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Thomas Höll
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Graz University of Technology

Abstract

Cultural heritage acquisition “in the wild” is challenging, because one is confronted with
a non-controllable environment. In this thesis I tackle this challenge and present my ap-
proach to acquire accurate surface geometry and radiometry in three parts.
For geometry measurement, I extend Structure-from-Motion with constrained bundle
adjustment postprocessing to obtain geo-referenced Euclidean reconstructions. As con-
straints for this task I use the geometric calibration of a newly developed scanner proto-
type and optionally available tachymeter measurements.
For radiometry measurement, I use the geometrically calibrated high-intensity illumination
of the scanner and the previously obtained geometry. Calculating the relations between
surface normal, camera pose, and incident light leads to the final result of dense 3D point
clouds that represent radiometric surface properties.
For large sites, “true” radiometry for the complete 3D point cloud is very expensive to
obtain. As my third contribution, I present a method that is capable to reconstruct the
radiometric surface properties of an entire scene despite the fact that only for a part of
it the “true” radiometry is known. This is done in a two stage process: First, I transfer
the radiometry to spatially corresponding parts of the scene, and second, these values are
propagated to the entire scene using affinity information.
The presented approach was used in the European 3D Pitoti project and showed its appli-
cability for cultural heritage acquisition. Besides cultural heritage acquisition I validate
the performance of my approach on various other objects and data.
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Kurzfassung

Die bildbasierte Erfassung von Kulturerbe in ihrem natürlichen Umfeld ist eine anspruchsvolle
Aufgabe. Ein Grund dafür ist die nicht kontrollierbare Umgebung. In dieser Dissertation
behandle ich diese Problemstellung und zeige meine Methode auf, die es erlaubt die Ge-
ometrie und Radiometrie von Kulturgut akkurat zu erfassen.
Die Geometrie wird zuerst mit Hilfe von “Structure-from-Motion” (SfM) rekonstruiert.
Im Anschluss daran werden mit Hilfe eines “constrained bundle ajustment” Verfahrens
(Blockbündelausgleich unter Randbedingungen) etwaige Totalstation Messungen und die
Kalibration eines neuentwickelten Scanners mit dem Ergebnis der SfM Rekonstruktion
fusioniert.
Unter Einbeziehen der rekonstruierten Geometrie (inkl. Oberflächennormale und Kamera
Posen) und der geometrisch kalibrierten Beleuchtung des Scanners wird die radiometrische
Oberflächeneigenschaft rekonstruiert. Das Ergebnis dieser Berechnung ist eine dichte 3D
Punktwolke, die die radiometrischen Oberflächeneigenschaften beinhaltet.
Für große Areale ist eine radiometrische Rekonstruktion sehr zeitaufwendig und teuer. Als
drittes stelle ich eine Methode vor, die die Radiometrie eines gesamten Areals rekonstru-
iert, obwohl nur einzelne Ausschnitte radiometrisch erfasst wurden. Dazu wird zuerst die
Radiometrie auf die korrespondierenden Bereiche der Szene übertragen, und im Anschluss
auf den übrigen Teil weiterpropagiert.
Im Rahmen des EU-Projektes “3D Pitoti” wurde die präsentierte Methode zur bild-
basierten Erfassung von Kulturerbe eingesetzt und zeigte ihre praktische Anwendbarkeit.
Zusätzlich validierte ich die Methode unter Zuhilfenahme verschiedener Objekte und Daten-
sätze.
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1
Introduction

Preserving and studying our past is a major field in science and leads to interesting mul-
tidisciplinary research questions and answers. Computer science aids archaeologists to
answer questions about the past or enables quantitative methods to compare different hy-
potheses. Today we have the possibility to store a huge amount of data and have efficient
algorithms to query it. With the advent of high-performance GPUs 1 and their capability
of massive parallel processing we are able to capture, process and visualize large scale
data such as point clouds or high resolution images. These and other innovations result
in interesting and successful projects in the field of cultural heritage where archaeologists
and computer scientists use their expertise to drive research in both areas.
This thesis arose in the context of such a setting. As part of a European project I was

1Graphical Processing Unit

1



1. Introduction

concerned with the research topic of geometry and radiometry acquisition “in the wild”
in the context of cultural heritage of rock-art sites.

1.1 Context of the thesis - The 3D Pitoti Project

This thesis arose in the context of the European project 3D Pitoti [2]. As a result, the
projects aim and its requirements influence large parts of my work. The 3D Pitoti project
aimed at scanning of large rock-art sites at various scales and the spatial relation between
them, applied to the ancient rock-art site of Valcamonica, which contains at least 100, 000
petroglyphs ([14], [15], see figure 1.1 for some examples of different petroglyphs). The
projects name is derived from the Camunian dialect word “Pitoti” which has the meaning
“small puppets” and is the name of the figures [27] depicted by a huge number of petro-
glyphs (see figure 1.1).

The scanning itself is done at various scales to capture the ancient rock-art starting from
individual petroglyphs (micro-scale) through to parts of the valley (a more general view
of the multi-scale reconstruction approach can be found in [13], [103] and section 3.1 of
this thesis).

Furthermore, the aim of the project is not only on 3D scanning that results in point
clouds and meshes, but also on novel use cases of the 3D data in various applications
including large-scale visualization [80], pecking style segmentation [138], petroglyph clas-
sification [174], and educational games [82] to name a few. In this context our part was
the micro-scale scanning of individual petroglyphs in terms of their geometry (including
their geo-referenced location) and radiometry. This task leads me to the following problem
statement:

1.2 Problem statement

In its three main parts, my thesis addresses the following three research questions:

How can we produce accurate geo-referenced geometric reconstructions of the
rock art?
The geometric reconstruction is a core part of the project and also of this thesis. In
terms of accuracy, the reconstruction error is better than 0.1mm and the resolution of an
individual piece of rock-art is about 0.04mm. To establish the geometric context of an
individual piece of rock-art the proposed method also allows that the final reconstruction
can be geo-referenced. Chapter 4 describes the proposed solution in detail.

2



1. Introduction

Figure 1.1: Images of Pitoti (petroglyphs). “Pitoti” is a Camunian dialect word of which
one meaning is “small puppets”. As one can see there exists a variety of different shapes.

How can we capture its radiometry “in the wild”?
High-quality visualization requires that the radiometric surface properties are also cap-
tured without any influence of ambient illumination during scanning, e.g. cast shadows
that will cause “double-shadow” artefacts during visualization. I want to emphasise the
term “in the wild”. The scanning is done outdoors and not in controlled laboratories.
While this is a usual setting for the geometric reconstruction, it is a challenging task for
the radiometric reconstruction because of the incident illumination from the surrounding

3



1. Introduction

environment. Chapter 5 presents the developed method.

How can we propagate measured radiometry into areas where we have only
access to photo texture?
Despite the fact that the proposed method to capture the radiometry works rather fast,
collecting radiometric surface properties of an entire scene is often prohibitive. To provide
consistent radiometry for a large scene, I developed a method to propagate known radio-
metric surface properties into regions were no radiometry was captured yet. The method
is presented in chapter 6.

1.3 Publications

In the course of my thesis work, the following publications emerged:

1.3.1 Peer reviewed abstract and oral presentations

2015:
“A scanner-prototype for geometric and radiometric reconstruction of rock-art sites”, Höll
Thomas, Holler Gert and Pinz Axel, Computer Application and Quantitative Methods in
Archaeology

1.3.2 Peer reviewed papers

2014:
“A novel high accuracy 3D scanning device for rock-art sites”, Höll Thomas, Holler Gert
and Pinz Axel, ISPRS Technical Commission V Symposium, Oral presentation

2015:
“Cultural Heritage Acquisition: Geometry-Based Radiometry in the Wild”, Höll Thomas
and Pinz Axel, International Conference on 3D Vision, Poster

2016:
“Radiometry propagation to large 3D point clouds from sparsely sampled ground truth”,
Höll Thomas and Pinz Axel, Asian Conference on Computer Vision (Workshop), Poster

4



2
Related work

My task is the 3D reconstruction of surface geometry and radiometric surface properties
under the assumption of Lambertian surface reflectance and richly textured surfaces. Un-
der these assumptions, image based reconstruction is the method of choice.

This chapter states how my thesis is related to previous work done in the fields of 3D
reconstruction from images and camera based radiometry estimation. W.r.t. Radiometry
I also have to discuss related work regarding photo-texture, reflectance functions and
shadows. I also briefly look at related work in the context of cultural heritage where
various successful methods have been used.

5



2. Related work

2.1 Geometry

The term “Shape from X” [145] subsumes a variety of methods to infer a scenes geometry
like “Shape from Shading” [76], “Shape from Stereo”, or “Photometric Stereo” [165] to
name a few. The preferred method I use within the 3D Pitoti project and the thesis is
“Structure from Motion” (SfM) [154]. This has several reasons: First, the scanned objects
are rich of visual features as can be seen in figure 2.1 where some of the captured images
along with extracted visual features are depicted. Second, one criterion for the scanner
prototype was affordability and structure from motion is a method that allows to use off-
the-shelf cameras and hence avoids the need for custom built solutions. Conducted user
studies with potential stakeholders also suggest that the scanner should be lightweight.
This is an further argument in favour of SfM.
The next sections state the related work in this field. A good source to get an idea of the
historical development in the field of geometric computer vision is given by Sturm [147].

(a) Macke (b) Marble (c) Pitoti (d) Statue

(e) nf = 26350 (f) nf = 2708 (g) nf = 21219 (h) nf = 1222

Figure 2.1: This figure shows examples of four different objects scanned with the scanner
prototype and extracted visual features. The extracted features (SIFT [89]) are superim-
posed on the images of the bottom row. nf states the number of extracted features. All
images are of the same size of 1296 × 864 pixels. One can see that especially the image
“Pitoti” is feature rich.

2.1.1 Epipolar geometry

The epipolar geometry describes the relationship between two different views of a scene.
If the two views observe the same 3D point p the two corresponding image points p′1 and
p′2 must obey p′2TF p′1 = 0 which is the result of the co-planarity of the camera centres,

6



2. Related work

the image points and the 3D point. The matrix F is the well known fundamental matrix
which is a 3× 3 rank 2 matrix. One implication of this constraint is that knowing e.g. p′1

and F one can restrict the location of p′2 in the second view to the corresponding epipolar
line despite the 3D point is unknown.
According to Sturm [147] and Zhang [175] the earliest work on epipolar geometry was done
in the 1800’s by Hauck [70], Hesse [71], and Sturm [148]. Hesse [71] proposed an algebraic
solution that is essentially equivalent to the 7-point algorithm (Hartley [67] and Torr et
al. [151]) for determining the fundamental matrix, but the link to the epipolar geometry
was missing. Sturm [148] and Hesse [71] also stated that there may exist three solutions
given seven point correspondences.
The concept of the fundamental matrix was introduced by Faugeras [39] and Hartley [66].
Since then researchers have investigated various methods to estimate the fundamental
matrix. The minimal number of point correspondence is 7 and Hartley [67] and Torr et
al. [151] used the 7-point algorithm to calculate the fundamental matrix.
Using more than 7 point matches ensures a unique solution. An 8-point algorithm was
introduced by Longuet-Higgins [87], but its applicability in practice was just since Hartely
[68] presented a normalization method to ensure a numerically robust solution.
The literature (e.g. [69], [175]) suggests to perform a subsequent non-linear optimization
which is based on a parametrization of the rank 2 fundamental matrix and the minimiza-
tion of a geometric quantity (e.g. the distance of points to their corresponding epipolar
lines or their estimated re-projections).

2.1.2 Projective reconstruction

Projective reconstruction is the result if nothing about the camera or the scene is known
[69]. More precisely, for a real camera, the task is “oriented projective reconstruction”
[161], constraining the problem to allow only points in front of the camera. The recon-
struction is done up to a global projective transformation. The actual world points and
camera locations, orientations and instriniscs are distorted w.r.t the Euclidean space and
thus measures of length or angles are pointless. In 1897 Finsterwalder [45] stated that one
can obtain a projective 3D reconstruction from a set of uncalibrated images. In his article
he also published an algorithm for the case of two images. In the 1990’s the topic was
rediscovered in computer vision by Faugeras [39] and Hartley et al. [65] who state that a
projective reconstruction is possible given the fundamental matrix.

2.1.3 Camera calibration and self-calibration

To obtain a similarity or metric reconstruction one needs further information about the
camera or scene. This could be achieved by calibrating the camera, the usage of knowledge

7



2. Related work

about scene (e.g. ground reference points), or camera self-calibration.

Camera calibration: For the topic of camera calibration, the survey of Zhang [177]
is a good starting point. In practice one can use off-the-shelf software [21] to calibrate a
camera based on a planar calibration target [176].

Camera self-calibration: Finsterwalder [45] showed already that camera self-calibration
based on the absolute conic is possible but didn’t find an analytical solution. Self-
calibration based on the absolute conic use the fact that the image of the absolute conic
(IAC) depends only on the camera internal calibration this means that the IAC is invariant
under Euclidean transformation. The historical first method on self-calibration was pre-
sented by Faugeras et al. [40] and Maybank and Faugeras [97] and is based on the IAC and
the Kruppa-equations. It assumes a camera with fixed intrinsic parameters. Later, camera
self-calibration was extended towards multiple cameras with varying intrinsic parameters
([72], [122]).

Scene knowledge: Only similarity reconstruction up to unknown scale can be accom-
plished with a calibrated camera. To calculate the Euclidean structure of the scene and
camera positions from a projective reconstruction, Hartley et al. [65] use 8 ground reference
points. Additional to ground reference points, parallelism of lines and knowledge about
vertical planes could be incorporated as constraints to obtain a Euclidean reconstruction
[101].

2.1.4 Structure from motion

Structure from motion (SfM) aims at reconstructing the geometry of a scene and the cam-
eras who capture it. This could be a single camera which moves through the scene or a set
of individual cameras. In recent years much effort has been spent in developing automatic
structure from motion methods which are able to perform the reconstruction task auto-
matically without or with only minor user interaction. Despite the vast amount of work
on this topic, some common steps remain the same which are ([38], [121], [52]): feature
extraction and matching, recovery of camera pose and scene geometry, and refinement of
the geometry.

Feature extraction and feature matching (relating images): Most structure from
motion methods depend on interest point detection and matching (an exception is e.g. [112],
where the autors use 3D curves to refine the camera position). Moravec [102] proposed one
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of the first signal based interest point detectors which is based on the auto-correlation1 of
an image. He considers the grey level difference of a window and the window shifted in
the four directions parallel to the row and column of the image. Based on the minimum of
the sum of squared differences he decides if an interest point was found. Several other pro-
posed interest point detectors build also on the auto-correlation approach ([90], [49], [51],
[64], [50], [150], [141]) but reformulate it and use the characteristics of the auto-correlation
matrix

A = k ∗
[

I2
x IxIy

IxIy I2
y

]
, (2.1)

where k is a convolution kernel, Ix and Iy are the image gradients in x and y direction. Shi
and Tomasi [141] propose that maxima in the smaller eigenvalue of A are good features to
track. The famous Harris corner detector [64] detects interest points if A has two significant
eigenvalues and demonstrats an excellent performance w.r.t. the criteria repeatability and
information content (see Schmid et al. [136]).
One major concern regarding interest point detectors is their scale invariance. Lindeberg
[85] proposed extrema of the Laplacian of Gaussian (LoG) to detect an interest point
location and select its representative scale. Based on these findings, Mikolajczyk and
Schmid [98] extend the Harris detector to be scale and affine invariant.
In computer vision, the scale-invariant feature transform (SIFT) [89] is a widely known and
popular combination of interest point detector and descriptor. To detect SIFT keypoints
(spatial location and appropriate scale) the algorithm first finds maxima/minima in the
Difference of Gaussians (DoG)D(x, y, σ) scale space function. This function is constructed
very efficiently using a set of octaves. In each octave, a set of Gaussian images is calculated
by convolving the input image with Gaussians, each with a specific scale factor. Next,
DoG’s for a specific scale are calculated by subtracting adjacent Gaussian images. For
the subsequent octave the Gaussian images are sub sampled and the process is repeated.
The extrema are detected by comparing a pixel to its neighbours, both in scale and space.
The location (x, y) and scale (σ) of the detected keypoints are further refined by fitting
a quadratic function to the data surrounding the keypoints. In a next step, low contrast
keypoints are rejected to increase the stability w.r.t. image noise. The curvature of the
keypoints is used to reject detected extrema that correspond to edges. This is done
by computing the Hessian matrix HD of the the corresponding DoG and rejecting all
keypoints for which Tr(HD)2/Det(HD) < (r + 1)2/r for r = 10 in the paper [89].
Because SIFT features are such an essential part in alot of computer vision processing
pipelines, fast computing of these features is essential. Changchang Wu’s SiftGPU [7]

1Auto-correlation uses the product of two functions. The correlation used by Moravec based on squared
differences.
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utilize modern graphics card to speed up the SIFT computation.

