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Abstract
A thorough understanding of the processes underlying the cognitive capabil-
ities of humans has remained elusive. Among the open issues is the binding
problem, i.e. the question of how bits of information are tied together in
the brain. This work tackles the problem using computer simulations which
show that networks of spiking neurons can perform simple binding opera-
tions through their dynamics. The circuit is built on mechanism used in the
brain which have been firmly established by experimental studies: winner-
take-all dynamics within groups of neurons as well as spike-timing dependent
plasticity. The model in this work is based on an existing model, which is
improved with respect to the biological plausibility of the implementation. A
new mode of information storage is introduced which is consistent with find-
ings of experimental neuroscience concerning the retention of information in
working memory in the human cortex. Furthermore, an optimization algo-
rithm with very few hyperparameters is introduced which allows the rapid
optimization of high-dimensional parameter spaces with constraints. This
algorithm was used to tune the parameters of the variable binding model.
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Zusammenfassung
Die menschliche Wahrnehmung und die ihr zugrunde liegenden Prozesse
werfen weiterhin Fragen auf. Ein Beispiel hierfür ist das sogenannte Bin-
dungsproblem, welches sich mit der Frage beschäftigt, wie im Gehirn ver-
schiedene Informationsbausteine miteinander verknüpft werden. In dieser
Arbeit nähern wir uns dem Problem mit Hilfe von Computersimulationen.
Es wird gezeigt, dass Netzwerke bestehend aus spikenden Neuronen einfa-
che Bindungsoperationen durchführen können. Dabei werden Mechanismen
genutzt, welche auch im Gehirn verwendet werden und durch eine Viel-
zahl von Studien gut begründet sind. Unter anderem kommen Gruppen von
Neuronen mit Winner-Take-All-Funktionalität sowie synaptische Plastizität
zum Einsatz. Diese Arbeit baut auf einem existierenden Modell auf. Die Im-
plementierung des Modells konnte in dieser Arbeit biologisch realistischer
gestaltet werden. Darüber hinaus wurde ein neues Verfahren der Informati-
onsspeicherung eingeführt, welches mit experimentellen Daten zum Arbeits-
gedächtnis im menschlichen Gehirn übereinstimmt. Außerdem wird ein neu-
er Ansatz zur effizienten Optimierung von beschränkten hochdimensionalen
Kostenfunktionen vorgestellt, welcher genutzt wurde, um die Parameter des
Modells zu optimieren.
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Introduction

1 Introduction
Underlying the cognitive capabilities of humans – which are generally taken
for granted – are processes which continue to intrigue and puzzle researchers
due to their abysmal complexity. One question which remains open despite
having been investigated for a long time is the problem of neural coding,
i.e. the question of how information is represented in the brain. From its
array of sensory inputs, the brain acquires information about the outside
world and stores it in some useful representation. The tasks which humans
can perform demand that these representations of information allow further
processing, e.g. for making decisions based upon them. Yet, the nature of
the symbols which are used in the brain to store even the simplest bits of
information remains elusive.

The question of the exact processes which underlie the representations
used by the brain is closely related to the binding problem. Originally
formulated in [1], the binding problem considers how information can be
represented in a structured way. A typical example is a visual scene which
is viewed by an observer. Somehow, objects in the scene are assigned by
the brain with attributes describing their properties and relations to each
other. The binding problem now considers the following question: how
is the information encoding some object’s identity (e.g. “ball”) bound to
information encoding its attributes (e.g. “blue”)? This binding allows the
observer to retrieve information in various different ways, e.g. when facing
the questions “Which color does the ball have?” and “Which object is
blue?”.

The binding problem appears in several different forms [2]. In this work,
we consider a general binding setup, which asks how some content can be
bound to a placeholder (or variable). This binding is regarded as one of the
most important atomic computations performed by the brain [3]. Specif-
ically, we consider this problem in a linguistic setup: when listening to a
sentence, how is the identity of some entity occuring in the sentence bound
to its respective role? Consider, for instance, the sentences “The baby hit
Grandpa.” and “Grandpa hit the baby.” which greatly differ in meaning
(and possibly in importance for the listener). How can these two sentences
be distinguished, given that they both use the same set of words? A simple
ordering, e.g. attempting to decode the meaning by assuming that the agent
always appears first in the sentence, does not suffice, since we may rephrase
the two sentences to read “Grandpa was hit by the baby.” and “The baby
was hit by Grandpa.”. Generally, language allows for vast numbers of com-
binations of words in ways which are syntactically correct and which make
sense for a human listener (or reader). Therefore, some other mechanism is
needed: one which specifically binds together identity and role.

In this work, we aim to tackle the binding problem using a number of
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Introduction

established and emerging concepts from experimental neuroscience. Central
to the model described here is the discovery of concept cells [4] in the medial
temporal lobe (MTL) of the human cortex. These sparsely firing neurons
become active only when a specific concept is presented to probands through
some input. For example, some neurons fire exclusively when the picture of
a certain celebrity is seen, or when the name of the celebrity is heard.

Generally, neurons are assumed to form groups which display the same
behavior [5]. These assemblies (or ensembles) of neurons make neural re-
sponses more robust to noise or the loss of a single neuron. Building on the
notion of concept cells, we use assemblies of neurons which encode different
concepts. In our model, a number of assemblies encoding different concepts
together form the so-called content space. The presence of a given concept
(like “baby” or “Grandpa” from the example sentences above) are encoded
through the sparse activity of one of these assemblies.

It has furthermore been observed that neurons in the MTL can rapidly
encode new memories, e.g. associations between pictures which are pre-
sented together [6]. We thus introduce separate groups of neurons, termed
variable spaces, which also consist of assemblies of neurons. These variable
spaces can serve as placeholders which store pointers to some concept rep-
resented by some assembly in the content space. For instance, one variable
space could store a pointer to the agent in the sentence. Then, for the sen-
tence “The baby hit Grandpa.”, this variable space would hold a point to
the assembly encoding “baby” within the content space.

It is important to point out that variable spaces do not store a copy of
the data that was stored in them. Instead, they can only be read out by
restoring the activity in the content space. Therefore, the representation
of some piece of information can be fundamentally different in the content
space and the variable spaces and need not reflect a shared encoding (e.g.
firing patterns). The assembly which stores a pointer in the variable space
emerges in a transient manner, which has been postulated as a principle for
neuronal assemblies [7].

Evidence for this architecture has been presented by an experiment by
Frankland and Greene [8]. They showed that the identity of both an agent
and a patient in a sentence can be reliably detected from functional mag-
netic resonance imaging (fMRI) recordings from the MTL. Furthermore, the
different roles were encoded in different subregions of the MTL, confirming
the view that different bits of information are stored in different variable
spaces.

In [9], the results of the experiments of Frankland and Greene were re-
produced using the setup of one content space and one or more variable
spaces. Using a rather abstract neuron model, it was shown here that as-
semblies forming in variable spaces allow for reliable recall of the activity
in the content space after delay periods. Other operations considered were
copying the contents of one variable space into another and comparing the
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contents of two variable spaces.
The present work builds on this model and aims to expand it by re-

moving some biologically unrealistic constraints. To do so, the circuitry
required for the variable binding was implemented in the neural circuit sim-
ulator NEST (Neural Simulation Tool) [10, 11], which aims to model the
electrophysiological properties of neurons rather closely.

A number of contributions are made in this work:

• First, the model presented in this work removes some of the biologically
problematic constraints from the model introduced in [9]. There, inhi-
bition within each neural space (i.e. both content and variable spaces)
is modeled by a mechanism which reads out the membrane poten-
tial of each neuron and subsequently injects an inhibitory current into
each of them based on the overall amount of activity. Here, we model
the inhibition required for neural spaces through an external pool of
inhibitory neurons which regulate the activity of excitatory neurons.
Furthermore, in [9], the connectivity between the content space and
each variable space is assumed to be symmetric, whereas symmetric
connectivity rarely occurs in biological neural networks. In this work,
we use random connectivity between all neural spaces.

• We introduce another possibility for retaining the information stored
in variable space over time. In [9], the neurons within each neural
space posses an adaptive excitability mechanism, which ensures that
previously active neurons are more likely to become active again after
some delay. This allows for variable spaces to be completely inhibited
while retaining some pointer. In addition to reproducing the results
with a similar mechanism, it is shown in this work that the information
can also be stored in persistent activity of variable spaces over a delay
period. This is an intriguing alternative since persistent activity is
known to underlie working memory in different brain areas.

• Due to the more realistic modeling of the NEST simulator, many new
parameters were introduced in the models used this work and had
to be tuned. As using a standard method for high-dimensional opti-
mization (Differential Evolution as implemented in a standard Python
library) proved to produce poor results, we introduce a novel opti-
mization technique which allows for the rapid optimization of high-
dimensional error landscapes with constraints. In addition to using
this optimization algorithm for finding good parameters for the vari-
able binding model, we show that it produces competitive results on
standard optimization test functions when compared to a number of
classical optimization schemes.

The remainder of this work is structured as follows. In Section 2, the
models of spiking neurons and synaptic plasticity which are deployed in this
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work are introduced. Furthermore, related work concerning other models for
variable binding is discussed. In Section 3, we construct soft winner-take-all
circuits in NEST. This is a prerequisite for the implementation of variable
binding with neural spaces since each neural space acts as a winner-take-all
circuit. In Section 4, we construct and evaluate variable binding models in
NEST and perform some of the experiments from [9]. In Section 5, the new
optimization algorithm is described and its performance is evaluated. The
main text concludes with a discussion in Section 6. Further details such as
an in-depth investigation of the neuron model, the parameters used for all
simulations, and the bibliography are given in the Appendix.
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2 Background
This section discusses the models for neuronal activity and synaptic plastic-
ity on which the model investigated in this work is built upon. Furthermore,
related work is reviewed.

2.1 Spiking Neuron Models

Neurons are the cells which make up the nervous system and through their
properties allow for the processing of signals within animals and humans.
They have been widely studied both in vitro and in vivo, leading to an
understanding of their electrophysiological properties.

Although there are many different types of neurons, the essential char-
acteristics are shared among all of them (Figure 1). Each neuron has a
number of fibers – the dendrites – which collect input signals which lead to
local electrical potentials. The dendrites relay these potentials until they
reach the cell body, the soma. Here, the potentials are integrated, and
if a certain threshold is reached, the soma generates an action potential.
This action potential, or spike, is then propagated down the axon towards
synapses which form connections with other neurons.

Due to the surge of interest in machine learning in recent years, the most
commonly used neuron model is the model used in artificial neural networks.
It implements a nonlinear transformation of the form

y = f(wTx) , (1)

with vectors x,w ∈ RN and some function f : R→ R. This transformation
maps an N -dimensional (N ∈ N) input vector x onto a scalar y by means
of a weight vector w and some nonlinear function f [12]. Networks con-
sisting of huge numbers of these neurons have been successfully applied in
machine learning to various problems ranging from image recognition [13]
to controlling complex environments like video games [14].

Despite drawing inspiration from biological neurons [15], this type of
neuron model — in which scalars are passed from one unit to another and
an external clocking device controls the flow of execution — does not resem-
ble biological neurons very well. In biological neurons, many biochemical
processes take place simultaneously. Different ion concentrations inside the
cell compared to its surroundings lead to the polarization of the membrane
[16]. This membrane potential is one of the main variables which determine
the state of the neuron, and it is continuous in time (unlike the state of
neurons in artificial neural networks).

Furthermore, biological neurons communicate mostly via spikes, which
are propagated through the axon, where synapses connect the presynaptic
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a

b
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d

Figure 1: Biological neurons. Left: pyramidal neurons in macaque prefrontal cor-
tex. (Source: brainmaps.org, CC BY 3.0). Right: sketch of a neuron with dendrites
(a) delivering input to the soma (b), where currents are integrated. If a spike is gen-
erated, it is propagated through the axon (c) towards connections to other neurons’
dendrites (d).

neuron to other (postsynaptic) ones. The action potential is transmitted via
chemical messengers in the synapse and can cause a postsynaptic potential in
the receiving neuron. This kind of interaction is discrete: action potentials
have a stereotypical shape and duration, and information is transmitted
only via the presence or absence of a spike. This leads to a fundamentally
different form of communication than in artificial neural networks, where
scalars are passed.

It follows that different neuron models are necessary to model networks
of biological neurons and their interactions. While some models target bio-
physical properties such as voltage-gated ion channels [17], it is easier to
focus on the electrical properties. The first property is the summation (in-
tegration) of currents which arise due to presynaptic spikes and influence
the membrane potential in the soma. The second property is the generation
of an action potential once the somatic membrane potential has cross a cer-
tain threshold value. Furthermore, the soma has a characteristical resting
potential, to which it returns after the membrane potential has increased
due to some input.

These properties naturally lead to the Leaky Integrate-and-Fire (LIF)
model: the soma is a leaky integrator which sums up incoming currents but
always returns to its default value. If the integrated value reaches some
threshold, a spike is generated. The first part can be modeled [18] by the
equation

τm
du

dt
= −(u− u0) +Rm · I , (2)

which describes the development of the membrane potential u over time.
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The neuron possesses a membrane resistance Rm as well as a membrane
capacitance Cm, which define the integration time constant τm = RmCm.
Incoming currents I arising from presynaptic activity are integrated, and u
decays to u0 when the input vanishes.

Spike generation in this model works by means of an external mechanism
which monitors u over time. If its value exceeds some threshold ϑ, an output
spike is generated and the value of u is set to a reset potential ur, from which
it may again evolve freely. Typically, the reset potential is chosen as ur < u0

so the neuron undergoes a period of reduced excitability, which implements
the relative refractory period which is observable in neurons [16]. It is also
possible to clamp the value to ur for some period of time to implement an
absolute refractory period. Output spikes add some fixed quantity to the
input currents I of postsynaptic neurons, thus, the communication between
neurons is discrete (as desired).

Using both a relative and absolute refractory effects as well as a reset
potential ur 6= u0, the linear differential equation (2) has the solution

u(t) = u0 + (ur − u0) exp

(
− t− t̂−∆abs

τm

)
+

1

Cm

∫ t−t̂−∆abs

0
exp

(
− s

τm

)
I(t− s)ds (3)

for t > t̂+∆abs, where t̂ is the time of the most recent somatic spike and ∆abs

is the duration of the absolute refractory period. We see here that the first
two summands describe the stationary and refractory behavior, while the
integral models the response to input currents (which include presynaptic
spikes). Replacing the terms with generic response kernels, we may write

u(t) = η(t− t̂−∆abs) +

∫ t−t̂−∆abs

0
κ(s)I(t− s)ds (4)

with the two newly introduced kernels η(s) = u0 + (ur − u0) exp (−s/τm)
and κ(s) = exp (−s/τm).

This idea of using generic kernels which may be fitted to experimental
data leads to the Spike Response Model (SRM) [19]. It uses the membrane
potential

u(t) = η(t− t̂−∆abs) +

∫ ∞
0

κ(s)I(t− s)ds (5)

where spikes are generated if the membrane potential crosses a time-dependent
threshold ϑ(t) from below.1 This model is more general than the LIF model

1The model given here is a simplified version of the more complex general SRM and is
also referred to as SRM0.
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since different kernel shapes can be used. Often, an additional kernel ε(s) is
used to describe the responses to incoming action potentials (in contrast to
currents injected into the neuron).

Due to the time-dependent firing threshold ϑ(t), the SRM is well-suited
to model the stochasticity of neuronal activity. Many noise sources occur in
vivo, from background noise due to the diverse inputs to neurons [18] to the
unreliability of vesicle release in synapses [20, 21]. These can be modeled by
choosing the behavior of ϑ(t) appropriately.

When fitting the SRM to data from in vitro neuron recordings, it was
shown that the spiking probability of neurons is well approximated by an
exponential function of the membrane potential [22]. The exponential de-
pendency had already been at the core of another commonly used neuron
model [23]. Using this observation, the threshold crossing condition for
spike emission can be replaced by an instantaneous spiking probability ρ(u)
according to

ρ(t) = a · exp (b · u(t)) (6)

with some coefficients a and b. The neuron then represents an inhomoge-
neous Poisson process with rate ρ(t), with the probability of a spike occuring
within some time interval ∆t being close to ρ(t)·∆t if ∆t is sufficiently small.
This model is thus well suited for implementation in digital simulators which
work using discrete time steps and will be used in our simulations.

Before we move on to models of synaptic plasticity, it is important to
point out the limitations of this model. All models introduced here describe
so called point neurons, where all input currents are summed up at a single
location (the soma). While this is a reasonable approximation and these
models achieve good results when fitted to experimental data, biological
neurons are much more complex. Previously, the dendritic tree, through
which postsynaptic potentials travel to the soma, was thought of as a merely
passive conductance. Recently, it has become clear that this is not the
case and the dendrites have a much more active function in information
processing [24, 25]. Neuron models consisting of more than a single point of
integration — so called multi-compartment neurons — have subsequently
been applied successfully in machine learning [26] as well as in computational
neuroscience [27, 28]. Furthermore, neurons possess a number of homeostatic
mechanisms like intrinsic excitability [29] which are not modeled by (6).

