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Abstract

Multi-Agent Transport Simulations (MATSim) offer the possibility to exam-
ine the mobility behavior of millions of agents on a high level of detail. Each
agent has a data-sheet with its sociodemographic data (e.g. age, sex, employ-
ment status) which can be extended by multiple further attributes. However
acquiring this data on an agent-level can be tedious, because such kind of
information is often missing due to legal restrictions as well as by sparse
micro census data in general. Because of legal restrictions such data is often
provided only in aggregated form. Thus when it comes to deducing single
individuals from such data, there arise certain caveats for processing these
data accordingly. Alternatively, to gain detailed data on an agent-level there
can be conducted household surveys, which are nevertheless expensive and
time-consuming to perform.

Therefore this master’s thesis introduces a design which addresses the prob-
lem of generating a synthetic agent population with sociodemographic data
for each agent by integrating different data sources. In case of generating
a synthetic population for the 21st district of Vienna, survey data of the
European Union Statistics on Income and Living Conditions (EU-SILC),
discrete choice models and public accessible cross-classification tables for
socioeconomics and demographics (e.g. sex by age at region) provided by
Statistics Austria were used to reassemble the real-world population.

In order to achieve this goal, cross-classification tables are processed to a set
of margin constraints and get organized in a data structure for efficiently
generating templates. These templates are subsequently used in an iterative
procedure of assigning extrapolation factors to satisfy all given margin
constraints best. This design copes with shortcomings related to scalability
which typically arise when deploying iterative proportional fitting (IPF)-
based population generation designs. Finally attributes, which can not be
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deduced from Statistics Austria in first place (income per capita and car
ownership per household), are estimated using discrete choice models. The
result is a synthetic population on an agent-level for the 21st district of
Vienna. Liable to costs, spatial data from Statistics Austria was acquired in
a grid of 250x250 meters with counts on selected person attribute combina-
tions (sex by age and sex by employment status). This grid information was
taken into consideration when finally assigning the population to spatial
entities.

Deducing single entities from cross-classification tables may not only be an
important topic in the field of transport simulations. Moreover it could also
be auspicious in the field of socioeconomic studies when it is necessary to
conclude from aggregated to detailed information.

This proposed design for generating a synthetic population allows intro-
ducing further information sources leading to improved results (i.e. the
synthetic population can be extended by additionally attributes) if the
acquired information fits the given context.
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Kurzfassung

Multi-Agenten Transport Simulationen (MATSim) bieten die Möglichkeit,
das Mobilitätsverhalten von mehreren Millionen Agenten in einem hohen
Detailgrad zu untersuchen. Jeder Agent besitzt eine Liste von soziode-
mographischen Attributen (z.B. Alter, Geschlecht, Erwerbsstatus), welche
um viele weitere Attribute ergänzt werden kann. Hinsichtlich gesetzlicher
Bestimmungen und fehlender Verfügbarkeit von Mikrozensus Daten ist es
schwierig, Informationen zu diesen Attributen auf Einzelpersonenebene zu
erhalten. Diese Informationen liegen aufgrund von gesetzlichen Beschränkun-
gen zumeist nur in aggregierter Form vor. Für das Ableiten von Einzelper-
sonen aus aggregierten Daten ist eine adäquate Informationsverarbeitung
notwendig. Alternativ können auch Haushaltsbefragungen durchgeführt
werden, um Informationen zu Einzelpersonen zu erhalten, jedoch sind diese
teuer und zeitaufwendig in der Durchführung.

Diese Masterarbeit beschäftigt sich mit der Aufgabenstellung zur Gener-
ierung einer synthetischen Agentenbevölkerung mit soziodemografischen
Attributen für jeden der Agenten. Für diese Umsetzung wurden verschiedene
Datenquellen verarbeitet. Für die Erzeugung einer synthetischen Bevölkerung
für den 21. Wiener Gemeindebezirk wurden Befragungsdaten der Europäis-
chen Gemeinschaftsstatistik über Einkommen und Lebensbedingungen,
diskrete Wahlmodelle und frei zugängliche Kreuzklassifikationstabellen für
soziodemographische Daten (z.B. Geschlecht je Alter in einer bestimmten
Region) verwendet, um die Bevölkerung realitätsnah nachzubilden.

Für die Lösung dieser Aufgabenstellung wurden Kreuzklassifikationsta-
bellen zu einer Menge von Randsummen verarbeitet und in einer Daten-
struktur organisiert, die es ermöglicht Agentenvorlagen zu erzeugen. Diesen
Vorlagen wurden iterativ Hochrechnungsfaktoren zugewiesen, um alle
Randsummen schrittweise zu erfüllen. Dieses Vorgehen bietet die Möglichkeit
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mit Unzulänglichkeiten hinsichtlich der Skalierbarkeit, die typischerweise
bei der Erzeugung synthetischer Bevölkerungen per Randsummenausgle-
ich auftreten, umzugehen. Attribute, welche nicht von den Informatio-
nen in Kreuzklassifikationstabellen abgeleitet werden können (Pro-Kopf-
Einkommen und Fahrzeugbesitz im Haushalt), werden mithilfe von diskreten
Wahlmodellen geschätzt. Das Ergebnis ist eine synthetische Bevölkerung auf
Einzelpersonenebene für den 21. Wiener Gemeindebezirk. Darüber hinaus
wurden räumliche Informationen bezüglich der Anzahl gewisser Kombi-
nationen von Soziodemographien (Geschlecht je Alter und Geschlecht je
Erwerbsstatus) in einem Raster von 250x250 Metern von Statistik Austria
erworben. Mithilfe dieser Daten wurde schlussendlich die erzeugte syn-
thetische Bevölkerung auch räumlichen Zonen zugewiesen.

Das Ableiten von Einzelpersonen aus aggregierten Informationen stellt bis-
lang ein interessantes Thema im Bereich der Verkehrsplanung dar. Zukünftig
könnte dieser Ansatz auch im Gebiet der Sozialwissenschaften Anwendung
finden, da detaillierte Informationen zu soziodemographischen Attributen
von Einzelpersonen benötigt werden und diese zumeist aggregiert vor-
liegen.

Dieser Ansatz für die Generierung einer synthetischen Bevölkerung erlaubt
es, weitere Informationsquellen einfließen zu lassen (z.B. die Erweiterung
der synthetischen Bevölkerung um zusätzliche Attribute), um verbesserte
Resultate zu erhalten. Hierfür ist zu beachten, dass die zusätzlichen Daten
dem bisher gegebenen Kontext entsprechen.
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1. Introduction

As past has shown, the need for more fine-grained transport simulations
has become more important in recent times. Due to more powerful compu-
tational systems as well as additional research in the fields of transportation
planning and computer science, it is nowadays possible to simulate the
mobility patterns of each person within a simulation concurrently. Simula-
tion tools which simulate the real-world mobility behavior on such a fine
level of detail are called microsimulation tools. One of those is the open
source Multi-Agent Transport Simulation (MATSim) model. Internationally
MATSim models have become more popular in the field of transport simu-
lation and traffic models. MATSim offers a microscopic transport simulation
environment, which is important to provide with fine-grained information
on mobility behavior as well as on sociodemographic data of the agents.

In general there are three different types of transportation simulation envi-
ronments. There are macroscopic, mesoscopic and microscopic simulation
environments.

Macroscopic models take a look at traffic flows at a much lower level of
detail. Therefore such models can on the one hand easier be maintained but
on the other hand also more impractical for the purpose of investigating
changes in the context of microsimulations (e.g. introducing and evaluat-
ing further modes of transport like bikesharing, carsharing, autonomous
vehicles, taxis). Mesoscopic models are some kind of mixture of macro-
and microscopic models. Macro- and mesoscopic models use representative
person groups (allocation of the population to predefined sociodemographic
groups) to depict different sociodemographic specific mobility patterns.

In contrast to these models, a MATSim model handles each agent on its
own, whereas an agent can in fact have a detailed and potential arbitrarily
expandable character table. Within a microsimulation like MATSim, it is,
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1. Introduction

in comparison to macroscopic and mesoscopic transport simulations, thus
even more of a concern to provide sound and detailed input data. Microsim-
ulation environments, such as MATSim, allow more conclusive analysis of
traffic-flow behavior depending on sociodemographic characteristics.

As the input data on which a MATSim model is based upon becomes
more detailed, the results from this MATSim model for e.g. site evaluation,
traffic analysis and predicting potential impacts of future infrastructure
planning projects, also become more conclusive. Thus providing as fine-
grained information as possible is vital. Therefore it is an important task to
generate a synthetic population which depicts the real-world population as
good as possible.

Related work, which aimed on creating a near real-world population, are
often based on iterative proportional fitting (IPF) designs [1] [15] [14] [26] [7]
with additional Monte-Carlo-Sampling [26] [15] strategies in order to de-
duce population information to a single entity level. Moeckel, Spiekermann
& Wegener [14] generated a synthetic population for Switzerland, where
they allocated sociodemographic data to persons as well as the geographic
positions to households (HH) by deploying Geographic Information Sys-
tem (GIS) techniques. Müller & Axhausen [15] introduced a two-step IPF
approach to generate the population of Switzerland, by introducing fitting
of the person as well as of the household domain. The IPF-based designs
proposed by Zhu & Ferreira [26] and Adiga et al. [1] were quite similar to
the one introduced by Moeckel, Spiekermann & Wegener. Farooq et al. [7]
proposed an approach for generating a synthetic population by deploying a
simulation based Markov-Chain-Monte-Carlo (MCMC) approach and pro-
cessing information of cross-classification tables specific to a certain spatial
region.

These introduced approaches are based on marginal sum information of
population attributes, such as the total count of female persons in a certain
region. These sums are processed and subsequently allocated to person
templates. The basic idea behind these articles is to conclude from marginal
distributions of attributes to a joint distribution and eventually to deduce
single person entities from the resulting joint distribution. A further ap-
proach on how to deal with synthetic population generation, was proposed
by Anderson et al. [2], who applied the concept of discrete choice models
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1. Introduction

for deducing information on household compositions in Switzerland. This
article advertises the application of discrete choice models in the context of
synthetic population generation.

The aim of this master’s thesis is to generate a synthetic population for the
21st district of Vienna, Floridsdorf, relying on free statistical input data from
Statistics Austria as well as on non-public available data of the European
Union Statistics on Income and Living Conditions (EU-SILC) household
survey [21].

In this survey, which was conducted in the year 2014, approximately 13,000

Austrian citizen took part. The statistics data, given as cross-classification
tables, are processed in a data structure to identify possible templates
(e.g. eliminate five year old parents). The resulting templates are fit to the
counts given in the cross-classification tables, i.e. the templates are assigned
extrapolation factors. Subsequently, using discrete choice models and rule
matching, the resulting population is allocated to families and moreover
to households. Finally the income per capita and the car ownership of
each household are estimated by considering parameters deduced from
the EU-SILC household survey through deploying discrete choice models.
To conclude this work, the households and their inhabitants are allocated
to spatial regions by considering spatial information on “sex by age” and
“sex by employment status” given in a grid of 250x250 meters provided by
Statistics Austria.

Chapter 2 introduces related work for synthetic population generation,
which we took in consideration for defining our own design for popula-
tion synthesis. The approaches, we eventually took in consideration, were
based upon cross-classification tables [7] for deducing a baseline popula-
tion, discrete choice models for refining the population [7] and finally GIS
techniques for allocating the population to spatial entities [14].

Chapter 3 shows the technical background of this work. It is presented
how MATSim models are defined. Moreover it is highlighted their need
for sound input data. Furthermore the input data of Statistics Austria are
presented. We processed these data in a tree structure and encoded the
resulting leafs (i.e. templates) using a custom 64 bit-mask. Subsequently
multinomial logit models are introduced and there is a description how
discrete choice models can be based upon those. Eventually parameters

3



1. Introduction

which can be deduced by applying Maximum Likelihood Estimation (using
BIOGEME [4]) on a discrete choice model are discussed by considering a
small example.

Chapter 4 shows the two steps of the technical realization of our design, on
how to decompose information of Statistics Austria data to an individual
level. The first part deals with the task of setting up a proper tree struc-
ture which is needed to create all possible templates, whereas each level
of the tree corresponds to another characteristic of the person, family or
household. Thus there is the need for coping with the size of this tree,
as the characteristics count increases, so does the tree. In the second part
the templates get assigned extrapolation factors according to the margin
constraints given in the cross-classification tables, therefore resulting in a
set of weighted person, family and household templates. Eventually using
discrete choice models the population is extended by the characteristics of
income per capita and car ownership per household. Finally we conclude
our population by allocating the population to grid elements.

Chapter 5 presents the results we gain by performing the design introduced
in the previous chapter. Information on the generated population with
respect to certain characteristics as well as on the runtime for creating the
synthetic population of the 21st district of Vienna are presented .

Chapter 6 discusses the resulting synthetic population and evaluates the
introduced design. Limitations as well as strengths are highlighted.

Finally Chapter 7 concludes this work and presents possible future work in
the field of synthetic population generation as well as further possible fields
of application for populations created by our introduced design.
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2. Related Work

This chapter presents a review of already existing approaches for generating
synthetic populations with respect to depicting the real-world population
best. In this field of research there is a wide range of articles which deploy
iterative proportional fitting (IPF) approaches for on the one hand generating
populations [1] [15] [14] [26] and on the other hand for benchmarking their
own proposed approaches [7]. In this chapter we put six articles on the slate,
which we used for analysis of the deployed methods. The following sections
will elaborate on the deployed techniques presented in the articles. The
different deployed methods result in synthetic populations with different
scopes of application. In general the created synthetic populations differ with
respect to the spatial level, activity profile of the single persons, household
composition, additional household characteristics and moreover household
dwelling types.

