
Stefan Rigobert Falk, BSc

Supervised Aspect Category Detection
in Sentiment Analysis
for Opinionated Text

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to
Graz University of Technology

Supervisor
Dipl.-Ing. Dr.techn. Roman Kern

Institute of
Interactive Systems and Data Science

Graz, September 2017

Acknowledgment

Mein besonderer Dank gilt meinem Betreuer Dipl.-Ing. Dr.techn Roman
Kern, der mich mit konstruktiver Kritik und Anregungen im Zuge dieser
Arbeit unterstützt und mir damit sehr geholfen hat.

Ebenso gilt mein Dank meinen Eltern Doris und Gerhard Falk sowie meiner
Schwester Nina, auf deren Unterstützung ich im Zuge des Studiums stets
bauen durfte und die meine Sorgen immer auch ein wenig mitgetragen
haben.

Meinem guten Freund David Ganster möchte ich vor allem für die Zeit
während des Studiums, seiner Geduld während unseren hitzigen Debatten
aber auch für sein Beispiel danken.

Weiteres möchte ich mich auch bei Philipp Kober, Florian Kubin und vielen
anderen Freunden, Bekannten und Studienkollegen für ihre Gesellschaft
und die gemeinsame Arbeit während und innerhalb des Umkreises der
Studienzeit bedanken, jedoch auch für die Zeiten außerhalb dessen unmit-
telbaren Umfangs.

Abschließend gilt mein Dank auch meiner Freundin Eveline Baumschlager,
die mich in den letzten Jahren des Studiums unterstützt hat und für mich
zum Antrieb meines Handelns wurde.

Stefan Falk,

Graz im Juli 2017

iii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1 Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

v

Abstract

The growth of user-generated data in the past decades has led to an increase
in research being conducted in the field of natural language processing
(NLP). Neural networks have shown promising results in several different
language related tasks such as sentiment detection (Socher et al. 2013)
or opinion mining (Pang and Lee 2008) both which have become a hot
topic with the emergence of social networks and platforms that allow
users to write reviews and express opinions towards entities. Detecting the
sentiment of short texts (Severyn and Moschitti 2015) can be particularly
challenging as missing context information can be encoded in just very few
phrases. Building upon the information retrieved from sentiment detection,
by combining it with information received from aspect category detection
systems, allows the determination of positive or negative opinions towards
entities or particular aspects of such. Aspect category detection is the task of
obtaining the targeted aspect of an opinionated expression. It is the attempt
to find out what is being talked about or referred to.

The objective of this thesis is to develop system for aspect category detection
in terms of NLP information retrieval using neural networks. Particularly,
the requirements for the system lean on the definition of Task 5 Slot 1

(Pontiki et al. 2016) for constrained systems of the Semantic Evaluation
challenge of 2016.

vii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Outline . 3

2 Literature Review 5
2.1 Aspect Detection during SemEval-2016 5

2.2 Summary . 7

3 Background 9
3.1 Artificial Neural Networks . 9

3.1.1 Linear Models for Regression 10

3.1.2 Maximum-Likelihood 10

3.1.3 Feedforward Neural Networks 12

3.2 Word Embeddings . 15

3.2.1 Word2Vec Continuous Bag-of-Words 15

3.3 Summary . 18

4 Features 19
4.1 Probability Vector Word Embeddings 19

4.1.1 Target Context Feature 20

4.1.2 Sentence Context Feature 20

4.1.3 Probability Vectors Weight Feature 21

4.1.4 Visual Evaluation . 22

4.2 Class-Context Based Word Embeddings 24

4.2.1 Generating Training Samples for Word Embeddings . 26

4.2.2 Training and Evaluation 28

4.3 Summary . 30

ix

Contents

5 Classifier Implementation and Training 33
5.1 Multilabel Feedforward Neural Network Classifier 33

5.1.1 Implementation . 33

5.1.2 Generating Training Samples 33

5.1.3 Classification . 34

6 Results 35
6.1 Single Feature . 36

6.2 Features Combined . 37

6.3 Feature Scores Comparison . 39

6.4 Comparing Results . 40

6.5 Summary . 41

7 Conclusion 43
7.1 Future Work . 43

7.1.1 Class-Context Based Word Embeddings 44

7.1.2 Extending to Unconstrained System 44

7.2 Summary . 45

Bibliography 47

x

List of Figures

3.1 Depiction of a two-layer feedforward neural network. 12

3.2 The Word2Vec continuous bag-of-words (CBOW) model as
introduced by Mikolov et al. 2013. 15

4.1 Visualization of a sentence using probability sentence con-
text probability vectors without using the Kullback-Leibler
divergence weight (lhs) and having it applied (rhs). 23

4.2 Example of two sentence vectors for one example sentence.
One calculated using sentence context probability vectors,
the other using sentence context probability vectors having
the Kullback-Leibler divergence weight applied to emphasize
less common classes like FOOD#PRICES in this example. . . 24

4.3 PCA plots using different feature vectors for a particular set
of words. 25

4.4 Cosine similarity matrices for sentence (lhs) and target (rhs)
context probability vector features. 26

4.5 The grammatical dependencies for a given sentence using
Stanford CoreNLP Natural Language Processing Toolkit. . . . 27

4.6 Schematic illustration of the feedforward neural network used
for learning the class-context based word embeddings. 28

4.7 (lhs) PCA plot for a given set of words using class-context
based word embeddings and (rhs) the corresponding cosine
similarities of those words. 30

4.8 The final class-context based word embeddings of the 15

most frequent words for each category by concatenating their
vectors horizontally. Each group of 15 word embeddings is
separated by a white vertical line to visually separate the
categories from each other. 31

xi

List of Figures

6.1 The development of all available features and variations. The
highest F1 score is reached by Sentence Context vectors with
applied Kullback-Leibler weights. The lowest score is given
by the Class Context Word Vectors. 37

6.2 Results for combined features. 38

xii

1 Introduction

In this introductory chapter, a general overview and a description of the
main topic of this thesis is provided. The purpose of it is to help understand
what makes aspect category detection an interesting field of research and
list relevant research questions on which this thesis focuses. Also, an outline
is provided by the last section of this chapter listing the upcoming chapters
of this thesis and gives an overview of their individual content.

1.1 Motivation

With the continuous growth of user-generated content in the last decades,
aspect analysis or aspect category detection has become a more relevant niche
of natural language processing (NLP), which is of particular importance
for aspect-based sentiment detection. Aspect category detection can be
described as the task of finding the entity which is being talked about or
towards an opinion is being expressed, whereas sentiment detection is the
task of finding the polarity of such an opinion, e.g. positive or negative, in
a text. In the sentence ”The food was expensive but very good.” the word
”food” could be extracted as the entity which is being talked about and
represented using the label FOOD. It is also possible to differentiate more
closely between the price and the taste of the food by using labels such
as FOOD#PRICE and FOOD#QUALITY. This however depends on the respective
task.

Challenges like the SemEval-2016 Aspect Based Sentiment Detection task1

(Pontiki et al. 2016) are representatives of an increasing interest in this field.

1 SemEval-2016 Aspect Based Sentiment Detection challenge: http://alt.qcri.org/
semeval2016/task5/ (2017-06-19)

1

http://alt.qcri.org/semeval2016/task5/
http://alt.qcri.org/semeval2016/task5/

1 Introduction

Mining, analyzing and understanding written natural language can help
many sectors in different industries to better understand the market and
their customers. Over social networks such as Twitter, even real time events
can be detected, which may not only help a particular industry but can
potentially help emergency services, to gather information about tragic
events such as natural disasters (Sakaki, Okazaki, and Matsuo 2010).

This shows how the understanding and recognition of aspects, which can
be referred to withing a sentence, paragraph or document, can be of major
importance for many different information retrieval processes related to
language.

