
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Andreas Daniel Sinnhofer, BSc.

Advances of the Pre-Personalization Process for Secure
Embedded Systems

Prof. Dr. (ETH) Kay Uwe Römer

Institute of Technical Informatics

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Advisor
Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Dr.techn. Christian Kreiner

Graz, September 2017

AFFIDAVIT
I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral thesis.

.............................. ...
date (signature)

iii

Acknowledgments
During my studies, and especially during my PhD, I had the chance to work with a lot
of great people for which I am very thankful. I think it is not possible to adequately
acknowledge everyone, but there are a few persons I would like to give an extra "thanks".
First of all, I would like to mention that this thesis was carried out at the Institute of

Technical Informatics at Graz University of Technology, in cooperation with our industrial
research partner NXP Semiconductors Austria GmbH. I would like to thank NXP for
letting me participate in an interesting industrial project and for enabling my PhD study.
I would like to thank my supervisor Prof. Kay Uwe Römer for being open for discussions

and for the excellent support during the official and organizational part of my PhD study.
I would also like to thank Prof. Andreas Riel who kindly agreed to examine my thesis
as a second assessor. Further, I would like to express my thanks to my advisor Christian
Steger, who not only gave me the chance to work in this interesting research project, but
also supported every decision I made and gave me the freedom regarding my research
topics. Thanks a lot and I hope we stay in contact!
Big thanks go to my second advisor Christian Kreiner. I think it was back in December

2011 when we had our first discussion about my bachelor thesis and since then, I could rely
on his continuous support. Without him, I wouldn’t have met people like Peter Pühringer
or Christian Steger, which both played key roles during my studies. Thanks a lot for your
support over the last years, and I hope we stay in contact!
I also want to thank my colleagues who made my work maybe not always easier, but

at least more enjoyable! I would like to especially thank my colleague Florian Oberhau-
ser for his support during my studies. Thanks to Reinhard Berlach, Wolfgang Raschke,
Massimiliano Zilli and Michael Lackner, who all supported me especially at the beginning
of my PhD. Thanks also to Georg Macher, Johannes Iber, Tobias Rauter, Harald Sporer,
Michael Kripser, Andrea Höller, Ralph Weissnegger, and Michael Spörk with which I had
a lot of enjoyable coffee-meetings. Special thanks go to my colleague Felix Jonathan Op-
permann who joined the research project for about a year. Without his help I wouldn’t
have had the time to work on my research. Further, I would like to deeply thank my
colleague Klaus Potzmader who is probably one of the best software architects I have ever
worked with. I learned a lot from him and his experience, and he always supported my
(sometimes) crazy PhD ideas. I would also like to thank my team leader at NXP Clemens
Orthacker. Without his support, I would not have the position I currently have.
Finally, I would like to thank my family for their lifelong support and for their encoura-

gement during my whole live. Thanks to my brother Christian, who supported me during
my whole life. A heartfelt gratitude goes to Inge Siegl for her support during the last
seven years. Thanks for finding the right words during challenging periods and your love.

Graz, September, 2017

v

Abstract
We are at the dawn of the era of the Internet of Things (IoT). While such devices are
increasingly and excessively used in our daily lives, their security vulnerabilities are often
not recognized by the users: Each of these devices is usually equipped with a wide variety
of different sensors and interfaces to communicate with its environment or via the Internet;
as a consequence, hacking such devices is a valuable goal for adversaries to gain personal
financial benefit. Since a lot of personal information can be collected from such devices,
also national agencies may be interested in hacking such devices to monitor the daily lives
and interactions of the users. Furthermore, also the number of cyberattacks, operated
by IoT-based Bot-Nets, has increased over the last years. The most prominent example
was the Mirai hack at the end of last year which took out a big Internet infrastructure
company in the USA for several hours. One part of this bot-net was a massive number of
hacked cameras and digital video recorders connected by the Internet. The devices could
be captured by the Mirai malware since weak and partially static keys were used to protect
the system against intrusion.
The lesson that should be learned is that the protection of these devices is vital to ensure

the privacy of the users as well as of their data. One essential step towards this goal is to se-
cure the pre-personalization of such critical infrastructure: During the pre-personalization
process, the device’s individual security-related setup – like keys – is loaded in order to
guarantee a secure operation in the field. In combination with tamper-proof hardware
protection mechanisms and crypto co-processors, a Root of Trust can be established du-
ring the production process. Since security usually means additional development costs,
the pre-personalization process has to be established in such a way that the additional
costs can be kept as low as possible to enable low-cost but secure devices.
In this thesis, new methods will be developed in order to establish product-line appro-

aches for the pre-personalization process of secure embedded systems. Thus, the process
will be designed to be compatible with a wide variety of different products which reduces
the overall costs. This will by achieved by introducing a generic and configurable data
generation system to generate the device-individual data. In order to ensure high security
requirements, formal methods will be applied during the process to safeguard the security
properties of the generated data as well as the provided customer data. Furthermore,
business-process-driven approaches will be presented which can be used to automatically
configure the pre-personalization process for the current product requirements. This also
plays a vital role in security certifications since the product requirements can be directly
traced to the pre-personalization steps. As such, a comprehensive overview will be gene-
rated of how the data was generated and loaded to the device.

vii

Kurzfassung
Wir befinden uns im Anbruch des Zeitalters des Internet of Things (IoT). Während IoT-
Geräte in unserem alltäglichen Leben Einzug halten, werden die damit verbundenen Si-
cherheitslücken oftmals von den Benutzern nicht erkannt: Jedes dieser Geräte besitzt eine
Vielzahl von Sensoren und Kommunikationsschnittstellen, mit denen sie die Umgebung
überwachen und über Netzwerke wie das Internet kommunizieren. Infolgedessen ist das
Hacken solcher Geräte ein lohnendes Ziel, um persönlichen finanziellen Gewinn zu erzielen.
Da persönliche Daten von solchen Geräten gesammelt und gespeichert werden, könnten
auch nationale Sicherheitsbehörden daran interessiert sein, IoT-Geräte zu hacken, um
Informationen über unser tägliches Leben zu erhalten. Aber auch die Anzahl an Cyber-
Attacken, die durch Bot-Netze durchgeführt werden, nahm in den letzten Jahren stark zu.
Eines der bedeutendsten Beispiele war der Denial of Service (DoS) - Angriff vergangenes
Jahre auf einen großen amerikanischen Internet-Infrastrukturanbieter: Ein großer Teil des
Bot-Net bestand aus Webcams und digitalen Videorekordern, die von der Schadsoftware
Mirai befallen waren. Diese Geräte konnten über das Internet gehackt werden, da sie
schwache bzw. statische Schlüssel verwendeten, um unbefugten Zugriff zu verhindern.
Die Lektion, die wir daraus lernen sollten, ist, dass der Schutz von IoT-Geräten es-

senziell ist, um die Privatsphäre der Benutzer sowie deren Daten zu schützen. Ein be-
deutender Schritt ist dabei eine sichere Pre-Personalisierung dieser Geräte: Während der
Pre-Personalisierung wird die initiale Gerätekonfiguration bestehend aus kryptografischen
Schlüsseln und anderen Daten auf die Geräte aufgespielt. Wird dieser Prozess mit siche-
rem Speicher und kryptografischen Co-Prozessoren kombiniert, kann eine Root of Trust
etabliert werden. Dies ermöglicht eine sichere Verwendung der Geräte im Feld. Da Sicher-
heitsanforderungen üblicherweise zu höheren Entwicklungskosten führen, muss der Prozess
so gestaltet werden, dass die zusätzlichen Kosten möglichst gering gehalten werden.
Diese Arbeit beschäftigt sich mit neuen Methoden, um den Pre-Personalisierungsprozess

von sicheren eingebetteten Systemen in einem Produktlinienansatz zu etablieren. Somit
wird ein breites Spektrum an unterschiedlichen Produkten unterstützt, wodurch die Ge-
samtkosten für einzelne kompatible Geräte gesenkt werden können. Dies wird durch die
Einführung eines generischen und flexiblen Systems erreicht, welches zur Datenerzeugung
für die individuellen Geräte verwendet wird. Um die Sicherheitseigenschaften der Kunden-
daten und der erzeugten Daten während des gesamten Prozesses sicherzustellen, werden
Methoden aus der formalen Verifikation angewendet. Darüber hinaus werden Methoden
für das Management von Geschäftsprozessen vorgestellt, welche dazu verwendet werden,
das Pre-Personalisierungssystem automatisiert zu konfigurieren. Dies spielt speziell in der
Zertifizierung eine große Rolle, da mithilfe dieser Methoden eine direkte Verbindung zwis-
chen den Anforderungen des Kunden und den erzeugten Daten hergestellt werden kann.
Somit können Berichte generiert werden, die klar aufzeigen, wie Kundendaten während
des gesamten Prozesses geschützt und generiert wurden.

ix

Contents

1 Introduction 1
1.1 The challenge of reusing security artifacts 2
1.2 The challenge of reuse in business-process modeling 3
1.3 Thesis hypothesis . 4
1.4 Contributions . 4

1.4.1 Combined variability management 5
1.4.2 A model-based formal verification method 6

1.5 Thesis structure . 6

2 Background 9
2.1 Information security . 9

2.1.1 Information security attributes . 9
2.1.2 Classification of attacks . 10
2.1.3 Classification of attackers and attacks during the pre-personalization

process . 11
2.2 Lifecycle of secure integrated circuits . 12
2.3 Common Criteria . 14

2.3.1 Evaluation processes . 16
2.4 Software product-line engineering . 18

2.4.1 Domain engineering . 18
2.4.2 Application engineering . 18

3 Related work 21
3.1 State-of-the-art pre-personalization process 21

3.1.1 Establishing an authentication token 22
3.1.2 Detection of manipulated devices . 23
3.1.3 Loading of common and individual data 24

3.2 API attacks . 25
3.2.1 Formal verification tools . 26

3.3 Software-product-lines for business-process-management 26
3.4 Software-product-lines for secure systems 27

4 Process-driven software configuration 31
4.1 A product line for business process models 31

xi

Advances of the Pre-Personalization Process for Secure Embedded Systems

4.2 Software-product-line for product configurations 35
4.3 Combining process variability and software variability 35

4.3.1 Exemplary sample process . 38
4.3.2 Domain engineering . 39
4.3.3 Application engineering . 41

5 A flexible runtime-configurable data-generation system 43
5.1 A model-based formal verification tool . 46

6 Evaluation 49
6.1 Managing process variability . 49
6.2 Software-product-line for product configurations 51
6.3 Process-driven software configuration . 52

6.3.1 Security considerations . 53
6.4 Limitations . 56
6.5 Overall evaluation . 57

7 Conclusion 59
7.1 Future work . 59

8 Publications 61
Evaluation paradigm selection according to Common Criteria for an incre-
mental product development . 65
varBPM - A Product line for Creating Business Process Model Variants . . 71
Patterns for Common Criteria Certification 79
A Framework for Process-driven Software Configuration 95
Patterns to establish a secure communication channel 103
Software Configuration based on Order Processes 125
Combined Variability Management of Business Processes and Software Ar-
chitectures . 147
Where do all my keys come from? . 157

Bibliography 177

xii

List of Figures

1.1 Overview of the suggested approaches to improve the pre-personalization
process of secure Integrated Circuits (ICs) 5

2.1 Classification of attacks on embedded systems, adopted from [50, 72] 10
2.2 Lifecycle of secure Cyber-Physical System (CPS) or IoT devices, adopted

from the Smart Card standard ISO-10202-1 [68] 12
2.3 The software product-line engineering framework, adopted from [46] 17

3.1 Principal structure of a system for an in-line personalization system, adop-
ted from [11] . 22

3.2 Security requirements extensions of the Software Product Line Engineering
(SPLE) framework, adopted from [40] . 28

4.1 Exemplary layered business process showing a bank account creation request 32
4.2 Product-line framework for the creation of business-process models (adop-

ted from Paper B) . 34
4.3 Framework for the generation of product configurations 35
4.4 Process flow for the automatic generation of product configurations, based

on order entries (adapted from Paper F) . 37
4.5 Exemplary sample process showing the basic configuration settings (adop-

ted from Paper F) . 38
4.6 Order entry which is generated from the example process model (adopted

from Paper G) . 40
4.7 Feature Model that is derived from the exemplary process model (adopted

from Paper G) . 41

5.1 Framework for a flexible, runtime-configurable script-generation-system
(based on Paper G) . 43

5.2 Concept of the formal verification tool to ensure system security require-
ments (based on Patent I) . 47

6.1 The variability structure of the process feature-model for the investigated
use cases (Paper B) . 50

6.2 Overview of the results of the studied process management use cases (Paper
B) . 50

xiii

Advances of the Pre-Personalization Process for Secure Embedded Systems

8.1 Overview of the suggested approaches to improve the pre-personalization
process of secure ICs, highlighting the position of the publications 63

xiv

List of Tables

1.1 Overview of the contributions of this thesis 7

2.1 Classification of attackers and attack vectors during the pre-personalization
process, based on Rankl and Effing [49] . 11

6.1 Comparison of the implementation effort for the product configuration tool-
chain (Paper F) . 52

6.2 Comparison of a manual product creation with a process-driven product
creation, done by domain experts [29] . 53

6.3 List of typical attacks during the pre-personalization process (based on
Paper H) . 55

xv

List of Listings

4.1 Generated XML based on the exemplary Order Entry (adopted from Paper G) 42

5.1 Principal structure of a Function Description (FD) file 44
5.2 Principal structure of a Function . 45

xvii

List of Abbreviations

API Application Programming Interface.

BP Business Process.

BPM Business Process Management.

BPMN Business Process Model and Notation.

CAP Composed Assurance Packages.

CC Common Criteria.

CIA Confidentiality, Integrity and Availability.

CPS Cyber-Physical System.

CRC Cyclic Redundancy Check.

DoS Denial of Service.

EAL Evaluation Assurance Level.

EEPROM Electrically Erasable Programmable Read-Only Memory.

ERP Enterprise Resource Planning.

ETR Evaluation Technical Report.

FD Function Description.

FDL Function Description Language.

FODA Feature-Oriented Designed Modeling.

FTP File Transfer Protocol.

HMAC Keyed-Hash Message Authentication Code.

xix

Advances of the Pre-Personalization Process for Secure Embedded Systems

HSM Hardware Security Module.

IC Integrated Circuit.

InfoSec Information Security.

IoT Internet of Things.

MNO Mobile Network Operator.

OS Operating System.

PCI Payment Card Industry Security Council.

PP Protection Profile.

PT Production Template.

ROM Read-Only Memory.

SIM Subscriber Identity Module.

SPL Software Product Line.

SPLE Software Product Line Engineering.

ST Security Target.

ToE Target of Evaluation.

VP Variation Point.

XML Extensible Markup Language.

XSD XML Schema File.

xx

1 Introduction

"Begin at the beginning, and go on till you come to an end; then stop."
Charles Lutwidge Dodgson (Lewis Carroll), Alice in Wonderland

Cyber-Physical System (CPS) and Internet of Things (IoT) devices are increasingly
used in our daily lives. Generally speaking, IoT refers to the connection of our everyday
objects with a network like the Internet [75]. Each of these devices is usually equipped with
different kinds of sensors to observe its environment, making the device a smart object. In
combination with embedded systems, IoT promises to increase the quality of our daily lives
by taking over simple tasks like controlling the room temperature and cooking coffee [47].
As a consequence, smart objects like wearables are becoming more and more interesting
for adversaries due to their increasing functionalities like Internet capabilities, cameras,
microphones, GPS trackers and other sensor devices (Paper E). Furthermore, such smart
objects are often deployed in unsupervised and untrusted environments turning the ques-
tion about privacy and security into a crucial topic. As a consequence, a robust and secure
software design is required for the implementation of cryptographic communication pro-
tocols and encryption algorithms. Moreover, tamper-proof solutions like secure elements
and trusted-platform modules are necessary to securely calculate cryptographic functions
and to store confidential data or cryptographic keys. While cryptographic protocols and
secure hardware architectures are much discussed and subject to further research activi-
ties, the issue of provisioning the initial confidential device setup is still widely uncovered.
However, the protection of this initial setup is as important as the protection of the con-
fidential data during the time in use. Especially the protection of master keys is essential
because otherwise, all security measures which are based on such keys are futile.
One prominent example of hacking such master keys was revealed by Edward Snowden

in 2015: The secret master key of Subscriber Identity Module (SIM) cards, securing the
3G and 4G mobile communication channel, was victim to an attack perpetrated by the
American "National Security Agency" (NSA) and the British agency "Government Com-
munications Headquarters" (GCHQ) [54, 55, 66]. The company Gemalto, which produces
– amongst other devices – smart cards in form of SIM cards and EMV chip cards, was
victim to this attack. More precisely, Gemalto generates and inserts a chip-individual sym-
metric encryption key into each manufactured SIM card during the personalization process
of the manufacturing process. The inserted key is used to encrypt the communication bet-
ween the mobile phone and the cell tower of the mobile network operator. Mobile network
operators purchase these SIM cards in batches from Gemalto. Additionally, Gemalto pro-

1

Advances of the Pre-Personalization Process for Secure Embedded Systems

vides a file containing a list of all the master keys for the mobile network operator to allow
the SIM cards to be recognized by the network. The primary goal of this hack was to
steal the symmetric encryption keys to wiretap and decipher the encrypted mobile phone
communication. By using the stolen symmetric encryption keys, the national agencies did
not need any assistance from the mobile operators or permissions from the legal official
court to spy on private conversations. To get inside Gemalto’s network, social engineering
attacks like phishing and faking Facebook posts were used to take over the employees’ PCs
[55]. Once inside the network, the agencies were able to retrieve the encryption keys since
they have been sent via unencrypted or weakly protected File Transfer Protocol (FTP) to
the smart card manufacturing factories. According to Scahill and Begley [55], millions of
keys were stolen by GCHQ in a three-month period in 2010. This is a good example to
show the impact of insecure data handling and how many users can be affected by hacking
the personalization system of secure integrated circuits.

1.1 The challenge of reusing security artifacts

The development of a security-critical system or device is in general expensive and time-
consuming. One of the most expensive aspects during the development of secure systems
is the implementation and assessment of the security attributes confidentiality, integrity,
and availability (referred to as the CIA triad, see section 2.1). The achievement of these
attributes greatly relies on specialized technologies, processes and personnel. Higher secu-
rity requirements are usually associated with the application of strict and formal methods
which are in general expensive. Furthermore, security certification standards may especi-
ally require the application of such methods to ensure a mature development process. To
reduce the engineering costs of security-critical systems, companies are increasingly star-
ting to adopt a product-line approach. This is done by exploiting common and reusable
features and artifacts within a specific domain [13, 46]. Security requirements are linked
to such product-line approaches [40] to reduce the overall evaluation time for new pro-
duct variants. With respect to the scope of this thesis, especially the Common Criteria
(CC) certification is of importance. Traditionally, a product-line approach for CC-certified
products foresees that the Security Target (ST) of the Target of Evaluation (ToE) are ge-
nerated based on the application requirements. This means that for every individual
product, a new product certification process is required which evaluates the generated ST
with respect to the implemented security measures.
The systematic reuse of software components and routines is a frequently discussed topic

since early software development [26]. But still, the design and implementation of applica-
tions remain expensive and error-prone. Most costs and failures arise from the continuous
rediscovery and reinvention of core patterns, which is often done using a copy-and-clone
process [57]. As a consequence, the development of high-quality, reusable software com-
ponents is a great challenge [23]. Similar to the domain of functional safety, security is

2

1 Introduction

a context-specific and complete-system attribute [67]. While the reuse of algorithms and
protocols is highly recommended, the combination of different secure systems and their
interactions is mostly context- and application-specific [3]. As identified by Anderson [3], a
secure system can be vulnerable due to unidentified flaws of the Application Programming
Interface (API). The reuse of security modules in different applications can even decrease
the level of security since security risks of the new system have not been considered in the
original analysis of the reusable component. To counteract these flaws, formal verifica-
tion methods are widely used to analyze the interactions between all system components,
including the interactions of external operators. Hence, every possible combination of in-
teractions has to be evaluated to guarantee that the system security requirements are not
violated. As such, formal analysis tools require a huge amount of time to model all the
interactions and a huge amount of computational power to actually analyze the formal
model of the system. The following challenges will specifically be addressed in this thesis:

• Integration of the security assessment into the product-line process by verifying
product configurations at runtime against the system security requirements. This
includes the design and implementation of reusable security-critical software com-
ponents.

• Management of the impact of changes on the product line by explicitly tracing and
analyzing the changes from the business level to the implemented domain artifacts.

1.2 The challenge of reuse in business-process modeling
Business Process (BP) - oriented organizations are known to perform better regarding
highly flexible demands of the market and fast production cycles [30, 37, 71, 74]. These
goals are achieved through the introduction of a management process in which business
processes are modeled, analyzed and optimized in iterative ways. Nowadays, the Business
Process Management (BPM) is also coupled with a workflow management, providing the
ability to integrate the responsible participants into the process and to monitor the cor-
rect execution of the business process in each process step (Paper F). To administer the
rising requirements, so-called BPM tools are used to cover the steps of process modeling,
optimization and execution. In combination with an Enterprise Resource Planning (ERP)
system, the data of the real process can be integrated into the management process. Addi-
tionally, having flexible BPs supports the use of agile development techniques with which
incremental product improvements are continuously integrated into the development pro-
cess [1, 2]. Combining all those aspect should lead to an organization which can be swift
to react to the changes of the market.
However, in many cases, business processes do only vary in some points, which leads

to the situation that new process variants are created through a copy-and-clone of old
solutions. As a result, such process templates are instantiated in many process variants,

3

Advances of the Pre-Personalization Process for Secure Embedded Systems

which makes the propagation of process improvements time- and cost-intensive for a bigger
company (Paper E). In addition, the consistency of the documentation of this huge number
of process variants is a challenging task. As a consequence, more maintenance effort is
required to ensure that all processes are up to date and efficient with respect to the current
market requirements. Thus, the benefits of having a BP-oriented organization are almost
neglected due to this organizational overhead. The following challenges will specifically
be addressed in this thesis:

• The management of business-process models in a software product-line approach
to systematically generate process variants based on the current requirements. This
includes the design of (sub-)processes and the transformation of these (sub-)processes
into a feature-oriented model.

• Management of process improvement processes so that improvements of processes
can be rolled out systematically to the whole product line.

1.3 Thesis hypothesis
The secure generation of pre-personalization data can be feasible and tra-

ceable through a process-driven product-line approach. Support of multiple
target platforms can be assured through the use of platform configurations.

The following key terms will be used as a foundation to evaluate this thesis (see chap-
ter 6):

• Feasible: the application of the results in an industrial context

• Traceable: explicitly identifying and managing associations of product configura-
tions and processes

• Multi-platform support: the developed system can be used for a wide variety of
products as long as the platform supports basic (security) requirements

1.4 Contributions
The scientific contributions of this thesis are summarized in Table 1.1. Figure 1.1 illustra-
tes the suggested approaches for improving the pre-personalization process of secure ICs
grounded on a template-based process. First, we propose combining the variability mana-
gement of business-process models and software designs to create a traceable link between
customer requirements and software implementations. Second, we will examine methods
to support multiple platforms to ensure a low-cost pre-personalization process for
secure devices. To achieve these goals, we suggest the use of mature software-product-line

4

1 Introduction

Product Configuration Secure Personalization

Product
Order

Production
Template
Creation

Personalization
Process

Trusted Data
Generation

Combined
Variability

Management

Product Line
Engineering

Certification
Processes

Formal
Methods

ICIC

Figure 1.1: Overview of the suggested approaches to improve the pre-personalization process of
secure ICs

development techniques and the application of formal verification methods to ensure secu-
rity requirements during the pre-personalization process. Furthermore, we will investigate
the use of incremental and modular certification processes to reduce the certification costs
of different products.

1.4.1 Combined variability management

The reuse of software components is an important step for an industrial company to survive
in a flexible and competitive market. But only with an integrated view of the according
business processes, it is possible to raise the efficiency of the overall business. Thus, we
propose a framework which allows to combine the variability modeling of software compo-
nents and business-process models. This permits us to efficiently design software product
line architectures that can directly be configured by the underlying business process of
order processes. The developed framework is able to synchronize changes of the process
model with software artifacts that have to be implemented by the developers. Methods for
data binding are used to attach the specific software artifacts to a specific set of configu-
rable settings that have to be provided by internal or external customers during the order
process. Thus, software artifacts are automatically instantiated based on the provided
customer data. This essentially reduces the development costs and the required time to
react to the market’s changes. Moreover, the overall robustness of the software toolchain is
increased since the same code base is shared by a lot of different product families, leading
to a higher customer satisfaction. Finally, the traceability of customer requirements to
the actual product configurations is raised which is also a certification requirement.

5

Advances of the Pre-Personalization Process for Secure Embedded Systems

1.4.2 A model-based formal verification method
Flexibility usually contradicts security requirements since an arbitrary combination of
interactions, which are secure in isolation, may cause a system to leak confidential data
in combination (see Section 3.2 for examples). Traditionally, such security vulnerabilities
are circumvented by reducing the customization options and by analyzing the remaining
options using formal verification methods prior to the development of the system. Since
the field of application for secure ICs is growing in multiple directions, it is necessary to find
new methods which enable the reuse of the pre-personalization system for a wide variety
of different products in different domains. To overcome this limitation, we developed
a model-based formal verification method which allows us to enforce security properties
during the runtime of the pre-personalization system. Thus, more flexibility is guaranteed
as long as specific interactions with the system do not violate the overall security model.
Since traditional formal verification methods tend to have high resource requirements, we
developed a new method based on concepts from the symbolic execution and abstract
interpretation. Furthermore, we restricted the use of conditional branches and loops to
guarantee a small memory consumption of the verification tool.

1.5 Thesis structure
The thesis is structured in the following way:

• Chapter 2: Defines the basic taxonomy and describes basic processes and techniques
which lay the foundation of this thesis.

• Chapter 3: Summarizes state-of-the-art literature on (pre-)personalization processes
and software-product-line engineering techniques for secure systems and business-
process models. Moreover, related work will be presented which deals with formal
verification tools and API attacks.

• Chapter 4: Introduces the design principels for an order-process-based software-
configuration framework. This framework is based on a product-line approach for
the creation of business-process models.

• Chapter 5: Elaborates the design principles of a flexible data generation system
which is used to generate configuration scripts for individual products. Furthermore,
a formal verification tool will be introduced which is used to guarantee security
requirements during the customization process.

• Chapter 6: Presents the evaluation results of the developed tools and processes in
industrial use cases.

• Chapter 7: Summarizes the thesis and presents future research directions.

6

1 Introduction

Challenge Contribution

Assessment of system
security requirements
throughout the pre-
personalization product
line

• A model-based, formal verification tool for ana-
lyzing Security Requirements during the Data-
Generation-Process of the pre-personalization
process (Section 5.1, Patent I)

• A flexible runtime-configurable data genera-
tion system to generate chip individual pre-
personalization data (currently in a company-
internal patent process; Patent J)

Management of
business-process models

• A method for the management of business-
process models in a software-product-line ap-
proach, deriving process variants based on the
current production requirements (Section 4.1,
Paper B)

• Support of process improvement processes
through the systematic reuse of process models
in various process variants (Paper B)

Management of the im-
pact of changes on the
security-critical product
line

• A method for combined variability management
to trace the impact of changes from the business
level to the implementation level (Section 4.3,
Paper D, F, G).

• Methods to support agile and incremental pro-
duct development techniques by systematically
analyzing the impact of changes especially with
respect to the security certification (section 6.3,
Paper A, C).

Table 1.1: Overview of the contributions of this thesis

7

2 Background

An investment in knowledge pays the best interest.
Benjamin Franklin

This chapter provides a brief introduction to the theoretical background and key terms
used in this thesis. Portions of this chapter were previously published as Paper H [66],
Paper A [61], and Paper C [63], and have been reproduced with permission.

2.1 Information security
Information Security (InfoSec) is defined in various standards as the discipline of protecting
information against unauthorized persons. One of the most common definition is the
following:

The protection of information and information systems from unauthorized
access, use, disclosure, disruption, modification, or destruction in order to
provide confidentiality, integrity, and availability [41].

The basic concepts that are of importance to this thesis will be described in the following.

2.1.1 Information security attributes
Saltzer and Schroeder [53] defined the information security attributes Confidentiality, In-
tegrity and Availability (CIA) in 1975 as follows:

Unauthorized information release (Confidentiality): an unauthorized
person is able to read and take advantage of information stored in the computer.
This category of concern sometimes extends to "traffic analysis," in which the
intruder observes only the patterns of information use and from those patterns
can infer some information content. It also includes unauthorized use of a
proprietary program [53].

Unauthorized information modification (Integrity): an unauthorized
person is able to make changes in stored information – a form of sabotage. Note
that this kind of violation does not require that the intruder see the information
he has changed [53].

9

Advances of the Pre-Personalization Process for Secure Embedded Systems

Unauthorized denial of use (Availability): an intruder can prevent an
authorized user from referring to or modifying information, even though the
intruder may not be able to refer to or modify the information [53].

Over the past years, extensions have been developed to integrate additional attributes
like non-repudiation, authenticity, risk, control and practices [35, 44, 45], but the CIA
form the core attributes of all models. These attributes are composed of the three main
aspects Hardware, Software and Communication to help identify security vulnerabilities
and to apply specific countermeasures.

2.1.2 Classification of attacks

Figure 2.1 shows a broad classification of attacks on embedded systems according to Ravi,
Raghunathan, and Chakradhar [50] and Wasicek [72]. From a top-level perspective, at-
tacks are grouped as functional and agent-based classes. Functional attacks are classified
into three main categories, namely Integrity Attacks, Privacy (Confidentiality) Attacks,
and Availability Attacks, which corresponds to the basic security attributes of the CIA
triad. The agent(s) who initiate(s) an attack may either be passive or active. Passive at-
tacks are attacks in which the adversary does not interfere with the system execution, but
observes the system, all of its components, and the exchanged messages. Active attacks
are attacks in which the adversary actively interferes the normal system execution by –
for example – manipulating messages or specific hardware components of the system.

Functional
Classification

Physical Attacks

Side-Channel Attacks

SW Attacks
Agent-based
Classification

Embedded System Attacks

Integrity Attacks Privacy Attacks Availability Attacks

Eavesdropping

Microprobing

Power Analysis

Fault injection

Timing Analysis

Electromagnetic
Analysis

Virus

Trojan Horse

Figure 2.1: Classification of attacks on embedded systems, adopted from [50, 72]

10

2 Background

Attacker Motivation Possible attack vectors

Competitors

Gaining knowledge of the system
/ pre-personalization process
Damaging the reputation of the
involved companies

Manipulation of the production
equipment (HW and/or SW)
Integration of manipulated devices
into the pre-personalization process

National
Agencies

Gaining knowledge of the users of
the system
Gaining access to specific functi-
onality of the devices (e.g., acces-
sing cameras or microphones)

Manipulation of the production
equipment (HW and/or SW)
Integration of manipulated devices
into the pre-personalization process
Attacks on social level against invol-
ved operators

Insider Gaining personal financial profit

Manipulation of the production
equipment (HW and/or SW)
Deliberate misapplication of the
production equipment

Table 2.1: Classification of attackers and attack vectors during the pre-personalization process,
based on Rankl and Effing [49]

In practice, adversaries usually perform a combination of the described attacks to break
a system. For example, physical attacks may be used to identify weak points in the system
which can be utilized in side-channel attacks to break the system. In the context of this
thesis, some of those attacks have already been countered or mitigated due to operational
measures, which will be described in the next section.

2.1.3 Classification of attackers and attacks during the pre-personalization
process

The attackers’ basic motivation is usually greed or the gain of fame [49]. Greed is not
only limited to personal financial profit, but also includes the gain of knowledge. National
agencies, for instance, are not interested in gaining financial profit, but are interested in
gaining knowledge of the users or the environment which the system is deployed in.
If details about hacks become known, the reputation of the companies involved may be

seriously damaged. Thus, another potential attack vector includes competitors who either
want to gain knowledge of the system or want to destroy another company’s reputation.
Similar damage to a company’s reputation can be caused by scientific researchers who aim
at breaking the system to gain reputation in their scientific field. As such, these attackers
are only satisfied if their successful hacking attempt is published in scientific publications.

11

Advances of the Pre-Personalization Process for Secure Embedded Systems

But also individual adversaries may only be motivated in gaining fame for being the first
person breaking the system.
With respect to this thesis, operational countermeasures have already been implemen-

ted by the environment of the pre-personalization process. Since the pre-personalization
process is executed in a secured production environment with restricted access, it is not
possible for an arbitrary hacker to place specific hardware devices within the production
environment. Such kinds of attacks may only be possible by competitors or organizati-
ons with a high amount of resources. Moreover, the control logic of the personalization
equipment and the equipment itself are disconnected from any external network. Thus,
malicious software cannot be loaded to such devices via public networks like the Internet.
It is assumed that data between the pre-personalization company and any involved stake-
holder is sufficiently protected while transferred between them. To summarize, Table 2.1
illustrates the attackers and attack vectors within the scope of this thesis. Although confi-
dential pre-personalization data could be leaked through an attack during the in-field use,
such kind of attacks are beyond the scope of this thesis.

2.2 Lifecycle of secure integrated circuits

Over the last decades, the development and production processes of secure smart cards
have been continuously improved with respect to security and costs. Since the market of
IoT devices is expected to grow similarly over the next years [36], the research findings of
the smart card domain lay a good foundation to define a lifecycle for secure IoT devices
[66]. The lifecycle can be separated into six phases which are illustrated in Figure 2.2 and
will be briefly discussed in the following [49, 70] (Paper H):

Produce Chip
and secure IC
(Phase 1)

Preparation
(Phase 2)

Application
Preparation
(Phase 3)

Disposal
(Phase 6)

Termination
of Usage
(Phase 5)

Usage
(Phase 4)

Reuse

In the scope of this thesis

Figure 2.2: Lifecycle of secure CPS or IoT devices, adopted from the Smart Card standard ISO-
10202-1 [68]

12

2 Background

• Production of Components (Phase 1): During this phase, all components of
the secure CPS or IoT device are designed and manufactured. In many cases, the
individual components will be developed and produced by different vendors. With
respect to security, the production is an essential step since no matter how high
the quality of the system and its cryptographic protection mechanisms are, they
are of little help if all the confidential data is leaked during the production process.
Besides security considerations, also functional testing is an important topic during
this phase, especially since the production yields of chips may be rather low for
new processes. Thus, excessive testing is used on chip level to ensure the proper
functional operation of the IC. As such, wafer testing is used to ensure the correct
electrical operation of the chip, while module testing is employed to test the according
functionality.

• Preparation (Phase 2): Here, all manufactured components are assembled to
the final device. During this process, the common device data is loaded, including
configuration settings, files, and secret keys which are shared by all devices in a
production batch. In contrast to Phase 1, this phase is usually carried out by a
single company [49, 70] called personalization company. For security reasons, the
manufacturing of the hardware must be kept completely separated from loading the
device data even if the same company is responsible for the manufacturing and the
personalization. The loaded device data usually contains sensitive data which has
to be protected properly.

• Application Preparation (Phase 3): In contrast to Phase 2, this phase is de-
dicated to loading the device-individual data. This can also include the visual per-
sonalization of the device if – for example – unique identifiers are engraved on the
body housing. During this process, device-individual secret keys are generated and
loaded. As in Phase 2, this data has to be encrypted so that it is not exposed to
any operator or third party during the production. In the case of symmetric key
material, the personalization company is further responsible for a secure distribution
of the generated data to the according stakeholder. In general, the process of loa-
ding additional application(s) requires authentication of the operator to the device
in order to ensure that only authorized personnel can load data to the devices. This
phase can be carried out by an external company or even by the customer in the
field (see Phase 4).

• Usage (Phase 4): During this phase, the secure CPS or IoT devices are used by
the end customer. Depending on the use case, this phase also includes the loading of
additional applications or the deactivation or deletion of applications. Thus, confi-
dential data may be generated and loaded to the system by the customer. To ensure
that this mechanism is protected, the customer needs to be aware of cryptographic
keys which are used to securely communicate with the device. In the case of sym-

13

Advances of the Pre-Personalization Process for Secure Embedded Systems

metric channel encryption, there are two possible ways to personalize the according
key. The first way is that a key which is securely shared with the customer (e.g., via
mail) is generated by the personalization company during Phase 3. The second way
requires that the customer or vendor of the product shares the encryption key with
the personalization company. Either way, it has to be ensured that no single ope-
rator or man-in-the-middle gains knowledge of this key during the personalization
process.

• Termination of Usage (Phase 5): Usually, devices are thrown away by the
end customer if they are no longer needed. Nevertheless, a reuse of the device or
components is principally possible if the device is returned to the vendor. To do
so, the customer needs to deactivate all the applications and delete the sensitive,
confidential data. The latter should always be carried out, even if the device is
disposed of, to ensure that malicious third parties may not gain knowledge of any
secret device data.

• Disposal (Phase 6): As already summarized in Phase 5, the secure device should
completely be erased before disposal to ensure that the sensitive, confidential data
is not leaked. As stated by Rankl and Effing [49], the recycling of such devices is an
interesting topic since rare components like gold and others are part of the devices.

2.3 Common Criteria
In the domain of information security, the Common Criteria (CC) [17] is widely used to
evaluate the security measures. The CC defines a common set of requirements that need
to be implemented by the security functionality of the Target of Evaluation (ToE) (Paper
C). Thus, the evaluation process creates a level of confidence to the security functionality
which is implemented in hardware, software, or both. For higher security levels, the
CC evaluation also considers the maturity of the development processes, the production
processes, as well as the used toolchains. The assurance level of the CC is rated on a scale
from Evaluation Assurance Level (EAL) 1 to EAL 7, where EAL 1 is the lowest level and
EAL 7 is the highest level. The key components and stakeholders of such an evaluation
are listed in the following (Paper C):

• Evaluation Facility: Is responsible for testing and evaluating the implemented
security functionalities of a ToE. Tests and evaluation methods are derived based on
an ST. The results of the evaluation are collected in form of an Evaluation Technical
Report (ETR). Based on this report, a certification body issues the CC certificate.

• Target of Evaluation (ToE): Is defined "as a set of software, firmware and/or
hardware" [17] that is the target of a CC certification. The ToE describes the whole
system and the according configuration. The customer’s configuration freedom of

14

2 Background

the final product may lead to problems during the evaluation process, since all
possible configurations of the ToE must meet the defined security requirements.
As a consequence, it is often the case that the configuration options are limited to
"meaningful" configurations. The limitations are documented within the ToE in form
of guidance documents. Using the ToE beyond the defined guidance leads to a loss
of the certificate. The ToE is compiled by the vendor(s) of the product.

• Security Target (ST): The ST is a description of the "implementation-specific
statement of security needs for a specific identified Target of Evaluation" [17]. It
describes the assets, their threats and the implemented countermeasures. During
the evaluation process, it is determined whether the stated countermeasures are
sufficient to counter the threats. Countermeasures can be divided into two separate
groups:

– Security objectives for the ToE: This/these countermeasure(s) are directly im-
plemented by the system. The correctness with respect to the threats and risks
is determined during the evaluation process.

– Security objectives for the operational environment: This/these counterme-
asure(s) is/are not implemented by the system but need to be provided by
the operational environment. The correctness of this/these countermeasure(s)
is/are not determined during the evaluation process.

The ST is written by the vendor(s) of the system.

• Evaluation Technical Report (ETR): Is a document which is assembled by the
evaluation facility during the evaluation process. It documents the overall verdict of
the evaluation facility and justifies this decision based on the collected evidence of
the implemented security mechanisms. It is submitted to a certification body which
issues the certificate in case of a positive attestation.

• Evaluation Processes: The CC standard and its supporting documents define
formal and informal evaluation processes. Formal processes are explicitly defined in
the standard, whilst informal processes are not explicitly defined. As a consequence,
informal processes strongly depend on the instructed evaluation facility.

• Protection Profile (PP): To allow groups and communities of interest to express
their security requirements, the CC defines the concept of Protection Profiles (PPs)
[17]. While the ST always describes a specific ToE, a PP is designed to describe
a group of ToE so that it can be reused in different STs. A ToE is either fully
compliant to a PP or non-compliant. Furthermore, being compliant to a PP does
not necessarily mean that a specific EAL is reached since the PP describes the
common requirements for a group of ToE and not a single specific one.

15

Advances of the Pre-Personalization Process for Secure Embedded Systems

2.3.1 Evaluation processes

With respect to this thesis, modular and incremental evaluation processes are usually used
for the certification. The following list gives an overview of the most common processes
(Paper C):

• Delta Evaluation (informal process, defined in [18]): The delta evaluation is a CC
certification process used to maximize the reuse of previously compiled evidences.
To do so, the standard specifies that the following documents need to be shared
between the evaluation facilities:
– Product and supporting documentation
– New security target(s)
– Original evaluation technical report(s)
– Original CC certificate
– Original evaluation work packages (if available)

Providing these data means that the current evaluation facility should not have to
repeat the analysis of parts of the system where the requirements have not changed
nor been impacted by any other change. Such changes are identified by performing a
delta analysis between the old and new ST. A drawback of this approach is that the
ETR contain information about the evaluation process and the applied measures
to prove the security objectives of the ToE. As a consequence, ETR are usually
considered as proprietary of the evaluation facility.

• Composite Evaluation (formal process, defined in [19]): Although the composite
evaluation was designed for smart card products, it can be applied to a wide variety
of products which fulfill the condition that "an independently evaluated product is
part of a final composite product to be evaluated" [19]. The only restriction is that
"The composite product is a product consisting of at least two different parts, whereby
one of them represents a single product having already been evaluated and certified
... The underlying platform is the part of the composite product having already been
evaluated" [19]. This means that a Layers pattern [10] is used for the overall system
architecture. Compositional evaluations are technically similar to delta evaluations,
but with the difference that additional conditions need to be fulfilled by the overall
structure of the product. Due to these restrictions, it is not necessary to share the
ETR. The lowest EAL of all components is the highest possible composite EAL.

• Composed Evaluation (formal process, defined in [17]): Is used to certify products
which consist of independently certified (or going through an independent certifica-
tion process) products/modules which are assembled to a new final product. It is
similar to the composite evaluation but with the difference that the overall system

16

2 Background
D
o
m
a
in

E
n
g
in
ee
ri
n
g

A
p
p
li
ca
ti
o
n
E
n
gi
n
ee
ri
n
g

Product
Management

Domain
Requirements
Engineering

Domain
Design

Domain
Realization

Domain
Testing

Requirements Architecture Components Tests

Application
Requirements
Engineering

Application
Design

Application
Realization

Application
Testing

Domain Artifacts

Application 1: Artifact Selection

Figure 2.3: The software product-line engineering framework, adopted from [46]

architecture is not limited. Additionally, it is applicable for situations in which a
delta evaluation is not possible since the ETR are not shared.

Since the individual components are already certified, the composed evaluation
mainly focuses on the interface between the components and their according in-
teraction(s). As a consequence, new evaluation assurance levels were introduced.
These levels range from Composed Assurance Packages (CAP) A to CAP C, where
A is the lowest level and C is the highest level. The assurance level CAP C stands for
Attack potential "Enhanced Basic", which is approximately comparable with EAL-4
(see [17], Part 3: pages 38 and 47). Due to this limitation, the composed evalua-
tion has been performed much less successfully than other modular CC certification
processes.

17

Advances of the Pre-Personalization Process for Secure Embedded Systems

2.4 Software product-line engineering

Software Product Line Engineering (SPLE) applies the concept of product lines to software
products. Thus, SPLE promises to create diverse, high-quality software products of a
product family in a short time and at low price [46]. Instead of writing software for
every individual system, a Software Product Line (SPL) is used to automatically generate
software products by combining the required domain artifacts. The general framework
is illustrated in Figure 2.3. As stated by Pohl, Böckle, and Linden [46] and Weiss and
Lai [73], the SPLE can be split into two main phases, the Domain Engineering and the
Application Engineering, which will be described in the following sections.

2.4.1 Domain engineering

During the domain engineering, the domain artifacts, the variabilities and the commonali-
ties of the according domain are identified and implemented. The modeling of the domain
is usually carried out using a Feature-Oriented Designed Modeling (FODA) [32] to ex-
plicitly state all dependencies. Domain artifacts are reusable development artifacts like
the software architecture, or software components including their corresponding unit-tests
[46]. As illustrated in Figure 2.3, the domain engineering is split into five sub-processes.
The Product Management is the first process and deals with the economic aspects of the
product line and defines the product roadmap. During the Requirements Engineering pro-
cess, reusable and model-based requirements are defined. Hence, the requirements are not
specified for a single particular application but contain the common and variable requi-
rements for all products of the SPL. During the Domain Design processes, the variable
software architecture is designed and the variability model that was created in the pre-
vious process is refined. The architectural design further defines common ways to deal
with variability in the Application Design and Application Realisation of the application
engineering. Finally, all software components are implemented during the the Domain
Realization process and are tested during the last process on a component level.

2.4.2 Application engineering

In the application engineering phase, the final products are created by combining the
domain artifacts which were implemented in the previous phase. Similar to the domain
engineering, the application engineering is split into the four phases Requirements En-
gineering, Application Design, Application Realization and Testing. In contrast to the
domain engineering, the application engineering mainly focuses on reusing domain arti-
facts. Based on the current requirements of the product, specific domain artifacts are
chosen and assembled to the final product. Ideally, the application engineering makes
use of software generators to automatically derive product variants without the need of
implementing any new logic. This enables a rapid creation of high-quality products within

18

2 Background

a defined product family. The amount of reused domain artifacts greatly depends on the
application requirements. Hence, a major concern of the application engineering is the
detection of deltas between the application requirements and the available capabilities of
the SPL.

19

3 Related work

I don’t believe you have to be better than everybody else. I believe you have
to be better than you ever thought you could be.

Ken Venturi

First, this chapter presents the state-of-the-art pre-personalization process that is used
in the domain of secure Smart Cards. After that, publications of API related attacks
will be introduced which could be used to break the Data Generation System of the
personalization process. Furthermore, formal methods will be described which could be
used to minimize the risk of API-related attacks. Finally, related work dealing with the
topic of Software Product Line (SPL) for secure systems and Business Process Management
(BPM) will be outlined. Portions of this chapter were previously published as Paper H
[66], and Paper B [58], and have been reproduced with permission.

3.1 State-of-the-art pre-personalization process
As stated by various standardization organizations like [6, 14], dedicated Hardware Se-
curity Modules (HSMs) are recommended for a secure generation and storage of cryp-
tographic data. HSMs are tamper-resistant hardware modules, designed for generating
random numbers and calculating cryptographic functions. Additionally, the hardware is
optimized to accelerate the computation of cryptographic functions to ensure that a large
amount of data can be processed securely and efficiently. Thus, HSMs are the best option
for generating the required confidential personalization data in a secure and efficient way.
Based on the requirement to use HSMs, Chan and Ho [11] defined a system for a secure

personalization of smart cards which is illustrated in Figure 3.1. As shown in the figure,
HSMs are utilized to generate and to protect the data during the entire personalization
process. This includes also data that is shared between the customer and the issuer
of the product. The Personalization Equipment generally consists of special hardware
which ensures that the data is sent to the individual chips cryptographically protected
and authenticated [12, 31, 49]. The Issuer System is an IT infrastructure via which order
and product-specific data and settings are shared with the personalization company. The
shared data can also contain static (confidential) data that is provided by a stakeholder
(e.g., a mobile network operator).
The data that is shared by any stakeholder with the Issuer System has to be encrypted

so that the data is not leaked during the process. In the case of symmetric encryption,

21

Advances of the Pre-Personalization Process for Secure Embedded Systems

Personalization System

Stakeholder

Issuer
System

HSM

Data
Generation
System

HSM

HSM
Personalization
Equipment

ICIC

ICIC

personalized

Figure 3.1: Principal structure of a system for an in-line personalization system, adopted from [11]

the corresponding protection key needs to be transported separately from the data as
recommended in [14]. Moreover, the Payment Card Industry Security Council (PCI) [14]
foresees that symmetric keys are split into multiple shares which are sent in multiple
independent ways. Only after successful reception of one share, the next share is sent.
Usually, such key exchange processes are performed several days or weeks prior to the
production.
The Personalization Equipment usually executes scripts that are prepared prior to the

production by the personalization company [25]. The script contains placeholders for the
data that is either generated from the Data Generation System or directly provided by
the Issuer System. In the case of directly provided data, the data is re-encrypted for the
Personalization System. For security reasons, the API of the Data Generation System is
tailored for single products in order to reduce the risk of API related attacks (see Section
3.2).
The investigated personalization process is based on the concepts described in this

Section. In difference, a generic solution is introduced for the Data Generation System
in order to support a wide variety of different products and product families. In order to
allow flexibility while also ensuring high security requirements, a formal verification tool
was developed and integrated into the process in order to verify security requirements
during the process execution (see Section 5.1).

3.1.1 Establishing an authentication token

To start the personalization process of an individual chip, the personalization system has
to use a secret authentication token so that the personalization of the chips can only be
triggered by authorized personnel/equipment. The authentication token has to be inserted
during an earlier and independent phase of the production. Rankl and Effing [49] describe
a simple but common approach from the smart card domain:

22

3 Related work

During the production of the secure IC, the producer of the Operating System (OS)
incorporates a secret value into the Read-Only Memory (ROM) code of the IC. The ROM
contains the static functions and data which were already programmed during the litho-
graphy process of the production process. Thus, the code is hard-wired into the memory.
To prevent attacks on the ROM code, the code is protected against optical attacks, in-
cluding etching attacks. The secret ROM value is combined with a random value which
was written into the non-volatile memory (Electrically Erasable Programmable Read-Only
Memory (EEPROM) or Flash) of the chip by the semiconductor manufacturer to create
an authentication token. The idea is that neither the OS producer nor the semiconductor
manufacturer has enough knowledge to generate this authentication token on his/her own.
The described method can be used to generate authentication tokens which are valid for
one production batch. The method can be refined if a chip individual number is combined
with the secret values. Thus, the authentication tokens are only valid for specific chips.
This increases the level of security in case the chips have fallen into the wrong hands before
having been completed [49].
In the scope of this thesis, an NXP proprietary approach was used in order to establish

a first authentication token. Since the method itself is not relevant for this thesis – as long
as the overall security requirements are fulfilled – it can be assumed that the approach
from Rankl and Effing [49] was used.

3.1.2 Detection of manipulated devices

Another attack that has to be prevented in this scenario is the manipulation of the IC
during the production process. An attacker with sufficient resources (e.g. a national
agency or a competitor) may be able to smuggle manipulated ICs into the personalization
process. These manipulated ICs function like the real product but with the difference
that e.g. additional functionality is integrated into the OS, like dump routines, which
can be used to retrieve the personalized confidential data in plain. Rankl and Effing [49]
describes a simple, but common approach form the smart card domain in order to detect
manipulated devices:
The semiconductor manufacturer stores a chip individual key in the non-volatile me-

mory during the production process. The chip individual secret key and the unique chip
identifier are securely shared with the personalization company. Before sending the perso-
nalization data to the card, the personalization system transmits a challenge consisting of
a random number to the chip. The chip answers this request by computing a Keyed-Hash
Message Authentication Code (HMAC) using the secret key. The message that is hashed
consists of the ROM code and the received random number. The random number is ne-
cessary to prevent replay attacks. Moreover, the unique chip identifier is retrieved from
the card. Consequently, the personalization system is able to verify the retrieved HMAC
by comparing it with a recomputed value. Thus, manipulation of the ROM code can be

23

Advances of the Pre-Personalization Process for Secure Embedded Systems

detected. The verification takes place in the HSM of the personalization system. Thus, it
can be assured that the secret key is never exposed to any operator.

3.1.3 Loading of common and individual data

The procedure of loading data during the personalization process can be classified into
two main groups: The first category requires the secure IC to perform basic file and
data management commands such as Create, Install and Update; and the second category
requires the secure IC to load the personalization data from a defined memory region after
issuing a specific command [49, 66]. The following methods are currently state-of-the-art:
Loading personalization data using logical addresses [49]: This method is em-

ployed to avoid the specification of the real physical addresses by using symbolic names
so that the secure IC is able to identify the real physical address. The benefit of this
approach is that the data can be sent independently form the used micro-controller if the
API is written in a platform-independent way (i.e., fixed endianness, etc.). The draw-
back is that the personalization process takes more time since the IC needs to resolve the
symbolic identifier before the data is written. This overhead is small, but in high-volume
production processes, it can lead to huge costs.
Loading personalization data using physical addresses [49]: Opposite to the first

method, the real physical addresses of the individual datasets are used to write the data.
In order to write this data, the personalization system has to consider how the data is
expected (e.g. endianness) by the device. This is a huge drawback since it is an additional
source of error which can render all produced chips unworkable. To be able to generate
the data as expected, mostly, a sample device is used which contains a dump memory
functionality. The sample device is configured as the final product, but with the difference
that specific pattern values are used for the device-individual data. After the initialization,
the memory content is dumped and the physical addresses are identified by searching the
according pattern values. The memory dump is used as a template during the production
of the secure ICs. Only the placeholder data is replaced during the personalization process
with the real data. The critical aspect is the process which needs to assure that it is not
possible to manufacture a production device having the dump memory functionality inside.
Otherwise, an attacker is able to read confidential data from the dumped memory.
Loading personalization data using a dedicated personalization memory re-

gion (Paper H): The last common method for loading personalization data is using a
dedicated memory region into which the personalization data is written as a whole block.
The written data can even be loaded during the last stages of the production process.
To actually load the data, the personalization system authenticates to the IC and sends
the decryption key necessary to decrypt the loaded data. Additional meta-information
is necessary so that the IC can determine the purpose of the data. Generally, the meta-
information uses symbolic names which can be interpreted by the secure IC, but also real
physical addresses could be used in this process. The personalization company together

24

3 Related work

with the OS producer needs to agree on the format of the data which is one of the draw-
backs of this approach. The additional computational overhead that is required to process
the data is compensated since the communication overhead between the personalization
system and the IC can be kept as low as possible. The biggest drawback of this approach
is that the memory region for the personalization data needs to be allocated by the secure
IC which can be a problem for small, low-cost ICs. Of course, this additional memory can
be used for customer data during the in-field use, but during the production process, this
may be a limiting factor.
In practice, the first or third method is usually used for low-volume or prototype pro-

duction processes, while the second approach is used for high-volume processes where the
financial benefit is higher than the additional risk. Consequently, the second approach
will be used in this thesis.