This chapter is organized by the deployed methods given in the arti-
cles. Firstly there are presented approaches which deployed IPF-based
approaches and the outcomes of those. Secondly approaches which used
discrete choice models for deducing additional information are shown. The
additional information were not present in first place when generating the
baseline population. Thirdly a work which deployed Markov- Chain-Monte-
Carlo (MCMC) Simulation and Gibbs sampling is shown. Subsequently
there is introduced an approach, where statistics on trip and travel behavior
are assigned to the population s.t. the population also depicts the real-world
population with respect to the mobility behavior. Finally approaches which
deployed Geographic Information System (GIS) techniques for allocating
the population to spatial entities, are stated.
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2. Related Work

Martial Status (MS) Count

Single 802,056

Married 669,429

Divorced 109,352

Widower 180,901

Gender (G) Count

Male 847,483

Female 914,255

Table 2.1.: Margin sums of characteristics “Martial Status” and “Gender” of Vienna citizen.

2.1. Iterative Proportional Fitting

IPF is a commonly used technique, when it comes to population synthe-
sis [5]. The idea of this method is to deduce single person entities with
characteristics by processing marginal sums (see Table 2.1). These marginal
sums hold information on the totals of selected population characteristics,
such as counts of female and male persons as well as counts of single,
married, divorced and widowed persons within a certain spatial region.
Considering these values, we want to deduce single person entities with
characteristics of “martial status” and “sex”. Initially a N-dimensional ma-
trix, which is referred to as contingency table (CT), is set up and (in the most
trivial case) filled with values equally one. Whereas N corresponds to the
number of characteristics we want to take in consideration for our synthetic
population. By filling the CT with values unequal to one, it is possible to
take into account correlation between certain characteristics (e.g. younger
people tend to be more often single). Iteratively the values in the matrix are
adjusted to meet the marginal sums (see Table 2.2) present in the column
and row. In case the input marginal sums are deduced from the real census
data, the IPF procedure will almost perfectly meet the marginal sums in a
reasonable number of iterations by design. Due to the computational, as
well as the memory overhead, which arises when deploying this method
by introducing a further dimension for each additional characteristic we
want to synthesize, this approach is limited. Nevertheless to use this ap-
proach efficiently, there is the need for deploying heuristics for mitigating
the computational overhead.

The study of Moeckel, Spiekermann & Wegener [14] introduced an IPF-based
approach for generating a population with characteristics for the domains
“sex”, age”, “religion” and “work location”. The resulting population was
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MS\G Male Female

Σ 847,483 914,255

Single 802,056 1 1

Married 669,429 1 1

Divorced 109,352 1 1

Widower 180,901 1 1

MS\G Male Female

Σ 847,483 914,255

Single 802,056 401,028 401,028

Married 669,429 334,714 334,714

Divorced 109,352 54,676 54,676

Widower 180,901 90,450 90,450

MS\G Male Female

Σ 847,483 914,255

Single 802,056 385,828 416,227

Married 669,429 322,028 347,400

Divorced 109,352 52,603 56,748

Widower 180,901 87,022 93,878

MS\G Male Female

Σ 847,483 914,255

Single 802,056 385,828 416,227

Married 669,429 322,028 347,400

Divorced 109,352 52,603 56,748

Widower 180,901 87,022 93,878

Table 2.2.: Initial setup of the IPF procedure. Subsequently cell values are alternating
adjusted to satisfy row and column margin values as good as possible. After
a few iterations the sums given in the cells will converge to the values of the
margin sums.

subsequently allocated to households with the aid of Monte-Carlo-Sampling.
In the process of allocating, there were also assigned household character-
istics (like the number of cars and the household income). Monte-Carlo-
Sampling is limited by the possibility of determining relationships among
person characteristics as well as among household’s characteristics.

Within the scope of the article of Adiga et al. [1], there was created a
population by deploying IPF techniques. There was deduced a population
with individual and household level characteristics such as “age”, “sex”,
“martial status”, “household size” and “location”. For modeling correlations
between certain characteristics, like “age” and “martial status” (which do in
fact highly correlate) there was used a 5% sample of the actual population
micro census data to seed the matrix accordingly.

Furthermore Zhu & Ferreira [26] applied an IPF procedure for population
synthesis. This procedure differs from the typical IPF because there has been
implemented a two-stage IPF. Within the first procedure the population
was generated for a certain spatial area, similar to the other IPF-based
approaches presented in related work. In the second IPF procedure, the
population was assigned to a more disaggregated spatial level. Thus there
were processed building and parcel data, the population was also fit to
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those in an iterative proportional fitting procedure.

Müller & Axhausen [15] proposed a design for performing IPF on two
domains. Alternately the household and person domain were fitted to the
margin sums of certain sociodemographic characteristics. By switching
between the domains an entropy-optimizing fitting step is performed. Hier-
archical IPF (HIPF), as this design is called was applied in order to generate
a synthetic population for Switzerland, based upon a 5% sample of the
Swiss census. The results showed, that the population which was gained by
this approach, approximately met the quality and performance of former
approaches, that also deployed iterative proportional updating and entropy
optimization for population synthesis. A great caveat of this approach was
when applying the household expansion factors, the individual person do-
main expansion factors, were mitigated. The reason for this is, as from the
household domain of view, the persons within each household are treated
the same without considering the already allocated expansion factors.

For benchmarking their presented approach, Farooq et al. [7] generated
a synthetic population based upon IPF, in order for evaluating his newly
introduced MCMC-based approach. The actual approach introduced by
Farooq et al. for population synthesis is introduced in more detail in Sec-
tion 2.3. The generated population differed in four characteristics (“age”,
“sex”, “household size” and “level of education”). The two generated popu-
lations, IPF- and MCMC-based, were compared to the actual micro census
data of the Swiss population by considering the joint distributions of the
four characteristics present in the generated populations.

2.2. Discrete Choice Models

In the identified literature there was evident a more common use of discrete
choice models (DCM) for population synthesis [2] [7] in the recent past.
Actually this technique was often deployed to add further characteristics
to baseline populations. As a result of deploying DCMs, the population
can become more detailed, as certain characteristics can be estimated by
using DCMs, without having to deal with missing statistical data on these
characteristics. The idea is to use survey data to estimated parameters
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which describe the process of deciding between certain alternatives (i.e.
characteristics) on an individual level. These kind of models are often
applied in the field of transportation research for e.g. mode and location
choice [11]. A new field of application for DCMs is to apply these models
for population synthesis. In fact decission makers may not decide between
certain kind of transportation modes (as it is the case in mode choice
models), but may “decide” between different kind of sociodemographic
attributes. Defining the alternatives is a huge part of the modeling process.
It is possible to define the model to depict the decision making process
between person’s income alternatives (ranging form low to high income
levels) but also to decide if certain households may have a car available for
the inhabitants.

Farooq et al. [7] deployed this method for deducing car ownership, income
level, dwelling type and household education level of the population in order
to gain a sound synthetic population. These characteristics were deduced
one after another, as these do highly depend on each other. That means car
ownership is highly depended on the income level of the population. The
dwelling type is also highly depending on car ownership and income.

Anderson et al. [2] proposed an approach where they performed matching
of household positions to a population with the aid of DCMs. In general
synthetic populations do often lack information of dependencies between
the individual persons. For instance such information is important with
respect to the mobility behavior of the population. Anderson et al. [2] de-
ployed discrete choice models for estimating the weights of a bipartite graph
which corresponds to the problem of assigning persons best to household
positions. Finally this association problem was solved by applying the Hun-
garian algorithm [9] which solves association problems s.t. the overall utility
is optimized (i.e. the overall utility of the bipartite graph is maxed out). In
the scope of their work, they assigned the head and spouse position within
the households and concluded, that their approach may be extended in
future work. Beside allocating head and spouse position, they proposed to
also match positions such as children positions. Nevertheless due to the
application of the Hungarian algorithm, his approach scaled poorly.
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2.3. Markov-Chain-Monte-Carlo Simulation

Another approach to deduce single entity persons, recovered from the
analyzed articles, was to apply a Markov-Chain-Monte-Carlo (MCMC) sim-
ulation based approach and Gibbs sampling for synthesis. In this approach
partial joint distributions of person characteristics are processed. That means
joint distributions of sets of characteristics are organized in a Markov-Chain,
where transition probabilities correspond to the probabilities evident in the
partly joint distribution samples. As the set of joint distributions gets larger,
also the quality of different sampled populations gets closer to the real pop-
ulation. An element of the set of joint distributions can be the characteristics
of “sex”, “age” and “profession” conditioned upon a further characteristic,
e.g. “martial status”. By deploying Markov-Chains for population synthesis
we also can take in consideration previous states of the chain (memory) and
therefore create persons depending on previous states (i.e. characteristics)
by randomly drawing persons from this chain. As a matter of this design
the resulting population will approximately meet the marginal sums (as it
was the case with IPF), but it also will closely meet the joint distribution of
each of the input joint distribution statements.

Farooq et al. [7] introduced a MCMC simulation based approach for gener-
ating a synthetic population with four characteristics (“age”, “sex”, “house-
hold size” and “education level”). The aim of their work was to address
the problem of having limited data input. Based upon cross-classification
tables there were formulated constraints for the amount of each combina-
tion of a set of categories, i.e. each attribute of a category was conditioned
upon the remaining ones. These constraints were recovered from the Swiss
census, which also were used for evaluating the synthetic population with
respect to the actual population on an individual level. Subsequently these
constraints were processed by deploying Gibbs sampling for calculating the
joint distributions of the set of attributes and their categories. Results of
a generated population were presented, whereas the population differed
in four attributes: age (eight categories), sex (two categories), household
size (six categories) and education level (four categories). For evaluating
the proposed approach, there was also generated a population which was
derived from the marginal counts of the four attributes of a sample of the
census, by deploying an IPF procedure. Considering the real-world pop-
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ulation and the outcomes of the IPF-based synthetic population, Farooq
et al. [7] concluded good quality of their proposed design. Subsequently
the given conditionals were depleted, i.e. there was removed information
related to “sex” within the attributes and population synthesis was redone.
Tough information was missing, the resulting joint distribution of the gener-
ated population was marginally influenced by this lack of information and
still greatly outperformed the population generated using the IPF-based
approach. The results indicated there was a good quality of the resulting
population, that furthermore almost met the real population of Switzerland,
by checking the population against the actual microcensus data with respect
to these four characteristics.

2.4. Geographic Information System

The preceding methods can be used for creating synthetic populations
without any spatial reference. To deal with this limitation, approaches have
proposed to deploy Geographic Information System (GIS) techniques for
allocating the synthetic population a spatial entitiy. Layers with information
on land-use and population density information have been intersected and
thus created cells with different levels of attractiveness for assigning persons.
By considering the different levels of attractiveness, single person entities
can be assigned to spatial entities. The final synthetic population addresses
the problem of being assigned to a spatial level, therefore allowing for more
precisely depicting reality.

After generating households and assigning persons to those, Moeckel, Spiek-
ermann & Wegener [14] allocated them to geographic coordinates. Therefore
spatial data with information on population-density and land-use within
zones was disaggregated. They deployed raster disaggregation [17], re-
sulting in a raster representation of the investigated area. Subsequently
households were randomly allocated to the cells whereas the number of
persons within the cell (i.e. weight) was taken in consideration. Due to pro-
cessing land-use as well as population-density data it was possible to further
disaggregate the population specific information in the zone. Following this
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approach synthetic populations of Netanya (City) as well as of Dortmund
were generated by Moeckel, Spiekermann & Wegener [14].

2.5. Statistics on Trip Chains

By applying the previous techniques it is possible to achieve a synthetic
population which reassembles the real-world population with respect to
sociodemographic characteristics and spatial information. For elaborating
the population there are missing activities which persons may carry out.
People carry out certain actives a day (e.g. “working”, “shopping”). In order
to add these activities to daily plans of the population, there was presented
a work, which deduced activities for the synthetic population by processing
statistics on trip chains.

Adiga et al. [1] introduced an approach on how to assign activities and
activity locations to the generated population. Each individual was assigned
a set of activities, which were recovered from activity time-use survey
data. Within the scope of this work, activity locations were finally spatially
referenced by applying a gravity model, land-use data and further sources.

2.6. Summary

The approach of Farooq et al. [7] for generating a baseline population
indicated good quality by processing cross-classification tables and applying
discrete choice models for extending a given population by additional
characteristics which were not given in first place. As it was shown by
Anderson et al. [2] it is possible to deduce household compositions by
deploying DCMs. A more auspicious application was made by Farooq et
al. [7] where they assigned income, car ownership and education level by
estimating parameters. These parameters were further used for adding the
characteristics to the generated baseline population. Therefore for adding
characteristics to populations which did lack these so far, it is advised
to estimated parameters to add certain characteristics to the persons and
households, as it was done by Farooq et al. [7]. The work of Anderson et
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al. [2] also gives an idea, on how to further deploy such models, but due to
the fitting problem (described in Section 2.2) it turned out, this approach
has poor scalability. Given a baseline population generated by deploying
MCMC and having extended this population by optional characteristics by
using DCMs, it is necessary to allocate these populations to a more exact
spatial region. As Moeckel, Spiekermann & Wegener [14] could deduce
more precise spatial information, it is advised to follow their approach but
to extend it by more and more layers s.t. the population can be allocated
more exactly.