From this, the focus of this thesis emerges, which is the development of
a system for aspect detection. In particular, the thesis aims to accomplish
reasonable results for Task 5, Slot 1 of the SemEval-2016 challenge.

1.2 Research Questions

As described in the previous chapter, the goal of this thesis is to provide
a framework for the classification task of aspect categories in written text
using a supervised approach. The key research questions, which form the
main objectives of this thesis, can be stated as follows:

• What are useful features for aspect category detection?
• Can word embeddings for a small dataset be found by using simi-

lar techniques as Word2Vec (Mikolov et al. 2013) to classify aspect
categories?

– How can word embeddings be trained w.r.t. their aspect category
labels?

– How to generate samples for training such word embeddings?

As an overview, the following section provides the outline of all upcoming
chapters by summarizing their contents individually.

2

1.3 Outline

1.3 Outline

The following Chapter 2 represents a literature review and provides an
overview of different approaches which other participants implemented
during the course of Task 5 Slot 1 of the SemEval-2016 challenge, namely
aspect detection.

Chapter 3 presents the essential methods which are made use of in later
chapters including an introduction to neural networks and their mathemati-
cal representation and a look into word embeddings and Google’s Word2Vec
algorithm (Mikolov et al. 2013).

The entire Chapter 4 is dedicated to feature engineering. In this chapter,
different kinds of word embeddings are presented which are used as word
features and are later combined to form a sentence representation. This
chapter also describes a Word2Vec inspired method to generate word em-
beddings for certain words in a grammatical dependency graph.

Chapter 5 explains the construction of the feedforward neural network multi-
label classifier, the generation of training samples and how the classification
process is conducted, in detail.

After presenting the details of the classifier, Chapter 6 presents the results
of the system developed in the course of this thesis. The performance of
each feature separately and combined are presented and further compared
to the results of former participants of the SemEval-2016 challenge.

The final Chapter 7 presents the conclusion of this thesis and potential
future work.

3

2 Literature Review

The literature review conducted during the course of this thesis focuses on
constrained systems which target Task 5, Aspect Based Sentiment Detection
(ABSA), Slot 1 for constrained systems of the SemEval-2016 challenge. In
order to give an overview of related work and provide insight into different
approaches to solve aspect detection tasks, the following papers have been
studied. The ordering goes from higher to lower ranked unconstrained
systems of the named task.

2.1 Aspect Detection during SemEval-2016

In his paper “BUTknot at SemEval-2016 Task 5: Supervised Machine Learn-
ing with Term Substitution Approach in Aspect Category Detection,”
Machacek 2016 describes manually compiled Term Groups, which are lists of
words containing highly descriptive words for each available aspect category.
For each category, the frequencies of words are computed, and those which
occur more often are manually checked and grouped by assigning them to
the corresponding group. However, the question remains whether this isn’t
equivalent to using an external similarity dictionary which is not permitted
by the rules for constrained systems as stated on the challenge’s website1.
For classification, Machacek 2016 used a binary classifier provided by the
Vowpal Wabbit2 learning system (Langford, Li, and Strehl 2007).

Brun, Perez, and Roux 2016 explain in their article “XRCE at SemEval-2016

Task 5: Feedbacked Ensemble Modeling on Syntactico-Semantic Knowledge

1 SemEval-2016 ABSA: http://alt.qcri.org/semeval2016/task5/ (2017-06-19)
2 Vowpal Wabbit on GitHub: https://github.com/JohnLangford/vowpal_wabbit

(2017-06-19)

5

http://alt.qcri.org/semeval2016/task5/
https://github.com/JohnLangford/vowpal_wabbit

2 Literature Review

for Aspect Based Sentiment Analysis” a two step classification process
utilizing the output of a Conditional Random Field (CRF) which has been
specialized at word level on the available training data, e.g. the labeled
opinion target phrases, to classify terms into one or more aspect categories.
In a second step, at sentence level, the classification models associate aspect
categories of sentences with probabilities. The aspect categories are then
assigned using a threshold over the assigned probabilities.

Hercig et al. 2016 describe in “UWB at SemEval-2016 Task 5: Aspect Based
Sentiment Analysis” a rich feature set for an English corpus that is being
used for a maximum entropy classifier with an optimized threshold for all
available aspect classes. The feature set consists of different kinds of Bag of
Words variations, such as Bag of Words around Verb which is described as
two bags of five words around verbs. Another similar feature described is
the Bag of 5 Word at the Beginning of Sentence which considers only words
at the end of a sentence. Also a Bag of Bigram feature, the occurrence of a
bigram in a context window, is used. They make further use of classic Bag
of Words and an additional variation of it that uses a POS filter to remove
certain kind of words. Furthermore, TF-IDF features are computed from the
training data. Different feature sets are described depending on the corpus
domain. For the SemEval-2016 ABSA restaurant domain, additional features
such as document vectors (Le and Mikolov 2014) and character n-grams are
made use of as well. Altogether, Hercig et al. 2016 use a broad variety of
features.

The constrained system developed by Xenos et al. 2016, described in “AUEB-
ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for
Aspect Based Sentiment Analysis,” uses generated lexicons (stemmed and
unstemmed) derived from available training data. Lexicons provide scores
for uni- and bigrams by computing their F1-Score, Precision and Recall
following the approach of Karampatsis, Pavlopoulos, and Malakasiotis 2014

in “AUEB: Two Stage Sentiment Analysis of Social Network Messages.” For
each score the average, median, maximum and minimum values are used to
form features for words. For classification a Support Vector Machine (SVM)
is trained for the available categories.

Toh and Su 2016 describe in “NLANGP at SemEval-2016 Task 5: Improving
Aspect Based Sentiment Analysis using Neural Network Features” a set of

6

2.2 Summary

binary features which consists of the word itself (bigrams are also used for
Slot 1) and name lists. The name lists are derived using the available training
data. One list contains words which are very often labeled as opinion targets
(or aspects), whereas the other considers those words which occur often just
as part of an opinion target.

2.2 Summary

This chapter presented several different approaches towards aspect detec-
tion which have been applied during the course of the SemEval-2016 Aspect
Based Sentiment Detection challenge. The former participants tried vari-
ous different features ranging from binary features such as bag of words
(Hercig et al. 2016), to real-valued word representations using each word’s
classification strength as measured by a certain metric such as the F1-score
(Xenos et al. 2016).

The following chapter, an overview of the theoretical foundations for dif-
ferent methods which are being made use of in the course of the thesis is
provided. Using this foundation, the chapter after the next one describes
the engineered features which were developed in order to tackle Task 5 Slot
1 of the SemEval-2016 challenge.

7

3 Background

In this chapter, the most relevant methods which are made use of for the
development of the system are introduced and explained. The purpose of
this chapter is to provide a basic understanding of neural networks and
how their simplest implementations can be utilized for regression of classifi-
cation tasks as well as give a short introduction into word embeddings and
Google’s famous Word2Vec algorithm (Mikolov et al. 2013). The materials
used along this chapter, and thus recommended for reading, are referenced
accordingly during the course of this chapter.

3.1 Artificial Neural Networks

In this section, a short introduction to artificial neural networks is provided
to provide a basic understanding of the machine learning techniques used
by this thesis. The textbook ”Pattern Recognition and Machine Learning”
by Bishop 2006 has been used as a reference and this section tries to follow
its notation and terminology.

Artificial neural networks are a type of computational model that use a fixed
number of adaptive basis functions which can be used in several different
machine learning domains such as classification or regression. Nowadays,
many different network architectures have proven to be useful in a variety
of tasks. A very classic architecture, due to its relative simple structure, is
the feedforward or multilayer perceptron neural network, which will be used
in this section to explain the basic characteristics and functionality of neural
networks.