3.2 API attacks

A large and growing number of embedded systems make use of dedicated security pro-
cessors to compute cryptographic operations and to store confidential data [9]. Thus,
a less secure processing unit communicates with the security processors via a dedicated
API. As identified by Anderson [3] and Bond [9], the most common API failure mode of
secure systems is that functions/transactions that are secure in isolation become insecure
in combination. Especially if a trusted system communicates with a less secure system,
an adversary can use any unexpected combination of function calls in order to break the
trusted system. One prominent example for such an API attack was the vulnerability of
the HSMs which were provided by VISA [3, 4, 9]. In this scenario, it was possible to insert
a known master key (having all zeros) into the HSMs by combining a specific sequence
of API calls. After successfully loading the known key, they were able to export other
confidential keys, like the PIN verification key, encrypted under the manipulated master
key. By knowing the PIN verification key, a potential attacker is able to retrieve all PIN
codes of any customer account of the affected bank.
In the context of the personalization process of secure ICs, API attacks can be used to

break the Data Generation System (as illustrated in Figure 3.1) by maliciously executing
a sequence of functions of the HSM API. Traditionally, such APIs are evaluated manually
by experts during the development of the API. Due to the complexity of the systems
and their interactions, failures which are hard to detect manually tend to arise. This also
includes failures where information is leaked slowly during each interaction, leading to fatal
failures when an adversary can inject many transactions per second. To circumvent the
security flaws, the development of robustness principles is recommended. These principles
are used to guide the designers of secure systems to reduce the complexity of the API
to the essential transactions. Another alternative approach to evaluate the security of
dedicated APIs is the use of formal verification tools, which will be discussed next.

25

Advances of the Pre-Personalization Process for Secure Embedded Systems

3.2.1 Formal verification tools

Traditionally, formal verification was applied in the domain of hardware designs to ensure
the correctness of the design with respect to its functionality [7]. Due to the increasing
computational power of modern personal computers, the application in the domain of
software development in large-scale industrial projects is now becoming more interesting
[15].
One formal verification method which is of interest for this thesis, is the concept of

abstract interpretation. The application of abstract interpretation is the static analysis of
program code, that is the compile time determination of runtime properties of programs
[15, 16]. Abstract interpretation uses a model of the actual program, using symbolic values
for the input parameters which are mapped to specific properties. Thus, it is possible to
show the correctness of a program with respect to its abstract model. The most important
phase during this process is the generation of the abstract model: is the model incorrect
or does not reflect all the program states, the assumptions about the bahaviour of the
program are incorrect [16]. Thus, abstract interpretation always corresponds to a loss of
precision, but with the benefit of getting a result in a feasible amount of time.
The second formal verification method that is of interest for this thesis is the concept

of symbolic execution. Similar to abstract interpretation, the symbolic execution uses
symbolic values as input parameter to analyze the program flow [34]. The execution
proceeds as in the normal execution, but with the difference that symbolic formulas of the
given input symbols are used as values. After execution, the program correctness can be
ensured by applying the method presented by Floyd [22]: Under the assumption that the
input parameter fulfill a defined predicate, it can be shown that the output value fulfills
or violates a defined output predicate.
Since formal verification tools are consuming a lot of resources, a new approach was

developed based on a method for symbolic execution to ensure that the Data Genera-
tion System of the personalization process does not leak any confidential data during the
process (see Section 5.1).

3.3 Software-product-lines for business-process-management
As stated in a survey by Fantinato et al. [20], major challenges in the field of business
process variability modeling are related to the reaction time of process changes and of
the creation and selection of the best fitting business process variant. Starting from a
business goal level, the framework by Valença et al. [71] presents a systematic way to
reuse process goal models in variable process structures. He describes three methods of
how to automatically track changes of the model by performing match detection [71]:

• Perfect match: The current variant is already part of the model. Consequently,
no operation is performed during the model update.

26

3 Related work

• No match: The current variant is not part of the model. Thus, the variant is added
as a new leaf to the according variation point.

• Partial match: The process variant – which is identified by the contained busi-
ness goals – partially contains a sequence of business goals that are already part of
the model. User interactions are often required to resolve such conflicts, since an
automatic mapping is not always possible.

As a drawback of this approach, business-process models are considered as a linear
sequence of business goals, which is practically not always the case. On the process model
level, the PROVOP project (Hallerbach et al.[27, 28] and Reichert et al. [51]) define a
framework to manage the variability of individual processes. This is achieved through well-
defined change operations that are performed on a process model when deriving a process
variant. Supported operations are the deletion, addition or moving of model elements or
the adaptation of element attributes. This means that the basic process definition already
expresses all possible variants at once, which can be hard to understand. Similar to
the process level variability, a workflow model can be used to activate/deactivate specific
actions within a process by using a dedicated modeling language [24]. The term workflow
model is used for the specification of a business process which enables its execution in an
enterprise and workflow management system. Extensions of the modeling language can be
used to integrate roles and objects [52]. As a consequence, the variability of the process
is not only addressed on the control flow level, but also on the ERP level.
In contrast to the related work, our approach reduces the overall process complexity by

splitting up the process into layers with increasing details. Further, we use model based
transformation techniques in order to combine the variability of business process models
with the variability model of software-product-lines (see Section 4 and 5).

3.4 Software-product-lines for secure systems

Generally, managing requirements for SPL can be classified into two main categories:
approaches based on specialized notations, and approaches that rely on extending existing
notations [56].
The key concept of the first category is the FODA approach [21, 32, 33]. As such,

FODA-based approaches are centered on the feature model which usually is of a tree-like
form. This tree representation is used to explicitly state the dependencies of each feature.
For example, two features are alternatives, one feature is optional or mandatory, and
additional restrictions like one feature excludes or requires another feature.
The key concept of the second approach is an orthogonal variability management [5, 46],
where the variability is modeled in a separate variability model instead of an integrated
view.

27

Advances of the Pre-Personalization Process for Secure Embedded Systems

Domain Engineering

Application Engineering

Product

Management

Domain

Requirements

Domain

Design

Domain

Realization

Domain

Testing

Application

Requirements

Application

Design

Application

Realization

Application

Testing

Domain Artifacts

Security domain
requirements
engineering

Security application
requirements
engineering

Security Artifacts

Security Assets
Application 1: Artifact SelectionSecurity Assets

Figure 3.2: Security requirements extensions of the SPLE framework, adopted from [40]

A similar distinction can be made for security requirements management within the
scope of an SPL. As stated by Mellado, Fernández-Medina, and Piattini [38, 39, 40], an
orthogonal variability management process for security requirements enables a systematic
and intuitive treatment of SPL security requirements. As such, the basic SPL framework
– which was described in Section 2.4 – is extended with two additional subprocesses to link
the security requirements to the product line. The additional parts are highlighted in red
in Figure 3.2. The authors designed the subprocesses to be compliant with the Common
Criteria standard.
The Security Domain Requirements Engineering process is used to develop common and

variable security requirements and their precise documentation in the form of a CC PP.
The PP is used as the generic security framework which every application specific Security
Target (ST) has to be compliant with. Furthermore, security artifacts are derived from
the requirements which are implemented during the domain realization of the product
line.
The Security Application Requirements Engineering process is used to select the

application-specific security requirements and their according security artifacts. This
selection is documented in the form of the ST. To reduce the evaluation time for new
applications, the differences between the security application artifacts and the security
domain artifacts are identified and analyzed using a Delta Analysis (cf. Section 2.3.1).

28

3 Related work

Findings of this delta analysis are further used to increase the security requirements
quality for subsequent projects [69].
In difference to the related work, our approach aims for a generic product line which

uses formal verification tools in order to ensure security requirements during the product
creation process. Consequently, the personalization system does not need to undergo a
re-certification for new products / product families as long as the formal model is not
changed. Since the scope of this thesis is a CC certification for Smart Cards or similar
devices, the certification has to be renewed after it has expired [17, 19].

29

4 Process-driven software configuration

Understanding variation is the key to success in quality and business.
W. Edwards Deming

As described in Section 3.1.3, the pre-personalization process for high-volume production
processes is driven by a template approach. The template – abbreviated as Production
Template (PT) in the following – is a memory dump of a device with the same configu-
ration as the production devices, but using specific pattern values as placeholder data.
This PT functions as model for the production process. Only the pattern values are repla-
ced during the pre-personalization process. Using a PT process has several benefits: the
amount of data that is loaded during the production process can be kept as small as pos-
sible; and the product can be tested using a dummy configuration prior to the production.
The verification of the product configuration can even be carried out by the customer to
test the requested features. Only if the product adheres to the requirements, the green
light is given for the production. Moreover, it is also possible that the Customer prepares
such a PT on his own and provides it to the personalization company. A drawback of
this approach is that the PT needs to be prepared manually by domain experts. Writing
pre-personalization scripts is an error-prone task, especially for complex product configu-
rations that may have a huge number of individual personalization steps. Furthermore,
security certifications (CC certification) require that every product configuration has to
be traced back to the customer requirements. This is necessary to create evidence that the
provided customer data is handled in a protected way during the process, and in addition,
is not confused with any other customer data. To solve the listed issues, we developed
frameworks to cover the variability of the business processes and the software toolchain.
In order to trace the product requirements from the process model to the actual software
implementations, we linked the two variability models so that every single customer requi-
rement can be traced back to PT configuration steps. This approach will be explained in
more detail in the following Sections. Portions of this chapter were previously published
as Paper B [58], Paper D [59], Paper G [60], and Paper F [65], and have been reproduced
with permission.

4.1 A product line for business process models
A business process can be seen as a sequence of specific activities or subprocesses which
need to be executed in a dedicated sequence to produce output with value to the customer

31

Advances of the Pre-Personalization Process for Secure Embedded Systems

New
Account
Request

Create
Account

Request rejected

Send Card Send PIN

Create User
Account

Credit
Assessment

Figure 4.1: Exemplary layered business process showing a bank account creation request

[30, 65]. According to Österle [43], the process design is split up into different layers:
The top layer (macroscopic level) is split into subprocesses, which are detailed out in the
lower layers until the microscopic level is reached. This is achieved when all tasks are
detailed enough so that they can be used as work instructions. An exemplary process
showing a bank account creating request is illustrated in Figure 4.1. As shown in the
Figure, the top level is a highly abstract description of the request process, while each
subprocess is further described in the lower levels. For example, the Credit Assessment
process can even be further refined with an additional process description. Variability of
such a process structure can be expressed in two ways (Paper B): a variable structure of
the process/subprocess by manipulating the sequence of tasks (adding/removing/shifting
tasks); or by replacing the (sub)process refinements with different processes. With respect
to the scope of this thesis, we used the following elements of the Business Process Model
and Notation (BPMN) [42] to express business processes (Paper F):

• Events: Is something that occurs during the execution of a process or subprocess.
Events affect the flow of the process and usually have a cause and an impact. For
example, the start of an Activity and the completion of an Activity are typical
Events. According to the modeling guidelines [42], Events are used only for types
that affect the sequence or the timing of Activities of a process.

• Activities: Is an amount of work that a company or organization accomplishes du-
ring the execution of a process. Two different types of activities can be distinguished:
An activity not broken down to a finer level of activities is called an atomic activity
(i.e., a task). Sequences of tasks (e.g., a subprocess) belonging to the same activity
are called non-atomic activities.

32

4 Process-driven software configuration

• Gateways: A Gateway controls how the process develops through different sequence
flows. Each gateway can have multiple input and/or output paths. An example is a
decision, where one of many possible alternative paths is selected based on a specific
condition. Another example is a parallel Gateway which splits a single flow into
multiple flows which are executed in parallel.

• Data: Data objects represent information flowing through the process such as do-
cuments or e-mails. A Data object can be required by a specific Activity as input
parameter which has to be provided internally or by an external party involved in the
process. Data objects which are generated by a specific Activity are called Output
Data.

• Pool and Lanes: Are used to model responsibilities for specific Activities or sequen-
ces of Activities in a process. The responsibilities can be assigned to an organization,
a specific role, a system or even a dedicated employee.

Our developed framework – to model the variability of process models – can be split into
four different phases. These four phases are illustrated in Figure 4.2 and will be described
in the following.
Process Modeling: In the first phase, process designers use a BPM tool of their

choice and create process templates; that is, defining the sequence of steps of subprocesses
using the BPMN notation. Furthermore, they add artifacts to the BPM Tool for required
features like documentation artifacts, responsible workers or resources. As indicated in
the Figure, the design of (sub)processes and the creation of the according domain model
go hand in hand in an iterative manner.
Domain modeling: In the second phase, the created processes are imported into

the SPLE tool and added to a feature model. During this process, the domain engineer
(Process Designer) chooses the set of available (sub)processes and defines which parts
of these processes are variable. Consider the following example, a company responsible
for forming metal uses different production planning strategies for different customers.
E.g., for customer X, the company employs event-driven Kanban, and for customer Y, the
company uses Kanban with a quantity signal. As a consequence, the principal sequence
of the production steps is the same, but the production planning is scheduled differently
based on the used Kanban system. Thus, the domain engineer chooses the production
planning strategy to be variable by defining a Variation Point (VP). He deposits the
different Kanban implementations as possible variants for the VP so that two process
models can be generated. To limit the possible configuration space, the domain engineer
can define a comprehensive set of rules and restrictions so that only meaningful and valid
process variants can be derived.
Feature Selection: In this phase, production experts use the defined set of process

models (within the SPLE tool) to derive process variants for their current requirements.
This is done by selecting the wished features from the feature model which was created in

33

Advances of the Pre-Personalization Process for Secure Embedded Systems

BPM Tool SPL Tool

Business
Processes

Feature Model

Feature
Selection

Process
Variant

Transformation

Process Designer

Production Experts

Production Experts

derive

update

update

derive

M
ai
n
te
n
an

ce
/E

vo
lu
ti
o
n

Figure 4.2: Product-line framework for the creation of business-process models (adopted from
Paper B)

the second phase. For example, the production experts will choose event-driven Kanban if
customer X has placed an order and will choose Kanban with a quantity signal if customer
Y has placed an order (Paper F).

Maintenance and Evolution: In the last phase, the derived processes are used in the
production and observed by production experts. Based on the collected data, the experts
can either improve the feature selection of the used process (i.e., iteration back to phase
3), or issue a process improvement process (i.e., iteration back to step 1). For example,
during the production for customer X, it was observed that event-driven Kanban was too
slow to react to the customer needs. As a consequence, the production experts changed
the production planning strategy to quantity-based Kanban to tackle these problems.
Another possibility could be the observation that quantity-based Kanban was too general.
For example, the production experts recognized that only one bin Kanban and three
bin Kanban are valuable for the production processes. Consequently, new processes are
designed and integrated into the existing feature model.

34

4 Process-driven software configuration

4.2 Software-product-line for product configurations
To overcome the issue of complex product configurations, we developed a framework for
modular PT pre-personalization based on library scripts. These library scripts are actively
configured via a software-product-line. The concept is illustrated in Figure 4.3. As shown
in the Figure, a Domain Expert is responsible for selecting the product features which are
mapped via specific generator rules to the modular personalization scripts. During the
feature transformation, the modular script blocks are instantiated and configured with
the specific product configuration which is provided by the Domain Expert. The resulting
pre-personalization script contains dummy data with which the product configuration can
be tested. The rules that are used to map the feature model to the PT personalization
scripts are mainly defined by the used platform and the implemented interface standards
like the GlobalPlatform1. Thus, Domain Experts are required who are responsible for
defining/maintaining the PT scripts and for maintaining the transformation rules. For
certification purposes, each product configuration (i.e., the feature selection) is logged
together with the applied transformation rules. This log can be used to manually verify
that the resulting pre-personalization script(s) adhere(s) to the product requirements.

Feature
Model

Feature
Selection

Feature
Transformation

Perso
Script

Library

PT
PT

PT

IC

Domain Expert
Production
Template
Creation

IC

Production
Template

Figure 4.3: Framework for the generation of product configurations

4.3 Combining process variability and software variability
On the one hand, we have a system which is capable of reflecting the variability on busi-
ness process level, and on the other hand, we have a system which is capable of reflecting
the variability on product level. Both models basically represent the same variability on
different levels designed for different stakeholders. As a consequence, we tried to combine
1GlobalPlatform is a non-profit organization that creates and publishes specifications for secure IC techno-
logy. https://www.globalplatform.org/

35

https://www.globalplatform.org/

Advances of the Pre-Personalization Process for Secure Embedded Systems

these two models using dedicated generation tools so that the configuration of the PT pro-
cess can be directly mapped to the order process of the product. To achieve this binding,
it is necessary that every configuration option is mapped to configuration settings within
order entry forms (Paper F). These order entry forms need to be filled out by external
customers (customer requirements), by internal stakeholders (system requirements) or a
combination of both. To maintain an automatic link between the order process and the
process model, the process model is tagged with additional information so that order en-
tries can be generated automatically. The following type model was developed during this
thesis (Paper F):

• Inputs: Are the abstract concepts of different input types which will be described
below. Additionally, each Input is mapped to an input type defining the format of
the input. For example, input data could be delivered as a file (structured or binary)
or delivered in the form of configuration settings like strings, integers, etc. as well
as cryptographically protected (encrypted and/or authenticated).

• None: No special data need to be submitted and, hence, a process node marked
with none will not appear as a setting in the order entry form.

• Customer Input: Specific data need to be added by an external customer. A
process node marked with this type generates an entry in the order entry form of a
specific type. For example, a file upload button will appear if a customer needs to
submit a specific file.

• Internal Input: Specific data needs to be added by an internal stakeholder. This
information is directly forwarded to the internal stakeholder as a separate order.

• Input Group: A set of Inputs that are logically linked together. As a consequence,
all of these inputs need to be provided for a single feature.

Moreover, the following default rules can be applied to support the domain experts in
tagging process models which are based on the BPMN notation (Paper F):

• Activities: Non-atomic Activities can be used to group a specific set of input
parameters as a single feature. For example, a process designed for configuring an
application may require several input parameters. For the order entry form, all the
input parameters should be displayed as one group of configuration settings. Any
atomic Activity is automatically tagged as input type "None". This also applies if a
non-atomic Activity does not contain any Data nodes.

• Gateways: Are used to define the structure of the generated order entry form.
An example is a decision when the internal/external customer can choose between
multiple customization options. Every branch appears as a separate group that can

36

4 Process-driven software configuration

be selected. If a branch does not contain any data, it will only appear as a checkbox
that can be ticked. The system ensures that only one of the branches may be selected
from the possible choices. In contrast, flows in a parallel flow are all mandatory.

• Data: Data to be provided by any entity involved in the process. The type of
information needs to be added manually by the Domain Experts. With respect to
the scope of this thesis, it was found that "string" is a meaningful default value.

• Pools and Lanes: Are used to define the responsibility of the input data. This
means that data in a company-internal lane are automatically tagged with "Internal
Input", while Data nodes in external lanes are tagged with "External Input". With
respect to the scope of this thesis, it was found that "Internal Input" is a meaningful
default value in case Pools and Lanes are not used.

All default rules can be manually overwritten by the Domain Experts. Furthermore,
changes of the processes of the model will be traced and illustrated as diff-model so that
changes can be reviewed by the Domain Experts before they are applied to the process
feature model. If the process model is completely tagged (either manually or using the
automatic rules), the according order entry forms can be generated. In general, web-based
forms are commonly used to illustrate such configurable order forms, but every other
format can be supported by implementing the required transformation operation. This
systematic generation process can be used to derive the feature selection of the PT process

Feature
Model

Feature
Selection

Feature
Transformation

Perso
Script

Process
Model

Submission
Files

Library

PT
PT

PT

Domain Expert

Stakeholder
verifies

Figure 4.4: Process flow for the automatic generation of product configurations, based on order
entries (adapted from Paper F)

37

Advances of the Pre-Personalization Process for Secure Embedded Systems

Configure
Web Server

Configure
Encryption

Key

Load
Customer

Applications

IP Address Key Binary

No Encryption

No Custom App.

Figure 4.5: Exemplary sample process showing the basic configuration settings (adopted from
Paper F)

in an automatic way (Paper F). For this purpose, the feature model of the PT process was
mapped to the configuration items of the generated order entries. This process is a manual
process, executed by a Domain Expert once for every supported product family. Thus,
the defined mapping is valid for a wide variety of products. Especially for new products
it is likely that knowledge on how to improve the efficiency of the process(es) is gained
during the production process. This requires specific changes of the process model like
the addition of new configuration settings, or a change of the sequence of process steps.
In the case of changing configuration options (adapt, add, remove), the mapping between
the process model and the feature model of the pre-personalization product line needs to
be adapted as well. Since this feature model is valid for a wide variety of products, the
maintenance costs of such models can be kept low. This is achieved since the improvements
are rolled out for the entire product family.
The resulting overall process for creating pre-personalization configurations is illustra-

ted in Figure 4.4. As illustrated, the feature selection is automatically derived from the
submitted order entries of the internal/external customers. For certification purposes, it
is necessary that the product configuration is manually verified even though automatic
transformation steps are used. To overcome the limitation of the manual configuration ve-
rification, a tool evaluation could be performed. Since tool evaluations are cost-intensive
processes with unknown outcome, performing a manual verification is less evil. After
successfully verifying the product configuration, a digital signature is added to the confi-
guration. As such, evidence can be generated to ensure that only properly signed – and,
thus, verified – configurations were operated, meaning that the provided customer data is
not confused with any other data or that incorrect features are instantiated.

4.3.1 Exemplary sample process

It is economically infeasible to pre-personalize each individual device manually if it is
sold in high quantities. Furthermore, establishing personalization toolchains for dedicated

38

4 Process-driven software configuration

versions of the product may solve the issue of manually configuring products but leads to
high maintenance costs with respect to the involved tools. Thus, a flexible system has to
be implemented that ensures that variable parts of the process are reflected by variable
parts of the software architecture of the pre-personalization toolchains. For illustration
purposes, we will discuss a very basic pre-personalization process which is illustrated in
Figure 4.5. The example shows the process of a company selling small embedded systems
which are used as sensing devices for the IoT. The device is offered in three different
variants with the following features (based on Paper F):

• Version 1: Senses the data in a given time interval and sends the recorded signal
to a web server which is used for post-processing the data. In this first version, the
communication channel between the web server and the device is unprotected.

• Version 2: Additionally to the basic features of the first version, this version allows
the encryption of the communication channel between the server and the node using
symmetric cryptography. As such, it should be circumvented that third parties are
able to read the data in plain. For simplicity concerning this example, it is assumed
that this key is provided by the customer and sent in plain to the pre-personalization
company.

• Version 3: Additionally to the features of the previous versions, this device also
allows customer applications to be run (e.g., data pre-processing routines) on the
system. This requires that the customer submits a binary file which is loaded to
every individual device to the pre-personalization company.

Establishing three different order processes using three different versions of customi-
zation toolchains will result in high maintenance efforts. To be able to define a stable
software architecture that covers all three pre-personalization processes is the main goal
of the Domain Engineering process which will be described in the following.

4.3.2 Domain engineering

As described in Section 2.4, the main goal of the Domain Engineering phase includes the
identification and implementation of reusable Domain Artifacts. As such, we apply the
transformation roles defined in Section 4.3 to identify the required artifacts. The default
order entry (i.e., automatically generated by the process variability framework as described
in Section 4.1) is generated by the following (Paper F): A string input box for defining the
IP address of the web server and a decision whether to send the data encrypted or not. In
case of encryption, a string input box can be used to specify the plain encryption key; if
set, an option appears that allows a customer to load custom applications also as a string
input box. The only problem of the default order entry process is the type of the Input
"Binary". Thus, the Domain Expert adopts the Process Model by adding the hint that a

39

Advances of the Pre-Personalization Process for Secure Embedded Systems

Figure 4.6: Order entry which is generated from the example process model (adopted from Pa-
per G)

binary file input should be used. Consequently, a file upload button appears in the order
entry with which binary files can be added. Additionally, the Domain Expert could refine
the types of the other inputs so that runtime checks can be performed when the order
entry is filled out by a customer. For example, rules can be applied so that the IP Address
has to be valid, or that the key has the correct length and format (e.g., Base64-encoded).
These additional hints are directly mapped to the processes using the framework defined
in Section 4.1. Each node modeled in the BPM node has an unique identifier which is used
for the mapping. Thus, reusing parts of processes in other processes will automatically
propagate this additional information. The generated order entry is illustrated in Figure
4.6. The customization options for the Customer Application is only visible if the checkbox
"Data Protection" is checked.
Based on the identified structure of the order entry, the features of the Feature Model

can automatically be derived. The resulting Feature Model is depicted in Figure 4.7. As
illustrated, the "Web Server" is modeled as a mandatory feature, while the "Data Pro-
tection" and "Customer Application" Feature is modeled as optional. Furthermore, the
"Customer Application" requires that the "Data Protection" is selected. The "IP Ad-
dress", "Encryption Key" and "Executable" nodes are used to symbolize the configuration
dependency of the Feature which they are attached to. These configuration dependencies,
however, are not real Features in the classical sense defined by Kang et al. [32]. Finally,
the three identified main features have to be implemented in the form of PT scripts so
that they can be instantiated during the Application Engineering. Principally, this would

40

4 Process-driven software configuration

Order Process

Web Server Data Protection
Customer
Application

IP Address Encryption Key Executable

Mandatory Optional Requires

Figure 4.7: Feature Model that is derived from the exemplary process model (adopted from Pa-
per G)

result in the desired output since the scripts for whole product configurations could be
generated automatically. The problem with this approach is that every individual feature
would result in a dedicated script designed for a specific hardware. Thus, a lot of different
scripts would need to be developed although they share a lot of commonalities. As a
consequence, an improvement was developed which enables a runtime-configurable script
generation. This improvement will be discussed in Chapter 5.

4.3.3 Application engineering

As described in Section 2.4, the main goal of the Application Engineering is the combi-
nation of domain artifacts to whole products. As such, a software toolchain is required
which is able to transform the order entries into feature selections. Based on these feature
selections, code generators are used to generate the script for the final product. To be
able to automatically derive the feature selection from the order entries, a file format has
to be specified which can be interpreted by the following SPLE Tool. We have chosen
zip archives as transport containers since they are easy to process and can help minimize
the memory footprint. Each internal or external customer automatically generates such a
submission file when the order entry form is filled out via the web-based front end. Addi-
tionally, a file is generated which contains the meta-information that was provided via the
web form. We have chosen Extensible Markup Language (XML) as the file format. For
example, the XML file illustrated in Listing 4.1 is generated for the order entry illustrated
in Figure 4.6:
The platform attribute is a system attribute which cannot be set by the provider of

the order entry. The attribute is used internally to identify how the data is processed
during the script generation, which will be explained in more detail in Chapter 5. Data
that is provided via the submission files is referenced by a file URL. Using the XML

41

Advances of the Pre-Personalization Process for Secure Embedded Systems

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <configuration platform="PROD">
3 <WebServer>
4 <IPAddress>7 4 . 1 2 5 . 2 2 4 . 7 2</IPAddress>
5 </WebServer>
6
7 <DataProtection>
8 <EncryptionKey>0x000102030405060708090A0B0C0D0E0F</EncryptionKey>
9 </DataProtection>

10
11 <CustomerApplication>
12 <Binary>// f i l e : a p p . e l f</Binary>
13 </CustomerApplication>
14 </ configuration>

Listing 4.1: Generated XML based on the exemplary Order Entry (adopted from Paper G)

format has two main benefits: First, it is human readable, which is a huge benefit if these
configurations need to be verified by a human. And second, it is easy to process since many
programming languages offer APIs for reading/writing XML files. Additionally, libraries
can be found which are able to generate the class hierarchies based on the XML Schema
File (XSD). As illustrated in the Listing 4.1, additional restrictions are not part of the
XML file. They are only enforced during the creation of the submission files and during
the script generation process.
In order to be able to generate the required PT script, a code generator has to be

implemented which instantiates the developed domain artifacts (modular GS scripts) with
the provided data. For each possible child element of the configuration XML (Figure 4.6),
a mapping has to be defined for the modular PT scripts. In the case of the described
example, three different scripts need to be present in the Domain Artifact repository: a
loadData script, which is used to load the IP address of the web server to the chip; a
putKey script, which is responsible for loading the encryption key to the chip; an upload
and install script which loads the given customer application and installs it. The resulting
product configuration script calls all the above mentioned scripts with the given parameter.
Reproducibility of results is a demanding topic for certification purposes. As a conse-

quence, the generated script and the used modular GS scripts are archived in a database
including the information about the executing operator and the submission files. Speaking
of certification leads further to the topic of traceability: Every single customer require-
ment needs to be reflected in the product configuration. Traceability is achieved by the
automatic mapping rules of the developed toolchain. Thus, every internal or external
customer requirement is reflected in the according order entry and can be traced to the
according scripts. To circumvent a time- and cost-intensive tool evaluation process, a
Domain Expert is responsible to verify the final result (as illustrated in Figure 4.4). To
guarantee that only valid configurations are further processed, digital signatures can be
used.

42

5 A flexible runtime-configurable
data-generation system

Stay committed to your decisions, but stay flexible in your approach.
Tom Robbins

Portions of this chapter were previously published as Paper G [60], and Paper F [65],
and have been reproduced with permission.
Having a system which is able to generate product configurations based on a script

library is a good starting point for product pre-personalization. Nevertheless, to support a
wide variety of different platforms (i.e., Hardware and OS), a pure script-based approach
would lead to a huge number of pre-personalization scripts which may share a lot of
commonalities. Thus, the overall system would not be economically feasible since the
maintenance costs of the script library would be too high.

Function Description Language (XSD)

Language

Primitives
Operations

Script

References
Library

PT
PT

PT

Abstract Class
Hierarchy

generated

Implementation

FD

Function Description

FDL
Interpreter

uses
Sub

Submission

C
al
ls
Fu
nc
ti
on
s
of

Perso.
Script

Figure 5.1: Framework for a flexible, runtime-configurable script-generation-system (based on Pa-
per G)

43

Advances of the Pre-Personalization Process for Secure Embedded Systems

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <FunctionDescription platform=" . . . ">
3 <Defines>
4 <!−− Global d e f i n e s that can be used in t h i s FD −−>
5 </Defines>
6
7 <Macros>
8 <!−− Reusable Macros that can be c a l l e d from Functions −−>
9 </Macros>

10
11 <Functions>
12 <!−− L i s t o f Functions that can be c a l l e d from Submission F i l e s −−>
13 </Functions>
14 </FunctionDescription>

Listing 5.1: Principal structure of a Function Description (FD) file

As a consequence, a flexible system is required which can be configured for the cur-
rent requirements. Additionally, it has to be runtime-configurable to circumvent the im-
plementation and deployment of new software releases, which may demand great effort.
Especially the deployment of a new software release for protected production equipment
may take a considerable amount of time. Usually, numerous independent persons are re-
quired to verify the release version and to load the software to the production equipment.
Furthermore, a new software release may also require a re-certification process since the
production equipment was changed.
To overcome these issues, the framework illustrated in Figure 5.1 was developed. Ba-

sically, it consists of three main components: The first component is the Function Des-
cription Language (FDL), which is a domain-specific language designed for the creation
of pre-personalization scripts. The second component is the FDL Interpreter, which in-
terprets a given submission file (Sub) and calls the referenced functions of a Function
Description (FD) to generate the resulting pre-personalization script. The third compo-
nent is a library consisting of small reusable PT scripts which are designed to work with a
wide variety of different platforms. All three components will be described in more detail
in the following.
Function Description Language (FDL): The FDL is a domain-specific language

that is designed for the creation of pre-personalization scripts. The language is based on
XML and uses a specific XSD to define the available language primitives and operations
that can be performed on the input data. Each FD has to be compliant to the XSD. The
overall structure of an FD is illustrated in Listing 5.1. Basically, the FD consists of three
main blocks: Defines, Macros and Functions. Defines are read-only variables that can
be used as global variables in every Macro or Function of this FD. Macros are reusable
code segments that can be called in Functions. If, for example a specific post-processing
action should be triggered after each function call, a Macro could be used to achieve this
result. The third block is the most important block and contains the list of functions and

44

5 A flexible runtime-configurable data-generation system

restrictions for each function. Specifically, the following restrictions are supported by the
framework:

• Function Choice: A specific subset n-out-of-m possible functions has to be instan-
tiated to form a correct product configuration. For example, if a function A and a
function B are alternatives, either A or B has to be chosen (i.e., 1 out of 2), but not
both.

• Restricts: A specific function may restrict the use of other functions. For example,
if function A is selected, the functions B and C are not allowed to be present in the
product configuration.

• Requires: A specific function requires that other functions are used as well. For
example, in the illustrated example (see Figure 4.7), the function Customer Appli-
cation requires that the Data Protection function is called as well.

The principal structure of Functions is illustrated in Listing 5.2. The configuration
block basically needs to match the configuration of the generated order XML and can be
verified using a generated XSD. The translate block is used to define the operations that
the interpreter needs to perform in order to generate the according pre-personalization
script. For example, the WebServer function – that is required by the described example
– could instantiate a loadData script from the modular PT library which is responsible for
writing the IP address to the chip. Available operations can be classified into two main
groups: the first group defines operations which will directly result in instructions of the
pre-personalization script (e.g., call of scripts, execution of commands, etc.); the second
group defines operations that are only executed by the interpreter. For example, if the
encryption key of the customer was provided using Base64 encoding, but the chip can only

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <FunctionDescription platform=" . . . ">
3 . . .
4 <Function name=" . . . ">
5 <Configuration>
6 <!−− L i s t o f Parameter that need to be provided −−>
7 </Configuration>
8 <Restrictions>
9 <!−− L i s t o f R e s t r i c t i o n s −−>

10 </ Restrictions>
11 <Translate>
12 <!−− L i s t o f o p e r a t i o n s that are executed by the I n t e r p r e t e r −−>
13 </Translate>
14 </Function>
15 </FunctionDescription>

Listing 5.2: Principal structure of a Function

45

Advances of the Pre-Personalization Process for Secure Embedded Systems

interpret it as plain hex, the interpreter tool may convert the Base64 encoding into a plain
hex encoding before instantiating a script with the key value.

5.1 A model-based formal verification tool
Generating pre-personalization scripts alone is not enough to cover all requirements of a
modern, secure IoT device. As a consequence, a flexible system is required which is capable
of generating the chip individual initial device setup. This device setup usually contains
cryptographic keys in order to guarantee a secure and proper function of the device in the
field. For example, on a SIM card for 3G communication, a symmetric encryption key has
to be loaded to ensure that a mobile phone is able to communicate with the base stations
of the Mobile Network Operator (MNO). The concept of such a data generation system
is basically quite similar to the introduced method to generate pre-personalization scripts
(see Section 5). HSMs are used to generate the required data by providing a dedicated API
to the pre-personalization company. As mentioned in Section 3.2, introducing such an API
can lead to security vulnerabilities which could be used to break the whole system. Thus,
we developed a formal verification tool which aims to ensure security properties during the
runtime of the system [8]. The basic concept is illustrated in Figure 5.2. As illustrated,
the formal verification tool protects the input API of the HSM. The tool is based on
a formal model and uses concepts of abstract interpretation and symbolic execution to
derive this model. As a consequence, the tool is sound as long as the assumptions of the
model are correct. Thus, we used a formal language to formalize the model such that it
can be proofed using a standard theorem solver. Using this concept also helps in a security
certification since evidences can be generated to show that the model is sound.
The execution of the formal verification tool can be split into three main phases:

• Phase 1: Classification of Input Data: During this phase, the input data is parsed
and accordingly classified. Input Data can be classified in constants, private keys
and public keys.

• Phase 2: Symbolic execution of Instructions: All instructions within one data
generation script are executed. Each instruction defines specific rules that have to
be met by the input or output data; for example, an encryption operation requires
that a key object is used for the encryption operation and that the output buffer
has a sufficient length. In case that the pre-conditions are not met, the execution of
the script is rejected. If the pre-conditions are met, specific - instruction and input
data related - properties are assigned to the output fields; for example, if a Cyclic
Redundancy Check (CRC) is calculated over a key object, the output field will leak
a specific amount of bits of the key.

• Phase 3: Investigation of Output Fields: After the symbolic execution of all in-
structions was done, all output fields are investigated to determine if confidential

46

5 A flexible runtime-configurable data-generation system

data was leaked to one of the output fields. Each leak will be traced back to the
origin and will lower the confidentiality of the origin. If the confidentiality is lower
than a specific threshold, the execution of the script is rejected.

Additional to the classification of the input values, confidential data (like private and
public keys) are further classified into several levels: System Secret, Customer Secret
and Generated Secret. System Secrets are usually secrets that are not loaded to the
device itself, but are required to protect the confidentiality of the device data during
the pre-personalization process. For example, the transport protection key between the
personalization equipment and the device is usually a System Secret. Customer Secrets are
data that is provided by any stakeholder of the chip, including static keys and derivation
master keys. Generated Secrets are random keys that are generated inside the HSM
during the execution of the script. System Secrets and Customer Secrets are secrets that
could be reused in several scripts. As a consequence, it has to be prohibited that even a
single bit is leaked of such keys during the script’s execution. Otherwise, these keys could
be completely leaked through multiple runs. Quite the opposite, randomly generated
secrets cannot be reused in several runs and, thus, a strict restriction is not necessary.
Consequently, a random key can be considered as secure as long as the confidentiality of
the key does not drop below a certain threshold.

HSM

Input API Output API

Temporary

Data

Instruction

Dispatcher

Basic Data

Manipulations

Cryptographic

Functions

Key Derivation

Functions

Formal Verifier

Data Generation Script Output Data

Figure 5.2: Concept of the formal verification tool to ensure system security requirements (based
on Patent I)

47

6 Evaluation

Before software can be reusable, it has first to be usable.
Ralph Johnson

The results of the studied use case will be presented in this chapter. The implemented
methodologies will be compared with the hypotheses of this thesis at the end of this
chapter. Portions of this chapter were previously published as Paper B [58], and Paper D
[59], and have been reproduced with permission.

6.1 Managing process variability
During this thesis, several case studies in different domains were adduced to investigate
the performance and the overhead of our developed business-process product-line. The
investigated domains are the manufacturing of car parts and the domain of customizing
software for IoT or more generally embedded systems. To measure the performance of the
framework, a sample process structure was developed and used by the respective domain
experts. The following actions where investigated (Paper B):

• Use Case 1: The time was measured that a domain expert requires to create a new
process variant by manually creating the process in the BPMN tool and by using our
developed business-process feature-model. The manual process consisted of the tasks
to assemble existing process templates to the whole business process. To get a better
estimate, the experiment was repeated with several domain experts and different
process setups which followed a common structure (illustrated in Figure 6.1). In
total, the process structure had four Variation Points (VPs): two on the top level
and two on lower levels with several variants. The results were divided by the number
of VPs to get a rough estimate for the time saving per VP.

• Use Case 2: To get an estimate of the scalability of the developed framework,
the experiment of Use Case 1 was repeated with a process database containing 200
additional unrelated processes.

• Use Case 3: To measure the performance regarding maintaining processes, a pro-
cess template was changed and all created process variants had to be updated. For
the manual process, the domain expert only received the name of the changed pro-
cess template. As a consequence, this Use Case covers the case in which a process

49

Advances of the Pre-Personalization Process for Secure Embedded Systems

designer is responsible for maintaining processes he has not created by himself. The
changes applied to the process template included adding/deleting a task in a pro-
cess template and altering the task sequence in a process. The resulting time for the
manual maintenance was divided by the number of processes to receive an estimate
of the maintenance effort for a single process.

• Use Case 4: An extension of Use Case 3: In this case, the domain expert received
a list of process names that are affected by the change. Thus, the Use Case gives
an estimate of the maintenance effort if the processes are maintained by the expert
who was responsible for developing them.

• Use Case 5: A new Process Variant was created and had to be included in the
existing process feature model. Additionally, a new process had to be derived based
on this additional process variant. The new variant was an addition to "VP 3" as
illustrated in Figure 6.1.

• Use Case 6: In this case, the initial Feature Model was created (see Figure 6.1) to
measure the initial overhead of creating a process model.

The above use-cases were done with a focus group of fifteen people and averaged in
order to get the final results. All participants were trained in order to be able to use our

Root

VP 1 VP 2

Var
01

Var
02

Var
03

Var
04

Var
05

Var
06

VP 3 VP 4

Var
07

Var
08

Var
09

Var
10

Var
11

Figure 6.1: The variability structure of the
process feature-model for the in-
vestigated use cases (Paper B)

0 10 20 30 40 260

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

Use case 6

Time in seconds

Manual Manipulation Using varBPM

Figure 6.2: Overview of the results of the stu-
died process management use ca-
ses (Paper B)

50

6 Evaluation

developed framework / the SPLE tool. All of them are familiar with the used BPM tool
which is used by them on a regular basis.
The results are illustrated in Figure 6.2. The results of Use Case 2 were somewhat

surprising since the framework performed worse compared to Use Case 1. This was due to
the fact that the code had not been optimized for efficient queries in the process database.
Thus, a human was able to find the according processes more efficiently because a folder
structure understandable by humans was used in the database. The implementation was
improved in a later version of the framework when efficient identifier-based queries were
used to find the according processes. Furthermore, we identified another bottleneck which
is related to the communication overhead: The SPLE tool was communicating via a web-
service interface with the BPM tool which queried the process database from a local
network.
The break even point strongly depends on the use cases: For example, if maintenance

activities of process templates – which will be reused in several processes – is common,
the initial overhead pays off more quickly. Through our experiments, we identified that
the initial overhead amortizes if around three processes are derived from a single model
(Paper B).

6.2 Software-product-line for product configurations

We published first results of the combined Software Variability Toolchain in Paper D, and
F in which three different product families were supported. The third supported product
family was a revision of the second one which supported new configuration settings, and the
underlying hardware platform was changed: respectively, the endianness changed and new
sensors were added. To evaluate the developed system, we compiled an effort estimation
in which the implementation effort for the initial system was compared to the development
effort for a traditional software development. The term "traditional software development"
is used for a software development with ad-hoc (or nearly ad-hoc) software architecture,
which means that different systems are designed almost independently from each other.
This leads to the situation that only a little code base is shared between each software
project since almost the entire code is optimized for single purposes. However, more code
could have been reusable if adaptations of interfaces/implementations would have been
considered.
The effort for the traditional software development was based on the real implementa-

tion effort for the first system and an effort estimation for the second and third system.
These estimates where given by the responsible software architects. The results are pre-
sented in Table 6.1. As illustrated, the effort for supporting the third Product Family
is 20 to 30 times higher in the case of a traditional development. This number seems
a bit too high at first sight but can be explained due to the change of the endianness:
In the traditional development, all functions which produce integer numbers have to be

51

Advances of the Pre-Personalization Process for Secure Embedded Systems

Effort in man-month

New Framework Traditional System

Base System 12 -

Product Family 1 1 6

Product Family 2 0.5 Estimate: 4–5

Product Family 3 0.05 Estimate: 1–1.5

Overall 14.55 11–12.5

Table 6.1: Comparison of the implementation effort for the product configuration toolchain (Pa-
per F)

identified and adapted; in case of our developed toolchain, a post-processing operation
was introduced to the "translate" blocks. The development effort for the third supported
family also gives a good estimate for maintenance activities: A modular and reusable code
base is more flexible with respect to changes.
Considering that the third product was just a revision of the previous product family,

the break even point for the product line will be around three to four major product
families. This number also correlates to the typical pay-off estimate of other software
product lines [46].

6.3 Process-driven software configuration

To measure the effectiveness of the combined variability framework, the number of lines
of codes and the time to create a new PT were measured [29]. The lines of codes are the
lines of code which are generated from the data generation system as well as the lines
from the modular script library. These lines of code need to be verified by the Domain
Expert during the PT creation with respect to the configuration and test coverage. For the
evaluation, two products were investigated which were created manually as well as using
our newly developed framework. Every product was created by a different developer, in
both variants from scratch. Both developers were experts in creating product configurati-
ons. The results are illustrated in Table 6.2. The time measurement contains the time for
creating/generating the scripts and running a verification of the configuration on a sample
device or an FPGA, using a test configuration (i.e., no production keys). As illustrated
in the table, the lines of code are reduced by around 30 percent and the expenditure of
time by 50 percent. Another advantage of having a process-driven approach is that the
tools may be operated by non-experts. This means that also product managers are able

52

6 Evaluation

Product A Product B

manual framework manual framework

Lines of Code 4838 3363 4507 3137

Time effort in hours 16 8 14 7

Table 6.2: Comparison of a manual product creation with a process-driven product creation, done
by domain experts [29]

to generate the configuration scripts. Only the final configuration verification has to be
done by a developer.
Another advantage of having a process-driven product configuration is the fact that

every single product configuration can be traced to the according scripts. Furthermore,
the configuration settings can be traced to the semiconductor factory and can be verified
with the log of the production process. This means that evidences can be generated
which link the product configuration to the final production report. This is an important
point for the security certification in order to be able to ensure that customer data is not
confused with other data or leaked during the process.

6.3.1 Security considerations

During the production process, confidential data has to be generated and inserted into the
final product. To ensure the proper confidentiality of this data, the formal verification tool
is used as described in Section 5.1. Furthermore, operational measures have to be applied
to ensure that the production equipment cannot be manipulated by single individuals.
With respect to the attacker model (see Section 2.1.2), the formal verification tool prevents
the leakage of confidential data through the data-generation-system. This leakage could
be done intentionally (e.g., by an attacker), or accidentally if the security architecture of
the product has undiscovered weaknesses. In any case, the formal verification tool is used
to identify and prevent these security leaks.
The tool implementation is based on a formal model which describes how specific opera-

tions propagate information from the input parameter to the output parameter. Further,
formal conditions are defined in order to ensure that operations are executed only on valid
data. This means for example, that an encryption operation only accepts valid key ob-
jects with respect to the employed algorithm. The correctness of the model can be proven
using an automated theorem prover, based on state-of-the-art assumptions regarding the
strength of cryptographic operations. The assumptions of the current model are based on
the recommendations published by the NIST [6].

53

Advances of the Pre-Personalization Process for Secure Embedded Systems

Traditionally, the software which is used to generate the chip individual data is designed
for dedicated products. The formal verification tool helps to develop a generic software
that can be configured for the actual product without costly redevelopment of the soft-
ware. Through the formal model, it is assured that no combination of API calls leaks the
confidential device data. This means that security certification can be reused for different
products and product families without costly security evaluations of pre-personalization
equipment.
Table 6.3 presents typical attacks during the pre-personalization process as well as their

according countermeasures.

Attack Attacker Description / Countermeasure

Tapping data
communication

Insider,
Organizations,

Hackers

Description: During the whole process, confi-
dential data is transferred between multiple sta-
keholders. This includes also the communica-
tion channel between the personalization equip-
ment and the actual device during the pro-
duction.
Countermeasure: Secure messaging has to be
used throughout the whole personalization pro-
cess in order to secure the confidentiality of the
data. Only dedicated HSMs are able to de-
crypt the received data in order to ensure that
no operator has access to the confidential cus-
tomer data. The formal verification tool is used
to ensure that the data which leaves the HSM
is properly encrypted or does not contain any
confidential data.

Manipulation of
data transfers

Insider,
Organizations,

Hackers

Description: Related to the previous attack.
Proper origin of data streams has to be ensured
throughout the whole process in order to pro-
perly identify it’s origin.
Countermeasure: Authentication methods
have to be used throughout the whole process to
ensure the proper origin of the data, as well as
message authentication methods to ensure that
the data was not manipulated during the trans-
fer. The formal verification tool is used to en-
force the use of authentication mechanisms as
well as integrity protection mechanisms.

54

6 Evaluation

Attack Attacker Description / Countermeasure

"Fake" devices Insider,
Organizations

Description: Fake devices could be used to
leak data that is loaded during the personaliza-
tion process. In case that static keys are used,
all keys can be leaked if a fake device was smug-
gled into the pre-personalization process. Even
worse, if faked HSMs are used to generate the
data, all confidential customer and system data
could be leaked.
Countermeasure: Bi-Directional authentica-
tion of the personalization equipment and the
actual devices has to be ensured. Additionally,
it has to be ensured that only authorized per-
sonal is able to load new software to the per-
sonalization equipment. Multiple eye principal
is required for the development and the mainte-
nance of the personalization equipment as well
as restricted access to the equipment. Additi-
onally, the integrity of the ROM code has to
be ensured in order to identify manipulated IC
functionality (See Section 3.1.2).

Social
Engineering

Insider,
Organizations,

Hackers

Description: Attacks on the social level can be
carried out to gain access to (restricted) com-
pany networks, or to establish backdoors for ot-
her attacks.
Countermeasure: Split knowledge such that
no single person is able to break the whole sy-
stem. Confidential data has to be stored either
encrypted (using reasonable encryption algo-
rithms) or inside of dedicated HSMs. Additio-
nally, the security awareness of the involved per-
sonal shall be increased through trainings.

Table 6.3: List of typical attacks during the pre-personalization process (based on Paper H)

By using the formal verification tool, security certification of the data generation process
does not need to be redone in order to support new products: Reasonable encryption of the

55

Advances of the Pre-Personalization Process for Secure Embedded Systems

confidential data is enforced during the process. This requires that the product in general
is capable of loading confidential data in a secure way (i.e. encrypted). If a product does
not fulfill this requirement, it is not supported by the process and consequently, will not
be certified. The CC security certification for smart cards and similar devices expires
after two years maximum. Which means that the data-generation system needs to be re-
evaluated at least every two years. This means that the formal model of the verification
tool is re-evaluated in order to ensure that all security assumptions are still valid. The
re-evaluation costs can be reduced significantly, since the formal model can be verified
using state-of-the-art automated theorem prover.

6.4 Limitations

After having discussed the benefits of using the developed tools and processes, the dra-
wbacks and limitations have to be debated as well. Having a flexible system which is
configurable for a lot of different products is not always a benefit since the performance
(i.e., the throughput time) is lower compared to using specialized and optimized software
implementations. During the assessment of this thesis, we evaluated the computational
overhead during the generation of the confidential chip individual data since this is the
most time-critical part: the longer the generation of the data takes, the more time in the
factory is required, which again leads to higher costs. To evaluate the introduced over-
head, we measured the time to generate the device-individual data for a typical product
configuration using the old software toolchain and the newly developed toolchain. It was
investigated that the computational overhead is around 6 percent (160 ms vs. 151 ms per
chip) for complex product configurations. In many cases, this overhead is still feasible,
but in some cases, it may be too much. For example, if ten million chips are produced,
the computational overhead will lead to a delay of around 17 hours. To circumvent this
overhead, a system could be developed in which the common data is loaded in advance to
the HSM. This would mean that for the actual data generation process, less data would
need to be sent to the HSM, leading to a shorter period of time. According to our mea-
surements, most of the time is spent to generate RSA key pairs. As a consequence, lower
numbers would only be possible with HSMs that are able to calculate RSA keys more
quickly.
While we were able to fully generate the required scripts for simple product configurati-

ons, we were able to only partially generate the scripts for complex product configurations
due to the high number of inter-feature constraints of the different product features. This
is not a technical problem of the approach, but having a complete coverage of all inter-
feature constraints is a time-consuming and iterative activity. Furthermore, modeling all
the constraints in advance is usually not possible for complex systems. Consequently, the
initial constraint model contained only those constraints, which were immediately visibly
by the developers. The created constraint model is updated with additional constraints

56

6 Evaluation

with every new product (if required).
With respect to security certification, it is usually difficult to reuse the developed sy-

stem for different products. While the developed formal verification tool helps for reusing
evaluation evidences of the data-generation system, evaluation facilities usually still inves-
tigate the (supportive) processes and software which is used during the whole flow. As a
consequence, certification needs to be done for different product families, but the effort
can be reduced significantly since the certification of the data-generation system itself does
not need to be redone.

6.5 Overall evaluation
In this Section, the evaluation results with respect to the three major aspects of the
thesis hypotheses will be summarized: Feasibility, Traceability, and Multi-platform
Support.

• Feasible: We successfully applied the developed concepts in an industrial context.
While the initial development effort is higher for the developed concepts, the mainte-
nance costs and efforts can be reduced significantly. This means that the developed
system is able to react more quickly to changes while delivering a high level of quality
since the same system is used for many different products.

• Traceable: Through the use of a process-driven process, it is possible to link the
settings of the product order to the actual configuration scripts. Moreover, it is
possible to verify that the delivered data was used during the production process by
comparing the order log with the production log. Consequently, it can be guaranteed
that data is not confused with other products.

• Multi-platform support: We developed a flexible and generic system which is
able to generate the required device-individual data. Through the use of a formal
verification tool, it is possible to guarantee high security requirements while still
being able to support a wide variety of products. Currently, the developed system
is used for three different product families and will be extended in the future for
other products. The only restriction is that confidential data has to be protected
(i.e., encrypted) when transferred to the chip.

57

7 Conclusion

"Always in Motion the Future is"
Master Yoda, Star Wars

We are living in an ever-changing and interconnected world. The dawn of IoT and CPS
devices further increases the number of connected devices which could be manipulated to
collect sensitive and confidential data about their users. To ensure that such devices will
not be misused requires a Root of Trust to be part of every device. This Root of Trust is
basically used to store confidential data and to calculate cryptographic operations to ensure
secure communication channels. As such a secure pre-personalization process is required
during which the initial confidential device data is loaded to the chips. To guarantee that
these devices are still low-cost requires that the pre-personalization process is cheap and
flexible, such that it can be used in many different products. This thesis showed that it is
possible to develop generic concepts for a secure pre-personalization for a wide variety of
security critical devices. Through the use of software-product-line engineering techniques,
it is possible to reduce the costs of the system while still guaranteeing high quality. Via
the usage of formal verification tools it is possible to analyze security properties during the
execution of the process, while maintaining a high amount of flexibility. Furthermore, the
effort for security certifications can be reduced by using formal methods and automatic
methods for logging and impact of change detection. Thus, strong arguments can be
formulated why only specific parts need to be re-evaluated in case of changes.