The related work emphasizes the application of cross-classification tables
for generating the baseline population, discrete choice models for deducing
additional information (such as car ownership and income per capita) and
GIS techniques for allocating the population a spatial context. None of
the given approaches generated a synthetic population where all of these
methods have been applied concurrently.
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This chapter introduces the technical background of our work. Firstly we
introduce MATSim models and their need for sound and detailed input
data. Secondly the data sources, we base our design upon, are highlighted.
Thirdly we introduce the data structure, which is applied for efficiently
deducing templates. Subsequently we show the procedure of extrapolating
our templates by deploying an algorithm for iteratively assigning extrapola-
tion factors to those. Finally there are introduced discrete choice models for
deducing further attributes and a procedure for allocating persons, fami-
lies and households to spatial regions and moreover to geographical street
addresses.

3.1. Multi-Agent Transport Simulation

MATSim models can depict the mobility behavior of millions of agents on a
high level of detail. As there are simulated persons on an individual level, it
is possible to examine those also with respect to their socioeconomic profile.
For bringing the simulation one step closer to reality, MATSim can deal
with persons allocated to families and households. This offers the possibility
for more conclusive evaluations of dependencies between family members
with respect to their mobility behavior. In older versions of MATSim, such
households were solely identified by the persons who are living in this
household and the household income. The persons themselves differed
in the characteristics of “age”, “sex”, “car ownership” and “employment
status” [10]. Due to the limited characteristics of the persons and house-
holds, the evaluations, the models provided, also were not too conclusive.
To overcome this shortcoming, in more recent versions of MATSim, there
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are introduced object attribute files, which allow for adding arbitrary in-
formation on persons, households, vehicles, network and anything related
to this microscopic simulation environment. Nevertheless handling these
additional information accordingly and depicting the impacts, needs to be
implemented on its own and is not part of the out of the box functionality
of MATSim.

3.2. Data Sources

Our design for generating a synthetic population is based upon four differ-
ent types of data. Some of these data are not openly available, thus may lead
to costs when considering for population synthesis. Firstly we introduce
openly available cross-classification tables of the Abgestimmte Erwerbsstatistik
2013 of Statistics Austria, which are processed for generating the baseline
population [18] [19] [20]. Secondly we take a look at the EU-SILC household
survey [21] conducted in 2014 with information on the living conditions of
approximately 13,000 Austrian citizen. We used that to estimate additional
attributes of the baseline population (e.g. income per capita) by deploying
discrete choice models. Thirdly we introduce spatial layers with information
on citizen characteristics in a grid of 250x250 meters (“sex” by “age” of
the year 2015 and “sex” by “employment status” of the year 2013), which
were taken from Statistics Austria [18]. Finally we introduce coordinates of
all street addresses in Vienna (so-called address-coordinates - ACDs) with
information on citizen count per address of the year 2015. This informa-
tion was provided by a municipal department of the city of Vienna. The
following subsections introduce these four data sources.

3.2.1. Statistics Austria Cross-Classification Tables

Statistics Austria provides information of certain statistics in an aggregated
form. This information is available through the Statcube portal [18]. One of
the provided statistics is the so called Abgestimmte Erwerbsstatistik 2013 for
persons [18], families [19] and households [20]. This statistics gives infor-
mation on person’s sociodemographic profile, such as job status, commuter
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information and the combination of arbitrary further attributes within a
spatial context. Due to privacy concern reasons it is only permitted to query
aggregated information of up to five dimensions. This means the user is
for example free to query all the persons which do have the following
characteristics: “Age is < 20, Job Status is employed, Hometown is Vienna
21st district”, and so on. A CSV export of a query, which holds information
of three dimensions (i.e. characteristics) is depicted in Figure 3.1. Besides
information on persons, the statistics also provides information on house-
holds and families in the same data format, s.t. it is processable in the same
fashion as it is the case with person entities. The characteristics we processed
in the scope of this work for persons, families and households are given in
Appendix A, B and C. The counts given in the cross-classification tables are
processed line by line as extrapolation factors, which are iteratively assigned
to templates such that the citizenship of 2013 in Floridsdorf is generated.

Figure 3.1.: Input csv data with sociodemographics of “Age-Employment Status”.

These CSV exports are used for generating the synthetic population, stated
in the subsequent chapters. In contrast to usual margin information, this
type of information has a great advantage because it can take dependencies
of up to four other margin information in consideration within a certain
region (usually district or municipality). Therefore the connection of age of a
person, its employment status, sex and field of education can be considered
in the generation process. Virtually every category of the statistics can be
queried and used in the synthetic population generation process.

Using this information, it is possible to create a set of conditionals, which
should be, in the best case, full-conditional. That means, each of the sociode-
mographic attributes is conditioned upon each other sociodemographic
attribute. This allows to deduce real-world populations with respect to the
constraints given in the cross-classification tables and thus gain a population
which fits the real-world population accordingly.
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3.2.2. European Union Statistics on Income and Living
Conditions (EU-SILC) Household Survey

This household survey was conducted in 2014 [21]. The participants were
interrogated about their living conditions. The resulting survey data was
assigned scaling factors, s.t. it represents the total of the Austrian citizen-
ship. In the scope of this master’s thesis, we used the given survey data
and discrete choice models for estimating additional information for the
generated population, which could not be deduced in the baseline creation
process in first place. The data of this survey is accessible by researchers
only and needs to be requested from Statistics Austria [21].

3.2.3. Sociodemographic Information Grid

For allocating the population to a more conclusive spatial region, we pro-
cessed layers with information on certain demographics and combinations
of demographics, as presented in Figure 3.2. This figure, for example, shows
the counts of male persons younger than two years within some grid ele-
ments of 250x250 meters. There are more dense populated grid elements
with respect to this sociodemographic pattern, but also less dense populated
grid elements are given. According to the information given in the grid, the
population was allocated s.t. the counts, given in the grids, were fit best
with respect to the provided counts of demographic attributes. Liable to
costs, these kind of information were acquired from Statistics Austria [18],
whereas the costs highly depended on the actual type of data we wanted to
process for generating a synthetic population. For our design we processed
layers of the years 2014 (“Age by Sex”) and 2015 (“Employment Status by
Sex”).

3.2.4. Coordinates of Street Addresses in Vienna

(Address-coordinates - ACDs)

ACDs are the most detailed spatial unit, we processed in the context of
synthetic population generation, as presented in Figure 3.3. This figure
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Figure 3.2.: Example of information given in a sociodemographic grid. In this figure, there
are highlighted grid elements, with respect to the population-density of male
persons younger than two years.

shows the spatial reference of the street-addresses and the markers are
colored with respect to the inhabitants count given per ACD. Liable to the
overlaying grid, the persons were matched to the grid and subsequently
assigned to single ACDs with respect to the counts given in the grid as well
as regarding the counts of inhabitants per ACD. Thus resulting in a popula-
tion of the 21st district of Vienna, Floridsdorf. This data source was acquired
from a municipal department of the city of Vienna (Magistratsabteilung 18 -
Stadtentwicklung und Stadtplanung) and depicts the population of 2015.
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Figure 3.3.: Coordinates of street addresses (ACDs) with inhabitants count, provided by
the municipal department of the city of Vienna (Magistratsabteilung 18 - Stadten-
twicklung und Stadtplanung). Each marker corresponds to a street address and
is colored with respect to the inhabitants count.

3.3. Data Structure

For efficiently deducing and extrapolating templates, there is the need for
an appropriate data structure. The data structure is responsible for generat-
ing templates with a set of possible combination of all sociodemographics.
Infeasible templates need to be neglected in the generation process, as the
computational and also the memory overhead may become too big. Infeasi-
ble templates are templates which hold a combination of sociodemographics
that are, according to the information present in the cross-classification ta-
bles, occurring zero times. Examples of infeasible templates are given in
Figure 3.10. Template 1 and template 3 are marked to be infeasible. This is
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due to the fact, that persons in Austria which are younger than 15 years are
not allowed to be employed (specific for both genders). This information
is given in the input CSV file in Figure 3.1, where it is stated, there are no
employed persons younger than 15 years.

In the following subsections we demonstrate all the parts of our data struc-
ture. Firstly we show the hierarchical tree structure, which we implemented
for deducing all possible sets of characteristics. These characteristics cor-
respond to actual possible templates of persons, families and households.
Secondly we illustrate the concept of wildcards in our tree structure, which
we used for efficiently allocating extrapolation factors, given in the input
data, to all affected templates. Finally we address the problem of encoding
the generated templates, such that we can subsequently efficiently recover
templates by their code. We need this to properly assign all templates to
the corresponding margin constraints, which holds counts on sets of char-
acteristics as given in the input cross-classification tables. As soon as the
templates are allocated to the appropriate margin constraints, the templates
iteratively get assigned extrapolation factors.

3.3.1. Hierarchical Tree

For deducing possible templates for subsequently extrapolating those with
multiple extrapolation factors, we introduce a hierarchical tree data structure.
The purpose of this tree is to generate all possible combinations of character-
istics (i.e. templates). Each level of the tree corresponds to a characteristics,
such as “sex”, “age” and “employment status”. Each of the characteristics
has a list of attributes. The characteristics of “sex” may be “male” and
“female”, for “age” there may be “< 15 years”, “15 − 64 years” and “≥ 65
years” and for “employment status” there may be “employed” and “unem-
ployed”. To indicate the count of attributes per characteristics we illustrate
the characteristics as “sex” (two categories), “age” (three categories) and
“employment status” (two categories). With each additional level, respec-
tively characteristic, the tree (i.e. the count of leafs) grows exponentially. As
this induces memory as well as runtime issues, the tree structure is respon-
sible for generating feasible templates only. This is done by truncating tree
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branches by eliminating infeasible branches as soon as possible. Algorithm 1

demonstrates how all possible templates for extrapolating are deduced.

Data: Cross-Classification Tables
Result: List of Weighted Feasible Templates

List<MargCons> marginConsList = parseAllMarginConstraints();
List<Template> listOfTemplates;

// Identify all sociodemographics/attributes
Map<String,List<String>> socMap;
socMap = parseInputFiles();

// For each sociodemographics, add a “wc” entry
addWcEntryToAll(socMap);

// Initialize EncDecoder
Encoder enc = new Encoder(socMap);

// Identify and encode all infeasible combinations of attributes
List<Long> infList = enc.encodeInfeasiableTemplates();

// GeneratePermutations creates all possible combinations
GeneratePermutations(socMap, enc, listOfTemplates, infList);

Extrapolator ext = new Extrapolator(marginConsList,listOfTemplates);
ext.allocateTemplatesToConstraintsByEncoding(enc);
ext.performExtrapolation();

Algorithm 1: Algorithm for Deducing feasible Templates for Extrapolating

For setting up a comprehensive tree with the introduced Algorithm 1 which
generates all of characteristics, the following tasks are explained in more
detail.

• Identify all sociodemographics (i.e. levels of the tree) and their at-
tributes (e.g. sex (two categories), employment status (two categories),
age(three categories)) in the input CSV files.
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• Identify all combinations of characteristics, which occur zero times (i.e.
identify all infeasible sociodemographic combinations)

• Introduce an additional attribute in each each sociodemographic cate-
gory, the so-called wildcard entry.

• Generate all possible combinations of demographics level by level by
considering infeasible characteristics combinations

– For each level check if the current partial set of sociodemographics
is feasible according to the identified templates.

– As soon as a full set of feasible sociodemographics is identified
encode this template (i.e. the leaf of the tree) using a custom
encoding introduced in Section 3.3.3.

• Keep in mind: Due to checking sets of characteristics in the generation
process level by level, we can eliminate infeasible templates as soon
as possible, thus slimming the set of possible templates and also the
computational time.

• For each margin constraint on sets of characteristics, we assign tem-
plates accordingly.

• Using the iterative procedure introduced in Section 3.4, we iteratively
assign extrapolation factors. A small example of iteratively assigning
extrapolation factors is given in Table 3.1 based upon the input data
given in Figures 3.4, 3.6 and 3.8.

Each of the resulting tree leafs corresponds to a possible template, with a
value for each characteristics. The idea of this data structure is to eliminate
branches of the tree as soon as possible in the generation process. Eliminat-
ing infeasible templates is done by exploiting the encoding of the templates,
where it is checked if the encoding contains the pattern of an infeasible
combination of characteristics.

For synthetic population generation, aggregated Statistic Austria informa-
tion (cross-classification tables) for persons [18], families [19] and house-
holds [20] are processed in trees, where each level corresponds to a char-
acteristics of the population. The design allows to introduce further levels
(i.e. characteristics), as a more detailed population are required. Examples
of simple trees are given in Figures 3.5, 3.7 and 3.9. The corresponding
Statcube input CSV files are given in Figures 3.4, 3.6 and 3.8. These trees
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and CSV files give an example of a simple abstraction based on the Statis-
tics Austria data. These trees can be generated from the corresponding
input cross-classification tables without having to deploy the introduced
hierarchical data structure. Nevertheless if we want to create persons with
all of the three given sociodemographics, we need to “merge” those trees.
Furthermore we need to deduce templates and subsequently extrapolate
those. The corresponding merged tree is given in Figure 3.10. The leafs,
which are marked as in the color red, are those we neglect in the proce-
dure of generating templates, as those are certainly not present in the final
generated population. Figure 3.11 shows the merged tree with additional
wildcard entries. The entries are necessary, such that we can also apply the
encoding for margin constraints.

Figure 3.4.: Input csv data with sociodemographics of “Age-Sex”.
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Figure 3.5.: Tree structure of input csv data “Age-Sex”.

3.3.2. Wildcards in Tree Structure

Each template has a complete set of values for their characteristics. Anyway
the input margin constraints given in the cross-classification tables lack
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Figure 3.6.: Input csv data with sociodemographics of “Age-Employment Status”.
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Figure 3.7.: Tree structure of input csv data “Age-Employment Status”.

this completeness. Nevertheless to be able to encode the margin constraints
accordingly, we introduce a wildcard “wc” entry. The “wc” entry indicates
that this margin constraint affects all the outcomes of this characteristics the
same.

