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Abstract

High-temperature superconductivity, colossal magneto-resistance, Mott insulators, en-
hanced magnetism or a huge thermoelectric response are just a few examples of the
exotic phenomena displayed by strongly correlated materials. With the exception
of superconductivity, all these phenomena have been observed in the class of man-
ganese pnictides. Particularly, we focus our theoretical investigation on BaMn2As2

and LaMnAsO, using the combination of density functional theory and dynamical
mean-field theory. We show that the studied compounds are placed at the verge of
a metal-insulator transition, which in turn is responsible for their high Néel temper-
atures. Although their crystal structure is composed of similar building blocks, our
analysis shows that the two materials exhibit a very different effective dimensionality,
LaMnAsO being a quasi-two-dimensional material, in contrast to the much more three
dimensional BaMn2As2. We demonstrate that the experimentally observed differences
in the Néel temperature, the band gap, and the optical properties of the manganese
compounds under consideration can be traced back to exactly this difference in effective
dimensionality. A special emphasis is put on the effect of electron doping in LaMnAsO,
which results in unusually large Seebeck coefficients. We provide an investigation of the
underlying electronic ingredients, by disentangling the role of magnetism, the influence
of the peculiar band-structure shape and the degree of particle-hole asymmetry in the
spectral function.
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Kurzfassung

Stark korrelierte Materialien weisen oftmals eine Vielzahl von bemerkenswerten
Eigenschaften auf. Beispiele dafür sind die Hochtemperatursupraleitung, der kolossa-
le magnetoresistive Effekt, das Auftreten von Mott-Isolatoren, gute thermoelektrische
Eigenschaften sowie verstärkter Magnetismus. Mit Ausnahme der Supraleitung wur-
den die genannten Phänomene in Manganpnictiden beobachtet. Anhand der Kombi-
nation aus Dichtefunktionaltheorie und dynamischer Molekularfeldtheorie untersuchen
wir die zwei Vertreter BaMn2As2 und LaMnAsO aus dieser Materialklasse. Wir zeigen,
dass diese Materialien nahe an einem Metall-Isolator-Übergang liegen, was wiederum
die hohen Néel-Temperaturen erklärt. Obwohl deren Kristallstruktur aus ähnlichen
Bestandteilen aufgebaut ist, zeigt unsere Analyse eine stark unterschiedliche effekti-
ve Dimensionalität der beiden Materialien auf. Wir klassifizieren LaMnAsO als ein
quasi-zweidimensionales Material im Unterschied zu dem viel stärker dreidimensiona-
len BaMn2As2. Anschließend demonstrieren wir, dass die experimentell beobachteten
Unterschiede in den Néel-Temperaturen, den Bandlücken und den optischen Eigen-
schaften auf genau diesen Unterschied in der effektiven Dimensionalität zurückgeführt
werden können. Ein spezieller Schwerpunkt wird auf den Einfluss der Elektronendo-
tierung gelegt, welche bei Raumtemperatur zu unüblich hohen Seebeck-Koeffizienten
in LaMnAsO führt. Durch eine getrennte Betrachtung der Rolle des Magnetismus, der
Auswirkung von speziellen Eigenschaften der Bandstruktur und der Asymmetrie der
Spektralfunktion untersuchen wir die Wichtigkeit dieser verschiedenen elektronischen
Einflüsse auf den Seebeck-Koeffizienten.
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1. Introduction

A central goal of computational condensed matter physics is the in-depth understand-
ing of solids directly from “first principles”. In contrast to an empirical modeling of
experimental observations, the first principles approach starts from what we already
know ab initio; namely that solids are essentially a collection of (ordered) atoms, with
positively charged nuclei and a bunch of negatively charged electrons. The motion and
the interaction of these constituents of solids are governed by fundamental quantum
mechanical laws. Although the underlying physics of the individual parts is rather sim-
ple and well-understood, a sheer endless number of complex properties emerge from
their interplay. Or, as P. W. Anderson remarks in “More is Different” [1]:

The behavior of large and complex aggregations of elementary particles,
it turns out, is not to be understood in terms of a simple extrapolation of the
properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other.

Indeed, the prohibitively large size of the problem restricts the straightforward cal-
culation of such emergent properties in practice. The most popular approaches to
determine – at least – the electronic ground state are band-theory methods, like den-
sity functional theory (DFT) [2–4], which have proven to accurately explain physical
properties of many materials, e.g. simple metals and insulators. However, materials
which are governed by the physics of open d or f shells constitute cases where conven-
tional band-theory methods often lead to even qualitatively wrong results, e.g. a system
is predicted to be a metal while in fact it is an insulator. The single-electron picture
fails in such materials, because of the localized nature of the valance orbitals in which
electrons experience a strong Coulomb repulsion. Transition metals (e.g. copper, man-
ganese, iron and vanadium) and their oxides fall into this class of so-called strongly
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1. Introduction

correlated materials. There the electronic correlations are the pivotal factor for the
emergence of fascinating phenomena like high-temperature superconductivity [5], colos-
sal magneto-resistance [6] or a huge thermoelectric response [7]. But precisely these
electronic correlations make the theoretical and computational treatment of strongly
correlated systems challenging.

In most cases many-body approaches based on low-energy model Hamiltonians need
to be employed. The Hubbard model [8] is arguably the most intensively used in the
context of real-material modeling, because it captures the essential physics of strongly
correlated systems. This ranges from the description of the Mott metal-insulator tran-
sition [9] to antiferromagnetism [10] and possible d-wave superconductivity [11]. Al-
though simple-looking, the Hubbard model turns out to be notoriously difficult to
solve, especially in cases of multiple relevant orbital degrees of freedom. One of
the most popular methods available to tackle the Hubbard model is the dynamical
mean-field theory (DMFT) [12–16]. The success of DMFT is owed to the fact that
it offers a bridge between the physics of itinerant and localized systems [15]. This is
important to capture the nature of the Mott phenomenon, which is the occurrence
of an insulating state solely due to electronic correlations [17]. With regard to the
ab-initio modeling of such physics in real materials, the combination of DMFT with
band theory (DFT+DMFT) [14, 18–20] has become the work-horse method in the last
two decades.

In this thesis we focus on the two manganese pnictides BaMn2As2 and LaMnAsO,
which are isostructural to the iron-based superconductors BaFe2As2 and LaFeAsO. In
these compounds the whole 3d manifold is relevant for the electronic properties, and
has thus to be taken into account on the level of the Hubbard model. In contrast to the
iron pnictides, the investigated manganese compounds host five electrons in the five
Mn-3d bands, and as a consequence, electronic correlations are expected to promote
Mott physics [21–23]. Multiple experiments show that both manganese pnictides are
semiconductors [24–30], but also exhibit strong antiferromagnetic order persistent well
above room temperature [31, 32]. Naturally, the question arises whether the semicon-
ducting ground state in these half-filled systems is due to electronic correlations alone
(Mott mechanism) or because of symmetry breaking due to magnetism (Slater mecha-
nism). Although sharing the Mn-As layers as common building blocks, the difference in
the interlayer distance suggest a classification of LaMnAsO as quasi-two-dimensional
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compound [33–35], whereas BaMn2As2 is much more three dimensional [27, 36]. This
substantial difference in the effective dimensionality of the two compounds is decisive
to understand the experimentally observed differences in the Néel temperature, the
band gap, and the optical conductivity.

Next to these properties, experiments have repeatedly reported enhanced Seebeck coef-
ficients in manganese pnictides [37–43]. For example, LaMnAsO1-δFδ samples at room
temperature exhibit a Seebeck coefficient of about ´300 µVK´1 at a doping level of
δ = 0.03 [43]. Motivated by this finding, we carry out an investigation of the underlying
electronic influences on the Seebeck coefficient of electron-doped LaMnAsO. Clearly,
gaining a deeper understanding of the microscopic mechanisms at play is a critical
first step towards purposefully designing thermoelectric materials [44]. This is again
of major interest in the search of alternative energy sources [45, 46], as thermoelectric
materials can intrinsically convert (otherwise wasted) heat into electric energy.

In general, we see it as an important task of theoretical condensed matter physics to
provide manifold links to experiments. Transport properties, like the optical conduc-
tivity, Seebeck coefficients, or also Hall conductivities, constitute such links, because
they are relatively easy accessible in both areas, theory and experiment. Therefore, a
part of this work is devoted to the implementation of numerical tools for the evaluation
of transport quantities within the DFT+DMFT framework.

In Ch. 2 we provide an overview of various aspects of the theoretical and computational
modeling of strongly correlated materials. Then, in Ch. 3 we discuss the Kubo formula
(linear response) for the (optical) conductivity and the Seebeck coefficient, as well as
the corresponding details of the TRIQS/DFTTools transport code. On the example
of the “benchmark” material SrVO3, we demonstrate in Ch. 4 important aspects of
DFT+DMFT calculations, and additionally provide new insights on the nature of its
upper Hubbard band. We continue in Ch. 5 with the discussion of the electronic struc-
ture and the magnetic and optical properties of BaMn2As2 and LaMnAsO. In Ch. 6 we
present our results on electron-doped LaMnAsO and study the electronic influences on
the Seebeck coefficient. To keep Chs. 4, 5 and 6 self-contained we provide an individual
introduction and conclusion for each of them. We supplement our work with App. B,
where we discuss the calculation of Hall conductivities for strongly correlated materials
and investigate the unusual temperature behavior of the Hall number of Sr2RuO4.

3



1. Introduction
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2. Theoretical background

Preamble

We start with the introduction of density functional theory (DFT) [2–4] and then work
our way through the different aspects of the many-body Hubbard model to describe the
low-energy physics of a material, especially with regard to the treatment of the model
within dynamical mean-field theory (DMFT) [12–16]. We end with the DFT+DMFT
method, which is nowadays the standard framework for the description of strongly
correlated materials [14, 18–20].

As the well-known fundamental theories and concepts of condensed matter physics
do not change over the short time span of a PhD thesis, some parts of this chapter
contain adapted, modified or extended parts of the author’s Master’s thesis [47]. For
the basics of solid state physics we refer the reader to one of the many comprehensive
textbooks available, e.g. Ref. [48]. Throughout this chapter we employ atomic units
(e “ me “ ~ “ kB “ 1), where the charge is measured in units of the electron charge
e, the mass in units of the electron mass me and energies in units of ~.

2.1. Density functional theory (DFT)

The quantum-mechanical dynamics of a solid can be understood in terms of the move-
ment of electrons and ions. As the dynamics of the ions is happening on a much
smaller time-scale, in comparison to the dynamics of the electrons, we can use the
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2. Theoretical background

Born-Oppenheimer approximation and take the nuclei to be fixed.1 Then, the Hamil-
tonian which describes the electron dynamics of any solid is [48]

H “ ´
1
2
ÿ

i

∇2
i ´

ÿ

αi

Zα
|ri ´ rα|

`
1
2
ÿ

i‰j

1
|ri ´ rj|

, (2.1)

where r is the position vector of the electrons labeled with the subscripts i{j and the
nuclei labeled with the subscript α. The first term is the kinetic energy of the electrons
and the second one the attractive Coulomb interaction between the positive nuclei (Zα
is the atomic number) and the electrons. The last term, the repulsive electron-electron
interaction, is the cumbersome bit. The reason is that, although all the relevant physics
is contained in Hamiltonian 2.1, the solution of the associated Schrödinger equation
for a N -electron problem

Hψ pr1, ..., rNq “ Eψ pr1, ..., rNq (2.2)

is prohibitively expensive due to the exponential scaling of the Hilbert space dimen-
sion of the N -electron wave function ψ pr1, ..., rNq. Without electron-electron interac-
tions the system is separable, hence the problem reduces to solving N single-particle
Schrödinger equations.

One possible way to treat Eq. 2.2 in the presence of electron-electron interactions is the
density functional theory (DFT) [2–4]. This ground-state theory maps the intractable
many-body problem to a system of non-interacting electrons moving in an effective
one-particle potential mediated by all the other electrons and nuclei. DFT is based on
the Hohenberg-Kohn theorem [49]:

1. For any given external potential vext (as, e.g., the potential of the nuclei in Eq. 2.1)
there exists a unique ground-state electron density n0prq. The total energy E of
a system is a functional of the ground-state electron density E rn0prqs.2

2. It can be shown that in analogy to the Rayleigh-Ritz variational principle for wave
functions, a variational principle for the ground-state density exists. The total en-

1 Additionally, we neglect contributions from relativistic effects like the spin-orbit interaction, but
these might be included, e.g., on a perturbative level.

2 To be precise, the ground-state expectation value of any observable is a functional of the
ground-state density.
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2.1. Density functional theory (DFT)

ergy has its minimum at the true ground-state density, thus E rn0prqs ď E rnprqs
for any density nprq.

The Hohenberg-Hohn theorem allows to deal with the electron density nprq instead of
the full wave function. This constitutes an enormous simplification of the many-body
problem, because the number of dimensions is always three (spatial dimensions). It
should be emphasized that for ground-state properties DFT is per se exact. However,
the Hohenberg-Kohn theorem does not provide rules how to construct the effective
one-particle potential, and in practical applications one is always forced to employ
approximations, as we will see in the following.

In a first step we can split off the known parts and collect the unknown parts in the
exchange-correlation functional Exc [49]

E rns “ T rns `

ż

dr vextprq `
1
2

ż

dr dr1
nprqnpr1q
|r´ r1|

` Exc rnprqs . (2.3)

The first part T rns denotes the electronic kinetic energy of the many-body problem.
The second term describes the effect of the external potential vextprq that stems from
the nuclei and/or possible external fields. The third term is the Hartree potential
and it captures the electrostatic contribution to the electron-electron interaction. The
last term, namely the exchange-correlation energy Exc rnprqs, gathers all the remaining
unknown electron-electron interactions. In practice, this can only be approximated.

A major breakthrough was achieved by the work of Kohn and Sham [50]. They intro-
duced an auxiliary non-interacting reference system with the same ground-state density
as the interacting system

E rns “ T̃ rns `

ż

dr vextprq `
1
2

ż

dr dr1
nprqnpr1q
|r´ r1|

` Ẽxc rnprqs . (2.4)

The kinetic energy of the auxiliary Kohn-Sham systems is

T̃ rns “
N
ÿ

i

xϕi|
p

2 |ϕiy , (2.5)

where ϕi prq are the so-called Kohn-Sham orbitals of the auxiliary system with N

independent particles. The difference in the kinetic energy of the true system and the

7



2. Theoretical background

auxiliary system has been put into the exchange-correlation functional Ẽxc rnprqs. The
electron density of the system is given by

n prq “
N
ÿ

i“1
|ϕi prq |2 . (2.6)

The variation of the above energy functional, δE rn prqs “ 0, leads to a one-electron
Schrödinger equation [50]

ˆ

´
1
2∇

2
` vKS prq

˙

ϕi prq “ εiϕi prq , (2.7)

with the Kohn-Sham potential vKS prq defined as

vKS prq “ vext prq `
ż

dr1
n pr1q
|r´ r1|

`
δẼxc rn prqs
δn prq

. (2.8)

The exchange-correlation functional can be written in terms of an exchange-correlation
energy density εxc rns

Ẽxc rn prqs “
ż

dr n prq εxc rns prq . (2.9)

The fact that this exchange-correlation functional is unknown has led to a plethora
of different approximations. The simplest, yet frequently used, approximation is the
local density approximation (LDA) [51], where the exchange-correlation energy den-
sity εxc rns does only depend on the local electron density. This assumption turns
εxc rns into a simple function of the density, εLDAxc pn prqq, evaluated at point r. In
practice, the values of εLDAxc are taken from a homogeneous electron gas of the same
density. Another type is the generalized gradient approximation (GGA), where the
exchange-correlation energy is assumed to depend not just on the density but also on
its gradient εGGAxc pn prq ,∇n prqq. Since GGA involves several adjustable parameters,
many different schemes exist, where one of the most popular ones is the
Perdew-Burke-Ernzerhof functional (PBE) [52]. The GGA-PBE functional is used
for all DFT calculations carried out in this work.