2.2 Models of Synaptic Plasticity

Artificial neural networks generally produce continuous outputs which are
differentiable with respect to the network weights, thus, these networks can
be conveniently trained by gradient descent and error backpropagation [30].
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Figure 2: Different types of STDP learning windows. Each plot shows the weight
change as a function of the time difference of pre- and postsynaptic spikes for
three different time constants. Note that all curves here are perfectly symmetric
or antisymmetric, this is not necessarily the case for data obtained from biological
neurons. Top left: Hebbian plasticity, correlated firing leads to potentiation. Top
right: standard antisymmetric STDP between excitatory neurons, potentiation or
depression depends on the order of pre- and postsynaptic spikes. Bottom left and
right: Hebbian and antisymmetric STDP with negative offsets, respectively.
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Biological neural networks, however, differ in a few important ways: First,
they communicate using spikes, which produces non-differentiable signals,
and second, the connectivity is generally sparse. How can these networks
be modified to produce a desired behavior? One commonly used possibil-
ity, which has been thoroughly established experimentally, is by means of
synaptic plasticity.

In 1949, Donald Hebb famously published a postulate that is commonly
phrased as “neurons which fire together, wire together” [5]. In this view,
synapses between neurons which show correlated activity should experience
long-term potentiation (LTP), while the synaptic weights between neurons
which fire in an uncorrelated manner should potentially decline and undergo
long-term depression (LTD). Indeed, it has been shown that there exists a
link between synchronous activity and connectivity (i.e. an existing synapse
and a large synaptic weight), albeit in a slightly different form: it was found
that changes are introduced in synaptic weights depending on the timing
difference between a pairing of a pre- and a postsynaptic spike. This mecha-
nism is called spike timing-dependent plasticity (STDP) and has been firmly
established experimentally [31, 32].

With STDP, the difference in timing of spikes in the pre- and the post-
synaptic neurons defines the magnitude of the weight change. In its most
common form, which is typically found between excitatory neurons, the
weight is increased if the presynaptic spike has aided the postsynaptic neu-
ron in eliciting a somatic spike, i.e. the weight is increased if the presynaptic
spike occured before the postsynaptic one. If neurons fire in the opposite
order, the weight is decreased because apparently the neuronal activity is
uncorrelated. This leads to an antisymmetric learning window (Figure 2,
top right) instead of the symmetric learning window resulting from Hebbian
plasticity (Figure 2, top left).

Using these learning rules, the amounts of potentiation and depression
may not be well balanced. In biological neurons, regulatory processes such
as synaptic scaling ensure the overall weight balance of neurons [33]. These
processes often occur on long time scales and thus are not part of the exper-
imentally obtained STDP learning curves. A simple way to model the regu-
latory processes and to ensure that the amount of potentiation is bounded is
by introducing a negative offset to the learning windows (Figure 2, bottom
left and right).

To implement STDP in simulations of spiking neural networks, a math-
ematical model is required. One commonly used model [34] uses the update
equations

∆w(∆t) =

{
λf+(w) · e−|∆t|/τ+ if ∆t ≥ 0

−αλf−(w) · e−|∆t|/τ− if ∆t < 0
(7)
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which depend on the timing difference of pre- and postsynaptic spikes ∆t =
tpost − tpre. Here, τ+, τ− > 0 are time constants defining the width of the
learning window, α determines the size of the negative ∆t update in relation
to the positive one, and λ is a learning rate. The two weight-dependent
kernels f+(w) and f−(w) are given as

f+(w) = (1− w)µ+ and (8)

f−(w) = wµ− . (9)

To obtain the curves depicted in Figure 2 (top left and right), we set µ+ =
µ− = 0 to get weight-independent updates and set τ+ = τ− for perfect (anti-
)symmetry. Then, using α = −1 gives the Hebbian style plasticity, while
α = 1 leads to antisymmetric updates. A negative offset can be added by
simply subtracting a constant in both cases in (7).

This formulation of STDP and other variants where the weight update
depends only on the timing difference of pre- and postsynaptic spikes as
well as on the current weight value have been shown to be computationally
powerful. Networks using STDP in winner-take-all (WTA) circuits have
been shown to perform expectation maximization (EM) on given inputs
[35, 36].

However, STDP alone is unlikely to enable the learning of sufficiently sta-
ble representations in the brain, since this plain form of STDP provides no
mechanism for consolidating weights after learning has been successful. Ex-
tensions of STDP have been proposed which use refined mechanisms to ad-
dress this problem, e.g. with reward-modulated learning [37]. Furthermore,
from an investigation of the exact cellular mechanisms of synaptic plasticity
a more complex picture has emerged. It has been mentioned above that the
dendrites play a more significant role in processing information within each
neuron. Dendritic signals also play a crucial role for synaptic plasticity,
especially local dendritic spikes [38, 39]. Subsequently, new neuron mod-
els have been proposed which incorporate mechanisms like branch-strength
potentiation [27] and other fundamental cellular mechanisms [40]. These
discoveries have also lead to new hypotheses about the functional role of
excitatory neurons [41, 42].

2.3 Related Work

This work investigates variable binding, a mechanism which was proposed
as a central computation operation in cognitive systems [3] in the form of
pointers stored in assemblies of spiking neurons [9]. Here, we briefly review
other models for variable binding which have been proposed. Different types
of mechanisms have been brought forward as hypotheses. We focus on three
groups: anatomical, convolutional, and pointer-based variable binding.
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Anatomical Binding. The anatomical binding scheme seeks to address
the binding problem by providing several variables (or registers) which can
each store some content. Since items may occur more than once in sentences
(e.g. “The red truck is larger than the blue truck.”) spaces must be present
in multiple instances. This leads to a coding problem: it is not clear how to
ensure that the activity in multiple spaces is identical when binding to the
same concept. A solution to this problem is proposed in [43]: an external,
associative network which is trained to reliably translate the contents stored
in some space in a specific encoding to the encoding used in another space.
This network has a number of stable attractor states, each of which encodes
a unique symbol. Thus, the representations in each distinct variable space
need not be the same.

The approach investigated in this work has a somewhat different moti-
vation: instead of solving the problem of anatomical binding by proposing
an external network, we start with the experimentally verified concept cells
[4], which are unique in our model. Since variables only store pointers to
these concept cells (or assemblies), the activity in different variable spaces
is not required to be identical. This circumvents the problem of anatomical
variable binding. On the other hand, the content space from this approach
could be regarded as exactly the associative network which translates dif-
ferent representations into each other.

Convolutional Binding. One of the earliest models deploying convo-
lutional variable binding introduces Holographic Reduced Representations
[44]. These are high-dimensional representations of (generic) items in form
of constant-length vectors. Associations are formed between items by per-
forming a circular convolution between the two corresponding vectors. (Reg-
ular convolution or other operations expand the dimensionality of the vector
space, which is difficult to handle.) The output of such a convolution op-
eration is a so-called trace, which is a vector of the same length as each
item, and which stores a single association. From such a trace, one of the
associated items can be restored given the other item. More complex as-
sociation types, e.g. sequences, can also be formed. Using this framework,
variable binding is implemented simply as a regular association of an item
representing the variable with another item representing the content.

Another type of convolution variable binding is used in [45], in which
a large-scale model of the brain is introduced. This model exhibits a va-
riety of different behaviors and is composed of several different modules
resembling different parts of the cortex and the basal ganglia. The model
uses the Semantic Pointer Architecture [46]: data is generally represented
by high-dimensional vectors, but the communication between modules uti-
lizes compressed representations of these vectors. These pointers typically
have lower dimensionality than the content they reference, nevertheless, the
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compression is fully reversible. The compression mechanism can either be
learned or explicitly defined. In the model, each vector is encoded in the
activity of a population of spiking neurons, while the vector representation
can be recovered using a decoding mechanism.

While convolutional variable binding approaches provide an intriguing
mathematical framework for the representation of memory associations, it is
unclear to what extent the underlying mechanisms are implemented in the
brain. Generally, these approaches rely on specific connectivity for manipu-
lation of the high-dimensional representation of data, e.g. specific circuitry
for computing the circular convolution and its inverse in [44] as well as the
(de-)compression mechanisms in [45]. Such specialized connectivity has to
date not been found in the brain. Furthermore, in the presented models
the encoding of high-dimensional data in spike trains generally relies rather
heavily on the contribution of each individual neuron encoding the vector.
It is thus unclear how these mechanisms could be implemented in the noisy
environment of the brain, where background noise, continuous rewiring of
all connections and failures of individual neurons are common.

In contrast to the mechanisms used by convolution variable binding, the
model investigated in this work generally assumes no specific circuitry for
manipulation of high-dimensional vectors. Concepts are not represented by
some vector, but by the activity of concept cells, which have have been found
in numerous studies [4]. Thus, items can be represented by the activity of
an assembly of neurons. Different assemblies do not necessarily need to
have the same size, and they are robust against the loss of one or a small
number of neurons. Furthermore, only standard STDP is used in this work
for neuronal interaction.

Pointer-Based Binding. The model investigated in this work falls into
this category, since pointers are stored in variable spaces, which link towards
a unique area in which items are represented.

In [47], a variable binding scheme is proposed which is motivated in terms
of neuroanatomy. In this model, a number of variable slots is available in
the pre-frontal cortex, to which values can be assigned. The routing of
information from and to these slots is maintained by the basal ganglia. One
set of slots is used to store items, another is used to assign the role of these
items in a sentence. In simulations with biologically realistic neurons, this
model is shown to perform well on a simple sentence encoding and decoding
task. This model is similar to the one discussed in this work in a number
of ways, e.g. it also uses pointers to address data. However, an elaborate
controller mechanism is necessary to guide the interaction of content and
pointer slots even for a simple store and recall task. The model investigated
in this work uses globally available concept cells, which have been established
in the neuroscience literature [4] to avoid the necessity for complex circuitry.
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Another work which uses pointers is presented in [48]. Here, a variable
binding mechanism binds the activity of a content space to a pointer space
using synaptic plasticity. Associations are formed through the joint activa-
tion of the two spaces. This leads to the potentiation of synaptic weights
between the two. The pointer can later be activated to restore the activity
in the content space (which must be set to function in a winner-take-all
fashion during this time). To allow pointers to be re-assigned, all synaptic
weights decay over time at a constant rate, thus, assemblies only persist for
a short period of time. Furthermore, two atomic neural computations for
variables are proposed in [48] which go further than simple store and re-
call tests: the copying of one pointer to another variable, and a mechanism
for comparing the contents of two variables. In contrast to this model, the
mechanisms investigated in this work focus on the emergence of assemblies
in neural spaces which are persistent over time, thus, synaptic weights and
neuron activities are not correlated at all times. This is biologically more
realistic in terms of the timescales on which synaptic plasticity is thought
to take place on.

Finally, a functionally similar approach to the one presented in this work
is the Neural Blackboard Architecture [49]. In blackboard architectures, the
working data is stored in some spaces (the blackboard) which is accessible
to a set of processors. Each of these can read and modify the contents of the
blackboard according to some specific functionality which they implement.
In [49], items are not copied to the blackboard from elsewhere, but the cur-
rent state of the blackboard binds to some items, which are represented as
assemblies of neurons. A number of such blackboards is used as variables
which may store pointers to specific contents. Furthermore, these variables
can be combined in various ways to allow the encoding of structural rela-
tions between different variables. For these operations, specific circuitry is
necessary, which is one of the main criticism of this model since evidence
for such circuits remains to be found in the brain. While this model is sim-
ilar to the model discussed in this work in terms of functionality of variable
spaces, it does not provide extensive simulations to support the proposed
architecture. Some experiments are conducted with populations modeled
as a whole. This work instead focuses on the neuron- and synapse level
implementation of variable binding.
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3 Soft Winner-Take-All Circuits
Winner-take-all (WTA) circuits form an essential component of the variable
binding model in this work. They are important because such a neuronal
motif ensures that one or more neurons of a population respond exclusively
to some input pattern. Populations with WTA functionality also lie at the
heart of other models which have been proposed for variable binding [47, 48].

In contrast to hard WTA circuits, where a single neuron becomes active
if the corresponding input is present (investigated in [36], for instance), we
use soft winner-take-all (SWTA) motifs. Here, multiple neurons represent
each input pattern. This leads to the formation of assemblies of neurons
encoding different input classes, which have the advantage of being more
robust than single neurons (e.g. the loss of a single neuron has no drastic
influence on the overall network behavior).

In this section, we implement SWTA motifs in NEST which show similar
behavior to those used in [9].

3.1 EI-Motifs

EI-motifs consist of an excitatory and an inhibitory population of neurons,
which interact with each other. Usually, the E-pool is thought to perform
some computational function, while the I-pool mainly acts as a regulator for
the dynamics of the excitatory neurons, i.e. to stabilize the average popu-
lation rate in some regime. In the brain, excitatory neurons interact with
a host of inhibitory neurons, thus, modeling inhibition through a separate
pool of spiking neurons is preferred over other mechanisms (such as using a
filtered version of the network activity to calculate an inhibitory current for
all neurons as done in [9]).

 

Figure 3: Network layout of an EI-motif. E denotes the pool of excitatory, I the
pool of inhibitory neurons. Arrows denote excitatory, circles inhibitory connections.

A schematic illustration of an EI-motif is depicted in Figure 3. Neurons
from the E-pool project to the I-pool with excitatory connections, while
the I-pool provides inhibition to the E-pool. Each pool also has recurrent
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connections, which are excitatory and inhibitory for the E- and I-pool, re-
spectively. It follows that the weight range is positive for wEE and wEI and
negative for wIE and wII. While sometimes all possible connections of some
type are present (“all-to-all” connectivity), usually, connections are drawn
at random with connection probabilities pEE, pEI, pIE, and pII. Each con-
nection furthermore uses some synaptic delay, which in our case is either
constant or static but randomly drawn at connection creation time.

When using EI-motifs as part of a larger neuronal circuit, typically, the
E-pool receives input from other parts of the network and also projects else-
where. This allows the E-pool to implement useful information processing
functionality.

Next, we describe the neuron model and the network parameters used
for the experiments in this section.

3.2 Implementing EI-Motifs in NEST

First, we describe the neuron model used in our simulations. An in-depth
description of the neuron model from [9] and the arguments leading to the
model used in NEST are given in Appendix A.

In the model presented in this work, each neural space consists of a
population of excitatory and inhibitory neurons. The excitatory pool is used
to perform information processing, while the inhibitory pool stabilizes the
activity of the excitatory neurons. For both types, we use neurons which fire
according to an inhomogeneous Poisson process when they are not refractory
as described in the previous section (6). Specifically, each neuron i fires with
rate ρi(t), which is given by

ρi(t) = c1 · V ′i (t) + c2 · (ec3·V
′
i (t) − 1) , (10)

where c1, c2, and c3 can be set to obtain either exponential or linear behavior.
The effective membrane potential V ′i (t) is the sum of the actual membrane
potential Vi(t) and an adaptive bias term. The former is given by

Vi(t) = e−∆t/τmVi(t−∆t) + (1− e−∆t/τm)
Rm
1000

(Ii,c(t−∆t) + Ie)

+ zscaleIi,s(t) , (11)

where ∆t is the duration of each time step, τm is the membrane time con-
stant, and the currents Ii,c(t) =

∑
j wijIj(t) and Ii,s(t) =

∑
j wijzj(t) result

from injected currents from current generators and from synaptic input, re-
spectively. The value of zscale can be adjusted to scale the response to spikes.
Ie is a fixed bias current.

We use neurons with membrane resistance Rm = 10 MΩ and membrane
capacitance Cm = 1000 pF in our simulations, thus, the membrane time
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constant is τm = 10 ms. All neurons undergo an absolute refractory period
which is static per neuron but sampled from a Γ-distribution at neuron
creation time. No excitability (adaptive bias) is used in the experiments in
this section.

The excitatory neurons should show exponential behavior to achieve
WTA dynamics [36]. We thus set c1 = 0. Furthermore, we use c2 = 1000,
c3 = 100, and zscale = 5 · 10−4 to obtain similar behavior as in [9] (see Ap-
pendix A for details). The inhibitory neurons are linear (c2 = c3 = 0) with
c1 = 1000.

For synaptic plasticity, a learning rule inspired by a model implementing
hard WTA circuits [36] is used. Each pair of pre- and postsynaptic spikes
leads to a weight update according to

∆w(∆t) =

{
η · e−|∆t|/τ+ −A− if ∆t ≥ 0

η · α · e−|∆t|/τ− −A− if ∆t < 0
, (12)

where τ+ and τ− are time constants which determine the width of the learn-
ing window, A− sets an offset, α determines the shape of depressing updates
in contrast to facilitating ones, and η is a learning rate. In this work, we
use similar parameters to those given in [9] for connections from an input
population to the excitatory neurons with α = 0, τ+ = 20 ms, A− = 0.4.
For reasons discussed below (Section 4.2), we use different values for the
recurrent connections within the excitatory pool, for which we set α = 1,
τ+ = τ− = 25 ms, and A− = 0.5.

