3.16 shows the residue error at the output of an SPA MDAC with the black dashed
line. It is depicted dependent on input voltage V1C that is normalized by the reference voltage
Vref . The shape of the error is piecewise linear. It has kinks at the thresholds of the comparator
at ±0.25 and at the points where the error is crossing zero at ±0.5 and 0. This is in line
with the analytic result (3.64) that claims constant gain error. The magenta curve shows the
residue error of a DPA MDAC with the topology of a 1st pipeline stage. The topology of a
2nd pipeline stage is shown with a dashed, magenta line. The two curves match exactly. This
result is not surprising because the simulation assumes that the fine input of the 2nd stage is
zero. The additional capacitors C2C and C2F of the 2nd pipeline stage produce errors due to
a finite DC gain (cf. Section 3.3.2). However, with the assumption of an ideal op-amp and
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Figure 3.16: Residue Error of 1.5 bit MDAC. Black dashed line: SPA MDAC, magenta line: 1st stage DPA
MDAC, cyan line: 2nd stage DPA MDAC. Standard deviation of the error is shown versus
input of MDAC

no inputs applied to C2C and C2F , they do not influence the residue error. Fine input V1F

can be assumed to be small compared to coarse input V1C , therefore it is ignored. Looking at
the maximum values for the residue error at V1C/Vref = ±1, it can be seen that the standard
deviation of the error is about 2LSB for 12 bit ADC resolution. This matches well the analytic
approximation (3.66). Some simplifications are performed in the analytical approximation SPA
MDAC and DPA MDAC show the same standard deviation of gain error in (3.70) and (3.65).
Looking at the simulation results in Figure 3.16, the largest difference between SPA MDAC and
DPA MDAC occurs at V1C/Vref = ±1 and is only 0.05LSB. Considering the gain of 2 of the
1.5 bit MDAC, the standard deviation of the input referred error ein for a 12 bit ADC with 0.1%
mismatch is σ {ein} = 1LSB.

Figure 3.17 shows the impact of the coarse and the fine stage to the residue error. The
standard deviation of the residue error is normalized with LSB12 and is plotted versus the
normalized input voltage of the MDAC. The blue line displays that the residue error is zero, if
a mismatch appears only in the coarse stage and the fine stage is ideal. This is obviously taking
into account that the fine stage corrects errors of the coarse stage. If the fine stage is assumed to
be ideal, all errors can be corrected. The green curve and the dashed black curve show that the
MDAC produces the same residue error when the mismatch is only at the fine stage and when
the mismatch is on each side, the fine and the coarse stage. This result is very interesting. It
shows a very good error rejection for mismatch errors of the coarse stage, even if the fine stage is
affected by capacitor mismatch. It also confirms the assumption of the ideal coarse stage made
for the analytical calculations in Section 3.4.1 about the mismatch errors of the DPA MDAC.

Figure 3.18 shows the residue error of the DPA MDAC versus the capacitor mismatch σc.
The simulation was performed with 103 uniformly distributed input samples V1C ∼ U [−1, 1] and
103 capacitor sets, where each capacitor is independently varied with C ∼ N (Cnom, σ2

abs). The
standard deviation of all residue errors iss calculated. Other than Figure 3.17 and Figure 3.16,
Figure 3.18 shows the 3σ value of the residue error. Assuming Gaussian distribution of the
residue error, 99.7% of the residue errors are inside the 3σ limits. This is a representative
value for the worst case. The blue continuous line in Figure 3.18 shows the residue error for
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Figure 3.17: Residue Error of 1.5 bit DPA MDAC. Green line: Mismatch only on capacitors of fine stage,
coarse stage is ideal. Black dashed line: Mismatch on all capacitors of the MDAC. Blue line
(on x-axis): Mismatch only on coarse stage, fine stage is ideal

a DPA MDAC normalized by LSB12. It is very close to the black dashed curve for the SPA
MDAC. The two curves differ only by 2.6%. The DPA MDAC with σc = 0.1% mismatch has a
residue error of 2.8LSB. This corresponds to 1.4LSB referred to the input of the MDAC. With
this error in the 1st stage, it is not possible to achieve an effective resolution of 12 bits for the
ADC. Assuming the best possible mismatch value of σc = 0.076% for this 40 nm technology (cf.
Figure 3.13), the input referred residue error is given by 1.06LSB. According to Table 3.1, each
MDAC stage must have a residue error of less than ±LSB/2 at the output to reach an input
referred residue error of ±LSB/2 for the overall ADC. This constraint would only be fulfilled
for a 12 bit ADC with mismatch as low as σc = 0.036%.

These results show that the capacitor mismatch is limiting the resolution of the 1.5 bit MDAC
to approximately 10.5 bits. This is valid for MDACs with DPA as well as with SPA. The DPA
technique cannot compensate for the capacitor mismatch of the fine stage. To reach higher
resolutions, it is necessary to choose other topologies. This is the main reason why the 2.5 bit
MDAC is investigated in this thesis. The 2.5 bit MDAC has gain 4. The requirements for the
residue error are relaxed by a factor 2 compared to the 1.5 bit MDAC. It will be shown that the
mismatch requirements are relaxed for the 2.5 bit MDAC.

Villach, February 28, 2014 – 53 –



3 MDAC 1.5 Bit with Dual Path Amplification

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6
Residue Error − Capacitor Mismatch

σ
C

 [%]

3σ
 {

V
er

r}/
LS

B

 

 
DPA 1.5bit MDAC
SPA 1.5bit MDAC

Figure 3.18: Residue Error of 1.5 bit MDAC with σC = 0.1% mismatch. Blue line: DPA MDAC 1st stage.
Black dashed line: SPA MDAC. 3σ value of error distribution is depicted dependent on capac-
itor mismatch σc

3.5 Noise Sources

Noise is a random error. It is not systematic like capacitor mismatch and finite DC gain. Noise
sources decrease the signal-to-noise ratio and the effective resolution of the ADC. In this section
the following noise sources are discussed:

Noise produced by the switches is sampled on capacitors during each sampling phase. It
is called kT/C noise.

The reference voltage Vref is corrupted by noise.

The output of an op-amp is a noise source.

Analytical considerations are presented for the 1.5 bit DPA MDAC and compared to the SPA
MDAC. Simulations were only performed for the overall ADC, the results are shown in Sec-
tion 5.4.

3.5.1 Noise in the Coarse Stage of an MDAC

This section discusses the impact that noise on the coarse output V2C has on the residue V2 =
V2C + V2F . It is shown analytically that the noise of the coarse stage can be ignored.
For a zero mean signal, the signal power corresponds to the variance σ2. For linear systems

with transfer function H, the output power of a signal is calculated by integrating its spectral
power density multiplied with the square of the transfer function:

ν2y =

∫ ∞

0

Sxy(f) · |H(f)|2df (3.71)

For white noise, the spectral power density is not dependent on the frequency. Since the transfer
function is not a function of the frequency, the equation can be simplified to:

ν2y = σ2 · |H|2 (3.72)
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This equation will be used to represent noise considerations in the following discussion.

Figure 3.19: Block diagram of a DPA MDAC to analyze noise behavior of the coarse stage

Figure 3.19 shows a DPA MDAC with noise source VN,IN at the input of the coarse stage.
HC is the transfer function from the noise source to the coarse output V2C . HF is the transfer
function from the input of the fine stage on capacitor CFc to the output of the fine stage V2F .
To get the impact of noise on the residue voltage VN,OUT , outputs V2F and V2C are summed
together. Now, the impact of noise V2C produced by the coarse stage is investigated. V2C is
assumed to be Gaussian distributed with zero mean and standard deviation σ2C .

V2C ∼ N (0, σ2
2C) (3.73)

The transfer function from V2C to VN,OUT is the sum of V2C and V2F divided by V2C :

VN,OUT

V2C

= 1 +HF (3.74)

The noise power ν2N at the output of the MDAC is obtained by combining (3.72) and (3.74):

ν2N = σ2
2C · |1 +HF |2 = σ2

2C · (1 + 2HF +H2
F ) (3.75)

The gain error of the fine stage can be approximated according to (3.53) with 1/LF . The transfer
function HF can be written as ideal gain multiplied by one minus the gain error.

HF ≈ −1 ·
(

1− 1

LF

)

(3.76)

Combining (3.75) and (3.76), the noise power µ2
N yields:

ν2N = σ2
2C ·

∣

∣

∣

∣

1−
(

1− 1

LF

)
∣

∣

∣

∣

2

= σ2
2C ·

∣

∣

∣

∣

1

LF

∣

∣

∣

∣

2

= σ2
2C · 1

L2
F

(3.77)

Noise sources in the coarse stage are reduced by a factor of 1/LF . Thus, the fine stage is the
dominant noise source [1]. The following considerations will ignore noise from the coarse stage
and focus on the noise from the fine stage.
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3.5.2 kT/C Noise

In Section 2.1.3 the noise occurring in the sampling phase is described. In the sampling phase,
shown in Figure 3.2, capacitors CF1 and CFc are loaded through a switch with resistance RON .
This resistor produces thermal noise [7]:

ν2 = 4 · k · T ·RON ·∆f (3.78)

Where k is the Boltzmann constant 1.38 · 10−23 J
K
, T is temperature in Kelvin and ∆f is the

bandwidth of noise. The resistance of the switch and the capacitor build a lowpass filter with
transfer function HLP . The power density of the noise on the capacitor is the product of the
squared absolute value of transfer function |HLP |2 and the squared absolute value of spectral
density of noise ν2/∆f . The noise power σN is obtained by the integral of power density over
frequency [8]:

ν2N = 4 · k · T ·RON ·
∫ ∞

0

1

1 + (2π · f ·RON · C)2
df

= 4 · k · T ·RON · 1

2π ·RON · C · π
2

ν2N =
k · T
C

(3.79)

The resistance cancels out in the calculation, the noise power is only dependent on capacitor C
and on the temperature T .

Figure 3.20: 1st fine MDAC stage. Noise sampled on the capacitors is denoted as voltage source

First stage. Figure 3.20 shows the fine stage of a 1st stage MDAC. The noise sampled on the
capacitors is denoted as voltage source. It can be seen that each capacitor is connected with a
noise source. The noise power at the MDAC output equals the noise power of the fine stage, as
calculated in (3.80) [9].

σ2
2F =

kT (CF1 + CFc + CFp + CFf )

C2
Ff

=
k T (4 + CFp/CFf )

CFf

(3.80)

With the assumption that CFp = CFf follows (3.81).

σ2
2F =

5 kT

CFf

(3.81)
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The noise power is referred to the input of the ADC in (3.82).

σ2
in =

5 kT

CFf

·
∣

∣

∣

∣

1

2

∣

∣

∣

∣

2

=
5

4

kT

CFf

(3.82)

Assuming the feedback capacitor to be 250 fF, and a temperature of T = 20 ◦C, noise σin of the
1st stage yields:

σin =

√

5 · 1.38 · 10−23 J
K

· 293.15K
4 · 250fF = 140µV (3.83)

The input referred effective noise voltage is normalized by LSB12 in (3.84).

σin
LSB12

=
0.14mV

0.49 · 10−3 · Vref

=
0.29

Vref

(3.84)

σin corresponds to LSB12/4 if Vref = 1.16V .

Second stage. The second fine stage is depicted in Figure 3.3. The second and all following
fine stages have the capacitor CF2 in addition toCF1, CFc and CFf , where CF2 is twice the size
of the feedback capacitor CFf .

CF2 = 2 · CFf (3.85)

kT
C
-noise power σ2

2F at the output of the 2nd stage is calculated in (3.86).

σ2
2F =

kT (CF1 + CF2 + CFc + CFp + CFf )

C2
Ff

=
k T (6 + CFp/CFf )

CFf

(3.86)

The noise power is referred to the input of the ADC in (3.87). The gain from the input of the
ADC to the output of the 2nd MDAC stage is a factor of 4.