Each attribute set of the sociodemographics is extended by a so-called
wildcard entry (“wc”). Thus each sociodemographic has at least a set of
two members. As mentioned before, Statistics Austria forbids to query
combinations of more than five sociodemographics. Thus we actually can
not deal with a synthetic population with more than five characteristics in
first place. To overcome this limitation, we introduce wildcard members
for each of the sociodemographic categories. This means each template,
on a certain branch, is assumed to be affected by the same extrapolation
factors, liable to the input margin constraints on sets of sociodemographic
combinations. To indicate the impact on the tree creation, there is given an
example in Figure 3.11. The wildcard member is always assumed to be the
first of the members and is thus encoded in a special manner, as shown in
Section 3.3.3. Due to the fact that each set within the input cross-classification
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Figure 3.8.: Input csv data with sociodemographics of “Sex-Employment Status”.
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Figure 3.9.: Tree structure of input csv data “Sex-Employment Status”.

tables is limited to five dimensions, the wildcard entry allows to encode
the input margin constraints given in the cross-classification tables. Tough
these margin constraints do in fact lack information for all combinations
of characteristics. That means if we do have a margin constraint on the
characteristics of “sex by age”, tough we have templates with characteristics
on “sex by age by employment status”, we can encode the margin constraint
as “sex by age by all kinds of employment status” in a specific manner. In
the template generation process we dismiss all templates which contain a
wildcard entry, as we are only interested in templates with values for each
characteristics.

3.3.3. Encoding/Decoding of Templates

Each template which is created using the data structure introduced in
Section 3.3.1 is assigned a unique identifier. This identifier is a 64-bit Integer
value. Intrinsically this value holds all sociodemographic information on
the current template. The encoding is introduced to allow the creation
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Figure 3.10.: Complete tree with neglectable templates.
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Figure 3.11.: Complete tree with neglectable templates. The additional attributes for each
category “wc” which allows for adding wildcards in tree structure and more-
over in the encoding scheme for subsequently extrapolation of the templates.
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of templates in less time and make it easier to allocate the templates to
appropriate margin constraints for extrapolating. Each of the characteristics
of the input data is encoded following equation 3.1. The sociodemographic
categories have a limited set of attributes. Depending on the amount of the
attributes and considering the hierarchical order, which we assume to be
arbitrary for now, we can calculate a unique identifier for each composition
of characteristics of templates. An important part takes the wildcard stated
in the preceding section. Because it was not possible to query more than five
dimensions at once at Statistics Austria Statcube portal, it is necessary to add
wildcard entries. Therefore we introduced the data structure for efficiently
generating templates, which we subsequently use for iterative extrapolation.
A tree which implements wildcard entries is given in Figure 3.11. The
encoding of each leaf and node of the tree can be calculated by applying
Formula 3.1, whereas nodes need to be encoded by assuming the lower
levels of sociodemographics as wildcard entries.

The encoding is also important when it comes to the runtime of the de-
sign. Because we need to allocate the templates to the appropriate margin
constraints in the extrapolation step of the design. This procedure highly
depends on the Set specific operation “retainAll”, which basically performs
an inner join on two sets of templates. This join operation is significantly
faster if there is given a custom implementation of the hash method based
on the encoding.

A simple encoding of a person template is given in Figure 3.12. The decoding
of this template is given in Figure 3.13.

Step(age): 9 wc < 15

Step(sex): 3 wc m f wc m f

Step(emp): 1 wc y n wc y n wc y n wc y n wc y n wc y n

Code(x,y,z) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 3.12.: Encoding scheme with custom masking by applying Formula 3.1.
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Code(” < 15”, ”m”, ”n”) =

Index(” < 15”) ∗ Step(age)+

Index(”m”) ∗ Step(sex)+

Index(”n”) ∗ Step(emp) = 14

(3.1)

Code(x,y,z) 14

Step(emp): 1 n

Step(sex): 3 m

Step(age): 9 < 15

Figure 3.13.: Decoding scheme by applying Formula 3.2.

age.get(14/Step(age)) = ” < 15”

sex.get((14%Step(age))/Step(sex)) = ”m”

emp.get(((14%Step(age))%Step(sex))/Step(emp)) = ”n”

(3.2)
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3.4. Iterative Extrapolation of Templates

Templates, which are generated using the methods and data presented in
the precedent sections, are processed such that each template is assigned
a set of extrapolation factors. These extrapolation factors represent the
weight which is approximately given in the area on a set of appropriate
sociodemographic attributes. For extrapolating these templates with the
values given in the input CSV files, on the one hand there is the need to
assign one extrapolation factor to several templates and on the other hand to
assign multiple extrapolation factors to one template, as shown in Table 3.1.
In this table there is highlighted how the extrapolation of the templates,
derived from the tree given in Figure 3.10, is done for ten iterations. For each
template there are shown the affected margin constraints of the partial trees,
given in Figures 3.5, 3.7 and 3.9 according to the appropriate color scheme.
For handling this issue, we used a method for extrapolating introduced by
Otterstätter in his PhD thesis [16]. He extrapolated trip chains by multiple
factors such as multiple stationary counting stations. We used a simplified
version, where we neglected time-dependencies and replaced trip-chains by
templates. The simplified version of this algorithm is presented in this
section. The method iteratively weights a list of objects (i.e templates)
according to their extrapolation factors.

This procedure iteratively assigns extrapolation factors on sets of templates.
Therefore we gain a set of templates with extrapolation factors which meet
the input counts given in the the cross-classification better and better by
each iteration.

c(i, x, j) =
qZ(j)

qT(i, j)
(3.3)

C(i, x) =
1

n(x)
∗

n(x)

∑
j=1

c(i, x, j) (3.4)

qT(i, j) =
N

∑
x=1

w(i, x) (3.5)
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# SFi=0 Scaling Factors SFi+1 SFi+10

1 1 A=11,668 G=0 M=38,513 6,223 150

2 1 A=11,668 H=22,761 N=32,791 9,381 11,397

3 1 B=11,093 G=0 O=35,783 5,824 83

4 1 B=11,093 H=22,761 P=41,406 10,243 11,361

5 1 C=48,512 I=73,420 M=38,513 24,601 37,704

6 1 C=48,512 J=22,775 N=32,791 15,524 10,478

7 1 D=50,683 I=73,420 O=35,783 24,659 35,816

8 1 D=50,683 J=22,775 P=41,406 16,843 13,683

9 1 E=11,124 K=876 M=38,513 6,279 534

10 1 E=11,124 L=25,661 N=32,791 9,774 10,562

11 1 F=15,413 K=876 O=35,783 6,690 557

12 1 F=15,413 L=25,661 P=41,406 11,446 15,162

Table 3.1.: Scaling factors per template for ten iterations by applying method introduced in
Section 3.4. The color indicates the origin of the input data, taken from the trees
given Figures 3.5, 3.7 and 3.9.

W(i, x) = c(i − 1, x) ∗ w(i − 1, x) (3.6)

Subsequently the Equations 3.3, 3.4, 4.2, 3.6 are described in detail.

• c(i, x, j)

– Correction factor for template x in iteration i on margin constraint
j.

• qZ(j)

– Target Value for margin constraint j.

• qT(i, j).

– Sum of all weights on margin constraints j at iteration i.

• C(i, x)

– Average correction factor at iteration i for template x.

• n(x)

– Count of margin constraints, which the template x is affected by.
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• N

– Count of all given templates.

• w(i, x)

– Weight of template x at iteration i.

3.5. Discrete Choice Models

Discrete choice models are a widely used method for modeling decisions
on an individual level. They can cope with information of the decision
making person itself, the decision situation and in the context of synthetic
population generation also influencing characteristics of e.g. the household
which this decision maker is part of. The decision maker can choose from
a fixed set of alternatives, the so-called choice set. In order to describe
the decision making process, an appropriate discrete choice model can
be defined. The given choice set does have to meet the following criteria
according to Train [23]:

• The decision maker chooses only one alternative from the choice set.
• The choice set must be exhaustive and all possible alternatives must

be included. The decision maker necessarily chooses one of the given
alternatives.

• The number of alternatives must be finite.

The main idea behind the concept of discrete choice models is that the
decision maker is assumed to choose the alternative which grants him
the highest utility. Therefore it is evident to define a utility function for
each alternative, which defines the utility of an alternative depending on
observed parameters. Train [23] defines utility as a constructed measure of
well-being, which has no scale.

The utility Ualt of each alternative for a specify decision maker is given by
its utility function, as given in Equation 3.7.

Ualt = Valt + ǫalt (3.7)
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The utility function is composed of the deterministic utility Valt as well as
of the stochastic error term ǫalt. Valt holds all variables which are used in
the regression equation, to explain the utility of this alternative. The error
term ǫalt describes all the bias that can not be explained by the variables in
the deterministic utility in first place. We highlight the concept of discrete
choice models by defining a simple model, which we use for estimating the
impact of characteristics of “age” and “sex” on “deciding” among different
household sizes. Considering our example model for estimating household
sizes, we subsequently define deterministic utility functions of a discrete
choice model, where the decision maker may choose among three different
alternatives (i.e. household sizes the decision maker may choose to live in).
The decision, in the context of our model, is assumed to be depending on
“sex” and “age” of the person, which chooses among those alternatives.
For demonstration purpose there is given an example where the decision
maker may choose among three different household sizes to live in. This
model describes where people tend to live, with respect to the size of their
household, solely by the influencing characteristics of “sex” and “age”.
Certainly these two influencing characteristics may not allow to reassemble
the complex decision making process behind peoples preferences, on where
they prefer to live. Deducing the decision making process to parameters,
greatly neglects individual preferences of persons, such as a potentially
anti-child attitudes. For the sake of simplicity household sizes larger than
size three are neglected in the scope of this simple example model.

VHH1 = ASCHH1 + Age ∗ βAge + Sex ∗ βSex (3.8)

VHH2 = ASCHH2 + Age ∗ βAge + Sex ∗ βSex (3.9)

VHH3 = ASCHH3 + Age ∗ βAge + Sex ∗ βSex (3.10)

The type of the discrete choice model which is deployed by defining the
above example (by Equations 3.8, 3.9 and 3.10) is the so called multinomial
logit model [8]. This model can deal with more than two different alter-
natives to choose among and defines the stochastic error term ǫalt to be
Gumbel distributed [23]. The reason for introducing ǫalt is to make decisions
stochastic, rather than choosing an alternative with the highest utility, al-
though another alternative might have almost the same utility. Therefore the
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probabilities to choose alternatives among are depending on the difference
between the alternative specific utilities, rather than the overall magnitude
of those. The probability within a multinomial logit model is defined as
given in Equation 3.11. Besides multinomial logit models there are also
further models, which can be applied. However in the context of this work,
we chose the multinomial regression model. For interested readers we rec-
ommend further literature [3], [23], [12] where other different models are
described.

Palt =
eValt

n

∑
i=1

eVi

(3.11)

Given the fact that each decision maker is assumed to have chosen the alter-
native which grants him the highest utility and considering Equations 3.8, 3.9
and 3.10, for each alternative and Equation 3.11, it can be estimated the
influence of each β (age and sex) parameter and alternative specific constant
(ASC) in the utility functions on the input values. These equations and an
input data sample of EU-SILC or similar household survey data can be used
for estimating the magnitudes of the parameters in the utility functions and
therefore for further generation of unknown information in the process of
creating a synthetic population. This method will be applied to our synthetic
population, which is deduced from Statistics Austria [18] data, in order to
add information on incomes per capita and car ownership per household,
as this information is not present in the cross-classification tables of Statis-
tics Austria in first place. The defined set of equations is not deterministic
solvable, but the unknown parameters may be estimated with BIOGEME [4].
This open source software can perform a maximum likelihood estimation
of parametric models. We deployed BIOGEME to estimated and evaluate
values for our discrete choice models, which depict the values given in data
samples of the EU-SILC household survey.

As this system of inequalities is usually not deterministic solvable, we apply
the software BIOGEME for performing a Maximum Likelihood Estima-
tion in order to find very likely values for the parameters. By using the
discrete choice models, we address the problem of revealing connections
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of sociodemographic data in order to deduce further sociodemographic
data.

The example of estimating household sizes regarding “age” and “sex”,
results in the estimated parameters shown in Table 3.2. First of all it is
evident to check the level of significance, which is given by evaluating
the t-stat and the p-value. As the p-value equals zero, there is certainly a
dependency on age when it comes to decision making among household
sizes. The t-value emphasizes the impact of the parameters. Especially the
age parameter (specific to choosing households of size two) has a huge
influence on the decision making process according to the t-stat value. For a
more detailed explanation of the t-stat and p-value we recommend further
literature [13] [25]. The parameter for “sex” shows that households for
females are both approximately same likely for two and three persons in
the household. Indeed according to the estimation, women mostly tend
to live on their own (least negative SEX HH value for households of size
one). Furthermore the age parameter shows that younger people are more
likely to live in bigger households. This certainly corresponds to real-world
circumstances, as usually infants and kids can not live on their own in
Austria.

The parameters correspond to our a-priori assumption with respect to
signedness of the parameters as well as the ordering of the magnitudes
of the parameters. The outcome of the estimated parameters is shown in
Figures 3.14a, 3.14b and 3.14, where it is evident that the parameters for
“age” and “sex” have indeed a huge impact on choosing a certain household
size. In contrast to male persons it is more likely for female persons to live
alone as they become older. Male persons are living in households of two
persons more often. For both genders it is equally likely, especially at young
ages, to life in households of size three. In general households with the size
of one or two persons become more evident when people get older.
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Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 AGE HH2 -0.0106 0.00170 -6.21 0.00

2 AGE HH3 -0.0365 0.00221 -16.52 0.00

3 ASC HH2 1.44 0.106 13.53 0.00

4 ASC HH3 1.75 0.126 13.91 0.00

5 SEX HH2 -0.234 0.0542 -4.32 0.00

6 SEX HH3 -0.225 0.0733 -3.07 0.00

Table 3.2.: Estimated parameters for the household size model for deciding among house-
hold sizes with respect to age and gender based upon household survey data of
EU-SILC. The household of size one is fixed and therefore has a fixed utility of
zero.