To handle scenarios in which the distance of two corresponding cameras is large (e.g. wide-
baseline stereo) one has to find interest points which are at least affine invariant. One such
interest point detector was presented by Mikolajczyk and Schmid [98] and is based on the
Harris detector. Detected Harris points that do not correspond to local extrema in the
LoG scale-space are rejected (scale selection). For each remaining keypoint an affine co-
ordinate frame is calculated based on the second moment matrix.
Another important affine-invariant region detector is theMaximally stable extremal regions
(MSER) [94] detector. The MSER detector calculates binary regions by thresholding the
input images with all possible gray values (0 . . . 255). While thresholding the image the
algorithm keeps track of the resulting region areas. Regions whose change in area is be-
low a certain threshold are defined as maximal stable. Nistér and Stewénius proposed an
efficient implementation of the MSER detector [111]. If necessary one can determine an
affine coordinate frame for each detected region using e.g. its second moment matrix.
A different approach was taken by Mustafa et al. [106] in which the authors oversegment
an image and use the interesction of three or more regions as interest points. This provides
feature points that can be consistently detected across a wide-baseline scenario.

A comparison of various affine region detectors can be found in [100]. In the survey of
Tuytelaars and Mikolajczyk [153] the authors present an overview of different invariant
interest point detectors.

Once interest points have been extracted, meaningful descriptors are required for sub-
sequent comparison and matching. This feature description should be robust to find
corresponding interest points in a set of images despite of rotation, scale and illumination
changes. If one deals with video sequences [141] or rectified stereo-images [88] one can use
metrics like the sum of squared difference [63].
In practice, one of the most frequently used image descriptors is SIFT [89]. For a detected
keypoint it uses the gradient information in a 16 × 16 window to calculate a 128 dimen-
sional feature vector. Performance evaluation of different feature descriptors [99] states
the excellent performance of the SIFT feature descriptor. The evaluation of Gauglitz et
al. [54] states results in the context of visual tracking which included usecases which are
also resonable in the context of SfM, like motion blur. A more up to date discussion on
feature descriptors can be found at the ECCV 2016 workshop on local features [95] where
a new benchmark ([3]) and evaluation metric was presented.

After describing features one needs to find the corresponding features in other images.
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This process is called feature matching. A feature like SIFT is described by a 128 dimen-
sional vector. Assuming that the Euclidean distance between feature vectors is directly
related to their similarity, finding the corresponding feature in another view can be cast as
a search problem that finds the nearest neighbour in a high-dimensional space (in the case
of SIFT, a 128 dimensional space). In practice one can increase the matching performance
if also the distance to the second nearest neighbour is taken into account. This is done by
calculating the nearest neighbour distance ratio (NNDR) [99] as NNDR = d1/d2, where
d1 and d2 are the distances to the nearest and second nearest neighbour. Matches are
rejected, if the NNDR is above a certain threshold. The intuition behind this is, that
one wants to match feature points that have a distinct nearest neighbour and reject those
feature points that match to multiple other points which is the case e.g. at repetitive
structures. An extensive evaluation of different local feature descriptors and matching
strategies can be found in [99].
Feature matching is a very time consuming task and allot of research has been spent into
optimizing and speeding up this process. Although some matching strategies are based on
nearest neighbour search it is still a computationally intensive task because of the possible
large number of features and the high-dimensional search space.
Approximate nearest neighbour (ANN) search methods improve the speed of feature match-
ing. Methods like FLANN [105] are based on KD-tress [19] which hierarchically partition
the space. FLANN refers to a collection of different ANN algorithms and is able to au-
tomatically choose the best algorithm and parameters for the dataset at hand. A GPU
accelerated ANN algorithm was proposed by Wieschollek et al. [163] which is able to find
the (approximated) nearest neighbour of a SIFT descriptor in a dataset with 1 million
entries [78] in 0.02 ms.
If high-level image information is available, like a semantic labelling of the image, Koby-
shev et al. [79] present an approach to incorporate this knowledge for feature matching.
The benefit is that one can reduce the search space. If, e.g. one wants to find features
on a “sidewalk”, one needs not to search the entire image but just the parts of the image
with the semantic labelling “sidewalk”. Another benefit of this method is that one can
exclude features of the scene which correspond to unreliable content w.r.t. the final SfM
reconstruction, like moving objects.
For extremely large image databases, Nistér and Stewénius [110] propose data structure
and ideas from document retrieval. Their proposed vocabulary tree is used by Hoppe et
al. [75] for their online SfM to find camera images that possibly contain similar image
content. This improves the speed of relating images because one does not need to search
every image to find corresponding points but just these images, that are proposed by the
vocabulary tree. Cao and Snavely [23] approach this task by learning a classifier on image
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pairs to predict which image pair will match or not.

Camera pose and scene geometry: Once point correspondences have been estab-
lished, the camera pose and scene geometry can be computed using the knowledge of
Epipolar geometry, projective reconstruction, and the camera calibration.
To do so, a variety of different methods have been proposed. One commonality of the
different approaches is that they depend on robust methods to reject potential outliers
e.g. wrong corresponding points. One of these methods is the widely used and wellknown
Random Sample Consensus (RANSAC) [46] method which is used to fit a model (e.g. the
epipolar geometry) to available data (e.g. point correspondences). RANSAC uses as many
randomly selected data points as at least are necessary to solve the fitting task, performs
the fitting, and checks how many points of the whole dataset are consistent with the re-
sulting model. In this way RANSAC can discard outliers because a model-fit with outliers
will not be consistent with the remaining dataset.
Capturing the scene with a calibrated camera results in a similarity SfM reconstruction
of the scene where the actual scale is still unknown. As already mentioned in section
2.1.3, incorporating scene knowledge can be used to determine the true scale. As scene
knowledge, one can use e.g. known distances of points in the scene or, if available, the
distance between two images.

Refinement: To refine the obtained geometry, bundle adjustment [152] is applied to
the estimated scene geometry and camera pose. Bundle adjustment minimizes the re-
projection error in every image by modifying the estimated geometry and camera param-
eters.
Software that can be used for this step includes e.g. Bundler [143]´, the Ceres solver [12],
and “multi core bundle adjustment” [167].

Structure from motion pipelines and software: The huge amount of work done
by the computer vision and photogrammetry community has resulted in the practical
applicability of structure from motion methods and pipelines. Papers like [11], [143], [57],
or [166] show that one only needs images as input to such pipelines to compute a 3D
reconstruction. The pipelines estimate the camera parameters, camera pose and scene
structure based on the input images solely.
The usual output of such an SfM pipeline is a collection of camera poses and sparse
surface points (corresponding to the detected and matched features). A dense surface
reconstruction is often done in a separate stage. SURE [132] and PMVS [53] use the sparse
output of a preceding structure from motion reconstruction and the images to reconstruct
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a dense surface model. Open source packages like the Multi-View Environment (MVE) [4]
consist of a software package that allows end-to-end image-based geometric reconstruction
that results in a dense surface model. Other freely available SfM reconstruction software
includes Bundler [143] (source code), VisualSFM [166] (binary), or openMVG [5] (source
code).

2.2 Radiometry

To capture the appearance of an object or of a scene, the geometry alone is not enough.
This requires to also capture how the object / scene interacts with light - its radiometric
properties.
While capturing the geometry is already a mature topic, capturing radiometry is still
a research field. A comprehensive overview of the topic of appearance acquisition and
representation is given by Weyrich et al. [162]. The main topic of this survey is the acqui-
sition and representation of the Bidirectional Reflectance Distribution Function (BRDF)
[113] and its simplifications and generalizations (e.g. anisotropic reflections or subsurface
scattering [59]).

2.2.1 Challenges to overcome

Cultural heritage has an inherent interest in preserving the appearance of cultural prop-
erties. The Parthenon project [33] for example digitized a large-scale scene with the aim
to capture also its radiometric properties beyond photo-texture. In case of the reflectance
property, the authors sampled the BRDF of a reflectance-characteristic area. The scan-
ning of the BRDF was done during night to eliminate the influence of the daylight. This
illustrates one problem or challenge to overcome if the acquisition is done “in the wild”:
eliminating the incident light. The incident light is necessary to capture an image, but for
the sake of appearance acquisition one wants the reflectance property of the object alone.

Eliminating incident light: There are several approaches to tackle this:
• Controlled environment: These approaches perform their measurements under lab-

oratory conditions which means that ambient light can be avoided. Another char-
acteristic of these works is that the reflectance properties are captured with custom
built devices.
Ward [158] uses a helf-sphere half-mirror and a camera with a fish-eye lens to cap-
ture surface reflectance. Surface reflectance is captured by the approach of Dana
[30] with an off-axis parabolic mirror. Ghosh et al. [58] propose to us a special
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designed mirror and illumination pattern to acquire the BRDF of a sample. These
are three examples that use mirrors to capture the angular dependencies of surface
reflectance.
Another approach is to construct specialized hardware with multiple cameras and
light sources for capturing the angular dependence, as done for example in the 3D
Coform project [1] with the DOME - Hardware [137].

• Shrouding of the incident light: While under laboratory conditions one is able to
control or eliminate the influence of incident light, in the case of outdoor work this
is not possible. There exist sites where daylight is naturally blocked, e.g. caves. For
example, the Rovina-project [6] has the aim to reconstruct catacombs in which no
daylight is present. When this setting can not be achieved, one can block daylight
by shrouding with e.g. a tent.

• Capture the incident light: Using a high dynamic range (HDR) image capture
method [34] the incident illumination can be captured and stored in an environ-
ment map or light probe. Such light probes are used by Debevec [31] and Debevec
et al. [32] to illuminate synthetic and captured objects.

• Estimating the incident light: Some authors propose to estimate the incident light
together with the surface reflectance. Romeiro and Zickler [130] estimate jointly the
surface reflectance and incident light, given an image and the shape of an object.
Similar work to achieve this has been done by Lombardi and Nishino [86].

Another challenge is that the BRDF is a high-dimensional function. The BRDF describes
how light is reflected from a single surface point, depending on the incoming light direction
and the viewpoint (four dimensions are necessary to describe this). Because an object is
often composed of different materials one needs to capture its spatial dependencies. The
function that describes this is called Spatially Varying Bidirectional Reflectance Distribu-
tion Function (SVBRDF) (a six-dimensional function). The following paragraph discusses
related work to infer (SV)-BRDF with a sparse set of measurements. The sparseness in the
presented work means that only a few images / views or angular dependent measurements
are required.

Sampling a high-dimensional function: Measurement of surface properties is an ac-
tive field in Computer Vision, e.g. Chandraker [25, 26, 24] has investigated a principled
tripartite framework underpinning the possibilities and limitations of BRDF measurements
with respect to light source, object and camera motion.
An early attempt on surface reflectance estimation was done by Dror et al. [131] who
treat this problem as a classification task. They motivate their work with the observation
that natural illumination has statistical regularities. These regularities interact with the
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reflectance property of an object and will cause certain statistical features of the image.
The authors use theses features to classify the reflectance property of the depicted object.
Zickler et al. [180] tackle reflectance estimation as a scattered-data interpolation problem
in a mixed spatial and angular domain. They also state that the angular accuracy can be
increased for a decrease in the spatial resolution. Their method requires as input a known
geometry, known viewpoint, and a point-light-source.
Zhou et al. [178] present in their work a method to capture real-world surface reflectance
from a small number of views. Given the geometry of an object and an environment map
that captures the illumination, their method is able to infer the reflectance properties of
the object. Moreover, the authors also analyze how the geometry and lighting effects the
total number of views required to estimate the reflectance property of the object. One
outcome of their analysis is that fewer views are required for an environmental lighting
than as for directional lighting. For the case of directional lighting one can decrease the
number of required views by carefully choosing the light/view direction. They conclude
that environmental lighting (e.g. a natural scene) is superior to directorial lighting for
reflectance estimation. This conclusion is supported by the work of Fleming et al. [47]
who conducted a study on how humans perform in estimating the reflectance properties
(e.g. gloss) of an object given an image. Another outcome is that for a curved object one
needs fewer views to infer its reflectance than for a flat object.
If one has access to a gonioreflectometer, one can use the approach of Filip et al. [43]. Based
on the analysis of a densely sampled BRDF dataset , the authors propose a method that
interpolates a BRDF from a sparse set of samples (e.g. 2304 samples instead of 518400)
Simplified BRDF representations, such as bivariate BRDF [129], have been used e.g. by
[56] to learn a BRDF from sparse measurements.
The research on BRDF profits a lot from available datasets of scanned materials. Ma-
tusik et al. [96] published a set of 100 scanned isotropic BRDFs and Filip [42] captured
150 anisotropic materials. Such datasets are used to evaluate BRDF models [108], find
simplified representations ([129], [109]), or to define priors for reflectance ([130], [86]).

2.2.2 Feasible solutions:

The scientific community in cultural heritage developed feasible solutions to compute
accurate geometric reconstructions with highly detailed surface textures.

Color registration and mapping: In cultural heritage acquisition (e.g. The Digital
Michelangelo Project [8]) it is often the case that one obtains a dense 3D geometry (e.g. by
laser range scanning) and a set of high quality images. The question is now how to fuse
those two kinds of data sources. This is covered under the term color registration and

15



2. Related work

mapping [84]. A two step approach is performed to do so: first, register the image to
the 3D geometry and second, map the color from the image onto the dense surface. A
comprehensive survey on this topic can be found in [118].
The registration can be performed using various methods. A straight forward method is
to let a user select corresponding points on the geometry and the images. While this is a
reasonable approach [35] it does not scale well with the number of images. If a camera is
attached to the laser scanner, one can use this information to register the acquired images
to the 3D geometry automatically e.g. [124]. Feature based methods extract 3D (from
the geometry) and 2D (from the images) features and try to match them. These methods
are good for man-made environments. If radiometric information from the laser scan is
available (e.g. intensity of the reflected beam), Sequeira and Goncalves [139] use the edge
information of the laser and image data to fuse them. Another idea is to maximize the
mutual information [156] between the dense 3D data and the image intensities to register
both. The intuition behind this is that the observed image intensities and the surface
normals (obtained by the dense 3D data) are somehow correlated and by maximizing the
mutual information one wants to find a set of parameters that explain both data entities.
The most promising methods to automate the registration process are based on a structure
from motion (SfM) approach. The initial problem of registering 2D to 3D data is split up
into two steps: first, the 2D correspondence problem between the images is solved and a
sparse 3D geometry is reconstructed. This sparse 3D geometry is subsequently registered
with the dense 3D geometry obtained by the laser scanner which can be done using robust
methods e.g. RANSAC [46].
After the registration of 2D image and 3D geometry, the color information of the images
must be mapped onto the surface. This is done by projecting and blending the color
information of the images. The weights for blending could be computed based on the
geometry, image sharpness, orthogonality of the image w.r.t. the surface normal or distance
of the object to the image origin. Blending is a simple and fast operation but is prone
to blurring the color information. To overcome this, Dellepiane et al. [36] select a leading
image and wrap the other images via optical flow to this image before the content is
mapped onto the surface. As a result the obtained mapping exhibits more sharp details.