σ2
in =

7 kT

Cf

·
∣

∣

∣

∣

1

4

∣

∣

∣

∣

2

=
7

4

kT

CFf

(3.87)

Assuming the feedback capacitor to be 250 fF, and a temperature of T = 20 ◦C, noise σin of the
2nd fine stage yields:

σin =

√

7 · 1.38 · 10−23 J
K

· 293.15K
16 · 250fF = 84µV (3.88)

The input referred effective noise voltage is normalized by LSB12 in (3.89).

σin
LSB12

=
84µV

0.49 · 10−3 · Vref

=
0.17

Vref

(3.89)

σin of the 2nd MDAC stage corresponds to LSB12/4 if Vref = 0.68V .

Single path amplification MDAC. The kT/C noise power of an SPA MDAC is given by
[5]:

σ2
2C =

kT (CC1 + CCp + CCf )

C2
Ff

=
k T (3 + CFp/CFf )

CF f
(3.90)
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The same assumptions are made as in the DPA case. The feedback capacitor and the parasitic
capacitor are assumed to be CCp = CCf =250 fF. The temperature is assumed to be T = 20 ◦C.
The noise power of the 1st SPA MDAC stage is referred to the input of the ADC in (3.91).

σin =

√

4 kT

Cf

·
∣

∣

∣

∣

1

2

∣

∣

∣

∣

2

=

√

1.38 · 10−23 J
K

· 293.15K
250fF

= 127µV (3.91)

σin corresponds to LSB12/4 if Vref = 1.04V .

It can be seen that the 1st stage of an SPA MDAC has a slightly better noise performance
than the 1st stage of a DPA MDAC. This is because of the additional capacitor CFc.

3.5.3 Noise on Reference Voltage and Op-Amp Noise

Vsub, applied during the amplification mode, is not ideal. There is noise on it. The absolute
value of the gain factor of the input voltage V2C +V2F is the same as for the subtraction voltage
Vsub. Therefore the noise power σ2

sub of Vsub to the input referred noise power σ2
in is:

σ2
in = σ2

sub (3.92)

The dominant noise source of the op-amp is the transconductance gm. It is calculated by the
ratio of output current Ids to input voltage Vgs [5].

gm =
∂Ids
∂VGS

(3.93)

The noise power ν caused by the op-amp is calculated by:

ν = 4 · k · T · 2
3
· 1

gm
(3.94)

The transconductance gm together with the capacitive load CL on the output of the op-amp
build a low pass filter. The calculation of the input referred noise power is the same as for
kT/C-noise (cf. Section 3.5.2). The noise power σ2

out at the output of the fine stage is:

σ2
out =

2

3
· k T
CL

(3.95)

When referred to the MDAC input, the noise power σ2
out is divided by the squared gain of the

MDAC:

σ2
in =

2

3
· k T
CL

·
∣

∣

∣

∣

1

G

∣

∣

∣

∣

2

=
1

6
· k T
CL

(3.96)

Where CL is the capacitive load of the op-amp and G is the gain of the op-amp. Note that the
capacitive parasitic capacitor at the output of the op-amp is not considered in this consideration.

The capacitive load of the op-amp in the SPA MDAC consists of the feedback capacitor Cf and
the input capacitor C1 of the next MDAC stage. For simplicity there is no scaling of capacitors
assumed. The capacitor C1 of the next stage is twice the size of Cf . The capacitive load of the
op-amp is:

CL = Cf + C1 = 3Cf (3.97)

Input referred noise voltage σin is calculated in (3.98) using (3.97). It is dependent on the

– 58 – Villach, February 28, 2014



3.6 Offset Voltage

feedback capacitor Cf .

σin =

√

1

6
· k T

3Cf

= 0.24

√

k T

Cf

(3.98)

The DPA MDAC has more capacitive load CL on the fine op-amp compared to the capacitive
load of the SPA MDAC. The capacitive load of the fine stage of the DPA MDAC is:

CL = CFf + CC2 + CF2 = 5Cf (3.99)

Note that the capacitive parasitic capacitor at the output of the op-amp is not considered in
this consideration. Input referred noise voltage σin is calculated in (3.100).

σin =

√

1

6
· k T

5Cf

= 0.18

√

k T

Cf

(3.100)

If capacitors are not scaled, the first stage of a DPA ADC has the same capacitive load as the
second stage and further stages. The results of (3.100) and (3.98) are valid for each MDAC
input. To obtain the noise contribution to the input of the ADC it is necessary to scale the
noise voltage σin according to the gain factor from the ADC input to the considered MDAC
stage.

For the noise behavior of single MDAC stages, no simulations were performed due to time
reasons. The noise behavior of the pipeline ADC using DPA MDAC was simulated with the
Matlab model and is discussed in Section 5.4.

3.6 Offset Voltage

The real op-amp produces a voltage different from zero if both inputs of the op-amp are set to
ground. The output of the op-amp can be forced to be zero by applying an offset voltage Voffs

to the input of the op-amp. The offset voltage is a systematic error. It will be shown that the
offset error of the coarse stage can be ignored. The amplification of the offset error for the fine
stage and for the single path amplification MDAC will be derived. The error will be referred to
the ADC input to show the requirements regarding the offset voltage.

The coarse stage amplifies the offset voltage by a factor of GC . The output of the DPA MDAC
yields:

V2 = V2C + V2F (3.101)

= VOffs ·GC + VOffs ·GC · (−1) · (1− 1

LF

)

= VOffs ·GC · (1− 1 +
1

LF

)

V2 =
VOffs ·GC

LF

(3.102)

Whereat LF is the loop gain of the fine stage. The offset voltage at the output of the coarse
stage is reduced by the fine stage. Therefore the offset error of the coarse op-amp can be ignored.
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Figure 3.21: Schematic of the 1st fine stage with offset voltage Voffs as input. The topology yields a non-
inverting amplifier.

1.5bit DPA MDAC. Figure 3.21 shows the 1st fine stage with offset voltage as input. The
op-amp is wired as a non-inverting amplifier. Its transfer function is:

V2F

VOffs

=
CF1 + CFC + CFf + CFp

CFf

= 4 +
CFp

CFf

(3.103)

The offset voltage is amplified by a factor of 5 if the parasitic capacitor is assumed to be
CFp = CFf . The amplification depends on the feedback factor k.
A 2nd fine stage amplifies the offset voltage by a factor of 7 if CFp = CFf . This is because of

the fine input capacitor CF2. The transfer function is given in (3.104).

V2F

VOffs

=
CF1 + CF2 + CFC + CFf + CFp

CFf

= 6 +
CFp

CFf

(3.104)

1.5bit SPA MDAC. The SPA MDAC amplifies the offset voltage of the op-amp less. It has
only one input capacitor C1. The transfer function yields:

V2

VOffs

=
C1 + Cf + CP

Cf

= 3 +
CP

Cf

(3.105)

The offset voltage is amplified by a factor of 4 if CFp = CFf .

Table 3.2: Gain of the offset voltage Voffs relative to the input of the ADC. Comparison of 1st and 2nd
stage DPA MDAC to SPA MDAC.

Gain: Vin

Voffs

SPA 1st stage 2

DPA 1st stage 2.5

DPA 2nd stage 1.75

Table 3.2 shows the gain factor of the offset error referred to the input of the ADC. The DPA
MDAC is more critical regarding offset voltage than the SPA MDAC. The fine stage must have
a small offset voltage, in order to compensate for the offset voltage of the coarse stage. Matlab
simulations were performed for the overall ADC, as discussed in Section 5.5.
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4
MDAC 2.5 Bit with Dual Path Amplification

The capacitor mismatch and the kT/C noise are hard limitations of the 1.5 bit MDAC. Although
the DPA approach can improve the error resulting from finite open loop gain and compensate
for the errors of the coarse stage, the error sources of the fine stage cannot be compensated.
To improve the error, a 2.5 bit MDAC must be used, which provides a gain of 4. The precision
and noise requirements of the residue on the output of the 1st stage are relaxed by a factor
of 2 compared to the 1.5 bit architecture. Furthermore, with the 2.5 bit MDAC the number of
stages is reduced, i.e., less power is consumed by the ADC. On the other hand, the number of
capacitors increases. This results in a slowdown of the settling, a larger gain error, and more
kT/C noise.

This chapter discusses the 2.5 bit MDAC with dual path amplification. The outline of the
chapter follows the outline of the previous chapter for the 1.5 bit MDAC with DPA; after in-
troducing the DPA technique for the 2.5 bit MDAC, the transfer functions are derived, finite
DC gain, capacitor mismatch, noise sources, and offset voltage are discussed and analytically
approximated. All analytic results are verified using Matlab simulations and are contrasted with
the results for the 1.5 bit MDAC in Chapter 3.

4.1 Topology

DPA for the 2.5 bit MDAC follows the same principle as for the 1.5 bit MDAC (cf. Section 3.1).

Figure 4.1 shows the signal path of a 2.5 bit MDAC with DPA [1]. The schematic of a 2.5 bit
MDAC with DPA is depicted in Figure 4.2. The coarse stage and the fine stage are identical to
an SPA MDAC. But the fine stage has additionally a capacitor CFc, which allows to subtract
the coarse output V2C in the fine stage. Figure 4.3 shows the schematic of the 2nd pipelined
stage. Note that CC5 and CF5 are 4 times larger than the feedback capacitor of their stage.
This is necessary to obtain gain 4 for fine input V1F to the MDAC output.

The coarse output is calculated by

V2C = (4V1C − Vsub1 − Vsub2 − Vsub3) + Verr,C , (4.1)

the fine output is

V2F = (4V1C − Vsub1 − Vsub2 − Vsub3)− V2C + Verr,F = −Verr,C + Verr,F , (4.2)
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Figure 4.1: Principle of dual path amplification architecture with 2.5 bit per stage

Figure 4.2: Schematic of the 1st pipeline stage, 2.5 bit MDAC, with dual path amplification - sampling mode
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Figure 4.3: Schematic of the 2nd pipeline stage, 2.5 bit MDAC, with dual path amplification - sampling mode

and the overall residue yields

V2 = V2C + V2F = V2,ideal + Verr,F . (4.3)

Similar to the 1.5 bit MDAC, error Verr,F of the fine stage cannot be compensated. But due to
the small-swing output and the separate design it might be smaller than the error Verr,C of the
coarse stage.