7.1 Future work

Since security is an ever-changing domain, possible future work could address the formal
verification method and the used security model. A method could be developed which is
used to derive the implementation code from the security model to ensure that changes of
the security model can be easily implemented and evaluated during a security audit.
Besides security considerations, also the creation of inter-feature constraints is an inte-

resting topic for future research: In the ideal case, a customization tool is developed which
can be operated by non-experts (i.e., product managers, operations, etc.) and which cre-
ates product configurations based on user-friendly graphical user interface. To be able
to solve this problem, new methods have to be investigated on how to model complex
inter-feature constraints so that only valid configurations can be created. Since different

59

Advances of the Pre-Personalization Process for Secure Embedded Systems

products may have different configuration possibilities, it needs to be analyzed on how to
efficiently model commonalities and differences in such a customization tool as well.
While this work combines the variability modeling of order processes with the variability

modeling of product configurations, it would be an interesting topic on how to combine
process variability and software variability in general. Combining these two worlds promi-
ses to increase the awareness of developers as well as product managers. This could have
the benefit that the amount of unused features can be reduced and that the IT landscape
will be aligned with the corresponding business processes, leading to reduced costs and
increased business efficiency.

60

8 Publications

This thesis is based on the following peer-reviewed workshop or conference papers as well as
one book chapter publication. The publications are ordered according to their publication
date:

A Andreas Daniel Sinnhofer, Wolfgang Raschke, Christian Steger, and Christian Krei-
ner. “Evaluation paradigm selection according to Common Criteria for an incre-
mental product development.” In: International Workshop on MILS: Architecture
and Assurance for Secure Systems 1 (2015). Available at http://mils-workshop-
2015.euromils.eu/, pp. 1–5

B Andreas Daniel Sinnhofer, Peter Pühringer, and Christian Kreiner. “varBPM —
A Product Line for Creating Business Process Model Variants.” In: Proceedings
of the Fifth International Symposium on Business Modeling and Software Design -
Volume 1: BMSD 2015. 2015, pp. 184–191. isbn: 978-989-758-111-3. doi: 10.
5220/0005886901840191

C Andreas Daniel Sinnhofer, Wolfgang Raschke, Christian Steger, and Christian Krei-
ner. “Patterns for Common Criteria Certification.” In: Proceedings of the 20th
European Conference on Pattern Languages of Programs. EuroPLoP ’15. Kaufbeu-
ren, Germany: ACM, 2015, 33:1–33:15. isbn: 978-1-4503-3847-9. doi: 10.1145/
2855321.2855355. url: http://doi.acm.org/10.1145/2855321.2855355

D Andreas Daniel Sinnhofer, Peter Pühringer, Klaus Potzmader, Clemens Orthacker,
Christian Steger, and Christian Kreiner. “A Framework for Process Driven Software
Configuration.” In: Proceedings of the Sixth International Symposium on Business
Modeling and Software Design - Volume 1: BMSD 2016. 2016, pp. 196–203. isbn:
978-989-758-190-8. doi: 10.5220/0006223701960203

E Andreas Daniel Sinnhofer, Felix Jonathan Oppermann, Klaus Potzmader, Clemens
Orthacker, Christian Steger, and Christian Kreiner. “Patterns to establish a secure
communication channel.” In: Proceedings of the 21st European Conference on Pat-
tern Languages of Programs. EuroPLoP ’16. Kaufbeuren, Germany: ACM, 2016,
33:1–33:20. isbn: 978-1-4503-4074-8. doi: 10 . 1145 / 3011784 . 3011797. url:
http://doi.acm.org/10.1145/2855321.2855355

61

Advances of the Pre-Personalization Process for Secure Embedded Systems

F Andreas Daniel Sinnhofer, Peter Pühringer, Klaus Potzmader, Clemens Orthacker,
Christian Steger, and Christian Kreiner. “Software Configuration Based on Order
Processes.” In: Business Modeling and Software Design: 6th International Sym-
posium, BMSD 2016, Rhodes, Greece, June 20–22, 2016, Revised Selected Papers.
Ed. by Boris Shishkov. Cham: Springer International Publishing, 2017, pp. 200–
220. isbn: 978-3-319-57222-2. doi: 10.1007/978- 3- 319- 57222- 2_10. url:
http://dx.doi.org/10.1007/978-3-319-57222-2_10

G Andreas Daniel Sinnhofer, Andrea Höller, Peter Pühringer, Klaus Potzmader, Cle-
mens Orthacker, Christian Steger, and Christian Kreiner. “Combined Variability
Management of Business Processes and Software Architectures.” In: Proceedings of
the Seventh International Symposium on Business Modeling and Software Design -
Volume 1: BMSD,. INSTICC. SciTePress, 2017, pp. 36–45. isbn: 978-989-758-238-
7. doi: 10.5220/0006527300000000

H Andreas Daniel Sinnhofer, Felix Jonathan Oppermann, Klaus Potzmader, Clemens
Orthacker, Christian Steger, and Christian Kreiner. “Where do all my keys come
from.” In: Handbook of Research on Solutions for Cyber-Physical Systems Ubiquity.
Ed. by Norber Druml, Andreas Genser, Armin Krieg, Manuel Menghin, and Andrea
Hoeller. 701 E. Chocolate Ave. Hershey, PA 17033, USA: IGI Global, 2017, pp. 278–
300. doi: 10.4018/978-1-5225-2845-6.ch011

Moreover, the thesis is based on a patent which is currently patent pending:

I Florian Böhl, Klaus Potzmader, Clemens Orthacker, Andreas Daniel Sinnhofer, and
Christian Steger. “Method for Symbolic Execution on Constrained Devices.” Patent
82086638 (82019770US01) (US). Status: Application; App. No. 15/482462. Apr.
2017

Furthermore, we are currently preparing a second patent for a product line for the
generation of chip individual data. Additionally, an extension of Paper G was accepted for
publication in a Springer LNBIP series. The paper will elaborate on how the identification
of business drivers can be improved when a combined variability management of business
processes and software architectures is applied.

J Klaus Potzmader, Clemens Orthacker, Andreas Daniel Sinnhofer, Christian Steger,
and Christian Kreiner. “A runtime-configurable in-HSM secure IC intialization pro-
cess.” Patent – (EU). Currently in a company internal review process. 2017

K Andreas Daniel Sinnhofer, Peter Pühringer, Klaus Potzmader, Clemens Orthacker,
Christian Steger, and Christian Kreiner. Identification of business drivers using
traceable links between process models and software architectures. Working title;
Accepted for publication in a LNBIP series in 2018

62

8 Publications

Additionally, we are currently preparing a paper for a shepherding process describing
secure IoT devices in a pattern form which rely on a secure pre-personalization process to
establish a Root of Trust.
The context of the publications listed above are highlighted in Figure 8.1.

Product Configuration Secure Personalization

Product
Order

Production
Template
Creation

Personalization
Process

Trusted Data
Generation

Combined
Variability

Management

Product Line
Engineering

Certification
Processes

Formal
Methods

Paper D, F, G, K Paper B
Patent J (planned)

Paper A, C Patent I

ICIC

Chapter H
Paper E

Published Accepted Under review Patent not yet granted

Figure 8.1: Overview of the suggested approaches to improve the pre-personalization process of
secure ICs, highlighting the position of the publications

63

8 Publications

Evaluation paradigm selection according to Common
Criteria for an incremental product development

Andreas Daniel Sinnhofer
Institute for Technical

Informatics
Graz University of Technology,

Austria
a.sinnhofer@tugraz.at

Wolfgang Raschke
Institute for Technical

Informatics
Graz University of Technology,

Austria
wolfgang.raschke@tugraz.at

Christian Steger
Institute for Technical

Informatics
Graz University of Technology,

Austria
steger@tugraz.at

Christian Kreiner
Institute for Technical

Informatics
Graz University of Technology,

Austria
christian.kreiner@tugraz.at

ABSTRACT
Today, agile product development techniques are widely used
providing a rapidly and steadily progression of incremental
product improvements. Traditionally, a product certifica-
tion is issued in a late stage of the development process, al-
though some Common Criteria evaluation paradigm would
exists to support an agile or modular development process.
The usage of such a paradigm would result in a beneficial
certification process, since the evaluator gains experience
through the maturing product. To provide a systematic way
to integrate the evaluation process into the development pro-
cess — and thus saving money and time — we have identified
use case scenarios with the according evaluation paradigm,
providing a selection scheme for the right paradigm.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Re-
use models

General Terms
Design, Security

Keywords
Common Criteria, Security Evaluation

1. INTRODUCTION
Today, agile product development techniques are widely used
providing a rapidly and steadily progression of incremental
product improvements, based on common parts and a mod-
ular product architecture [7]. This leads principally to a

faster time to market and enables the ability to survive and
compete in a competitive market. A problem with this flex-
ible and adaptive development paradigm comes up when a
certification of the product should be issued, since — tradi-
tionally — agile methods are already not used for the devel-
opment and evaluation process of secure products.
At present, a common approach is to start the certification
process of a product in a very late phase of the development,
which can result in huge costs when the evaluation facility
gives a negative attestation, because a redesigned must be
issued. As identified by Boehm [9], the later changes are
introduced in the development process, the higher the costs
are.
Another problem with such an approach is the long period of
time an evaluation process can take, even when the certifica-
tion of the product is positive. E.g. the certification process
of Microsoft Windows 7 took one year and eight months1.
This can lead to a delayed release if a certificate is a con-
dition for the disposal of a product (e.g. the CE certificate
for resale within the EU) or a big gap between the date of
release and the date a certificate is issued. Either way, both
situations can potentially result in a loss of customers when
a competitor is already selling a certified product.
To overcome these drawbacks, Raschke et al. [14] introduced
two processes capable for a modular or agile product devel-
opment, where the certification process is started in parallel.
Furthermore he provides a method to automatically detect
the actual impact set, so that only those modules are re-
evaluated which have an effect to the security assurance of
the product. This approach has the key benefit that the
evaluator is integrated since the early stages of the process.
In fact, the evaluator is gaining experience with the matur-
ing system. Moreover, the feedback of the evaluator can
be directly integrated in the next iteration step leading to
lower redesign costs [8] [6]. The Common Criteria certifica-
tion process itself is not further specified, which means that
any possible paradigm can be chosen, such as the assurance

1see the 14th International Common Criteria Confer-
ence (ICCC) https://www.commoncriteriaportal.org/
iccc/ICCC_arc/presentations/T2_D2_2_30pm_Grimm_
Evaluating_Windows.pdf

©2015 Held by the authors. Reprinted, with permission. The definitive version was published in the proceedings of the First
International Workshop on MILS: Architecture and Assurance for Secure Systems" http://mils-workshop-2015.euromils.eu/, January
2015.

65

http://mils-workshop-2015.euromils.eu/

Paper A - MILS 2015

continuity, a compositional evaluation or a delta evaluation,
depending on the current development environment regard-
ing the number of involved developing companies and the
number of involved certification facilities.
The contribution of our paper is the identification of the
appropriate evaluation scheme for a Common Criteria certi-
fication for an agile or modular product development which
is applicable in combination with the processes from Raschke
et al. [14]. The proposed selection scheme is also applicable
for products which are based on previously certified prod-
ucts or modules (e.g. for bug-fix releases).
Section 2 gives a short introduction into the evaluation pa-
radigms according to Common Criteria and the processes
identified by Raschke et al. [14]. Section 3 gives an overview
over the use case scenarios, providing further information
on the according evaluation paradigm and Section 4 sum-
marizes the findings from the use case scenarios in the pro-
posed selection scheme. Finally the results of this paper are
summarized and related work is presented.

2. BACKGROUND
2.1 Assurance Continuity
As proposed in Common Criteria Assurance Continuity [1],
an evaluation paradigm for the maintenance and re - evalu-
ation of already Common Criteria certified products exists.
The flow chart of this approach is illustrated in Fig. 1. It
can be seen that based on an impact analysis report (IAR)
a decision is made whether the changes to the target of eval-
uation (TOE) is minor (does not affect the assurance base-
line) or major. In the case of minor changes, the previously
issued certificate is updated with a maintenance addendum
and a maintenance report. The Common Criteria Assurance
Continuity [1] states, that ”Maintenance may, in general,
continue for up to two years beyond the certification date”.
Due to the fact, that we only consider major changes, the
maintenance process is not further contemplated.

In case of major changes, a re-evaluation needs to be per-
formed regarding all affected parts and a new certificate is
issued. This can be achieved using an informal modular eval-
uation scheme (i.e. Delta-Evaluation) through re-evaluation
of only the changed and affected modules as stated in the
Common Criteria Information Statement on the reuse of
evaluation results (see Section 2.2).
The drawback of the assurance continuity approach is, that
it is only applicable in those situations, where the evaluation
facility is not changed and where a certificate was already
issued. Therefore, this approach is intended to be used for
bug-fix releases/revisions of old products.

2.2 Delta Evaluation
As stated in the ”Common Criteria Information Statement
on the reuse of evaluation results” [2] the following evidences
must be shared to reuse previously created evidences:

• Product and supporting documentation

• New security target(s)

• Original security target(s)

• Original evaluation technical report(s)

Changelislmade
tolthelTOE

Evidencelislupdated
IARlcreatedlandl

submittedltolscheme

Security
impactl

oflchange

AssurancelContinuity:
Maintenance

AssurancelContinuity:
Re-Evaluation

(InformallModular)

minor major

Figure 1: Common Criteria Assurance Continuity
flow chart

• Original certification/validation report(s)

• Original Common Criteria certificate(s)

• Original evaluation work packages (if available)

It is specified that

”... the evaluation facility conducting the current
evaluation should not have to repeat analysis pre-
viously conducted where requirements have not
changed nor been impacted by changes in other
requirements ...”

where such changes are identified through a so called delta
analysis:

”... The evaluation facility would be required to
perform a delta analysis between the new secu-
rity target and the original security target(s) to
determine the impact of changes on the analysis
and evidence from the original evaluation(s) ...”

which is similar to an impact analysis.
As a result, a product re-evaluation can be performed by an
analysis of the impacts of changes and through evaluation of
only the changed and affected modules. Unaffected modules
need not be reconsidered for the overall evaluation process.
Drawback of this approach is that the evaluation techni-
cal report is typically generated by the evaluation facility
and thus, in some cases, is considered as proprietary to that
facility, which makes the interchange of evidences between
different certification facilities difficult.

2.3 Composite evaluation
As stated in the Common Criteria Mandatory Technical
Document on the composite product evaluation for smart
cards and similar devices [3] a composite evaluation can be
performed for all kind of products where

66

8 Publications

”... an independently evaluated product is part of
a final composite product to be evaluated ...”

and hence is not limited to smart cards only, but with the
limitation that

”... The composite product is a product consist-
ing of at least two different parts, whereby one of
them represents a single product having already
been evaluated and certified ... The underlying
platform is the part of the composite product hav-
ing already been evaluated ...”

Thus it is applicable for example for an embedded system
whereas an application runs on a certified OS, respectively
the OS is running on a certified hardware. I. e. a layers
pattern is used for the product, whereby trust is established
through each layer. The lowest EAL of all components is
the limiting factor of the composite product.

2.4 Composed evaluation
As stated in the Common Criteria part 3 (see [4]), the com-
posed evaluation is intended for situations, where indepen-
dently certified (or going through an independent certifi-
cation process) products/modules are assembled to a new
product which should be certified. It is applicable, where a
composite evaluation is not suitable and a delta evaluation
cannot be performed due to missing evidences (proprietary
documents are not shared). At present, a composed eval-
uation for higher assurance levels (higher than CAP-C2 is
not supported through the composed scheme and hence a
re-evaluation of the whole product is necessary. Due to this,
composed evaluations have been performed much less suc-
cessful than composite evaluations.

2.5 Informal: Identification of the impact set
Due to the fact that it is not necessary to perform unaf-
fected evidences twice, it is meaningful to use change de-
tection analysis to determine the actual affected modules
so that only these modules need to be reconsidered in the
evaluation. It is important to understand, that modules can
interact with each other and hence not only the directly
changed module but all other interacting modules need to
be reconsidered. This can be achieved through the use of the
change impact analysis process proposed by Bohner [10] or
the refined processes by Raschke et al. [14]. Our work only
mentions the processes proposed by Raschke et al. since
he also describes a tool for an automatic change detection
analysis, which is well-suited for an partially automatic gen-
eration of the Impact Analysis Report (respectively delta
analysis), but every other approach is also applicable.
The change detection analysis is based on the so-called Secu-
rity Model, which describes the properties and relationships
of the developer evidences, based on the security target, the
design documentation, the implementation and the tests (see
Figure 2 explanatory graphical representation). Therefore it
is applicable to trace and detect all dependencies between
each module.

2Attack potential ”Enhanced Basic”; approximately compa-
rable with EAL-4 (see[4] pages 38 and 47)

Security Target

Security Functional
Requirements

Tests

Implementation Representation

Design Documentation

Security Objectives

Security Problem Definition

SPD-1 SPD-2 SPD-3

SO-1 SO-2 SO-3

SFR-1 SFR-2 SFR-3

DD-1 DD-2 DD-3

IMP-1 IMP-2 IMP-3

T-1 T-2 T-3

Figure 2: Explanatory Security Model, showing
some exemplary artefacts and traces

3. PROPOSED USE CASES AND ACCORD-
ING EVALUATION PARADIGM

Overall situation: Aforementioned, we consider an agile
or modular product development process, where the (final)
certified product is assembled using a number of modules.
In each development iteration new modules can be added or
old modules can be changed or removed. Various companies
can be involved in the development process of the product
and any number of evaluation facilities can be integrated in
the certification process.
The selection scheme is applicable for the following scenar-
ios:

• Use case 1: One company develops a number of mod-
ules which are all evaluated at the same evaluation fa-
cility. Since the evaluation facility has full access to all
modules and all related evidences, an evaluation can
be achieved by a simple informal modular evaluation.
If during the development process the evaluation facil-
ity is changed, a formal modular paradigm would need
to be chosen.

• Use case 2: One company develops a number of mod-
ules, whereas a number of evaluation facilities (n > 1)
are involved in the certification process, interchanging
all kind of evidences. Therefore, a delta evaluation can
be issued.

• Use case 3: One company develops a number of mod-
ules, whereas a number of evaluation facilities (n > 1)
are involved in the certification process, but unfortu-
nately they do not interchange evidences. Depending
on the architecture of the developed product a com-
posite (Use case 3.a) evaluation or an composed (Use
case 3.b) evaluation can be issued.

• Use case 4: Several companies are involved in the
development process of the product, but one central
evaluation facility is used. In this scenario an informal
modular evaluation can be used since the certification
facility has direct access to every contribution of every

67

Paper A - MILS 2015

Evidence>is>updated
IAR>created

other
Companies

involved

how>many
Certifiers>are
concerned

how>many
Certifiers>are
concerned

All
evidences
are>shared

Formal>if>the>Certifier>
is>changed

214

No1

>>>>>>>>>>>n>>>1

>>>Yes No

Yes>> 1

>>>>>>>>>>>n>>>1

Version
N

Version
N>.>1

Actual>Impact>Set
is>calculated

Informal>Modular
Use>Case>1

Delta>Evaluation
Use>Case>2

Informal>Modular
Use>Case>4

Composed>Evaluation
Use>Case>35bb>55b

Composite>Evaluation
Use>Case>35ab>55a

Layered
development

No

214 214

>>>>>>>>Yes

Figure 3: Proposed paradigm selection scheme

company. If during the development process the cer-
tification facility is changed, a formal modular scheme
would need to be chosen.

• Use case 5: Several companies are involved in the de-
velopment process of the product and any number of
evaluation facilities (n > 1) are included into the cer-
tification process (e.g. each company consults a differ-
ent evaluation facility). A delta evaluation is possible
if the different evaluation facilities interchange all kind
of evidences, which can be a problem since the eval-
uation facilities would need to provide information on
their evaluation process and their used methods. In
practice, a composite (Use case 5.a) or composed (Use
case 5.b) evaluation scheme is used, depending on the
used architecture.

4. PARADIGM SELECTION SCHEME
Based on the activities during the assurance continuity pro-
cess [1], a selection scheme for the presented use cases was
created. The first steps towards the reuse of any evidence is
the analysis of the impacts on the assurance of the current
Target of Evaluation which is intended to be done by one of
the processes proposed by Raschke et al. [14]. The selection
scheme is split-up into two main leafs, where one is applica-
ble if a product is developed from a single company and the
other one for a product which is developed from many com-
panies. As identified in the use cases, another factor which
must be considered is the number of certification facilities
and the fact if these certification facilities do interchange all
needed evidences so that the evaluation results can be reused
efficiently. Another criterion which needs to be reconsidered
is derived from the composed evaluation scheme, whereby

the developed product is structured in a layered approach.
The lowest layer must be already certified.
Generally spoken an informal approach can be used if certi-
fication facilities do interchange evidences or a single certi-
fication facility is issuing the product evaluation and formal
approaches must be chosen in all other cases which are usu-
ally more time and money intensive.
The next enumeration provides a short description of the
according paradigms:

• Informal Modular: The certification facility has full
access to all modules and evidences, therefore only the
affected modules are re-evaluated (Delta Evaluation).

• Formal Modular: The certification facility was changed
and hence, all modules need to be reconsidered in the
evaluation process. Previously created evidences (e.g.
certified modules) can be reused, if all needed infor-
mation is available.

• Composed Evaluation: This evaluation is based on the
Composed Assurance Package (CAP) of the Common
Criteria part 3 (see Section 2.4). Drawback is that
the highest achievable CAP level is CAP-C, which is
comparable to EAL-4. Higher levels of assurance are
only possible through a complete re-evaluation of the
assembled product.

• Composite Evaluation: This evaluation paradigm is
based on a layered product development, where trust
is gained through the combination of all layers. In
difference to the composed evaluation, the composite
product is the final product for which an EAL level

68

8 Publications

certification is issued. This allows a direct comparison
with similar products certified after a single evaluation.
[3]

• Delta Evaluation: This is the delta evaluation as de-
scribed in Section 2.2. A concrete process for the certi-
fication is not provided through the Common Criteria
standard and thus the according certification facility
needs to be consulted.

5. RELATED WORK
Klohs [12] provides observations and thoughts on the mod-
ularisation concepts for the development of a smart card
operating system according to Common Criteria. He points
out that the JIL document [5] on the security architecture
requirements for smart cards and similar devices, establishes
a first starting point for the reuse of software components,
based on a description of the security interface and the im-
plemented security mechanism which is implemented from
the component independent of a concrete security target.
The Assert4SOA3 project focuses on the development of
methods for the certification of service oriented architectures
(SOAs), reusing existing certification processes to overcome
the challenging tasks for an evolving software ecosystem.
The project itself does not focus on the Common Criteria
scheme, but provides a guidance to integrate the Common
Criteria certification scheme into a service oriented architec-
ture in [13].
The Euro-MILS4 project focuses on providing a framework
for trustworthiness by design and high assurance based on
Multiple Independent Levels of Security (MILS) [11]. In fact,
assurance of the whole product is gained through the com-
position of assurance arguments of its components and the
system’s security architecture. The developed framework is
based on the Common Criteria evaluation schemes.

6. CONCLUSION
Today’s industry is embossed through fast changing require-
ments regarding functional and security needs. These cir-
cumstances are tried to be solved through the usage of agile
or incremental manufacturing techniques. We have identi-
fied a scheme for the selection of the appropriate evaluation
paradigm to support an agile or modular development pro-
cesses regarding the security certification to reduce the time
shift between the successful certification and the time the
product development finished. Furthermore the costs for re-
evaluating the developed product/modules can be kept as
low as possible since the most suitable paradigm is chosen,
maximizing the reuse of already evaluated modules and pro-
viding a direct integration of the evaluation facility in the
process so that the feedback is directly integrated into the
next development iteration.

7. ACKNOWLEDGEMENT
Project partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. The project is funded
by the Austrian Research Promotion Agency (FFG).

3www.assert4soa.eu
4http://www.euromils.eu

8. REFERENCES
[1] Common Criteria. Assurance Continuity CCRA

Requirements. Version 2.1 (June 2012).

[2] Common Criteria Information Statement. Reuse of
Evaluation Results and Evidence. (October 2002).

[3] Common Criteria Supporting Document Mandatory
Technical Document - Composite product evaluation
for Smart Cards and similar devices. Version 1.2
(April 2012).

[4] Common Criteria for Information Technology Security
Evaluation. Part 3 Security assurance compnents.
Version 3.1 Revision 4 (September 2012).

[5] Common Criteria Supporting Document Guidance -
Security Architecture requirements (ADV ARC) for
smart cards and similar devices. Version 2.0 (April
2012).

[6] S. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0 - Third Edition.
Cambridge University Press, 2004.

[7] D. Anderson. Agile Product Development for Mass
Customization: How to Develop and Deliver Products
for Mass Customization, Niche Markets, Jit,
Build-To-Order and Flexible Manufacturing. Irwin
Professional Pub., 1997.

[8] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2Nd Edition).
Addison-Wesley Professional, 2004.

[9] B. W. Boehm. Software Engineering Economics.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[10] S. A. Bohner. Extending software change impact
analysis into cots components. In Proceedings of the
27th Annual NASA Goddard Software Engineering
Workshop (SEW-27’02), SEW ’02, pages 175–,
Washington, DC, USA, 2002. IEEE Computer Society.

[11] H. Blasum, S. Tverdyshev, B. Langenstein, J. Maebe,
B. De Sutter, B. Leconte, B. Triquet, K. Müller, M.
Paulitsch, A. Söding- Freiherr von Blomberg, A.
Tillequin. Secure European Virtualisation for
Trustworthy Applications in Critical Domains - MILS
Architecture, 2014.

[12] D. K. Klohs. Software modularisation and the
common criteria - a smartcard developer’s perspective.

[13] M. B. Samuel Paul Kaluvuri and Y. Roudier. Bringing
common criteria certification to web services.

[14] W. Raschke, M. Zilli, P. Baumgartner, J. Loinig, C.
Steger and C. Kreiner. Supporting evolving security
models for an agile security evaluation, 2014.

69

8 Publications

varBPM
A Product Line for Creating Business Process Model Variants

Andreas Daniel Sinnhofer1, Peter Pühringer and Christian Kreiner1

1Institute for Technical Informatics, Graz University of Technology, Austria
{a.sinnhofer, christian.kreiner}@tugraz.at, p.puehringer@inode.at

Keywords: Software Product Lines, Feature Oriented Modelling, Business Processes, Tool Integration.

Abstract: Business processes have proven to be essential for organisations to be highly flexible and competitive in
today’s market. To manage the life-cycle from modelling such business processes over the execution and
the maintenance, Business Process Management Tools are used in the industry. In many cases, different
business processes do only vary in few points. This leads to the situation that new business process variants are
formed through copy or clone of previous solutions leading to a high number of instantiated process templates.
However, this means that changes to a template affects many processes, where all of them need to be manually
updated, which can lead to a considerable amount of work and money for a bigger company. In this paper,
we will present a framework for the integration of business process modelling tools and software product line
engineering tools to provide a systematic way to reuse and trace process variations of whole process families.

1 INTRODUCTION

Business Process (BP) oriented organisations are
known to perform better regarding highly flexible de-
mands of the market and fast production cycles (Mc-
Cormack and Johnson (2000); Hammer and Champy
(1993); Valena et al. (2013); Willaert et al. (2007)).
These goals are achieved through the introduction of
a management process, where business processes are
modelled, analysed and optimised in iterative ways.
Nowadays, the business process management is also
coupled with a workflow management, providing the
ability to integrate the responsible participants into
the process and to monitor the correct execution of
the business process in each process step. To adminis-
ter the rising requirements, so called business process
management tools are used (BPM-Tools) which cover
process modelling, optimization and execution. In
combination with an Enterprise-Resource-Planning
(ERP) system, the data of the real process can be in-
tegrated into the management process.
In many cases, business processes do only vary in
some points, which leads to the situation, that new
process variants are created through a copy and clone
of old solutions (often called as templates). As a
result, such templates are instantiated in many vari-
ous processes which makes the propagation of pro-
cess improvements time and cost intensive for a big-
ger company. Also the consistency of the documenta-

tion of this huge number of process variants is a chal-
lenging task.
Software Product Line Engineering (SPLE) tech-
niques have been successfully applied for almost any
domain, providing a technique for the systematic
reuse of domain artefacts. Although the topic of prod-
uct line techniques in the domain of business process
modelling is not new (e.g. Gimenes et al. (2008);
Rosa et al. (2008); Fantinato et al. (2012); Derguech
(2010)) only little work is found for the issues related
to the correct configuration of whole process families
(e.g. Hallerbach et al. (2009a,b)), the integration into
existing toolchains and the reuse throughout various
production plants. Thus, our approach is focused on
developing a framework for the integration of a SPLE
Tool and a BPM Tool, to provide a generic way to
generate process variants of whole process families.
In particular, we use the SPLE Tool for a system-
atically reuse of expert knowledge in form of valid
process variations, designed in an appropriated BPM
Tool. The integrity of the process variations is secured
by the capabilities of the BPM Tool and a rich con-
straint checking in the SPLE Tool. Furthermore, our
proposed approach enables the abilities to automati-
cally trace all process variants for an automatic prop-
agation of changes and process improvements and
the systematic integration into the capabilities of the
BPM Tools such as documentation generation, work-
flow engines, process optimisation tools, etc.

©2015 Held by SciTePress. Reprinted, with permission. The definitive version was published in Proceedings of the Fifth Interna-
tional Symposium on Business Modeling and Software Design, http://www.is-bmsd.org/BMSD2015/ July 2015.

71

http://www.is-bmsd.org/BMSD2015/

Paper B - BMSD 2015

A B C

B_1

B_2

B_3 B_4

Sub-Process BSub-Process B

Figure 1: Principal structure of a business process accord-
ing to Österle (1995) which is used for our approach. Start-
ing with an abstract description of the process, the tasks are
further described in sub-processes until a complete work
description is reached (microsopic level).

BPM Tool SPLE Tool

Business
Processes

Feature
Model

creates
modifies

derive
update

Feature
Selection

Transformation
Business
Process
Variant

derive
update

 add
 knowledge

add
input

in
flu

en
ce

s

Process
Designer

Production
Experts

Production
Experts

Figure 2: Overall conceptual design. The upper side of the
Figure describes the domain engineering part and the lower
side of the Figure the application engineering part.

This work is structured in the following way: Sec-
tion 2 gives an overview over the concepts of tool in-
tegration and the design paradigm for business pro-
cesses which is needed for our framework. Section
3 presents the conceptual design of the framework
and states construction rules of the according feature
models and some design rules for the BPM Tool. In
section 4 we will introduce our case study regard-
ing some metrics and implementation details. Section
5 summarizes the related work and finally section 6
concludes this work and gives an overview of open
issues.

2 BACKGROUND

2.1 Tool Integration

According to the work of Karsai et al. (2005), two
possible patterns exists for tool integration. The first
approach is named ”Integration based on integrated
models” and is based on the idea of a common data
model which is shared between each participating
tool. This means that each tool needs two model
converters, one for the conversion of the native data
model into the common data model and one for the
opposite direction. The data is shared over a so called
integrated model server where each tool can publish
or consume data. For obvious reasons this approach
is meaningful applicable if each participating tool has
a similar data model. A drawback of this approach is
that it does not scale very good with the number of
connected tools.
The second pattern is named ”Integration based on
process flows” and is based on the idea of a point
to point message based communication. Each partic-

ipating tool registers itself at a backplane providing
information about what data is shared and what data
is intended to be consumed. As a result, this approach
scales better with the number of participants since po-
tentially fewer model transformations are needed at
which each model can be better optimized regarding
the communicating tools. This approach is used in
those situations, where the data is processed in a spe-
cific sequence.
For our framework both patterns would be possible.
Due to the fact, that the number of participants is
small (in most circumstances there is only one SPLE
Tool and one BPM Tool) and since the representation
of business processes is very similar throughout vari-
ous tools, the first approach is more applicable.

2.2 Business Processes

A business process can be seen as a sequence of
tasks/sub-processes which needs to be executed in a
specific way to produce a specific output which is of
value to the costumer (Hammer and Champy (1993)).
According to Österle (1995) the process design on the
macroscopic level (high degree of abstraction) is split
up into sub-processes until the microscopic level is
reached. This level is reached, when all tasks are de-
tailed enough, so that the process employees can use
it as work instructions.
In other words, a complete business process is de-
signed in layers, where the top layer is a highly
abstracted description of the overall process, while
the production steps are further refined on the lower
levels. As a result, the lowest level is highly de-
pendable on the concrete product and production en-
vironment, providing many details for the employ-
ees. In fact the top layers are – mostly – indepen-

72

8 Publications

dent from the concrete plant and the supply chain
and could be interchanged throughout the production
plants, whereas the lower levels (the refinements) of
the processes would need to be reconsidered. Figure
1 gives an overview of such a structure. Variability
of such a process structure can either be expressed
through a variable structure of a process/sub-process
(e.g. adding/removing nodes in a sequence) or by
replacing the process refinement with different pro-
cesses. The current version of our developed proto-
type focuses on the second method but the framework
is not limited to it.

2.3 Informal: Feature Model

A feature is defined by Kang et al. (1990) as a ”promi-
nent or distinctive user-visible aspect, quality, or
characteristic of a software system or system”. In
context of a Software Product Line, a feature model is
a model which defines all these features and explicitly
states their relationships, dependencies and additional
restrictions between each other. It enables the ability
to visually represent the variable parts of a system and
the options available for all products of a product line.

3 VARIABILITY FRAMEWORK

3.1 Conceptual design

The overall conceptual design is based on a feature
oriented domain modelling approach and is displayed
in Figure 2. It is intended, that the domain experts
(process designer) design process templates in the ac-
cording BPM Tool, providing also all needed infor-
mation for e.g. a workflow engine. Based on these
templates and the abstract process model (the top
level description of the process) a feature model is
partially automatically created/updated with the guid-
ance of the domain experts. This is done by identifica-
tion of the variation points and the linkage of the ac-
cording variations on every process level. Each varia-
tion can contain additional variability by either defin-
ing new variation points where further refinement can
be linked to or by a variable process structure. Ad-
ditional constraints regarding the possible combina-
tion of features are intended to be modelled in the
SPLE Tool, but are not limited to it. In application
engineering the domain experts (not necessarily a pro-
cess designer, but someone who knows the current
needs of the production) adds his knowledge and se-
lects the needed features. The found description is
then automatically transformed in a real business pro-
cess which can be executed by the workers. During

Table 1: Needed process information within the SPLE Tool

property
name

description

id A unique id to identify the pro-
cess/task

category id A unique id of the category of the
process

display
name

A human readable and understand-
able name of the process/task

children A list of ids which references the
processes/tasks of the process itself
(empty if the microscopic level is
reached)

additional
data

A list of additional data which is
needed for the concrete instantia-
tion of the process. E.g. data for
a workflow engine, the responsi-
ble workers, etc. This data can be
provided through the BPM Tool
(almost static) or can be design
variable in the SPLE Tool.

the process execution, loads of data is generated re-
garding the performance and efficiency of the process.
Thus, it is possible that some additional information
is added to the derived processes which leads to a
possible influence of the according business process
templates or a possible influence of the feature selec-
tion. This flowback mechanism is an important task
and needs to be considered for the maintenance and
the evolution throughout the lifecycle of a process.
For illustration a short example for the flowback
mechanism is given: Task B of the process displayed
in Figure 1 could be dependent on the logistic chain of
a supplier of a specific part or material. If during the
execution of the process the supplier is changed, it is
also likely that the overall control of the logistic chain
is changed due to the fact that the newly integrated
supplier can only deliver goods in a specific way. If
the process of the logistic chain was not already mod-
elled, then the process designer would need to create
a new process variant and would need to update the
existing feature models first. After this is done, our
proposed toolchain needs to update the feature selec-
tion of the respective process in the SPLE Tool. This
automatically updates the structure of the overall pro-
cess variant, leading to an almost on the fly update of
the complete process workflow especially when the
process variation was already modelled.
Summarizing this concept means that the SPLE Tool
is responsible for the following points: It needs to as-
sist the domain experts (process designer) during the

73

Paper B - BMSD 2015

settings root process variation point variation

addNode

deleteNode

1 1...*

1

0...*

1

0...1

1

0...1

1

0...*

0...*

1

1

0...*

1 1...*

Figure 3: Feature model construction rules. The white parts
cover the variability on the process level itself and the dark
grey parts cover the variability between each layer of the
overall process structure.

(partially) generation of the feature models and dur-
ing the selection and creation of the concrete product
variant. Furthermore, it has to keep track of all gen-
erated process variants to automatically apply process
template improvements or changes to the overall pro-
cess structure and to flow back information added dur-
ing the execution in the BPM Tool. To do so, the tool
needs information about the properties of the process
displayed in Table 1. The BPM Tool is responsible
for the creation of semantically correct process vari-
ants and to provide capabilities which are of value for
the developing company e.g. automatic documenta-
tion generation, workflow engine, etc. For obvious
reasons, each Tool must have rich import/export capa-
bilities or the ability to integrate user defined plug-ins
to extend the functionality.

3.2 Type model

To model the variability within the SPLE Tool in a
structured way, the feature model should support the
following type models:

• settings: Is a data model, containing information
for the tool adaptors to identify the right datasets
(e.g. identifier of the database of the BPM Tool
from which the process structure is imported; log-
in settings, etc.)

• root process: A process model of the top level
process and therefore an abstract description of
the overall process sequence. It consists of var-
ious nodes where some of them deal as variation
points.

• variation point: A node in a process where at
least one variation can be linked to.

• variation: A process model for a task or a sub-
process which can be linked to a number of vari-
ation points. If it is a process, it can also con-
tain variation points or a variable process structure
(addition/deletion of nodes).

• addNode: Adds a node (task or process model) at
a specific location of the process structure. This
added node can also be a variation point for fur-
ther refinements. The addition of the node can be
dependent on the feature selection.

• deleteNode: Deletes a node (task or process
model) at a specific location of the process struc-
ture. The deletion of the node can be dependent
on the feature selection and hence it is also possi-
ble to link further refinements to this node.

The construction rules for this type model can be seen
in Figure 3. The settings node is only instantiated
once in such a model. The root process is somehow
very similar to a variation, but with the difference that
it must contain variation points (to prohibit a ”Blob”
anti pattern [Brown et al. (1998)]).

3.3 Design rules for business processes

Aforementioned, the processes should be designed
as stated by Österle (1995). Secondly we have no-
ticed, that almost every bigger BPM Tool supports
the assignment of specific group identifiers to groups
of processes, providing a more structural design of
the processes. Thereby it is possible to automatically
map specific groups of processes to a specific varia-
tion point. This leads to the situation that new varia-
tions can be automatically detected and can be advo-
cated for an integration into existing feature models.
Furthermore, the structuring in groups of processes
enables the ability to introduce a constraint check so
that variation points are limited to specific groups of
processes. This increases the assurance in the creation
of semantically valid processes.

4 INDUSTRIAL CASE STUDY:
VARBPM

In this section an overview over our industrial case
study is given, which describes the domain of our in-
dustry partner and the developed toolchain.

4.1 Industrial project partner

Our project partner Magna Cosma1 is an interna-
tional company in the metal stamping and assembly
industry – specialised on class-A car body panels and
closure parts (e.g. doors) – with several plants all
over the globe. The implemented business processes

1http://www.magna.com/de/kompetenzen/karosserie-
fahrwerksysteme

74

8 Publications

are mostly controlled by an SAP infrastructure and
are designed with the BPM-Tool Aeneis2. Although
some plants are specialised on the same production
parts, almost every plant develops and maintains their
own business processes, which makes it difficult to
compare processes, mark bottlenecks, optimise the
processes and publish the changes to other plants.

4.2 Tool integration

As mentioned before, the tool integration of the SPLE
Tool (pure::variants3) and the BPM Tool (Aeneis) is
based on the Pattern ”Integration based on Integrated
Models”. The integrated data model contains the rel-
evant data enumerated in Table 1 where all fields are
of type String respectively an array of Strings for the
children and data field. This means that the native
data model of the SPLE Tool is the integrated data
model and hence only the BPM tool adaptors need
to implement a data conversion. To support an up-
date mechanism without sending the complete pro-
cess, each published dataset can be assigned to a spe-
cific type indicating what should happen with this
dataset. Possible types are:

• New: Indicating that this dataset was not pub-
lished before and hence it should be integrated di-
rectly just as is.

• Update: Contains the id of the according dataset
and the data which shall be updated. Non speci-
fied attributes are not affected.

• Remove: Contains the id of the according dataset
which should be deleted out of the system. Linked
variations of such a process are not affected.

The developed tool adapters are also applicable to
get notified when data is added/updated so that such
changes are processed almost immediately. If this
mechanism is not supported by the participating tool
connector, an operator needs to trigger this update
mechanism manually. In the current development, the
SPLE Tool needs to check manually for updated data
since this task is intended to be supported by an do-
main expert, whereas the BPM Tool uses the benefits
of the immediate notification system. The communi-
cation of the tools is done by an XML based file ex-
change and due to some consistency issues the com-
munication is only possible if both tools are running.
I.e. deriving process variants is only possible if the
BPM Tool is running too.

2http://www.intellior.ag
3http://www.pure-systems.com

4.3 pure::variants

pure::variants is a feature oriented domain modelling
tool and is based on Eclipse. As such, it can easily be
extended based on java plug-in development. During
the implementation of this project, five different plug-
ins where developed:

• An import plug-in, which is capable of importing
the process structure - including the definition of
variation points and the according variations - and
converting it into a feature model compliant to the
construction rules displayed in Figure 3 without
the blue parts

• An extension to the internal model compare en-
gine so that different versions of created feature
models can be compared with each other

• An update mechanism to automatically search
for deleted / added variations or updated process
structures, providing graphical assistance for the
domain expert.

• An extension to the internal model transformation
engine so that the feature selection is automati-
cally converted into a business process in the com-
mon data model; This process is then delivered to
the attached BPM Tools, so that a native version of
the process can be created/updated and executed

• Additions to the internal model check engine
to model and create only valid processes (e.g.
checks related to the feature selection, the consis-
tency of the feature model, etc.)

To keep track of all generated business process vari-
ants, a list including all ids of the processes is stored
and maintained in a file located in the same direc-
tory as the variant description model (feature selec-
tion), but hidden from the user perspective. This list
is automatically updated when a process variant is
deleted in the BPM Tool or created with the SPLE
Tool. pure::variants also provides a framework for
the comparison of different models, which enables the
ability to compare different process variants in an ef-
ficient way.

4.4 Studied use cases and results

In the list below, use cases can be found which we
investigated during the development of our approach
regarding the performance of our toolchain (time sav-
ing). The according results are displayed in Figure
5, where the white bars are related to the manual
case and the grey bars to our approach. Although the
varBPM approach automatically integrated each de-
rived process into the capabilities of the BPM Tool

75

Paper B - BMSD 2015

Root

VP 1 VP 2

Var
01

Var
02

Var
03

Var
04

Var
05

Var
06

VP 3 VP 4

Var
07

Var
08

Var
09

Var
10

Var
11

Figure 4: The variability structure of the process for the
evaluation examples

(documentation generation, workflow engine), the
manual approach only reflects the time used for the
creation of the bare process structure. The used pro-
cess structure is part of a bigger process used for an
on-demand manufacturing of spare parts for different
car manufacturer.
Use case 1: For this use case, the time was mea-
sured that a domain expert needs to create a new
process variant manually or using an existing feature
model. The process setup consisted of four variation
points (two top-level variation points and two varia-
tion points on lower levels) where a total number of
twenty-seven different process variants were possible
(for illustration, the variability structure can be seen
in Figure 4). The number of other processes in the
database of the BPM tool was considered to be low
(20 other processes). The experiment was repeated
with different experts and different process setups (the
overall variability structure was kept the same but the
process structures changed). The results of this use
case are divided with the number of variation points
to get a rough estimate for the time saving per varia-
tion point.
Use case 2: This use case is an addition to the first
one, with the difference of a high number of other
processes in the database (200 processes).
Use case 3: Is related to the topic of maintenance.
In this scenario a process template was changed and
all process variants should be updated. The domain
expert was told that there is a number of six variants
he needs to update providing only the name and the
id of the changed process template. The size of the
database was limited to 50 processes. The change to

0 10 20 30 40 260

Use case 1

Use case 2

Use case 3

Use case 4

Use case 5

Use case 6

Time in seconds

Manual Manipulation Using varBPM

Figure 5: The results of the evaluation use cases. The grey
parts are the time spent using the varBPM approach and the
white parts states the time taken if a manual manipulation is
used.

the template was a deletion/addition of a node. The
results displayed in Figure 5 are normed to the update
of one process.
Use case 4: This use case is an addition to the pre-
vious case, but with the difference that the domain
expert was now told how the process variants where
called (assuming that the domain expert was responsi-
ble for the creation of the process variants and exactly
knows the variants).
Use case 5: In this situation, a new process variation
was created by a process designer and the domain ex-
pert should now derive a new product variant out of it
(in fact, a new variation for the Variation Point ”VP 3”
was developed). It is assumed that the processes are
designed according to our proposed design rules. The
number of other processes in the database was consid-
ered as low (20 processes). This use case also gives a
good estimate on how much overhead is produced, to
update an existing feature model.
Use case 6: In this case, a new feature model was
developed according to the variability structure dis-
played in Figure 4 to generate a metric on how much
overhead is produces for the initial creation of the fea-
ture model. To get a rough estimate on the overhead
per variation point, this number is divided by four.
The results of ”Use case 2” where surprising, since
our developed approach performs worse in relation
to the previous scenario. The reason for this is that
the project now consists of ten times more processes,
leading to a more time demanding search for the right
processes. For humans, it was still quite easy to find
the right processes since they were organised in a
clear ”human understandable” manner. As a result the

76

8 Publications

increasing number of processes do not have a high in-
fluence to a manual manipulation if the processes are
structured in a clear and meaningful way. Otherwise
the time would increase more significantly.
To get a rough estimate of the break-even point, the
following equation is used:

p≈ Overall Overhead
Average time saving

=
259

4 ·29
≈ 2.2 (1)

The overall overhead is the time spent to create the
feature model (”Use case 6”) and the average time
saving is calculated using the average time saving
per variation point multiplied by the number of varia-
tion points. Interestingly, when software product line
techniques are applied to pure software systems, the
break-even point is also located at around three sys-
tems (according to Pohl et al. (2005)).

4.5 Restrictions

Depending on the API of the used BPM Tool, your
approach can be limited in terms of the available fea-
tures. This means that if the BPM Tool only provides
access to the basic process structure, our framework
is limited to the creation of derived processes with-
out the ability to automatically integrate the models
into the capabilities of the BPM Tool (e.g. workflow
engine).

5 RELATED WORK

As stated in the survey of Fantinato et al. (2012), ma-
jor challenges in the field of business process variabil-
ity modelling are related to the reaction time of pro-
cess changes and of the creation and selection of the
right business process variants, which are also main
topics in our approach.
Derguech (2010) presents a framework for the sys-
tematic reuse of process models. In contrast to our ap-
proach, it captures the variability of the process model
at the business goal level and describes how to inte-
grate new goals/sub-goals into the existing data struc-
ture. The variability of the process is not addressed in
his work.
Gimenes et al. (2008) presents a feature based ap-
proach to support e-contract negotiation based on
web-services (WS). A meta-model for WS-contract
representation is given and a way is shown how to in-
tegrate the variability of these contracts into the busi-
ness processes to enable a process automation. It does
not address the variability of the process itself but en-
ables the ability to reuse business processes for differ-
ent e-contract negotiations.

While our approach reduces the overall process com-
plexity by splitting up the process into layers with
increasing details, the PROVOP project (Hallerbach
et al. (2009a,b) and Reichert et al. (2014)) focuses
on the concept, that variants are derived from a basic
process definition through well-defined change oper-
ations (ranging from the deletion, addition, moving
of model elements or the adaptation of an element at-
tribute). In fact, the basic process expresses all possi-
ble variants at once, leading to a big process model.
The work Gottschalk et al. (2007) presents an ap-
proach for the automated configuration of workflow
models within a workflow modelling language. The
term workflow model is used for the specification of
a business process which enables the execution of it
in an enterprise and workflow management system.
The approach focuses on the activation or deactiva-
tion of actions and thus is comparable to the PROVOP
project for the workflow model domain.
Rosa et al. (2008) extends the configurable process
modelling notation developed from Gottschalk et al.
(2007) with notions of roles and objects providing a
way to address not only the variability of the control-
flow of a workflow model but also of the related re-
sources and responsibilities.
The work of Leitner and Kreiner (2010) addresses
the process variability through a bottom up approach
by examining the possible configurations through the
scan of the according ERP System (SAP). In contrast
to this approach, we focus on an top down method to
abstract the complexity of the underlying ERP Sys-
tem.
The Common Variability Language (CVL Haugen
et al. (2013)) is a language for specifiying and resolv-
ing variability independent from the domain of the ap-
plication. It facilitates the specification and resolution
of variability over any instance of any language de-
fined using a MOF-based meta-model. A CVL based
variability modelling and a BPM model with an ap-
propriate model transformation could lead to similar
results as presented in our work.

6 CONCLUSION AND OUTLOOK

The reuse of business process models is an important
step for an industrial company to survive in a com-
petitive market. With our work we have proposed a
way to combine the benefits of software product line
engineering techniques with the capabilities of a busi-
ness process modelling tool to provide a framework
for the systematic reuse of business processes. With
the proposed design rules, our approach results in an
automatic detection and propagation of new and/or

77

Paper B - BMSD 2015

changed business process variations. On the other
hand it leads to an automatic integration of new as-
sembled process variants into the BPM capabilities
such as an automatic integration into a workflow en-
gine, integration of responsibilities and resources, etc.
Our developed framework covers the variability of the
process in two different ways: Through the linkage
of different process variations to variation points and
through a variable process structure (deletion / addi-
tion of nodes) in each layer. Due to the fact that our
developed framework is in an early stage of usage,
further research efforts would address the collection
and evaluation of data regarding the evolution and
maintenance of the process models. In this context,
an integration of Six Sigma4 into our framework is
aimed to provide a complete framework from mod-
elling and improving process models. Additionally
the customization of the ERP system of the underly-
ing system (in this case SAP) is an interesting topic,
providing a complete framework for the topics of pro-
cess modelling, execution and maintenance including
the planing of the resources of the concrete produc-
tion facility.

ACKNOWLEDGEMENT

We want to gratefully thank Magna Cosma for spon-
soring this project, Danilo Beuche from pure::systems
and Intellior AG for their support.

REFERENCES

Brown, W. J., Malveau, R. C., McCormick, H. W. S., and
Mowbray, T. J. (1998). AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis: Refac-
toring Software, Architecture and Projects in Crisis.
John Wiley & Sons.

Derguech, W. (2010). Towards a Framework for Business
Process Models Reuse. In The CAiSE Doctoral Con-
sortium.

Fantinato, M., Toledo, M. B. F. d., Thom, L. H., Gimenes, I.
M. d. S., Rocha, R. d. S., and Garcia, D. Z. G. (2012).
A survey on reuse in the business process management
domain. International Journal of Business Process In-
tegration and Management.

Gimenes, I., Fantinato, M., and Toledo, M. (2008). A Prod-
uct Line for Business Process Management. Software
Product Line Conference, International, pages 265–
274.

4Six Sigma is a set of techniques and tools for a system-
atic management of process improvements based on quality
management methods, including some statistical methods.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers,
M. H., and Rosa, M. L. (2007). Configurable Work-
flow Models. International Journal of Cooperative
Information Systems.

Hallerbach, A., Bauer, T., and Reichert, M. (2009a). Guar-
anteeing Soundness of Configurable Process Variants
in Provop. In Commerce and Enterprise Computing,
2009. CEC ’09. IEEE Conference on, pages 98–105.
IEEE.

Hallerbach, A., Bauer, T., and Reichert, M. (2009b). Issues
in modeling process variants with Provop. In Ardagna,
D., Mecella, M., and Yang, J., editors, Business Pro-
cess Management Workshops, volume 17 of Lecture
Notes in Business Information Processing, pages 56–
67. Springer Berlin Heidelberg.

Hammer, M. and Champy, J. (1993). Reengineering the
Corporation - A Manifesto For Business Revolution.
Harper Business.

Haugen, O., Wasowski, A., and Czarnecki, K. (2013). Cvl:
Common variability language. In Proceedings of the
17th International Software Product Line Conference,
SPLC ’13.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (foda)
feasibility study.

Karsai, G., Lang, A., and Neema, S. (2005). Design pat-
terns for open tool integration. Software & Systems
Modeling, pages 157–170.

Leitner, A. and Kreiner, C. (2010). Managing erp configura-
tion variants: An experience report. In Proceedings of
the 2010 Workshop on Knowledge-Oriented Product
Line Engineering, KOPLE ’10, pages 2:1–2:6.

McCormack, K. P. and Johnson, W. C. (2000). Business
Process Orientation: Gaining the E-Business Com-
petitive Advantage. Saint Lucie Press.

Österle, H. (1995). Business Engineering - Prozess- und
Systementwicklung. Springer-Verlag.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer.

Reichert, M., Hallerbach, A., and Bauer, T. (2014). Lifecy-
cle Support for Business Process Variants. In Jan vom
Brocke and Michael Rosemann, editor, Handbook on
Business Process Management 1. Springer.

Rosa, M. L., Dumas, M., ter Hofstede, A. H. M., Mendling,
J., and Gottschalk, F. (2008). Beyond control-flow:
Extending business process configuration to roles and
objects. In Li, Q., Spaccapietra, S., and Yu, E., editors,
27th International Conference on Conceptual Mod-
eling (ER 2008), pages 199–215, Barcelona, Spain.
Springer.