9

3 Background

3.1.1 Linear Models for Regression

To begin with, we look at a simple multivariable linear model.

y(x, w) = w0 + w1x1 + . . . + wMxM

Where x = (x1, . . . , xM)T is a input predictor vector and w = (w0, . . . , wM)T

are the coefficients. Here, w0 is a parameter which allows fixed offsets in the
data and is usually referred to as bias. The major limitation of this model is
it is only a linear function of its parameters x and w. It is however possible,
to obtain a more useful model by taking linear combinations of a fixed set
of nonlinear functions of the input variables. These functions are called basis
functions, which allow the model to be nonlinear with respect to the input
variables, yet stay linear with respect to their parameters. For that reason,
such models maintain simpler analytical properties.

y(x, w) = w0 + w1φ1(x) + . . . + wMφM(x)

= w0 +
M

∑
j=1

wjφj(x)

It is common to introduce a dummy basis function φ0(x) = 1 to further
simplify this expression to

y(x, w) =
M

∑
j=0

wjφj(x) = wTφ(x) (3.1)

having w = (w0, . . . , wM)T and φ = (φ0, . . . , φM)T.

This model can be used for a supervised learning task by making it subject
to a target function and minimize a sum-of-squares error function. It can be
shown that the sum-of-squares errors function is related to a procedure
called maximum likelihood method.

3.1.2 Maximum-Likelihood

Assuming a target variable t that is given by a function y(x, w) with additive
zero mean Gaussian noise given by the random variable ε with precision β

10

3.1 Artificial Neural Networks

(inverse variance) such that

t = y(x, w) + ε,

it is possible to write this as a likelihood function

p(t|x, w, β) = N (t|y(x, w), β−1) (3.2)

where N (·) is the Gaussian normal distribution.

For a data set X = {x1, . . . , xN}, where all xi are drawn independently
from the distribution (3.2), with corresponding target values given by the
vector t = {t1, . . . , tN}T, the likelihood function for the targets t is given as
a product of likelihood functions

p(t|X, w, β) =
N

∏
n=1
N (tn|y(x, w), β−1), (3.3)

by recalling that the joint probability of two independent events is given by
the product of the marginal probabilities for each event.

By taking the logarithm of (3.3), the log-likelihood function takes the form

ln p(t|X, w, β) = ln
N

∏
n=1
N (tn|y(x, w), β−1)

=
N

∑
n=1

lnN (tn|y(x, w), β−1)

=
N
2

ln β− N
2

ln(2π)− β
1
2

N

∑
n=1
{tn −wTφ(xn)}2. (3.4)

The gradient of the log-likelihood with respect to the weight parameters w
is

∇ ln p(t|X, w, β) = β
N

∑
n=1
{tn −wTφ(xn)}φ(x)T.

Setting the gradient function to zero

0 =
N

∑
n=1

tnφ(xn)
T −wT

(N

∑
n=1

φ(xn)φ(xn)
T
)

,

11

3 Background

and further solving it for w, it gives the normal equation for the least squares
problem

wML = (ΦTΦ)−1ΦTt.

3.1.3 Feedforward Neural Networks

...
...

...

x1

xn

x0

z0

z1

zm

y1

yk

w(1)
11 w(2)

11

Input
layer

Hidden
layer

Ouput
layer

W(1) W(2)

w(1)
0m w(2)

0k

Figure 3.1: Depiction of a two-layer feedforward neural network.

Equation (3.1) can be generalized for classification or regression tasks by
transforming the linear function using a nonlinear function f (·) such that

y(x, w) = f
(M

∑
j=1

wjφj(x)
)
= f

(
wTφ(x)

)
(3.5)

where f (·) is called activation function or squashing function and its inverse is
often referred to as link function. The class of models which take the form of
(3.5) are called generalized linear models).

12

3.1 Artificial Neural Networks

For neural networks this equation gets extended such that the basis functions
φj(x) depend on adjustable parameters. Thus, each basis function of a
neural network is itself a nonlinear function that takes a linear combination
of inputs where the coefficients of the linear combination are adaptive
parameters.

By defining j = 1, . . . , M linear combinations of inputs x1, . . . , xD, the result-
ing quantities

a(1)j =
D

∑
i=1

w(1)
ji xi + w(1)

j0 ,

referred to as activations of layer (1), are passed to a nonlinear activation
function h(·) such that

zj = h(a(1)j).

Each zj corresponds to the output of the basis functions in (3.5). However,
in the context of neural networks, these quantities are being interpreted as
the output of the hidden units. The adjustable parameters W(1) = {w(1)

ji },
in the context of neural networks often referred to as weights, can be inter-
preted as connections of the inputs of a neural network to its hidden units
which is indicated by the superscript (1). In particular a weight w(1)

ji can be
understood as the connection of the i-th input to the j-th hidden unit of the
inputs.

This process can be repeated to stack multiple layers of neurons in a feedfor-
ward neural network. Here the word layer can be ambiguous. Sometimes
it is used to refer to a sets of activation units, for example the network in
Figure 3.1 could be called a three-layer neural network for each layer of
activation units, namely input, hidden and output layer. However, in this
study we follow Bishops terminology by counting the number of adjustable
weight matrices in the network. Thus we call the network shown in Figure
3.1 a two-layer neural network due to its adjustable weight matrices W1

and W2. The activations k = 1, . . . , K for the next layer are again linear
combinations of its inputs which are in this case simply the outputs zj of

13

3 Background

the previous layers such that

a(2)k =
K

∑
j=1

w(2)
kj zj + w(2)

k0

where W(2) = {w(2)
kj } are again the connecting weights to the next layer.

For a two layer network as shown in Figure 3.1, the activations a(2)k can be

interpreted as the outputs yk = a(2)k of the network for standard regression
problems. However, it is possible to further transform the activations in
order to solve classification problems. One example for multiple binary
classification problems is to transform the output using a sigmoidal function
such that

yk = σ(a(2)k)

where

σ(a) =
1

1 + exp(−a)
.

For multiclass problems the softmax function can be used which is given
by

yk =
exp(a(2)k)

∑K
i=1 exp(a(2)i)

holding

K

∑
i=1

yi = 1.

Each yi, interpreted as a probability for a particular class label represented
by the i-th dimension, could, for example, be thresholded such that the
real-valued output gets transformed over into a binary-valued output vector.
A yk above a given threshold might be interpreted as true, which means
the k-th label has been assigned to the input shown to the network. This
is of course only one way to make use of the output of such a layer under
many.

14

3.2 Word Embeddings

x1

xC

h y

V-dimN-dimV-dim

Output unitsHidden unitsInput units

W(1)
V×N

W(1)
V×N

W(2)
N×V

...

Figure 3.2: The Word2Vec continuous bag-of-words (CBOW) model as introduced by
Mikolov et al. 2013.

3.2 Word Embeddings

A word embedding is commonly understood as a vector of real numbers
that is a numerical representation of a word which it is mapped to. Techni-
cally, a word embedding is a mathematical embedding from a space with
one dimension per word to a continuous vector space. This continuous
vector space usually has a much lower dimensionality than the original
vector space. Also, depending on the underlaying training method, word
embeddings can, among other things, capture contextual and semantic in-
formation. This can allow word embeddings to be useful even for analogy
tasks.

3.2.1 Word2Vec Continuous Bag-of-Words

There are several different methods which can be used for the creation of
word embeddings, one of which is Google’s Word2Vec algorithm (Mikolov
et al. 2013). A detailed explanation is provided by Rong 2014, which also
goes into mathematical derivations and details of the algorithm as opposed

15

3 Background

to the original paper. As this method is being made use of in the course of
this study, a general introduction to this algorithm is provided.