Next, we derive the values for the bias current as well as for the connec-
tions within and between neuron populations.

In our model, the input and output weights as well as the recurrent
weights of the E-pool should be subject to plasticity. The weight values for
wIE, wIE, and wII are static for the I-pool to reliably provide inhibition for
the E-pool.

In [50] and [51], an EI-motif without recurrent excitatory connections is
investigated. To achieve SWTA dynamics, a prior activity distribution is
assumed: a discrete Gaussian with some mean µ and variance σ2 which is
truncated to the positive domain (as only a non-negative number of neurons
can be active at some time). Using this activity prior, the bias current for
excitatory neurons is given by

Ie =
2µ− 1

2γσ2
, (13)

where γ corresponds to c3 from (65) in our case as it is the factor scaling
the membrane potential in the exponential when calculating the firing rate.
The weights are set according to
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wEI = 10 · cPSP

pEI
, (14)

wIE = −cPSP

γσ2
, and (15)

wII = −10 · cPSP

pII
, (16)

where if pII ≈ pEI, we can also use wII = −wEI. Here, cPSP is a correction
term for the PSP shape and denotes ratio of the integrals over the PSP used
in [51] and the PSP which is used instead:

cPSP =

∫
α0(s)ds∫
α(s)ds

. (17)

α0(s) has rectangular shape with height 1 for t ∈ [0, 10] ms, thus,∫
α0(s)ds = 0.01 s.

connection E→I I→E I→I

probability 0.575 0.6 0.55
synaptic delay / ms 0.5 0.5 1

weight 17.391 −0.333 −16.667

Table 1: Parameters for EI-motif.

Since both the neuron model and the update equations in [51] are sig-
nificantly different than ours, we set γ = 1 and cPSP = 1 for calculating the
weights for our network.2 Furthermore, biologically plausible connection
probabilities for the connections between the E-pool and the I-pool are also
given by [51].3

To calculate the weights, we now only need to choose the parameters µ
and σ2 for the activity prior. In [51], µ is chosen < 0, however, we need
to set µ > 0 to get a nonzero firing rate.4 We therefore choose µ = 1 and
σ2 = 5 for our parameter calculations. Furthermore, the synaptic delays for
connections between E- and I-pool were set to 0.5 ms to get the same overall

2The motivation for former is that in our model, c3 and zscale are set to achieve similar
dynamics to the original, which itself is similar (but not identical) to the model in used
to derive these relations for setting the weights. For cPSP, we note that their model does
not behave as a leaky integrator, thus, we need to scale our delta-shaped PSP by the
membrane time constant τm = 10 ms which corresponds to the integral over α0(s), thus
leading to ratio of 1.

3No probability for connections E→E is given there.
4The intuition of the EI-motif is that the bias sets the network activity rather high,

which is then scaled to the desired target activity by the inhibition, which is stronger or
weaker depending on the amount of external input to the E-pool.
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Figure 4: Left: balance of activity in an EI-motif. E-pool and I-pool consist of
1000 and 250 neurons, respectively. Input to the E-pool is provided by 25 neurons
firing stochastically with rate ρinput. Each excitatory neuron receives input from
each input neuron, the weights for these connections are static and drawn from
U(0, 0.8). No recurrent connections within the E-pool are present. Right: same
setup, but no I-pool is present.

delay in inhibition as in the original model which uses a filtered version of
excitatory neuron activity to calculate the inhibition. The final parameters
are given in Table 1.

To test these parameters, we construct an EI-motif with some external
units connecting to the E-pool. We vary the firing rate of these units and
plot the average firing rate within each pool. The activity of the E-pool
should stay more or less constant, which is the case (Figure 4).

3.3 SWTA Circuits in NEST

After constructing EI-motifs with balanced dynamics in NEST, we move
on to implementing SWTA circuits. These build on top of the EI-motif
described above, and use the same the neuron and synapse model.

Model Description. The network layout is shown in Figure 5. The
SWTA circuit, which consists of a pool of 1000 excitatory and a pool of
250 inhibitory neurons, receives input from a different pool X . These input
neurons fire according to Poisson processes and display different patterns
to the network through their firing rates. Each pattern resembles a binary
vector, where ones are coded as a high firing rate (100 Hz) and zeros as a
low firing rate (0.1 Hz).

The neuron parameters have been described above and are summarized
in Table 6 in Appendix C.1.

The network parameters are given in Table 7 in Appendix C.1. The
connection parameters were chosen according to [51] with µ = 1, σ2 = 5
and cPSP = 1 as parameters for the activity prior as described above. In
contrast to their model, the model used here also has recurrent connections
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Figure 5: Network layout. An input population X has been added to the EI-motif
shown in Figure 3. Arrows denote excitatory, circles inhibitory connections.

within the E-pool with connection probability 0.1. Synaptic plasticity is
applied to the connections X→E and E→E. The parameters can also be
found in the Appendix in Table 7.

Training Results The training procedure takes place as follows. To ob-
tain one trained SWTA circuit, the network is presented with 200 input pat-
terns for 200 ms each. For each pattern, the firing rates of the neurons in the
input (X) population are set appropriately. Consecutive patterns are sepa-
rated by 200 ms of random input, where all input neurons fire with ρ = 12.5
Hz. Five different input patterns are used, each of which is represented by 25
input neurons. When some pattern is presented, the corresponding neurons
firing at a high rate (100 Hz), while the others fire at a low rate (0.1 Hz).
After this training period, each pattern is presented to the network once,
and the firing rates of the excitatory neurons are measured. If they fire at
a rate > 50 Hz, they are counted to the assembly which has formed for this
input pattern. Furthermore, it is tested whether neurons respond uniquely
to one input pattern or to various ones.

This leads to the following results (averages and standard deviations
are given over 10 distinct training runs): of all 1000 excitatory neurons,
334.5±10.6 belong to an assembly after training. The average assembly size
is 66.9± 10.3. Neurons did not belong to more than one assembly in any of
the 10 runs. The progress of learning within the E-pool is shown in Figure 6.
Since the learning rate was chosen rather high, the network quickly shows
signs of learning. The activity of the input neurons as well as of the E- and
I-pool during the test phase are shown in Figure 7.

Overall, the network performs well at separating the input patterns.
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Figure 6: Spikes in E-pool as training progresses. Only spikes of 200 neurons are
shown. Note that assemblies responding exclusively to a single pattern emerge
rapidly, thus, the overall responses are already fairly stable after 50 presentations
of input patterns.

The resulting assemblies are very stable and show no overlap. However,
the resulting assembly sizes are somewhat smaller than those obtained in
the original model (where each assembly consists of around 80 neurons).
While the overall number of neurons in all assemblies is fairly constant, the
individual assemblies show a great deal of size variation. This is largely
due to the random noise which is given to the network in between pattern
presentations: if it is turned off, the resulting assemblies are larger and the
assembly sizes show less variance.

Analysis We conclude this section by performing some additional analysis
of the network behavior of the NEST SWTA circuits.

Figure 8 shows a histogram of the number of spikes per neuron during
the training period. This value is significant since learning only takes place
when neurons fire. Thus, the network dynamics need to be adjusted in a
way that ensures that enough spikes are elicited in each neuron. In the
figure, we can see two groups of neurons: one group shows rather few spikes,
while neurons the other one spike very often during training. The first group
consists of neurons which are not part of any of the five assemblies. Since
their connections do not allow a strong response to an input pattern, their
weights decrease. Due to the offset in the learning rule, only a rather small
number of spikes is required for the weights to reach zero. On the other
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Figure 7: Activity of populations during test phase: input X , excitatory population
E , and inhibitory population I. Each of the five patterns from the training phase
is present once for 200 ms (as during training) with beginning an end marked by
the colored lines. When no pattern is presented, all input neurons fire randomly.
Only 200 neurons per population are shown.
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Figure 8: Histogram of number of spikes per neuron during the entire training
phase. This plot shows that since most neurons experience some number of spikes
during training, learning takes place at their synapses. Two groups are visible: one
with a small number of spikes, and one with a far larger number. These correspond
to neurons which form assemblies (many spikes) and those which do not (few spikes,
synapse weights decline rapidly at the beginning of the training).
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Figure 9: Weight distribution of XE and EE connections (cf. Figure 5) after training
in the NEST model.
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Figure 10: Correlation of synaptic delay and weight after training on XE connec-
tions. The quantization of ∆syn arises from NEST requiring synaptic delays to be
a multiple of the time constant (∆t = 0.1 ms by default).
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hand, the neurons which are part of an assembly fire continuously during
the training period and show a large number of spike in total.

Next, Figure 9 shows the distribution of weights after training. Here, it
is clear that the learning procedure has resulted in weights which lead to a
strong tuning of assemblies to their respective input (large XE weights, i.e.
the weights from input to the E-pool, cf. Figure 5) while the response to
other inputs is low (small XE weights). The same holds true for EE weights,
which are large within the assemblies which have formed.

Finally, we investigate the correlation of the (randomly drawn) synaptic
delay for connections from the input to the excitatory pool and the resulting
weight after training. The synaptic delays for these connections can be
quite larger, as they are sampled from a uniform distribution U(1, 10). For
connections with a large delay, the inhibition of the I-pool might begin
to suppress network activity before the postsynaptic neuron can fire, thus
leading to depression. One might therefore conclude that smaller delays
generally lead to larger weights.

To test this hypothesis, we investigate the correlation of synaptic delay
(Figure 10). As can be seen, no correlation is present after training. The
correlation coefficient between delay and weight was also calculated to be
(approximately) zero. Apparently, the input is strong enough to make exci-
tatory neurons fire even when the delay is large. Thus, drawing the synaptic
delay for X→E connections randomly may serve to decrease correlated firing
activity within the E-pool, but it generally does not interfere with learning.
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4 Variable Binding
In the previous section, we constructed SWTA circuits, which perform un-
supervised separation of input patterns. These circuits are the building
blocks of the variable binding model investigated in this work, as each neu-
ral space has winner-take-all functionality. In this section, we build on top
of the model described above to perform variable binding in a spiking neural
network.

4.1 Description of the Original Model

The model presented in this work is based on the model introduced in [9].
We therefore begin by describing this model and discussing some of its prop-
erties.

 

FFFB

REC

REC

Figure 11: Variable binding network layout. X is the input population, C is the
content space, and NV is a variable space used for computations.

Network Architecture The basic network layout of the variable binding
model described in [9] is depicted in Figure 11. It is an extension of the
circuit used above (cf. Figure 5): an input population X connects to a
neural space (which is an SWTA circuit), which we call the content space.

To perform variable binding, the concept space is now additionally linked
to other neural spaces, the so-called variable spaces NV , NU , etc. which cor-
respond to pointer variables V , U , an so on. Figure 11 shows the layout with
a single variable space present. Each neural space has recurrent connections
(REC). The content space projects to each variable space via feed-forward
(FF) connections. Furthermore, there are symmetric feed-back connections
from each variable space to C.
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All five connections visible in Figure 11 undergo synaptic plasticity of
the same kind (but with different parameters). Both the content space and
the variable spaces have inhibition mechanisms with which all activity and
synaptic plasticity can be suppressed.

Functionality The presence of the newly introduced variable spaces allow
simple variable binding operations to be performed in this model. Each
variable space corresponds to some pointer variable which stores a pointer
to some assembly within C. From this pointer, the activity of the target
assembly can be restored, e.g. after some delay period. Thus, the variable
spaces allow concepts (encoded by active assemblies in the content space) to
be tied to roles: if some variable space e.g. encodes the agent when decoding
the meaning of a sentence, it can be linked to the entity filling the role in
the given sentence.

We now briefly describe a simple binding experiment. Before any experi-
ment takes place, the content space is trained on a number of input patterns
until stable assemblies have formed in it (as described above for the SWTA
circuits). During this phase, the variable spaces are inhibited.

The experiment then takes place as follows. To store a pointer in a
variable, the target assembly in C must be active. Thus, the input population
X is set to drive the specific assembly. Now, the variable space which is to
store the pointer is disinhibited. Through the feed-forward connections, the
variable space is activated, and a stable assembly emerges. This assembly
is closely tied to the assembly in the concept space by the feed-forward and
feed-back connections, which undergo rapid synaptic plasticity.

This pointer in the variable space can be stored over time by means of
an adaptive excitability mechanism. This mechanism is implemented as an
adaptive bias of each neuron which is increased every time a neuron fires
(and otherwise decays over time). After a delay period where all activity
is suppressed through global inhibition, this excitability mechanism leads
to previously active neurons firing preferentially after all neural spaces are
disinhibited. Then, the previously active assemblies in the content space
and the variable space drive each other into a stable regime, and thus, the
neurons firing in the content space during this period correspond to the
neurons from the target assembly.

This experiment is a basic operation in which a pointer is stored and
recalled in a variable space. The experiments performed in [9] furthermore
include copying the contents from one variable space to another one and
comparing the contents of two variable spaces.

Issues In the original model, the feed-forward and feed-back connections
are symmetric, i.e. they connect the same two neurons even though the
weights and plasticity parameters are different for both direction. In biolog-
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ical neural networks, however, perfectly symmetric connections usually do
not occur. In this work, we will investigate the possibility of using random
connections between the two spaces in the NEST model.

Introducing this change will obviously pose a challenge to the model, as
it is then not guaranteed that any given assembly in one space can actually
reach all the neurons which project to it. This problem can be resolved by
increasing the size of the assemblies inside variable spaces, which is the be-
havior which naturally emerges in the network when symmetric connectivity
is not available.

The problems concerning the implementation of inhibition in the original
model were already discussed above and have been solved by using an I-pool
to provide inhibition within each SWTA circuit.

4.2 Variable Binding in NEST

Using the SWTA circuits described in the previous section as building blocks,
we now construct a network in NEST which performs variable binding. At
the same time, we aim to resolve the issues described above.

Architecture The overall network architecture (Figure 12) is the same
as in the original model and consists of an input population X , the content
space C and a variable space NV (cf. Figure 11). Each neural space is an
SWTA circuit and thus – in the NEST model – consists of interconnected
pools of excitatory and inhibitory neurons. Since there are many more
connections in this models, it has many more parameters which need to be
determined. While some are defined by the underlying SWTA functionality
that each neural space must provide, many additional degrees of freedom
remain.

The content space C has ingoing connections from an input population
X , these weights belong to the content space in the NEST model and are
called XE-weights within C as they connect the input X to the E-pool of
C. Furthermore, each neural space has incoming weights from the other
neural spaces; these weights are called SE-weights and are also assigned to
the postsynaptic neural space in the NEST model.

The inhibition of neural spaces is implemented by a bias current gener-
ator which injects a current with amplitude −2 pA into each neuron if the
neural space is inhibited. If the space is disinhibited, the current generator
is switched off, and neurons resume their activity.

Avoiding Symmetric Connections The original model uses symmetric
connections (with separate weights for each direction) between the content
space C and the variable spaces. To obtain a more biologically realistic
model, we draw all connections between the two neural spaces randomly,
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Figure 12: Layout of network consisting of content space C and a single variable
space NV . Arrows denote excitatory, circles inhibitory connections. The weights
of connections between two neural spaces (wSE) are placed inside the same neural
space as they belong to in the NEST implementation.

thus, symmetric connections are rather unlikely. It may also occur that
a neuron in one space has no connection (or very few connections) to an
assembly in the other space. Thus, we need to make provisions for allowing
the existing connections to become stronger.

One method to get strong correlations within recurrent neural networks
is to use a symmetric STDP window, which allows for a more “Hebbian”-
style plasticity in the original sense (fire together, wire together). A learning
window of this kind is depicted in Figure 26. This type of plasticity has been
shown to occur in the human brain [33], however, it may result in neuron
populations persistently exciting themselves very forcefully, and thus to in-
stable network dynamics. It is therefore imperative to carefully balance the
weight growth which arises due to this plasticity with the network inhibition.

The synapse model stdp synapse sem (see Appendix B.2) allows for
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Figure 13: Symmetric learning window which can enforce formation of strong and
persistent links.

using this kind of plasticity by setting the α parameter to −1 to get perfect
symmetry (see Appendix B.2). Setting α = 0 gives the kind of plasticity
used in [9].

Since the learning task becomes more challenging when using biologically
realistic non-symmetric connections, we alter the parameters for the content
space used in [9] to allow assemblies to form stronger recurrent connections.
The STDP type for the recurrent (EE) connections within C was changed
to use this symmetric learning window, furthermore the allowed recurrent
weight range was increased (see full parameter list in Appendix C.2). The
recurrent connections within variable spaces also use this kind of plasticity.

Additionally, we double the size of the variable spaces compared to the
original model. Each content space consists of 1000 excitatory neurons.
Since the connections between content and variable spaces are not symmet-
ric, a larger group of neurons is required in the variable space to ensure
that each neuron in C receives sufficient input. While the assemblies in the
content spaces consist of usually around 60 neurons, the corresponding as-
semblies in the variable space can be as large as 200 or even 250 neurons.
With these sizes, obviously, a variable space size of 1000 neurons is not
enough to store five distinct patterns. Therefore, the variable spaces will
consist of 2000 excitatory neurons (and 500 inhibitory neurons, to keep the
ratio of excitatory to inhibitory neurons constant).