The set of Kohn-Sham equations presented above (Eqs. 2.6, 2.7, 2.8 and 2.9) are solved
self-consistently for the ground-state energy and the ground-state density. The solu-
tion of the Kohn-Sham equations also yields the Kohn-Sham eigenstates εi and the

8



2.2. The Hubbard model

Kohn-Sham eigenfunctions ϕiprq, which are usually denoted as the DFT energies
and the DFT orbitals. However, one has to be careful with an interpretation of the
Kohn-Sham eigensystem in terms of physical quantities, because the Kohn-Sham spec-
trum is strictly speaking only a mathematical tool representing the auxiliary
single-particle problem. Nevertheless, for many classes of materials, the DFT spec-
trum does compare surprisingly well with experimental data, even on a quantitative
level.

2.2. The Hubbard model

Band theory ultimately fails as soon as the single-particle picture breaks down, which is
the case in materials governed by the physics of electrons in localized open d or f shells.
In these strongly correlated materials DFT does often provide even qualitatively wrong
results, e.g. predicting a metallic ground state although the material is in reality an
insulator. Therefore, many-body models based on low-energy Hamiltonians are used to
capture the effect of electronic correlations. The (multi-orbital) Hubbard model [8] is
the one usually set up in the context of real-material modeling to describe the valence
electrons of the correlated orbitals around the Fermi energy. In the Hubbard model
these orbitals correspond to sites arranged on a translationally invariant lattice, like in
the real crystal (for a sketch see Fig. 2.1). Enforced by the Pauli principle, each orbital
can be either empty, or occupied by one spin-up or spin-down electron, or occupied by
two electrons with opposite spins.

In the simplest single-band (single-orbital) version the Hubbard Hamiltonian in second
quantization is [8]

H “
ÿ

xi,jyσ

tij

´

c:iσcjσ ` h.c.
¯

´ µ
ÿ

iσ

niσ ` U
ÿ

i

niÒniÓ . (2.10)

The first term of the model is the kinetic energy of the electrons, which is understood
as a hopping tij from site j to site i. The operators (in second quantization) present
in the first term of the model destruct an electron with spin σ on site j (operator
cjσ) and creates it again, with the same spin, on site i (operator c:iσ). In general, a
direct hopping to any other site is possible, but is very unlikely for far apart atoms due

9



2. Theoretical background
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Figure 2.1.: Sketch of the single-orbital Hubbard model for electrons living on a 2D
square lattice. Each circle corresponds to a lattice site. The electrons
and their spins are indicated by the arrows in the circles. Electrons can
hop to neighboring sites with hopping strength t and experience an on-site
Coulomb repulsion U . This figure is taken from Ref. [47].

to the exponential diminution of the atomic wave functions. Often only hoppings to
nearest-neighbor atoms are taken into account (denoted by xi, jy in Eq. 2.10).3 The
second term is the chemical potential µ of the system and the third term of the Hubbard
model captures the electron-electron interaction. This “contact” Coulomb interaction
U penalizes two electrons occupying the same lattice site. Note that niÒ “ c:iÒciÒ is
the spin-density operator of site i and the occupation density operator is given by
ni “ niÒ`niÓ. Electronic inter-atomic interactions are neglected, because undoubtedly
the biggest contribution stems from two electrons occupying the same site.

Of course, the single-orbital Hubbard model is hardly sufficient to describe the com-
plexity of the physics found in real materials with, e.g., open 3d shells. Hence, two
additional points have to be considered [54]: First, the effect of orbital degrees of
freedom on the hopping of electrons between different atoms, and second, the role
of intra-atomic interactions between different orbitals. To this end, we extend the

3 However, to study, for example, high-Tc superconductors it is necessary to consider also
next-nearest-neighbor hoppings [53].
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2.2. The Hubbard model

single-orbital Hubbard model to a multi-orbital version by assigning an orbital index
to each lattice site and including additional orbital interaction terms. Then, the general
form of the multi-orbital Hubbard model reads

H “´
ÿ

xi,jy
αβσ

tiαjβ

´

c:iασcjβσ ` h.c.
¯

´ µ
ÿ

iασ

niασ `
ÿ

i

HU,i

HU,i “
1
2
ÿ

αβγδ
σσ1

rUαβγδc
:
iασc

:

iβσ1ciδσ1ciγσ ,
(2.11)

where αβγδ are orbital indices, i.e. magnetic angular-momentum quantum numbers,
and HU,i is the local interaction on lattice site i. rUαβγδ is the general 4-index interaction
tensor.

For an isolated atom, under consideration of the spherical symmetry, the interaction
tensor rUαβγδ can be efficiently parametrized by a small set of Slater integrals [55]. The
full interaction tensor in Slater expansion for orbitals with an angular momentum l is
given by [56–58]

rUαβγδ “
2l
ÿ

k“0
Θk
pα, β, γ, δqF k . (2.12)

The angular part Θk can be calculated from the spherical harmonics Ylm

Θk
pα, β, γ, δq “

4π
2k ` 1

k
ÿ

q“´k

xYlα|YkqYlγy xYlβYkq|Ylδy . (2.13)

Additionally, the Slater integrals F k are obtained from the radial part of the wave
functions Rnl

F k
“

8
ż

0

dr r2
8
ż

0

dr1 r12
minpr, r1qk

maxpr, r1qk`1 R
2
nlprqR

2
nlpr

1
q , (2.14)

where n is the principal quantum number. Importantly, only three slater integrals (F 0,
F 2 and F 4) are necessary to parametrize the interaction in the d shell (l “ 2). We
define the Hubbard U as the simple average over all possible pairs of orbitals [57, 58]

U ”
1

p2l ` 1q2
ÿ

αβ

2l
ÿ

k“0
Θk
pα, β, α, βqF k

“ F 0 , (2.15)

11



2. Theoretical background

and Hund’s coupling J as

J ”
1

2l p2l ` 1q
ÿ

α‰β

2l
ÿ

k“0
Θk pα, β, β, αqF

k
“
F 2 ` F 4

14 (for d electrons). (2.16)

Further, as a relationship between F 2 and F 4 usually the atomic value F 4{F 2 “ 0.625 is
used [57]. This means that the full 4-index interaction tensor rUαβγδ can be initialized
by only two values: U and J . Note that the Slater parametrization of HU,i is fully
rotational invariant, hence it does not change under unitary basis transformations.

In a solid we have to take into account that the surrounding electron cloud rearranges
in response to the Coulomb potential of a charge, and thus the long-ranged Coulomb
interaction will be screened.4 The effect of screening is a substantial reduction of
the atomic values of U and J .5 To keep the imposed form of rUαβγδ, we assume that
also the screened interactions are spherically symmetric. Two common methods to
obtain the interaction parameters directly from band-structure calculations are the
constrained local density approximation (cLDA) [59] and the constrained random phase
approximation (cRPA) [60]. We do not employ these – sometimes delicate – methods for
the compounds studied in this thesis, but rather use physical reasoning or, if available,
values for U and J present in the literature.

Another parametrization of the interaction part of the Hubbard model, specifically
constructed for the t2g subspace, was proposed by Kanamori [61]

HK
U,i “UK

ÿ

α

niαÒniαÓ `
ÿ

αąβ,σ

´

U 1Kniασniβσ̄ ` pU
1
K ´ JKqniασniβσ

¯

´
ÿ

α‰β

JK

´

c:iαÓc
:

iβÒciβÓciαÒ ` c
:

iβÒc
:

iβÓciαÒciαÓ ` h.c.
¯

.
(2.17)

Here, σ̄ denotes the opposite spin of σ. When setting U 1K “ UK ´ 2JK , which is
strictly true only for an isolated atom, the Kanamori Hamiltonian is equivalent to the
Slater Hamiltonian projected to the t2g subspace. Of course, the interaction values U
and J have to be adjusted accordingly. With the above choice of U 1K the Kanamori
Hamiltonian is rotationally invariant under orbital rotations [62].

4 This is also a reason why inter-atomic interactions are usually neglected in the Hubbard model.
5 From this point on we always refer to the screened values when using the variables U and J
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2.3. Dynamical mean-field theory (DMFT)

From the form of the Kanamori Hamiltonian it is easy to see how local atomic physics
enters the Hubbard model. The interaction favors an electronic state with electrons in
different orbitals, but with their spins pointing in the same direction (UK´3JK terms),
over a state with electrons in different orbitals and with different spins (UK ´ 2JK
terms). The latter is again favored over a state with two electrons in the same orbital
(UK terms). This is in fact nothing else but Hund’s second rule. Note that the terms
in the last line of Eq. 2.17 describe spin-flip and pair-hopping processes.

In Chs. 5 and 6 we employ the Slater parametrization for the interaction to describe the
Mn-3d subspace of the investigated manganese pnictides. The Kanamori Hamiltonian
is used in Ch. 4 for the V-t2g subspace of SrVO3 and in App. B for the Ru-t2g subspace
of Sr2RuO4.

2.3. Dynamical mean-field theory (DMFT)

Treating both the kinetic one-particle term and the potential-energy term of Eq. 2.10
on an equal footing is a highly non-trivial task, because the kinetic term is diagonal
in momentum space, whereas the interaction term is essentially diagonal in real space.
Only in the special case of a one-dimensional system exact solutions exist for the
Hubbard model [63].

The dynamical mean-field theory (DMFT) [12–16], developed over the last three
decades, is one of the most powerful non-perturbative methods to deal with the Hub-
bard model. In contrast to a static mean-field decoupling of the interaction term, the
dynamical mean-field theory, as the name suggests, employs a dynamical mean-field,
which depends on time, i.e. frequency, and therefore includes temporal quantum fluc-
tuations. These fluctuations are important to capture the metal-insulator transition
(cf. Sec. 2.6), which is not possible to explain within static mean-field theory without
breaking the symmetry of the lattice. Several ways to obtain the dynamical mean-field
equations exist [15], e.g. the cavity method or an expansion around the atomic limit.
In the following we discuss the key conceptual points of DMFT, but refer the reader
to extensive reviews available in the literature [14–16, 64].

13



2. Theoretical background

Before we can start, we should note that DMFT is formulated in terms of single-particle
Green’s functions Gpk, zq, where k are elements of the reciprocal space.6 The Green’s
functions Gpk, zq (and also the self-energies Σpk, zq) are complex analytic functions
defined in the whole complex frequency plane z, with the exception of poles on the
real-frequency axis ω. If calculations are carried out for real frequencies z “ ω ` i0`,
where the positive infinitesimal 0` shifts the poles off the real axis into the lower
complex half-plane, the result is the retarded Green’s function Gpk, ω ` i0`q. For the
sake of simplicity, we drop the infinitesimal 0` and use G pωq to denote the retarded
Green’s function. This is a pivotal quantity as it is directly related to the k-resolved
spectral function of the system Apk, ωq via

Apk, ωq “
i

2πTr
“

Gpk, ωq ´G:pk, ωq
‰

, (2.18)

where the trace is taken over the orbital indices. Only in the case of a single-orbital
model Eq. 2.18 reduces to

Apk, ωq “ ´
1
π
= rGpk, ωqs . (2.19)

Summing A pk, ωq over k gives the total spectral function7

A pωq “
ÿ

k
A pk, ωq , (2.20)

which is equivalent to the density of states (DOS) for a non-interacting system. In
some cases the Green’s function is easier to compute on the Matsubara axis z “ iωn

with discrete (fermionic) Matsubara frequencies ωn defined as

ωn “
p2n` 1q π

β
pn P Zq . (2.21)

The Matsubara Green’s function G pk, iωnq is directly connected to a finite temperature
(β “ 1{T ), however to obtain real-frequency spectral functions an analytic continuation
G pk, iωnq Ñ G pk, ωq is necessary (see Sec. 2.5).

6 An introduction on the theory of Green’s functions is covered by various textbooks (see, e.g.,
Refs. [65, 66]). For multi-orbital models the Green’s functions and the self-energies are matrices
in the orbital indices. We omit the orbital indices for a better readability, hence the notation
corresponds to a single-orbital model.

7 All k summations in this work imply a normalized summation over the 1st Brillouin zone (BZ).
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2.3. Dynamical mean-field theory (DMFT)

The foundation for DMFT was laid (i) by the work of Metzner and Vollhard [12] on
the limit of the infinite-dimensional Hubbard model and by (ii) Georges and Kotliar on
the self-consistent mapping of the Hubbard model to an effective impurity model [13].
The key concept of DMFT is to approximate the lattice model by a (local) effective
dynamical impurity problem (see the sketch in Fig. 2.2) [14]. This auxiliary problem
consists of an interacting impurity site coupled to an infinite non-interacting bath. The
effective bath models the communication of the impurity site with the residual lattice,
and thus represents the dynamical aspect of the theory. In the course of time electrons
can come from the bath to occupy the impurity site and eventually jump back again
into the bath. Nevertheless, the effective bath is not known a priori and needs to be
determined in a self-consistent way.

It is important to point out that the self-energy of the impurity model Σimppzq is
a k-independent quantity. The essential approximation of DMFT is to replace the
k-dependent lattice self-energy Σlat pk, zq by the local one of the effective impurity
model

Σlat pk, zq « Σimp pzq . (2.22)

Playing to the strength of the theory, this approximation is exact in three limits [14]:

• Non-interacting limit (U “ 0)
The self-energy is trivially k-independent as it vanishes (Σlat pk, zq “ 0).

• Atomic limit (tij “ 0)
This describes the case of disconnected atoms, which reduces the impurity model
to an atomic problem. The self-energy is thus a local quantity.

• Limit of infinite connectivity or infinite dimension (dÑ 8)
It can be shown that the self-energy becomes a local quantity for a lattice with
infinite dimensionality d [12].

Of course, away from these limits the k-independence of the self-energy is only an
approximation. The physical interpretation of the DMFT approximation is that spatial
correlations are neglected, but on the other hand temporal correlations (fluctuations)
are included in the theory. This means that the quantum nature of each individual site
is respected, which contrasts with standard mean-field theory where both spatial and
temporal correlations are frozen out.
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2. Theoretical background

BATH

lattice model

impurity model

Figure 2.2.: Within DMFT the lattice problem is mapped to a single-impurity site
coupled to an effective bath. This sketch is taken from Ref. [47].

The mapping to an impurity model demands equivalence between the local lattice
Green’s function Gloc pzq and the impurity Green’s function Gimp pzq

Gloc pzq
!
“ Gimp pzq , (2.23)

with Gloc pzq defined as the k-summation over the lattice Green’s function G pk, zq

Gloc pzq “
ÿ

k
G pk, zq “

ÿ

k

1
z ´ εk ` µ´ Σ pzq . (2.24)

We have already assumed a given but k-independent self-energy Σ pzq. In Eq. 2.24 the
εk represent the eigenenergies of the non-interacting system in the reciprocal space, i.e.
the Fourier transform of the hoppings tij in Eq. 2.10. We point out that Eq. 2.23 is
central to DMFT, because it reflects the mapping of a lattice problem to an impurity
problem. Via Dyson’s equation we can now construct the bath Green’s function

G0 pzq “
“

G´1
loc pzq ` Σ pzq

‰´1
. (2.25)

The G0 pzq is a quantum generalization of the effective Weiss field in standard
mean-field theory, and is also known as the effective Weiss Green’s function. We note
that G0 pzq is not the bare lattice Green’s function, but the local Green’s function with
locally removed interactions.
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2.3. Dynamical mean-field theory (DMFT)

However, G0 pzq is exactly the bare Green’s function of the impurity model

G0,imp pzq “ G0 pzq , (2.26)

and thus defines the non-interacting part of the impurity system. Commonly, the non-
interacting impurity model is described in terms of the bath hybridization function
∆pzq, which is related to G0,imp pzq via

G´1
0,imp pzq “ z ` µ´∆ pzq . (2.27)

From Eqs. 2.24, 2.25, 2.26, and 2.27 follows the DMFT self-consistency condition

Gloc pzq “
ÿ

k

1
G´1
loc pzq ´ εk `∆ pzq

. (2.28)

The task of a DMFT calculation is to determine the hybridization function ∆ pzq
such that Eq. 2.28 is fulfilled. This can be done in an iterative way, which in-
cludes the crucial step of solving the interacting impurity problem. Usually a simple
forward-iteration scheme (DMFT cycle), as shown in Fig. 2.3 and described in the
following, is used:

1. An initial starting point for the self-energy Σ pzq is required. Often, Σ pzq “ 0 is
sufficient, however a self-energy from a related calculation, e.g. with similar U ,
might also offer an appropriate starting point.

2. The local Green’s function Gloc pzq is calculated from Eq. 2.24. The chemical
potential µ should be adjusted at this point to ensure the desired filling of the
lattice.