Polynomial texture map: Another direction in appearance acquisition in the context
of cultural heritage is the polynomial texture map (PTM) [93]. For PTM, one acquires a set
of images under varying illumination direction and models the object in image space were
one pixel encodes the usual color information (R, G, B) and additionally the illumination
direction.
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2.2.3 Color transfer

Color transfer allows the user in a simple way to change the color appearance or charac-
teristic of an image. Given a source and a target (reference) image, the aim is that the
color charactersistic of the source image matches that one of the target (reference) image.
A comprehensive survey on the topic of color transfer can be found in Faridul et al. [37].
The authors categorize color transfer algorithms into three main classes: geometry-based,
statistical and user-assisted methods.

• Geometry-based methods: For some applications like image stitching or multi-view
image capture it is preferable that the captured set of images have the same color
characteristic (appearance). For example, a depicted object should have the same
appearance in all captured images. This is not necessarily the case if e.g. two differ-
ent cameras are used.
Geometry-based methods find correspondences between the images and ensure that
e.g. a particular object has the same color in all images where it is depicted. This can
be achieved by using sparse correspondences between images. Yamamoto et al. [172]
are using this approach to correct the color of multiple images. First, they select
a reference camera (all other images are mapped to the color characteristic of this
camera). In a second step, they are detecting correspondences between images using
SIFT [89] features. Third, from these correspondences they calculate a lookup table
that maps colors from the target image to the reference image. Oskam et al. [114]
also use also correspondences between images. But instead of treating the color
transformation as a lookup table, they describe the transformation as a vector field.
The authors handle colors as 3D points in Lab-color space. For each corresponding
pair they calculate a translation vector that maps the image color to the reference
color. For parts in the Lab-color space where no correspondence information exists,
the authors interpolate the transformation vector using radial basis functions. The
result is a vector field that transforms the entire color gamut of the images to the
reference image.
Instead of sparse correspondences one could use corresponding regions or dense cor-
respondences. The latter case is used by HaCohen et al. [62]. The authors use the
Generalized PatchMatch algorithm [17] to find densely corresponding regions. The
proposed method is an iterative process in which the following steps are performed
for different scales (coarse-to-fine approach): First, for each patch in the source im-
age find a nearest neighbor in the reference image. Second, aggregate consistent
regions of matches. Third, fit and apply global color transfer, and as a last step
adjust the search range for the next iteration.
In addition to the presented methods so far, one could also use the semantics of the

17



2. Related work

image content. For example, if faces appear in the source and target image it would
be beneficial if those parts of the images are used to estimate a color transfer. Work
in this direction was done by Wu et al. [168] and Yang et al. [173].
Another idea is to use salient maps to guide the color transfer between images. Xia
[170] divides the image into two regions based on salient maps. Next, the author uses
the information by the corresponding salient regions to estimate the color transfer.

• Statistical methods: The color value of an image pixel is a point within a 3-dimensional
color space. The color appearance or style of an image is characterized by the distri-
bution of these points in 3D. In that sense, the essence of color transfer is to reshape
the color distribution of the source image so that it is equal (as good as possible) to
the distribution of the reference image. Statistical methods use this idea of reshaping
distributions and do not rely on correspondence information between images.
Usually the color channels of an image in RGB-color space are highly correlated.
This means that changing the color distribution of one channel will affect the other
channels as well and hence channel independent color manipulation will lead to un-
desirable artifacts.
In the seminal work on color transfer, Reinhard et al. [127] use the lαβ-color space
[134] that minimizes the correlation between color channels to overcome this. For
each color channel Ic in this color space, the color transfer is calculated in a sim-
ple and fast way using only the channels mean µc and standard deviation σc:
Ico = σcr/σ

c
i (Ici − µci ) + µcr, where the subscripts o, r, and i correspond to the output,

reference and input image. Pouli and Reinhard [123] perform a channel wise his-
togram specification [60] (histogram matching) to match the histograms of the source
image and the reference image. They present furthermore a scale-space approach
for doing so that enables the user to control the amount of transferring the color
appearance. To improve the fidelity of the color transfer, Xiao and Ma [171] propose
a method that combines histogram specification and gradient-preserving optimiza-
tion.
The presented approaches so far rely on a color space that decorrelates the three color
channels. The performance of this decorrelation is scene dependend. As Faridul et
al. [37] pointed out, the lαβ-color space [134] used by Reinhard et al. [127] is tai-
lored towards natural images and hence it cannot be guaranteed that it will work
on other scene types. Abadpour and Kasaei [10] use principal component analysis
to decorrelate the color space.
Approaches that can deal with correlated color spaces tackle color transfer as a 3-
dimensional problem and perform the transfer not channel wise, instead they trans-
form the 3-dimensional color distribution directly. Pitié et al.([119] and [120]) iter-
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atively match 1D projections of the 3-dimensional color distribution. For that, the
authors randomly select a 3D rotation matrix and project the color distribution of
the images onto the axes of this matrix. For each of the resulting 1D projections a
histogram specification is performed to match the reference image color distribution.
This process is repeated until convergence.
In [126], Rabin et al. established a link between this prior work on distribution
transfer and the Wasserstein metric. The authors also propose the Sliced Wasser-
stein Distance to speedup the computation of the Optimal Transport [155] problem
which is also applied to solve the color transfer task (Ferradans et al. [41], Rabin et
al. [125]). More details on this are presented in section 6.1 of this thesis.

• User-assisted methods: User-assisted methods are used for various reasons. User
defined masks [28] and strokes [160] are used to select regions where no color ma-
nipulation should occur. Other methods allow the user to select the corresponding
regions manually ([114], [159]). In addition, Levin et al. [83] use the color of the
user’s input stroke to transfer the color.

2.3 Contributions of this thesis w.r.t. geometry and radiom-
etry

1. Geometric reconstruction: As stated in this chapter, SfM with a single calibrated
camera will lead to a similarity reconstruction up to scale. To infer the scale of
the scene, I use a stereo camera setup. This setup is calibrated and the resulting
additional knowledge of the relative orientation (baseline and rotation) between the
stereo cameras is used first, to estimate the scale of the scene and second, to guide
the optimization during bundle adjustment.
In addition, I fuse tachymeter measurements and scene structure obtained by SfM to
obtain a geo-referenced reconstruction. This fusion step as well as the incorporation
of the knowledge about the stereo setup is implemented in a constrained bundle
adjustment process.

2. Radiometric reconstruction: The presented approach reconstructs Lambertian ra-
diometric surface properties “in the wild”. The term “in the wild” refers to a non-
laboratory and non-controllable setting. For this purpose, we developed a portable
scanner with a custom built and geometrically calibrated LED light source that cap-
tures the reflectance of surfaces even under bright daylight.
Dense surface reconstruction, estimated camera poses and geometric knowledge of
the light source are used to estimate the incident light onto the surface. In a further
step, this estimation is used to infer the Lambertian surface reflectance.
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I want to stress that the recovered surface property is the Lambertian albedo of the
material represented in a certain color space.

3. Radiometry propagation: Besides the estimation of Lambertian surface properties
I propose an approach which is able to propagates known radiometric values into
areas of a large scene where only photo-textured 3D reconstruction are available.

These three contributions are discussed in detail in chapter 4 (geometry), 5 (radiometry),
and 6 (radiometry propagation).

20



3
The 3D Pitoti Project: method,

scanner and data

To better understand the particular contribution of my thesis, this chapter states the
broader context in which it arose: the 3D Pitoti project. See [13] for a more detailed
description, especially of the acquisition process.

3.1 The 3D Pitoti method

As pointed out already in section 1.1, the aim of the 3D Pitoti project is was to acquire,
process and present prehistoric rock-art in its landscape context. This overall aim can be
broken down into five sub-goals (directly taken from [13]):
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1. General requirements analysis and specification of the 3D Pitoti hard- and
software components.

2. 3D recording and registration of petroglyphs, rock-panels and large-scale land-
scape for selected sites in Valcamonica.

3. Automated segmentation and classification of individual petroglyphs, based
on their 3D structure.

4. 3D immersive, multiuser, interactive visualization at various scales.
5. Dissemination to a wide range of key stakeholders, including archaeologists,

surveyors, museums, and schools.

The sub-goals (3), (4), and (5) depend on a high-quality geometric and radiometric recon-
struction of the rock-art and its landscape.
Because an individual petroglyph is very small compared to the landscape in which it is
situated, the project consortium agreed to examine a site at three characteristic scales to
be able to describe rock-art in its landscape context:

1. Macro scale (meter): parts of the valley were captured with a motorized glider
equipped with a high resolution camera.

2. Mid-range (10−2 meter): Rock-panels were scanned with a micro aerial vehicle.
3. Micro (10−4 meter): The individual rock-art was scanned by a custom built scanner

prototype (see section 3.2).
To achieve high-quality reconstructions over these vastly different scales, the project con-
sortium decided to develop a multi-scale photogrammetry-based solution in which each
characteristic scale is reconstructed based on a photogrammetric method and the different
scales are registered based on a common reference frame.

Benefits of the 3D Pitoti project are e.g. large-scale interactive visualization and analysis
as well as seamless transition between reconstructions of vastly different scales. To achieve
this one has to overcome challenging tasks like the spatial registration of different recon-
structions as well as the “registration” of different radiometric reconstructions. Moreover,
non-experts in photogrammetry should be able to do the scanning. A further challenge
is that the scanning is done outdoors in a non-controllable environment in which one is
confronted with e.g. direct sunlight and cast shadows.

3.2 The scanner prototype

An integral part in answering my research questions (section 1.2) and accomplishing the
challenges of the 3D Pitoti project is the scanner prototype shown in figure 3.1. It is a
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custom built scanner that was designed, built and tested within the 3D Pitoti project and
was joint work with my colleagues Gert Holler, and Axel Pinz. A conducted study [13]
with potential end-users of the scanner revealed the following requirements for the scanner
(sorted from most important to least important):

• Weight: The scanner should be light weight. A huge number of rock-art sites are in
remote places where the scanner must be carried by foot this restrict the weight of
the scanner.

• Spatial resolution: As one can see, e.g. in figure 1.1, our rock-art of interest exhibits
very fine detailed structure that should be preserved.

• Price
• Battery life: The operation time of the scanner should be a working day. We ac-

complish that with exchangeable batteries.
• Waterproofness: The current prototype is not waterproof, but can be protected with

a rain cover.
In addition we require that the scanner should capture rock-art in a fast way and be easy
to operate, even from non-experts in the field of photogrammetry or computer vision. A
further restriction for our scanning method is that we were not allowed to stick reference
markers on the rock surface. This leads to a marker free reconstruction approach.
Figure 3.1 shows the resulting scanner prototype. All components are mounted around
a central carbon fibre pole, resting on a carbon fibre mini-tripod. The usage of carbon
fibre was mandatory to decrease the weight of the scanner and at the same time ensure
its stiffness.
To capture and reconstruct the geometry of the rock-art we chose a Structure from Motion
(SfM) approach. The reason for this is, first, the rock surface as well as the particular
rock-art is rich of visual features and second, SfM fits in the common SfM processing
pipeline of the 3D Pitoti project (see page 12 for related work on SfM ).
We capture the necessary images for the SfM reconstruction with a stereo-camera setup
and use the additional information about the stereo baseline to reconstruct the scale of
the rock-art. This approach to Euclidean reconstruction was chosen because we were not
allowed to stick reference markers to the rock surface and so we had to use the information
about the baseline to infer the scale.
We also installed a 360◦ prism on the scanner to enable the possibility of a direct geo-
referenced reconstruction.
A custom made LED-flash consisting of 220 high-power white LEDs is installed to capture
the radiometric surface properties. The board is designed in such a way that the intensity
of the LED-flash can be controlled. In addition groups of 10 LEDs can be controlled
individually to enable a directed illumination of the scene. How this is done in detail will
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be explained in chapter 5.
A Raspberry Pi computer controls the acquisition process during scanning. To obtain
on-site feedback we transmit the captured images to a tablet PC where a sparse SfM
reconstruction [75] is performed online, so that the user knows which part of the scene
already has been scanned by a sufficient number of images.

Figure 3.1: Left: Scanner prototype mounted to a carbon pole, resting on a miniature
carbon tripod. Top right: detail close-up showing the calibrated rigid configuration of a
360◦ prism, a stereo rig, and a custom illumination unit. Bottom right: The illumination
consisting of 220 high power LEDs. The two cameras look through the circular holes.

The most important advantages of the scanner w.r.t. the project and this thesis are:
• It is able to produce a Euclidean (metric) geometric reconstruction of the scene

without additional scene knowledge. The cameras are calibrated and the scale of
the scene is obtained via the calibrated stereo-rig.

• Additionally, in co-operation with a tachymeter one can obtain a geo-referenced
reconstruction without the need of e.g. georeferenced fiducial markers on the rock.

• With the custom illumination it is possible to get a radiometric reconstruction of
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the rock-art without shrouding.
The following paragraphs summarizes the implementation details and scanner configura-
tion.

Imaging configuration: We decided to use two Canon EOS 100D DSLR 1 cameras for
the stereo-camera setup. Each camera is equipped with a 40mm f/2.8 lens. The baseline
of the stereo-rig is 162mm. At a working distance of 47.5cm the scanner captures a foot-
print of 36× 14cm.
In practice, to ensure a large depth of field, the aperture of the camera was set to be f/16
which results in a depth of field of about ±5cm. The exposure time is 1/160 seconds and
the ISO is 100 for all our captured images. Such low values could be achieved because of
the intense light of our LED flash.

Illumination: The custom built LED illumination consists of 220 Osram CR7P high-
power LEDs. Each LED has a luminous power of 144lm (typical). The relative spectral
emission and radiation characteristic are shown in figure 3.2 (directly taken from the
datasheet [115]). The size of the illumination box is 47.5× 22.5cm. The total illuminance
on ground is 160000lx.

(a) Relative spectral emission (b) Radiation characteristic

Figure 3.2: Relative spectral emission (a) and radiation characteristic (b) of the used
Osram CR7P LEDs [115]. V (λ) in (a) corresponds to the standard eye response curve.

Tachymeter: To measure the position of the scanner with a tachymeter we attached a
Leica mini prism (GRZ101) on the scanner. The distance between the left camera of the
stereo-rig to the prism is 35cm.

1Digital single-lens reflex
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3.3 Available data within 3D Pitoti

During our field-work we collected a huge amount of data and reconstructions. This section
introduces the main dataset that I use within this thesis. Additional data sets which are
not related to the 3D Pitot project and show the general applicability of my approach are
presented later in the respective experimental sections.
Not all presented data in this section were scanned and reconstructed by me. Ground truth
acquisition and geo-referencing of various sites in Valcamonica was performed by project
partner ArcTron 2. Micro aerial vehicle based reconstructions as presented in section 3.3.1
were performed by project partner ICG (Institute of Computer Graphics and Vision).

3.3.1 Micro aerial vehicle (MAV) based reconstruction of Seradina I
Rock 12C - Ser12c

Figure 3.3 shows the reconstruction of a rock panel called Seradina I rock 12C. Within
the project consortium we decided that we wanted to use this rock panel as the showcase
of the concepts and technology developed within the project.
Project partners (ICG) acquired a total number of 1099 images with an micro aerial vehicle
and performed SfM reconstruction resulting in a textured 3D mesh with 372k vertices. The
rock area (figure 3.3 (A) ) covers approximately 400m2 with a diameter of about 19m. The
geo-referencing was obtained with the help of ground reference targets (figure 3.3 (C)).

3.3.2 3D Prints and Ground Truth

In the early stage of the project, our project partner ArcTron3D took high-quality scans
of selected rock panels and rock art using various technical equipment (e.g. laser scanner,
structured light scanning, high-resolution macro-photography, shrouding of daylight, etc.).
We use this ground truth to validate the accuracy of our reconstruction approach.
To allow us experimenting with and testing our scanner in the lab, ArcTron provided us
with high-quality 3D prints of the Camunian rose and a warrior. Both prints are shown
in figure 3.4. The overview of available ground truth data for the rock panel Seradina I
rock 12C is shown in figure 3.5a (image taken from [135]). Figure 3.5b shows the ground
truth reconstruction of Area 3.

2http://www.arctron.de
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(B)

(C)

(A)

Figure 3.3: This figure shows the point cloud reconstruction of Seradina I rock 12C
obtained by micro aerial vehicle based image acquisition. The rock area (A) covers ap-
proximately 400m2. For scale comparison, I also marketed the tachymeter in (B). In (C)
one can see a ground reference target (GRT) which is used to geo-reference the final re-
construction. Note, the GRT is not required to geo-reference a reconstruction obtained
by the scanner prototype.