3.6. Spatial Allocation Procedure

The procedure of allocating the population to spatial regions is done by ran-
domly choosing a grid element. Each grid element holds a count of persons,
which live there with respect to certain characteristics. For each household
there is randomly chosen a grid element and subsequently it is determined
if the household and inhabitants fit the possible sociodemographic profile of
the grid element. If the household fits the grid in this manner, the household
is allocated. In addition the grid, more precisely the demographics count of
the persons attribute combination, is decremented by the sociodemographic
profiles of the household members. In case the household does not fit the
grid, there is chosen another grid and the procedure is repeated. If there is
not found any grid to place the household in 100 tries, the household is not
allocated at all. This procedure for allocating households is highly related to
the procedure introduced by Spiekermann & Wegener [17], where there are
placed persons with respect to the overall population density given within
a spatial area.
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(a) Female persons.
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(b) Male persons.
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Figure 3.14.: Household sizes for female (solid lines) and male (dashed lines) persons.



4. Technical Realisation

In this chapter it is shown how the introduced data sources, data structure,
extrapolation algorithm and finally the method for assigning the population
to spatial coordinates (introduced in Chapter 3) are applied for creating an
actual synthetic population of the 21st district of Vienna, Floridsdorf. The
flowchart in Figure 4.1 gives an overview on the developed design, ranging
from the creation of the baseline population, allocation of the population to
families and households, refining the population and finally allocating the
created households to a spatial level.

Firstly we demonstrate the creation process of the baseline population
where there are deduced templates, which are iterative extrapolated and
sampled such that we get person, family and household objects. The person
objects are allocated to families and to households. Secondly we refine the
given population with information on income per capita and car ownership
per household. Finally we allocate the households and as a result also the
persons and families to a spatial region to get the synthetic population of
the 21st district of Vienna, Floridsdorf.

4.1. Generation of the Baseline Population

For generating the baseline population of the 21st district of Vienna, we
apply the input data and process it in the data structure as described in
Chapter 3. The resulting templates, i.e. the feasible templates, for persons,
families and households are assigned extrapolation factors, which corre-
spond to the counts in the cross-classification tables provided by Statistics
Austria [18] [19] [20].
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Figure 4.1.: Flowchart for generating synthetic populations.
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4.1.1. Deduce all Possible Templates from the Data
Structure

The data structure is responsible for creating all possible combinations of sets
of sociodemographics. This is important because the amount of templates
would increase exponentially regarding the sociodemographics counts, we
want to implement in our population. For each additional sociodemographic
we introduce, the template count would be multiplied by the number of
attributes of the additionally introduced sociodemographic category. This
would lead to a fast growing number of templates, which is clearly out of a
efficiently processable scope.

Parsing Sets of Sociodemographics

For initializing the data structure accordingly, we parse all the character-
istics and attributes presented in the input CSV files. For generating all
possible sets of characteristics, i.e. templates, it is mandatory to create all
permutations level by level. Each time another level is created, it is checked,
if the template is feasible so far. If the template is infeasible, like the com-
bination of characteristics is not possible so far, the template is dismissed.
To identify such infeasible combinations, it is mandatory to parse the input
files and save those combinations, which occur zero times in the real-world
population according to the input files. Such kind of characteristics sets
are often related to underage persons, as those are usually not employed
or married, so that we can dismiss all the subsequent templates afflicted
by this combination of sociodemographics. As the pool of characteristics is
extended, this procedure is inevitable as the inflicted problem, i.e. the vast
amount of templates, causes serious memory and runtime issues.

Hinting missing Cross-Classification Combinations

As mentioned in the preceding section, it is important to provide the design
with information on infeasible combinations of sociodemographics. This
information is vital such that the generation process of templates is speed-up,
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by efficiently dismissing irrelevant templates, as soon as possible. Therefore
we keep the set of feasible templates as small as possible.

Once the input data is processed and parsed, all permutations of char-
acteristics and attributes given in the input CSV files are evaluated and
potential missing combinations are printed. The implementation is designed
to work with cross-classification tables, with information on counts of sets
of characteristics given in the real population. Within these tables there are
conditioned a maximum of five characteristics upon each other. Nevertheless
for creating a synthetic population with more than five characteristics, it
is advised to provide the design with a list of cross-classification tables,
where all characteristics are conditioned upon all permutations of size four
of the other characteristics. Once this is achieved, the input data is said
to be full-conditioned and will lead to best possible results in the process
of population synthesis (without introducing additional third party data
sources). However the design generates a population if there are not given
full-conditioned input data, but the runtime for generation as well as the
resulting population may lead to unsatisfiable outcomes. Thus this design
hints all the combinations of characteristics. This on the one hand improves
the results of the population generation and on the other hand significantly
speeds-up the generation, as the runtime highly depends on the amount of
templates, which need to be processed in the iterative extrapolation step.

Allocating Templates to Extrapolation Factors

Each of the input cross-classification tables holds counts on sets of character-
istics, which we refer to as margin constraints. For iteratively assigning ex-
trapolation factors, it is necessary to allocate all templates to the appropriate
margin constraints. Each template is affected by a set of margin constraints
and in turn each margin constraint has a set of templates. The count given
in the margin constraint must be met by the sum of extrapolation factors of
the templates in its scope. Once all the templates are assigned, the method
shown in Section 3.4 is applied for iteratively assigning extrapolation factors,
such that the margin constraints are met best.

For allocating templates to appropriate margin constraints, we start with the
master set of templates, where all template objects are contained. For each
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characteristics (at maximum five characteristics) of the margin constraint
we fetch the subset (by deploying “retainAll” method call) on the master
set and put it in a map with the encoding illustrated in the preceding
chapter. For efficiently generating subsets, we introduced a custom hash
representation of the template objects in form of the encoding, such that
the operation could be significantly accelerated. Subsequently the recovered
subset is used for recovering another subset of the next characteristic of
the margin constraint. This procedure is repeated as often as the amount
of characteristics in the margin constraints (at max five times). Once there
is recovered the final set of templates, which is affected by this margin
constraint, we allocate this set of templates to this margin constraint. For
the next margin constraint, there is a look-up in the map first, to possible
recover partly sets of demographics, for parts of the set of demographics, to
significantly speed-up the allocation process. This map serves as a cache,
which holds all the recent fetched sets of characteristics combinations (also
partly ones).

4.1.2. Assign Extrapolation Factors to Templates

Once the templates are allocated to all appropriate margin constraints, the
algorithm of iteratively assigning extrapolation factors takes place. As it is
shown in Figure 4.2 the sum of deviations, i.e. the sum of differences of
all margin constraints to the sum of extrapolation factors of the afflicted
templates, decreases significantly in the first 100 iterations and seems to
converge to a minimum sum of deviation at value zero as the algorithm
performs more and more iterations.

The SumO f Deviation per iteration is defined by:

SumO f Deviation(i) =
J

∑
j=1

Abs(qT(i, j)− qZ(j)) (4.1)

qT(i, j) =
N

∑
x=1

w(i, x) (4.2)
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• SumOfDeviation(i)

– Overall Sum of Deviation for all Margin Constraints at Iteration i.

• J

– Count of all given Margin Constraints.

• qT(i, j).

– Sum of all weights on margin constraints j at iteration i.

• qZ(j)

– Target Value for margin constraint j.

• N

– Count of all given Templates.

• w(i, x)

– Weight of template x at iteration i.
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Figure 4.2.: Sum of deviations of cross-classification table counts to person (blue), family
(green) and household (red) templates extrapolation factors over 50,000 itera-
tions for person templates with 9 characteristics, family with 8 characteristics
and households with 7 characteristics. Sum of deviation ranges from approx.
10,000,000, 1,000,000, 1,000,000 in the beginning to approx. 450, 20, 0.5 after
50,000 iterations.
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4.1.3. Sampling Templates and Creating Entities

Once the overall sum of deviation has become reasonable small, there are
deduced single entities of persons, families and households. For each margin
constraint we recovered the set of affected templates and sampled those
with respect to their extrapolation factors. The extrapolation factor is a
floating point value. Henceforth we split this value in the integer and the
float part. We created as many entities, with the same set of characteristics,
as given in the integer value. The float part of the value, which ranges from
zero to almost one, was handled as a probability for creating an entity. Due
to the randomness of this sampling strategy, the resulting sets of persons,
families and households differ in each population synthesis turn.

4.1.4. Assign Persons to Families and Households

To bring the resulting synthetic population closer to the real-world, there
have been allocated persons to families and subsequently to households.
The entities of persons, families and households share certain characteristics,
which need to fit, such that those can be said to belong together.

Each entity has characteristics, which may be used for recovering the rela-
tionship to other entities. In appendices A, B and C are presented all the
characteristics of the domains of persons, families and households, which
allow for defining rules to allocate persons to families and subsequently
to households. For example, persons can only live in families which do
have the same type of family and in turn families do have to fit the type of
the household. This enables to restrict the pools of persons, families and
households to potentially allocate. Another restriction is that the household
size of the person has to exactly meet the household size present in the
household entity. There is the possibility to further refine the allocation
rules and to adjust the given ones, in case the results are too weak. The
design allows for adding further rules, which might also be probability
based, such that persons my be allocated more precisely when processing
further statistical information on household compositions.
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4.2. Refine Population by Discrete Choice Models

In this section we show how we add further attributes to our baseline
population, which we could not deduce in first place due to missing appro-
priate statistical input data. We use discrete choice models for estimating
additional information on income (specific to persons) and car ownership
(specific to households). We define models for income per capita and car
ownership per household, where we evaluate the impact of certain charac-
teristics on those. The characteristics of the income model are presented in
Table 4.1. Table 4.4 respectively presents the characteristics of the car owner-
ship model. The estimation of the model parameters is done by deploying
BIOGEME [4] on household survey data of EU-SILC [21].

4.2.1. Assign Income to Persons

In order to depict the real-world population best, it is important to reassem-
ble the population not only with respect to socioeconomic characteristics
(like “sex”, “age” and “employment status”), but also with respect to income
information. As stated by Taylor & Morris [22], the income of the persons
is important when it comes to their mobility pattern. Wealthy persons are
more likely to choose their own car for making trips to work, shopping or
private appointments. In contrast persons which may not be able to even
effort a car on their own in first place and may thus more often choose pub-
lic transportation systems for satisfying their mobility demand. To allocate
income levels to the generated persons, we chose to estimate the impact
of the parameters given in Table 4.1 on five different income levels. The
estimation was done by defining the model with these parameters using
input data of the EU-SILC household survey and estimating the parameters
with BIOGEME [4]. The summary of the income model estimation is given
in Table 4.2, whereas the actual estimated parameters for the model are
given in Table 4.3.
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Parameter Description
ASC INC1 Constant for Income Level 0-750 e/ Month
ASC INC2 Constant for Income Level 750-1850 e/ Month
ASC INC3 Constant for Income Level 1850-3000 e/ Month
ASC INC4 Constant for Income Level 3000-5000 e/ Month
ASC INC5 Constant for Income Level 5000-9999+ e/ Month
AGE INCX Influence of Age on alt X
JOB1 INCX Dummy Job Status “Employed” on alt X
JOB2 INCX Dummy Job Status “Self-Employed” on alt X
SCHOOL1 INCX Dummy School Qualification “Compulsory” on alt X
SCHOOL2 INCX Dummy School Qualification “Apprenticeship” on alt X
SCHOOL3 INCX Dummy School Qualification “Middle/High School” on alt X
SCHOOL4 INCX Dummy School Qualification “University” on alt X
SEX INCX Dummy Gender (0 = male, 1 = female) on alt X

Table 4.1.: Description of estimated parameters for the income model.

Model : Logit
Number of estimated parameters : 3

Number of observations : 5909

Number of individuals : 5909

Null log likelihood : -4095.807

Cte log likelihood : -2964.072

Init log likelihood : -4095.807

Final log likelihood : -2776.853

Likelihood ratio test : 2637.908

Rho-square : 0.322

Adjusted rho-square : 0.321

Final gradient norm : +1.678e-003

Diagnostic : Convergence reached...
Iterations : 5

Runtime : 00:00

Variance-covariance : from analytical hessian

Table 4.2.: Summary of the parameter estimation for the income levels of citizen of Austria.

The estimated model shows how certain characteristics influence the de-
cision situation. The parameters for “sex” (i.e. the estimated parameters
“SEX INC1”, “SEX INC2”, “SEX INC3”, “SEX INC4”, “SEX INC5”) show
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4. Technical Realisation

a negative utility for each income level, with the exception of the first one,
where there is even given a positive utility. That means female persons are
more likely to “choose” a rather low income level than male persons. The
parameters for “school” (i.e. the estimated parameters “SCHOOL INCX”)
show that people with higher levels of education are more likely to “choose”
higher income levels. Furthermore parameters for “age” (i.e. the estimated
parameters “AGE INCX”) indicate, the higher the age of persons is, the
higher is their income.