4.3 Experiments without neuronal excitability

We now move on to performing experiments with neural space as described in
[9]. We will focus on the first two experiments implemented there. Although
an adaptive excitability mechanism is central to the model in [9] on which
this work is based on5, we do not make use of such a mechanism here.
The variable spaces are thus not inhibited during delay periods where they

5Cf. Appendix A.1, in particular (29) and (46).

29



Variable Binding

CREATE delay RECALLtraining

Figure 14: Illustration of the LOAD / RECALL experiment. First panel: the con-
tent space C is trained on some input (indicated by arrows), and stable assemblies
form (recurrent connections, blue) in response to some input pattern. The variable
space NV is inhibited (indicated by the gray background). Second panel: while
C is driven from the input, NV is disinhibited. Connections form between spaces
(green) and within NV (blue). Third panel: during a delay period, C is inhibited.
In the current experiment, NV may remain active during this time. Final panel: in
the RECALL phase, the original activity in C is restored from the activity in NV ,
and the same neurons are active as before.

should retain a pointer to allow the information to be kept in the recurrent
activity.

4.3.1 LOAD / RECALL

This first experiment tests the ability of variable spaces to reliably store a
pointer to an assembly in the content space, which should be activated after
some delay (Figure 14).

Procedure. Here, the network consist of just two neural spaces (as shown
above in Figure 12). The variable space NV stores a pointer to some content
in C, which is recalled after some delay. This experiment will also be the
benchmark we use for finding good parameters for our model.

The procedure of this experiment starts with a content space being
trained as an SWTA circuit on five different input patterns. This is achieved
as follows.

To train the content space C, a randomly selected pattern is presented for
200 ms, after which 200 ms of random input is given (all input neurons fire
at a rate of 12.5 Hz). This is repeated 200 times. Afterwards, each pattern
is tested to measure the assembly which has formed in C: the patterns are
presented for 200 ms while the firing rates of the excitatory neurons are
measured.
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The setup of the content space has a few stochastic components. First,
the recurrent excitatory connections within the content space are drawn at
random. Furthermore, all weights are initialized randomly in some range.
To obtain robust parameters which are proven to work independently of
the specific random initialization, multiple different instances of the content
space have been constructed and will be used during training and testing.

Next, the variable space is set up. To form assemblies in NV , we perform
a CREATE operation for each pattern. While the input is given to C, the
variable space is disinhibited. Each CREATE operation lasts for 1000 ms.
During the second half of this period, the firing rates in NV are measured
to determine the assembly which has formed here.

After completing this setup procedure, the experiment takes place as
follows.

• LOAD. First, a pattern is loaded into the variable space NV . The
procedure is the same as for the CREATE operation, except that it
lasts only for 200 ms. The assemblies in the variable space have already
been formed, and are now activated. Afterwards, the input neurons in
X fire randomly for the remainder of the experiment.

• DELAY. Next, the content space is inhibited for 5000 ms, while NV
may remain active, thus, the information given to it can be kept in
the recurrent activity of the variable space.

• RECALL. Finally, we perform a RECALL operation from NV to C.
After waiting for another 50 ms6, the content space is disinhibited for
200 ms. The variable space should now drive the content space in such
a way that the same assembly forms there which was previously active.

To assess the success of the experiment, the active neurons in C are
recorded during the second half (i.e. the latter 200 ms) of the RECALL
phase. They are then compared to the assembly which was active during
the presentation of the target pattern after the training phase of the content
space.

Parameter Selection We use this setup to determine the parameters for
the NEST model. A gradient-free optimization algorithm (see Section 5) is
used to find good values for 23 free parameters of the content space and the
variable space. As cost function we use the number of neurons which are
classified during the RECALL operation as either missing (i.e. they were
active when testing the assemblies after training, but not during RECALL)
or excess (i.e. they are active during RECALL but previously were not).

6This is done for consistency reasons with respect to the following experiments using
neuronal excitability. If anything, this makes the procedure more difficult in the current
setup.
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Two different instances of trained content spaces (with different random
connections) were used during training to obtain robust parameters. Since
the trial-to-trial variance can be quite high, each content space was tested
three times on each pattern (i.e. LOAD / RECALL for each of the five
patterns was tested three times with different random connections between
C and NV as well as recurrent connections in NV ) when evaluating the cost.

During the optimization, boundaries were enforced on the parameters to
ensure that the results are reasonable values. The final results are given in
Appendix C.2 in Tables 8 and 9. All parameters for EE connections within
variable spaces as well as parameters for connections between variable spaces
and the content space were made accessible to the optimization algorithm, in
particular, the algorithm was free to use synaptic plasticity with a symmetric
learning window (α = −1) or with an asymmetric one (α = 0) on both
feed-forward and feed-back connections between C and NV as well as on the
recurrent connections withinNV . The final parameters only use a symmetric
learning window for the recurrent connections within each neural space.

To assess the quality of different resulting parameter sets, their perfor-
mance was tested on three different content space instances. This corre-
sponds to the common machine learning technique of using a validation set
which is distinct from the training set.

Results The activity within all neuron populations during a typical run
is shown in Figure 15. Before the LOAD operation begins, the content
space is disinhibited, and the input neurons fire randomly. Then, a specific
pattern is presented, and the corresponding assembly becomes active in
C. Simultaneously, the variable space is disinhibited, and the previously
(i.e. during the CREATE operation) formed assembly also becomes active
there. During the delay period, the content space is inhibited and shows
no activity. The variable space remains disinhibited in the current setup,
and the previously active neurons continue to fire during the delay period.
However, the activity is somewhat sparse, and the neuron firing rates are
quite low and well below the thresholds defined for active assemblies. During
the RECALL operation, the content space is disinhibited, and the original
assembly becomes active again. No neuronal excitability is used in this
experiment.

To quantify the performance over different trials, which always show
slight variations in neuronal responses, we define a success criterion: if at
least 80% of the neurons of the original assembly in C are active during
the RECALL phase, and if furthermore the number of additionally active
neurons does not exceed 20% (of the original assembly size), the performance
is regarded as successful. Using this criterion, we perform many trials on
the different content space instances and report the results, which are given
in Tables 2 and 3.
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Figure 15: Spikes in input population X , content space C, and variable space NV

during a successfully LOAD / RECALL sequence. The beginning of each command
is marked on the x-axis. The spikes of 200 neurons of each population are shown.
For the neural spaces, the neurons were randomly selected; for the input population,
this is the entire population. The time axis is drawn to scale, but is broken during
the long delay period.
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used for pat. size in C shared missing excess success

C1 training

1 86 86.2± 1.1 2.2± 1.2 0.2± 0.6 10/10
2 54 53.0± 0.6 1.0± 0.6 0.2± 0.4 10/10
3 80 77.5± 1.7 2.2± 1.5 0.2± 0.4 10/10
4 56 54.7± 1.2 1.3± 1.2 0.0± 0.0 10/10
5 52 50.2± 1.1 1.8± 1.1 0.0± 0.0 10/10

C2 training

1 66 63.2± 0.9 1.8± 0.9 0.0± 0.0 10/10
2 54 52.3± 1.1 1.6± 1.1 0.1± 0.3 10/10
3 87 82.7± 2.4 3.8± 2.4 0.2± 0.4 10/10
4 51 49.8± 0.8 1.1± 0.8 0.2± 0.4 10/10
5 79 74.2± 2.3 4.7± 2.3 0.0± 0.0 10/10

C3 validation

1 61 59.8± 1.0 1.1± 1.0 0.2± 0.4 10/10
2 63 61.2± 1.7 1.7± 1.7 0.0± 0.0 10/10
3 66 63.7± 1.2 2.2± 1.3 0.0± 0.0 10/10
4 80 74.9± 2.2 4.4± 2.2 0.4± 0.4 10/10
5 68 64.4± 1.9 3.6± 1.9 0.0± 0.0 10/10

C4 validation

1 40 38.7± 1.0 1.3± 1.1 2.7± 1.5 10/10
2 93 91.7± 1.1 2.6± 1.2 1.6± 0.9 10/10
3 64 62.2± 1.6 1.7± 1.6 0.0± 0.0 10/10
4 41 49.2± 1.1 1.8± 1.1 0.0± 0.0 10/10
5 60 56.8± 1.8 3.1± 1.8 0.0± 0.0 10/10

C5 validation

1 88 85.5± 1.6 2.5± 1.6 0.0± 0.0 10/10
2 58 55.2± 1.2 2.7± 1.2 0.0± 0.0 10/10
3 58 56.7± 0.7 1.2± 0.7 0.0± 0.0 10/10
4 62 59.2± 1.6 2.7± 1.6 0.0± 0.0 10/10
5 66 62.8± 1.6 3.1± 1.6 0.0± 0.0 10/10

Table 2: Results on the LOAD / RECALL task without using neuronal excitability
on pre-trained content spaces instances used in training (C1 and C2) and for val-
idation (C3 to C5). Each content space contains five patterns. For each of these,
the following quantities are given: assembly size in C after training, shared, miss-
ing, and excess neurons C during RECALL (averaged over 10 independent trials),
number of successful trials according to the 80% criterion (see text).
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used for pat. size in C shared missing excess success

C6 test

1 65 63.8± 1.1 1.1± 1.1 0.0± 0.0 10/10
2 66 64.2± 2.1 1.7± 2.1 0.0± 0.0 10/10
3 61 59.2± 1.0 1.7± 1.1 0.0± 0.0 10/10
4 73 68.9± 1.5 4.0± 1.5 0.0± 0.0 10/10
5 81 77.0± 1.8 3.7± 1.9 0.1± 0.3 10/10

C7 test

1 47 45.0± 2.3 2.0± 2.3 0.5± 0.5 10/10
2 64 62.2± 1.3 1.8± 1.3 0.0± 0.0 10/10
3 76 73.4± 1.7 3.6± 1.7 0.0± 0.0 10/10
4 82 77.2± 2.0 4.0± 1.8 0.5± 0.6 10/10
5 80 75.2± 1.6 4.7± 1.6 0.0± 0.0 10/10

C8 test

1 55 54.2± 1.0 0.6± 1.0 0.4± 0.6 10/10
2 53 51.3± 1.4 1.6± 1.4 0.1± 0.3 10/10
3 74 71.2± 1.7 2.6± 1.6 0.2± 0.6 10/10
4 86 79.5± 2.3 5.9± 2.2 1.3± 1.3 10/10
5 76 71.4± 1.9 4.5± 1.9 0.0± 0.0 10/10

C9 test

1 90 86.7± 1.4 3.0± 1.7 0.2± 0.4 10/10
2 72 69.5± 1.9 2.2± 1.9 0.1± 0.3 10/10
3 54 52.8± 1.0 1.1± 1.0 0.1± 0.3 10/10
4 75 71.9± 1.8 2.8± 1.9 0.2± 0.4 10/10
5 55 52.2± 1.2 2.7± 1.2 0.0± 0.0 10/10

C10 test

1 59 58.2± 0.7 0.8± 0.7 0.0± 0.0 10/10
2 46 44.2± 1.3 1.7± 1.3 0.8± 0.9 10/10
3 78 75.2± 0.8 3.3± 1.9 0.2± 0.4 10/10
4 65 63.1± 1.7 1.8± 1.7 0.0± 0.0 10/10
5 81 77.9± 1.6 4.0± 1.6 0.0± 0.0 10/10

Table 3: Results on the LOAD / RECALL task without using neuronal excitability
on pre-trained content spaces instances used as generalization test. (See caption of
Table 2 for details.)
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First, we measure the success rate on the two content space instances
which were used during training and the three other instances used for val-
idation (Table 2). On each of these, each pattern is tested 10 times. All
trials were successful. Generally, a small number of neurons is missing in C
during the RECALL, but very few neurons are active which were not part
of the assembly before.

To test the generalization of these results, we conduct the same test on
five new randomly generated content space instances (Table 3). On all of
these, the results are similar to above, and no trial failed. This shows that
the parameters are highly robust.

4.3.2 LOAD / COPY / RECALL

We move on to the second task, in which an additional variable space NU is
introduced. The task is to copy the content of NV after a LOAD operation
to another neural space, and then perform a successful RECALL from there.
We use the parameters determined above for the extended circuit, thus, this
experiment is a further test of how suitable they are for more elaborate
binding operations.

Procedure The preparations for the experiment are similar to those in the
previous one. Again, we use pre-trained content space instances. Assemblies
for each content pattern are formed in both variable spaces NV and NU by
performing CREATE operations.

The experiment then takes place as follows.

• LOAD. We begin by performing a LOAD from the content space C
into the first variable space NV . To do so, the content space is driven
by the target pattern from the input population X , and the assem-
bly which has formed there during the training phase becomes active.
Simultaneously, the corresponding assembly in NV also is activated.
This phase lasts for 200 ms, after which the input neurons in X fire
randomly for the remaining duration of the experiment. The other
variable space NU remains inhibited here.

• DELAY. The content space is inhibited for 400 ms, while NV remains
active.

• COPY. This operation takes place in multiple stages. For the first
50 ms, nothing is changed.7 Then, the content space is disinhibited
and the activity in it is restored as NV and C interact. Then, for
100 ms, the other variable space NU is disinhibited, and the assembly
corresponding to the input pattern becomes active there.

7See the description of the previous experiment.
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• DELAY. The first variable space NV and the content space are in-
hibited. This time, NU may remain active. This phase again lasts for
400 ms.

• RECALL. Finally, we perform a regular RECALL operation from
NU to C. During the latter 100 ms of this phase, the activity in C is
measured and used as to assess the performance.

The success is measured by comparing the neurons active in the content
space during the second half of the final RECALL operation with those
which were active when testing the patterns after training. The same success
criterion as for the previous experiment is used.

Results A typical run can be seen in Figure 16. Here, we can see that the
procedure is successful, and the activity in C after the RECALL operation
closely resembles the earlier activity.

We again perform tests on the same 10 content space instances for the
previous experiment. For each instance of C, each pattern is tested twice. To
measure the success rate, we use the same criterion as above (if at least 80%
of the neurons of the original assembly in C are active during the RECALL
phase, and if the number of additionally active neurons does not exceed
20%, the performance is regarded as success). This yields the following
results: On the content space instances 1-5 (which were used for training and
validation of the parameters, see above), each COPY operation is successful.
The generalization test on instances 6-10 shows similar results: of the total
number of 50 tests on these content space instances, a single run fails. This
shows that the parameters found above allow robust execution of the COPY
operation.

4.4 Experiments using neuronal excitability

We now turn to using an adaptive neuronal excitability with may change
over time as used in [9]. Previously, the variable spaces were not inhibited
during the delay periods within each experiment, and thus, the informa-
tion could be stored in their persistent activity, maintained by the recurrent
connections within the pool of excitatory neurons. For the following exper-
iments, we will prevent this by also inhibiting the variable spaces during
delay periods. Since the information must be stored somewhere, we now
need to use adaptive neuronal excitabilities (see Appendices A-C, in partic-
ular (73) and (74) for implementation details). These increase when neurons
fire and slowly decay over time, leading to an increased excitability of the
previously active neurons after short delay periods.
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Figure 16: Spikes in input population X , content space C, and variable spaces NV

and NU during a successfully LOAD / COPY / RECALL sequence. The beginning
of each command is marked on the x-axis. The spikes of 200 neurons of each
population are shown. For the three neural spaces, the neurons were randomly
selected; for the input population, this is the entire population. The time axis is
drawn to scale.
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4.4.1 LOAD / RECALL

First, we investigate the simple case of a LOAD/RECALL sequence.

Procedure The procedure of this experiment is identical to the one de-
scribed above in Section 4.3.1, except that during the delay period, not only
the content space is inhibited, but also the variable space NV . Thus, the
information about the stored pattern needs to be stored in the adaptive bi-
ases, which lead to an increased excitability of the previously active neurons
after the variable space is disinhibited. As above, no adaptive bias is used
for the content space.

During the recall phase, the content space remains inhibited for the first
50 ms. This allows the variable space to establish some activity through its
recurrent connections before driving the content space back into the original
regime.8

Since the inhibition of neural spaces is modeled in a soft way (injection
of current into each neuron), a large adaptive bias could lead to firing of
the neurons even if their neural space is in the inhibited state. Thus, these
biases are clipped at some value (see Appendix C.2). Also, the values of the
adaptive biases are reset between different experiments, which is equivalent
to waiting for some period of time between different runs.

Parameter Selection We start with the parameters used above in the
experiments without neuronal excitability. First, a good value for the addi-
tive quantity for the adaptive bias qsfa was found by performing some runs
with the final setup and the parameters used above. After that, the same
optimization scheme as above was used to achieve a good performance on
all validation instances of the content space. The cost function for the opti-
mization as the same as above. Only some fine-tuning was necessary. The
final parameters are given in Appendix C.2 in Tables 10 and 11. Finally, the
clipping value for the adaptive bias was set in a rather strict way to avoid
the spilling of activity of neurons within the variable spaces into the delay
periods.

