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Abstract
Due to the dramatic increase in available computational resources, Particle-Unresolved
Euler-Lagrange (PU-EL) models for particulate flow simulations are becoming more
and more appealing for solving problems of industrial interest. In fact, particulate flows
are widely encountered in industry where the suspended and suspending phases ex-
change momentum, heat and mass. Often, even a variety of (heterogeneous) chem-
ical reactions take place in parallel to flow processes, typically involving a plurality
(100 or more!) of chemical species. Also, physical processes like particle breakage or
agglomeration, as well as droplet coalescence or coating may be relevant. The main
advantage of Euler-Lagrange models with respect to others is that each particle (or
parcel that represents a set of particles) is tracked. Thus, the above mentioned particle-
based chemical-physical processes can be studied in their most natural form - statistical
models that rely on a pre-averaging of particle flow quantities are not needed. In other
words, only the fluid phase is coarse-grained, while particle-related phenomena can be
simulated directly. This makes the addition of new models describing chemical and
physical processes on the scale of the particles straightforward.

PU-EL formulations require closure models for all relevant interphase exchange pro-
cesses. While several closures are available for Euler-Euler simulations (in which some
form of pre-averaging of particle phase quantities is performed), it is not clear if they
can be straightforwardly applied to PU-EL models. Furthermore, for dense flows, it is
unclear how one shall formulate the interphase exchange terms near walls. Therefore,
the present thesis studies per-particle momentum, heat and mass transfer in gas-solid
suspensions. The ultimate goal is deriving closure models for the interphase transfer
coefficients that are suitable for PU-EL. The main idea is that such models can be ob-
tained by analysing data from highly resolved simulations. In order to do so, we first
develop the basic tools which are: (i) a parallel data processing library which allows ex-
tracting relevant information, and (ii) a method to perform highly resolved simulations
of momentum, heat and mass transfer for Reynolds numbers up to O(1, 000).

Secondly, we focus on bi-disperse gas-particle systems where we provide a refined
statistical description of per-particle interphase exchange rates. Existing correlations
found in literature are compared against our data, and we discuss the validity of the
widely used correlation of Beetstra et al. [11]. Additionally, we provide new insight
with respect to particle-based heat (or mass) transfer coefficients. Specifically, we con-
clude that the scaled standard deviation of all transfer coefficients in a dense suspension
is, to a first approximation, a universal constant and in the order of 0.4.

Finally, we focus on wall effects with the aim to develop a description of wall nor-
mal profiles of flow and scalar fields. In addition, our results indicate that interphase
transfer coefficients in the proximity of walls systematically deviate from their corres-
ponding bulk values.
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Kurzfassung
Aufgrund der dramatischen Zunahme der verfügbaren Rechenressourcen können Euler-
Lagrange (EL) Modelle für die Simulationen von industriellen Partikelströmungen zu-
nehmend angewendet werden. Derartige Partikelströmungen sind in der Verfahrens-
technik weit verbreitet. In diesen Strömungen muss typischer Weise der Austausch von
Impuls, Wärme, sowie die Stoffübertragung berücksichtigt werden. Zusätzlich können
(heterogene) chemische Reaktionen auftreten, die die Beschreibung einer Vielzahl (oft-
mals 100 und mehr!) von chemischen Spezies bedürfen. Ebenso können physikalische
Prozesse wie Partikelbruch oder Agglomeration, sowie Tropfenkoaleszenz oder Trop-
fendeposition relevant sein. Der Hauptvorteil von Euler-Lagrange Modellen gegen-
über anderen Modellen ist das jedes Partikel (bzw. so-genannte ’Parcels’ die ein En-
semble von Partikeln repräsentieren) separat verfolgt wird. Deshalb können die oben
erwähnten partikelbasierten chemisch-physikalischen Prozesse in ihrer natürlichsten
Form verfolgt werden - statistische Modelle die auf gemittelten Partikelinformationen
basieren werden nicht benötigt. Mit anderen Worten, nur Fluidphaseneigenschaften
werden gemittelt, während partikelbezogene Phänomene direkt simuliert werden kön-
nen. Dies macht die Kombination von Partikelströmungsmodellen mit Modellen die
chemische und physikalische Prozesse auf der Skala der Partikel betrachten einfach.

EL-Formulierungen erfordern Schließbedingungen für alle relevanten Austausch-
prozesse zwischen Fluid und Partikelphase. Während mehrere dieser Schließbedin-
gungen für Euler-Euler-Modelle existieren (bei diesen Modellen wird eine Form der
Mittelung von Fluid- und Partikelphasen vorgenommen), ist es nicht klar, ob diese
Bedingungen auch direkt auf EL Modelle angewendet werden können. Darüber hin-
aus ist es für dichte Partikelsysteme unklar, wie man die Schließbedingungen für Aus-
tauschprozesse in der Nähe von Wänden formulieren soll. Die vorliegende Dissertation
untersucht deshalb den partikel-individuellen Transfer von Impuls, Wärme und Stoff
in Gas-Partikel-Suspensionen. Das Ziel ist die Ableitung von Schließbedingungen für
Transferkoeffizienten die für EL Modelle geeignet sind. Diese Schließbedingungen
werden durch die Analyse von Daten aus hochaufgelösten Simulationen erhalten. Für
die praktische Umsetzung dieses Ansatzes wurden zunächst die grundlegenden Werk-
zeuge entwickelt, diese sind (i) eine parallele Datenverarbeitungsbibliothek, die es er-
möglicht, relevante Informationen aus hochaufgelösten Simulationen zu extrahieren,
sowie (ii) eine Methode, um hochaufgelöste Simulationen von Impuls-, Wärme- und
Stoffübertragung für Reynoldszahlen bis O(1.000) zu realisieren.

In weiterer Folge konzentriert sich die vorliegende Dissertation auf bi-disperse Gas-
Partikel-Systeme, wobei auf eine verfeinerte statistische Beschreibung der Partikel-
individuellen Transferraten Wert gelegt wird. Bestehende Korrelationen aus der Li-
teratur werden mit eigenen Daten verglichen. Weiters wird die Gültigkeit der weit
verbreiteten Korrelation von Beetstra et al. [11] diskutiert. Darüber hinaus bietet die
vorliegende Arbeit neue Einblicke in Bezug auf Partikel-individuelle Wärme- (oder
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Stoff-) Transferkoeffizienten. Im Speziellen zeigen wir, dass die skalierte Standardab-
weichung aller Transferkoeffizienten in einer dichten Suspension in erster Näherung
eine universelle Konstante ist, und einen approximativen Wert von 0.4 annimmt.

Schließlich konzentrieren wir uns auf Wandeffekte, mit dem Ziel die Profile von
wandnahen Strömungs- und Skalarfeldern zu beschreiben. Unsere Ergebnisse zeigen
weiters, dass Transferkoeffizienten in der Nähe von Wänden systematisch von ihren
Werten im Bulk abweichen.
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1. Introduction
Disperse multiphase flows can be found in a wide variety of engineering applications
ranging from combustion to pharmaceutical processes and the oil & gas industry. They
also find applications in other branches of science like geology (for example the study
of river beds or vulcanoes) or medicine (e.g., modelling of blood flow).

A central theme in the study of disperse multiphase flows is the need for predicting
(and modelling) the detailed behaviour of the flow field and the phenomena induced
by the presence of the dispersed phase within the (continuous) fluid phase. In fact,
unlike what happens in separated flows where two or more phases are separated by
connected macro-scale interfaces, in disperse multiphase flows there is a large number
of micro scale interfaces where the phenomena of interest (e.g., momentum, heat and
mass transfer) take place. Especially dense, poly-disperse disperse multiphase flows
are challenging due to their humongous number of interfaces.

In gas-particle systems (for example, in fluidized beds), the micro scale is related to
the particle diameter, which can range between 10 and 1, 000 µm. Therefore, a detailed
direct solution strategy aiming at interphase transfer at the particle scale is not a viable
tool to design devices on the scale of O(1) m. This is due to the complexity of the flow
field in the interstices between the particles.

As a result, a number of approaches to reduce the number of degrees of freedom,
and to develop theories that allow the process to be described on a larger scale, have
been proposed [51, 101, 107]. Similarly to coarse grained theories for turbulence, all
of these theories contain unclosed terms that require further modelling.

The accurate formulation of such theories together with correct closure models is
of pivotal importance for the design of industrial scale equipment involving disperse
multiphase flows.

1.1. The NanoSim project
One way to attack the above problem is developing a succession of such theories for
different spatio-temporal scales from a molecular level to the full scale device. Res-
ults from "small" scale formulations are then used to develop appropriate closures to
be used in models developed for the successive "larger" scale. This is the approach
followed by the NanoSim project: "A Multi-scale Simulation-Based Design Platform
for Cost-Effective CO2 Capture Processes using Nano-Structured Materials". Even
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1. Introduction

Figure 1.1.: Typical flow of information from a resolved simulation model (here the
"CFD 2" level) to a unresolved simulation model (i.e., the "CFD 3" level)
as applied in the NanoSim project.

though the main objective of NanoSim is to provide a simulation platform for the accur-
ate design of gas-particle CO2 capture technologies, the resulting simulation platform
(formed around the tool Porto) is much wider applicable.

A key tool on the NanoSim simulation platform is CPPPO (Compilation of fluid/particle
post processing routines) [68], which was developed within the present thesis (see
Chapter 2 for details). As depicted in Figure 1.1, the role of CPPPO is to act as scale
bridging tool by extracting relevant information from resolved simulations to derive
appropriate closures for unresolved simulations. Here we use the terms resolved and
unresolved in the most general context: a quantity that is modelled (i.e., that requires a
closure) in an unresolved simulation is computed from the solution of a resolved sim-
ulation. Therefore, the two terms generally refer to some specific quantity of interest,
e.g., momentum or heat transfer.

In this sense, CPPPO can be applied as a bridging tool regardless the details of the
resolved or unresolved formulations, and, thus, can be seen as a universal tool.

1.2. Euler-Lagrange and Euler-Euler formulations
Coarse grained theories for disperse multiphase flows are generally formulated using
a Particle-Unresolved Euler-Lagrange approach (PU-EL), or an Euler-Euler (EE) ap-
proach. In the first approach, only the fluid phase is coarse grained, so that a grid with
a spacing on the order of several particle diameters can be used (smaller grid sizes are
not useful, since only average particle information is considered when solving the fluid
equations). The interphase transfer has to be modelled, but the particle cloud is still a
discrete entity where each discrete element correspond to one particle.
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On the contrary, in Euler-Euler formulations both phases are coarse grained, and
therefore there is no definition of a single independent particle. Particles are treated as
a continuum, and their interactions are accounted statistically.

In this work, we focus on developing closure models for PU-EL formulations from
Particle-Resolved Direct Numerical Simulations (PR-DNS). In PR-DNS all relevant
flow scales are taken into account, and modeling errors may only originate from the
algorithms employed to obtain a numerical solution but results are consistent with the
fundamental assumptions of the model (e.g., the fluid’s rheology, particle shape, etc.).
There are two main reasons why approaching first PU-EL models (via PR-DNS) is
preferable compared to directly approaching EE:

i EE models are based on a continuum, i.e., a statistical description of the discrete
phase. This requires considering a "statistically significant" number of particles.
On the contrary, in PU-EL formulations the number of discrete particles within a
grid cell can vary, but in general is much lower than the equivalent in EE models.
Therefore, PU-EL can be seen as an intermediate step between PR-DNS and EE,
which leads to the second point:

ii In PU-EL the thermodynamical history of each particle is tracked, together with
the particles’ internal state (e.g., the particle’s chemical composition) and per-
particle transfer coefficients. Therefore, PU-EL models provide a much more
powerful tool to study multi-physics and reactive systems compared to EE mod-
els. For the latter a continuum description of such processes becomes necessary,
significantly complicating the analysis. For example, PU-EL models allow to
study the effect of thermal radiation in gas-particle systems based on detailed
particle-to-particle radiative heat transfer models [36]. This example illustrates
that the relative arrangement of particles may be of significant importance, a
factor that cannot be accounted for in current EE models.

1.3. The closure problem
As mentioned in the previous section, coarse grained theories are generally unclosed
in the sense that one or more terms are a function of the microscopic fields (i.e., a
solution of the resolved equations). The unclosed terms in case of PU-EL include (i)
the stress arising from volume averaging the flow field (as in turbulence theory), (ii)
scalar dispersion terms, as well as (iii) interphase transfer terms originating from the
transformation of the conditions at the particles’ boundaries into source terms for the
governing equations in PU-EL. Term (i) is typically of secondary importance for dense
flows - it will not be discussed further. Also, term (ii) is typically of subordinate im-
portance, and is only briefly touched in the present thesis. The last terms are, however,
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significant. Generally, these terms are proportional to the integral over the particles’
interface, considering the gradients of microscopic variables:

Q ∝
1

S

ˆ
S

∂ϕ

∂n
dS (1.1)

Where S is the particles’ surface, ϕ is a microscopic variable, and ∂/∂n is the sur-
face normal derivative. Generally, one introduces the following ansatz to arrive at ex-
pressions that connect microscopic and coarse-grained quantities:

ϕ = ϕ′ (ϕS − 〈ϕ〉) (1.2)

Where 〈ϕ〉 is a (smooth and slowly varying in space) coarse grained variable, ϕS is
a constant surface value, and ϕ′ is a rescaled microscopic variable. Such scaling allows
to rewrite the interphase transfer term as:

Q ∝
(ϕS − 〈ϕ〉)

S

ˆ
S

∂ϕ′

∂n
dS = Λ (ϕS − 〈ϕ〉) (1.3)

Where Λ is an interphase transfer coefficient which is generally a function of the
Reynolds number, the concentration of neighbouring particles, and some parameters
of the coarse graining operator (for example the characteristic length ∆ of the filtering
kernel). Such approach requires finding a proper functional form for Λ, which is the
ultimate goal of most of the work done in the present thesis.

However, above we assumed that 〈ϕ〉 does not vary over S in order to take it outside
the integration operator. This is justified when the characteristic length of the dispersed
phase ` (e.g., the particle diameter in case of spherical particles) is much smaller than
the characteristic length of the filtering kernel ∆, i.e., ` << ∆ (see for example the
book of Whitaker [107]). Therefore, the ansatz shown in Eqn. 1.2 is valid, for example,
in the case of point particles. Unfortunately, this is not always the case in PU-EL mod-
els that consider particles with a finite diameter, and for which one can have ` ≈ ∆.

1.4. Objectives of this thesis
The main objective of this thesis is to provide insight with respect to closure models for
PU-EL simulations by means of coarse graining data from PR-DNS. Specifically, we
are particularly interested in heat and mass transfer phenomena and their modelling
by means of an interphase transfer coefficient. Most important, we consider volume
averaging with a characteristic filter length on the order of a few particle diameters
(i.e., one could call this ’fine-grained’ PU-EL).
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The present thesis aims on accomplishing five major objectives, each one aiming
on significantly advancing the current state of the art, or on making new open-source
software tools available to the community for future investigations.

1.4.1. Objective I: Developing and testing the scale bridging tool
CPPPO

Generally, a resolved simulation results in a huge amount of data, often scattered
among several dozens or hundreds of processors. Furthermore, only statistical in-
formation is generally required to develop closure models, which makes the storage
of full simulation data useless and expensive. Therefore, a data processing library
that can be interfaced with virtually any solver and that generates the desired statist-
ical information from a data stream (during a parallel simulation run) is of primary
importance. CPPPO (Compilation of fluid/particle post processing routines) is de-
veloped and integrated with the CFDEMCoupling R©[cfd] library by means of a general
OpenFOAM R©[ope] interface. The library is able to perform "on-the-fly" filtering op-
erations (i.e., alongside with the execution of a solver), and to output data at runtime
with high parallel efficiency and low RAM usage. Also, test cases to show the accuracy
of the computation are provided.

1.4.2. Objective II: Establishing a novel algorithm for PR-DNS
that allows heat and mass transfer simulations

The Eulerian-Lagrangian library CFDEMCoupling R©is extended with a new algorithm
for PR-DNS which makes use of elements from the Immersed Boundary (IB) [73]
and the Fictitious Domain (FD) method [86] to simulate momentum, heat and mass
transfer in gas-particle flows. The new algorithm is named Hybrid Fictitious Domain-
Immersed Boundary method (HFD-IB). The algorithm features (i) a Taylor expansion-
based boundary layer reconstruction to compute cell values that satisfy the boundary
conditions to a desired order, and (ii) an internal compensation of boundary fluxes to
correctly evaluate the interphase fluxes. The algorithm is coded for massively parallel
applications and it is verified against several test cases showing outstanding accuracy
on coarse grids. Furthermore, the HFD-IB method can be easily extended to impose
general boundary conditions, e.g., a fixed flux condition.

1.4.3. Objective III: Assessing scale separation for heat and mass
transfer in homogeneous suspensions

We aim on providing more insight on the phenomena of heat and mass transfer in ho-
mogeneous (but random) gas-particle suspensions. Specifically, the problem of scale
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separation [91] is studied using analytical techniques to identify the regimes under
which it still makes sense to use a formulation in terms of transfer coefficients (i.e.,
equation 1.1) to close the interphase source term. In fact, below certain values of the
Peclet number and voidage, the interphase transfer happens so quickly that the fluid
phase gets saturated (i.e., the fluid assumes almost the same temperature or concen-
tration as that present near the particle surface) within one or two particle diameters.
This means that the coarse grained temperature (or concentration) field is far from be-
ing constant over the particle surface. Furthermore, the heat transfer coefficient in the
saturated regime would be so large that it would pose stability problems in coarse-
grained simulations in case explicit flux coupling is performed. In such situations, one
could just set the coarse grained fluid temperature (or concentration) to the particle
surface value and distribute the transferred heat among the particles based on the flow
direction.

1.4.4. Objective IV: Closure models for momentum, heat and mass
transfer in bi-disperse systems

We make use of PR-DNS to develop and test the validity of closure models for mo-
mentum, heat and mass transfer in bi-disperse gas-particle suspensions. Specifically
we explore the possibility of exploiting an analogy between momentum and heat/mass
transfer to implement computationally more efficient closures. Those closures rely on
the idea that heat (or mass) transfer coefficients are calculated from the drag coeffi-
cient (which has to be calculated anyway). Also, we perform a statistical analysis of
the deviation from the values predicted by the correlation and we provide, by means
of a proper scaling of the variables, universal distribution functions that can be used in
stochastic models. Furthermore, we asses the validity of existing correlations, specific-
ally that of Beetstra et al. [11], with respect to predicting the drag in bi- or polydisperse
suspensions. Thereby, a focus is on the correct treatment of the mean pressure gradient
contribution that must be subtracted from PR-DNS data in order to compute a mean-
ingful drag force.

1.4.5. Objective V: Quantifying wall effects in gas-particle
suspensions

The description of momentum, heat and mass transfer between particles and a gas in
the proximity of walls still lacks fundamental understanding. By means of an array
of PR-DNS for such systems, we find that the main cause of such disturbances is the
anisotropic particle distribution induced by the wall. Therefore, we aim on character-
izing the wall-near "particle-induced boundary layer", in which flow and temperature
(or concentration) fields exhibit peculiar profiles. Also, by means of a set of Discrete
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Element Method-based (DEM) simulations, we aim on obtaining an accurate expres-
sion for the wall normal particle volume concentration profile as a function of the bulk
concentration. Furthermore, we provide correlations for the flow and temperature (or
concentration) fields within the particle-induced boundary layer, and we study the in-
terphase transfer coefficient.

1.5. Thesis content

1.5.1. Highly efficient spatial data filtering in parallel using the
library CPPPO

In Chapter 2 we introduce the main tool used throughout the rest of the present study:
CPPPO. CPPPO allows volume averaging (i.e., filtering) operations to be performed
on-the-fly (i.e., while a simulation is running) by acting directly on data pointers. After
a brief introduction that motivates the need and use for such a library, we illustrate
the heart of the library: the FSB loop (Filtering-Sampling-Binning) which allows a
straight pipeline of operations that limits the amount of required RAM. Subsequently,
we detail how CPPPO interfaces with OpenFOAM R©and how it can be linked to any
other simulator. We also introduce the basics of spatial filtering, as well as the novel
convergent and divergent filtering algorithms featured in CPPPO. Parallel algorithms
are described in detail with particular emphasis on the number of required operations.
Finally, we present test calculations and the parallel scalability analysis together with
the application of the library to PR-DNS.

This work was published in Computer Physics Communications [68].

1.5.2. Consistent closures for Euler-Lagrange models of
bi-disperse gas-particle suspensions derived from
Particle-Resolved Direct Numerical Simulations

Chapter 3 deals with the study of momentum, heat and mass transfer in bi-disperse gas-
particle suspensions. After briefly introducing the governing equations, we introduce
the concept of fluid saturation which is akin to the problem of scale separation. We
develop an analytical model to predict the range of parameters under which saturation
occurs and we verify the model against PR-DNS.

We also introduce the HFD-IB method, and describe the newly implemented al-
gorithm in detail. The algorithm is benchmarked in a number of test cases involving
one or more particles.

Finally, we perform several simulations of bi-disperse gas-particle suspensions con-
sidering an array of different particle concentrations, Reynolds numbers, and small-to-
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large diameter ratios. We first focus on the particle-based drag force, and we then move
on to the particle-based Nusselt number. We conclude Chapter 3 with considerations
regarding the role of the pressure gradient contribution in the average drag force for
poly-disperse systems.

This work was published in the International Journal of Heat and Mass Transfer
[69].

1.5.3. Momentum, heat and mass transfer simulations of bounded
dense mono-disperse gas-particle systems

Moving to Chapter 4 we investigate the effects of adiabatic walls on momentum,
heat and mass transfer in mono-disperse suspensions. First, we introduce the relev-
ant equations, we discuss the post-processing, and we describe the numerical settings.
Secondly, we present results from a large number of simulations involving different
values of the Reynolds number and the particle volume concentration. We focus on the
modelling of wall induced disturbances by means of expressions for the wall normal
profiles, starting with the particle concentration. Then, we model (i) the temperature (or
concentration), and (ii) the flow field in the proximity of the wall. Finally, we investig-
ate the effect of wall disturbances on the interphase transfer coefficients for momentum
and heat (or mass).

This work has been recently submitted to the International Journal of Heat and
Mass Transfer and is currently under review.

1.5.4. Conclusions and Appendix
In Chapter 5 we draw overall conclusions from the results of the present thesis, and
provide an outlook for further investigations. Finally, in A we show how the HFD-IB
algorithm can be extended to impose general boundary conditions.
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2. Highly efficient spatial data
filtering in parallel using the
opensource library CPPPO

CPPPO is a compilation of parallel data processing routines developed with the aim
to create a library for "scale bridging" (i.e. connecting different scales by mean of
closure models) in a multi-scale approach. CPPPO features a number of parallel filter-
ing algorithms designed for use with structured and unstructured Eulerian meshes, as
well as Lagrangian datasets. In addition, data can be processed on the fly, allowing the
collection of relevant statistics without saving individual snapshots of the simulation
state. Our library is provided with an interface to the widely-used CFD solver "Open-
FOAM", and can be easily connected to any other software package via interface mod-
ules. Also, we introduce a novel, extremely efficient approach to parallel data filtering,
and show that our algorithms scale super-linearly on multi-core clusters. Furthermore,
we provide a guideline for choosing the optimal Eulerian cell selection algorithm de-
pending on the number of CPU cores used. Finally, we demonstrate the accuracy and
the parallel scalability of CPPPO in a showcase focusing on heat and mass transfer
from a dense bed of particles.

2.1. Introduction
Many relevant physical systems involve a wide spectrum of length scales that inter-
act in a non-linear way. Hence, an accurate prediction of all relevant phenomena in
these physical systems in engineering-scale equipment is challenging due to the in-
ability to directly simulate certain small-scale phenomena. One example are dense
fluid-particle flows, which are usually encountered in many industrial processes: de-
tails of the flow around each individual particle cannot be directly predicted, but are
modeled instead, e.g., by a drag coefficient. In addition, the simulation of flows in
engineering-scale equipment often necessitates the use of Eulerian models on compar-
ably coarse computational grids, i.e., the continuum hypothesis has to be adopted, and
small-scale information is lost. Consequently, closures have to be derived to account
for a variety of phenomena, e.g., fluid-particle and particle-particle interactions, or un-
resolved turbulent motion. In order to accurately model such flow problems, a so-called

9
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multi-scale approach is often used [101, 102]. The multi-scale approach consists in de-
composing the original problem into various levels of description, each one involving
a typical range of length scales. Then, simulations on the most detailed level (typically
on the smallest length scales) are performed to extract quantities which can be used
in coarse grained models. In a coarse-grained model, only coarse flow structures are
resolved (where "coarse" means on the same order of the mesh size or larger). Trans-
port processes occurring at smaller scales are considered by closures, e.g., filter-size
dependent closures for scalar dispersion rates, inter-phase exchange rates, or effective
stresses. Nowadays, these closures are often derived from simulations on a more de-
tailed level, and not from experimental data. This process is normally referred to as
"coarse-graining", and has become a major trend in a variety of scientific disciplines
[50, 56, 60, 83].

CPPPO (i.e., the "Compilation of fluid/Particle PostPrOcessing routines") has been
developed as a flexible library that provides a collection of efficient algorithms to per-
form these coarse-graining operations. The main purpose of CPPPO is to act as a tool
for "scale-bridging", regardless of the effective scale range, the model formulation, or
the simulator used. CPPPO is designed to interact with any purely Eulerian, or mixed
Eulerian-Lagrangian data set. This allows one to apply CPPPO for a number of differ-
ent scientific and engineering applications. For example, this includes the verification
of Large Eddies Simulation (LES) models based on differential filtering [39], aniso-
tropic filtering of flow data [12], or the development of sub-grid stress tensors for LES.
In what follows, however, we focus on a multi-scale scenario applied to study dense
fluid-particle flows in order to outline how CPPPO can be used for scale bridging.

At the most fundamental level, Direct Numerical Simulations (DNS) are used to de-
rive coefficients for heat, momentum and mass transfer in dense particulate systems
[22–24, 35, 88, 110]. Typically, a certain number of realizations for the case stud-
ied are needed [92, 93] in order to derive statistically meaningful correlations. This
approach requires to process data from large datasets in order to compute averaged
(mean) quantities (which are needed to evaluate transfer coefficient), standard devi-
ations, or orther statistics like the distribution of the angle between two vector fields
[54]. Also, time-averaged quantities are often used to evaluate transport coefficients in
fluid-particle systems [27]. In case of non-equilibrium systems (like fluidized beds, in
which instabilities are system-inherent [51]), the modelling of drag and stresses may
require higher-order closures. Unfortunately, these models are difficult to develop [28].
Another example can be found in the field of granular materials: here the calculation
of effective transport properties requires the evaluation of filtered fields and fluxes
[110, 112]. The same approach, i.e., considering statistical data of, e.g., the velocity
fluctuations, can be used on intermediate length scales when deriving models for engin-
eering applications. Typically, this results in an Eulerian "grid coarsening" approach,
e.g., by deriving models for the sub-grid-scale fluid-particle agitation [50]. Favre aver-
aging of relevant fluid variables (e.g., the fluid velocity), and fluid-particle interactions
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(e.g., the coupling force) is generally adopted to derive these closures [74, 81] . In
case an Euler-Lagrange approach is followed, the effect of "particle coarsening" (i.e.,
each simulated particle is a proxy for a prescribed number of particles named parcel)
has to be taken into account as well [81]. All these examples demonstrate that spatial
averaging operation on Eulerian and Lagrangian data sets of of key importance for
multi-scale model development nowadays.

In principle, the application of an appropriate filtering strategy is straight forward
once the fluid-particle flow simulator is available. However, filtering of scientific data
and "coarse-graining" poses several challenges from the software point of view. For
example, spatio-temporal averages have to be computed across different processors
for the (typically large) filter sizes. Typically, filter sizes to be used when filtering DNS
data of fluid-particle flows have a size of two to five particle diameters. Thus, filtering
is typically performed over 203 to 503 Eulerian grid cells, often located on different
processors. This requires an algorithm that can deal with parallel communication, and
that does not require mirroring the full field information on every processor. The latter
is of course a feasible approach, however, when aiming on large-scale simulations this
would require an excessive use of RAM. At the same time, parallel communication
of local field values requires significant network resources due to the large amount
of data to communicate. Another issue is the amount of data generated during the
simulation run: the implemented algorithms should be able to work "on the fly" in
order to process (i.e., time-average) data from different time steps. Also, there should
be a clear separation (in terms of namespaces and classes) between the simulator and
the post-processing utility such that the latter can be linked to different simulators.
Finally, the library should be modular in order to make the addition of new features as
easy as possible.

In the present work we present the library CPPPO that addresses the above chal-
lenges. While most of the existing filtering algorithms documented in literature were
developed for image processing applications [71, 97], CPPPO is able to handle three-
dimensional data sets in parallel. Specifically, CPPPO can process data sets from com-
plex geometries and unstructured meshes. Another important difference with respect to
image filtering is the type of data: images just deal with a limited set of scalar quantities
represented by integers (i.e., the color intensity). In contrast, relevant simulation res-
ults are vectorial data that is represented by floating point values. Furthermore, CPPPO
handles cell/particle selectors separately from filtering routines to allow an easier im-
plementation of custom filtering kernels, and a higher flexibility in the choice of the
algorithm. In summary CPPPO features a flexible code architecture tailored for sci-
entific computations on high performance clusters. The library is designed to perform
three kind of operations on the data set:

• Filtering: field volume averaging that can be performed on every cell (for the
Eulerian filter option) or at specific user-defined locations (for the Lagrangian
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filter option). The user can customize the kernel function (see section 2.3) by
adding an arbitrary amount of weights (which have to be scalar fields) or by
modifying the kernel’s functional form.

• Sampling: This operation allows to take samples from the domain (results from
the filtering operations may be sampled as well) and relate each sampled value
with one or more markers. For example, CPPPO can sample a spatially-filtered
fluid velocity field at every cell using the fluid phase fraction as marker.

• Binning: Data collected from sampling operations can be collapsed using bin-
ning operations. The marker field values are discretized according to the user
input, and a conditional averaging calculation is performed on the sampled field.
This data collapsing allows to reduce the amount of data that needs to be written
to disk in case the user is only interested in correlations between the means of
the sampled quantities and one (or more) markers.

