

This document is set in Palatino, compiled with pdfLATEX2e and
Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I have
explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present master‘s thesis.

Graz,

Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,
und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline
hochgeladene Textdokument ist mit der vorliegenden Masterarbeit
identisch.

Graz, am

Datum Unterschrift

iii

Acknowledgements

I would like to thank my supervisor Gerald Steinbauer for his support
during this master thesis and constructive discussions on this work
even in stressful periods.

Further I would also like to thank my colleagues from the TEDUSAR
team as well as from the Autonomous Intelligent System laboratory
for their support and interesting discussions.

Finally I would like to thank my family for supporting my during my
entire study and my whole life.

Michael Stradner
Graz, Austria, September 2017

v

Abstract

This master thesis describes a robot system which is able to generate
a three-dimensional map of its environment, classify the terrain in
terms of traversability, and explore unknown areas autonomously.
The mapping is achieved using a stop-and-go procedure where the
robot stops, rotates a 2D laser scanner to make a 3D measurement of
its environment and moves on to the next place to explore. The 3D
measurement is matched into the existing graph-based map using an
ICP algorithm. The ICP registration is also needed to correct odometry
errors of the 6D localization of the robot. Additionally an ICP-based
loop-closure procedure is applied and to achieve a globally consistent
map, a graph optimization is used.

A local part of the map is afterwards converted into a 3d occupancy
grid and the surface of this grid is classified into traversable, obstacle,
and cliff cells. An inflation area around cliffs and obstacles is added
to prevent the robot from collisions as well as going over cliffs. In the
next step frontier areas of this 3D grid are classified. A frontier voxel
is a traversable voxel which is adjacent to currently unknown voxels.
During the terrain-classification a navigation-graph is built which is
later used to apply an A*-algorithm to find the path to a selected
frontier.

After choosing a suitable frontier according to the distance and orien-
tation of the robot, a path to that frontier is calculated. The robot is
then able to navigate to this area and map it. Because of the 3D terrain
classification the robot is able to plan paths for example over or under
bridges as well as across multi-level buildings.

This system has been implemented using the ROS framework, the
libpointmatcher library and the g2o library and was evaluated in a

vii

simulation as well as on a real rover.

viii

Contents

Abstract vii

1 Introduction 1
1.1 Motivation . 2

1.2 Goals and Challenges . 2

1.3 Contribution . 5

1.4 Outline . 5

2 Problem Formulation 7

3 Related Research 9
3.1 SLAM . 9

3.2 Navigation . 11

3.3 Exploration . 13

4 Prerequisites 15
4.1 Robot Operating System 15

4.2 Graph-Based SLAM . 16

4.3 ICP . 17

4.4 Octomap . 17

5 Concept 19
5.1 Overview . 19

5.2 Simulation of the Environment and Task 21

5.3 Preprocessing . 24

5.4 3D Mapping . 25

5.5 3D Planning and Terrain Analysis 30

5.5.1 Global Planning . 38

5.5.2 Local Planning . 42

ix

Contents

6 Implementation Details 45
6.1 3D Map Generation . 45

6.2 Terrain Classification . 47

6.2.1 Local Planner and Navigation 47

6.2.2 Global Planner . 50

7 Evaluation 53
7.1 Terrain Analysis . 53

7.2 Indoor Scenario . 53

7.2.1 Summary . 59

7.3 Outdoor Scenario . 62

7.3.1 Summary . 64

7.4 Real environment . 66

8 Conclusion 71
8.1 Discussion . 71

8.2 Future Work . 72

Bibliography 73

x

List of Figures

1.1 RoboCup Rescue: Wowbagger) 3

4.1 Illustration of an octree . 18

5.1 Schematic overview of the software system 20

5.2 Simulated Husky robot . 22

5.3 Real husky robot . 22

5.4 Gazebo ramp world . 23

5.5 Gazebo rough terrain world 24

5.6 Laser scanner during a sweep 25

5.7 ICP chain . 31

5.8 Mapping viewed from Gazebo 32

5.9 Mapping viewed from rviz 32

5.10 Terrain classification: traversable, obstacle, and cliff voxels 34

5.11 Terrain classification: inflation voxels 35

5.12 Terrain classification: inflation voxels 35

5.13 Terrain classification: frontier voxel 37

5.14 Terrain classification in Gazebo 38

5.15 Terrain classification step 1 39

5.16 Terrain classification step 2 39

5.17 Terrain classification step 4 40

5.18 Terrain classification step 5 40

5.19 Terrain classification step 6 41

5.20 Limited terrain classification 41

6.1 ROS node interaction . 46

6.2 Class diagram of the used g2o data types 48

6.3 Costmap layers . 50

6.4 Navigation graph . 52

xi

List of Figures

6.5 Sequence diagram . 52

7.1 Indoor world: view of Gazebo simulation) 56

7.2 Indoor world: 1st run (view of the classified Octomap
and the raw pointcloud) 57

7.3 Indoor world: More details of a classified Octomap) . . . 58

7.4 Indoor world: 3rd run (details of the pointcloud) 60

7.5 Indoor world: 5th and 8th run - ICP mismatch 61

7.6 Indoor world: 9th run - path over the ramps 62

7.7 Outdoor world: Gazebo 64

7.8 Outdoor world: 2nd run 65

7.9 Outdoor world: 3rd run 66

7.10 Real world map 1 . 67

7.11 Real world map 2 . 68

7.12 Robot prototype . 69

xii

List of Tables

7.1 Indoor world . 55

7.2 Indoor world . 63

xiii

1 Introduction

This thesis presents an implementation of an autonoumous robot that
is capable to map, navigate, and explore three-dimensional spaces.

Due to increased computing power, cheaper sensors and optimized
algorithms emerged during the last decades, autonoumous robot sys-
tems find more and more the way into our society. They are used for
example in logistics to automate and increse the productivity in the
logistics supply chain, but are also gaining increased importance in
a lot of other areas such as surveilance or inspections. Some logistics
companies are also working on robot systems for the last-mile delivery
to it’s customers. At the beginning of autonomous robots the majority
of them was designed to work indoors because of it’s reduced complex-
ity in regard to the environment. But with the increased computing
power as well as some other factors, the fields in which robots can be
used increased.

In the automotive industry, autonomous cars are currently a highly
researched topic. These cars sense their environment with multiple
sensors, fuse them together to get more reliable representations and
use it to navigate, detect collisions, and avoid them. This way they
can help to prevent accidents by reducing human-made errors. But
also the usage of robots for disaster response teams gets more and
more attention. While most of these robots are currently remotely
operated, there is a tendency to also automate this and let them
explore unstructured environments by their own.

1

1 Introduction

1.1 Motivation

Many robots today use a 3d sensor, for example a laser scanner or a
stereoscopic camera, to build a representation of the environment. By
using such a sensor a high detailed map of the environment can be
aquired for navigation or surveying purposes. While in some indoor
environments a 2D map is adequate for some tasks, especially in
rough terrain there is a realization without a 3D sensor input hardly
possible.

However, the navigation is in most cases still calculated either in 2 or
2.5 dimensional space. While a heightmap (2.5D) as a representation
of the terrain is sufficient for many environments, there are still many
cases where a full 3D navigation capability would be needed for
example to plan above or beyond bridges or across multiple floors in
buildings. With a fully-fledged 3D navigation, an autonomous robot
is able to plan on multi-leveled environments. Then it is also possible
to plan over or under bridges or plan a path across multiple floors
in a building. Figure 1.1 shows the robot Wowbagger from the Graz
University of Technology during a RoboCup Rescue competition where
“victims” should be autonomously detected in a simulated disaster
area.

1.2 Goals and Challenges

The goals and challenges of this thesis are described as follows. The
goal is to develop an robot system that autonomously explores it’s en-
vironment and creates a three-dimensional map of it. The environment
therefore could be indoor as well as outdoor on rough terrain such
as a stone pit. However, the environment must provide enough fea-
tures so that a matching algortithm can register two consecutive laser
scans with each other. A reliable method to continously append new
measurements in an existing map is needed to achieve a consistent
representation of the explored area which is used to safely navigate
the robot from one place to another. Therefore only environments that

2

1.2 Goals and Challenges

Figure 1.1: Illustration of the robot Wowbagger during a RoboCup Rescue event.

3

1 Introduction

aren’t completely flat can be mapped, which normally shouldn’t be a
problem. The mapped environment gets then classified in traversable
areas, obstacles, potential cliffs as well as frontiers and a path to the
nearest frontier in respect to the distance and angle from the robot is
then choosen as a goal and a path to it is planned. Below is a more
detailed summary of the goals of each robot module.

Mapping
The mapping is achieved using a stop-and-go procedere, where the
robot stops, rotates a 2D laser scanner to get a 3D point cloud, matches
this aquired point cloud to the current accumulated map, adds this
scan to the current graph-based map, conducts a pose-graph optimiza-
tion to get a globally consistent map and updates the robot position
inside this map, which may be a bit off due to odometry errors.

Terrain classification
After a new scan has been inserted into the map, a local area of this
map gets converted into an 3D grid map and a terrain classification is
applied to. The difficulty with a terrain classification in the 3D space
is to evaluate the terrain within resonable time to be able to use it in
real-time. Starting from the robot position the terrain gets classified
into traversable areas, obstacles, and potential cliffs. Afterwards a
robot inflation layer is added and finally the frontier voxels for the
exploration goals are chosen. A frontier voxel is a traversable voxel
that is adjacent to a currently unknown voxel, that is neither free nor
occupied. Utilizing only traversable voxels this way, only areas are
chosen to be explored to which the robot can actually navigate to.
During this classification phases a graph is created which contains the
traversable voxels which are later used for path planning. One of the
main challenges of the 3D terrain classification is to keep the memory
and time requirements for the terrain classification inside reasonable
bounds to achieve a real-time capable system.

Navigation
Now a frontier voxel is choosen in respect to the distance and angle
between the robot and the frontiers. The aim is to choose a frontier that
is near the robot and, if possible, is somehow facing near the robot,
so the robot doesn’t move in a zig-zag-pattern. The navigation graph

4

1.3 Contribution

created in the classification step is now used to perform a A* search
between the robot position and the chosen frontier and executed by
the path-following module.

1.3 Contribution

In this thesis a robot system is described and evaluated which creates a
three-dimensional representation of its surrounding area using a pose-
graph. It can be used in an indoor as well as in an outdoor environment.
For navigation purposes this map or a part of it is converted into a
3D grid map. Taking the position of the robot inside this map into
account the cells representing the surface of this grid get classified in
terms of traversability. This is necessary to safely plan paths to regions
of currently unexplored areas of this map and avoiding obstacles or
other barriers like to steep terrain. The represented system is able
explore and map an area in real time and is able to plan paths across
multi-level environments like over or under bridges as well as inside
multiple-floor buildings.