Valena, G., Alves, C., Alves, V., and Niu, N. (2013). A
Systematic Mapping Study on Business Process Vari-
ability. International Journal of Computer Science &
Information Technology (IJCSIT).

Willaert, P., Van Den Bergh, J., Willems, J., and De-
schoolmeester, D. (2007). The Process-Oriented Or-
ganisation: A Holistic View - Developing a Frame-
work for Business Process Orientation Maturity.
Springer.

78

8 Publications

Patterns for Common Criteria Certification
ANDREAS DANIEL SINNHOFER, Graz University of Technology
WOLFGANG RASCHKE, Graz University of Technology
CHRISTIAN STEGER, Graz University of Technology
CHRISTIAN KREINER, Graz University of Technology

One step in the development of certifiable secure systems is to provide trust in the development process and in the implemented security
mechanisms of the product. In the domain of information technology, the Common Criteria schemes are used to evaluate the implemented
security mechanisms of a product. Traditionally, a product certification is issued at a late stage of the development process, even though some
Common Criteria evaluation paradigm exists to support the development process. The usage of such a paradigm would result in a beneficial
certification process, since the evaluator gains experience through the maturing product. We have identified patterns which are designed to
support the development process of secure applications. Based on these patterns, a systematic approach to integrate the evaluation process
into the development process can be defined.

Categories and Subject Descriptors: I.5.0 [Pattern Recognition] General; D.2.0 [Software Engineering]: General—Standards

Additional Key Words and Phrases: Common Criteria, Process Pattern, Security Certi�cation

1. INTRODUCTION

One step in the development of certifiable secure systems (i.e. a banking cards) is to provide trust in the
development process and in the implemented security mechanisms of the product so that customers do not have
any worries using the product. In the smart card domain, this is usually done by a Common Criteria certification
which states a degree of security on so called Evaluation Assurance Levels (EAL) [Mayes and Markantonakis
2009]. The levels range from EAL-1 to EAL-7, where 1 is the lowest level and 7 the highest. For each level more
or fewer evidences are needed (e.g. verified design, tests, etc.) which are performed and collected from one or
more evaluation facilities. Based on these evidences and the verdict of the evaluation facilities, a certification body
issues the certificate.
In an abstracted point of view, this is very similar to gaining trust into money. Traditionally, we have trust in money
because there is somewhere a big safe which holds a lot of gold or other things of high value. The "value" of the
money is low if the gold in the safe is low and the "value" is high if more gold is in this safe. From a certification
point of view the evaluation facilities are holding the evidence (gold) and the more positive evidences they have,
the higher is the trust in the product.

This work is supported by the Austrian Research Promotion Agency (FFG).
Author’s address: Andreas Sinnhofer, Institut fuer Technische Informatik, Inffeldgasse 16, 8010 Graz; email: a.sinnhofer@tugraz.at; Wolfgang
Raschke, Institut fuer Technische Informatik, Inffeldgasse 16, 8010 Graz; email: wolfgang.raschke@tugraz.at; Christian Steger, Institut fuer
Technische Informatik, Inffeldgasse 16, 8010 Graz; email: steger@tugraz.at Christian Kreiner, Institut fuer Technische Informatik, Inffeldgasse
16, 8010 Graz; email: christian.kreiner@tugraz.at
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3847-9/15/07...$15.00
DOI: http://dx.doi.org/10.1145/2855321.2855355

©2015 Held by the authors. Reprinted, with permission. The definitive version was published in Proceedings of the 20th European
Conference on Pattern Languages of Program, July 2015.

79

Paper C - EuroPloP 2015

At present, a common approach is to start the certification process of a product in a very late phase of the
development, which can result in huge costs when the evaluation facility gives a negative attestation, because
a redesign must be issued. Furthermore, an evaluation process typically takes a long period even if the verdict
of the evaluation facility is positive (e.g. The certification process of Microsoft Windows 7 took one year and
eight months1). Either way, both situations can potentially result in a loss of customers when a competitor is
already selling a certified product. Furthermore, the Common Criteria scheme allows a various number of different
evaluation paradigms to evaluate a product. Each of these paradigms is most suitable for specific circumstances
which leads to the situation that it is often difficult to choose the right paradigm.
In this paper we will investigate process patterns for a common criteria evaluation, stating the applicable evaluation
paradigm to reduce the needed time and money for the certification. Using these patterns, it is possible to integrate
the responsible evaluation facilities from the beginning of the product development, resulting in a beneficial
process since the feedback of the evaluation facility can be directly integrated into the process. The patterns were
extracted by investigating the evaluation reports of various different product developments which can be found
on the Common Criteria website ([Common Criteria 2015]). Our proposes patterns are designed for all kind of
development scenarios were one or many companies can be involved in the development of a product and one or
many evaluation facilities can be used to certify the resulting product.
The document is structured in the following way: Section 2 shortly summarizes the Common Criteria concepts
and evaluation paradigms which are referenced in this paper. Section 2.4 summarizes related work on the field of
modular and compositional Common Criteria evaluation schemes. In Section 3 we will describe our found patterns
and Section 4 summarizes this work.

2. BACKGROUND

2.1 Common Criteria

Common Criteria (CC) (see [Common Criteria 2012a], [Common Criteria 2012b], [Common Criteria 2012c] and
[Common Criteria 2012d]) is a standard for providing a common set of requirements for the implemented security
functionality of Information Technology (IT) products during a security evaluation. These IT systems may be
implemented in Software, in Hardware or as a composition of both. The evaluation process establishes a level of
confidence into the security functionality of such systems and also investigates the development processes and
used toolchains in case of high security critical products.
A so called evaluation facility is responsible for testing and evaluating the implemented security functionality. It
collects all results in form of an Evaluation Technical Report (ETR). During this process, the evaluation facility is in
close touch with the developing companies.

2.1.1 Security Target (ST).

The Security Target is a document which contains the implementation dependent statement of security needs for
a specific identified target of evaluation. It describes the assets, their threats and the implemented countermeasures
and is compiled by the involved vendors of the system. During the evaluation, it is determined if the stated
countermeasures are sufficient enough to counter the threats. There exists two groups of countermeasures. The
first group specifies the security objectives for the target of evaluation which are directly implemented by the
system and for which correctness will be determined during the evaluation process. The second group describes
the security objectives of the operational environment for non IT related countermeasures (such as physical
countermeasures like security guards, etc.). This means that the second group is not directly implemented by the
system itself but by the operational environment in which the system lives. This can also include guidelines for the

114th International Common Criteria Conference (ICCC) https://www.commoncriteriaportal.org/iccc/ICCC_arc/presentations/T2_D2_2_30pm_
Grimm_Evaluating_Windows.pdf

Patterns for Common Criteria Certification — Page 2

80

8 Publications

customers of the system (e.g. not writing a private PIN-Code onto the banking card).
The Security Target is a document which is assembled by the developing companies and provided to the evaluation
facility and will be made public available after the successful evaluation on the Common Criteria website 2.

2.1.2 Evaluation Technical Report (ETR).

The Evaluation Technical Report is a document which is assembled by the evaluation facility. It reports and
documents the overall verdict and its justification and is submitted to a certification body which is issuing the
certificate in case of a positive attestation.

2.1.3 Formal and Informal Evaluations Paradigms.

The Common Criteria Standard and its supporting documents defines formal and informal evaluation paradigms.
The term "formal evaluation paradigm" is used, if the process of the paradigm is specified in the Common Criteria
Standard or one of its supporting documents. The term "informal evaluation paradigm" is used if the evaluation
process is not specified and thus must be defined with the according evaluation facility.

2.2 Common Criteria Evaluation Paradigms

This section gives a short description of the common criteria evaluation paradigms, which are referenced later in
the patterns.

2.2.1 Informal: Delta Evaluation.

The delta evaluation is a certification paradigm which aims for a maximum reuse of previously compiled
evidences. As stated in the "Common Criteria Information Statement on the reuse of evaluation results" (see
[Common Criteria 2002]) the following evidences must be shared to reuse previously created evidences:

—Product and supporting documentation

—New security target(s)

—Original security target(s)

—Original evaluation technical report(s)

—Original certification/validation report(s)

—Original Common Criteria certificate(s)

—Original evaluation work packages (if available)

It is specified that

"... the evaluation facility conducting the current evaluation should not have to repeat analysis previously
conducted where requirements have not changed nor been impacted by changes in other requirements
..."

where such changes are identified through a so called delta analysis:

"... The evaluation facility would be required to perform a delta analysis between the new security target
and the original security target(s) to determine the impact of changes on the analysis and evidence
from the original evaluation(s) ..."

2https://www.commoncriteriaportal.org/products/

Patterns for Common Criteria Certification — Page 3

81

Paper C - EuroPloP 2015

which is similar to an impact analysis.
As a result, a product re-evaluation can be performed by an analysis of the impacts of changes and through
evaluating only the changed and affected modules. Unaffected modules are not required to be re-certified.
A drawback of this approach is that the evaluation technical report is generated by the evaluation facility and thus,
in some cases, is considered as proprietary to that facility, which makes the exchange of evidences between
different certification facilities difficult.

Example: A company has developed a product which was certified some time ago (the black parts in Figure 1).
Now they are starting to develop a new product based on the previously certified product but with some additional
functionality (the grey parts in Figure 1). Adding the new module M 6 only influences Module M 4 and hence, only
M 4 would need to be re-evaluated. For module M 5, the modules M 2, M 3, M 4 would need to be reconsidered.

M 1 M 2

M 3

M 4

M 5 M 6

Fig. 1. Explanatory dependency graph for a delta evaluation

The dependencies of such a product can vary over time due to changing requirements and hence, tools for
Change Impact Analysis (CIA) and Tools for a Traceability Impact Analysis (TIA) should be used to support the
process of evolving security requirements (see Section 2.3).

2.2.2 Formal: Composite evaluation.

As stated in the "Common Criteria Mandatory Technical Document on the composite product evaluation for
smart cards and similar devices" (see [Common Criteria 2012e]) a composite evaluation can be performed for all
kind of products where

"... an independently evaluated product is part of a final composite product to be evaluated ..."

and hence is not limited to smart cards only, but with the limitation that

"... The composite product is a product consisting of at least two different parts, whereby one of them
represents a single product having already been evaluated and certified ... The underlying platform is
the part of the composite product having already been evaluated ..."

Example: The composite evaluation is applicable for an embedded system where an application runs on a
certified OS (see Figure 2); respectively the OS is running on a certified hardware. I.e. a layers pattern is used
for the product, whereby trust is established through each layer. The lowest EAL of all components is the limiting
factor of the composite product. In this case maximum reuse is achieved due to the fact that the applications only
influences the interface of the underlying OS. As one may notice, this is very similar to a delta evaluation with
additional restrictions to the overall structure of the product. Due to these additional restrictions, it is not necessary
to share the evaluation technical reports.

Patterns for Common Criteria Certification — Page 4

82

8 Publications

Hardware

OS

App 1 App 2 App 3

Fig. 2. Explanatory structure of a composite evaluation

2.2.3 Formal: Composed evaluation.

As stated in the Common Criteria part 3 (see [Common Criteria 2012c]), the composed evaluation is intended for
situations, where independently certified (or going through an independent certification process) products/modules
are assembled to a new product which should be certified. It is applicable, where a composite evaluation is
not suitable and a delta evaluation cannot be performed due to missing evidences (proprietary documents are
not shared). The composed evaluation mainly focuses on the interfaces between components and hence new
evaluation levels were introduced. The levels are called Composed Assurance Packages (CAP) and ranges from
CAP-A to CAP-C, where A is the lowest level and C the highest. Due to the fact, that composed evaluations
are focused on the interfaces between components, a composed evaluation for higher assurance levels (higher
than CAP-C3) is not supported through the composed scheme and hence a re-evaluation of the whole product
is necessary. Due to this, composed evaluations have been performed much less successfully than composite
evaluations.

Example: The hardware and software development of a product is done by two different companies. One of
this company was responsible for the software and the other one for the hardware and each part was certified
separately. For a low level product (e.g. an access control and time recording card for non security critical areas)
only the interfaces between those two parts are evaluated.

2.3 Informal: Identification of the impact set

As mentioned in the above described paradigms, it is not necessary to perform unaffected evidence twice.
Therefore, it is meaningful to use change detection analysis to determine the actual affected modules so that
only these modules need to be reconsidered in the evaluation process. In the context of security, many modules
can influence each other due to overlapping security requirements. To trace all these dependencies and to
automatically detect the impact of changes, Raschke et al. [Raschke et al. 2014] introduced a change detection
analysis based on the so-called Security Model using Change Detection Analysis (CDA) and Traceability Impact
Analysis (TIA) techniques. The Security Model describes the properties and dependencies based on the security
target, the design documentation, the implementation artefacts (i.e. the modules) and the tests. As such, it is
possible to trace all impacts if modules or overall security requirements are changed.

3Attack potential "Enhanced Basic"; approximately comparable with EAL-4 (see [Common Criteria 2012c] pages 38 and 47)

Patterns for Common Criteria Certification — Page 5

83

Paper C - EuroPloP 2015

2.4 Reuse and separation concepts for Common Criteria certification

The Euro-MILS4 project focuses on providing a framework for trustworthiness by design and high assurance based
on Multiple Independent Levels of Security (MILS). In fact, assurance of the whole product is gained through the
composition of assurance arguments of its components and the system’s security architecture. It can be seen as
the application of a layer pattern in combination with a strategy pattern applied to security artefacts. The developed
framework is based on the Common Criteria evaluation schemes. They propose a layered and separated product
development technique which can be seen in Figure 3. As it can be seen, it aims to be used in a composite
product evaluation, where the hardware and the communication between applications is protected by a so called
Separation Kernel. The presented separation kernel is a generic formal specification (see [Verbeek et al. 2014])
on how to achieve this kind of separation. This is essential for composite product evaluations with different levels
of security since it needs to be proofed, that different components are not influencing each other. Further, this
increases the re-usability of evidences since only new components need to be evaluated even if multiple evaluation
facilities are involved into the certification process. Thus, it represents an implementation strategy for some of our
presented patterns.

App 1 App 2 App 3

Separation Kernel

Hardware

Fig. 3. MILS: Concept of the separation kernel

The work of Klohs [Klohs 2012] provides insights on the modularisation concepts for the development of an
operating system for secure chip cards based on Common Criteria schemes. He strongly refers to the JIL document
[Common Criteria 2012f] on the security architecture requirements for smart cards and similar devices and points
out, that it is a first starting point to reuse software components. The reuse is based on a description of the security
interface and the implemented security mechanisms which are independently developed from the concrete security
target. This can be seen as an application of an abstraction pattern for a separation of concerns and thus we will
use it in some of our patterns so that less information needs to be shared between different vendors or evaluation
facilities.

The work of Mellado et al. is focused on the development of a generic and reusable framework for security
requirements engineering for Common Criteria evaluated information systems [Mellado et al. 2007]. Using their
framework it is possible to systematically reuse security requirements and the related countermeasures for different
products and hence their framework helps developing reusable security architectures. In the context of our work
the framework can be used together with processes for a change detection analysis to systematically trace all
requirements to their according implementation. This increases the traceability of all requirements and illustrates
the influence of modules to the system security in a more intuitive way.

4http://www.euromils.eu; [Blasum et al. 2014]

Patterns for Common Criteria Certification — Page 6

84

8 Publications

3. PATTERNS

3.1 Pattern Name: S-Ven: Single Vendor Evaluation Pattern

Context:

One company is developing a secure product which is evaluated at a central evaluation facility. The pattern is
applicable for all situations where this condition is met, including for example the domain of operating systems
(such as Microsoft Windows), secure hardware modules (random number generators, cryptographic co-processors,
etc.) or access control devices. Products developed using this pattern are often components which are later
integrated into other systems (e.g. a security critical computer consists of the certified OS and the certified
hardware components).

Problem:

I want to develop a product which shall be evaluated at one central evaluation facility. Further I want to establish
a good starting point for future products based on this certified product. I want to reduce the risk of a negative
evaluation result to save time and money.

Forces:

—It is often difficult to argue why specific modules are not influencing others, due to complex dependencies among
them.

—The management wants a "fast" and "cheap" process.

Solution:

Use a modular product development technique so that an informal5 modular product certification process (i.e.
Delta-Evaluation, as described in Section 2.2.1) can be used. Using techniques for an automatic detection of
impacts (i.e. using the change impact analysis described in Section 2.3) produces strong arguments why specific
modules of a product are unaffected during a development iteration and hence do not need to be reconsidered.
Furthermore, these modules can be adopted from previously certified products if the evaluation facility is not
changed. The basic concept of the certification process is illustrated in Fig. 4. In every new development iteration
the updated and new modules are sent to the Evaluation Facility for a preliminary security evaluation. The resulting
feedback of this evaluation should be directly integrated into the next iteration so that the maturity of the product is
increased steadily during the development process.

Developing
Company

Evaluation Facility

Certification
Body CC

Fig. 4. Graphical representation of the S-Ven: Single Vendor Evaluation Pattern

Consequences:

—Pros:
—The evaluation facility is integrated from the early stages of the product development so that trust is gained

through the whole development process and feedback can be directly integrated.
—The certificate can be issued shortly after the product development has finished.

5An informal certification process is a process which is not defined by the Common Criteria standard and needs to be arranged with the
according evaluation facility

Patterns for Common Criteria Certification — Page 7

85

Paper C - EuroPloP 2015

—Cons:
—Since the evaluation process is informal, it can strongly vary according to the consulted evaluation facility.
—Higher costs for the evaluation process itself since the evaluation facility is consulted multiple times compared

to one single monolithic evaluation.

Known Uses:

An uncategorised list of all certified products can be found at [Common Criteria 2015] including all Security Targets
and Evaluation reports. The following are some examples of products which were certified using this pattern:

—Secure Smart Card Controller, like the NXP P40, Infineon IC M7791 B12, etc.
—Hardware encryption modules and data encryption solutions, like SafeGuard Enterprise - Device Encryption

Patterns for Common Criteria Certification — Page 8

86

8 Publications

3.2 Pattern Name: S-Ven-M: Single Vendor multiple Evaluation Facilities Pattern

Context:

One company is developing a secure product, where a number of evaluation facilities (n > 1) are involved in
the certification process. This is for example the case if the developed product is a cross-domain product where
specific parts of it are developed from different departments of a company (e.g. a split hardware and software
development).

Problem:

I am developing a product which is partially evaluated at different evaluation facilities. I want to reduce the risk of a
negative evaluation result to save time and money. Another common use case of this pattern is porting a certified
operating system to a new certified hardware platform.

Forces:

—In many cases, the Evaluation Technical Reports (ETR) are considered to be proprietary to the evaluation facility
and thus it is difficult to argue the security of these modules to the other facilities.

—Different Evaluation Facilities are performing different tests and hence it is difficult to establish trust between the
involved evaluation facilities.

Solution:

First, one central evaluation facility must be chosen which coordinates the communication between each facility and
which composes the final verdict for the certification body. Further the development techniques should be based
on layered and separated product development methods as proposed by the Euro-Mils project (see Section 2.4)
using the methods proposed by Klohs (see Section 2.4) based on a composite (see Section 2.2.2) or composed
(see Section 2.2.2) evaluation scheme. Using this approach and integrating the evaluation facilities into the early
product development process enables that the evaluation facilities are gaining trust through the architectural
design of the product. This generates strong arguments for the security of the modules tested and evaluated
by other evaluation facilities so that only less additional evidences are necessary to evaluate the whole product.
Theoretically, it is also possible to use an informal approach (i.e. Delta Evaluation as stated in [Common Criteria
2002]) if the involved evaluation facilities are exchanging the Evaluation Technical Reports. The concept of this
process is displayed in Fig. 5.

Developing
Company

Evaluation Facility

Certification
Body CC

Evaluation Facility

...

Fig. 5. Graphical representation of the S-Ven-M: Single Vendor multiple Evaluation Facilities Pattern

Patterns for Common Criteria Certification — Page 9

87

Paper C - EuroPloP 2015

Consequences:

—Pros:
—Using the Euro-Mils approach and using the proposed methods by Klohs results in a reusable architecture of

the product so that supporting different modules/platforms and security targets requires less effort.
—Early integration of the evaluation facilities into the development process so that their feedback can directly be

considered in the next iteration.
—The certificate can be issued shortly after the product development has finished.
—Due to the architecture, trust can be established without exchanging ETRs.

—Cons:
—Formal evaluation paradigm and thus tending to be more cost intensive. Further the costs for the evaluation

process are higher since the evaluation facility is consulted multiple times compared to a single monolithic
evaluation.

—Arranging the communication and the exchange of evidences between the evaluation facilities is often time
intensive.

Known Uses:

An uncategorised list of all certified products can be found at [Common Criteria 2015] including all Security Targets
and Evaluation reports. The following are some examples of products which were certified using this pattern:

—Secure Smart Cards, like the PayPass or eTravel developed by Gemalto.

Patterns for Common Criteria Certification — Page 10

88

8 Publications

3.3 Pattern Name: Mu-Ven: Multiple Vendors Evaluation Pattern

Context:

Several companies (n > 1) are involved in the development process of the product, but one central evaluation
facility is performing the evaluation process. Each company is participating some modules which are finally
assembled to a whole product. This is a very common situation in the industry since secure products are often
developed in cooperation with many other companies. A secure computer would be one practical example, where
a number of companies can be involved into the development process of the hardware, the software and the
applications running on this computer (usually one company is responsible for the OS, but many can be involved
in the development of the hardware).

Problem:

A product is developed in cooperation with different companies. I want to minimize the evaluation costs and do not
want to expose too much information about my own development techniques to the other companies.

Forces:

—Vendors do not want to provide internal design documents and development process evidences to other vendors,
even though confidentiality agreements are signed.

—Coordinating the development efforts of multiple companies is often difficult.

Solution:

Only little information needs to be shared between the companies since the central evaluation facility has full
access to every contribution. The evaluation facility needs to be integrated from the early product development so
that each vendor gains trust through the statements of the evaluation facility. Thus, it is possible to use an informal
modular product certification process (i.e. Delta-Evaluation as described in Section 2.2.1). Using techniques for an
automatic detection of impacts (i.e. using the change impact analysis described in Section 2.3) produces strong
arguments why specific parts (modules) of a product are not affected during a development iteration and hence do
not need to be reconsidered. Further, it enables a transparent tracing of the modules of each company on the
overall system security. The usage of a modular development process enables each vendor to concentrate on their
own parts with clear and defined interfaces to parts of other vendors. The concept of this process can be seen in
Fig. 6.

Developing
Company

Certification
Body CC

Evaluation Facility

Developing
Company

...

Fig. 6. Graphical representation of the Mu-Ven: Multiple Vendors Evaluation Pattern

Patterns for Common Criteria Certification — Page 11

89

Paper C - EuroPloP 2015

Consequences:

—Pros:
—The evaluation facility is integrated from the early stages of the product development so that trust is gained

through the whole development process and feedback can be directly integrated.
—Informal evaluation paradigm and thus, tending to be less time and money intensive compared to formal

schemes.
—Vendors do not need to expose all internal design documents and development processes to other vendors.

—Cons:
—Since the evaluation process is informal, it can strongly vary according to the consulted evaluation facility.
—Higher costs for the evaluation process itself since the evaluation facility is consulted multiple times compared

to one single monolithic evaluation.

Known Uses:

An uncategorised list of all certified products can be found at [Common Criteria 2015] including all Security Targets
and Evaluation reports. The following are some examples of products which were certified using this pattern:

—SmartCards which were developed from multiple companies, like the dragonFly (Oberthur Technologies and
STMicroelectronics), Athena IDProtect (Athena Smartcard Solutions Inc. and Inside Secure S.A.), etc.

Related Patterns:

The S-Ven pattern presented in this work can be seen as a foundation of this pattern since every vendor can use
the S-Ven pattern for all parts of the product which are separated from the parts of other companies.

Patterns for Common Criteria Certification — Page 12

90

8 Publications

3.4 Pattern Name: Mu-Ven-M: Multiple Vendors and Evaluation Facilities Pattern

Context:

Several companies are involved in the development process of the product and any number of evaluation facilities
(n > 1) are included into the certification process (e.g. each company consults a different evaluation facility). This is
a very common situation in the industry since secure products are often developed in cooperation with many other
companies. A secure computer would be one practical example, where a number of companies can be involved
into the development process of the hardware, the software and the applications running on this computer (usually
one company is responsible for the OS, but many can be involved in the development of the hardware).

Problem:

A product is developed in cooperation with different companies and different evaluation facilities leading to a
number of different requirements. I want to minimize the evaluation costs and do not want to expose too much
information about my own development techniques to the other companies.

Forces:

—In many cases, the Evaluation Technical Reports (ETR) are considered to be proprietary to the evaluation facility
and thus it is difficult to argue the security of these modules to the other facilities.

—Vendors do not want to provide internal design documents and development process evidences to other vendors.

—It is often difficult to argue why specific modules are not influencing others, due to complex dependencies among
them.

Solution:

First, one central evaluation facility must be chosen which coordinates the communication between each facility
and which composes the final verdict for the certification body. Further the developing techniques should be based
on layered and separated product developing methods as proposed by the Euro-Mils project (see Section 2.4)
using the methods proposed by Klohs (see Section 2.4) based on a composite (see Section 2.2.2) or composed
(see Section 2.2.3) evaluation scheme. Thus, a modular and incremental product development process should
be used. Using this approach and integrating the evaluation facilities into the early product development process
enables that the evaluation facilities are gaining trust through the architectural design of the product. This generates
strong arguments for the security of the modules tested and evaluated by other evaluation facilities so that only
less additional evidences are necessary to evaluate the whole product. Vendors mainly need to give insight in the
interfaces between each component / layer and hence do not expose too many business secrets to other vendors.

Developing
Company

Evaluation Facility

Certification
Body CC

Evaluation Facility

...

Developing
Company

...

Fig. 7. Graphical representation of the Mu-Ven-M: Multiple Vendors and Evaluation Facilities Pattern

Patterns for Common Criteria Certification — Page 13

91

Paper C - EuroPloP 2015

Theoretically, it is also possible to use an informal approach if the involved evaluation facilities also exchanges
the Evaluation Technical Reports (ETR) and each company gives insights in their development techniques and
methods (see [Common Criteria 2002]), but this is practically never happening. The concept of this process is
illustrated in Fig. 7.

Consequences:

—Pros:
—Potentially a reusable architecture of the product so that supporting different modules/platforms and security

targets requires less effort.
—Early integration of the evaluation facilities into the development process so that their feedback can directly be

considered in the next iteration
—Vendors do not need to expose all internal design documents and development processes to other vendors.
—The certificate can be issued shortly after the product development has finished.

—Cons:
—Formal evaluation paradigm and thus tending to be more cost intensive. Further the costs for the evaluation

process are higher since the evaluation facility is consulted multiple times compared to a single monolithic
evaluation.

—Arranging the communication and the exchange of evidences between the evaluation facilities and the
developing companies is often time intensive

Known Uses:

An uncategorised list of all certified products can be found at [Common Criteria 2015] including all Security Targets
and Evaluation reports. The following are some examples of products which were certified using this pattern.

Multi-Application Smart Cards like the eTravel MultiApp on P60 (Gemalto and NXP) or on the M7820 A11
(Gemalto and Infineon)

Related Patterns:

The S-Ven-M and the Mu-Ven patterns presented in this work can be seen as a foundation of this pattern since
every vendor can use these patterns for all parts of the product which are separated from the parts of other
companies.

4. CONCLUSION AND FUTURE WORK

Today’s industry is defined by fast changing requirements regarding functional and security needs. Patterns have
been proven to increase the quality of the product by systematically applying strategies to common problems. We
have identified patterns for security certifications based on the Common Criteria scheme. Selecting the appropriate
pattern in the according situation reduce the time shift between the successful certification and the time the product
development is finished. Furthermore, the costs for re-evaluating the developed product/modules can be kept as
low as possible since the most suitable paradigm is chosen, maximizing the reuse of already evaluated modules
and providing a direct integration of the evaluation facility in the process so that the feedback is directly integrated
into the next development iteration.
However, reusing previously certified products is a difficult task and hence future research should focus on
composite product evaluations so that the exchange of evidences is supported and documented in a standardized
document. An objective should be an approach which is similar to the state-of-the-art process in the domain of
functional safety (Safety element our of context [Schneider et al. 2012]). There, different evaluated products of
different suppliers can be combined and the overall system safety can be determined using methods for composite
products which are defined in the standard.

Patterns for Common Criteria Certification — Page 14

92

8 Publications

Acknowledgement

Project partners are NXP Semiconductor Austria GmbH and the Technical University of Graz. The project is
funded by the Austrian Research Promotion Agency (FFG). Further, we want to gratefully thank our Shepard
Azadeh Alebrahim for her continuous and constructive feedback. And finally we want to thank all participants of
the Security Pattern Workshop at EuroPLoP’15 for their feedback.

REFERENCES

BLASUM, H., TVERDYSHEV, S., LANGENSTEIN, B., MAEBE, J., SUTTER, B. D., LECONTE, B., TRIQUET, B., MÜLLER, K., PAULITSCH, M., VON

BLOMBERG, A. S.-F., AND TILLEQUIN, A. 2014. Secure European Virtualisation for Trustworthy Applications in Critical Domains - MILS
Architecture.

COMMON CRITERIA. 2002. Common Criteria Information Statement. Reuse of Evaluation Results and Evidence. (October).
COMMON CRITERIA. 2012a. Common Criteria for Information Technology Security Evaluation. Part 1: Introduction and general model. Version

3.1 Revision 4 (September).
COMMON CRITERIA. 2012b. Common Criteria for Information Technology Security Evaluation. Part 2: Security functional components. Version

3.1 Revision 4 (September).
COMMON CRITERIA. 2012c. Common Criteria for Information Technology Security Evaluation. Part 3: Security assurance components. Version

3.1 Revision 4 (September).
COMMON CRITERIA. 2012d. Common Methodology for Information Technology Security Evaluation. Evaluation methodology. Version 3.1

Revision 4 (September).
COMMON CRITERIA. 2012e. Common Criteria Supporting Document Mandatory Technical Document - Composite product evaluation for Smart

Cards and similar devices. Version 1.2 (April).
COMMON CRITERIA. 2012f. Common Criteria Supporting Document Guidance - Security Architecture requirements (ADV_ARC) for smart

cards and similar devices. Version 2.0 (April).
COMMON CRITERIA. 2015. Common criteria certified products. https://www.commoncriteriaportal.org/products/. Accessed: 2015-

03-30.
KLOHS, D. K. 2012. Software modularisation and the common criteria - a smartcard developer’s perspective.
MAYES, K. AND MARKANTONAKIS, K. 2009. Smart Cards, Tokens, Security and Applications 1 Ed. Springer.
MELLADO, D., FERNÁNDEZ-MEDINA, E., AND PIATTINI, M. 2007. A common criteria based security requirements engineering process for the

development of secure information systems. Comput. Stand. Interfaces 29, 2, 244–253.
RASCHKE, W., ZILLI, M., BAUMGARTNER, P., LOINIG, J., STEGER, C., AND KREINER, C. 2014. Supporting evolving security models for an

agile security evaluation.
SCHNEIDER, R., BRANDSTAETTER, W., BORN, M., KATH, O., WENZEL, T., ZALMAN, R., AND MAYER, J. 2012. Safety element out of context -

a practical approach. SAE Technical Paper .
VERBEEK, F., TVERDYSHEV, S., HAVLE, O., BLASUM, H., LANGENSTEIN, B., STEPHAN, W., NEMOUCHI, Y., FELIACHI, A., WOLFF, B., AND

SCHMALTZ, J. 2014. Formal specification of a generic separation kernel. http://afp.sf.net/entries/CISC-Kernel.shtml, Formal
proof development.

EuroPLoP ’15, July 08 - 12, 2015, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3847-9/15/07...$15.00
DOI: http://dx.doi.org/10.1145/2855321.2855355

Patterns for Common Criteria Certification — Page 15

93

8 Publications

A Framework for Process driven Software Configuration

Andreas Daniel Sinnhofer1, Peter Pühringer, Klaus Potzmader2, Clemens Orthacker2, Christian
Steger1 and Christian Kreiner1

1Institute of Technical Informatics, Graz University of Technology, Austria
2NXP Semiconductors, Gratkorn, Austria

{a.sinnhofer, christian.kreiner, steger}@tugraz.at, p.puehringer@inode.at, {klaus.potzmader, clemens.orthacker}@nxp.com

Keywords: Software Product Lines, Feature Oriented Modelling, Business Processes, Tool Configuration

Abstract: Business processes have proven to be essential for organisations to be highly flexible and competitive in
today’s markets. However, good process management is not enough to survive in a market if the according
IT landscape is not aligned to the business processes. Especially industries focused on software products are
facing big problems if the according processes are not aligned to the overall software system architecture.
Often, a lot of development resources are spent for features which are never addressed by any business goals,
leading to unnecessary development costs. In this paper, a framework for a business process driven software
product line configuration will be presented, to provide a systematic way to configure software toolchains.

1 INTRODUCTION

Business Process (BP) oriented organisations are
known to perform better regarding highly flexible
demands of the market and fast production cycles
(e.g. McCormack and Johnson (2000); Valena et al.
(2013); Willaert et al. (2007)). This is achieved
through the introduction of a management process,
where business processes are modelled, analysed and
optimised in iterative ways. Nowadays, business pro-
cess management is also coupled with a workflow
management, providing the ability to integrate the re-
sponsible participants into the process and to moni-
tor the correct execution of it in each process step.
To administer the rising requirements, so called busi-
ness process management tools are used (BPM-Tools)
which cover process modelling, optimization and exe-
cution. In combination with an Enterprise-Resource-
Planning (ERP) system, the data of the real process
can be integrated into the management process.

In the domain of software products, different
choices in business processes lead to different soft-
ware configurations. To handle variability automat-
ically is a challenging task because the variability of
the process model needs to be reflected in the software
architecture. Further, the actual customer choice dur-
ing the ordering process needs to be mapped to the ac-
cording software features. Due to this, software con-
figuration is often done manually which takes a con-
siderable amount of time during production. Partic-

ularly for resource constraint devices like embedded
systems, it is vital to have a working software configu-
ration process since unnecessary features may occupy
a lot of memory. Further, it is important to have a
software architecture which is synchronised with the
business goals. Otherwise, a lot of resources are spent
for developing and maintaining software components
which are never used anyway. Thus, process aware-
ness is crucial for an efficient development.

Context Aware Business Process modelling is a
technique for businesses living in a complex and
dynamic environment (Saidani and Nurcan (2007)).
In such an environment a company needs to tackle
changing requirements which are dependent on the
context of the system. Such context sensitive busi-
ness process models are able to adapt the execution of
their process instances according to the needs, such
that the company can react faster and more flexible.
This is achieved by analysing the context states of
the environment and mapping these states to the ac-
cording business processes and their related software
system. The problem with such approaches is, that
the used software systems are often developed in-
dependently from each other, although they share a
similar software architecture. Therefore, this work
focuses on the development of a framework which
covers the variability of process models and mapping
such variable process structures to software configu-
ration artefacts such that the software system can be
adapted automatically with respect to its context. This

©2016 Held by SciTePress. Reprinted, with permission. The definitive version was published in Proceedings of the Sixth Interna-
tional Symposium on Business Modeling and Software Design, http://www.is-bmsd.org/BMSD2016/ June 2016.

95

http://www.is-bmsd.org/BMSD2016/

Paper D - BMSD 2016

Quotation
Handling

Approve
Order

Approved?
Order

Handling

Yes

No

Payment

Customer
Requirements

In House?
Procure

Contractors

No

Schedule /
assign work

Yes

...

...

Sub-Process: Order Handling

Figure 1: Exemplary order process to illustrate the basic
concepts defined by Österle (1995): A high level descrip-
tion of the process is split into its sub-processes until a com-
plete work description is reached.

is achieved through software product line engineering
techniques. Thus, only one system needs to be devel-
oped and maintained for whole product families. The
modelling of business process variability is based on
our previous work, which can be found in Sinnhofer
et al. (2015). In particular, a SPLE Tool was used
to systematically reuse expert knowledge in form of
valid process variations, designed in an appropriated
BPM Tool. The integrity of the process variations is
secured by the capabilities of the BPM Tool and a
rich cross functional constraint checking in the SPLE
Tool. This work will extend the framework in order to
be able to map process artefacts to software configu-
rations. Hence, software toolchains can be configured
in an automatic way and the architecture can be kept
aligned with the business goals.

This work is structured in the following way:
Section 2 gives an overview over the used design
paradigm for business processes modelling and Soft-
ware Product Line Engineering techniques which
were needed for the framework. Section 3 summa-
rizes the concept of our work and Section 4 describes
our implementation in an industrial use case. Finally,
Section 5 summarizes the related work and Section 6
concludes this work and gives an overview over future
work.

2 BACKGROUND

2.1 Business Processes

A business process can be seen as a sequence of
tasks/sub-processes which need to be executed in a
specific way to produce a specific output with value
to the costumer (Hammer and Champy (1993)). Ac-

BPM-Tool SPLE-Tool

Business
Processes

Feature Model
Derive /
Update

Feature
Selection

TransformationProcess Variant

M
ai

nt
en

an
ce

 /
 E

vo
lu

ti
on

Process Designer

Production Experts

Production Experts

Derive
Update

Figure 2: Used framework for an automatic business pro-
cess variant generation (adapted from Sinnhofer et al.
(2015)). The grey lines indicate process steps which need
to be done manually.

cording to Österle (1995) the process design on a
macroscopic level (high degree of abstraction) is split
up into sub-processes until the microscopic level is
reached. This is achieved, when all tasks are detailed
enough, so that they can be used as work instructions.
An exemplary order process is illustrated in Figure 1.
As illustrated, the top layer is a highly abstracted de-
scription, while the production steps are further re-
fined on the lower levels. As a result, the lowest
level is highly dependable on the concrete product and
production environment, providing many details for
the employees. Usually, the top layers are indepen-
dent from the concrete plant and the supply chain and
could be interchanged throughout production plants.
Only the lower levels (the refinements) would need to
be reconsidered. Variability of such a process struc-
ture can either be expressed through a variable struc-
ture of a process/sub-process (e.g. adding/removing
nodes in a sequence) or by replacing the process re-
finement with different processes.

Traditionally, processes for similar products are
created using a copy and clone strategy. As a result,
maintaining such similar processes is a time consum-
ing task, since every improvement needs to be propa-
gated manually to the respective processes. To solve
this issue, we proposed a framework to automatically
derive process variants from business process mod-
els by modelling the variable parts of a process us-
ing Software Product Line Engineering techniques in
a previous work (see Sinnhofer et al. (2015)). The
presented framework can be split into four different
phases which are illustrated in Figure 2. In the first
phase, process designers create process templates in a
BPM tool, adding all wished features like documen-
tation artefacts, responsible workers or resources. In
the second phase, the created processes are imported

96

8 Publications

car

Engine Type Gear Type Entertainment System

Electrical Gas Diesel Automatic Manual Radio CD-Player

Figure 3: An exemplary feature model of a car.

into the SPLE tool and added to a feature model. Pro-
cess experts define a comprehensive set of rules and
restrictions so that only valid process variants can be
derived from the model. The third phase is called the
feature selection phase in which production experts
will automatically derive processes for their needs
based on a selection of features. The fourth phase
consists of maintenance and evolution. There, data
is collected and used to improve process designs or
feature selections.

2.2 Software Product Line Engineering

SPLE applies the concepts of product lines to soft-
ware products (Kang et al. (1990)). A Software
Product Line can be seen as a set of domain fea-
tures, which are automatically assembled and con-
figured to a whole software project just by choosing
the wanted features. Instead of writing code for a
whole system, the developer divides the project into
small lightweight features which are implemented in
so called domain artefacts. For this, a software ar-
chitecture is needed in which the variation points and
the respective variants (features) are explicitly mod-
elled. Further, a source code generator is needed
which is able to generate the according software prod-
ucts, based on the according feature selection.

Features are usually modelled in so called ’Fea-
ture Models’ which describe all features of a product
and explicitly states their relationships, dependencies
and additional restrictions between each other. Fig-
ure 3 illustrates an explanatory feature model for a
car. A car consists of three mandatory variation points
(Engine Type, Gear Type, Entertainment System) and
their respective variants. For example, the Engine
Type of the car could be Electrical, Gas or Diesel
powered. The variants of the ’Engine Type’ and ’Gear
Type’ variation point are modelled as alternative fea-
tures which means that exactly one variant needs to
be chosen. In contrast, the ’Entertainment System’ is
modelled in such a way, that either one or both options
can be chosen.

Order Entry
(e.g. Web-Interface)

Process
Variability

Framework

Customer

Domain Experts

Process Variant

Process
Model

Execute Process

Internal Customer

generated

configures

configures

Maintenance
Evolve

influences

Figure 4: Overall conceptual design of the framework. The
”Process Variability Framework” block is described in Fig-
ure 2.

3 VARIABILITY FRAMEWORK

The goal of the developed framework is to imple-
ment a systematic way to keep the business processes
aligned with the IT infrastructure so that development
costs can be reduced and the company is more flexi-
ble to changes of the market. The following Sections
summarizes our developed framework.

3.1 Conceptual Design

The overall conceptual design is based on a feature
oriented domain modelling framework and is dis-
played in Figure 4. As illustrated in the Figure, Do-
main Experts are responsible for operating the ”Pro-
cess Variability Framework” as already described in
Section 2.1. They design process models based on
their domain knowledge and generate process vari-
ants for various types of product platforms. Based
on this variants, the used SPLE tool also generates a
order entry form, stating explicitly which kind of in-
formation a customer needs to submit, to be able to
order the product. For example, if the customer can
decide which applications should run on his device
or if the device can be personalized by adding signa-
tures of the customer. Complex products usually tend
to have a lot of internal stackholders which can be
seen as internal customers. This means that based on
the customer needs, specific stackholders may be ad-
dressed to further submit needed information or even
parts of the product. For instance, if a product can run
on multiple hardware platforms, each of these plat-
forms may be developed by different departments or
even different companies which need to be ordered
and shipped accordingly. To be able to automatically
generate the order entry forms, additional information
needs to be added to the process models. This can be
done by either adding this information into the pro-
cess model itself (i.e. using the BPM tool) or by us-

97

Paper D - BMSD 2016

ing the capabilities of the SPLE tool and mapping this
information to the according process models. Option
two is the more generic approach which also has the
positive side-effect, that the processes itself are not
”polluted” with information that may change in dif-
ferent circumstances. On the other hand, it rises high
requirements to the SPLE tool which needs to sup-
port product family models so that the process model
and the additional information used for the order en-
try can be kept aligned, but separated which increases
the reusability factor.

After all needed data is collected, the process can
finally be executed and the ordered products are man-
ufactured. Especially for new products, it is likely
that during this manufacturing process knowledge is
gained on how to increase the efficiency of the whole
process(es) by introducing specific changes to the
process model. Further, changes to the generated or-
der entry may be identified, which means that specific
parts of the product need to be made selectable. The
advantage of using one core of process models for a
specific family of products is that the gained knowl-
edge can be rolled out in an automatic way for the
whole product family. This means that the required
changes only need to be implemented once.

3.2 Type model

To automatically generate order entry forms from a
feature selection, the used model needs to support the
following types:

• Inputs: Is the abstract concept of different Input
types which are described below.

• None: No special data needs to be submitted and
hence a node (i.e. task in a process) marked with
none will not appear as a setting in the order entry
form.

• Customer Input: Specific data need to be added
from a customer. A node marked with this will
generate an entry in the order entry form of a spe-
cific type. For example a file upload button will
appear if a customer needs to submit specific files.

• Internal Input: Specific data or parts of the prod-
uct needs to be delivered from an internal stack-
holder. This information is directly submitted to
the internal stackholder as a separate order.

Furthermore, the family model should support the
concept of choices (i.e. a customer needs to submit
one of possible n options) and multiple inputs if mul-
tiple submissions are needed for a single node. Also
multiple inputs of multiple different stackholder need
to be supported.

3.3 Process driven Software Toolchain
configuration

An established process management, which is able to
generate order entry forms and trigger internal pro-
cesses, is a big step towards good business manage-
ment. However, to be successful on the market it is
not enough to just focus on well managed processes,
but also on an aligned IT infrastructure. Hence, the
big remaining challenge is having an IT infrastruc-
ture which is able to be configured directly from the
according business processes.

For illustration purposes let’s consider the follow-
ing example: A company is developing small embed-
ded systems which are used as sensing devices for the
internet of things. The device is offered in three dif-
ferent variants with the following features:

• Version 1: Senses the data in a given time inter-
val and sends the recorder signal to a web-server
which is used for post-processing.

• Version 2: Additionally to the features of
Version 1, this version allows encryption of the
sensed data using symmetric cryptography before
it is sent to the web-server. This prevents that third
parties are able to read the data. For simplicity, we
assume that this key is provided in plain from the
customer.

• Version 3: Additionally to the features of
Version 2, this version also allows customer ap-
plications to be run (e.g. data pre-processing rou-
tines) on the system.

It is not economic feasible to personalize each de-
vice manually if it is sold in high quantities. Fur-
ther, establishing three different order processes using
three different versions of customization toolchains
will result in higher maintenance efforts. To summa-
rize the findings of this short example, it is fundamen-
tal to have a software architecture which is synchro-
nized with the according business process(es). This
means that variable parts of the process model need to
be reflected by a variable software architecture. Fur-
ther, minor changes to the process model (e.g. addi-
tion of new configuration settings) should not lead to
huge development efforts since – ideally – the soft-
ware architecture does not need to be changed. These
requirements lead to the architecture displayed in Fig-
ure 5. As illustrated, the tool is basically an interpreter
which can be ”dynamically programmed” for the ac-
tual order. This means that variability of the archi-
tecture is gained by shifting features from the imple-
mentation phase to the configuration phase. To en-
sure that such freedom is not misused, it is necessary
to enforce specific rules in the Interpreter Tool (e.g.

98

8 Publications

Process
Model

Abstract Class
Hierarchy

Generate

Implementation
Instantiate

XSD Schema

XMLOrder Entry
Converter

Interpreter Tool
Output

Restrictions

Customer
Submissions Converter

XML Product Configuration

Defined per Product Family

Figure 5: The architecture of the software tool responsible for generating the wished product outcome.

security requirements). Based on the Process Model
of the Process Variability Framework, a schema file
is created which states all possible operations and all
additional language primitives (like conditional state-
ments, etc.) the Interpreter Tool can perform. This
step is semi-automatic which means that only a skele-
ton of the needed functionality can be generated auto-
matically.

For illustration purposes we will reconsider the
previous example: Basically, there are three different
order processes, where in the first case a customer can
customize a connection string for his web-server. In
the second case he can further submit a key which is
stored onto the nodes and in the third case executables
can be submitted to be loaded to the chip. Taking this
into account, the XML illustrated in Listing 1 can be
generated. Each function consists of a Configuration
block and a Translate block. The Configuration block

Listing 1: Generated XML based on the Order Entry. The
Translate blocks need to be edited manually by a developer.
1 <? xml v e r s i o n =” 1 . 0 ” encoding =”UTF−8” ?>
2 <Funct ions>
3 <Funct ion id =” WebServer ”
4 minOccurs=” 1 ”
5 maxOccurs=” 1 ”>
6 <Conf igur a t ion>
7 <Parameter name=” C o n n e c t i o n ” type =” i p A d d r e s s ” />
8 </ Conf igura t ion>
9 <T r a n s l a t e> . . . </ T r a n s l a t e>

10 </ Funct ion>
11 <Funct ion id =” Encryp t ionKey ”
12 minOccurs=” 0 ”
13 maxOccurs=” 1 ”>
14 <Conf igura t ion>
15 <Parameter name=”Key” type =” h e x s t r i n g ” />
16 </ Conf igura t ion>
17 <T r a n s l a t e> . . . </ T r a n s l a t e>
18 </ Funct ion>
19 <Funct ion id =” I n s t a l l A p p l i c a t i o n ”
20 minOccurs=” 0 ”
21 maxOccurs=” unbounded ”>
22 <Conf igu ra t ion>
23 <Parameter name=” B in a r y ” type =” f i l e U r i ” />
24 <Conf igu ra t ion>
25 <T r a n s l a t e> . . . </ T r a n s l a t e>
26 </ Funct ion>
27 </ Funct ions>

is used to indicate which data needs to be provided
from the customer submissions (i.e. from the ”real”
product configuration) and how often they can occur
(configuration safety). This Configuration blocks are
further used to generate a schema file which is used
by the converter tool to convert the Customer Submis-
sions into the needed XML structure. The Translate
block defines how the submitted data is processed.
This cannot be generated and hence a developer is
needed who needs to define this transformation based
on the language primitives of the Interpreter Tool.
This needs to be done only once for a whole product
family. For this particular example, only a Store-Data
and an Install-Application routine would need to be
offered by the interpreter. Additional restrictions are
domain depended and could contain in that example
the following checks: Verification that the submitted
key is of reasonable strength (e.g. AES key with a

Listing 2: Exemplary generated Configuration file based on
customer submissions. Two different versions are shown.
The first example illustrates a ”Version 3” product and the
second one a ”Version 1” product.

1 <? xml v e r s i o n =” 1 . 0 ” encoding =”UTF−8” ?>
2 <CustomerOrder>
3 <WebServer>
4 <Connection>X.X.X.X</ Connection>
5 </ WebServer>
6 <EncryptionKey>
7 <Key>0 x01020304 . . .<Key>
8 </ EncryptionKey>
9 <I n s t a l l A p p l i c a t i o n>

10 <Binary> f i l e : / / orderXYZ / app1 . e l f</ Binary>
11 </ I n s t a l l A p p l i c a t i o n>
12 <I n s t a l l A p p l i c a t i o n>
13 <Binary> f i l e : / / orderXYZ / app2 . e l f</ Binary>
14 </ I n s t a l l A p p l i c a t i o n>
15 </ CustomerOrder>

1 <? xml v e r s i o n =” 1 . 0 ” encoding =”UTF−8” ?>
2 <CustomerOrder>
3 <WebServer>
4 <Connection>X.X.X.X</ Connection>
5 </ WebServer>
6 </ CustomerOrder>

99

Paper D - BMSD 2016

minimum length of 16 bit) and that the submitted ap-
plications are protected by a signature of the customer
to ensure that they are not replaced by a malicious
third party. If a product is ordered, the filled order
entry (i.e. customer submissions) is converted into a
configuration file which instantiates the specific fea-
tures of the product. For example Listing 2 shows the
generated Configuration file for a ”Version 3” product
(top one) and a ”Version 1” product (bottom one).

4 INDUSTRIAL CASE STUDY

In this section an overview over our industrial case
study is given. The implemented business processes
of our industrial partner are controlled by an SAP
infrastructure and are designed with the BPM-Tool
Aeneis. Further, pure::variants is used as SPLE tool
to manage the variability of the business processes.
Thus, our implemented prototype is also based on
pure::variants and Java.

4.1 SPLE-Tool: pure::variants

pure::variants is a feature oriented domain modelling
tool which is based on Eclipse. As such, it can easily
be extended based on Java plug-in development. Dur-
ing the implementation of this project, five different
plug-ins where developed:
• An extension to the import plug-in which was de-

veloped in our previous work. It assists the Pro-
cess Designers in modelling cross functional re-
quirements and providing the needed information
for the code generators.

• An extension to the internal model compare en-
gine for comparing different versions of created
feature models with each other.

• An extension to the internal model transformation
engine to convert the feature selection of the pro-
cess model into the according order entry form.
This also generates the back-end to trigger pro-
cesses for internal stackholders.

• Additions to the internal model check engine
to model and create only valid processes (e.g.
checks related to the feature selection, the consis-
tency of the feature model, etc.)

• Generator Tools which are able to generate the
skeleton of the schema file (as described in Sec-
tion 3.3) and the order entry form (a gener-
ated Web-Interface). Additionally, converter tools
were written which are converting the generated
forms and received submissions into the related
XML files.

4.2 Implementation of the interpreter
tool

As mentioned in Section 3.3, the class hierarchy
should be generated from a schema file, thus we used
the tool Jaxb (a Java architecture for XML binding)
to generate the bare class hierarchy which needs to
be implemented by the software developers. Since
the creation of the schema file is semi-automatic, our
developed framework (implemented in pure::variants)
opens a dialogue which hints the domain expert to
check the validity of the schema file to ensure that
the changes to the processes are always propagated to
the schema file. Since our industry partner is working
in a safety and security critical domain, additional re-
strictions are implemented. Formal verification rules
are implemented to check that confidential data is not
leaked and rules are defined to check the configuration
safety such that no invalid configuration can be sub-
mitted and executed. These restrictions will be part of
a future publication.

4.3 Evaluation

The framework was successfully deployed for two
different product families which are based on the
same Process Model. The time was measured to im-
plement the initial system and the overhead to support
the two systems to get an effort estimation which can
be compared with a traditional software development.
We use the term ”traditional software development”
for a software development with ad-hoc (or near to ad-
hoc) software architecture which means that multiple
different systems are designed almost independently.
This leads to the situation that only a little code base
is shared between each software project since most
of the code is optimized for single purposes. How-
ever, this code would be reusable if adaptations of the
interfaces / implementations would have been consid-
ered. The effort for the traditional software develop-
ment was based on the real implementation time for
the first system and an effort estimation to port the
existing family to the new one. These numbers were
given by the responsible developers. As illustrated in
Table 1, the break-even point will be between 3 to 4

Table 1: Effort measurements and estimations in man-
month to develop the systems.

Framework Traditional
Base System 12 -

Product Fam. 1 1 6
Product Fam. 2 0.5 4 - 5
Overall 14,5 10 - 11

100

8 Publications

systems using a curve fitting interpolation. This num-
ber also correlates to the typical number presented in
relevant software product line publications (e.g. Pohl
et al. (2005)). Additionally, the maintenance cost can
be reduced since fixing problems in one product fam-
ily will fix this issue in all others as well.