4.2 Transfer Functions

The MDAC is a linear MIMO system. Outputs resulting from different inputs can be superposed
to get the physical outputs. The rationale behind the transfer functions of the 2.5 bit MDAC
is similar to the 1.5 bit case (cf. Section 3.2). The main difference is that more capacitors and
more input voltages are involved. Finite DC gain and the impact of the parasitic capacitance
are considered by adding a disruptive term in the nominator. The disruptive term is the sum
of all involved capacitors in the wiring of the op-amp divided by the transfer function G of the
op-amp.
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4.2.1 1st MDAC Stage

Refer to Figure 4.2 for the schematic of the the 1st MDAC stage. The corresponding disruptive
term is obtained by:

HC,1st =
ΣCC,1st

GC

=
CC1 + CC2 + CC3 + CC4 + CCp + CCf

GC

(4.4)

The input voltage V1C is sampled on capacitors CC1, CC2, CC3, and CC4. Its transfer function
to the coarse output is:

V2C

V1C

= TCC =
CC1 + CC2 + CC3 + CC4

ΣCC,1st

GC
+ CCf

(4.5)

Transfer functions for the subtraction voltages Vsub1, Vsub2, and Vsub3 are:

V2C

Vsubi

= TsubiC =
−CCi

ΣCC,1st

GC
+ CCf

, i ∈ {1, 2, 3} (4.6)

The fine stage has one additional capacitor CFc and one additional input V2C . Its disruptive
term is built by:

HF,1st =
ΣCF,1st

GF

=
CF1 + CF2 + CF3 + CF4 + CFc + CFp + CFf

GF

(4.7)

The corresponding transfer functions of the 1st 2.5 bit MDAC stage follow as:

TCF =
V2F

V1C

=
CF1 + CF2 + CF3 + CF4

ΣCF,1st

GF
+ CFf

(4.8)

TsubiF =
V2F

VsubiC

=
−CFi

ΣCF,1st

GF
+ CFf

(4.9)

T2CF =
V2F

V2C

=
−C2C

ΣCF,1st

GF
+ CFf

(4.10)

The overall outputs of coarse and fine stage are given by:

V2C =
(CC1 + CC2 + CC3 + CC4)V1C − CC1Vsub1 − CC2Vsub2 − CC3Vsub3

ΣCC,1st

GC
+ CCf

(4.11)

[−0.9em]V2F =
(CF1 + CF2 + CF3 + CF4)V1C − CF1Vsub1 − CF2Vsub2 − CF3Vsub3 − CFcV2C

ΣCF,1st

GF
+ CCf

(4.12)

For infinite open loop gain of the op-amps, the disruptive terms vanish. Assuming also perfect
matching of capacitors yields the following simple input-output relations:

V2C = 4V1C − Vsub1 − Vsub2 − Vsub3 (4.13)

V2F = 4V1C − Vsub1 − Vsub2 − Vsub3 − V2C (4.14)
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4.2.2 2nd MDAC Stage

The transfer functions of the 2nd 2.5 bit MDAC stage differ from the 1st stage only in the
disruptive term. This is because of the additional capacitors CC5 and CF5 (cf. Figure 4.3). The
disruptive terms for the 2nd coarse and fine stage are:

HC,2nd =
ΣCC,2nd

GC

=
CC1 + CC2 + CC3 + CC4 + CC5 + CCp + CCf

GC

(4.15)

HF,2nd =
ΣCF,2nd

GF

=
CF1 + CF2 + CF3 + CF4 + CF5 + CFc + CFp + CFf

GF

(4.16)

The corresponding transfer functions for the fine input signal V1F are given by:

TFC =
V2C

V1F

=
CC5

ΣCC,2nd

GC
+ CCf

(4.17)

TFF =
V2F

V1F

=
CF5

ΣCF,2nd

GF
+ CFf

(4.18)

Note that the size of capacitor CX5 for fine input V1F is 4 times the size of the feedback capacitor
CXf . This means that V1C and V1F are transmitted both with a gain of 4 to the outputs. The
overall outputs of coarse and fine stage yield:

V2C =
(CC1+CC2+CC3+CC4)V1C+CC5V1F−CC1Vsub1−CC2Vsub2−CC3Vsub3

ΣCF,2nd

GF
+CCf

(4.19)

V2F =
(CF1+CF2+CF3+CF4)V1C+CC5V1F−CF1Vsub1−CF2Vsub2−CF3Vsub3−CFcV2C

ΣCF,2nd

GF
+CCf

(4.20)

For infinite open loop gain and by ignoring the capacitor mismatch we get:

V2C = 4V1C + 4V1F − Vsub1 − Vsub2 − Vsub3 (4.21)

V2F = 4V1C + 4V1F − Vsub1 − Vsub2 − Vsub3 − V2C (4.22)

4.3 Finite DC Gain

The big advantage of the 2.5 bit structure over the 1.5 bit structure is the relaxed residual error
at the MDAC output. On the other hand, the wiring of op-amps increases because of gain 4.
This affects also the open-loop gain of the MDAC and increases the residue error caused by
finite DC gain. In this section the 2.5 bit structure will be compared to the 1.5 bit structure in
terms of finite DC gain. The goal is to understand if it is possible and reasonable in term of
finite DC gain to use a 2.5 bit MDAC.

4.3.1 Analytical Considerations

Like for the 1.5 bit MDAC (cf. Section 3.3), the finite DC gain introduces a gain error also for the
2.5 bit MDAC. Figure 4.4 shows the residue error due to finite DC gain. Other error sources, in
particular the capacitor mismatch, are ignored in this section to isolate the impact of the finite
DC gain. From the input-output relations (4.11) and (4.12) a common multiplier is singled out;
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Figure 4.4: 2.5bit DPA MDAC, residue with gain error (blue continuous) and ideal residue (black, dashed)

the common multiplier contains the error source.

V2C =
CCf

ΣCC

A0C
+ CCf

(4V1C − Vsub1 − Vsub2 − Vsub3) (4.23)

V2F =
CCf

ΣCF

A0F
+ CCf

(4V1C − Vsub1 − Vsub2 − Vsub3 − V2C) (4.24)

The MDAC output can be expressed as the desired residue voltage multiplied with a gain error.
The gain error can be approximated with loop gain LC and LF of the 2.5 bit MDAC.

V2C = V2,ideal(1− α) ≈ V2,ideal(1−
1

LC

) (4.25)

V2F = (V2,ideal − V2C)(1− β) ≈ (V2,ideal − V2C)(1− (
1

LF

) (4.26)

With the assumption of Cxp = Cxf , the loop gains LC,1st and LF,1st of the 1st MDAC stage
(Figure 4.2) can be calculated by:

LC,1st =
CCf

ΣCC,1st

A0C =
1

6
A0C (4.27)

LF,1st =
CFf

ΣCF,1st

A0F =
1

7
A0F (4.28)

This yields the following estimation for the gain-error αβ of the 1st stage 2.5 bit DPA MDAC:

αβ ≈ 1

LC,1stLF,1st

=
42

A0CA0F

(4.29)

At the 2nd stage (Figure 4.3), the input capacitors CC5 and CF5 for the fine signal V1F are added
to the op-amp wiring. To achieve gain 4, they are 4 times larger than the feedback capacitors.
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Assuming Cxp = Cxf , the loop gain can be computed as:

LC,2nd =
CCf

ΣCC,2nd

A0C =
1

10
A0C (4.30)

LF,2nd =
CFf

ΣCF,2nd

A0F =
1

11
A0F (4.31)

The gain-error αβ of the 2nd stage 2.5 bit DPA MDAC can be estimated as:

αβ ≈ 1

LC,2ndLF,2nd

=
110

A0CA0F

(4.32)

In the 2nd stage, the gain-error is 2.6 times larger than in the 1st stage. Considering gain 4 of
the MDAC, the 2nd stage can be relaxed regarding the residue error at the MDAC output as
shown in Table 4.1. According to (3.58), the requirement for the input referred residue error
increases by a factor of 2 for each stage. Taking gain 4 of the MDAC into account, it yields a
relaxation by a factor of 2 of the residue error at the MDAC output. The requirements regarding
DC gain of the 1st and the 2nd stage are compared in (4.33).

A0C,2ndA0F,2nd =
2.6

2
A0C,1stA0F,1st = 1.3A0C,1stA0F,1st (4.33)

The 2nd pipelined stage needs 2.3 dB more DC gain than the 1st stage.

Table 4.1: Requirement for residue error referred to ADC input and to MDAC output. The accumulation of
all residue errors converges to LSB/2.

Stage number 1 2 3 4 5 ...

Input referred error LSB
4

LSB
8

LSB
16

LSB
32

LSB
64

...

Error at MDAC output 1LSB 2LSB 4LSB 8LSB 16LSB ...

When comparing the 2.5 bit MDAC with the 1.5 bit MDAC, the different gain and hence
the different requirements regarding the residue error must be considered. In the following
comparison, the parasitic capacitors are again assumed to be Cxp = Cxf . The gain error αβ of
the 1st 1.5 bit MDAC yields:

αβ ≈ 1

LC,1stLF,1st

=
4 · 5

A0CA0F

=
20

A0CA0F

(4.34)

The residue error of the 2.5 bit MDAC can be 2 times larger:

α2.5β2.5 = 2α1.5β1.5 ≈
40

A0CA0F

(4.35)

Comparing with (4.29) gives a surprising result: 2.5 bit and 1.5 bit MDACs have similar require-
ments for DC gain. The 2.5 bit MDAC requires 5% more DC gain to meet the same constraint of
input referred residue error. Note that the 1.5 bit structure requires 2 MDAC stages to convert
2 bits, which requires additional energy and chip area. This observation makes the 2.5 bit stage
with the same DC gain requirements more attractive.

Consider the 2nd pipeline stage of the 2.5 bit and the 1.5 bit MDAC. Both stages have the
same requirements for the input referred residue error of LSB/8. According to Table 4.1, the
residue error at the input of the 2nd 2.5 bit stage can be ±2LSB, and according to Table 3.1
the residue error of the 2nd 1.5 bit stage can be ±LSB/2. The 2nd pipeline stage of the 1.5 bit
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MDAC has loop gain:

α1.5β1.5 ≈
1

LC,2nd LF,2nd

=
6 · 7

A0C A0F

=
42

A0C A0F

(4.36)

If this gain error meets the constraint for the 1.5 bit MDAC, the gain error of the 2.5 bit MDAC
is allowed to be

α2.5 β2.5 = 4 α1.5 β1.5 ≈
168

A0C A0F

, (4.37)

assuming the same DC gain for the 1.5 bit and the 2.5 bit MDAC. Comparing (4.37) with (4.32)
shows that the 2nd 2.5 bit pipeline stage has relaxed requirements for DC gain compared to
the 2nd 1.5 bit stage. This result is expected since the DC gain of the 2nd 2.5 bit stage can be
scaled, while the DC gain of the 2nd 1.5 bit stage can not. The 2nd 2.5 bit MDAC needs 3.7 dB
less DC gain A0C A0F . Furthermore, the 2.5 bit structure can convert 4 bits with 2 stages, while
the 1.5 bit structure needs 4 stages to convert 4 bits.

The scaling of DC gain to further stages depends on the error requirement at the output of
the MDAC. This is true for both 1.5 bit and 2.5 bit DPA MDAC stages. The scaling factor is 2
for the 2.5 bit MDAC; in the 1.5 bit MDAC structure only the last stage can be scaled according
to Table 3.1. All MDACs behind the 2nd stage have the same schematic and the same feedback
factor. This means, the loop gain and thus the gain error is linearly dependent on overall DC
gain A0CA0F of the MDAC. Table 4.2 provides an overview over DC gain requirements for 1.5 bit
and 2.5 bit MDAC stages according to the simulations in Section 4.3.2.

4.3.2 Simulation Results

The simulations for the 2.5 bit MDAC were performed with the same assumptions as for the
1.5 bit MDAC in Section 3.3.2. The Matlab model uses the transfer functions introduced in
Section 4.2, assuming that the transfer function of the op-amps is constant. Also the capacitor
mismatch is ignored; all capacitors have nominal values. The simulation algorithm looks for
{A0C , A0F } pairs to get a maximum residue error of exactly ±1LSB at the MDAC output,
which corresponds to LSB/4 at the input.

|V2,ideal − (V2C + V2F )|max
= 1LSB (4.38)

Figure 4.5 shows coarse over fine DC gain such that the error constraint mentioned above
is met. The continuous lines show the results for the 1st stage of a DPA MDAC with 2.5 bit
structure. The ADC resolution varies between the lines. The lines are bent since the DPA
MDAC dependents on both A0C and A0F . The dashed lines in the respective colors show the
DC gain for an SPA MDAC with the respective ADC resolution. The SPA MDAC has only one
op-amp, therefore it only dependents on one DC gain, A0C . The distance between neighboring
curves (dashed or continuous) is about 6 dB. This is because of the scaling of LSB by a factor
of 2 with every bit of the ADC resolution.