For every user-specified filter (i.e., kernel function), the library performs these three
operations in sequence (see Figure 2.1). We will refer to this loop as the FSB loop
(Filtering, Sampling and Binning).

Our paper is structured as follows. In section 2.2, the basic data structure and the
range of applicability of the library are discussed. In Section 2.3, the basics of filter-
ing and Favre-averaging are introduced, as well as the novel divergent approach to
parallel filtering implemented in CPPPO. Available routines for statistics calculation
are described in Section 2.4, and the sampling/binning process is outlined. The imple-
mentation of the algorithms for cell selection and filtering is presented in Section 2.5,
with emphasis on the parallelization strategy. In Section 2.6 several simple test cases
for code verification are described, and in Section 2.7 we present a parallel scalab-
ility analysis for CPPPO. We also present a typical application of CPPPO in section
2.8 for the evaluation of heat and mass transfer coefficients. Finally, conclusions are
summarized in Section 2.9.

2.2. Library interface to simulators
Before detailing the algorithms available in CPPPO, it is worth to describe the condi-
tions that a simulator needs to meet in order to be linked to CPPPO. In the following,
we will also describe the general set of data to which the algorithms can be applied.

2.2.1. Basic data structure
CPPPO can be coupled to simulators using finite volume, finite difference, finite ele-
ments, spectral, lattice Boltzmann or smoothed particle hydrodynamics methods. These
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Figure 2.1.: Filtering-Sampling-Binning loop: the structure of a typical CPPPO run.

methods normally consist in solving partial differential equations within a computa-
tional domain Ωc of volume VΩc . The library requires the simulator to provide the
following data:

• A set of nodes (points) lying within Ωc, each one identified with a set of three
spatial coordinates.

• A set of scalars representing the measure of the spatial volume surrounding each
node. Notice that, in order to correctly calculate spatial filtered quantities, the
volumes must not overlap and their sum must be equal to the total computational
volume VΩc .
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• A set of scalars representing field values (e.g., pressure, temperature, velocity
components, species concentration, et cetera) at each node.

In the following, we will refer at the entity composed of a node and the associated
volume as cell. The union of all cells is termed as mesh and field values associated
with each node are named cell values. Mesh and cell values form the Eulerian data in
CPPPO.

Notice that CPPPO does not require any information regarding cell shape or sur-
faces. The topological details of Ωc or the original mesh are not considered and a cell
is considered to lie within a certain region if its node is included in that region. Thus,
filtering operations are affected by errors due to: (i) cell shape (or cell quality) and
(ii) the ratio between cell size and filter size. However, this is not really an issue since
(i) is generally controlled in the simulator in order to reduce numerical errors in the
computation (before running CPPPO) and (ii) should always be low due to cell shape
regularity required in (i) and the fact that filtering volumes are often much larger than
smallest field structures (which normally require lumped nodes and thus, small cells,
to be sufficiently resolved).

Additionally, the user can provide a set of Lagrangian (particle) data which may
represent particle clouds or sampling probes. While probes are just defined by their
position in Ωc, particle clouds can be defined with several more properties (like particle
diameter, velocity, torque, forcing terms, and scalars) which can be passed to CPPPO
directly from the simulator. These properties can be used, for example, to calculate
inter-phase transfer coefficients "on-the-fly".

Further information on data structure can be found in the CPPPO documentation.

2.2.2. General linking architecture
CPPPO has his own way of handling field, mesh and particle data which, in general,
does not have to conform to any particular simulation software. In order to exchange
data between CPPPO and a simulator, an interface library is required. The interface lib-
rary is specific for every simulator, and it will typically rely on the simulator’s classes
and namespaces. CPPPO comes with an interface library for OpenFOAM R©.

The role of the interface library is to get pointers to memory locations of all rel-
evant data fields (e.g., holding mesh and particle information), and pass them to the
core library in an appropriate format. For example,vector fields require pointers to the
array of doubles containing each component. Similarly, for the mesh data pointers to
coordinates and volumes of every cell are transferred. Some simulators store all the
components of a vector or all the mesh point coordinates in just one array, one ex-
ample of which is OpenFOAM R©. CPPPO allows to specify a displacement between
the component values (for example a displacement of 3 for three dimensional data) in
order to automatically take into account this data structure. In addition, the interface
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library allocates space for the filtered fields (i.e., those fields that store the result of
filtering operations) and register them (i.e., pass the required pointers) into the CPPPO
core library. Thus, the interface library performs additional storage operations using
the simulator namespace. In this way, the resulting filtered fields can be saved and
used in the simulator format, which positively contributes to the usability of CPPPO.

The CPPPO core library performs filtering, sampling and binning operations us-
ing the memory allocated by the interface library and the simulator. The core library
allocates heap memory for the filtering operations. For example every Eulerian filter-
ing operation (i.e., where a filter is centred at every cell’s center) requires an array of
doubles with size equal to the number of cells to store intermediate values (see Section
2.3 for details). This data flow is summarized in Figure 2.2.

Figure 2.2.: Flow of information from the simulator to the interface and, finally, to the
CPPPO core library.

2.2.3. Parallel data handling
The CPPPO core library represents the domain as a set of nodes which, in the case
of the OpenFOAM R© interface, correspond to the cell centers. CPPPO ignores the cell
shape, but requires the interface to provide cell volumes. When a filtering or searching
operation is performed, the cells with the closest cell center are selected.
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CPPPO is designed for applications holding parallel-decomposed data (i.e., a phys-
ical domain is subdivided into smaller subdomains) where the domain subdivision is
made of boxes whose faces are perpendicular to the corresponding Cartesian axis. This
is an important requirement since it ensures that CPPPO exactly knows the position of
every processor boundary. Every box can contain a different number of cells, or have
different size in any direction. However, in order to keep an high parallel efficiency, it
is recommended to keep the same number of cells for every processor.

CPPPO is parallelized using MPI [66], and can be run in parallel with any simulator
that splits the computational domain in several box-shaped subdomains. Since CPPPO
is designed for spatial filtering, data should be decomposed according to their posi-
tion in space. This is true in almost the totality of currently available simulators for
CFD either using a finite volume approach (e.g., OpenFOAM R©,ANSYS FLUENT R©,
Code_Saturne R©, STAR-CCM+ R©, AVL FIRE R©, ecc. ) or not (e.g., Palabos R©, Nektar++ R©,
Nek5000 R©, ecc.).

CPPPO requires each process to have its memory address space. Thus, simulators
which rely on a GPU hardware architecture, or OpenMP may not be suitable for link-
ing with CPPPO at the current stage. Also, RMA (remote memory access), and MPI
one-sided communications in general, will most likely create problems in case of pass-
ive synchronization. This is because a processor would have to call MPI_Lock to
himself in order to access local data inside an MPI window. In summary, we recom-
mend careful testing of the interface routines when using CPPPO in connection with
simulators that rely on RMA or one-sided communication. For the standard interface
(to OpenFOAM R©) we only require that:

• The global domain is decomposed in box-shaped subdomains,

• Each process holds only one subdomain, and that

• Accessibility of local data is ensured.

In case a user wants to link CPPPO to a software that does not meet the above re-
quirements, a more careful design of the interface library is necessary. For example, we
have implemented an interface to CSV data files that performs the domain decomposi-
tion, and does not require the input file to be already decomposed in parallel. Also, the
above mentioned issue with not accessible local data can be circumvented by copying
the shared data in separate arrays, thus creating a compact addresses set for the whole
subdomain. We next detail on some practical aspects when implementing such a new
interface library.

2.2.4. Coding an interface library
In case the user wants to link CPPPO with a software, he/she will have to use the
existing OpenFOAM R© or CSV interface module, or code a new interface library. For
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the latter, the OpenFOAM R© interface library is a good template. In the following, we
will refer to this library to illustrate the main steps needed to code an interface library.

Remember that all the functions that are called in an interface module are summar-
ized in core/c3po.h.

• An interface should create an instance of the c3po class.

• An interface should be able to access pointers to mesh data and pass them
to CPPPO, which then use them to calculate and communicate other required
quantities. An example can be found in the file interface_OF/mesh_check.C .
Notice that the OpenFOAM R© interface provides a public function that can be
called in the simulator. This is done to track the evolution of dynamic meshes
and ensure that pointers handed over to CPPPO are always valid.

• An interface should possess a run function which (i) registers (i.e., handles rel-
evant pointers to) the required fields in CPPPO according to their data format,
and (ii) starts the FSB loop of CPPPO. The interface_OF/c3po_OF_interface.C
file provides an example therefore.

• During the FSB loop, the interface should be able to allocate heap memory for
the required fields (e.g., filtered fields), and delete them when necessary. Note
that CPPPO will already provide suitable names to label these new fields.

In general, the amount of time required to code a new interface can vary significantly
with the architecture of the simulation software and the programmer’s skills. Thus, it
is useful to first study the architecture of the simulator and CPPPO, e.g., by using
the training material available at http://www.tugraz.at/en/institute/
ippt/downloads-software/.

2.3. Spatial filtering
Spatial filtering can be considered as a subset of the general operation [79]:

φ (x, t) =

ˆ
K (x− x′, t− t′)φ (x′, t′) dx′dt′ (2.1)

Where φ is a generic field, K is the kernel function, and the integration is performed
over the whole space and time domain. An important property of the kernel function is
normalization, thus:

ˆ
K (x− x′, t− t′) dx′dt′ = 1 (2.2)
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CPPPO will automatically normalize your kernel function. In the case of spatial
filtering, the kernel function is expressed as:

K (x− x′, t− t′) = K (x− x′) δ (t− t′) (2.3)

Thus, the argument is integrated over space only:

φ (x, t) =

ˆ
K (x− x′)φ (x′, t) dx′ (2.4)

The corresponding fluctuating field φ′′ is defined as:

φ′′ (x, t) = φ (x, t)− φ (x, t) (2.5)

CPPPO solves equation 2.4 at every cell centre x, or alternatively at predefined
positions r. The kernel used in this study is the top-hat kernel:

K (x− x′) =
∏
i

H
(

∆i

2
− |xi − x′i|

)
∆i

(2.6)

Where ∆i is the filter size in the i-th direction of a Cartesian coordinate system andH is
the Heaviside function. CPPPO also features a top-hat kernel in a spherical coordinate
system. It has to be noticed that this kernel, while acting as a sharp cut-off in the
physical space, features a smooth cut-off in the spectral space [21], resulting in a wave
number overlap between φ and φ′′.

2.3.1. Favre filtering
The Favre averaging technique [31, 32] consists in a decomposition of the flow field
variables in terms of density-weighted variables:

φ̃ =
ρφ

ρ
(2.7)

Favre averaging is often used for multiphase flows to derive filtered transport equa-
tions, and to decouple the phase fraction from the flow variables. In addition, variance
and covariance calculations are of major importance to evaluate the components of the
SGS (Sub Grid Scale) stress tensor, or SGS fluxes. CPPPO is able to perform Favre
averaging and Favre variance and covariance calculation for every cell inside the do-
main, or at specific user-defined positions. To illustrate the equivalence between the
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variance (or covariance) and the components of the SGS stress tensor, we consider the
definition of the latter as:

τ sgsij = ũiuj − ũiũj (2.8)

Here ui is the velocity of in the spatial direction i. For example, the diagonal elements
of the tensor shown in Eqn. 2.8 can be obtained from the Favre variance as follows:

V ar(ui(x)) =

ˆ
G(x′ − x) (ui(x

′)− ũi(x))
2
dx′

=

ˆ
G(x′ − x)u2

i (x
′)dx′ + ũi

2(x)

− 2ũi(x)

ˆ
G(x′ − x)ui(x

′)dx′

= ũiui − ũiũi = τ sgsii

(2.9)

Where G(x′−x) is a function representing the top-Hat kernel and the Favre averaging
operation. The other components of τ sgsij can be calculated in a similar manner using
the Favre covariances. The same approach applies to evaluate SGS fluxes. Notice that
CPPPO allows the user to define an arbitrary number of weighting fields for the kernel
function, and hence offers the freedom to compute filtered quantities for virtually any
application.

2.3.2. Convergent and divergent filtering algorithm
Since the calculation of filtered quantities implies long range interactions, processor
communication has to be taken into account when designing an algorithm to numeric-
ally solve Eqn. 2.4. In case Eqn. (2.4) is projected into the discrete space (and when
considering a top-Hat kernel), it can be written as:

φi =

j=Nf∑
j=0

vjφj

Vf
(2.10)

Where the sum is over all Nf cells inside the filter region, vi is the volume of the i-th
cell, and Vf is the total filter volume. The extension of the above equation to Favre
averaging or arbitrary weighted averaging is obvious. The above calculation has to be
performed for every cell i in order to compute a complete field of the filtered quantity.
Considering Eqn. 2.10 it is clear that, before the calculation can start, it is necessary to
evaluate which cells are inside the filter.

The approach described by equation 2.10 is what we call the convergent approach
for filtering. This is because, after the list of cells inside the filter is assembled, data
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Processor 1 

Processor 2 

Region to be 
filtered  

do 𝜑𝑛 += 𝜑𝐴 

for A = 0 → Ncells 

endfor 

Final step:  𝜑𝑛 = 
𝜑𝑛
𝑁𝑓
  

 

do 𝜑𝐴=
 𝜑𝑛
𝑛=𝑁𝑓
𝑛=0

𝑁𝑓
 

for A = 0 → Ncells 

endfor 

No final step required 

𝜑: field to be filtered 

𝑛:  neighboring cells 

 

𝐴: current filtered cell 

 

A A A 

Figure 2.3.: Convergent approach (left) and divergent approach (right) for filtering.
Continuous arrows represent intra-processor operations while dashed ar-
rows indicate data exchange between processors. Processor domains are
identified with the owner color, red cells represent the current cell to
be filtered. Dots represent cell centres involved in local data operations
(black) and parallel data operations (purple). In the picture Ncells is the
total number of cells per processor (for simplicity we consider the same
number Ncells in each processor) and Nf is the number of cells within the
region to be filtered. In the divergent approach, field values at cell A are
spread to the neighbouring cells while the opposite occurs in the conver-
gent algorithm. The divergent algorithm also requires the communication
of less data.
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from the neighbouring cells is passed to the location where the filter is centred. This
approach requires (for every location to filter) Nf − 1 summation and multiplication
operations, and one division operation. The amount of multiplication operations could
be reduced in case the multiplied field values are stored and then communicated. How-
ever, this would require additional memory. Also, communication of the cell list and
values with other processors has to be performed. As shown in figure 2.3 (left panel),
the convergent approach requires the communication of every required cell data owned
by another processor. In our case three values need to be transferred from processor 2
to processor 1. The convergent approach is the most basic approach for spatial filtering,
and most of the available filtering algorithms used for image processing are based on
it.

In order to reduce the computational load and enhance parallel efficiency, we de-
veloped a novel approach named the divergent approach. The divergent algorithm does
not evaluate the filtered value at any position sequentially, but updates the filtered fields
at every step, and ends with a final division step. Specifically, every step consists of:

(i) selecting a cell from the computational domain.

(ii) creating a list of cells located in the region to be filtered around the selected cell.

(iii) multiplying the field value at the selected cell with the required weight (i.e., cell
volume or mass density). Note, when the filter size tends to the domain size only
one cell value needs to be stored and communicated instead of having to allocate
and communicate the whole field.

(iv) communicating and adding the multiplied field values to all cells inside the cell
list

The loop has to be repeated for every cell inside the domain. At the end, one last step
is needed to divide the values of filtered fields by the filter volume (or by the summed
weights in case of Favre averaging). This approach requires (for every cell) Nf − 1
additions, but only one multiplication. The number of divisions in the final step equals
the total number of cells. Overall, less multiplication operations are required in the di-
vergent approach compared to a convergent approach (without allocating memory for
the multiplied fields as explained above). Most important, the key advantage of the di-
vergent algorithm over the convergent algorithm is the amount of data that needs to be
communicated. As shown in figure 2.3 (right panel), in the divergent algorithm the dir-
ection of communication is reversed, and just the field value at the current cell needs to
be communicated once. The communicated value is then processed locally on the rel-
evant processor (in our case processor 2), which does not involve any communication
overhead any more.

It should be clear that the computational bottleneck for these kind of algorithms is
not the number of standard operations, but the number of MPI operations. While image
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filtering algorithms tend toward a reduction on the number of standard operations, the
algorithms implemented in CPPPO have the reduction of the number of MPI operations
as the main goal. Since field and mesh data can be very large in terms of the consumed
memory, it is often not feasible to rely on massive data copying and thus, processor
communications are rather frequent. The number of MPI communications in CPPPO
can be of the same order of magnitude as the mesh size. More details on the parallel
implementation will be given in section 2.5.

There are several differences between CPPPO, and other tools for averaging like
those provided in OpenFOAM R© (or sub-modules such as swak4Foam [swa]). These
modules can just calculate averages over lines, faces and volumes using predefined lists
(so-called “sets”). They cannot average at every cell, and cannot average around several
moving Lagrangian objects (even if could be possible to program the required utility).
Also, OpenFOAM R© does not feature a divergent algorithm to compute averages and
variances. In general, other filtering utilities are based on the convergent algorithm, or
on the improved convergent algorithm we describe in section 2.5.

2.4. CPPPO statistics routines
CPPPO features a collection of sampling routines which allow to relate fields (named
sampled fields in CPPPO) with other fields (named markers in CPPPO). The sampling
utility will draw samples of the specified quantities of interest (accordingly to the
functions described in subsection 2.4.1) at user-defined locations, or alternatively over
the whole domain. Every sample will contain values of sampled fields and markers.
Sampled fields are then binned accordingly to the related markers following user-
defined settings for discretization of the binning process. Every time a value is ad-
ded to a bin, CPPPO will automatically update the mean value and variance related to
that bin using a running statistics approach [105]. Therefore, CPPPO will also keep
track of the number of values added to every bin. Following this procedure, a large
data-set is reduced to a multidimensional array, in which each element contains a (con-
ditional) average and variance with respect to the markers of the sampled fields. This
multidimensional array is then written to disk in the form of one dimensional arrays.
CPPPO allows to create new files (and thus, new statistics) at every time step, or to
update the current files and statistics in order to collect a single (time-averaged) data
set. This sampling/binning procedure has been developed to perform automatic correl-
ation of quantities of interest during, or after a simulation run. In such a way, a user
can quickly assess whether a simulation needs to be run longer, or can be aborted to
save computational resources.
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2.4.1. Available sampling operations
At the current state, the available sampling routines are:

• General sampling: This routine draws samples over the whole domain, or just a
portion of it. sampled fields and markers are defined by the user. Also, General
sampling allows the use of a formula parser implemented in CPPPO to draw
samples of quantities which are not explicitly calculated in the simulator.

• Angle vector-vector: This routine can sample vector fields using the angle between
the original and a second vector field as marker.

• Two point correlation: This routine will sample the value of the trace of the two
point velocity correlation.

2.5. Parallel implementation
CPPPO has been designed to (i) maximize the speed of data averaging calculations,
and (ii) to provide a flexible architecture for the future addition of new models and
algorithms. For this reason, a separation between cell selectors and filters was needed.
Despite performance could possibly be affected by this approach in a negative way, the
philosophy behind CPPPO is to allow the user to code new filters without implement-
ing a new cell selector. As we will discuss in the following, however, new algorithms
have been developed in order to increase performance and minimize the number of
parallel communications and the amount of communicated data.

A CPPPO run is initialized via the interface class which allocates memory for filtered
fields. For every user-defined filter operation, the interface class can trigger an FSB
loop. All these operations are encapsulated in the CPPPO core library. Note that filtered
fields, while always available in the interface class, are mapped in the core library only
once (and not for each filter, or filter size). Thus, fields created for a certain filter are
not available when running CPPPO for another filter. This requires the interface and
the core library to run at two different levels: while the interface class has pointers
to quantities used over the whole run, CPPPO’s core library has pointers to relevant
quantities only for the current filter (with the exception of mesh data and source fields
data). This allows an easier and more intuitive use of pointers in the core library when
accessing filtered field data.

Parallel communication in CPPPO mainly relies on collective MPI operations, since
most of the time all processors have to synchronize during the calculations. These MPI
routines have shown excellent performance in many applications [57, 59] on HPC
hardware. The load partitioning is mainly a function of the domain decomposition,
and the distribution of sampling locations, so that it is mostly user dependent. This is
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particularly true when using Lagrangian filtering operations (i.e., filtering is performed
at pre-defined probing positions). This is because the user affects directly the processor
load in such a situation. For example, in case all probes are positioned in a sub-domain
belonging to the same processor, the calculation would be slow. Thus, all operations
would be focused on just one processor.

In the following we will discuss the implementation of parallel selectors and filters
in CPPPO.

2.5.1. Parallel selectors
At the current state CPPPO features two parallel cell selectors: general unstructured
and IJK structured. The former can deal with any unstructured mesh, while the latter
is designed for structured meshes whose cells are equal of size. Both selectors have a
similar structure that can be summarized as follows:

(i) Evaluate the position of the current cell (or probe location) to filter.

(ii) Communicate this position to all the other processors.

(iii) For every position, calculate the filter size (according to the boundary conditions)
and create a list of cells that reside within the filter. For every cell added, update
the total filter volume (this volume calculation allows to deal with complex cell
shapes).

(iv) Communicate the filter volume to all the other processors (optional, since the
total volume is generally not necessary).

This algorithm does not calculate the complete cell list for a single cell or probe loc-
ation, but every processor calculates the cell lists corresponding to the fraction of every
filter residing within its boundary. The above algorithm has been used to optimize the
run time of divergent and convergent filtering operations. A workflow which illustrates
the main steps in the selecting operation is shown Figure 2.4.

CPPPO selectors also take periodic boundary conditions into account. In addition,
and in case the processor sub domain is entirely inside the filter, all its cells are auto-
matically added to a list with no further operations. Both parallel selectors that are
currently implemented require one collective MPI operation, during which every pro-
cessor communicates the coordinates of its currently filtered cell (i.e., in total 3np
doubles where np is the number of processors).

The structured IJK selector takes advantage of the possibility to define a coordinate
system using the grid axis. Thus, a one-to-one correspondence between the cell id and
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Figure 2.4.: Workflow illustrating the selector algorithm within the filtering loop.
max_cell_id is the total number of cells on the processor. In case the
filtering is carried over a set of probes, max_cell_id represents the num-
ber of probes on the processor.

a location in the Cartesian reference frame can be obtained. In order to do that, we
express the new cell centre coordinates ζi in the form:

ζi =
ci − δi/2

δi
(2.11)

Where ci is the non-ijk cell centre coordinate and δi is the cell size in the i-th spatial
direction. This coordinate transformation allows us to immediately evaluate the cells
inside a region and their id, consequently speeding up the calculation.

In contrast, the more general unstructured selector loops over all the cells in the
processor subdomain and checks, for every cell, if its centre lies within the filter region.
Despite the fact that this algorithm is expensive in terms of computational time, it
can deal with arbitrarily-shaped computational meshes. The latter are often used in
engineering applications, and are also considered in the showcase detailed in section
2.8.
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2.5.2. Parallel filters
At the current state CPPPO features a top-Hat kernel filtering operation that can be run
in Eulerian or Lagrangian mode depending if the filtering has to occur for every cell or
at specific Lagrangian points. Since filtering operations are repeated for each cell/probe
(see figure 2.4), in the following we will consider the parallel communications required
to filter at just one location (Lagrangian mode) or one cell (Eulerian mode).

The Eulerian mode uses the divergent algorithm to update the filtered fields, and can
be summarized as follows:

(i) Calculate weighted fields for the cell at the current step. Weights are defined by
the user.

(ii) Communicate the values of weighted fields to the neighbouring processors.

(iii) Update the filtered field.

Using this algorithm, just one MPI_Allgather operation is needed, and every
processor exchanges a number of values equal to the total number of fields to filter.
Clearly, in case vector fields are filtered, each spatial component has to be considered
as a separate field when calculating the size of communicated data.

The Lagrangian mode uses an improved convergent algorithm, which can be sum-
marized as follows:

(i) Calculate the locally-filtered value for the selected cell.

(ii) Communicate these filtered values, and calculate the final filtered value account-
ing for the locally-filtered values from all neighbouring processors.

In the improved convergent algorithm every processor, instead of communicating the
whole list of cell values, performs a local filtering calculation (i.e., performs the aver-
aging using only the cells it owns). Thus, only locally-filtered values need to be com-
municated (see left panel in Figure 2.5). This greatly reduces the number of commu-
nicated data. However, still this algorithm is less efficient than the divergent algorithm
(see right panel in Figure 2.5). In fact, the divergent algorithm requires the communic-
ation of just nf + 1 values per processor (where nf is the number of fields to filter and
the additional one is the weight). In contrast, the improved convergent algorithm, re-
quires the communication of np(nf + 1) values per processor (where np is the number
of processors). This is due to the direction of the data flow which, in the convergent
algorithm, points from the neighboring processors to the central one as shown in figure
2.3, and not viceversa. In this context, the term central refers to the processor owning
the cell to be filtered. However, since the algorithm is running in parallel, np cells are
filtered at the same time and thus, every processor represents the central processor
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with respect to the cell it owns. This means that the convergent approach requires the
communication of, at least, 2np values so that the parallel efficiency will inevitably de-
crease with increasing number of cores. The variance calculation is another weak point
of the improved convergent approach (even over the classic convergent algorithm). In
fact, since the variance calculation requires the information on the filtered value (and
not the partially-filtered value), additional communication is required to make filtered
values available to every processor. In principle, the variance calculation follows an
approach similar to the averaging step (i.e., partial variances are computed). This res-
ults in np(2nf + 1) data to be communicated (this calculation includes communication
of the locally-computed variances). Clearly, the original convergent algorithm does not
have this issue, since all the required values become available at the central processor
after the first (and only) communication step. However, for the improved convergent
algorithm, the number of communicated data scales linearly with np, while for the ori-
ginal convergent algorithm, this quantity is difficult to evaluate since each processor
would need to communicate a different number of elements. That would require the
use of less efficient collective operations like MPI_Allgatherv. Anyhow, the num-
ber of cells in the mesh is typically several orders of magnitude larger than np. Also,
the filter size is, for the majority of applications, of the order of 10−1 times the domain
length. Hence, we can conclude that, for almost any application, the number of ex-
changed data in the original convergent approach is much larger than in the improved
convergent approach.

In contrast to the improved convergent algorithm, the divergent algorithm only re-
quires the communication of nf + 1 doubles, regardless of the fact whether variance
calculation is performed or not. In terms of MPI collective operations, both algorithms
require one operation per filtered cell for averaging. In case the variance is also com-
puted, the convergent algorithm requires two additional MPI operations per cell.

2.6. Test calculations
The accuracy of CPPPO was tested by considering two well-known problems of fluid
dynamics: Stokes flow and irrotational (i.e., potential) flow around a sphere. The main
objective of these tests is to evaluate the accuracy of the parallel filter routines, and
to illustrate the dependency of the results on the grid size. Therefore, we compared
CPPPO results with analytical solutions of filtered quantities at the particle center.
Recalling the analytical solution for Stokes flow (i.e., zero Reynolds number) around
a sphere [10], and when considering the velocity component in the stream-wise (i.e.,
x-) direction, the flow field is described by:

ux = U∞

[
cos2θ

(
1 +

R3

2r3
− 3R

2r

)
+ sin2θ

(
1− R3

4r3
− 3R

4r

)]
(2.12)
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Figure 2.5.: Workflow for the convergent (left panel) and the newly proposed diver-
gent algorithm (right panel). The Convergent algorithm requires an ad-
ditional MPI_Allreduce operation to calculate the variance. In addi-
tion, every MPI_Allreduce require the exchange of more data than the
MPI_Allgather.

Here θ and r describe the radial and polar position in a spherical coordinate system
(the solution is symmetric with respect to the azimuthal coordinate). U∞ is the flow
velocity far from the particle, and R is the particle radius. The corresponding solution
for irrotational flow (i.e., a flow characterized by an infinitely large Reynolds number)
past a sphere is:

ux = U∞

[
cos2θ

(
1− R3

r3

)
+ sin2θ

(
1 +

R3

2r3

)]
(2.13)

We now consider a spherical filter, and define a dimensionless filter size as:

ρ =
Rf

R
(2.14)

Where Rf is the filter radius. Integration of Eqn. 2.12 and Eqn. 2.13 to obtain the
mean and variance of the stream-wise velocity component leads to:

ũx|Stokes =
(2 ρ2 − ρ− 1) U∞

2 (ρ2 + ρ+ 1)
(2.15)
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τ sgsxx |Stokes =
(18 ρ5 − 32ρ4 + 14 ρ3 − 3ρ2 + 2 ρ+ 1) U2

∞
(4 ρ4 + 8 ρ3 + 12 ρ2 + 8 ρ+ 4) 5 ρ3

(2.16)

ũx|Irr = U∞ (2.17)

τ sgsxx |Irr =
U2
∞

5ρ3
(2.18)

The solutions in Eqns. 2.15, 2.16, 2.17 and 2.18 provide a set of cases to verify the
filtering routines of CPPPO for the situation of a top-Hat filter kernel in spherical
coordinates. However, Stokes and potential flows are are not easily reproduced with
standard CFD solvers unless the convective (or the viscous) term is removed from the
equation. Even the use of specific solvers like potentialFOAM could induce some er-
rors due to the discrete representation of the particle by an Eulerian mesh, or the finite
size of the bounding walls. As a consequence, we preferred to impose the flow field
rather than solving the governing equations with a CFD solver. The two newly imple-
mented applications that impose the Stokes and the irrotational flow field are stokes-
Filter and irrotationalFilter, respectively. Two computational grids of 100x100x100
and 160x160x160 cells were used to evaluate the flow field. These resolutions resulted
in a negligible effect of the mesh resolution on both the results for the mean and the
variance. Test cases were run using 128 processes in order to asses the accuracy and
speed of the parallel computation.

Results displayed in figure 2.6 show that CPPPO is able to correctly calculate the
Favre average of a field both with Lagrangian and Eulerian filtering routines. Table 2.1
shows that the average relative error remains smaller than 1.7%, and that the variance
may experience larger errors compared to the average.

The deviations between Lagrangian and Eulerian results can be explained consid-
ering that the two algorithms perform different algebraical operations and, thus, are
subjected to different round-off errors.