Algorithm

The simplest version of this algorithm is the continuous bag-of-word (CBOW)
model. Figure 3.2, which looks similar to the depictions used by Mikolov
et al. 2013 and Rong 2014, illustrates the architecture of the network for
learning word embeddings using such a model. Conceptually, this network
is designed to predict a word at the output, given a set of context words at
the input.

Sticking to the terminology used in Section 3.1.3, Figure 3.2 shows a two-
layer feed forward neural network. The weight matrix W(1)

V×N, or the first
layer of the network, connects the input to its hidden units. The input of
this network is a V-dimensional many-hot vector x = {xi} where xi ∈
{0, 1}, ∀i = 1, . . . , V which represents the set of context words. The hidden
units h take the form

h =
1
C

WT (1)
V×N

(
x1 + . . . + xC

)
(3.6)

where each xi is a one-hot encoded vector such that x = ∑C
i=1 xi. Thus, the

hidden units h are linear, as they do not transform their inputs with a non-
linear activation function. As stated by Rong 2014, this can be interpreted
as ”copying” all input words to the hidden layer by taking the sum of all
rows of the matrix WT (1)

V×N and take the average by dividing this sum by the
number of context words C which is given by Equation (3.6).

The hidden units are connected to the output units by the second layer,
another weight matrix W(2)

N×V . Thus, the output of the hidden units, which

is h, gets propagated over W(2)
N×V such that

uj = vT
wj

h,

16

3.2 Word Embeddings

where vwj is the j-th column of the matrix W(2)
N×V , which represents a score

uj for each word in the vocabulary. Using a softmax activation function for
the output units y = {yj}, the result is the posterior distribution of words

yj =
exp(uj)

∑V
k=1 exp(uk)

where each yj is the output of the j-th unit in the output layer representing
the probability for word wj given the input words wI,1, wI,2, . . . , wI,C or
simply

yj = p(wj|wI,1, . . . , wI,C). (3.7)

Loss Function

The loss function E is the negative maximum of Equation (3.7)

E = −max p(wO|w1, . . . , wC)

= −max yj∗

= −max log yj∗

= −
(

uj∗ − log p(wO|wI,1, . . . , wI,C)
)

= −uj∗ + log p(wO|wI,1, . . . , wI,C)

= −uj∗ + log
V

∑
j′=1

exp(uj′)

= −v′ Two · h + log
V

∑
j′=1

exp(v′ Twj′
· h)

which will be minimized during the training process through a backprop-
agation algorithm. This ought to describe the very fundamentals of the
Word2Vec algorithm. Further derivations e.g. the updating rule for the
weights are not going to be examined in this work but can be found in Rong
2014 and other sources.

17

3 Background

3.3 Summary

This chapter explained the key methods used by the system implemented in
the course of this thesis. Artificial neural networks and their mathematical
representation have been explained in Section 3.1 by providing an overview
of their origin from simple linear models for regression and its extension
to non-linear models by using non-linear activation functions called neu-
rons. In addition, a simple feedforwad neural network architecture has
been described including how such a model can be used for regression or
classification tasks.

Further, word embeddings were explained and how they encode features.
Additionally, Google’s Word2Vec algorithm, for generating a particular type
of embeddings, was explained as well using the excellent work conducted
by Mikolov et al. 2013 and the complementary explanation work written by
Rong 2014.

18

4 Features

This chapter describes features which have been derived from a labeled data
set like one given for the SemEval-2016 challenge for Task 1 Slot 1.

In the Section 4.1 two different kinds of probability vector word embeddings
are engineered and explained. Also shown is a weighting method for words,
using the Kullback-Leibler distance measure over the word distributions.

Further, Section 4.2 explains the construction of class-context based word
embeddings which are the result of using a slightly modified version of
Google’s Word2Vec algorithm (Mikolov et al. 2013). This modified algorithm
makes use of generated training samples drawn from an annotated cor-
pus using the grammatical dependency graph received from the Stanford
CoreNLP Toolkit (Manning et al. 2014).

4.1 Probability Vector Word Embeddings

Each word wi receives a representation as a probability vector pi inside a
lookup table P which is the matrix {pij} = {pi}.

Definiton 1 (Probability Vector) A probability vector is a non-negative vector
with the property that the sum over all elements add up to unity. Formally, let
p1, p2, . . . , pn be a set of probabilities such taht p = {p0, p1, . . . , pn}T, then p is
called probability vector, if

n

∑
i=0

pi = 1

19

4 Features

For a labeled data set, it is possible to calculate a frequency matrix F = (fij),
where each element represents the frequency of the i-th word in the j-th class.
By further normalizing each row of F with n = {ni} where ni = (∑|C|i=0 fij)

−1

such that

(FTn)T = {(f jini)
T}

= {pij}
= P

each element pij of matrix P represents the conditional probability for a
class cj given a word wi.

P[C = cj |W = wi] = pC|W(cj | wi)

Thus, matrix P consists of pi probability vectors where the i-th vector in the
matrix corresponds to the i-th word in the vocabulary.

4.1.1 Target Context Feature

Since the provided labels do correspond to single opinion target expressions,
e.g. the phrase ”spicy tuna roll” with FOOD#QUALITY in ”The spicy tuna roll
was unusually good!”, one way of creating a frequency matrix Ft is to count
how many times a word occurred inside a target expression for each class
but also count how many times a word did occur in a sentence which was
not labeled by any class. For this purpose, an additional class NONE was
introduced to account for such a case. The final embeddings Pt are then
calculated with Pt = (FT

t nt)T.

4.1.2 Sentence Context Feature

Similar to the Target Expression probability vector feature, it is possible
to count how many times a word occurred only within a sentence that
contained a certain aspect and ignore whether the word was part of the
target expression or not. The final matrix Ps = (FT

s ns)T provides according
word embeddings. Note that there is also a NONE class for sentences which
do not contain a target expression.

20

4.1 Probability Vector Word Embeddings

4.1.3 Probability Vectors Weight Feature

word DKL

(
pC|wi∈W ||pC

)
wine 1.1842

glass 1.1430

wines 1.0729

list 1.0424

stocked 1.0257

priced 1.0188

.. ..

word DKL

(
pC|wi∈W ||pC

)
.. ..
been 0.0410

one 0.0392

my 0.0388

have 0.0340

to 0.0332

i 0.0237

Table 4.1: The highest and lowest ranked words in the corpus according to the Kullback-
Leibler divergence measure by comparing the distribution over class labels of
words to the actual distribution of class labels.

Intuitively, the information of how important a word is in terms of expres-
siveness with respect to the entire corpus, and its respective distribution
over class labels, can be exploited. Given a distribution of class labels over
sentences, each word in the corpus has a distribution of its own over avail-
able labels. From this, it is possible to introduce a measure which assumes
that the closer a word’s distribution complies with the distribution of class
labels, the less significant a word represents one or more particular classes.
A common measure for the difference between probability distributions is
the Kullback-Leibler divergence.

Definiton 2 (Kullback-Leibler divergence) Let p, q be two discrete probability
distributions on X. The non-symmetric difference between two probability distri-
butions, relative entropy or Kullback-Leibler divergence of p with respect to q is
defined as

DKL(p||q) = ∑
x∈X

p(x) log
p(x)
q(x)

By comparing the distribution of words over class labels to the distribution of
class labels by making use of the Kullback-Leibler divergence, the resulting

21

4 Features

weight for each word can be interpreted as a measure of the significance of
a word within the corpus by calculating a weight vector

s = {si} =
{

DKL(pC|wi∈W ||pC)
}

where each si is a weight for the corresponding word wi. Table 4.1 shows
the highest and lowest ranked words according to the Kullback-Leibler
divergence measure applied on the sentence context probability vectors as
described in Section 4.1.2.