Consider the black continuous curve for the 12 bit ADC; there is a point where A0C and A0F

have the same value of 49.1 dB. Summing up both values yields

|A0C |dB + |A0F |dB = 98.2 dB,

where the SPA MDAC (dashed black line) needs 81 dB. This is because the loop gain of the
DPA MDAC is the product of DC gain A0CA0F and feedback factors kCkF . This results in kF
additional DC gain for the DPA MDAC to obtain the same gain error. The gain error for the
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Figure 4.5: Above: Constant error 1 LSB on MDAC output, 2.5 bit MDAC, 1st stage. Continuous lines:
DPA MDAC, dashed lines: SPA MDAC. Below: DC gain that produces LSB on MDAC output,
dependent on ADC resolution. 2.5 bit SPA MDAC, 1st stage

1st stage DPA MDAC and the 1st stage SPA MDAC are:

αβ ≈ kCkF
A0CA0F

αSPA =
kC
A0

(4.39)

Equalizing gain error of DPA MDAC and SPA MDAC yields:

kCkF
A0CA0F

=
kC
A0

⇒ A0CA0F = kFA0 (4.40)

The plot in Figure 4.5 below shows the linear relation between ADC resolution and DC gain A0

for the SPA MDAC.

Figure 4.6 compares the 1st MDAC stages for 1.5 bit and 2.5 bit. Both continuous curves
show A0C over A0F such that an input referred error of LSB/4 is obtained. The plot confirms
the analytical considerations that yield similar gain error for both stages in (4.35) and (4.29).
Dashed lines of corresponding color show SPA MDAC results. It can be seen that the 1.5 bit
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SPA MDAC outplays the 2.5 bit SPA MDAC by about 2.6 dB.
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Figure 4.6: 1.5 bit vs. 2.5 bit MDAC, curves of equal input referred error ±LSB/4 , 1st stage

According to the considerations in Section 4.3.1, the 2nd pipeline stage with 1.5 bit is compared
to the 2nd pipeline stage with 2.5 bit. As shown in Table 4.1 and Table 3.1, both stages require
an input referred residue error ±LSB/8. The tables mentioned above show that considering the
gain of the MDAC yields a residue error of 2LSB on the output of the 2nd 2.5 bit MDAC and
LSB/2 on the output of 2nd 1.5 bit MDAC.

Figure 4.7 shows curves of equal residue errors for the 2nd stages of 1.5 bit and 2.5 bit MDACs,
respectively. To facilitate the comparison with the analytic results of (4.37) and (4.32), this
simulation assumes the same requirement of LSB/4 for the input of both stages. It corresponds
to the 1st pipeline stage. This yields a residue error of 1LSB for the 2.5 bit MDAC and of LSB/2
for the 1.5 bit MDAC. The analytic result of 2.5 dB between DC gain of 1.5 bit and 2.5 bit are
confirmed by the simulation of Figure 4.7. The dashed lines show the DC gain required by the
corresponding SPA MDAC.

Figure 4.8 shows curves of equal input gain error using the approximation (3.54) (green)
and calculating the simulation with transfer functions. The approximation was used for analytic
considerations. The approximated gain error leads to useful results in a range where A0C ≈ A0F .
If A0C and A0F are very different from each other, the system converges to the behavior of an
SPA MDAC. However, the goal of the DPA MDAC is to distribute DC gain on two simple
op-amps, therefore the approximation yields useful results.

Table 4.2: Requirement for DC gain assuming 12 bit ADC. The accumulation of all residue errors converges
to LSB/2 referred to the ADC input.

Stage number 1 2 3 4 5 . . .

1.5 bit SPA MDAC 84.3 dB 87.8 dB 87.8 dB 87.8 dB 87.8 dB . . .

1.5 bit DPA MDAC 97.2 dB 104.4 dB 104.4 dB 104.4 dB 104.4 dB . . .

2.5 bit SPA MDAC 81.8 dB 80.2 dB 74.2 dB 68.2 dB 62.2 dB . . .

2.5 bit DPA MDAC 98.3 dB 100.6 dB 94.6 dB 88.6 dB 82.6 dB . . .
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Figure 4.7: 1.5 bit 3th stage vs. 2.5 bit 2nd stage MDAC, curves of equal input referred error ±LSB/4
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Figure 4.8: Approximation of gain error using loop gain (green) compared with simulation using transfer
functions (blue). 2.5 bit MDAC, 1st pipeline stage. Continuous lines: DPA MDAC, dashed
lines: SPA MDAC

Summarizing, the most important findings are:

The error caused by finite DC gain is proportional to the MDAC output; this holds also
for the 2.5 bit MDAC with DPA. Also the connection between gain error αβ and loop gain
can be approximated with a linear relation like for the 1.5 bit structure.

The required DC gain can be split into two op-amps with low DC gain. This makes
it possible to use simple Miller op-amps instead of complicated op-amps with feedback
structure or cascaded structures.

Villach, February 28, 2014 – 71 –



4 MDAC 2.5 Bit with Dual Path Amplification

The DC gain of the 2nd 2.5 bit DPA MDAC stage cannot be relaxed with respect to the
1st stage. This is due to a different topology and additional capacitors.

Each stage causes LSB/4 referred to the input of the MDAC for simplification. For the
implementation, all following 2.5 bit stages can be relaxed by 6 dB due to the linear relation
between overall DC gain A0CA0F and gain error αβ. All stages after the 1st pipeline stage
have the same schematic and therefore the same relation between DC gain and gain error.

Table 4.2 shows an overview of requirements for DC gain considering LSB12/2 overall
residue error referred to the ADC input.

1.5 bit and 2.5 bit MDACs have the same DC gain requirements for the 1st stage. The
1.5 bit structure needs two MDAC stages to convert 2 bits, the 2.5 bit structure needs only
one stage. 2nd 2.5 bit MDAC and 3th 1.5 bit MDAC have the same requirements for the
input referred residue error. The 2.5 bit stage requires 2.3 dB more DC gain A0CA0F .

4.4 Capacitor Mismatch

The results of Section 3.4 show that the capacitor mismatch limits the resolution of the 1.5 bit
MDAC to about 10.5 bits. It was also shown that the DPA technique cannot compensate the
capacitor mismatch of the fine stage. To reach higher resolutions, the 2.5 bit MDAC is inves-
tigated in this chapter. The 1.5 bit MDAC has gain 2, the 2.5 bit MDAC has gain 4. The
requirements on the residue error of the 2.5 bit MDAC are relaxed by a factor of 2 compared to
the 1.5 bit MDAC. In this section we show that the mismatch requirements are relaxed for the
2.5 bit MDAC as well.
The mismatch error for the 2.5 bit DPA MDAC is calculated analytically in Section 4.4.1.

To get crisp results, some simplifying assumptions were taken. The calculations rely on the
considerations in Section 3.4.1. In Section 4.4.2, the analytic results of Section 4.4.1 are compared
to the Matlab simulation results. The simulation also provides more insight into the behavior
of 2.5 bit DPA and the SPA MDAC concerning capacitor mismatch.

4.4.1 Analytic Considerations

The schematic of the 2.5 bit SPA MDAC corresponds to the coarse stage of the DPA MDAC (cf.
Figure 4.2). The residue affected by the capacitor mismatch is calculated according to (3.62). All
capacitors are assumed to be Gaussian distributed with standard deviation Cnomσabs. Op-amps
are assumed to be ideal. The MDAC output is calculated by:

V2 =
(V1 − Vsub1)(1 + ǫ1) + (V1 − Vsub2)(1 + ǫ2) + (V1 − Vsub3)(1 + ǫ3) + V1(1 + ǫ4)

1 + ǫf

≈ (V1 − Vsub1)(1 + ǫ1)(1− ǫf ) + · · ·+ V1(1 + ǫ4)(1− ǫf )

≈ (V1 − Vsub1)(1 + ǫ1 − ǫf ) + · · ·+ V1(1 + ǫ1)(1− ǫf ) (4.41)

V2 ≈ V2,ideal − ǫf (V2,ideal) + ǫ1(V1 − Vsub1) + ǫ2(V1 − Vsub2)+

+ ǫ3(V1 − Vsub3) + ǫ4(V1) (4.42)

The residue error Verr = V2 − V2,ideal can be identified as:

Verr ≈ −ǫf (V2,ideal) + ǫ1(V1 − Vsub1) + ǫ2(V1 − Vsub2) + ǫ3(V1 − Vsub3) + ǫ4(V1) (4.43)
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This result is not as simple as in the 1.5 bit case. It is not proportional to V2,ideal because the
inputs are applied on different capacitors. Hence they are amplified with different gain-deviation
due to statistically independent random variables ǫi. The residue of the 2.5 bit DPA MDAC with
capacitor mismatch is depicted in Figure 4.9. The capacitor mismatch is overdrawn to better
emphasize its effect. The dashed line denotes ideal residue.
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Figure 4.9: Residue of 2.5 bit DPA MDAC with capacitor mismatch (continuous line), ideal residue (dashed
line)

The standard deviation of the residue error can be calculated by:

σ {Verr} =
√

V 2
2,ideal + (V1 − Vsub1)2 + (V1 − Vsub2)2 + (V1 − Vsub3)2 + V 2

1 · 1√
2
σc (4.44)

The largest error is produced with V1 = ±Vref . Assuming a 12 bit ADC and capacitor mismatch
σc = 0.1%, the residue error is:

σ {Verr} =
√
1 + 1 · 1√

2
· σc = 0.001 = 2.0LSB12 (4.45)

It is surprising that (4.45) and (3.66) for the 1.5 bit MDAC lead to the same result. Taking the
different gain of the 1.5 bit and the 2.5 bit MDAC into account, this result means that the input
referred error of the 2.5 bit MDAC is half as large. This is valid for the largest error occurring
with input V1 = ±Vref .

Next the behavior of an MDAC with dual path amplification will be discussed. The 2.5 bit DPA
MDAC is shown in Figure 4.2. The coarse stage is assumed to be ideal to simplify the calculation.
This is acceptable since the error produced by the coarse stage is mostly compensated by the
fine stage. With the assumption of an ideal coarse stage, the fine output V2F corresponds to a
residue error:

Verr = V2C + V2F − V2,ideal (4.46)

It can be approximated by:
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V2F = (V1 − Vsub1) ·
C(1 + ǫ1)

C(1 + ǫf )
+ · · · − V2C · C(1 + ǫ5)

C(1 + ǫf )
=

=
(V1 − Vsub1)(1 + ǫ1) + · · ·+ (V1 − Vsub3)(1 + ǫ3) + V1(1 + ǫ4)− V2C(1 + ǫ5)

1 + ǫf
=

=
(V1 − Vsub1)(1 + ǫ1) + · · · − [(V1 − Vsub1)(1 + ǫ5) + · · ·+ V1(1 + ǫ5)]

1 + ǫf
≈

≈ (V1 − Vsub1)(ǫ1 − ǫ5) + (V1 − Vsub2)(ǫ2 − ǫ5) + (V1 − Vsub3)(ǫ3 − ǫ5) + Vin(ǫ4 − ǫ5)

1
(4.47)

V2F = V2C + V2F − Videal = Verr

Verr ≈ ǫ1(V1 − Vsub1) + ǫ2(V1 − Vsub2) + ǫ3(V1 − Vsub3) + ǫ4(V1)− ǫ5(V2,ideal) (4.48)

The result of (4.47) corresponds to the result in (4.42) for the SPA MDAC. The DPA technique
cannot compensate errors caused by the fine stage. The largest residue error is produced with
input ±Vref . Assuming a capacitor mismatch of σc = 0.1%, the standard deviation of the
residue error for V1C = ±Vref yields:

σ {Verr} = 2LSB12 (4.49)

The analytical results are verified by the Matlab simulations presented below.

4.4.2 Simulation Results

2.5 bit MDACs using DPA vs. SPA were simulated in Matlab. All capacitors of the MDAC were
deviated randomly with Gaussian distribution and standard deviation σabs = 1√

2
σc, where σc

is the capacitor mismatch. The simulation was performed with 103 different capacitor sets and
with 103 input samples. It yields a distribution of 106 residue values. As shown in Section 4.4.1,
the residue errors caused by capacitor mismatch can be approximated by a sum of Gaussian
distributed random variables. Therefore also the residue error can be assumed to be nearly
Gaussian distributed. For plotting the results, the standard deviation of the residue error
distribution was calculated.