In order to assess the runtime filtering routines, a low Reynolds number flow pas
a sphere was simulated using a computational grid of 120 × 120 × 120 cells, and a
computational domain of 10dp × 10dp × 10dp. CPPPO was linked to OpenFOAM R©’s
pisoFoam solver, and the simulation was run until a steady-state was obtained.

The results show that there is a difference in the values of the Favre averaged velocity
field calculated by CPPPO with respect to the analytical results. This discrepancy is
due to the incorrect velocity field computed by the solver as shown in picture 2.7.
Specifically, this is caused by the finite domain size, as can be seen by the stronger
deviations with increasing distance from the particle surface.
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(a) (b)

Figure 2.6.: Comparison between CPPPO’s Lagrangian and Eulerian filtering tools
with analytical results for the filtered quantities at the particle centre. Res-
ults for the Favre average are shown in panel a, while in panel b the Favre
variance was calculated. The average velocity is normalized with the ’far
field’ velocity U∞, while the variance with U2

∞.

2.7. Parallel scalability and performance
In this section, we analyse the parallel scalability and performance of CPPPO. In par-
ticular, we compare the performance of the divergent and convergent algorithm, as well
as the performance of the unstructured and IJK cell selector. Different metrics where
used in order to quantitatively establish the performance of every algorithm, and to
asses their preferred field of use.

Since CPPPO makes extensive use of MPI collective operations, individual pro-
cesses are forced to synchronize often. This will result in acceptable parallel perform-
ance in case the load balance is uniform. However, the total time each processor takes
to complete a certain task is subject to some fluctuations that are different for every
run. For this reason, the average time τp (where p is the number of processes) and the
time variance σp are used as main performance metrics in the following. Specifically,
these metrics are defined as:

τp =

p∑
n=1

tp,n

p
(2.19)
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case operation average relative error

Stokes Eulerian average 0.004877
Stokes Lagrangian average 0.002028
potential Eulerian average below machine precision

potential Lagrangian average below machine precision
Stokes Eulerian variance 0.006865

Stokes Lagrangian variance 0.003445
potential Eulerian variance 0.011906

potential Lagrangian variance 0.017841

Table 2.1.: Computed relative error for Stokes and potential flow test cases.

σp =

√√√√√ p∑
n=1

(tp,n − τp)2

p
(2.20)

Where tp,n is the time needed by process n to complete a certain task in case a total
of p processes are used for the computation. In the following we refer to τp|k as the
average time taken by subroutine k when p processors are used. It should be noted
that the wall time is max(tp,n). Furthermore, the standard deviation was, in general,
observed to be small compared to the average time due to the frequent MPI barriers
used for synchronization. Thus, σp is not discussed in further detail below.

The strong parallel efficiency is defined as:

ηs =
τ1

pτp
(2.21)

In this study, we also define an advantage factor αkn to quantify the advantage, in
terms of computational time, of using the subroutine n instead of the subroutine k. The
advantage factor is then defined as:

αkn =
τp|k
τp|n

(2.22)

In particular, we will evaluate the advantage factor of the divergent filtering over the
convergent filtering (αcd) and the advantage factor of the ijk selector over the unstruc-
tured selector (αui ).
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In order to assess the parallel performance of the implemented algorithms, we run
the stokesFilter test case introduced in section 2.6 in order to evaluate the Favre aver-
aged velocity field for every cell in the domain using a box filter. The filter size was
approximately one quarter of the domain length in every direction. Nine test case were
run in total, using different routines and mesh size as reported in Table 2.2.

Figure 2.8 shows average time and strong efficiency from the studied cases. It can
be seen that the unstructured selector requires significantly more time compared to the
IJK selector. However, the unstructured selector shows a far better parallel efficiency.
Thus, the IJK selector shows significant advantages with respect to the unstructured
selector in case the number of cores is small (e.g, when using a local workstation).

(a) (b)

(c)

Figure 2.7.: Normalized Favre average (panel a) and variance (panel b) of the velo-
city field based on a simulation using OpenFOAM R©’s pisoFoam solver.
Subfigure 2.7c shows the calculated velocity profile along the span-wise
direction, i.e., θ = π, and the corresponding analytical solution.
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Figure 2.8.: Average computation time and strong parallel efficiency for the divergent
filtering approach with unstructured selector (panel 2.8a and 2.8b), as well
as the IJK selector (panel 2.8c and 2.8d). Panel 2.8e and 2.8f show average
time and strong parallel efficiency for the convergent filtering approach
with the IJK selector.
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Filtering algorithm Selector Mesh size (cells)

Divergent Unstructured 1× 106

Divergent Unstructured 2× 106

Divergent Unstructured 4× 106

Divergent IJK 1× 106

Divergent IJK 2× 106

Divergent IJK 4× 106

Convergent IJK 1× 106

Convergent IJK 2× 106

Convergent IJK 4× 106

Table 2.2.: Test cases for the parallel scalability analysis.
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Figure 2.9.: Advantage factor of the divergent filtering approach over the convergent
filtering approach (panel 2.9a), as well as advantage factor of the IJK se-
lector over the unstructured selector (panel 2.9b).

This fact is well represented by the advantage factors displayed in figure 2.9. When
128 cores are used, the IJK selector provides no more significant advantages in terms
of computational time and αui drops below unity. Figure 2.9a shows that αdc is very
close to unity when one processor is used, but increases rapidly with the number of
cores. However, the effect on the total time is only moderate (see Figure 2.8), since fil-
tering operations are generally faster than selector operations. In summary, a divergent
filtering approach and (surprisingly) an unstructured selector seems to be the optimal
combination for a large number of cores.

Finally, the Vienna Scientific Cluster VSC-3 was used to test the library up to 1024
cores. The results generally showed a higher performance of VSC-3 with respect to
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TU Graz’ dcluster (see Figure 2.10). However, the parallel scalability was very similar
to dcluster, showing the expected drop in performance for the smaller case involving
106 grid cells and when using less than approximately 4 103 grid cells per core. In
summary, our benchmark calculations on VSC-3 confirmed the previously described
excellent scalability of CPPPO.
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Figure 2.10.: Average time for the divergent filtering algorithm utilizing an unstruc-
tured grid selector on the VSC-3 cluster (panel 2.10a), as well as strong
parallel efficiency (2.10b).

2.8. Heat transfer in a dense particle bed

2.8.1. Transport in dense particle beds
Particle-resolved direct numerical simulations (PR-DNS) of flow through dense particle
beds have become a key instrument to develop closures for predicting momentum, heat
and mass transfer rates in these systems [89, 93]. Typically, these simulations require
extremely large computational grids (with O(107) cells) to resolve regions with large
velocity, concentration, or temperature gradients. Furthermore, a large number of real-
izations (e.g., particle configurations in a channel) is needed to represent reality reas-
onably well. This naturally leads to large data sets, asking for on-the-fly data filtering
and an automation of the post-processing workflow. In the following, we will show that
such a workflow can be carried out efficiently and in a fully-automated fashion using
CPPPO. Specifically, we study a situation similar to the one considered by [104] and
[72], and limit our attention to the prediction of flow and a single inert scalar.

35
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2.8.2. Governing equations and numerical solution
The open source library OpenFOAM R© is used in order to solve the incompressible
momentum transport equations, the continuity equation and the transport equation of
an inert scalar. These equations can be re-written in their dimensionless form using the
Einstein notation to arrive at:

∂ui
∂xi

= 0 (2.23a)

∂ui
∂t

+
∂ (ujui)

∂xj
= − ∂p

∂xi
+

1

Rep

∂2ui
∂xj∂xj

(2.23b)

∂φ

∂t
+
∂ (uiφ)

∂xi
=

1

Pe

∂2φ

∂xi∂xi
(2.23c)

Where u is the velocity field, p is the pressure and φ is the scalar field. The scalar
transport equation can model heat or mass transfer without additional source terms,
e.g., due to chemical reactions. The relevant dimensionless group is therefore repres-
ented by the Peclet number Pe and the particle Reynolds number Rep:

Rep =
Udp
ν

(2.24a)

Pe =
Udp
Γ

(2.24b)

Where U is a typical flow speed (i.e., the superficial fluid velocity), dp is the particle
diameter, ν is the fluid kinematic viscosity, and Γ is the scalar’s diffusion coefficient.
For the present simulation we choose Rep = 10 and Pe = 20. The equations were
discretized using second order discretization schemes, and the PISO algorithm was
adopted to solve the pressure equation.

The computational domain is a cylinder of radius 3dp and a length of 16dp. A fixed
particle bed having a void fraction of approximately 0.2 (involving 130 particles) was
generated using the soft-sphere particle motion simulator LIGGGHTS R© [53]. A body-
fitted unstructured mesh was generated using the snappyHexMesh tool available in
OpenFOAM R©. Since constant velocity and zero gradient boundary conditions were
used at the inlet and outlet surface, the particle bed was positioned between x = 2dp
and x = 14dp in the cylinder’s axial (i.e., x-) direction to reduce the effect of the above
mentioned boundary conditions on the results. A no-slip boundary condition for the
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velocity field was imposed at the cylinder’s and at the particles’ surface. For the scalar
field we imposed a zero gradient boundary condition at the cylinder wall, and a fixed
value boundary conditions at the particles’ surface.

The final mesh consisted of approximately 7 million cells and featured a local grid
refinement at the particles surface. The simulation was run until a steady-state solution
was obtained.

2.8.3. Results and CPPPO post-processing
The case was run and post-processed using the Vienna Scientific Cluster (VSC-3).
The computational domain was decomposed using 128 cores, and the execution of
CPPPO’s routines required approximately 1.5% of the total calculation time (i.e., 7.5
minutes out of 8.55 hours). CPPPO applied four box filters of different lengths df to
all the cells and the particles in the domain. In addition, the CPPPO general sampling
utility was used to evaluate the probability distribution function of the filtered velocity
field in the region between x = 4.5dp and x = 12.5dp.

Figure 2.11.: Flow through a particle bed in a cylindrical channel: (unfiltered) velocity
field in the axial direction (left panel), as well as scalar field (right panel;
φp = 0.20).

The resulting unfiltered fields are shown in figure 2.11. For every particle, a filter-
size dependent bulk scalar field was defined:

φb(df ) =

´
Vf
uxφdV´

Vf
uxdV

(2.25)
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Where the filter volume Vf spans the region between the particle’s surface and the
filter radius. These quantities are calculated by CPPPO, and subsequently used to cal-
culate a particle-based Sherwood number:

Shp = Pe
qs,fp

1− φb
(2.26)

Here qs,fp is the dimensionless solid-fluid scalar flux for particle p, which is defined
as:

qs,fp =
1

Sp Pe

ˆ
Sp

∂φ

∂n
dS (2.27)

Values of Shp as a function of the axial position are shown in Figure 2.12a. The
figure only displays values of Shp < 20, since some particles experience extremely
small differences of the scalar quantity, i.e., 1 − φb, and hence would result in unreal-
istically large Shp values. However, Table 2.3 shows that most of the particles have a
particle-based Sherwood number that is smaller than 20. Note, that the use of data from
multiple realizations could reduce the standard deviation and result in a constant Shp
number along the axis of the cylinder as has been already shown in literature [89, 93].
In addition, the data shown in Table 2.3 reveals that increasing the filter size leads to a
reduction in the data deviation.
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Figure 2.12.: Particle Sherwood number experienced by a dense particle ensemble in
a cylindrical channel as a function of the filter size and the axial position
(left panel). Probability distribution function of the filtered axial velocity
experienced by the particles (right panel).
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ρ = df/dp average Shp standard deviation Shp φb < 0.99 Shp < 20

2 14.380 41.017 98.5% 87.3%
3 13.287 35.223 100% 86.0%
4 12.352 27.937 100% 86.0%
5 11.771 25.194 100% 86.0%

Table 2.3.: Shp statistics for different filter parameters in the region 4.5 < x/dp < 12.5
(86 particles) and φb < 0.99.

Results obtained via CPPPO’s general sampling module show that the larger the
filter is, the more uniform the filtered velocity will be (see Figure 2.12b).

Finally, we show the complete filtered velocity and scalar field in figure 2.13. These
fields have been written by the CPPPO-OpenFOAM R© interface and are automatically
generated. Interestingly, while the filtered velocity field tends to become more uniform
by increasing the filter size, the filtered scalar field maintains its dependence on the
axial coordinate even for large filters. This is due to the fact that the scalar field is not
statistically homogeneous in the axial direction.

2.9. Summary and conclusions
The aim of the CPPPO library is to provide a set of routines for efficient parallel data
filtering and processing. These operations are meant to be performed "on the fly" dur-
ing expensive numerical simulations running on large distributed memory clusters.
In order to perform data filtering from parallel simulations on clusters, a novel ap-
proach to filtering named "divergent" was adopted. The divergent approach showed a
linear increase of parallel efficiency with the number of cores, and a major reduction
of computational time with respect to the standard convergent approach was demon-
strated. Overall, the parallel scalability analysis of CPPPO showed promising results,
demonstrating the computational efficiency of our library. Furthermore, the CPU time
required by CPPPO was shown to be a small fraction (i.e., less than 2%) of the time
required by a typical simulation in the field of dense fluid-particle systems. As re-
cently shown in literature [54], more insight into the governing flow physics of dense
particle beds can be gained from the analysis of individual-particle DNS data. We have
demonstrated that the filter size should be considered when evaluating such individual-
particle data, e.g., (average) fluid quantities experienced by the particles. In addition,
the ability to perform variance calculations in CPPPO allows one to extract additional
markers that can be helpful to correlate DNS data, and hence establish new closure
models. What remains to be done is to develop relevant transport equations for pre-
dicting these markers in coarse-grained simulations. Then, we expect that a new gen-
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(a)

(b)

Figure 2.13.: Filtered velocity field in the axial direction and filtered scalar field.

eration of closure models, established with the help of tools like CPPPO, will help to
refine our predictions for relevant fluid-particle systems in engineering simulations.
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CPPPO allows a high flexibility in the filtering operations due to the easy custom-
ization of the filtering kernel. This can be achieved either by (i) including an arbitrary
number of weights (which can be defined at runtime), or (ii) by implementing the
desired kernel function (which requires some coding in C++, and recompilation of
CPPPO).

CPPPO comes with instructions for compilation, as well as documentation covering
input and usage of every module and sub-module. CPPPO also comes with examples
on how to be coupled to OpenFOAM R© or CFDEM R© applications. A freely available
version of the code can be downloaded from the CPC program library. To down-
load the up-to-date version of CPPPO and get additional documentation, the inter-
ested reader is referred to http://www.tugraz.at/en/institute/ippt/
downloads-software/.
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3. Consistent closures for
Euler-Lagrange models of
bi-disperse gas-particle suspensions
derived from particle-resolved
direct numerical simulations

Particle-Resolved Direct Numerical Simulation (PR-DNS) is employed to simulate
momentum and energy transport in bi-disperse gas-solid suspensions by means of a
novel hybrid immersed-boundary/fictitious domain (HFD-IB) method. First, we demon-
strate the accuracy of the new HFD-IB method against several verification tests. Sub-
sequently, we simulate momentum and energy transfer in bi-disperse suspensions in the
limit of high Stokes number, and the predicted flow and temperature fields are used,
in conjunction with the open-source parallel data processing library CPPPO [68], to
assess the validity of existing closures for momentum and heat transfer in the frame
of Particle-Unresolved Euler-Lagrange (PU-EL) models. We propose a correction to
the drag force model proposed by Beetstra et al. [11] which consistently takes into
account the pressure contribution to the total fluid-particle interaction force in PU-EL
models. Also, we propose a stochastic closure model for the per-particle drag coeffi-
cient based on a modified log-normal distribution. Finally, we assess the existence of
an analogy between the particle-based drag coefficient and the conditionally-averaged
Nusselt number. Indeed, our PR-DNS data indicates that a stochastic closure similar
to that for the drag can be used to close the particle-based Nusselt number in dense
bidisperse suspensions.

3.1. Introduction
Numerical simulations of large scale particle flows, which are widely encountered in
industrial applications, are normally performed using averaged equations of motion.
In these descriptions the solid and fluid phases are modelled as interpenetrating con-
tinua [5]. These models are normally based on the kinetic theory of granular flows
[52] and contain unclosed terms that have to be modeled somehow. In a multi-scale
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approach [45, 96], these models can be derived from more detailed simulations where
particles are described as a discrete phase. In particular, in case the trajectory of each
particle is tracked and collisions are resolved, one obtains the so-called Computa-
tional Fluid Dynamics-Discrete Elements Method (CFD-DEM) that, in case fluid cells
are larger than particle diameters, can also be referred to as the Particle-Unresolved
Euler-Lagrange approach (PU-EL) [15–17, 75, 81, 109]. However, even PU-EL equa-
tions have several unclosed terms, like the interphase transport coefficients, that ac-
count for, for example, fluid-particle heat and momentum transfer. Following the multi-
scale paradigm in our present contribution, we seek to obtain certain closures from
fully resolved simulations, i.e., where the detailed flow and temperature (or concen-
tration) fields are resolved on a sub-particle level. This latter approach can be denoted
as Particle-Resolved Euler-Lagrange (PR-EL), or Particle-Resolved Direct Numerical
Simulation (PR-DNS) if turbulence models are used or not, respectively. PR-DNS has
already been extensively used to derive closures for the drag coefficient in mono- and
bi-disperse suspensions [11, 46, 54], or for the Nusselt/Sherwood number in mono-
disperse suspensions [24, 26, 87, 88, 93]. However, almost the totality of this previous
work focused on closures for Euler-Euler-based simulations in a coarse scale. Natur-
ally, the question arises of the same closures can be used for PU-EL simulations, and
we will demonstrate that indeed this is not the case.

3.1.1. Upscaling and closure development strategies
A major difference between closures for Euler-Euler and PU-EL models is that the lat-
ter require a particle-based description of the interphase transfer processes, while the
former (i.e., EE models) require average exchange coefficients. Thus, particle-based
models are affected by per-particle fluctuations that arise simply due to the random
arrangement of individual particles, and occur even in low-Reynolds number flows.
When developing closures for continuum formulations, these quantities, are obtained
from averages within each realization, so that the fluctuations in the particle population
are lost and the final standard deviation is calculated based on the ensemble of real-
izations. On the contrary, closures for PU-EL models are based on the whole studied
population and thus, they may require stochastic models to take into account the single
particle variability [6, 54].

The process of upscaling of fluid quantities that we adopted is known as (spatial) fil-
tering or coarse-graining [99]. The local domain where this operation is performed (in
PR-DNS) can be identified with a fluid cell used in PU-EL. In general, closure models
derived using this approach have a functional dependence on the filter size, i.e., the
support of the filtering kernel or, in other words, the size of the coarse-grained cell
[75]. Moreover, while the velocity field is statistically homogeneous in homogeneous
particle configurations, the temperature field is generally inhomogeneous [87, 93]. This
is in contrast with the assumption of separation of scales required for the development
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of continuum formulations, e.g., Euler-Euler models, and poses a challenge also in
the development of particle-based models such as PU-EL-based models. In the present
work we refer to this issue as saturation, since this term does reflect the physical pro-
cess that is behind.

3.1.2. Immersed-boundary formulations
Studies based on PR-DNS are often performed using immersed-boundary [73] or fic-
titious domain [86] methods to account for the presence of solid particles, which are
often modeled as spheres. A third approach is the "Physalis" method suggested by
[84]. This method consists in making use of Lamb’s analytical solution for Stokes
flow (i.e., using a zero Reynolds number approximation) around a sphere to obtain a
high order description of the flow field in the region close to the particle surface. The
Physalis method has been successfully applied to moderate Reynolds number suspen-
sion flows, and has the key advantages that (i) fluid-particle interaction forces are eas-
ily calculated, and that (ii) the numerical error associated with the boundary treatment
decreases exponentially. Physalis has been so far applied to flows involvig spherical
particles only, and it is questionable if the employed zero Reynolds number approxim-
ation has an advantage over other boundary approximations for high Reynolds number
flows. Generally, in immersed-boundary methods the particle surface is discretized us-
ing a set of nodes, spread uniformly on the surface of each immersed boundary, where
appropriate forcing terms are computed to impose a Dirichlet (or Neumann) bound-
ary condition. Subsequently, these forcing terms are extrapolated to the surrounding
fluid grid, typically by means of a regularized delta function. While these methods are,
in general, rather accurate, they may pose a problem of consistency with the under-
lining transport equations and introduce an additional discretization (i.e., the surface
discretization) in the model. On the contrary, in fictitious domain methods, a rigidity
constraint is imposed in the fluid region corresponding to the immersed solid body.
This constraint is represented as an additional term in the governing equations, so that
there are no issues with consistency or convergence. The mathematical formulation
normally follows a Lagrangian multiplier based approach [8, 103]. Generally, all these
kind of direct-forcing methods are focused on imposing the boundary conditions at
the immersed surface and/or imposing a rigidity constraint in the fluid region occu-
pied by the immersed body. In the present work, we merge a fictitious domain and an
immersed-boundary method to obtain an hybrid method that is consistent, convergent
and accurate even on relatively coarse grids. The new method can be used to solve both
momentum and scalar (thus energy or mass) transport equations on unstructured grids.
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3.1.3. Effect of size-polydispersity
Polydispersity (i.e., differences in particle size and/or density) is omnipresent in in-
dustrial applications and can have various effects. For example, it was shown that the
presence of a small amount of fine particles can greatly enhance fluidization [37]. The
study of polydisperse suspensions is complicated further by the different inertia of
different particle species, which leads to different average velocities between species,
and may ultimately lead to segregation. Thus, fixed bed models can be insufficient to
correctly picture the momentum exchange processes in fluidized particle beds [48].
In addition, an extensive study of heat transfer in poly-disperse suspensions requires
a large computational effort due to the large set of involved parameters (particle dia-
meters and volume fractions of the single species), and the large number of possible
configurations that need to be studied to probe enough statistics.

In the past years, polydispersity has been studied in the frame of fluid-particle mo-
mentum transfer [11, 46]. However, the problem of estimating heat/mass transfer coef-
ficients in polydisperse suspensions has been approached only very recently in the
scientific community. Specifically, the rather limited study of Tavassoli et al. [90] (con-
sidering Reynolds numbers between 30 and 100) is the only attempt towards numerical
investigation of heat/mass transfer in a random array of size-disperse spheres we are
aware of. Even this recent work failed to establish a conclusive model for the distribu-
tion of the per-particle Nusselt, simply because not enough statistics could be collected.

3.1.4. Considerations on numerical simulation of gas-particle
suspensions

Gas-particle suspensions are generally characterized by high values of the Stokes num-
ber due to the large solid to gas density ratio. This results in the characteristic time of
the flow field being much smaller than the characteristic time for the evolution of the
particle configuration. In other words, the fluid phase is evolving much faster (even-
tually reaching a steady state) than the solid phase, allowing the time dependent gas-
particle system to be represented as a collection of particle configurations together with
steady (or fully developed, if the flow field does not reach a steady state) flow fields.
Similar conclusions can be also drawn for the energy transport by noticing that the
Prandtl number is close to unity for gases and thus, the temperature field evolves on
length and time scales similar to those of the velocity field. In our work we enforce
time scale separation to decouple the evolution of the fluid and the particle phase, and
therefore we keep the particle cloud fixed while evolving the fluid phase. We do not
simulate moving particles. This approach has already been adopted (for the flow field)
in the work of Holloway et al. [48]. Furthermore, in fluidized suspensions the effect of
particle velocity fluctuations on the drag force is considerably smaller than the effect
of the mean fluid-particle slip velocity [108] in the case of low Reynolds number flows.
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In our work, we speculate that this holds also for moderate (up to 400) Reynolds num-
bers. With this in mind, we consider static particle distributions (i.e., particles are not
allowed to change their position in time) and neglect the effects of relative velocities
between different particles.

3.1.5. Goals and outline
In the present work, we first aim on developing a novel method to account for the
presence of immersed bodies in dense particle beds. Second, we apply this method to
study transfer of a scalar quantity (i.e., heat and mass) from a random bi-disperse bed of
particles. Third, we make use of the open-source library CPPPO [68] to investigate the
relationship between (i) closures (for drag coefficient and Nusselt number) developed
for continuum models and (ii) particle-based closures that are obtained from coarse-
grained fields and individual particle quantities (like interphase heat and drag force).
Finally, we aim to explore the effect a bi-disperse particle population has on the Nus-
selt number to eventually establish an analogy between the coefficients that describe
momentum and heat transfer.

Our paper is organized as follows: we give a brief background on the mathematical
description and introduce the relevant dimensionless group in Section 3.2. In Section
3.3, we describe the phenomenon of saturation to motivate which range of Reynolds
and particle concentration should be probed to derive closure laws. This section also
contains an analytical model to predict the length and time scales at which saturation
occurs. In Section 3.4 we describe the new hybrid immersed boundary-fictitious do-
main method, together with some numerical details. We present a set of verification
cases for both momentum and heat transfer in 3.5. In Section 3.6, we present the res-
ults from PR-DNS. In Section 3.8 we bring our findings into perspective with previous
findings in order to highlight the significance of our results.

3.2. Mathematical formulation
In this work, we formulate the framework that governs flow through the intersticises
of a bi-disperse particle cloud composed of spherical rigid stationary particles suspen-
ded in an incompressible Newtonian fluid. We assume that the fluid density does not
depend on the temperature field (i.e., we consider the limit of low temperature differ-
ences). Effects of buoyancy and radiation are disregarded as well as viscous heating,
so that the momentum equations are decoupled from the energy equation and thus,
they can be solved separately. We consider a computational domain Ω subdivided in a
purely fluid domain Ωf , and a fictitious particle domain Ωp =

∑
i Ω

i
p, where the sum-

mation is carried out over all the particles. In our approach, particles are considered as
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regions where the governing equations are equipped with additional forcing terms to
impose a Dirichlet boundary condition at the immersed surfaces.

3.2.1. Governing equations
In the present work, we use the library CFDEMCoupling R© [53] to solve the following
dimensionless transport equations:

∇ · u = 0 (3.1a)

∂u

∂t
+ ∇ · (uu) = −∇p+Re−1∇2u + f} (3.1b)

∂θ

∂t
+ ∇ · (uθ) = Pe−1∇2θ +Q} (3.1c)

In the system of equations 3.1, u is the dimensionless velocity field, p is the dimen-
sionless pressure field, and θ is the dimensionless temperature field. We also introduced
the forcing term f} used to bend the streamlines to make the flow field consistent with
the presence of immersed bodies. The source termQ} represents the contribution from
immersed particles in the energy equation. These two terms are detailed in section 3.4.

In addition, we introduced the dimensionless group composed by Re, the global
Reynolds number, and Pe, the global Peclet number. They are defined as:

Re =
Usdm
ν

, Pe =
ρfcpUsdm

λf
(3.2)

Where Us is the superficial velocity U(1 − φp), and U is the fluid average velocity,
as well as φp is the total particle volume fraction in the domain. ν is the fluid kinematic
viscosity, ρf is the fluid density, cp is the fluid thermal capacity, λf is the fluid heat
conductivity, and dm is the diameter of the smallest particle. The choice of using dm
as reference is purely arbitrary, and was found useful to interpret the results of our
study as discussed in the next paragraphs. One could also introduce the mean Sauter
diameter defined as:

d32 =

∑ns
k=1Nkd

3
k∑ns

k=1Nkd2
k

=

[
ns∑
k=1

φp,k
φpdk

]−1

(3.3)
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Where ns is the number of species present in the system, Nk is the number of
particles of species k and dk is the diameter of particles of species k, and φp,k is the
volume fraction of species k.

We assume that the quantities in definition 3.2 do not depend on the temperature or
pressure fields, so that the values of Re and Pe can be considered to be constant in
space and time. Furthermore, Pe is related to Re by the Prandtl number:

Pr =
ρfcpν

λf
→ Pe = RePr (3.4)

We will limit our present study to the case of Pr = 1 so that we can write Re = Pe.
In this way, the fluid properties (relevant for both momentum and heat exchange) can
be fully expressed using just one dimensionless number (Re).

The choice of d32 as reference length is consistent with the recent findings in poly-
disperse systems [46] and it is a common practice in the field of sprays, in order to
quantify an effective drop diameter. However, we made the Navier-Stokes equation
dimensionless in such a way that the dimensionless group does not depend on d32. In
this way, the values of Re and Pe are not changing with the small to large volume
fraction (φm/φM ) or diameter (dm/dM ) ratio. In addition, since the particle diameter
is made dimensionless with dm, i.e., ηi = di/dm, the dimensionless group based on
dm can be straightforwardly converted into dimensionless parameters based on d32 if
desired.

3.2.2. Filtering operators for coarse graining
The evaluation of particle based transfer coefficients can be performed in different
ways for momentum transfer [11, 44, 47] and heat transfer [24, 26, 87, 88]. While
previous works aimed to develop such closures for Euler-Euler models, in the present
work, we aim to establish correlations for PU-EL models. The main challenge is to
provide a description of the velocity and temperature of the fluid phase in regions
surrounding each individual particle. This is typically done by averaging the fluid vari-
ables around each particle using some kind of Kernel function to apply a statistical
weight [5]. We will formally indicate this volume filtering operation as:

(∗) =

˚
Ω

K(x− x′) (∗) d3x′ (3.5)

Where we denoted the spatial filter Kernel K(x− x′) as a function in the space co-
ordinate x. Filtered fluid variables are, then, obtained by applying the Favre averaging
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operator:

(̃∗) =
φf (∗)
φf

(3.6)

The choice of a suitable functional form of K plays a major role, and should be
mainly driven by the nature of the closure model. In PU-EL simulations, the particle
diameter is generally much smaller than the size of the fluid cell and thus, only cell-
based values (i.e., averaged over the cell volume) are available to be used as variables
in a closure model. This requires the filtering Kernel to have a finite support (e.g., the
dimensions of the PU-EL fluid cell), and being able to represent the coarse-graining
occurring due to the finite volume formulation of the Eulerian phase in PU-EL simu-
lations. These properties are satisfied by the Top-Hat Kernel:

K (x− x′) =
∏
j

H
(
%
2
− |xj − x′j|

)
%

(3.7)

WhereH is the Heaviside step function and % is the dimensionless filter size, defined
as %∗/dp, referring to an equilateral box-shaped filter. In the following, we will refer
to the filtered subdomains as coarse grained cells and we will use the notation (̃∗)i or
(∗)i to indicate that filtered quantities are evaluated at xi, i.e., at the center of particle
i. Using the functional form defined in 3.7 is equivalent to limit the application of the
derived model to (i) structured Cartesian Eulerian grids, and (ii) particles positioned
at the exact center of the fluid cell. While the first condition is generally met in well-
resolved EL simulations, the second (ii) is generally not, unless particle based values
are calculated via linear interpolation from values located in the surrounding cells.
Such an interpolation operation is generally cheap (especially for structured grids)
when compared to the solution of large linear systems or the integration of Newton
equations for a large number of particles [99]. Hence, linear interpolation is typically
considered computationally affordable, and indeed used in almost the totality of all
recent works that rely on PU-EL simulations [75].