1.4 Outline

This thesis is arranged in the following order. In chapter 2 the problem
formalization is outlined while chapter 3 covers the related research
in this area. The prerequisites like the used frameworks and algo-
rithms are covered in chapter 4, while chapter 5 discusses the concept
and architecture for solving the three-dimensional navigation and
exploration problem. In chapter 6 specific implementation details are
highlighted and the evaluation results of this work are presented in
chapter 7. Chapter 8 discusses the outcome of this thesis and presents
possible future improvements.

5

2 Problem Formulation

We consider a three-dimensional world W ⊂ R3 in which a robot
explores the environment. The robot is defined in this world by a
6D pose where Pose := 〈x, y, z, φ, θ, ψ〉 where x, y and z denotes the
translational part and φ, θ, ψ the rotational part.

Now let χ be the space of 6D poses where χ ∼= R3 × SO(3) and C ⊂ χ
the set of all possible and resonable robot configurations considering
the kinematic constraints of the robot in the given environment. More-
over q ∈ C denotes a specific robot configuration. A reasonable robot
configuration is a configuration which the robot is able to reach in
a stable manner while driving with its wheels along the surface of
the terrain considering the specific robot parameters such as center of
mass and maximal terrain inclination. Next we transfer the world W
into a 3D gridmap and denote the search space S = {w ∈W|sur f (w)}
where we assume that sur f (w) returns all surface voxels. Let D(q) be
the surface voxels that are visible given the robot configuration q. The
goal is to find a sequence Q = 〈q1, q2, ..., qn〉 with qi ∈ R3 × SO(3) so

that S \
n⋃

i=1
D(qi) = ∅ with the constraint minimize

Q
|Q|.

Let Q f ree ⊆ C be the set of all collision free robot configurations
and a path Pi,i+1 : [0, 1] −→ closure(Q f ree) \ Q f ree between two robot
configurations qi and qi+1 where Pi,i+1(0) = qi and Pi,i+1(1) = qi+1.
Therefore the path meets the requirement that the robot moves along
the surface.

During the robot exploration of the world a map of the environment
should be built. Given a set of measurements d = {u1, z1, u2, z2, ..., uj, zj}
where ui represents the odometry measurement and zi the correspond-
ing sensor measurement of the 3D laser scanner with ui ∈ R3 × SO(3)

7

2 Problem Formulation

and zi = {l1, l2, ..., lo}. A laser measurements zi consist of a set of
points lk ∈ R3.

We assume that the world and therefore the 3D map can be represented
in a 3D grid. A grid map m partitions the space into many grid cells mi
so m = {mi} , with each cell storing a value if it is free or occupied. The
goal is to find the most likely map m∗ = arg max

m
p(m|z1, ..., zj, u1, ..., uj)

with p(m|z1, ..., zj, u1, ..., uj) = ∏
i

p(mi|z1, ..., zj, u1, ..., uj) by assuming

that there exists an inverse sensor model with
inverse sensor model(mi, zj, uj) = log

p(mi|zj,uj)

1−p(mi|zj,uj)
.

8

3 Related Research

This chapter gives an overview of the relevant literature related to this
thesis and is grouped into three different sections. The first section
covers techniques for simultaneous localization and mapping (SLAM)
while the second section discusses the navigation approches in the
three-dimensional space. In the last section some literature regarding
exploration procedures are outlined.

3.1 SLAM

A fundamental skill for autonomously exploring robots is to create
a map of its environment and simultaneously localize itself inside
it, which is called simultanious localization and mapping (SLAM)[1].
When the robot moves and explores its surroundings, new measure-
ments lead to an update of the current map while it also needs to
keep track of of its own position relative to this map. Several SLAM
methods exist, one of them is for example graph-based SLAM[2] which
is also used in this thesis. The map is thereby represented as a series of
nodes connected with edges between them. These nodes store sensor
measurements of the environment while the edges represent relations
between them. The graph itself represents a least-squares optimization
problem of an error function which is then optimized to gain a consis-
tent map. So during the construction of the graph, the optimization
step calculates the most consistent representation of it. Two common
frameworks for this kind of graph optimization are for example g2o[2]
and GTSAM[3]. The g2o library performs a nonlinear least squares
problem on a graph or hypergraph while the GTSAM library is based
on factor graphs.

9

3 Related Research

Zhang and Singh [4] splitted the SLAM problem into two algorithms,
one is used to estimate the odometry of the lidar at a high frequency
but low fidelity to use a spinning lidar during movement. The algo-
rithm undistorted the received scans which were deformed by the
movement. The other algorithm is used for the matching of the undis-
torted point clouds and registering them to the map. This way it is
possible to map the environment in real-time while using a constantly
rotating lidar even during movement.

Leingartner et al. [5] evaluated different mapping approaches in a
large-scale disaster environment. The compared 2D as well as different
3D mapping techniques with each other in terms of map quality and
acceptance for first responders like fire brigades.

For building large-scale 3D maps, Sprickerhof et al. [6] presented a
loop closure technique in three-dimensional space called explicit loop
closure heuristic. Instead of traditionally building the graph and later
optimizing it, they separated the last scan that led to the loop closure
from the previous ones and registers that scan explicitly. Nüchter
et al. [7] presented also a 6D SLAM system for mapping outdoor
environments and to benchmark their created map. They used a 2D
map from a land registry office and fused it with 3D data captured
with an airplane. That way they created a precise reference map for
their algorithm.

Dube et al. [8] used kind of a different approach. They segment the
pointcloud into clusters and extract specific descriptors to classify for
example trees, parts of buildings or cars which are recorded. If the
robot visits the same place again and these descriptors match with the
previously recorded ones they detect a loop-closure.

SLAM is also possible without a explicit 3D sensor but just using
cameras which is called visual SLAM. For example Taketomi et al. [9]
reviewed different common visual SLAM algorithms in their work.
One of them is for example ElasticFusion[10] which uses a RGB-D
camera to capture consistent surfel-based maps and doesn’t use a
pose-graph. A different approach uses LSD-SLAM[11] where only a
monocular camera is needed and a direct image alignment is applied
instead of a keypoint-based approach.

10

3.2 Navigation

3.2 Navigation

Planning a path on a given map and follow its trajectory is one of the
key abilities for a mobile robot. Most robot systems require an already
existing map of the environment for the path planning process. The
necessary map could be created by driving the robot manually over a
remote control or via defined waypoints and store the map for later
usage. But the map could also be created iteratively on runtime for
example by an autonomous exploration algorithm where unexplored
areas are detected and the navigation system is used to drive the robot
to the edge of the known map so that the onboard sensors can perceive
new areas. In general the different navigation approaches can be
subdivided into three different groups: 2D, 2,5D, and 3D navigation.

In the 2D navigation approach the perceived world is down-projected
into a two-dimensional map or the robot only drives on flat ground
with obstacles high enough so that they are recognized by a 2D laser
scanner or other sensors. The benefit of this is a fast navigation ca-
pability which doesn’t require much computational resources. The
move base package for example provides such an open source system
in the ROS ecosystem which uses an grid map and the A∗-algorithm
to plan a global path between the current robot position and a goal.
To follow the trajectory of this path, a local planner which uses the
Dynamic Window Approach (DWA)[12] is used. In certain environ-
ments it is enough to create a 2D map using SLAM and navigate on it.
One drawback for this approach is that a 2D map is limited to only
one area or floor of a building. To be able to navigate on multiple
floors of a building, Pratkanis et al [13] used mulitple 2D maps for
different floors as well as for indoor and outdoor areas. These maps
are connected with each other and a transition to the relevant map is
made when the robot enters a specific area. This way he was able to
send a PR2 robot from one floor to another using an elevator.

GMapping[14] is for example a popular used software module in the
ROS environment for SLAM in 2D. For map creation it uses a Rao-
Blackwellized particle filter where each particle carries an own map
of the environment and represents a robot trajectory. In the beginning

11

3 Related Research

the initial pose of the robot needs to be known. The resampling of the
particles is done using a proposal distribution which depends on the
odometry measurements as well as the recent laser measurements and
in the end a occupancy grid map is generated.

To handle large areas which should be mapped and used for naviga-
tion, Lassnig [15] used a pose-graph in conjunction with a roadmap
with a graph topology for high-level planning. The high-level plan is
then refined into connected local grid maps which he used for the nav-
igation task. That way it was possible to send an robot autonomously
across a university campus for transportation tasks.

Another problem with navigating on 2D maps is detecting obstacles
of different shape on different heights. A typical office environment
contains for example chairs and tables and a robot is only equipped
with an horizontal-placed 2D laser scanner, only a height-slice of the
environment that the laser actually sees is used to detect obstacle.
When a robot is higher than for example a table but the laser scanner
only sees legs of the table it could happen that a simple 2D navigation
system plans a path under the table which leads to a collision. Marder-
Eppstein et al. [16] used a tilting laser scanner in combination with
a voxel grid where the obstacles are represented in 3D and projected
down to a 2D map to avoid them. This approach can be grouped into
the 2,5D navigation but it is still limited to only one floor. Maier et al.
[17] used a depth camera mounted on a humanoid robot called Nao to
avoid obstacles in a similar way. They used an 3D grid map in which
the three-dimension environment is represented. Actually the used
two 3D maps, one representing the static environment while the other
was used to avoid dynamic obstacles. Because planning on a 3D map
is very time consuming and needs still a lot of computation power
they trimmed down the 3D map to the size of the robot and made a
projection of it into a 2D map.

To be able to navigate across rough terrain, Fankhauser et al. [18] used
a local elevation map for this task which takes the uncertainties of
the range measurements into account as well as the state estimation
of the robot. When the robot moves, the data in the map is updated
according to the uncertainty estimates of the robots pose-estimation to

12

3.3 Exploration

better compensate the drift between the robot and the local elevation
map.

A different navigation approach was used by Pütz et al. [19] where he
used meshes to navigate on them. They used the 3D pointclouds of the
environment to reconstruct a mesh of the surroundings containing a
graph representing which triangle-mesh-cell are connected with each
other. Afterwards they estimated the roughness and height differences
of the terrain on this mesh and used it to plan a path. That way they
can plan through multi-level environments and for example can even
used for robots that can climb walls to navigate inside a tube system
for inspections. Their work is available as an open-source ROS package
and we tried to get it running on our computer but we didn’t succeed
to get it to work properly.

Another approach to for 3D navigation was proposed by Colas et al.
[20] where he used tensor voting on point clouds to extract primitives
like planes, spheres etc which are used to evaluate the traversability.
Their method is sensitive to the quality of the map representation and
on the density of the points which needs some parameter tuning.

Hertle and Dornhege [21] used an 3D grid map in which they classified
the terrain of the surface cells for path planning. However, they used
a full 3D representation of the environment and didn’t built the map
incrementally by sensor input. In this thesis we used a similar approach
for path planning in which we convert our map into an 3D grid map
where we classify it in terms of traversability to evaluate the next area
the robot should navigate to and explore.

3.3 Exploration

To map new areas an exploration algorithm is needed which places
navigation goals inside an existing map so that new unexplored areas
are mapped when or while the robot reaches this goal. One publicly
available package in the ROS environment for exploring 2D space is
called f rontier exploration and is based on the algorithm based on

13

3 Related Research

frontiers presented by Yamauchi [22]. He used an evidence grid to
probabilistically classify cells into the category open, unknown or
occupied. Frontier cells are open cells that are adjacent to unknown
cells. He grouped them to frontier regions and let the robot navigate to
the closest frontier region. Doing so, the robot perceives new areas.