Figure 4.10 compares the residue errors of 2.5 bit SPA MDAC (black dashed line) and 2.5 bit
DPA MDAC (magenta and cyan lines). The standard deviation of the residue errors is shown
over the input voltage V1C normalized by Vref . The magenta curve and the cyan curve are iden-
tical. They show the residue error of the 2.5 bit DPA MDAC with the topology of a 1st pipeline
stage (dashed cyan) and the topology of a 2nd pipeline stage (magenta). This result is not
surprising because the simulation assumed fine input V1F of the 2nd stage to be zero. Therefore
C2C and C2F of the 2nd pipeline stage produce no mismatch error. Fine input V1F can be
assumed to be small compared to coarse input V1C , therefore it is ignored. The same behavior
can be observed for the 1.5 bit MDAC (cf. Figure 3.16). Looking at the maximum values for
the residue error at V1C/Vref = ±1, it can be seen that standard deviation of the error is about
2 LSB12. This corresponds to the example calculated in (4.45). In the analytical calculation,
simplifications were made. The residue error of the SPA MDAC (4.45) and of the DPA MDAC
(4.48) show the the same standard deviation. The simulation in Figure 4.10 shows good match-
ing of the curves in the linear range [−0.125,+0.125]. For larger inputs the curves of SPA and
DPA MDAC deviate from each other. Looking at the upper corners where V1C = ±Vref , the
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Figure 4.10: Residue error of a 2.5 bit MDAC with capacitor mismatch σc = 0.1%

curves for SPA and DPA MDAC match again. The standard deviation of the curves deviates
only 0.8% from the analytical result of 2LSB12.
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Figure 4.11: Residue error of 2.5 bit MDAC. Green line: Mismatch only on capacitors of fine stage, coarse
stage is ideal. Black dashed line: Mismatch on all capacitors of the MDAC. Blue line (on
x-axis): Mismatch only on coarse stage, fine stage is ideal

Figure 4.11 shows the impact of coarse and fine stage to the residue error. The standard
deviation of the residue error was normalized by LSB12 and is plotted over the input voltage
of the MDAC. The findings correspond to the 1.5 bit case. The blue line along the x-axis shows
the residue error for mismatch only at the coarse stage. All errors are corrected by the ideal fine
stage. The green curve and the dashed black curve show residue error only on the fine stage and
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on all capacitors of the MDAC. These two cases result in the same residue error, which shows
a very good rejection for mismatch errors of the coarse stage, even if the fine stage is affected
by capacitor mismatch. Thus the simulation supports the assumption of an ideal coarse stage
taken for the analytical considerations in Section 4.4.1.
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Figure 4.12: Residue error of a 1.5 bit (red) and a 2.5 bit (blue) MDAC 1st stage. Capacitor mismatch is
σc = 0.1%

Figure 4.12 shows the standard deviation of residue errors for 1.5 bit (red) and 2.5 bit (blue)
DPA MDACs. The blue curve shows more kinks due to the 6 comparators in the sub-ADC of the
2.5 bit MDAC compared to the 2 comparators in the sub-ADC of the 1.5 bit MDAC. Furthermore,
the blue curve shows linear behavior only between −0.125 and +0.125, while the full red curve
is piecewise linear. At the 2.5 bit MDAC all subtraction voltages are Vsub1 = Vsub2 = Vsub3 = 0
in the range of V1 = [−0.125,+0.125]. Thus the MDAC depends only on the input V1C in this
range. Considering (4.48) and (4.43), the residue error can be written as:

Verr ≈ ǫ1(V1) + ǫ2(V1) + ǫ3(V1) + ǫ4(V1)− ǫ5(4V1) =

= V1(ǫ1 + ǫ2 + ǫ3 + ǫ4 − 4 ǫ5) (4.50)

The linear dependency of the residue error on input V1 can be seen in (4.50). If ‖V1‖ > 0.125,
the residue error depends on more than one input applied on different capacitors. The standard
deviation calculated in (4.44) contains a squared sum of different inputs. This is the reason for
the bent curves of the 2.5 bit MDAC. The 1.5 bit MDAC has a smaller residue error for most
input values. The error for V1C/Vref = 1 is approximately 2 LSB12 for both 1.5 bit and 2.5 bit
MDAC. Considering gain 4 of the 2.5 bit MDAC, the standard deviation of the input referred
error e2.5,max is:

σ {e2.5,max} ≈ 1

2
LSB12 with V1C/Vref = 1, σc = 0.1% (4.51)

The 1.5 bit stage has only gain 2, and the standard deviation of the input referred error yields:

σ {e1.5,max} ≈ 1LSB12 with V1C/Vref = 1, σc = 0.1% (4.52)
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This comparison, however, considers only two values for the input V1C . A more informative
comparison is shown in Figure 4.13.
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Figure 4.13: Residue Error of 1.5 bit and 1.5 bit MDAC with mismatch σc = 0.1%. 3σ value of error
distribution is depicted dependent on capacitor mismatch σc

Figure 4.13 shows the 3σ value of residue errors over capacitor mismatch σc. The simulation
was performed with 103 uniformly distributed input samples V1C ∼ U [−1, 1] and 103 capacitor
sets, where each capacitor is independently varied with C ∼ N (Cnom, σ2

abs). 3σ contains 99.7%
of all errors, assuming Gaussian distribution of the residue error. This is a representative value
for the worst error. The blue continuous and the blue dashed lines show the residue error for
a 2.5 bit DPA and SPA MDAC normalized by LSB12, respectively. The red continuous and
the red dashed lines show the residue error for a 1.5 bit DPA and SPA MDAC normalized by
LSB12, respectively. When comparing the mismatch errors of 1.5 bit and 2.5 bit DPA MDACs,
it is necessary to consider their gain. Referring the error to the MDAC input, for 2.5 bit we need
to divide by 4. The 3σ value of the error Verr,2.5 for DPA with 0.1% mismatch is:

3σ {Verr,2.5} =
4.18LSB12

4
= 1.05LSB12 (4.53)

The 1.5 bit MDAC has gain 2. The 3σ value for the input referred error of 1.5 bit yields:

3σ {Verr,1.5} =
2.78LSB12

2
= 1.39LSB12 (4.54)

The 2.5 bit DPA MDAC is 32% better than the 1.5 bit DPA MDAC. Nevertheless, for a 3σ
value of LSB12/2, only 0.048% mismatch are acceptable. The minimum mismatch achievable in
40 nm technology of 0.076% yields for the 2.5 bit DPA MDAC:

3σ {Verr,2.5} =
3.18LSB12

4
= 0.8LSB12 (4.55)

The single stage performs 4% better than the DPA stage.

The most important findings regarding capacitor mismatch are:
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1st stage DPA MDAC and 2nd stages DPA MDAC have the same performance when the
fine input signal V1F is assumed to be small.

Mismatch on the coarse stage is compensated by the fine stage of the DPA MDAC. It does
not affect the residue error.

Mismatch on the fine stage cannot be compensated. It causes a residue error of the DPA
MDAC that is about 4% larger than the residue error of the SPA MDAC.

The 2.5 bit MDAC is about 1/3 better than the 1.5 bit MDAC, comparing the residue
errors referred to the MDAC input. This is because of the increased gain by a factor of 2.

Considering mismatch limits of a Complementary Metal Oxide Semiconductor (CMOS)
40 nm technology, the capacitor mismatch limits the 3σ value of the residue error of the
2.5 bit MDAC to 0.8LSB12.

4.5 Noise Sources

In this section the following noise sources are discussed for the 2.5 bit MDAC and compared
with the 1.5 bit MDAC:

Noise produced by the switches is sampled on capacitors during each sampling phase. It
is called kT/C noise.

The reference voltage Vref is corrupted by noise.

The output of an op-amp is a noise source.

Simulations were only performed for the overall ADC, the results are shown in Section 5.4.

The impact of noise sources in the coarse stage is discussed in Section 3.5.1 for the 1.5 bit
MDAC. Since the DPA structure is the same for 1.5 bit and 2.5 bit MDACs, conclusions is also
valid for the 2.5 bit DPA MDAC. Noise sources in the coarse stage are reduced by a factor of
1/LF . Thus, the fine stage is the dominant noise source [1]. The following considerations ignore
noise from the coarse stage and focus on the noise from the fine stage.

4.5.1 kT/C Noise

kT/C noise is discussed in Section 3.5.2 for the 1.5 bit MDAC. This section extends the results
to the 2.5 bit MDAC.

In the sampling phase, shown in Figure 4.2, capacitors CF1, CF2, CF3, CF4 and CFc are loaded
via a switch with the resistance RON . However, CFp and CFf are also connected through
switches to ground. The thermal noise of resistors (3.78) is sampled onto the capacitors. Calcu-
lating the noise power sampled on a capacitor shows that the size of the resistor does not show
up in the result.

First stage: Figure 4.14 shows the fine stage of a 1st stage 2.5 bit MDAC. The noise sampled
on the capacitors is defined as a voltage source. It can be seen that each capacitor is connected
with a noise source. The noise power at the MDAC output is calculated in (4.56) [9].

σ2
2F =

kT (CF1 + CF2 + CF3 + CF4 + CFc + CFp + CFf )

C2
Ff

=
k T (6 + CFp/CFf )

CFf

(4.56)
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Figure 4.14: 1st fine stage of 2.5 bit DPA MDAC. Noise sampled on capacitors is defined as voltage source

With the assumption that CFp = CFf follows (4.57).

σ2
2F =

7 kT

CFf

(4.57)

The noise power is referred to the input of the ADC in (4.58).

σ2
in =

7 kT

CFf

·
∣

∣

∣

∣

1

4

∣

∣

∣

∣

2

=
7

16

kT

CFf

(4.58)

This result corresponds to the result of the 2nd stage of an 1.5 bit DPA MDAC. Assuming the
feedback capacitor to be 250 fF, and a temperature of T = 20 ◦C, the effective noise voltage σin
of the 1st stage yields:

σin =

√

7

16

1.38 · 10−23 J
K

· 293.15K
4 · 250fF = 84µV (4.59)

The input referred effective noise voltage is normalized by LSB12 in (3.84).

σin
LSB12

=
84µV

0.49 · 10−3 · Vref

=
0.17

Vref

(4.60)

The effective noise voltage σin corresponds to LSB12/4 if Vref = 0.68V .

Second stage: The second fine stage is depicted in Figure 4.3. The second and all following
fine stages have the capacitor CF5 in addition to the capacitors of the 1st stage , where CF5 is
four times the size of the feedback capacitor CFf .

CF5 = 5 · CFf (4.61)
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kT/C noise power σ2
2F at the output of the 2nd stage is calculated in (4.62).

σ2
2F =

kT (CF1 + CF2 + CF3 + CF4 + CF5 + CFc + CFp + CFf )

C2
Ff

=
k T (10 + CFp/CFf )

CFf

(4.62)

The noise power is referred to the input of the ADC in (4.63). The parasitic capacitor is assumed
to be CFp = CFf . The gain from the input of the ADC to the output of the 2nd MDAC stage
is a factor of 16.

σ2
in =

11 kT

Cf

·
∣

∣

∣

∣

1

16

∣

∣

∣

∣

2

=
11

162
kT

CFf

(4.63)

Assuming the feedback capacitor to be 250 fF, and a temperature of T = 20 ◦C, the effective
noise voltage σin of the 2nd fine stage yields:

σin =

√

11

162
1.38 · 10−23 J

K
· 293.15K

250fF
= 26µV (4.64)

The input referred effective noise voltage is normalized by LSB12 in (4.65).

σin
LSB12

=
26µV

0.49 · 10−3 · Vref

=
0.054

Vref

(4.65)

The reference voltage must only be Vref = 0.22V to obtain an effective noise σin of LSB12/4
referred to the ADC input.