Note that by using a threshold, the set of words could further be split into
two sets of words where one set corresponds to highly descriptive, the other
to low descriptive words. Lower descriptive words may further be used
as a list of stopwords. A word is highly descriptive, if its distribution over
class labels is very different from the distribution of class labels. This would
correspond to a larger probability vector weight feature. The explanation
for lower descriptive words follows analogously. However, for the following
classification task, no such list of stopwords is generated or used.

4.1.4 Visual Evaluation

It is helpful to visualize a sentence by stacking word embeddings for each
word to a sentence embedding matrix. Using probability vectors, where each
element represents a particular class, each row of such a matrix represents a
corresponding word in a sentence, whereas each column represents a target
class.

In Figure 4.1 two such matrices are compared using the sentence context
probability vectors for one and using the sentence context probability vectors
each multiplied with the Kullback-Leibler divergence weight for the other.
The difference is clearly visible, as less descriptive words were down- and
more descriptive words were upscaled.

By calculating the sum of all rows of such sentence embeddings, it is
possible to further compare the different vectors visually. Figure 4.2 shows
the relative change for a sentence embedding that was calculated in one
case with the pure sentence context probability vectors and in another case

22

4.1 Probability Vector Word Embeddings

Figure 4.1: Visualization of a sentence using probability sentence context probability vectors
without using the Kullback-Leibler divergence weight (lhs) and having it applied
(rhs).

with said vectors but also having the Kullback-Leibler divergence weight
applied. This example highlights, how a less common class label, here
FOOD#PRICES, becomes relatively more emphasized, as may be expected in
the given example sentence.

The resulting word embeddings can further be visualized to highlight word
similarities by applying a dimensionality reduction method such as Principal
Component Analysis (PCA). By selecting a certain set of words and reducing
their corresponding embedding vectors to two or three dimensions, it is
possible to gain intuitive insight into the underlying feature space.

Figure 4.3 shows two PCA plots for a certain set of words. Here ”food”,
”meal”, ”fish”, ”restaurant”, ”place”, ”location”, ”wine”, ”beer” and ”glass”,
were chosen purposely to form three groups ”food”, ”restaurant” and
”drinks” in the context of the restaurant domain. Taking a closer look at
both plots in Figure 4.3, it appears that similar words do have a tendency to

23

4 Features

Figure 4.2: Example of two sentence vectors for one example sentence. One calculated
using sentence context probability vectors, the other using sentence context
probability vectors having the Kullback-Leibler divergence weight applied to
emphasize less common classes like FOOD#PRICES in this example.

be closer together (where ”similar” should be interpreted carefully). The
word ”place” must not necessarily have a high similarity with the word
”restaurant”, but in the context of the domain one could argue that this
makes sense. Having the context in mind, the word ”location” could also
be interpreted as a synonym for the word ”restaurant” and thus also for
the word ”place”. However, in Figure 4.4, where corresponding cosine sim-
ilarities are shown for each word to all other words, it can be seen that
”location” does have a negative cosine similarity with the words ”restau-
rant” and ”place”. Thus, the Subfigures 4.3a and 4.3b might lead to the
false conclusion that the word ”location” is relatively similar to the words
”restaurant” and ”place”.

4.2 Class-Context Based Word Embeddings

One potential drawback of probability vectors, as described in the previous
section is, that they do not consider only one context word, that is, the
conditional probabilities for a class cj given a particular word wi, or P[C =

24

4.2 Class-Context Based Word Embeddings

(a) Sentence context feature vectors. (b) Target context feature vectors.

Figure 4.3: PCA plots using different feature vectors for a particular set of words.

cj | W = wi]. However, it can be useful to engineer a word embedding
feature which tries to capture a wider context window for a number of
words wk, . . . , wl, P[C = cj | W = wk, . . . , W = wl], in order to find new
word representations.

Google’s Word2Vec algorithm, a neural network based method described by
Mikolov et al. 2013, aims to model the distribution of a word given all words
in a fixed-sized context window, or P[W = wi |W = wj, . . . , W = wk].

In order to create class-context based word embeddings, the target for the
network has been changed from a given word to a given class, thus modeling
P[C = cj | W = wk, . . . , W = wl]. Similar to the Word2Vec algorithm, the
resulting weights, which represent the word vectors for the weight matrix of
the first layer of the network, should capture contextual information during
the training process and bring similar words closer together within the
feature space.

Two major components are required: training samples derived from an
annotated data set and a training method which is a slightly modified
version of Google’s Word2Vec algorithm. The following section explains

25

4 Features

(a) Sentence context feature vectors. (b) Target context feature vectors.

Figure 4.4: Cosine similarity matrices for sentence (lhs) and target (rhs) context probability
vector features.

how training samples are generated and how they are used for training the
class-context based word embeddings.

4.2.1 Generating Training Samples for Word Embeddings

Before word embeddings, which have been trained on the context of words
given a particular class, can be found, a method is required to derive training
samples from a given data set.

To derive training samples for a sentence, the entire target phrase and all
directly connected words are drawn from the sentence to form one training
sample. A concrete example for a sentence, as shown in Figure 4.5, would
be to select the target phrases ”food” with the label FOOD#QUALITY and
”portions” with the label FOOD#STYLE_OPTIONS and in order to create two
samples

FOOD#QUALITY - The, food, lousy

FOOD#STYLE_OPTIONS - the, portions, tiny

for training the word embeddings. The required grammatical dependency
graph has been extracted using the Stanford CoreNLP Natural Language
Processing Toolkit (Manning et al. 2014).

26

4.2 Class-Context Based Word Embeddings

The food was lousy - too sweet or too salty and the portions tiny .

ROOT

det

nsubj

cop advmod

amod

cc dep

conj

cc

det dep

conj

Figure 4.5: The grammatical dependencies for a given sentence using Stanford CoreNLP
Natural Language Processing Toolkit.

The following listing shows an actual example of generated training samples
for the network generated using the provided data for Task 5 of the SemEval-
2016 challenge.

..

["RESTAURANT#GENERAL", ["great", "place", "this"]]

["SERVICE#GENERAL", ["the", "waitress", "patient"]]

["FOOD#QUALITY", ["food", "phenomenal", "the"]]

["SERVICE#GENERAL", ["prompt", "friendly", "great", "service"]]

["FOOD#QUALITY", ["and", "great", "pizza", "service"]]

["SERVICE#GENERAL", ["pizza", "fantastic", "service"]]

["SERVICE#GENERAL", ["a", "shorter", "wait", "small", "was"]]

["LOCATION#GENERAL", ["a", "of", "block", "magnificent", "end"]]

..

Other methods

For the generation of training samples two other strategies were tested as
well. Since the results did not improve under those two methods they are
not explained in detail. However, withing the scope of this thesis it was not

27

4 Features

possible to determine why these approaches did not improve the results
compared to the method explained above. For completeness, the other two
approaches are summarized in the following.

The first approach was to look at a sentence and its labels. Now, for each
label, the respective probabilities of all the words within the sentence were
looked up. Each word then gets drawn according to its probability pi j (see
also Section 4.1), which is the probability of the word for a particular class
label. The idea behind this approach was to generate more general samples
and increase the chance to collect words which are not reachable by just one
hop in the grammatical dependency graph. However, using this approach
did not improve the results.

The second approach was to use the grammatical dependency graph and
make hops with a decreasing probability. For example, the first hop was
taken with a chance of 50%, but the next one only with a chance of only
25%. Different settings have been tried without showing an improvement.

4.2.2 Training and Evaluation

x h y

L-dimN-dimV-dim

Output unitsHidden unitsInput units

W(1)
V×N W(2)

N×L

Figure 4.6: Schematic illustration of the feedforward neural network used for learning the
class-context based word embeddings.