3.3.3 Scanner based reconstruction of Areas 3, 4, 5, and 10 - AREA345
and AREA10

Based on the ground truth acquisition done by ArcTron, we scanned several areas of the
Seradina I Rock 12C panel. We combined the areas 3, 4, and 5 into the dataset AREA345
(see figure 3.6) and captured also the elongated scene area 10 (see figure 3.7). The image
caption of both figures states the details of the captured datasets.
In both figures (figures 3.6 there and 3.7) are ground reference targets (GRT) visible.
To validate the performance of our geo-referencing approach we placed these markers on
the rock-panel. This was solely done for validation purpose because our solution works
without any artificial markers on the rock.
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(a) Camunian rose (b) Warrior

Figure 3.4: Two high quality 3D prints provided by our 3D Pitoti project partner Arc-
Tron3D. We use the two prints to validate the accuracy of our 3D reconstruction approach.

Figure 3.5: (a) shows an overview of available ground truth on the rock panel Seradina
I Rock 12C (denoted by “area” followed by a number). (b) shows the ground truth data
for area 3.
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Figure 3.6: This figure shows the scanned areas 3,4,5 of the Seradina I Rock 12C panel.
The diameter of the scene is approximately 1 meter and took about 45 minutes of scanning
with our scanner prototype. The final reconstruction was obtained using 174 camera
images.

Figure 3.7: This figure shows a scan of area 10. The entire area is an elongated structure
of approximately 2.6 meter length and was reconstructed using 104 images.
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4
Geometric reconstruction

This section describes a method, based on the scanning device (section 3.2), how to recon-
struct the 3D geometry of richly textured surfaces. The goal is Euclidean reconstruction
at a high spatial resolution better than 0.1mm with or without geo-referencing of the
obtained result. Utilizing all available measurements of the scanner we can produce a
geo-referenced 3D reconstruction of the sites. This is achieved by augmenting an initial
Structure from Motion reconstruction with additional knowledge of the scanner’s stereo-
setup and tachymeter measurements. The stereo-setup is used to determine the scale
of the reconstruction and the tachymeter measurements are used at first hand to geo-
reference the reconstruction, and second to compensate the drift induced by the Structure
from Motion method. By doing so, a geo-referenced 3D reconstruction is obtained with
an accuracy of 0.1mm. A major advantage of this approach is, that the geo-referenced
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reconstruction is obtained without the usage of ground control points and that one could
easily combine reconstructions of vastly different scales (see for example figure 4.1 1). On
the other hand, if a geo-referenced reconstruction is not necessary the scanner can also be
used without a tachymeter.

Figure 4.1: Fusion of vastly differently scaled reconstructions. The large reconstruction
(presented in figure 3.3) shows the rock panel of Seradina 12C and was obtained using a
micro aerial vehicle (MAV) equipped with a camera. The two yellow bounding boxes at the
center of the rock-panel indicate two reconstructions obtained with our prototype scanner.
The size of the MAV based reconstruction is 1.42GB (372k vertices), the two scanner based
reconstructions are 1.5GB (58.9Mio points) and 2.8GB (111.8Mio points). The vastly
different scales of the two types of the reconstruction are obvious. The experimental
validation of this setting can be found in section 4.3.2.

4.1 Geometric calibration of the scanner

The scanner in fig. 3.1 consists of several components that are rigidly mounted and need
geometric calibration. Two cameras and a 360◦-prism form a rigid triangular structure,
as shown in fig. 4.2. In addition, two custom LED illumination boards with a total of
220 individual high power LED light sources are rigidly attached to the cameras. This

1I greatly acknowledge the work of my colleagues at ICG and their kindness to provide me the recon-
struction of the rock-panel.
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section describes the geometric scanner calibration and related experimental results. First,
it introduces the calibration of the stereo rig, second, the estimation of the 360◦-prism
location w.r.t. the rig, and third, the estimation of the pose of the 220 LEDs w.r.t. the
rig.

Figure 4.2: The two cameras j and j′ of the stereo rig together with the 360◦ prism
form a rigid, triangular structure. The georeferenced prism position mm can be measured
from outside using a tachymeter. All the remaining entities in this figure are estimated
by geometric calibration. The relative rotation Rs ∈ so(3) and translation ts ∈ R3

between the stereo camera pair is estimated during the stereo-rig calibration. The relative
translation of the prism w.r.t. the camera (tl ∈ R3 and tr ∈ R3) is the result of the prism
calibration. The pose of each camera (Rj and tj) is relative to a reference frame origin O
and is estimated by the SfM computation.

4.1.1 Stereo-rig calibration

I first calibrate the stereo-rig using a coordinate measurement machine to acquire a set of
2D ↔ 3D point correspondences with which I estimate the camera projection matrix P for
both cameras (using the Gold Standard algorithm from Hartley and Zisserman [69], page
181). I use the camera projection matrices as initial values for the subsequent estimation
of the lens distortion coefficients and the refinement of the relative orientation between
the camera pair, i.e. the rotation matrix Rs ∈ so(3) and translation vector ts ∈ R3. Table
4.1 presents the result of a typical camera calibration.

To validate the stability of the calibration during field work I recorded the calibration
parameter before and after the field work. The first calibration was done at the 6th of
July 2016. After this calibration the scanner was sent to Italy for field work. After we
got the scanner back, a second calibration was done at the 19th of September 2016. The
difference in the baseline was 0.105mm, which suggests a largely robust and stable me-
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Parameter Description Value

Left camera:
(fx, fy) Focal length in x and y direction in

pixel
(9721.930, 9721.271)

(px, py) Coordinates of the principal point in
pixel

(2592, 1728)

(k1, k2) Radial distortion coefficients (−0.075, 0.126)
(k3, k4) Tangential distortion coefficients (2.946× 10−4,−6.920× 10−5)

Right camera:
(fx, fy) Focal length in x and y direction in

pixel
(9738.445, 9737.924)

(px, py) Coordinates of the principal point in
pixel

(2592, 1728)

(k1, k2) Radial distortion coefficients (−0.078, 0.149)
(k3, k4) Tangential distortion coefficients (−1.121× 10−4,−1.993× 10−4)

Stereo configuration:

Rs Rotation of the right camera w.r.t. the
left camera

 0.999 −0.002 0.025
0.002 0.999 0.006
−0.026 −0.005 0.999


ts Translation of the right camera w.r.t.

the left camera in mm
[−162.023, 0.791, 1.010]

Table 4.1: This table presents the result of a typical stereo-rig calibration. The parame-
ters are according to the parameters used in the Matlab Camera Calibration Toolbox [21]
or OpenCV [22]. For both cameras I fixed the principal point to be the center of the
image.

chanical assembly of the scanner.
To further estimate the impact of the varying calibration, I use the two mentioned cali-
bration results and reconstruct the Camunian rose 3D print (see figure 3.4). The mean
absolute distance between the dense 3D point cloud is 0.045mm.

4.1.2 Estimation of the 360◦-prism location w.r.t. stereo-rig

Based on the known stereo-rig calibration, the offset between the 360◦ prism and the stereo-
rig can be estimated. For this purpose, a calibration target was designed which is used
to establish corresponding measurements between the scanner and a tachymeter. First,
the pose of the calibration target relative to the stereo-rig is estimated and then points on
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the calibration target and the position of the 360◦-prism are measured with a tachymeter
(figure 4.3 shows a sketch of the calibration target and the scanners triangular structure).
Given the known geometry of the target, the known pose of the target relative to the
stereo-rig and to the tachymeter, and the position of the prism seen by the tachymeter,
the position of the 360◦ prism relative to the two cameras is calculated. tl ∈ R3 denotes
the position of the prism relative to the left camera, and tr ∈ R3 denotes the position of
the prism relative to the right camera.

Figure 4.3: Sketch of the proposed calibration method to estimate the 360◦ prism
w.r.t. the stereo-rig. Because the stereo-rig was calibrated beforehand, Rs and ts are
known. First, the pose Rj , tj and R′

j , t
′
j of the stereo-rig relative to the target reference

frame O is estimated. As a result the corner points 1, 2, 3, and 4 relative to the cameras
can be calculated. These four points are measured again with a tachymeter including also
a measurement of the 360◦ prism. The knowledge of the corresponding four corner points
and the prism measurement is used to estimate tl and tr, i.e., the position of the prism
w.r.t. the stereo-rig.

To validate the accuracy of this approach, the following experiment was conducted: The
corners of two Pitoti 3D prints were equipped with fiducial markers, the prints were
scanned by the scanner-prototype and reconstructed using the approach presented in this
chapter. Next, I calculated the distance between the measured fiducial markers and the
reconstructed fiducial markers. The results are presented in table 4.2. The mean distance
is 5.52mm which lies in the range of the tachymeters accuracy. Figure 4.4 shows the 3D
reconstruction of the two 3D prints and the fiducial markers on them.
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1 2

3
4

5 6

7 8

Figure 4.4: This figure shows the reconstruction of two Pitoti 3D prints and fiducial
markers at their corners. The red numbers correspond to the ID of the fiducial markers.
I estimated the distance between the reconstructed fiducial markers and the tachymeter
measurements of them. The mean distance is 5.52mm. The distance for every fiducial
marker is listed in table 4.2.

Fiducial marker: 1 2 3 4 5 6 7 8 mean:
Distance in mm: 4.05 4.35 5.83 6.65 4.63 5.97 5.61 7.10 5.52

Table 4.2: Distances between tachymeter measurement and scanner reconstruction.

4.1.3 Light source calibration w.r.t. the stereo-rig

Finally, the light source consisting of 220 LEDs is calibrated. The LED board is composed
of two distinct circuit-boards with 110 LEDs each. The position of the LEDs and their
illumination direction is used to simulate the illumination, so it is essential to estimate
these parameters. For the direction I assume that all LEDs of one circuit-board lie in the
same plane. Using this assumption it suffices to estimate the normal of this plane which is
the normal of the circuit-board. To obtain the relative position and orientation between
the LEDs and the stereo-rig, I scan a mirror with reference markers, obtaining the 3D
pose of the planar mirror relative to the stereo-rig, and capture an image pair with all
LEDs switched on. Figure 4.5 shows the scanner with the reference target to estimate the
mirror plane and an image pair of the mirrored LED board.
I extract LED positions from the camera images at subpixel accuracy (center of gravity
of light blobs), match corresponding LEDs and reconstruct their position relative to the
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cameras using the theory of catadioptric vision [107]. To estimate the normal of the circuit
board I use the position of the LEDs for one board to fit a plane. Figure 4.6 shows the
result of the calibration and the sketch of the circuit-board design.

(a) Shows the scanner prototype with the
reference target to estimate the pose of the
mirror plane.

(b) Scanner and the planar mirror. A
stereo pair of images is taken with the LEDs
switched on. In (c) and (d) one can see a
typical example of such a pair.

(c) Left image (d) Right image

Figure 4.5: This figure shows in (a) and (b) the scanner-prototype during LED board
calibration and in (c) and (d) a stereo-image pair of the mirrored LED board.
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(a) Result of the calibration: The positions for every LED and two surface normals (one
for each circuit board).

(b) Sketch of the LED illumination showing the two circuit boards. In addition to control
the intensity of all LEDs, groups of 10 LEDs each can be controlled individually as depicted
by the differently colored circles.

Figure 4.6: Result of the LED board calibration and sketch of the two circuit-boards.
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4.2 Estimating scene structure and camera poses

The 3D scene structure and the underlying camera poses are estimated in two steps. In the
first step, the known calibration of the rigid triangular structure (left, right camera and
prism, see fig. 4.2) is ignored. A first, rough estimate is calculated by applying Structure-
from-Motion (SfM) to all individual camera images. Any available SfM algorithm might
be used (e.g. [143],[57],[75]) at this stage, where all additional information about camera
intrinsics and relative orientation of the stereo-rig and the 360◦ prism are ignored. In
particular, in my experiments I used the SfM software of [75].
The result of this SfM processing is a similarity reconstruction of 3D surface points, indi-
vidual camera poses, and estimated camera intrinsics. More formally, I obtain a set of K
3D points {p1, . . . ,pK} ⊆ R3, a set of J camera rotation matrices {R1, . . . ,RJ} ⊆ so(3),
a set of J camera centres {c1, . . . , cJ} ⊆ R3, and a set of J camera intrinsics.
In the second step, the knowledge about camera intrinsics and relative orientations (see
fig. 4.2) is enforced in a constrained bundle adjustment process. As usual, 3D points
and camera poses are iteratively refined, trying to minimize the reprojection error. In the
presented approach, I fix the camera intrinsics according to the known calibration and con-
strain the camera poses w.r.t. the known relative orientation for all stereo pairs. Further,
the georeferenced positions of the cameras are related to the tachymeter measurements via
the calibrated vectors tl and tr. I formulate this as a constrained non-linear optimization
problem which is initialized with the SfM result from step 1 described above:

minimize
x

f(x) subject to
J/2∑
j

cstj (x) = 0 ,

M∑
j

ctsj (x,m) = 0 .

(4.1)

In this optimization problem, I denote x as the set of variables x = {p1, . . . ,pK ,R1, . . . ,RJ ,

c1, . . . , cJ} that are used to minimize the reprojection error f(x), and m = {m1 . . .mM}
is a set containing M tachymeter measurements. I denote cstj as the constraints that
enforce the relative stereo orientation between a camera pair and ctsj as the constraints
that enforce the absolute position of a camera relative to the tachymeter measurements.
To solve this optimization problem the Ceres-solver [12] within an augmented Lagrangian
multiplier [48] scheme is used. Having defined the optimization problem in eq (4.1), I now
describe the two constraints in the subsequent two paragraphs.

Stereo constraint: The stereo constraint ensures that the bundle adjustment finds a
solution in which the relative orientation of a stereo camera pair is equal to the calibrated
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relative orientation Rs, ts. The stereo constraint for a camera j and its corresponding
stereo camera j′ is given by

cstj (x) = ts −RsRjcj + Rj′cj′ ± εb , (4.2)

where Rj ∈ x and cj ∈ x are the orientation and position of the camera j, Rj′ ∈ x and
cj′ ∈ x are the orientation and position of the corresponding stereo camera, and εb de-
fines a tolerance interval reflecting small deviations during the calibration of the stereo-rig.

Figure 4.7: This figure demonstrates the decrease of the baseline deviation when applying
the stereo constraint.

The effect of the stereo constraint can be seen in figure 4.7 where a histogram of base-
line before and after applying the stereo constraint is shown. The first histogram (grey)
displays the distribution of baseline values obtained after the SfM process, whereas the
second one (blue) shows the distribution after the stereo constraint applied. One can see
the decreased deviation after applying the stereo constraint.

Tachymeter measurement constraint: The tachymeter constraint enforces that the
reconstructed prism position is equal to the position measured by the tachymeter. This
also affects the camera pose because the prism and the camera are rigidly attached and
their relative positions are known via the prism calibration. I define mm as tachymter
measurement that corresponds to camera j and define the constraint as follows:

ctsj (x,m) =

Rj(mm − cj)− tl ± ε, if left camera

Rj(mm − cj)− tr ± ε, if right camera
, (4.3)
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where Rj ∈ x and cj ∈ x are the orientation and position of camera j, mm ∈ m is the
corresponding tachymeter measurement, tl and tr are the relative positions of the prism
w.r.t. left and right camera, and ε defines a tolerance interval reflecting the inherent im-
precision of the tachymeter measurements.

In summary, by applying all the processing steps mentioned above, a georeferenced, Eu-
clidean reconstruction of the 3D scene in terms of a sparse 3D point cloud, including all
camera poses and all the individual positions and orientations of the LED light sources is
obtained. In a final processing step, one can use SURE [132] (or other methods like PMVS
[53]), to densify the 3D point cloud so that the final result of the geometric processing
consists of:
(a) J Camera poses and their corresponding images,
(b) for every camera pose, N positions and orientations of the LEDs, and
(c) a dense 3D point cloud representing the 3D surface geometry.
This constitutes the required geometric knowledge to perform “radiometry in the wild” as
described in chapter 5.