Single path amplification MDAC. The kT/C noise power of an SPA MDAC is given by:

σ2
2F =

kT (CF1 + CF2 + CF3 + CF4 + CFp + CFf )

C2
Ff

=
k T (5 + CFp/CFf )

CFf

(4.66)

The same assumptions are made as for the DPAMDAC. The feedback capacitor and the parasitic
capacitor are assumed to be CCp = CCf =250 fF. The temperature is assumed to be T = 20 ◦C.
The noise power of the 1st SPA MDAC stage is referred to the input of the ADC in (4.67).

σin =

√

6 kT

Cf

·
∣

∣

∣

∣

1

4

∣

∣

∣

∣

2

=

√

6

16

1.38 · 10−23 J
K

· 293.15K
250fF

= 78µV (4.67)

σin corresponds to LSB12/4 if Vref = 0.64V .

It can be seen that the 1st stage of an SPA MDAC has a slightly better noise performance
than the 1st stage of a DPA MDAC. This is because of the additional capacitor CFc.

1.5 Bit vs. 2.5 Bit MDAC: Effective noise voltages referred to the ADC input are used
for the following considerations. Comparing the 1st stage of an SPA ADC using 1.5 bit MDACs
to the 1st stage of a DPA ADC using 2.5 bit MDACs, it can be seen that the 2.5 bit structure
has relaxed requirements on kT/C noise. If the feedback capacitors CCf of both 1st stages are
of the same size and the parasitic capacitors are CCp = CCf , the 2.5 bit MDAC produces 38.6%
less noise than the 1.5 bit MDAC.

The same tendency can be observed in the DPA structure. Consider the 1st stage of a DPA
ADC. A 2.5 bit MDAC produces 40% less noise than an 1.5 bit MDAC. The difference is even
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larger for the 2nd stage. The 2nd 2.5 bit MDAC stage produces 69% less noise than a 2nd 1.5 bit
MDAC stage.

4.5.2 Noise on Reference Voltage

Vsub, applied during the amplification mode, is corrupted by noise. For the 1.5 bit MDAC with
non-flip around architecture, the noise σ2

sub of the reference voltage has a gain of 1 to the input
of the MDAC. Input voltage V1C subtraction voltage Vsub are applied to the same capacitor
CC1. The 2.5 bit MDAC has a more complex structure. Three of the four input capacitors are
used to build the subtraction voltage, depending on the decision of the sub-ADC.

In the range of V1C ∈ [−0.125Vref ,+0.125Vref ], the subtraction voltages are Vsub1 = Vsub2 =
Vsub3 = 0. Therefore the noise σ2

in is also zero.

In the range of |V1C | ∈ [0.125Vref , 0.375Vref ], the subtraction voltages are Vsub1 = Vref and
Vsub2 = Vsub3 = 0. The resulting noise power at the output of the MDAC is:

σ2
out = σ2

sub · 12 = σ2
sub (4.68)

Referring the noise power to the input of the ADC yields:

σ2
in = σ2

out ·
∣

∣

∣

∣

1

4

∣

∣

∣

∣

2

(4.69)

The effective noise voltage at the input of the ADC is shown in (4.70).

σin =
√

σ2
in =

√

σ2
sub ·

∣

∣

∣

∣

1

4

∣

∣

∣

∣

2

=
1

4
σsub (4.70)

In the range of |V1C | ∈ [0.375Vref , 0.625Vref ], the subtraction voltages are Vsub1 = Vsub2 = Vref

and Vsub3 = 0. The effective noise voltage σin referred to the input of the ADC is calculated in
(4.71):

σin =

√

σ2
sub ·

∣

∣

∣

∣

2

4

∣

∣

∣

∣

2

=
1

2
σsub (4.71)

In the range of |V1C | ∈ [0.625Vref , Vref ], all subtraction voltages are equal to the reference
voltage Vsub1 = Vsub2 = Vsub3 = Vref . The corresponding effective noise voltage σin referred to
the input of the ADC is calculated in (4.72):

σin =

√

σ2
sub ·

∣

∣

∣

∣

3

4

∣

∣

∣

∣

2

=
3

4
σsub (4.72)

Because of the assumption made in Section 3.5.1, that the noise of the coarse stage can be
ignored, the results for a SPA MDAC are also valid for DPA MDACs. The fine stage is the
dominant noise source. It has the same gain for the subtraction voltages as a SPA MDAC.
The 1st and 2nd stages of a DPA MDAC also have the same properties regarding noise on the
subtraction voltage. Therefore the noise contribution of the 1st stage is the largest. Each further
stage produces 1/4 less noise referred to the ADC input.

The gain of the subtraction voltage relative to the input is higher for the 1.5 bit MDAC than
for the 2.5 bit MDAC. This is due to the lower MDAC-gain of the 1.5 bit MDAC.
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4.5.3 Op-Amp Noise

The dominant noise source of the op-amp is the transconductance gm. In Section 3.5.3,(3.95)
the noise power at the output of the MDAC is calculated. The noise power σout at the output
of the op-amp is dependent on the capacitive load CL of the op-amp. The 2.5 bit MDAC has
more capacitive load CL than the 1.5 bit MDAC, because the input capacitors of the next 2.5 bit
MDAC are twice as large. This results in a smaller noise on the output of the 2.5 bit MDAC.
Also the capacitive load of a DPA MDAC is larger than the capacitive load of a SPA MDAC.
The noise power σ2

in referred to the input of the ADC is calculated by:

σ2
in =

2

3
· k T
CL

·
∣

∣

∣

∣

1

G

∣

∣

∣

∣

2

(4.73)

Where CL is the capacitive load of the op-amp and G is the gain of the MDAC.Table 4.3 shows
input referred noise voltage σin for SPA and DPA MDACs with 1.5 bit and 2.5 bit structures.
If capacitors are not scaled, the 1st stage of a DPA ADC has the same capacitive load as the
2nd stage. Therefore the noise contribution to the input of the MDAC is scaled by a factor of
2 for SPA ADCs and DPA ADCs. Note that the capacitive parasitic capacitor at the output of
the op-amp is not considered in this consideration. caused by the op-amp of the MDAC

Table 4.3: Input referred noise voltage σin caused by the op-amp of the MDAC.

σin [µV ] 1.5 bit MDAC 2.5 bit MDAC

SPA 0.24
√

k T
Cf

0.18
√

k T
Cf

DPA 0.18
√

k T
Cf

0.14
√

k T
Cf

It can be seen that the 2.5 bit MDAC produces less noise referred to the input. Furthermore,
it turns out that the DPA structure is better than the SPA structure due to the higher capacitive
load

No simulations were performed for the noise behavior of single MDAC stages due to time
constraints. The noise behavior of the pipeline ADC using DPA MDAC was simulated with the
Matlab model and is discussed in Section 5.4.

4.6 Offset Voltage

The impact of the offset voltage on the 1.5 bit structure is discussed in Section 3.6. The 2.5 bit
structure differs in the feedback factor k and in the MDAC gain G. The offset error of the coarse
stage is ignored because it is reduced by the fine stage. For DPA MDACs only the fine stage is
considered.

In this section, the amplification of the offset error for the fine stage and for the single path am-
plification MDAC is derived and referred to the input. Finally the 2.5 bit structure is compared
with the 1.5 bit structure using Table 4.4.

2.5bit DPA MDAC. Figure 4.15 shows the 1st fine stage with offset voltage Voffs as input.
The op-amp is wired as a non-inverting amplifier. Its transfer function is:

V2F

VOffs

=

∑4

i=1
CFi + CFC + CFf + CFp

CFf

= 7 +
CFp

CFf

(4.74)
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Figure 4.15: Schematic of the 1st fine stage with offset voltage Voffs as input. The topology yields a non
inverting amplifier

The offset voltage is amplified by a factor of 8 if the parasitic capacitor is assumed to be
CFp = CFf .
A 2nd fine stage amplifies the offset voltage with a factor of 12 if CFp = CFf . This is because

of the fine input capacitor CF2. The transfer function is shown in (4.75).

V2F

VOffs

=

∑5

i=1
CFi + CFc + CFf + CFp

CFf

= 11 +
CFp

CFf

(4.75)

2.5bit SPA MDAC. The SPA MDAC has less capacitors than to the DPA MDAC. The
transfer function yields:

V2F

VOffs

=

∑4

i=1
CFi + CFf + CFc

CFf

= 5 +
CFp

CFf

(4.76)

The offset voltage is amplified by a factor of 6 if CFp = CFf .

Table 4.4: Gain of the offset voltage Voffs referred to the ADC input. The parasitic capacitor is assumed to
be CFp = CFf .

Gain: Vin

Voffs
1.5 bit MDAC 2.5 bit MDAC

SPA 1st stage 2 1.5

DPA 1st stage 2.5 2

DPA 2nd stage 1.5 1.75

1.5bit vs. 2.5bit MDAC. In order to compare 1.5 bit to 2.5 bit MDACs, it is reasonable
to refer the gain of the offset voltage to the ADC input. Table 4.4 shows the gain factor of the
offset error referred to the input of the ADC. The DPA MDAC is more critical regarding offset
voltage than the SPA MDAC.
Matlab simulations were performed for the overall ADC and are discussed in Section 5.5.
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5
Overall Error Compensated Pipelined ADC

The MDAC stage using DPA technique is discussed in Chapters 3 and 4, precision and errors
of the analog residue voltage are evaluated. This chapter is about the overall pipelined ADC.
The digital output of the ADC is investigated using spectral analysis and the following errors
are discussed on the basis of the results of the Matlab simulation:

finite DC gain

capacitor mismatch

noise sources

offset voltage

First the topology of the overall pipelined ADC is introduced, after which the errors are discussed
by comparing ADCs with 1.5 bit MDACs to ADCs with 2.5 bit MDACs.

5.1 Topology

The pipelined ADC is composed of several cascaded stages, each pipeline stage consists of a
sub-ADC and an MDAC. The MDAC is described in Section 3.1 and Section 4.1. The digital
output of a stage Di consists of 2 bits for a 1.5 bit stage or 3 bits for a 2.5 bit stage. One bit
of each stage is used for the digital correction, taking into account the digital output of the
following stage. The last stage is a flash converter and does not need Digital Error Correction
(DEC) , its output is 1 bit only. The structure of the error compensated pipelined ADC is shown
in figure 5.1.

The digital output Di is obtained by converting the coarse output of the MDACi−1 to a digital
value. The analog input of stage i is built in MDACi, summing up the coarse and the fine output
voltage of MDACi−1 in both fine and coarse stage. The signal path from one pipeline stage to
the next is shown in Figure 5.2

The digital correction logic block builds the digital output of the overall ADC, i.e. a weighted
sum of Di. The digital output DN+1 of the flash converter is weighted with 1, the digital output
of the first pipeline stage is weighted with the highest factor. For a 12 bit pipelined ADC with
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Figure 5.1: Structure of a pipelined ADC

Figure 5.2: Signal path between pipeline stages

eleven 1.5 bit stages and one 1 bit flash converter at the end, the sum yields:

DOUT =
11
∑

i=1

211−iDi +D12 (5.1)

For a 12 bit pipelined ADC with five 2.5 bit stages and one 2 bit flash converter:

DOUT =
5
∑

i=1

2 · 45−iDi +D6 (5.2)

Pipeline stages do not all have the same requirements with regard to the residue error. The
first stage has the strongest requirements, following stages can be relaxed. This topic was
discussed in Sections 3.3.2 and 4.3.1. The Matlab simulations were performed without scaling
for simplicity. Therefore the first pipeline stage is the dominant error source.

An overall pipeline ADC built of 2.5 bit MDACs has less pipeline stages than an ADC built
of 1.5 bit MDACs. Each 2.5 bit MDAC converts 2 bits, whereas an 1.5 bit MDAC converts only
1 bit. Incidentally, ADCs built of 1.5 bit MDACs and ADCs built of 2.5 bit MDACs have the
same structure. Differences between the topologies of 1.5 bit MDACs and 2.5 bit MDACs are
shown in Section 4.1.