In order to obtain word embeddings, a feedforward neural network with a
hidden layer for the input words and an output layer for target labels are

28

4.2 Class-Context Based Word Embeddings

used. As in Mikolov et al. 2013 and Rong 2014, the activation function of
the hidden layer is the average of all words in the current context of present
words.

The weights for the hidden layer, the matrix W(1), is a V × N sized matrix
where V is the number of words in the vocabulary and N the size of the
resulting embeddings, which is similar to the vanilla Word2Vec algorithm.
The actual modification is the hidden layer, which connects to the softmax
output layer over the N× L sized weight matrix W(2), where L is the number
of class labels, instead of V, again the size of the vocabulary, as in vanilla
Word2Vec. In contrast to Word2Vec, which tries to predict a word given
a set of context words, this algorithm tries to predict a class label given a
set of context words. Figure 4.6 illustrates the overall architecture of the
network.

The input vector x is a bag-of-words representation of the context words
whereas the output vector y is the one-hot encoded target vector represent-
ing the target class label to predict.

Training

For the restaurant domain, the word embeddings are trained for 200 epochs
with N = 27 and using a small batch size of 10 samples each. The network
weights are initialized randomly using a uniform distribution. Additionally,
the training samples are shuffled randomly after each epoch. The network
uses the Adam optimizer (Kingma and Ba 2014) for approximating a binary
cross-entropy loss function.

The model was implemented using Keras Chollet et al. 2015 with Tensorflow
(Abadi et al. 2015) as backend in Python 3.5.

Evaluation

Figure 4.7 (lhs) shows another PCA plot of the same words already used in
Section 4.1 and a corresponding cosine similarity correlation matrix (rhs).

29

4 Features

Figure 4.7: (lhs) PCA plot for a given set of words using class-context based word embed-
dings and (rhs) the corresponding cosine similarities of those words.

Figure 4.8 shows the 15 most frequent words for each class and their
corresponding embeddings, taken from W(1), concatenated horizontally.
Clearly visible patterns can be seen which appear to separate categories.

Noting the very uniform vectors in Figure 4.8, further investigation revealed
that these are words which are, although highly frequent, not present in the
training data for the class-context based word embeddings.

4.3 Summary

This chapter explained how features for aspect detection can be extracted
from a labeled data set and illustrated it using the data provided for the
SemEval-2016 challenge of Task 1 Slot 1.

The extraction of two different types of probability vectors was shown in
Section 4.1. The first type, which included the context of the whole sentence,
and the second type, which included only the context of a given target
phrase. In addition, a weight, or a ranking measure, using the Kullback-
Leibler divergence function, for words in a corpus was explained. This was
used to apply weights to the probability vectors, which created another set
of word embeddings.

30

4.3 Summary

Figure 4.8: The final class-context based word embeddings of the 15 most frequent words
for each category by concatenating their vectors horizontally. Each group of 15

word embeddings is separated by a white vertical line to visually separate the
categories from each other.

In Section 4.2, class-context based word embeddings, trained on training
samples extracted from the labeled data set, have been derived using a
Word2Vec-based method.

The following chapter tests the introduced features and evaluates the system
build on these features against the results of previous participants of Task 1

Slot 1 of the SemEval-2016 for constrained systems.

31

5 Classifier Implementation and
Training

The classifier is implemented using Python 3.5 and the Keras (Chollet et al.
2015) neural network API framework using the Tensorflow (Abadi et al.
2015) backend. In the following, the architecture of the classifier and its
implementation are presented.

5.1 Multilabel Feedforward Neural Network
Classifier

5.1.1 Implementation

For classification, a two-layer feedforward neural network is implemented
using rectified linear units for the first and tanh units for the second (output)
layer. The input layer’s size depends on the features being used whereas the
size of the output layer corresponds to the number of available classes in all
cases. To prevent overfitting the regularization technique dropout (Srivastava
et al. 2014) is applied on the second layer with a dropout rate of 10%.

5.1.2 Generating Training Samples

Each training sample consists of an input vector xi, which represents an
entire sentence, and its corresponding target vector ti, which is a binary
vector representing all labels of the sentence.

33

5 Classifier Implementation and Training

In particular, the input of the network depends on the selected features. In
general all selected features are concatenated to form a single feature vector
vik. In the beginning, all representations are fetched to form a feature vector
for each word in a sentence. The final input of the network, or a single
training input sample, is the sum of all feature vectors xi = vi1 + vi2 + . . . +
vik.

The target vectors are binary encoded classes where each dimension cor-
responds to one class. Since the network uses tanh as the output layer,
each dimension tk of the target vector ti takes values in {−1, 1} where 1
corresponds to true and −1 to false.

5.1.3 Classification

Running the network in classification mode requires the sample input vector
to be propagated through the network and the output to be converted to
a binary vector. The conversion is done by simply comparing each output
value of the output vector against 0. If the output of a node is greater than
0, the sentence is assigned the corresponding label of the output dimension.
Analogously if the value is smaller than or equal to 0, the label is not
assigned.

34

6 Results

In this chapter, the results for the features are presented. The results are
generated by applying a system which works with the previously described
features on the SemEval-2016 Aspect Based Sentiment Detection data set
and comparing the scores to the second placed system, namely XRCE (Brun,
Perez, and Roux 2016), in Slot 1 for unconstrained systems.

The reason for comparing the results to the second placed system instead
of the first placed, namely BUTknot (Machacek 2016), is, because Machacek
2016 describes features which were generated by ”manually” checking and
sorting words into ”high precision” list of terms. The definition of an uncon-
strained system, however, is a system which uses only the provided data and
does not use additional resources such as lexicons or additional training
data1. The following arguments should support the fact that the BUTknot
system (Machacek 2016) is using additional resources.

The word ”savory” does not occur in the entire corpus of Task 5 of the
SemEval-2016 challenge thus for the sake of argument, it may be assumed
that it occurred once. Having only one sample of this word won’t provide
very descriptive probability vectors such as they are described in Section
4.1. However, using pre-trained word vectors such as the GoogleNews
word vectors2, we can determine that the nearest four words to savory are
tangy, delicious, spicy and flavorful, in that order. Using these embeddings,
and considering the word count of delicious, one may decide that the rare
word savory should have a more similar probability distribution over class
labels than the word delicious thus improving the quality of savory’s word

1 The rules for constrained and unconstrained systems for Task 5 of the SemEval-2016

challenge can be found at http://alt.qcri.org/semeval2016/task5/ (2017-06-19)
2 Pre-trained word embeddings (GoogleNews corpus): https://github.com/mmihaltz/
word2vec-GoogleNews-vectors (2017-06-19)

35

http://alt.qcri.org/semeval2016/task5/
https://github.com/mmihaltz/word2vec-GoogleNews-vectors
https://github.com/mmihaltz/word2vec-GoogleNews-vectors

6 Results

embedding. However, instead of using pre-trained embeddings, one could
also ”manually” sort words into groups or adjust their probability vectors in
order to improve their overall word representation.

6.1 Single Feature

For comparison, each feature has been used solely for the classification task
and has been trained and evaluated for 100 epochs in a first phase. The
evaluation results are shown in Figure 6.1.

Starting with the weakest result, the class-context based word embeddings
explained in Section 4.2 reach a maximum F1 score of 0.5893 which seems
to be its upper performance limit.

The probability vectors, as explained in Section 4.1, do show a better perfor-
mance when used individually than the class-context based word embed-
dings. As the graph shows, the sentence context based probability vectors
(Section 4.1.2), as well as the target context based probability vectors (Section
4.1.1) show very similar results. With 0.6608, the sentence context based
probability vectors appear to perform comparable with the target context
based probability vectors, which show a maximum F1 score of 0.6529.