5 RELATED WORK

As stated in the survey of Fantinato et al. (2012),
major challenges in the field of business process vari-
ability modelling are related to the reaction time of
process changes and of the creation and selection of
the right business process variants, which are also
main topics in our framework since the time to adopt
the IT infrastructure to the changed business pro-
cesses can be reduced with the new framework.

Derguech (2010) presents a framework for the
systematic reuse of process models. In contrast to this
work, it captures the variability of the process model
at the business goal level and describes how to inte-
grate new goals/sub-goals into the existing data struc-
ture. The variability of the process is not addressed in
his work.

Gimenes et al. (2008) presents a feature based
approach to support e-contract negotiation based on
web-services (WS). A meta-model for WS-contract
representation is given and a way is shown how to in-
tegrate the variability of these contracts into the busi-
ness processes to enable a process automation. It does
not address the variability of the process itself but en-
ables the ability to reuse business processes for differ-
ent e-contract negotiations.

While our used framework to model process vari-
ability reduces the overall process complexity by
splitting up the process into layers with increas-
ing details, the PROVOP project (Hallerbach et al.
(2009a,b) and Reichert et al. (2014)) focuses on the
concept, that variants are derived from a basic pro-
cess definition through well-defined change opera-
tions (ranging from the deletion, addition, moving of
model elements or the adaptation of an element at-
tribute). In fact, the basic process expresses all pos-
sible variants at once, leading to a big process model.
Their approach could be beneficial considering that
cross functional requirements can be located in a sin-
gle process description, but having one huge process
is also contra productive (e.g. the exchange of parts
of the process is difficult).

The work Gottschalk et al. (2007) presents an ap-
proach for the automated configuration of workflow
models within a workflow modelling language. The
term workflow model is used for the specification

of a business process which enables the execution
in an enterprise and workflow management system.
The approach focuses on the activation or deactiva-
tion of actions and thus is comparable to the PROVOP
project for the workflow model domain.

Rosa et al. (2008) extends the configurable pro-
cess modelling notation developed from Gottschalk
et al. (2007) with notions of roles and objects provid-
ing a way to address not only the variability of the
control-flow of a workflow model but also of the re-
lated resources and responsibilities.

The Common Variability Language (CVL Haugen
et al. (2013)) is a language for specifying and resolv-
ing variability independent from the domain of the ap-
plication. It facilitates the specification and resolution
of variability over any instance of any language de-
fined using a MOF-based meta-model. A CVL based
variability modelling and a BPM model with an ap-
propriate model transformation could lead to similar
results as presented in this paper.

The work of Zhao and Zou (2011) shows a frame-
work for the generation of software modules based on
business processes. They use clustering algorithms
to analyse dependencies among data and tasks, cap-
tured in business processes. Further, they group the
strongly dependent tasks and data into a software
component.

6 CONCLUSION AND OUTLOOK

The reuse of business process models is an im-
portant step for an industrial company to survive in a
competitive market. But only with an integrated view
of the according IT landscape it is possible to raise
the efficiency of the overall business. With this work
we proposed a way to combine the benefits of soft-
ware product line engineering techniques with the ca-
pabilities of a business process modelling tool. This
work provides a framework for the systematic reuse
of business processes and the configuration of soft-
ware toolchains used during the actual production of
the product. The new introduced framework is able
to synchronize variable process structures with a vari-
able software architecture. This means that changes
to the processes will automatically generate a skele-
ton of the software artefacts which need to be imple-
mented by the developers. For that, the framework
uses XML data binding to bind specific software fea-
tures to a specific set of configurable artefacts which
need to be submitted by customers (internal and exter-
nal) during the order process. This is done in an au-
tomatic and managed way so that the order interface
is always aligned to the software toolchains. More-

101

Paper D - BMSD 2016

over, the overall robustness of the software toolchains
is increased since the same code base is shared for a
lot of different product families leading to a higher
customer satisfaction.

Future work will address the semi-automatic cre-
ation of the schema file which is used to keep the soft-
ware architecture aligned to the process models. An-
other point for improvement is the fact that additional
security requirements are implemented and mapped
manually to the according product configurations. In
a future work, we will investigate a way to map these
security requirements to the according process model
which enables an automatic way to bind these require-
ments to the product families and enforce them in the
process. This is important especially if a certification
of the products is intended.

ACKNOWLEDGEMENT

The project is funded by the Austrian Research
Promotion Agency (FFG). Project Partners are NXP
Semiconductor Austria GmbH and the Technical Uni-
versity of Graz. We want to gratefully thank Danilo
Beuche from pure::systems for his support.

REFERENCES
Derguech, W. (2010). Towards a Framework for Business

Process Models Reuse. In The CAiSE Doctoral Con-
sortium.

Fantinato, M., Toledo, M. B. F. d., Thom, L. H., Gimenes, I.
M. d. S., Rocha, R. d. S., and Garcia, D. Z. G. (2012).
A survey on reuse in the business process management
domain. International Journal of Business Process In-
tegration and Management.

Gimenes, I., Fantinato, M., and Toledo, M. (2008). A Prod-
uct Line for Business Process Management. Software
Product Line Conference, International, pages 265–
274.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers,
M. H., and Rosa, M. L. (2007). Configurable Work-
flow Models. International Journal of Cooperative
Information Systems.

Hallerbach, A., Bauer, T., and Reichert, M. (2009a). Guar-
anteeing Soundness of Configurable Process Variants
in Provop. In Commerce and Enterprise Computing,
2009. CEC ’09. IEEE Conference on, pages 98–105.
IEEE.

Hallerbach, A., Bauer, T., and Reichert, M. (2009b). Issues
in modeling process variants with Provop. In Ardagna,

D., Mecella, M., and Yang, J., editors, Business Pro-
cess Management Workshops, volume 17 of Lecture
Notes in Business Information Processing, pages 56–
67. Springer Berlin Heidelberg.

Hammer, M. and Champy, J. (1993). Reengineering the
Corporation - A Manifesto For Business Revolution.
Harper Business.

Haugen, O., Wasowski, A., and Czarnecki, K. (2013). Cvl:
Common variability language. In Proceedings of the
17th International Software Product Line Conference,
SPLC ’13.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (foda)
feasibility study.

McCormack, K. P. and Johnson, W. C. (2000). Business
Process Orientation: Gaining the E-Business Com-
petitive Advantage. Saint Lucie Press.

Österle, H. (1995). Business Engineering - Prozess- und
Systementwicklung. Springer-Verlag.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer.

Reichert, M., Hallerbach, A., and Bauer, T. (2014). Lifecy-
cle Support for Business Process Variants. In Jan vom
Brocke and Michael Rosemann, editor, Handbook on
Business Process Management 1. Springer.

Rosa, M. L., Dumas, M., ter Hofstede, A. H. M., Mendling,
J., and Gottschalk, F. (2008). Beyond control-flow:
Extending business process configuration to roles and
objects. In Li, Q., Spaccapietra, S., and Yu, E., editors,
27th International Conference on Conceptual Mod-
eling (ER 2008), pages 199–215, Barcelona, Spain.
Springer.

Saidani, O. and Nurcan, S. (2007). Towards context aware
business process modelling. In 8th Workshop on Busi-
ness Process Modeling, Development, and Support
(BPMDS07), CAiSE, volume 7, page 1.

Sinnhofer, A. D., Pühringer, P., and Kreiner, C. (2015).
varbpm - a product line for creating business process
model variants. In Proceedings of the Fifth Interna-
tional Symposium on Business Modeling and Software
Design, pages 184–191.

Valena, G., Alves, C., Alves, V., and Niu, N. (2013). A
Systematic Mapping Study on Business Process Vari-
ability. International Journal of Computer Science &
Information Technology (IJCSIT).

Willaert, P., Van Den Bergh, J., Willems, J., and De-
schoolmeester, D. (2007). The Process-Oriented Or-
ganisation: A Holistic View - Developing a Frame-
work for Business Process Orientation Maturity.
Springer.

Zhao, X. and Zou, Y. (2011). A business process-driven
approach for generating software modules. Software:
Practice and Experience, 41(10):1049–1071.

102

8 Publications

Patterns to establish a secure communication channel
ANDREAS DANIEL SINNHOFER, Graz University of Technology
FELIX JONATHAN OPPERMANN, Graz University of Technology
KLAUS POTZMADER, NXP Semiconductors
CLEMENS ORTHACKER, NXP Semiconductors
CHRISTIAN STEGER, Graz University of Technology
CHRISTIAN KREINER, Graz University of Technology

Nowadays, cyber-physical systems (CPS) are omnipresent in our daily lives and are increasingly used to process confidential data.
While the variety of portable devices we use excessively at home and at work is steadily increasing, their security vulnerabilities
are often not noticed by the user. Therefore, portable devices such as wearables are becoming more and more interesting for
adversaries. Additionally, the increasing functionalities like internet capabilities, cameras, microphones, GPS trackers and other
senor devices make them an interesting target for hacking. Furthermore, such CPS devices are often deployed in unsupervised
and untrusted environments raising the question about privacy and security to a crucial topic. Thus, a robust and secure
software design is required for the implementation of cryptographic communication protocols and encryption algorithms. In our
opinion, Software-Patterns have proven to be an efficient way to support the development of such systems. Therefore, we will
present patterns for solving the issue of Man-in-the-middle attacks. The presented patterns provide generic guidance on how to
establish secure communication channels based on symmetric and / or asymmetric cryptography. Further, a selection graph is
presented which helps to find the appropriate pattern in a specific context.

CCS Concepts: •Security and privacy→ Cryptography; •Software and its engineering→ Patterns;

Additional Key Words and Phrases: Man-In-The-Middle, Secure Channel, Secure Communication

ACM Reference Format:
Andreas Daniel Sinnhofer, Felix Jonathan Oppermann, Klaus Potzmader, Clemens Orthacker, Christian Steger, and Christian
Kreiner. 2016. Patterns to establish a secure communication channel. jn , , Article (July 16), 21 pages.
DOI: http://dx.doi.org/10.1145/3011784.3011797

1. INTRODUCTION

Security was long treated as an orphan in our today’s society since many customers have not cared
much about privacy. Therefore, companies weren’t interested in investing time and money into ”fea-
tures” a customer does not want to have and is not willing to pay. This traditional thinking of security
changed when hacking systems was getting more frequent and the economic loss for companies started
to get bigger [Bianca Stanescu 2012; Kevin M. McGinty 2015; Information is Beautiful 2016]. Further,
the interest of the society in secure systems increased especially after Edward Snowden has published

This work is supported by the Austrian Research Promotion Agency (FFG).
Author’s address: Andreas Daniel Sinnhofer, Felix Jonathan Oppermann, Christian Steger, Christian Kreiner, Institut fuer
Technische Informatik, Inffeldgasse 16, 8010 Graz; Klaus Potzmader, Clemens Orthacker, NXP Semiconductors, Mikronweg 1,
8101 Gratkorn;
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 16 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4074-8/16/07-ART $15.00
DOI: http://dx.doi.org/10.1145/3011784.3011797

©2016 Held by the authors. Reprinted, with permission. The definitive version was published in Proceedings of the 21st European
Conference on Pattern Languages of Program, July 2016.

103

Paper E - EuroPloP 2016

:2 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

documents proving that national agencies hacked public systems and spies the daily life (Gemalto -
Hack [The Intercept 2014]). As a consequence of hacks, private data like credit card numbers, pin
codes and other user credentials are exposed to the hacker. Thus, more and more effort is invested into
developing secure systems to countermeasure these trends. Especially communication systems like
messaging services are noticing a steady growth in user numbers after the publication of the Gemalto
Hack [Rob Price 2015].
In this work, we will present a catalogue of patterns which is designed to support students in choosing
a pattern for a secure communication between parties to omit the Man-In-The-Middle (MITM) attack
(see Section 2.7). Thus, basic cryptographic principles are briefly summarized in Section 2, such that
the reader is aware about the used concepts. Since the variety of attacks strongly depends on the use-
case, we concentrate our solutions to tackle the classic MITM attack and replay attacks an MITM could
perform (see Section 2.7 and 2.8).
The paper is structured in the following way: Section 2 gives a short introduction to cryptographic
principles and introduces the motivating Man-In-The-Middle problem. Section 3 presents the investi-
gated patterns, Section 4 gives guidance on how to choose one of the presented patterns and Section 5
summarizes this work.

2. BACKGROUND

This Section summarizes the basic cryptographic concepts which are used in the presented patterns
and illustrates the motivating MITM attack and replay attack.

2.1 Random number generators

Random number generators are used to generate random numbers which are required for almost
every cryptographic system. For example, such generators can be used to generate new random keys
to protect a specific message. The strength of such random numbers is called entropy which is a degree
for ”the uncertainty of an outcome”1. Such number generators can be split into the following two groups:

—True Random Number Generators (TRNG)
—Pseudo-Random Number Generators (PRNG)

PRNG are based on algorithms that use mathematical equations or a list of pre-calculated values
to generate a sequence of numbers which appear to be random to the user. As a consequence, such
systems can be broken by observing the output of the random number generator. Thus, the entropy
of such generators are low compared to TRNG. In difference, TRNG are usually based on a specific
physical phenomenon to produce a random sequence of numbers. A commonly used example is the
thermal noise of a resistor or the radioactive decay of a material. As a result, the sequence of values is
not guessable by observing the previous values. As such, most cryptographic system require TRNG to
hold the security statements.

2.2 Symmetric cryptography

Symmetric cryptography is the term used for encryption algorithms which are using the same key
for the encryption and the decryption operation. Thus, the receiver and the sender of a message need
to know the secret key to be able to establish a secure communication. If the conditions for a one-
time pad are fulfilled (see enumeration below), a symmetric key offers a security strength which is
proportional to the key length. In contrast, public key cryptography requires longer keys to achieve the
same bit security strength (cf. Section 2.3 and Table III). One of the most popular symmetric encryption

1https://www.vocabulary.com/dictionary/entropy

104

8 Publications

Patterns to establish a secure communication channel • :3

algorithms is the Advanced Encryption Standard (AES) [Contel Bradford 2014]. Today’s CPUs usually
have hardware acceleration units for AES encryption / decryption operations, so that such operations
can be calculated fast and power efficient even on small embedded devices. Further, symmetric One-
Time pads are mathematically unbreakable if the following conditions are met [Menezes et al. 1996]:

—The length of the key is as long as the message to encrypt.
—The key must be truly random (i.e. using a True Random Number Generator (TRNG)).
—The key must only be used once.

Solving the issue of finding the key is in this case as difficult as directly guessing the message which
was encrypted. Consider the following example:
Alice wants to send the message ”HELLO” to Bob encrypted with the one-time pad ”IXELQ”. The
encryption operation is done by calculating the modular addition of the message and the Key (see
Table I).

’H’ (7) ’E’ (4) ’L’ (11) ’L’ (11) ’O’ (14) Message
’I’ (8) ’X’ (23) ’E’ (4) ’L’ (11) ’Q’ (16) Key

(7 + 8) mod 26 (4 + 23) mod 26 (11 + 4) mod 26 (11 + 11) mod 26 (14 + 16) mod 26 Modular Addition
’P’ (15) ’B’ (1) ’P’ (15) ’W’ (22) ’E’ (4) Cryptogram

Table I. : Exemplary encryption using a one-time pad; Alphabet ’A’ - ’Z’ (26 letters, A = 0, B = 1, ...)

When an attacker tries to recover the message, he can choose keys with which every 5 letter long
message can be decrypted. As a result, he is not able to reliably choose the right message out of all
possible candidates. For example, if the attacker picks the key ”TNYLA” he decrypts the cryptogram to
the following message candidate:

’P’ (15) ’B’ (1) ’P’ (15) ’W’ (22) ’E’ (4) Cryptogram
’T’ (19) ’N’ (13) ’Y’ (24) ’L’ (11) ’A’ (1) Key Candidate

(15 - 19) mod 26 (1 - 13) mod 26 (15 - 24) mod 26 (22 - 11) mod 26 (4 - 1) mod 26 Modular Subtraction
’W’ (22) ’O’ (14) ’R’ (17) ’L’ (11) ’D’ (3) Message Candidate

Table II. : Exemplary decryption using a wrong key; Alphabet ’A’ - ’Z’ (26 letters, A = 0, B = 1, ...)

Instead of reconstructing the original message ”HELLO”, the attacker decodes the word ”WORLD”
which seems to be a valid message to the attacker if he does not have any further information about
the message itself.

2.3 Public key / Asymmetric cryptography

In difference to symmetric cryptography, public key cryptography is based on two keys, where one key
is used to encrypt messages (public) and another key is used to decrypt the cryptograms (private).
One exception to this rule are digital signatures (see Section 2.5) where the private key is used for
the encryption operation and the public key for the decryption operation. To ensure such a property,
both keys are related to a specific mathematical function. For example the RSA algorithm is based on
the factorization problem of big prime numbers [Jonsson and Kaliski 2003] and the ECC algorithm
is based on the elliptic curve discrete logarithm problem [Mcgrew et al. 2011]. From a computational

105

Paper E - EuroPloP 2016

:4 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

point of view, the elliptic curve discrete logarithm problem is harder to break than the integer fac-
torization problem. As a result, ECC keys can be shorter compared to RSA keys to achieve the same
bit-security strength. Table III illustrates the key bit length recommendations published from the Na-
tional Institute of Standards and Technology (NIST) (see [Elaine Barker 2016]).

Security Strength Symmetric Encryption Algorithm Asymmetric: RSA Asymmetric: ECC
≤ 80 Bits 2 TDEA (128 Bits) 1024 Bits 160 - 233 Bits
112 Bits 3 TDEA (192 Bits) 2048 Bits 224 - 255 Bits
128 Bits AES-128 (128 Bits) 3072 Bits 256 - 383 Bits
192 Bits AES-192 (192 Bits) 7680 Bits 384 - 511 Bits
256 Bits AES-256 (256 Bits) 15360 Bits 512+ Bits

Table III. : Bit Security Strength and the according key bit length recommen-
dations for different algorithms [Elaine Barker 2016]

2.4 Key derivation functions (KDF)

Key derivation functions (KDF) are functions which are used to systematically derive variants of a
specific key using pseudo-random functions. These KDFs are cryptographic one way functions, which
means that an attacker does not gain knowledge about the input of the KDF by observing the out-
put value. One common use case are so called Key hierarchies where one secret master key is used to
derive individual keys. An example would be a server which holds the secret master key. Each client
will receive an individual derived key which is used to protect the communication between the client
and the server. As a result, the Server is able to communicate with every client, but no client is able
to eavesdrop the communication between the server and another client. Another common use case for
KDFs is Key Stretching [Kelsey et al. 1998], where a given short or weak key (e.g. a user defined pass-
word) is stretched to a longer key. Further, KDFs are used in key-agreement protocols to derive session
keys (e.g. Diffie-Hellman key agreement [Rescorla 1999], password based key agreements [Bellovin
and Merritt 1993b], etc.).

2.5 Digital Signatures

Digital signatures are used to prove that a specific message was sent by a specific person. This is done
by encrypting the hash of the message using the private key of an asymmetric key pair and appending
this signature to the message itself. If the receiver of the message has the public key of the sender, he
can check if the decrypted signature matches the hash of the message. If not, either the message was
altered or the signature was created with a different key. This technique is for example used for signed
email messages to prevent the problem of email spoofing [P Ramesh Babu D.Lalitha Bhaskari 2010].

2.6 Certificates

Certificates are used to prove that a specific public key belongs to a specific person. Usually, certificates
are protected with a signature created from a certificate authority (CA) which is responsible to check
the identity of the party requesting the certificate. As a result, if the receiver trusts the CA, he can be
sure that messages encrypted with the public key can only be read by the specific person. Another op-
tion is the use of self-signed certificates, where the certificate is signed with the corresponding private
key of the certificates public key. Thus, the issuer of the certificate acts as a CA for his own certificate.
A Certificate is valid until the expiration date is reached or it was added to a revocation list. Revocation
lists can be published by the according CA or can be created manually.

106

8 Publications

Patterns to establish a secure communication channel • :5

2.7 Man-In-The-Middle Attack

When two parties are communicating via an insecure channel (like the internet) every party which is
involved in routing, can principally eavesdrop the communication of those two. Encrypting the commu-
nication channel can help to circumvent a Man-In-The-Middle attack, but encrypting alone does not
guarantee a secure communication. For example, Figure 1 illustrates the Man-In-The-Middle attack.
In this case one party referred to as Alice wants to talk to another party called Bob, while a third party
(Eve) is trying to eavesdrop the communication. For instance Alice wants to receive a secret message
from Bob and thus she sends Bob a public key so that Bob can encrypt his secret using that public key.
Consequently only Alice should be able to decrypt the message. The problem is that neither Alice nor
Bob can assure that they are directly talking to each other without having a Man-In-The-Middle. In
this case Eve can act as such by interrupting the communication between Alice and Bob and replacing
the public key of Alice with her own key. In that way she can always decrypt the received messages
of Bob and send the re-encrypted message to Alice so that none of these two will ever notice that the
communication was eavesdropped.

Alice

Eve

Bob

Re-Encryption

Alice’s public key

Eve’s public key

Eve’s private key

Eve’s public key
Alice’s public key

Alice’s private key

Fig. 1: The Man-In-The-Middle attack

One solution of this problem could be the use of certificates (cf. Section 2.6). In that way, the pre-
sented Man-In-The-Middle attack is no longer possible since Eve cannot replace the certificate of Alice
without Bob noticing that the received certificate is either corrupt (signature is invalid) or belongs to
someone else. Only if the CA is working together with Eve (the CA issues Eve a certificate with Alice’s
identity), or if Eve was able to break the signature creation key of the CA, eavesdropping is possible.
Self-signed certificates can be considered as a solution to the problem of a compromised CA, but only if
the self-signed certificate is known to Bob and is not replaced with any other certificate. This implies
that the certificate was delivered to Bob in such a way, that he can be sure that the certificate was
self-signed by Alice. Otherwise, Eve could have created a self-signed certificate, claiming that Eve is
Alice.

2.8 Replay Attack

Another related attack is the replay-attack. In this scenario, the attacker was not able to eavesdrop the
key agreement between Alice and Bob and hence was not able to read the communication in plain. At
first sight, this does not seem to be a problem, but an attacker may be able to initiate specific actions by

107

Paper E - EuroPloP 2016

:6 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

resending previously eavesdropped encrypted messages. For example, opening a car door by sending
a recorded signal of a wireless car door opener can be achieved2. In this example, an attacker placed
a small device onto the car which was able to record signals from a wireless car door opener. Further
this device was able to jam the communication channel so that the car is not able to receive commands
properly. The jamming is necessary because the car remembers which codes were received and will
not open the door if an already used code was received a second time. When the car owner pressed the
button to open the door, the device recorded the command and jammed the channel so that the car was
not able to receive the message. When the car owner pressed the opening button a second time, the
device repeated the procedure, but this time it sent the old recorded command so that the car opened
the door.

2http://www.techinsider.io/samy-kamkar-keyless-entry-car-hack-2015-8

108

8 Publications

Patterns to establish a secure communication channel • :7

3. PATTERNS

In this Section, we will present three patterns to protect the communication between multiple parties
against Man-In-The-Middle and replay attacks. All presented patterns are extensions of the ”Secure
Channels” pattern [Schumacher et al. 2005] giving a more detailed solution in specific situations.
The first pattern uses the concept of symmetric cryptography (see Section 3.1), the second pattern
uses third party based authentication (see Section 3.2) and the third pattern combines public key and
symmetric key cryptography (see Section 3.3).

3.1 Pattern: Symmetric key cryptography

Context:

A device with limited computational power wants to establish a secure channel with another party
via an insecure channel. A MITM can eavesdrop or change every sent message package. Further the
MITM is able to resent previously eavesdropped packages (replay attack).

Problem:

No secret data shall be exposed to a third party listening or intercepting the communication. No pre-
viously recorded message package should trigger an unwanted action (e.g. a payment transaction).

Example:

A small embedded system – such as a payment card – is communicating with a host to perform a pay-
ment transaction. The device needs to answer requests from the host within a specified time interval.

Forces:

—Computational Complexity: While the communication shall be secure, the computational over-
head of the applied protocol shall be as small as possible.

—Resource constraints: Storing long asymmetric keys may be a problem on devices with limited
amount of memory (e.g. small Internet of Things (IoT) devices). According to Table III an AES-128
key is up to 48 times smaller than an RSA-3072 private key (stored as modulus and private exponent)

—Eavesdropping: Each sent communication package may be eavesdropped or replaced by a mali-
cious third party.

Solution:

Core-Solution:
Encryption of the communication based on a shared symmetric secret between the two communica-
tion parties (abbreviated as Alice and Bob in the following). To establish the first communication, a
handshake is required for authentication.

Detailed solution:
The solution to this problem is using a shared secret key. In the simple case, this shared secret is used
to encrypt all messages sent between Alice and Bob. Thus, a potential eavesdropper (Eve) can only
eavesdrop the communication by brute-forcing the shared secret key. However, symmetric encryption
without further techniques does not solve the problem of replay attacks (as described in Section 2.8).
To protect the system against such attacks, newly generated session keys should be used such that Eve
cannot profit from recorded messages. Moreover, challenges sent for authentication should use random
numbers and time-stamps. The principle sequence of operations is illustrated in Figure 2 – assuming
that Bob wants to start a communication – and is described in the following:

109

Paper E - EuroPloP 2016

:8 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

verify that Bob is known.

Send Challenge(random number + time stamp)

calculate
hash(Challenge + shared secret)

Answer: hash(Challenge + shared secret)

verify hash

Session Key Agreement

Hi, it’s me, Bob.
a:Alice b:Bob

Fig. 2: Authentication based on a shared secret key. Bob is authenticated to Alice

(1) To start a communication, Bob sends an unencrypted message to Alice. This message contains
information about Bob such that Alice knowns which shared secret she shall use for the further
communication. If Bob is unknown to Alice, she will immediately terminate the communication.

(2) Alice answers the request with a challenge for authentication purposes. The sent challenge incor-
porates a random number and a time-stamp such that replay attacks can be detected.

(3) Bob answers this challenge with a calculated hash value (e.g. using an HMAC implementation).
Input of the hash operation is the challenge received from Alice and the shared secret key.

(4) Alice calculates the same hash as Bob and verifies if both are matching. If not she will terminate
the communication.

The presented solution covers the case that Bob is authenticated to Alice. For some applications this
may not be sufficient. To ensure a mutual authentication, Bob also needs to send a challenge to Alice.
In the simple case, this can be achieved by repeating the steps 2 to 4 with Bob as the sender of the
challenge.

Further considerations:

The problem which remains is how to choose or how to establish the initial shared secret. This needs to
be done using a different channel which can either be considered as secure, or the way the data is sent
via this channel can be considered as being secure. For example, a password based secret can be used
which is sent to Bob in a secure way. This could be achieved via a key shipment split on multiple key
shares using trusted couriers (see [Payment Card Industry Security Standards Council 2016; National
Institute of Standards and Technology (NIST) 2016; International Organization for Standardization
(ISO) 2006] for recommendations). Depending on the use-case a ”face-to-face” meeting may also be an
option, where the shared secret is exchanged via for example an NFC pairing of the devices.

110

8 Publications

Patterns to establish a secure communication channel • :9

Consequences:

+ There are a lot of open source libraries implementing symmetric cryptography algorithms (e.g. low-
level C/C++ libraries such as cryptlib3 or Crypto++4).

+ Computational overhead and resource consumption can be kept low.
– Establishing a shared secret without using certificate based public key cryptography is hard.
– Both parties need to agree on another channel via which the shared secret is established which

reduces the overall usability of this pattern.

Known Uses:

—The Authentication and Key Agreement Protocol (AKA) for 3G systems [Choudhary and Bhandari
2015]. In that system, a shared secret key is used to mutually authenticate the Mobile Station
(MS) and the Home Environment (HE; e.g. a mobile phone). Further, a key agreement is started to
generate a Session Key to protect the further communication which is based on the shared secret.

—The Generic Bootstrapping Architecture (GBA) [Olkkonen 2006]. The GBA defines two ways to es-
tablish a secure communication. Only the first approach is based on symmetric cryptography which
uses the same concept as the AKA for 3G system.

Related Patterns:

The presented pattern makes use of the ”Symmetric Encryption” Pattern [Hashizume and Fernandez
2010] for encrypting all sensitive data after the session key agreement was done.

3http://www.cryptlib.com/
4https://www.cryptopp.com/

111

Paper E - EuroPloP 2016

:10 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

3.2 Pattern: Third party based authentication

Context:

A system wants to establish a secure channel with another party via an insecure channel. Both com-
munication parties are not limited in terms of computational power or resources (e.g. a personal com-
puter / smart phone communicates with a server), but may not know each other in advance. A MITM
can eavesdrop or change every sent message package. Further the MITM is able to resent previously
eavesdropped packages (replay attack).

Problem:

Since both communication parties are not known to each other (i.e. no shared secret knowledge, nor a
known public key) a mechanism is required such that trust is gained. No secret data shall be exposed
to a third party listening or intercepting the communication. No previously recorded message package
should trigger an unwanted action (e.g. a payment transaction).

Example:

One example could be that a company X is developing a server hosting a web-shop. If a customer
wants to buy something from the shop, he needs to send his credit card information to the server. The
customer is not interested in sending his credit card information in plain and hence a secure channel
has to be established. Further, the customer is not interested in starting a symmetric key exchange
process via a second secure channel (i.e. a key shipment using trusted couriers), because he wants to
perform the operation now and not after some days when he finally received the symmetric key.

Forces:

The following forces need to be considered:

—User experience: The security controls should not negatively influence the functional behaviour
(e.g. real-time capabilities) of the system.

—Computational complexity: Public key cryptography is more time consuming compared with sym-
metric cryptography.

—Eavesdropping: Each sent communication package may be eavesdropped or replaced by a mali-
cious third party.

Solution:

Core-Solution:
Use public key cryptography based on certificates for authenticating each communication participant
(abbreviated as Alice and Bob in the following). After successful authentication, a session key is
generated to secure the further communication.

Detailed solution:
The solution of this problem is to have a trusted third party who proves the authenticity of each par-
ticipant. This is usually called a Certificate Authority which proves the identity of the communication
parties and signs their public keys (see Section 2.6). The principle sequence of steps for certificate
based secure channel establishment is illustrated in Figure 3 and described in the following:

(1) Before a communication is possible, Alice and Bob need to request a certificate issued by a trusted
third party (CA). The CA proves the identity of Alice and Bob (e.g. by verifying the passport) and
issues the certificate (i.e. signs the public key of Alice and Bob).

112

8 Publications

Patterns to establish a secure communication channel • :11

(2) To start the communication, Bob sends a message to Alice including a random number for the
authentication process. A time stamp should be incorporated to harden the system against replay
attacks.

(3) Alice answers the request with her certificate. Bob extracts the public key of Alice and verifies the
certificate by using the public key of the CA.

(4) If the verification was successful, Bob sends his certificate to Alice such that she can verify the
properness of Bob’s certificate and to retrieve his public key.

(5) Until that point, no encryption is needed at all since the certificates are public anyway. In principle,
these steps could have been performed by a malicious third party which has Bob’s certificate. Thus,
Bob sends the hash of all previous messages which is signed with his private key so that Alice can
prove that Bob has the corresponding private key of the sent certificate. This is important since a
malicious third party – which only owns the certificate – cannot compute the signature of the hash.
As a result, Alice will terminate the communication if she cannot verify the signature.

(6) Both parties need to agree on a session key to encrypt all future messages. This can be achieved
by using dedicated key derivation functions (e.g. by using a Diffie-Hellman key agreement where
a symmetric session key is generated based on the used key-pairs [Rescorla 1999]) or by randomly
generating a new key. This generated key has to be sent encrypted to Alice / Bob using their ac-
cording public key. Usually symmetric session keys are chosen due to performance reasons.

The presented solution covers the case that Bob is authenticated to Alice. For some applications this
may not be sufficient. To ensure a mutual authentication, Bob has to send a challenge to Alice. In the
simple case, this can be achieved by repeating step 5 where Alice is calculating the hash and Bob is
verifying the signature of the message.

Further considerations:

Each certificate has a specific date at which it gets automatically invalid. In some cases, it may happen
that the owner of the certificate or the CA want to revoke the certificate earlier (i.e. the private key was
broken / leaked, it was improperly issued, etc.). Therefore, so called revocation lists were introduced
containing a list of invalid certificates. To ensure that such certificates are not used, each communica-
tion participant needs to consult the CA to retrieve this list. Thus, an online connection is necessary to
regularly update these lists.

Consequences:

+ Through the use of certificates, Alice and Bob can assure that they are talking to each other and not
to a Man-In-The-Middle.

+ There are open source libraries supporting such authentication processes (e.g. OpenSSL5)
– The Certificates are based on public key cryptography which can be time-consuming when operated

on small embedded systems.
– If the Man-In-The-Middle is cooperating with the Certificate issuer, a Man-In-The-Middle attack

cannot be detected / prevented, since he is able to manipulate the certificates of Alice and Bob (as
discussed in Section 2.6). Such ”hacks” cannot be prevented since the CA deals as a root of trust.

– Requires an online connection or a frequent update of revocation lists to ensure that no blacklisted
certificate is accepted as valid.

5https://www.openssl.org/

113

Paper E - EuroPloP 2016

:12 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

Prove Alice’s authenticity

Request Certificate

Send Certificate

Prove Bob’s authenticity

Request Certificate

Send Certificate

Hi Bob, this is my certificate can you send me yours?

Verify Certificate
Bob’s Certificate

Verify Certificate

Hash(previous Messages) signed with Bob’s private Key

Verify Hash

Session Key agreement

I am Bob + Random number

a:Alice c:Certificate issuer b:Bob

Fig. 3: Certificate based authentication

Known Uses:

—Secure Sockets Layer (SSL), Transport Layer Security (TLS) [Das and Samdaria 2014]. This system
uses the process illustrated in Figure 3 using symmetric session keys.

—Secure key agreement algorithms like the extended Diffie-Hellman key exchange [Yooni and Yoo
2010]. This process implements the presented pattern with a bi-directional challenge response pro-
tocol to ensure that Alice and Bob are the owner of the corresponding private keys.

Related Patterns:

The ”Session Key Exchange with Server-side Certificate” or the ”Session Key Exchange With Certificates”
pattern (both can be found in [Schumacher et al. 2005]) are similar implementations of this pattern,
where the trusted third party is not a CA but any other common third party which knows Alice and
Bob in advance.
The ”Session Key Exchange with Public Keys” pattern (see [Schumacher et al. 2005]) presents a similar
solution, but does not address the issue when Alice and Bob are both unknown to each other. Thus, an
eavesdropper could create a self-signed certificate to claim the identity of Alice or Bob.
The ”Asymmetric Encryption” [Fernandez-Buglioni 2013] pattern is used multiple times in the pre-

114

8 Publications

Patterns to establish a secure communication channel • :13

sented pattern: The signature operation performed by Bob and / or Alice is an asymmetric encryption
operation using the private key and a specific message. During the session key agreement asymmetric
encryption can be used to send the session key.
The ”Symmetric Encryption” [Hashizume and Fernandez 2010] pattern can be used in case of symmet-
ric session keys.

Extended Version: Web of Trust

Problem:

In opposite to the Third party based authentication pattern, Alice and or Bob do not want to trust a
single third party.

Solution:

Core-Solution:
Trust in a key is gained by manually verifying the fingerprint. Thus, no central CA is necessary to
prove the individuals identity.

Detailed solution:

”Web of Trust” is a term which is used to describe a certificate based system in which not a single au-
thority (CA) is used to prove that a specific public key belongs to a specific person, but the community.
Each signature can be marked with a confidence level which indicates how the authenticity of the key
owner was proved. The basic concept is illustrated in Figure 4a. As illustrated, Bob trusts John and
Caro directly since he personally checked the identity of them (e.g. via a face to face meeting). Further,
Bob indirectly trusts Alice since she is trusted by Caro. In difference to the CA structure John does
not trust Alice because there is no direct path of trust leading to her. This is different in the CA case
illustrated in Figure 4b. John will always trust Alice because they have the same root CA.

John

Bob Alice

Caro

Indirect Trust

(a) The Web of trust structure

Root
CA

Bob‘s
Certificate

CA

Caro‘s
Certificate

John‘s
Certificate

CA

Alices‘s
Certificate

(b) The hierarchical CA structure

Fig. 4: Differences of the CA structure compared to the web of trust structure

115

Paper E - EuroPloP 2016

:14 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

Consequences compared to the CA case:

+ No single entity is used to prove the identity of a specific person / system.
– The usability is reduced since every communication party needs to prove the identity of the other

parties. This is usually done during a face-to-face meeting.

Known Uses:

—Pretty Good Privacy (PGP)6. Trust is managed by the individual communication participants by
manually verifying the fingerprints of received public keys / certificates. The user can decide if a key
is fully trusted, partially trusted or untrusted. These levels can be used to define the behaviour of
”indirect trust”. This means, that a key which is signed by ”n” fully trusted parties or ”m” partially
trusted parties may be accepted as trusted automatically.

—GNU Privacy Guard (GnuPG)7. A free and open source implementation of PGP.

Related Patterns:

The presented pattern makes use of the ”Session Key Exchange with Public Keys” pattern (see [Schu-
macher et al. 2005]) in combination with a face-to-face meeting to verify the fingerprint of the public
keys. Thus, a MITM attack can be prevented.
The ”Symmetric Encryption” [Hashizume and Fernandez 2010] pattern can be used in case of symmet-
ric session keys.

6https://www.symantec.com/products/information-protection/encryption
7https://www.gnupg.org/index.de.html

116

8 Publications

Patterns to establish a secure communication channel • :15

3.3 Pattern: Password based key exchange

Context:

A system wants to establish a secure channel with another party via an insecure channel. The connec-
tivity of the device is limited such that it is not possible to securely load or store long private keys on
the device (i.e. a user needs to manually enter it).

Problem:

A user needs to manually enter a password to start the communication. In a realistic scenario, such
passwords are ”short” and designed to be easy to remember. Using only these passwords would result
in an insecure system since dictionary attacks / brute force attacks could be performed by a MITM
to break the password. Further the MITM is able to resent previously eavesdropped packages (replay
attack).

Example:

One example could be a server which is operated by multiple users and need to be accessible from
anywhere at any time. This requires that the operators may access the server from their private devices
(like computers or smart phones) or via shared public available infrastructure (like public access points
or internet coffee shops).

Forces:

The following forces need to be considered:

—Limited access: Symmetric key files, certificates or ”Web of Trust” are not suitable since it is not
possible to securely load / store a private key file on the device.

—User experience: The security controls should not negatively influence the functional behaviour of
the system.

—Eavesdropping: Each sent communication package may be eavesdropped or replaced by a mali-
cious third party.

Solution:

Core-Solution:
Both communication parties (abbreviated as Alice and Bob) need to share a secret password. This
password is used to protect randomly generated session key pairs which are used to further secure
the communication.

Detailed solution:

Since Alice or Bob wants to transmit high confidential data using a weak (easy to remember) sym-
metric key they need to issue a password based key agreement process. Asymmetric cryptography has
been proven in that context [Bellovin and Merritt 1993a; Bellovin and Merritt 1993b; Bellovin and
Merritt 1995]. Thus, Alice and Bob need to agree on a shared secret which is incorporated into the key
agreement protocol such that the used public key scheme is authenticated using this shared secret.
The principle sequence of steps is displayed in Figure 5.

(1) Before starting a secure communication, Bob is generating a new random key pair (Public Key: PB ;
Private Key: PprivB).

117

Paper E - EuroPloP 2016

:16 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

Encrypt PB

with shared secret

Generate new random
key pair (PA, P rivA)

Retrieve PB

Encrypt PA with PB (= C)

send C encrypted with shared secret

Retrieve PA

Generate random R1send R1 encrypted with PA

Retrieve R1
Generate random R2

send R1 + R2 encrypted with PB

verify R1

send R2 encrypted with PA

verify R2

Session Key Agreement

send <It’s me Bob + encrypted PB >

Generate new random
key pair (PB , P rivB)

a:Alice b:Bob

Fig. 5: Shared secret authenticated public key establishment.

(2) To start a communication, Bob sends a message to Alice containing the newly generated public key
which is encrypted using the shared secret password.

(3) Alice receives the message and generates a new random key pair (Public Key: PA; Private Key:
PprivA). The fact that Alice and Bob are both generating new key pairs is essential to increase the
overall strength of the protocol. By doing so, it is getting more difficult to achieve offline brute-force
attacks (see [Bellovin and Merritt 1993b]).

118

8 Publications

Patterns to establish a secure communication channel • :17

(4) Alice retrieves Bob’s public key PB by decrypting the received message with the shared secret.
Alice encrypts her generated public key PA with the retrieved public key PB (abbreviated as C).
Further, the resulting cryptogram is encrypted with the shared secret password before sent to Bob.

(5) Bob can retrieve PA by first decrypting the received message with the shared secret and by de-
crypting the result with his private key PprivB . After that, Alice and Bob are able to start a secure
communication based on the generated key pairs. For large amount of data it is advisable to start
a session key agreement to establish a strong symmetric key (i.e. AES-256).

(6) The next steps illustrated in Figure 5 describes a basic challenge-response protocol to verify the
validity of the generated cryptographic keys. This is done in most cryptographic protocols to ensure
that Alice and Bob are able to decrypt messages which were encrypted with the according public
key PA/PB .
(a) Bob generates a random number R1 which he sends encrypted with the retrieved public key PA

to Alice.
(b) Alice retrieves the generated random number R1 by decrypting the received message. She gen-

erates a new random number R2 which she concatenates with R1. Alice uses the public key PB

to encrypt the concatenated random numbers and sends the cryptogram to Bob.
(c) Bob decrypts the received message and verifies that R1 is part of the received message. Further

he retrieves the random number R2 and sends it encrypted with PA back to Alice.
(d) Alice verifies the correctness of R2

(7) Both parties need to agree on a session key to encrypt all future messages. This can be achieved
by using dedicated key derivation functions (e.g. by using a Diffie-Hellman key agreement where
a symmetric session key is generated based on the used key-pairs [Rescorla 1999]) or by randomly
generating a new key. This generated key has to be sent encrypted to Alice / Bob using their ac-
cording public key. Usually symmetric session keys are chosen due to performance reasons.

When to encrypt with the shared secret password:
The illustrated sequence used two times the shared secret password to encrypt a message (encryption
of PB and C). In most cases, one of these encryption operations can or should be omitted. As stated in
[Bellovin and Merritt 1993b], the most obvious reason to skip one of the encryption operation is, that
the message which shall be encrypted has to be indistinguishable from a random number. Otherwise
an attacker has knowledge about the principle structure of the plain text. Thus, an attacker could
perform more sophisticated attacks against the shared secret password to break it.

Further considerations:

The problem which remains is how to choose or how to establish the initial shared secret. This needs to
be done using a different channel which can either be considered as secure, or the way the data is sent
via this channel can be considered as being secure. For example, a password based secret can be used
which is sent to Bob in a secure way. This could be achieved via a key shipment split on multiple key
shares using trusted couriers (see [Payment Card Industry Security Standards Council 2016; National
Institute of Standards and Technology (NIST) 2016; International Organization for Standardization
(ISO) 2006] for recommendations).

Consequences:

+ Using a ”weak” shared secret produces a good channel protection against a Man-In-The-Middle
attack since an attacker can only hack the system by brute-forcing the randomly generated public
key (which should be of reasonable length).

+ I do not need a third party claiming the authenticity of a communication partner.

119

Paper E - EuroPloP 2016

:18 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

– Establishing a shared secret without using certificate based public key cryptography is hard.
– Both parties need to agree on another channel via which the shared secret is established which

reduces the overall usability of this pattern.

Known Uses:

Use-Cases are mainly found in the domain of password-authenticated key agreements like:

—Encrypted Key Exchange protocols (e.g. [Bellovin and Merritt 1993a; Bellovin and Merritt 1993b;
Bellovin and Merritt 1995]). These are based on the process illustrated in Figure 5 but provides
slightly adaptations for different public key schemes (like RSA, ECC). The reason for this is to reduce
the complexity of the overall process due to security properties of the different schemes.

—Dragonfly (see [Zorn and Harkins 2015]). This protocol uses EC based cryptography in combination
with a pseudo-random key derivation function to diversify the shared secret at the beginning of each
session.

Related Patterns

The presented pattern makes use of the ”Session Key Exchange with Public Keys” pattern (see [Schu-
macher et al. 2005]) in combination with shared secret knowledge in form of a password. The shared
knowledge is required to ensure that Alice and Bob are who they claim to be by proofing their knowl-
edge about the shared secret.
The ”Asymmetric Encryption” [Fernandez-Buglioni 2013] pattern is used to protect the messages sent
between Alice and Bob to establish a secure channel. Further, it can be used for the session key agree-
ment.
The ”Symmetric Encryption” [Hashizume and Fernandez 2010] pattern can be used in case of symmet-
ric session keys.

120

8 Publications

Patterns to establish a secure communication channel • :19

4. PATTERN SELECTION

The presented patterns are applied in similar contexts. Thus, Figure 6 gives guidance on how to choose
an appropriated pattern in the given scenario. The presented selection flow is not exhaustive in any
means, but shall give a first starting point for students / developers which are new to the topic of
security and secure communication.

Start

Resource constrained?
Initial Overhead

feasable?

Yes
Key-Agreement

using „Third party
based

authentication“

Key-Agreement
using a shared

secret

Yes

No

„Symmetric key
cryptography“

Yes

Storing private keys
feasable?

„Password
based key
exchange“

No No

Trust a single CA?
„Third party

based
authentication“

„Web of Trust“

Yes

Yes

Use Certificates?
OR Manually verifying

Fingerprints?

No

YesNo

„Face-to-Face“
Meeting?

No

Key-Agreement
using a secure Key-

Shipment

… Resulting Pattern

… Action

… Decision

„Password
based key
exchange“

Fig. 6: Guidance flow chart to determine the pattern which can be implemented according to the context.

4.1 Example

Context

In the context of Internet of Things (IoT) devices, many small sensor nodes are collecting data from
their human operators (e.g. heart rate sensor, gps sensor, etc.) and are communicating with a base sta-
tion (e.g. the smart phone). To protect this communication against eavesdropping, the communication
of the devices with the base station should be encrypted. Since IoT applications are evolving over time
including new features and sensors, the system should be easy to configure without the need for timely
setup procedures.

121

Paper E - EuroPloP 2016

:20 • A. Sinnhofer and F. Oppermann and K. Potzmader and C. Orthacker and C. Steger and C. Kreiner

Applying the pattern selection:

(1) Resource Constraint? Yes. Although the base station may not be resource constraint (i.e. smart
phone, home server, etc.), the sensor nodes are highly resource constraint (limited memory and
computational power).

(2) Initial Overhead feasible? No. The system should be as simple as possible such that new sensor
nodes can be deployed without time consuming setup procedures.

(3) Face-to-Face Meeting? Yes. In case of a smart phone as base station, it would be a good option to
use NFC pairing to establish the initial cryptographic keys.

As a result, the pattern ”Symmetric Key Cryptography” shall be used. If a face-to-face meeting is
not possible (e.g. the base station is a web-server without direct access), a secure key shipment can be
used to establish a first secure key (e.g. the vendor of the sensor nodes generates a random key which
is shared with the customer via mail, etc.).

5. CONCLUSION

Having secure communication mechanisms is vital in our today’s society since more and more confiden-
tial information is sent via insecure channels like the internet. Developing such systems is always a
trade-off between security, usability and performance and hence making a decision is not always easy
especially for developers which are not familiar with cryptographic concepts. Our work summarizes
the most common patterns on how to establish a secure communication via an insecure channel to cir-
cumvent eavesdropping by third parties. They are designed for students to learn basic cryptographic
principles and to increase the security awareness for such systems. The presented patterns are generic
descriptions of the principle communication protocol which is necessary to establish secure channels
and thus, they provide a good starting point to define what pattern should be used when designing
a secure communication system and what standard protocol can be implemented to achieve secure
messaging.

Acknowledgement

Project partners are NXP Semiconductor Austria GmbH and the Technical University of Graz. The
project is funded by the Austrian Research Promotion Agency (FFG). We want to gratefully thank our
Shepard Uwe van Heesch for his constructive feedback. Finally we want to thank all participants of
the Security Pattern Workshop at EuroPLoP’16 for their feedback.

REFERENCES

S.M. Bellovin and M. Merritt. 1993a. Cryptographic protocol for secure communications. (08 1993). https://www.google.com/
patents/US5241599 US Patent 5,241,599.

S.M. Bellovin and M.J. Merritt. 1995. Cryptographic protocol for remote authentication. (08 1995). https://www.google.com/
patents/US5440635 US Patent 5,440,635.

Steven M. Bellovin and Michael Merritt. 1993b. Augmented Encrypted Key Exchange: A Password-based Protocol Secure
Against Dictionary Attacks and Password File Compromise. In Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS ’93). ACM, New York, NY, USA, 244–250. DOI:http://dx.doi.org/10.1145/168588.168618

Bianca Stanescu. 2012. Top 5: Corporate Losses Due to Hacking. (2012). http://www.hotforsecurity.com/blog/top-5-corporate-
losses-due-to-hacking-1820.html.

Anilmit Choudhary and Randhir Bhandari. 2015. Analysis of UMTS 3G Authentication and Key Agreement Protocol AKA for
LTE 4G Network. International Journal on Recent and Innovation Trends in Computing and Communication 3, 4 (april 2015),
2146–2149. DOI:http://dx.doi.org/10.17762/ijritcc2321-8169.150482

Contel Bradford. 2014. 5 Common Encryption Algorithms and the Unbreakables of the Future. (2014).
http://www.storagecraft.com/blog/5-common-encryption-algorithms/.

122

8 Publications

Patterns to establish a secure communication channel • :21

Manik Lal Das and Navkar Samdaria. 2014. On the security of SSL/TLS-enabled applications. Applied Computing and Infor-
matics 10, 12 (2014), 68 – 81. DOI:http://dx.doi.org/10.1016/j.aci.2014.02.001

Elaine Barker. 2016. NIST Special Publication 800-57 Part 1 Revision 4 - Recommendation for Key Management Part 1: General.
(2016).

Eduardo Fernandez-Buglioni. 2013. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns (1st
ed.). Wiley Publishing, West Sussex PO19 8SQ, England.

Keiko Hashizume and Eduardo B. Fernandez. 2010. Symmetric Encryption and XML Encryption Patterns. In Proceedings
of the 16th Conference on Pattern Languages of Programs (PLoP ’09). ACM, New York, NY, USA, Article 13, 8 pages.
DOI:http://dx.doi.org/10.1145/1943226.1943243

Information is Beautiful. 2016. World’s Biggest Data Breaches. (2016). http://www.informationisbeautiful.net/visualizations/worlds-
biggest-data-breaches-hacks/.

International Organization for Standardization (ISO). 2006. ISO/IEC 11770-4: Information Technology - Security Techniques -
Key Management - Part 4: Mechanisms Based On Weak Secrets. (2006).

J. Jonsson and B. Kaliski. 2003. RFC 3447 - Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1. (2003).

John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. 1998. Secure applications of low-entropy keys. Springer Berlin
Heidelberg, Berlin, Heidelberg, 121–134. DOI:http://dx.doi.org/10.1007/BFb0030415

Kevin M. McGinty. 2015. Target Data Breach Price Tag: $252 Million and Counting. (2015).
https://www.privacyandsecuritymatters.com/2015/02/target-data-breach-price-tag-252-million-and-counting/.

D. Mcgrew, K. Igoe, and M. Salter. 2011. RFC 6090 - Fundamental Elliptic Curve Cryptography Algorithms. (2011).
Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. 1996. Handbook of Applied Cryptography (1st ed.). CRC Press,

Inc., Boca Raton, FL, USA.
National Institute of Standards and Technology (NIST). 2016. Special Publication 800-57-1: Recommendation for Key Manage-

ment - Part 1: General. (2016). Revision 4.
Timo Olkkonen. 2006. Generic Authentication Architecture. (2006).
CH.Satyanarayana P Ramesh Babu D.Lalitha Bhaskari. 2010. A Comprehensive Analysis of Spoofing. International Journal of

Advanced Computer Science and Applications(IJACSA) 1, 6 (2010), 1–6. http://ijacsa.thesai.org/
Payment Card Industry Security Standards Council. 2016. Data Security Standard - Requirements and Security Assessment

Procedures. (2016). Version 3.2.
E. Rescorla. 1999. Diffie-Hellman Key Agreement Method. RFC 2631 (Proposed Standard). (06 1999). http://www.ietf.org/rfc/

rfc2631.txt
Rob Price. 2015. Germany’s most popular paid app is a secure messenger. (2015). http://uk.businessinsider.com/threema-

encryption-messaging-app-america-launch-isis-2015-6?IR=T.
Markus Schumacher, Eduardo Fernandez, Duane Hybertson, and Frank Buschmann. 2005. Security Patterns: Integrating Se-

curity and Systems Engineering. John Wiley & Sons, West Sussex PO19 8SQ, England.
The Intercept. 2014. The Great SIM Heist - How Spies Stole the Keys to the Encryption Castle. (2014).

https://theintercept.com/2015/02/19/great-sim-heist/.
Eun-Jun Yooni and Kee-Young Yoo. 2010. A new elliptic curve diffie-hellman two-party key agreement protocol. In

Service Systems and Service Management (ICSSSM), 2010 7th International Conference on. IEEE, Tokyo, Japan, 1–4.
DOI:http://dx.doi.org/10.1109/ICSSSM.2010.5530179

Glen W. Zorn and Dan Harkins. 2015. Extensible Authentication Protocol (EAP) Authentication Using Only a Password. IETF
RFC 5931. (14 Oct. 2015). DOI:http://dx.doi.org/10.17487/rfc5931

123

8 Publications

Software Configuration based on Order
Processes

Andreas Daniel Sinnhofer1, Peter Pühringer3, Klaus Potzmader2, Clemens
Orthacker2, Christian Steger1, and Christian Kreiner1

1 Institute of Technical Informatics, Graz University of Technology, Austria,
{a.sinnhofer,christian.kreiner,steger}@tugraz.at,

2 NXP Semiconductors, Gratkorn, Austria,
{klaus.potzmader,clemens.orthacker}@nxp.com

3 p.puehringer@inode.at

Abstract. Business processes have proven to be essential for organisa-
tions to be highly flexible and competitive in today’s markets. However,
good process management is not enough to survive in a market if the
according IT landscape is not aligned to the business processes. Espe-
cially industries focused on software products are facing big problems if
the according processes are not aligned to the overall software system
architecture. Often, a lot of development resources are spent for features
which are never addressed by any business goals, leading to unnecessary
development costs. In this paper, we will present a framework for an
automatic, order process driven, software configuration. For this, mod-
ern software product line engineering techniques are used to provide a
systematic way to align the variability of the order processes with the
software architecture.