Next, we introduce the so-called bulk or flux-averaged temperature defined as:

θ̂ =

˜
A
θu · dA˜

A
u · dA

(3.8)

Where A is a normal vector characterizing a cross sectional area element (i.e., and
area element normal to the average flow field). Notice that, unlike other filtering oper-
ators, the flux averaging operator removes the dependency with respect to two spatial
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components (i.e., that in the plane of the element A). It is clear that closure models that
are based on flux-averaged quantities are rather useless, since flux-averaged quantities
are generally not available in PU-EL or Two Fluids Models. Despite the fact that this
problems has been already addressed in literature [87], all available closure models
(except that from [87]) are based on flux averaged quantities, and hence not applicable
for PU-EL model.

3.2.3. Extraction of conditional averages
In the present study particle based quantities are evaluated using the filtering library
CPPPO [68]. A conditional average is then performed for each studied parameter re-
moving those sampled values that deviated more than ±2σ (σ being the standard devi-
ation) from the average. In addition, only averages containing more than 100 individual
samples were considered in the study. Following this strategy, particle based quantit-
ies (i.e., the samples) are grouped into bins [68]. Within each bin we also constructed
the distribution of the sampled values. Thus, we obtain a set of conditionally averaged
values and, for each of them, the corresponding distribution of sampled values. This
allows us to represent the particle population using a closure for (i) the conditionally-
averaged quantities, and (ii) the distribution of per-particle quantities.

Thus, for a generic sampled quantity Φs and a marker field Φm we define a closed
set UΦm of equally spaced values of Φm such that:

UΦm =
{

Φm,j ∈ Φm, j ∈ N+ | Φm,j+1 − Φm,j = 2∆Φm

}
(3.9)

here ∆Φm is the spacing interval. For each particle i, we define the ensemble condi-
tional average kernel function as:

Ci
Φm,j

= H(Φi
m − Φm,j + ∆Φm)H(Φi

m − Φm,j −∆Φm) (3.10)

Which is 1 if the particle marker field value Φi
m falls in the discretization interval

of Φm,j and 0 otherwise. Then, we define the ensemble average of Φs conditioned on
Φm,j as:

〈Φs〉Φm,j =

Np∑
i=0

Φi
sC

i
Φm,j

Np∑
i=0

Ci
Φm,j

(3.11)
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Furthermore, we define the conditionally-scaled standard deviation σΦs
Φm,j

as:

σΦs
Φm,j

=
1

〈Φs〉Φm,j

√√√√ Np∑
i=0

(Φi
s − 〈Φs〉Φm,j)2

Ci
Φm,j

Np

(3.12)

Which is the standard deviation relative to the mean of the values in bin j character-
ized by marker m scaled with the respective ensemble average value. In the following,
we will omit the index j in the notation and we will simply use the notation 〈∗〉Φm to
indicate conditionally averaged values.

3.3. Saturation phenomena in dense particle beds
In the present work we consider a particle population that is statistically homogen-
eously distributed in space. Consequently, we expect the velocity field to be statist-
ically homogeneous so that the use of periodic boundary conditions is justified. In
contrast, the temperature field will have a statistical biasing due to the advection term
∇ · (uθ) in the thermal energy transport equation that makes the resulting field stat-
istically inhomogeneous. This inhomogeneity may lead to the conclusion that periodic
boundary conditions do not correctly represent the physics of this process. Neverthe-
less, periodic boundaries have been previously adopted to study heat and mass trans-
fer in monodisperse liquid-particle suspensions [26] exploiting the fact that, before the
fluid approaches the particle temperature everywhere in the domain, there exists a tem-
poral window of constant average Nusselt number (Nu). Unfortunately, the approach
of Derksen [26] cannot be applied in the present study since this temporal window is
too short to probe statistically significant results. This is simply because of the fact
that we consider gas-particle systems for which Pr ≈ 1. Clearly, the fluid will quickly
reach a condition that we refer as saturation, and which is closely examined in the rest
of this section.

3.3.1. Definition of the saturation variable
In our present contribution we define the fluid phase to be saturated with respect to
particle i, or in a global sense, respectively, if:

Θi =
θis − θ̃i

θis
≤ Θsat; Θ =

θs − θ̂
θs

≤ Θsat (3.13)

Where θis is the surface temperature of particle i and θ̃i is the Favre averaged tem-
perature around particle i. We indicate with Θ the saturation margin, and with Θsat the
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threshold after which we consider the fluid to be saturated, i.e., close to the thermal
equilibrium with the population.

There exist two main reasons why conditions 3.13 should not occur in the simulated
domain.

i Deviations of local values of θ from θ̃i may induce large fluctuations in the res-
ulting Nusselt number due to the small value of (θis − θ̃i). This causes noise in
the resulting statistics for the Nusselt number.

ii If saturation occurs after a short distance (e.g., after 2dp), there may be no need
for a closure model for the Nusselt number. In fact, it would just be sufficient
to set the fluid temperature (assuming that all the particles have the same sur-
face temperature θs) to θs. Furthermore, the use of a closure in saturated condi-
tions, may lead to numerical instabilities (due to the strong coupling) and thus,
to strong oscillations of the temperature field.

In this work, we set the saturation margin Θsat to 0.05 since we found that local
values of θ could experience significant deviations from θ̃i.

It should be noted that, unlike Θi, Θ is a function of just one spatial coordinate since
it depends only on the flux averaged temperature and the (constant) particle surface
temperature. However, in case the particle distribution is homogeneous, the particle
surface temperature is constant and identical for every particle, and the filter size %
is sufficiently large, then also Θi is a function of the stream-wise coordinate only. In
what follows we take the z-coordinate as the stream-wise coordinate, i.e., the mean
flow direction.

Furthermore, we consider an infinite collection of fluid-particle systems, each of
them being a realization of the same macroscopic state (i.e., characterized by identical
values for φp, Pe, θs and the particle diameter distribution ). We assign to each value
of the stream-wise coordinate z all the systems with a particle located at zi = z. This is
equivalent to say that, for each value of the coordinate z, it is possible to find a particle
configuration such that θ̃(t, z) = θ̃(t, zi) with zi = z (since the temperature field is
homogeneous in x and y, we dropped the dependence on these coordinates). Thus,
under these considerations, Θi can be expressed as a continuous smooth function of
the stream-wise coordinate.

In the following, we will make no distinction between Θi and Θ since the model we
propose can be applied to both the definitions of the saturation margin. Thus, we will
refer to the filtered temperature as the coarse-grained temperature, where the coarse
graining operator is not explicitly specified, but it is assumed to have commutation
properties similar to the Favre averaging operator. Also, we introduce the most relevant
Nusselt number closures from literature to subsequently build a simple model that
allows us to investigate saturation along the flow direction.
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3.3.2. Available closures for the Nusselt number
For heat transfer in monodisperse particle beds several closures forNu exist. The most
widely used closure is the one proposed by Gunn in 1978 [43]:

NuGunn =
(
7− 10φf + 5φ2

f

) (
1 + 0.7Re0.2Pr1/3

)
+(

1.33− 2.4φf + 1.2φ2
f

)
Re0.7Pr1/3

(3.14)

An alternative closure was suggested by Deen et al. [24], which used DNS data to
refit the closure of Gunn:

NuDeen =
(
7− 10φf + 5φ2

f

) (
1 + 0.17Re0.2Pr1/3

)
+(

1.33− 2.31φf + 1.16φ2
f

)
Re0.7Pr1/3

(3.15)

Another closure obtained from DNS data is the one proposed by Sun et al. [87] :

NuSun =
(
−0.46 + 1.77φf + 0.69φ2

f

)
/φ3

f+(
1.37− 2.4φf + 1.2φ2

f

)
Re0.7Pr1/3

(3.16)

Notice that we used φf to indicate (1−φp) in the above expressions. The last closure
is a correction to equation 3.15 for low φf and will not be used in this work. All these
closures where obtained based on a flux averaged temperature and thus, in order to be
consistent with coarse-grained models, they must be corrected. Therefore, Sun et al.
[87] proposed a correction function that is used to rescale the Nusselt number to obtain
Nu(cons) which is consistent with the PU-EL appraoch:

Nu(cons) = Nuflux[1− 1.6φp(1− φp)−
3φp(1− φp)4 exp(−Re0.4φp)]

−1
(3.17)

Here we used Nuflux to indicate the Nusselt number obtained using any of the
proposed closures.

3.3.3. Saturation equation in the case of pure advection
It is possible to derive an analytic expression for the saturation length zsat representing
the minimum distance at which condition 3.13 is satisfied. Let us consider a one dimen-
sional time independent model where the local interface heat transfer rate Q balances
the convective transport of thermal transport in the bed:

Q = Usρfcp
dT (z∗)

dz∗
= hAp(Ts − T (z∗)) (3.18)
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h =
Nu kf
dp

(3.19)

Here T (z∗) is a coarse-grained fluid temperature, Ts is the particle surface tem-
perature assumed to be constant, and Ap = 6φp/dp is the specific exchange surface.
Then, equation 3.18 describes the steady advection of the fluid temperature field in the
particle bed. We can substitute equation 3.19 into equation 3.18 and integrate to obtain:

ln

(
Ts − Tsat
Ts − T0

)
= −6Nuφp

Pe
zsat (3.20)

Noticing that the argument of the logarithm is precisely the saturation margin Θ with
θ = (T −T0)/(Ts−T0), the dimensionless saturation length zsat (made dimensionless
using the particle diameter, i.e.zsatdp = z∗sat ) can be expressed as:

zsat = − ln(Θsat)

Λ
; Λ =

6φpNu

Pe
(3.21)

The above expression gives a measure of the distance (in terms of particle diameters)
after which the fluid is nearly in thermal equilibrium with the particle phase. We note in
passing that equation 3.18 has been used in other studies to evaluate the mean Nusselt
number in mono-disperse particle beds [22, 24, 88]. Specifically, equation 3.21 can
be rearranged such that the value of the Nusselt number is computed from a certain
saturation level that occurs at a distance zsat:

Nusat = − ln(Θsat)Pe

6φpzsat
(3.22)

Equation 3.21 predicts limRe→0 zsat = 0 which would mean that, for very low Reyn-
olds numbers, no closure for the Nusselt number is needed at any scale since the
temperature field will quickly saturate. However, this is purely a consequence from
the assumption of a steady state: an analysis considering the transients for the fluid
temperature yields the following result (respecting the boundary and initial condition
Θ(0, z) = 1 and Θ(t, 0) = 1):

Θ(t, z) = e−ΛzH (t− z) + e−Λt (1−H (t− z)) (3.23)

Where H is the Heaviside step function. Comparison of equation 3.20 and 3.23
reveals that:

tsat = zsat = − ln(Θsat)

Λ
(3.24)
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Thus, Λ is both the dimensionless time and space relaxation factor, which is homo-
geneous in the domain. The latter is a fact of our assumption that the particle distribu-
tion is homogeneous in the domain. Notice that tsat is a dimensionless time calculated
as tsat = t∗satUs/dp, being t∗sat a dimensional time.

3.3.4. Saturation equation with longitudinal dispersion
A more sophisticated model, including an axial dispersion term, can be obtained from
direct averaging of the transport equations:

∂Θ

∂t
+
∂Θ

∂z
− 1

PeL

∂2Θ

∂z2
= −ΛΘ (3.25)

Where PeL indicates the longitudinal Peclet number defined by the ratio of longit-
udinal convective and dispersive transport rates. Hence, PeL is fundamentally different
from Pe, and typically PeL < 2 and a constant for large Reynolds numbers. When a
fluid is flowing through a bed of inert particles, the measured dispersion is due to the
combined effects of molecular diffusion and random fluid motion in the intersticises
of the bed. The latter phenomenon, also known as pseudo-turbulence, is due to the
complex flow pattern induced by the topology of the fluid domain. This results in an
anisotropic diffusion tensor since the effects of dispersion are stronger in the direction
parallel to the flow field (i.e., in the longitudinal direction) compared to the direction
normal to it (i.e., the transverse direction). Several expressions have been suggested
for PeL, but in this work we follow Delgado [25] and express PeL using:

1

PeL
=

1

κPe
+
Pe

5
(1− p)2 +

Pe2

25
p (1− p)3

(
e−

5
p(1−p)Pe − 1

)
(3.26)

p =
0.48

Pr0.15
+

(
1

2
− 0.48

Pr0.15

)
e−

0.75Pr
Pe (3.27)

Where κ is the tortuosity (which equals
√

2 for spheres). One key feature of PeL is
that for Pe > 1 the relation PeL << Pe always holds.

Equation 3.25 can be solved using the same boundary and initial conditions used
for 3.23, plus an additional one due to the second order term. Specifically, we choose
Θ(t,∞) = 0, which means that the two phases are in thermal equilibrium far down-
stream of the inlet. This set of boundary conditions ultimately leads to:

Θ(t, z) = e−Λt + zez
PeL
2

tˆ

0

1− e−Λ(t−τ)

2
√

πτ3

PeL

e

[
z2PeL

4τ
−
(
PeL
4

+Λ
)
τ

]
dτ (3.28)

55



3. Closures for bi-disperse suspensions

Unfortunately, the analysis of the transient response is complicated by the convo-
lution term. However, a useful solution can be obtained for the steady-state situation
which is much easier to manipulate:

Θ(z) = e−z/λo (3.29)

λo =
1√

Pe2L
4

+ PeLΛ− PeL
2

(3.30)

Where we introduced the characteristic fluid-particle system length λo which rep-
resents the distance at which a perturbation in the Θ field is reduced by a factor e in a
fluid-particle system with a homogeneous distribution of isothermal particles.

Following equation 3.29, the saturation length becomes:

zsat = −ln (Θsat)λo (3.31)

It is easy to show that equation 3.31 returns equation 3.21 in the limit of infinite
PeL (i.e., in the absence of longitudinal dispersion) for any finite value of Pe. Also,
we note that λo is always larger than the corresponding length scale 1/Λ in a system
without dispersion. Thus, longitudinal dispersion alleviates the saturation problem to
some degree. Next, it can be shown that in the limit of Pe→ 0 equation 3.31 gives:

zsat = − ln (Θsat)√
6κφpNu|Pe=0

(3.32)

A major difference between equations 3.28 and 3.23, is that when dispersion is con-
sidered, the steady state solution is only reached asymptotically. In fact, no Heaviside
function appears in equation 3.28 and thus, the time tsat can only be evaluated for
z > zsat instead of z = zsat. However, it is still true that, after a time tsat is elapsed,
we obtain Θ(t, z) > Θsat(tsat, zsat) in z > zsat. Thus, also in this case after a dime-
sionless time tsat has passed, the state of pseudo equilibrium is reached everywhere. In
addition, numerical evaluation of equation 3.28 shows that:

tsat < zsat (3.33)

Which means that for any position z downstream from zsat the state of pseudo-
equilibrium is reached (slightly) faster than in the dispersion-free case. We also ob-
served that tsat increases almost linearly with zsat. It is then appropriate to state that
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tsat has approximately the same value as zsat and thus the (dimensionless) heat and
mass transfer space and time scales are of the same order for this class of fluid-particle
systems.

Figure 3.1 summarizes typical values for zsat, and illustrates that the saturation
length can be rather small, even at high values of the Reynolds number and in dense
beds. Thus, we observe for φp = 0.5 that zsat is always smaller than 20 (the satura-
tion length was made dimensionless with the particle diameter) over the full range of
Reynolds numbers, i.e., in such situations the fluid domain will saturate very quickly.

Figure 3.1.: Map showing the value of zsat as a function of Re and φp. We used equa-
tion 3.15 to evaluate the Nusselt number, consider longitudinal dispersion,
as well as assume Pr = 1.

As shown in figure 3.2, the above model with dispersion is able to reasonably predict
the value of Θ and thus, the coarse-grained temperature in the particle bed. The overall
agreement is satisfactory, especially considering that the comparison of equation 3.25
is carried out against calculations from ensemble averaged PR-DNS data. Also, Deen
et al.’s correlation approximates our PR-DNS reasonably well (see Section 3.6.4 ).

3.4. Numerical formulation
The software employed in the present work, i.e., OpenFOAM R©, uses co-located vari-
ables (i.e., all variables are defined at cell centers), and relies on a finite volume method
for arbitrarily-shaped cells. The system of equations is solved in a segregated manner,
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Figure 3.2.: Θ versus dimensionless streamwise coordinate z to compare DNS data
from Tenneti et al. [93] with predictions from the one-dimensional
convection-dispersion equation, i.e., Eqn. 3.31 using the closure for the
Nusselt number from Deen et al. [24].

i..e, it is solved within an iterative sequence. In the present work we use a structured
Cartesian mesh where spherical particles are represented by forcing terms in the matrix
equations. This greatly reduces the efforts for generating the numerical grid (which is
required for more standard body-fitted mesh approaches). Also, the presented approach
ensures that no errors arise due to the grid cell topology, making the overall accuracy
estimation easier. Local mesh refinement at particle surfaces is performed dividing
each hexahedral cell into eight smaller hexahedral cells, and imposing a determinant
equal to one on each new cell.

3.4.1. Hybrid fictitious-domain/immersed-boundary method
In a discrete computational domain using non-conformal mesh elements the topology
of the fluid-solid interface can not be accurately represented. This lack of topological
accuracy is affecting the particle fluid exchange processes and requires an analytic rep-
resentation of the immersed boundary alongside with the appropriate forcing inside the
immersed body. The HFD-IB (Hybrid Fictitious Domain Immersed Boundary) solver
allows to represent the immersed surface, and to account for the presence of the im-
mersed body. The idea is to combine the convergence properties of a Lagrangian multi-
plier fictitious domain method [7, 8, 42, 103, 113] with an immersed boundary method
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[73, 98] that acts like a convergence accelerator.
The fictitious-domain/immersed-boundary method combines some elements from

both formulations in order to:

• Provide an accurate representation of the particle topology in the discretized
domain and, thus applying the corresponding boundary condition at the particle
surface (which in general does not coincide with any cell node or cell center).

• Being convergent (i.e., recover the original equations when the grid size tends to
zero).

• Ensure consistency of the imposed forcing/source terms with the interphase ex-
change process.

The latter assertion means that integrating the forcing/source term over the particle
volume should give the interphase exchange rate. To be specific, the dimensionless
force acting on a particle due to the fluid phase and the total dimensionless heat trans-
ferred from a particle i to the surrounding fluid should be respectively expressed by:

fi (t) = −
ˆ

Ωis

f} (x, t) d3x (3.34)

Qi (t) =

ˆ
Ωis

Q} (x, t) d3x (3.35)

Equations 3.34 and 3.35 represent the mapping of the interface coupling terms from
the Eulerian fluid domain to the Lagrangian particle cloud. In order for equation 3.35
to hold, it has to be ensured that no heat transfer occurs inside the immersed body, i.e.,
the immersed body should be represented by a region of constant fluid temperature
θi while an appropriate surface temperature θs should be imposed in order to satisfy
the Dirichlet boundary condition. Equation 3.34 would require a similar condition (i.e.,
imposed fluid velocity inside the rigid body). However, the required forcing would trig-
ger a flow circulation at the particle surface due to continuity (i.e., the fluid would flow
outside the particle). This would result in the hot fluid inside the particle to be artifi-
cially transported to the particle surface creating an additional inter-phase heat flux not
accounted in equation 3.35. If the immersed body rigidity is not imposed, the forcing
term (which would be non-zero only at the particle boundary) would trigger a flow in-
ternal to the particle which would dissipate energy by friction, thus overestimating the
inter-phase momentum transfer. In fact, the fluid inside the immersed body should be
frictionless [78]. In order to avoid this problem, the HFD-IB forces the particle surface
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only, but keeps track of the additional forcing that would be needed in order to stop the
flow inside the immersed body. Equation 3.34 is then substituted by:

fi (t) = −
ˆ
∂Ωis

f} (x, t) d3x +

ˆ
Ωis−∂Ωis

∆f} (x, t) d3x (3.36)

Where ∆f} (x, t) = f} (x, t) − f} (x, t−∆t) is the change in the forcing term
required to impose a fixed value of the velocity field inside the rigid body. Notice that
δΩi

s is the discretized particle surface (i.e., cells at the particle surface) and thus the
second term on the RHS of equation 3.36 represents the forcing only in the interior of
particle i. This ansatz allows us to effectively remove the transfer of momentum to the
inside of the particles, and Eqn. 3.36 now represents only the fluid-particle interaction
force between the particles and the main flow outside of the particle domain. We note
that ∆f} does only contribute marginally to the total forcing (it is on the order of
0.01%), especially in case the flow and temperature fields are stationary. Also, we
note that in other methods [34] the rigidity condition is still imposed inside the solid
domain, possibly resulting in unwanted fluxes through the boundary.

3.4.1.1. Boundary layer reconstruction approach

An accurate imposition of the Dirichlet boundary condition at the particle surface
is performed through a second order boundary layer reconstruction procedure. The
present approach can be regarded as a generalized second order version of other ap-
proaches found in literature [41, 61, 62], since the method we propose is independent
of the interpolation scheme used. In fact, our proposed method works with all interpol-
ation schemes available in our software toolkit (i.e., OpenFOAM R©). In our boundary
layer reconstruction approach, field values in cells that are cut by the particle surface
(denoted as "surface cells" below) are forced to assume certain values (i.e., uI and
θI). These values are generally different from the corresponding values located at the
particle surface (us and θs). We now consider an interpolation stencil round each sur-
face cell, and use a second order polynomial to reconstruct the fluid phase properties
along the radial direction (see figure 3.3). The interpolation points are spaced by the
surface distance s defined as:

s = 3
√

3Vc (3.37)

Where Vc is the volume of the surface cells. It is clear that s represents the diagonal of
the cubic surface cell, so that the interpolation points will always be located in different
cells when the numerical grid is sufficiently regular close to the particle surface, i.e.
if the cell shape is approximately cubic and if there is no significant shape or size
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difference between two neighboring cells. The surface cell value to be imposed is then
evaluated from (for simplicity, we illustrate the interpolation procedure only for θ,
similarly this idea can be applied to the velocity field):

θc,I =
θP2 − 2θP1 + θs

2s2
d2
cs +

4θP1 − θP2 − 3θs
2s

dcs + θs (3.38)

Where θs is the particle surface value, θP1 is the interpolated value of θ at point
P1, θP2 is the interpolated value of θ at point P2, and dcs is the distance between the
surface cell center and the particle surface.

Figure 3.3.: Representation of immersed surfaces on a Cartesian grid (here shown in
two dimensions for the sake of simplicity). Circles represent the immersed
particle surfaces, while surface cells are colored in grey. Cell value at C
is evaluated based on S, P1, and P2 using a second order polynomial.
Conversely, C1 and C2 are evaluated using a first and zero order approx-
imation, respectively, due to insufficient reconstruction points in the inter-
polation stencil.

It is clear that, in order for the interpolated field values to have a physical meaning,
there should be no other particle within the interpolation stencil. While this condition
is almost true for very dilute suspensions and for very fine (compared to the particle
diameter) grids, it can not be guaranteed for a general situation. In order to overcome
this problem, our proposed method adjust its order (and thus, its interpolation stencil)
based on the value of φ in the cells close to the interpolation points. In fact, those cells
whose center is inside a particle (i.e., φ > 0.5) should not contribute to the boundary
layer reconstruction since their value is merely used to satisfy the Dirichlet boundary
condition for a certain particle surface cell. Since the interpolation itself may require
a (possibly different) computational stencil, we discard an interpolation point if one
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of its three closest cells has a value of φ higher than 0.5. An example is given in
figure 3.3. Whenever an interpolation point is discarded, the order of the boundary
layer reconstruction is automaticly descreased. That is, if only the furthest interpolation
point is discarded the interpolation is carried out using:

θc,I =
θP1 − θs

s
dcs + θs (3.39)

However, if the closest interpolation point is discarded, a zero order approximation
is used:

θc,I = φθs + (1− φ)θc (3.40)

Notice that in equation 3.40 the new cell value is calculated using the field φ as a
penalty factor like in the standard fictitious domain methods. Thus, a pure fictitious
domain approach can be seen as a zero order HFD-IB. In addition, it is clear that in
this method the immersed surface is discretized together with the numerical grid (i.e.
no separate Lagrangian representation of the particle surface) and in the limit of zero
grid spacing ∆x we obtatin:

lim
∆x→0

s = 0 → θc,I = θs (3.41)

Thus, we impose the exact Dirichlet boundary condition and, in the limit, the method
is formally equivalent to a Lagrangian multiplier fictitious domain.

3.4.1.2. Point interpolation methods

Since the HFD-IB is implemented in the OpenFOAM R© framework, there are several
interpolation schemes that can be used for the reconstruction. We tested all of them,
and concluded that the best accuracy is achieved using the cellPointFace scheme which
calculates the interpolated value as an average of closest vertex, face, and cell center
values weighted with the inverse distance.

3.4.1.3. Fluid forcing and source term formulation

The forcing term for the momentum equation is formulated following the work of
Blais et al. [13]. This approach is also similar to the one described in [103], and uses a
parameter ωf ∈ [0, 1] to adjust the implicitness of the force correction.

f},n = Ins

(
f},n−1 + ωf

unI − un

∆t

)
(3.42)
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Where the superscripts n and n− 1 refer to the current and previous step (referring
to the steppig in the momentum corrector loop) respectively. ∆t is the time step and
Is is a function that is 1 in particle surface cells and zero elsewhere. Our algorithm
uses a PISO-IB loop, same as in [13], to correct the forcing and pressure field allow-
ing to fulfill the continuity equation, and to enforce now flow through the immersed
boundaries.

The source term for the scalar transport is formulated in a slightly different way since
no correction loop is required. This is because the scalar and momentum equations are
decoupled and the scalar transport equation is solved after the momentum corrector
(i.e., using the solenoidal velocity field). Thus, we next consider the linear system
arising from the discretization of the scalar transport equation. Each linear equation
can be represented by:

Mllθl = Q}
l −

∑
m

Mmlθm (3.43)

Where M is the coefficient matrix of the discretized system of equations and the
two subscripts refer to the row and column index. Terms in M are evaluated from
the OpenFOAM R© matrix assembler following the discretization schemes defined in
section 3.4.2. The local interphase heat exchange rate at the step n + 1 is calculated
from:

Q},n+1
l = Ip

(
Mllθ

n
l,I +

∑
m

Mmlθ
n
m

)
(3.44)

Being Ip a function that is 1 if the cell belongs to the particle (surface or interior cells)
and zero elsewhere. When equation 3.44 is substituted into equation 3.43, wherever
Ip = 1, we obtain:

θn+1
l = θnl,I (3.45)

Thus, the exact imposition of the interpolated value. Notice that, however, update of
the imposed scalar field θi,I is performed explicitly.

3.4.2. Numerical solution
The momentum and energy equations were discretized in space using central differ-
ence schemes, and a backward scheme was adopted for discretization in time. The
pressure coupling was carried out by means of a PISO algorithm that also corrects
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the immersed boundary forcing [13]. All the discretization methods we adopted where
second order accurate. The Poisson equation for the pressure field was solved using
a diagonal incomplete-Cholesky preconditioned conjugate gradient method. The mo-
mentum and scalar transport equations were solved using a diagonal incomplete lower-
upper preconditioned bi-conjugate gradient. In order to preserve the natural evolution
of the simulated fields, no relaxation factors were used for equations or fields, i.e., the
simulations were performed fully transient. The transient nature of our simulations is
fundamentally due to the formulation of the forcing term in the Navier-Stokes equa-
tions (equation 3.42), but we interrupted our simulations when both the velocity and
temperature fields reach a steady state conditions, i.e. when the integral carried over
all the computational domain of f} and Q} is not changing significantly with time.
Specifically, a simulation ends if, for the last 25% of the simulated time, (i) the average
absolute value of the fluctuations was less than 0.5% and (ii) the sum of the fluctu-
ations was zero, i.e. if the integrals are weakly fluctuating but not evolving. It should
be noticed that condition (ii) is always satisfied in our computational domains after a
sufficiently long time due to the heat sink that balances the interphase heat exchange
and the imposed pressure gradient that balances the interphase momentum exchange.
The algorithm was tested and verified under several operating conditions against data
found in literature. Results from some of these tests are presented in the Chapter 3.5.

3.4.3. Computational setup
We make use of a fully periodic rectangular cuboid domain filled with a bi-dispersed
particle population (Figure 3.4). The particle configuration is generated using LIGGGHTS R©

[53] to generate a homogeneous distribution before the fluid simulation is started. We
studied several cases for different values of the overall particle volume fraction φ and
particle diameters d1 and d2.

The fluid flow is driven by imposing a pressure difference between two opposite
faces of the domain in the x1 direction (which we will refer as the streamwise direc-
tion). This pressure drop is adjusted such that the fluid superficial velocity U(1 − φ)
remains constant.

We included a sink term in equation 3.1c in order to enforce a predefined mean fluid
temperature θbulk at the inlet (see figure 3.4). This is done in order to prevent satur-
ation of the fluid phase with the transferred scalar field. Notice that our approach is
similar to the one of Tenneti et al. [93] with the sole difference that we do not modify
the periodic boundary, but we rescale the scalar in the first two cell layers downstream
the inlet. This approach allows to study flow and scalar fields in fully developed condi-
tions, i.e. without the influence of inlet or outlet boundary conditions. In this sense, our
approach is significantly different from that of Tavassoli et al. [90] who used Dirichlet
and Neumann boundary conditions for the inlet and outlet respectively.