4.2.2. Assign Car Ownership to Households

As there was no information on car ownership given in the cross-classification
tables of Statics Austria, we deduced parameters for estimating the car own-
ership of households. Car ownership has of course a huge impact on the
mobility pattern of persons living in a household. Whether or not a car is
available has a strong link to choosing car or car passenger as mode of trans-
port for performing trips to activities, such as work, shopping and private
errands. The EU-SILC household survey contains information, whether or
not a household has at least one car available [21]. Therefore we estimated
parameters, given in Table 4.4, which explain whether or not a household
may have a car available or not. The summary of the car ownership model
estimation is given in Table 4.5, whereas the actual estimated parameters
for the model are shown in Table 4.6.

The estimated parameters for “KIDS CAR” indicate, the more kids are
living in the household, the more likely it is, that there is at least one car
given in the household. An even stronger link is given between the number
of employed persons and car ownership. The more employed persons are
living in a household, the more likely there is at least one car available.
This link is approximately three times stronger than it is the case with the
number of kids.
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4.3. Allocate Households to ACDs

Once the persons are allocated to families and subsequently to households,
each household has a so-called sociodemographic profile. This profile holds
counts on certain characteristics(-combinations), such as how many infants
and employed persons are living there. Liable to the information given
in the sociodemographic information grid layers, this profile needs to be
customized. We make profiles for each household with respect to the so-
ciodemographic combinations of “age-sex” and “employment status-sex”
in order to fit the sociodemographics given in the grid layer. We randomly
pick a grid element and check if the household fits the characteristics given
in the grid and place the household on an ACD within the grid, whereas
we first check if the inhabitants count on the ACD is also fitting. In case the
inhabitants count does not fit, another ACD within the grid is randomly
chosen. If there can not be found an appropriate ACD in the grid, another
grid element is chosen. If there can not be found any grid to place the
household in 100 tries, the household is neglected.
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Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 AGE INC1 -0.0545 0.00224 -24.36 0.00

2 AGE INC3 0.0283 0.00253 11.19 0.00

3 AGE INC4 0.0545 0.00379 14.39 0.00

4 AGE INC5 0.0773 0.00762 10.14 0.00

5 ASC INC1 4.39 0.137 32.09 0.00

6 ASC INC3 -0.408 0.205 -1.99 0.05

7 ASC INC4 -1.88 0.298 -6.29 0.00

8 ASC INC5 -5.03 0.597 -8.43 0.00

9 JOB1 INC1 -2.04 0.0930 -21.94 0.00

10 JOB1 INC3 1.47 0.0871 16.94 0.00

11 JOB1 INC4 2.70 0.139 19.46 0.00

12 JOB1 INC5 3.45 0.247 13.99 0.00

13 JOB2 INC1 -1.61 0.152 -10.65 0.00

14 JOB2 INC3 0.474 0.145 3.27 0.00

15 JOB2 INC4 1.37 0.184 7.43 0.00

16 JOB2 INC5 2.48 0.273 9.08 0.00

17 SCHOOL1 INC1 -1.43 0.181 -7.90 0.00

18 SCHOOL1 INC3 -2.38 0.244 -9.77 0.00

19 SCHOOL1 INC4 -4.56 0.308 -14.79 0.00

20 SCHOOL1 INC5 -4.23 0.584 -7.25 0.00

21 SCHOOL2 INC1 -2.32 0.178 -13.04 0.00

22 SCHOOL2 INC3 -1.45 0.230 -6.32 0.00

23 SCHOOL2 INC4 -3.03 0.248 -12.19 0.00

24 SCHOOL2 INC5 -3.07 0.333 -9.23 0.00

25 SCHOOL3 INC1 -1.71 0.174 -9.83 0.00

26 SCHOOL3 INC3 -1.18 0.230 -5.14 0.00

27 SCHOOL3 INC4 -2.17 0.245 -8.88 0.00

28 SCHOOL3 INC5 -1.59 0.320 -4.96 0.00

29 SCHOOL4 INC1 -1.47 0.205 -7.20 0.00

30 SCHOOL4 INC3 -1.01 0.249 -4.04 0.00

31 SCHOOL4 INC4 -1.20 0.257 -4.66 0.00

32 SCHOOL4 INC5 0.283 0.327 0.87 0.39

33 SEX INC1 0.642 0.0800 8.03 0.00

34 SEX INC3 -1.13 0.0642 -17.54 0.00

35 SEX INC4 -1.72 0.0867 -19.80 0.00

36 SEX INC5 -2.41 0.142 -16.96 0.00

Table 4.3.: Parameters estimated using BIOGEME in order to deduce income for citizen of
Austria.
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Parameter Description
ASC CAR0 Constant for Zero Cars in HH
ASC CAR1 Constant for One or more Cars in HH
KIDS CARX Influence of Number of Kids in HH on alt X
WORKERS CARX Influence of Number of employed Persons in HH on alt X

Table 4.4.: Description of estimated parameters for the car ownership model.

Model : Logit
Number of estimated parameters : 44

Number of observations : 12982

Number of individuals : 12982

Null log likelihood : -20875.875

Cte log likelihood : -18671.999

Init log likelihood : -20875.875

Final log likelihood : -12820.462

Likelihood ratio test : 16110.825

Rho-square : 0.386

Adjusted rho-square : 0.384

Final gradient norm : +1.304e-001

Diagnostic : Convergence reached...
Iterations : 19

Runtime : 00:13

Variance-covariance : from analytical hessian

Table 4.5.: Summary of the parameter estimation for the car ownership of citizen in Austria.

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 ASC CAR1 0.426 0.0447 9.53 0.00

2 KIDS CAR1 0.353 0.120 2.94 0.00

3 WORKERS CAR1 1.03 0.0698 14.76 0.00

Table 4.6.: Parameters estimated using BIOGEME in order to deduce car ownership for
citizen of Floridsdorf with respect to number of workers and kids in the house-
hold. The more kids and workers are living in the same household, the more
the utility for car ownership increases.
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5. Synthetic Population of the 21st

District of Vienna

In this chapter we present the population of the 21st district of Vienna,
Floridsdorf, which we created by deploying the design described in the chap-
ters before. The population consists of approximately 148,000 persons, 40,000

families and 70,000 households. Person entities do have a characteristics set
of nine different demographic attributes, families differ in eight attributes
and finally households differ in seven attributes. The characteristics count
is important when it comes to synthetic population generation. We will
highlight the impact of additional characteristics on the computational run-
time, as well as on the need for input data. The resulting population of the
21st district is compared to the information present in the input data and
the differences of the synthetic population to the real-world population are
highlighted. Furthermore the characteristics, which we deduced by deploy-
ing discrete choice models, on income per capita and car ownership per
household, are presented.

Firstly we introduce the processed number of margin constraints, as well as
the total number of templates for persons, families and households, besides
the runtime for 100 iterations when extrapolating the templates. Secondly we
compare the synthetic population to the real-world population by comparing
the input margin constraints to the final population. Subsequently we
demonstrate the outcomes of the synthetic population generation in a spatial
context. There is highlighted how the synthetic population reassembles the
information given in the sociodemographic information grid layers. Finally
we show how the estimated parameters of the income and car ownership
model have been applied to the population and will present the outcomes
of the procedure.
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5. Synthetic Population of the 21st District of Vienna

5.1. Processed Data

This section presents information on the data processed in the extrapolation
procedure, for generating the baseline population. Figure 5.1 contains infor-
mation on the runtime for extrapolating, number of templates and number
of margin constraints (full-conditional status). This figure shows, that each
of the values significantly rises, when the number of sociodemographics we
want to generate rises, by comparing the different values of the domains of
persons, families and households, where nine, eight and seven characteris-
tics were generated. The number of margin constraints we have to process
is highly dependent on the characteristics we want to add to our population
as well as the number of attributes within the characteristics. As a result of
introducing further characteristics, also the number of possible templates,
i.e. sets of possible combinations of sociodemographic attributes, rises sig-
nificantly. This is due to the pool of sets of combinations, which multiplies
by the number of attributes of a further introduced characteristics.

5.2. Real-World vs. Synthetic Population

We present population specific counts of persons, families and households
and compare those to the input counts. By considering the total counts
of persons, families and households, the synthetic population meets the
real-world population almost perfectly. Figure 5.2 illustrates that there are
hardly any deviations in any of these domains.

Nevertheless the more interesting part is how the generated synthetic popu-
lation meets the input margin constraints of the real-world population. The
scatter plots in Figure 5.3 indicate how the synthetic population reassembles
the margin constraints of the real-world population for persons, families and
households respectively. There is a good fit of the margin counts deduced
from the real-world population to the margin counts deduced from the
synthetic population. On average there is a deviation of approximately 0.84

persons, 0.46 families and 0.095 households per margin constraint. If we
had perfectly reassembled the population, there would be no deviation at
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Figure 5.1.: Comparison of the number of constraints, number of templates and average
runtime for 100 iterations for the domains of persons, families and households.

all. Moreover all the data points would be placed on the diagonal. Never-
theless such deviations are hard to cope with, because there might always
be small deviations due to the applied sampling strategy, which is often
probability-based.
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Figure 5.2.: Comparison of the real-world population to the synthetic generated population.
The synthetic population almost perfectly meets the real-world population with
respect to total created counts of person, family and household entities.
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Figure 5.3.: Comparison of sampled counts to input margin counts. There is a higher
average deviation for domains with more characteristics than for those with
less. The average deviation corresponds to 0.84 persons, 0.46 families and 0.095

households per margin constraint.
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Figure 5.4.: Absolute count of margin constraints with deviation to the final population.

For demonstration purpose Figure 5.4 highlights the overall fitting of the
resulting generated entities (persons, families and households) to the multi-
ple input constraints. Almost 105,000 input constraints with respect to the
person domain are perfectly met, i.e. have zero deviation. This corresponds
to a perfectly fit for approximately 60% of the total given real-world con-
straints as shown in Figure 5.5. By considering Figure 5.4 and Figure 5.5,
there is a worse fit for domains which have a higher count of characteristics,
like the person domain, in comparison to those, which have less charac-
teristics, such as the family and the household domain. By performing
the population generation process again and again, the deviations of the
resulting population to the input data hardly change. This might be due to
the implemented sampling strategy for creating actual entities, based upon
a probability based procedure.
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Figure 5.5.: Relative value of margin constraints with deviation to the final population.
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5. Synthetic Population of the 21st District of Vienna

5.3. Spatial Allocation

As presented in the preceding section the sampled entities for all of the
three domains almost perfectly meet the actual totals given in the input data.
Nevertheless when it comes to spatial allocation, we can not reassemble the
population that well. The complete set of entities of persons, families and
households (148,493, 39,881, 70,160) could not be allocated a spatial reference.
We allocated 128,808, 35,957, 66,288 entities. These are approximately 87%,
90% and 95% of the overall given entities.

We show how robust the counts of the grid layers are met, even when re-
sampling and re-allocating the population once again. Figure 5.6 compares
the population deviations with respect to the counts given in the sociode-
mographic information grid layers, “age by sex” and “employment status
by sex” in two runs of population synthesis. Each grid element is colored
according to the difference between the counts given in spatial input grid
and the finally allocated synthetic population. The higher the difference is,
the worse the real-world population is reassambled in this spatial entity.
By re-sampling the population, Figure 5.6a and Figure 5.6b indicate similar
patterns regarding the distribution of the deviation counts. This implies the
population is quite similar allocated to the grids in two completely different
turns. Nevertheless when considering characteristics, which are not given in
a sociodemographic information grid, such as information on school leaving
qualification, the patterns differ more likely as demonstrated in Figure 5.7.
There is shown the distribution of persons with an university degree. In the
first allocation procedure illustrated in Figure 5.7a, the persons are allocated
more likely in the south-west. In the second allocation procedure illustrated
in Figure 5.7b those people are more likely to reside at the north, whereas
the overall distribution seems to be more random.
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5. Synthetic Population of the 21st District of Vienna

(a) Difference of counts of sociodemographic data provided by
Statistics Austria for “age and sex” and “sex and employ-
ment status” to the synthetic population.

(b) The pattern indicates a quite similar allocation of the pop-
ulation, probably due to the information given in the grids,
which we process in the allocation procedure.

Figure 5.6.: Comparison of differences of grid counts to different generation turns.
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5. Synthetic Population of the 21st District of Vienna

(a) Density of persons with a university degree.

(b) There is a rather arbitrary allocation of the persons with a
university degree.

Figure 5.7.: Comparison of density of persons with university degree.
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5. Synthetic Population of the 21st District of Vienna

5.4. Runtime Evaluation

For generating the population of Vienna Floridsdorf, we processed 2,928,
45,534, 177,910 margin constraints on 700, 14,685, 126,939 templates for
households, families and persons for at least 50,000 iterations. The gener-
ation process took approximately 5 seconds, 3,100 seconds and 15 hours
for extrapolating all the templates. Due to the concurrent allocation of ex-
trapolation factors to templates, the design is based upon a single-threaded
architecture. The gain with respect to the runtime, did not seem to justify
the additional implementation effort for a multithreaded architecture.

We implemented and tested our design on a system with 32GB Ram, 512GB
SSD and a i7-6820HQ CPU @ 2.70GHz CPU.

A great effort was gaining input data, as these had to be fetched from
Statistics Austria by hand. We made approximately 15, 115, 178 queries to
the Statcube portal for recovering the input data for our household, family
and person synthetic population generation process, whereas these queries
comprise a full-conditional input data set.