3. Next, the bath Green’s function G0 is obtained with the Dyson equation (Eq. 2.25).

4. The solution of the impurity problem results in the impurity Green’s function
Gimp pzq. A selection of impurity solvers is discussed in Sec. 2.4.

5. Subsequently, the self-energy Σimp pzq can be calculated for the impurity model
via Dyson’s equation: Σimp pzq “ G´1

0,imp pzq ´G
´1
imp pzq .

6. Finally, Σimp pzq is used as self-energy of the lattice Σnew pzq “ Σimp pzq and is set
as new input self-energy for the next iteration starting with step 2.
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initial guess

calculate local Green's function

use self-energy on lattice remove local interactions

impurity self-energy solve impurity system

Figure 2.3.: The DMFT self-consistency cycle. Starting from an initial guess for the
self-energy Σ pzq the local lattice Green’s function Gloc pzq is obtained in
the first step. Next, the bath Green’s function G0 pzq is calculated with
Dyson’s equation. Solving the impurity model, which is defined by G0 pzq
and the interaction, gives the impurity Green’s function Gimp pzq and leads
via Dyson’s equation to a new self-energy Σ pzq. The whole procedure is
iterated until convergence is reached.

The self-consistency cycle stops when convergence is reached. This should be checked
on multiple levels, meaning that not just the self-energy Σimp pzq, but also Gimp pzq,
G0 pzq and µ can be assessed. Surprisingly, with this simple forward-iteration scheme
convergence can be reached rather quickly. In regimes close to phase transitions, where
convergence can be expected to be slower, mixing schemes might be used to enhance
the convergence properties of the DMFT cycle.
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2.4. Impurity solvers

2.4. Impurity solvers

DMFT transfers the notoriously difficult task of solving the Hubbard model to solving
a (multi-orbital) Anderson impurity model (AIM), but this multiple times. For sim-
plicity, we carry out our following considerations mainly for a single-impurity site, i.e.
a model with only one orbital.

In second quantization the AIM is given by an interacting impurity site coupled to
an infinite number of non-interacting bath sites. In general, there exist an infinite
number of bath geometries which can describe the non-interacting bath exactly. An
intuitive representation of the impurity system is the so-called star geometry (depicted
in Fig. 2.4), where all bath sites i couple only to the impurity site via the hopping t0i.
The single-orbital AIM Hamiltonian in star geometry reads [67]

HAIM “ Un0Òn0Ó ` ε0
ÿ

σ

n0σ
looooooooooomooooooooooon

Hloc

`

8
ÿ

i“1,σ
εia

:
iσaiσ

loooooomoooooon

Hbath

`

8
ÿ

i“1,σ
t0i

´

a:iσa0σ ` h.c.
¯

looooooooooooomooooooooooooon

Hhyb

. (2.29)

The different parts of the AIM Hamiltonian are the local part Hloc describing the
impurity site, the bath terms Hbath containing all non-interacting bath sites, and the
coupling of these two systems Hhyb. The parameters of the impurity site (U and the
impurity on-site energy ε0) are given by the lattice Hamiltonian. This means that
the interaction on the impurity site is exactly the same as the local interaction of the
Hubbard model (Eq. 2.10), which is described by the interaction tensor Ũαβγδ in the case
of multi-orbital models (see Eq. 2.11 and the corresponding discussion). The remaining
parameters (on-site energies εi of the bath levels and hoppings t0i) are defined by the
hybridization function in star geometry

∆ pzq “
8
ÿ

i“1

|t0i|
2

z ´ εi
. (2.30)

Obtaining the Green’s function of the impurity problem constitutes the computation-
ally demanding part of every DMFT calculation, but fortunately many numerical meth-
ods have been developed, both working on the real- and the imaginary-frequency axis.
Examples of Hamiltonian-based methods treating the AIM in second quantization are
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Figure 2.4.: AIM in star geometry. Each bath site couples directly to the impurity site.
Within DMFT the parameters ε0 and U are fixed by the lattice model and
the bath parameters are defined by the bath Green’s function G0 pzq, i.e.
the hybridization ∆ pzq. This figure is taken from Ref. [47].

exact diagonalization [15, 68, 69] and renormalization group techniques (e.g. NRG [70],
DMRG [71]). However, also solvers working directly with the impurity Green’s function
or the hybridization function like perturbative approaches (e.g. IPT [72], NCA [73]) or
quantum Monte Carlo methods (e.g. HFQMC [74], CTQMC [75]) are often employed.
All approaches have their advantages and disadvantages, and, of course, the appro-
priate choice of method depends on the application. Some selected impurity solvers
related to this thesis and the work of the author are briefly highlighted in the following.

2.4.1. Exact diagonalization (ED)

The basic approach of impurity solvers based on exact diagonalization (ED) is to
restrict the number of sites in the interacting system. Hence, the bath is truncated,
such that the remaining system can be numerically diagonalized [15, 68, 69].8

Determining the impurity model parameters for a finite-size bath is a delicate step,
because no unique procedure exists. Usually, the bath parameters cannot be obtained
directly on the real-frequency axis, but have to be determined with a fit procedure
on the Matsubara axis [15, 76]. Due to the restriction that only small systems with

8 If all bath sites are neglected the problem reduces to finding the atomic Green’s function. This
approximation is known as Hubbard-I [8], which is only justified for strongly-localized systems.
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2.4. Impurity solvers

10 to 20 sites in total can be treated in ED, the solution of the AIM will suffer from
finite-size artifacts. Various methods improving on ED have been presented in recent
years, e.g., the variational ED [77], the distributional ED [78], methods restricting the
basis states [79, 80], and methods using the cluster perturbation theory [47, 81, 82].

2.4.2. Iterated perturbation theory (IPT)

One of the first approaches to solve the DMFT self-consistency equations for
single-orbital models was the iterated perturbation theory (IPT) [9, 15, 83]. It is
based on an expansion up to second order in U and gives an expression for the
self-energy Σ piωnq in terms of the non-interacting bath Green’s function G0 pτq in
imaginary time τ (0 ă τ ă β with β “ 1{T as usual)

Σ piωnq »
U

2 ` U
2

β
ż

0

dτ G2
0 pτqG0 p´τq e

iωnτ . (2.31)

The first-order contribution (U{2) is only a constant and can be absorbed into the
chemical potential µ. IPT in its original form is only suitable for half-filled systems,
however extensions for problems away from half-filling and for multi-orbital mod-
els have been proposed [72, 84]. We use IPT in Sec. 2.6 to demonstrate the Mott
metal-insulator transition with increasing U for the special case of a half-filled Bethe
lattice.

2.4.3. Continuous-time hybridization expansion (CTHYB)

Continuous-time Monte Carlo methods (CTQMC), for a comprehensive review see
Ref. [85], are based on the expansion of the impurity partition function Z. The ad-
vantage of CTQMC solvers is that they can deal with multi-orbital impurity models,
solve the impurity model at a finite inverse temperature β, and are, up to statistical er-
rors, exact on the imaginary axis. Different formulations exist, like the weak-coupling
interaction expansion (CTINT) [86] or the strong-coupling hybridization expansion
(CTHYB) [75, 87]. The business of CTQMC solver development is a whole universe
on its own and has lead to very sophisticated and efficient algorithms in recent years.
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Specifically, in the context of multi-orbital calculations and the modeling of real ma-
terials with DMFT, the CTHYB impurity solver has become one of the most widely
used methods. In this section we briefly review the underlying idea on the exam-
ple of the single-orbital AIM. Extensive descriptions of the CTHYB algorithm, also
with regard to the measurement of Green’s functions, can be found in Refs. [75, 85,
87, 88]. Throughout this thesis we heavily use the CTHYB implementation of the
TRIQS/CTHYB package [88].

We have seen above (Eq. 2.29) that the AIM Hamiltonian can be split into a local, a
bath, and a hybridization part:

HAIM “ Hloc `Hbath `Hhyb “ H0 `Hhyb. (2.32)

The partition function Z in the interaction picture forHhyb in imaginary time,Hhybpτq “

eτH0 Hhyb e
´τH0 , reads

Z “ Tr
“

e´βHAIM
‰

“ Tr

»

–e´βH0T e
´

β
ş

0
dτ Hhybpτq

fi

fl

“

8
ÿ

q“0
p´1qq

β
ż

0

dτ1 ¨ ¨ ¨

β
ż

τq´1

dτq Tr
«

e´βH0T
1
ź

i“q

Hhybpτiq

ff

, (2.33)

where q is the expansion order and T the time ordering operator. By writing Hhybpτq

explicitly with creation and annihilation operators and subsequently integrating out
the non-interacting bath operators one ends up with

Z „
ÿ

q

ż q
ź

i“1
dτi dτ

1
i Trimp

«

e´βHlocT
1
ź

i“q

a:0pτiqa0pτ
1
iqq

ff

det
1ďi,jďq

∆pτi ´ τ 1jq , (2.34)

where the operator a0pτiq destroys an electron at imaginary time τi on the impurity and
the operator a:0pτ 1iq creates an electron at imaginary time τ 1i on the impurity, respec-
tively. Eq. 2.34 can be used in Monte Carlo simulations with configurations defined
by the expansion order and the imaginary times τ1¨¨¨q and τ 11¨¨¨q. Besides the parame-
ters to control the Monte Carlo procedure (e.g., number of measurements, number of
cycles, thermalization steps,...), the necessary input of a CTHYB solver is the local
Hamiltonian Hloc and the hybridization function ∆pτq.
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2.4. Impurity solvers

In the case of multi-orbital systems the demanding part is the evaluation of the trace.
However, this effort can be greatly reduced by an (automatic) partition of the local
Hilbert space and by the use of a tree structure to reuse parts of the trace calculation
which do not change between configurations [88, and the references therein].

In principle, CTHYB allows to treat arbitrary interaction tensors Ũαβγδ and also
off-diagonal hybridization matrices (∆abpτq ‰ δab∆aapτq). However, depending on the
inverse temperature and the specific forms of the interaction tensor and the hybridiza-
tion, the sign problem can become severe. This is caused by the fact that the sampled
weights can also be negative due to the anti-commutation relation between fermionic
operators, which can hinder the simulation of certain models [85]. For example, the
spin-flip and pair-hopping terms present in the Slater Hamiltonian do cause a sign prob-
lem for the calculations in Chs. 5 and 6, but as it is minor it does not substantially
affect the simulations.

As the impurity Green’s functions are accumulated in the imaginary domain, an an-
alytic continuation is necessary to obtain real-frequency quantities. Aspects of the
analytic continuation are discussed in Sec. 2.5.

2.4.4. Fork tensor product states (FTPS)

Although the quantum Monte Carlo solvers are exact on the imaginary axis (up to
statistical noise), the ill-posed nature of the analytic continuation (see Sec. 2.5) does
stimulate the development of impurity solvers working directly on the real-frequency
axis. Recently, the fork tensor product states (FTPS) multi-orbital impurity solver [89]
was presented. The core of this impurity solver is the special tensor network represen-
tation of the many-body ground state, particularly suited for the geometry of impurity
problems. In the following we give a brief outline of the underlying idea. The author’s
contribution to Ref. [89] is presented in Ch. 4. However, as the author of this thesis
was not directly involved in the development of the impurity solver itself, we refer the
interested reader to Ref. [89] for more specific details on the FTPS algorithm.

We start with the definition of matrix product states (MPS), which allow to represent
quantum-mechanical states |ψy of a N-site system as a product of tensors (si is an
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Figure 2.5.: Left: Graphical representation of an MPS. Each circle represents a tensor
Asii and each line an index of this tensor. The physical indices are the
vertical lines, while the horizontal lines are internal indices (bond dimen-
sion). If a line connects two circles, the corresponding indices are summed
over. Right: Graphical representation of a fork tensor product state for a
two-orbital AIM with four bath sites each. In this figure the orbitals are
labeled A and B and the arrows denote the spin. Note that the tensor net-
work geometry of the bath can be linear even if the bath is discretized in
star geometry. Two example hoppings t01 and t02 are drawn. Both figures
are taken from Ref. [89].

index corresponding to the local basis state at site i):

|ψy “
ÿ

s1,¨¨¨ ,sN

cs1,¨¨¨ ,sN |s1, ¨ ¨ ¨ , sNy “
ÿ

s1,¨¨¨ ,sN

As1
1 ¨ ¨ ¨A

sN
N |s1, ¨ ¨ ¨ , sNy . (2.35)

By employing repeated singular-value decompositions, the large tensor cs1,¨¨¨ ,sN can be
factorized into a product of local tensors Asii [90].9 The resulting tensors Asii are of
rank 3, with the exception of those with index 1 and N , which are of rank 2. In general,
a state of the full Hilbert space cannot be stored, but ground states can be represented
well by MPS of limited tensor dimension [91]. A graphical representation of an MPS
is shown in Fig. 2.5 (left).

Usually, the AIM is treated with MPS by placing the impurity in the middle of the
system and the up and down spin degrees of freedom to its left and right, respec-
tively [92, 93]. For a D-orbital model the state space of each site then consists of D
degrees of freedom with dimension 2D. This leads to an exponential growth of the

9 In the same way, operators can be factorized into tensor products [90].
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2.5. Analytic continuation

matrix dimensions, and thus the treatment of more than two orbitals is highly unfea-
sible. The core idea of FTPS is to separate the bath degrees of freedom as much as
possible [89]. The FTPS has impurity tensors for each orbital and spin combination
and these are connected to individual bath tensors (see right graph of Fig. 2.5). Hence,
not directly coupled degrees of freedom, i.e. the individual bath sites of each orbital,
are not combined to a large physical index like in the standard MPS approach.

To solve the impurity problem with FTPS mainly four steps are necessary [89]:

1. Accurate discretization of the AIM directly on the real-frequency axis with a
large number, Op100q, of bath sites.

2. Setup of the tensor product operator encoding the many-body Hamiltonian.

3. Search of the variational ground state by minimizing the expectation value

E0 “ min
|ψy

xψ|H|ψy

xψ|ψy
. (2.36)

This is achieved, within the density matrix renormalization group (DMRG), by
moving trough the network and always updating two neighboring tensors [71, 90].

4. Calculation of the interacting Green’s function, e.g. with real-time evolution.

2.5. Analytic continuation

CTQMC-based impurity solvers provide an imaginary-time Green’s function Gpτq as
solution to the interacting AIM. The desired physical quantity is usually the
real-frequency spectral function Apωq, i.e. the retarded Green’s function Gpωq. There-
fore, it is inevitable to perform an analytic continuation. Parts of the discussion here
follow the methodology section of our recent work on the extension of the maximum
entropy method (MEM) to matrix-valued Green’s functions [94]. Again, we omit spin
and orbital indices in this section, but note that the following equations are also valid
for matrix-valued Green’s functions.
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2. Theoretical background

We start with the connection between the spectral function Apωq and the Green’s
function Gpzq, which is explicitly given by the spectral representation

Gpzq “

ż

dω
Apωq

z ´ ω
, (2.37)

which is also valid for Matsubara Green’s functions

Gpiωnq “

ż

dω
Apωq

iωn ´ ω
. (2.38)

To obtain the imaginary-time Green’s function Gpτq we perform a discrete Fourier
transformation

Gpτq “
1
β

ÿ

ωn

e´iωnτGpiωnq “

ż

dω
1
β

ÿ

ωn

e´iωnτ
Apωq

iωn ´ ω
. (2.39)

The evaluation of the Matsubara-frequency sum results in

Gpτq “

ż

dω
e´ωτ

e´βω ` 1Apωq “
ż

dω Kpτ, ωqApωq , (2.40)

where Kpτ, ωq “ e´ωτ{pe´βω`1q is the Kernel of the transformation. Eq. 2.40 provides
the relationship between the imaginary-time Green’s function Gpτq and the spectral
function Apωq. A discretization of the functions Gpτq and Apωq to vectors Gn “ Gpτnq

and Am “ Apωmq leads to
Gn “ KnmAm , (2.41)

with
Knm “

e´ωmτn

1` e´ωmβ∆ωm . (2.42)

Calculating Gpτq from Apωq is straight forward, but the inversion of Eq. 2.41, i.e.
calculating A pωq from Am “ pK

´1qmnGn, is an ill-posed problem. To be more specific,
the condition number of K is very large due to the exponential decay of Knm with ωm
and τn, and therefore the direct inversion of K is not feasible by standard numerical
techniques [95]. In practice, this problem exists even for long-running Monte Carlo
calculations, as it is sensitive to the slightest noise on the data. Small changes on the
Matsubara axis can have a strong effect on the resulting spectral function and influence,
e.g., the shape and the position of the Hubbard bands.
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2.5. Analytic continuation

The ill-posed nature of the analytic continuation has lead to the development of various
methods. The most common ones are series expansions (e.g. the Padé method [95, 96]),
statistical approaches such as the MEM [97–99] and stochastic methods [100–102]. Of
course, all the mentioned methods have their advantages and drawbacks, and thus the
choice of the analytic continuation method depends strongly on the problem at hand.
For example, in Sec. 2.6 we use the Padé method together with the IPT solver, because
the calculated self-energies are noise-free. For the calculations presented in Chs. 5 and 6
we employ the stochastic method by Beach [101] to continue the CTHYB data. This
decision is based on two important points: First, the Padé approximation is known to
give unphysical solutions for noisier data, which can violate the positiveness of Apωq.
And second, the MEM spectra tend to exhibit spurious features around the Fermi
energy [97], which is problematic considering the calculation of transport properties
like the static conductivity and the Seebeck coefficient. Stochastic methods usually
provide a better resolution of sharp spectral features and reduce spurious oscillations
around the Fermi energy [101, 102], however they are computationally much more
demanding then the Padé approximation and the MEM methods.