It is clear that filtering the temperature field across streamwise periodic boundar-
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Figure 3.4.: Computational domain for the dense bi-disperse bed (φ = 0.5,d2/d1 = 2).
A mean flow field is imposed, which is aligned with the longest edge and
so, the temperature inhomogeneity develops in that direction. The region
where particle-based quantities can be studied for values of ρ up to 5 (thus
at 2.5dm from the streamwise boundaries) is colored in green. A heat sink
is positioned at the domain entrance (colored in blue) to prevent saturation
of the fluid with the transferred scalar.

ies produces unphysical results due to the jump in the temperature field. This means
that particle-based quantities can only be studied at a certain distance away from the
streamwise periodic boundaries (see figure 3.4). Thus, filtering requires relatively long
computational domains, which increases the risk of fluid becoming saturated in the
studied region. Hence, in order to prevent saturation phenomena, the Reynolds number
must be sufficiently high to ensure a significant mean temperature gradient between
fluid and particles over the full bed length.

3.5. Verification of the HFD-IB method
In this Chapter we demonstrate the correct implementation and the accuracy of the
HFD-IB method by comparison with analytic solutions and existing closure in the
frame of momentum, heat and mass transfer past one or more spheres.
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3.5.1. Cooling of a sphere immersed in a stationary fluid
We consider the problem of a sphere of diameter dp immersed in a stationary fluid (i.e.,
u = 0). We compare the radial temperature profile T (r, t) with the analytical solution
for r > dp/2. Due to the symmetry of the problem, the diffusion equation in spherical
coordinates can be written as:

Figure 3.5.: Radial temperature field computed using the HFD-IB solver compared
with the analytical solution. The maximum error of 0.85% occurs at the
surface of the sphere at t∗ = 0.1. The error quickly decays below 0.4%.
Notice that the HFD-IB is imposing a temperature at the boundary cell that
is higher than the wall temperature Tw.

∂T (r, t)

∂t
=
αf
r2

∂

∂r

(
r2∂T (r, t)

∂r

)
(3.46)

T (r, 0) = 0, T (dp/2, t) = Tw, T (∞, t) = T∞ (3.47)

Where αf is the heat diffusivity. The well known solution to this problem is:

T (r, t) =
1

r

[
1− erf

(
r − dp/2
2
√
αf t

)]
(3.48)

We considered a cubic box of 8dp × 8dp × 8dp with the sphere placed in the center.
We used a mesh resolution h = ∆x/dp = 16 and a dimensionless time step ∆t∗ =
αf∆t/d

2
p = 10−3. The solver was found be in excellent agreement with the analytical

solution with an average deviation of 0.2%.
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3.5.2. Forced convection around a sphere
In this test case, transport equations 3.1a, 4.1b, and 3.1c are solved in a cuboid domain
containing a single immersed sphere. We used a domain size of 8dp × 8dp × 16dp and
a dimensionless time step ∆t = 10−4. We focused on the local Nusselt number:

Nu =
Q∗RePr

π (θb − θs)
(3.49)

Where Q∗ is the total interface heat exchange rate calculated using equation 3.35
and θb is the dimensionless inlet temperature. We used fixed temperature and velocity
boundary condition for the inlet and zero gradient boundary conditions for the remain-
ing boundaries.

Figure 3.6.: Nusselt number calculated using the HFD-IB solver against results found
in literature for different Reynolds numbers (Ranz and Marshall [77], Feng
and Michaelides [33] and Whitaker [106] ). h = ∆x/dp denotes different
grid resolutions.

Results showed good agreement with closures found in literature, especially with
the numerical work from Feng and Michaelides [33]. In addition, figure 3.6 shows
that the Nusselt number is correctly computed (i.e., it is consistent with the existing
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closure) even for a relatively coarse mesh. The relative error with respect to Feng and
Michaelides was found to be less than 1% for Re < 70 and increased up to 1.8% at
Re = 100. We also examined the drag coefficient defined as:

Cd =
8f IBx

πρpd2
pU

2
∞

(3.50)

Where ρp is the particle density, U∞ is the inlet velocity and f IBx is the stream-wise
component of the dimensionless force acting on the particle calculated using equation
3.36. In figure 3.7 we plotted the values of Cd obtained for different Reynolds numbers
against existing closure. The HFD-IB solver shows good agreement with literature for
Cd also with relatively coarse grids. The error was found to be on the order of 4% for
Re = 100 when using the finest grid and around 5% when the coarsest grid was used.

Figure 3.7.: Drag coefficient calculated using the HFD-IB solver against results found
in literature [18, 65] for different Reynolds numbers. h = ∆x/dp denotes
different grid resolutions.
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3.5.3. Creeping flow past a periodic static array of spheres
To simulate flow past a periodic array of spheres, it is sufficient to simulate the flow past
a single sphere in a fully periodic box. This test case allows to evaluate the accuracy
of the method when two or more particles are close or in contact and thus, to assess
the effect of the adaptive order of accuracy for the boundary layer reconstruction. For
this case, we solved equations 3.1a and 4.1b using a body force to drive a flow field
with Re = 2 · 10−5 in order to ensure a Stokes flow regime. We then compared the
dimensionless force defined as:

f ∗ =
f IBx

3πµfU0dp
(3.51)

Where µf is the dimensionless dynamic viscosity of the fluid (set to 0.2Kgm2/s)
and U0 is the imposed dimensionless fluid velocity (set to 10−5). We varied the dimen-
sionless particle diameter dp to obtain the desired value of φ in the periodic box.

Table 3.1.: Deviation from analytical results for the dimensionless drag force. ∆f ∗/f ∗

represents the deviation from Zick and Homsy [115]. The settings we used
are the same as that employed by Deen et al. [22].

φ dp/∆x f ∗ ∆f ∗/f ∗ ∆f ∗/f ∗

Zick and Deen et al. this work
Homsy (1982) (2012)

0.5236 32 42.14 1.3 % 1.1 %
0.450 30.4 28.1 -2.8 % 1.4 %
0.343 27.8 15.4 -1.2 % 2.7 %
0.216 23.8 7.442 -0.1 % -0.8 %
0.125 19.9 4.292 -0.7 % 0.3 %
0.064 15.9 2.81 -1.3 % -1.6 %
0.027 11.9 2.008 -1.9 % -2.8 %

The computed values for the dimensionless force (see table 3.1) agree well with
the analytical work of Zick and Homsy [115] with a deviation in the range with that
obtained by Deen et al. [22]. This may be due to the fact that the forcing term in the
immersed boundary they used was also based on a second order interpolation of the
fluid variables as was done in the present contribution.
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3.5.4. Forced convection past a chain of three spheres

Table 3.2.: Drag coefficient experienced by a chain of three spheres. We used none to
indicate that the deviation is below the precision reported in the work of
Maheshwari et al. (two significant digits).

s Re Cd deviation from Maheshwari et al.
1st 2nd 3rd

2 1 0.8 % 0.1 % 0.2 %
2 10 1.0 % 0.4 % none
2 50 2.0 % none -1.3 %
2 100 3.9 % none none
4 1 0.6 % -0.8 % -0.6 %
4 10 0.9 % 0.3 % none
4 50 1.9 % 1.0 % none
4 100 3.7 % 1.6 % 3.5 %

Table 3.3.: Nusselt number in the case of the chain of three spheres.

s Re Nu this work Nu Tavassoli et al. Nu Ramachandran et al. Nu Maheshwari et al.
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

2 1 2.04 1.54 1.54 2.09 1.58 1.62 2.12 1.81 1.63 2.09 1.83 1.63
2 10 3.31 2.32 2.13 3.45 2.40 2.21 3.37 2.32 2.03 3.32 2.34 2.05
2 50 5.47 3.42 3.10 5.72 3.55 3.19 5.50 3.39 2.98 5.42 3.34 3.08
2 100 7.33 4.24 3.88 - - - 7.05 4.18 3.74 6.98 4.23 3.77
4 1 2.23 1.87 1.69 2.31 1.96 1.82 2.17 2.03 1.63 2.20 1.94 1.64
4 10 3.37 2.72 2.53 3.51 2.83 2.62 3.28 2.79 2.49 3.33 2.72 2.53
4 50 5.52 4.05 3.81 5.80 4.21 3.81 5.40 4.18 3.60 5.40 4.11 3.52
4 100 7.13 5.05 4.87 - - - 6.96 5.16 4.42 6.91 5.09 4.39

Finally, we consider the case of forced convection past a chain of three spheres. We
compared our results for the particle Nusselt number defined in equation 3.49 and for
the drag coefficient defined in equation 3.50. Same as Ramachandran et al. [76] and
Masheshwari et al. [58], we used two different values for the spacing between the three
particles, namely s = 2dp and 4dp. Furthermore, contrarily to the case with a single
sphere, we used a cylindrical domain of length 16dp or 20dp (depending on the value
of s) and radius 5dp. The first sphere was centered at a distance 4dp from the inlet.
In order to compare with results from Tavassoli et al. [88], we limited the study to a
grid resolution of h = ∆x/dp = 15 (the same grid size he used). We compared the
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calculated drag coefficient with the one obtained in the work of Maheshwari et al. [58]
(table 3.2). It can be seen that the HFD-IB agrees very well, often showing deviations
of less than 1% from Mashewari’s work. Benchmark for the Nusselt number (table
3.3), shows that the HFD-IB generally agrees with previous works and predicts the
Nusselt number experienced by the first sphere with higher accuracy than the method
of Tavassoli et al. [88]. This can be understood by noticing that, for a given grid size,
the accuracy of the HFD-IB has a weaker dependency on the Reynolds number (see
figure 3.6 in this work and figure 6 in the work of Tavassoli et al. [88]).

3.6. Simulation of bi-dispersed suspensions

3.6.1. Numerical settings
We restricted our study to the parameters shown in table 3.4 and to a domain size of
5dm × 5dm × 10dm according to the available computational resources. The invest-
igated values of the Reynolds number are relatively high when compared to previous
studies [24, 87, 88] so that the heat exchange does not lead to unwanted excessive
fluid phase saturation that would deteriorate the statistics of the Nusselt number. Un-
fortunately, high Reynolds number flow simulations are demanding in terms of mesh
resolution, and hence require a fine computational mesh. Therefore, we performed a
grid sensitivity analysis on the most critical cases to assess a suitable grid resolution
and the associated error. We concluded that this grid resolution is h = ∆x/dm = 50
at the particle surface, while a larger gid spacing of h = 25 between the particles (i.e.,
in regions in which velocity gradients are less steep) is adequate. Specifically, in the
present study we adopted a base mesh with h = 25, and then used mesh refinement
at the particle surface. The refinement consisted of splitting a coarse cubic cell of the
base mesh into eight equally-sized cubic subcells. The error due to the use of mesh
refinement (compared to using a uniformly fine grid with h = 50) was found to be
less than 1%. Overall, we estimated the maximum error connected to the evaluation of
the Nusselt number (with respect to a grid independent solution) to be approximately
20%, similar to the error estimated in previous works [87].

3.6.2. Drag coefficient in bidisperse particle beds
In the present work, we imposed a constant average superficial fluid velocity in the
simulated domain by means of a global pressure gradient. As a consequence, the total
force acting on a particle fi is next defined as the sum of the fluid drag force f di and a
contribution from a mean pressure gradient f∇pi that builds up in the bed of particles.
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Table 3.4.: Numerical parameters used in the current study. ηM is the dimensionless
particle diameter ratio, φm/φM is the ratio of the small particle volume
fraction over that of the large particles,NpM is the number of large particles,
and Npm is the number of small particles.

φp ηM φm/φM Pe NpM Npm

0.20 1.2 0.5 100,250,400 37 33
0.35 1.2 0.5 100,250,400 64 55
0.50 1.2 0.5 100,250,400 92 79
0.20 1.2 1.0 100,250,400 28 48
0.35 1.2 1.0 100,250,400 48 83
0.50 1.2 1.0 100,250,400 69 119
0.20 1.2 2.0 100,250,400 18 62
0.35 1.2 2.0 100,250,400 32 111
0.50 1.2 2.0 100,250,400 46 159
0.20 1.6 0.5 100,250,400 16 33
0.35 1.6 0.5 100,250,400 27 57
0.50 1.6 0.5 100,250,400 39 82
0.20 1.6 1.0 100,250,400 12 49
0.35 1.6 1.0 100,250,400 20 82
0.50 1.6 1.0 100,250,400 29 119
0.20 1.6 2.0 100,250,400 8 66
0.35 1.6 2.0 100,250,400 14 115
0.50 1.6 2.0 100,250,400 19 156
0.20 2.0 0.5 100,250,400 8 32
0.35 2.0 0.5 100,250,400 14 56
0.50 2.0 0.5 100,250,400 20 80
0.20 2.0 1.0 100,250,400 6 48
0.35 2.0 1.0 100,250,400 10 80
0.50 2.0 1.0 100,250,400 15 120
0.20 2.0 2.0 100,250,400 4 64
0.35 2.0 2.0 100,250,400 7 112
0.50 2.0 2.0 100,250,400 10 160

Thus, we write:

fi = f di + f∇pi (3.52)
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In simulations using a PU-EL model, the contribution from the mean pressure gradi-
ent can be explicitely computed based on a known (resolved, but spatially average)
pressure field p̃. We are therefore interested in the remaining force contribution, i.e.,
the drag contribution in Eqn. 3.52, for which a closure must be profided in PU-EL
models. Thus, in what follows we filter the pressure gradient field ∇p based on our
PR-DNS data, and define the per-particle drag force as follows:

f di = fi −
π

6
d3
i ∇̃pi (3.53)

We stress that this definition is the most natural choice, since ∇̃pi is the pressure
gradient that would be available in a PU-EL simulation where the CFD cells are of the
same size as the filter size. We note that this definition of the drag force is different
from that typically used in Euler-Euler simulations, since in the latter the global mean
pressure gradient (experienced by all particles) is used to define the drag [46].

The drag force parallel to the main flow direction fd‖i is then made dimensionless (or
scaled) with the corresponding Stokes drag force to obtain (dimensional and dimen-
sionless form):

Fi =
f
∗,d‖
i

3πdiρfν(1− φi)ũ
∗,‖
i

=
f
d‖
i Re

3πηi(1− φi)ũ
‖
i

(3.54)

Notice that, since we used filtered quantities (i.e., ũ‖i and φi), the dimensionless drag
force calculated using Eqn. 3.54 does not respect the usual limitlimφ,Re→0 Fi = 1 for
a finite value of φ. This happens because Fi is particle-based, and not an ensemble
average. Thus, it is possible that the fd‖i = 0 while ũ‖i 6= 0 (e.g., in case a particle does
not experience a net drag force due to blockage from other particles, but the filtered
velocity is non-zero). Our simulation results suggest that this results in Fi to be lower-
bounded to 0 instead of 1.

A comparison of the ensemble-averaged drag force evaluated from our PR-DNS data
by using equations 3.52 and 3.53 with the closure provided by Beetstra et al. [11] is
presented in figure 3.8. Beetstra’s closure for drag force in bi-dispersed suspensions
can be written as a correction to the mono-dispersed drag force Fm

i,B(Rei, φi), i.e.,

Fi,B =
[(

1− φi
)
yi + φiy

2
i + 0.064(1− φi)3

]
Fm
i,B(Rei, φi) (3.55)
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Fm
i,B(Rei, φi) =

10φi(
1− φi

)2 +
(
1− φi

)2
(

1 + 1.5φ
1
2
i

)
+

0.413Rei

24
(
1− φi

)2

[(
1− φi

)−1
+ 3φi

(
1− φi

)
+ 8.4Re−0.343

i

1 + 103φiRe
−(1+4φi)/2
i

] (3.56)

Rei = Re(1− φi)|ũi|ηi; yi =
di
d32

(3.57)

Notice that, in order to calculate Fi,B, we only used values obtained by filtering
within a box with dimensionless size %. Furthermore, we note that Rei does not differ
significantly if defined using the parallel (to the main flow) filtered velocity ũ‖i , or the
modulus |ũi|

(a) (b)

Figure 3.8.: Parity plot comparing the normalized drag force from the current simula-
tions with values predicted by Beetstra et al. Dashed lines represent 10%
deviation from the closure of Beetstra. In panel 3.8a, f di was calculated us-
ing equations 3.52 and 3.53. In panel 3.8b the drag force 〈F ′i 〉FB accounts
for the pressure gradient contribution using equation 3.58 same as in the
work of Beetstra et al.

Panel a of figure 3.8 reveals, on average, a significant deviation from the closure
proposed in the work of Beetstra et al. Such a deviation can be explained examining the
approach they used to calculate the pressure contribution to the drag force. Specifically,
two facts need to be considered:
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i Since the particle distribution is homogeneous, it is possible to define a global
pressure gradient which corresponds to the pressure gradient required to drive
the fluid flow through the interstices between particles in an infinitely large bed
(or, in other words, through the equivalent porous medium). Therefore, following
our method the local filtered pressure gradient should approach the global one in
the limit % → ∞. However, as visible from panel a of figure 3.8, our results are
insensitive of % already for % > 3. This was also confirmed by checking the mean
difference between the global pressure gradient (calculated as the pressure gradi-
ent required to drive the flow field through the whole computational domain) and
that experienced by individual particles (data not shown; more details are, how-
ever, provided in 3.7). Thus, the use of the local pressure gradient in place of the
global one, contributed significantly only for % < 3. A tentative physical explan-
ation is that, for the moderate Reynolds numbers studied here, the fluctuations
of the pressure due to acceleration and deceleration of the fluid become already
significant, and are noticeable only for small filter sizes. The approach of Beet-
stra et al. does not account for filter sizes, and only the global pressure gradient
was considered (however, as discussed before, it was not subtracted explicitly).
This contributes (in part) to the discrepancy observed in Figure 3.8a.

ii Deviations from the correlation of Beetstra et al. for values of % > 3 can be
explained by considering that the approach used in their work to remove the
pressure contribution from the total drag force can not be applied to polydis-
perse suspensions or particle-based forces. In fact, we show in 3.7 that implicit
accounting of this pressure gradient term can only be performed on globally av-
eraged quantities (i.e., ensemble averages over all particles and species). In 3.7
we also show that our data is in good agreement with the correct theoretical pre-
dictions for the mean pressure gradient contribution. On the contrary, this term is
overestimated in the work of Beetstra et al. and thus, they obtain a smaller drag
force.

In 3.7 we show that, under particular assumptions, the ensemble average drag force
exerted on all particles can be expressed as the ensemble average total fluid-particle
force multiplied by (1−φp). In the work of Beetstra et al., the pressure contribution to
the bi-disperse drag force was (incorrectly) accounted for by exploiting this relation,
i.e., they used:

Fk(φ,Re) = −(1− φp)
〈Fg→s〉
3πµdkv

(3.58)

Being 〈Fg→s〉 the ensemble averaged fluid-particle force (acting on particles of specie
k) and v the particle velocity. We find that our results are in good agreement (within
10%) if equation 3.58 was used to account for the pressure gradient force f∇pi and
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when using φi instead of φp (see panel b of figure 3.8). In other words, our data sug-
gests that the average pressure gradient seen by the particles is different (i.e., smal-
ler, since we compute higher drag coefficients) from the average pressure gradient in
the whole particle bed. A tentative physical explanation is that for the relatively high
Reynolds numbers studied here, the fluctuations of the pressure due to acceleration
and deceleration of the fluid become already significant. We speculate that this leads
to the observed differences visible in panels a and b of figure 3.8). Clearly, the correct
way to account for the pressure contribution in PU-EL models is provided by equation
3.53, since each particle is supposed to experience a different local pressure gradient.
In addition, the value of ∇̃pi is directly available in PU-EL simulations and thus, it can
be directly used to compute the per-particle pressure gradient force. Hence, we need
to refit the expression suggested by Beetstra et al. to provide a drag closure for PU-EL
models. Panel b in Figure 3.8 suggest that a simple correction can be applied to Fi,B to
obtain such a PU-EL-consistent drag force closure. Specifically, we propose:

Fi,corr = −0.122 + 1.18Fi,B + 0.00352F 2
i,B (3.59)

Equation 3.59 was obtained by fitting data from % = 3 in figure 3.8a and ensuring
Fi,corr = 1 when Fi,B = 1.

Figure 3.9.: Parity plot comparing the drag force from the current simulations calcu-
lated using equation 3.54 with values predicted by equation. Dashed lines
represent 10% deviation from the closure.
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The resulting agreement has an error of 4.7% on average, as well as a maximum
deviation of 19%. We also binned the deviation from equation 3.59 with Re, φ and
di/d32, and found excellent agreement (i.e., absolute deviations between 5% and 7%).
It can be noticed that the drag force in case % = 2 is significantly deviating from the
cases with larger filter sizes. We found that this difference can be entirely attributed
to the pressure contribution in equation 3.53, as it is also visible from the different
qualitative behavior of the trends as a function of % shown in figure 3.8a and 3.8b. This
means that a coarse grained cell with % = 2 is still affected by local fluctuations of
the pressure field. However, in the case of a non-homogeneous system, the resulting
drag force f di calculated according to equation 3.53 will depend on % and the relative
position of neighboring particles, so that equation 3.59 will have to take into account
sub-grid contributions. This is clearly posing a limit to the grid size in PU-EL since, in
case of a non-homogeneous particle distribution, fluid quantities like the velocity field
and the pressure gradient may be very different from the homogeneous values used
to derive these closures. Thus, specific models for non-homogeneous configurations
should be used instead, which are beyond the scope of our present contribution.

Figure 3.10.: Scaled standard deviation σFiFcorr over 〈Fi〉Fcorr .

We now examine the distribution of the dimensionless per-particle drag force, and
consider its scaled standard deviation σFiFcorr .

As shown in Figure 3.10, we did not observe any significant dependence of σFiFcorr
from the mean drag coefficient Fcorr. This suggests that the relative deviation of Fi
from 〈Fi〉Fcorr can be assumed to be approximately constant for the flow regime studied
in the present work. Specifically, values of σFiFcorr ranged from 32% to 52% which
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is generally attributed to the presence of preferred pathways of the flow through the
particle array [24]. We note in passing that this is in line with the previous results of
Kriebitzsch et al. [54] once their data is rescaled (see the conclusions sections of the
present contribution for an in-depth discussion).

The lack of a functional dependence on the mean drag coefficient results in a similar
distribution for the relative deviations at different average drag coefficients 〈Fi〉Fcorr
(see figure 3.11). In the present work, our data suggests to represent the stochastic
fluctuation of the drag force using a modified log normal distribution, i.e. transposed
in such a way that the expectation value is zero. This is in contrast to previous work
that considered a Gaussian distribution [54], and motivated by the following facts:

i A log-normal distribution is defined in the range [0,∞[ and, thus, naturally pre-
dicts a minimum allowed value for drag coefficient, while the Gauss distribution
is defined in ]−∞,∞[ allowing the drag coefficient to assume negative values.

ii As can be seen from figure 3.11, the distribution of relative deviations is skewed.
This is also a consequence of the drag coefficient being lower-bounded.

iii Our log-normal distribution can be defined using only one parameter (i.e., the
standard deviation), which we have demonstrated being a constant within the
range of our study. In fact, physically, the minimum allowable value for the
relative deviation of -1 (i.e., zero drag force) and the expectation value is, by
definition, equal to zero. Thus, this results in a standard log normal distribution
with mean value equal to 1.

Clearly, the support of the log normal distribution has to match with that of the
drag force relative deviation. This is performed by translating the distribution. Thus,
defining the relative deviation Fi,σ = (Fi−〈Fi〉Fcorr)/〈Fi〉Fcorr and the lower bound as
β = −1, the modified log-Normal distribution can be written as:

P(Fi,σ) =
1

(Fi,σ − β)αF
√

2π
exp

{
−
[

ln(Fi,σ − β)√
2αF

]2
}

(3.60)

As mentioned in item (iii) above, the shape of P(Fi,σ) is determined by only one
parameter (αF ) which turns out to be a constant. By averaging the values of σFiFcorr as
they are shown in Figure 3.10, we conclude that to a first approximation:

αF ≈ 0.416 (3.61)

The choice of a log-normal distribution also allows the stochastic drag coefficient
model to be efficiently implemented in PU-EL codes: if εi is a randomly generated
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Figure 3.11.: Number distribution of the relative deviation of the conditionally aver-
aged drag force for different values of Fcorr. The error bar length cor-
responds to two standard deviation (i.e., the 68.2% error intervall) of the
samples in each bin.

number between 0 and 1, the value of Fi,σ can be calculated by inverting:

εi =

ˆ F pi,σ−βF

0

P(x)dx (3.62)

Where the integral on the right end side is given for a log-normal distribution by:

ˆ Fi,σ−β

0

P(x)dx =
1

2
+

1

2
erf

[
ln(Fi,σ − β)√

2αF

]
(3.63)

Which leads to:

Fi,σ = β + exp
[
erf−1(2εi − 1)

√
2αF

]
(3.64)

The inverse error function can be obtained using pre-computed lookup tables. In
case the coefficients are assumed to be constant (as in our study) the whole expression
can be tabulated before starting the computation.

While equation 3.62 can be used to compute the per-particle relative deviations from
〈Fi〉Fcorr , the important questions on how this random deviation should be evolved in
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time remains open. For the time being we note that our model would allow to assign
a specific value for Fi,σ for each particle, and keep this value throughout a PU-EL
simulation.

After inverting equation 3.62, the dimensionless drag force acting on a particle i can
be computed from:

Fi = Fi,corr(1 + Fi,σ) (3.65)

However, it should be noted that in the limit φ,Re→ 0, the model for the drag force
fluctuation is still predicting a drag force between −1 and 2. Even though a physical
interpretation of the above limiting behavior is not as straightforward as one might
think (and lies beyond the scope of our present contribution), it is generally accepted
that, in this limit, the resulting drag should return Stokes drag law (i.e., Fi = 1).

The proposed model for the drag force fluctuation is able to consistently take this
limit into account provided that a suitable expression for the standard deviation αF is
provided. In fact, if all the particles tend to experience the same drag force, it follows
that the limit φ,Re → 0 implies αF → 0, thus making the modified log normal
distribution tend to a Dirac delta function. Thus, the future exploration of such a range
of parameters (i.e., φ,Re → 0) is required in order to obtain a suitable expression for
αF .

Another approach that is less consistent, but perhaps more practical and applicable,
consists in calculating the particle-based drag force using the following expression:

Fi = 1 + γFFi,corr

(
1− 1

Fi,corr
+ Fi,σ

)
(3.66)

Where a simple functional form for the unknown function γF would be the relation:

γF =
Fi,corr − 1

Fi,corr
(3.67)

It is clear that using definition 3.67 for γF in equation 3.66 enforces the Stokes limit
(i.e., Fi,corr → 1), while it approaches the original closure defined in equation 3.65 for
large values of Fi,corr.

As figure 3.11 demonstrates, our proposed model for the drag force fluctuation is
able to capture the general trend of the relative drag force deviation reasonably well.
However, since we have probed relatively large Reynolds numbers only in the present
study, we lack of data that would justify the above presented drag force model for drag
coefficients close to unity.
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3.6.3. Nusselt numbers in bidisperse particle beds
The particle-based Nusselt number is defined based on dimensional and dimensionless
quantities, respectively, as:

Nui =
Q∗i

πdiλf (θ∗s − θ̃∗i)
=

QiPe

πηi(θs − θ̃i)
(3.68)

In this work, we do not aim on establishing a closure for the bidisperse Nusselt
number as a function of the monodisperse one, but we seek for an analogy between
heat/mass and momentum transfer. Thus, we will express the bidisperse Nusselt num-
ber as a function of the bidisperse drag force, i.e. Fcorr. There are some advantages in
using this approach to formulate a closure model:

i Existing closures for monodisperse Nusselt numbers are often obtained by flux
averaging (in contrast to volume averaging) the temperature field and thus, they
have to be corrected using equation 3.17 in order to be applied in coarse-grained
models. This operation requires the use of an additional closure and thus, reduces
the overall predictive power and range of applicability of the resulting closure
model. In addition, we found that scaling the Nusselt number using such closures
increases data scattering.

ii Since closures often require evaluation of long expressions, a simple relation
between drag and Nusselt number would be more efficient when implemented
in PU-EL or Euler-Euler codes. In most applications (e.g., simulation of heat
transfer in fluidized beds) the drag coefficient must be evaluated anyhow, such
hat a simple relation between drag coefficient an Nusselt number could save
computation time.

iii The range of validity of existing closure models for the Nusselt number (gen-
erally Re ≤ 100 and valid only for monodisperse systems) is outside the range
of parameters considered in our work. Hence, it is not useful to refit parameters
in existing correlations, since the functional form for a Nusselt number closure
might be fundamentally different.

Since we limited our study to Pr = 1, we must assume that the dependence on the
Prandtl number is in the form of Pr1/3. Thus, the resulting functional form we adapt
is:

Nui,bi(Pr,Re, φp, ...) = Pr1/3G(Fi,corr) (3.69)

Thus, any information regarding flow variables or particle population is concealed
in Fcorr and correlated with Nubi by means of the function G. Indeed, and as shown
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in Figure 3.12, we find a linear relationship of our PR-DNS data for the mean drag
coefficient and the Nusselt number. Specifically, we find that

Nui,bi = Pr1/3(12.2 + 0.312Fi,corr) (3.70)

The average deviation of equation 3.70 with respect to our data is 4.6%, with a
maximum error of 9.5%.

Figure 3.12.: Parity plot comparing the calculated Nusselt number from the PR-DNS
evaluated using equation 3.68 with values predicted using equation 3.70.
Dashed lines represent a 10% error corridor.

Examing the distribution of the per-per-particle Nusselt number reveals some inter-
esting finding: again we observed (see Figure 3.13) that the scaled standard deviation
is approximately constant for the Nusselt number. The standard deviation ranges from
approximately 30% to 45%. Following the same approach as for Fcorr we propose a
model for the per-particle Nusselt number based on a log-normally distributed variable
as shown in Figure 3.14.

Compared to the drag coefficient the log-normal distribution for the Nusselt number
is more peaked (i.e., the standard deviation is smaller), and therefore necessitates the
use of a αNu parameter in place of αF . In order to represent our PR-DNS data resonably
well, the following value for αNu is recommended:

αNu ≈ 0.336 (3.71)
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Figure 3.13.: Scaled standard deviation σNuiNubi
over 〈Nui〉Nubi . Same as for the drag

force F the standard deviation remains approximately constant over the
range of mean Nusselt numbers studied.