Another approach was presented by Maurer and Steinbauer [23] where
they used a risk-aware exploration where a trade-off between mini-
mizing the risk for collision and dangerous objects like heat signatures
and maximizing the information about the area is considered.

A frontier-void-based approach was presented by Dornhege and
Kleiner [24] where a robot platform with an 5-DOF manipulator was
used to detect victims in a simulated disaster area. This manipulator
was equipped with 3D sensors and their algorithm determined the
minimal sequence of sensor viewpoints to efficiently explore the search
space. For choosing exploration areas they combined unexplored 3D
volumes together with frontiers which are boundaries between known
and unknown space.

Senarathne and Wang [25] presented an approach for the three dimen-
sional case where instead of free-space frontiers they used surface-
frontiers. The used a 3D grid map to represent the environment and
classified frontiers only on the surface cells of this map.

14

4 Prerequisites

The aim of this chapter is to present the basic prerequisites to under-
stand this thesis. At first the Robotic Operating System is introduced,
followed by graph-based SLAM. Afterwards the ICP-algorithm is ex-
plained along with the Ocotmap library.

4.1 Robot Operating System

The Robot Operating System [26] in short ROS is an open source
meta-operating system. It requires an operating system such as Linux
and offers a lot of features which makes developing and running
robotics software much easier. It features for example a message-
passing-interface, a package managemnt system, or libraries and tools
for running code across multiple machines. The most common pro-
gramming languages in ROS are C++ and Python but it also supports
many others. A big benefit is also that it is supported by a big commu-
nity and offers a lot of packages. A package is a kind of “container”
which can include nodes, configuration files, ROS-independant li-
braries, datasets etc. In ROS a system consists of a set of nodes where
each node is a process which performs some individual computations.
The all have unique names which identifies them and they are com-
municating via messages to achieve a common goal. This messages
are distributed over topics which are uniquely named buses where
nodes can publish or subscribe to it. However, nodes aren’t aware if
other nodes also subsribe or publish to a specific topic. So if a node
publishes a mesage on a topic the nodes which subscribed to it will
receive it. In some cases a synchronized communication is needed
which could be done by using a service. A service consists of a defined

15

4 Prerequisites

request and reply message. A node can offer a service under a specific
name and a client (or other node) can invoke it by sending a request
message. The call is blocking so after sending the request, the client
has to wait for the reply to proceed. However, for some long lasting
task it is desireable to receive some feedback for a request while the
task or request is still performing or maybe the client wants to cancel
the request. For such a scenario the actionlib libary can be used.

Because robots usually contain a lot of different coordinate frames
that can change over time, for example a moving arm or rotating lidar,
ROS offers a package called t f which keeps track of them and allows
operations like requesting or publishing transforms between these
frames. Another often used package in ROS is called move base which
is a 2D path planning and path execution module consisting of a global
and local planner. With it a robot can for example plan a path around
obstacles when the robot location, a map and/or sensor readings and
a goal is given.

ROS also supports the Gazebo simulator which can be used to simulate
a robot in a three-dimensional world. There exists for example a lot
of different predefined plugins such as sensors like a laser scanner.
Another plugin simulates for example a skid-steer drive.

4.2 Graph-Based SLAM

The simulataneous localization and mapping (SLAM) problem can
also be represented by a graph. Every node in the graph represents a
pose of the robot which are connected by edges to other nodes. Each
edges represents a spatial constraint between the two connected nodes.
When the robot visits a specific place a second time, it should be
recognized and a loop-closure performed. An edge is inserted between
the current node and the node of that similar position. Each edge
stores an uncertainty matrix with it and during graph optimization,
the algorithm tries to find a node configuration that minimzes the
edge error by minimizing the sum of the least squared errors.

16

4.3 ICP

4.3 ICP

The Iterative Closest Point (ICP) algorithm [27] is used to calculate a
transformation that minimizes the difference between two pointclouds.
One pointcloud is the reference and is kept in a fixed position while the
other one, the source, is transformed in a way to best fit to the target
cloud. The ICP-algorithm iteratively adjusts the transformation from
the source to the target to minimize for example the sum of the squared
error of the euclidian distance between the points. One requirement
for the ICP-algorithm is that the target- and source-pointcloud are
roughly pre-aligned. Otherwise the algorithm would get stuck in a
local minima which is not the global one. In this work we used the
libpointmatcher library [28] for matching two different pointclouds
together. The result is the transformation between them as well as some
other parameters like a match ratio ranging from 0.0 to 1.0 indicating
how good the pointclouds match with each other.

4.4 Octomap

The Octomap library [29] provides a 3D occupancy grid based on
an octree (Figure 4.1). An Octree is a tree data structure where each
node either has 8 direct children or none. With an Octomap a three-
dimensional volumetric map can be represented. Each node in an
octree describes a volumetric cube called a voxel. This voxel can be
split into 8 smaller voxels until a defined minimal voxel size is reached
which is called the resolution of the octree or Octomap. A voxel in the
Octomap can either be occupied, free or unknown. To accommodate
dynamically changing environments the state of a voxel is modelled
probabilistically. This way a new sensor reading can update the state
of a voxel. The Octomap itself also supports multi-resolution queries
so that the octree is only traversed up to a specific tree-depth to get a
coarse map. For example a high level planner uses the coarse map for
some calculations and chooses a region of interest in which the local
planner uses fine-grained map for calculations. The Octomap libary

17

4 Prerequisites

Figure 4.1: Illustration of an octree. Adapted from [30]

also supports to store a color information for each voxel which leads
to a colored Octomap. A big advantage the Octomap in comparison to
a simple 3D grid is that it is much more memory efficient. However,
the downside is that it takes more computing power.

18

5 Concept

5.1 Overview

This chapter covers the concept of the developed autonomous explo-
ration system. The used simulation framework with its environment
is illustrated as well as the used SLAM approach. Afterwards the
algorithm to analyse and classify the terrain is presented which is then
used to a chosen frontier and plan a path to it. The frontier calculation
is also part of the terrain analysis and provides a list of frontiers, one
frontier is then chosen according to a cost function with respect to
the robot distance and orientation. The aim of this chapter is to pro-
vide the basic concept of this thesis and to provide the basis for the
implementation which is presented in the next chapter.

Figure 5.1 gives a short overview of the presented system. The robot
perceives its environment and its own state over a set of sensors like
a lidar, IMU or wheel odometry. This data is processed and a map,
which is based on a graph structure, is generated from it. A part or
even the whole map is sent to the module that classifies the terrain on
a global level where a navigation goal and a path to it is generated
and sent to the navigation stack. The module handling the local terrain
classification receives only a local map and generates a costmap in
which obstacles are marked. This costmap is also sent to the navigation
stack that is now able to drive to the goal by sending commands to
the drive system so the robot can move to the goal located in the
environment.

19

5 Concept

Figure 5.1: Schematic overview of the software system

20

5.2 Simulation of the Environment and Task

5.2 Simulation of the Environment and Task

The first step was to define in which environment the robot should be
used and what kind of tasks it should be able to perform. The robot
should be able to operate indoors as well as outdoors in rough terrain,
like a stone pit or moon surface. Therefore, the Husky plattform (figure
5.2 and 5.3) from Clearpath Robotics has been selected which should
be suitable for the given environment. In the next step sensors had
to be selected. Because the goal was to classify rough terrain in three
dimensions the sensor to measure the environment has to provide a
high resolution and shouldn’t be very prone to measurement errors.
Therefore a sweeping 2D laser scanner (figure 5.6) has been selected.
They are relatively insensitive to changes in the illumination of the
environment in contrast to stereo cameras which also provide a lower
resolution of the measurements. If a 2D laser scanner is sweeped slow
enough, it provides a much higher 3d resolution and is much cheaper
compared to an integrated 3D laser scanner. For 3D localisation it is
essential to include an Inertial Measurement Unit (IMU) which pro-
vides the necessary orientation measurements of the robot. The data
from the IMU are fused with the odometry from the wheel encoders
to increase the reliability of the overall odometry.

In the next step the robot was modeled in the Unified Robot Descrip-
tion Format (URDF)[31]. A URDF file is an XML Format which is used
to represent a robot model in the ROS framework. To simulate this
robot in different environments the Gazebo Simulation[32] was used.
Gazebo is a three-dimensional simulation environment which can be
used in combination with ROS framework and features an realistic
physical simulation. This way different robots can easily be simulated
in different environments for testing purposes without investing in
expensive hardware like robot platforms and sensors. This simula-
tor was also used for example in the DARPA Robotics challenge to
simulate a humanoid robot which should perform semi-autonomous
tasks in a rescue mission. It is plugin-based and a lot of ROS-plugins
which simulate specific sensors can be used as well as some prede-
fined simulation environments. But it is also possible to create an own

21

5 Concept

Figure 5.2: Illustration of the simulated husky robot

Figure 5.3: Illustration of the real husky robot

22

5.2 Simulation of the Environment and Task

Figure 5.4: Illustration of the simulated ramp world in Gazebo

world.

To evaluate the proposed mapping and navigation system of this thesis
two different environments were created. One is more or less an urban
setting with lots of detailed features such as hydrants, ramps, and
dumpsters (figure 5.4) to benchmark the mapping system relating to
correctness of the overall map. That way it can be seen if any severe
mapping errors occur in terms of accurately matching point clouds
and insert them into a map. The navigation system however finds in
this two traversable layers to navigate to due to the big ramp in the
middle. The second created Gazebo world is a moon environment (see
Figure 5.5) which features a rough terrain and a limited number of
external features which makes the mapping process challenging due
to a low amount of features which leads to a lower accurency for the
pointcloud matching process and therefore for the overall mapping
process. Additionally the terrain classification can also be evaluated
on rough and flat terrain.

Both worlds are limited in size by walls or other obstacles in order to
limit the size of the exploration area for the robot.

23

5 Concept

Figure 5.5: Illustration of the simulated rough terrain world in Gazebo

5.3 Preprocessing

Before the actual mapping procedure is executed, some preprocessing
on the sensor data is required. The laser range measurement of the
used 2D laser scanner, a Hukuyo UTM 30LX, is preprocessed in a
filter chain to limit the minimal and maximal range of the the mea-
surement as well some readings that might be caused by a veiling
effect that occurs when edges of the environment are scanned. This
is necessary because we rotate the laser and sometimes some parts
of the robot are captured by the laser scanner. By setting a minimal
range this effect can be avoided. There exists also an own node that
just publishes the 2D laser measurements on a different topic when
the laser scanner is horizontal which is used by the navigation stack
called move base to avoid dynamical changes in the environment. To
create a three-dimensional scan of the environment, a pointcloud is
created in which each 2D laser measurement is captured and added
to it while the laser scanner is rotating. The endposition for the laser
movement is always the horizontal line in respect to the robot base so
the laser measurements can be used afterwards also for the navigation
purposes.