Key words: Software Product Lines, Feature Oriented Modelling, Busi-
ness Processes, Tool Configuration

1 Introduction

Business Process (BP) oriented organisations are known to perform better re-
garding highly flexible demands of the market and fast production cycles (e.g.
[1, 2, 3]). This is achieved through the introduction of a management process,
where business processes are modelled, analysed and optimised in iterative ways.
Nowadays, business process management is also coupled with a workflow man-
agement, providing the ability to integrate the responsible participants into the
process and to monitor the correct execution of it in each process step. To ad-
minister the rising requirements, so called business process management tools
are used (BPM-Tools) which cover process modelling, optimization and execu-
tion. In combination with an Enterprise-Resource-Planning (ERP) system, the
data of the real process can be integrated into the management process.

In the domain of software products, different choices in business processes
lead to different software configurations. To handle variability automatically is

©2017 Held by Springer International Publishing AG. Reprinted, with permission. Currently in press. The definitive version
will be published in LNBIP 275, Business Modeling and Software Design, April 2017.

125

Paper F - Springer 2017

2 Andreas Daniel Sinnhofer et al.

a challenging task because the variability of the process model needs to be re-
flected in the software architecture. Further, the actual customer choice during
the ordering process needs to be mapped to the according software features.
Due to this, software configuration is often done manually which takes a con-
siderable amount of time during production. Particularly for resource constraint
devices like embedded systems, it is vital to have a working software configura-
tion process since unnecessary features may occupy a lot of resources. Further, it
is important to have a software architecture which is synchronised with the busi-
ness goals. Otherwise, a lot of resources are spent for developing and maintaining
software components which are never used anyway. Especially big companies are
facing problems to align the whole development team to the business goals. Thus,
process awareness is crucial for an efficient development and production.

Context Aware Business Process modelling is a technique for businesses liv-
ing in a complex and dynamic environment (Saidani and Nurcan [4]). In such
an environment a company needs to tackle changing requirements which are de-
pendent on the context of the system. Such context sensitive business process
models are able to adapt the execution of their process instances according to the
needs, such that the company can react faster and more flexible. This is achieved
by analysing the context states of the environment and mapping these states to
the according business processes and their related software system. The problem
with such approaches is, that the used software systems are often developed inde-
pendently from each other, although they share a similar software architecture.
Therefore, this work focuses on the development of a framework which covers
the variability of process models, and mapping such variable process structures
to software configuration artefacts. This allows, that the software system can be
adapted automatically with respect to its context. Software product lines have
proven to be capable of achieving such flexible architectures. Additionally, the
robustness of such systems can be increased, since only one system needs to be
developed and maintained for whole product families. In this work, we limited
the scope to reflect the variability of the order processes for software products.
This includes the automatic detection of variable personalization options of dif-
ferent product configurations, and the automated configuration of the software
toolchain responsible for generating the resulting software product. The mod-
elling of business process variability is based on our previous work, which can be
found in [5]. In particular, a SPLE Tool was used to systematically reuse expert
knowledge in form of valid process variations, designed in an appropriated BPM
Tool. The integrity of the process variations is secured by the capabilities of the
BPM Tool and a rich cross functional constraint checking in the SPLE Tool.
A more detailed description is given in Section 3.1. This work will extend the
framework in order to be able to map process artefacts to software configura-
tions. Hence, software toolchains can be configured in an automatic way and the
architecture can be kept aligned with the business goals.

This work is structured in the following way: Section 2 summarizes the related
work and Section 3 gives an overview over the used design paradigm for business
processes modelling and Software Product Line Engineering techniques which

126

8 Publications

Software Configuration based on Order Processes 3

were needed for the framework. Section 4 summarizes the concept of our work,
giving details about the conceptual design, the used type model and rules which
the system applies. Section 5 describes our implementation in an industrial use
case and Section 6 concludes this work and gives an overview over future work.

2 Related work

As stated in the survey of Fantinato et al. [6], major challenges in the field of
business process variability modelling are related to the reaction time of process
changes and of the creation and selection of the right business process variants,
which are also main topics in our framework since the time to adopt the IT
infrastructure to the changed business processes can be reduced with the new
framework.
Derguech [7] presents a framework for the systematic reuse of process models.
In contrast to this work, it captures the variability of the process model at the
business goal level and describes how to integrate new goals/sub-goals into the
existing data structure. The variability of the process is not addressed in his
work.
Gimenes et al. [8] presents a feature based approach to support e-contract negoti-
ation based on web-services (WS). A meta-model for WS-contract representation
is given and a way is shown how to integrate the variability of these contracts
into the business processes to enable a process automation. It does not address
the variability of the process itself but enables the ability to reuse business pro-
cesses for different e-contract negotiations.
While our used framework to model process variability reduces the overall pro-
cess complexity by splitting up the process into layers with increasing details,
the PROVOP project ([9, 10] and [11]) focuses on the concept, that variants are
derived from a basic process definition through well-defined change operations
(ranging from the deletion, addition, moving of model elements or the adapta-
tion of an element attribute). In fact, the basic process expresses all possible
variants at once, leading to a big process model. Their approach could be ben-
eficial considering that cross functional requirements can be located in a single
process description, but having one huge process is also contra productive. The
exchange of parts during a process improvement process can be difficult.
The work of Gottschalk et al. [12] presents an approach for the automated con-
figuration of workflow models within a workflow modelling language. The term
workflow model is used for the specification of a business process which enables
the execution in an enterprise and workflow management system. The approach
focuses on the activation or deactivation of actions and thus, is comparable to
the PROVOP project for the workflow model domain.
La Rosa et al. [13] extends the configurable process modelling notation devel-
oped from Gottschalk et al. [12] with notions of roles and objects providing a
way to address not only the variability of the control-flow of a workflow model
but also of the related resources and responsibilities.
The Common Variability Language (CVL [14]) is a language for specifying and

127

Paper F - Springer 2017

4 Andreas Daniel Sinnhofer et al.

Quotation
Handling

Approve
Order

Approved?
Order

Handling

Yes

No

Payment

Customer
Requirements

In House?
Procure

Contractors

No

Schedule /
assign work

Yes

...

...

Sub-Process: Order Handling

Fig. 1. Exemplary order process to illustrate the basic concepts defined by Österle [16]:
A high level description of the process is split into its sub-processes until a complete
work description is reached (adapted from [17]).

resolving variability independent from the domain of the application. It facil-
itates the specification and resolution of variability over any instance of any
language defined using a Meta Object Facility (MOF) -based meta-model. A
CVL based variability modelling and a BPM model with an appropriate model
transformation could lead to similar results as presented in this paper.
The work of Zhao and Zou [15] shows a framework for the generation of software
modules based on business processes. They use clustering algorithms to analyse
dependencies among data and tasks, captured in business processes. Further,
they group the strongly dependent tasks and data into a software component.

3 Background

3.1 Business Processes

A business process can be seen as a sequence of specific activities or sub-processes
which need to be executed in a specific way to produce a specific output with
value to the costumer [18]. According to Österle [16] the process design on a
macroscopic level (high degree of abstraction) is split up into sub-processes until
the microscopic level is reached. This is achieved, when all tasks are detailed
enough, so that they can be used as work instructions. An exemplary order pro-
cess is illustrated in Figure 1. As illustrated, the top layer is a highly abstracted
description, while the production steps are further refined on the lower levels. As

128

8 Publications

Software Configuration based on Order Processes 5

a result, the lowest level is highly dependable on the concrete product and pro-
duction environment, providing many details for the employees. Usually, the top
layers are independent from the concrete plant and the supply chain and could
be interchanged throughout production plants. Only the lower levels (the refine-
ments) would need to be reconsidered. Variability of such a process structure can
either be expressed through a variable structure of a process/sub-process (e.g.
adding/removing nodes in a sequence) or by replacing the process refinement
with different processes. One prominent way to design such processes is the use
of the ”Business Process Model and Notation” notation (BPMN; see [19]). The
key components of such processes can be classified in the following way:

– Events: An Event is something that occurs during the execution of a Process.
Such events affect the flow of the Process and usually have a cause and an
impact. Examples are the start of an Activity, the completion of an Activity,
the start of a Process, etc. According to BPMN [19], events are used only for
those types, that affects the sequence or timing of Activities of a process.

– Activities: An Activity is work that a company or organization performs
during the execution of a process. Two different types of activities can be
distinguished: An activity not broken down to a finer level of Process Model
is called atomic activity (i.e. a task). Sequences of tasks (e.g. a sub-process)
belonging to the same activity are called non-atomic activities.

– Gateways: A gateway within a process controls how the process flows through
different sequence flows. Each gateway can have multiple input and / or out-
put paths. An example is a decision, where one of many possible alternative
paths is selected based on a specific condition. Another prominent example
is a parallel gateway which splits a single flow into multiple flows which are
executed in parallel.

– Data: Data objects represents information flowing through the process such
as documents or e-mails. A Data object can be required from a specific activity
as input parameter which can be provided internally or by an external party
involved in the process. Data objects which are generated by a specific activity
are called Output Data.

– Pool and Lanes: Represent responsibilities for specific activities or sequences
of activities in a process. The responsibilities can be assigned to an organiza-
tion, a specific role, a system or even an dedicated employee.

Traditionally, processes for similar products are created using a copy and
clone strategy. As a result, maintaining such similar processes is a time con-
suming task, since every improvement needs to be propagated manually to the
respective processes. To solve this issue, we proposed a framework to automat-
ically derive process variants from business process models (see [5]). Software
Product Line Engineering techniques are used to model the variable parts of a
process. The presented framework can be split into four different phases which
are illustrated in Figure 2 and described below:

– Process modelling: In the first phase, process designers use a BPM tool of
their choice and create process templates. That is, defining the sequence of

129

Paper F - Springer 2017

6 Andreas Daniel Sinnhofer et al.

steps of sub-processes using the BPMN notation. Further, they add artefacts to
the BPM Tool for required features like documentation artefacts, responsible
workers or resources. As indicated in the figure, the design of (sub-) processes
and the creation of the according domain model is done hand in hand.

– Domain modelling: In the second phase, the created processes are imported
into the SPLE tool and added to a feature model (see Section 3.2 for a de-
scription of feature models). During this process, the domain engineers (Pro-
cess Designer) chooses the set of available (sub-) processes and defines which
parts of these (sub-) processes are variable. Consider the following example,
a company responsible for forming metal uses different production planning
strategies for different customers. E.g. for customer X the company is using
event driven Kanban and for customer Y the company is using Kanban with a
quantity signal. As a consequence, the principal sequence of production steps
is the same, but the production planning is scheduled differently based on
the used Kanban system. Thus, the domain engineer chooses the production
plaining strategy to be variable by defining a Variation Point (VP). He de-
posits the different Kanban implementations as possible variants for this VP
such that two process models can be generated. To limit the possible config-
uration space, the domain engineer can define a comprehensive set of rules
and restrictions such that only meaningful and valid process variants can be
derived.

– Feature selection: In this phase, production experts are using the defined set
of process models (within the SPLE tool) to derive process variants for their
current needs. This is done by selecting the wished features from the feature
model, which was created in the second phase. For example, the production
experts could choose event driven Kanban, since they know that customer X
has placed an order.

– Maintenance and Evolution: In this phase, derived processes are used in
the production and observed by production experts. Based on the collected
data, the Production Experts can either improve the feature selection of the
used process (iteration back to step 3), or issue a process improvement process
(iteration back to step 4). For example, during the production for customer
X, it was observed that event driven Kanban was to slow to react to the
customer needs. As a consequence, the production experts changed the pro-
duction planning strategy to quantity based Kanban to tackle these problems.
Another example could be that it was observed that quantity based Kan-
ban was to general. E.g. the production experts recognized that only one bin
Kanban and three bin Kanban are valuable for the production processes. As
a consequence, new processes need to be designed and integrated into the
existing feature model.

Our today’s business environment is focused on creating sustainable value by
increasing the revenue of business drivers. The identification of these drivers or,
equally important, the identification of drivers capable of destroying value is a
crucial step for a process driven organization. Such drivers have a high impact
on the organization in order to stay competitive or even survive on the market

130

8 Publications

Software Configuration based on Order Processes 7

BPM-Tool SPLE-Tool

Business
Processes

Feature Model
Derive /
Update

Feature
Selection

TransformationProcess Variant

M
ai

nt
en

an
ce

 /
 E

vo
lu

ti
on

Process Designer

Production Experts

Production Experts

Derive
Update

Fig. 2. Used framework for an automatic business process variant generation (adapted
from [5]). The grey lines indicate process steps which need to be done manually.

[20]. The combination of SPLE engineering and business modelling is promising
a potential way to improve the identification of the drivers and to react fast to
changes of the market.

3.2 Software Product Line Engineering

SPLE applies the concepts of product lines to software products [21]. A Soft-
ware Product Line can be seen as a set of domain features, which are automati-
cally assembled and configured to a whole software project just by choosing the
wanted features. Instead of writing code for every individual system, the devel-
oper divides the project into small lightweight features which are implemented
in so called domain artefacts. For this, a software architecture is required in
which the variation points and the respective variants (features) are explicitly
modelled. Further, a source code generator is needed which is able to generate
the according software products, based on the according feature selection. As
identified by Pohl et al. [22] and Weiss et al. [23], the software product line en-
gineering can be split up into two main parts, the Domain Engineering and the
Application Engineering. The domain engineering is the procedure for defining
the components, the variabilities and the commonalities of the product line. The
application engineering is the procedure where the application itself is built, us-
ing some domain artefacts which were created in the domain engineering. The
application engineering can be done manually, or automatically by using dedi-
cated generators. This enables the rapid creation of similar software products of
a product family.

131

Paper F - Springer 2017

8 Andreas Daniel Sinnhofer et al.

During domain modelling, Feature Models are used to describe all features of a
product and to explicitly state their relationships, dependencies and additional
restrictions between them. Figure 3 illustrates an explanatory feature model for
a car. A car consists of three mandatory variation points (’Engine Type’, ’Gear
Type’, ’Entertainment System’), their respective variants, and an optional vari-
ation point (’Navigation System’). For example, the ’Engine Type’ of the car
could be Electrical, Gas or Diesel powered. The variants of the ’Engine Type’
and ’Gear Type’ variation point are modelled as alternative features which means
that exactly one variant needs to be chosen. In contrast, the ’Entertainment Sys-
tem’ is modelled in such a way, that either one or both options can be chosen.
Further restrictions can be defined to ensure that only valid products can be
generated. One example is illustrated in Figure 3; an electrical engine requires
that an automatic gear type is selected. Another restriction, which is not illus-
trated in the figure, could be, that a specific feature cannot be selected if another
feature was selected. This allows to implement complex rules to ensure that the
generated systems are working as expected.
After defining the set of features, a design is created and the reusable artefacts
are implemented. In case of our used process modelling approach [8], the design
of the features and the implementation of reusable artefacts is done iteratively.
The reason for that is, that the definition of the variable parts and their accord-
ing restrictions, is the most critical aspect of designing an SPL. This ensures,
that the reusable parts can be used in many different contexts.

car

Engine Type Gear Type Entertainment System Navigation System

Electrical Gas Diesel Automatic Manual Radio CD-Player

Mandatory Optional Alternative Or Requires

Fig. 3. An exemplary feature model of a car (adapted from [17]).

4 Variability Framework

The goal of the developed framework is to implement a systematic way to keep
the customization options of the order processes aligned with the IT infrastruc-
ture such that development costs can be reduced and the company is more flexi-
ble to changes of the market. For this purpose, we are combining our previously
developed product line for business process models (see [5]) with a product line

132

8 Publications

Software Configuration based on Order Processes 9

for creating software products. The following Sections summarizes the developed
concepts.

4.1 Conceptual Design

The overall conceptual design is based on a feature oriented domain modelling
framework and is illustrated in Figure 4. As shown in the Figure, Domain Experts
are responsible for operating the ”Process Variability Framework” as already
described in Section 3.1. They design process models based on their domain
knowledge and generate process variants for various types of product platforms.
Based on this variants, the used SPLE tool also generates an order entry form,
stating explicitly which kind of information a customer needs to submit, to
be able to order the product. For example, if the customer can decide which
applications should run on his device, or if the device can be personalized by
adding signatures of the customer.

Complex products usually tend to have a lot of internal stakeholders which
can be seen as internal customers. This means that based on the customer needs,
specific stakeholders may be addressed to further submit needed information or
even parts of the product. For instance, if a product can run on multiple hardware
platforms, each of these platforms may be developed by different departments
or even different companies which need to be ordered and shipped accordingly.

To be able to automatically generate the order entry forms, additional in-
formation needs to be added to the process models. This can be done by either
adding this information into the process model itself (i.e. using the BPM tool)
or by tagging the process model inside the SPLE tool. The additional type in-
formation designed in the SPLE tool is mapped to the according process models
using unique identifiers. Using the SPLE tool to add the additional information

Order Entry
(e.g. Web-Interface)

Process
Variability

Framework

Customer

Domain Experts

Process Variant

Process
Model

Execute Process

Internal Customer

generated

configures

configures

Maintenance
Evolve

influences

Fig. 4. Overall conceptual design of the framework (adapted from [17]). The ”Process
Variability Framework” block is described in Figure 2.

133

Paper F - Springer 2017

10 Andreas Daniel Sinnhofer et al.

is the more generic approach. This also has the positive side-effect, that the
processes itself are not ”polluted” with information that may change in different
circumstances. On the other hand, it rises high requirements to the SPLE tool
which needs to support product family models such that the process model and
the additional information used for the order entry can be kept aligned, but
separated.

After all needed data is collected, the process can finally be executed and the
ordered products are manufactured. Figure 5 shows a more detailed process of
our framework to configure or generate software products. The filled order entry
forms of the internal and external customer(s) are collected and converted into
a format which can be automatically processed during the following Application
Engineering. Here, the given submission files are imported and a feature selection
is generated based on the provided input data. The feature model is directly
linked to the process model and is maintained by Domain Experts operating
the system. The maintenance can be done semi-automatic through the use of
mapping rules which are described in Section 4.2.

The generated feature selection is verified manually by a Domain Expert
against the customer requirements. The verification step is necessary to ensure
the configuration safety of the final product. This is also an important topic for
process certification, where evidence need to be provided to prove, that the or-
dered configuration is equivalent to the final product and not confused with any
other customer configuration. After the verification, the Domain Experts trig-
gers the ”Feature Transformation” process. During this process, the submitted
customer data is translated using product specific code generators. The result
of this process strongly depends on the intended use case: It could be a binary
file which is directly loaded during the production of the IC; another possibility
is a set of configuration scripts which are executed to configure the product. In
Section 5 we will present an industrial case study which generates a set of scripts
which are executed to configure the ordered products.

Especially for new products, it is likely that during the manufacturing process
knowledge is gained on how to increase the efficiency of the whole process(es)
by introducing specific changes to the process model. Further, changes to the
generated order entry forms may be identified, leading to more configuration
possibilities. This also effects the Feature Model and the code generators used
during the application engineering. The advantage of using one core of process
models for a specific family of products is, that the gained knowledge can be
rolled out in an automatic way for the whole product family. This means that
the required changes only need to be implemented once for a whole product
family of a product line.

4.2 Type model

To summarize the findings of the last Section, a type model is required which
maps from BPMN nodes to some kind of input data that need to be provided
from internal or external customers. Based on this information, order entry forms
can be generated for the different stakeholders. As a result, the process model

134

8 Publications

Software Configuration based on Order Processes 11

Execute Process

Filled Entry Forms

Submission Files
Feature

Selection
Feature

Transformation

Image

Production

IC

Application Engineering

HardwareDomain Expert

Verifies

Feature
Model

Process
Model

adheres to

Fig. 5. The zoom-in version of the ”Execute Process” task illustrated in Figure 4. The
parts which are executed during the application engineering of the according SPLE
workflow are framed grey.

needs to be tagged with additional information such that these order entry forms
can be generated automatically for a process variant.

– Inputs: Is the abstract concept of different input types which are described
below. Additionally, each Input is mapped to an input type defining the format
of the input. For example, input data could be delivered as a file (structured
or binary) or delivered in form of configuration settings like strings, integers,
etc.

– None: No special data needs to be submitted and hence, a node marked with
none will not appear as a setting in the order entry form.

– Customer Input: Specific data need to be added from a customer. A node
marked with this type will generate an entry in the order entry form of a
specific type. For example a file upload button will appear if a customer needs
to submit a specific file.

– Internal Input: Specific data or parts of the product need to be delivered
from an internal stakeholder. This information is directly propagated to the
internal stakeholder as a separate order.

– Input Group: A set of Inputs that are logically linked together. As a conse-
quence, all of these inputs need to be provided for a single feature.

To support the Domain Experts during the tagging of the process model,
the following information can be examined automatically from the given process
model:

– Activities: Non-atomic Activities (i.e. (sub-) processes) can be used to group
a specific set of input parameter to a feature. For example a process designed
for configuring an application may require several input parameter. For the
order entry form, this should be displayed as one group of configuration set-

135

Paper F - Springer 2017

12 Andreas Daniel Sinnhofer et al.

tings. Any atomic Activity will be automatically tagged as input type ”None”.
This also applies if a non-atomic Activity does not contain any Data nodes.

– Gateways: Gateways are used to define the structure of the generated order
entry form. An example is a decision where the customer can choose between
multiple customization options. Every branch will appear as a separate group
that can be selected. If a branch does not contain any data, it will only appear
as a checkbox that can be ticked. The system ensures, that only one of the
branches is selected from the possible choices. In contrast, flows in a parallel
flow are all mandatory.

– Data: Data to be provided by an entity involved in the process. These nodes
are tagged as Customer / Internal Input. The type information needs to be
added manually by the Domain Experts. Per default, our implementations
chooses ”string” as a default type since – in our case – ”string” is the most
frequent type.

– Pool and Lanes: Gives information about the source of the input file. This
means that a file in a company internal lane will be automatically flagged as
an ”Internal Input”. Per default, our implementation chooses ”Internal Input”
as a default.

4.3 Domain Engineering

An established process management, which is able to generate order entry forms
and trigger internal processes, is a big step towards good business management.
However, to be successful on the market it is not enough to just focus on well
managed processes, but also on an aligned IT infrastructure. Hence, the big
remaining challenge is having an IT infrastructure which is able to be configured
directly from the according business processes.

For illustration purposes let’s consider the following example: A company
is developing small embedded systems which are used as sensing devices for
the internet of things. The device is offered in three different variants with the
following features:

– Version 1: Senses the data in a given time interval and sends the recorder
signal to a web-server which is used for post-processing.

– Version 2: Additionally to the features of Version 1, this version allows
encryption of the sensed data using symmetric cryptography before it is sent
to the web-server. This prevents that third parties are able to read the data.
For simplicity, we assume that this key is provided in plain from the customer.

– Version 3: Additionally to the features of Version 2, this version also allows
customer applications to be run (e.g. data pre-processing routines) on the
system. This requires that the customer submits a binary file that shall be
loaded to the system during the production.

It is economic infeasible to personalize each device manually if it is sold in
high quantities. Further, establishing three different order processes using three
different versions of customization toolchains will result in higher maintenance
efforts. To summarize the findings of this short example, it is fundamental to

136

8 Publications

Software Configuration based on Order Processes 13

have a software architecture which is synchronized with the according order pro-
cess(es). This means that variable parts of the process model need to be reflected
by a variable software architecture. Further, minor changes to the process model
(e.g. addition of new configuration settings) should not lead to huge development
efforts since – ideally – the software architecture does not need to be changed. To
be able to define such a stable software architecture it is necessary to understand
and identify the variable parts of the processes to be able to define the basic set
of features that need to be implemented during the Domain Engineering.

To identify the required features, we will take a second look at the previous
example and identify how the order entry is generated: Basically, there are three
different customization options, where in the first case a customer can customize
a connection string for his web-server. In the second case, he can further sub-
mit a key which is stored onto the nodes, and in the third case, executables
can be submitted to be loaded to the chip. A very basic process showing these
customization options is illustrated in Figure 6. Applying the rules defined in
Section 4.2, the default order entry is generated with the following properties:
A string input box for defining the IP address of the web server and a decision
whether to send the data encrypted or not. In case of encryption, a string input
box can be used to specify the plain encryption key and an option will appear
that allows a customer to load custom application also as a string input box. In
this case, the only problem of the default behaviour is the default string type
of the Input ”Binary”. As a consequence, the Domain Experts need to adapt
the default process model by defining the correct input type for the ”Binary”
Input to get the final process model. If doing so, the system will automatically
be able to generate a web form having a file upload button for the custom ap-
plication. Additionally, the Domain Experts could refine the type of the other
inputs to be able to perform automated constraint checks (i.e. verifying that
the specified IP-Address is valid, that the given key is valid with respect to
its length, etc.). The additional information is directly linked to the processes
via the ”Process Variability Framework” [5]. This mapping is based on unique
identifiers which are unique for each node in every process designed in the BPM
tool. Thus, re-factoring of the process sequence does not cause the loss of ad-
ditional data. Only if the according nodes are deleted, the information is lost.
Having this structured view shows that the features can be directly identified

Configure
Web-Server

Configure
Encryption

Key

Load
Customer

Applications

IP Address Key Binary

No Encryption

No Custom App.

Encryption Custom App.

Fig. 6. Simple example process showing the customization process of the described
example (Version 1, 2 and 3).

137

Paper F - Springer 2017

14 Andreas Daniel Sinnhofer et al.

Process
Model

Abstract Class
Hierarchy

Generate

Implementation
Instantiate

XSD Schema

XML
(Functions)

Order Entry
Converter

Interpreter Tool
Output

Restrictions

Customer
Submissions Converter

XML Product Configuration

Defined per Product Family

Calls Functions

Fig. 7. The architecture of the software tool responsible for generating the wished
product outcome (adapted from [17]).

that need to be supported by the following software toolchain to generate the
different product variants. Thus, the Domain Experts are able to create / de-
rive the according Feature Model consisting of the three features ’Web-Server
Configuration’ (mandatory), ’Encryption’ (optional) and ’Custom Application’
(optional; requires ’Encryption’).

4.4 Application Engineering

Based on the knowledge gained from the Domain Engineering, the goal of the
Application Engineering is to automate the process of creating product variants
based on the submitted order entry forms. This means, that individual features
of the defined Feature Model are automatically selected and assembled to the
final product, based on the submitted order entry forms. As a consequence, the
submitted order entry forms need to be in a format which is on the one hand
easy to read for humans and on the other hand easy to process for the software
toolchain. The requirement for a human readable configuration is directly linked
to the verification step shown in Figure 5. If the configuration is not readable, a
human won’t be able to verify it against the customer requirements. Summing
these requirements up, the architecture illustrated in Figure 7 can be derived.
As illustrated, the Extensible Markup Language (XML) is used as the human
readable and machine readable file format. But of course, any other markup
language can be used as well.

The tool is basically an interpreter which can be ”dynamically programmed”
for the actual order. This means that variability of the architecture is gained
by shifting features from the implementation phase to the configuration phase.
To ensure that such freedom is not misused, it is necessary to enforce specific
rules in the Interpreter Tool (e.g. security requirements). Based on the Process
Model of the Process Variability Framework, a schema file is created which states
all possible operations and all additional language primitives (like conditional
statements, etc.) the Interpreter Tool can perform. This can be seen as a Domain
Specific Language (DSL) which can be used to program the Interpreter Tool.
Based on this schema, a XML file is created that reflects the Feature Model

138

8 Publications

Software Configuration based on Order Processes 15

which was created from the Domain Experts during the Domain Engineering.
Each feature corresponds to a dedicated function which can be called from the
according Product Configuration. Each function explicitly states which input
parameter need to be provided such that the Interpreter Tool is able to generate
the required output. Further, each function contains the sequence of operations
that need to be executed by the Interpreter Tool.

For demonstration purposes, we will revisit the example from Section 4.3.
There, three different Features where identified namely the ’Web-Server Config-
uration’ (mandatory), the ’Encryption’ (optional), and the ’Custom Application’
(optional; may occur multiple times) feature. Taking this into account and the
concept mentioned above, the XML illustrated in Listing 1 can be generated.
For each feature, one dedicated functions is created, consisting of a Configuration
block and a Translate block. The Configuration block is used to indicate which
data needs to be provided from the order entries (i.e. from the ”real” product
configuration) and how often they can occur (configuration safety). These Con-
figuration blocks are further used to generate a schema file which is used by
the converter tool to convert the Customer Submissions into the needed XML
structure. The Translate block defines how the submitted data is processed by
combining the operations defined in the DSL of the Interpreter Tool. The defini-
tion of the translate blocks need to be done only once for a whole product family
and only need to be adapted if the corresponding Process Model was changed.

Listing 1. Generated XML based on the Order Entry. The Translate blocks need to
be edited manually by a developer calling operations defined in the XSD schema.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <Functions>
3 <Function id=”Web−Server Conf igurat ion ”
4 minOccurs=”1”
5 maxOccurs=”1”>
6 <Configuration>
7 <Parameter name=”IP Address ” type=” ipAddress ” />
8 </Configuration>
9 <Translate> . . . </Translate>

10 </Function>
11
12 <Function id=”Encryption ”
13 minOccurs=”0”
14 maxOccurs=”1”>
15 <Configuration>
16 <Parameter name=”Key” type=” hexs t r i ng ” />
17 </Configuration>
18 <Translate> . . . </Translate>
19 </Function>
20
21 <Function id=”Custom Appl i cat ion ”
22 minOccurs=”0”
23 maxOccurs=”unbounded”>
24 <Configuration>
25 <Parameter name=”Binary” type=” f i l e U r i ” />
26 <Configuration>
27 <Translate> . . . </Translate>
28 </Function>
29 </Functions>

139

Paper F - Springer 2017

16 Andreas Daniel Sinnhofer et al.

Listing 2. Exemplary generated Configuration file based on customer submissions.
Two different versions are shown. The first example illustrates a ”Version 1” product
and the second one a ”Version 3” product.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <CustomerOrder>
3 <WebServer>
4 <Connection>X.X.X.X</Connection>
5 </WebServer>
6 </CustomerOrder>

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <CustomerOrder>
3 <WebServer>
4 <Connection>X.X.X.X</Connection>
5 </WebServer>
6
7 <EncryptionKey>
8 <Key>0x01020304 . . .<Key>
9 </EncryptionKey>

10
11 <Custom Appl i cat ion>
12 <Binary> f i l e : //orderXYZ/app1 . e l f</Binary>
13 </Custom Appl i cat ion>
14
15 <Custom Appl i cat ion>
16 <Binary> f i l e : //orderXYZ/app2 . e l f</Binary>
17 </Custom Appl i cat ion>
18 </CustomerOrder>

For this particular example, one possible solution could be that the interpreter
tool offers a store-data and an install-application operation. The store-data op-
eration could be used to write the IP address of the web-server to the correct
memory location, as well as the encryption key and the according setting to
enable the encryption.

Additional restrictions are domain depended and could contain in that ex-
ample the following checks: Verification that the submitted key is of reasonable
strength (e.g. AES key with a minimum length of 16 Byte); that the submit-
ted applications are protected by a signature of the customer, to ensure that
they are not replaced by a malicious third party; Verification that the ’Custom
Application’ feature is only used if encryption is activated.

To trigger the generation process, the filled order entry forms (i.e. customer
submissions) are converted into a configuration file which calls the specific func-
tions of the Functions XML (see Figure 7). For example Listing 2 shows the
generated Configuration file for a ”Version 1” product (the configuration on the
top) and a ”Version 3” product (the configuration on the bottom). Based on this
configuration, the Interpreter Tool is able to generate the ordered product in an
automatic way. The result of this process strongly depends on the intended use
case; examples could be a binary file which can be directly flashed to the sensor
nodes during productions, or script files which are executed for every individual
node to configure the nodes.

140

8 Publications

Software Configuration based on Order Processes 17

5 Industrial Case Study

In this section an overview over our industrial case study is given. The imple-
mented business processes of our industrial partner are controlled by an SAP in-
frastructure and are designed with the BPM-Tool Aeneis. Further, pure::variants
is used as SPLE tool to manage the variability of the business processes. Thus,
our implemented prototype is based on pure::variants and Java. The investigated
products are smart objects designed for the Internet of Things (IoT). One possi-
ble application is the use in smart home environments to automatically control
the temperature of the rooms.

5.1 SPLE-Tool: pure::variants

pure::variants is a feature oriented domain modelling tool which is based on
Eclipse. As such, it can easily be extended based on Java plug-in development.
It supports family models which was one of the fundamental tool requirements
identified in Section 4.1. During the implementation of this project, five different
plug-ins where developed:

– An extension to the import plug-in which was developed in our previous work.
It assists the Process Designers in modelling cross functional requirements and
providing the needed information for the code generators.

– An extension to the internal model compare engine for comparing different
versions of created feature models with each other.

– An extension to the internal model transformation engine to convert the fea-
ture selection of the process model into the according order entry form. This
also generates the back-end to trigger processes for internal stakeholders.

– Additions to the internal model check engine to model and create only valid
processes (e.g. checks related to the feature selection, the consistency of the
feature model, etc.)

– Generator Tools which are able to generate the skeleton of the schema file
(as described in Section 4.3) and the order entry form (a generated Web-
Interface). Additionally, converter tools were written which are converting the
generated forms and received submissions into the related XML configuration
files.

Additionally, the interpreter tool was written within the same development
environment to ensure that the feature models are directly reflected in the im-
plementation of the interpreter.

5.2 Implementation of the interpreter tool

As mentioned in Section 4.4, XML / XSD are used to model the operations
of the interpreter tool and to automatically instantiate the requested features.
To ease the implementation, the according class hierarchy was generated from

141

Paper F - Springer 2017

18 Andreas Daniel Sinnhofer et al.

Table 1. Effort measurements and estimations in man-month to develop the system
using traditional software development and our presented framework.

Framework Traditional

Base System 12 -
Product Fam. 1 1 6
Product Fam. 2 0.5 Estimate: 4 - 5
Product Fam. 3 0.05 Estimate: 1 - 1.5

Overall 14,55 11 - 12.5

the schema file using the tool Jaxb (a Java architecture for XML binding1). The
generated bare class hierarchy was then implemented by the software developers.
Since the creation of the schema file is semi-automatic, our developed framework
(implemented in pure::variants) opens a dialogue which hints the domain expert
to check the validity of the schema file to ensure that the changes to the pro-
cesses are always propagated to the schema file. The domain of our industrial
case study was the configuration of small embedded systems. The production
was done in two major steps. During the first step, the initial device was pro-
duced having the default software flashed to the devices. During the second step,
the order individual configuration was loaded to the nodes by applying scripts.
This required that the nodes where mounted to a programming device which
communicated with the nodes using their standard API.

5.3 Evaluation

The framework was successfully deployed for three different product families
which are based on the same Process Model. The third supported product was a
revision of the second, where new configuration settings where supported and the
underlying hardware platform was changed (endianness changed and additional
sensors where added). The time was measured to implement the initial system
and the overhead to support the three systems to get an effort estimation which
can be compared with a traditional software development. We use the term ”tra-
ditional software development” for a software development with ad-hoc (or near
to ad-hoc) software architecture which means that multiple different systems are
designed almost independently. This leads to the situation that only a little code
base is shared between each software project since most of the code is optimized
for single purposes. However, this code would be reusable if adaptations of the
interfaces / implementations would have been considered.

The effort for the traditional software development was based on the real
implementation time for the first system and an effort estimation to port the
existing family to the new products. These numbers were given by the responsi-
ble developers. As illustrated in Table 1, the ”traditional” development effort for
the third system was about 20 - 30 times higher than the implementation effort
of the new developed framework. This number may seem too high at first sight,

1 http://www.oracle.com/technetwork/articles/javase/index-140168.html

142

8 Publications

Software Configuration based on Order Processes 19

but can be directly mapped to the change of the endianness of the underlying
hardware platform. With our proposed framework, it was a minor change which
required a byte reversal of integer values of the generated outcome. This was
done by introducing a post-processing step in every ”Translate” block which re-
sulted in integer numbers using already existing functionality. For the traditional
development, the responsible developers argued that they would need to search
the whole source base to identify the impacts of the endianness change and to
fix the according implementations.

As illustrated in Table 1, the break-even point will be between 3 to 4 systems
using a curve fitting interpolation. This number also correlates to the typical
number presented in relevant software product line publications (e.g. [22]). The
break-even point may also be reduced since these numbers do not consider the
maintenance of the systems. The maintenance cost can be reduced since fixing
problems in one product family will fix this issue in all others as well.

6 Conclusion and Outlook

The reuse of business process models is an important step for an industrial com-
pany to survive in a competitive market. But only with an integrated view of
the according IT landscape, it is possible to raise the efficiency of the overall
business. With this work we proposed a way to combine the benefits of software
product line engineering techniques with the capabilities of a business process
modelling tool. This work provides a framework for the systematic reuse of busi-
ness processes and the configuration of software toolchains used during the actual
production of the product. The new introduced framework is able to synchro-
nize variable order process structures with a variable software architecture. This
means that changes to the processes will automatically lead to software artefacts
which need to be implemented by the developers. For that, the framework uses
XML data binding to bind specific software features to a specific set of config-
urable artefacts which need to be submitted by customers (internal and external)
during the order process. This is done in an automatic and managed way such
that the order interface is always aligned to the software toolchains. This essen-
tially reduces the development costs and time required to react to changes of the
market. Moreover, the overall robustness of the software toolchain is increased
since the same code base is shared for a lot of different product families leading
to a higher customer satisfaction.

In the current state, the presented framework is focused on covering the
variability of the order processes. As a consequence, the developed framework is
only applicable in similar contexts, where the variability of the process models
is mainly driven by the order processes. In a future work, we will investigate the
consequences of different contexts and how these changes influences the process
models and the according software toolchains.

Further, Future work will address the semi-automatic creation of the schema
file which is used to keep the software architecture aligned to the process mod-
els. Another point for improvement is the fact that additional restrictions like

143

Paper F - Springer 2017

20 Andreas Daniel Sinnhofer et al.

security requirements are implemented and mapped manually to the according
product configurations. In a future work, we will investigate a way to map these
security requirements to the according process model which enables an auto-
matic way to bind these requirements to the product families. Thus, additional
non-functional requirements can be automatically enforced during the process.
This is important especially if a certification of the generated products is in-
tended. Certification requires, that evidence is provided which ensures that the
functional and non-functional requirements are met no matter which valid con-
figuration is used. This requires mature development processes and verification
gates to allow an automatic detection of violations.

Acknowledgements. The project is funded by the Austrian Research Promo-
tion Agency (FFG). Project Partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. We want to gratefully thank Danilo Beuche
from pure::systems for his support. Further, the authors want to gratefully thank
Felix Jonathan Oppermann for his support during the design and the implemen-
tation of the industrial prototype.

References

1. McCormack, K.P., Johnson, W.C.: Business Process Orientation: Gaining the E-
Business Competitive Advantage. Saint Lucie Press (2000)

2. Valena, G., Alves, C., Alves, V., Niu, N.: A Systematic Mapping Study on Business
Process Variability. International Journal of Computer Science & Information
Technology (IJCSIT) (2013)

3. Willaert, P., Van Den Bergh, J., Willems, J., Deschoolmeester, D.: The Process-
Oriented Organisation: A Holistic View - Developing a Framework for Business
Process Orientation Maturity. Springer (2007)

4. Saidani, O., Nurcan, S.: Towards context aware business process modelling. In: 8th
Workshop on Business Process Modeling, Development, and Support (BPMDS07),
CAiSE. Volume 7. (2007) 1

5. Sinnhofer, A.D., Pühringer, P., Kreiner, C.: varbpm - a product line for creat-
ing business process model variants. In: Proceedings of the Fifth International
Symposium on Business Modeling and Software Design. (2015) 184–191

6. Fantinato, M., Toledo, M.B.F.d., Thom, L.H., Gimenes, I.M.d.S., Rocha, R.d.S.,
Garcia, D.Z.G.: A survey on reuse in the business process management domain.
International Journal of Business Process Integration and Management (2012)

7. Derguech, W.: Towards a Framework for Business Process Models Reuse. In The
CAiSE Doctoral Consortium (2010)

8. Gimenes, I., Fantinato, M., Toledo, M.: A Product Line for Business Process
Management. Software Product Line Conference, International (2008) 265–274

9. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing Soundness of Configurable
Process Variants in Provop. In: Commerce and Enterprise Computing, 2009. CEC
’09. IEEE Conference on, IEEE (2009) 98–105

10. Hallerbach, A., Bauer, T., Reichert, M.: Issues in modeling process variants with
Provop. In Ardagna, D., Mecella, M., Yang, J., eds.: Business Process Manage-
ment Workshops. Volume 17 of Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg (2009) 56–67

144

8 Publications

Software Configuration based on Order Processes 21

11. Reichert, M., Hallerbach, A., Bauer, T.: Lifecycle Support for Business Process
Variants. In Jan vom Brocke and Michael Rosemann, ed.: Handbook on Business
Process Management 1. Springer (2014)

12. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Rosa, M.L.: Config-
urable Workflow Models. International Journal of Cooperative Information Sys-
tems (2007)

13. Rosa, M.L., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Be-
yond control-flow: Extending business process configuration to roles and objects. In
Li, Q., Spaccapietra, S., Yu, E., eds.: 27th International Conference on Conceptual
Modeling (ER 2008), Barcelona, Spain, Springer (2008) 199–215

14. Haugen, O., Wasowski, A., Czarnecki, K.: Cvl: Common variability language. In:
Proceedings of the 17th International Software Product Line Conference. SPLC
’13 (2013)

15. Zhao, X., Zou, Y.: A business process-driven approach for generating software
modules. Software: Practice and Experience 41(10) (2011) 1049–1071

16. Österle, H.: Business Engineering - Prozess- und Systementwicklung. Springer-
Verlag (1995)

17. Sinnhofer, A.D., Pühringer, P., Potzmader, K., Orthacker, C., Steger, C., Kreiner,
C.: A framework for process driven software configuration. In: Proceedings of the
Sixth International Symposium on Business Modeling and Software Design. (2016)
196–203

18. Hammer, M., Champy, J.: Reengineering the Corporation - A Manifesto For Busi-
ness Revolution. Harper Business (1993)

19. (OMG), O.M.G.: Business process model and notation (bpmn). version 2.0. (2011)
1–538 available at http://www.omg.org/spec/BPMN/2.0/.

20. Strnadl, C.F.: Aligning business and it: The process-driven architecture model.
Information Systems Management 23(4) (2006) 67–77

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (foda) feasibility study (1990)

22. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (2005)

23. Weiss, D.M., Lai, C.T.R.: Software product-line engineering: a family-based soft-
ware development process. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (1999)

145

8 Publications

Combined Variability Management of Business Processes and Software
Architectures

Andreas Daniel Sinnhofer1, Andrea Höller1, Peter Pühringer, Klaus Potzmader2, Clemens Orthacker2,
Christian Steger1 and Christian Kreiner1

1Institute of Technical Informatics, Graz University of Technology, Austria
2NXP Semiconductors, Gratkorn, Austria

{a.sinnhofer,andrea.hoeller,christian.kreiner,steger}@tugraz.at, p.puehringer@inode.at, {klaus.potzmader,
clemens.orthacker}@nxp.com

Keywords: Software Product Lines, Feature Oriented Modelling, Business Process Variability Management, Software
Configuration

Abstract: Nowadays, organizations are faced with the challenge of surviving in a highly flexible and competitive mar-
ket. Especially the domain of Internet of Things is affected by short product cycles and high pricing pressure.
Business Process oriented organizations have proven to perform better regarding highly flexible markets and
fast production cycles. However, especially industries focused on low cost IoT systems are facing big pro-
blems if the according business processes are not aligned with the business processes. Consequently, a lot of
development effort is spent for features which are never addressed by any business goal. With this work, we
propose to use a combined variability management in order to efficiently address product variability on the
organizational level as well as on the technical level.

1 INTRODUCTION

We are living in an ever changing and interconnected
world. The dawn of the Internet of Things (IoT)
further increases the trend for organizations to deli-
very feature rich systems in high quantities and at low
costs. Due to this pricing pressure, methods have to be
investigated which allows modular and highly confi-
gurable systems such that the products can be adapted
to the current requirements of the market.

Business Process (BP) oriented organizations are
known to perform better regarding highly flexible de-
mands of the market and fast production cycles (Mc-
Cormack and Johnson (2000); Hammer and Champy
(1993); Valena et al. (2013); Willaert et al. (2007)).
This is achieved by introducing a management pro-
cess during which business processes are modeled,
analyzed and optimized in iterative improvement pro-
cesses. During recent years, business process mana-
gement is further coupled with a workflow manage-
ment in order to monitor the correct execution of the
process and to integrate responsibilities to the process
models. In order to react to changing requirements,
context aware business process modeling techniques
were introduced Saidani and Nurcan (2007): Flexibi-
lity is gained through the analysis of the context states

of the environment which are mapped to the accor-
ding business processes and their related software sy-
stems. The problem with such approaches is that the
used software systems are often developed indepen-
dently from each other, although they share a similar
software architecture.

Software Product Lines (SPL) have proven to be
essential for the development of flexible product ar-
chitectures which can be adapted to the current requi-
rements (Pohl et al. (2005)). Through the use of a
common architecture and reusable product features,
SPL promises to deliver high quality products while
simultaneously maintaining low development costs.
The most critical phase during the design and the im-
plementation of a product line is the identification of
the variable parts and the common parts of the product
family (Pohl et al. (2005)). Consequently, a lot of ef-
fort is invested to identify the domain requirements of
the final product portfolio. Equally important is the
selection of the according features during the appli-
cation engineering: It has to be guaranteed, that the
customer requirements are fully met; further, all un-
necessary features need to be excluded in order to en-
sure low productions costs of the final product. Since
the identification of the domain requirements is usu-
ally carried out from developers, an integrated view

©2017 Held by SciTePress. Reprinted, with permission. The definitive version will be published in Proceedings of the Seventh
International Symposium on Business Modeling and Software Design, http://www.is-bmsd.org/BMSD2017/ June 2017.

147

http://www.is-bmsd.org/BMSD2017/

Paper G - BMSD 2017

of the organizational goals is often missing. Thus, the
efficiency of the product line is reduced since additio-
nal effort needs to be invested to configure the product
according to the current requirements.

This work focuses on the development of a frame-
work which aims to enforce a link between the varia-
bility of the business processes and the variability of
the product platform. As such, we propose a com-
bined variability modeling in which the requirements
for the organization as well as for the development
of the product platform are identified together. Af-
ter identifying the requirements, order processes are
designed which reflect the possible product configu-
rations that can be ordered by a customer. These vari-
able order processes are further used to automatically
trigger the product customization process in order to
reduce the production costs of the final product. This
work is based on our previous works in which we al-
ready defined systems for the modeling variability of
business process models (Sinnhofer et al. (2015)) as
well as a framework for generating software confi-
gurations based on order processes (Sinnhofer et al.
(2016, 2017)).

This work is structure in the following way:
Section 2 summarizes basic concepts about business
process modeling as well as software product line en-
gineering. Section 3 summarizes out approach to link
variable order process models to variable software ar-
chitectures in an automatic way. In Section 4 we
describe how we applied the introduced concepts in
an industrial use case and present a simplified exam-
ple for illustration purposes. Since the identification
of business drivers is essential for an organization to
survive in a competitive market, we show in Section
5 how we were able to identify improvement oppor-
tunities by analyzing the results of our framework.
We conclude this work by presenting related work in
Section 6 and a summary in Section 7.

2 BACKGROUND

This Section summarizes the basic concepts of Busi-
ness Process Modeling and Software Product Line en-
gineering which are applied in this work. Further, our
previous publications – which are forming the foun-
dation of this work – are briefly summarized.

2.1 Software Product Line Engineering

Software Product Line Engineering (SPLE) applies
the concept of product lines to software products. As
a consequence, SPLE promises to create diverse and
high quality software products of a product family in

short time and at low costs Pohl et al. (2005). Instead
of writing software for every individual system, soft-
ware products are automatically generated by combi-
ning the required domain artifacts. The principal con-
cept can be split into two main phases: the Domain
Engineering and the Application Engineering (Pohl
et al. (2005); Weiss and Lai (1999)).

The Domain Engineering is the phase in which
the variabilities and the commonalities of the accor-
ding domain are identified and the reusable domain
artifacts are implemented. Domain artifacts are deve-
lopment artifacts like the software architecture or the
software components. One essential phase during the
domain engineering is the requirements engineering
process, in which a domain analysis has to be perfor-
med in order to identify the requirements of the fi-
nal product. Based on the identified requirements, the
domain is usually modeled by using a Feature Orien-
ted Design Modeling (Kang et al. (1990)) approach.
During this process, Feature Models are used to ex-
plicitly describe all features of a product, their relati-
onships, dependencies and additional restrictions.

The Application Engineering is the phase during
which the final products are created by combining the
domain artifacts in a meaningful manner. This is en-
forced by the use of domain constraints which were
modeled during the Domain Engineering phase. In
difference to the Domain Engineering, the Applica-
tion Engineering is mainly focused on reusing arti-
facts rather than the implementation of new artifacts.
In the ideal case, this phase makes use of software ge-
nerators to automatically derive product variants wit-
hout the need of implementing any new logic. The
amount of reused domain artifacts heavily depends on
the application requirements and gives an estimate on
the efficiency of the product line. Hence a major con-
cern of the application engineering is the detection of
deltas between the application requirements and the
available capabilities of the product line.

2.2 Business Process Modeling

Business Processes (BP) are a specific sequence of
activities or (sub-) processes which are executed in a
certain order to create an amount of value to the cu-
stomer Hammer and Champy (1993). In this work,
we use the concept defined by Österle (1995) to mo-
del BPs: BPs are modeled in different layers, where
the top level (macroscopic level) is a highly abstract
description of the overall process and the lower-levels
(microscopic level) are more detailed descriptions of
the sub-processes. A reasonable level of detail is re-
ached, if the process description on the lowest levels
can be used as work-instructions for the responsible

148

8 Publications

employees. This leads to the fact that the higher le-
vels of the process description are usually indepen-
dent of the production facility and the supply chains;
while the lower levels are highly dependent on the
production facility and its capabilities. As a conse-
quence, the macroscopic level is more stable with re-
spect to changes and can be reused in different con-
texts and production environments. The microscopic
levels need to be updated in order to reuse them in dif-
ferent contexts. Variability of such process structures
can be modeled through a variable process structure
(i.e. by adding/removing activities in a process) or
by replacing process refinements with different sub-
processes. In general, three main types of business
processes can be distinguished (see Association of
Business Process Management Professionals (2009)):

• Primary Processes: Each of the process activities
adds a specific amount of value to the value chain.
Consequently, such processes are also often refer-
red to as Core Processes since the customer value
is directly reflected in these processes.

• Support Processes: Are processes which are de-
signed to support the Primary Processes like ma-
naging resources or infrastructure. Such proces-
ses do not directly add value to the customer but
are essential to ensure the proper execution of the
Primary Processes.

• Management Processes: Are designed to moni-
tor and schedule business activities like the exe-
cution of Primary Processes or Support Processes.
While Management Processes do not directly add
value to the customer, they are designed to incre-
ase the efficiency of the business activities.

Domain specific modeling languages are usually
used to model all the activities, resources and respon-
sibilities within a Business Process. In the scope of
this work, the Business Process Model and Notation
(BPMN, Object Management Group (2011)) is used
to model processes, but the general concept of this
work is not limited to this notation. The key concepts
which are used in this work, are summarized below
(Object Management Group (2011); Sinnhofer et al.
(2017)):

Events: Occurs during the execution of a process
and may affect the flow of the process. For exam-
ple, the start or the completion of an Activity are ty-
pical events that occur in every process. According to
the BPMN specification Object Management Group
(2011), events are used only for those types, which
affect the sequence or timing of activities of a pro-
cess.

Activities: An Activity is a specific amount of
work that has to be performed by the company – or

another organization – during the execution of a pro-
cess. Two different types of activities can be dis-
tinguished: Atomic activities (i.e. a task) and non-
atomic activities (e.g. sub-processes).

Gateways: Are used to control how the process
flows through different sequences of activities. Each
gateway can have multiple input and/or output paths.
One example is a decision, where out of many possi-
bilities, only one path is selected. The selection of the
paths can be coupled to conditions or events which
are triggered during the execution of the process.

Data: Data objects represents the information
flow through the process. Two types of Data objects
can be distinguished: Input Data that is required to
start a specific activity and Output Data which is pro-
duced after the completion of an Activity.

Pool and Lanes: Are used to model responsibi-
lities for specific activities in a process. Responsibi-
lities can be usually assigned to an organization, to
specific roles or even dedicated employees.