3.6.4. Global mean Nusselt numbers
We now evaluate the global mean (mixture) Nusselt number which is defined as the
Nusselt number that satisfies (with reference to equation 3.21):

Numix =
ΛPe

6φp

d32

dm
(3.72)

Thus, the above Nusselt number describes the fluid-particle mixture as an homogen-
eous medium, and is evaluated from a known value for Λ. Notice that we rescaled our
Peclet number, defined using dm, with the mean Sauter diameter d32. Following the
discussion in section 3.3, we may express Λ at a certain position η = x/dm as:

Λ(η) =
1

PeL

(
PeL

2
− lnΘ(η)

η

)2

− PeL
4

(3.73)

Notice that η should be defined in such a way that Θ(η) = 1 at η = 0 to be consistent
with the boundary conditions used in equation 3.25.

In order to evaluate the global mixture Nusselt number, we sampled Θ along the
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Figure 3.14.: Number-based distribution of the relative deviation of the conditionally
averaged Nusselt number for different values of Nubi. The error bar
length corresponds to two standard deviation (i.e., the 68.2% error in-
tervall) of the samples in each bin.

streamwise direction and performed an average over the domain length L:

NuGbi =
1

L

L̂

0

Numix(η)dη ≈ 1

Ns

Ns∑
i=1

Numix(ηi) (3.74)

Where Ns is the number of samples taken at different equally spaced locations ηi.
Results from this analysis for the case with and without dispersion (i.e., PeL →∞)

are compared with the correlation developed by Deen et al. shown in Figure 3.15.
Our data suggest that the Nusselt number calculated using this approach (which for
the case without dispersion coincides with the approach used by Tavassoli et al. [90])
approaches the value obtained using the closure provided by Deen et al. [24]. The latter
closure has been also confirmed by the recent work of Tavassoli et al. [90], highlighting
that our results for the mean heat transfer coefficient are in reasonable agreement with
results from literature.
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Figure 3.15.: Parity plot comparing the simulated global Nusselt number Nusim with
the corresponding values from Deen et al. [24]. Dotted lines indicate an
error corridor of ±20%.

3.7. Particle-based and ensemble averaged drag force
The main focus of this work is to establish correlations for particle-based drag force
and Nusselt number, and hence the question arises how to account for the pressure
contribution when computing drag forces. In this Chapter we show that the standard
approach adopted by Beetstra et al. [11] cannot be used to account for the pressure
contribution f∇pi .

3.7.1. Notation and basic definitions
In this Chapter we will refer to i as the particle index and to j as the particle class
index (referred to particles belonging to class number j, e.g., particles having diameter
dj) . Thus, in what follows each particle is characterized by two indexes i and j. Fur-
thermore, we will denote with 〈(∗)〉j the ensemble average over particles within their
particle class, and with {(∗)} the ensemble average over all the particle classes. To be
more precise, referring to the total force fj,i we define:

〈f〉j =
1

Nj

Nj∑
i=1

fi,j (3.75)

85



3. Closures for bi-disperse suspensions

{〈f〉} =
1

Nclasses

Nclasses∑
j=1

〈f〉j (3.76)

These averages have to be intended as performed within a configuration, thus an ho-
mogeneous distribution of particles experiencing the same global pressure gradient ∇p
and characterized by a global particle volume fraction φ =

∑
j φj , a global Reynolds

number Re, and number of particles Ntot =
∑

j Nj .
We express the total force acting on a single particle using:

fj,i = f dj,i + f∇pj,i (3.77)

Which is the same as equation 3.52 but now generalized to differentiate between
particles in multiple classes. Notice that the index i is not the same as equation 3.52
since in Eqn. 3.77 it is conditioned to class j. Furthermore, we account for the pressure
term f∇pi by using:

f∇pj,i = f∇pj = −π
6
d3
j∇p = −Vj∇p (3.78)

Which is the same for particles belonging to the same particle class. Notice that we
indicated with Vj the volume of a single particle in class j.

Clearly, the following force balance must hold:

Ntot{〈f〉} = −V∇p (3.79)

Being V the total volume of the domain (i.e., that of the fluid and all particles).

3.7.2. Case with one particle class - monodisperse suspensions
Considering the case of just one particle class, the operator {(∗)} has no effect, and we
can drop the index j. Then, substituting equation 3.78 into equation 3.77 and substi-
tuting the resulting pressure gradient into equation 3.79 we obtain:

f di = (1− φ)fi − φ(〈f〉 − fi) (3.80)

Which, after application of operator 〈(∗)〉j , returns the equation used in Beetstra et
al. [11] to account for the pressure contribution in the ensemble averaged drag force.
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However, the additional term φ(〈f〉 − fi) shows that, when extracting statistics for
particle-based quantities, the approach of Beetstra et al. [11] cannot be straightfor-
wardly applied, simply because f di 6= (1− φ)fi. In other words, the pressure term can
be regarded as a collective term since it can be indirectly accounted for (i.e., without
directly using ∇p) only by considering the average total interphase force in a monod-
isperse fluid-particle system.

3.7.3. Case with two particle classes - polydisperse suspensions
If we consider an arbitrary number of particle classes, we find that we cannot account
for the individual pressure contribution without considering the globally-averaged drag
force {〈f〉}. Thus, only a relation between globally-averaged quantities can be found:

{〈fd〉} = (1− φ){〈f〉} (3.81)

Furthermore, an equation equivalent to 3.80, but this time based on class-averaged
particle forces rather than individual particles, can be obtained:

〈fd〉j =

(
1− φj

Ntot

Nj

)
〈f〉j − φj

Ntot

Nj

({〈fd〉} − 〈f〉j) (3.82)

This equation returns equation 3.81 when averaged over all the particle classes. No-
tice that these equations imply 〈fd〉j 6= (1 − φ)〈f〉j , which is the approach used by
Beetstra et al. [11]. Also other expressions like 〈fd〉j = (1 − φj)〈f〉j are clearly er-
roneous. The reason can be found by examining equation 3.79. The global balance
implies that the pressure gradient is connected with the sum of all interphase forces
and thus, cannot be expressed as a function of just one subset (i.e., one particle or one
particle class) of the fluid-particle system.

3.7.4. Application to the current case
The approach used in the current study (i.e., that presented in section 3.6) is consistent
with the above considerations. Specifically, we show that using the Favre averaged
pressure gradient is in agreement with the following equation:

f dj,i = fj,i − φj
Ntot

Nj

{〈f〉} (3.83)
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Which can be obtained straightforwardly by substituting equation 3.78 into 3.77 and
finally into 3.79. If equation 3.83 is satisfied in our simulations, then our approach is
consistent. The term Ntot/Nj is, for a bidiperse system, given by from φm/φM :

Ntot/Nj =

(
1 +

d2
j

d2
k

φk
φj

)
k, j = 1, 2 k 6= j (3.84)

The term {〈f〉} is typically not reported in literature (also not by Beetstra et al.).
However, one may use the drag from Beetstra et al. [11] (i.e., as defined in equation
3.55) and consider (the incorrect) equation 3.58 to backup the total iteraction force
implied by Beetstra et al.:

{〈f〉} =
N1d1FB,1 +N2d2FB,2

Ntot(1− φ)
(3.85)

Where 1, 2 refer to the two particle classes considered here.

Figure 3.16.: Parity plot comparing the dimensionless drag force from the current sim-
ulations (i.e., Fi) calculated using equation 3.54, with predictions based
on equation 3.83 (i.e., Fd) that rely on the closure of Beetstra et al. The
dashed lines represent a 10% error corridor.

Figure 3.16 shows that equation 3.83 slightly underpredicts the drag force from our
simulation but still agrees within 10% for filter sizes ρ > 2. This deviation can be
interpreted as the true difference between our simulation results and the one of Beetstra
et al. after applying the same correction for the pressure gradient.
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3.8. Conclusions
In the present contribution we studied momentum and heat transport in gas-solid bi-
dispersed suspensions. We made use of PR-DNS to derive closures for particle-based
quantities and explored the range of usability of models used to describe heat transfer
in dense particle beds. Using a simple one-dimensional model for the gas-phase mix-
ture obtained by analytically averaging the thermal transport equations, we derived an
expression for a characteristic length scale that characterizes heat (or mass) transfer
process in dense homogeneous fluid-particle systems:

λo =
1√

Pe2L
4

+ PeLΛ− PeL
2

Furthermore, we applied the idea of a fluid phase saturation length, and showed its
relevance for a broad range of Reynolds numbers and particle volume concentrations.
We showed that saturation is connected to the λo parameter, and occurs within a few
particle diameters in certain situations. The effect of axial dispersion, widely neglected
in the literature, was demonstrated to be of major importance.

The problem of saturation is already discussed in literature, however, in a more qual-
itative way as shown in the work of Tenneti et al. [93], as well as Sun et al. [87]. In
our work we have shown that the value of the saturation time and length scale, i.e.,
(tsat and zsat), may be on the order of a few particle diameters. In such a situation
the temperature gradient in the fluid will be extremely high, and the fluid will quickly
approach a state of thermal equilibrium with the surrounding particles. It is therefore
clear that for small values of zsat the exact value for the Nusselt number is of sec-
ondary importance for computing the amount of exchanged heat in a particle bed with
length z < zsat. Also, in a situation in which zsat is small, the time step required to
explicitly evaluate the transferred amount of heat in a PU-EL model will be extremely
small. Hence, one would adopt an implicit coupling strategy to ensure stability of the
numerical algorithm, at the cost of precision with respect to energy conservation (since
implicit coupling cannot ensure identical heat fluxes for both phases). In conclusion we
recommend to focus on sufficiently high Peclet number for future studies to quantify
the Nusselt number, since these situations are of higher practical interest.

In the present work, we also proposed a modified hybrid fictitious domain-immersed
boundary (HFD-IB) method to account for the presence of immersed bodies in non-
isothermal flows. This method combines the advantageous convergence properties of a
Lagrangian multiplier fictitious domain method with a second order accurate immersed
boundary method. The HFD-IB was shown to be accurate, even on relatively coarse
grids, in predicting momentum and heat transfer gas in gas-particle system.

The final part of our study applied the HFD-IB to investigate flow through bidisperse
beds of spherical particles. We identified that the closure provided by Beetstra et al.
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[11] for bi-disperse suspensions (which was also shown to be suitable also for tri-
disperse suspensions, see [48]) is inaccurate when used in PU-EL-based models. This
is because this previous closure does not account for the local mean pressure gradient
each particle experiences, but simply accounted for the global pressure gradient in the
domain. Since the local mean pressure gradient is known in PU-EL simulations, we
proposed a correction to calculate the drag contribution to the total interphase force:

Fi,corr = −0.1216 + 1.181Fi,B + 0.00352F 2
i,B

The conditionally averaged drag force was shown to agree with this new closure
within an average deviation of 4.7%.

We also analyzed the variability of the per-particle drag coefficient, concluding that
a log-normal distribution describes this variability reasonably well. This detail is sig-
nificant, since the recent work of Buist et al. [14] clearly demonstrated that per-particle
and mean Nusselt numbers differ (we note in passing that Buist et al. considered the ad-
ditional complication of a non-uniform particle temperature distribution). Future work
might probe whether our proposed model for the per-particle Nusselt number is indeed
able to support these findings of Buist et al. [14]. Most important, we showed that the
standard deviation relative to the mean drag force is approximately constant over the
range of systems studied. This might appear in contrast to previous work [54] on the
first view. However, it is important to note that the previous study of Kriebitzsch et al.
[54] considered the fluctuation of the total fluid-particle interaction force relative to its
mean. This previous study concluded that the fluctuation of the total force decreases
with increasing particle concentration. It is now important to consider that (i) the fluc-
tuation of the mean pressure gradient force is weak, as well as (ii) that the pressure
gradient increases with increasing particle concentration. Thus, the relative force fluc-
tuations will naturally become smaller with increasing particle concentration, simply
because of the larger pressure gradient contribution to the total force. Re-scaling the
data in Figure 13 of Kriebitzsch et al. [54] with 1/(1− φp), i.e., considering the mean
drag force as the reference quantity, suggested that fluctuations relative to the drag
force are (to a first approximation, and within the scatter of data presented) insensit-
ive to the mean drag force. This is in line with the present contribution, which clearly
demonstrated a constant relative drag force variability over a wide range of drag coef-
ficients.

Finally we assessed the existence of a relationship between the average drag force
and Nusselt number. Therefore, we first define the Nusselt number (and in particu-
lar the coarse-grained temperature) in a way that is consistent with the corresponding
coarse-grained model (i.e., a PU-EL model). Hence we do not require additional clos-
ures that relate the coarse-grained temperature with a cup-mixing temperature as pro-
posed by Sun et al. [87]. Based on our PR-DNS data we propose the following closure
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to evaluate the particle-based Nusselt number that relies on the following expression:

Nui,bi = Pr1/3(12.2 + 0.312Fi,corr) (3.86)

This closure fits our data with an average deviation of 4.6%, and we show that our
results for a global bed-average Nusselt number is in agreement with the recent study
of Tavassoli et al. [90]. Again considering the per-particle variability, however this time
for the Nusselt number, we again find that a modified log-normal distribution describes
this variability reasonably well.

On a final note, we suggest that the expression we provided for Nui,bi can be mod-
ified to return the value corresponding to an isolated particle immersed in a stationary
fluid, i.e., Nui,bi = 2 in the limit φ,Re → 0. Thus, the particle based Nusselt number
can be rewritten (following the same approach used to obtain equation 3.66) as:

Nui,bi = 2 + Pr1/3Fi,corr − 1

Fi,corr

(
12.2− 2

Pr1/3
+ 0.312Fi,corr

)
(3.87)
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4. Momentum, heat and mass transfer
simulations of bounded dense
mono-dispersed gas-particle
systems

Particle Resolved Direct Numerical Simulation (PR-DNS) is employed to study mo-
mentum, heat and mass transfer in confined gas-particle suspensions. In this work, we
show that the presence of wall boundaries induces an inhomogeneous particle distri-
bution, and as a consequence continuous phase fields exhibit peculiar profiles in the
wall-normal direction. Therefore, we first propose a correlation for the particle volume
fraction as a function of the distance from the wall and the bulk particle concentration.
Secondly, we quantify wall effects on flow field and interphase transfer coefficients
(i.e., the flow field, a scalar field, as well as the Nusselt number and drag coefficient).
We show that these effects do not depend significantly on the Reynolds number in case
an appropriate scaling is applied. Finally, we propose correlations to reconstruct the
continuous phase fields in the proximity of adiabatic walls. Also, we provide interpol-
ation tables for the correction to the drag force and the Nusselt number that are helpful
in unresolved Euler-Lagrange simulations.

4.1. Introduction
Confined suspensions are a topic of active research since they are of use in a wide
range of industrial processes like energy storage, heterogeneous catalytic reactors, pulp
fibers, separation in micro-channels, or the petroleum industry. Other applications in-
clude blood flow in the human body, sediment transport in river beds and pyroclastic
flows from vulcanos. Current developments indicate that the confinement effect in sus-
pension flows becomes even more important: for example, 3D printing technology
aiming on producing materials capable to be used at high temperatures (e.g., metals
or ceramics) is already reality. This enables the use of complex geometries with char-
acteristic dimensions closer to that of the suspended particles. In such systems wall
effects will play a central role. In addition, the accurate modeling of momentum, heat
and mass transport in dense gas-particle systems is of pivotal importance for designing
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chemical reactors [29, 30], and many other systems, e.g., future solar-thermal systems
[63, 111]. Again, the effect of confinement plays a central role in most of these applic-
ations, and is potentially becoming more important.

Thanks to the continuous increase in the availability of computational resources,
hybrid Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) simu-
lations have become a tool for studying such dispersed multiphase systems [15]. A
specific example is the so-called Particle-Unresolved Euler-Lagrange (PU-EL) formu-
lation in which each particle trajectory is followed and particle-particle interactions
are resolved. The governing equations for descriping continuous phase flow are for-
mulated at a length scale larger than the particle characteristic length. Therefore, one
has to solve coarse-grained equations for the continuous phase. Unlike the Euler-Euler
(EE) formulation where the dispersed and continuous phases are described as interpen-
etrating continua, PU-EL formulations allow to directly study intra-particle transport
phenomena. This is since the PU-EL formulation still retains the definition of single
particles as separate discrete entities. Therefore, PU-EL simulations are best suited for
studying complex systems of chemically reacting particles for which it is difficult (or
even impossible) to formulate a continuous dispersed phase model with the desired
accuracy. Similarly, modeling systems comprised of non-spherical particles is most
natural, and pheraphs successful, when using a EL-based model.

However, coarse grained equations in PU-EL formulations have several unclosed
terms (e.g., the drag coefficient, the pseudo-turbulent stress, or the interphase heat and
mass transfer coefficients) for which one has to provide suitable expressions. In our
previous work [69] we showed how such models can be constructed from Particle-
Resolved Euler-Lagrange (PR-EL) simulations by means of volume averaging in a
way that is consistent with the PU-EL formulation. It was shown that when the filter
size is small (i.e., in the order of two times the particle diameter) significant differ-
ences arise with respect to EE closures due to local inhomogeneous structures. In other
words, EE-based closures cannot be simply used in PU-EL-based simulation models.
Furthermore, PU-EL models perform often poorer compared to EE-based models: in-
accuracies caused by the interpolation and mapping scheme used to calculate the local
voidage may deteriorate the fidelity of PU-EL models [80]. Particularly interesting
aspects surface in case walls are present in the region to be modeled:

• the presence of walls induces an inhomogeneous distribution of particles which
affects the flow field and the interphase transfer coefficients. This effect is not
acounted for in the totality of closures currently used in EE and PU-EL models.

• since the details of the flow field near the wall are not known, typically the slip
condition for the fluid is employed in EE and PU-EL models. This leads to signi-
ficant uncertainties when interpolating the fluid velocity at the particle position
near walls. This issue is especially relevant for size-polydisperse suspensions.
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• for PU-EL models, the issue of insufficient mesh resolution in case heterogen-
eous particle structures exist has been systematically explored only in unbounded
domains [75]. One would expect that similar issues arise in case the suspension
is confined by walls. Conceptually, one could envision treating such wall ef-
fects similar to what is done in wall-bounded turbulent flows (e.g., one could
employ wall functions). Unfortunately, such concepts are currently not available
for dense fluid-particle flows.

A first step to systematically investigate the above aspects would be to quantify
wall effects in an isolated fashion, i.e., separate them from the curvature effect that
is typically included in the analysis (see Theuerkauf et al. [94], or van Antwerpen et
al. [100]). Also, little is known for more dilute and intermediately dense suspensions,
since most previous work explored packed beds only. Considering a wider parameter
space is, however, essential when building a robust, generally-applicable simulation
model. In our present contribution we indeed show that the particle concentration has
a pronounced effect on both the velocity and temperature (as a proxy for any scalar)
field. This is even the case for the simplest situation of adiabatic walls. We will start
our analysis by considering the origin of these effects, namely the particle distribution
near the wall.

4.1.1. Particle distribution in wall bounded domains
Extensive studies have been dedicated to the prediction of particle volume concentra-
tion of packed beds in the near wall region. In packed beds, the first layer of spherical
particles in contact with the walls is characterized by having a well ordered distribu-
tion. Most of these wall-near particles are indeed in contact with the wall. Such order-
ing is progressively lost in the subsequent layers until the particle distribution becomes
statistically homogeneous, i.e., the average volume concentration does not vary from
one layer to the other anymore.

In earliest works, analytical expressions for the particle volume fraction profile was
obtained by volume integration over concentrical annuli in cylindrical packings [64],
or over wall-normal layers [55]. More recent studies proposed correlations for these
profiles [20, 67], and a comprehensive review of existing correlations is provided by
[100]. As discussed above, these studies emphasize on packed beds with cylindrical
walls and therefore, they do not distinguish between the effect of the wall curvature
and that of the wall alone. Furthermore, most available correlations are based on exper-
imental data. They cover a rather small spectrum of particle volume fractions (typically
between 0.35 and 0.65). Surprisingly, there is, to the best of our knowledge, currently
no expression for the particle volume fraction as a function of the distance normal to a
flat wall for a given particle concentration in the bulk of the particle bed.
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4.1.2. Momentum, heat and mass transfer in bounded suspensions
It is not surprising that the peculiar particle ordering near walls leads to a substantial
changes in the flow structures: Studies considering cylindrical packed beds revealed
that anomalous transport phenomena occur in the fluid that flows in the proximity of a
wall boundary [9, 29, 30, 85, 100]. Specifically, it was shown that the inhomogeneous
particle distribution leads to characteristic profiles for the flow variables in the direc-
tion normal to the wall: For example, the velocity field experiences a parabolic profile
(with a characteristic lateral extension of less than one particle diameter) in the vicin-
ity of a wall [29, 40]. Therefore, considering that the particle volume concentration
experiences a local minimum for particles in contact with walls, one may expect that
the flow rate in the proximity of walls to be significantly larger than that in the bulk
of the bed. This would be especially true in geometries which are characterized by
a small particle diameter-to-wall distance ratio (i.e., narrow beds or small cylinders)
because the the particle volume concentration in the bulk (i.e., center of cylinder or
symmetry plane between two walls) will be significantly larger than the average value.
Therefore, detailed modeling of near wall perturbations would increase the predictive
power of both PU-EL and EE models, since current models cannot account for these
effects.

4.1.3. Goals and outline
In the present work, we first quantify the effect of wall boundaries on the particle
volume distribution for flat walls. Unlike previous works [94, 100] we do not limit our
study to packed beds, but we also cover more dilute suspensions for which comparably
little is known. The goal is to obtain an accurate correlation to describe wall induced
disturbances for a wide range of average particle volume concentrations. Also, we
consider flat walls to eliminate curvature effects. This is motivated by (i) the fact that in
a typical PU-EL model only the wall-normal distance is known, but not the curvature,
and that (ii) the correlation should be as generally-applicable as possible, and hence
wall and curvature effect must be separated.

Secondly, we quantify the effect of such disturbances on the velocity field and a
scalar non-reactive field. We put emphasis on quantitative analysis and we provide
correlations for all relevant quantities. The ultimate goal of this effort is the replace
the primitive slip boundary condition frequently used by a more physical boundary
treatment.

Finally, we investigate the effect of walls on the interphase transfer coefficients (drag
coefficent and Nusselt number). This is motivated by the current inability of closures
to account for the presence of walls in a generic fashion.

This work is structured as follows: background on the mathematical description,
together with the key quantities is summarized in Section 4.2. In Section 4.3 we present
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details on the numerical solution of the equations presented in Section 4.2. Results
from our simulations are presented in Section 4.4. In Section 4.5 we summarize our
results and bring them into perspective.

Supplementary material that details the master curves needed to compute the drag
and Nusselt numbers as a function of the wall normal distance is available in 4.6.

4.2. Mathematical description

4.2.1. Transport equations
In the present work, we solve the incompressible Navier-Stokes equations together
with an advection-diffusion equation for a dimensionless inert scalar θ(t,x) to model
momentum, heat and mass transport in dense gas-particle systems. The governing
equations are formulated in their dimensionless form, and are defined within the fluid
domain Ωf :

∇ · u (t,x) = 0 (4.1a)

[
∂t + u (t,x) ·∇−Re−1∇2

]
u (t,x) = −∇p (t,x) (4.1b)

[
∂t + u (t,x) ·∇− Pe−1∇2

]
θ (t,x) = 0 (4.2)

Where u is the dimensionless velocity field, p is the dimensionless (dynamic) pres-
sure, Re is the Reynolds number, θ is the dimensionless inert scalar field, and Pe is
the Peclet number defined as Pe = RePr being Pr the Prandtl number. In this work,
we will always set Pr = 1 so that Pe = Re and therefore, the differential operators
on the left hand side of 4.1b and 4.2 are the same. Equations 4.1 and 4.2 are valid for
x ∈ Ωf

4.2.1.1. Dimensional flow variables

In order to avoid confusion in the scaling process of equations 4.1 and 4.2 we briefly
introduce the procedure we used for obtaining dimensionless quantities:

i All length scales are made dimensionless with the particle diameter dp.
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ii The dimensionless velocity field u is obtained by scaling the dimensional ve-
locity field with a reference velocity magnitude Uref . The latter is determined
from the Reynolds number using Uref = (Reµ) / (ρdp) being µ the dynamic
fluid viscosity and ρ the fluid density.

iii Time scales were made dimensionless employing (i) and (ii). Therefore, the di-
mensional time scales with dp/Uref .

iv The dimensional (dynamic) pressure scales with ρU2
ref . Similarly, a component

of the dimensionless stress tensor τxz = Re−1∂zux (with u = (ux, uy, uz)) is
related to its dimensional value by a multiplicative factor of ρU2

ref .

v Since we consider a constant surface scalar value cs, which is the same for each
particle, we defined the dimensional scalar as c = θ (cs − ci) + ci where ci is a
reference value of the scalar whose meaning is give from Eqn. 4.6 shown below.
We note in passing that such a scaling is possible due to the linearity of equation
4.2.

Following the above procedure, and considering that Pe = (ρCpUrefdp) /λf (where
λf is the fluid heat conductivity and Cp is the fluid’s specific heat capacity), we can
conclude that the interphase heat source for particle i scales as d−1

p ρCpUref (cs− ci)Qi.
Here Qi is the dimensionless interphase scalar transfer rate of particle i. Otherwise, if
one applies equation 4.2 to the transport of some inert substance in the fluid, then our
Peclet number Pe can be expressed as Pe = (Urefdp) /D , where D is the diffusion
coefficient. The interphase source term is then defined via d−1

p Uref (cs − ci)Qi.
Similarly, the interphase force fi was made dimensionless using a scaling factor of

ρU2
s /dp.

4.2.2. Boundary conditions
We define a global domain Ω = Ωf ∪ Ωi = [0, Lx] × [0, Ly] × [0, Lz], where Ωi is
the region occupied by particle i and where Lx,Ly and Lz represent the extension of
the global domain in the x, y and z directions, respectively. We can define two kind of
boundaries: fluid-particle boundaries Γi and a global domain boundary Γg. Standard
Neumann boundary conditions are employed for the pressure field at walls. At particle
surfaces we apply the following boundary conditions:

u(t,x) = 0 and θ(t,x) = θs, ∀x ∈ Γi, i = 1, 2, . . . ,Np (4.3)

Where Np is the number of particles in Ω and θs is the particle surface scalar value.
In the present study, Γg is a semi-periodic boundary with adiabatic walls where the
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following boundary conditions apply:

u(t, 0, y, z) = u(t, Lx, y, z), θ(t, 0, y, z) = θ(t, Lx, y, z) (4.4a)

u(t, x, 0, z) = u(t, x, Ly, z), θ(t, x, 0, z) = θ(t, x, Ly, z) (4.4b)

u(t, x, y, 0) = u(t, x, y, Lz) = 0, ∂zθ|z=0 = ∂zθ|z=Lz = 0 (4.4c)

Naturally, such problem would approach the trivial solution u = 0 and θ = 1
everywhere in Ωf within a time that depends on the boundary and initial conditions.
In order to obtain a meaningful solution, one has to (i) impose a mean flow, i.e. a
pressure gradient and (ii) prevent saturation phenomena in the fluid phase [69, 93]. We
therefore impose the following normalization condition for the dimensionless velocity
field in the direction nx = (1, 0, 0):

 
Ωf

u · nxdxdydz =

 
Ωf

Usdxdydz = 1, ∀t ∈ R+ (4.5)

Where the operator
ffl

is a shorthand notation for the integral mean in the integration
domain, i.e., the volume integral of a quantity normalized with the volume. Constraint
4.5 can be considered as a mean flow condition and the scalar Us = u · nx indicates
the flow in the streamwise direction.

In order to prevent saturation phenomena, we adopt the same strategy we used in
our previous work [69]: a heat sink is positioned at 0 < x < ε where ε = dp/10 and
dp is the particle diameter. This is equivalent to imposing the following condition on
Ωsink = Ωf ∩ [0, ε]× [0, Ly]× [0, Lz]:

 
Ωsink

θdxdydz = 0, ∀t ∈ R+ (4.6)

4.2.3. Volume averaging operator
In the field of particulate flows and porous media, volume averaging is often employed
to derive coarse grained equations that describe the system in terms of integral mean
values of the original fields [107]. This approach is also known as the representative
volume method [49] whenever the governing equations are filtered within a sufficiently
large volume and homogenized diffusion coefficients are then obtained.
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In PU-EL formulations, the volume of averaging corresponds to the Eulerian grid
cell which is generally a hexahedron. Therefore, we define the averaging volume as
Ω%(x) = {x′ ∈ Ω | (x− %/2) ≤ x′ ≤ (x + %/2) }, where the inequality is valid
for each vector component and where % is the dimensionless filter size. In the follow-
ing, we will consider cubic averaging volumes and therefore, we will use % to indicate
a generic component of %. Let’s take the scalar field θ(t,x) (the extension to the other
fluid fields is trivial). We define the respective continuous phase filtered (i.e., volume
averaged) field θ̃(t,x) as:

θ̃(t,x) =

 

Ωf∩Ω%(x)

θ(t,x′)dx′dy′dz′ (4.7)

Definition 4.7 is however not of practical use since (i) Ωf is generally a function
of time, and since (ii) the information regarding the discrete phase (e.g., the particle
configuration) remains implicit inside the integral. Therefore, it is general practice to
extend the continuous phase fields to the whole Ω and to define the following indicator
function:

φ(t,x) =

{
0 x ∈ Ωf

1 otherwise
(4.8)

One advantage of PU-EL formulations with respect to EE formulations, is that the
indicator function is known from the solution of the Newton’s equation of translational
motion for the particle cloud. Therefore, we define a mean particle volume fraction:

φ(t,x) =

 
Ω%(x)

φ(t,x′)dx′dy′dz′ (4.9)

which can be easily calculated from PU-EL results since particle positions and dia-
meters (which are required to define φ) are known.

Finally, after defining the fluid volume fraction φf = 1− φ we obtain:

 

Ωf∩Ω%

θ(t,x′)dx′dy′dz′ = φf (t,x)−1

 
Ω%(x)

φf (t,x
′)θ(t,x′)dx′dy′dz′ (4.10)

Which leads to:

θ̃(t,x) =
φfθ

φf
(4.11)
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This operation is equivalent to the Favre averaging operator often used in compress-
ible turbulence. However, it should be noticed that equation 4.11 has nothing to do
with compressibility but instead, arises due to the presence of a dispersed phase.

Furthermore, in our notation we deliberately omitted the dependence on % of the
volume averaged fields and in the following we will refer to volume averaged fields
for different values of the dimensionless filter size.