A problem is the localization of the robot in six dimensions (x, y, z, roll,

24

5.4 3D Mapping

Figure 5.6: Illustration of the laser scanner alignment during one complete sweep

pitch, yaw) inside the environment. To get a more precise estimation
of the current robot position, the odometry of the wheel encoders
are fused with the IMU measurements. The wheel encoders translate
the rotation of the wheels into linear and angular movements. In the
short term they are relatively accurate but in the long term the errors
add up to a hugh drift. Especially turning in place results in big
estimation errors due to the slipping of the wheels for skid-steering
robot. The used inertial measurement unit (IMU) can measures the
linear acceleration as well as the rotation rate in three-dimensional
space but also drifts over time. To improve the overall odometry
an extended Kalman filter (EKF)[33] is used which combines the
orientation of the IMU with the linear and angular velocities from the
wheel encoders.

5.4 3D Mapping

This section describes the creation of the graph which is used for the
mapping procedure. All stored coordinates in the graph are in refer-
ence to the map frame. Each vertex of the graph stores a point cloud of
the respective position with it. However, the stored sensor pointclouds
are not transformed to the map frame but keep their frame. The first
incoming 3D point cloud gets directly stored in the graph as the initial
node and the transform between the map and odometry frame stays
the same. Additionally after adding this vertex to the graph the posi-
tion of that vertex is stored in the variable oldLastVertexEstimate (see
algorithm 1 for details) which is later used to detect changes in position

25

5 Concept

of the last stored vertex for example after a possible loop closure. This
is needed because a loop closure could change the position of the last
vertex and if so, this needs to be considered when the transformation
between a new measurement/vertex and the last one gets calculated.
An illustration of the graph after a creating a map can be seen in figure
5.9 where the white lines on the ground represent the connected edges
of the graph. For every additional received 3D point cloud after a laser
sweep the following workflow is executed. The current point cloud
is stored in the variable currentPC and the transformation between
the odometry frame and the frame of the point cloud is calculated
using the tf-tree in the variable transOdomPC. Afterwards all the point
clouds of the vertex inside a preconfigured distance to the last stored
vertex in the graph are merged and stored in the variable areaPC.
Because the position of the last vertex could have changed due to a
loop closure in the graph, the transformation between the position of
the last stored vertex between now and the last cycle is calculated. This
is then used to compute the transformation for the current point cloud
transCurrPC without ICP correction by combining the transformation
from before with the estimate of the last stored vertex and the relative
odometry between the current and last laser-sweeping-position. Now
the current point cloud can be transformed into the map frame by
this transformation and is stored as currentPCMap. Because now both
point clouds, areaPC and currentPCMap are in the map frame these
two can now be matched using the ICP alorithm [28]. After the ICP
match the transformation between these two point clouds, odomICP,
and the covariant matrix covICP, are returned. Then a new transfor-
mation called odomCurrentPcICP is computed by adding odomICP
to transCurrPC which represents the transformation for the current
point cloud to the map frame with ICP correction applied to it. Now
one can add a new vertex to the graph using the current point cloud
as data and odomCurrentPcICP as position. Afterwards a check for
loop closures using the f indContraints-function done and the result-
ing graph gets optimized by the g2o library. In the last step I need
to update the transformation between the odom and map frame to
correct the odometry errors. This is done by calculating the difference
between the position of the current added vertex and transOdomPC.

26

5.4 3D Mapping

Algorithm 1: Graph-based Mapping
Data: num 3d scans . . . number of received 3D point clouds from laser

sweeps since the start of the mapping process
Data: odom . . . current odometry of the robot
Data: currentPC . . . current point cloud created by a sweep at this position
Data: odom f rame . . . odometry frame
Data: map f rame . . . map frame
Data: graph dist . . . distance in which point clouds of vertices should be

fused into one big point cloud
1 begin
2 if num 3d scans = 1 then
3 graph.addVertex(currentPC, odom)
4 oldLastVertexEstimate←− graph.lastVertex.estimate
5 lastOdom←− odom
6 end
7 if num 3d scans > 1 then
8 transOdomPC ←− getTrans f orm(odom f rame, currentPC. f rame)
9 areaPC ←− graph.getMapInDistance(graph dist)

10 relativeOdom←− lastOdom ∗ odom.inverse
11 lastVertexLCCorr ←−

oldLastVertexEstimate ∗ graph.lastVertex.estimate
12 transCurrPC ←− graph.lastVertex.estimate ∗ lastVertexLCCorr
13 transCurrPC ←− transCurrPC ∗ relativeOdom
14 currentPCMap←− doTrans f orm(currentPC, transCurrPC)
15 numICPtries←− 3
16 {odomICP, covICP, match ratio} ←−

matchICP(areaPC, currentPCMap)
17 odomCurrentPcICP←− transICP ∗ transCurrPC
18 graph.addVertex(currentPC, odomCurrentPcICP, covICP.inverse)
19 oldLastVertexEstimate←− graph.lastVertex.estimate
20 graph. f indConstraints()
21 trans f ormOdomToMap←−

graph.lastVertex.estimate ∗ transOdomPC.inverse
22 trans f ormMapToOdom←− trans f ormOdomToMap.inverse
23 sendTrans f orm(map f rame, odom f rame, trans f ormMapToOdom)
24 end
25 end

27

5 Concept

The loop closure detection in the f indConstraints-function2 tries to
match possible and suitable candidates in the area of the last vertex.
This is done by selecting vertices in a defined Euclidian distance
but aren’t directly connected to the last vertex, adding graph related
neighbours to it and group them into sets of vertices using the k-
nearest-neighbour-algorithm. This is done in a similar way as described
in the master thesis by Lassnig[15]. For each set we now calculate the
closest vertex to it in reference to the last vertex and check if they
maintain a defined minimal graph distance. If so, the pointclouds
of both vertexes are transformed into the map frame and matched
using the ICP algorithm. If the returned match ratio is above a specific
threshold, the distance between these 2 vertexes is calculated and an
edge is added between them. The match ratio returned from the ICP
algorithm is ranging from 0.0 to 1.0 and gives an estimation how good
the two point clouds match with each other.

For the matching process between two overlapping point clouds the
iterative closest point algorithm (ICP), in particular the ICP libary
called libpointmatcher[28], was used. The matching process of this
libary can be customized by defining a filter chain and therefore
optimizing the matching accurency for specific tasks and usecases. At
first the reading point cloud as well as the reference point cloud, which
position is fixed during the matching, are processed according to the
defined data filters. The used filter chain is illustrated in figure 5.7. We
needed these filters for example to remove sensor noise, reduce the
density of the point cloud, calculate the normal vector for each point
considering their neighbours or removing outliers. In our case the
data filters for both point clouds are the same but it is also possible to
define different filters for each point cloud. Then the matcher matches
each point in the reading point cloud to the closest point in reference
point cloud. To prevent outliers from distorting the matching process,
two outlier filters are applied. For the error minimization step, point-
to-plane error with a returned covariance matrix has been chosen. In
the last step the transformation checkers are used to stop the ICP-loop
from further iterations. The criteria for stopping the loop is either a
reached threshold of maximal iterations or the relative transformations
of the two point clouds between the iterations is small enough so that

28

5.4 3D Mapping

Algorithm 2: Loop closure detection
Data: graph . . . graph before loop closure
Data: min dist . . . minimal graph distance to find loop closure candidates
Data: max dist . . . maximal euclidian distance to find loop closure candidates
Data: last vertex . . . last vertex added in the mapping algorithm[1]
Data: min dist match . . . minimal number of past vertexes since last vertex
Data: match success . . . minimal ICP match ratio for a successful match
Result: graph . . . graph after loop closure

1 begin
2 graph.optimize()
3 vertex set←− graph. f indVerticesInRange(min dist, max dist)
4 vertex set←− graph.addNeighbours(vertex set, min dist, max dist)
5 vertex groups←− graph. f indGroups(vertex set)
6 foreach vertex set ∈ vertex groups do
7 closest v←− graph. f indClosestVertex(vertex set)
8 if last vertex.Id− closest v.Id > min dist match then
9 closest v pc←− closest v.getPointCloud()

10 closest v estimate←− closest v.getEstimate()
11 closest pc map←− doTrans f orm(closest v pc, closest v estimate)
12 last v pc←− last v.getPointCloud()
13 last v estimate←− last v.getEstimate()
14 last pc map←− doTrans f orm(lastt v pc, last v estimate)
15 {icp correct, covICP, match ratio} ←−

matchICP(closest pc map, last pc map)
16 if match ratio > match success then
17 delta estimate←−

closest v.getEstimate().inverse ∗ last v.getEstimate()
18 estimate icp←− icp correct ∗ delta estimate
19 graph.addEdge(closest v, last v, estimate icp, covICP.inverse)
20 graph.optimize()
21 end
22 end
23 end
24 end

29

5 Concept

further iterations won’t improve the match anymore.

5.5 3D Planning and Terrain Analysis

After adding the point cloud from a 3D laser scan sweep to the pose-
graph which represents the 3D map, the navigation process is triggered.
The navigation stacks transforms the created point cloud into an oc-
tomap [29], which is a 3D occupancy grid. An octomap describes a 3D
map as a collection of voxels, which are cubes, down to a predefined
lowest level of resolution. Each voxel can represent either free or occu-
pied space, while missing voxels mean unknown space. By knowing
these three states for a voxel we are able to plan three-dimensional
paths on octomaps as well as define frontier voxels, which are goals
for the exploration process.

The octomap server, which handles the octomap creation, receives the
point cloud of the current area of the robot. After receiving the point
cloud it crops the edges of the point cloud so that a point cloud cuboid
of a specific size emerges because only a more dense area is suitable
for the terrain analysis. In the beginning of the mapping process there
is no map of the current position of the robot available and during
the first laser sweeps the ground directly underneath can’t be mapped
because it is a blind spot for the laser scanner. We presume that the
robot always starts its mapping and exploration process from a flat
area and therefore we add a small square plane into the octomap which
is positioned directly under the robot. This way, in the beginning there
is always a voxel-plane right beneath the robot from which the terrain
analysis can start. The first step in terrain classification process is to
identify the starting voxel beneath the robot. In case there is no voxel
directly under the robot and within a given tolerance in height (z-axis),
the closest voxel beneath the robot center is chosen as a starting voxel.
In some cases this case can occur, when resolution of the octomap is
quite low and the density of the point cloud was not high enough for
a continous octomap surface. Therefore some ”holes” in the octomap
surface occur and are only filled, if the density of the point cloud is

30

5.5 3D Planning and Terrain Analysis

Figure 5.7: Illustration of the used ICP chain

31

5 Concept

Figure 5.8: Mapping process viewed from the Gazebo simulation

Figure 5.9: Mapping process viewed from rviz. Point cloud is colored accourding to
height. The white lines represent the underlying pose-graph which result
into this map.