It is common practice for organizations to main-
tain multiple variants of business processes which are
based on a common template (Rosa et al. (2017)).
This leads to the situation that similar process vari-
ants are created through a copy and clone strategy. As
a consequence, maintaining these process variants is a
time consuming tasks since every single process vari-
ant has to be manually updated by the according pro-
cess designer. Besides the additional maintenance ef-
fort, using copy and clone strategies also have a nega-
tive influence on the process documentation. To solve
these issues, we proposed a Software Product Line
approach for the derivation of process variants from
business process models (see Sinnhofer et al. (2015,
2016, 2017)). The concept can be split into four dif-
ferent phases:

Process modeling: During the process modeling,
process designers are responsible to design process
templates. The process templates are designed using
the BPMN notation and additional artifacts are inte-
grated like documentation templates, responsible ro-
les, resource allocations, etc. The process templates
are designed in an appropriate BPM Tool to fully sup-
port the process designers during the design process.
The process of designing the process templates and
the process of creating the according domain model
goes hand in hand to ensure that the created templates
can be reused in many different contexts.

Domain modeling: During this process, the cre-
ated templates are imported into a Software Product
Line tool and translated into a so called feature model
(see Section 2.1). During the creation of the feature
model, it has to be decided which parts of the process
are designed to be variable and which parts are static.

149

Paper G - BMSD 2017

For illustration purposes, the following example is gi-
ven: A company creates car parts for two major car
manufacturers. While the overall process for creating
the car parts is identical for both customers, different
production planning strategies are used to optimize
the material usage (e.g. stock size, etc.). As a con-
sequence, the production planning strategy has to be
designed variable such that the overall process model
can be reused for both customers. The definition of
variable parts and static parts happens in close coope-
ration with the according process designers and may
even lead to a re-iteration of the first phase if some
process templates need to be adapted. Not every com-
bination of variants may create meaningful process
variants. As a result, a comprehensive list of restricti-
ons and rules has to be designed as well to guarantee
that only valid and meaningful process variants can be
created by the product line. The list of rules and re-
strictions has to be defined flexible as well, since not
every restriction may be identified when the process
model is created. Consequently, re-iterations of the
restriction model are common after collecting evalua-
tion data from the execution of the process.

Feature selection: Based on the current require-
ment of the organization, process variants are created
using the created feature model. This is done be se-
lecting the required features from the model and by
translating this feature selection to a valid business
process structure. To ensure an automatic transforma-
tion, generators have to be developed which are able
to translate between the business process model and
the feature model. The defined rules and restrictions
are enforced during this process to guide the domain
expert in selecting a meaningful set of options. To
continue the example from above, two process vari-
ants may be created for the two customers. The only
difference between the processes is the production
planning strategy.

Maintenance and Evolution: One of the most
important phases is the maintenance and evolution
phase: To be highly flexible and adaptive to the cur-
rent requirements of the market, processes and their
according models have to be continuously improved
and adapted. As such, the derived processes are mo-
nitored by production experts during the time in use
and evaluated against the requirements. Based on
the collected data, feature selections can be impro-
ved or process improvement processes can be sche-
duled. During a process improvement process, pro-
cess templates are updated or created from the process
designers and integrated into the existing feature mo-
del. Through the capabilities of the Software Product
Line tool, it is possible to automatically propagate the
changes of the process templates to every instance.

As a consequence, no time consuming and error prone
manual maintenance process is necessary to adapt all
the existing process variants. Since it may happen that
some of the process variants shall not be updated in
case of changes, version control can be used to expli-
citly state which version of a template shall be used.

Our today’s business environment is focused on
creating sustainable value by increasing the revenue
of business drivers. The identification of such busi-
ness drivers, or the identification of the drivers which
are able to destroy value is an essential step for an or-
ganization Strnadl (2006). Otherwise, staying com-
petitive or even survive on a flexible market is not
possible. The combination of business variability and
software variability is a promising way to improve the
identification of such drivers. Further, having a com-
bined view of the requirements helps to increase the
overall efficiency of the product line.

3 COMBINED VARIABILITY
MODELING

The goal of this work is an automatic generation of
software products based on the product order. In or-
der to achieve this goal, an integrated view is neces-
sary in which the variability of the software product
is reflected in a variable order process. Since only a
few configuration options are usually exposed to the
end-customer, also all internal processes need to be
covered in the variability management process. The
overall concept of the resulting process is highligh-
ted in Figure 1. As illustrated, the Process Variability
Framework – which was described in Section 2.2 – is
used as a foundation to model variable order process
models. Based on this order process models, order
entry forms are automatically generated which need
to be filled by internal or external customers. Based
on the provided data, a product line is triggered which
maps the provided order data to the customization op-
tions of the software product. Based on the generated
feature mapping, the final product can be automati-
cally derived without any manual step beside verifi-
cation steps which may be required by certification
requirements. In order to achieve a binding between
the order process models and the generated order en-
try forms, the following type model was introduced
(Sinnhofer et al. (2017)):

• None: No special data needs to be submitted.
Thus, a process node marked with none will not
appear as a setting in the order entry form.

• Inputs: Is the abstract concept for different in-
put types which are described below. Each In-

150

8 Publications

Order Entry
(e.g. Web-Interface)

Process
Variability

Framework

Customer

Domain Experts

Process Variant

Process
Model

Internal Customer

generated

configures

configures

Maintenance
Evolve

influences

Feature
Model

Feature
Selection

Feature
Transformation

Generators

Product

Domain Experts

verifyOrder Data

Figure 1: Overview of the concept for combining order process variability and software variability to automatically derive
software products.

put is mapped to a specific input type, defining
the format of the input. For example, input data
could be delivered in form of a file, or configura-
tion settings could be delivered in form of strings
or integer values. Depending on the applied dom-
ain, also non functional properties may need to be
modeled in the Input type. For example, if a secu-
rity critical product is developed, a customer may
be asked to provide a cryptographic key which is
used to authenticate the customer to the device.
Besides providing this key, also some kind of spe-
cification is required in which format this data was
provided (e.g. pgp encrypted, etc).

• Customer Input: Specific data that has to be ad-
ded from an external customer. A process activity
marked with this type will generate an entry in the
order entry form of a specific type. For example,
drop down list will appear if a customer can select
between different options.

• Internal Input: Specific data needs to be added
from an internal stakeholder. A process activity
marked with this type will not generate an entry
in the external customer order interface, but will
create a separate order entry for the according in-
ternal stakeholder.

• Input Group: A set of inputs which are logically
linked together. As a consequence, all of these
inputs will be highlighted as a group in the gene-
rated order entry and all of them are required for a
single customization feature of the final software
product.

The type information has to be added to the pro-
cess feature model of the SPLE tool. To support the
domain experts in creating the according mappings,
the following rules are automatically applied by the
SPLE tool based on the BPMN types (Sinnhofer et al.
(2017)):

• Activities: Non-atomic activities are used to
group specific sets of input parameter to a single
feature. For example, a process designed for cus-
tomizing an application may require several input
parameter (like user name, password, license fi-
les, etc.). As a consequence, non-atomic activities
will appear as an Input Group for all inputs de-
fined by the according sub-process(es). Any ato-
mic activity will be automatically tagged as input
type ”None”. The input type ”None” is also au-
tomatically applied if a non-atomic activity does
not contain any data. Consequently, ”empty” non-
atomic activities will also not appear in the gene-
rated order entry form.

• Gateways: Are used to define the structure of the
generated form. For example, for a decision node,
a drop down selection will appear such that the
customer can choose between different customi-
zation paths. For decisions it is further enforced
that the customer can only select and submit the
data for one single path.

• Data: Data to be provided by any entity involved
in the process(es). With respect to our case study,
”String” turned out to be a meaningful default va-
lue.

• Pool and Lanes: Are used to define the source of
the input data. For example, a data node which is
part of a company internal lane will automatically
be tagged as an ”Internal Input”, while Data in an
external lane will be marked as ”External Input”.
”Internal Input” should be used as a default value
to circumvent accidental exposure of internal con-
figuration settings to the end-customer if Pool and
Lanes are not used.

All default mapping rules can be manually over-
written by the Domain Expert during the creation of
the process model. Changes to the process model

151

Paper G - BMSD 2017

Configure
Web Server

Configure
Web Server

Configure
Encryption

Key

IP Address IP Address Key

Configure
Web Server

Configure
Encryption

Key

IP Address Encryption Key

Load
Customer

Applications

Binary

Version 1 Version 2

Version 3

Figure 2: Exemplary order processes for the three diffe-
rent versions of the IoT device, based on (Sinnhofer et al.
(2017)).

Order Process

Configure
Web Server

Configure Data
Protection

Load Customer
Application

IP Address Encryption Key Executable

Mandatory Optional Requires

Figure 3: Exemplary feature model for the customization
of the IoT device in three different flavors.

(e.g. adding/removing/changing activities) are traced
via unique identifiers and illustrated as a diff-model
such that changes can be reviewed by the Domain
Experts. After the order process model was success-
fully tagged, the according order entry forms can be
generated. With respect to this work, we have cho-
sen web-based forms since they are commonly used
in practice.

As illustrated in Figure 1, the provided customer
data is used to create the feature selection of the final
product. A manual verification step is advisable in or-
der to ensure that no mistake was made during the de-
velopment of the translation logic. Additionally, for
certification purposes it may also need to be proven
that a verification was done to ensure that no custo-
mer related data is confused with other products. In
order to automatically select the features, the grou-
ping information of the order entry is used to select
the required features. After the selection was appro-
ved by the Domain Experts, it is automatically pro-
cessed by the product specific code generators of the
product line which utilizes the provided order data to
actually generate the according product. The result of
this process strongly depends on the use case: It could
be a binary file that is loaded to the Integrated Circuits
during the production, a configuration script which is
executed on the final product, or any other approach.
We will discuss a script based approach in Section 4
in more detail.

Especially for new types of products it is very li-
kely that new knowledge is gained on how to increase
the efficiency of the whole process(es). Only if chan-
ges to the generated order entry forms are necessary,
a maintenance process for the product customization
system is required. The maintenance costs for the pro-
duct line can be kept as low as possible, since the code
generators and model transformation logic only has to
be updated once, but can be reused for the whole pro-
duct line.

4 INDUSTRIAL CASE STUDY

For illustration purposes, we will discuss our indus-
trial case study in more detail, showing how process
models are translated and the final product is auto-
matically derived. The implemented business pro-
cesses of our industrial partner are controlled by an
SAP infrastructure and are designed with the BPM-
Tool Aeneis. Further, we are using the SPLE tool
pure::variants to manage to variability of the business
processes as well as the variability of the final pro-
duct configurations. A more detailed description of
the developed tools plugins can be found in our pre-
vious publications (see Sinnhofer et al. (2015, 2016)).
For illustration purposes, we will consider the follo-
wing – simplified – example: A company is develo-
ping small embedded systems which are used as sen-
sing devices for the Internet of Things (IoT). The de-
vices are sold to distributors (refered to as customer
in the following) in high quantities which mean that
the customization of the devices cannot be done by
the customer in a feasible way. The device is offered
in three different variants with the following features
(based on Sinnhofer et al. (2017)):

Version 1: Senses the data in a given time interval
and sends the recorded signal to a customer opera-
ted web-server which is used for post-processing the
data. In the first version, the communication chan-
nel between the web-server and the device is unpro-
tected. The customer is responsible for providing the
connection string of the web-server to the company.

Version 2: Additionally to the basic features of
the first version, this version allows encryption of
the communication channel between the server and
the node using symmetric encryption algorithms. For
simplicity of this example, it can be assumed that the
encryption key is provided by the customer, which has
to be loaded to every single device. For simplicity, we
assume that the key is sent in plain by the customer.

152

8 Publications

Figure 4: Exemplary order entry form that is automatically
generated from the Feature Model highlighted in Figure 3

Version 3: Additionally to the basic features of
the first version, this version allows customer appli-
cations to be run on the system. This requires that the
customer submits a binary file which is loaded to the
device during the production.

Traditionally, this would result in three different
order processes which are formed via a copy and
clone strategy (see Figure 2): The order process of
the first version is copied and extended for the second
version, while the third version is an extended copy
of the second version. This means that changes to the
basic version would result in the maintenance of two
other processes as well. Using our developed frame-
work leads to the situation that all three process vari-
ants are derived from one common process model. As
such, the same result is achieved like using a manual
preparation, but the maintenance costs can be redu-
ced essentially since all variants are automatically up-
dated. The according Feature Model is illustrated in
Figure 3. For illustration purposes, a ”requires” relati-
onship between the web-server configuration and the
data protection configuration is not highlighted since
the ”Configure Web Server” feature is a mandatory fe-
ature. Consequently, the configuration is always part
of the final product and does not need to be explicitly
modeled.

To automatically generate the order entry form ba-
sed on the feature model, the input data ”IP Address”,
”Encryption Key”, and ”Binary” has to be set to the
according type. As such, rules can be defined to en-
sure that the given IP Address is formatted as a valid
IPv4 or IPv6 IP Address, or that the encryption key
has a meaningful length, etc. If no additional checks
are implemented, the Domain Expert would only need
to specify the input type of the ”Binary” to be a bi-
nary file. Doing so, the order entry form illustrated in
Figure 4 can be generated, assuming that all input pa-
rameter are provided by the customer. After clicking

FDL Interpreter
Submission

File

Config
Script

FD

Function Description Language

Language
Primitives

Operations
Script

References

Implementation
Abstract Class

Hierarchy

generated

Figure 5: Framework for a flexible, runtime-configurable
script generation system

the submit button on the order entry form, the pro-
vided data is converted into an XML file and zipped
together with all the provided files to a zip archive.
The XML file is necessary to ensure that the product
configuration product line is able to automatically in-
terpret the given zip file. Further, having an XML file
has also the positive side effect that it is human rea-
dable which is essential for manual verification steps.
Additional data can be included into the archive like
identifiers and time-stamps to have a traceable link
from placing an order to the actual manufacturing of
the product.

Based on the provided data, the final product can
be generated using dedicated code generators. To al-
low a flexible system without the need of re-releasing
the product line if new products are supported, we
decided to define run-time configurable generators.
For this purpose we defined a Domain Specific Lan-
guage (DSL) which is designed to be used by pro-
duct experts. This DSL is called Function Description
Language (FDL) and is used to create customization
scripts for the final product. This means that during
the production process, a script is loaded to each de-
vice which is triggered automatically to customize the
according devices. For every supported product fa-
mily, a Function Description (FD) is written which
basically lists all the possible features of the platform
(i.e. the customization options of the order process
model) and how the provided order data is translated
into the final script. The overall concept is illustrated
in Figure 5. A script library is used which contains
common scripts that can be referenced by the function
description. For example, a ’loadApplication’ script
may be developed for the product line in order to in-
stall the customer provided application to the devices.

5 EVALUATION

First results were already compiled in our previous
works (Sinnhofer et al. (2016, 2017)) in which we
compared the development efforts using ”traditio-

153

Paper G - BMSD 2017

nal software development” techniques and compa-
red it with the overhead of the developed framework.
We use the term ”traditional software development”
techniques for a software development with ad-hoc
(or near to ad-hoc) software architecture which means
that multiple different systems are designed almost in-
dependent, but make use of copy and adapt strategies.
Consequently, the maintenance efforts for such sys-
tems are rather high. We investigated, that the eco-
nomical breakeven point of the developed framework
is at around 3 to 4 systems. Further, the robustness
of the customization process was increased since au-
tomatic methods were used for the feature selection
and thus, configuration errors could be reduced sig-
nificantly. Through the use of automatic methods, it
was also possible to generate log-files for certification
purposes which are used to ensure that the provided
customer data was loaded and not confused or mani-
pulated.

In this work, we will investigate other aspects of

5 10 15 20 25 30

20

40

60

80

100

Customization Options

N
u
m
b
er

of
P
ro
d
u
ct
s Number of orders

Quantitative costs

5 10 15 20 25 30

Customization Options

Q
u
an

ti
ta
ti
ve

R
ev
en
u
e

Figure 6: Analysis of the development efforts and revenue
to identify business drivers. The revenue and the costs are
illustrated in a quantitative manner.

the developed framework, namely the identification
of business drivers: We analyzed the development
efforts of individual product features and contrasted
them with the revenue that was earned by selling the
according product configuration. The development
efforts were extracted from the time-recordings of the
responsible workers and should give a reasonable esti-
mate about the real development efforts. In total, 106
different product orders were analyzed which provi-
ded 30 individual configuration settings. The results
are illustrated in Figure 6. The first 10 product confi-
guration options are internal system specific configu-
ration settings which are mandatory for every product.
A business decision was taken to reduce the costs for
the base system to a minimum level to ensure a low
cost base product. As a consequence, the revenue ear-
ned by the basic product configuration is rather low
compared to other customization options. An interes-
ting finding was that a lot of development effort was
invested in complex features which were never used
for any customer or are only rarely used. Due to this
finding, it was decided that some of the features will
be removed from the product in a future release, in or-
der to reduce the overall costs. As illustrated in the Fi-
gure, feature 12 required a lot of development effort,
but is also frequently ordered by customers. Conse-
quently, an improvement process was triggered in or-
der to reduce the costs of this feature.

After having discussed the positive aspects of the
developed framework, we also want to address some
limitations of the current implementation: While we
were able to fully generate the required customization
scripts for simple product configurations, we were
able to only partially generate the scripts for com-
plex product configurations due to the high number of
inter-feature constraints of the product features. This
is not a technical problem of the approach, but having
a complete coverage of all inter-feature constraints is
a time-consuming and iterative process. Further, mo-
deling all the constraints in advance is usually not
possible for complex systems. As a result, we deci-
ded to model only basic constraints in advance and to
update the constraint model with every product order.
Based on this semi-automatic generation, we mana-
ged to reduce the time to release a complex product
by 50 percent.

6 RELATED WORK

Traditionally, business process modeling languages
do not explicitely support the representation of fami-
lies of process variants (Rosa et al. (2017)). As a con-
sequence, a lot of work can be found which tries to

154

8 Publications

extend traditional process modeling languages with
notations to build adaptable process models. As such,
adaptable process models can be customized accor-
ding to domain requirements by adding or removing
fragments to the model and by explicitly transforming
this model to dedicated process variants which can
be executed in the field. This promises to increase
the flexibility of business process oriented organiza-
tions with respect to highly flexible requirements of
the market. Having such a variability modeling for
business process models builds the foundation of this
work. Thus, related work which is utilizing similar
modeling concepts are presented in the following:

Derguech (2010) presents a framework for the sy-
stematic reuse of process models. In contrast to this
work, it captures the variability of the process model
at the business goal level and describes how to inte-
grate new goals/sub-goals into the existing data struc-
ture. The variability of the process is not addressed in
his work.

Gimenes et al. (2008) presents a feature based
approach to support e-contract negotiation based on
web-services (WS). A meta-model for WS-contract
representation is given and a way is shown how to
integrate the variability of these contracts into the bu-
siness processes to enable process automation. It does
not address the variability of the process itself but ena-
bles the ability to reuse business processes for diffe-
rent e-contract negotiations.

While our used framework to model process varia-
bility reduces the overall process complexity by split-
ting up the process into layers with increasing details,
the PROVOP project (Hallerbach et al. (2009a,b)
and Reichert et al. (2014)) focuses on the concept,
that variants are derived from a basic process defi-
nition through well-defined change operations (ran-
ging from the deletion, addition, moving of model
elements or the adaptation of an element attribute).
In fact, the basic process expresses all possible vari-
ants at once, leading to a big process model. Their
approach could be beneficial considering that cross
functional requirements can be located in a single pro-
cess description, but having one huge process is also
contra productive (e.g. the exchange of parts of the
process is difficult).

The work of Gottschalk et al. (2007) presents an
approach for the automated configuration of work-
flow models within a workflow modelling language.
The term workflow model is used for the specification
of a business process which enables the execution in
an enterprise and workflow management system. The
approach focuses on the activation or deactivation of
actions and thus is comparable to the PROVOP pro-
ject for the workflow model domain.

Rosa et al. (2008) extends the configurable pro-
cess modelling notation developed from Gottschalk
et al. (2007) with notions of roles and objects provi-
ding a way to address not only the variability of the
control-flow of a workflow model but also of the rela-
ted resources and responsibilities.

The Common Variability Language (CVL Haugen
et al. (2013)) is a language for specifying and resol-
ving variability independent from the domain of the
application. It facilitates the specification and resolu-
tion of variability over any instance of any language
defined using a MOF-based meta-model. A CVL ba-
sed variability modelling and a BPM model with an
appropriate model transformation could lead to simi-
lar results as presented in this paper.

The work of Zhao and Zou (2011) shows a fra-
mework for the generation of software modules ba-
sed on business processes. They use clustering algo-
rithms to analyse dependencies among data and tasks,
captured in business processes. Further, they group
the strongly dependent tasks and data into a software
component.

7 CONCLUSION

The reuse of business process models is an important
step for process driven organizations to survive in a
competitive market. Through an integrated view of
the according IT, it is possible to raise the efficiency
of the overall business. With this and our previous
works, we proposed a way to use software product
line engineering techniques for the modeling of busi-
ness process models. Further, we developed a frame-
work which enables to combine the variability models
of order processes with the variability models of soft-
ware customization product lines. This enables an au-
tomatic customization process which is triggered by
the according order processes. As a result, the deve-
lopment costs and the required time to react to chan-
ges of the market can be reduced significantly. More-
over, using the proposed techniques supports Domain
Experts to identify business drivers and thus, raise the
overall efficiency of the organization.

In the current state, the presented framework is
focused on covering the variability of order proces-
ses for similar type of products. Consequently, future
work will address the extension of the developed fra-
mework to other processes. Further, we are currently
investigating methods on how to bind non-functional
requirements like security requirements to the varia-
bility models in order to enforce specific properties
throughout the whole process in an automatic and sy-
stematic way.

155

Paper G - BMSD 2017

ACKNOWLEDGEMENTS

The project is funded by the Austrian Research Pro-
motion Agency (FFG). We want to gratefully thank
Danilo Beuche from pure::systems for his support.

REFERENCES
Association of Business Process Management Professio-

nals (2009). Guide to the Business Process Mana-
gement Common Body of Knowledge: ABPMP BPM
CBOK R©. Association of Business Process Manage-
ment Professionals.

Derguech, W. (2010). Towards a Framework for Business
Process Models Reuse. In The CAiSE Doctoral Con-
sortium.

Gimenes, I., Fantinato, M., and Toledo, M. (2008). A Pro-
duct Line for Business Process Management. Soft-
ware Product Line Conference, International, pages
265–274.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers,
M. H., and Rosa, M. L. (2007). Configurable Work-
flow Models. International Journal of Cooperative
Information Systems.

Hallerbach, A., Bauer, T., and Reichert, M. (2009a). Gua-
ranteeing Soundness of Configurable Process Variants
in Provop. In Commerce and Enterprise Computing,
2009. CEC ’09. IEEE Conference on, pages 98–105.
IEEE.

Hallerbach, A., Bauer, T., and Reichert, M. (2009b). Issues
in modeling process variants with Provop. In Ardagna,
D., Mecella, M., and Yang, J., editors, Business Pro-
cess Management Workshops, volume 17 of Lecture
Notes in Business Information Processing, pages 56–
67. Springer Berlin Heidelberg.

Hammer, M. and Champy, J. (1993). Reengineering the
Corporation - A Manifesto For Business Revolution.
Harper Business.

Haugen, O., Wasowski, A., and Czarnecki, K. (2013). Cvl:
Common variability language. In Proceedings of the
17th International Software Product Line Conference,
SPLC ’13.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented dom-
ain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering In-
stitute.

McCormack, K. P. and Johnson, W. C. (2000). Business
Process Orientation: Gaining the E-Business Compe-
titive Advantage. Saint Lucie Press.

Object Management Group, O. (2011). Business process
model and notation (bpmn). version 2.0. pages 1–538.
available at http://www.omg.org/spec/BPMN/2.0/.

Österle, H. (1995). Business Engineering - Prozess- und
Systementwicklung. Springer-Verlag.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Reichert, M., Hallerbach, A., and Bauer, T. (2014). Lifecy-
cle Support for Business Process Variants. In Jan vom
Brocke and Michael Rosemann, editor, Handbook on
Business Process Management 1. Springer.

Rosa, M. L., Aalst, W. M. P. V. D., Dumas, M., and Milani,
F. P. (2017). Business process variability modeling: A
survey. ACM Comput. Surv., 50(1):2:1–2:45.

Rosa, M. L., Dumas, M., ter Hofstede, A. H. M., Mend-
ling, J., and Gottschalk, F. (2008). Beyond control-
flow: Extending business process configuration to ro-
les and objects. In Li, Q., Spaccapietra, S., and Yu,
E., editors, 27th International Conference on Concep-
tual Modeling (ER 2008), pages 199–215, Barcelona,
Spain. Springer.

Saidani, O. and Nurcan, S. (2007). Towards context aware
business process modelling. In 8th Workshop on Bu-
siness Process Modeling, Development, and Support
(BPMDS07), CAiSE, volume 7, page 1.

Sinnhofer, A. D., Pühringer, P., and Kreiner, C. (2015). var-
bpm - a product line for creating business process mo-
del variants. In Proceedings of the Fifth International
Symposium on Business Modeling and Software De-
sign - Volume 1: BMSD,, pages 184–191.

Sinnhofer, A. D., Pühringer, P., Potzmader, K., Orthac-
ker, C., Steger, C., and Kreiner, C. (2016). A fra-
mework for process driven software configuration. In
Proceedings of the Sixth International Symposium on
Business Modeling and Software Design - Volume 1:
BMSD,, pages 196–203.

Sinnhofer, A. D., Pühringer, P., Potzmader, K., Orthacker,
C., Steger, C., and Kreiner, C. (2017). Software Con-
figuration Based on Order Processes, pages 200–220.
Springer International Publishing, Cham.

Strnadl, C. F. (2006). Aligning business and it: The process-
driven architecture model. Information Systems Ma-
nagement, 23(4):67–77.

Valena, G., Alves, C., Alves, V., and Niu, N. (2013). A
Systematic Mapping Study on Business Process Vari-
ability. International Journal of Computer Science &
Information Technology (IJCSIT).

Weiss, D. M. and Lai, C. T. R. (1999). Software Product-
line Engineering: A Family-based Software Develop-
ment Process. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Willaert, P., Van Den Bergh, J., Willems, J., and Deschool-
meester, D. (2007). The Process-Oriented Organisa-
tion: A Holistic View - Developing a Framework for
Business Process Orientation Maturity. Springer.

Zhao, X. and Zou, Y. (2011). A business process-driven
approach for generating software modules. Software:
Practice and Experience, 41(10):1049–1071.

156

8 Publications

Where do all my Keys come from?

Andreas Daniel Sinnhofer
Christian Kreiner
Christian Steger
Institute of Technical Informatics – Graz University of Technology, Austria

Felix Jonathan Oppermann
Klaus Potzmader
Clemens Orthacker
NXP Semiconductors, Austria

ABSTRACT

Nowadays, cyber-physical systems (CPS) are omnipresent in our daily lives and are increasingly used to
process confidential data. While the variety of portable devices we use excessively at home and at work is
steadily increasing, their security vulnerabilities are often not noticed by the user. Therefore, portable
devices such as wearables are becoming more and more interesting for adversaries. Thus, a robust and
secure software design is required for the implementation of cryptographic communication protocols and
encryption algorithms. While these topics are well discussed and subject to further research activities, the
issue of provisioning the initial device setup is widely uncovered. However, the protection of the initial
setup is as important as the protection of the confidential data during the time in use. In this work, the
authors will present different solutions for a secure initialization of security critical integrated circuits
(ICs).

Keywords: Cryptographic Keys, Key Management, Secure Integrated Circuits, Initialization, Secure Data
Generation

INTRODUCTION

Cyber-physical systems (CPS) and Internet of Things (IoT) devices are increasingly used in our daily
lives. Generally speaking, IoT refers to the connection of our everyday objects with a network like the
internet. Each of these devices is usually equipped with different kind of sensors to observe its
environment, making the device a smart object. In combination with embedded systems, IoT promises to
increase the quality of our daily lives by taking over simple tasks like controlling the room temperature
and cooking coffee (Nest Labs, 2016). On the other hand, smart objects like wearables are becoming
more and more interesting for adversaries due to their increasing functionalities like internet capabilities,
cameras, microphones, GPS trackers and other senor devices.
Furthermore, such smart objects are often deployed in unsupervised and untrusted environments raising
the question about privacy and security to a crucial topic. Thus, a robust and secure software design is
required for the implementation of cryptographic communication protocols and encryption algorithms.
Moreover, tamper-proof solutions like secure elements and trusted platform modules are necessary to
securely calculate cryptographic functions and to store confidential data or cryptographic keys. While
cryptographic protocols and secure hardware architectures are well discussed and subject to further
research activities, the issue of provisioning the initial confidential device setup is widely uncovered.
However, the protection of this initial setup is as important as the protection of the confidential data
during the time in use. Especially the protection of master keys is essential, because otherwise all security
measures, which are based on such keys, are futile.

©This chapter appears in Handbook of Research on Solutions for Cyber-Physical Systems Ubiquity edited by N. Druml, A.
Genser, A. Krieg, M. Menghin, and A. Höller. Copyright 2017, IGI Global, www.igi-global.com. Posted by permission of the
publisher.

157

www.igi-global.com

Paper H - IGI-Global book chapter

Due to the high quantity of produced chips – e.g. 8.8 billion secure elements for smartcard chips in 2014
(IHS Markit, 2014) – it is obvious that automatic methods are required to generate the trusted data needed
for each chip. Otherwise an economical and practical production is infeasible. On the one hand, the
system creating this data has to be designed flexible since every product can support different
cryptographic protocols and thus, require different keys. On the other hand, the personalization system
needs to fulfil high security requirements to prevent the risk that the generated data leaks during the
production process to an operator – or even worse – to an adversary.
As revealed in 2015 by Edward Snowden, the secret master key of SIM cards, securing the 3G and 4G
mobile communication channels was subject to such an attack (Begley & Scahill, 2015; Scahill, 2015):

The American “National Security Agency” (NSA) and the British spy agency “Government
Communications Headquarters” (GCHQ) perpetrated an attack and hacked into the network of Gemalto.
Gemalto produces, amongst other things, Smart Cards in the form of SIM cards and EMV (Europay,
MasterCard, and Visa) chip cards. More precisely, the company generates and inserts an individual
cryptographic key (a symmetric encryption key) into each SIM card during the personalization process of
the manufacturing process. The inserted cryptographic key is used to secure the communication between
the mobile phone and the cell tower of the mobile network operator. Mobile network operators purchase
SIM cards in bulks with pre-loaded keys by Gemalto. Additionally, the mobile network operators get a
copy of each key from Gemalto in order to allow their networks to recognize an individual’s phone. For
this purpose, Gemalto provided a file containing the cryptographic keys for each of the new SIM cards to
the mobile network operator. The primary goal of this hack was to steal millions of such symmetric
encryption keys to wiretap and decipher the encrypted mobile phone communication. By using the stolen
symmetric encryption keys, the national agencies can decrypt any mobile phone conversation or text
message sent by a mobile phone having a Gemalto SIM card. With this heist, no assistance from the
mobile operators, or permission from the legal official court was necessary. To get inside Gemalto’s
network, social engineering attacks like phishing and scouring Facebook posts where used to take over
the employees PCs (Begley & Scahill, 2015). Once inside the network, the agencies were able to retrieve
the cryptographic keys because Gemalto sent them via unencrypted FTP to the Smart Card manufacturing
factories. According to Begley & Scahill (Begley & Scahill, 2015), millions of keys where stolen by
GCHQ in a three month period in 2010. This is a good example showing the impact of insecure data
handling and how many users can be affected by hacking the personalization system of secure integrated
circuits.

In this chapter, the authors will present state of the art solutions for the secure generation and distribution
of security critical data during the production of secure integrated circuits. The presented solutions are
based on techniques form the Smart Card industry, since those processes have already evolved over the
past decades. The reminder of this chapter is structured in the following way Section “BACKGROUND”
gives an overview about the lifecycle of secure CPS devices and more generally of secure integrated
circuits. Security Certification is an essential topic in the domain of consumer products. Thus, concepts
for security certification are summarized as well. Section “PERSONALIZATION OF SECURE
INTEGRATED CIRCUITS” describes the whole personalization process of secure integrated circuits
during the production process. The Section gives information about how to generate the data, how the
data is loaded and defines generic protection mechanisms that can be used to protect the process. Further,
the authors summarize which data is generally personalized during the production and who is responsible
for generating / protecting it. The Section is concluded with potential attack vectors and attackers which
may be interested in hacking the personalization system. Finally, this Chapter is summarized and
concluded with future research trends.

158

8 Publications

BACKGROUND

From a high level perspective, a secure CPS or IoT device – or more general a secure system – consists of
two separated system components. The first system component consists of all non-security critical
components like peripherals or processing units. The second component is the security critical equipment
which consists in most cases of a secure microcontroller and a tamper-proof memory which are usually
combined in a single chip. This ensures that cryptographic functions can be securely processed and
confidential data is stored in a secure manner. The second component can consist of multiple
microcontrollers or co-processors, optimized for special purposes. The authors will use the term secure
Integrated Circuit (IC) in the following as an abbreviation for all security critical modules, controllers,
and memory.

The aforementioned two component structure is similar to the structure of secure Smart Cards (Rankl &
Effing, 2010) where the Smart Cards consists of two independent components; the card body including
the printing and the external interface, and the card module for cryptographic operations and secure
storage. Since there is no standard which defines the lifecycle for secure ICs, the authors will adapt the
lifecycle of Smart Cards, which is defined in ISO-10202-1 (ISO 10202-1, 1991). The domain of Smart
Cards is an ideal example for requirements of future IoT devices: Smart Cards need to fulfill high security
requirements, are produced in mass production processes, and are cheap for the end-customer.
The focus of this chapter is the secure personalization process of secure ICs. In case of consumer
products, it is likely that those secure ICs are evaluated in a security certification. During such security
certification audits, the countermeasures of the IC are evaluated against possible attacks. Further, the
production process is investigated to ensure, that the countermeasures of the IC are not circumvented
during the production. Thus, the personalization process is subject of investigation during security
certification audits. In the domain of secure information technology, the Common Criteria (Common
Criteria, 2012) standard is widely used to evaluate the security mechanisms of IT products. To avoid
costly re-evaluation of the personalization process for different products, the authors will present state of
the art concepts for an incremental and modular certification process at the end of this Section.

Lifecycle of secure Integrated Circuits

Over the last decades, the development and production processes of secure Smart Cards were
continuously improved with respect to security and costs. Since the market of IoT devices is expected to
grow substantial over the next years (Manyika, et al., 2015), the findings of the Smart Cards domain build
a good foundation for the processes of securing IoT devices. For Smart Cards, the ISO-10202-1 standard
attempts to define a lifecycle which is valid independent of the manufacturing process and the application
of the card. It is strongly biased by financial transaction applications, but the lifecycle is described generic
and independent of the use-cases. As a consequence, the defined lifecycle is used as a basis and adopted
to be used for secure CPS or IoT devices. The lifecycle can be separated into 6 phases which are
illustrated in Figure 1 and shortly described in the following enumeration (Rankl & Effing, 2010;
Markantonakis, Mayes, Sauveron, & Tunstall, 2010):

• Production of Components (Phase 1): During this phase, all components of the secure CPS or
IoT device are designed and manufactured. For example, in case of a Smart Card, usually
components like the Operating System, the Secure Element and the card body are manufactured.
In many cases, the development and production of the individual components is done by different
vendors. With respect to security, the production is an essential step since no matter how high the
quality of the system and its cryptographic protection mechanisms are they are of little help if all
the confidential data is leaked during the production process. Besides security consideration, also
functional testing is an important topic, since the production yields of chips can be rather low for
new processes. Thus, excessive testing is used on chip level to ensure the proper operation of the
IC with respect to the electrical operation as well as its functionality.

159

Paper H - IGI-Global book chapter

Figure 1: Lifecycle of secure CPS or IoT devices adopted from the Smart Card standard (ISO
10202-1, 1991)

Produce Chip

and secure IC

(Phase 1)

Application

Preparation

(Phase 3)

Usage

(Phase 4)

Preparation

(Phase 2)

Termination of

Usage

(Phase 5)

reuse

Disposal

(Phase 6)

• Preparation (Phase 2): Here, all manufactured components are assembled together to the final
device and the common device data is loaded. This includes configuration settings, files, and
secret keys which are shared between all devices in a batch. In contrast to Phase 1, this phase is
usually carried out by a single company (see (Rankl & Effing, 2010) or (Markantonakis, Mayes,
Sauveron, & Tunstall, 2010)) called personalization company. In the case of Smart Cards, usually
the Operating System and the applications (e.g. a banking app) are loaded to the device during
this phase. For security reasons, the manufacturing of the hardware must be kept completely
separated from loading the device data. Since the device data for secure devices usually always
contains sensitive data, it has to be protected properly. This means that the data is encrypted and
the encryption key is loaded to the device via a separate process. The authors will discuss this
issue in more detail in Section “PERSONALIZATION OF SECURE INTEGRATED
CIRCUITS”

• Application Preparation (Phase 3): In contrast to Phase 2, Phase 3 deals with the
personalization of the device individual data. This can also include the visual personalization of
the device if for example unique identifiers are engraved to the body housing. During this
process, device individual secret keys are generated and loaded. As in Phase 2, this data has to be
encrypted such that it is not exposed to any operator or third party during the production. In case
of symmetric key material, the personalization company is further responsible for a secure
distribution of the generated data to the according stakeholder. For example, in case of SIM cards
(which was briefly discussed in the introduction), symmetric master keys are generated for each
individual SIM card and loaded to the chips as well as distributed to the mobile network operator.
In general, the process of loading additional applications require authentication to the device to
ensure that only authorized persons can load the according data. This phase can be carried out
from an external company or even from the customer in the field (see Phase 4) if the
authentication tokens are shared with the customers.

• Usage (Phase 4): During this phase, the secure CPS or IoT devices are used by the end-customer.
Depending on the use-case this phase also includes loading of additional applications, or the
deactivation or deletion of applications. Thus, confidential data may be generated and loaded by
the customer to the system. To ensure that this mechanism is protected, the customer needs to be
aware of cryptographic keys which are used to securely communicate with the device. In case of
symmetric channel encryption, there are two possible ways to personalize the according key. The
first way is that a key is generated by the personalization company and securely shipped to the
product issuer who further distributes it to the end-customer. The second approach is that the
encryption key is sent by the product issuer to the personalization company. Either way, it has to

160

8 Publications

be ensured that no single operator gets knowledge about this key during the personalization
process.

• Termination of Usage (Phase 5): Usually, the devices are thrown away by the end-customer if
they are no longer needed. Nevertheless, a reuse of the device is possible if it is returned to the
vendor after deactivating all applications and erasing the sensitive confidential data. The latter
should always be carried out even though the device is disposed, to ensure that malicious third
parties cannot gain knowledge about any secret device data.

• Disposal (Phase 6): As already summarizes in Phase 5, the secure CPS device should be
completely erased before disposal to ensure that the contained confidential data cannot be leaked.
As stated by Rankl and Effing (Rankl & Effing, 2010), recycling of such devices is an interesting
topic since rare components like gold and others are used for such devices. With the increasing
number of built CPS and IoT devices, recycling will even get a bigger role.

Additionally, secure CPS or IoT devices need to be developed and produced by using appropriate quality
assurance methods. In the domain of security critical devices, the ISO 9000 family is usually applied to
guarantee the traceability of the manufacturing process. To ensure this traceability, each individual
process step is recorded. In most cases, unique identifiers (IDs) are used to track the personalizer or
manufacturer of the device and every individual process step. In case of failures during the production
process, the IDs are used to identify the cause and the possible impacts to other devices.

Security Certification of secure CPS or IoT devices

Security Certification is an essential step during the development of secure CPS or IoT devices. This
ensures that customers gain trust in the developed security measures of the device. Further, this security
evidence may be an important selling point for customers. In the domain of secure information
technology, the Common Criteria (CC) standard (Common Criteria, 2012) is widely used to evaluate the
security measures. The CC defines a common set of requirements that need to be implemented by the
security functionality of the Target of Evaluation (ToE). As a consequence, the evaluation process creates
a level of confidence into the security functionality which is implemented in hardware, software, or both.
The CC evaluation also considers the maturity of the development processes, the production processes
and the used toolchains in case of high security levels. This includes also the personalization process of
secure systems, because every cryptographic protection mechanism is futile if a secret key is leaked
during the personalization process. The assurance level of the CC is rated from a scale from EAL 1 to
EAL 7 (Evaluation Assurance Level), where EAL 1 is the lowest level and EAL 7 is the highest level. A
higher level does not necessarily mean a higher security level, but indicates that more effort was invested
during the development and evaluation of the implemented security mechanisms. The key components
and stakeholder of such an evaluation are listed in the following enumeration:

• Evaluation Facility: Is responsible for testing and evaluating the implemented security
functionalities of a Target of Evaluation. Tests and evaluation methods are derived based on a
Security Target (see below). The results of the evaluation are collected in form of an Evaluation
Technical Report (ETR). Based on this report, a certification body will issue the CC certificate.

• Target of Evaluation (ToE): Is defined as a set of software, firmware and/or hardware
(Common Criteria, 2012) that is target of a CC evaluation. The ToE describes the whole system
and the according configuration. This configuration freedom may lead to problems during the
evaluation process, since all possible configurations of the ToE must meet the defined security
requirements. As a consequence, it is often the case that this configuration freedom is limited to
“meaningful” configurations. These limitations are documented within the ToE in form of

161

Paper H - IGI-Global book chapter

guidance documents. Using the ToE beyond the defined guidance, leads to a loss of the
certificate. The ToE is compiled from the vendor(s) of the system.

• Security Target (ST): The ST is a description of the implementation-specific statement of
security needs for a specific identified Target of Evaluation (Common Criteria, 2012). It
describes the assets, their threats and the implemented countermeasures. During the evaluation
process, it is determined if the stated countermeasures are sufficient to counter the threats.
Countermeasures can be divided into two separate groups (Common Criteria, 2012):

o Security Objectives for the Target of Evaluation: These countermeasure(s) are directly
implemented by the system. The correctness with respect to the threats and risks will be
determined during the evaluation process.

o Security Objectives for the Operational Environment: These countermeasure(s) are not
implemented by the system, but need to be provided by the operational environment. The
correctness of these countermeasures is not determined during the evaluation process.

The ST is written by the vendor(s) of the system.

• Protection Profile (PP): To allow groups and communities of interest to express their security
requirements, the CC defines the concept of Protection Profiles (Common Criteria, 2012). While
the ST always describes a specific ToE, a PP is designed to describe a group of ToE such that it
can be reused in different STs. Thus, being compliant to a PP does not necessarily mean that a
specific EAL is reached. A ToE is either fully compliant to a PP or non-compliant.

• Evaluation Technical Report (ETR): It is a document which is assembled by the evaluation
facility during the evaluation process. It documents the overall verdict of the evaluation facility
and justifies this decision based on the collected evidence of the implemented security
mechanisms. It is submitted to a certification body which issues the certificate in case of a
positive attestation.

• Evaluation Processes: The CC standard and its supporting documents defines formal and
informal evaluation processes. Formal processes are explicitly defined in the standard, whilst
informal processes are not defined explicitly. Thus, informal processes strongly depend on the
instructed evaluation facility.

With respect to the personalization process, evaluation facilities will investigate the tools and the process
flow. The used tools are usually developed by the personalization company and are designed to be
compatible with a wide variety of different products. Since security requirements changes over the time,
agile and modular product development techniques are widely used for a rapid and steady progression of
incremental product developments, based on common parts and a modular architecture (Anderson D. ,
1997). On the one hand, this leads to a faster time to market, but on the other hand it raises big challenges
in terms of security certification. At present, a security certification is usually started in a late phase of the
development, which can lead to a big delay between the release of the product and the date the certificate
is issued (Sinnhofer A. D., Raschke, Steger, & Kreiner, 2015). Further, the personalization processes
should be flexible such that it can be easily integrated into the production process of secure systems
independent from the involved companies. As a consequence, a modular certification scheme is required
such that the personalization process can be easily integrated into the production process of the device.
This is important to ensure, that costly re-evaluations can be avoided to guarantee low production costs.
The following formal or informal evaluation processes are defined in the CC standard to support modular
certification processes (Sinnhofer A. D., Raschke, Steger, & Kreiner, 2015):

• Delta Evaluation (Informal process): The delta evaluation is a CC certification process used to
maximize the reuse of previously compiled evidences. To do so, the standard specifies that the

162

8 Publications

following documents need to be shared between the evaluation facilities (Common Criteria,
2002):

o Product and supporting documentation
o New security target(s)
o Original evaluation technical report(s)
o Original certification/validation report(s)
o Original Common Criteria certificate(s)
o Original evaluation work packages (if available)

Providing these data enables that the current evaluation facility should not have to repeat the
analysis of parts of the system, where the requirements have not changed nor been impacted by
any other changes. Such changes are identified by performing a delta analysis. The delta analysis
is an analysis between the new security target and the original security targets(s) to identify the
impact of changes. A drawback of this approach is that the evaluation technical reports contain
information about the evaluation process and the applied measure to proof the security objectives
of the target of evaluation. As a consequence, these reports are usually considered as proprietary
to the evaluation facility, which are usually not interested in sharing this knowledge with other –
competing – facilities. Thus, performing a delta evaluation is a tough challenge if the evaluation
facility was changed between different certifications.

• Composite evaluation (Formal process): Although the composite evaluation was designed for
Smart Card products, it can be applied to a wide variety of products which fulfill the condition
that an independently evaluated product is part of a final composite product to be evaluated
(Common Criteria, 2012). The only restriction is that the already certified product builds the
underlying platform of the composite product. This means that a layers pattern is used for the
overall system architecture. Thus, it is applicable for example for an embedded system, whereas
an application is running on a certified operating system which is running on a certified hardware
platform. Compositional evaluations are technically similar to delta evaluations but with
additional restriction to the overall structure of the product. Due to these additions, it is not
necessary to share the evaluation technical reports. The lowest EAL of all components is the
limiting factor of the composite evaluation. Further, the validity of the overall product certificate
depends on the validity of the each individual component. As a consequence, if the validity of one
component expired, the whole product certificate is invalidated.

• Composed evaluation (Formal process): The composed evaluation is used to certify products
which consists of independently certified (or going through an independent certification process)
products/modules which are assembled to a new final product. It is similar to the composite
evaluation but with the difference that the overall system architecture is not limited. Further, it is
applicable for situation in which a delta evaluation is not possible since the evaluation technical
reports are not shared. Since the individual components are already certified, the composed
evaluation mainly focuses on the interface between the components and their according
interaction(s). As a consequence, new evaluation assurance levels were introduced. These levels
range from CAP-A to CAP-C (Composed Assurance Packages), where A is the lowest level and
C is the highest level. The assurance level CAP-C stands for Attack potential “Enhanced Basic”
which is approximately comparable with EAL-4 (see (Common Criteria, 2012); Part 3 pages 38
and 47). Due to this limitation, the composed evaluation has been performed much less successful
than other modular CC certification processes.

The above certification processes all rely on delta analysis to identify the impact of changes. As such,
traceability is required to explicitly state the dependencies of security requirements and the actual
implementation artifacts and tests. To incorporate these requirements, Raschke et al. (Raschke, et al.,
2014) introduced two processes to support an agile and modular development and certification process.
The impact analysis is based on a change detection analysis in combination with a traceability impact

163

Paper H - IGI-Global book chapter

analysis. A security model is used to describe the properties and dependencies. This model is based on the
CC security target, the design documentation, the implementation artefacts and the tests.
To summarize, in the context of personalization processes, usually the Delta – or Composite evaluation is
used to evaluate the tools, the process, and the configuration space.

PERSONALIZATION OF SECURE INTEGRATED CIRCUITS

The personalization process covers the phases 2 and 3 of the secure IC lifecycle which was described in
Section “Lifecycle of secure Integrated Circuits”. These phases are usually carried out by the same
company which is usually referred to as the personalization company (Markantonakis, Mayes, Sauveron,
& Tunstall, 2010). During Phase 2, the application and data is loaded which is common for every single
device. In contrast, Phase 3 is dedicated for loading device individual applications or settings. This
separation is required, since loading individual data to the devices is much more complex and time
intensive than loading the common data (Rankl & Effing, 2010). As a consequence, the personalization
company will try to minimize the size of the loaded data during Phase 3 as much as possible.
For secure applications, confidential data needs to be generated and loaded to the cards. Therefore,
several security requirements need to be fulfilled by the process: On the one hand it requires encryption
such that confidential data is not leaked to any third party, including also the operator of the
personalization equipment; on the other hand, it needs to be ensured that only authorized data or
applications can be loaded to the system. In case that symmetric key material is generated that needs to be
shared with the product issuer, the personalization company needs to take care of securely distributing the
keys to the issuer.
Since the personalization process is operated in an automated high volume production process, all
implemented security requirements need to be able to be operated in – at least – near real time.

Generation of the personalization data

For key management purposes, various standardization organizations (like (NIST FIPS PUB 140-2, 2001;
NIST SP 800-57-1, 2016; PCI Security Standards Council, 2016)) recommend the use of dedicated
hardware security modules (HSM) to protect the data. Hardware security modules are tamper-resistant
hardware modules, designed for generating random numbers and calculating cryptographic functions.
Furthermore, the hardware is optimized to accelerate the computation of the cryptographic functions, to
ensure that a large amount of data can be processed efficiently by such systems. Thus, HSMs are a natural
consequence for generating the required confidential personalization data in a secure and efficient way.

Figure 2 illustrates the basic components of a personalization system (adapted from (Chan & Ho, 2003)).
The “Issuer System” contains the product and order specific data that is required by the personalization
company to generate the data. This may also include static (confidential) data that is provided by a
stakeholder (e.g. a mobile network operator). As illustrated in the Figure, external Stakeholder data is sent
via a secure channel between the Stakeholder(s) and the “Issuer System”. Usually, HSMs are used to
secure the communication channel. This means that the sent data is encrypted with a key that is only
available within the HSM. Typically, protocols using asymmetric cryptography are used to protect the
communication channel (like TLS), but also other domain specific protocols may be used for this purpose
(see (Sinnhofer, et al., 2016)). In case of symmetric encryption, the corresponding protection key needs to
be separately transported from the data. Recommendations foresee, that symmetric keys are split onto
multiple shares which are sent on multiple independent ways (PCI Security Standards Council, 2016).
Only after successful reception of one share, the next share is sent.

The HSMs of the “Data Generation System” are used to generate the required device data. This includes
for example the generation of random keys, or the derivation of keys based on master key data that was
sent by a Stakeholder. But also non confidential data like unique chip identifiers may be generated by the

164

8 Publications

system. To be able to generate data that is based on Stakeholder data, a secure communication channel
between the HSMs of the “Issuer System” and the “Data Generation System” is required.

Figure 2 Principal Structure of a personalization system (adapted from (Chan & Ho, 2003))

The “Personalization Equipment” in general consists of special hardware which ensures that the data is
sent cryptographically protected and authenticated to the system (Hautier, Macchetti, & Perrine, 2012;
Chen, 2007). The data which is exchanged between the “Data Generation System” and the
“Personalization Equipment” is again protected through a secure communication channel between the
HSMs. For performance reasons, this channel is usually based on symmetric cryptography. Since such
key exchange processes take up to several working days, it is usually executed several days or weeks in
advance of the production. Re-keying is recommended for every separate production, even if the same
products are manufactured.

The personalization equipment is a special device, to which the secure ICs, or the whole devices, are
automatically mounted. In practice, many personalization devices are used in parallel to increase the
throughput of the product line (Rankl & Effing, 2010). The Personalization equipment is usually
executing scripts (Graham, Jr., Nablo, & Haeuser, 2002) that are prepared in advance from the
personalization company based on the order. The script contains placeholder for the data that is either
generated from the “Data Generation System”, or directly provided by the issuer. In case that the data is
directly provided by the issuer, the data needs to be re-encrypted by the “Data Generation System” for the
“Personalization System”.

The bottlenecks for this process are transferring the data to the chips and writing it into the non-volatile
memory. The data transfer-rate heavily depends on the device interface. For example, if the
personalization data is required to be loaded via NFC (ISO 18000-3, 2010), the data rate is limited to a
maximum of 423,75 kBit per second. Further, in case of slow memories (EEPROM) the time needed to
write the data can be high as well. Consider the following example: if 16 kBytes of data shall be loaded to
a single device, the time needed to transfer the data is about 300 milliseconds. This may not seem much,
but if one million devices shall be personalized, the communication alone will require about three and a
half day! Considering the additional overhead of changing devices and processing, this number is even
higher. As a consequence, the common device data is usually loaded in a previous production step (Rankl
& Effing, 2010), using an interface which allows high data-rates. One common used practice to ensure
short personalization times is ‘hard-wiring’ applications such that they are already programmed during
the lithography process in Phase 1. As a consequence of this, updating such ‘hard-wired’ applications
may require additional effort since the ROM-Code cannot be updated during the time in use. Another
drawback of ROM based products is, that the ROM mask itself has to be prepared several weeks before
the start of the production. An alternative option to ROM-Code based products is the trend towards Flash
based products: a Flash memory is used to store the applications that were previously loaded to the ROM

165

Paper H - IGI-Global book chapter

code. As such, ‘hard-wiring’ an application does not require a time consuming preparation of a ROM-
mask.

Usually, the “Data Generation System” (as illustrated in Figure 2) is using a fixed and certified HSM
firmware to generate the actual personalization data. This is required by security certifications to ensure,
that the confidential data is not leaked during the data generation process. As a consequence, this
firmware is in most cases suited for one dedicated product. If other products need to be supported, a new
firmware needs to be developed and certified. In case of complex multi-application products, this is a
considerable amount of development and certification effort. In the domain of secure ICs, the required
data is similar for different use-cases or applications. Having a mature, modular development and
certification processes can significantly reduce the required effort and costs. As described in Section
“Security Certification of secure CPS or IoT devices”, a security model can be used to trace the
requirements of the personalization system to the implementation artifacts of the HSM firmware
implementation. Thus, changes can be easily tracked and evaluated by the according evaluation facility.
For traditional software development, the problem of flexibility is usually solved by introducing a
dedicated API that can be called arbitrarily. As identified by Anderson (Anderson R. J., API Attacks,
2001), the most common API failure mode of secure systems is that functions / transactions that are
secure in isolation become insecure in combination. The cause of such errors is usually application
syntax, feature interactions, slow leakage, or concurrency problems. Developers of such system have to
be aware, that an attacker could use any unexpected combination of function calls in order to break the
trusted system. To solve the issue of leaking information, security APIs are usually designed simple such
that they can be formally analyzed during the evaluation process. This is an open research challenge and
thus, the authors will discuss this topic in Section “FUTURE RESEARCH DIRECTIONS” in more
detail.