Another kind of averaging we employ is the wall normal layer averaging. This is
defined, for the particle volume concentration φ, as:

< φ >xy (z) =

 

Ωxy

φ (x, y, z) dxdy (4.12)

While, for the other flow variables (e.g.,θ:

< θ >xy (z) =
1

< φf >xy (z)

 

Ωxy

φf (x, y, z) θ (t, x, y, z) dxdy (4.13)

In the following, we will also define bulk quantities (indicated by subscript b) which
satisfy (e.g., in the case of θ):

θb =

Lz/2 

z`

< θ >xy (z)dz where z` : θb � [< θ >xy (z)−θb], ∀z ∈ [z`, Lz/2]

(4.14)

Therefore, bulk quantities are defined in a region located at a larger distance than z`
from the wall. In this region the maximum deviation of the wall normal layer averaged
field from a global mean value is negligible. Such a global mean value is what we call
the bulk value. In other words, wall effects in the bulk region can only be of zero order
as we describe in Section 4.4.1.

Finally, we define the overall mean particle volume concentration φb as:

φp =

 
Ω

φ(x′, y′, z′)dx′dy′dz′ (4.15)

4.2.4. Particle-based interphase transfer coefficients
In PU-EL simulations, closures for interphase transfer coefficients must be provide at
a particle level, i.e., each particle exchanges a different quantity of momentum (drag
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force) and scalar (scalar transfer). Averaged fields experienced by each particle i are
computed by interpolating neighbouring cell values at the particle location xi. To ac-
count for such interpolation process (typically, a linear interpolation is employed), we
will always consider averaging volumes centred at the particle location, i.e., Ω%(xi).

Generally, the (dimensionless) drag coefficient Fi characterizing fluid-particle mo-
mentum exchange associated with particle i is obtained by scaling the drag force with
a Stokes-like reference drag force. In case a dimensionless drag force fi is already
available (see Section 4.2.1.1), Fi can be computed from a dimensionless Stokes-like
reference drag force via:

Fi =
fi · nxRe

3πηi[1− φ(t,xi)]ũ(t,xi) · nx

(4.16)

Where ηi is the dimensionless particle diameter, which is unity for all particles in
case of monodisperse systems as considered in our present study. We note in passing
that ’drag’ refers in our study only to force components in the main flow direction nx.
Certainly, flow induced fluid-particle interaction forces arise also in other direction.
However, our preliminary work showed that these force components are of subordinate
importance on average, and hence are not discussed in greater detail in what follows.

The interphase scalar source termQi is generally accounted for via the particle-based
Nusselt (or Sherwood) number defined as:

Nui =
QiPe

πηi[θs − θ̃(t,xi)]
(4.17)

4.3. Numerical formulation
In the present work, we used the finite volume library OpenFOAM R©[ope] together with
Euler-Lagrange library CFDEMCoupling R©[cfd] to solve the governing equations. We
ran simulations for several values of φp and Re as shown in Table 4.1. The number of
realizations was such that we considered always more than 1,000 individual particles
for each combination of φp and Re. This is necessary to collect meaningful statistics
as a function of the wall-normal distance.

4.3.1. Bed generation
Each particle configuration was generated running a granular-only DEM-based simu-
lation using LIGGGHTS R©[53]. Specifically, the desired global-mean particle volume
fraction was realized by shrinking a box containing initially randomly distributed particles.
Particles were let free to collide (with other particles, as well as the the wall boundaries
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Table 4.1.: Cases analysed in the current study.

φp Re Number of realizations

0.1 100,200,300,400 10
0.2 100,200,300,400 5
0.3 100,200,300,400 4
0.4 100,200,300,400 3

in the z-direction) until the final particle configuration was reached. The final size of
the shrunken bounding box was set to 8dp× 8dp× 8dp. The so obtained configurations
were subsequently used as the input for the CFD simulation, in which particles were
arrested with zero speed.

4.3.2. Mesh generation and CFD solution
We used the OpenFOAM R©library together with CFDEMCoupling R©to assemble a se-
gregated algorithm that solves the governing equations as described in our previous
work [69] where we proposed the Hybrid Fictitious Domain-Immersed Boundary method
(HFD-IB). The use of an immersed boundary approach allows to solve the governing
equations in a global domain Ω with simple shape (which can be efficiently meshed
using a simple Cartesian grid) rather than the highly complex fluid domain Ωf . There-
fore, the HFD-IB approach ensures that no errors arise due to highly skewed cells, as
well as reduces the effort to build the mesh. Furthermore, such approach follows the
decomposition of volume average integrals presented in Section 4.2.3. We found that
a grid of size h = dp/20 did not produce significantly different results from a grid of
size h = dp/50 as we used in our previous work [69]. This can be attributed to the scal-
ing technique we employed in our statistical analysis, which removes the dependency
on the Reynolds number, and therefore alleviates the necessity of an extremely fine
grid. To support this with data, we performed a verification study (see Section 4.4.3).
Specifically, we show that the bulk value of the particle based Nusselt number agrees
favourable with correlations available in literature.

We adopted a second order accurate discretization in space for all terms, and a back-
ward time integration scheme. A diagonal incomplete-Cholesky preconditioned con-
jugate gradient method was employed to solve the Poisson equation for the pressure
field. The momentum and scalar transport equations were solved using a diagonal in-
complete lower-upper preconditioned bi-conjugate gradient method. Conjugate gradi-
ent methods were preferred to multigrid methods due to the presence of singular for-
cing terms in our discretised equations.

Convergence and algorithmic details are identical to our previous work [69].
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4.3.3. Post processing
We employed the open source library CPPPO [68] to perform all post processing steps.
Specifically, this consisted of (i) volume averaging over wall normal layers, or (ii) over
Ω%(xi) for each particle. As described in our previous work on bi-dispersed suspen-
sions [69], averaging the scalar field over periodic boundaries poses a problem due
to the field being statistically inhomogeneous in the streamwise direction. Therefore,
only particles whose related volume averaging domains Ω%(xi) do not cross the peri-
odic boundaries normal to the streamwise direction are considered when probing the
quantities related to scalar transport.

4.4. Results
After applying the numerical schemes summarized in Section 4.3, as well as the volume
averaging operations from Section 4.2.3, a large set of raw data was collected. This
data included per-particle, as well as layer-averaged flow quantities for multiple realiz-
ations of each flow situation. With flow situation we refer to a specific arrangement of
particles, as well as the steady-state flow profile that is characterized by the Reynolds
number and the domain-average particle volume fraction. The following results have
been obtained after ensemble averaging over the respective subset of the raw data.

4.4.1. Wall-normal particle distribution
Figure 4.1 shows the wall normal profile of the particle volume fraction for different
values of φb. In current literature, these profiles are often called wall radial distribution
function due to the cylindrical geometries employed in their evaluation. In what follows
it is useful to consider these profiles as perturbations with respect to the homogeneous
(bulk) region. We can clearly see that both (i) the absolute amplitude, and (ii) the wave
number of the perturbation are larger for larger values of φb. This can be related to
the higher degree of order that the particles experience near the wall at higher packing
fractions.

This wall induced perturbation of the particle volume fraction has been studied in
literature for the case of freely sedimenting spheres in cylindrical containers [20, 55,
64, 67, 114]. Several correlations were proposed which are all limited to cylindrical
coordinates and high packing fractions. Motivated by the previous considerations re-
garding the behavior of < φ >xz (that will be referred to, for the sake of simplicity,
simply as φ(z) in what follows) and the work of Mueller [67], we propose the follow-
ing functional form:

φ(z) = φ(0)(z) + φ(1)(z) + φ(2)(z) + φ(3)(z) + . . . (4.18a)
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Figure 4.1.: Wall normal profiles of the layer-average φ

φ(0)(z) = φb (4.18b)

φ(n)(z) = CnJn−1(κnz)exp(λnz), ∀n = 1, 2, . . . (4.18c)

Where Jn is the n-th Bessel function of the first kind and the constants Cn, κn and
λn are free parameters.

In some sense, equation 4.18a is a perturbation expansion of φ(z) around the ho-
mogeneous value φb that takes into account the presence of wall induced inhomogen-
eities. In addition, one shall notice that only J0 is not-vanishing at z = 0. Therefore,
C1 = −φb.

Before attempting to evaluate the other free parameters, we have to draw some con-
siderations (and assumptions) about their functional dependence. It is expected, by
observing Figure 4.1, that all the parameters are somehow depending on φb. Specific-
ally:

i Cn represents the amplitude, which scales with φb same as C1.

ii κn is a wave number, which increases with increasing φb, and must saturate
when approaching the close packing limit. In fact, from φb = 0.1 to φ = 0.4 the
oscillatory nature of φ(z) becomes more evident.
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iii λn is a decay constant of the perturbation and it is therefore expected to be a
decreasing function of φb. This is since the spheres are closer in situations char-
acterized by a higher packing fractions, thus transmitting the perturbation to their
neighbours more effectively.

We also assume that the free parameters are independent of z or, in other words, that
the arguments of the Jn and exp functions are linear in z. Finally, we aim to establish
if, like for the correlation of Mueller et al., the free parameters are depending upon the
vertical domain length Lz.

In order to evaluate the free parameters, we performed a different set of purely DEM-
based simulations using LIGGGHTS R©. These simulations used a similar configuration
as our main study, but with a dimensionless distance Lz = 12 between the two walls
(therefore, 50% larger than our main study). We probed values of φb between φb = 0.05
and φb = 0.65 with increments of ∆φb = 0.05. We first fitted the resulting φ(z) profiles
with equation 4.18a, and subsequently we fitted the obtained parameters with properly
chosen functions of φb. This resulted in the following correlation for the first order
perturbed solid volume fraction φ(1)(z) :

φ(1)(z) = −φbJ0(κ1z)exp(−λ1z) (4.19a)

κ1 = 0.875 + 8.550
√
φb (4.19b)

λ1 = 0.461 + 0.409 sin(7.421φb + 0.327) (4.19c)

Our formulation based on the perturbation expansion 4.18a allows a to easily gen-
eralize our correlation to the case of finite domains where walls are separated by a
distance Lz. The average particle concentration on a volume V can be defined as:

φp =
1

V

N∑
p=1

mp =
1

Lz

Lzˆ

0

φ(z)dz (4.20)

Clearly, limLz→∞ φb = φp must hold. In other words, since φb can be also defined
asymptotically from limLz→∞ φ(z) = φb, the particle concentration measured in the
bulk differs from the (global) average particle concentration.

Substituting the first order perturbation leads to:

φp =
1

Lz

Lzˆ

0

[φb − φbJ0(κ0z)exp(λ0z)] dz (4.21)
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Figure 4.2.: Relative deviation of the bulk particle concentration φb with respect to the
average particle concentration φp for different values of Lz.

Which leads to the following integral equation for the bulk concentration as a func-
tion of Lz:

φb(Lz) = φp

1− 1

Lz

Lzˆ

0

1

Lz
J0(κ0(φb)z)exp(λ0(φb)z)dz

−1

(4.22)

Equation 4.22 is solved iteratively for different values of the domain size ranging
from Lz = 8 (which is the value used in our main study) to Lz = 32. As shown in
Figure 4.2, the effect of a finite domain size is relatively small (i.e., a few percent at
most) for the values of Lz we considered. Also, the domain size effect decreases to a
first approximation exponentially with increasing Lz. Therefore, we do not provide any
expression for the bulk particle concentration since in most cases of practical interest
the cell size of an EL or EE simulation is sufficiently large (compared to the particle
diameter) to accept the approximation φb ≈ φp.

However, Figure 4.2 provides a measure of the error committed in using finite do-
mains to study wall effects in dense suspensions or, more generally speaking, in gran-
ular systems consisting of monodispersed spheres.

Finally, we compared φ(z) = φb+φ(1)(z) with results from our main study (see Fig-
ure 4.3). We stress that data presented in Figure 4.3 differ from with the data used to
determine the free parameters. The two set of simulations are completely separated and
performed using a different domain size. Nevertheless, we found excellent agreement
between the correlation and the data used for the main study, showing that the domain
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Figure 4.3.: Plot of φ(z) for four different values of the average particle concentrations.
Dots are data from simulations and lines are the first order correlation de-
scribed by equation 4.19a. Continuous lines are obtained calculating φb
from equation 4.22 while for dashed lines we took φb = φp. The aver-
age deviation of the correlation from simulations is: 10.5%(φb = 0.1),
9.6%(φb = 0.2), 5.9%(φb = 0.3) and 5.6%(φb = 0.4) when φb = φp
(dashed lines). The error decreases when φp is computed correctly (con-
tinuous lines): 7.1%(φp = 0.1), 6.2%(φp = 0.2), 3.9%(φp = 0.3) and
4.2%(φp = 0.4).
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size is not a critical parameter for the coefficients (at least, in the relatively large do-
mains we investigated) but it is implicit in the definition of φb when using equation
4.22. Furthermore, we notice that the error is decreasing with increasing packing frac-
tion. This is in agreement with the previous considerations and in particular with the
interpretation of Eqn. 4.18a as a perturbation around the homogeneous value. In fact,
the leading term φ(1)(z) represents the main contribution to the perturbation since it is
the one which carries the wall main disturbance (i.e., the one that sets φ(z) to zero).
In other words, additional terms in the expansion can be viewed as contribution due
to the number of ways in which particles can be distributed. The higher the order, the
more randomness is allowed.

Even if more accurate approximations could be obtained by including higher or-
der contributions, the fitting procedure for the resulting free parameters poses several
challenges. Specifically, we found that it becomes increasingly difficult to identify a
recognizable functional dependence on φb. We have therefore suppressed the discus-
sion of these dependencies, and remain with the first to contributions shown on the
right hand side of Eqn. 4.18a.

4.4.2. Wall normal velocity and temperature profiles
The perturbation to the particle volume fraction shown in Figure 4.1 and described
by means of equation 4.18a, gives rise to statistically inhomogeneous velocity and
temperature fields as a function of the wall normal distance. Furthermore, considering
the profiles shown in Figures 4.4 and 4.5, we can conclude that most of the boundary
layer effects are concentrated in the region z = [0, 1], and they are therefore limited to
the first particle layer.

This is especially true for the layer averaged temperature field θ shown in Figure 4.4.
In addition, we conclude that the effect of the Reynolds number on the velocity profiles
is - to a first approximation - negligible with respect to the effect of the bulk particle
volume fraction φb (Figure 4.5). Increasing the fluid speed is therefore equivalent to
uniformly scale the velocity field.

Unlike the velocity field, the temperature field seems to be (weakly) affected by
the Reynolds number. However, this can be interpreted in terms of the Peclet number
as for low Pe the diffusive nature of heat transport tends to produce more uniform
profiles (remember that we are using adiabatic walls). In contrast, for high Pe, the heat
is quickly removed by advection in the near wall region, due to the higher fluid speed
in this region.

Therefore, it is natural to next attempt defining wall normal temperature and velocity
fields θ′(z) = 〈〈θ〉xz〉Re and u′(z) = 〈〈Us〉xz〉Re. This is equivalent to neglecting the
effect of the Reynolds number on the wall normal profiles.

As shown in Figures 4.4 and 4.5, the presence of the discrete phase gives rise to
a particle induced thermal boundary field z < z`,θ and a particle induced dynamic
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(a) Re = 100 (b) Re = 200

(c) Re = 300 (d) Re = 400

Figure 4.4.: Wall normal profiles of θ. Re = 100 (4.4a), Re = 200 (4.4b), Re = 300
(4.4c), Re = 400 (4.4d).
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(a) Re = 100 (b) Re = 200

(c) Re = 300 (d) Re = 400

Figure 4.5.: Wall normal profiles of Us (streamwise direction). Re = 100 (4.5a), Re =
200 (4.5b), Re = 300 (4.5c), Re = 400 (4.5d).
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boundary field z < z`,u such that to a first approximation one can accept:

θ′(z) =

{
θ′`(z) if z ≤ z`,θ

1 if z > z`,theta
(4.23)

u′(z) =

{
u′`(z) if z ≤ z`,u

1 if z > z`,u
(4.24)

Where θ′`(z) and u′`(z) represent the perturbation to the homogeneous bulk field
induced by the wall boundaries.

Instead of trying to accurately reconstruct these functions, we next isolate the most
physically interesting quantities and use them to build an approximate profile.

4.4.2.1. Wall temperature and wall-normal temperature gradient

It is quite remarkable that despite the fact that we used Neumann boundary condi-
tions at the walls, Figure 4.4 clearly shows the existence of a temperature gradient
in the boundary layer. Consequently, particles located within this region experience
a mean fluid temperature gradient that superposes the mean fluid-particle temperat-
ure difference. The mean temperature gradient is caused by a heat flux pointing from
the bulk towards the walls, which is compensated by convective heat transport in the
wall-parallel direction.

The gradient in the wall normal direction can be quantified by computing an average
gradient in the wall near region:

∂zθ
′|` = z−1

`,θ

z`,θˆ

0

∂zθ
′dz = z−1

`,θ (θ′(z`,θ)− θ′(0)) = z−1
`,θ (1− θ′wall) (4.25)

We propose the following expression for the the wall normal temperature gradient
∂zθ
′|`:

∂zθ
′|`(φb) = C1 + C2 exp (C3φb) (4.26a)

C1 = 0.471, C2 = 1.131, C3 = −9.763. (4.26b)

Figure 4.6a shows that expression 4.26a yields indeed a good approximation to our
data.
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(a) (b)

Figure 4.6.: Comparison of equations 4.26a (a) and 4.27a (b) with simulation data.

Another quantity of practical interest is the temperature perturbation at the wall
θ′wall ≤ 1 which is induced by the dispersed phase. Again, we use our data to derive a
correlation:

θ′wall(φb) = C1 exp

(
C2

φb

)
(4.27a)

C1 = 1.160, C2 = −0.204 (4.27b)

As shown in Figure 4.6b, the function we used is respecting physically-meaningful
limiting conditions (i.e., limφb→0 θ

′
wall = 0, and max (θ′wall) = 1, as well as approxim-

ates our data convincingly well.

4.4.2.2. Wall shear stress

Regarding the velocity field, one would generally be interested in quantifying the mag-
nitude and height of the peak value u′peak as well as the normalized wall normal shear
stress τxz,w. The latter is proportional to ∂zu′|w, i.e., the velocity gradient at the wall.

As for the wall temperature and the temperature gradient, we express such quantities
as a function of the bulk particle volume fraction φb:

u′peak = 1 + C1φb + C2φ
2
b (4.28a)

C1 = 0.486, C2 = 2.983 (4.28b)
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(a) (b)

Figure 4.7.: Comparison of equations 4.28a (a) and 4.29a (b) with simulation data

zpeak = C1 + C2 exp
(
Cpeak

3 φb

)
(4.29a)

C1 = 0.153, C2 = 1.151, C3 = −11.749 (4.29b)

We note in passing that equation 4.28a satisfies the limit limφb→0 u
′
peak = 1, which

reflects the obvious fact that no particle induced velocity boundary layer exists in the
absence of particles. In addition, we recall that the dimensional wall distance is given
by z? = zdp. Therefore, no peak will be observed for infinitesimally small particles.

Equations 4.28a and 4.29a can be used to evaluate τxz|w. This can be done by rep-
resenting u′ in Taylor series at z = 0:

u′(z) =
∞∑
k=0

1

k!

∂ku′

∂zk

∣∣∣∣
z=0

zk (4.30)

Our simulations show that the function u′(z) exhibit an almost parabolic behaviour
in the interval z ∈ [0, zpeak]. Therefore, we seek for a closed expression for τxz|w by
retaining only terms O(z2) in Eqn. 4.30. Considering the no-slip condition at the wall,
we arrive at

u′(z) = u′(0)+∂zu
′|0z+

1

2

∂2u′

∂z2

∣∣∣∣
z=0

z2+O(z2) = Re−1τxz|wz+
1

2

∂2u′

∂z2

∣∣∣∣
z=0

z2+O(z2)
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(4.31)

This has to be provided with the condition that zpeak is a critical point, and should
satisfy a concavity condition:

∂u′

∂z

∣∣∣∣
z=zpeak

= 0, ∂zzu
′ < 0 ∀z ∈ [0, zpeak] (4.32)

Finally, we obtain the following equation for u′(z):

u′(z′) = u′peakz
′ (2− z′) , z′ = z/zpeak (4.33)

This ultimately leads to:

τxz|w =
2

Re

u′peak
zpeak

=
2

Re

u′peak
zpeak

=
2

Re

1 + 0.486φb + 2.983φ2
b

0.153 + 1.151 exp (−11.749φb)
(4.34)

Equation 4.34 allows to evaluate the (normalized) wall shear stress induced by the
fluid-particle system as a function of the bulk particle concentration and the Reynolds
number only.

4.4.3. Benchmarks for the Nusselt number prediction
Since we established that wall induced perturbations are mostly relevant within 1dp
from the walls, it makes sense to compare the Nusselt number experienced by bulk
particles (i.e., particle located beyond 1dp from a wall) with existing correlations. In
particular, we compare our result with the correlation from Deen et al. [24]:

NuDeen,i =
(
7− 10φf + 5φ2

f

) (
1 + 0.17Re0.2

i Pr1/3
)

+(
1.33− 2.31φf + 1.16φ2

f

)
Re0.7

i Pr1/3
(4.35)

Notice that we used φf = 1 − φ(xi) and Rei = Reφ(xi)Ũs(xi) in the above ex-
pression. As already pointed out in our previous work [69], expression 4.35 is not
consistent with PU-EL since the cup-mixing temperature was used. This temperature
is different from the temperature available in a PU-EL simulation. A correction was
proposed by Sun et al. [87] that modifies the above correlation to be consistent with
PU-EL:

NuDS,i = NuDeen,i [1−1.6φ(xi)(1− φ(xi))−

3φ(xi)(1− φ(xi))
4 exp(−Re0.4

i φ(xi))
]−1 (4.36)
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In Figure 4.8, we plot the calculated particle-based Nusselt number over the predic-
tion from equation 4.36. The comparison shows that our methodology is fully capable
of reproducing the results of Deen et al. [24] and Sun et al. [87], which are given in
terms of an average, and not particle-based, Nusselt number. Discrepancies are ob-
served for (i) high values of Nu (which are, however, outside the range of validity
of correlation denoted as NuDS), and (ii) for ρ = 2 (see Figure 4.8a). The latter dis-
agreement can be explained by noticing that, as addressed in our previous work [69],
for such filter size local inhomogeneities in the particle bed become relevant. Overall,
the agreement can be considered satisfactory and details about average deviation are
summarized in Table 4.2.

Table 4.2.: Average relative error and standard deviation of the particle based Nusselt
numbers from values predicted by equation 4.36. NuDS,i is used as a short
hand for NuDS(φ(x)i, Rei).

%
〈

Nui
NuDS,i

〉
σ
(

Nui
NuDS,i

)
2 1.37 0.87
3 0.99 0.34
4 0.98 0.36
5 0.95 0.36

Unlike the approach used in the derivation ofNuDS, our approach allows to evaluate
the dispersion of the particle based quantities around the average value (note, only the
latter is provided by the correlation). As shown in Table 4.2, the deviation is very high
for small filter sizes but seems to approach a constant value of σ (Nui/NuDS,i) ≈ 0.36
as the filter size is increased. Thus, fluctuations around the mean are substantial, and
should be potentailly considered in closures for PU-EL models.

4.4.4. Wall corrections to the drag coefficient and Nusselt number
In order to quantify the effect of wall boundaries on the drag coefficient and Nusselt
number, we collected the statistics using the binning approach that is described in one
of our previous studies [69].

As a result, we observed that (as for the wall normal velocity and temperature pro-
files) the dependence on the Reynolds number can be easily dropped using the follow-
ing scaling:

F (z, φb, Re) = ζF (z, φb)Fb(z, φb, Re) (4.37)
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(a) % = 2 (b) % = 3

(c) % = 4 (d) % = 5

Figure 4.8.: Parity plot showing the binned particle based Nusselt number compared
with the predicion of Deen et al. and Sun et al. Error bars extend to two
standard deviations. Different panels refer to different values of the dimen-
sionless filter size %.
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(a) φb = 0.3 (b) φb = 0.4

Figure 4.9.: Comparison between results for ζF (z, φb) from the this work (disks) and
our previous work with Re = 100 (squares). Red dashed lines represent
deviations of ±5% from unity (i.e., the bulk value). The same comparison
carried out for ζNu(z, φb) and for different values of φb leads to a similar
agreement between the two studies and is included in 3.5.

Where Fb(z, φb, Re) is the bulk drag force which is calculated using the approach
shown in Section 4.2.3. Therefore, such bulk value represents the homogenous drag
calculated using φb rather than φp.

The fact that ζF (z, φb) is not a function of the Reynolds number comes from our data
analysis and is in agreement with the previous study of the near wall behaviour of the
velocity profiles. Therefore, in order to evaluate ζF (z, φb), we consider particles from
simulations with different Reynolds numbers in the bins having the same wall normal
distance. This strategy allows us to collect more robust statistics on mean exchange
coefficients.

In order to further prove that the decomposition expressed in equation 4.37 is valid,
we compared results obtained from the current set of simulations with results from one
of our previous studies [70]. This latter work featured different particle configurations,
but a fixed Reynolds number of 100. The total number of particle is almost the same for
both studies. Figure 4.9 shows that decomposition 4.37 leads to an excellent agreement
between the two studies, therefore supporting our argument that the Reynolds number
does not play an essential role when determining wall profiles.

The data we present in this section are therefore a combination of data from both
studies, so that for each value of φb we use data from simulations involving approxim-
ately 4,000 particles.

Figure 4.10 shows results for ζF (z, φb). All wall normal profiles have a maximum
corresponding to the first particle layer (z = 0.5) and a minimum develops with in-
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.10.: ζF (z, φb) as a function of the filter size % and the particle concentration
φb. Red dashed lines represent deviations of ±5% from unity (corres-
ponding to the bulk value).

creasing φb. It can also be seen that the intensity of the perturbations becomes larger
with larger φb, which is probably related to the stronger perturbation in the particle
concentration. The effect of the filter size ρ is not existing, hinting to the fact that
filtered fluid velocities are almost independent of ρ.

Values of ζF (z, φb) are tabulated in tables 4.3 and 4.4. The latter are meant to support
the implementation of wall corrections to be used in PU-EL-based simulation models.

We then extend the same approach to the study of Nusselt number profiles by defin-
ing:

Nu(z, φb, Re) = ζNu(z, φb)Nub(z, φb, Re) (4.38)

Results for ζNu(z, φb) are plotted in Figure 4.11 and tabulated in Tables 4.5 and 4.6
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in the Appendix. The results indicate that corrections to the Nusselt number are in
general strong as compared to that for the drag. This can be tentatively explained by
the combined effect of flow (i.e., the velocity gradient) and the abnormal temperature
distribution experienced by wall-near particles.

Futhermore, the filter size ρ has a significant effect on the Nusselt number correc-
tion. This effect is extreme for the wall-closest particles, i.e., that located at z = 0.5.
The enormous sensitivity to ρ observed for the corrections to the Nusselt number is
in contrast to the correction for the drag coefficient. The latter are almost insensitive
to the filter size. We speculate that the origin of this difference is the abnormal tem-
perature distribution close to the wall: Depending on the filter size, a different filtered
temperature is experienced by individual particles. Specifically, smaller filter sizes ρ
will lead to lower values for < θ >xy as seen in Figure 4.4. This will lead to a larger
difference θp− < θ >xy. In simple words, a smaller filter size (or a smaller grid size
in PU-EL models) results in wall-near particles experiencing a different (in the con-
text of our study a cooler) fluid temperature. Thus, for a given fluid-particle heat flux,
the Nusselt number must decrease for a decrease in the filter size in case particles are
located in the ’temperature boundary layer’ observed in Figure 4.4. In Figure 4.11 we
observe exactly this trend for the correction of the Nusselt number and for φ > 0.1. In
case particles are outside of the ’temperature boundary layer’, the above argument on
the filter size effect is expected to break down. Also this fact is observable in Figure
4.11 when considered the data for z > 1.2. Finally, one should mention that for dilute
systems (exemplify by φ > 0.1 in our present study) the ’temperature boundary layer’
is only weakly pronounced. This is not directly observable from Figure 4.4, however,
a fact since in Figure 4.4 the temperature profile is scaled with the bulk value. The
latter is strongly decreasing for decreasing particle concentrations. Hence, we do not
observe noticeable corrections to the Nusselt number for φ = 0.1 in Figure 4.11.

4.5. Summary
We studied momentum, heat and mass transfer in dense gas-particle suspensions by
means of Particle-Resolved Direct Numerical Simulation (PR-DNS) in wall bounded
domains.

We found that the presence of walls induces a particle volume concentration field
that is inhomogeneous in the wall-normal direction. We expressed this rather well-
known obervation as a series of perturbations with respect to an homogeneous bulk
value. We employed particle simulations to obtain a correlation for the first terms of
our perturbation expansion. This now allows to accurately predict wall normal profiles
of the particle volume concentration without performing expensive DEM-based simu-
lations. Our correlation is valid in the range 0.05 < φ < 0.65, and provides new insight
on wall effects in dilute suspensions.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.11.: ζNu(z, φb) as a function of the filter size % and the particle concentration
φb. Red dashed lines represent deviations of ±5% from unity (corres-
ponding to the bulk value).
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Next, we demonstrated taht perturbations of the particle concentration fields have a
significant effect on momentum, heat and mass transfer in the vicinity of walls. This is
best illustrated by the peculiar wall normal profiles for the flow variables (i.e., velocity
and temperature) documented in our present study. Most remarkably, we found that
such profiles do not depend significantly on the Reynolds number when scaled with
respect to their bulk value, i.e. the Reynolds number does not affect the shape of the
profiles.

Such profiles allow to define a particle induced ’boundary layer’ in which the fields
differ from the bulk (homogeneous) value. In the present work, we proposed correl-
ations to capture the most relevant physical phenomena happening in this particle in-
duced boundary layer. Specifically, we obtained expressions for the scalar value at the
wall, as well as the scalar gradient in the layer. Surprisingly, the latter is non zero des-
pite we used adiabatic walls. Furthermore we provide expressions for (i) the maximum
value of the velocity field in the layer, and (ii) the wall normal coordinate zmax at which
this maximum occurs. These two quantities together with the observation that the ve-
locity field is almost parabolic in [0, zmax] allows us to predict the wall shear stress
exerted by the gas-particle system.