The constrained bundle adjustment presented here is an iterative method. The iteration
terminates, if a maximum number of iterations (default is 50 iterations) is exceeded or
when all constraints fulfil a certain constraint tolerance (the default value is 0.1mm).
I choose εb and ε in such a way that they are in the order of magnitude of the of the
expected calibration (sub-mm range) and tachymeter measurement (mm range) tolerance.
For the baseline constraint, as default value for εb, I used εb = 0.1mm. This means that
the difference between the calibrated baseline and the estimated baselines must not exceed
0.1mm. For the tachymeter measurement constraint, I used as a default value, ε = 2.0mm.

4.3 Experiments

To validate the presented approach I conduct a series of experiments that quantify the
performance of (a) the quality of the geo-referencing and (b) the quality of the surface
reconstruction w.r.t. ground truth measurements.

4.3.1 Dataset: AREA345

Figure 4.8a shows a dense 3D point cloud of Area345 on Seradina 12C (see section
3.3). The area shown here was scanned from 87 individual scanner positions including
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87 tachymeter measurements2, resulting in a total of 348 images, 174 with and 174 with-
out LED illumination (more details on using with-and-without-LED image pairs can be
found in chapter 5). The diameter of this scene is about 940mm and it took 45 minutes
to scan the scene. I use tachymeter measurements of artificial reference markers (green
circles) to evaluate the georeferenced accuracy. For the area indicated by the red rectan-
gle, I use a dense 3D point cloud obtained by a structured-light scan as ground truth data
(see section 3.3.3).

4.3.1.1 Quality of the geo-referencing

In a separate tachymeter measurement, I measure the coordinates of the four reference
markers (green circles in fig. 4.8a) and compare their 3D position with the reconstructed
position in the 3D point cloud. The mean distance between our reconstruction and the
tachymeter measurements is 12.4mm which is in the typical range of the accuracy of a
tachymeter measurement.

4.3.1.2 Comparison with ground truth data

Figure 4.8 shows the 3D reconstruction of a smaller area (fig. 4.8b), and the distance
between our reconstruction and ground truth (fig. 4.8c). The root-mean squared distance
is 0.13mm.

4.3.2 Dataset: Ser12c

This dataset is the result of two different scanning methods. Figure 4.9a and figure 4.9b
show the final geo-referenced reconstruction of the rock panel Seradina I rock 12 C ob-
tained using a micro aerial vehicle (see section 3.3.1) with superimposed geo-referenced
reconstructions obtained by the presented scanning approach (marked with the two yellow
bounding boxes) (see section 3.3.3). In figure 4.9c one can see a close-up of the recon-
struction and in pseudo-color the absolute distance between the reconstruction of the rock
panel and the reconstructions obtained by the scanner prototype (the histograms in 4.9d
show the distance distribution of the two reconstructions).
As the histograms in figure 4.9d suggest, the mean absolute distance between the recon-
struction obtained by the MAV and our scanner is about 0.9− 1.1cm.

4.3.3 Dataset: Camunian rose

In this experiment we validate the scanners reconstruction against the ground truth of two
high precision 3D prints. Figure 4.10 shows a pseudo-color visualization of the absolute

2Leica TS11 1" R500.
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(a) Entire AREA345 reconstruction

(b) Dense, radiometrically calibrated 3D
point cloud

(c) Pseudo-color visualization of distances
w.r.t. ground truth

Figure 4.8: In (a) one can see the dense, radiometrically calibrated 3D point cloud of
Area345 on Seradina 12C with prehistoric rock-art. The four artificial markers circled in
green have been placed in the scene to validate the quality of the geo-referencing. The red
rectangle highlights the area used for validation w.r.t. ground truth (see fig. 4.8c).
In (b) and (c) one can see a zoom into the area marked in red in fig. 4.8a. (b) the 3D
reconstruction, and (c) the pseudo-color visualisation of the absolute distance between the
reconstructed point cloud and the ground truth data (obtained by independent structured-
light scans). Distances larger than 0.5mm are clipped. The root-mean squared distance
between ground truth and reconstruction is 0.13mm.

distance between the 3D print and the obtained dense surface reconstruction. The mean
absolute distance between the reconstruction and the 3D print is 0.11 mm.
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(a) (b)

(c) (d)

Figure 4.9: Reconstruction obtained by two different scanning methods. (a) and (b)
show the fusion of two geo-referenced reconstructions (Figure 4.1 shows a close up of (a)
). First, a large rock panel (Seradina 12C) obtained by a micro aerial vehicle and second,
highlighted by the yellow bounding boxes, the reconstructions obtained by the scanner
prototype and the presented approach. (c) and (d) state the absolute distance between
the rock panel reconstruction and the reconstruction obtained by the scanner prototype
(units in meter). “A” corresponds to Area10, “B” to Area345 (see section 3.3.3).

4.3.4 Processing times

The time required for the full dense reconstruction is dominated by the densification of
the sparse SfM reconstruction. In this work I use SURE [132] to accomplish this.
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Figure 4.10: This image shows a pseudo-color visualization of the distance between the
3D print and the reconstruction.

The used SfM pipeline (based on [75]) performs the following steps: it un-distorts the im-
ages, extracts features, matches the features, estimates and verifies the epipolar geometry,
reconstructs camera poses and sparse scene points (including incremental bundle adjust-
ment), and solves the final constrained bundle adjustment optimization.
Table 4.3 states typical processing times for different numbers of images.

Number of images Approx. number of
features per image

Time (sparse) Time (dense)

86 2500 4 min 4 hours
1052 2500 4 hours 14 hours

Table 4.3: This table states typical processing times for the geometric reconstruction.
The total time for a full dense reconstruction is dominated by the densification step. The
resulting time for the dense point cloud with 1052 images is obtained with a reduced image
resolution of 1

2 of the original image size.

4.4 Discussion

This chapter introduced the geometric reconstruction method, used in the 3D Pitoti
project for micro-scale reconstruction. Using this method one is able to produce a Eu-
clidean reconstruction of the scene without the need for a further scale estimation step. In
addition, if the scanner prototype is used in conjunction with a tachymeter, the presented
method is capable to produce a geo-referenced Euclidean reconstruction.
During the project and the thesis we could identify additional benefits and potential im-
provements:
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The scanner can be operated by non-experts in the field of photogrammetry:
Over the project duration, archaeologists used the scanner prototype during their field
work several times and where able to scan and reconstruct the rock-art. This has mainly
two reasons: first, the on-site feedback provided by the online structure from motion
software, and second, the scanning principle. Due to the mini-tripod of the scanner the
orientation of the image plane w.r.t. the rock surface is almost parallel. The distance
between scanner and surface is almost constant. Because of this arrangement, the scan-
ning is done in a similar way as the scanning in aerial photography. The users, by default,
rasterize the surface in a systematic way so that they prevent holes in the scan and because
of the constant distance and orientation of the cameras almost all images have the same
high spatial resolution.

The fusion of different geometric constraints is challenging: The presented ap-
proach fuses three different geometric constraints: first, the scanner calibration which
includes the cameras, stereo-rig, and the position of the 360◦ prism w.r.t. the cameras.
Second, the scene structure and camera poses, estimated by structure from motion, and
third, the tachymeter measurements.
In the presented approach I fuse these three constraints using a constrained bundle ad-
justment procedure, which is a non-linear constrained minimization problem (as stated in
section 4.2). Each of these constraints has its own uncertainty about the “true” measure-
ment (For example, the uncertainty of the tachymeter measurement with the mounted
prism is about 2− 4mm [81] and depends also on the skills of the operator). These differ-
ences can lead to a possibly inconsistent minimization problem with the effect of distorting
the final geometric reconstruction. To tackle this issue, I perform the minimization in the
following way:

1. I use an augmented Lagrangian multiplier (ALM) method for the minimization. This
method belongs to the penalty methods in the field of constrained minimization [48].
This group of algorithms penalize a minimization solution, if some constraints are
not satisfied, by increasing the importance (weights) of those constraints. In my
first paper [73] on this topic, I used the quadratic penalty method in which I have
to set the weight manually which is hard to do in advance and can lead to a highly
distorted cost function [48]. Hence, for my second paper [74], I decided to use ALM
because this method determines the weight automatically and estimates an offset
to overcome the problem with the distorted cost function. For more details on this
topic I refer the reader to the book of R. Fletcher [48].

2. I define a tolerance box in which the constraints can vary without affecting the cost
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function. In equation 4.2 and equation 4.3, εb and ε reflect the different uncertainties
of the stereo-rig calibration and the tachymeter measurements. In this way I can
handle different magnitudes of uncertainties.
A more mathematical profound way would be to model the uncertainty with prob-
abilities and incorporate this knowledge in the minimization.

Despite the challenge of fusing different constraints, the benefit of the presented method is
that it allows to include more information to solve the non-linear optimization. Minimizing
a non-linear problem often leads to local minima solutions. Using e.g. the presented stereo
constraint (equation 4.2) one can avoid these local minima in which the stereo constraint
is violated.

Drift compensation: In the case where the scanner is used in conjunction with a
tachymeter, the presented approach compensates drift induced by the SfM reconstruction.
The same behaviour cold be achieved, if geo-referenced ground control points would be
used (which was not desired in the 3D Pitoti project).

Using the LED illumination to estimate surface normals: In the current approach
the reconstructed geometry is a point cloud. Surface normals, which will play an impor-
tant role in the next chapter, are estimated based on the acquired point cloud, assuming
that the resolution is dense enough to do so (the highest resolution of the resulting point
cloud is in the range of 440k points per cm2).
With our custom built LED-illumination I have the opportunity to flash individual groups
of LEDs (see e.g. figure 4.6). By doing so I could record a set of images of the surface
under varying incident illumination. Using this set of images one could perform a photo-
metric stereo [165] reconstruction which includes the surface normals.
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Radiometric reconstruction

One of the challenges in scanning radiometric surface properties “in the wild” is the illu-
mination condition at the rock-art sites. Different from the laboratory one is confronted
with non-controllable illumination conditions, direct sunlight, and cast shadows caused
for example by nearby trees. Despite of these conditions the proposed approach is able to
deliver radiometric surface properties beyond photo-texture without the need of shrouding
or color reference targets.
In a first processing step the influence of ambient illumination is eliminated by taking
pairs of images with and without the LED-flash of the scanner. Subtracting these two
frames from each other results in images as if taken flash-only in complete darkness, under
perfect shrouding of daylight. In a second step the knowledge about (a) camera pose, (b)
illumination direction and intensity, and (c) 3D surface geometry is combined to obtain
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precise measurements of radiometric surface properties at each surface point.
The final result of the combined, geometric and radiometric processing is a dense 3D
point cloud with radiometric surface properties mapped to each of the 3D points or a set
of re-rendered images with the radiometric surface properties mapped to each pixel.

5.1 Theory, terminology and notation

I start to establish the terminology and notation used in the remainder of this chapter by
reviewing theoretical background, first describing the observed surface radiance, followed
by explaining how this radiance is mapped to a camera pixel value. I use the reflectance
equation [117] to model the surface radiance

Lo(p,ωo) =
∫
H2(np)

f(p,ωo,ωi)Li(p,ωi) cos(θi)dωi , (5.1)

where Lo denotes the radiance of surface point p reflected in direction ωo. Li(p,ωi)
denotes the incident radiance from direction ωi, and f(p,ωo,ωi) is the bidirectional re-
flectance distribution function (BRDF) [113]. Equation (5.1) models the observed radiance
Lo at a surface point p as the integral of the incident radiance Li weighted by the BRDF
at this point and by the falloff term cos(θi). Here, θi is the angle between the surface
normal np and the incident radiance direction ωi (it follows that cos(θi) = np · ωi). I
use the subscript p for the normal vector np to explicitly state that the normal vector is
evaluated at surface point p. In this general formulation, the integral is calculated over
the upper hemisphere H2(np).
The fact that our scanner prototype uses a discrete set of N directed light sources, replaces
the integral in eq (5.1) by a finite summation. Hence eq (5.1) can be rewritten as

Lo(p,ωo) =
N∑
i

f(p,ωo,ωi)(np · ωi)
Ii(ωi · ωIi)

r2
i

, (5.2)

where Ii(ωi · ωIi) represents the radiant intensity of light source i as a function of the
direction of the light source ωIi and the incident direction ωi at surface point p, with ri
describing the distance between surface point and light source.
For the case of Lambertian reflectance, f(p,ωo,ωi) = ρ(p)

π , so that one obtains

Lo(p,ωo) = ρ(p)
π

N∑
i

(np · ωi)
Ii(ωi · ωIi)

r2
i

, (5.3)

where ρ(p) is the Lambertian reflectance property at p. Figure 5.1 illustrates the imaging
configuration corresponding to eq 5.3.
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Figure 5.1: Imaging configuration corresponding to eq 5.3, showing one camera position
j and one directed light source i with respect to surface point p and surface normal np.
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To further emphasize, which parts of Lo(p,ωo) depend on the geometric configuration
defined by scene (surface normal) and illumination, I let geometry

G(np,ω1, . . . ,ωN ,ωI1 , . . . ,ωIN ) =

1
π

N∑
i

(np · ωi)
Ii(ωi · ωIi)

r2
i

.
(5.4)

Equation (5.3) can now be rewritten in abbreviated notation:

Lo(p,ωo) = ρ(p)G . (5.5)

So far, I have presented how I model the interaction between surface and light. The
radiance reflected by the surface in direction ωo is now captured by a camera. The
relationship between the resulting irradiance on the camera sensor E(p′) and the reflected
radiance Lo(p,ωo) is given by

E(p′) = V (ωc,ωo)Lo(p,ωo) , (5.6)

where p′ is the pixel corresponding to surface point p, and V (ωc,ωo) models the vignetting
of real world camera lenses by

V (ωc,ωo) = π

4

(
d

f

)2
(ωc · ωo)4 . (5.7)

Here, d is the diameter of the camera lens, f is the focal length of the lens, and ωc is
the direction of the optical axis of the camera [77]. We further assume a linear camera
response so that the measured pixel value P (p′) is proportional to the irradiance on
the camera sensor. Using equations (5.5) and (5.6) to reformulate E(p′), we obtain the
following relation between surface reflectance ρ(p), camera vignetting V and geometric
configuration G:

P (p′) ∝ E(p′) = ρ(p)V G . (5.8)

The estimation of the proportional relationship between P (p′) and E(p′) can be seen as a
radiometric calibration of the camera-illumination setup and is discussed in further detail
in section 5.2.

In the presented approach I am interested in the Lambertian reflectance term ρ(p) which
can be computed if the geometric configuration G, the vignetting term V , and the pro-
portional relationship between P (p′) and E(p′) are known. The results of chapter 4 are
used to calculate G, and in section 5.2 I show how to estimate the vignetting term V and
the proportional relationship P (p′) ∝ E(p′).

52



5. Radiometric reconstruction

5.2 Radiometry in the wild

The goal of the radiometric processing described in this section is twofold: first, I aim at
estimating the surface reflectance properties ρ(p) of each 3D point p in the scene based on
all camera images taking the particular illumination situation for each image into account;
second, I wish to map these surface properties to the corresponding pixels in all cameras,
rendering new images ρ(p′) at pixels p′. Thus the result of “radiometry in the wild”
is a new set of J images with their pixel values corresponding to the observed surface
reflectance. This processing departs from eq 5.8, P (p′) ∝ ρ(p)V G, and is performed in
four distinct processing steps as outlined below.

I Frame differencing In the first radiometric processing step, the influence of daylight
or any other ambient illumination is eliminated by frame differencing. The scanner proto-
type takes two linear RAW images in rapid succession, one image with LED illumination
switched on, the other one without artificial illumination. Frame differencing yields

PFD(p′) = PLED(p′)− Pdark(p′) , (5.9)

with PLED(p′) the pixel value including, and Pdark(p′) the corresponding pixel value
without LED illumination.
Figure 5.2 shows the camera response of a linear RAW image of the grey values on the
color reference target (used camera: Canon EOS 100D). A reconstruction of the color
reference target can be seen in figure 5.5a.
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Figure 5.2: Camera response of the three RGB channels of the used Canon EOS 100D
camera. The pixel values of the grey patches of a color reference target are shown against
their measured reflectance. The lines are fitted using the acquired data points.