32

5.5 3D Planning and Terrain Analysis

high enough with respect to the octomap resolution. Summarized,
a cuboid which can be multiple octomap-layer thick is scanned for
traversable voxels and the nearest traversable voxel beneath the robot
center is chosen as a starting voxel.

A neighbouring voxel is marked as traversable if the source voxel is also
traversable and the height difference between them is within a certain
limit so the robot is able to cross this height difference. Additionally
this neighbouring voxel has no occupied voxel above within the robot
height plus some security margin. This way only surface voxels are
considered as traversable when the don’t exceed a height difference
and the robot doesn’t collide with obstacles while driving on this voxel.
Because the robot itself is represented as a point, or voxel in the terrain
analysis, a kind of inflation layer is added to detected obstacles in the
octomap to prevent collisions. This is discussed in detail later in this
section.

After the identification of the starting voxel, a flood-fill algorithm is
applied to the rest of the octomap to classify voxels as traversable,
obstacles or as a potential cliff. Because of limited computing capacity
only the four-way flood-fill algorithm is used, which just considers
horizontal and vertical voxels as neighbours when seen as a 2D grid
but within a certain range in height (z-axis). When a voxel has been
classified as traversable, its neighbours get also classified but not when
it is either an obstacle or potential cliff. This way the flood-fill algorithm
expands within a traversable surface where obstacles, potential cliffs
or unknown voxels are acting as a kind of frame to this surface. By
also considering a height range in the flood-fill algorithm a traversable
multi-level surface can be classified for path planning. Figure 5.14 till
5.16 show this classification process.

A good illustration showing the classification of traversable, obstacle,
and cliff voxels is Figure 5.10. The doted arrows indicate the search
area from a specific voxel to into a direction. If the height difference
between to neighbouring occupied voxels is within a given threshold
of traversability then that voxel is classified as traversable. However, if
an occupied voxel is found above an otherwise traversable voxel that
is within a specific height distance (robot height + security margin),

33

5 Concept

Figure 5.10: Visualization of the classification step to identify traversable, obstacle,
and cliff voxels. The white voxels were not classified either because they
are no surface voxels or the are not relevant to evaluate because the
robot can’t reach or drive on them. An example would be a high wall
where the lower voxels were classified as obstacles or inflation voxels
while the higher voxels stay white because the are not relevant.

it is classified as an obstacle because the robot would hit that voxel
otherwise. That is why the doted arrow is longer in the positive z-
height and in the negative z-height. Figure 5.11 shows the same setting
where voxels inside a specific area around obstacles and cliffs are
reclassifed as inflation voxels.

However, there is an additional check for cliff voxels. When inside of
the four defined areas around an otherwise traversable voxel, there is
not at least one occupied voxel, that voxel is also classified as a cliff.
Figure 5.12 shows a simplified 2D representation of this, although the
four areas in the implemented algorithm also considers several voxel
heights for this check.

If the flood-fill algorithm doesn’t find more traversable voxels than a
given threshold, then the current starting voxel is discarded and a new
one is selected and the flood-fill is performed again. This is repeated
until no suitable occupied voxel beneath the robot can be found. This
behaviour ensures that a starting point, if available, is chosen that has
enough traversable voxels so that a terrain analysis is practicable.

If the flood-fill has been performed an inflation or padding layer is

34

5.5 3D Planning and Terrain Analysis

Figure 5.11: Visualization of the classification step after the inflation voxels are
added.

Figure 5.12: Visualization of an additional cliff check.

35

5 Concept

added to the classified traversable octomap surface (see Figure 5.11).
This is done by reclassifing all traversable voxels that are inside a
defined cuboid of an obstacle- or potential-cliff-voxel, with that voxel
as a center of the cuboid. In rare cases the original starting voxel could
be inside this padding area and if so, a new starting voxel beneath the
robot has to be chosen that is still traversable. This is required because
we have to apply a second flood-fill procedure to detect frontier voxels
for the exploration process.

Now the second flood-fill procedure is performed. But now only fron-
tier voxels are classified and it’s coordinates are stored in a list. If
starting from a traversable voxel, no occupied voxel has been found in
one of the 4 neighbourhood directions (different heights are consid-
ered in one direction) used in the flood-fill algorithmm, the voxel in
this direction is a potential-frontier-voxel. Now another step in that
direction is made from the potential-frontier-voxel, and the number
of occupied voxels in this 4-way neighbourhood is counted. If there
are no occupied voxels, then the potential-frontier-voxel is actually a
frontier-voxel, otherwise it stays a traversable voxel. This is illustrated
in Figure 5.13. Next, all detected frontier voxels are sorted according to
a cost function which calculates the cost by Euclidian distance between
the frontier and the robot plus an addition with a weighted angle:
cost = distance + angle ∗ weight. The angle is calculated between the
current yaw-angle the robot is facing and the yaw-angle of the frontier
in respect to the robot orientation. This cost function is used to prefer
frontier voxels that aren’t too far away and are oriented roughly in
front of the robot. That way the robot doesn’t move back and forth if
the nearest frontier is alternating between the front and the back of
the robot.

Because of time constraints not the whole available octomap gets
classified in the flood-fill algorithm just an area within a given range
of the robot. Only when no frontiers are found in this area, the floodfill
algorithm is called a second time, classifies the whole octomap and
is searching for frontier voxels. If a frontier has been found, the next
flood-fill procedure is executed in the area around the robot, because
it is likely if the robot moved to one frontier, that there are also other
frontiers in its proximity. Assuming a corridor the robot explores, it is

36

5.5 3D Planning and Terrain Analysis

Figure 5.13: Visualization of an frontier voxel check.

very likely that frontiers will be found further down the corridor and
therefore not the whole map needs to be searched for frontiers but
only the current area. When the robot reaches the end of the corridor
and doesn’t find any frontiers, the complete map is considered for the
frontier-search.

After selecting the frontier with the lowest costs, a path between the
robot center and the selected frontier voxel is planned so that the
robot can move close to its position. This is described in the Section
5.5.1. The different terrain classification steps are illustrated in Figure
5.14 till Figure 5.19 where the full octomap is classified. Additionally
the different terrain analysis steps are also described in algorithm
3. Figure 5.15 and 5.16 show the expansion of the first classification
while in Figure 5.16 the inflation (or padding) area is added around
the obstacles and cliffs to prevent the robot of driving too near to
them. The second classification step is illustrated in Figure 5.18 till
5.19 where in the last image it can be seen, that there are traversable
voxels along the big ramp so the robot would be able to navigate to
the highest plateau. Frontier voxels on the ground as well as on a part
of the ramp have been found. However, the frontiers on the ground are
much nearer than the ones on the ramp which led to a planned path
(in yellow) to a frontier on the ground. Traversing the entire octomap
for terrain classification is very time consuming and in most cases not
really necessary because in many cases an unexplored area can be
found near the robot. For this reason we try to traverse just a limited
area around the robot and if we don’t find any frontier voxels, the
entire octomap is scanned for it. Such a limited search can be seen in

37

5 Concept

Figure 5.14: Husky robot in the ramp world viewed in Gazebo during the terrain
classification step

Figure 5.20. An overview of the terrain classification process can be
seen in algorithm 3.

5.5.1 Global Planning

During the terrain classification of the first flood-fill procedure, a graph
for path planning is constructed. If the neighbour of a traversable
voxel is also traversable, a vertex for this neighbour is added to the
graph and this two vertices are connected by an edge where the edge
cost depends on the height difference of these two vertices. After
the flood-fill is finished, the robot padding is added. For all voxels
that were traversable and and get reclassified as a padding voxel, the
corresponding vertex in the graph gets updated by changing the stored
type of the vertex from traversable to padding. For path planning on
this graph the A*-algorithm is used with the Euclidean distance as a
heuristic. And to avoid vertices with type padding a cost of infinity
is returned. That way only paths along vertices with type traversable
result in a valid path.

38

5.5 3D Planning and Terrain Analysis

Figure 5.15: Beginning of the flood-fill algorithm for the terrain classification process

Figure 5.16: The flood-fill algorithm classified voxels as traversable (green), obstacle
(red) or potential cliff (purple)

39

5 Concept

Figure 5.17: Next the robot padding/inflation-layer (orange) is added around obsta-
cles and potential cliffs

Figure 5.18: The second flood-fill identifies the frontier voxels (blue)

40

5.5 3D Planning and Terrain Analysis

Figure 5.19: After successful classification, the most suitable frontier voxel is selected
and a path to it is planned (yellow)

Figure 5.20: Terrain classification limited to the area near the robot

41

5 Concept

After the path between the robot center and the frontier voxel has been
planned, the path is projected to a 2D plane and sent to the move base
software module which handles the rest of the navigation task. This
down-projection is possible because the path is located along a closed
surface. The move base gets the calculated global path as well as a
local costmap of the area around the robot as input and moves the
robot near the frontier location. The global path is shortened a bit
because the robot shouldn’t move too close to the frontier voxel but
should remain a distance between it and the robot. This way it is very
likely that this area gets mapped when the robot reaches this posyition
and a new laser sweep is started.

5.5.2 Local Planning

For local planning only a very small area of the octomap arround
the robot is considered. The octomap gets classified like described in
section 5.5 and is projected into a 2D costmap. Therefore the costmap
of the local planner is equal to the costmap of a 2.5D heightmap that
is projected to it. We assume that given the small local area of the
local map it is sufficient that the local planner plans in 2.5D while the
global planner is capable to plan in 3D because the robot is bound
to the ground surface and has certain limits in terms of slopes that it
can transcend. To avoid dynamic obstacles the horizontal laser scans
during the movement of the robot are also included into the local
costmap. However, the range of the horizontal scans are very limited
in size so that only very near obstacles are detected and not for example
a traversable ramp in the distance.

42

5.5 3D Planning and Terrain Analysis

Algorithm 3: Terrain classification
Data: robot position . . . current robot position in the map frame
Data: map . . . octomap of the mapped environment
Data: local dist limit . . . distance limit arround robot for floodfill
Data: COMPLETE MAP . . . no distance limit for floodfill algorithm
Result: path . . . path between the robot and a chosen frontier if it exists

1 begin
2 addStartingPointGroundPlane(map, robot position)
3 starting candidates←− getStartingVoxel(map, robot position)
4 changeSearchArea←− f alse
5 dist limit←− local dist limit
6 do
7 success f lood f ill ←− f lood f ill(map, starting candidates)
8 do
9 {success f lood, barriers, graph} ←−

f lood f ill(map, starting voxel)
10 if starting candidates = 0 then
11 cancel ←− true
12 end
13 if (success f lood = f alse)AND(starting candidates 6= 0) then
14 starting candidates.pop f ront()
15 end
16 if cancel = true then
17 return
18 end
19 graph←− addRobotPadding(map, barriers, graph)
20 changeStartingPointI f InsidePadding(map, starting candidates)
21 f rontiers←− searchFrontiers(map, starting candidates)
22 if (f rontiers.size = 0)AND(dist limit 6= COMPLETE MAP)

then
23 dist limit←− COMPLETE MAP
24 changeSearchArea←− true
25 end
26 if (f rontiers.size = 0)AND(dist limit = COMPLETE MAP)

then
27 return
28 end
29 if (f rontiers.size 6= 0)AND(dist limit = COMPLETE MAP)

then
30 dist limit←− local dist limit
31 changeSearchArea←− f alse
32 end
33 while (success f lood f ill = f alse)AND(cancel == f alse)
34 while changeSearchArea = true
35 planPath(map, starting candidates, f rontiers)
36 end

43

6 Implementation Details

This chapter discusses the implementation details of the mapping and
navigation concepts discussed in chapter 5. The created software uses
Ubuntu 14.04 and the ROS Indigo framework. First we discuss the
details of the graph-based mapping and second we examine the terrain
classification and its role in the navigation system. An illustration of
the different ROS nodes and their interaction with each other over
topics, service calls or action commands can be seen in Figure 6.1.