Finally we studied the interphase transfer coefficients for momentum (drag coeffi-
cient) and heat or mass transfer (i.e., the Nusselt or Sherwood number). Also in this
case, we were able to obtain scaled wall-normal profiles that are independent on the
Reynolds number. Unfortunately, we were not able to obtain a simple correlation for
the wall correction functions of drag and heat or mass transfer. However, we tabulated
values instead, which provide the basis for the correction of the Nusselt (or Sherwood)
number, as well as the drag coefficient of particles situated at 0.5 < z < 2.5 from
the bounding wall. Most remarkably, for the Nusselt number an additional complexity
arises, since the corrections are sensitive to the filter size ρ. This is due to the strong
temperature gradient near the wall, which - in contrast to the strongly fluctuating mean
velocity - causes a dependency of the filtered fluid temperature on the filter size.
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4.6. Additional data

4.6.1. Tabulated values for Drag and Nusselt wall corrections

Table 4.3.: Values of ζF (z, φb) shown in figure 4.10a and figure 4.10b.

z φb = 0.1 φb = 0.2
% = 2 % = 3 % = 4 % = 5 % = 2 % = 3 % = 4 % = 5

0.500 1.270 1.184 1.181 1.177 1.285 1.200 1.150 1.104
0.689 1.155 1.117 1.129 1.130 1.190 1.077 1.030 0.992
0.879 1.108 1.057 1.076 1.078 1.158 1.090 1.051 1.014
1.068 0.988 1.033 1.044 1.051 1.057 1.096 1.050 1.025
1.258 0.820 0.891 0.887 0.905 0.949 1.056 1.027 0.989
1.447 1.054 1.038 1.024 1.038 1.027 1.061 1.046 1.012
1.637 1.111 1.050 1.072 1.070 1.098 1.080 1.126 1.094
1.826 1.064 1.021 1.050 1.033 1.004 0.973 1.032 1.000
2.016 1.003 0.993 0.993 0.995 1.051 1.033 1.063 1.076
2.205 0.958 0.956 0.950 0.980 0.952 0.967 0.958 0.993
2.395 1.000 0.999 1.005 1.023 1.030 1.011 1.011 1.039
2.584 1.025 0.997 0.998 0.970 1.004 0.988 0.980 0.984
2.774 1.016 1.016 1.032 1.016 1.018 1.030 1.032 1.014
2.963 1.039 1.024 1.025 1.026 1.027 0.999 0.994 0.980
3.153 1.072 1.084 1.083 1.097 0.989 1.007 0.997 0.983
3.342 0.983 1.024 1.009 1.000 0.992 0.999 1.003 0.999
3.532 0.967 0.978 0.982 0.984 0.922 0.927 0.924 0.920
3.721 0.977 0.986 0.989 0.986 1.033 1.034 1.045 1.039
3.911 0.963 0.942 0.928 0.930 1.001 1.008 1.020 1.011
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Table 4.4.: Values of ζF (z, φb) shown in figure 4.10c and figure 4.10d.

z φb = 0.3 φb = 0.4
% = 2 % = 3 % = 4 % = 5 % = 2 % = 3 % = 4 % = 5

0.500 1.111 1.157 1.159 1.180 0.967 1.101 1.095 1.140
0.689 0.945 0.976 1.003 1.017 0.820 0.928 0.931 0.972
0.879 0.901 0.858 0.880 0.889 0.740 0.752 0.783 0.805
1.068 0.777 0.827 0.847 0.868 0.779 0.801 0.854 0.879
1.258 0.937 0.934 0.942 0.969 0.867 0.857 0.866 0.894
1.447 1.023 0.991 0.965 0.996 1.112 1.025 0.977 1.025
1.637 1.014 0.965 0.966 0.981 1.011 0.966 0.942 0.972
1.826 0.920 0.927 0.924 0.917 0.857 0.895 0.856 0.852
2.016 0.990 1.009 0.983 0.979 0.891 0.931 0.872 0.859
2.205 0.970 0.965 0.935 0.940 1.016 1.030 0.994 0.964
2.395 1.020 1.033 1.046 1.046 1.012 0.996 1.010 0.991
2.584 1.068 1.040 1.059 1.036 1.088 1.048 1.069 1.027
2.774 1.034 1.031 1.038 1.028 1.000 1.005 1.011 1.008
2.963 0.997 1.017 1.020 1.038 1.036 1.055 1.040 1.076
3.153 0.952 0.985 0.983 0.995 0.895 0.933 0.927 0.951
3.342 0.963 0.963 0.962 0.961 0.931 0.938 0.953 0.958
3.532 0.947 0.937 0.940 0.935 0.991 0.966 0.968 0.968
3.721 1.007 0.995 0.989 0.987 1.021 1.011 1.004 1.017
3.911 1.029 1.029 1.024 1.032 1.024 1.047 1.036 1.064

Table 4.5.: Values of ζNu(z, φb) shown in figure 4.11a and figure 4.11b.

z φb = 0.1 φb = 0.2
% = 2 % = 3 % = 4 % = 5 % = 2 % = 3 % = 4 % = 5

0.500 0.966 0.908 0.928 0.952 0.934 0.954 1.009 1.068
0.689 1.006 0.908 0.927 0.950 0.961 0.970 1.029 1.091
0.879 1.087 0.933 0.958 0.985 0.968 0.967 1.025 1.088
1.068 1.104 0.944 0.959 0.989 0.939 0.935 0.982 1.043
1.258 1.027 0.894 0.895 0.913 0.981 0.861 0.882 0.939
1.447 1.039 0.904 0.885 0.903 1.055 0.943 0.933 0.978
1.637 1.087 0.963 0.937 0.950 1.068 0.959 0.921 0.961
1.826 0.945 0.930 0.898 0.896 1.075 1.008 0.952 0.970
2.016 1.006 0.992 0.966 0.959 0.938 0.960 0.922 0.918
2.205 0.927 0.953 0.932 0.919 1.012 0.981 0.957 0.929
2.395 1.016 0.985 0.972 0.955 0.980 1.004 0.989 0.957
2.584 1.010 0.982 0.974 0.961 0.986 1.021 1.017 0.983
2.774 0.989 1.025 1.022 1.010 1.019 0.995 1.006 1.002
2.963 0.946 0.996 0.996 0.995 1.015 1.020 1.025 1.035
3.153 1.032 1.014 1.012 1.015 1.056 1.016 1.025 1.041
3.342 1.032 1.006 1.020 1.032 1.004 1.002 0.994 1.008
3.532 0.911 0.949 0.951 0.961 0.974 1.017 1.028 1.045
3.721 1.063 1.033 1.048 1.066 1.051 1.008 1.021 1.044
3.911 1.029 1.032 1.047 1.063 0.905 0.930 0.926 0.942
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Table 4.6.: Values of ζNu(z, φb) shown in figure 4.11c and figure 4.11d.

z φb = 0.3 φb = 0.4
% = 2 % = 3 % = 4 % = 5 % = 2 % = 3 % = 4 % = 5

0.500 0.820 0.974 1.046 1.127 0.738 1.035 1.169 1.350
0.689 0.794 0.965 1.050 1.141 0.706 0.944 1.074 1.232
0.879 0.744 0.847 0.917 0.993 0.589 0.668 0.752 0.869
1.068 0.794 0.858 0.911 0.995 0.651 0.617 0.692 0.799
1.258 0.894 0.893 0.929 1.007 0.715 0.656 0.701 0.797
1.447 0.849 0.846 0.828 0.896 0.745 0.745 0.719 0.820
1.637 0.910 0.930 0.868 0.920 0.863 0.869 0.744 0.831
1.826 1.016 0.962 0.869 0.894 0.935 0.943 0.759 0.821
2.016 0.938 0.937 0.865 0.854 0.943 0.950 0.790 0.782
2.205 0.990 1.003 0.954 0.900 0.984 0.992 0.933 0.822
2.395 1.012 1.037 1.034 0.972 1.066 1.040 1.032 0.937
2.584 1.060 1.018 1.025 1.001 1.026 0.975 0.978 0.912
2.774 0.997 0.972 0.978 0.978 1.082 1.068 1.075 1.078
2.963 0.998 1.006 1.017 1.040 0.980 1.087 1.096 1.157
3.153 0.990 1.013 1.030 1.053 0.938 0.946 0.945 0.982
3.342 1.004 0.994 1.001 1.021 0.992 0.959 0.975 1.019
3.532 0.971 0.939 0.938 0.966 0.932 0.937 0.945 0.978
3.721 0.937 0.959 0.958 0.976 0.986 1.000 1.001 1.027
3.911 1.030 1.054 1.060 1.088 1.028 1.037 1.052 1.119

4.6.2. Drag and Nusselt profiles for different Reynolds numbers
In this section we show the scaled profiles for drag and Nusselt number at different
Reynolds numbers. The peculiar characteristics are visible for different values of φp
rather than for different Reynolds numbers.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.12.: Scaled drag for Re = 100.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.13.: Scaled drag for Re = 200.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.14.: Scaled drag for Re = 300.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.15.: Scaled drag for Re = 400.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.16.: Scaled Nusslet for Re = 100.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.17.: Scaled Nusslet for Re = 200.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.18.: Scaled Nusslet for Re = 300.
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(a) φ = 0.1 (b) φ = 0.2

(c) φ = 0.3 (d) φ = 0.4

Figure 4.19.: Scaled Nusslet for Re = 400.
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5.1. Conclusion
The individual studies which compose the present thesis contain several major findings
and contributions to the actual state of the art in the field of gas-particle suspension
modelling.

In Chapter 2 we developed a novel library for parallel data filtering and processing
which can be link to a variety of simulators. Such library has been proven to be of
major importance for the subsequent studies conducted in the frame of this thesis and
features some novel algorithms and a unique code structure that allows high parallel
efficiency and low RAM consumption.

A second essential tool for Particle Resolved Direct Numerical Simulation (PR-
DNS) was developed in Chapter 3. The HFD-IB method combines the Immersed
Boundary approach [73] which aims on imposing the boundary conditions at the im-
mersed surfaces, with the Fictitious Domain approach [86], where a rigidity condition
is imposed within the region occupied by the immersed bodies. The algorithm was
shown to be capable of accurately imposing Dirichlet boundary conditions and com-
pute interphase transfer coefficients on relatively coarse grids compared to existing
algorithms. An extension to general boundary conditions is provided in Appendix A.

In Chapter 3 we also introduced the concept of saturation as a consequence of the
fast interphase heat and mass transfer which results in strong variation of a non-reactive
scalar field defined in the fluid phase. In PU-EL simulations, saturation would give rise
to large interphase transfer coefficients and the steep scalar gradient in the microscopic
field would not be captured in the PU-EL simulation. Therefore, we provided an ac-
curate analytical model based on the pseudo-turbulent dispersion models proposed by
Delgado [25] and the Nusselt number correlation from Deen et al. [23] that can predict
the occurrence of a saturated regime. Wherever such situation occurs, models based
on the heat transfer coefficient are not viable. To a first approximation, one could just
enforce the (fluid’s) cell scalar value to equal the particle surface value.

Again, in Chapter 3 we perform a large array of PR-DNS of bi-disperse gas-solid
suspensions at moderate Reynolds number. We demonstrated - using results from our
simulations together with theoretical analysis - that the widely used correlation of Beet-
stra et al. [11] fails in separating a meaningful drag force from the total fluid-particle
interaction force. Therefore, this correlation leads to significant underestimation of the
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interphase momentum exchange between phases in bi- and poly-disperse suspensions
in certain situations. We proposed a simple modifications to the correlation of Beet-
stra et al. that matches our results. Additionally, we proposed a correlation to compute
the Nusselt number as a function of the drag force. We also studied the deviation of
individual particle-based interphase transfer coefficients from the mean value and we
found that they behave like a lognormal distribution with constant scaled standard de-
viation.

In Chapter 4 we focussed on the effect of adiabatic walls on mono-dispersed suspen-
sions. We first proposed a novel expression for the wall normal profile of the particle
volume fraction which, unlike the models proposed in previous works [100], is applic-
able to flat walls over a broad range of bulk particle volume fractions. We also provided
a formal description of the effect of the domain extension on the bulk particle volume
concentration.

Furthermore, we observed that a perturbation of the particle volume fraction induces
peculiar wall normal profiles for the flow and scalar fields in the region close to the
wall. We named this region the "particle-induced boundary layer". Specifically, in this
region the scalar field shows a wall-normal gradient despite the walls are adiabatic. We
speculate that such gradient is due to the high velocity in the region very close to the
wall. The flow in this region transports the scalar field further downstream at an higher
rate with respect to the homogeneous region far from the walls. In fact, the velocity
field shows a parabolic wall normal profile in the particle-induced boundary layer with
a maximum that is a function of the particle volume fraction. We proposed correla-
tions for the scalar gradient, as well as the wall scalar value together with the location
and magnitude of the velocity field maximum. Such quantities allow to approximate
the wall normal flow and scalar profiles in the particle-induced boundary layer with
sufficiently accuracy. Finally, we investigated the effect of wall disturbances on the in-
terphase transfer coefficients. This investigation highlights significant and systematic
wall effects for dense systems.
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5.2. Outlook
In the present thesis we focussed on the study and modelling of particle-based in-
terphase transfer coefficients (ITC) for gas-particle suspension. As described in Chapter
3, we followed a standard approach defining an average ITC for a specific class of
particles, i.e, particles experiencing the same value of voidage, Reynolds number and
referring to the same filter size. Furthermore, we quantified the observed deviation by
means of a distribution function, therefore closing the second order statistics for the
particle-based ITC. However, such approach is only valid on a statistical basis, i.e., the
closure would yield the correct mean and standard deviation of transfer coefficients
when applied to a large particle ensemble. However, our results do not provide a de-
terministic description of per-particle transfer coefficients. In fact, deviations from the
average ITC are not originating from a pure random process in PU-EL. This is because
the relative position of particles is known, same as the average values of the continuous
phase fields. This is in contrast with EE models, where the description of the dispersed
phase is purely statistical. Specifically, one can speculate that ITCs deviations are fun-
damentally related to: (i) the relative position of particles and (ii) transport phenomena
in the continuous phase happening on the sub-grid scale.

The first cause of deviation (i) has been recently studied by Akiki et al. [4] who pro-
posed the "Pairwise Interaction Point-Particle" model (PIEP). This model makes use of
the Faxe theorem to evaluate the drag force perturbation due to neighbouring particles.
Even though the model predicts more accurate drag forces, it is still not adequate to
account for high order particle interactions in complex systems due to its pairwise in-
teraction approximation. Furthermore, it is not clear if such model can be somehow
derived (or inferred) by using some approximated form of the governing equations for
the continuous phase. This poses some serious questions on the generality of the PIEP
model. Currently, the PIEP model is still limited to particle-based drag force, and no
extension to general ITCs exists. Therefore, the quest for a general approach to de-
terministically predict per-particle ITCs as functions of the neighbouring particles is
still ongoing. It appears of pivotal importance for the development of more accurate
and reliable PU-EL simulators to shed more light on this issue in the near future.

The effect of sub-grid scales on ITC deviations (i.e., item ii) is by nature impossible
to describe using a deterministic approach. This is because the coarse graining process
conceals the information of the flow details in sub-grid stresses and fluxes. However,
one can speculate that such deviation will be more prominent as the filter size (i.e., the
PU-EL cell) becomes larger with respect to the particle diameter. This is expected be-
cause of the high non equilibrium of the sub-grid flow and the lack of scale separation.
Furthermore, the particle tendency to form clusters creates strongly inhomogeneous
sub-grid flows within a region of the coarse grained cell. In the extreme case, the force
acting on a particle can have opposite sign with respect to the average fluid-particle re-
lative speed. Such inhomogeneities are fundamentally different from pseudo-turbulent
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phenomena [25] which have a diffusive nature, while sub-grid inhomogeneities are
advective. Perhaps, a more advanced mathematical description of the coarse graining
process is necessary to fully understand the role and the modelling of such sub-grid
contributions.

In Chapter 4, we proposed an approach to model sub-grid inhomogeneities arising
from adiabatic walls. Such work can be extended to develop proper boundary condi-
tions for both PU-EL models and EE models, with the latter requiring our description
of the wall-induced perturbations on the particle volume fraction in addition to the flow
and scalar correlations. Therefore, wall functions - analogous to the ones found in tur-
bulence modelling - could be implemented by exploiting the research work conducted
within this thesis. Also, extension to situations involving fixed-temperature boundary
conditions at the wall, as well as zero flux boundary conditions at the particle surfaces,
would be helpful. This would help to quantify fluid-wall transfer coefficients in dense
suspensions. Last, extending the current study to flowing suspensions could shed light
into the effect of the particles’ granular temperature on ICTs.

Finally, with the current increase in supercomputing capabilities which allow sev-
eral billion particles to be tracked in PU-EL simulations, the role of on-the-fly data
processing tools like CPPPO will get more and more prominent. Such filtering tools
can be used to develop closure models as we did in the present thesis. Filtering is be-
coming increasingly interesting in the community, as shown by the recent attempts of
Cloete et al. [19], or Tryggvason [95]. Another usage of such tools, which is directly
connected with on-the-fly data processing, is the dynamic adjustment of coefficients
in closure models. This strategy has been widely exploited in Large Eddy Simulations
following the seminal work of Germano et al. [38]. It is currently applied in filtered
two-fluid models (FTFM) for disperse multiphase flows [82]. However, such models
generally rely on a similarity between the fine and coarse filtered scales. This assump-
tion may be of questionable validity in the case of highly non-equilibrium flows. For
example, the dynamic model from Germano et al. requires that the sub-grid stresses
are described using the same model e.g., the Smagorinsky model [79], which is valid
in the universal inertial range. Therefore, further studies on the accuracy and formu-
lation of such filtered corrections are needed. Tools to perform such investigations are
precisely those like CPPPO.
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A. HFD-IB: extension to general
boundary conditions

In this appendix we show how the HFD-IB method can be extended to impose general
boundary conditions on a general partial differential equation.

A.1. Partial differential equations and boundary
conditions

We consider a computational domain C and let Ω ⊂ C be the physical domain, which
is assumed to be smooth and not self-intersecting. Let B = C \ Ω = ∪iBi, where Bi

are the immersed domains assumed not to be interpenetrating, i.e.Bi∩Bj = ∂Bi∩∂Bj

or Bi ∩Bj = ∅ for all i 6= j. Finally, we define the immersed surface Γ = ∪iΓi where
Γi = Bi ∩Ω are the immersed surfaces (or interfaces) relative to the immersed body i.

We consider a partial differential equation of kth order (that can be linear or non-
linear) for the scalar field φ(t,x) (extension to vector fields is straightforward) together
with a proper set of boundary conditions at the immersed surfaces. For simplicity, we
will assume ∂Ω ⊂ Γ (every boundary in the physical domain is an immersed bound-
ary) but extension to the general case of mixed standard and immersed boundaries is
straightforward. Let Pk be a partial differential operator of order k in space and let
Φ(t,x) be a function of space and time (a source term, in case Pkφ(t,x) represents
a transport equation). Thus, the differential problem for Nb immersed bodies can be
written as:

Pkφ(t,x) = Φ(t,x) ∀x ∈ Ω,

(A.1a)
k−1∑
n=0

αn,i(t,x) [ni(t,x) · ∇]n φ = γi(t,x) ∀x ∈ Γi, ∀i = 0, 1, . . . , Nb.

(A.1b)

Where the immersed boundary conditions are expressed in general form as functions
of the boundary coefficients αn,i(t,x) and γi(t,x). We also denoted the vectors normal
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to the immersed surface Γi as ni(t,x). Note that the time dependence of normal vectors
and boundary coefficients implies that immersed bodies are allowed to move.

Remark 1 Notice that equations A.1a and A.1b are formulated in dimensionless form
for the sake of generality and simplicity.

The next step consist in formulating equation A.1a in C. This implies that equation
A.1a is solved in the entire computational domain, thus requiring additional explicit
boundary conditions BC(φ) = 0 on ∂C. In the following, we will not discuss these
boundary conditions, that are specific for each application and pose no relevant issue
to the illustrated method. Concerning the immersed boundary conditions, they are im-
posed by modifying equation A.1a with an additional term that acts like a Lagrangian
multiplier.

Let χi(t,x) be an indicator function defined as:

χi(t,x) =

{
1 if x ∈ Γi

0 otherwise
(A.2)

Then, the immersed boundary problem can be stated as:

Pkφ(t,x)− Φ(t,x) =

Nb∑
i=0

χi(t,x)fi(t,x) ∀x ∈ C, (A.3a)

BC(φ) = 0 ∀x ∈ ∂C. (A.3b)

We express the forcing terms fi(t,x) as:

fi(t,x) =
[
Pkφ(t,x)− Φ(t,x)

]
+ [φ(t,x)− ψi(t,x)] (A.4)

In equation A.4, the first term on the RHS is just used to equate the LHS of equation
A.3a, so that when χi = 1 the partial differential equation is reduced to φ(t,x) =
ψi(t,x). Thus, ψi(t,x) represents the value that field φ should have at the boundary
to satisfy the immersed boundary condition for the immersed body i. Therefore, in the
present method we assume that the problem given by equation A.1a with boundary
conditions A.1b has a solution that is unique.

If we define the operator Ai =
∑k−1

n=0 αn,i(t,x) [nΓi(t,x) · ∇]n, we can express
ψi(t,x) as follows:

ψi(t,x) = A−1
i γ(t,x) (A.5)
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Thus, substituting in the forcing terms:

fi(t,x) =
[
Pkφ(t,x)− Φ(t,x)

]
+
[
φ(t,x)− A−1

i γ(t,x)
]

(A.6)

Thus, the inverse operator A−1
i plays a major role in the present method since allows

to reduce any boundary condition to the imposition of a specific value for the field φ.
This allows to use standard immersed boundary approaches developed for Dirichlet
boundary conditions with minimal modifications.

A.2. Discretization of the immersed boundary
condition: evaluation of ψi

In the following, we assume that the function φ is analytic everywhere. Therefore, we
can express the field in the proximity of the immersed boundaries in Taylor series:

φ(t,x) =
∞∑
k=0

1

k!
[(x− zi) · ∇]k ψ|zi ∀zi ∈ Γi (A.7)

In particular, we are interested in an expression involving the derivatives normal to
the immersed surface i. Therefore, we perform a change of variable and rewrite A.7
as:

φ(t, sni + zi) =
∞∑
k=0

sk

k!

∂kψ

∂sk

∣∣∣∣
zi

∀zi ∈ Γi (A.8)

Notice that the normal derivatives are now calculated using the parameter s, which
represents the distance from the immersed boundary point zi in the direction normal
to the immersed surface. Clearly, expansion A.8 can be written only if we assume that
φ = ψi at the immersed boundary, thus if the field φ is constrained by A.6. Therefore,
defining the Taylor operator Ti =

∑∞
k=0

sk

k!
∂k

∂sk

∣∣∣
zi

we can summarize:

ψi(t, zi) = A−1
i γi(t, zi) = T−1

i φ(t, sni + zi) ∀zi ∈ Γi (A.9)

Which relates ψi,γi and φ by means of the operators Ti and Ai. However, the normal
derivatives of φ that satisfy φ = ψi are unknown and can be evaluated (for each zi ∈ Γi)
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from the following system of equations:



TNi ψi(t, zi) = φ(t,∆sni + zi)

TNi ψi(t, zi) = φ(t, 2∆sni + zi)
...

TNi ψi(t, zi) = φ(t, N∆sni + zi)

Aiψi(t, zi) = γi(t, zi)

(A.10)

Where ∆s is a finite interval and TNi is the Taylor operator truncated at the term N ,
being N the order of the immersed boundary condition.

Remark 2 The immersed boundary operator can be of any order depending on the
values of the coefficients αn,i. In fact, in the limit one could take α0,i = 1 and αn,i =
0, ∀n > 0 therefore allowing for N = ∞, which would require an infinite number of
equations. Thus, the boundary condition is not limiting the order of the Taylor series,
which may be used to reconstruct the field in the proximity of the immersed boundary
with arbitrary precision.

Substantially, system A.10 is expressed in term of the matrix-vector product:

M =



1 ∆s ∆s2

2
· · · ∆sN

N !

1 2∆s (2∆s)2

2
· · · (2∆s)N

N !

1 4∆s (4∆s)2

2
· · · (4∆s)N

N !

...
...

...
...

...

α0 α1 α2 · · · αN


d =



ψi(t, zi)
∂ψ
∂s

∣∣
zi

∂2ψ
∂s2

∣∣∣
zi...

∂Nψ
∂sN

∣∣∣
zi


t =



φ(t,∆s)

φ(t, 2∆s)

φ(t, 3∆s)

...

γi(t, zi)


(A.11)

Md = t (A.12)

Therefore, derivatives of ψi at x = zi are obtained performing d = M−1t. Clearly,
the computational cost increases with increasing order of the truncated Taylor series or
the immersed boundary condition.

Remark 3 Notice that for typical CFD applications most boundary condition have
N < 1 and differential operators are normally discretized using second order accurate
methods (in the case of finite volume simulators). Therefore, matrix M is generally
3 × 3 so that M−1 can be pre-computed and the number of floating point operations
required to apply this method is negligible when compared to the algorithms required
for solving the linear system arising from the discretization of equation A.1a.
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A.3. Discretization of the immersed boundary
condition: discretized computational domain

Discretization of the computational domain implies two major issues:

i Location ∆sni + zi may not correspond to any computational node so that a
strategy to evaluate φ(t,∆sni + zi) is required.

ii Location zi may not correspond to any computational node and therefore the
boundary value ψ(t, zi) can not be straightforwardly applied to the discretized
domain.

The first issue (i) can be solved by defining general interpolation operators I∗ that
map the field ψ from the computational grid to location ∆sni+zi. We will not discuss
these operators in detail, we simply notice that they may affect the accuracy of the
immersed boundary method since generally φ(t,∆sni + zi) ≈ I∗φ.

The second issue (ii) is posing the opposite problem: extrapolation from a specific
node to the surrounding grid. In order to preserve the N accuracy of the solution we
may take advantage of the just computed derivatives of ψ(t, zi) to calculate φ at the
closest node or cell center. Therefore, each point zi must lie on a line that is normal to
the immersed surface and passing through the grid point (or cell center) pzi . Thus, the
computational grid naturally discretizes the immersed surface by defining the boundary
nodes zi as shown in figure A.1. Specifically, the density of boundary nodes increases
with decreasing cell spacing, i.e., the discretized surface is refined together with the
mesh.

The discrete forcing term f ∗i (t,pzi) is then modified as:

f ∗i (t,pzi) =
[
Pkφ(t,pzi)− Φ(t,pzi)

]
+ [φ(t,pzi)− ψ∗i (t,pzi)] (A.13)

Where ψ∗i (t,pzi) is evaluated from:

ψ∗i (t,pzi) =
N∑
k=0

1

k!
|pzi − zi|

∂kψ

∂sk

∣∣∣∣
zi

(A.14)

Therefore, for each boundary cell, i.e. a cell that is cut by an immersed surface, the
solver has to perform the following steps:
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Figure A.1.: Immersed body (shaded red) discretized over non-uniform grid. Red
nodes represent the boundary nodes zi and blue nodes represents bound-
ary cell centres (where the forcing term is applied). Blue arrows indicate
the direction normal to the surface ni and illustrate how boundary nodes
are computed as projection of boundary cell centres over ni.
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• Assemble the matrix M if the boundary coefficients are varying with time and
evaluate vector t∗ ≈ t using the interpolators:

t∗ =



I∗φ(t,∆s)

I∗φ(t, 2∆s)

I∗φ(t, 3∆s)

...

γi(t, zi)


(A.15)

• Solve the system: d = M−1t∗.

• Evaluate ψ∗i (t,pzi) from equation A.14.

• Update the forcing term defined in A.13.

The modified partial differential equation A.3a together with the boundary condi-
tions A.3b can then be solved using appropriate numerical algorithms.

Remark 4 Notice that the present formulation for the forcing term f ∗i as described
in equation A.13 is equivalent to the formulation for Q presented in Chapter 3. Such
formulation is preferable to the one we employed for the velocity field in Chapter 3 and
described by Blais et al. [13] since it can be shown to produce stable results at higher
Reynolds numbers.

A.4. Verification of the mixed boundary condition
Finally, we propose a simple verification case to test the accuracy of the proposed
algorithm when dealing with Robin boundary conditions. Specifically, we will solve
the 1-dimensional ordinary differential equation:

d2φ(x)

dx2
= 20 cos(3πx) (A.16)

With the following boundary conditions:

−φ+ 5
dφ

dx
= 3, x = 0 (A.17a)

φ = 1, x = 1 (A.17b)
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Figure A.2.: Comparison between the exact solution of equation A.16 and the HFD-
IB algorithm using linear interpolation (red dots) and cubic interpolation
(green dots). Red shaded areas represent the extended domain.

Equation A.16 is discretized using a second order finite difference scheme (central
differencing) and solved using a Gauss-Seidel algorithm. The forcing term arising from
the HFD-IB method is updated at each iteration. In order to apply the HFD-IB method
we solve Equation A.16 in x ∈ [−0.3, 1.3] and we apply periodic boundary conditions.
Therefore, intervals [0.3, 0] and [1, 1.3] represent the extended domain that in the case
of external flows would corresponds to the domain occupied by an immersed body.

Two interpolation points are employed in the Taylor expansion of ψi, which is the
minimum requirement to impose A.17a. Results obtained using linear and cubic inter-
polators I∗ are presented in Figure A.2.

Cubic interpolators are performing better than linear interpolators when high order
(i.e., Robin) boundary conditions are employed while Dirichlet boundary conditions
are less susceptible to the accuracy of the interpolation. This is because a Dirichlet
boundary condition provides the leading term in the Taylor expansion, while in higher
order boundary conditions the leading term is obtained from the solution of d∗ =
M−1t∗ and it is therefore a function of the interpolated values.

Furthermore, increasing the order of the Taylor series (and thus the size of M) does
not lead to significant improvements in the solution compared to the use of more ac-
curate interpolation schemes.
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Overall, the method is capable of correctly impose general boundary conditions with
an accuracy that depends on the order of the interpolation schemes adopted

The MATLAB R©code employed to produce this verification case can be found at
author’s gitHub repository.
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