II Vignetting compensation In the next step, the effect of vignetting is compensated.
The vignetting term V (eq 5.7) can be easily calculated because of the known geometry
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and camera intrinsics. Hence, I obtain

PFD,V (p′) = PFD(p′)
V

∝ ρ(p)G , (5.10)

where PFD,V (p′) denotes the pixel value after frame differencing and vignetting compen-
sation.

III Simulating homogeneous surface illumination The incident light depends on
the geometric configuration G. For each camera, there exist 220 LEDs that illuminate the
scene. The amount of light that reaches a point on the surface depends on the radiant
intensity of the LEDs, the direction of the light sources, the distance between the light
sources and the surface point, and the surface normal.
The LEDs show a radiant intensity characteristic Ii(ωi ·ωIi) that depends on the radiation
angle arccos(ωi ·ωIi) and is provided by the LED manufacturer. I use this specification to
model the LED radiant intensity. The positions and orientations of the LEDs w.r.t. the
scene are obtained by the geometric calibration and reconstruction processes described in
chapter 4.
For the surface geometry representation, I build on the dense 3D point cloud obtained by
SURE. In a camera centric representation, it makes sense to compute the depth-map of
a part of the scene, as observed by the camera. For this, I project the dense 3D surface
points on the image plane and store the corresponding depth in a per-pixel depth-map. In
case of small holes in the depth-map, these are filled by nearest neighbour approximation.
Next, I use this depth-map to compute surface normals and the distances between the
surface points and the LEDs. Figure 5.3 shows these processing steps.
I am now able to calculate G and can further rewrite equation 5.10 as

ρ(p) ∝ P̃ (p′) = PFD,V (p′)
G

, (5.11)

where P̃ (p′) represents the intensity of a particular pixel under the assumption that the
whole surface is homogeneously illuminated.

IV Radiometric calibration Up to this point, I have modeled pixel intensities and
surface radiance under the assumption of homogeneous illumination, but completely ne-
glected spectral reflectance properites of the surface and spectral characteristics of the
sensor. In fact, I obtain three color measurements P̃r(p′), P̃g(p′), P̃b(p′) for each pixel
which must be related to the actual scene reflectance ρr(p), ρg(p), ρb(p) in red, green and
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(a) Original image (b) Estimated depth map

(c) Estimated normal map (d) Estimated incident illumination G

Figure 5.3: This figure shows exemplarily the estimation of the incident illumination. (a)
the original image. Because of the preceding dense surface reconstruction I can calculate
the corresponding depth (b) and normal map (c) of the image. Finally, the incident
illumination G is calculated (d).

blue. This is achieved by an affine mapping M from P̃ to ρ


ρr(p)
ρg(p)
ρb(p)

 = M


P̃r(p′)
P̃g(p′)
P̃b(p′)

1.0

 , (5.12)

where M ∈ R3×4 is a 3×4 matrix that encodes the proportionality between scene radiance
and pixel value in eq 5.11. Therefore, eq 5.12 directly relates the spectral reflectance of a
surface point p to the corresponding color measurement at pixel p′.
In the final step of radiometric processing, I estimate the matrix M by scanning a 3D scene
that contains a color reference target with known spectral reflectance values for each of its
S color patches 1. This leads to S correspondences between known reflectance values of

1I used CIE RGB color values [169]: gamma: 2.2; reference white: CIE illuminant E ; Primaries: (xr,
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the target (ρr,s, ρg,s, ρb,s)T and average measured pixel values (P̃r,s, P̃g,s, P̃b,s)T , s = 1 . . . S.
Now, I follow the algorithm of [164] and estimate M by solving this overdetermined system
of linear equations.
After radiometric calibration, knowing M , I map surface points to pixels and render new
images obtained by substitution p→ p′:

Pρ(p′) =


ρr(p′)
ρg(p′)
ρb(p′)

 = M


P̃r(p′)
P̃g(p′)
P̃b(p′)

1.0

 . (5.13)

This pixel-level computation is performed for all pixels in all of the J images. The final
result of radiometric processing is a set of J new, radiometrically calibrated images with
direct relation between pixel color and measured spectral surface reflectance. Figure 5.4
illustrates all the individual processing steps described above, for the example of a color
reference target scanned in direct sunlight, including a cast shadow.
Finally, results from chapter 4 and 5.2 can be combined to produce dense, radiometrically
calibrated 3D point clouds as shown in the various examples provided below.

5.3 Experiments

5.3.1 Radiometric validation w.r.t. ground truth

I validate the radiometric reconstruction approach by comparing the results with the
known radiometric characteristics of a color reference target, using three different test
scenes of varying complexity as shown in fig. 5.5:

Calibration scene: This scene consists of the color target alone and was captured in a
completely dark room. The color target was placed on the floor so that the planes of the
LED illumination and the color target were approximately parallel. 13 scanner positions
were used to acquire this scene.

Daylight scene: This scene consists of the color target placed on a wooden floor, cap-
tured under bright daylight, including direct sunlight and cast shadows. Again, target
and LED planes are approximately parallel. For this scene I used 7 scanner positions. See

yr, Y) = (0.7350, 0.2650, 0.176204), (xg, yg, Y) = (0.2740, 0.7170, 0.812985), (xb, yb, Y) = (0.1670,
0.0090, 0.010811)
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(a) PLED(p′) (b) Pdark(p′) (c) PFD(p′)

(d) PFD,V (p′) (e) P̃ (p′) (f) Pρ(p′)

Figure 5.4: This figure illustrates all the individual radiometric processing steps, from
image capture with and without LED illumination up to the final radiometrically corrected
image Pρ. The images show part of a color reference target captured in direct sunlight,
including a shadow cast by the scanner (see fig. 5.5b for the complete reconstruction result
of this scene).

fig. 5.4 for detail views of images from one of the scanner positions.

Evaluation scene: In this scene, I placed the color target such that the planes of the
target and the LED illumination are not parallel, so that the illumination density differs
from the previous two settings. Further, the scene contains a piece of rock with a rough 3D
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(a) Calibration scene (b) Daylight scene

(c) Evaluation scene

Figure 5.5: Dense, radiometrically calibrated 3D point clouds of the three scenes used
for radiometric validation.
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surface that represents the usual operational scenario of the scanner. 20 scanner positions
were used to acquire this scene.

I use these three scenes for a number of detailed quantitative experimental validations
described below. Color distances are given in two different metrics in Lab color space:
Euclidean distance ∆E∗ab, and CIEDE2000 color difference metric ∆ECIE00 [128] which
is claimed to better model human perception of color differences.

#img µ(∆E∗ab) σ(∆E∗ab) µ(∆ECIE00) σ(∆ECIE00) ∆E∗ab,GT ∆ECIE00, GT

dark skin 17 1.42 0.62 1.08 0.49 3.82 2.50
light skin 17 1.13 0.50 0.78 0.37 5.81 3.05
blue sky 17 1.64 0.72 1.52 0.72 2.37 2.22
foliage 18 1.58 0.74 0.99 0.51 2.68 1.98

blue flower 19 1.40 0.52 1.05 0.44 1.39 0.78
bluish green 18 1.63 0.83 0.81 0.34 2.47 1.44

orange 17 1.47 0.74 0.65 0.36 12.37 3.07
purplish blue 17 1.39 0.67 0.94 0.50 4.11 1.69
moderate red 17 1.26 0.59 0.65 0.27 1.83 0.95

purple 18 1.24 0.60 0.72 0.37 5.52 2.84
yellow green 18 1.74 0.74 0.75 0.28 4.24 1.56
orange yellow 18 1.45 0.78 0.86 0.45 7.82 1.96

blue 14 1.79 0.93 0.91 0.44 7.24 2.39
green 14 1.45 0.54 0.76 0.29 3.26 1.30
red 14 1.21 0.59 0.60 0.24 5.44 3.21

yellow 15 1.08 0.61 0.60 0.33 2.10 0.90
magenta 15 1.39 0.60 0.69 0.28 0.71 0.63
cyan 15 2.42 1.30 1.58 0.79 4.25 3.42

white 9.5 (.05 D) 15 2.67 1.80 2.15 1.70 1.97 1.82
neutral 8 (.23 D) 15 1.66 0.80 1.95 1.15 2.43 2.91
neutral 6.5 (.44 D) 15 1.11 0.44 1.22 0.57 1.76 1.44
neutral 5 (.70 D) 16 1.40 0.71 1.75 0.97 1.28 1.73

neutral 3.5 (1.05 D) 15 1.33 0.56 1.66 0.84 1.47 1.98
black 2 (1.5 D) 15 1.93 1.11 2.38 1.50 3.32 3.12

Table 5.1: Color differences of the calibration scene.

Tables 5.1-5.3 provide detailed experimental results for the three test scenes. Each row
corresponds to a particular reference color on the target. On the left hand side, the tables
list five columns, providing the number of individual images that show the particular
reference patch (not all images contain the full reference target), and mean µ and standard
deviation σ for both color metrics. This evaluation provides quantitative results w.r.t. the
homogeneity of our estimation of Pρ(p′) in many different images of the same patch. The
last two columns on the right hand side provide the difference of the average patch colors
w.r.t. the known ground truth of the color reference target. One clearly sees an excellent
homogeneity (i.e. small µ and σ on the left hand side), and increasing mean errors for
increasing complexity of the scenes (i.e. ∆E on the right hand side). Table 5.2 further
shows a case of slight overexposure, with the rows “white 9.5” and “neutral 8” indicating
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#img µ(∆E∗ab) σ(∆E∗ab) µ(∆ECIE00) σ(∆ECIE00) ∆E∗ab,GT ∆ECIE00, GT

dark skin 10 1.60 0.53 1.24 0.46 3.21 2.02
light skin 12 1.77 0.70 1.19 0.47 5.69 3.24
blue sky 12 1.79 0.83 1.60 0.83 0.54 0.53
foliage 12 1.62 0.67 1.02 0.42 3.25 2.29

blue flower 12 1.41 0.51 1.08 0.43 1.92 1.16
bluish green 12 1.77 0.91 0.94 0.43 1.84 0.85

orange 10 2.42 1.36 1.32 0.78 12.47 3.03
purplish blue 12 2.01 0.91 1.26 0.54 5.21 2.54
moderate red 11 1.76 1.15 0.88 0.56 1.60 0.89

purple 11 1.91 0.83 0.99 0.37 4.16 2.02
yellow green 11 1.87 0.92 0.75 0.35 6.64 2.32
orange yellow 11 1.39 0.72 0.77 0.37 7.29 2.13

blue 7 1.73 0.84 0.80 0.35 11.90 4.40
green 9 2.20 0.88 1.16 0.51 3.25 1.38
red 9 2.26 1.07 1.04 0.46 5.71 3.33

yellow 9 2.48 1.39 1.40 0.78 3.20 1.77
magenta 9 0.88 0.29 0.51 0.23 1.36 1.10
cyan 9 2.01 0.98 1.20 0.59 4.20 3.78

white 9.5 (.05 D) 6 48.33 36.30 16.10 11.82 64.40 31.92
neutral 8 (.23 D) 8 17.31 10.82 12.18 7.56 16.76 16.87
neutral 6.5 (.44 D) 8 1.71 0.77 2.07 1.04 0.61 0.79
neutral 5 (.70 D) 8 1.97 0.79 2.47 1.13 1.36 1.98

neutral 3.5 (1.05 D) 8 1.64 0.72 1.94 0.97 2.62 3.56
black 2 (1.5 D) 8 1.45 0.73 1.44 0.73 5.57 6.49

Table 5.2: Color differences of the daylight scene.

saturation.
A comparison of tables 5.3 and 5.4 illustrates the benefits of including step III in the
radiometric processing scheme of section 5.2. Results including the simulation of incident
light (table 5.3) are significantly better than without this processing (table 5.4).
Finally, table 5.5 summarizes the quantitative results of all four experiments by calculating
mean values of all color patches, where we clearly see the improvement when excluding
the two overexposed patches from the evaluation of the daylight scene.

5.3.2 Qualitative validation

Our main application domain of documenting rock panels with prehistoric petroglyphs is
not very colorful. To demonstrate the general applicability of our method, I provide one
qualitative example from a different domain. A colored, wooden statue of approx. 80cm
height was scanned from 188 scanner positions. Figure 5.6a shows the dense 3D point
cloud rendered without radiometric calibration, and fig. 5.6b a zoomed detail of the same
object including radiometric calibration. These results are encouraging in various respects.
First, the scanner exhibits sufficient depth-of-field so that even the deep folds of the cloth
are in focus. Second, a qualitative visual comparison of the appearance of the real object
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5. Radiometric reconstruction

#img µ(∆E∗ab) σ(∆E∗ab) µ(∆ECIE00) σ(∆ECIE00) ∆E∗ab,GT ∆ECIE00, GT

dark skin 23 1.94 1.02 1.28 0.63 8.77 4.54
light skin 24 2.89 1.52 2.19 1.27 6.09 3.03
blue sky 22 2.27 0.99 1.65 0.84 5.62 5.13
foliage 21 1.95 0.95 1.13 0.54 7.38 3.99

blue flower 22 2.45 1.47 1.83 1.31 5.72 3.78
bluish green 19 1.64 0.58 1.05 0.44 7.74 5.08

orange 29 5.71 3.79 3.50 2.35 18.21 5.74
purplish blue 26 2.54 1.46 1.11 0.49 11.09 7.24
moderate red 25 2.01 1.05 1.19 0.71 7.39 3.26

purple 23 1.82 0.98 1.07 0.70 4.56 2.47
yellow green 22 5.80 5.64 3.32 3.21 8.80 2.21
orange yellow 17 2.31 1.40 1.35 0.81 6.67 1.61

blue 31 2.04 0.87 1.05 0.46 9.18 4.12
green 30 3.14 1.49 1.52 0.72 10.56 3.98
red 26 2.68 1.63 1.20 0.68 10.51 5.33

yellow 26 2.13 1.43 1.16 0.77 1.53 0.51
magenta 23 2.57 1.48 1.39 0.99 8.36 4.63
cyan 17 1.82 0.90 1.31 0.72 11.62 5.58

white 9.5 (.05 D) 32 2.46 1.18 2.20 1.02 8.26 5.44
neutral 8 (.23 D) 31 2.81 1.67 2.24 1.14 1.52 1.34
neutral 6.5 (.44 D) 31 2.32 1.25 2.41 1.19 1.24 1.45
neutral 5 (.70 D) 28 2.22 1.37 2.43 1.47 3.45 4.03

neutral 3.5 (1.05 D) 22 1.61 0.89 1.72 0.99 4.13 4.98
black 2 (1.5 D) 17 1.92 0.86 1.99 1.05 6.85 7.34

Table 5.3: Color differences of the evaluation scene.

vs. the radiometrically calibrated reconstruction shows a clear benefit over the uncalibrated
result.

5.3.3 Reconstruction of a colorful painting

Figure 5.7 shows to reconstruction of a reproduction by August Macke. ArcTron3D GmbH
(http://www.arctron.de/) provided us the data. The reproduction was scanned with
our scanner prototype. The final dense point cloud is made up of more than 39 million
points.