Results A typical run is depicted in Figure 17. As can be seen, the activity
is similar to the one shown in Section 4.3.1, but now, the variable space NV
is silent during the delay period. Some minor spilling of activity into this
phase can occur due to the soft way in which the inhibition takes place,
however, this lasts only for a short period.

In the example run which is shown here, the activity in C is restored
reliably. We again evaluate the performance on the same content space

8This timing scheme was also followed for simplicity reasons in the previous experiments
where no excitability was used. There, this is not necessary, but poses a slightly more
difficult problem, since the content space then has less time to restore its activity.
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Figure 17: Spikes in input population X , content space C, and variable space NV

during a successfully LOAD / RECALL sequence making use of neuronal excitabil-
ity in the variable space. The beginning of each command is marked on the x-axis.
The spikes of 200 neurons of each population are shown; for the neural spaces,
the neurons were randomly selected. For the input population, this is the entire
population. The time axis is drawn to scale, but is broken during the long delay
period.
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used for pat. size in C shared missing excess success

C1 training

1 86 85.4± 1.2 3.2± 0.9 0.2± 0.6 10/10
2 54 52.3± 1.2 1.6± 1.2 0.0± 0.0 10/10
3 80 77.9± 1.2 2.1± 1.2 0.0± 0.0 10/10
4 56 54.7± 1.0 1.2± 1.0 0.0± 0.0 10/10
5 52 51.1± 0.9 0.9± 0.9 0.0± 0.0 10/10

C2 training

1 66 64.9± 0.8 1.1± 0.8 0.0± 0.0 10/10
2 54 53.2± 0.9 0.6± 0.9 0.1± 0.3 10/10
3 87 82.7± 2.3 4.2± 2.3 0.0± 0.0 10/10
4 51 50.6± 0.6 0.4± 0.6 0.0± 0.0 10/10
5 79 75.4± 2.3 3.3± 2.2 0.2± 0.4 10/10

C2 validation

1 61 60.2± 0.5 0.8± 0.6 0.0± 0.0 10/10
2 63 61.5± 0.8 1.5± 0.8 0.0± 0.0 10/10
3 66 64.2± 1.0 1.6± 0.9 0.1± 0.3 10/10
4 80 76.4± 1.2 3.1± 1.3 0.4± 0.6 10/10
5 68 66.2± 1.3 1.7± 1.3 0.0± 0.0 10/10

C4 validation

1 40 39.1± 0.5 0.9± 0.5 0.5± 0.5 10/10
2 93 90.2± 2.1 4.0± 1.8 1.7± 0.9 10/10
3 64 62.2± 1.2 1.8± 1.2 0.0± 0.0 10/10
4 41 49.8± 1.0 1.1± 1.0 0.0± 0.0 10/10
5 60 58.5± 1.2 1.5± 1.2 0.0± 0.0 10/10

C5 validation

1 88 84.7± 1.4 3.0± 1.4 0.2± 0.4 10/10
2 58 56.7± 1.2 1.2± 1.2 0.0± 0.0 10/10
3 58 56.5± 1.0 1.5± 1.0 0.0± 0.0 10/10
4 62 60.2± 0.9 1.7± 0.9 0.0± 0.0 10/10
5 66 64.0± 0.8 1.8± 1.1 0.2± 0.4 10/10

Table 4: Results on the LOAD / RECALL task using neuronal excitability on
pre-trained content spaces instances used in training (C1 and C2) and for validation
(C3 to C5). Each content space contains five patterns. For each of these, the
following quantities are given: assembly size in C after training, shared, missing, and
excess neurons C during RECALL (averaged over 10 independent trials), number
of successful trials according to the 80% criterion (see text).
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used for pat. size in C shared missing excess success

C6 test

1 65 64.2± 0.7 0.6± 0.7 0.1± 0.3 10/10
2 66 64.2± 1.1 1.7± 1.1 0.0± 0.0 10/10
3 61 59.7± 0.8 1.2± 0.8 0.0± 0.0 10/10
4 73 70.0± 1.7 2.8± 1.7 0.0± 0.0 10/10
5 81 77.2± 2.4 3.7± 2.4 0.0± 0.0 10/10

C7 test

1 47 46.2± 0.8 0.8± 0.8 0.1± 0.3 10/10
2 64 61.7± 0.6 2.2± 0.6 0.0± 0.0 10/10
3 76 74.7± 1.2 2.1± 1.3 0.1± 0.3 10/10
4 82 78.9± 2.0 2.8± 1.9 0.0± 0.0 10/10
5 80 76.9± 1.3 3.0± 1.4 0.1± 0.3 10/10

C8 test

1 55 53.7± 0.7 1.3± 0.7 0.0± 0.0 10/10
2 53 52.1± 0.7 0.9± 0.7 0.0± 0.0 10/10
3 74 70.9± 0.9 3.0± 1.0 0.1± 0.3 10/10
4 86 81.2± 1.7 4.7± 1.9 0.9± 1.2 10/10
5 76 72.0± 1.7 3.7± 1.3 0.2± 0.6 10/10

C9 test

1 90 80.2± 17.8 9.5± 17.9 6.0± 17.3 9/10
2 72 70.2± 1.4 1.8± 1.4 0.0± 0.0 10/10
3 54 52.7± 1.3 1.2± 1.3 0.0± 0.0 10/10
4 75 71.5± 2.3 3.3± 2.3 1.8± 5.7 9/10
5 55 52.8± 1.5 2.1± 1.5 0.0± 0.0 10/10

C10 test

1 59 58.5± 0.6 0.5± 0.6 0.1± 0.3 10/10
2 46 45.6± 0.4 0.4± 0.4 0.0± 0.0 10/10
3 78 75.9± 1.1 2.8± 1.0 0.2± 0.4 10/10
4 65 63.5± 1.2 1.5± 1.2 0.0± 0.0 10/10
5 81 78.4± 2.1 3.3± 2.1 0.1± 0.3 10/10

Table 5: Results on the LOAD / RECALL task using neuronal excitability on pre-
trained content spaces instances used as generalization test. (See caption of Table 4
for details.)
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instances as in the first experiment where NV was not inhibited during the
delay period. The results are shown in Tables 4 and 5. As can be seen, the
procedure works very reliably across many different content space instances,
with only two unsuccessful runs.

4.4.2 LOAD / COPY / RECALL

Naturally, we repeat the second experiment with the parameters obtained
in the previous experiment to see if they are also robust in more elaborate
operation sequences.

Procedure The experimental procedure closely follows the one described
above (cf. Section 4.3.2) where the variable spaces are not inhibited during
delay periods. We recap and expand it here. We assume that the content
space has been trained and all assemblies in both variables spaces have been
formed with the CREATE operation (as described above). The procedure
then is as follows.

• LOAD. First, a pattern is loaded from C into the first variable space
NV . This is done by presenting the pattern to the content space by
the input population X while NV is disinhibited. This phase lasts for
200 ms. Afterwards, the input population fires randomly for the rest
of the experiment.

• DELAY. All neural spaces are inhibited for 400 ms.

• COPY. This operation consists of multiple stages. First, the variable
space NV is disinhibited and the activity in it is restored by the in-
creased excitability of the previously active neurons. After 50 ms, the
content space is also disinhibited, and for 150 ms, the activity there
may settle. Up to this point, this corresponds to a regular RECALL
operation. Then, for 100 ms, we additionally disinhibit the other vari-
able space NU .

• DELAY. All neural spaces are inhibited again for 400 ms.

• RECALL. We perform a regular RECALL operation from NU to C.
For the first 50 ms, only the variable space is disinhibited, after which
also the content space is additionally activated for 150 ms. During the
latter 100 ms of this phase, the activity in C is measured and used as
a comparison measure.

As can be seen, this procedure closely resembles that of the case without
neuronal excitability described above, except for the fact that the variable
spaces are also inhibited during delay periods.
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N U
N V

C

LOAD DELAY COPY DELAY RECALL
time

X

Figure 18: Spikes in input population X , content space C, and variable spaces NV

and NU during a successfully LOAD / COPY / RECALL sequence making use
of neuronal excitability in the variable spaces. The beginning of each command is
marked on the x-axis. The spikes of 200 neurons of each population are shown;
for the three neural spaces, the neurons were randomly selected. For the input
population, this is the entire population. The time axis is drawn to scale.
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Results Figure 18 shows the spiking activity of a typical run of this ex-
periment. Similar to the previous experiment, some activity of the variable
spaces can spill into the delay periods, but it is not prolonged. Here, we can
see that after the RECALL phase, the activity in the content space closely
resembles that of the first LOAD phase in terms of high firing rates.

We test this procedure (as above) by performing two copy operations
for each of the five patterns on all ten content space instances. All of these
tests succeed in activating the same assembly during the RECALL phase
as during the testing of the content space. This indicates high robustness
of the parameters to all sources of randomness, in particular the stochastic
connectivity between neural spaces and within them.
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5 Efficient Optimization of High-
Dimensional Spaces with Con-
straints

This section describes the optimization procedure which was used to find
the parameters of the variable binding model (described in the previous
chapter).

5.1 Motivation

The variable binding model described above has a large number of parame-
ters. While some were determined by constraints or could be set to reason-
able values a priori, 23 parameters remained free. These parameters needed
to be optimized to ensure good performance of the model. At the same
time, there are constraints on many neuron parameters to maintain biolog-
ical plausibility, e.g. time constants of STDP learning curves should not be
to small (say, less than 5 ms) and also not too large (e.g. 50 ms). These
factors posed a 23-dimensional optimization problem with constraints where
the cost function is non-differentiable.

To tackle this problem, a Differential Evolution (DE) [52] optimizer was
initially utilized. This stochastic optimization algorithm uses a population
of candidates which are mutated and recombined in each iteration. The
implementation of the algorithm used the Latin Hypercube sampling (LHS)
scheme [53] to randomly place the population in the allow space in the first
iteration.

It was observed that during this first iteration (involving calculating the
cost for a population of candidates), somewhat good results were achieved.
The reason for this is that LHS generates samples which are random but
nevertheless are distributed over the allowed parameter space to cover a large
portion of it. Thus, by chance, generally good regions of the value space
were found. All subsequent iterations of DE, however, failed to produce
any advancement in terms of the resulting cost values. This is likely due
to the method of proposing new candidates deployed by DE, which uses
recombination, and thus is prone to setting parameters to unbeneficial values
which lie between two good (possibly equally acceptable) local minima.

Under the assumption that a good local minimum produces a sufficiently
low cost value, performing local updates will lead to the solution when a good
region is found. We thus suggest a different optimization scheme in which
the magnitude of proposed updates is decreased from global to very local
over a fixed number of iterations. The goal is to achieve a good optimization
performance on high-dimensional optimization problems which are locally
convex while using as few hyperparameters as possible. This allows for the
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application of the algorithm to a broad range of optimization problems while
requiring little setup effort.

5.2 Algorithm

We assume a high-dimensional error surface which is not convex but has
distinct local minima with acceptable cost values and furthermore has upper
and lower bounds for each dimension. Thus, the optimization should consist
of two steps: first, a promising region of the high-dimensional space must
be found; then, local optimization should be applied to reach the nearest
local minimum. Since we assume an error landscape which is generally non-
convex, using gradient descent or approximations of the gradient will not
produce good results for the first phase. We therefore use stochastic updates.

Since the goal is to have as few hyperparameters as possible, we do
not make a clear distinction between the two phases. Instead, we propose
stochastic updates relative to the current position which are drawn from a
uniform distribution with a maximum step size σ which decays over time.
The number of iterations N (which is equivalent to the number of function
calls) must be set by the user. In the beginning, updates should span (more
or less) the entire range for each dimension, leading to a search for a good re-
gion of the parameter space. Here, we have σ = σ0 = 1 for updates spanning
the full range. As the number of iterations approaches the maximum value
N , the step size is decreased further and further towards a given minimum
value σ̄ for the last iteration, and the current region is locally optimized to
reach the nearest local minimum. In each step, the allow range for a param-
eter update must stay within the bounds, so the upper and lower bounds of
the uniform distribution (determined by σ) are clipped if necessary.

Furthermore, we assume that it is beneficial not to update all parameters
at once. Thus, we draw a random update mask from a binomial distribution
with parameter pm in each iteration. The value of pm must also be set by
the user.

The algorithm then works as follows. We assume that an initial value x0

is given, as well as upper and lower bounds for each dimension (xmax and
xmin, respectively). The optimization target is the function f . We perform
one function call to determine the value of f for x0.

The step size σ linearly decays each iteration. Given N , the step size at
some iteration n is

σn = σ0 − (σ0 − σ̄) · n− 1

N − 2
, (18)

where σ0 is the initial step size (usually set to σ0 = 1 for updates to on
average cover the entire value range), and σ̄ is the final value for the step
size during the final iteration (the default of σ̄ = 0.001 is a reasonable
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choice in many cases). A random mask for the update targets is generated
according to

draw m ∼ BinomialD(pm) (19)

which represents D independent draws from a binomial distribution with
probability pm. It should be verified that at least one element in m is
nonzero. Furthermore, update proposals are generated for each dimension
which are drawn from a D-dimensional uniform distribution and clipped
appropriately:

umin ← max
(
xmin,xn − 1

2σn (xmax − xmin)
)

(20)

umax ← min
(
xmax,xn + 1

2σn (xmax − xmin)
)

(21)

draw r ∼ UD(0, 1) (22)

u← umin + (umax − umin) ◦ r (23)

Here, ◦ denotes the Hadamard product (element-wise multiplication),
and the min and max functions are applied element-wise to the two given
vectors9. Since the allowed range is clipped to the bounds for each dimen-
sion, the updates are biased towards the center of the allowed interval at the
beginning of the procedure. As the step size decreases further and further,
this effect diminishes. Next, we generate the candidate x̂:

x̂← (1−m) ◦ xn−1 + m ◦ u (24)

To complete an iteration, we perform a greedy update of x. If the cost
of x̂ is smaller than that of x, the former replaces the latter in the next
iteration. Otherwise, x is kept.

The entire procedure is given in Algorithm 1. As can be seen, there
are only four hyperparameters: N , σ0, σ̄, and pm. Good default values for
σ0 and σ̄ have been given above. Also, we argue that using pm = 0.5 is a
reasonable choice for high-dimensional spaces. Thus, it is sufficient to choose
the number of iterations if global optimization should be performed. In case
a good proposal value x0 exists, the algorithm can be run with a smaller
value of σ0 to only perform local optimization.

Due to the fact that updates are drawn from a uniform distribution we
name this algorithm U-Decay.

9i.e. min(a,b) = c with elements ci = min(ai, bi) ∀i.
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Algorithm 1: U-Decay

input : x0,xmin,xmax ∈ RD,
0 < σ0 ≤ 1, 0 < σ̄ ≤ 1,

0 < pm < 1,

N

output: xn−1, fn−1

f0 ← f(x0) ; // evaluate cost of initial value

n← 1 ;

while n < N do

σn ← σ0 − (σ0 − σ̄) · n−1
N−2 ; // current step size

umin ← max
(
xmin,xn − 1

2σn (xmax − xmin)
)

; // lower bound

umax ← min
(
xmax,xn + 1

2σn (xmax − xmin)
)

; // upper bound

draw r ∼ UD(0, 1) ;

u← umin + (umax − umin) ◦ r ;

repeat

draw m ∼ BinomialD(pm) ; // draw random update mask

until ‖m‖ > 0;

x̂← (1−m) ◦ xn−1 + m ◦ u ; // create candidate

f̂ ← f(x̂) ; // evaluate candidate

if f̂ < fn then

fn ← f̂ ;

xn ← x̂ ;

else

fn ← fn−1 ;

xn ← xn−1 ;

end

n← n+ 1 ;

end
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5.3 Comparison to Other Optimization Algorithms

The proposed algorithm uses stochastic updates and does not rely on any
first- and second-order information (no approximations of the gradient or the
Hessian are computed). This provides a clear distinction from algorithms
which propose deterministic updates (e.g. the Simplex method [54]) as well
as from first- and second-order methods (e.g. Gradient Descent with Finite
Differences, Quasi-Newton methods like L-BFGS-B [55, 56]). These have
been shown to work well on convex problems, but often have difficulty on
complex error landscapes.

Furthermore, only a single candidate is kept at all times, in contrast to
algorithms which maintain a population (e.g. Particle Swarm Optimization
[57], Natural Evolution Strategies [58]). This may lead to faster convergence
on simple problems with many acceptable local minima since the number of
evaluations of the cost function is smaller.

Simulated Annealing (SA) [59] is a popular stochastic global optimiza-
tion algorithm which shows the closest resemblance to U-Decay. There are
two major differences: first, SA does not perform greedy updates, but uses
a decaying temperature as acceptance criterion. While it can be shown the-
oretically that SA can thus find the global optimum (given enough time),
this may hamper the results when few iterations are used (and local min-
ima are sufficient). Furthermore, no exact scheme for drawing updates is
defined by SA. U-decay does not require accepting updates which increase
the cost since it samples from the entire space at the beginning of the op-
timization run, and its greedy update scheme ensures that the algorithm
halts at the best value encountered. The main benefit over SA is that an
update scheme is defined by the algorithm with reasonable default values
which should produce good results on a broad range of problems.