5.5. Outcomes of the Discrete Choice Models

In this section we highlight the impacts of the estimated parameters of the
car ownership and income model on the synthetic population. We defined
multinominal logit models and estimated those with BIOGEME [4]. Fig-
ure 5.8 shows the overall car ownership level within households in the 21st

district of Vienna, Floridsdorf. According to our estimation, approximately
51,000 (i.e. 72%) of our generated households do have at least one car avail-
able, which the residents may use. Figure 5.9 presents the impact of the
estimated parameters of the income model. The average income levels are
plotted with respect to the age of the persons. We can see, there are on aver-
age lower incomes for female and young persons. In addition the average
incomes significantly decrease at the age of approximately 60 years.
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Figure 5.8.: Outcomes of the car ownership model.
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Figure 5.9.: Average monthly income of Austrian citizen before taxes by age after assigning
the income levels with respect to the prior estimated parameters.
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6. Discussion and Conclusion

We created a synthetic population of the 21st district of Vienna by deploying
multidimensional iterative proportional fitting (on the domains of house-
holds, families and persons), discrete choice models for deducing further
sociodemographic attributes and GIS-based methods for allocating the pop-
ulation a spatial context. In this chapter we highlight the limitations and
strengths of the design and will evaluate those.

The results presented in Chapter 5 indicate that it is possible to deduce a
fine-grained population on a single entity level from aggregated margin con-
straints by deploying our introduced approach. The approach to exploit the
mutual dependencies in the input data within sets of characteristics, allowed
us creating a near real-world population of Floridsdorf with respect to the
given input margin constraints given in cross-classification tables. Although
the results indicate a good fit to reality for a population with nine differ-
ent characteristics for persons, eight characteristics for families and seven
characteristics for households, it is evident to take in consideration that this
demands a great effort of providing sound input data. As shown in Sec-
tion 5.4, the best results can be gained by providing a full-conditional input
set of margin constraints. However when adding another sociodemographic
characteristic, we need more and more input constraints (i.e. more and more
cross-classification tables) to keep the input data in a full-conditional state.
For our design to work out properly, it is important to provide information
on infeasible combinations of sociodemographic attributes. Thus there is
a great need for margin constraints with information on combinations on
sociodemographics which occur zero times in the real-world population.
We process this information, s.t. we can shrink the pool of possible sets of
sociodemographics, i.e. templates, in the creation process. Recovering this
kind of information from Statistics Austria is tedious, as the free user is
limited with respect to the size and also with respect to the level of detail
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6. Discussion and Conclusion

of queries the user can perform. To overcome this, Statistics Austria offers
a premium account which enables for more convenient querying marginal
information in order to more proficient generate input data. The premium
account also enables querying more fine-grained information. We need to
pay attention of keeping the possible template count as small as possible
as the runtime is highly related to the count of processed templates as
highlighted in Section 5.4.

As long as there are given sound input sources for statistical data, there can
be gained an advantage by deploying this introduced design for population
synthesis. We not only assign persons to spatial areas on their own, but
rather assign persons to families and subsequently families to households
and eventually households to spatial areas. This procedure brings the syn-
thetic population one step closer to reality in contrast to implementations
of Farooq et al. [7] and Adiga et al. [1], as we can address relationships
within households with respect to the mobility behavior. The design is
open to further data sources such as additional grid layers with sociode-
mographic information on a spatial level, which can improve the quality of
the resulting population regarding the spatial allocation by adding further
and further layers. Nevertheless the layers should be compatible to each
other. This is not the case in our implementation as we are processing grid
layers and ACDs with information of different years leading to problems
by allocating the households to spatial entities. The cross-classification ta-
bles hold information of the population of the year 2013, the ACDs are
from the year 2015 and the sociodemographic grid information are from
the year 2014 (“age by sex”) and 2015 (“sex by employment status”). This
certainly causes problems when allocating the generated population to a
spatial level as, at some point, the counts given in the two grid layers may
be contradictory. However the resulting population meets the grid counts
quite good, though there is certainly a problem with the grid data sources,
as these are from two different years. The resulting population reassembles
the counts (given in the grid layers) quite good, even by performing the
population generation process over and over again. The demographics given
in the sociodemographic information grids, as shown in Figure 5.6, are also
present in the final allocated population, though the grid counts are not
perfectly met. Taking a look at characteristics not given in the grids, it is
evident, that such information are nearly randomly allocated, as the link
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of the sociodemographic data given in the grids to other characteristics
(e.g. school-leaving qualification) is strong, as shown in Figure 5.7. When
it comes to extrapolating the sets of templates, presented in Section 3.4,
the sum of deviations is rapidly decreasing in the first 1000 iterations. The
sum seems to converge to zero, which indicates the overall compliance of
the input data. For domains with more sociodemographics there is a much
higher sum of deviation in the whole extrapolation procedure, in contrast
to domains with less sociodemographics. This might be due to the signif-
icantly higher demand for input data (i.e. margin constraints). Therefore,
as domains depict more characteristics, they also expect more input data
and as a result evoke higher iteration count for extrapolating and thus more
time for the whole procedure.

Liable to the full-conditional status of the input data, it is necessary to
perform a huge effort on queries of multiple sets of characteristics in order
to gain a full-conditional input data set, which is needed for depicting the
real-world population best. The exact count of queries we need to perform
by hand is given in Formulas 6.1 and 6.2. For each characteristics CHAX

the number of attributes given in this characterisitcs has a large impact on
the necessary amount of queries, which need to be done. If there are given
seven attributes in the characteristics, then the corresponding characteristics
is given as CHAX(7). By using this information and the formulas we can
calculate the necessary amount of queries for providing the design with full-
conditional demographics, in the case of lacking a premium user account
for Statistics Austria portal, Statcube. A free user is limited to query 25,000

cell values at once, thus managing full-conditional input data may become
a burden, when the sociodemographics count rises [18].

⌈queries⌉ =
CHA1(22) ∗ CHA2(21) ∗ CHA3(8) ∗ CHA4(2) ∗ CHA5(7)

25, 000
(6.1)

⌈queries⌉ =
73, 920

25, 000
= 3 (6.2)

Our presented design is applicable for population synthesis by processing
single characteristic margin sums but also composite margin sums (“sex
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by age by employment status”), such as given in cross-classification tables.
It is possible to add further margin information besides those of Statistics
Austria. But only by providing data in cross-classification tables, thus of-
fering the possibility to deploy this mechanism in other fields of research
rather than transportation planning. This design may be auspicious in the
field of socioeconomic studies where there is also a great need for deducing
single individuals from margin sums. As this design allows for extending
or replacing Statistics Austria data, the resulting population can get closer
to reality by each cross-classification table (i.e. set of margin constraints) we
add. In order to allow for adding further characteristics to this population,
we deployed discrete choice models. The results show that there are created
incomes for each person which seem to be plausible, when considering
average incomes [6]. Nevertheless we have to add, that there is a need
for further research to examine, if these assumptions are also fitting the
real-world when considering single persons rather than average sums over
the population. Due to the limited counts of observations in the EU-SILC
household survey, we based our models on the observations of the total
citizenship of Austria. This decision neglects the differences related to car
ownership and income in a regional context. The outcome of this simplifica-
tion can be observed in the results of the car ownership model, where there
are approximately 72.8% of households in Vienna Floridsdorf with at least
one car, though the official data of Statistics Austria indicate otherwise [24].
However for the total of Austrian households this estimation may seem
reasonable. Within the EU-SILC household survey there was questioned
whether the family owned at least one car and not the actual amount of
cars in the household. As a result the given car ownership model is not
conclusive, as we only estimate whether there is a car or not. It would be
certainly more interesting if it is possible to estimate the actual amount of
cars in the household as it was done by Farooq et al. [7].

Another limitation is given, as the estimation of incomes does not consider
part-time jobs by now. Therefore the synthetic population does not depict
reality for these kind of people with respect to their income. As shown
in Figure 5.9 there are already incomes at younger ages. This certainly
may not be true as infants in Austria are certainly not permitted to work.
Nevertheless we also allocated those an income, as we wanted to allocate
the total of the persons in our population an income. These may therefore
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6. Discussion and Conclusion

be interpreted as alimony payments and child allowances.

Our proposed design for population synthesis comprises different tech-
niques for population synthesis introduced in Chapter 2. We combined
the introduced approaches, such as IPF, discrete choice models and GIS
techniques. In our case we used these techniques to generate a synthetic
population of the 21st district of Vienna, Floridsdorf and additionally added
information on household compositions. None of the introduced approaches
have dealt with this combination of deploying various techniques at the
same time and depicting the household compositions before. This design
can be used for creating populations for each Austrian city, district and
municipality. Moreover our approach allows to generate a synthetic baseline
population based on free statistical data of Statistics Austria, by process-
ing cross-classification tables on socioeconomics and demographics. For
refining the population, we also used survey data of EU-SILC which is not
openly accessible. Nevertheless these data may be requested for free from
Statistics Austria for research purposes. Finally for allocating the population
to spatial entities, it is necessary to process grid layers with information
on sociodemographics. These are provided by Statistics Austria against
payment of a fee. With respect to the data sources it is therefore possible to
generate a population for free by deploying our design, though for refining
the population there may be costs.
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7. Outlook

The population which can be gained by deploying the design introduced
in this master’s thesis is static. That means, there are no mobility profiles
assigned to the single citizens and the population simply depicts the citi-
zenship of 2013 of the 21st district of Vienna, Floridsdorf. For depicting the
real-world population better, it would be promising to add day-plans and
activities to the population.

Day-plans are a set of activities a person carries out a day. An activity in turn
is a location, where a person may execute a certain activity type, such as
“shopping”. A common day-plan is the sequence of activities “home-work-
home”. That means at a certain time the person is located at his “home”
activity location, some time later the person is located at his “work” activity
location and finally the person returns to his “home” location. In the scope
of this thesis we already allocated activities of type “home” to all citizen. To
bring the population closer to reality, it would be promising to additionally
assign the primary and secondary activities to the persons. Primary activities
like “work” and “school” are those, which typically are carried out at the
same location every weekday. In addition to the primary activities, there are
also secondary activities, such as “shopping”, “leisure”, etc. These kind of
activities, i.e. the locations of these activities, may be arbitrarily (probability-
based) chosen from day to day (i.e. in each simulation run).

Assigning such day-plans would make the population more compliant with
MATSim models, as it would be possible, on the one hand to process the
sociodemographic patterns of the persons within the transport simulation
and on the other hand also their mobility patterns. Examining the outcomes
of the transport simulation, based upon the combination of these two
information types, might enable for more conclusive results with respect
to traffic flow analysis and site-evaluation. For extending the population
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7. Outlook

with such plans, it would be necessary to process additional information
pools. Information pools related to primary activities may hold information
on companies and schools, such as employee/pupil count, geographical
position and field of business/type of school. These kind of information
would make it possible to assign persons to geographical working/school
places with respect to their field of business/school type. Information pools
related to secondary activities, may hold information on the geographic
position, activity type and a value indicating the attractiveness of this
location to the corresponding activity type. These kind of information might
be provided by business directories, regional education authorities and
yellow pages.

For putting these recommendations for MATSim models into practice, it
is necessary to continue researching in the field of generating synthetic
populations on an agent-level.
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Appendix A.

Attributes of Persons

German (Original) English (Translated)
Wohnort (Ebene +1) Place of residence (level +1)

Wien-Floridsdorf Wien-Floridsdorf

Table A.1.: “Place of residence” with 1 attribute.

German (Original) English (Translated)
Geschlecht Gender

Männlich Male
Weiblich Female

Table A.2.: “Gender” with 2 attributes.
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Appendix A. Attributes of Persons

German (Original) English (Translated)
Anzahl der Kinder Number of children
in der Familie (Ebene +1) in the family (level +1)

1 Kind 1 child
2 Kinder 2 children
3 Kinder 3 children
4 Kinder 4 children
5 Kinder 5 children
6 und mehr Kinder 6 or more children
Keine Kernfamilie No nuclear family
Keine Kinder No children

Table A.3.: “Number of children” with 8 attributes.
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Appendix A. Attributes of Persons

German (Original) English (Translated)
Alter in Jahren (Ebene +2) Age in years (level +2)

Unter 5 Jahre Younger than 5 years
5 bis 9 Jahre 5 to 9 years
10 bis 14 Jahre 10 to 14 years
15 bis 19 Jahre 15 to 19 years
20 bis 24 Jahre 20 to 24 years
25 bis 29 Jahre 25 to 29 years
30 bis 34 Jahre 30 to 34 years
35 bis 39 Jahre 35 to 39 years
40 bis 44 Jahre 40 to 44 years
45 bis 49 Jahre 45 to 49 years
50 bis 54 Jahre 50 to 54 years
55 bis 59 Jahre 55 to 59 years
60 bis 64 Jahre 60 to 64 years
65 bis 69 Jahre 65 to 69 years
70 bis 74 Jahre 70 to 74 years
75 bis 79 Jahre 75 to 79 years
80 bis 84 Jahre 80 to 84 years
85 bis 89 Jahre 85 to 89 years
90 bis 94 Jahre 90 to 94 years
95 bis 99 Jahre 95 to 99 years
100 Jahre und älter 100 years or older

Table A.4.: “Age in Years” with 21 attributes.
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Appendix A. Attributes of Persons

German (Original)
Typ der Familie (Ebene +1)

Ehepaar mit mind. 1 Kind unter 25 Jahren
Lebensgemeinschaft mit mind. 1 Kind unter 25 Jahren
Ein-Eltern-Familie (nur Vater) mit mind. 1 Kind unter 25 Jahren
Ein-Eltern-Familie (nur Mutter) mit mind. 1 Kind unter 25 Jahren
Keine Kernfamilie
Ehepaar ohne Kinder
Lebensgemeinschaft ohne Kinder
Ehepaar mit jüngstem Kind ab 25 Jahren
Lebensgemeinschaft mit jüngstem Kind ab 25 Jahren
Ein-Eltern-Familie (nur Vater) mit jüngstem Kind ab 25 Jahren
Ein-Eltern-Familie (nur Mutter) mit jüngstem Kind ab 25 Jahren