The stochastic method by Beach [101] is based on a representation of the spectral
function as delta-peaks. A Monte Carlo procedure is carried out where the acceptance
of new configurations is determined with the Metropolis algorithm to ensure detailed
balance and ergodicity. Moves of the “delta function walkers” are shifts of peaks
by a certain distance, and weight sharing moves, where the weight of a subset of
walkers is redistributed among themselves. Note that these moves are such that the
norm of the spectral function is preserved. The energy E of a configuration is given
by a misfit. Parallel tempering is performed for multiple inverse temperature layers,
where configurations are swapped between layers such that each will settle into thermal
equilibrium. To obtain a final spectrum it is proposed to average over all solutions that
surpass the fitting threshold χ2pApωqq ă E˚. On a side note, the setup of a fitting
threshold can be also understood in terms of an implicit regularization parameter,
corresponding to the α in MEM procedures.
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2. Theoretical background

In the framework of our DFT+DMFT calculations (see Sec. 2.7) it is necessary to
perform an analytic continuation of the self-energy to obtain lattice quantities, e.g. the
k-resolved spectral function Apk, ωq, Fermi surfaces, or optical properties. However,
the self-energy is not a Green’s function per se, and thus Eq. 2.37 is not valid corre-
spondingly for self-energies. There are several ways to obtain the self-energy on the
real-axis Σpωq: First, one can perform an analytic continuation for G0,imp and Gimp

and calculate Σpωq from the Dyson equation on the real-axis. Usually, this approach
gives unreliable results as there are two analytic continuations and two inversions of
Green’s functions involved [103]. Another approach is to perform the continuation for
Glocpωq and solve for Σpωq using Eq. 2.24 (with z “ ω) [104]. And finally, the most
stable method is the construction of an auxiliary Green’s function from Σpiωnq [103,
105], which requires the following steps:

1. Construction of Gauxpiωnq from the self-energy Σpiωnq. A possible way is

Gcor
auxpiωnq “ Σpiωnq ´ Σpiωn Ñ 8q , (2.43)

where Σpiωn Ñ 8q is the constant moment of the tail of Σpiωnq. Another option
is the inversion method

Ginv
auxpiωnq “ piωn ` C ´ Σpiωnqq´1 . (2.44)

In principle, C is a free parameter, but it is usually set to C “ ΣDC `µ with the
double-counting correction ΣDC and the chemical potential µ.10

2. Analytic continuation of Gauxpiωnq to Aauxpωq with the method of choice.

3. Construction of Gauxpωq from Aauxpωq using Eq. 2.37.

4. Calculation of Σpωq from Gauxpωq with the real-frequency analog of Eq. 2.43 or
Eq. 2.44, respectively.

In this thesis all analytic continuations of self-energies have been carried out with the
construction of an auxiliary Green’s function via the inversion method.

10 We discuss the double-counting correction in Sec. 2.7.
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2.6. The Mott transition

2.6. The Mott transition

The physics of materials is strongly dependent on the competition between the kinetic
energy of the electrons and the Coulomb repulsion [16]. This competition is expressed
by the Hubbard model (Eq. 2.10). If we start from an artificial crystal with individual
atoms separated by a large distance, such that they are only weakly bound together,
the movement of the electrons is strongly suppressed and the system will be insulating.
In the Hubbard model this corresponds to U " t. This regime, known as the atomic
limit, can be best understood with the picture of localized particle-like electrons. When
we move the atoms closer together, the wave functions of the electrons localized at
different atoms will start to overlap. This allows the electrons to “hop” to an empty or
half-filled orbital of a neighboring atom, turning the system into a metal. Of course, if
an orbital is already occupied by one electron, the energy penalty U needs to be payed
to maintain the double occupancy. In the itinerant limit t " U , the material is well
described by conventional band theory and a wave-like electron picture.

In other words, with increasing interaction strength the electrons in a metallic material
become more and more localized and eventually undergo a transition into an insulator.
This interaction-driven transition, referred to as Mott metal-insulator transition [106,
107], is fundamentally different from a conventional band insulator. The character-
istic features when approaching the strongly correlated regime is the emergence of
low-energy quasiparticles and high-energy incoherent excitations (Hubbard bands) at
the same time. The quasiparticles can be still described in a picture of wave-like
particles, whereas the development of Hubbard bands is a sign for the importance of
atomic-like physics.

Although both limits (U " t and t " U) are fundamentally different, they are well
described either in momentum space by band theory or by the atomic limit in real
space. Obviously, the challenging task is to capture the transition from the itinerant
picture to the localized one, through the U « t regime, where electrons are neither
fully itinerant nor fully localized. Notably, DMFT captures the essential physics of the
Mott transition and is able to provide a bridge between the itinerant and the localized
picture [15].
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2. Theoretical background

The simplest case to justify this claim is the half-filled single-orbital Hubbard model on
the infinitely-coordinated Bethe lattice, which has a non-interacting DOS of
semi-circular shape [108] (top left graph in Fig. 2.6). On the Bethe lattice the DMFT
self-consistency cycle takes the particularly simple form [15]

G´1
0,imp pzq “ z ` µ´ t2Gimp pzq . (2.45)

To solve the impurity problem we use the IPT solver on the imaginary axis (Sec. 2.4.2)
and perform the analytic continuation with the Padé approximation [95, 96]. The Mott
transition can be best visualized by the evolution of the spectral function with increas-
ing interaction strength. In Fig. 2.6 the spectral functions for interaction strengths from
U “ 0 eV to 7 eV are shown for a non-interacting DOS with half-bandwidth D “ 2 eV.
With increasing U a characteristic three-peak structure develops, which is a mixture of
emerging Hubbard bands and a quasiparticle peak centered at the chemical potential
(see the second and third row in Fig. 2.6). Hence, the transition towards the insulat-
ing state appears as a transfer of spectral weight from the quasiparticle peak to the
high-energy Hubbard bands. At the phase-transition point, occurring in this example
at a critical Uc{D slightly lower than 3, the quasiparticle peak vanishes and only the
two Hubbard bands are left. In the insulating regime the centers of the Hubbard bands
are separated by an energy difference of approximately U (bottom row of Fig. 2.6).

We note that at low temperatures the Mott transition point is surrounded by a coex-
istence region where a metallic and an insulating solution can be stabilized [69, 109,
110]. With the IPT solver this coexistence region can be observed on the Bethe lattice
between about U 1c{D “ 2.6 and Uc{D (not shown). To which solution the DMFT cycle
converges depends mainly on the starting point.

A quantitative measure for the spectral weight of the quasiparticle peak is the quasi-
particle renormalization Z. Within Fermi-liquid theory, excitations created by adding
a particle to the system are described by free particles with a long life time and a renor-
malized mass [48, 65, 66]. In this picture a gas of interacting electrons can be seen as a
gas of renormalized non-interacting quasiparticles. Therefore, the quasiparticle picture
is only correct if the retarded Green’s function of the interacting system is similar to
that of non-interacting particles around the Fermi energy. The following derivation is
based on the argumentation in Ref. [66].
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Figure 2.6.: Mott metal-insulator transition on the Bethe lattice with a semi-circular
non-interacting DOS. The half bandwidthD is set to 2 eV. With increasing
interaction strength U a characteristic three-peak structure emerges. At
the phase transition (Uc{D slightly lower than 3) the quasiparticle peak
vanishes and only the two Hubbard bands are left. For a comparison to
results in the literature see, e.g., Ref. [15].
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2. Theoretical background

First, we consider the retarded Green’s function G pk, ωq and separate the self-energy
Σ pωq into its real and imaginary parts11

G pk, ωq “
1

ω ´ εk ` µ´ Σpωq “
1

ω ´ εk ` µ´ < rΣpωqs ´ i= rΣpωqs
. (2.46)

We now expand the self-energy to the first order in ω

G pk, ωq «
„

ω ´ εk ` µ´ < rΣ p0qs ´ ω
B< rΣ pωqs

Bω

ˇ

ˇ

ˇ

ˇ

ω“0

´1

. (2.47)

It was shown by Luttinger [111] that in the metallic regime the imaginary part of
every diagram contributing to Σ pωq goes to zero as pεk ´ µq

2 or faster, and thus we
set = rΣpωqs to zero for an expansion around ω “ 0. Using the definitions

Z´1
” 1´ B< rΣ pωqs

Bω

ˇ

ˇ

ˇ

ˇ

ω“0
and ε̃k ” Z pεk ´ < rΣ p0qsq , (2.48)

we rewrite Eq. 2.47 as
G pk, ωq «

Z

ω ´ ε̃k ` µ
. (2.49)

This result effectively describes non-interacting quasiparticles with the following prop-
erties provoked by the interaction: First, the spectral weight around the Fermi energy
is renormalized by a factor of Z.12 Second, also the non-interacting dispersion εk is
renormalized by a factor of Z, which corresponds to electrons gaining an effective mass
of m˚ “ m{Z due to electronic interactions. In general, Z provides a quantitative
measure for correlation-induced effects, which can be summarized as:

• U “ 0 Ñ Z “ 1
Uncorrelated system and hence no renormalization of the dispersion εk. The
conventional band-structure picture is valid.

11 For simplicity and with regard to the DMFT approximation, we assume here a k-independent
self-energy Σ pωq.

12 As the total spectral function is normalized to one, there exists also incoherent spectral weight
(1´ Z), which is, however, not described by the quasiparticle approximation. The normalization
also implies 1 ě Z ě 0.
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2.7. A successful marriage: DFT+DMFT

• 0 ă U ă Uc Ñ 1 ą Z ą 0
Renormalization due to electronic correlations. The system is in a metallic phase
because of spectral weight at the Fermi energy, but the weight of the quasipar-
ticle peak shrinks with increased U . Uc marks the critical U value of the Mott
transition.

• U ě Uc Ñ Z “ 0
Correlation-induced Mott insulator. The spectral weight at the Fermi energy is
zero.

When using impurity solvers working on the Matsubara axis, Z can be evaluated with

Z´1
“ 1´ B= rΣ piωnqs

Bωn

ˇ

ˇ

ˇ

ˇ

wnÑ0
, (2.50)

which follows from Eq. 2.48 and the Cauchy-Riemann equations for complex
functions.

2.7. A successful marriage: DFT+DMFT

One of the most successful approaches to model strongly correlated materials is the
DFT+DMFT method (or LDA+DMFT) [14, 18–20]. By now, we have already dis-
cussed DFT, DMFT, and aspects related to impurity solvers. However, for DFT+DMFT
a few additional ingredients are necessary, which specifically concerns the linking of
DFT and DMFT with an interface layer to construct Wannier functions. These provide
an appropriate basis of the (multi-orbital) Hubbard model as they resemble localized
atomic-like orbitals in real space.

The basic flow chart of DFT+DMFT is schematically shown in Fig. 2.7. After an initial
DFT calculation the Kohn-Sham orbitals are used to construct a localized Wannier
basis in which the low-energy Hubbard model is set up. Consequently, the Hubbard
model is solved with DMFT. Depending on the quantities of interest and the choice of
the impurity solver, an analytic continuation might be necessary for the post-processing
of the DMFT result (Secs. 2.4 and 2.5).
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DFT
Interface 

layer
DMFT

Figure 2.7.: General structure of a (fully charge self-consistent) DFT+DMFT calcula-
tion. This sketch is taken from Ref. [112].

Often only one-shot DFT+DMFT calculations are performed, where the described
steps are carried out only. However, as correlations alter the charge density n prq,
these effects should be also incorporated into the Kohn-Sham potential. To this end,
the interacting density matrix of the orbitals described within DMFT
can be used to recalculate the DFT ground-state density, leading to a new
Kohn-Sham exchange-correlation potential, and consequently also to a new Kohn-Sham
eigensystem. This advanced scheme is usually referred to as fully charge self-consistent
DFT+DMFT. After initially converging the DFT part, a common way to proceed in
fully charge self-consistent calculations is to solve the Kohn-Sham eigensystem (Eq. 2.7)
and the impurity model once in each DFT+DMFT cycle. As long as DMFT is the com-
putationally expensive part of the calculation, the individual iterations of fully charge
self-consistent DFT+DMFT are generally not much more demanding than those of
one-shot calculations. As a rough guide, the additional computational effort due to
an increased number of self-consistency loops necessary for convergence is normally
around 50% in comparison to the one-shot scheme. Of course, this extra effort de-
pends largely on the problem at hand and on how relevant the DMFT corrections to
the charge density are. In this work we use one-shot calculations for SrVO3 in Ch. 4
and for Sr2RuO4 in App. B. Fully charge self-consistent calculations are performed for
the manganese pnictides discussed in Chs. 5 and 6.

Now we turn our focus to the construction of Wannier functions. In contrast to the
Bloch wave functions, these functions are localized in real space, and therefore provide
a natural basis to include local interaction. Wannier functions form an orthonormal
basis set and usually resemble atomic orbitals, because they are centered on atoms
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and decay with increasing distance from the nuclei. They are defined as the Fourier
transform of the Bloch states ϕkν prq13

wiα prq “
ÿ

k
e´ik¨Ri

ÿ

ν

T iανϕkν prq , (2.51)

where i is the atom index, α the orbital index, and ν the index of the Kohn-Sham band.
T iαν is a unitary transformation matrix, which is not uniquely defined. One choice are
the so-called maximally localized Wannier functions [113, 114]. Here, the elements of
T are determined by minimizing the total spread

Ω “
ÿ

iα

´

xwiα|r
2
|wiαy ´ xw

i
α|r|wiαy

2
¯

. (2.52)

In general, only a subset of the DFT bands have a sizable orbital character of the
localized shells of interest. This subset is referred to as the correlated subspace. The
rest is assumed to be well described already in DFT. For each DFT+DMFT calculation
the correlated subspace has to be identified by the selection of the correlated orbitals.
This can be the 3d-t2g orbitals of SrVO3 (Ch. 4) or the full 3d manifold in the case
of the manganese pnictides as used in Chs. 5 and 6. The construction of maximally
localized Wannier functions for the correlated subspace can be unstable and usually
requires some level of user control, especially if the bands of the correlated subspace
are strongly entangled with other bands.

An alternative is provided by projective Wannier functions, which are simple to con-
struct and therefore beneficial for automatized fully charge self-consistent calcula-
tions [115, 116]. Projective Wannier functions are constructed from a truncated expan-
sion of a set of orthonormal atomic-like orbitals |χiαy in the Kohn-Sham basis |ϕkνy

|χikαy “
ÿ

νPW
xϕkν |χ

i
αy |ϕkνy . (2.53)

The truncation is specified by an energy window W , which restricts the sum over all
Kohn-sham states ν to those states with Kohn-Sham energies within W . The matrix
elements of the projection operator for the correlated subspace ν PW are

P i
αν pkq “ xχiα|ϕkνy . (2.54)

13 Again, we drop here and in the following the spin index σ.
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By construction, the |χikαy form only an orthonormal set if the sum in Eq. 2.53 is not
truncated, and thus includes all Kohn-Sham bands. In all other cases the orbitals |χikαy
have to be orthonormalized, leading to orthonormalized projectors [115, 116]

P̃ i
αν pkq “

ÿ

jβ

“

Opkq´1{2‰ij
αβ
P i
αν pkq , (2.55)

with the overlap matrix

Oij
αβpkq “

ÿ

νPW
P i
αν pkqP

j˚
νβ pkq . (2.56)

Note that the projectors P̃ i
αν pkq are only square matrices if the number of

Kohn-Sham states included in W is equal to the number of correlated orbitals. In
this work we mainly use projective Wannier functions constructed from the Wien2k
basis set (linearized augmented plane wave + local orbital, i.e. LAPW+lo) [117, 118]
as it is implemented in the TRIQS/DFTTools package [112, 116, 119].