5.2 Finite DC Gain

The finite DC gain of the op-amp used in MDACs introduces a systematic error. The DC gain
of the op-amp is limited by gm and gds of the input and output stages. There is a deviation
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in the DC gain due to mismatch in the op-amp, which cannot be compensated for by simply
adapting the loop gain of the MDAC via the feedback capacitor. The impact of finite DC gain
on the residue error is discussed in detail in Sections 3.3 and 4.3. This section is focused on how
finite DC gain affects the digital output of the overall ADC.

5.2.1 Linearity Considerations for 1.5 Bit MDAC

The DPA structure contains two op-amps, each of them has finite DC gain A0,C and A0,F . To
better describe the MDAC as one unit, the sum A0,sum=A0,C +A0,F and the difference ∆A0=
A0,C − A0,F are introduced. Capacitor mismatch in the MDAC is ignored for these considerations
on the effect of finite DC gain.
The sum of DC gains A0,sum is important for the effective resolution achievable for the ADC.
It is dependent on the sum of A0,C and A0,F , as can be seen in Figure 5.3. The difference

∆A0 is constant for every curve. Considering the red curve with ∆A0= 20dB, at the value
A0,sum= 90dB on the x-coordinate, the coarse DC gain is A0,C = 60dB and the fine DC gain is
A0,F = 40dB. The red curve shows the best result, where decreasing the difference also decreases
the effective resolution achievable. In Table 5.1 you can see the necessary sum of DC gains for
effective resolutions, referring to the red curve.

ENOB A0,sum

10 bit 75 dB
11 bit 82 dB
12 bit 89 dB

Table 5.1: DC gain needed for the effective resolution

The worst result is given by ∆A0= −10 dB (black curve), further decreasing of ∆A0 slightly
improves the result again. However the difference between the curves gets smaller with higher
overall DC gain. It is 0.2 bits for A0,sum= 70dB, and only 0.06 bits for A0,sum= 90dB and
12 bits effective resolution.
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Figure 5.3: Gain Error: 1.5 bit MADC - 13 bitADC - Dual Path Amplification
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5.2.2 Linearity Considerations for 2.5 Bit MDAC

Figure 5.4 shows the behavior of a 13 bit ADC with 2.5 bit MDAC related to finite DC gain.
The same range of A0,sum and the same values for ∆A0 as in Figure 5.3 are used. Comparing
the two plots, it can be observed that 2.5 bit MDAC stages cause a wider spread of the curves.
In particular, the cyan curve with ∆A0= −20 dB has a kink and drops down faster for A0,sum<
85 dB. Looking at Figure 5.3, the corresponding curve shows a similar performance to the
magenta and black curves (∆A0= 0dB , −10 dB), it is even slightly better. According to these
results A0,C greater than A0,F should be chosen for the 2.5 bit MDAC structure to get the best
result for a given sum of DC gains. On the other hand, reducing A0,C cannot be compensated
for by adding the same DC gain at A0,F .
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Figure 5.4: Finite DC gain: 2.5 bit MDAC - 13 bit ADC - Dual Path Amplification

Table 5.2 lists the requirements for A0,sum assuming ∆A0= 20dB.

ENOB A0,sum

10 bit 71 dB
11 bit 78.6 dB
12 bit 86 dB

Table 5.2: DC gain needed for the effective resolution

In Figure 5.5 ADCs with 2.5 bit and 1.5 bit MDAC structures are compared, ∆A0 is assumed
to be 0. According to the investigations of MDAC stages in Sections 3.3 and 4.3, the performance
of the 2.5 bit MDAC ADC is better for the same overall DC gain. The effective resolution of
the ADC with 2.5 bit per stage is 0.33 bits higher at A0,sum= 90dB.
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Figure 5.5: Finite DC gain: 13 bit - ADC with Dual Path Amplification

5.3 Capacitor Mismatch

As we saw in chapters 3 and 4, capacitor mismatch is a critical point of the pipelined ADC
with 12 bits or more, because the technology used limits the accuracy achievable of the analog
error compensated MDAC. The criteria expressed in chapters 3 and 4 give information about the
performance and errors of the residue generating MDAC, however finally the quality of digital
ADC output is of interest. Consider the signal path of the error compensated pipelined ADC in
Figure 5.2, The sub−ADCi converts the output of the i -th coarse stage. The error compensated
residue is only built in the next stage MDACi, where subtraction and multiplication operation
are also performed at the same time. Hence the error compensated residue is not available as a
voltage. The simulation of the pipelined ADC show that the investigations made on one MDAC
stage are also meaningful for the performance of the overall ADC. This chapter deals with the
effect of capacitor mismatch on the ADC linearity. For this purpose, op-amps in the MDAC are
assumed to be ideal.

5.3.1 Linearity Considerations for 1.5 Bit MDAC

The Matlab model for the 1.5 bit ADC contains 11 MDAC stages, where the capacitors of each
stage display an independent variation from the nominal values. The variation σabs of each
capacitor from its nominal value is Gaussian distributed, the pairwise capacitor mismatch σc is
obtained by [5]:

σc =
√

σ2
abs + σ2

abs =
√

2σ2
abs =

√
2 · σabs (5.3)

The last stage is a flash converter with 1 bit resolution. It is considered to be an ideal
comparator. In practice it is common to choose a higher resolution for the flash converter such
as 2 bits or 3 bits to save energy and chip area, thus reducing the number of stages. However in
this thesis the flash converter is not the subject of investigation. For an ideal flash converter the
1 bit configuration represents the worst case for the ADC errors, because more non ideal stages
are involved.
In Figure 5.6 you can see three distributions of Effective Number of Bits (ENOB), for a
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Figure 5.6: Capacitor mismatch: 12 bit - ADC with Single Path Amplification
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Figure 5.7: Capacitor mismatch: 12 bit - ADC with Dual Path Amplification

12 bit ADC built of 1.5 bit SPA MDACs. The black distribution shows the best case for 40 nm
technology with a capacitor mismatch of 0.076%. This minimum capacitor mismatch is the
result of a Spice simulation as depicted in Figure 3.13. When the mismatch is increased, the
distribution is spread over a wider range of values and the center of the distributions moves
to a lower ENOB. The shape of each distribution is similar, this is because the same random
numbers are used for capacitor deviation in all the simulations. They were just scaled to obtain
the desired standard deviation.

Figure 5.7 shows the same simulation performed for the ADC with DPA. It can be observed,
that the distributions resulting from the DPA are more compact than in the SPA case. This is
desirable and makes it more easy to evaluate the performance of the ADC. Consider the black
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distribution, the lowest ENOB value at 10.91 bits appears 8 times, while the distribution for
SPA for the same mismatch in Figure 5.6 is continuous and slower decreasing with an outlier at
10.56 bits.
Figure 3.18 depicts the 3σ value of the residue error of a 1.5 bit MDAC, dependent on capacitor

mismatch σc. The residue error for a mismatch of σc = 0.076% is about 2LSB12 for the
DPA MDAC and for the SPA MDAC. This corresponds to an input referred mismatch error of
1LSB12, or LSB10/4. The simulation of the overall ADC shows an effective resolution of more
than 10.5 bits for a residue error of LSB10/2 on the output of each MDAC stage.

5.3.2 Linearity Considerations for 2.5 Bit MDAC

The Matlab model for the ADC with 2.5 bit per MDAC consists of 5 MDAC stages, each con-
tributing 2 bits to the 12 bit resolution. The 6th pipeline stage is a 2 bit flash converter. As
in the 1.5 bit case, each capacitor of the ADC has a Gaussian distributed deviation σabs from
the nominal value. Capacitors are deviated independently, which causes a pairwise mismatch
σc between the capacitors. In the simulation only the last two bits are converted ideally from
the flash converter. Nevertheless the first pipeline stage is the dominant error source because
no scaling is included.
Figure 5.8 and Figure 5.9 show distributions of effective resolutions for ADCs built of SPA

MDACs and DPA MDACs. The lowest values of the black distributions are at 11.2 bits. When
only considering mismatch, an ADC built of 2.5 bit MDAC stages reaches a similar effective
resolution regardless of whether it uses SPA or DPA.
Figure 5.10 and Figure 5.11 shows a quantile of the distribution of effective resolution which

has a 99.73% probability to exceed the resolution depicted. With this representation it is more
easy to compare the effective resolution of the ADCs. Figure 5.11 compares an ADC built of
2.5 bit SPA MDACs (black dashed) to an ADC built of 2.5 bit DPA MDACs (red continuous).
The two graphs differ only very slightly. Figure 5.10 campares an ADC built of 1.5 bit DPA
MDACs (blue) to an ADC built of 2.5 bit DPA MDACs (red). For a mismatch of 0.076%, it
can be achieved an effective resolution that is 0.5 bits higher using the 2.5 bit approach, with
respect to 1.5 bit. This corresponds to a factor of

√
2.

Figure 4.13 depicts the 3σ value of the residue error of the 1.5 bit MDAC compared to the
2.5 bit MDAC, dependent on capacitor mismatch σc. It can be observed that the residue errors of
SPA MDACs and DPA MDACs only differ slightly. This corresponds to the results of Figure 5.11
for the overall ADC. When considering the gain of the MDACs, the residue error of the 2.5 bit
MDAC and the residue error of the 1.5 bit MDAC differ by a factor of 1.5. It can be seen that
the residue error of the MDAC stages is closely related to the effective resolution of the ADC.

The most important findings are:

Considering only capacitor mismatch, ADCs built of DPA MDACs and ADCs built of SPA
MDACs have similar effective resolution. Capacitor mismatch in the coarse stage of and
MDAC can be compensated for of the fine stage. Mismatch of the fine stage cannot be
compensated for.

ADCs built of 2.5 bit MDAC stages can achieve 0.5 bit more effective resolution than ADCs
built of 1.5 bit MDAC stages. ADCs built of 2.5 bit MDAC stages have gain 4 and the
residue error is relaxed compared to ADCs built of 1.5 bit MDAC stages. The residue error
cannot be relaxed by factor 2 because of topology differences, as identified in Section 4.4.

ADCs built of 1.5 bit MDAC stages integrated in CMOS 40 nm technology are limited to
about 10.7 bits due to capacitor mismatch, unless mismatch errors are compensated for
with digital calibration. ADCs built of 2.5 bit MDAC stages integrated in CMOS 40 nm

Villach, February 28, 2014 – 91 –



5 Overall Error Compensated Pipelined ADC

technology can achieve 11.2 bits effective resolution. All other error sources are ignored
and the ADC contains no scaling for this consideration.
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Figure 5.8: Capacitor mismatch: 12 bit - ADC with Single Path Amplification

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
0

5

10

15

20

25

30

35

40

45

Effective Resolution [bits]

F
re

qu
en

cy

Spectral Analysis

 

 
σ

c
= 0.075 %

σ
c
= 0.150 %

σ
c
= 0.200 %

Figure 5.9: Capacitor mismatch: 12 bit - ADC with Dual Path Amplification
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Figure 5.10: Capacitor mismatch: 12 bit - ADC with Single Path Amplification. Quantile of the distribution
which has a 99.73% probability to exceed the resolution depicted
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Figure 5.11: Capacitor mismatch: 12 bit - ADC with Dual Path Amplification. Quantile of the distribution
which has a 99.73% probability to exceed the resolution depicted

5.4 Noise Sources

The impact of different noise sources is discussed in Sections 3.5 and 4.5 for a single MDAC
stage, where the results are referred to the input of the MDAC stage. Now the previous results
will be compared to simulations of the overall pipelined ADC. The Simulation were performed
with a sinusoidal input signal of 218 samples. To see the behavior of an ADC built of DPA
containing noise sources, a Gaussian distributed noise signal was applied to the input of a 13 bit
ADC

Villach, February 28, 2014 – 93 –



5 Overall Error Compensated Pipelined ADC

5.4.1 Input Referred Noise

Gaussian noise was added to the sinusoidal input signal of the ADC. Figure 5.12 shows the
effective resolution of the ADC depending on the standard deviation of input referred noise. This
curve shows a dual path amplification ADC with 2.5 bit MDAC. The simulation with the single
paht amplification ADC and with 1.5 bit MDACs shows exactly the same behavior, therefore the
curve for one case is sufficient. For an effective resolution of 12 bits, an input referred noise of
σV in = 120 ·10−6 ·Vref is tolerable. The influence on the design is not the same for all structures,
because the noise requirements on the output of the first 2.5 bit MDAC is half compared with
the 1.5 bit structure. This is due to the different loop gain of the MDACs.
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Figure 5.12: 13 bit ADC - noise on Vin - DAP

5.4.2 Noise on the Reference Voltage

The reference voltage of the digital to analog conversion in the MDAC is noise corrupted. The
simulation provides a noise source for every reference voltage. Figure 5.13 shows the effective
resolution of the MDAC depending on the standard deviation of noise on all reference voltages
used in the ADC with DPA MDACs. It can be seen that the 2.5 bit structure allows more
noise on the reference voltage than the 1.5 bit structure. The curves for ADCs with SPA show
the same trend as the corresponding curves for DPA ADCs. Assuming an ADC with 12 bits
effective resolution, the noise on thr reference voltage can be σV ref = 200 · 10−6 Vref for the
1.5 bit MDAC structure and σV ref = 260 · 10−6 Vref for the 2.5 bit structure. Thus the 2.5 bit
structure can tolerate 1.3 times more noise in this case. Comparing it with the input referred
noise, the 2.5 bit structure is relaxed by a factor of 2.
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Figure 5.13: 13 bit ADC - noise on Vref - DAP

5.5 Offset Voltage

The offset error of an op-amp is dealt with in Chapters 3 and 4 for a single MDAC stage. In
this section the simulation results for the overall pipelined ADC are presented.