5.4 Results on Optimization Test Functions

We consider four optimization test functions [60] in D dimensions (i.e. each
test function f is f : RD → R) with input vectors x = [x1, x2, ..., xD]T . Each
function poses a different challenge to the optimization algorithms in terms
of the shape of the error landscape. The first one is the Rosenbrock function

f(x) =

D−1∑
i=1

[
(1− xi)2 + 100 ·

(
xi+1 − x2

i

)2]
(25)

where we constrain all components to xi ∈ [−2, 2] ∀i. The Rosenbrock
function has its global minimum at xi = 1 ∀i. The error landscape has
a single, global valley, which is relatively easy to find, while finding the
absolute minimum within this valley is not trivial.

The second function is the Rastrigin function
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f(x) = 10 ·D +

D∑
i=1

[
x2
i − 10 · cos(2πxi)

]
(26)

where we restrict each xi to [−5, 5]. It has a global minimum at xi = 0 ∀i.
The error surface is characterized by an overall convex form with many
rather deep local minima.

The next function is Ackley’s function

f(x) = −a · exp

−b ·
√√√√ 1

n

D∑
i=1

x2
i

− exp

(
1

n

D∑
i=1

cos(c · xi)

)
+ a− e (27)

with a = 20, b = 1
5 , c = 2π. Here, where we confine each xi to the range

[−30, 30]. Ackley’s function has its global minimum at xi = 0 ∀i. Generally,
the surface is flat, but shows a large number of very small local minima and
thus appears to be noisy.

Finally, we investigate the Chasm function

f(x) =
1000 · |x1|

1000 · |x1|+ 1
+ 0.01 ·

D∑
i=2

|xi| (28)

in [−5, 5], which poses a very difficult problem. The global minimum lies
at xi = 0 ∀i. This function is extremely flat – thus providing hardly any
gradient information – except for a single, steep chasm which gives the
function its name.

All four test functions are shown in two dimensions within their specific
ranges in Figure 19.

Figure 20 shows an illustrating example of the U-Decay algorithm on the
Rosenbrock function. The development of the cost over time is shown as
well as the position on the error surface (top left and right). Furthermore,
the shrinking range of allowed parameter updates is illustrated for both
dimensions (bottom left and right).

We now compare the performance of the proposed algorithm to four
other optimization schemes: Simulated Annealing (SA) in two variants (one
performing global update steps over the entire value space, the other per-
forming local update steps in a small radius around the current value) as
the closest related algorithm, Differential Evolution (DE) as an algorithm
using a larger population, and L-BFGS-B as an algorithm which relies on an
approximated gradient. The implementations of L-BFGS-B and DE were
provided by SciPy [61]. L-BFGS-B is set to approximate the gradient itself,
no higher-order information is given by the test functions. We test each
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Figure 19: Error surfaces of the Rosenbrock function (top left), the Rastrigin func-
tion (top right), Ackley’s function (bottom left), and the Chasm function (bottom
right) in 2D within the ranges given in the text.
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Figure 20: Example optimization run on the Rosenbrock function. Top left: cost
value and value of proposed update over iteration. Top right: path on error surface
taken during optimization. Bottom left and right: value of coordinate and proposed
value for coordinate within the allow range for x and y, respectively.
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algorithm on each test function using 100 random initializations. DE uses
a Latin Hypercube Sampler to create its initial population. We then run
the algorithms until 100 function calls have been performed. (Note that the
implementation of L-BFGS-B does not necessarily comply to that bound,
and often the number of function calls here exceeded 100.) All parameters
for these tests are given in Appendix D in Table 12.
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Figure 21: Results for optimization in 2 dimensions. Depicted is a boxplot of best
cost value of 100 optimization iterations (or 100 function calls in case more than one
call may occur per iteration) on four test functions. On each, 100 different runs with
random initialization were performed. The box extends from the lower to upper
quartile values of the data, the line within it shows the median. The whiskers
extend to the most extreme data point within 1.5 times the interquartile range.
The algorithms are (from left to right) L-BFGS-B, Simulated Annealing with local
updates, Simulated Annealing with global updates, Differential Evolution, and U-
Decay. Note that the implementation of L-BFGS does not allow imposing a hard
upper bound on the number of function calls, so the number of function calls here
ranges from 100 to 120 (typically) and sometimes to more than 200.

First, we investigate the performance on the given test functions in 2
dimensions. Figure 21 shows the results. As can be seen, the Rosenbrock
function allows for a good gradient estimation by L-BFGS-B, and this al-
gorithm consistently produces the lowest cost. Also, DE benefits from the
LHS period and gives good results, with U-Decay close by. SA here already
shows somewhat worse performance in both variants.

For both the Rastrigin function and Ackley’s function, U-Decay gives
the best results. Here, no reliable gradient information can be extracted
from L-BFGS-B, leading to very poor performance.
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Figure 22: Results for optimization in 20 dimensions. (See caption of Figure 21 for
details.)

On the challenging Chasm function, DE again gives slightly better per-
formance than U-Decay, with all other algorithms typically failing.

Since the proposed algorithm is designed for high-dimensional spaces, we
next perform the same test using the test functions in 20 dimensions (Fig-
ure 22). Again, the shape of the Rosenbrock function allows L-BFGS-B to
outperform all other algorithms, but U-Decay is the only algorithm showing
consistently high performance over all different types of test functions. In
particular, it now gives far better results than DE. One reason for this is
that DE chooses its population size according to the input dimensionality,
so for D = 20, only a single epoch is performed by DE.

5.5 Discussion

In this section, we have presented a new algorithm for optimization in high-
dimensional spaces with constraints which aims to be very user friendly.
Only four hyperparameters are required, with reasonable defaults existing
for three of them. Using this approach, better results could be achieved on
four different optimization test functions compared to three other standard
optimization methods. While some of these excelled at one specific type
of function, the approach presented here showed consistently good results
across all different categories.

The new algorithm is also flexible enough to be deployed in different
scenarios. If an initial value is given which is known to be close to a local
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minimum, it can be used with a smaller value of σ0 to perform rapid local
optimization. This suggests using it in combination with elaborate sampling
techniques like the Latin Hypercube Sampler, which can be used to generate
samples covering most of the high-dimensional value space with a smaller
number of samples to find good starting regions.

Further potential for improving U-Decay lies in changing the decay of
the step size σ from linear to exponential or logarithmic, which may produce
better results depending on the type of optimization problem. Furthermore,
the parameter update mask may be removed if the updates are sampled
from a zero-mean uniform distribution, where σ is then taken as its standard
deviation. This way, the algorithm could be modified to require even less
hyperparameters.
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6 Discussion and Conclusion
This work aims to present an approach for solving the binding problem
with a network of spiking neurons. Building on a model introduced in [9],
the approach presented here focuses on providing a biologically plausible
implementation, which lead to the choice of the NEST simulator as an im-
plementation framework. Furthermore, the parameters for neuron model,
network connectivity, and synaptic plasticity were chosen to lie in value
ranges which may well be used in the brain.

At the heart of the model lies the content space, in which the activity of
neuronal assemblies encode some entity, similar to concept cells which have
been experimentally verified in the medial temporal lobe (MTL) [4]. Other
groups of neurons, called variable spaces, store pointers to assemblies in the
concept space, which may be used to re-activate the specific assembly after
some delay. This allows the binding of entities to roles e.g. when processing
the meaning of individual words within a sentence.

In the variable binding model presented here, distinct assemblies form in
each of the variable spaces as they store pointers to specific assemblies in the
content space. This behavior is in agreement with the experimental results
from [8]. There, it was shown that the agent and the patient of a sentence
can be decoded from the network activity of different subregions of the MTL
in human listeners. This provides evidence that in the brain, different groups
of neurons bind to different concepts when e.g. the meaning of a sentence
is being decoded. In our model, these groups of neurons correspond to the
different variable spaces.

The variable binding model was shown to support the execution of a
number of atomic computations. Pointers stored in variable spaces allow
the restoration of the activity in the concept space after some delay, thus
performing an action akin to recalling the value of a variable. Pointers
can also be copied from one variable space to another one, from which the
original activity in the content space can then be restored reliably.

The model presented in this work introduces a number of improvements
over the model described in [9]. First, each neural space is implemented
here as an EI-motif with distinct populations of excitatory and inhibitory
neurons. The inhibitory population provides the regulatory inhibition for
the excitatory pool, which is necessary to obtain winner-take-all dynamics.
This implementation is reasonable from a biological standpoint since EI-
motifs are ubiquitous in the human cortex [62].

Furthermore, this work introduces non-symmetric connectivity between
the different neural spaces. In [9], the excitatory neurons of the concept
space form symmetric connections to the excitatory neurons of variable
spaces, although the weights are different for both directions. However,
symmetric connectivitiy is rarely observed in the brain. In this work, we
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use random connectivity for all connections. This leads to the emergence of
larger assemblies in the variable spaces, which are necessary for each neuron
in the content space to receive sufficient input from a pointer in a variable
space. The experiments presented in this work show that with the given
parameters, the circuit shows robust performance and computations with
pointers in variable spaces are very reliable. Thus, the presented model can
generally be regarded as biologically plausible with respect to the neuronal
implementation.

This work also introduces a new mode of storage of information: activ-
ity can be maintained over time in the variable spaces through persistently
active assemblies. In [9], variable spaces are inhibited during delay periods,
and the information about a stored pointer is kept in the neuronal excitabil-
ity, which is implemented as an adaptive bias which increases when neurons
fire. While reproducing the results with this network mode, we have shown
that pointers can also be stored without making use of any excitability mech-
anism by simply allowing the variable spaces to remain active during delay
periods. It should be pointed out that the firing rates during these waiting
periods are quite low and the network dynamics remain in a stable regime.

Retaining information in a population of spiking neurons over time through
persistent activity is known to be one of the mechanisms underlying work-
ing memory in cortex. It has been shown experimentally that this kind of
activity sustains working memory in the prefrontal cortex during delayed
response tasks [63] and it is also observable in other brain areas [64]. These
findings suggest that persistent activity may indeed be the mechanism that
neural spaces in the brain use to store information over time. It has further
been shown that the contents which are being held in working memory are
encoded in the specific activity of working memory areas [65]. The possi-
bility of decoding contents of working memory from the neuronal activity
in the corresponding brain areas is strikingly similar to the experiments by
Frankland and Greene [8] on which the model discussed in this work builds
upon (see above).

If information is stored in variable spaces through persistent activity,
one problem may occur when more complex sequences of operations are
performed. For instance, if a pointer is stored in some variable space, and
the content space is engaged in an unrelated operation during the delay
period and therefore not inhibited (which was the case in the simulations
performed in this work), then the activity of the variable space must be kept
from influencing the content space during that time. This inhibition of the
connections between neural spaces (while still allowing recurrent activity
with the variable space) could well be implemented in the brain since it is
known that inhibition from SOM neurons can target individual dendritic
branches or even specifically act on individual synapses [66].

Furthermore, a new optimization algorithm for constrained parameter
spaces was introduced in Section 5. The algorithm (named U-Decay) aims
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to perform fast optimization in high dimensions with as few hyperparameters
as possible. It was shown that the algorithm achieves competitive results on
a number of standard optimization test functions when compared to estab-
lished optimization schemes. Furthermore, the parameters for the variable
binding model discussed in this work were found using this procedure. The
algorithm presented here is fairly straightforward. A number of extensions
of this algorithm are possible and remain to be explored (see Section 5.5).

Some of the variable binding models present in the literature propose
solutions which use rather abstract models of the underlying neuronal cir-
cuitry [43] or are purely theoretical [49]. In contrast, the variable binding
scheme explored in this work considers the low-level implementation of a so-
lution to the binding problem where the implementation specifics conform
to the current state of the art in neurobiology. In the following, we discuss
some limitations of the model and explore possibilities for further work.

First, it should be verified that the given model enables the robust exe-
cution of the remaining operations investigated in [9]. There, a third atomic
computation proposed by [48] was investigated: comparing the contents of
two variable spaces. In the implementation in [9], two variable spaces with
some pointers are activated after each other and their contents recalled to
the content space. A read-out neuron (separate from the other circuitry)
connects to the content space and encodes through its activity whether the
contents of the two variable spaces are the same. This poses a natural
extension to the NEST model described in this work.

Next, the given variable binding model depends on some external control
circuitry which provides the inhibition and disinhibition signals for all neural
spaces as operations are executed. This is necessary for meaningful compu-
tations to emerge in the network. In an extension of the present model,
this circuitry could also be implemented as a network of spiking neurons
controlling the state of all neural spaces. The inhibition and disinhibition
of neural space was implemented as an external current injected into each
excitatory neuron of the population. Using an external controller network,
this inhibition could instead be provided by spikes from inhibitory neurons.
Again, it would be possible to separate the inhibition of neurons from the
inhibition of the pathways connecting different neural spaces to allow the
information to be kept as persistent activity.

Another question remaining to be investigated is whether it is possible to
use the variable spaces in a more dynamic way. Assemblies in the brain are
often short-lived and may not necessarily require stable connectivity for the
generation of meaningful output signals [7]. Yet, in the model investigated
in this work, each concept has an associated assembly in each variable space
which has formed previously and which remains rather stable over time.
The problem of resetting the contents of variable spaces was addressed in
[48] in an interesting way, where all synaptic weights between the content
space and variable spaces are assumed to constantly decay over time. Other
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options could be explored.
Apart from these low-level implementation details, the model in its cur-

rent form possesses some limitations with respect to the complexity of the
binding problems it can solve. In the original formulation of the binding
problem [1], it concerned combinations of attributes of objects in a visual
scene, with the difficulty lying in providing the correct combination of at-
tributes. Other variations of the binding problem exist [2] which are also
more complex than the simple problem considered in this work. The model
presented here only considers the binding of pointer variables to a single
concept. It should be investigated how combinations of objects with one or
even multiple attributes can be effectively implemented to allow the decod-
ing of the rich hierarchies of meaning encoded in even rather simple sentence
structures.

One fairly simple approach would be to store multiple concepts, or con-
cepts and their respective attributes, simultaneously inside a single neural
space. This could be implemented in a number of simple ways: first, the con-
cept space could simultaneously encode combinations of entities and their
attributes. Then, it would have to be sufficiently large, which may eas-
ily lead to problems as a huge number of combinations must be encoded.
Another possibility would be to have the concept space encoding separate
entities and properties which are bound together in a single variable space.
Then, the pointer in the variable space should restore the activity of mul-
tiple assemblies in the content space, which may again easily lead to size
problems. Alternatively, there could be separate variable spaces for entities
and their properties which are grouped together. This avoids the problem of
individual neural spaces becoming very large, however, many different vari-
able spaces are then required. Also, it is unclear how the group of variable
spaces could interact in meaningful ways.

This last idea shows similarities to the Neural Blackboard Architecture
[49] which also considers the decoding of sentences. Here, the identities
of concepts occuring within a sentence are stored in variables, which can
be linked and combined in different ways to obtain meaningful structures.
For example, three variable could store the concepts “baby”, “Grandpa”,
and “hitting”. Each of these variables now posses mechanisms allowing
them to be linked together to form some structure, e.g. by forming a link
between “baby” and “hitting”. These links can encode the type of bound
being formed, e.g. by indicating that “baby” is the agent performing the
“hitting” action. Similarly, entities could be linked to properties. This
enables this architecture to encode complex structures which account for
the high expressivitiy of language.

Using this approach, different structural relations could be implemented
between variables in our model. This requires an elaborate external con-
troller circuit, but could greatly increase the computational power of the
model: e.g. a variable binding to the object in a sentence could also bind
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to another variable which stores some adjective (e.g. the ball hit the black
truck). However, this does not solve the problem of how this meaning is
decoded from the auditory presentation of the sentence which at some point
consist simply of a collection of words without any structure. The decoding
of which concepts belong together and which word is an attribute for which
entity would then necessarily have to be implemented in the controller net-
work. It is unclear how this problem could be solved. Nevertheless, this
approach seems likely to enhance the computational power of the model
presented in this work.

In summary: the approach to variable binding used in this work shows
promising results and serves as a good starting point for further extensions
to more complex binding problems.
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Appendices

A Neuron Model

In this Appendix, we analyze the neuron model of the original model [9] and
the most similar neuron model provided by NEST. Our goal is to use NEST
to obtain a neuron model with similar behavior.

A.1 Original Neuron Model

First, we conduct a detailed examination of the properties of the neuron
model used the original model [9]. Neuron models have various properties
which are significant for their behavior. These are here investigated one by
one.