For DFT+DMFT calculations it is convenient to use the Kohn-Sham basis as the
complete basis set of the problem. This means that the lattice Green’s function of the
crystal is evaluated in the Kohn-Sham basis

Gνν1 pk, zq “
”

pz ´ εkν ` µqδνν1 ´ Σνν1pk, zq
ı´1

. (2.57)

Still, the impurity problem is formulated in the localized Wannier basis. The required
local Green’s function is obtained by “downfolding” to the localized Wannier basis
using the orthonormalized projectors P̃ i

αν pkq

Gi
loc,αβpzq “

ÿ

k

ÿ

νν1

P̃ i
ανpkq

”

pz ´ εkν ` µqδνν1 ´ Σνν1pk, zq
ı´1

P̃ i˚
βν1pkq . (2.58)

The impurity solver provides a self-energy in the Wannier basis Σimp,αβpzq. However,
the self-energy needed in Eq. 2.57 is the self-energy defined in the Kohn-Sham space
Σνν1pk, zq, which is obtained by “upfolding” the impurity self-energy

Σνν1pk, zq “
ÿ

i,αβ

P̃ i˚
ανpkq

`

Σimp,αβpzq ´ ΣDC
˘

P̃ i
βν1pkq . (2.59)
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At this point we encounter an important detail of DFT+DMFT calculations, namely
the double-counting correction ΣDC . This correction is necessary to avoid a double
contribution of the long-range Hartree and the mean-field exchange-correlation inter-
action, which have been already taken into account on the level of the DFT functional.
In principle, the double-counting term can be understood as an additional term

HDC “
ÿ

iα

Diαniα , (2.60)

which is subtracted from the many-body Hamiltonian (Eq. 2.11). Usually, the double
counting is set to be the same for all orbitals (Diα “ D). Since D cannot be rigorously
determined from the DFT functional, only approximative schemes are available [56].
Two common ones are:14

1. Around mean field (AMF): The correlations included in DFT are assumed to be
of mean-field character, which gives a double-counting correction of [124]

DAMF
“ UN ´ JNσ ´

Nσ

2l ` 1 pU ´ Jq , (2.61)

where N is the total number of particles in the correlated subspace, Nσ the
number of particles per spin, and 2l ` 1 the number of correlated orbitals.

2. Fully localized limit (FLL): This correction is derived from the assumption of
atoms separated such that no hybridization between them is present (atomic
limit). The exact diagonalization of the atomic Hamiltonian leads to a
double-counting correction of [125]

DFLL
“ UpN ´

1
2q ´ JpNσ ´

1
2q . (2.62)

Also, a variant of the FLL correction for Kanamori Hamiltonians exists [126].

In models where only correlated bands are taken into account, i.e. when the number of
bands in the correlated subspace is equal to the number of Wannier orbitals, the double
counting acts as an effective energy shift. This shift can be absorbed into the chemical
potential, which is anyhow adjusted to give the desired filling of the system. Notably,
14 Next to these two schemes some other approximations have been proposed [120–123].
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in the case of fully charge self-consistent calculation it was observed that the choice of
the double counting is less crucial in comparison to the one-shot scheme [119].

One might be overwhelmed by the zoo of approximations necessary to end up with a
method capable of modeling strongly correlated materials. To mention them (without
guarantee of completeness): the choice of the DFT functional, the construction of a
Hubbard model in a selected Wannier basis, the determination of interaction param-
eters (U and J), the approximation of the self-energy as a local quantity, the double-
counting correction, and the ill-posed analytic continuation when using CTQMC im-
purity solvers. And yet, these approximations seem to be very reasonable as proven by
a wide range of insights into the nature of strongly correlated materials provided by
DFT+DMFT calculations. Furthermore, the development of sophisticated computer
codes, like the TRIQS software package [88, 112, 127], have drastically simplified the
application of DFT+DMFT for the modeling of strongly correlated materials.
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Preamble

In this chapter we focus on the evaluation of transport quantities within linear re-
sponse theory. On the example of the optical conductivity, we show in Sec. 3.2 how
an expression in the limit of infinite dimensionality can be derived by starting from
the Kubo formula (based on the comprehensive discussions in Refs. [66, 128, 129]).
Importantly, the resulting formulae prove to be especially useful in the context of
real-material calculations, because they provide a simple way to obtain transport quan-
tities in a post-processing step to DFT+DMFT [15, 19, 112, 130, 131].

The author of this thesis is responsible for the implementation of the TRIQS/DFTTools
transport code [112], which is in parts based on an earlier work by X. Deng. Details
of this transport code are discussed in Sec. 3.4.

3.1. Linear response

We are interested in the response of a system to an external perturbation. If this
perturbation is low in magnitude it is usually assumed that the responding signal
is directly proportional to the intensity of the perturbation. Here, we focus on the
presence of an external electric field Eext, a magnetic field Bext, or a temperature
gradient ∇T , which can all lead to a response in the electrical current j. Additionally,
external perturbations can cause a redistribution of charge carriers and in turn other
(internal) fields are created. We assume that the induced current is proportional to
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the total fields E and B present in a material. The current response in direction
α P tx, y, zu is given in first order of the perturbation, i.e. in linear response, by

jα “ σαα
1

Eα1
` σαβSβα

1∇α1T ` σαα
1α2

H Eα1Bα2 , (3.1)

where σ is the conductivity tensor, S the Seebeck tensor (or thermoelectric power),
and σH the Hall conductivity tensor. A sum over double indices, here α1, α2 and β,
is implied. In principle, σ and S are tensors of rank 2 and σH is a rank-3 tensor,
however crystal symmetries can impose a restriction on the individual entries. For
example, in a cubic system the response is isotropic and rank-2 tensors are diagonal
with σαα1 “ δαα1σ0.

Of course, also time-dependent perturbations can be considered. For an electric field
with a single pq,Ωq-mode

Eα1
pr, tq “ Eα1

0 e
ipqr´Ωtq , (3.2)

the current in linear response theory is given by (∇T “ 0 and B “ 0)

jα pr, tq “
ż

dr1
t
ż

´8

dt1 σαα
1

pr´ r1, t´ t1qEα1
pr1, t1q , (3.3)

or correspondingly in Fourier space

jα pq,Ωq “ σαα
1

pq,ΩqEα1
pq,Ωq . (3.4)

Here, we have already assumed that the response is a function of r ´ r1, i.e.
σαα

1

pr, r1, t´ t1q “ σαα
1

pr´ r1, t´ t1q. This is justified if we average over many unit
cells and if the perturbation wavelength is large in comparison to the typical length
scales in a solid [128]. In other words, we are only interested in the limit of long wave-
length excitations (q Ñ 0), also know as the dipole approximation. Then, the optical
conductivity tensor dependents only on the external frequency Ω

jα pΩq “ σαα
1

pΩqEα1
pΩq . (3.5)

In the optical-frequency regime this is a well-justified approximation, since photons do
not transfer momentum to the electrons. We would like to mention that other optical

40



3.1. Linear response

quantities, e.g. the dielectric function or the reflectivity, can be directly derived from
the optical conductivity [48, 66, 128].

We stated in Eq. 3.1 that a temperature gradient ∇T induces an electric current. This
can be made plausible by the following simple picture [48]: Imagine a material with
a hot end and a cold end. At the hot end thermal fluctuations of electrons will be
stronger in comparison to the cold end. Consequently, more electrons occupy energy
levels above the Fermi energy on the hot end and these “high-energy” electrons will
start to diffuse from the hot end to the cold one. However, electrons occupying levels
below the Fermi energy will be drawn from the cold end towards to hot end. These
are two competing processes and a total current can only flow if one is stronger than
the other. For this to be possible, an asymmetry has to be present on a microscopical
level, which might be found in the density of states (DOS), the scattering times or the
velocities of the charges.15 Under open-circuit conditions no net current can flow, and
thus the electrons will only diffuse until enough charge has accumulated on one end
of the sample to build up a counteracting electric field. We realize that, when this
steady-state is reached, the result of the temperature gradient is a thermoelectric field,
which was experimentally first observed nearly 200 years ago by T. Seebeck [132]. By
setting the current jα and the magnetic field Bα2 to zero in Eq. 3.1, we obtain

Eα
“ ´Sαα

1∇α1T . (3.6)

Without an external current flowing, i.e. without external electric field, the Seebeck
tensor connects an (applied) temperature gradient to the induced electric field. Note
that, within thermodynamics, the Seebeck coefficient can be understood as the entropy
transported per charge carrier [133].

The third term in Eq. 3.1 is responsible for the Hall effect, which describes the induced
electric field observed when an electrical current flows through a material under the
presence of a magnetic field [48, 134]. Due to the magnetic field the charge carriers
experience the Lorentz force, which bends their, otherwise straight, path between scat-
tering events. The consequence is an asymmetric distribution of carriers across the
sample with charges accumulating on one side. In the steady-state no current can flow
15 In our work we focus only on electronic effects, but of course also the lattice degrees of freedoms

can have an influence on the heat transport in a material.
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3. Transport properties

in the direction perpendicular to the applied current and the magnetic field, which re-
sults, like in the case of a temperature gradient, in a counteracting electric field caused
by the charge separation. Given a current applied in x direction and a magnetic field
pointing in z direction, the Hall number RH is defined as

Rxyz
H “

Ey

jxBz
, (3.7)

with the induced electric field in y direction Ey. Eq. 3.7 can be expressed in terms of
σ and σH (following from Eq. 3.1 with jy “ 0)

Rxyz
H “

`

σ´1˘iy σjizH
`

σ´1˘xj . (3.8)

When the crystal symmetry demands σxy “ 0, the Hall number RH reduces to

RH “
σxyzH

σxxσyy
. (3.9)

We will not further elaborate on the Hall effect in the main part of this thesis, but we
point the reader to App. B on Sr2RuO4, where we discuss the temperature dependent
sign of RH observed in this compound.

3.2. Optical conductivity in d Ñ 8

In this section we review the derivation of the optical conductivity σαα
1

pΩq in the
limit of infinite dimensionality (d Ñ 8). The first part (up to Eq. 3.23) follows the
derivation presented in Refs. [129, 135]. We directly start from the explicit expression
for the “paramagnetic” contribution16 to the optical conductivity within the Kubo
formalism [136] (see, e.g., the textbooks by Mahan [128] or Bruus and Flensberg [66]
for a derivation of the Kubo formula)17

σαα
1

pq,Ωq “ 1
V Ω

t
ż

´8

dt1 eiΩpt´t
1q

〈
”

jα p´q, tq , jα1 pq, t1q
ı

〉
. (3.10)

16 The “diamagnetic” term is given by σαα
1

dia pΩq “ in0
Ω δαα1 , where n0 is the average electron den-

sity [128]. We omit this term as it does not contribute to the real part of the optical conductivity.
17 Like in the previous chapter we use again atomic units.
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3.2. Optical conductivity in d Ñ 8

The symbol 〈 ¨ ¨ ¨ 〉 denotes the thermal expectation value of the unperturbed system
and V is the unit cell volume. Basically, the Kubo formula expresses the optical
conductivity σαα1pq,Ωq in terms of a current-current correlation function. Using the
homogeneity of time and the previously discussed long wavelength limit q Ñ 0, we
obtain

σαα
1

pΩq “ 1
V Ω

8
ż

0

dt eiΩt
〈
”

jα ptq , jα
1

p0q
ı

〉
. (3.11)

By defining the current-current correlation function as

χαα
1

ptq “ ´
i

V

〈
”

jα ptq , jα
1

p0q
ı

〉
, (3.12)

we rewrite the optical conductivity as

σαα
1

pΩq “ i

Ω

8
ż

0

dt eiΩtχαα
1

ptq “
i

Ωχ
αα1
pΩq , (3.13)

and hence the real part of the optical conductivity is

σαα
1

R pΩq :“ <
”

σαα
1

pΩq
ı

“ ´
1
Ω=

”

χαα
1

pΩq
ı

. (3.14)

Now we switch to imaginary time τ , where the current-current correlation function
reads

χαα
1

pτq “ ´
1
V

〈
T jα pτq jα1 p0q

〉
. (3.15)

To proceed, we shall define the current operator in imaginary time as [66, 128]

jα pτq “
ÿ

k,νν1,σ
vανν1,σ pkq c:ν,σ pk, τq cν1,σ pk, τq . (3.16)

The velocities vανν1,σ are matrices in the band indices ν, ν 1 given by

vανν1,σ pkq “ xϕσkν |pα|ϕσkν1y “ ´i xϕσkν |∇α
|ϕσkν1y , (3.17)

with pα being the α-component of the momentum operator. The |ϕσkνy are a complete
set of one-electron basis functions, in our cases the Kohn-Sham bands. We continue,
in the following, with the evaluation of Eq. 3.15 by using the definition of the current
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operator (Eq. 3.16) to obtain

χαα
1

pτq “ ´
1
V

ÿ

k,νν1,σ

ÿ

k1,κκ1,σ1
vανν1,σ pkq vα

1

κκ1,σ1 pk1q

ˆ
〈
T c:ν,σ pk, τq cν1,σ pk, τq c

:

κ,σ1 pk1, 0q cκ1,σ1 pk1, 0q
〉
. (3.18)

In general, χαα1 pτq is a two-particle quantity, because the expectation values comprise
four fermionic operators. Nevertheless, it can be shown that in the single-orbital case
and in the limit of infinite dimensionality (d Ñ 8), the current-current correlation
function χαα1 pτq reduces to a product of two single-particle Green’s functions defined
(in imaginary time) as Gνν1,σ pk, τq “ ´

〈
cν,σ pk, τq c:ν1,σ pk, 0q

〉
[15, 137–139].18 Or to

put it differently, all vertex corrections drop out in the evaluation of q “ 0 correla-
tion functions in infinite dimensions and only the particle-hole bubble diagram gives
a contribution. This observation is not strictly true in the multi-orbital case, however
in the interest of practicability, vertex corrections are usually neglected in the context
of realistic DFT+DMFT calculations [135]. If we take only the bubble diagram into
account in Eq. 3.18, we end up with [15, 129]

χαα
1

pτq “ ´
1
V

ÿ

k

ÿ

νν1κκ1

ÿ

σ

vανν1,σ pkqGν1κ,σ pk, τq vα
1

κκ1,σ pkqGκ1ν,σ pk,´τq , (3.19)

or in matrix formulation

χαα
1

pτq “ ´
Nσ

V

ÿ

k
Tr

´

vα pkqG pk, τq vα1 pkqG pk,´τq
¯

. (3.20)

We imply with the trace that the velocities vα pkq and the Green’s functions G pk, τq are
matrices in the band indices ν, ν 1. The factor Nσ takes into account the spin degeneracy
in the case of non-spin-polarized calculations. A Fourier transform of Eq. 3.20 leads to
(see Ref. [129] for the detailed steps)

χαα
1

piΩnq “ ´
Nσ

V

ÿ

k

ż

dω

ż

dω1
f pω1q ´ f pωq

ω ´ ω1 ` iΩn

ˆ Tr
´

vα pkqA pk, ω1q vα1 pkqA pk, ωq
¯

, (3.21)

18 Here, and in the following, we assume that the Green’s function does not have off-diagonal elements
in the spin indices.
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3.2. Optical conductivity in d Ñ 8

where fpωq is the Fermi function andA pk, ωq the k-resolved spectral function as defined
in Eq. 2.18. After an analytic continuation (iΩn Ñ Ω ` i0`) of Eq. 3.21, we finally
obtain from Eq. 3.14 the real part of the frequency-dependent optical conductivity

σαα
1

R pΩq “ Nσπ

ż

dω Γαα1pω ` Ω, ωq fpωq ´ fpω ` Ωq
Ω . (3.22)

In Eq. 3.22 we have used the transport distribution Γαα1 defined as

Γαα1 pω1, ω2q “
1
V

ÿ

k

Tr
´

vαpkqApk, ω1qv
α1
pkqApk, ω2q

¯

. (3.23)

The spectral function A pk, ωq is the interacting (correlated) spectral function; this is
also where the k-independent self-energy from DFT+DMFT enters. The velocities
vαpkq are unchanged by the interaction. With those two quantities at hand, the trans-
port distribution (Eq. 3.23) can be evaluated in a post-processing step to DFT+DMFT
(see Sec. 3.4). It should be kept in mind that in multi-band systems the velocities
vανν1pkq and the spectral function Aνν1pk, ωq are Hermitian matrices in the Kohn-Sham
band indices ν, ν 1.