The best performance using only one feature comes from the sentence
context based probability vectors using the Kullback-Leibler weight as
described in Section 4.1.3. With a F1 score of 0.6608, the sentence context
based probability vectors slightly outperform the target context based ones
which show a score of 0.6529.

As can be seen from the final overall rankings in Table 6.3, all features,
except the class-context based word embeddings outperform at least the
baseline and place a system at rank 5, as can be seen in Table 6.3.

36

6.2 Features Combined

Figure 6.1: The development of all available features and variations. The highest F1 score
is reached by Sentence Context vectors with applied Kullback-Leibler weights.
The lowest score is given by the Class Context Word Vectors.

6.2 Features Combined

In the second phase, several combinations of the features are tested. The
sentence and target context based probability vectors were combined and
evaluated. Also, in order to see the impact of the Kullback-Leibler weighting,
a test was performed with, and another without additional weighting. Figure
6.2a shows the F1 evolution over 100 epochs for each feature.

The graph shows a maximum F1 scoreof 0.6594 for the combination of
the two probability vector types without using additional weighting. Using
the weights, the performance goes up to 0.6883 which is a considerable
improvement.

By comparing these results to the overall rankings in Table 6.3, the combina-
tion of weighted probability vectors is comparable to the 2nd best placed
system XRCE.

The last remaining comparison was performed in the third phase using not
only the probability vectors (Section 4.1) but also the class-context based
word embeddings (Section 4.2). Once again, one run used the weighted
versions of the probability vectors and another the unweighted versions.
The results are presented in Figure 6.2b.

As can be clearly seen in Figure 6.2b, including the class-context based
embeddings does increase the performance considerably. This feature com-
bined with the two types of probability vectors delivers a F1 score of 0.6851

37

6 Results

(a) The development of the F1 score by the combination between Sentence and
Context probability vectors presenting one run with and another without
Kullback-Leibler weights applied. The use of the weights does show a
significant positive impact taking the F1 score close to the official result of
the XRCE system.

(b) The development of the F1 score using all available features combined.
Further, a run with and another without using Kullback-Leibler weights is
shown. The development of the run using the weights shows that it could
potentially outperform the official results of the XRCE system.

Figure 6.2: Results for combined features.

even without using the Kullback-Leibler weights. However, the best result is
the combination of all features and additional weighting for the probability
vectors which reaches a maximum F1 score of 0.6997. As Figure 6.2b also
highlights, these features can even outperform the XRCE system.

38

6.3 Feature Scores Comparison

6.3 Feature Scores Comparison

The previous section compared the different features and feature combina-
tions by showing their F1 evolution over 100 epochs each. Table 6.1 provides
an overview of the evaluation results and also shows the precision and recall
for each feature set.

Feature Prec. Rec. F1 score
Sentence Context 0.7072 0.5787 0.6365
Target Context 0.7272 0.57065 0.6395
Sentence Context with KL 0.7213 0.6096 0.6608
Target Context with KL 0.7491 0.5787 0.6529
Sentence & Target Context 0.7125 0.6137 0.6594

+ with KL 0.7247 0.6554 0.6883
Class-Ctx. Word Vectors 0.7054 0.5060 0.5893

+ Sentence & Target Context 0.7276 0.6473 0.6851
+ with KL 0.7402 0.6635 0.6997

Table 6.1: An overview for different feature combinations and the resulting F1 scores with
corresponding precision and recall values.

As shown in Table 6.1, the combination of class-context based word vectors
with sentence and target context based probability vectors, which were
weighted using the Kullback-Leibler weights, has the highest F1 score,
as well as the highest recall. The highest precision of this feature set is
only slightly outperformed by weighted target context based probability
vectors.

Table 6.2 presents the impact of each feature by successively removing fea-
tures one at a time. The table does not show all possible feature combinations
but shows the F1 score change by removing features in a comprehensible
manner.

39

6 Results

Feature F1 score Diff. Comment
All Features 0.6997 - -
- Class-Ctx Word Vectors 0.6883 −0.0114 -
- KL 0.6594 −0.0403 -

- Sentence Context 0.6395 −0.0602 Target Context only
- Target Context 0.6365 −0.0632 Sentence Context only

Table 6.2: The development of the F1 score by successively removing features.

6.4 Comparing Results

Considering the absolute best result of all feature sets, the proposed system
could potentially reach the second place in the overall ranking of constrained
systems in Slot 1 of the SemEval-2016 Aspect Based Sentiment Detection
challenge3 with an F1 score of 0.6997 as shown in Table 6.3.

The table shows the official results of the challenge and places the system,
which has been developed in the course of this thesis, amongst them using
the name ”My System”. The results for My System are shown for compara-
tive purposes and are not part of the official results of the challenge.

Rank System F1 score Rank System F1 score
1 BUTkn 0.7149 7 TGB 0.6391
- My System 0.6997 8 DMIS 0.6175
2 XRCE 0.6870 9 IIT-T. 0.6122
3 UWB 0.6781 10 Baseline 0.5992
4 AUEB. 0.6735 11 INSIG. 0.5830
5 NLANGP 0.6556 12 CENNL. 0.4057
6 LeeHu. 0.6545

Table 6.3: The official ranking of Task 5 Slot 1 of the SemEval-2016 challenge. The result
for My System, developed in the course of this thesis and its potential ranking is
shown for a sole comparative reason and is not part of the official results.

3 Official results SemEval-2016 Task 5 (ABSA): http://alt.qcri.org/semeval2016/
task5/data/uploads/submissionsresults.zip (2017-06-19)

40

http://alt.qcri.org/semeval2016/task5/data/uploads/submissionsresults.zip
http://alt.qcri.org/semeval2016/task5/data/uploads/submissionsresults.zip

6.5 Summary

6.5 Summary

In this chapter, the results which were collected by using the data set
provided in the SemEval-2016 Aspect Based Sentiment Detection challenge
as training and testing framework were presented. Different feature sets
were evaluated and compared to each other and their results were arranged
clearly in Table 6.1. As a point of reference, the performance results of
the features were compared against previous results obtained by previous
participants of this challenge, which were shown in Table 6.3.

41

7 Conclusion

In the course of natural language processing, aspect category detection
is a key issue for the understanding content in language. The complexity
of natural language, and all its nuances in terms of embedded meaning
embedded, represents huge obstacles for its analysis and to the information
retrieval technologies. This thesis presents a system developed for aspect
category detection as defined in Task 5 of the SemEval-2016 challenge
(Pontiki et al. 2016), which shows comparable results to other systems
evaluated on the corresponding data set of the challenge.

The proposed system works on different kinds of word embeddings which
can be derived from a labeled data set. After computing the respective word
embeddings, a two-layer feedforward neural network is trained to perform
a multilabel classification task.

The performance of the system was presented without the use of any
threshold optimization as compared to other systems and is better than
other comparable systems. As explained in Chapter 5, the output layer of
the feedforward neural network corresponds to each label with a single
tanh unit, and thus does not require a threshold over labels as is required
when using a softmax output layer.

7.1 Future Work

Along the thesis, multiple new questions and ideas emerged which could
not be addressed in the course of it, thus are candidates for further research
work. In the following, a few thoughts on open questions of the proposed
approach are presented.

43

7 Conclusion

7.1.1 Class-Context Based Word Embeddings

Generating Training Samples

For the generation of training samples, a rather naive approach has been
chosen. At this time, only one hop is considered in the grammatical de-
pendency graph, which might be insufficient, e.g. due to conjunctions, to
capture all context words for the training of class-context based word em-
beddings. This naive approach could be replaced by a more sophisticated
method and re-evaluated.

Also, the other two approaches for drawing samples described in Section
4.2.1 could be investigated in more detail.