Authentication Methods

During the personalization process, random session keys are usually used to communicate with the
individual chips. To start this process, the personalization system needs to be aware of an authentication
token. This is necessary to ensure a unilateral or mutual authentication between the personalization
equipment and the secure IC. There are many different methods that can be used, but the following
describes a simple but common approach from the Smart Card domain (Rankl & Effing, 2010):

During the production of the secure IC, the producer of the operating system (OS) incorporates a secret
value to the ROM (Read Only Memory) code of the IC. The ROM usually contains the static functions
and data which are already programmed during the manufacturing of the chip. This is done by preparing a
ROM mask from the program code which is applied to the chip using lithographic processes. Thus, the
code is “hard-wired” to the memory. To prevent attacks on the ROM code, it is usually protected against
optical attacks, including etching attacks.

The secret ROM value is combined with a value which is written to the non-volatile memory (EEPROM
or Flash) of the chip by the semiconductor manufacturer to create an authentication token. The idea is that
neither the OS producer, nor the semiconductor manufacturer has enough knowledge to generate this
authentication token by his own. The parts of this token are sent encrypted to the personalization
company. The described method can be used to generate authentication tokens which are valid for one
production batch. The method can be refined if a chip individual number is combined with the secret
values. Thus, the authentication tokens are only valid for a single specific chip. This increases the security
in case that the chips are compromised before being completed. This method – or a similar method – is
commonly used in practice.

Another attack that has to be prevented during the personalization process is the manipulation of the
software of the IC during the production process. An attacker with sufficient resources (e.g. a national
agency or a competitor) may be able to smuggle a manipulated IC to the personalization process. This

166

8 Publications

manipulated IC basically acts like the real product, but has additional functionality like dump routines
which can be used to retrieve the plain confidential data that was loaded during the personalization
process. Again, a large variety of methods can be used to ensure the integrity and authenticity of the
secure IC, but the following method is commonly used in practice (Rankl & Effing, 2010):

The semiconductor manufacturer stores a chip individual key into the non-volatile memory during the
production process. The chip individual secret key and the unique chip identifier are securely shared with
the personalization company. Before sending the personalization data to the card, the personalization
system sends a challenge consisting of a random number to the chip. The chip answers this request by
computing a keyed-hash message authentication code (HMAC) using the secret key. The message that is
hashed consists of the ROM code and the received random number. The random number is necessary to
prevent replay attacks. Further the unique chip identifier is retrieved from the card, such that the
personalization system can identify the secret HMAC key. With the knowledge of the key and the
contents of the ROM code, the personalization system is able to verify the retrieved HMAC. Thus,
manipulation to the ROM code – and respectively to the operating system – can be detected. The
verification is done in the HSM of the personalization system and thus, the secret HMAC key is never
exposed to any operator.

Exemplary personalization process

To illustrate the application of the introduced personalization System (see Figure 2), the authors will
elaborate the process in an exemplary case study showing the production of SIM cards for 3G. This
requires the personalization of two unique identifiers and a symmetric encryption key: the International
Mobile Subscriber Identity (IMSI), the International Mobile Station Equipment Identity (IMEI) and the
Authentication and Key Agreement (AKA) key. In the following, the authors will use the term “shared”
for data that is shared between the different stakeholders in an encrypted way. The plain data is only
accessible by the HSMs of the Stakeholder.

SIM cards are usually ordered by a mobile network operator from a SIM card manufacturer in batches of
several thousand devices. For simplicity, it is assumed that the SIM card manufacturer is responsible for
the Hardware and Software development, while a dedicated Personalization company is conducted for the
personalization. For illustration purposes, it is assumed that the AKA key is derived from a Master Key
that is generated by the personalization company and that the IMSI and IMEI are provided by the mobile
network operator.

To start the process, a secure communication channel has to be established between the mobile network
operator and the SIM card manufacturer (e.g. using TLS) via which the IMSI and the IMEI is shared.
Since the IMSI and IMEI are in general not confidential, the data can be sent in plain, but it has to be
authenticated. The authentication is required to ensure that the provided data is not manipulated, or sent
from an untrusted entity.
The SIM card manufacturer orders the personalization of the SIM cards from a dedicated personalization
company. As such, another secure channel has to be established between the SIM card manufacturer and
the personalization company. Via this channel, the data of the mobile network operator is forwarded as
well as an authentication token such that the personalization company is able to authenticate to the
manufactured SIM cards. The “Data Generation System” of the personalization company is used to
generate the master key for the AKA key hierarchy, as well as to derive the actual keys for the individual
chips. During the personalization process itself, the personalization equipment makes use of the generated
data. Usually, symmetric encryption is used to protect the generated data to reduce the computational
overhead.

After the personalization, the personalization company shares the generated master key as well as a list
containing the derivation parameters of the individual chips with the SIM card manufacturer. This data is
forwarded to the mobile network operator. The list of derivation parameter is required such that the

167

Paper H - IGI-Global book chapter

mobile network operator is able to compute the device individual key if a SIM card is trying to access the
services of the network. The derivation data usually contains the device individual unique identifier as
well as other data.

As a consequence of the described system, the personalization company is fully transparent to the mobile
network operator (and vice versa) since the whole communication is carried out through the SIM card
manufacturer.

Classification of personalization data

A wide variety of different data is usually personalized. This Section tries to summarize and classify the
most common types of data that is loaded during this process. Generally speaking, keys which are
described in the following as “known” to a production system (e.g. the personalization equipment) means,
that the according key is located in a Hardware Security Module. Operators or other involved persons
must not be able to retrieve such keys in plain. As illustrated in Figure 2, a secure channel exists between
the issuer system and the data generation system. Thus, data or keys which are shared with the issuer can
be forwarded by re-encrypting the data for the personalization system.

Operating System: The operating system of the secure IC is usually provided as ROM code during the
production of the IC. Since the ROM code needs to be prepared several months before production, it may
happen that updates need to be applied during the personalization process. These updates are generally
loaded to the non-volatile memory (EEPROM or Flash) of the chip during Phase 2 of the lifecycle.

• Type of Data: Updated OS routines or code is usually provided as a binary which is signed from
the OS producer. Further, encryption can be used to prevent reverse engineering or to protect
hard-coded confidential data.

• Owner of the involved Keys: The signature creation key (private part of an asymmetric key pair)
is owned by the OS producer and is not shared with any other party. The signature verification
key (public part of the asymmetric key pair) is either hard coded into the ROM-code of the OS, or
personalized by the personalization company. In the latter case, the public key needs to be sent at
least authenticated to the issuer. If the OS code is encrypted, the protection key needs to be
known by the issuers HSM and shared with the OS producer (or vice-versa).

Applications: Like for the operating system, applications may also be part of the ROM code which was
burned to the IC during the production process (Phase 1). For Flash based products, this can also include
the applications which are loaded to the Flash during the production process (Phase 1). The advantage of
having such romized or pre-loaded applications is that less data needs to be sent during the
personalization process, which saves time and money. As before, updates or additional application(s) may
need to be loaded during the process since the final application(s) were not available when the ROM-code
was created.

• Type of Data: Applications are usually provided as binary. Dependent on the use case, the
operating system may require that the applications are signed. This may also be required from a
security certification to ensure that only valid applications are loaded. Optionally, encryption can
be used to prevent reverse engineering or to protect hard-coded confidential data.

• Owner of the involved Keys: In case of signed binaries, the signature creation key is usually
owned by the OS producer. Certificate hierarchies may also be used to separate the individual
application provider. The signature verification key (public key) is either hard coded into the
ROM-code of the OS, or personalized by the personalization company. If the application is
encrypted, the protection key needs to be known by the issuers HSM and shared with the
application developer (or vice-versa). For security reasons, the protection key should be different
for every individual application developer and also different of the OS protection key.

168

8 Publications

Application Keys: For security relevant applications, different cryptographic keys are required to ensure
the proper functionality. For example, if the application is sending confidential data to a web-server in the
internet, an encryption key is required that protects the communication. This can be achieved by using
symmetric or asymmetric cryptography.

• Type of Data: The generated key material can be either symmetric or asymmetric. Usually,
symmetric encryption keys are used if the encryption operation needs to be calculated within a
limited time frame. Such symmetric encryption keys can be categorized in three groups:

o Static Keys: Every chip will use the same static key.

o Derived Key Hierarchy: State of the art key derivation functions (KDFs) are applied
during the data generation process to generate chip individual keys based on a derivation
master key. This process typically uses the unique identifier of the chip to derive the
device key which is loaded during the personalization process. KDFs are cryptographic
one way functions to ensure that an attacker cannot break the secret derivation master key
by knowing the derived keys. In general, the data that is used during the derivation
process has to be shared with the involved stakeholder. The derivation master key that is
used for the key derivation may be provided by a Stakeholder, or generated in behalf of
the Stakeholder from the personalization company.

o Random Keys: As the name suggest, the keys are purely random for every individual
device. Depending on the use case, this key material can be generated by the issuer or by
the personalization system.

Asymmetric Keys can be categorized into two groups:

o Encryption Keys: The device is communicating with an external system using
asymmetric encryption for a secure channel establishment. As a consequence, the
encryption key (public key) of the destination needs to be personalized. This is usually
done using certificates. The key-pair of the device can either be static or randomly
generated.

o Signature Keys: Either the device needs to verify the signature of message or data, or an
external system needs to verify that the data was sent from a trusted device. In case that
the device needs to verify a signature, the signature verification key (public key) needs to
be personalized. This is usually done using certificates. If the device needs to compute
the signature.

Generally, from a security perspective static keys are the most critical use-case, since breaking
one device automatically breaks all other devices.

• Owner of the involved Keys:

o Symmetric Keys: Independent of the category (Static, Derivation Master Key, or
Random), the key can either be provided by the application developer or generated by the
personalization company on behalf of the application developer. In the latter case, the
key(s) may need to be shared with the application developer or other system components
in a secure manner. In any case, the protection key needs to be shared with the issuer.
Whether to generate or import keys needs to be decided on a case by case basis
considering all product and security requirements.

o Asymmetric Keys: Public keys are usually provided via a certificate which is signed by a
CA that is trusted by the device (i.e. the signature verification key was personalized or
hard coded). The device key pair is usually randomly generated by the personalization
company and loaded to the device. In rare cases, the key-pair was provided by the

169

Paper H - IGI-Global book chapter

application developer. In case that the key-pair was generated, the public key is usually
exported as a certificate and is shared with the application developer, or any other system
component that needs to be aware of the public key. The resulting certificate can be self-
signed or trusted-root signed. In case that a trusted-root is used, a secure process needs to
be established, such that operators are not able to issue valid certificates for misuse.
Further, fake devices have to be reliably detected. The protection key used for importing
static key-pairs needs to be shared with the issuer.

Device and/or Application Settings: Every device and/or application may require additional
configuration data to be loaded. For example, an application which communicates with a different
application or process need to know the identifier of the application or process.

• Type of Data: In general, proprietary binary formatted data is preferred since it can be
efficiently compressed and loaded on small embedded systems. But of course, any arbitrary data
can be loaded like strings, files and others. In most cases, this data is not confidential and thus,
not encrypted. The data can be signed if the origin of the data needs to be verified, which could
be a requirement of the security certification process.

• Owner of the involved Keys: In case of signed data, the signature creation key (private part of
an asymmetric key pair) is owned by the according provider of the data (e.g. Customer, OS
provider, etc.). The public key can either be hard coded into the ROM code, or personalized from
the personalization company. In the latter case, the public key needs to be sent at least
authenticated to the issuer. If the data is sent encrypted, the protection key needs to be known by
the issuer’s HSM and shared with the data provider (or vice-versa). For security reasons it is
important to use different encryption keys for the individual provider of the data.

Loading personalization data to the chips

In principal, there are various ways for loading the personalization data to the secure ICs. The methods
can be categorized into two main groups: The first category requires that the secure IC is able to perform
basic file and data management commands such as Create, Install and Update. Thus, the personalization
process makes use of these commands to send the data to the chip. The second category requires that the
secure IC is able to load the personalization data from a defined memory region which was written during
the production of the IC. The following methods are currently state of the art:

Category 1: Loading personalization data using logical addresses (Rankl & Effing, 2010) : This
method tries to avoid physical addresses using basic file and data management commands. The individual
datasets are identified with a symbolic name such that the secure IC is able to determine the according
physical address. The sent data can be independent from the used micro-controller if the API is written in
a platform independent way. The drawback of this method is that the personalization process will take
more time since the secure IC needs to resolve the symbolic identifier before the data is written. This
overhead is only small but in a high volume production process this may be to cost intensive.

Category 1: Loading personalization data using physical addresses (Rankl & Effing, 2010; Atsumi,
Kondo, & Shona, 1995): In opposite to the first method, this method makes use of the real physical
addresses of the individual datasets. Consequently, the overhead for writing the data can be kept as small
as possible. In order to write this data to the real physical addresses, the personalization system needs to
be aware of how the data is expected by the secure IC. This is a huge drawback since it is an additional
source of error which can render all produced chips unworkable. To be able to generate the data as
expected, usually a sample device is used which contains a dump memory functionality. The sample
device is configured as the final product, but with the difference, that specific pattern values are used for
the device individual and/or confidential data. After the initialization was done, the memory content is

170

8 Publications

dumped and the physical addresses are identified by searching the according pattern values. The memory
dump is used as a template during the production of the secure ICs. Only the placeholder data is replaced
during the personalization process with the real data. The critical aspect is that the process needs to
assure, that it is not possible to manufacture a production device having the dump memory functionality
inside. Otherwise, an attacker is able to read the confidential data from the dumped memory.

Category 2: Loading personalization data using a dedicated personalization memory region:
Another possibility for loading the personalization data is using a dedicated memory region to which the
personalization data is written as a whole block. As such, no specific device API is required which is able
to load / update individual data. The personalization data could be loaded to the secure IC during the last
stages of the production. To actually load the data, the personalization system authenticates to the IC and
sends the decryption key, necessary to decrypt the personalization data. Additional meta-information is
necessary such that the IC can determine the purpose of the data. Usually, the meta-information uses
symbolic names which can be interpreted by the secure IC, but also real physical addresses could be used
in this process. The personalization company needs to agree with the OS producer on the format of the
data which is one of the main drawbacks of this approach. An additional drawback is the computational
overhead which leads to higher costs during the production process. Further, the memory region for the
personalization data needs to be allocated by the secure IC which can be a problem for small low cost ICs.
Of course, this additional memory can be used for customer data during the in-field use, but during the
production process this may be a limiting factor.

If certified products are manufactured, it is further necessary to log every production step and to validate
that the correct data was loaded. Independent from the method which was used during the personalization
process, the following data is usually logged in practice:

• Unique chip identifier
• Checksum or hash values of non-confidential data like applications or configuration settings
• Key Check Values (KCVs) or secure cryptographic one way hashes of confidential data

The important point is that one way functions have to be used for logging verification values of
confidential data. This ensures that an attacker is not able to obtain the plain key values by observing the
logged verification values. The verification values can be verified using the HSMs of the personalization
system. Thus, the plain confidential data is never exposed to any operator.

Classification of attacks and attackers

In general, information technology systems are vulnerable to multiple possible threat vectors. On the one
hand, design weaknesses of the hardware, as well as the software, can lead to a break of the system. On
the other hand, cryptographic protocols which were consider as secure today may be broken in the future.
One such example is the cryptographic strength of different key types. With the increasing computational
power of personal computers, brute force attacks on short keys are getting more interesting. While several
years ago, RSA-768 was considered as being sufficiently secure, nowadays RSA-2048 is recommended.
With respect to the scope of this chapter, the authors will focus on possible attack vectors which aim to
break the system due to weaknesses in the personalization process. This is an essential topic, since
breaking the personalization system leads to breaking every single produced IC! Possible attacks can be
classified as follows:

• Hardware attacks: As described in Section “Generation of the personalization data”, the
system for generating and importing confidential data consists of hardware security modules and
the personalization equipment. Since these hardware components are only storing temporary data,
which is used for the processing of the current batch, invasive attacks can be neglected due to
operational measures. Nevertheless, these hardware components are still vulnerable to side-

171

Paper H - IGI-Global book chapter

channel attacks like timing analysis or power analysis (Demaertelaere, 2010; Sanchez-Reillo,
Sanchez-Avila, Lopez-Ongil, & Entrena-Arrontes, 2002). Furthermore, manipulated hardware
devices could be used to leak generated device data.

• Software attacks: As already mentioned in Section “Generation of the personalization data”,
the API of the hardware security modules may have vulnerabilities which can be used to leak
confidential data (Anderson R. J., API Attacks, 2001) by combining specific functions.

• Social Engineering attacks: This sort of attack mainly aims at the people who are involved in
operating the production equipment, or in developing software for the production equipment. In
case that symmetric keys are shared via paper forms (as described in (PCI Security Standards
Council, 2016)) between the personalization company and any other involved stakeholder, the
companies responsible for dispatching the mail are also of interest to such kind of attacks.

In order to estimate the strength of attackers, the type of attackers has to be classified as well. The basic
motivation behind attackers is usually the gain of financial benefit or knowledge (Rankl & Effing, 2010).
National agencies for instance, are not interested in gaining financial profit, but are interested in gaining
knowledge about the users, or the environment to which the system is deployed to. If details of such
attacks become public, the reputation of the involved companies is damaged dramatically. Thus, another
potential attack vector includes a competitor, who either wants to gain knowledge about the processes, or
wants to harm the reputation.

Similar damage to the reputation can be caused by scientific researchers, which aim to break the system to
gain reputation in their specific scientific field. As such, these attackers are only satisfied if their
successful hacking attempt is published in scientific publication. But also individual hackers may only be
motivated in being the first, breaking the system.

In the domain of the personalization process, a few potential attackers and attack vectors can be
neglected: Since the production environment is secured, it is not possible for hackers to place specific
hardware devices into the production environment. This may only be possible by competitors who are
using the same production facilities, or organizations with a high amount of resources they could spent to
manipulate the production equipment. Further, the control logic of the personalization equipment and the
equipment itself is in general disconnected from any external network. As a consequence, malicious
software cannot be loaded to such devices via the internet. Thus, attacks during the personalization
process are mainly carried out either by insiders or organizations like competitors, national agencies, or
research institutions.
In practice, the following techniques are used to minimize the risk of hacks from the above mentioned
attackers:

Authentication: As already discussed in Section “Generation of the personalization data”, every single
personalization operation needs to be authenticated, to ensure that only valid data is loaded to the chips.
Further, authentication of the secure IC is required such that it is not possible to replace the chip with a
dummy IC. As already explained, such dummy ICs could contain code which can be used to export the
personalized confidential data in plain. This is especially critical with respect to static confidential data.

Encryption: Only if data is stored in dedicated Hardware Security Modules – or the final secure IC – the
data can be stored in plain. Whenever data is transferred between system components, the data has to be
encrypted with reasonable strength. Recommendations for the required key length are usually published
by standardization organizations like the NIST (NIST SP 800-57-1, 2016) and frequently updated
according to the state of the art.

Split Knowledge: During the production process, at least a two-man rule should be used to ensure that no
single operation can be performed by a single person. Otherwise, this single individual may be subject of
attacks like social engineering. The two-man rule is also reflected in the security measures described in
Section “Generation of the personalization data”, where the authentication token for the

172

8 Publications

personalization company is split into two parts. One is delivered by the OS producer and one is delivered
by the semiconductor manufacturer. Further, split knowledge is also used during development of the
software that is deployed onto the hardware security modules, or developed for other production
equipment. In general multiple people are involved in the development of the software; code reviews are
mandatory for code releases, which are performed by people that are not involved into the development
process. Further, it is required that multi-person authentication mechanisms are used to deploy new
software onto the production equipment.

Table 1 summarizes typical attacks during the personalization process and their according
countermeasures:

Table 1 Non-exhaustive list of typical attacks during the personalization process

Attack Attacker Description / Countermeasure
Tapping Data
Communication

Insider,
Organizations,
Hackers

Description: During the whole process, confidential data is transferred
between multiple stakeholders. This includes also the communication
channels between the personalization equipment and the actual device
during the production.
Countermeasure: Secure messaging has to be used throughout the
whole personalization process.

Manipulation of
Data transfers

Insider,
Organizations,
Hackers

Description: Related to the previous attack. Proper origin of data
streams has to be ensured throughout the whole process since
otherwise, devices may be compromised (e.g. by loading dummy key
data).
Countermeasures: Authentication methods have to be used
throughout the whole process to ensure the proper origin of the data, as
well as message authentication methods to ensure that the data was not
manipulated during the transfer.

“Fake” devices Organizations,
Insiders

Descriptions: Fake devices could be used to leak data that is loaded
during the personalization process. In case that static keys are used, all
devices can be broken if a fake device is integrated into the
personalization process. Even worse, if faked HSMs are used to
generate the data, all confidential customer data could be leaked.
Countermeasures: Bi-Directional authentication of the
personalization equipment and the actual devices. Further, multiple
eye principal for the deployment and the maintenance of the
personalization equipment as well as the HSMs.

Manipulation of the
Personalization
Equipment

Organizations,
Insiders

Description: Manipulated software could be loaded to the
personalization equipment – including also the HSMs, to leak
confidential data.
Countermeasure: Operational measures are required to restrict the
access to the personalization equipment. Further, multiple eye
principals have to be applied to ensure that only multiple operators are
able to load software to the equipment. Authentication methods have
to be used such that only authorized operators can execute functions of
the personalization equipment.

Social Engineering Organizations,
Hackers

Description: Attacks on the social level can be carried out to gain
access to company networks, or to establish backdoors for other
attacks.
Countermeasures: Split knowledge such that no single person is able
to break the whole system. Secure messaging and secure storage of
confidential data, as well as separation of networks. Increase the
security awareness of all involved employees.

173

Paper H - IGI-Global book chapter

FUTURE RESEARCH DIRECTIONS

As mentioned in Section “Generation of the personalization data”, the API of the HSMs, that are
responsible for generating the personalization data, is still an open research question; although the topic of
API security is subject to research since the 1990s. There is a growing literature about formal verification
tools which are used to analyze the security API of a system and to detect security flaws. The problem
with these tools is that they are usually designed to analyze rather simple APIs. Additionally, they require
a lot of resources in terms of computational power and memory consumption. Thus, formal analysis tools
are in general not suitable to be run on HSMs to ensure runtime protection against API attacks. It is an
open research challenge to adopt formal analysis tools for the requirements of a personalization system.

The current alternative approach is to come up with robustness principles to guide the designers of such
systems (Anderson R. J., API Attacks, 2001). Instead of providing a sequential API of the HSMs, which
requires a steady interaction with the system, a set of function calls could be grouped to a single execution
unit. This execution unit can be verified in advance to ensure that this sequence of function is valid with
respect to the defined robustness principles. In case that the sequence of functions was verified as secure,
the developer can sign the execution unit such that the HSMs are only executing verified sequences of
functions. Besides this, security principals which were considered to be secure in the past are now
identified to be a big security problem. For example, as Anderson pointed out (Anderson, Bond, Clulow,
& Skorobogatov, 2006), the use of exclusive-or to combine a key with a PIN leads to a huge security
flaw, although it was used by every VISA security module. It is up to now an open research challenge on
how to systematically identify such vulnerabilities in existing systems.

Our today’s organizations are driven by fast changing markets and requirements. Thus, agile and
incremental development techniques are used to cope with these problems. As of today, security
certification is contradicting to such development strategies. As a consequence, certification is usually
carried out at a late stage of the development. Current research aims on integrating the security
certification process into the development process such that the evaluation facility is able to gain trust
already during the development of the system. Further attempts are made to ease the certification process
by reusing previously collected evidences. But still, a lot of research and standardization activities are
required to develop mature development processes that integrate security requirements. The aim of this
integration should be a bilateral traceability of the security requirements to the according implementation
artifacts and tests to ensure an automatic detection of the impact of changes.

CONCLUSION

The personalization of secure CPS or IoT devices is a crucial step during the production process. Every
security measure which is employed during the in-field use is futile, if data is leaked during this
personalization process. Especially in the domain of IoT devices, which are observing our daily activities,
it is essential to protect the devices against malicious manipulations. The past has shown that hacks of
such IoT devices are valuable aims for hackers. As the Mirai malware showed, one of the main problems
was the careless handling of the user name and password of the webcams manufactured by Hangzhou
Xiongmai Trading (Hautala, 2016). These credentials were static for every hacked webcam. Thus, every
manufactured webcam of this producer can be taken over via the internet without any hint to the customer
that his device was hacked by trying the default user name and password. Even worse, after changing the
user name and password, the devices were still vulnerable via the remote web based administration panel
(Krebs, 2016). With a mature an established personalization process, these vulnerabilities could be
mitigated since every produced device could use dedicated user credentials.
As a consequence, mature personalization processes need to be established, which enables a low-cost but
secure personalization for CPS or IoT devices. Thus, the developed processes need to be flexible such that
they can be used for a wide variety of different products, independent of the use-case of the devices.
Flexibility is also required to ensure that the personalization process can be integrated into the production

174

8 Publications

process of secure systems independent of the manufacturer of the devices. As a result, the costs for such
processes can be kept as low as possible. This chapter summarized generic and state of the art concepts
for secure personalization processes to get a step closer to a low cost personalization process for secure
systems.

REFERENCES

Anderson, D. (1997). Agile Product Development for Mass Customization: How to Develop and
Deliver Products for Mass Customization, Niche Markets, Jit, Build-To-Order and
Flexible Manufacturing. Irwin Professional Pub.

Anderson, R. J. (2001). API Attacks. In Security Engineering: A Guide to Building Dependable
Distributed Systems. New York, NY, USA: John Wiley & Sons, Inc.

Anderson, R. J., Bond, M., Clulow, J., & Skorobogatov, S. (2006). Cryptographic Processors—A
Survey. (pp. 357-369). IEEE.

Atsumi, S., Kondo, T., & Shona, Y. (1995). Patent No. 5,442,165. US.
Begley, J., & Scahill, J. (2015, February 19). Retrieved from The Intercept - The Great SIM

Heist: https://theintercept.com/2015/02/19/great-sim-heist/
Chan, V., & Ho, F. (2003). Patent No. 6588673 B1. United States of America.
Chen, X. (2007). Patent No. 1983466 A2. European Union.
Common Criteria. (2002). Common Criteria Information Statement. Reuse of Evaluation Results

and Evidence. Common Criteria.
Common Criteria. (2012). Common Criteria for Information Technology Security Evaluation

Part 1 - 3; Version 3.1. Common Criteria.
Common Criteria. (2012, April). Common Criteria Supporting Document Mandatory Technical

Document - Composite product evaluation for Smart Version 1.2. Common Criteria.
Demaertelaere, F. (2010). Hardware Security Modules. SecAppDev.org - Secure Application

Development.
Graham, H. E., Jr., M. B., Nablo, R. J., & Haeuser, W. W. (2002). Patent No. 6402028 B1.

United States of America.
Hautala, L. (2016, October 24). Why it was so easy to hack the cameras that took down the web.

Retrieved from https://www.cnet.com/how-to/ddos-iot-connected-devices-easily-hacked-
internet-outage-webcam-dvr/

Hautier, R., Macchetti, M., & Perrine, J. (2012). Patent No. 2720167 A1. European union.
IHS Markit. (2014, August). Smart Card Shipments to Rise by 2.1 Billion Units by 2019. (IHS

Markit Newsroom) Retrieved October 2016, from http://press.ihs.com/press-
release/design-supply-chain-media/smart-card-shipments-rise-21-billion-units-2019

ISO 10202-1. (1991). Financial transaction cards -- Security architecture of financial transaction
systems using integrated circuit cards -- Part 1: Card life cycle. International
Organization for Standardization.

ISO 18000-3. (2010). Information technology — Radio frequency identification for item
management — Part 3: Parameters for air interface communications at 13,56 MHz.
International Organization for Standardization.

Krebs, B. (2016, October 21). kresbonsecurity.com. Retrieved January 4, 2017, from
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-
internet-outage/

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015, June).
Unlocking the potential of the Internet of Things. Retrieved from

175

Paper H - IGI-Global book chapter

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-
of-things-the-value-of-digitizing-the-physical-world

Markantonakis, K., Mayes, K., Sauveron, D., & Tunstall, M. (2010). Smart Cards. In H. Bidgoli
(Ed.), Handbook of Technology Management (Vols. II: Supply Chain Management,
Marketing and Advertising, and Global Management, pp. 248-264). Wiley.

Nest Labs. (2016). Nest. Retrieved 11 7, 2016, from https://nest.com
NIST FIPS PUB 140-2. (2001). Security Requirements for Cryptographic Modules. National

Institute of Standards and Technology Federal Information Processing Standards
Publications 140-2.

NIST SP 800-57-1. (2016). Recommendation for Key Management - Part 1: General. National
Institute of Standards and Technology Special Publication 800-57-1.

PCI Security Standards Council. (2016). Data Security Standard - Requirements and Security
Assessment Procedures. Payment Card Industry Security Standards Council.

Rankl, W., & Effing, W. (2010). "Smart Card Handbook 4th Edition". Wiley.
Raschke, W., Massimiliano, Z., Baumgartner, P., Loinig, J., Steger, C., & Kreiner, C. (2014).

Supporting evolving security models for an agile security evaluation. IEEE.
Sanchez-Reillo, R., Sanchez-Avila, C., Lopez-Ongil, C., & Entrena-Arrontes, L. (2002).

Improving Security in Information Technology using Cryptographic Hardware Modules.
International Carnahan Conference on Security Technology (pp. 120-123). IEEE.

Scahill, J. (2015, February 25). Retrieved from The Intercept - What Gemalto doesn't know what
it doesn't know: https://theintercept.com/2015/02/25/gemalto-doesnt-know-doesnt-know/

Sinnhofer, A. D., Raschke, W., Steger, C., & Kreiner, C. (2015). Evaluation paradigm selection
according to Common Criteria for an incremental product development.

Sinnhofer, A. D., Raschke, W., Steger, C., & Kreiner, C. (2015). Patterns for Common Criteria
Certification. ACM.

Sinnhofer, A., Oppermann, F., Potzmader, K., Orthacker, C., Steger, C., & Kreiner, C. (2016).
Patterns to Establish a Secure Communication Channel. Proceedings of the 21st
European Conference on Pattern Languages of Programs, pp. 13:1-13:21.

176

Bibliography

[1] David J. Anderson. Agile Management for Software Engineering: Applying the The-
ory of Constraints for Business Results. Prentice Hall, Sept. 2003. isbn: 0131424602.

[2] David M. Anderson. Agile product development for mass customization. how to deve-
lop and deliver products for mass customization, niche markets, JIT, build-to-order,
and flexible manufacturing. Ed. by Joseph Pine II. McGraw-Hill [u.a.], 1997. isbn:
0786311754.

[3] Ross J. Anderson. “API Attacks.” In: Security Engineering: A Guide to Building
Dependable Distributed Systems. 2nd ed. Wiley Publishing, 2008, pp. 547–557. isbn:
9780470068526.

[4] Ross J. Anderson. “The Correctness of Crypto Transaction Sets (Discussion).”
In: Revised Papers from the 8th International Workshop on Security Protocols.
Springer-Verlag, 2001, pp. 128–141. isbn: 3-540-42566-7. url: http://dl.acm.
org/citation.cfm?id=647218.720851.

[5] Felix Bachmann; Michael Goedicke; Julio Leite; Robert Nord; Klaus Pohl; Bala-
subramaniam Ramesh; and Alexander Vilbig. “A Meta-model for Representing Va-
riability in Product Family Development.” In: Software Product-Family Engineering:
5th International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003. Revised
Papers. Ed. by Frank J. van der Linden. Springer Berlin Heidelberg, 2004, pp. 66–80.
isbn: 978-3-540-24667-1.

[6] Elaine Barker. NIST Special Publication 800-57 Part 1 Revision 4 – Recommendation
for Key Management. 2016.

[7] Per Bjesse. “What is Formal Verification?” In: SIGDA Newsl. 35.24 (Dec. 2005).
issn: 0163-5743. doi: 10.1145/1113792.1113794. url: http://doi.acm.org/10.
1145/1113792.1113794.

[8] Florian Böhl; Klaus Potzmader; Clemens Orthacker; Andreas Daniel Sinnhofer; and
Christian Steger. “Method for Symbolic Execution on Constrained Devices.” Patent
82086638 (82019770US01). Status: Application; App. No. 15/482462. Apr. 2017.

[9] Mike Bond and Ross Anderson. “API-Level Attacks on Embedded Systems.” In:
Computer 34.10 (Oct. 2001), pp. 67–75. issn: 0018-9162. doi: 10.1109/2.955101.
url: http://dx.doi.org/10.1109/2.955101.

177

http://dl.acm.org/citation.cfm?id=647218.720851
http://dl.acm.org/citation.cfm?id=647218.720851
https://doi.org/10.1145/1113792.1113794
http://doi.acm.org/10.1145/1113792.1113794
http://doi.acm.org/10.1145/1113792.1113794
https://doi.org/10.1109/2.955101
http://dx.doi.org/10.1109/2.955101

[10] Frank Buschmann; Regine Meunier; Hans Rohnert; Peter Sommerlad; and Michael
Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996. isbn: 0471958697, 9780471958697.

[11] V. Chan and F. Ho. Method and system providing in-line pre-production data pre-
paration and personalization solutions for smart cards. US Patent 6,588,673. July
2003. url: https://www.google.com/patents/US6588673.

[12] X.S. Chen. Method and apparatus of secure authentication for system-on-chip (SoC).
EP Patent App. EP20,080,005,228. Aug. 2011. url: https://www.google.com/
patents/EP1983466A3?cl=en.

[13] Paul Clements and Lina M. Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley Longman Publishing Co., Inc., 2001. isbn: 0-201-70332-7.

[14] Payment Card Industry Security Council. Payment Card Industry (PCI) Data Se-
curity Standard – Requirements and Security Assessment Procedures – Version 3.2.
PCI. 2016.

[15] Patrick Cousot and Radhia Cousot. “A gentle introduction to formal verification of
computer systems by abstract interpretation.” In: Logics and Languages for Relia-
bility and Security. Ed. by Javier Esparza; Bernd Spanfelner; and Orna Grumberg.
Vol. 25. NATO Science for Peace and Security Series - D: Information and Commu-
nication Security. IOS Press, 2010, pp. 1–29. isbn: 978-1-60750-099-5.

[16] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points.” In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages. POPL ’77. ACM, 1977, pp. 238–252. doi: 10.
1145/512950.512973. url: http://doi.acm.org/10.1145/512950.512973.

[17] Common Criteria. Common Criteria for Information Technology Security Evaluation
Part 1 - 3. Version 3.1 Revision 4. CC. Sept. 2012.

[18] Common Criteria. Common Criteria Information Statement – Reuse of Evaluation
Results and Evidence. CC. Oct. 2002.

[19] Common Criteria. Supporting Document – Mandatory Technical Document – Com-
posite product evaluation for Smart Cards and similar devices – Version 1.2. CC.
Apr. 2012.

[20] Marcelo Fantinato; Maria Beatriz Felgar de Toledo; Lucinéia Heloisa Thom; Itana
Maria de Souza Gimenes; Roberto dos Santos Rocha; and Diego Zuquim Guimarães
Garcia. “A survey on reuse in the business process management domain.” In: Inter-
national Journal of Business Process Integration and Management (2012).

178

https://www.google.com/patents/US6588673
https://www.google.com/patents/EP1983466A3?cl=en
https://www.google.com/patents/EP1983466A3?cl=en
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973

Bibliography

[21] Dániel Fey; Róbert Fajta; and András Boros. “Feature Modeling: A Meta-Model to
Enhance Usability and Usefulness.” In: Software Product Lines: Second International
Conference, SPLC 2 San Diego, CA, USA, August 19–22, 2002 Proceedings. Ed. by
Gary J. Chastek. Springer Berlin Heidelberg, 2002, pp. 198–216. isbn: 978-3-540-
45652-0.

[22] Robert W. Floyd. “Assigning Meanings to Programs.” In: Program Verification: Fun-
damental Issues in Computer Science. Ed. by Timothy R. Colburn; James H. Fetzer;
and Terry L. Rankin. Springer Netherlands, 1993, pp. 65–81. isbn: 978-94-011-1793-
7. doi: 10.1007/978-94-011-1793-7_4.

[23] Erich Gamma; Richard Helm; Ralph Johnson; and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publis-
hing Co., Inc., 1995.

[24] Florian Gottschalk; Wil M. P. van der Aalst; Monique H. Jansen-Vullers; and Mar-
cello La Rosa. “Configurable Workflow Models.” In: International Journal of Coope-
rative Information Systems (2007).

[25] H.E. Graham; M.B. Kekicheff; R.J. Nablo; and W.W. Haeuser. Integrated production
of smart cards. US Patent 6,402,028. Nov. 2002. url: https://www.google.com/
patents/US6402028.

[26] Ibrahim Mustafa Habli. PhD thesis. University of York - Department of Computer
Science, 2009.

[27] Alena Hallerbach; Thomas Bauer; and Manfred Reichert. “Guaranteeing Soundness
of Configurable Process Variants in Provop.” In: Commerce and Enterprise Compu-
ting, 2009. CEC ’09. IEEE Conference on. IEEE, 2009, pp. 98–105.

[28] Alena Hallerbach; Thomas Bauer; and Manfred Reichert. “Issues in modeling pro-
cess variants with Provop.” In: Business Process Management Workshops. Ed. by
Danilo Ardagna; Massimo Mecella; and Jian Yang. Vol. 17. Lecture Notes in Busi-
ness Information Processing. Springer Berlin Heidelberg, 2009, pp. 56–67.

[29] Helmut Hammer. Towards an automated Golden Sample configuration process. Bac.-
Thesis. 2017.

[30] Michael Hammer and James Champy. Reengineering the Corporation - A Manifesto
For Business Revolution. Harper Business, 1993.

[31] R. Hautier; M. Macchetti; and J. PERRINE. Method and system for smart card
chip personalization. EP Patent App. EP20,120,188,097. Aug. 2014. url: https:
//www.google.com/patents/EP2720167A1?cl=en.

179

https://doi.org/10.1007/978-94-011-1793-7_4
https://www.google.com/patents/US6402028
https://www.google.com/patents/US6402028
https://www.google.com/patents/EP2720167A1?cl=en
https://www.google.com/patents/EP2720167A1?cl=en

[32] K. C. Kang; S. G. Cohen; J. A. Hess; W. E. Novak; and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep. Carnegie-Mellon
University Software Engineering Institute, Nov. 1990.

[33] Kyo C. Kang; Jaejoon Lee; and Patrick Donohoe. “Feature-Oriented Project Line
Engineering.” In: IEEE Softw. 19.4 (July 2002), pp. 58–65. issn: 0740-7459.

[34] James C. King. “Symbolic Execution and Program Testing.” In: Commun. ACM
19.7 (July 1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.360252.

[35] W. Maconachy; C. Schou; D. Ragsdale; and D. Welch. “A Model for Information
Assurance: An Integrated Approach.” In: Proceedings of the 2001 IEEE Workshop
on Information Assurance and Security. 2001.

[36] James Manyika; Michael Chul; Peter Bisson; Jonathan Woetzel; Richard Dobbs;
Jacques Bughin; and Dan Aharon. Unlocking the potential of the Internet of Things.
2015. url: http://www.mckinsey.com/business-functions/digital-mckinsey/
our- insights/the- internet- of- things- the- value- of- digitizing- the-
physical-world (visited on 2016-12-27).

[37] Kevin P. McCormack and William C. Johnson. Business Process Orientation: Gai-
ning the E-Business Competitive Advantage. Saint Lucie Press, 2000.

[38] Daniel Mellado; Eduardo Fernández-Medina; and Mario Piattini. “A Common Crite-
ria Based Security Requirements Engineering Process for the Development of Secure
Information Systems.” In: Comput. Stand. Interfaces 29.2 (Feb. 2007), pp. 244–253.
issn: 0920-5489.

[39] Daniel Mellado; Eduardo Fernández-Medina; and Mario Piattini. “A Comparative
Study of Proposals for Establishing Security Requirements for the Development
of Secure Information Systems.” In: Computational Science and Its Applications -
ICCSA 2006: International Conference, Glasgow, UK, May 8-11, 2006, Proceedings,
Part III. Ed. by Marina Gavrilova; Osvaldo Gervasi; Vipin Kumar; C. J. Kenneth
Tan; David Taniar; Antonio Laganá; Youngsong Mun; and Hyunseung Choo. Sprin-
ger Berlin Heidelberg, 2006, pp. 1044–1053. isbn: 978-3-540-34076-8.

[40] Daniel Mellado; Eduardo Fernández-Medina; and Mario Piattini. “Towards security
requirements management for software product lines: A security domain require-
ments engineering process.” In: Computer Standards & Interfaces 30.6 (2008). Spe-
cial Issue: State of standards in the information systems security area, pp. 361 –371.
issn: 0920-5489.

[41] Committee on National Security Systems. National Information Assurance (IA)
Glossary. CNSS. Apr. 2010.

180

https://doi.org/10.1145/360248.360252
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world

Bibliography

[42] Object Management Group (OMG). “Business Process Model and Notation
(BPMN). Version 2.0.” In: (2011). available at http://www.omg.org/spec/BPMN/2.0/,
pp. 1–538.

[43] Hubert Österle. Business Engineering - Prozess- und Systementwicklung. Springer-
Verlag, 1995.

[44] Donn B. Parker. Fighting Computer Crime: A New Framework for Protecting Infor-
mation. John Wiley & Sons, Inc., 1998. isbn: 0-471-16378-3.

[45] Donn B. Parker. “Our Excessively Simplistic Information Security Model and How
to Fix It.” In: Information Systems Security Association (ISSA) Journal (July 2010),
pp. 12–21.

[46] Klaus Pohl; Günter Böckle; and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., 2005. isbn: 3540243720.

[47] Postscapes. 2013/14 IoT Awards. 2014. url: http : / / www . postscapes . com /
internet-of-things-award/ (visited on 2016-12-27).

[48] Klaus Potzmader; Clemens Orthacker; Andreas Daniel Sinnhofer; Christian Steger;
and Christian Kreiner. “A runtime-configurable in-HSM secure IC intialization pro-
cess.” Patent –. Currently in a company internal review process. 2017.

[49] Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. 4th. Wiley Publishing,
2010. isbn: 0470743670, 9780470743676.

[50] Srivaths Ravi; Anand Raghunathan; and Srimat Chakradhar. “Tamper Resistance
Mechanisms for Secure, Embedded Systems.” In: Proceedings of the 17th Internatio-
nal Conference on VLSI Design. VLSID ’04. IEEE Computer Society, 2004, pp. 605–
611. isbn: 0-7695-2072-3. url: http://dl.acm.org/citation.cfm?id=962758.
963491.

[51] Manfred Reichert; Alena Hallerbach; and Thomas Bauer. “Lifecycle Support for
Business Process Variants.” In: Handbook on Business Process Management 1. Ed.
by Jan vom Brocke and Michael Rosemann. Springer, 2014.

[52] Marcello La Rosa; Marlon Dumas; Arthur H. M. ter Hofstede; Jan Mendling; and
Florian Gottschalk. “Beyond Control-Flow: Extending Business Process Configura-
tion to Roles and Objects.” In: 27th International Conference on Conceptual Mo-
deling (ER 2008). Ed. by Qing Li; Stefano Spaccapietra; and Eric Yu. Springer,
2008, pp. 199–215.

[53] Jerome H. Saltzer and Michael D. Schroeder. “The Protection of Information in
Computer Systems.” In: Proceedings of the IEEE 63-9. 1975.

181

http://www.postscapes.com/internet-of-things-award/
http://www.postscapes.com/internet-of-things-award/
http://dl.acm.org/citation.cfm?id=962758.963491
http://dl.acm.org/citation.cfm?id=962758.963491

[54] Jeremy Scahill. Gemalto doesn’t know what it doesn’t know. Feb. 2015. url: https:
//theintercept.com/2015/02/25/gemalto-doesnt-know-doesnt-know/ (visited
on 2017-02-18).

[55] Jeremy Scahill and Josh Begley. The Great SIM Heist - How Spies Stole the Keys
to the Encryption Castle. Feb. 2015. url: https://theintercept.com/2015/02/
19/great-sim-heist/ (visited on 2017-02-18).

[56] Klaus Schmid; Karsten Krennrich; and Michael Eisenbarth. Requirements Manage-
ment for Product Lines: A Prototype. Tech. rep. Fraunhofer - IESE, July 2005.

[57] Douglas C. Schmidt. Why Software Reuse has Failed and How to Make It Work
for You. originally published in C++ Report magazine. Jan. 1999. url: http :
//www.cse.wustl.edu/\~{}schmidt/reuse-lessons.html.

[58] Andreas Daniel Sinnhofer; Peter Pühringer; and Christian Kreiner. “varBPM —
A Product Line for Creating Business Process Model Variants.” In: Proceedings of
the Fifth International Symposium on Business Modeling and Software Design -
Volume 1: BMSD 2015. 2015, pp. 184–191. isbn: 978-989-758-111-3. doi: 10.5220/
0005886901840191.

[59] Andreas Daniel Sinnhofer; Peter Pühringer; Klaus Potzmader; Clemens Orthacker;
Christian Steger; and Christian Kreiner. “A Framework for Process Driven Software
Configuration.” In: Proceedings of the Sixth International Symposium on Business
Modeling and Software Design - Volume 1: BMSD 2016. 2016, pp. 196–203. isbn:
978-989-758-190-8. doi: 10.5220/0006223701960203.

[60] Andreas Daniel Sinnhofer; Andrea Höller; Peter Pühringer; Klaus Potzmader; Cle-
mens Orthacker; Christian Steger; and Christian Kreiner. “Combined Variability
Management of Business Processes and Software Architectures.” In: Proceedings of
the Seventh International Symposium on Business Modeling and Software Design -
Volume 1: BMSD, INSTICC. SciTePress, 2017, pp. 36–45. isbn: 978-989-758-238-7.
doi: 10.5220/0006527300000000.

[61] Andreas Daniel Sinnhofer; Wolfgang Raschke; Christian Steger; and Christian Krei-
ner. “Evaluation paradigm selection according to Common Criteria for an incre-
mental product development.” In: International Workshop on MILS: Architecture
and Assurance for Secure Systems 1 (2015). Available at http://mils-workshop-
2015.euromils.eu/, pp. 1–5.

[62] Andreas Daniel Sinnhofer; Peter Pühringer; Klaus Potzmader; Clemens Orthacker;
Christian Steger; and Christian Kreiner. Identification of business drivers using tra-
ceable links between process models and software architectures. Working title; Accep-
ted for publication in a LNBIP series in 2018.

182

https://theintercept.com/2015/02/25/gemalto-doesnt-know-doesnt-know/
https://theintercept.com/2015/02/25/gemalto-doesnt-know-doesnt-know/
https://theintercept.com/2015/02/19/great-sim-heist/
https://theintercept.com/2015/02/19/great-sim-heist/
http://www.cse.wustl.edu/\~{}schmidt/reuse-lessons.html
http://www.cse.wustl.edu/\~{}schmidt/reuse-lessons.html
https://doi.org/10.5220/0005886901840191
https://doi.org/10.5220/0005886901840191
https://doi.org/10.5220/0006223701960203
https://doi.org/10.5220/0006527300000000

Bibliography

[63] Andreas Daniel Sinnhofer; Wolfgang Raschke; Christian Steger; and Christian Krei-
ner. “Patterns for Common Criteria Certification.” In: Proceedings of the 20th Eu-
ropean Conference on Pattern Languages of Programs. EuroPLoP ’15. ACM, 2015,
33:1–33:15. isbn: 978-1-4503-3847-9. doi: 10.1145/2855321.2855355. url: http:
//doi.acm.org/10.1145/2855321.2855355.

[64] Andreas Daniel Sinnhofer; Felix Jonathan Oppermann; Klaus Potzmader; Clemens
Orthacker; Christian Steger; and Christian Kreiner. “Patterns to establish a secure
communication channel.” In: Proceedings of the 21st European Conference on Pattern
Languages of Programs. EuroPLoP ’16. ACM, 2016, 33:1–33:20. isbn: 978-1-4503-
4074-8. doi: 10.1145/3011784.3011797. url: http://doi.acm.org/10.1145/
2855321.2855355.

[65] Andreas Daniel Sinnhofer; Peter Pühringer; Klaus Potzmader; Clemens Orthacker;
Christian Steger; and Christian Kreiner. “Software Configuration Based on Order
Processes.” In: Business Modeling and Software Design: 6th International Sympo-
sium, BMSD 2016, Rhodes, Greece, June 20–22, 2016, Revised Selected Papers. Ed.
by Boris Shishkov. Springer International Publishing, 2017, pp. 200–220. isbn: 978-
3-319-57222-2. doi: 10.1007/978-3-319-57222-2_10. url: http://dx.doi.org/
10.1007/978-3-319-57222-2_10.

[66] Andreas Daniel Sinnhofer; Felix Jonathan Oppermann; Klaus Potzmader; Clemens
Orthacker; Christian Steger; and Christian Kreiner. “Where do all my keys come
from.” In: Handbook of Research on Solutions for Cyber-Physical Systems Ubiquity.
Ed. by Norber Druml; Andreas Genser; Armin Krieg; Manuel Menghin; and Andrea
Hoeller. IGI Global, 2017, pp. 278–300. doi: 10.4018/978-1-5225-2845-6.ch011.

[67] Paolo Spagnoletti and Andrea Resca. “The duality of Information Security Ma-
nagement: fighting against predictable and unpredictable threats.” In: Journal of
Information System Security 4.3 (2008), pp. 46–62.

[68] International Organization for Standardization. Financial transaction cards – Se-
curity architecture of financial transaction systems using integrated circuit cards –
Part 1: Card life cycle. ISO. 1991.

[69] Ambrosio Toval; Joaquín Nicolás; Begoña Moros; and Fernando García. “Require-
ments Reuse for Improving Information Systems Security: A Practitioner’s Appro-
ach.” In: Requirements Engineering 6.4 (2002), pp. 205–219. issn: 1432-010X.

[70] Michael Tunstall; Kostas Markantonakis; Damien Sauveron; and Keith Mayes.
“Smart Cards.” In: Handbook of Technology Management. Ed. by H Bidgoli. John
Wiley & Sons, 2009.

183

https://doi.org/10.1145/2855321.2855355
http://doi.acm.org/10.1145/2855321.2855355
http://doi.acm.org/10.1145/2855321.2855355
https://doi.org/10.1145/3011784.3011797
http://doi.acm.org/10.1145/2855321.2855355
http://doi.acm.org/10.1145/2855321.2855355
https://doi.org/10.1007/978-3-319-57222-2_10
http://dx.doi.org/10.1007/978-3-319-57222-2_10
http://dx.doi.org/10.1007/978-3-319-57222-2_10
https://doi.org/10.4018/978-1-5225-2845-6.ch011

[71] George Valença; Carina Alves; Vander Alves; and Nan Niu. “A Systematic Map-
ping Study on Business Process Variability.” In: International Journal of Computer
Science & Information Technology (IJCSIT) (2013).

[72] Armin Wasicek. Security Considerations in Embedded Systems. Research Report
108/2006. Technische Universität Wien, Institut für Technische Informatik, 2006.

[73] David M. Weiss and Chi Tau Robert Lai. Software Product-line Engineering: A
Family-based Software Development Process. Addison-Wesley Longman Publishing
Co., Inc., 1999. isbn: 0-201-69438-7.

[74] Peter Willaert; Joachim Van Den Bergh; Jurgen Willems; and Dirk Deschoolmeester.
The Process-Oriented Organisation: A Holistic View - Developing a Framework for
Business Process Orientation Maturity. Springer, 2007.

[75] Feng Xia; Laurence T. Yang; Lizhe Wang; and Alexey Vinel. “Internet of Things.” In:
International Journal of Communication Systems 25.9 (2012), pp. 1101–1102. issn:
1099-1131. doi: 10.1002/dac.2417. url: http://dx.doi.org/10.1002/dac.2417.

184

https://doi.org/10.1002/dac.2417
http://dx.doi.org/10.1002/dac.2417

	Introduction
	The challenge of reusing security artifacts
	The challenge of reuse in business-process modeling
	Thesis hypothesis
	Contributions
	Combined variability management
	A model-based formal verification method

	Thesis structure

	Background
	Information security
	Information security attributes
	Classification of attacks
	Classification of attackers and attacks during the pre-personalization process

	Lifecycle of secure integrated circuits
	Common Criteria
	Evaluation processes

	Software product-line engineering
	Domain engineering
	Application engineering

	Related work
	State-of-the-art pre-personalization process
	Establishing an authentication token
	Detection of manipulated devices
	Loading of common and individual data

	API attacks
	Formal verification tools

	Software-product-lines for business-process-management
	Software-product-lines for secure systems

	Process-driven software configuration
	A product line for business process models
	Software-product-line for product configurations
	Combining process variability and software variability
	Exemplary sample process
	Domain engineering
	Application engineering

	A flexible runtime-configurable data-generation system
	A model-based formal verification tool

	Evaluation
	Managing process variability
	Software-product-line for product configurations
	Process-driven software configuration
	Security considerations

	Limitations
	Overall evaluation

	Conclusion
	Future work

	Publications
	Evaluation paradigm selection according to Common Criteria for an incremental product development
	varBPM - A Product line for Creating Business Process Model Variants
	Patterns for Common Criteria Certification
	A Framework for Process-driven Software Configuration
	Patterns to establish a secure communication channel
	Software Configuration based on Order Processes
	Combined Variability Management of Business Processes and Software Architectures
	Where do all my keys come from?

	Bibliography