6.1 3D Map Generation

The aim of this paragraph is to give a more detailed desciption how
the 3D mapping process was implemented which was described in
section 5.4. Each laser sweep coresponds to a node in the pose-graph.
The wheel odometry is used as a first guess for the ICP matcher which
returns a transformation to correct the odometry. For a consistent pose-
graph construction we used the g2o library. The mapping functionality
is located in the ROS package called pose graph mapping. The g2o
library already provides some object types which can be used for
simultanious localization and mapping. The graph itself consists of
two g2o provided classes, VertexSE3, and EdgeSE3, which allow a
representation in the three-dimensional space (x, y, z, roll, pitch, yaw).
Both are a specialization of the Hypergraph class (see Figure 6.2). To
store the pointcloud in the graph, we created a custom class type called
Robot3dLaser which is derived from the g2o provided class RobotData.
The class Robot3dLaser contains the point cloud of that vertex and
the estimate of it as well as the covariance matrix of the ICP match
between that one and the point cloud of the previous vertex.

45

6 Implementation Details

Figure 6.1: Interaction of the different ROS nodes over topics, services or actions.

46

6.2 Terrain Classification

The node called posegraphmappingnode subscribes to point clouds of
the type sensor msgs::PointCloud2 and to the fused odometry mes-
sages from the IMU and wheel encoders of type nav msgs::Odometry.
The odometry messages are published with 30 Hz. When a pointcloud
from a 3D sweep is received, it is transformed into the map frame
using the latest odometry at that time and the ICP matcher compares
the current point cloud with the point cloud of the last vertex of the
graph (both in the map frame). The ICP matcher is located in the
package ethzasl icp mapper and can be called using the ROS service
match clouds. This service was modified to return more parameters
like the covariance matrix of the match, the match ratio or overlap
ratio which is needed by the posegraphmappingnode. Afterwards the
odometry transformation gets corrected by the transformation pro-
vided by the ICP and a vertex for the new measurement is added to
the graph. The constructed pose-graph can be visualized by markers
of type visualization msgsMarker on topic pose graph.

6.2 Terrain Classification

The terrain classification consists of 2 different nodes, one is called
octomap server 3dnav node and the other octomap server 3dnav local node.
The first node handles the overall map, it can classify voxels of a part
of the map (local area) as well as the whole map if no frontiers have
been found in the local area. This node also computes the path from
the robot position to a chosen frontier and sends it together with the
goal positon to the move base, which handles the rest of the navigation
task.

6.2.1 Local Planner and Navigation

The node octomap server 3dnav local node is needed to calculate a part
of the local costmap used by the move base. It doesn’t has a mapping
purpose, it only receives a local part of the map and each time a laser
sweep was done but doesn’t store it. The next time it receives a new

47

6 Implementation Details

Figure 6.2: Class diagram of the used g2o data types. Adapted from [15].

48

6.2 Terrain Classification

part of the map, the old one gets deleted. The current Octomap is only
needed to construct a local costmap layer of a specific size which can
then be integrated into the move base. The terrain classification is done
similar as in the node octomap server 3dnav node but its classified
voxels are projected down to a 2D costmap layer.

The costmap in the move base consists of 3 different layers. The first
layer is of type terrain costmap 2d layers::TerrainLayer from the pack-
age octomap server 3dnav local to consider classified obstacle/cliff-
voxels from the Octomap. The costmap of the robot is in a rolling
window mode but the obstacles in this layer are only updated at every
laser sweep. Therefore the obstacles in this layer are shifted between
the cells inside this costmap layer when the robot moves to keep the
costmap consistent.

The move base sends the command velocities for the robot on the
topic /cmd vel/move base but the robot listens for this commands on
the topic /cmd vel. The stop scan and go node forwards the command
velocities sent from the move base to the robot except when a specific
threshold has been reached in terms of traveled distance and yaw-
angle since the last laser sweep. The distance of the robot since the
last laser sweep as well as the covered angular movement (yaw) of the
robot is summed up and if a specific threshold is reached, this node
stops the forwarding of the velocities and instead sends a command
to stop all wheel movement to make a laser sweep. After the laser
sweep, the velocities of the move base are forwarded again. This is
necessary in case the robot drives to a distant frontier and to ensure
a correct localization, a laser sweep has to done and inserted into
the pose-graph which corrects the position of the robot according
to the ICP match. Otherwise, when driving a long distance without
correcting the localization via ICP, the odometry error could get too
big for the ICP matcher to correct when the robot finally arrives at the
frontier position. This would lead to a wrong localization and map
representation.

The second layer is of the type costmap 2d::ObstacleLayer which rep-
resents obstacles from the horizontal laser scans. The scans are limited
to a short range by a laser-scan-filter-node so that dynamic obstacles

49

6 Implementation Details

Figure 6.3: Illustration of the used costmap layers.

in a close area can be detected and avoided. The range limitation is
needed because otherwise when a path up a hill (or ramp) is planned
the hill could be classified as an obstacle and the robot wouldn’t drive
there although the terrain classification modules classified this hill
as traversable. Because the laserscanner is mounted relatively high,
and the maximal climbing rate of the husky base is 45

◦ this approach
seems to work fine.

In the third layer, which is of type costmap 2d::In f lationLayer, adds an
inflation area around the added obstacles in the costmap. In illustration
of the used costmap layers and the down-projection into the final one
used by the move base can be seen in Figure 6.3.

6.2.2 Global Planner

In the package octomap server 3dnav the class OctomapServer is re-
sponsible for creating an Octomap from the incoming point clouds
after a laser sweep except during laser sweeps issued from the

50

6.2 Terrain Classification

stop scan and go node because in this case the robot is already in the
process of moving to a frontier and no new frontiers need to be cho-
sen. After the Octomap has been updated be the new measurements,
the TerrainClassi f ication class handles the classification of the voxels
as described in section 5.5. During the classification process another
graph is constructed inside the NavigationGraph class which is used
for A* path planning. Each traversable voxels in the first classification
step represents a vertex in this navigation-graph and edges connect
neigbouring traversable vertices. Inside such a navigation-vertex it also
stores that it is a traversable voxel. Later in the terrain classification
process, when some traversable voxels near obstacles are reclassified
as padding voxels, the corresponding vertices in the navigation-graph
change the state of this variable to padding. When the A* algorithm vis-
its such a padding-vertex, it returns infinite costs so they are avoided
and only traversable vertices return a resonable cost. An illustration
for such a navigation-graph is Figure 6.4. When a frontier has been
chosen, the A* algorithm plans a path between the robot-position-
vertex and the frontier-vertex of the navigation-graph. When a plan
for some reason couldn’t be found, another frontier is chosen for path
planning. When no frontiers have been detected, the exploration is
finished. When a plan has been found, it is sent to the move base by a
ROS service called storePlan. To ensure the robot maps the frontier, the
goal for the navigation has to have a certain offset, otherwise the robot
would drive directly to the frontier. Therefore, not the whole path is
sent but it is trimmed at the end to provide enough space to map the
frontier when the robot reached the frontier. The end-position of this
trimmed down path is the goal-position which is then sent as a goal to
the move base with the goal-orientation facing to the frontier position.
A sequence diagram of the interaction between the pose-graph-node
as well as the classification-nodes and the move-base at the beginning
of the exploration or when a frontier has been reached and a point
cloud of a laser sweep is created, is shown in Figure 6.5.

51

6 Implementation Details

Figure 6.4: Illustration of a navigation graph created from classified voxels.

Figure 6.5: Illustration of the procedure after receiving a point cloud from a 3d laser
sweep when a new frontier needs to be chosen.

52

7 Evaluation

In this chapter we present an evaluation of the mapping and terrain
classification algorithm. We let the robot autonomously explore 2 sets
of different maps, one urban scenario and the other in a rough terrain
in the Gazebo simulation. Afterwards we compare the sets of created
and classified maps in terms of accuracy and performance.Finally we
will discuss the qualitative and quantitative results.

7.1 Terrain Analysis

To evaluate the mapping and exploration system we let it explore 2

different maps, one indoor (see Figure 7.1) and one outdoor (see Figure
7.7) for 10 times and compare the results in terms of map quality and
runtime with each other.

7.2 Indoor Scenario

The table 7.1 summarizes 10 simulation runs in the indoor map. Apart
from run number 5, 7, and 8 the exploration and mapping algorithm
worked well. A detailed description why these 3 runs failed is ex-
plained below. With runtime, the time between the start and end of the
autonomous exploration is meant. The column Success indicates how
good a run was. If there is a “X”, that means that the run was success-
ful and the map looked as expected while a “∼” means that although
the run was successful, the resulting map or classifcation could have
been better. A “x” means that the simulation failed and stopped either

53

7 Evaluation

from its own or we saw that there were some mismatches in the map
and we stopped the exploration manually. The next columns specify
how many local classifcations as well as global classifications of the
map were necessary during the exploration and finally the time used
for both, local and global classification are displayed.

In table 7.1 it can be seen that the first exploration run took 11 minutes
and 27 seconds and explored the environment nicely as illustrated in
figure 7.2. For every run the number of local classification runs are
given where only a local area with a given radius is classified (in this
case 6 meters) as well as the number of classifications of the whole
map and the overall time needed for both. The path over the ramp to
the top plateau is classified as perfectly traversable as well as below
the plateau. Illustration 7.3 shows for example more details of good
classifed map, this time from a another run. The area directly under
the first ramp is marked as an obstacle because the robot doesn’t fit
through it regarding the robot height plus some security margin. The
2 smaller ramps are not traversable because the ramps are not wide
enough so the robot can turn on the spot on these ramps. For each
obstacle or cliff there is a square padding or inflation area around it.
However, there is also a plateau over one of these smaller ramps which
couldn’t be mapped or classified because the robot couldn’t see it or
reach this area. The a part of the edge of the ramp with the unmapped
plateau is even considered as a (potential) cliff and only if a part of that
ramp would be traversable and would contain frontiers would result
in a mapping of this area and a reclassification to a traversable voxel.
The implemented algorithm only explores areas that are adjacent to
traversable voxels which could lead to unexplored parts of the map
because it may be dangerous for the robot to navigate to it.