Leaky Integrator Behavior. The neurons used in the original work fir-
ing stochastically. Their firing rate ρi(t) is determined their membrane po-
tential, which is given by

ui(t) =

(
1− ∆t

τm

)
ui(t−∆t) +

∆t

τm
G(t)

(
eIi(t)−IInh(t−∆t)+Ie+bi(t) − 1

)
,

(29)

where ∆t is the discrete time step, τm is the membrane time constant,
G(t) ∈ {0, 1} describes the current inhibition state of the neural space, and
Ii(t), IInh(t), and Ie are the input, inhibitory, and bias currents, respectively.
The term bi(t) implements an adaptive bias.

To examine the behavior of this model, we need to assess the behavior
of difference equations of the form

x(t) =

(
1− ∆t

τ

)
x(t−∆t) +

∆t

τ
D(t) . (30)

This models (29), assuming that G(t) = 1, i.e. the neural space is active,
and further denoting the driving input term as D(t). Then, as ∆t→ dt, we
get

dx(t)

dt
+

1

τ
x(t) =

1

τ
D(t) (31)

which is an inhomogeneous first-order differential equation. Since the mem-
brane potential starts at x(0) = 0 and remains resting without external
input, the homogeneous is the trivial solution x(t) = 0 ∀t. The inhomoge-
neous solution is given by
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x(t) =
1

τ
e−t/τ

∫ t

0
eζ/τD(ζ)dζ (32)

=
1

τ

∫ t

0
e−

t−ζ
τ D(ζ)dζ (33)

which represents a convolution between the driving input term D(t) and
the exponentially decaying response term e−t/τ . Thus, this neuron model
implements the behavior of a leaky integrator.

However, since we have ∆t > 0, this is not the actual behavior over
time, which we can derive using the Z-transform. Setting G(t) = 1 and
incorporating all terms in the exponential into a generic I(t), we may write

ui(t) =

(
1− ∆t

τm

)
ui(t−∆t) +

∆t

τm

(
eI(t) − 1

)
︸ ︷︷ ︸

=:D(t)

. (34)

Then, with ui(t)
Z←−−−→ Û(z) and D(t)

Z←−−−→ D̂(z), we obtain

Û(z) =
∆t

τm
· z

z − (1− ∆t
τm

)
· D̂(z) , (35)

which corresponds in the time domain to the convolution

ui(t) = (k ∗D)(t) (36)

between the driving input term D(t) and

k(t) =
∆t

τm

(
1− ∆t

τm

)t
. (37)

Thus, depending on ∆t and τm, the decay of the membrane potential
may be faster or slower than that of exp (−t/τ) (as derived above).

Firing Rate. The neuron membrane potential at each timestep is com-
pared to a random number U(0, 1) to determine if it spikes. Thus, the firing
rate is given by

ρi(t) =
1

∆t
max (min(ui(t), 1), 0) (38)
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where the max(·) follows from the fact that the spike rate cannot be negative
and the min() is needed since the neuron cannot spike more often than at
each timestep. An alternative notation is

ρi(t) =
1

∆t
[ui(t)]

1
0 (39)

where [·]yx denotes clipping to the range [x, y]. In the following, we will
assume that 0 ≤ ui(t) ≤ 1 and thus neglect the boundary values, i.e. we use
the identity

ρi(t) =
1

∆t
ui(t) . (40)

Next, we investigate the influence of the terms in the exponent of the
driving input term in (29).

Response to Bias Currents. The neuron model does not provide for
constant input currents other than an offset current Ie setting the average
neural activity. To investigate the response to some value of this current
after the membrane potential starts at ui(t = 0) = 0 at the beginning of
the simulation, we investigate the fixed points of (29) while setting G(t) = 1
and neglecting all other influences. This can be done by simply setting

ui(t)
!

= ui(t+ ∆t). We find that

lim
t→∞

ui(t) = eIe − 1 , (41)

thus, the time step ∆t and the membrane time constant τm do not play a
role in the steady-state solution and the membrane potential approaches the
actual value of the input current.

It follows that the steady-state firing rate ρ̄i elicited by constant current
is

ρ̄i =
1

∆t
· (eIe − 1) (42)

if refractory effects are neglected.

Response to Spike Input. The input current which arises due to incom-
ing spikes is given by

Ii(t) =
∑

j∈SFFi

wijzj(t) +
∑

j∈SFBi

wijzj(t−∆t) +
∑

j∈SRECi

wijzj(t−∆t) , (43)
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where three sums run over the feed-forward, feed-back, and recurrent con-
nections, respectively. Thus, each presynaptic spike evokes a delta-shape
postsynaptic potential (PSP) α(t) = δ(t).

A single spike at a synapse with weight w at t = 0 thus leads to a
membrane potential of Ke−t/τm . The height of the induced exponential K
can be inferred from (29) and is K = ∆t

τm
(ew− 1). Thus, neglecting all other

influences, the instantaneous firing rate evoked by a single incoming spike
at time t0 is

ρi(t0) =
1

∆t
· ∆t

τm
(ew − 1) =

1

τm
(ew − 1) , (44)

where the correction factor 1/∆t was added to obtain the firing rate in Hz.
For t > t0, the firing rate then decays with τm.

Inhibition. The inhibitory input current is given by

IInh(t) =

(
1− ∆t

τInh

)
IInh(t−∆t) +

∆t

τInh
G(t)

[∑
k

uk(t)−ΘInh

]4

−2

, (45)

where ΘInh sets the target average activity and [·]yx denotes clipping to the
range [x, y] as described above. The sum runs over all neurons in the neural
space, thus, the inhibition current is a filtered version of the neuronal ac-
tivity. The inhibition current is the same for every neuron within a neural
space.

Similar to the membrane potential, this equation resembles a leaky in-
tegrator of the form of (31).

This abstract model of inhibition of neural spaces is problematic since
it assumes that a neuron has knowledge of the membrane potential of other
neurons in the neural space. However, this is not the case: the only informa-
tion being transmitted between neurons is the presence of absence of spikes.
Thus, a biologically realistic model will implement the inhibition current in
a different form.

Excitability. Neurons change their excitability due to an adaptive bias
bi(t) in (29), which increases their firing probability and thus their response
to input. The value of this bias at timestep t is computed as

bi(t) =

{
bi(t−∆t) + 0.05(1− bi(t−∆t)) if neuron i has spiked at time t

bi(t−∆t)e−∆t/τb else
,

(46)
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with a time constant τb for the decay. It follows that value of the bias is
bound to bi(t) ∈ [0, 1], furthermore, the first spikes evoke the largest increase
of bi(t).

If the neuron is not inhibited, i.e. G(t) 6= 0, and bi(t) assumes large
values, then this may itself lead to a high spiking probability even in the
absence of any input.

Refractoriness. The neurons in the original model undergo a refractory
period ∆abs after emitted a spike. During this phase, their membrane poten-
tial is set to zero, which is the initial value at the beginning of simulations
and also the value used when ∆abs has passed. During this period, no re-
sponse to incoming spikes or currents is present, also, the bias current has
no effect.

The length of the refractory period is sampled from a uniform distribu-
tion U(1, 6) ms. This prevents neurons from becoming locked in periodic
spiking patterns.

If an additional bias current is injected into neurons, a relative refractory
period is present in a way since the membrane potential needs some time
to reach the steady-state value after it has been reset to zero after ∆abs has
ended.

Obviously, this refractory time period and the reset will alter the re-
sponse to constant currents. The actual mean firing rate will be smaller
than ρ̄i calculated above.

Synaptic Plasticity. The STDP model in the original model is

∆wij(t) = η
∑

k: t
(k)
j <t

(
exp

(
t− t(k)

j

τ+

)
−A−

)
(47)

where the sum runs over the recent presynaptic spikes, A− determines the
negative offset, and η is a learning rate. This learning rule is adapted from
the hard winner-take-all (WTA) rule described in [36] and is sometimes re-
ferred to as SEM rule after the spiking expectation maximization performed
by neurons using it.

Summary. This neuron model implements a leaky integrator with proba-
bilistic firing depending exponentially on the membrane potential (cf. Sec-
tion 2.1). Problematic is the implementation of the inhibition, which is
modeled in a biologically implausible way. Furthermore, for implementa-
tion, the learning rule for synaptic plasticity is problematic, since it differs
from the standard form STDP.

65



Appendices

Some differences to other neuron simulators may arise from the handling
of time. In the simulations performed with the original model, spikes are
forced on grid due to the time resolution ∆t = 1 ms. More sophisticated
simulation techniques for inhomogeneous Poisson processes may allow for
spikes to occur at any time. Furthermore, all firing rates are relative to the
time step ∆t in [9], so a conversion factor is needed to obtain the actual
spike rate in Hz.

A.2 The NEST Neuron Model pp psc delta

As described above, we consider the case of delta-shaped PSPs. NEST pro-
vides a host of neuron models with this behavior indicated by the suffix
psc delta in their name, like the leaky Integrate-and-Fire (LIF) model
iaf psc delta. If the membrane time constant τm and the membrane ca-
pacity Cm are to appropriate values, the desired behavior of the membrane
potential can be achieved with these models, assuming the input terms are
the same.

However, the desired behavior for the neurons is not deterministic (like
LIF neurons), but rather stochastic. Therefore, we will base our implemen-
tation in NEST on the NEST neuron model pp psc delta, which produces
spikes according to a Poisson process. The rate of this process depends on
the membrane potential, which behaves according to the desired behavior
specified above with respect to input currents.

Firing Rate. Spikes of pp psc delta neurons are drawn from an inho-
mogeneous Poisson process with firing rate

ρi(t) = c1 · V ′i (t) + c2 · ec3·V
′
i (t) (48)

where c1, c2, and c3 are freely adjustable parameters. V ′i (t) called the effec-
tive membrane potential and is calculated from

V ′i (t) = Vi(t) + bsfa(t) , (49)

where bsfa(t) is an adaptive bias which can be used to model spike-frequency
adaptation. The resting membrane potential is fixed to 0 mV for this neuron
model.

In the original model, the time step ∆t was 1 ms, so at the maximum
spiking probability of ui(t) ≡ 1, the neuron would spike at rate of 1/ms if
the absolute refractory period is neglected. In NEST, the time resolution is
∆t = 0.1 ms, so spikes may occur more often. Furthermore, in the original
model, ui(t), which decays with τm, directly resembles the spike rate, while
in NEST model pp psc delta, the exponential is applied when computing

66



Appendices

the instantaneous rate, but the decay is applied to the (distinct) membrane
potential. However, this difference only introduces minor chances to the
final spiking probability.

With the original model, ui(t) models the spiking probability directly,
while in NEST, it is possible to define a custom mapping between Vi(t) and
the instantaneous firing rate ρ(t) of the neuron. For example, to get a firing
rate of ρ1 at the membrane potential of Vρ1, we can set the parameters c1, c2,
and c3 for (48) depending on the desired neuron behavior:

• Linear rate. We set c2 = c3 = 0 and c1 = ρ1/Vρ1 to get a linear
behavior. For Vi(t) < 0, the firing rate will be set to zero.

• Exponential rate. The exponential term is always greater than one,
thus, ρ(V = 0) = ρ0 6= 0. To get an exponential mapping of Vi(t) ∈
[0, Vρ1] → ρ(t) ∈ [ρ0, ρ1], we set c1 = 0, c2 = ρ0, and c3 = 1

Vρ1
ln ρ1

ρ0
.

The value for ρ0 may be chosen sufficiently small.

Since the neuron we wish to model shows exponential behavior, we will
assume c1 = 0 in the next subsections.

Membrane Potential. The membrane potential Vi(t) is computed in
NEST using

Vi(t) = e−∆t/τmVi(t−∆t) + (1− e−∆t/τm)
Rm
1000

(Ii,c(t−∆t) + Ie) + Ii,s(t) .

(50)

The denominator of 1000 yields from the units used in NEST. This
neuron model provides for incoming currents Ii,c(t) as well as for currents
Ii,s(t) evoked by incoming spikes. Note the absence of any scaling factor to
the latter, resulting in completely different handling of currents (including
the bias) and spikes. Furthermore, it is important to note that the ∆t is
different to the one in the original model.

The two input currents are given by

Ii,c(t) =
∑
j

wijIj(t) (51)

Ii,s(t) =
∑
j

wijzj(t) (52)

where the w terms are weights, Ij(t) is current from current generators, and
zj(t) = 1 is a presynaptic neuron has spiked.

To see the behavior of the membrane potential for some time-varying

input, we first set Ii,c(t)
!

= I(t) while neglecting Ie and Ii,s(t). Thus, we
obtain
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Vi(t) = e−∆t/τmVi(t−∆t) + (1− e−∆t/τm)
Rm
1000

I(t) . (53)

Using the Z-transform with Vi(t)
Z←−−−→ V̂ (z) and I(t)

Z←−−−→ Î(z),
this equals

V̂ (z) = (1− e−∆t/τm)
Rm
1000

· z

z − e−∆t/τm
· Î(z) (54)

in the Z-domain, which corresponds to

Vi(t) = (1− e−∆t/τm)
Rm
1000

· (k ∗ I)(t) (55)

which is a convolution between I(t) and

k(t) = exp

(
−t∆t
τm

)
= exp

(
− t

τ ′m

)
(56)

with a modified time constant τ ′m = τm/∆t.

The response to a current elicited by incoming spikes Ii,s(t)
!

= J(t) sim-
ilarly is

Vi(t) = (k ∗ J)(t) , (57)

however, the scaling factor is absent.
In summary, we see that the neuron responds to both currents resulting

from current generators or the bias as well as from incoming spikes with a
leaky integrator response, however, currents and spikes are treated some-
what differently, with no possibility to scale the response to spikes other
than applying a uniform scaling to all weights on ingoing synapses.

Response to Current Input. Assuming a constant input current I,
which may either be the bias current (I = Ie) or some weighted constant
external current (I = wIi,c), and neglecting all other input, we may compute
the steady-state response similar to above by setting Vi(t) = Vi(t−∆t) and
obtain

lim
t→∞

Vi(t) =
Rm
1000

I . (58)
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It follows that the steady-state firing rate ρ̄i elicited by constant current
is

ρ̄i = c2 exp

(
c3
Rm
1000

I

)
. (59)

Similar to the original neuron model, the real firing rate of neurons with
a constant current will be smaller than this due to refractory effects.

Response to Spike Input. As we have done above, we compute the
instantaneous firing rate at the time of an input spike t0 neglecting all other
influences. We set Ii,s(t0) = w and obtain the membrane potential at t0

Vi(t0) = w , (60)

and thus,

ρi(t0) = c2 ec3w . (61)

Afterwards, Vi(t) decays exponentially, as shown above.

Excitability. The NEST neuron model pp psc delta features an adap-
tive excitability changing mechanism to implement spike-frequency adapta-
tion (SFA) through bsfa(t) in (49). At each spike, the bias is increased by
some fixed quantity qsfa, which may be positive or negative. It then decays
with some time constant τsfa. Since the bias is not bounded in any way,
it may easily lead to instabilities, i.e. persistent excitation of the neuron if
qsfa is chosen too large. If the values of qsfa and τsfa are kept in the stable
regime, the initial changes in excitability are small after bsfa(t) was zero. In
comparison, the first changes within the original model may rapidly increase
the bias due to the value-dependency of the update.

The role of the adaptive excitability in the original model is to lead to a
high excitability of individual neurons after they have been active for some
time period during the presentation of an input pattern. The adaptive bias
may furthermore have a role in learning as it facilitates multiple consecutive
spikes of a neuron and therefore weight updates. In comparison to the
bounded mechanism, using the SFA model of the pp psc delta model may
prove to be more complicated.

Refractoriness. The neuron model pp psc delta allows the use of an
absolute refractory period ∆abs during which the membrane potential is
clamped to zero. Incoming spikes and currents are ignored. The length of

69



Appendices

∆abs can either be fixed or sampled from a Γ-distribution with parameters k
and µ. While k is the usual shape parameter (often denoted α), µ relates to
the more common parameterization of Γ-distributions using a rate parameter
via β = k/µ [67].

The membrane potential after a reset is always set to zero, which is
somewhat surprising since when using an exponential rate, depending on
the parameters c2 and c3, the firing rate may be quite large at this value of
Vi(t).

Neural Space Inhibition. In the original model, neural spaces can either
be completely inhibited or disinhibited. This is a key operation for the
functions of the neural circuit. The disinhibition state is given by the term
G(t) ∈ {0, 1} which enters the update equation for the membrane potential
(29).

NEST neuron models like pp psc delta provide no direct mechanism for
this operation, however, the inhibition of entire neural spaces can be per-
formed by inducing a strong external bias current into the neurons within the
neural space. This current can be provided by a step current generator

which can be activated and deactivated at specific times depending on the
desired state of the neural space.

Summary. The NEST neuron model described shows many generic fea-
tures similar to the neuron model in the original work. Spikes are generated
in a stochastic manner with the firing rate depending on the current mem-
brane potential. This membrane potential also behaves as a leaky integrator.
At some point, an exponential is applied in the calculation of the firing rate
from the inputs.

In comparison to the original neuron model, the design of pp psc delta

differs in several important ways:

• Exponential decay of membrane potential. While the membrane
potential also decays exponentially, the NEST model more closely fol-
lows the target of obtaining a response with e−t/τ . In the original
model, the decay is slightly faster.