English (Translated)
Type of family (level +1)

Married couple with at least 1 child under the age of 25

Cohabitation with at least 1 child under the age of 25

Single-parent family (only father) with at least 1 child under the age of 25

Single-parent family (only mother) with at least 1 child under the age of 25

No nuclear family
Married couple without children
Cohabitation without children
Married couple, whose youngest child is older than 25

Cohabitation, whose youngest child is older than 25

Single-parent familiy (only father), whose youngest child is older than 25

Single-parent familiy (only mother), whose youngest child is older than 25

Table A.5.: “Type of family” with 11 attributes.
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Appendix A. Attributes of Persons

German (Original) English (Translated)
Größe des Privathaushalts (Ebene +1) Private household size (level +1)

1 Person 1 person
2 Personen 2 persons
3 Personen 3 persons
4 Personen 4 persons
5 Personen 5 persons
6 Personen 6 persons
7 Personen 7 persons
8 und mehr Personen 8 or more persons
Nichtprivathaushalte Non-private households

Table A.6.: “Private household size” with 9 attributes.
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Appendix A. Attributes of Persons

German (Original) English (Translated)
ÖNACE 2008 Arbeitsstätte (Ebene +4) Field of business (level +4)

Entfällt Does not apply
Erziehung und Unterricht Education
Handel Trade
Freiberufliche/techn. Dienstleistungen Freelance/technical services
Gesundheits- und Sozialwesen Health and social services
Verkehr Transport
Sonst. wirtschaftl. Dienstleistungen Other economical service
Öffentliche Verwaltung Public administration
Bau Construction
Beherbergung und Gastronomie Accommodation and gastronomy
Sonst. Dienstleistungen Other services
Wasserversorgung/Abfallentsorgung Water supply and waste management
Grundstücks- und Wohnungswesen Real estate and housing
Herstellung von Waren Manufacturing
Information und Kommunikation Information and communication
Finanz- und Versicherungsleistungen Finance and insurance services
Kunst, Unterhaltung und Erholung Arts, entertainment and recreation
Unbekannte Wirtschaftstätigkeit Unknown economic activity
Energieversorgung Energy supply
Private Haushalte Private households
Land- und Forstwirtschaft Agriculture and forestry
Bergbau Mining
Exterritoriale Organisationen Extra-territorial organizations

Table A.7.: “Field of business” with 23 attributes.
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Appendix A. Attributes of Persons

German (Original) English (Translated)
Höchste abgeschlossene Ausbildung Highest educational attainment

Akademie Academy
Allgemein bildende höhere Schule Grammar school
Berufsbildende höhere Schule Higher vocational school
Berufsbildende mittlere Schule Vocational school
Entfällt Does not apply
Hochschule University
Kolleg Course of lectures
Lehrabschluss Apprenticeship certificate
Pflichtschule Compulsory school

Table A.8.: “Highest educational attainment” with 8 attributes.

German (Original) English (Translated)
Stellung im Beruf (Ebene +2) Occupational status (level +2)

Nicht-Erwerbspersonen Inactive persons
Arbeiterinnen, Arbeiter (inklusive Lehrlinge) Workers (inclusive apprentices)
Angestellte (inklusive Lehrlinge) Employees (inclusive apprentices)
Sonstige unselbständig Erwerbstätige Other paid employment
Selbständige Self-employed
Arbeitslos Unemployed
Arbeitgeber Employers
Mithelfende Familienangehörige Family workers

Table A.9.: “Occupational status” with 8 attributes.
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Appendix B.

Attributes of Families

German (Original) English (Translated)
Wohnort (Ebene +1) Place of residence (level +1)

Wien-Floridsdorf Wien-Floridsdorf

Table B.1.: “Place of residence” with 1 attribute.
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Appendix B. Attributes of Families

German (Original) English (Translated)
Alter des Mannes (Ebene +2) Age of the man (level +2)

15 bis 19 Jahre 15 to 19 years
20 bis 24 Jahre 20 to 24 years
25 bis 29 Jahre 25 to 29 years
30 bis 34 Jahre 30 to 34 years
35 bis 39 Jahre 35 to 39 years
40 bis 44 Jahre 40 to 44 years
45 bis 49 Jahre 45 to 49 years
50 bis 54 Jahre 50 to 54 years
55 bis 59 Jahre 55 to 59 years
60 bis 64 Jahre 60 to 64 years
65 bis 69 Jahre 65 to 69 years
70 bis 74 Jahre 70 to 74 years
75 bis 79 Jahre 75 to 79 years
80 bis 84 Jahre 80 to 84 years
85 bis 89 Jahre 85 to 89 years
90 bis 94 Jahre 90 to 94 years
95 bis 99 Jahre 95 to 99 years
Trifft nicht zu Does not apply

Table B.2.: “Age of the man” with 18 attributes.
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Appendix B. Attributes of Families

German (Original) English (Translated)
Alter der Frau (Ebene +2) Age of the woman (level +2)

15 bis 19 Jahre 15 to 19 years
20 bis 24 Jahre 20 to 24 years
25 bis 29 Jahre 25 to 29 years
30 bis 34 Jahre 30 to 34 years
35 bis 39 Jahre 35 to 39 years
40 bis 44 Jahre 40 to 44 years
45 bis 49 Jahre 45 to 49 years
50 bis 54 Jahre 50 to 54 years
55 bis 59 Jahre 55 to 59 years
60 bis 64 Jahre 60 to 64 years
65 bis 69 Jahre 65 to 69 years
70 bis 74 Jahre 70 to 74 years
75 bis 79 Jahre 75 to 79 years
80 bis 84 Jahre 80 to 84 years
85 bis 89 Jahre 85 to 89 years
90 bis 94 Jahre 90 to 94 years
95 bis 99 Jahre 95 to 99 years
100 Jahre und älter Older than 100 years
Trifft nicht zu Does not apply

Table B.3.: “Age of the woman” with 19 attributes.

German (Original) English (Translated)
Typ der Kernfamilie (Ebene +2) Type of the nuclear family (level +2)

Ehepaar ohne Kinder Married couple without children
Ehepaar mit mind. 1 Kind Married couple with at least 1 child
Lebensgemeinschaft ohne Kinder Cohabitation without children
Lebensgemeinschaft mit mind. 1 Kind Cohabitation with at least 1 child
Ein-Eltern-Familie (nur Vater) Single-parent family (only father)
Ein-Eltern-Familie (nur Mutter) Single-parent family (only mother)

Table B.4.: “Type of the nuclear family” with 6 attributes.
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Appendix B. Attributes of Families

German (Original) English (Translated)
Höchste abgeschlossene Highest educational attainment
Ausbildung des Mannes of the man

Akademie Academy
Allgemein bildende höhere Schule Grammar school
Berufsbildende höhere Schule Higher vocational school
Berufsbildende mittlere Schule Vocational school
Entfällt Does not apply
Hochschule University
Kolleg Course of lectures
Lehrabschluss Apprenticeship certificate
Pflichtschule Compulsory school
Trifft nicht zu Does not apply

Table B.5.: “Highest educational attainment of the man” with 10 attributes.

German (Original) English (Translated)
Höchste abgeschlossene Highest educational attainment
Ausbildung der Frau of the woman

Akademie Academy
Allgemein bildende höhere Schule Grammar school
Berufsbildende höhere Schule Higher vocational school
Berufsbildende mittlere Schule Vocational school
Entfällt Does not apply
Hochschule University
Kolleg Course of lectures
Lehrabschluss Apprenticeship certificate
Pflichtschule Compulsory school
Trifft nicht zu Does not apply

Table B.6.: “Highest educational attainment of the woman” with 10 attributes.
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Appendix B. Attributes of Families

German (Original) English (Translated)
Anzahl der Kinder Number of children
in der Familie (Ebene +1) in the family (level +1)

1 Kind 1 child
2 Kinder 2 children
3 Kinder 3 children
4 Kinder 4 children
5 Kinder 5 children
6 und mehr Kinder 6 or more children
Keine Kinder No children

Table B.7.: “Number of children in the family” with 7 attributes.

German (Original) English (Translated)
Anzahl der Kinder unter 25 Jahren Number of children under the age of 25

in der Familie (Ebene +1) in the family (level +1)

1 Kind unter 25 Jahren 1 child under the age of 25

2 Kinder unter 25 Jahren 2 children under the age of 25

3 Kinder unter 25 Jahren 3 children under the age of 25

4 Kinder unter 25 Jahren 4 children under the age of 25

5 Kinder unter 25 Jahren 5 children under the age of 25

6 Kinder und mehr unter 25 Jahren 6 or more children under the age of 25

Keine Kinder unter 25 Jahren No children under the age of 25

Table B.8.: “Number of children under the age of 25 in the family” with 7 attributes.
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Appendix C.

Attributes of Households

German (Original) English (Translated)
Wohnort (Ebene +1) Place of residence (level +1)

Wien-Floridsdorf Wien-Floridsdorf

Table C.1.: “Place of residence” with 1 attribute.

German (Original) English (Translated)
Anzahl der Personen ab 65 Jahren Number of persons older than 65 years
im Privathaushalt (Ebene +1) in the private household (level +1)

1 Person ab 65 Jahren 1 person older than 65 years
2 Personen ab 65 Jahren 2 personen older than 65 years
3 und mehr Personen ab 65 Jahren 3 und mehr personen older than 65 years
Anstaltshaushalte Institutional households
Keine Person ab 65 Jahren No person older than 65 years

Table C.2.: “Number of persons older than 65 years in the private household” with 5

attributes.
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Appendix C. Attributes of Households

German (Original) English (Translated)
Typ des Einfamilienhaushalts Type of the single-family household

Einfamilienhaush. o. weitere Pers. Single-family HH without add. pers.
Einfamilienhaush. m. weiteren Pers. Single-family HH with add. pers.
Kein Einfamilienhaushalt No single-family household

Table C.3.: “Type of the single-family household” with 3 attributes.

German (Original) English (Translated)
Geschlecht Gender

Männlich Male
Weiblich Female

Table C.4.: “Gender” with 2 attributes.

German (Original) English (Translated)
Größe des Privathaushalts (Ebene +1) Private household size (level +1)

1 Person 1 person
2 Personen 2 persons
3 Personen 3 persons
4 Personen 4 persons
5 Personen 5 persons
6 Personen 6 persons
7 Personen 7 persons
8 und mehr Personen 8 or more persons
Anstaltshaushalte Institutional households

Table C.5.: “Private household size” with 9 attributes.
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Appendix C. Attributes of Households

German (Original) English (Translated)
Anzahl der Personen unter 18 Jahren Number of persons under the age of 18

im Privathaushalt (Ebene +1) in the private household (level +1)

Keine Person unter 18 Jahren No person under the age of 18

1 Person unter 18 Jahren 1 person under the age of 18

2 Personen unter 18 Jahren 2 persons under the age of 18

3 Personen unter 18 Jahren 3 persons under the age of 18

4 Personen unter 18 Jahren 4 persons under the age of 18

5 und mehr Personen unter 18 Jahren 5 or more persons under the age of 18

Anstaltshaushalte Institutional households

Table C.6.: “Number of persons under the age of 18 in the private household” with 7

attributes.
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Appendix C. Attributes of Households

German (Original)
Typ des Haushalts (Ebene +1)

Ehepaar ohne Kinder
Ehepaar mit mind. 1 Kind unter 25 Jahren
Ehepaar mit jüngstem Kind ab 25 Jahren
Lebensgemeinschaft ohne Kinder
Lebensgemeinschaft mit mind. 1 Kind unter 25 Jahren
Lebensgemeinschaft mit jüngstem Kind ab 25 Jahren
Ein-Eltern-Familie (nur Vater) mit mind. 1 Kind unter 25 Jahren
Ein-Eltern-Familie (nur Vater) mit jüngstem Kind ab 25 Jahren
Ein-Eltern-Familie (nur Mutter) mit mind. 1 Kind unter 25 Jahren
Ein-Eltern-Familie (nur Mutter) mit jüngstem Kind ab 25 Jahren
Zwei- oder Mehrfamilienhaushalte
Einpersonenhaushalte
Nichtfamilien-Mehrpersonenhaushalte
Internat, Schüler, Studentenheim sowie Heim für Berufstätige in Ausbildung
Heil- Pflegeanstalt sowie Pensionisten- bzw. Altersheim
Einrichtung für Behinderte
Einrichtung für Kinder und Jugendliche
Kloster oder ähnliche Anstalt
Kaserne
Justizvollzugsanstalt
Einrichtung für Flüchtlinge
Sonstige Anstalt
Gemeinschaftsunterkunft
Einrichtung für sozial Bedürftige bzw. Wohnungslose

Table C.7.: “Type of the household” with 24 attributes, continued in next table.
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Appendix C. Attributes of Households

English (Translated)
Type of the household (level +1)

Married couple without children
Married couple with at least 1 child under the age of 25

Married couple whose youngest child is older than 25 years
Cohabitation without children
Cohabitation with at least 1 child under the age of 25

Cohabitation whose youngest child is older than 25 years
Single-parent family (only father) with at least 1 child under the age of 25

Single-parent family (only father) whose youngest child is older than 25 years
Single-parent family (only mother) with at least 1 child under the age of 25

Single-parent family (only mother) whose youngest child is older than 25 years
Two- or multi-family households
Single-person households
Non-family- multi-person households
Boarding school, student home or dormitory as well as homes for apprentices
Nursing home as well as retirement home
Facility for the disabled
Facility for children and young people
Monastery or similar institutions
Barrack
Prison
Facility for refugees
Other institutions
Shared accommodation
Facility for socially needy or homeless people

Table C.8.: “Type of the household” with 24 attributes (english).
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