The approximations required to derive Eq. 3.22 are (i) the use of linear response the-
ory, i.e. the Kubo formalism, (ii) the assumption of a homogeneous system σ pr, r1q “
σ pr´ r1q, (iii) the dipole approximation q “ 0 and (iv) the neglect of vertex cor-
rections. In principle, the formalism is not limited to local self-energies and could
be generalized to k-dependent Σ pk, ωq. In such cases one would need to take vertex
corrections to the particle-hole bubble into account.

In the limit Ω Ñ 0 (using L’Hospital) Eq. 3.22 reduces to the static conductivity19

σαα
1

R “ Nσπ

ż

dω

ˆ

´
Bf pωq

Bω

˙

Γαα1pω, ωq . (3.24)

This static transport integral can be generalized with the kinetic coefficients

Kαα1

n “ Nσπ

ż

dω pβωqn
ˆ

´
Bf pωq

Bω

˙

Γαα1 pω, ωq . (3.25)

19 In practice, the derivative of the Fermi function is expressed as Bf pωq {Bω “ ´βf pωq f p´ωq.
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Figure 3.1.: Dependence of the Fermi function derivative ´Bf pωq {Bω on the inverse
temperature β.

Then, the conductivity σαα1R and the Seebeck tensor Sαα1 are defined as [128]

σαα
1

R “ Kαα1

0 and Sαα
1

“ ´
`

K´1
0
˘αγ

Kγα1

1 . (3.26)

We note that the coefficient K1 follows from a current-heat-(current) correlation func-
tion. For a crystal symmetry demanding diagonal rank-2 tensors, like it is the case for
all materials studied in this work, the Seebeck coefficient in direction α is given by

Sα “ ´
Kαα

1
Kαα

0
“ ´

Kαα
1

σααR
. (3.27)

We have pointed out previously that the Seebeck coefficient is a result of asymmetries
in the properties of the electronic carriers. This fact is reflected by Eq. 3.26, because
Kαα1

1 is nothing else but the first moment of the transport distribution Γαα1 pω, ωq, and
thus measures its degree of electron-hole asymmetry. As the velocities vαpkq and the
spectral function Apk, ωq enter Γαα1 pω, ωq, such an asymmetry can be present in either
or both of them. The Seebeck coefficient can have either sign, where the sign indicates
the charge of the conducting carriers.20

20 In multi-band systems holes and electrons can contribute to the Seebeck coefficient, and then the
sign is the result of averaging the individual contributions (see App. B).
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3.3. Connection to Boltzmann theory

For the Hall conductivity σH no multi-band formalism has been derived so far. How-
ever, a single-band version exists, which we discuss in App. B.

Finally, we point out that the static transport quantities are sensitive to the details of
the Fermi surface, as the Fermi function in Eq. 3.25 selects a temperature-dependent
energy window around the Fermi energy (Fig. 3.1). We also see, depending on the
temperature, that the information of the spectral function in an energy window around
the Fermi energy will have an influence on the static transport quantities. When
lowering the temperature this energy window narrows until only the Fermi surface
becomes the decisive factor in the limit T Ñ 0K.

3.3. Connection to Boltzmann theory

In this section we show that the kinetic coefficients (Eq. 3.25) reduce to Boltzmann
transport theory, when we (i) use the constant scattering time τs (const.-τs) approxi-
mation, i.e. set Σνν1pk, ωq “ ´i{τs, and (ii) approximate the general velocity matrices
vανν1pkq by the simpler group velocities ṽανν1pkq “ Bενk{Bkα obtained from the derivative
of the dispersion ενk.

First, we discuss the relation between vανν1pkq and ṽανν1pkq. Using the Bloch theo-
rem |ϕkνy “ eikr |ukνy the elements of the full velocity matrices vαννpkq are given by
(cf. 3.17)

vανν1 pkq “ ´i xukν |e
´ikr∇αeikr

|ukν1y “ (3.28)

“ xukν | p´i∇α
` kαq |ukν1y “ xukν |

BH0 pkq
Bkα

|ukν1y ,

where we have used H0 pkq “ 1
2 p´i∇` kq2 for the single-particle Hamiltonian. Rewrit-

ing the right hand expression of Eq. 3.28 leads to

xukν |
BH0 pkq
Bkα

|ukν1y “
B xukν |H0 pkq |ukν1y

Bkα
(3.29)

´ xBukν{Bk
α
|H0 pkq |ukν1y ´ xukν |H0 pkq |Bukν1{Bk

α
y .
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In this equation we identify the first term on the right hand side as ṽανν1pkq, because it
simplifies to

B xukν |H0 pkq |ukν1y

Bkα
“ δνν1

Bενk
Bkα

“ ṽανν1pkq . (3.30)

The |ukνy are the eigenstates and the ενk are the eigenenergies of H0 pkq. As ṽανν1pkq
is diagonal, possible inter-band elements are neglected, which are given by the terms
in the second line of Eq. 3.29. As a consequence of the Hellmann–Feynman theo-
rem [140] these terms are zero for the diagonal elements (ν “ ν 1), and thus we find
vανν pkq “ ṽαννpkq. On a side note, the velocities ṽανν1pkq can be directly obtained from
the dispersion ενk without an explicit knowledge of the basis functions.

Within the two approximations given above, the matrices in the transport distribution
(Eq. 3.23) are diagonal and the matrix multiplications and the trace reduce to a sum
over band indices ν. The kinetic coefficients are written as

K̃αα1

n “
Nσπ

V

ż

dω pβωqn
ˆ

´
Bf pωq

Bω

˙

ÿ

ν

ÿ

k

Bενk
Bkα

Bενk
Bkα1

Aννpk, ωq2 . (3.31)

For a single-band model Eq. 3.31 and Eq. 3.25 are equivalent. For multi-band sys-
tems, Eq. 3.31 only takes into account the intra-band transitions but neglects possible
inter-band contributions.

In principle, the scattering time τs depends on the band index and the k-direction.
However, in the simplest approximation, often used in practice (e.g. by the
BoltzTraP code [141]), τs is assumed to be direction-independent (isotropic) and con-
stant.21 Within the const.-τs approximation, the spectral function reads

Aννpk, ωq “
1
π

1
τs

pω ´ ενkq
2
` 1

τ2
s

, (3.32)

where we have set the chemical potential to µ “ 0. For each k-point Aννpk, ωq is
described by a Lorentzian centered at ενk. For a large τs the Lorentzian becomes narrow
in energy, and therefore we further approximate the kinetic coefficient (Eq. 3.31) as

K̃αα1

n «
Nσπ

V

ÿ

ν

ÿ

k
pβενkq

n

ˆ

´
Bf pωq

Bω

˙

∣∣∣∣∣
ω“ενk

Bενk
Bkα

Bενk
Bkα1

ż

dω Aννpk, ωq2 . (3.33)

21 This approximation is usually not justified for strongly correlated systems, where the self-energy
can show a substantial dependence on the orbitals and ω.
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The remaining ω-integral over Aννpk, ωq2 is
ż

dω Aννpk, ωq2 “
1

π2τ 2
s

ż

dω
1

´

pω ´ ενkq
2
` 1

τ2
s

¯2

“
1

π2τ 2
s

ż

dx
1

x2 ` 1
τ2
s

“
1

π2τ 2
s

πτ 3
s

2 “
τs
2π , (3.34)

which brings us to the final equation for the kinetic coefficient

K̃αα1

n «
Nσ

2V
ÿ

ν

ÿ

k

pβενkq
n

ˆ

´
Bf pωq

Bω

˙

∣∣∣∣∣
ω“ενk

Bενk
Bkα

Bενk
Bkα1

τs . (3.35)

Eq. 3.35 is equivalent to the kinetic coefficients obtain within Boltzmann transport
theory (see, e.g., Refs. [142–145, and the references therein]). We emphasize that the
Seebeck coefficient is independent of τs in the const.-τs approximation, since τs cancels
in K̃1{K̃0.

3.4. TRIQS/DFTTools transport code

The TRIQS (Toolbox for Research on Interacting Quantum Systems) project provides
high-level, efficient and simple-to-use core libraries, written in C++ and wrapped in
Python, to study interacting quantum systems [127]. Based on the library full-fledged
applications, like the TRIQS/CTHYB solver [88], the TRIQS/HubbardI solver,
TRIQS/SOM for stochastic analytic continuation, and the TRIQS/DFTTools [112]
have been developed. The TRIQS library itself and its applications are open-source
and distributed under the GPLv3 license.

Specifically, the TRIQS/DFTTools package provides methods to combine DFT
band-structure calculations with DMFT. To this end, the TRIQS/DFTTools package
defines a common interface to DFT codes, constructs projective Wannier functions and
implements converters for Wien2k [117, 118, 146], VASP [147–150], Wannier90 [151],
and generic Hpkq. The package provides the necessary tools to perform the DMFT
self-consistency cycle, and additionally offers multiple post-processing tools, such as
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Apk, ωq plotting or the calculation of transport properties. Putting the provided tools
together to a working script is the task of the user; luckily, performing a simple DMFT
calculation only requires a few lines of Python code. Additionally, an extensive user
guide, a reference guide and tutorials are available online.22

An important part of this thesis was the embedding of a transport code into the
TRIQS/DFTTools package, which allows for the calculation of optical conductivities
and Seebeck coefficients based on the formalism presented in Sec. 3.2. The core task of
this code is to evaluate the transport distribution (Eq. 3.23) directly in the Bloch basis,
which has two important advantages: First, as outlined in Sec. 2.7, we use the Bloch
basis already as a complete basis set for our DFT+DMFT calculations, and thus we can
easily obtain the spectral function Aνν1 pk, ωq from Eqs. 2.18, 2.57, and 2.59. Second,
we can make use of the velocity matrices provided by some DFT codes. At the moment
their computation is based on the Wien2k optics package [146], which evaluates the
elements of the momentum operator (Eq. 3.17) in the LAPW+lo basis set.23 It should
be emphasized that evaluating transport properties requires a considerably denser k-
mesh than the one found to be sufficient for the convergence of the corresponding DFT
calculation. The convergence in the number of k-points should be checked carefully,
best on the level of the transport distribution (Eq. 3.23). To reduce the computational
cost, the TRIQS/DFTTools transport code makes use of the crystal symmetries.

In the spirit of the TRIQS project, evaluating transport properties after a successful
DFT+DMFT calculation is kept extremely simple. Before executing the transport
code, as shown in Lst. 3.1, it is necessary to perform one Wien2k iteration on a denser
k-grid and to run the Wien2k optics code. After defining the imports (lines 1-7),
we set up the Converter (line 10) and read the required data of the Wien2k output
(line 11 and 12), which is written into the case.h5 file. Next, we load this h5-file (line
14) and also read and set the real-frequency self-energy (lines 16 to 18). With the
function transport_distribution(), the transport distribution is calculated (line 20
and 21), here in x direction for the frequencies Ω “ r0.0, 0.2s eV at an inverse tem-
perature of β “ 40 eV´1. When using an impurity solver on the Matsubara axis at a
certain inverse temperature β, one should also use the same β in the calculation of the
22 https://github.com/TRIQS/dft_tools and

https://triqs.ipht.cnrs.fr/1.x/applications/dft_tools
23 A recent implementation published as the woptic package [131] also uses full velocity matrix

elements, but is implemented in the framework of maximally localized Wannier functions.
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transport properties. To obtain results at a different temperature, the corresponding
DFT+DMFT calculation has to be performed, because also the spectral function de-
pends on β. Finally, the function conductivity_and_seebeck() (line 23) evaluates
the optical conductivity on the given Ω mesh (Eq. 3.22). Additionally, the Seebeck
coefficient (Eqs. 3.25 and 3.26) is calculated if Ω “ 0.0 eV is included in the mesh.

Listing 3.1: Code snippet showing the use of the TRIQS/DFTTools transport code
(with TRIQS version 1.3).

1 # Necessary imports
2 from py t r i q s . g f . l o c a l import ∗
3 from py t r i q s . a r ch ive import HDFArchive
4 from py t r i q s . a pp l i c a t i o n s . d f t . c onve r t e r s . wien2k_converter \
5 import Wien2kConverter
6 from py t r i q s . a pp l i c a t i o n s . d f t . sumk_dft import SumkDFT
7 from py t r i q s . a pp l i c a t i o n s . d f t . sumk_dft_tools import SumkDFTTools
8

9 # Create Converter ob j e c t and convert Wien2k op t i c s f i l e s
10 Converter = Wien2kConverter ( f i l ename=’ case ’ )
11 Converter . convert_dft_input ( )
12 Converter . convert_transport_input ( )
13 # Create Sumk ob j e c t
14 SK = SumkDFTTools ( hd f_ f i l e=’ case . h5 ’ )
15 # Set Sigma in SK ob j e c t
16 ar = HDFArchive ( ’ Sigma . h5 ’ , ’ r ’ )
17 SK. set_Sigma (Sigma_imp = [ ar [ ’Sigma_w ’ ] ] )
18 del ar
19 # Calcu la te t ranspo r t d i s t r i b u t i o n
20 SK. t r an spo r t_d i s t r i bu t i on ( d i r e c t i o n =[ ’ xx ’ ] , Om_mesh= [ 0 . 0 , 0 . 2 ] , \
21 with_Sigma=True , beta=40)
22 # Evaluate t ranspo r t i n t e g r a t i o n
23 SK. conductivity_and_seebeck ( beta=40)
24 # Save r e s u l t s to h5 f i l e
25 SK. save ( [ ’ seebeck ’ , ’ optic_cond ’ ] )
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Figure 3.2.: Real part of the optical conductivity σpΩq (top graph) and the imaginary
part of dielectric function εpΩq (bottom graph) of a non-spin-polarized
DFT calculation for BaMn2As2 in the x (blue) and z (red) directions. The
results obtained directly with the Wien2k joint program (full lines) are
compared to the TRIQS/DFTTools transport code (dotted lines).

In Fig. 3.2 the real part of the optical conductivity and the imaginary part of the
dielectric function calculated form a non-spin-polarized DFT calculation for BaMn2As2

are shown in x direction (blue) and z direction (red).24,25 The full lines show the result
obtained with the Wien2k joint program, which calculates the optical conductivity for
the inter-band transitions and assumes a Drude model to take the intra-band contribu-
tions into account. As Drude broadening Γ “ 0.02 was used, such that the low-Ω part
of the dielectric function is in good agreement with the TRIQS/DFTTools transport
code. For the TRIQS/DFTTools transport results (dotted lines) we set the self-energy
to zero, but use a numerical broadening of 0` “ 0.005 eV to calculate Apk, ωq. In
both calculations we use the full velocity matrices calculated with the Wien2k optics
program and a total number of 150 000 k-points in the full BZ. As expected, the evalua-
tion of the optical conductivity and the dielectric function with the TRIQS/DFTTools
transport code is in perfect agreement with the results of the Wien2k joint program.
24 We refer the reader to Ch. 5 for details on BaMn2As2 .
25 The optical conductivity σ pΩq and the dielectric function ε pΩq are related via < rεpΩqs “
= rσpΩqs { p4πΩq.
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4. A prototypical example - SrVO3

Preamble

On the example of the “benchmark” material SrVO3, we discuss various aspects of
the DFT+DMFT framework in this chapter. Secs. 4.2.1, 4.2.2, and 4.2.3 are mainly
an excerpt of the material covered in the TRIQS/DFTTools publication [112]. The
author’s contribution comprises the implementation, documentation, and maintenance
of the TRIQS/DFTTools transport code. Specifically, the author of this thesis was
involved in writing the manuscript and provided the results and discussions presented
in Sec. 6 of Ref. [112].