5.4 Discussion

The presented approach allows an accurate reconstruction of radiometric surface property
“in the wild” under Lambertian reflectance assumption. The resulting reconstruction con-
sists of radiometric surface properties beyond photo texture in the sense that the incident
illumination is cancelled out by the presented approach. Discussing about radiometric
surface properties leads to a number of potential improvements:
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5. Radiometric reconstruction

#img µ(∆E∗ab) σ(∆E∗ab) µ(∆ECIE00) σ(∆ECIE00) ∆E∗ab,GT ∆ECIE00, GT

dark skin 23 1.98 0.98 1.50 0.78 8.50 4.93
light skin 24 2.80 1.47 2.11 1.18 6.44 3.92
blue sky 22 3.26 1.78 2.88 1.73 6.89 6.69
foliage 21 2.81 1.31 2.16 1.17 8.23 5.35

blue flower 22 3.85 2.17 3.57 2.25 6.46 6.05
bluish green 19 4.82 2.73 3.58 2.18 6.85 4.89

orange 29 2.99 1.76 1.73 1.10 14.27 4.03
purplish blue 26 3.00 1.44 2.16 1.22 9.98 6.72
moderate red 25 3.25 1.87 2.44 1.55 8.10 5.90

purple 23 2.87 1.45 1.72 0.88 6.13 4.21
yellow green 23 5.26 3.26 3.56 2.31 8.79 6.71
orange yellow 18 4.63 2.96 3.00 1.93 6.14 3.96

blue 31 2.86 1.31 1.71 0.88 7.45 4.82
green 30 3.14 1.63 2.44 1.54 10.72 6.90
red 26 2.92 1.45 1.97 1.15 12.83 7.95

yellow 26 5.05 3.24 3.11 2.02 10.30 5.29
magenta 23 3.87 2.26 2.87 1.88 8.77 7.79
cyan 18 3.86 2.07 3.09 1.91 11.14 9.10

white 9.5 (.05 D) 32 3.89 2.28 2.92 1.44 9.12 6.50
neutral 8 (.23 D) 31 3.58 2.19 2.91 1.57 7.62 5.60
neutral 6.5 (.44 D) 31 3.39 1.89 3.30 1.67 6.28 5.31
neutral 5 (.70 D) 28 3.04 1.63 3.04 1.52 8.05 8.11

neutral 3.5 (1.05 D) 22 2.33 1.06 2.23 0.98 7.18 6.27
black 2 (1.5 D) 17 2.46 0.98 2.26 0.98 8.64 6.67

Table 5.4: Color differences of the evaluation scene without simulation of the actual
incident light on the 3D surface points.

µ(µ(∆E∗ab)) µ(σ(∆E∗ab)) µ(µ(∆ECIE00)) µ(σ(∆ECIE00)) µ(∆E∗ab,GT ) µ(∆ECIE00, GT)

Calibration scene 1.53 0.75 1.13 0.59 3.74 2.04
Daylight scene 4.39 2.73 2.31 1.34 7.28 4.18

Daylight scene without
white 9.5 and neutral 8 1.80 0.84 1.23 0.58 4.25 2.35

Evaluation scene 2.54 1.49 1.72 1.02 7.30 4.03
Evaluation scene
without shading 3.41 1.88 2.59 1.49 8.54 5.99

Table 5.5: Summary of the color differences for the calibration scene, daylight scene,
daylight scene without considering the patches white 9.5 and neutral 8, evaluation scene,
and the evaluation scene without simulation of the actual incident light on the 3D surface
points.
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5. Radiometric reconstruction

(a) (b)

Figure 5.6: Radiometrically uncalibrated (a) and calibrated (b) 3D point clouds of a
colored wooden statue (see text).

Extension to non-Lambertian reflectance: As already pointed out in chapter 2
one can find related work that is able to capture surface reflectance properties beyond
Lambertian reflectance. This is a direction in which my work should be extended.
Despite this promising direction one has to overcome several challenges:

• The choice of an appropriate reflectance model: As mentioned at the beginning of
this chapter, surface reflectance could be modelled with the bidirectional reflectance
distribution function (BRDF). A BRDF encodes how light is reflected depending on
the direction of the light source and the observer direction ωo. One has to keep
in mind that a BRDF only specifies the reflectance characteristic of “one” surface
point. If the BRDF is varying across the surface, e.g.. the surface consists of different
materials, one has to capture and model different BRDFs for different regions of the
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5. Radiometric reconstruction

(a) (b)

(c) (d)

Figure 5.7: Reconstruction of a reproduction of a painting by August Macke. The images
for this reconstruction were taken by ArcTron3D GmbH with our scanner prototype.
(a) shows an initial dense point cloud before the estimation of the radiometric surface
properties. In (b) one can see the result of the processing discussed in this chapter. (c)
and (d) show a close-up of (a) and (b). One can see that the radiometrically accurate
reconstruction exhibits much less noise than the initial dense point cloud.

surface - this sort of BRDF is called spatial-varying BRDF (SV-BRDF). The main
challenge is a proper sampling of the spatial and angular domain of the SV-BRDF
which is a six-dimensional function (two dimensions encode the spatial position on
the surface and the four additional dimensions encode the angular dependencies).
To simplify this challenging sampling task one could use parametric BRDF models
like, [29], [16], etc. and fit a sparse set of sampled angular data. Another direction
would be to restrict the angular sampling to a certain illumination-view-point con-
figuration and use a data driven BRDF model to infer the missing and unknown
data. This approach was e.g. taken by [56]. Another way would be to find a subset
of pairs of illumination directions and observer directions that best characterize the
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5. Radiometric reconstruction

surface reflectance and sample just this subset. In a next step one has to infer the
missing dimensions based on this subset. Filip et al. [44] have done work in this
direction where they use a robotic manipulator to position the light source and the
camera in an appropriate configuration (which was done in a lab).
These potential extensions approximate the true reflectance behaviour of the surface.
For the setting of the 3D Pitoti project, and in my opinion this is the case for almost
all practical use cases, the direct sampling of an SV-BRDF is prohibitive because of
the time required to sample this function.

• Fast acquisition of necessary reflectance properties “in the wild”: In my opinion, this
is the main challenge when one wants to capture radiometric surface properties be-
yond Lambertian reflectance. The Parthenon-project [9] reflects very well the huge
amount of time-consuming work. The BRDF measurement [149] for example was
done during the night and just for a representative part of the Parthenon-temple.
In the work of Georgoulis et al. [56] the authors propose a method where shape and
reflectance are estimated jointly. To infer the reflectance the authors take an image
with a characteristic incident illumination and observer direction configuration. The
obtained reflectance data are further extrapolated using the MERL BRDF measure-
ments [96] as prior information. In this way the authors could acquire the necessary
data in a fast way. As far as this paper suggests the data acquisition was done inside
a laboratory and not “in the wild”.

• We tried to use the existing possibility of our scanner prototype to measure different
incident light directions ωi. Triggering each of the 22 LED groups of our illumination
provides us with 44 different directions per scanner position (22 per camera). But
the resulting investigation [146] showed that the benefits of this concept are rather
limited. First, we have to go back to a dark laboratory, because 10 LEDs are not
sufficient bright to benefit from our flash-no-flash idea. Second, the individual groups
are spatially quite spread (see the LED arrangement on the circuit board in figure
4.6), so that we do not obtain a particular crisp direction ωi. Third, the given focal
length, working distance, and size of the illumination limits the variability of angular
sampling.

Using a GPU to speed up the computation time: Simulating the incident illu-
mination for a single 16 million pixel image is a time consuming task. In the current
setting I use multiple cores to process this computation. Using a GPU would accelerate
this computation even more because of the higher number of cores and the specialized
architecture for computing light-surface interaction.
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5. Radiometric reconstruction

Using a render software to compute a more accurate surface illumination:
One drawback of the presented approach to simulate the incident light is the fact that no
self shadowing is handled. A ray-tracing software could handle this effect. Open source
software like PBRT [117] is available which can also handle complex reflectance properties.
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6
Radiometry propagation

In chapter 5 I discussed my approach to estimate accurate radiometric surface properties.
In the case of the 3D Pitoti project we were confronted with large scale scenes (compared
to the scale at which the scanner operates). For such sites, “true” radiometry for the
complete 3D point cloud is very expensive to obtain. This chapter presents a method that
is capable to estimate the radiometric surface properties of an entire scene despite the
fact that we only have access to the “true” radiometry of a small part of it. Figure 6.1
illustrates the results and motivation of the presented approach.
Figure 6.2 outlines the proposed method in more detail. First, it is assumed to have a
possibly large-scale 3D reconstruction at a certain spatial resolution. Regarding its sur-
face properties I assume that the images were taken under diffuse illumination conditions
resulting in a reconstruction colored with the photo texture of the images, but without
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(a) Init (b) Final

Figure 6.1: 3D point clouds, one obtained by an MAV based reconstruction (large, grey
area) and the second is obtained by the prototype scanner. (a) shows part of Seradina
12C, reconstructed at low spatial resolution using an MAV, plus a smaller area (Aerea345)
that has been scanned at high spatial resolution and true radiometry. I first transfer the
true radiometry to the spatially registered subregion of the low resolution point cloud, and
then propagate this radiometry to the remainder of the reconstruction, as shown in (b).

direct, cast shadows. Recent advance in the field of autonomous image capture for pho-
togrammetry, e.g. Mostegel et al.[104], allows the reconstruction of large-scale scenes with
minimal effort. However, the color values of such a reconstruction are still calculated
based on the captured images and hence, no actual radiometric surface color is available.
I used the MAV based reconstruction (see section 3.3.1) obtained by project partners for
this point cloud and the grey area in figure 6.1a shows a section of this reconstruction.
Second, I assume that I have access to an accurate radiometric reconstruction of parts of
the same scene, possibly captured at a different, more detailed spatial scale. Here, the
concept builds on the idea, that several radiometrically relevant parts of the scene have
been scanned - it would be unrealistic to try to solve the problem for surfaces exhibiting
completely different radiometric properties than the samples taken. To obtain such point
clouds I used the scanner prototype. In figure 6.1a I show the radiometrically accurate
reconstruction of AREA345 (see section 3.3.3) obtained during the 3D Pitoti project.
The accurate radiometric values are mapped to the entire 3D scene in a two-stage pro-
cess: First, I transfer the “true” radiometric values to the photo texture of the spatially
corresponding part of the scene, and second, I propagate these values to the entire scene
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using affinity information.

(a) (b) (c)

Figure 6.2: Description of my method. (a) sketches the initial setting. Two types of point
clouds are available: I, which is colored with photo texture and J , for which radiometric
surface properties are available. The set of points in L is the set of matches between the
spatial coordinates of I and J (J is drawn above I for visualization purpose, actually
they are registered). (b) shows the result after color transfer trough Optimal Transport as
described in section 6.1. I transfer the color distribution from point cloud J to the points
in the set L ⊂ I. (c) sketches the color propagation approach in which I propagate the
known radiometric values to the areas where only photo texture is available. This process
is described in section 6.2.

6.1 Color Transfer through Optimal Transport

Color transfer was originally used to transfer the color characteristic of one image to
another one. Seminal work about color transfer between two images was published by
Reinhard et al.[127], in which the authors use a color space that minimizes the correlation
between color channels [134] and simple statistical analysis to transfer the color charac-
teristic between two images. Pitié et al.([119] and [120]) transform one N -dimensional
color distribution into another N -dimensional distribution by iterativly calculating their
marginal distribution with subsequent histogram specification [60]. This provides more
flexibility than [127] because one is not restricted to a certain distribution. In [126],
Rabin et al. established a link between this prior work on distribution transfer and the
Wasserstein metric.
This section explains how color values are transferred between spatially overlapping areas
were both is available: the “true” radiometric surface properties and the photo texture.
This process must be able to handle inaccurate spatial registration as well as potentially
different spatial scales of the two 3D point clouds. Therefore, I prefer not to depend on
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the spatial correspondence but instead transfer the global color characteristic between the
patch with “true” radiometry and the corresponding patch of the photo-textured data.
The set I is defined as the point cloud where only the photo texture is known, the set
J as the point cloud where radiometric surface properties are available, and the set L =
match(I,J ) as the set of matches between the spatial coordinates of point cloud I and
J . This means that the set L contains the points of I (L ⊂ I) for which the radiometric
surface properties are known but because of different scales and inaccurate registration,
no point-wise match between J and L is possible. Further, rj = [rr, rg, rb] is denoted as
the “true” radiometry of a point j ∈ J expressed in RGB-color space and pi = [pr, pg, pb]
as the corresponding RGB-vector of the photo texture of a point i ∈ I. I represent the two
matrices R = {rj}j∈J and P = {pi}i∈L⊂I as two distributions in three dimensional color
space and want to transform the distribution {pi} such that it is as similar as possible to
the distribution {rj}.
I utilize the concept of Optimal Transport (OT) [155] to achieve this desired color trans-
formation. To simplify the explanation of this concept let us assume that the number of
points in {rj}j∈J and {pi}i∈L⊂I is equal, where L denotes the number of points. In OT
one minimizes the cost of transporting one distribution onto another distribution using an
assignment σ:

min
σ∈ΣL

∑
i∈L

dLab
(
pi, rσ(i)

)2
, (6.1)

where ΣL is the set of all permutations of L elements and dLab is the distance between
two color values in the Lab-color space. The solution of this optimization problem is an
assignment which maps the photo texture ti of point i to a radiometric surface color rσ(i),
expressed as

pi 7→ rσ(i) = r̂i := [r̂r, r̂g, r̂b] , (6.2)

where r̂i is the result of this mapping. One could use the flow obtained by calculating
the Earth Movers’s Distance [133] to find such a mapping but it suffers from the high
(O(n3 logn)) computational complexity [142]. Therefore, the mapping is computed using
the Sliced Wasserstein Distance [126] approximation in which the Wasserstein metric is
approximated by a set of random 1D projections of the distributions and calculating 1D
assignments.
Rabin et al.define the sliced Wasserstein distance as follows

W̃ (P,R) =
∫

Θ
min
σΘ

∑
i

(
〈pi − rσΘ(i),Θ〉

)2

︸ ︷︷ ︸
E(P)

dΘ , (6.3)

in which Θ is a 1D line onto which pi and rσΘ(i) are projected. In equation 6.1 the distance
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between colors is calculated in the Lab-color space. For consistency, for the remainder of
this section {pi} and {ri} are converted into this color space. The goal is to transform P,
making it as similar as possible to R, to minimize W̃ (P,R), which approaches a minimum,
if, for every Θ, E(P) is minimized. Because of the 1D projection in E(P) one can minimize
this term w.r.t. P by calculating a Histogram Specification [60] of the projected points

{rΘ,i} = hist_spec(projΘP, projΘR) , (6.4)

where the operator projΘ projects points onto the 1D line Θ, and hist_spec({xi}, {yi})
performs histogram specification such that {yi} matches {xi} as closely as possible (which
also holds for different numbers of points in {xi} and {yi}). Minimizing 6.3 with respect
to P

P? = {r̂i} = argmin
P

W̃ (P,R) , (6.5)

can be done using Stochastic Gradient Descent [20] where the 1D line Θ is randomly
generated. The update rule for P reads

Pt+1 = Pt + γ∇PE(P) , (6.6)

where γ is the step size and ∇PE(P) is the gradient of E(P). Computing this gradient

∇piE(P) = 2Θ

ΘTpi −ΘT rσθ(i)︸ ︷︷ ︸
rΘ,i

 , (6.7)

involves solving the histogram specification eq. 6.4 and can be done very efficiently. The
stochastic gradient descent algorithm terminates after a predefined, fixed number of iter-
ations, or as soon as no further changes occur.