Figure 7.4 shows the same view of that run but instead of the classified
Octomap, it displays the mapped area as a pointcloud. The pointcloud
itself shows that the mapping was quite nice and shows a bit more
detail than the Octomap (with a voxel size of 8cm) so we are able
to conclude that the mapping process worked quite well in this run.
Some unmapped areas can also be seen in this representation like the
back of the trash containers on the left in the first image or a missing
quarter of the hydrant in the middle of the second image.

54

7.2 Indoor Scenario

R
un

ru
nt

im
e

Su
cc

es
s

lo
ca

l
cl

as
s.

lo
ca

l
cl

as
s.

ti
m

e
gl

ob
al

cl
as

s.
gl

ob
al

cl
as

s.
ti

m
e

cl
as

s.
ti

m
e

[m
m

:s
s]

[m
m

:s
s]

[m
m

:s
s]

[m
m

:s
s]

1
1
1
:2

7
X

1
4

0
1
:1

7
3

0
1
:2

9
0
2
:4

6

2
1
1
:0

3
X

1
6

0
1
:1

7
3

0
1
:2

1
0
2
:3

8

3
1
1
:1

4
X

1
9

0
1
:3

6
3

0
1
:1

0
0
2
:4

6

4
1
2
:2

4
X

1
7

0
1
:4

0
4

0
1
:4

5
0
3
:2

5

5
0
1
:1

5
x

-
–:

–
-

–:
–

–:
–

6
1
0
:0

2
X

1
8

0
1
:1

4
2

0
0
:5

4
0
2
:0

8

7
0
8
:0

8
x

1
3

0
1
:0

7
1

0
0
:1

1
0
1
:1

8

8
1
5
:5

7
x

1
8

0
1
:5

2
5

0
2
:2

3
0
4
:1

5

9
1
8
:2

1
∼

1
8

0
2
:4

5
6

0
4
:3

0
0
7
:1

5

1
0

1
1
:4

1
X

1
6

0
1
:3

7
4

0
2
:0

7
0
3
:4

4

Ta
bl

e
7
.1

:S
u

m
m

ar
y

of
th

e
in

d
oo

r
w

or
ld

si
m

u
la

ti
on

ru
ns

.S
uc

ce
ss

m
ea

ns
if

th
e

re
su

lt
in

g
m

ap
an

d
te

rr
ai

n
cl

as
si

fi
ca

ti
on

re
su

lt
ed

an
ac

ce
p

ta
bl

e
so

lu
ti

on
(X

=
go

od
,
∼

=
ac

ce
p

ta
bl

e,
an

d
x

=
no

t
ac

ce
p

ta
bl

e)
w

hi
le

lo
ca

l
cl

as
s.

an
d

gl
ob

al
cl

as
s.

m
ea

n
th

e
nu

m
be

r
of

lo
ca

l
an

d
gl

ob
al

te
rr

ai
n

cl
as

si
fi

ca
ti

on
s

th
at

w
er

e
ne

ed
ed

to
ex

p
lo

re
th

e
en

vi
ro

nm
en

t.
T

he
co

lu
m

ns
lo

ca
l

cl
as

s.
ti

m
e

an
d

gl
ob

al
cl

as
s.

ti
m

e
re

p
re

se
nt

th
e

u
se

d
ti

m
e

fo
r

th
e

re
sp

ec
ti

ve
cl

as
si

fic
at

io
n

an
d

cl
as

s.
ti

m
e

is
th

e
ov

er
al

lt
im

e
us

ed
fo

r
bo

th
cl

as
si

fic
at

io
ns

.

55

7 Evaluation

Figure 7.1: Illustration of the indoor world in the Gazebo simulation.

56

7.2 Indoor Scenario

Figure 7.2: Illustration of the 1st evaluation run in the indoor world (view of the
classified Octomap and the raw pointcloud).

57

7 Evaluation

Figure 7.3: More detailed illustrations of a classified Octomap. The top image gives
an overview of the map while in the middle image the terrain classifi-
cation beneath the ramps can be seen. The smaller ramps that weren’t
traversable are displayed in the lower image.

58

7.2 Indoor Scenario

The rest of the runs marked with a checkmark look similar although
not at every run was the ramp classified as perfectly traversable

In run number 5 and 8 an ICP mismatch occured because the odometry
error got too big for the ICP matcher to handle when the robot first
explored a part of the ramp and then went back down to explore a
frontier on the ground floor. This mismatch can be seen in Figure 7.5.
The arrows in the figures point to the structures of the map that were
mismatched. For run 5 the table 7.1 doesn’t show the local and global
classifications as well as the needed time for it. This is because a short
time after the start of the exploration, it planned a short path onto the
ramp and back down and doing so the odometry error got that bad
that a ICP mismatched of the ramp happened. We cancelled the run
afterwards but forgot to note the missing parameters.

In run 7 the robot failed to plan to the frontier and stopped the
exploration while in run 9 (see Figure 7.6) he explored successful the
whole map apart from a small piece on the highest plateau of the
ramps. The size of the local costmap however was set too big so that
there were also obstacle in the local costmap that were behind the
ramp and therefore he couldn’t find a path to the frontier. Because
the mapping and classification was ok, just the last frontier was not
classifed to be a cliff I would that the run was somehow ok. If the
costmap would have been set smaller it should have been able to follow
the path to the plateau.

7.2.1 Summary

The exploration of the indoor map was successful in 6 of 10 tries and
there are still some improvements to be made to make the implementa-
tion more stable. The runtime of all successful runs is ranging between
10 minutes 2 seconds and 12 minutes 24 seconds with an average of
11:18. The produced classification is seems to be good enough for the
exploration and navigation as long as no invalid ICP matches occur
which can mess up the localization of the robot. To reduce the needed
classification time a bigger octomap resolution can be chosen or the

59

7 Evaluation

Figure 7.4: More detailed illustrations of the mapped area. These three images show
the same setting as in Figure 7.3 but this time instead of the octomap, the
point cloud of the created map is visualized.

60

7.2 Indoor Scenario

Figure 7.5: Illustration of the ICP mismatch of the 5th (upper image) and 8th (lower
image) run. Arrows with the same color indicate areas that were dupli-
cated in the map because of the mismatch

61

7 Evaluation

Figure 7.6: Illustration of the 9th run where the robot planned a path over the ramps
to the highest plateau.

perhaps the algorithm can be further improved so that perhaps it is
also possible to classify frontiers during the first classification run so
no separate frontier classification run is needed in the algorithm.

7.3 Outdoor Scenario

In this section we evalute the mapping and exploration of a map with
rough terrain, a part of the Apollo landing site to be exact. To limit the
area which should be explored and be able to compare the different
runs, four walls limit the exploration space.

As it can be seen in table 7.2 there occured only one failed run on
this map because and that is because it only explored a small area of
the map. The reason for this is because the cliff detection to ensure
that the robot stays away from areas that may be a cliff. Because of
the small hills, the laser scanner doesn’t see voxels behind the hills
but some other voxels from the other bigger hill behind it, the terrain
classification algorithm classifies these voxels adjacent to the hidden
voxels as a potential cliff and prevents the robot from driving there.
While exploring other parts of the map, some of these voxels are

62

7.3 Outdoor Scenario

R
un

ru
nt

im
e

Su
cc

es
s

lo
ca

l
cl

as
s.

lo
ca

l
cl

as
s.

ti
m

e
gl

ob
al

cl
as

s.
gl

ob
al

cl
as

s.
ti

m
e

cl
as

s.
ti

m
e

[m
m

:s
s]

[m
m

:s
s]

[m
m

:s
s]

[m
m

:s
s]

1
0
8
:4

3
X

1
3

0
0
:3

4
2

0
0
:1

3
0
0
:4

7

2
0
7
:2

2
X

1
1

0
0
:2

4
3

0
0
:2

3
0
0
:4

8

3
0
7
:3

9
∼

8
0
0
:1

2
2

0
0
:1

1
0
0
:2

3

4
0
6
:2

3
X

1
1

0
0
:2

0
2

0
0
:1

4
0
0
:3

4

5
0
5
:3

1
X

1
0

0
0
:2

0
1

0
0
:0

8
0
0
:2

8

6
0
6
:4

7
∼

1
5

0
0
:2

8
2

0
0
:1

0
0
0
:3

8

7
0
5
:3

4
∼

1
4

0
0
:3

2
2

0
0
:1

9
0
0
:5

1

8
0
7
:2

0
∼

9
0
0
:2

3
2

0
0
:2

4
0
0
:4

7

9
0
5
:3

1
x

7
0
0
:1

0
1

0
0
:0

3
0
0
:1

3

1
0

0
5
:2

5
X

1
2

0
0
:2

6
3

0
0
:2

9
0
0
:5

5

Ta
bl

e
7
.2

:S
u

m
m

ar
y

of
th

e
in

d
oo

r
w

or
ld

si
m

u
la

ti
on

ru
ns

.S
uc

ce
ss

m
ea

ns
if

th
e

re
su

lt
in

g
m

ap
an

d
te

rr
ai

n
cl

as
si

fi
ca

ti
on

re
su

lt
ed

an
ac

ce
p

ta
bl

e
so

lu
ti

on
(X

=
go

od
,
∼

=
ac

ce
p

ta
bl

e
an

d
x

=
no

t
ac

ce
p

ta
bl

e)
w

hi
le

lo
ca

l
cl

as
s.

an
d

gl
ob

al
cl

as
s.

m
ea

n
th

e
nu

m
be

r
of

lo
ca

l
an

d
gl

ob
al

te
rr

ai
n

cl
as

si
fi

ca
ti

on
s

th
at

w
er

e
ne

ed
ed

to
ex

p
lo

re
th

e
en

vi
ro

nm
en

t.
T

he
co

lu
m

ns
lo

ca
l

cl
as

s.
ti

m
e

an
d

gl
ob

al
cl

as
s.

ti
m

e
re

p
re

se
nt

th
e

u
se

d
ti

m
e

fo
r

th
e

re
sp

ec
ti

ve
cl

as
si

fic
at

io
n

an
d

cl
as

s.
ti

m
e

is
th

e
ov

er
al

lt
im

e
us

ed
fo

r
bo

th
cl

as
si

fic
at

io
ns

.

63

7 Evaluation

Figure 7.7: Illustration of the Gazebo simulation of the outdoor world.

reclassified as a traversable voxels so other parts can be explored
leading to bigger explored map. However, in run 9 the area was quite
small while the runs 3, 6, 7, and 8 were ok but they could be better
explored and classified.

In Figure 7.7 the Gazebo simulation is illustrated while in Figure 7.8
an example for a good classification run is shown. A not so good
run is depicted in Figure 7.9 where some parts terrain parts weren’t
classified as traversable although the robot would have been able to
drive there..

7.3.1 Summary

The exploration of the outdoor map was successful in 5 of 10 tries
and 4 of 10 were successful although they showed bigger unexplored
areas that should have been traversable. Only one run showed such a
small explored area that we classified this run as failed. To improve
the size of the explored area the part of the algorithm that detects cliffs

64

7.3 Outdoor Scenario

Figure 7.8: Illustration of the 2nd run in the outdoor world. Upper image shows
the classified octomap while the lower image displays the corresponding
point cloud.