Robustness and Encoding

The number of labeled sentences in the Task 5 data set of the SemEval-
2016 challenge consists of only 2,000 labeled sentences. This small number
of sentences makes it hard for Google’s Word2Vec algorithm (Mikolov
et al. 2013) to find good representations and makes it harder for more
complex networks such as CNNs to derive features for classification. Usually,
although in unconstrained systems, pre-trained word vectors are used or
trained on a particular corpus of choice (see for example Toh and Su
2016). Firstly, it would be interesting to see how class-context based word
embeddings work on a larger corpus, and secondly, it would be interesting
to take a closer look at the word embeddings themselves in order to make
statements about the information which they are encoding.

7.1.2 Extending to Unconstrained System

The proposed system works under the rules of Task 5 of the SemEval-2016

challenge for constrained systems. As stated in Chapter 6, this definition is
rather vague. However, a quite obvious path for the proposed system would
be to try out its delivering power when combined with additional resources

44

7.2 Summary

such as pre-trained word embeddings or additional (external) training data
besides the provided data in Task 5 of the SemEval-2016 challenge.

7.2 Summary

The system developed for aspect category detection during the course of this
thesis compares favorably with current state-of-the-art systems for the same
task. For future work, some suggestions have been presented with respect
to the focus of this work on constrained systems and the low availability of
training data for the presented method.

45

Bibliography

[Aba+15] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org.
2015. url: http://tensorflow.org/ (visited on 06/19/2017).

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006. isbn: 0387310738.

[BPR16] Caroline Brun, Julien Perez, and Claude Roux. “XRCE at SemEval-
2016 Task 5: Feedbacked Ensemble Modeling on Syntactico-
Semantic Knowledge for Aspect Based Sentiment Analysis.”
In: Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). San Diego, California: Association
for Computational Linguistics, 2016, pp. 277–281. url: http:
//www.aclweb.org/anthology/S16-1044.

[Cho+15] François Chollet et al. Keras. https://github.com/fchollet/
keras. 2015. (Visited on 06/19/2017).

[Her+16] Tomáš Hercig et al. “UWB at SemEval-2016 Task 5: Aspect Based
Sentiment Analysis.” In: Proceedings of the 10th International Work-
shop on Semantic Evaluation (SemEval-2016). San Diego, California:
Association for Computational Linguistics, 2016, pp. 342–349.
url: http://www.aclweb.org/anthology/S16-1055.

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization.” In: CoRR abs/1412.6980 (2014). url:
http://arxiv.org/abs/1412.6980.

47

http://tensorflow.org/
http://www.aclweb.org/anthology/S16-1044
http://www.aclweb.org/anthology/S16-1044
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.aclweb.org/anthology/S16-1055
http://arxiv.org/abs/1412.6980

Bibliography

[KPM14] Rafael Michael Karampatsis, John Pavlopoulos, and Prodro-
mos Malakasiotis. “AUEB: Two Stage Sentiment Analysis of
Social Network Messages.” In: Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval 2014). Dublin,
Ireland: Association for Computational Linguistics and Dublin
City University, 2014, pp. 114–118. url: http://www.aclweb.
org/anthology/S14-2015.

[LLS07] John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online
learning project. 2007. (Visited on 06/19/2017).

[LM14] Quoc V. Le and Tomas Mikolov. “Distributed Representations
of Sentences and Documents.” In: CoRR abs/1405.4053 (2014).
url: http://arxiv.org/abs/1405.4053.

[Mac16] Jakub Machacek. “BUTknot at SemEval-2016 Task 5: Supervised
Machine Learning with Term Substitution Approach in Aspect
Category Detection.” In: Proceedings of the 10th International Work-
shop on Semantic Evaluation (SemEval-2016). San Diego, California:
Association for Computational Linguistics, 2016, pp. 301–305.
url: http://www.aclweb.org/anthology/S16-1048.

[Man+14] Christopher D. Manning et al. “The Stanford CoreNLP Natural
Language Processing Toolkit.” In: Association for Computational
Linguistics (ACL) System Demonstrations. 2014, pp. 55–60. url:
http://www.aclweb.org/anthology/P/P14/P14-5010.

[Mik+13] Tomas Mikolov et al. “Efficient Estimation of Word Represen-
tations in Vector Space.” In: CoRR abs/1301.3781 (2013). url:
http://arxiv.org/abs/1301.3781.

[PL08] Bo Pang and Lillian Lee. “Opinion Mining and Sentiment Anal-
ysis.” In: Found. Trends Inf. Retr. 2.1-2 (Jan. 2008), pp. 1–135. issn:
1554-0669. doi: 10.1561/1500000011. url: http://dx.doi.org/
10.1561/1500000011.

[Pon+16] Maria Pontiki et al. “SemEval-2016 Task 5: Aspect Based Senti-
ment Analysis.” In: Proceedings of the 10th International Workshop
on Semantic Evaluation. SemEval ’16. San Diego, California: As-
sociation for Computational Linguistics, 2016.

48

http://www.aclweb.org/anthology/S14-2015
http://www.aclweb.org/anthology/S14-2015
http://arxiv.org/abs/1405.4053
http://www.aclweb.org/anthology/S16-1048
http://www.aclweb.org/anthology/P/P14/P14-5010
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1561/1500000011

Bibliography

[Ron14] Xin Rong. “word2vec Parameter Learning Explained.” In: CoRR
abs/1411.2738 (2014). url: http://arxiv.org/abs/1411.2738.

[SM15] Aliaksei Severyn and Alessandro Moschitti. “Twitter Sentiment
Analysis with Deep Convolutional Neural Networks.” In: Pro-
ceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’15. Santiago,
Chile: ACM, 2015, pp. 959–962. isbn: 978-1-4503-3621-5. doi:
10.1145/2766462.2767830. url: http://doi.acm.org/10.
1145/2766462.2767830.

[Soc+13] Richard Socher et al. “Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank.” In: Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing. Seattle, WA: Association for Computational Linguistics,
2013, pp. 1631–1642.

[SOM10] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. “Earth-
quake Shakes Twitter Users: Real-time Event Detection by So-
cial Sensors.” In: Proceedings of the 19th International Confer-
ence on World Wide Web. WWW ’10. Raleigh, North Carolina,
USA: ACM, 2010, pp. 851–860. isbn: 978-1-60558-799-8. doi:
10.1145/1772690.1772777. url: http://doi.acm.org/10.
1145/1772690.1772777.

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting.” In: J. Mach. Learn. Res. 15.1
(Jan. 2014), pp. 1929–1958. issn: 1532-4435. url: http://dl.acm.
org/citation.cfm?id=2627435.2670313.

[TS16] Zhiqiang Toh and Jian Su. “NLANGP at SemEval-2016 Task 5:
Improving Aspect Based Sentiment Analysis using Neural Net-
work Features.” In: Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016). San Diego, California:
Association for Computational Linguistics, 2016, pp. 282–288.
url: http://www.aclweb.org/anthology/S16-1045.

[Xen+16] Dionysios Xenos et al. “AUEB-ABSA at SemEval-2016 Task 5:
Ensembles of Classifiers and Embeddings for Aspect Based Sen-
timent Analysis.” In: Proceedings of the 10th International Workshop

49

http://arxiv.org/abs/1411.2738
http://dx.doi.org/10.1145/2766462.2767830
http://doi.acm.org/10.1145/2766462.2767830
http://doi.acm.org/10.1145/2766462.2767830
http://dx.doi.org/10.1145/1772690.1772777
http://doi.acm.org/10.1145/1772690.1772777
http://doi.acm.org/10.1145/1772690.1772777
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://www.aclweb.org/anthology/S16-1045

Bibliography

on Semantic Evaluation (SemEval-2016). San Diego, California: As-
sociation for Computational Linguistics, 2016, pp. 312–317. url:
http://www.aclweb.org/anthology/S16-1050.

50

http://www.aclweb.org/anthology/S16-1050