6.2 Radiometry propagation

Why do I need to treat radiometry propagation different from color transfer discussed in
section 6.1? Because I cannot rely on patches where I have both, “true” radiometry r and
phototexture p, but wish to propagate true radiometry into the unknown. In this case,
one may observe similar phototexture, where it will make sense to propagate according
radiometric values, but one also may observe significantly different phototexture, which
has not been covered by the “true radiometric” scans at all. These values should not be
included into the color distributions used in section 6.1. I therefore require a different
method to solve this case and explain my solution, which is based on label propagation,
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below.
The result of color transfer described in the previous section is a set {r̂i}i∈L of radiometric
values expressed as RGB color vectors. This set of vectors is associated with a subset
of color values of the initial photo textured point cloud I. The goal is to propagate the
available radiometric values to those areas {pi}i∈I\L in the point cloud where I have no
information about the radiometry. I use ideas from the field of semi-supervised learning,
namely Label Propagation (LP) by Zhu and Ghahramani [179], to propagate the radio-
metric values to the entire scene. For this sake I first construct a matrix R̂l = {r̂i}i∈L
containing the known (labeled) radiometric values and second, a matrix R̂u = {pi}i∈I\L
containing the photo texture (unlabeled). Next, I concatenate both matrices to obtain
R̂ = (R̂l, R̂u). In the same way color values in the point cloud I are ordered according
to the criterion, whether a radiometric color value can be associated or not.
To set up the LP method, an affinity matrix W consisting of Gaussian kernels is con-
structed:

wij = exp
(
−dLab(pi,pj)

2

2σ2
Lab

)
, (6.8)

in which i and j are points from the point cloud I, dLab is the distance in the Lab-color
space, and σLab is the width of the Gaussian kernel. To illustrate the concept behind W,
it can be interpreted as a graph whose nodes are the points in I, and the edge weights
are proportional to the color similarity between points in I. Because of the high storage
requirements and computational burden of such an affinity matrix the computation of
the affinity is limited to the k nearest neighbours in spatial and radiometric domain, by
considering only a k-neighbourhood for every point i

j ∈ Nk,Lab(pi) ∪ Nk,spatial(pi) , (6.9)

where Nk,Lab denotes the set of radiometric neighbours in the Lab-color space, Nk,spatial

the set of spatial neighbours, and k is the number of neighbours to consider. The diagonal
degree matrix D is constructed according to

dii =
∑
j∈I

wij . (6.10)

Using W and D, the probabilistic transition matrix T is defined as

T = D−1W . (6.11)

The element tij of T corresponds to the probability of jumping from node j to node i.
According to Zhu and Ghahramani [179] the radiometric values (labels) can be propagated
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σLab 1.0
neighborhood size of Nk,Lab 15

neighborhood size of Nk,spatial 15
number of iterations 2500

Table 6.1: Parameters for the experiments of section 6.3.1.

through the graph by the following algorithm:
• Initialize: R̂t = (R̂0

l , R̂u) with R̂0
l = R̂l

• Iterate:
1. Propagate: R̂t+1 = TR̂t

2. Persist in known radiometry: R̂t+1
l = R̂0

l

Step 1 propagates the radiometric values to their neighbourhood, and step 2 ensures
that the initial “true” radiometry does not fade out. This algorithm terminates either
after a predefined, fixed number of iterations, or as soon as no further changes occur
(i.e. R̂t+1

u = R̂t
u). Finally, the new, propagated color values in R̂t+1

u are stored in the
corresponding points in I.

6.3 Experiments

This section deals with the validation of the proposed approach on three different datasets
to show its general applicability.

6.3.1 Radiometric correction of a large-scale cultural heritage recon-
struction

For this experiment I consider the real world archaeological use case within the 3D Pitoti
project 1.
I have two types of reconstructions at hand: first, the large-scale reconstruction (Ser12c,
see section 3.3.1) based on images obtained by a micro aerial vehicle and second, a set
of radiometrically corrected small-scale, but high detail, reconstructions (A, B, C, D =
AREA345, see section 3.3.3) (see figure 6.3). The reconstructions A, B, C, and D were
scanned by the scanner prototype and calculated by the presented approach in chapters
4 and 5. In figure 6.4, I show a close-up of a section of reconstruction D to illustrate its
high spatial resolution.
Given these reconstructions I perform first the color transfer as explained in section 6.1
and second, the radiometry propagation described in section 6.2.

1I thank the authors of [104] for providing their data.
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(a) (b) (c)

Figure 6.3: Images of the used dataset for the radiometric correction of 3D point clouds.
(a) shows the large-scale photo textured Ser12c reconstruction. (b) shows the small-scale,
high resolution, reconstructions with “true” radiometry (top row: A, B, C, bottom row D).
(c) visualizes in red the registration of A, B, C and D w.r.t. Ser12c. The number of 3D
points for the individual reconstructions is as follows: Ser12c: 21 million, A: 63 million,
B: 23 million, C: 52 million, and D: 273 million points. Figure 6.4 shows a close-up of a
section of the reconstruction D.

Figure 6.4: 3D reconstruction of an individual petroglyph showing a hunter with bow.
The point cloud consists of 21.7 million points and the petroglyph covers a tiny area of
approx. 10cm2 on the rock.

omitted data: A B C D
dLab: 5.95 3.58 5.96 5.70

Table 6.2: Leave-one-out evaluation of radiometry propagation on the 3D point cloud.

Figure 6.5 shows the initial point cloud Ser12c before (a) and after (c) radiometric cor-
rection (see parameter settings for this experiment in table 6.1). In addition to this quali-
tative, visually pleasing result, I provide a quantitative leave-one-out evaluation shown in
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(a) (b) (c)

Figure 6.5: This figure shows the progress of the radiometric value propagation explained
in section 6.2. (a) shows the initial 3D point cloud. (b) shows an intermediate result (after
700 iterations) and (c) the final result at iteration 2500.

table 6.2: I correct Ser12c by using just three out of four “true” radiometry reconstruc-
tions and use the remaining one to validate the performance. As performance measure I
use the mean Euclidean distance in Lab-color space.
The computation of 2500 iterations requires 4.5 hours (21 million points, Nk,Lab = 15, and
Nk,spatial = 15, single core).

6.3.2 Radiometric correction of a colorful painting

One might argue that the point clouds processed in section 6.3.1 are not very colorful.
Therefore, this section provides an example for the 3D point cloud of a colorful painting.
Figure 6.6 shows the experimental setting. I use the same reproduction of a painting
by August Macke as in section 5.3.3 see figure 5.7 The data include: A photo-textured
3D point cloud of the whole painting, three point clouds representing subregions of the
painting with radiometrically accurate color values (see fig. 6.6.a for the phototextured
pointcloud with the three subregions superimposed), and a complete, radiometrically ac-
curate reconstruction of the painting that serves as ground truth to validate our approach
(see fig. 6.6.c).
As described in section 6.1, I first transfer the radiometric values onto the photo-textured
point cloud. Next, the radiometric values are propagated across the photo-textured recon-
struction (as explained in section 6.2). Figure 6.6.b shows the result. Parameter settings
for this experiments are as follows: Nk,Lab = 15, Nk,spatial = 15, and 2500 iterations. In
comparison with the ground truth point cloud, I obtain a mean Euclidean distance in
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(a) (b) (c)

Figure 6.6: Radiometric correction of a colorful painting. (a) shows the initial point
cloud with three regions of “true” radiometry superimposed. (b) shows the final result
after radiometry propagation and (c) the ground truth. The mean Euclidean distance in
Lab-color space between the final result and the ground truth is dLab = 6.92.

Lab-color space of dLab = 6.92.
This experiment clearly demonstrates the benefits of the method. If small portions of all
radiometrically meaningful colors of a scene are scanned, these “true” colors can success-
fully be propagated to a potentially much larger phototextured 3D point cloud.

6.3.3 Quantitative validation of radiometry propagation in the image
domain

In this section, I provide further quantitative results for our radiometry propagation ap-
proach (section 6.2) on the image dataset provided by Gehler et al.[55] and reprocessed
by Lynch et al.[92]. This dataset consists of 482 3.2MPixel images of outdoor and in-
door scenes including a color reference target. Based on this reference target, I apply
color correction [164] and define the corrected images as the set of images with “true”
radiometry. For each of these images, I randomly sample a fraction of its pixel colors,
except pixels within the color reference target, and use them as the initial, “true” radio-
metric values (i.e., known labels, see section 6.2). Table 6.4, shows three different types
of quantitative performance indicators for several fractions of sampled pixel values: first,
Structural Similarity SSIM [157] which is tailored to match the characteristics of the
human visual system; second, PSNR in dB; and third, Euclidean distance in Lab-color
space dLab. Pixels inside the color reference target are omitted from this validation. Figure
6.7 shows radiometry propagation results for a sample image, and the parameters used in
these experiments are provided in table 6.3.
I am fully aware that random sampling of individual points of the “true” radiometric values
is not a realistic setting. However, I conducted this experiment to obtain statistically
meaningful quantitative results on a large number of images, varying the sample size
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6. Radiometry propagation

(a) Original image (b) “True” radiometry

(c) Result for a sample size of 30%. (d) Result for a sample size of 5%.

Figure 6.7: Radiometry propagation example on an image from [55]. For visualization
purpose, the original (much darker) image (a) has been Gamma corrected. (b) shows the
corresponding image with “true” radiometry, from which we randomly sample pixel values.
Quantitative results for (c) are PSNR = 35.45dB, SSIM = 0.92, and dLab = 3.14. For
(d), PSNR = 30.89dB, SSIM = 0.852, and dLab = 5.56. The pixel values of the color
reference target are omitted for both, sampling and validation.

between 1% and 30% of the pixels. To conclude this experiment, I provide two examples
for the more realistic scenario, where a supervisor decides which parts of an image need
to be sampled to reconstruct the remaining part via radiometry propagation. I show
experiments on two images of the dataset [55], IMG_0284 and IMG_0881, where I manually
selected two small areas of radiometrically “true” values and propagated them across the
entire image. Figure 6.8 shows the selected images, sampled areas and the result of this
user guided approach. Table 6.5 provides the validation results in terms of PSNR, SSIM ,
and dLab and the parameter settings used for radiometry propagation.
In summary, the experiments presented in section 6.3.3 provide quantitative validation of
the radiometry propagation approach (sec. 6.2). The results show that “true” radiometry
can be successfully propagated even if the sample size covers only a few percent of the
data, where the method still works remarkably well for a sample size of 5%, but breaks
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σLab 1.0
neighborhood size of Nk,Lab 25

neighborhood size of Nk,spatial 4
number of iterations 120

Table 6.3: Parameter settings for the random sampling experiment in section 6.3.3.

PSNR SSIM dLab
sample size mean std mean std mean std

30% 35.05 3.55 0.92 0.05 3.41 1.41
20% 34.10 3.40 0.90 0.06 3.93 1.59
10% 32.42 3.27 0.88 0.07 4.80 1.84
5% 30.16 3.14 0.84 0.08 5.91 2.08
1% 15.68 3.62 0.51 0.12 20.44 6.58

Table 6.4: Results of radiometry propagation on the dataset provided by [55]. Sample
size is given in % of pixels randomly sampled from the “true” radiometry image. Mean
and standard deviation are calculated for the complete dataset of 482 images.

image name PSNR SSIM dLab Nk,Lab Nk,spatial num. of iterations
IMG_0284 26.88 0.81 5.93 125 4 1000
IMG_0881 27.14 0.77 8.58 125 4 2500

Table 6.5: Quantitative results of user guided radiometry propagation.

down for a sample size of 1%.

6.4 Discussion

Chapter (chapter 5) presented my approach to estimate the radiometric surface property.
Despite the fact that we can collect radiometric data in a fast way with the scanner
prototype, reconstructing large scale radiometric surface properties is a very expensive
and time consuming task. On the other hand, when one wants to reconstruct rock-art in
its context, not every part of the scene is equally important. For example, in the 3D Pitoti
project we observed that not the entire rock panel is covered with rock-art. Scanning the
whole rock to reconstruct the radiometric surface properties of every single surface point
would be highly inefficient and unnecessary. For such a setting, the approach of this
chapter could be used.
The presented approach in this chapter allows to propagate known radiometric values
into areas where only photo texture is available. I made some assumptions which could
possibly be relaxed for further applicability of the presented approach:
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6. Radiometry propagation

(a) “True” radiometry of IMG_0284 (b) “True” radiometry of IMG_0881

(c) Sampled areas (d) Sampled areas

(e) Result dLab = 5.93 (f) Result dLab = 8.58

Figure 6.8: Two images (IMG_0284 and IMG_0881) from the Gehler et al.[55] dataset
used for radiometry propagation. (a) and (b) show the “true” radiometry from which I
sample values according to the areas shown in (c) and (d). (e) and (f) show the result of
radiometry propagation and the distance in Lab-color space (further quantitative measures
can be found in table 6.5). As expected, regions with colors that are not covered by the
manually selected areas are not well reconstructed, e.g.the white T-shirt or the magazines
on the book shelf.
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1. Diffuse illumination of the photo textured area. In my approach this is necessary to
ensure that the pairwise color distance dLab (see equation 6.8) between two surface
points is not distorted by varying incident illumination. A cast shadow might be such
a distortion. One way would be to detect and correct such shadows in advance using
approaches like the one of Shen et al. [140]. After shadow detection and correction
one could use my approach as presented.

2. A user has to select and scan representative surface areas from which the propagation
starts. A computational approach could guide the user to representative regions to
scan.

3. The propagated information is the Lambertian surface reflectance. Optimal trans-
port is also capable of interpolating between different BRDFs as work of Solomon et
al. [144] suggests. Using this property one approach would be to capture the rep-
resentative BRDF of a scene / object, transfer the BRDF using optimal transport,
and propagate the BRDF parameters using label propagation.

During the experiments I observed that the optimal transport approach induced noise in
the transported color distribution. This was already noticed in the optimal transport
community and can be tackled using regularization. Ferradans et al. [41] proposed a
regularized optimal transportation scheme for color transport specialized towards color
transfer.
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7
Conclusion

This thesis presented my work on accurate surface geometry and radiometry acquisition
“in the wild”. The context in which I did this work was the 3D Pitoti project, a European
project on cultural heritage.
Besides cultural heritage, the presented approach and scanner prototype could also be
used in other fields like forensics. Crime scenes could be scanned with high spatial resolu-
tion and accurate colors which would be beneficial.

In terms of the geometry I used a stereo-rig and a strucutre from motion approach in
combination with a tachymeter to reconstruct the desired rock-art and its location in the
landscape. The resulting high-resolution reconstruction is accurate, which I validate by
comparing it with available ground truth data.
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The presented constrained bundle adjustment approach is flexible to use. In my thesis, I
used it to incorporate the stereo and tachymeter measurement constraints. But the ap-
proach is not limited to such a setting. Eg. if one has multiple cameras rigidly attached
and knows the relative orientations between them this could be modelled as a constraint
during bundle adjustment. Furthermore, the data from a GPS receiver could be incorpo-
rated because in its essence this is very similar to a tachymeter measurement.
However, incorporating different sensor modalities will result in an estimation process in
which one has to specify the confidence in the sensor. In my work, I used the parameters
εb (in equation 4.2) and ε (in equation 4.3) to specify this confidence. A more accurate
model would be to model this with a probabilistic noise model, which is done in sensor
fusion (e.g. [91]).

In terms of radiometry, I developed an approach that relies on the geometric reconstruc-
tion and on a calibrated custom built LED light. Interfering environmental illumination
is cancelled out by taking images with and without illuminating the scene with the LED
light and by subsequent frame differencing. The knowledge of the calibrated LED light is
used to infer the Lambertian surface reflectance properties of the rock-art. I validate the
accuracy of the radiometric reconstruction using a color reference target.
A definitively important and exciting topic for cultural heritage is the measurement or
estimation of more complex surface reflectance properties. The scanner prototype is only
of limited use for this task. The scanner can illuminate the scene from different directions
but the range of directions is rather narrow. Furthermore, the LEDs are grouped in such
a way that they exhibit a rather large area that will illuminate the scene. But when one
wants to measure direction dependent reflectance characteristics, the light source should
be very compact.
In my opinion the LED-only reflectance scanner presented by Ben-Ezra et al. [18] could be,
with some modifications, used outdoors. On the other hand approaches like the multi-view
shape and reflectance estimation from Oxholm and Nishino [116] could be incorporated in
a standard photogrammetric reconstruction framework.

To tackle the problem of large scale reflectance acquisition I propose a method to prop-
agate known reflectance into areas where only photo texture is available. The presented
approach assumes that a user selects and scans areas of a scene with scene-characteristic
reflectance behaviour, and that a photo-textured reconstruction of this scene is available.
My approach transfers the scanned radiometry onto the photo-textured scene and subse-
quently propagates the radiometry across the remaining parts of the scene.
The assumption here is that the photo-textured scene was captured under diffuse daylight
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so that no illumination variation exists. This assumption limits the general applicability
of the approach, which might be overcome by using intrinsic image decomposition which
decomposes an image into its reflectance and shading components. In this framework [61],
the decomposition of an image is expressed as I(x) = S(x)R(x) + C(x), were I(x) is the
image pixel value it location x, S(x) is shading, R(x) is the albedo, and C(x) is a specular
term. The idea is, instead of using the photo-textured scene (calculated based on I(x))
to estimate the affinities between scene points, and to use the reflectance R(x) as affinity
information.

I presented a novel scanning principle that results in a geo-referenced Euclidean reconstruc-
tion with radiometric surface properties beyond photo-texture. The presented approach
was used during the 3D Pitoti project to scan and reconstruct rock-art in its landscape
context.
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