The last part of this chapter (Sec. 4.2.4) is devoted to the atomic multiplet structure
of SrVO3. Therein, we adapt figures and texts from the publication on the FTPS
solver [89]. With the exception of the solver development itself, which was entirely
carried out by D. Bauernfeind, the author of this thesis contributed to all other parts.
This includes the adaptation of the TRIQS/DFTTools package for DMFT calculations
on the real-frequency axis, the embedding of the FTPS solver into the DFT+DMFT
framework, the interpretation of the multiplet structure, the CTQMC calculations for
SrVO3, and the writing of the manuscript. R. Triebl contributed to the analysis of the
results and the analytic continuation study.

4.1. Introduction

The transition metal oxide SrVO3 has a cubic perovskite crystal structure (Pm3m)
with an open V-3d shell and a nominal electronic configuration of 3d1 (Fig. 4.1) [152].
The V atoms are encaged by O atoms and under the influence of the electric fields
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E

3d1

t2g

eg

Figure 4.1.: Left: SrVO3 crystal structure. Golden spheres: strontium; grey
sphere: vanadium; red spheres: oxygen. The size of the atoms is
not to scale. The crystal structure was drawn with VESTA [154].
Right: Lifted degeneracy of the 3d orbitals into two eg and three t2g or-
bitals due to the crystal-field splitting introduced by the encaging oxygen
atoms. This drawing is taken from Ref. [47].

of this octahedral environment the degeneracy of the V-3d states is lifted. Orbitals
pointing towards the O ions (z2 and x2´ y2) have a higher energy than those pointing
between them (xy, xz and yz). This crystal-field, acting on the V-3d states, splits
them into the two-fold degenerate eg states and the lower lying three-fold degenerated
t2g states (right plot of Fig. 4.1) [153].

The reason for the popularity of SrVO3 as a prototypical material in the DMFT commu-
nity is based on the fact that SrVO3, on one hand, requires to solve a
multi-orbital Hubbard model to describe the correlated subspace appropriately, but
has, on the other hand, very beneficial properties like its paramagnetic ground state
and degenerate V-t2g orbitals at the Fermi energy. Next to DFT+DMFT calcula-
tions [155], SrVO3 was recently investigated within the GW+DMFT framework [156,
157] and was also used with regard to the development of impurity solvers [89]. Con-
cerning transport calculations, SrVO3 served as benchmark material for the woptic
package [131] and also in the study of the Peierls approximation for the optical con-
ductivity [158]. As we will see in the next sections, the ”standard” DFT+DMFT
picture is that SrVO3 is a correlated metal with a spectral function exhibiting a lower
Hubbard band, a quasiparticle peak and a upper Hubbard band, which is a structure
we have already observed for the half-filled Bethe lattice in Sec. 2.6. Both, in theory
and experiment the quasiparticle weight is between Z “ 0.5 and 0.6 [155, 159]. How-
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ever, it should also be noted that very recent GW+EDMFT calculations indicate a
much lower screened interaction of the V-t2g orbitals than the one usually assumed in
DFT+DMFT calculations [160, 161]. This would point towards a picture where the
spectral weight initially attributed to the upper Hubbard band is actually generated
by a plasmonic excitation.

We do not elaborate on this fact further, but rather use SrVO3 as a benchmark material
to (i) show the necessary procedures for a DFT+DMFT calculations and (ii) show the
benefits of the recently developed FTPS solver [89] over the CTHYB+MEM approach.
For the second point, we focus on the analysis of the observed multiplet structure in the
upper Hubbard band, which has, so far, not been resolved by other impurity solvers.

4.2. Results

4.2.1. DFT and projective Wannier functions

The first step of every DFT+DMFT calculation is to carry out the DFT part and
analyze the resulting DOS to identify the correlated shells, which define the correlated
subspace for the DMFT calculation. Here we use Wien2k [117, 118] for the DFT
calculation. We set the unit cell length of the cubic crystal to a “ 3.8425Å [162] and
converge the DFT total energy with a set of 969 k-points in the irreducible BZ.

The total and atom resolved DFT DOS of SrVO3 is shown in the top and middle graph
of Fig. 4.2. The projection on the Sr shells does only show noticeable weight above
about 5.0 eV. More important, we do not observe a considerable hybridization of the
V orbitals with Sr, and therefore those are irrelevant for our further discussion. As
elaborated in Sec. 4.1, the Fermi level cuts through the V-t2g manifold, which has a
nominal filling of one electron. Below the V-t2g bands, the O-2p orbitals show their
main contribution from ´7.0 eV to ´2.0 eV. Additionally, there is a weak hybridization
of the V-t2g orbitals and the O-2p orbitals. The V-eg states form a broad band from
about 1.3 eV to 5.5 eV and are well separated in energy from the V-t2g bands. Therefore,
it is justified to neglect both, the nominally empty V-eg orbitals and the filled O-2p
orbitals, and consider only the three partially filled V-t2g bands for the construction of
the low-energy multi-orbital Hubbard model.
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Figure 4.2.: Top: Total DFT DOS of SrVO3 (black) and atom projected DOS of
Sr (blue), V (orange) and O (green). Middle: Partial DOS of V-3d
(black) and its t2g (blue) and eg (orange) contributions. Bottom: V-t2g
DFT DOS (black) compared to t2g-like Wannier functions generated for
three different choices of projective energy windows W . Green line: only
V-t2g bands, W “ r´1.5, 1.9s eV. Orange line: V-t2g and O-2p bands,
W “ r´8.0, 1.9s eV. Blue line: even larger window, W “ r´8.0, 7.5s eV.
Note the small additional weight around 7 eV in the latter case. A numer-
ical broadening of 0.01 eV was used to calculate the Wannier DOS. The
Fermi energy is set to ω “ 0 eV in all graphs.
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The next step is the construction of the projection onto the orbitals of the correlated
subspace. To this end, the TRIQS/DFTTools package provides methods to construct
projective Wannier functions within a given energy window W (see Refs. [112, 116,
119] and Sec. 2.7). The dependence of the DOS in the Wannier basis on the choice of
W is presented in the bottom graph of Fig. 4.2. The projection onto the V-t2g bands
in an energy window of W “ r´1.5, 1.9s eV is shown in green. A so called d-dp model,
with an energy window of W “ r´8.0, 1.9s eV that comprises V-t2g states and their
hybridized weight on the O-2p bands, is shown in orange. The blue line is the DOS
for a projection using the V-t2g weights on all DFT bands up to 7.5 eV. The difference
in the latter two is primarily in the transfer of some minor spectral weight to large
energies around 7 eV. The density of the projected DOS is equal to the nominal filling
of exactly one electron for the smallest energy window, but is 1.7 electrons for the
larger windows due to the inclusion of the V-t2g hybridizations on the O-2p bands.

For all three Wannier constructions discussed above 34 220 k-points in the irreducible
BZ were used. This rather high number of k-points is necessary for solvers working
directly on the real-frequency axis, e.g. the FTPS solver (Secs. 2.4.4 and 4.2.4), where
a sufficiently dense k-mesh is crucial to avoid oscillations in the Wannier DOS. These
would also be present in the Weiss field G0pωq, which is essentially the input of the
impurity solver. Further, for the calculation of the lattice Green’s function Gpk, ωq
within each DMFT cycle (Eq. 2.57 with z “ ω ` i0`) a dense k-grid is beneficial to
keep the numerical broadening (i0`) small. This is not necessary when the DMFT
cycle is performed on the Matsubara axis, and thus far less k-points are required. For
the DMFT results shown in the next section only 969 k-points in the irreducible BZ
have been used.

4.2.2. Correlated spectral function

In this section we show the result of a one-shot DFT+DMFT calculation for SrVO3.
Projective Wannier functions constructed within the largest energy window
(W “ r´8.0, 7.5s eV) are used. We describe the V-t2g correlated subspace with the
Kanamori Hamiltonian (Eq. 2.17) and set the interaction parameters to UK “ 6.0 eV
and JK “ 0.65 eV. The impurity problem is solved with the TRIQS/CTHYB solver [88]
at an inverse temperature of β “ 40 eV´1 with a total number of 3.2¨107 measurements.
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Figure 4.3.: Left: Correlated band structure Apk, ωq of SrVO3 (grey-shaded plot) com-
pared to the DFT band structure (black lines) on the Γ-X-M-Γ path.
Right: Correlated local spectral function Apωq (black line) and DFT DOS
(grey line). The Fermi level is set to ω “ 0 eV. This figure is taken from
Ref. [112].

The analytic continuation is performed with the stochastic method by Beach [101]. On
the lattice level, the chosen energy window includes states with strong O character,
and therefore a double-counting correction is necessary, which effectively shifts the
correlated subspace with respect to the O-2p states. We employ a variant of the FLL
method constructed for Kanamori Hamiltonians [126].

Including the spin degrees of freedom, the interacting impurity problem for the V-t2g
Wannier functions is described by 6 ˆ 6 self-energy and Green’s function matrices.
Due to the fact that the V-t2g orbitals are degenerate in SrVO3, these matrices are
diagonal and independent of orbital and spin index. This allows for a symmetrization
of the solver output in each DMFT iteration. Such a symmetrization usually stabilizes
the DMFT loop and leads to a faster convergence. For SrVO3 DMFT is already well
converged after 10 to 15 iterations.
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In Fig. 4.3 (left graph) we show a comparison of the DFT and the DFT+DMFT spectral
functions Apk, ωq on the Γ-X-M-Γ path through the BZ. The thin black lines are the
DFT results. One can clearly identify the mass renormalization of the V-t2g bands,
which is a bit smaller than two in our calculation.26 In the correlated band structure
incoherent weight between about 1 eV and 4 eV is present (gray-shaded area), which
can be attributed to the upper Hubbard band. The O-2p and the V-eg states are only
marginally altered by the self-energy. However, due to the hybridization of the V-t2g
orbitals with the O-2p orbitals, some bands between ´7 eV and ´2 eV acquire a finite
width, noticeable by the gray shades of certain bands in this energy range. In general,
bands with a stronger V-t2g character will be more affected by the self-energy in the
upfolding procedure.

The total correlated spectral function Apωq compared to the total DOS is shown in
the right graph of Fig. 4.3. Although the renormalization of the quasiparticle peak
is clearly visible, the expected lower and upper Hubbard bands cannot be identified
on this level. The reason is that the lower Hubbard band is covered by the O-2p and
the upper Hubbard band is covered by the V-eg states, respectively. Nevertheless, we
will see in Sec. 4.2.4 that the characteristic structure of a quasiparticle peak and two
Hubbard bands is clearly visible on the level of the local (impurity) spectral function.

4.2.3. Transport calculations

We turn now to the calculation of transport properties using the formalism described
in Ch. 3. We apply the same setup as used for the calculation of the SrVO3 band
structure, hence we consider all optical transitions between states in the largest energy
window (W “ r´8.0, 7.5s eV). The number of k-points in the irreducible BZ is increased
to 4495 for the results presented in this section.

In Fig. 4.4 we compare the optical conductivity σpΩq calculated with DFT+DMFT and
Eq. 3.22 (black solid line) to experimental data [163] (blue dotted line). To show the
effect of electronic correlations, we also present results without frequency-dependent
self-energy (red dashed line), where we instead set the imaginary part of the self-energy
26 Although the mass renormalization is apparent in A pk, ωq, in practice it can be estimated directly

from the slope of the imaginary part of the Matsubara self-energy for iω Ñ 0 (see Sec. 2.6).
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Figure 4.4.: Optical conductivity σ pΩq of SrVO3 calculated with DFT+DMFT (black
solid line) and directly from DFT within the const.-τs approximation (red
dashed line) compared to experimental data from Ref. [163] (blue dotted
line). This figure is taken from Ref. [112].

to a constant value of ´0.05 eV. This corresponds to evaluating the optical conductivity
directly from DFT within the const.-τs approximation (see Sec. 3.3).

As expected for a metal, the optical conductivity exhibits a Drude peak visible for
Ω ă 0.5 eV in the DFT+const.-τs, the DFT+DMFT, and the experimental data. Ad-
ditionally, all three show a strong enhancement of the optical conductivity in a fre-
quency range from roughly 2.8 eV to 3.5 eV, which originates from transitions from the
occupied O-2p orbitals to the unoccupied part of the V-t2g orbitals. Importantly, the
renormalization of the t2g states results in a smaller Drude weight and in a reduc-
tion of the optical weight above 3 eV. Further, in the DFT+DMFT optical spectra a
subtle peak around 2.0 eV, stemming from transitions within the V-3d manifold (cf.
Ref. [158]), is present. Overall, the DFT+DMFT optical conductivity shows a better
agreement with the experimental data than the DFT+const.-τs result. As also ob-
served in Refs. [131, 158], the peak between 3.0 eV and 4.0 eV is found about 0.3 eV
lower in DFT+DMFT. This could be caused by O-2p states positioned slightly too high
in energy already on the DFT level. We think that the better agreement of the peak
position in the DFT+const.-τs optical spectra with the experiment is the result of an
error cancellation between the missing renormalization and a slightly wrong position
of the O-2p bands.
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For the static transport quantities we obtain at T “ 290K a resistivity (σp0q´1) of
47 µΩ cm, which compares reasonably well with the experimental value of 70 µΩ cm [164].
The Seebeck coefficient, ´8 µVK´1 in our calculation, agrees remarkably well with
the experimental room temperature value of about ´11 µVK´1 [165]. We emphasize
that sometimes scattering processes not included in plain DFT+DMFT calculations
(e.g. phonons, impurities, or non-local fluctuations) can become important. In such
cases, the calculated resistivity constitutes a lower bound to the expected experimental
value.

4.2.4. Atomic multiplet structure

Finally, we turn to the discussion of new insights on the spectral function of SrVO3

provided by the real-frequency FTPS solver (see Ref. [89] and the brief overview in
Sec. 2.4.4). In this section all shown quantities are per orbital and per spin. For
the results presented here, we use 34 220 k-points in the irreducible BZ and a small
numerical broadening of only 0` “ 0.005 eV. The projective Wannier functions were
constructed in the energy window W “ r´1.5, 1.9s eV. Like in the previous sections,
we use the Kanamori Hamiltonian as defined in Eq. 2.17, but owing to the smaller
effective bandwidth in comparison to the d-dp calculations, we decrease the Coulomb
interaction to UK “ 4.0 eV and the Hund’s coupling to JK “ 0.6 eV. These interaction
values lead to a quasiparticle renormalization of Z “ 0.6. The time-evolution is usually
the most demanding part of the FTPS calculation, but due to the degeneracy of the
V-t2g orbitals, it is only necessary to perform it for one Green’s function, e.g. Gxy,Ò.
First, we discuss results where we neglect the spin-flip and pair-hopping terms
(density-density Hamiltonian), but we show the resulting spectra including those terms
at the end of this section.

In the left graph of Fig. 4.5 we compare the converged impurity spectral function A pωq
of a DFT+DMFT calculation with FTPS as impurity solver to the one obtained with
the CTHYB solver (β “ 200 eV´1) and analytic continuation to the real-frequency axis
using the Ω-MEM [166]. In both methods the well known features of the SrVO3 spectral
function [167, 168] are present. These are a hole excitation at around ´2 eV (lower
Hubbard band), the quasiparticle peak at zero energy and a upper Hubbard band with
its maximum around 3 eV. Next to the stronger pronounced lower Hubbard in the
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Figure 4.5.: Left: DFT+DMFT impurity spectral functions Apωq from CTHYB+MEM
(blue line) with β “ 200 eV´1, and from FTPS (red line). The
FTPS result shows a distinctive three-peak structure in the upper Hub-
bard band. Right: Spectral functions from analytically continued
imaginary-time Green’s functions Gpτq calculated with CTHYB (blue line)
and with FTPS (red line). The Fermi level is set to ω “ 0 eV and both
graphs are taken from Ref. [89].

FTPS spectrum, the most striking feature is the three-peak structure in the upper
Hubbard band, which is not present in the CTHYB+MEM spectrum. Also, the use
of the stochastic analytic continuation methods by Beach [101] and Mishchenkov [102]
did not show a distinct peak structure in the upper Hubbard band.

However, apart from statistical error the CTHYB solver provides an exact solution
of the AIM on the imaginary-time axis, and thus the peak structure has to be con-
tained also in the CTHYB result. From the FTPS spectral function we construct
an imaginary-time Green’s functions Gpτq for an artificial inverse temperature β “
200 eV´1 with Eq. 2.40. A comparison of the resulting Green’s function to the “exact”
Gpτq of the CTHYB solver is shown in Fig. 4.6. The good agreement suggest that the
analytic continuation might prohibit the resolution of the peak structure in the upper
Hubbard band.