5.5.1 Linearity Considerations for 1.5 Bit MDAC

The offset error of op-amps introduces a systematic constant error in each MDAC that is added
to the residual voltage. The impact on the residual is discussed in Section 3.6 and Section 4.6.
Now we will look at the simulation results for the pipelined ADC and compare the results.

The spectral analysis shows non-linearity errors of the pipelined ADC excluding offset error.
The offset of the output waveform is removed from the spectrum before analyzing it. The
simulation is performed with a 13 bit pipelined ADC of 12 pipelined stages and one 1 bit flash-
converter. An offset voltage is introduced in the op-amps of the 1st pipeline stage. The offset
voltage is added to the coarse input signal. The input referred offset voltage of the op-amps is
investigated.

Sooner or later, the propagation of the offset voltage through pipeline stages causes the residual
to leave the interval of ±1. If this happens, the effective resolution goes down. For a full scale
input voltage, every small offset voltage causes a decrease of the effective resolution. Decreasing
the input voltage, the ADC can tolerate a certain amount of offset voltage. The curve goes
down where the residue voltage of the MDAC stages leaves the interval of ±FS/Vref (i.e. ±1).

Figure 5.14 shows the effective resolution of a pipeline ADC with offset voltage on the op-amps
of the first stage. The curve is a function of the offset voltage. The input voltage is a sine wave
with the amplitude of 95% FS. The blue curve shows an offset only at the coarse op-amp, the
red curve only at the fine op-amp.

In the 1.5 bit case it does not matter if the signs of both offset voltages at the coarse and fine
op-amp are the same, it leads to the same result. The same offset on both op-amps of the first
pipeline stage is shown in Figure 5.15 with the red curve. The blue dashed curve shows an offset
on the coarse and fine op-amp with same absolute value but with opposite signs. On the X-Axis
you can see absolute values of the offset voltage normalized by the reference voltage.
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Figure 5.14: Offset Voltage on fine op-amp or coarse op-amp, 1.5 bit MDAC
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Figure 5.15: Offset voltage on fine op-amp and coarse op-amp, 1.5 bit MDAC

Figure 5.16 shows the impact of the input signal amplitude. The amplitude of the input signal
is taken into account when calculating the effective resolution. It is calculated by

ENOB =
SINAD − 1.76dB + 20log

(

FS
Asignal

)

6.02
(5.4)

It can be seen that a smaller input voltage does not cause saturation easily. Decreasing the
input signal further, no longer improves the result. This can be seen in Figure 5.17.
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Figure 5.16: 13 bit pipeline ADC, offset voltage on MDAC op-amps, different input amplitudes
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Figure 5.17: 13 bit pipelined ADC, offset voltage on MDAC op-amps, different input amplitudes

5.5.2 Linearity Considerations for 2.5 Bit MDAC

The 2.5 bit structure reacts slightly differently to the offset error than the 1.5 bit structure. In
Figure 5.18 it can be seen that the ADC reacts in the same way to an offset voltage on the coarse
and on the fine op-amp. Compared to the 1.5 bit case, the offset voltages with different signs
have different impact on the linearity of the ADC. This can be observed in Figure 5.19. The
2.5 bit structure behaves similarly to a decreasing input signal amplitude as the 1.5 bit structure.
The effective resolution increases with decreasing input signal according to Figure 5.20. A further
decrease of the input signal amplitude brings no improvement. This is shown in Figure 5.21. The
worst case is given by offset voltages with different signs on the coarse and fine stage. Assume
the input signal amplitude to be 95% FS. The 1.5 bit structure can tolerate an input referred
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Figure 5.18: Offset voltage on fine op-amp or coarse op-amp, 2.5 bit MDAC
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Figure 5.19: Offset voltage on fine op-amp and coarse op-amp, 2.5 bit MDAC

offset voltage of 0.05 · Vref . The 2.5 bit structure can tolerate only 0.016 · Vref to obtain 12 bit
effective resolution.
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Figure 5.20: Offset voltage with high input amplitudes, 2.5 bit MDAC

0 5 10 15 20 25
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

V
offs

 [mV]

E
N

O
B

 [b
its

]

Spectral Analysis

 

 

90% FS
80% FS
50% FS

Figure 5.21: Offset voltage with lower input amplitudes, 2.5 bit MDAC
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6
Conclusions

6.1 Conclusions

6.1.1 Overview and Important Results

This thesis investigated DPA for use in 40 nm technology both analytically and in Matlab sim-
ulations. It is summarized in the following:

Chapter 2 introduced the basics of analog to digital converters and of pipelined ADCs.

Chapter 3 derived transfer functions for a single 1.5 bit MDAC stage. The following error
sources were considered separately with analytical approximations and Matlab simulations.
The op-amps performing the analog residue generation in the MDAC were modeled with
Finite DC gain and Offset voltage. Capacitor mismatch of the capacitors determining
the precision of subtraction and multiplication operations in the MDAC was investigated.
Noise sources during the sampling process, in the op-amp and on the reference voltage
were considered. The analytic approximations of the error sources were verified in Matlab
simulations.

It turned out that the capacitor mismatch of this 40 nm process limits the ADC resolution
of the pipelined ADC using 1.5 bit MDAC stages. Therefore the 2.5 bit MDAC was con-
sidered, which has higher MDAC gain and thus relaxed requirements on the residue error.
Chapter 4 extended the results of Chapter 3 to 2.5 bit MDAC stages. 1.5 bit and 2.5 bit
MDACs were compared.

The cascading of multiple MDAC stages to an overall pipelined ADC was discussed in
Chapter 5 on basis of Matlab simulation results. The digital output of the ADC was
analyzed in the frequency domain.

For the simulations, the Matlab model of a 1.5 bit DPA MDAC with flip around architecture,
which has been developed as part of a previous project, was extended to a 1.5 bit DPA MDAC
with non-flip around architecture and to a 2.5 bit DPA MDAC. A Matlab model of the over-
all pipelined ADC was constructed based on the individual MDAC model stages, which were
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cascaded, and the ADC performance was analyzed in the frequency domain. The SPA struc-
tures with 1.5 bits and 2.5 bits were compared to the DPA approach, and requirements for the
mentioned error sources were determined.

The goal of the dual path amplification technique is to achieve a high resolution without
digital calibration or complex op-amps, i.e., to save chip area and keep the power consumption
low. The main findings of this thesis with respect to this goal can be summarized as follows.

1. DC gain: For a resolution of 12 bits, considering only finite DC gain, it is possible to
achieve the needed equivalent DC gain with two simple op-amps of about 45 dB. The sum
of the coarse DC gain and the fine DC gain is higher than the DC gain required for the
SPA approach. The additional DC gain needed for the DPA approach is proportional to
the feedback factor kf of the fine op-amp.

2. Noise performance: The noise performance of an ADC using DPA MDAC stages is similar
to the noise performance of an ADC built of SPA MDAC stages. The fine stage is the
dominant noise source and has to fulfill similar noise requirements to an SPA MDAC.
However, it has less requirements on DC gain than an SPA MDAC, and only a small
output swing.

3. Capacitor mismatch: The error caused by capacitor mismatch is not proportional to the
output of the MDAC. Similar to the noise error, the fine stage determines the precision of
the residue. The DPA MDAC has similar performance to the DPA MDAC. The capacitor
mismatch of the coarse stage can be relaxed.

4. Chip area: Additional capacitors and switches are needed, which increases the chip size
compared to SPA MDACs. Furthermore, a second op-amp is required for the fine stage of
the MDAC.

5. Digital calibration: No digital calibration is needed for resolutions covered by the capacitor
mismatch of the technology used.

6. Resolution limits: In 40 nm technology, the resolution using DPA is limited to an absolute
maximum of 10.7 bits for 1.5 bit MDACs and 11.2 bits for 2.5 bit MDACs. These limits
only take capacitor mismatch into consideration but no scaling of the stages. These limits
are reduced to lower resolutions by the effects of other error sources.

7. 2.5 bit stage: The 2.5 bit MDAC shows better results than the 1.5 bit stage for all the error
sources investigated, except for the offset error. The offset error of the 2.5 bit MDAC has
a higher gain to the input of the MDAC due to the larger feedback factor k.

8. Coarse stage: The requirements for all the noise sources and the capacitor mismatch of
the coarse stage can be relaxed. The errors are reduced by the fine stage. The DC gain
of the coarse op-amp is added to the DC gain of the fine op-amp to achieve the required
DC gain.

The scope of this thesis was to investigate the DPA architecture for use with 40 nm technology.
The simplifying results of the analytical considerations and the more detailed simulation results
give a good overview of the impact of errors on the residue generation and on the limitations
of the overall pipeline ADC performance. By contrast, in SPICE simulations the contributions
of all the investigated error sources are mixed together, which makes it difficult to extract the
impact of one error source. On the other hand, the SPICE simulation allows more effects to be
considered, such as charge injection because of non-ideal switches and more complex op-amps
models, and is very close to the chip. The thesis, results build a good basis for circuit design
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using SPICE simulations. Bottle necks were identified and so optimizations can be done more
easily.

6.1.2 Outlook

The ADC built of 2.5 bit DPA MDAC stages shows promising results regarding the investi-
gated effects. Nevertheless, some aspects could not be dealt with in this thesis because of time
constraints, for example the settling behavior of the DPA structure and the requirements on
the Gain-Bandwidth product (GBW). In addition the scaling of MDAC stages could not be
discussed extensively and the impact of the offset voltage on the op-amps needs further simula-
tions. These steps are planed for the near future. The topology could be further optimized by
finding a smart way to apply the input signals using parallel or serial capacitors with the goal
of reducing the errors due to capacitor mismatch. Simultaneous amplification and sampling of
the coarse and fine stages is feasible. However, this would result in a structure that is more
complex and more difficult to investigate, because the output of the coarse stage is not sampled
and varies during the amplification phase of the fine stage.
Once Matlab simulations have been completed, the most promising approach will be imple-

mented in a SPICE simulation in order to verify the Matlab model. This will allow further
parasitic effects to be considered and allow the interaction between the different error sources to
be identified. If the SPICE simulation yields good results, the next step would be to implement
the architecture in silicon and verify the simulation results on a test chip.
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