• Firing rate. In the original model, the membrane potential directly
gives the firing rate; this is not the case with the NEST neuron model.

• Application of exponential. The original model first applies the
exponential to inputs to get the membrane potential. In the NEST
model, the membrane potential also decays, but the exponential is
only applied when computing the rate as a function of it.

• Minimum firing rate. The original model produces spikes at a rate
of zero if no input is present due to the offset of -1 to the exponential.
This is not present in the second model, thus, even for negative inputs,
the firing rate will be non-zero.
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• Treatment of spikes. The NEST model treats spike complete dif-
ferent from incoming currents.

Furthermore, in the original work, neuron properties are modeled in a
rather abstract way, while in NEST, each parameter has precise units assign
(e.g. input currents are given in pA).

A.3 Mapping the Neuron Behavior to NEST Neuron Models

Since we wish to replicate the behavior of the model presented in [9], we want
to model the individual neurons as closely as possible. This way, we may use
the same parameters and hyperparameters to achieve similar functionality.
In this section, we investigate the possibility of doing so using the NEST
neuron model described in the previous section as a starting point.

One way of attempting to map the behavior of the original model onto
a pp psc delta neuron would be to set the parameters of the latter so that
the responses to constant current input and change of instantaneous firing
rate are identical. We will investigate this approach in the next section.

Problems of pp psc delta. Neglecting the different decay of the two
models, it would suffice to find parameters which lead to the same steady-
state firing rate ρ̄i for constant input current and the same instantaneous
firing rate ρi(t0) at spike arrival. For the sake of clarity, we will denote terms
which occur in both the original model and from the NEST neuron model
with the subscripts A and B for the original model and the NEST model
under investigation, respectively. The steady-state responses for currents
were derived above in (42) and (59). We set them to be equal and obtain

1

∆tA
· (eI − 1)︸ ︷︷ ︸
ρ̄A

= c2 exp

(
c3
Rm
1000

I

)
︸ ︷︷ ︸

ρ̄B

(62)

where can we see that identical behavior cannot be reached. If for large I we
approximate (eI − 1) ≈ eI , we would obtain c2 = 1/∆tA and c3 = 1000/Rm.
However, since we want ρ̄B ≈ 0 for small I, we need c2 � 1, which is
not the case when setting c2 in this way. Furthermore, we obtain different
parameters than these (and the same problem of incoherence) when trying
to match the change in instantaneous firing rate described above in (44) and
(61) by setting

1

τm
(ew − 1)︸ ︷︷ ︸
ρA(t0)

= c2 ec3w︸ ︷︷ ︸
ρB(t0)

. (63)

Therefore, changes to the NEST neuron model are necessary.
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Figure 23: Distribution of ∆abs using parameters which yield a similar value range
to the original model.

Description of the New Neuron Model pp psc delta mod. To ad-
dress the problem of the missing negative offset of the exponential term and
also the absence of a scaling term for spike responses, we create a new NEST
neuron model pp psc delta mod based on the model described above, but
with (50) – the update equation for Vi(t) – replaced by

Vi(t) = e−∆t/τmVi(t−∆t) + (1− e−∆t/τm)
Rm
1000

(Ii,c(t−∆t) + Ie)

+ zscaleIi,s(t) (64)

and the equation for the calculation of the firing rate (48) replaced by

ρi(t) = c1 · V ′i (t) + c2 · (ec3·V
′
i (t) − 1) . (65)

A complete description of the new neuron model is given in Appendix B.1.
With these changes in the model behavior, we still cannot entirely achieve
identical behavior, but we can reach somewhat similar functionality. We
will next derive the parameters required to reach this goal.

Parameter Selection. First, we set the parameters for the random distri-
bution of the absolute refractory period ∆abs for the NEST neurons, which is
drawn from a Γ(k, µ) distribution. To obtain the same mean value E [∆abs]
as in the original model, we set k = 4 and µ = 3.5 ms (Figure 23) which
results in roughly the same value range.

As we have done above in Section A.3, we compare the steady-state
responses for input currents to derive c2 and c3. From

1

∆tA
· (eI − 1) = c2

(
exp

(
c3
Rm
1000

I

)
− 1

)
(66)
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Figure 24: Match of neuron response to input currents. Neurons exhibit absolute
refractory periods as described in the text. A: Neuron firing rate as a function of
the bias set. B: Neuron firing rate as a function an input current. For the base
model, the bias was used to set the current, as the model has no provisions for
currents from external sources. Note that the base model clips at ρ = 222 Hz
since E [∆abs] = 3.5 ms and at maximum one spike can be generated per timestep
(with ∆t = 1 ms). NEST runs by default at ∆t = 0.1 ms, thus generating a much
smoother curve and allowing for a higher maximum spike rate.

it now directly follows that setting c2 = 1/∆tA and c3 = 1000/Rm will
lead to identical behavior. The match of neuron spike rate is depicted in
Figure 24.

Next, we investigate the response to incoming spikes to find a good value
for the newly introduced parameter zscale. As above in Section A.3, we may
try to set the increase in instantaneous firing for both models equal. This
now yields

1

τm
(ew − 1) =

1

∆tA

(
exp

(
1000

Rm
zscalew

)
− 1

)
(67)

where we clearly cannot set zscale so that this equation holds for all values
of w. (The problem arises from the different amplitudes of the increments
of the firing rate in the original model for currents elicited by input spikes
and the bias.) However, since the identity holds for w = 0, we may adjust
zscale so the response matches some fixed value wmatch, where one possible
choice for wmatch is the maximum allowed weight in the model. We obtain

zscale =
1

c3wmatch
log

(
∆tA
τm

(ewmatch − 1) + 1

)
, (68)

which for the maximum allowed weight in the original model wmatch =
wmax = 0.8 results in a scaling factor of zscale = 1.45 ·10−3. In practice, how-
ever, this does not lead to an accurate matching of f-f curves (neuron spike
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rate vs. input spike rate)10. We empirically find that using zscale = 5 · 10−4

leads to an acceptable qualitative match (Figure 25).
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Figure 25: Match of neuron response to input spikes. Displayed is the firing rate of
a single neuron as a function of the spike rate of incoming spikes for different weight
values. Neurons exhibit absolute refractory periods, all parameters are chosen as
described in the text. No bias current is used. The important range for matching
is ρinput ∈ [0, 2500] Hz since in the original model, 25 input units firing at 100 Hz
each are used per pattern.

Synaptic Plasticity. Finally, we consider the synaptic learning rule. Synap-
tic plasticity in NEST does not depend on the neuron model, but is governed
by specific synapse models which can be parameterized and combined in var-
ious ways. The standard STDP synapse model provided by NEST follows
[34] and uses a learning window of

∆w(∆t) =

{
A+ · e−|∆t|/τ+ if ∆t ≥ 0

A− · e−|∆t|/τ− if ∆t < 0
(69)

where τ+, τ− > 0, and

10Calculating zscale using (68) does not take into account three differences in the models:
first, the different expected number of spikes

∫
ρ(t)dt differs even when the increase at spike

arrival is the same as the decays do not match exactly, second, the refractory periods are
not identical, and probably most significantly, the way spikes are drawn from the current
firing rate does not follow the same procedure.
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Figure 26: Learning rule measured from NEST using stdp synapse sem with α = 0,
τ+ = 20 ms, and A− = 0.35. This corresponds to the learning rule used in the
original model for feed-forward connections.

A+ = λ(1− w)µ+ and (70)

A− = −αλwµ− . (71)

Using this parameterization, the behavior of the original model (47)
cannot be achieved. In particular, the allowed range for τ+ and τ− does
not permit a constant negative offset as is achieved by the A− term in the
original.

We therefore implement a new synapse model stdp synapse sem which
performs weight updates according to (47). The resulting learning window
of the implementation as measured from NEST is shown in Figure 26. (Im-
plementation details of the synapse model are given in Appendix B.2.)
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B Description of NEST Models

B.1 Description of pp psc delta mod

Neurons using the pp psc delta model fire stochastically. Spikes are drawn
from an inhomogeneous Poisson process with instantaneous firing rate

ρi(t) = c1 · V ′i (t) + c2 · (ec3·V
′
i (t) − 1) , (72)

where c1, c2, and c3 can be used to get the desired neuron behavior (linear
or exponential). The effective membrane potential V ′i (t) is calculated from

V ′i (t) = Vi(t) + bi,sfa(t) , (73)

where bi,sfa(t) is an adaptive bias which is usually used to model spike-
frequency adaptation (thus, normally bi,sfa(t) < 0), but can also be used to
model an adaptive excitability. Its values are calculated by

bi,sfa(t) =

{
bi,sfa(t−∆t)e−∆t/τsfa + qsfa if neuron i has spiked at time t

bi,sfa(t−∆t)e−∆t/τsfa else
.

(74)

The additive quantity qsfa and the decay time constant τsfa can be set
arbitrarily. It is furthermore possible to use a maximum value b̂i,sfa which
may be greater or less than zero (depending on the sign of qsfa), then, bi,sfa
is clipped to the range [0, b̂i,sfa] after each update.

The neuron’s membrane potential is computed at each time step using

Vi(t) = e−∆t/τmVi(t−∆t) + (1− e−∆t/τm)
Rm
1000

(Ii,c(t−∆t) + Ie)

+ zscaleIi,s(t) (75)

where τm is the membrane time constant, Rm is the membrane resistance,
Ie is the bias current, zscale is used to scale the effect of incoming spikes,
ant ∆t is the time step (0.1 ms by default in NEST). The currents Ii,c(t)
and Ii,s(t) result from incoming currents and spikes, respectively, and are
calculated via

Ii,c(t) =
∑
j

wijIj(t) (76)

Ii,s(t) =
∑
j

wijzj(t) (77)
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where Ij(t) are incoming currents, zj(t) are incoming spikes, and wij are
weights assigned to the specific connection.

Like pp psc delta, the modified neuron model allows the use of an abso-
lute refractory period ∆abs during which the membrane potential is clamped
to zero and both incoming spikes and currents are ignored. The length of
∆abs can either be set to a constant or drawn randomly (once at the creation
of the neuron) from a Γ-distribution with parameters shape k and mean µ.

B.2 Description of stdp synapse sem

The standard STDP synapse in NEST stdp synapse closely follows [34].
For our simulations, this model was modified to create stdp synapse sem

which implements the following equation. Weight updates are performed
using

∆w(∆t) =

{
η · e−|∆t|/τ+ −A− if ∆t ≥ 0

η · α · e−|∆t|/τ− −A− if ∆t < 0
(78)

where τ+, τ− > 0 are time constants determining the width of the learning
window, A− determines the negative offset, α determines the shape of the
depression term in relation to the facilitation term and η is a learning rate.
Using α = 0, we obtain the plasticity behavior of [9], while α > 0 gives
the most commonly used learning curve with depression of the postsynaptic
neuron fires before the presynaptic one, and facilitation if they fire in the
other order. Using α < 0 (in particular α = −1), we obtain a symmet-
ric, “Hebbian”-like learning window which leads to strong connections and
persistent activation with a network. Figure 27 shows the weight updates
measured from NEST using α = 0 and parameters used in [9]. Figure 28
shows the same curve for α = −1.
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Figure 27: Resulting STDP window for the parameters in the original model
(τ+ = 20 ms and A− = −0.35, the learning rate was set to 1). Synaptic up-
dates in NEST are triggered by presynaptic spikes, therefore, for pre-before-post,
we need an additional pre-synaptic spike at the end of the simulation to trigger the
weight update of the target pre-post pairing. However, during each weight update
depression is performed regardless of whether the postsynaptic neuron has actually
fired. This leads to the resulting raw simulation output on the left. On the right,
the corrected learning window is shown. In practice, neurons regularly spike, so
these issues should not play a significant role.
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Figure 28: Learning window for stdp synapse sem using τ+ = τ− = 20 ms, α = −1,
A− = 0.35, and η = 1. (See the caption of Figure 27 for details on the recording
process of this curve.)
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C Parameters for NEST Circuits

C.1 Parameters for NEST SWTA Circuits

The parameters used for the NEST SWTA circuits (as described in Sec-
tion 3) are given in Tables 6 and 7.

parameter unit excitatory inhibitory

Rm MΩ 10 10

Cm pF 1000 1000

τm ms 10 10

c1 Hz / mV 0 1000

c2 Hz 1000 0

c3 1 / mV 100 0

Ie pA 0.1 0

zscale 5 · 10−4 5 · 10−4

qsfa mV 0 0

∆abs ms ∼ Γ(k = 4, µ = 3.5) ∼ Γ(k = 4, µ = 3.5)

Table 6: Neuron parameters.

parameter unit X→E E→E E→I I→E I→I

p 1 0.1 0.575 0.6 0.55

weight init ∼ U(0, 0.8) 0 17.39 −4.76 −16.67

weight bounds [0, 0.8] [0, 0.25]

∆syn ms ∼ U(1, 10) 1 0.5 0.5 1

STDP yes yes no no no

α 0 0

τ+ ms 20 20

τ− ms – –

A− 0.35 0.35

η 0.01 0.0025

Table 7: Network parameters including parameters for synaptic plasticity. Since
τ− is not used when α = 0, it is not given here.
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C.2 Parameters for NEST Neural Spaces

Tables 8 to 11 give the parameters used for experiments in Section 4.

Experiments without neuronal excitability. Each neuron uses the
parameters given in Table 6 above, and each space uses the E→I, I→E, and
I→I parameters from Table 7. The network parameters are given below for
the content space C and one or more variable spaces.

parameter unit X → E N → E E→E

p 1 0.1 0.1

weight init ∼ U(0, 0.8) ∼ U(0.22, 0.53) 0

weight bounds [0, 0.8] [0, 1.01] [0, 0.6]

∆syn ms ∼ U(1, 10) ∼ U(1, 10) 1

α 0 0 −1

τ+ ms 25 13 25

τ− ms 43 43 43

A− 0.4 0.17 0.5

η 0.01 0.009 0.0025

Table 8: Network parameter for content spaces including parameters for synaptic
plasticity. The E→I, I→E, and I→I parameters used are given in Table 7.

parameter unit C → E E→E

p 0.1 0.1

weight init ∼ U(0.44, 0.93) ∼ U(0.39, 0.85)

weight bounds [0, 1.27] [0, 1.26]

∆syn ms ∼ U(1, 10) 1

α 0 −1

τ+ ms 39 40

τ− ms 39 39

A− 0.10 0.44

η 0.005 0.008

Table 9: Network parameter for variable spaces including parameters for synaptic
plasticity. The E→I, I→E, and I→I parameters used are given in Table 7.
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Experiments with neuronal excitability. Again, each neuron uses the
parameters given in Table 6, and each space uses the E→I, I→E, and I→I
parameters from Table 7. Additionally, the neurons in the variable spaces
use an adaptive bias increment of qsfa = −0.0002 and are clipped at b̂sfa =
−0.005. The network parameters are given below for both the content space
C and one or more variable spaces.

parameter unit X → E N → E E→E

p 1 0.1 0.1

weight init ∼ U(0, 0.8) ∼ U(0.19, 0.38) 0

weight bounds [0, 0.8] [0, 0.87] [0, 0.6]

∆syn ms ∼ U(1, 10) ∼ U(1, 10) 1

α 0 0 −1

τ+ ms 25 20 25

τ− ms — — 40

A− 0.4 0.47 0.5

η 0.01 0.008 0.0025

Table 10: Network parameter for content spaces including parameters for synaptic
plasticity. The E→I, I→E, and I→I parameters used are given in Table 7.

parameter unit C → E E→E

p 0.1 0.1

weight init ∼ U(0.48, 0.86) ∼ U(0.44, 0.87)

weight bounds [0, 1.33] [0, 1.08]

∆syn ms ∼ U(1, 10) 1

α 0 −1

τ+ ms 21 37

τ− ms — 49

A− 0.28 0.52

η 0.004 0.006

Table 11: Network parameter for variable spaces including parameters for synaptic
plasticity. The E→I, I→E, and I→I parameters used are given in Table 7.
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D Parameters for Optimization Algorithms

These are the parameters used for the results shown in Figures 21 and 22.
All algorithms may perform 100 function calls, although this bound could
not be enforced on L-BFGS-B.

algorithm parameters

L-BFGS-B use gradient approximation

(otherwise SciPy 0.18.1 defaults)

Simulated Annealing T0 = 1

(local updates) Tdecay = 0.99

candidates: xnew = x + r,

ri ∼ U(−1, 1) ∀i
iterations = N

Simulated Annealing T0 = 1

(global updates) Tdecay = 0.99

candidates: xnew = r,

ri ∼ U(xmin,i, xmax,i) ∀i
iterations = N

Differential Evolution population size S = 5 ·D
iterations = N/S

(otherwise SciPy 0.18.1 defaults)

U-Decay σ0 = 1

σ̄ = 0.001

pm = 0.5

iterations = N

Table 12: Parameters for optimization algorithms.
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