65

7 Evaluation

Figure 7.9: Illustration of the 3rd run of the outdoor world where some parts weren’t
correctly classified. The yellow arrow indicates the area that is also
traversable but wasn’t classified as such.

needs to be modified or a risk parameter can be used which can be set
according to the terrain that should be mapped.

7.4 Real environment

We also made a short test on a real husky robot (see Figure 7.12) and
mapped a parking lot at first manually by remotly controlling the
robot and later we let it autonomously explore the area. In Figure
7.10 the point cloud of the manually created map can be seen and in
Figure 7.11 the octomap of a part of parking lot that was autonomously
explored is illustrated.

66

7.4 Real environment

Figure 7.10: Illustration of the pointcloud of a measurement taken in a parking lot.

67

7 Evaluation

Figure 7.11: Illustration of the octomap created in an autonomous exploration in a
parking lot.

68

7.4 Real environment

Figure 7.12: Illustration of the real robot prototype used for testing.

69

8 Conclusion

This chapter summarizes the system presented in this thesis and also
provides some suggestions for future improvements.

8.1 Discussion

In this thesis we presented a robotic system that is capable of creating a
3D representation of its environment and exploring unknown regions
autonomously. The robot is equipped with a sweeping 2D laser scanner
to create a three-dimensional point cloud of its surroundings. The
wheel odometry fused with the IMU gives a rough localization estimate
for the ICP-matcher which is used to insert the created point cloud into
the right position of the pose-graph and correct the current localization
of the robot.

A part of the created map is then converted into a 3D grid map
and its surface voxels are classified in terms of traversability for the
robot platform. During the classification process a navigation graph
is constructed which connects all traversable voxels with each other
and an A∗-algorithm can be used to plan a path along this graph.
Due to the three-dimension terrain classification the robot is able to
generate paths over or under bridges as well as across multiple floors
of a building.

A drawback of the implemented 3D classification is that it takes rel-
atively long for big maps in comparison to a 2D or 2,5D obstacle
avoidance because a lot of cells inside the 3D grid map have to be
evaluated to build the navigation graph.

71

8 Conclusion

The robot tries to avoid potential cliffs. But especially in rough terrain
voxels behind small hills are often not mapped at the beginning of the
exploration phase and therefore avoided because they could be a cliff.
Therefore, in certain situations the robot seems to be a bit too cautious
in some rough terrain environments.

In the evaluation we showed the performance of the implemented
algorithm and came to the conclusion that the terrain classification
works well on smaller maps but for classifing big maps some perfor-
mance improvements are needed. We also tested our algorithms on
a physical robot and not only in the simulation to verify that it also
works in the real world.

8.2 Future Work

To speed up the terrain classification a hierarchical approach could
be used so that the big 3D grid get split into many small ones and
classified in a multi-threaded manner. If during the terrain classifica-
tion enough near frontiers have been found, a further classification is
stopped and a path to the most suitable one is planned. This would
prevent the classification of the whole map and save a lot of time.

Additionally a better way to detect cliffs should be found as well as
a different strategy to explore the potential cliffs in more detail. For
example by setting frontiers near some of the potential cliffs to further
map this area and detect if it is really a cliff or just a small hill and
therefore traversable.

72

Bibliography

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005. isbn: 0262201623 (cit. on p. 9).

[2] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. “G2o: A general framework for graph optimization.” In:
2011 IEEE International Conference on Robotics and Automation.
May 2011, pp. 3607–3613 (cit. on p. 9).

[3] Frank Dellaert. “Factor Graphs and GTSAM: A Hands-on Intro-
duction.” In: 2012 (cit. on p. 9).

[4] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Map-
ping in Real-time.” In: Robotics: Science and Systems Conference.
Pittsburgh, PA, July 2014 (cit. on p. 10).

[5] M. Leingartner, J. Maurer, G. Steinbauer, and A. Ferrein. “Evalu-
ation of sensors and mapping approaches for disasters in tun-
nels.” In: 2013 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). Oct. 2013, pp. 1–7 (cit. on p. 10).

[6] Jochen Sprickerhof, Andreas Nüchter, Kai Lingemann, and Joachim
Hertzberg. “An Explicit Loop Closing Technique for 6D SLAM.”
In: ECMR. Ed. by Ivan Petrovic and Achim J. Lilienthal. Ko-
REMA, 2009, pp. 229–234. isbn: 978-953-6037-54-4 (cit. on p. 10).

[7] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg, and Hart-
mut Surmann. “6D SLAM&Mdash;3D Mapping Outdoor En-
vironments: Research Articles.” In: J. Field Robot. 24.8-9 (Aug.
2007), pp. 699–722. issn: 1556-4959 (cit. on p. 10).

73

Bibliography

[8] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan I. Nieto, Roland
Siegwart, and Cesar Cadena. “SegMatch: Segment based loop-
closure for 3D point clouds.” In: CoRR abs/1609.07720 (2016)
(cit. on p. 10).

[9] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. “Visual
SLAM algorithms: a survey from 2010 to 2016.” In: IPSJ Transac-
tions on Computer Vision and Applications 9.1 (June 2, 2017), p. 16.
issn: 1882-6695 (cit. on p. 10).

[10] Thomas Whelan, Stefan Leutenegger, Renato F. Salas-Moreno,
Ben Glocker, and Andrew J. Davison. “ElasticFusion: Dense
SLAM Without A Pose Graph.” In: Robotics: Science and Systems.
2015 (cit. on p. 10).

[11] Jakob Engel, Thomas Schöps, and Daniel Cremers. “LSD-SLAM:
Large-Scale Direct Monocular SLAM.” In: Computer Vision –
ECCV 2014: 13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part II. Ed. by David Fleet, Tomas
Pajdla, Bernt Schiele, and Tinne Tuytelaars. Cham: Springer In-
ternational Publishing, 2014, pp. 834–849. isbn: 978-3-319-10605-2
(cit. on p. 10).

[12] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamic
Window Approach to Collision Avoidance. Tech. rep. 1995 (cit. on
p. 11).

[13] A. Pratkanis, A. E. Leeper, and K. Salisbury. “Replacing the office
intern: An autonomous coffee run with a mobile manipulator.”
In: 2013 IEEE International Conference on Robotics and Automation.
May 2013, pp. 1248–1253 (cit. on p. 11).

[14] G. Grisetti, C. Stachniss, and W. Burgard. “Improved Techniques
for Grid Mapping With Rao-Blackwellized Particle Filters.” In:
IEEE Transactions on Robotics 23.1 (Feb. 2007), pp. 34–46. issn:
1552-3098 (cit. on p. 11).

[15] Konstantin Lassnig. “An autonomous robot for campus-wide
transport tasks.” MA thesis. Graz: Technical University Graz,
2016 (cit. on pp. 12, 28, 48).

74

Bibliography

[16] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey,
and Kurt Konolige. “The Office Marathon: Robust Navigation
in an Indoor Office Environment.” In: International Conference on
Robotics and Automation. 2010 (cit. on p. 12).

[17] D. Maier, A. Hornung, and M. Bennewitz. “Real-time navigation
in 3D environments based on depth camera data.” In: 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids
2012). Nov. 2012, pp. 692–697 (cit. on p. 12).

[18] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R.Y. Sieg-
wart. Robot-centric Elevation Mapping with Uncertainty Estimates.
ETH-Zürich, 2014 (cit. on p. 12).

[19] Sebastian Pütz, Thomas Wiemann, Jochen Sprickerhof, and Joachim
Hertzberg. “3D Navigation Mesh Generation for Path Planning
in Uneven Terrain.” In: 49 (Dec. 2016), pp. 212–217 (cit. on p. 13).

[20] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart.
“3D path planning and execution for search and rescue ground
robots.” In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Nov. 2013, pp. 722–727 (cit. on p. 13).

[21] A. Hertle and C. Dornhege. “Efficient extensible path planning
on 3D terrain using behavior modules.” In: 2013 European Con-
ference on Mobile Robots. Sept. 2013, pp. 94–99 (cit. on p. 13).

[22] B. Yamauchi. “A frontier-based approach for autonomous explo-
ration.” In: Computational Intelligence in Robotics and Automation,
1997. CIRA’97., Proceedings., 1997 IEEE International Symposium
on. July 1997, pp. 146–151 (cit. on p. 14).

[23] J. Maurer and G. Steinbauer. “Autonomous risk-aware explo-
ration.” In: 2013 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). Oct. 2013, pp. 1–8 (cit. on p. 14).

[24] C. Dornhege and A. Kleiner. “A frontier-void-based approach
for autonomous exploration in 3d.” In: 2011 IEEE International
Symposium on Safety, Security, and Rescue Robotics. Nov. 2011,
pp. 351–356 (cit. on p. 14).

75

Bibliography

[25] P. G. C. N. Senarathne and D. Wang. “Towards autonomous 3D
exploration using surface frontiers.” In: 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). Oct.
2016, pp. 34–41 (cit. on p. 14).

[26] Morgan Quigley, Ken Conley, Brian P Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. “ROS: an
open-source Robot Operating System.” In: 3 (Jan. 2009) (cit. on
p. 15).

[27] François Pomerleau, Francis Colas, and Roland Siegwart. “A
Review of Point Cloud Registration Algorithms for Mobile
Robotics.” In: 4 (May 2015), pp. 1–104 (cit. on p. 17).

[28] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane
Magnenat. “Comparing ICP Variants on Real-World Data Sets.”
In: Autonomous Robots 34.3 (Feb. 2013), pp. 133–148 (cit. on pp. 17,
26, 28).

[29] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stach-
niss, and Wolfram Burgard. “OctoMap: An Efficient Probabilistic
3D Mapping Framework Based on Octrees.” In: Auton. Robots
34.3 (Apr. 2013), pp. 189–206. issn: 0929-5593 (cit. on pp. 17, 30).

[30] P. Beno, V. Pavelka, F. Duchon, and M. Dekan. “Using Octree
Maps and RGBD Cameras to Perform Mapping and A* Naviga-
tion.” In: 2016 International Conference on Intelligent Networking
and Collaborative Systems (INCoS). Sept. 2016, pp. 66–72 (cit. on
p. 18).

[31] R.P. Goebel. ROS by Example: Packages and Programs For Advanced
Robot Behaviors. Pi Robot Production Bd. 2. P. Goebel, 2014. isbn:
9781312392663 (cit. on p. 21).

[32] Lentin Joseph. Mastering ROS for Robotics Programming. Ed. by
Packt Publishing. Packt Publishing, 2015. isbn: 9781783551798

(cit. on p. 21).

[33] Thomas Moore and Daniel Stouch. “A Generalized Extended
Kalman Filter Implementation for the Robot Operating System.”
In: Intelligent Autonomous Systems 13 - Proceedings of the 13th

76

Bibliography

International Conference IAS-13, Padova, Italy, July 15-18, 2014.
2014, pp. 335–348 (cit. on p. 25).

77