To proof this statement, we use the Gpτq calculated from the FTPS spectrum and add
noise of the order of the CTHYB error. Then, we perform an analytic continuation of
this “artificially noisy” FTPS Gpτq back to the real-frequency axis. As shown in the
right graph of Fig. 4.5, the peak structure in the upper Hubbard band vanishes in this
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Figure 4.6.: Comparison of the imaginary-time Green’s functions Gpτq from CTHYB
(blue line) and an artificial Gpτq constructed from the FTPS Apωq (red
squares). The agreement is equally good also for β “ 100 eV´1 and β “
400 eV´1 (not shown). This figure is taken from Ref. [89].

process. This test confirms that the analytic continuation is not able to resolve the
sharp features present in the upper Hubbard band. Nevertheless, the shape and the
position of the quasiparticle peak is well captured also by the analytic continuation
(left graph of Fig. 4.5), which underlines that the analytic continuation performs best
in the low-energy region of the spectrum.

Next, we discuss the three peaks observed in the upper Hubbard band, which can be
understood as the multiplet structure of the underlying atomic problem. For the analy-
sis of this multiplet structure we consider the interaction part of the
density-density Kanamori Hamiltonian. The local one-particle part of the Hamilto-
nian is governed by the on-site energy of the impurity ε0. For the density-density only
case the interaction term is already diagonal in the orbital basis, and thus the eigen-
values of the Hamiltonian can be easily read off. For SrVO3 the ground state lies in
the N “ 1 sector.
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Table 4.1.: Relevant states of the atomic problem of Hamiltonian 2.17 without spin-flip
and pair-hopping terms. This table is an excerpt of Tab. 1 in Ref. [89].

type states energy difference to GS
N “ 1, ground state (GS) |Ò, 0, 0y |Ó, 0, 0y |0, Ò, 0y ¨ ¨ ¨ 0
N “ 0 |0, 0, 0y ´ε0

N “ 2, same spin |Ò, Ò, 0y |Ò, 0, Òy |0, Ò, Òy ¨ ¨ ¨ UK ´ 3JK ` ε0
N “ 2, different spin |Ò, Ó, 0y |Ò, 0, Óy |Ó, Ò, 0y ¨ ¨ ¨ UK ´ 2JK ` ε0
N “ 2, double occ. |ÒÓ, 0, 0y |0, ÒÓ, 0y |0, 0, ÒÓy UK ` ε0

Tab. 4.1 shows the relevant atomic states and their corresponding energies. The atomic
model has a hole excitation at energy ´ε0 and three single-electron excitations with
energies UK`ε0, UK´2JK`ε0, and UK´3JK`ε0 relative to the ground state (GS). If we
measure the energy differences between the three peaks present in the upper Hubbard
band in our result (left graph of Fig. 4.5), we find values of 1.27 eV and 0.69 eV, which
is close to the atomic energy differences of 1.2 eV and 0.6 eV (JK “ 0.6 eV). In the
calculation the hole excitation is at ´2.0 eV.

The analysis of the spectral structure suggests that we can understand the positions
of the observed peaks by atomic physics with effective parameters ε̄0, ŪK , and J̄K . We
can determine ŪK “ 5.97 eV (where UK “ 4.0 eV) from the energy difference of the
peak highest in energy to the hole excitation. The higher value of ŪK compared to UK
is plausible, if we consider the coupling of the impurity to the bath. Then, electrons
have additional degrees of freedom to avoid each other by jumping into unoccupied
bath states. This will result in a decrease of the double occupancy xnÒnÓy. To model
this situation using atomic physics, it is necessary to assume an increased interaction
strength. Finally, JK is known to be more atomic-like and less affected by the sur-
rounding of the atom than UK , since the latter is screened significantly stronger [58].

Further evidence that the observed peak structure is indeed a result of atomic physics
is provided by the analysis of the influence of JK on the position of the peaks. The left
graph of Fig. 4.7 shows a closeup of the upper Hubbard band for three different values
of JK . Indeed, by increasing JK the peaks are shifted away from each other, which
also increases the total width of the Hubbard band. For all used JK values the energy
distances are approximately JK and 2JK .
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Figure 4.7.: Left: Closeup of the three-peak structure for various values of JK . Addi-
tionally, we show vertical lines for the JK “ 0.6 eV spectrum at energies
ωM (position of the middle peak) and at ωM ` 2JK and ωM ´ JK . We see
that the width of the upper Hubbard band is close to 3JK . Right: Spectral
functions Apωq for density-density (DD) interactions only (blue line), and
with spin-flip and pair-hopping terms included (red line). Both spectra
show a three-peak structure in the upper Hubbard band and additional
features at high energies at around 8 eV. The Fermi level is set to ω “ 0 eV
and both graphs are taken from Ref. [89].

We also want to point the reader to the small peaks observed at energies around 8.0 eV
(Fig. 4.5). These additional structures can again be explained by atomic physics,
namely by excitations into states with 3 electrons on the impurity. These excitations
originate from small admixtures of N “ 2 states to the ground state. For the detailed
investigation of the N “ 3 peak structure we refer the reader to Ref. [89].

When we include the spin-flip and pair-hopping terms in the impurity Hamiltonian (see
right graph of Fig. 4.7), the positions of the three peaks in the upper Hubbard band are
shifted. Again, we can understand the spectrum by an analysis of the underlying atomic
physics. First, the spin-flip and pair-hopping terms can only have an effect if there
are two or more particles present, and therefore the quasiparticle peak and the hole
excitation remain unchanged. However, the atomic N “ 2 sector, which is responsible
for the peak structure in the upper Hubbard band, does change. Diagonalizing the full
local Kanamori Hamiltonian gives eigenstates with energy differences of 2JK “ 1.2 eV
and 3JK “ 1.8 eV. This is in perfect agreement with the energy differences in the
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Figure 4.8.: Left: Excerpt of the correlated band structure Apk, ωq on the Γ-X-M-Γ
path through the BZ as shown in Fig. 4.3. Center: Same detail, but the
FTPS solver is used to solve the impurity problem. Right: Total DFT DOS
(gray line) compared to the DFT+DMFT spectral function calculated with
the CTHYB solver (black) and the FTPS solver (blue). Note the three
times smaller scale on the x axis in comparison to the scale in Fig. 4.3.
For the sake of a proper analysis all results in this figure are calculated
using the largest projective window (W “ r´8.0, 7.5s eV) in contrast to all
other results of this section. The Fermi level is set to ω “ 0 eV.

right graph of Fig. 4.7, which are 2J̄K “ 1.32 eV and 3J̄K “ 1.75 eV. Like for the
density-density calculation, we again observe high energy excitations at around 8 eV to
states of the atomic N “ 3 sector.

Up to now, we have only analyzed the impurity spectral function of the V-t2g orbitals.
Although the resolution of the atomic multiplet structure demonstrates the capabili-
ties of the FTPS solver, we have seen already in Sec. 4.2.2 that the upper Hubbard
band coincides in energy with the unoccupied V-eg states. To this end, we perform
a DFT+DMFT calculation with the FTPS solver using the largest projective energy
window (W “ r´8.0, 7.5s eV) and the same interaction values as in Sec. 4.2.2. In the
energy range of the upper Hubbard band from 1 eV to 4 eV the resulting correlated band
structure Apk, ωq on the Γ-X-M-Γ path through the BZ is shown in the middle graph
of Fig. 4.8. In comparison to the Apk, ωq obtained with the CTHYB solver (left graph)
a peak structure is indeed visible (gray-shaded weights) and especially pronounced at
the M point. The multiplet peak positions are in this case again different, because now
the impurity model has not a filling of N “ 1.0, but rather N “ 1.7 due to the O-2p
hybridization.

66



4.3. Conclusion

In the total spectral function, shown in the right graph of Fig. 4.8, the influence of the
multiplet structure is only distinctively apparent around 3 eV. Note that we have used
here a three times smaller scale on the x axis in comparison to the scale used in Fig. 4.3.
It is questionable if insights on this subtle differences can be gained with ellipsometry
measurements or inverse photoemission spectroscopy (PES). However, in multiple mea-
surements of optical conductivities in other transition metal oxides multiplet structures
were reported. Explicitly, materials where excitations to the Hubbard bands are clearly
visible in the optical conductivity are the related transition-metal perovskites YTiO3

and YSmO3 [169], LaCuO3 and LaNiO3 [170], CeVO3, YVO3, and GdVO3 [171], or also
5-band systems like LaSrMnO4 [172] and LaSrFeO4 [173]. These materials constitute
examples where the strengths of the FTPS solver could be exploited in the future and
pushed to new limits in terms of including orbital off-diagonal elements in the Weiss
field G0pωq or performing calculations for 5-band models.

4.3. Conclusion

In this chapter we presented various DFT+DMFT calculations for the prototypical
material SrVO3. We have shown how the projective Wannier DOS depends on the
choice of the energy window, discussed the resulting correlated spectral function, and
analyzed the optical conductivity and the Seebeck coefficient. An emphasis was put on
the FTPS solver, which allows to carry out DFT+DMFT entirely on the real-frequency
axis. For SrVO3 the solver is able to resolve a multiplet structure in the upper Hubbard
band that has not been accessible by CTHYB impurity solvers. It turns out that the
necessary analytic continuation prohibits the resolution of fine structures at higher
energies. The observed multiplet structure can be well understood from an analysis of
the atomic spectrum associated with the local part of the Hamiltonian.
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4. A prototypical example - SrVO3
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5. Importance of effective
dimensionality in manganese
pnictides

Preamble

In the following chapter we investigate the two manganese pnictides BaMn2As2 and
LaMnAsO, using fully charge self-consistent DFT+DMFT. To keep this chapter
self-contained we mainly adopted the same texts and figures as used for the publi-
cation [174]. In addition to Chs. 2 and 3 we dedicate Sec. 5.2 to a brief outline of
the methods and parameters we use. In Sec. 5.3 our results on the electronic struc-
ture, magnetic, and optical properties are presented and compared to experimental
values where available. Additionally, a comparison to (angle-resolved) photoemission
spectroscopy (ARPES) measurements, published soon after our work, is provided in
Sec. 5.3.5.

The author of this thesis has contributed to all stages of the project discussed in this
chapter, which includes an extensive literature search, performing the calculations,
the discussion and analysis of the results, and the writing of the manuscript. An
improved version of the TRIQS/CTHYB impurity solver was provided by P. Seth and
I. Krivenko. E. Assmann and M. Aichhorn contributed to the analysis of the results
and the writing of the manuscript. Additionally, we also refer the reader to the Master’s
thesis of S. Erker [175] who has performed an analysis of the studied compounds on
the DFT level and undertook the first steps towards a DFT+DMFT solution in the
paramagnetic phase.
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5. Importance of effective dimensionality in manganese pnictides

5.1. Introduction

The Mott phenomenon (see Sec. 2.6), the occurrence of an insulating state solely due
to electronic correlations, is among the most intensively studied effects in correlated
solid state physics [17]. This insulating state can occur in situations where simple
band theory would not allow it, e.g. for an odd number of electrons per unit cell in
the absence of symmetry breaking. It is interesting not only in its own right but also
as it is the host for other fascinating phenomena, the best-known example being high
temperature superconductivity in cuprate oxides. There, injecting charge carriers into
this Mott insulating state by chemical doping creates a non-Fermi-liquid state which
becomes superconducting at low temperatures [5].

In recent years another class of high-temperature superconductors, the iron-based pnic-
tide and chalcogenide materials, has been identified [176]. In contrast to the cuprates,
they are intrinsically multi-band systems with the whole 3d manifold being relevant
for the electronic properties [116, 177]. These iron-based materials share common
building blocks, the iron-pnictogen or iron-chalcogen layers, and a nominal electronic
configuration of six electrons in the five Fe-3d bands, which places them in the “Hund’s
metal” regime [62, 178, 179]. As a result of this band filling, these materials have very
low coherence scales and sizable correlations, without, however, being close to a Mott
metal-insulator transition.

Since superconductivity arises from quantum fluctuations in the normal state, we must
understand the physical properties of the relevant parent compounds before we can
hope to understand superconductivity. In this chapter we therefore investigate the two
manganese pnictide compounds BaMn2As2 and LaMnAsO, which are isostructural to
the iron-based superconductors BaFe2As2 and LaFeAsO, but host only five electrons in
the five Mn-3d bands. These systems can be seen as the pnictide analog of the undoped
parent compounds of the cuprate high-temperature superconductors [180, 181]. The
half-filled Mn-3d shells of these compounds promote Mott physics [21–23]. Efforts to
induce metallicity by pressure [28] or doping [29, 30, 182–186] have been to some extent
successful. While no superconducting state has been demonstrated conclusively [28],
the manganese pnictides still feature fascinating properties such as giant magnetore-
sistance [31, 187], large Seebeck coefficients [25, 27, 41, 188], and strongly enhanced
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5.1. Introduction

Figure 5.1.: Crystal and magnetic structure of LaMnAsO (left) and BaMn2As2 (right)
drawn with VESTA [154]. The black arrows represent the Mn spins in
the antiferromagnetic states of LaMnAsO [31] (C-type: ferromagnetically
stacked antiferromagnetic planes) and BaMn2As2 [32] (G-type: alternating
in all directions). We choose a coordinate system where the x and y axes
point towards the nearest-neighbor Mn atoms. This figure is taken from
Ref. [174].

magnetism with antiferromagnetic (AFM) order persisting up to elevated tempera-
tures [31, 32]. In contrast to the related iron pnictides, both manganese pnictides
investigated here are semiconductors, as shown in optical and conductivity measure-
ments [21, 24–29, 188, 189].

When considering an insulating state in a half-filled system the question arises whether
this state occurs due to electronic correlations alone (Mott mechanism) or because of
symmetry breaking such as magnetism (Slater mechanism). In many correlated mate-
rials both mechanisms are at work and sometimes are of similar importance. Further-
more, it has been shown that the proximity to a Mott transition can strongly increase
the magnetic ordering temperature [190]. For instance, 1111 manganese pnictides in-
cluding LaMnAsO (TN « 350K [35, 41, 187]) and some 122 manganese pnictides, like
BaMn2P2 (TN ą 750K [191]) and BaMn2As2 (TN “ 625K [32]), remain ordered well
above room temperature. Néel temperatures of this order naturally call for a closer
investigation of the underlying mechanisms.
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5. Importance of effective dimensionality in manganese pnictides

We will show that LaMnAsO and BaMn2As2 are both close to a metal-insulator tran-
sition. However, there are differences in the effective dimensionality of the two com-
pounds, which will turn out to be decisive for their properties. Specifically, BaMn2As2

crystallizes in a ThCr2Si2-type structure and shows G-type AFM (antiferromagnetic
in all directions, see Fig. 5.1 right) and a large magnetic moment of 3.9 µB/Mn [32].
LaMnAsO, with its ZrCuSiAs structure, features antiferromagnetic Mn planes with a
magnetic moment of 3.6 µB/Mn [31, 192], but the coupling between planes is ferromag-
netic (C-type AFM, shown in Fig. 5.1 left). Although both compounds share Mn-As
layers with comparable Mn-Mn distances, the different layer stacking and the larger
Mn interlayer spacing turn LaMnAsO into a quasi-two-dimensional compound [33–35],
while BaMn2As2 is much more three dimensional [27, 36]. A dependence of the phys-
ical properties on the effective dimensionality has also been observed, e.g. in the iron
pnictides [193, 194].

5.2. Methods

DFT+DMFT (Sec. 2.7) is used as a theoretical framework for the electronic struc-
ture calculations presented in this chapter. Unless otherwise stated, calculations were
carried out with the fully charge self-consistent implementation of the
TRIQS/DFTTools package [112, 116, 119]. We use crystal structures measured at
300K for BaMn2As2 [32] and 290K for LaMnAsO [187]. The same crystal structures
are used for antiferromagnetic and paramagnetic calculations as no structural phase
transition accompanies the magnetic transition in either compound [31, 32]. For the
antiferromagnetic calculations we use the experimentally determined magnetic order-
ings (Fig. 5.1), which are also predicted by total-energy DFT calculations [27, 33,
175]. Note that due to the G-type ordering the magnetic unit cell is doubled in the z
direction in BaMn2As2. For the DFT part of the fully charge self-consistent calcula-
tions we use 10 000 k-points in the full Brillouin zone (BZ) and employ the standard
Perdew-Burke-Ernzerhof (PBE) [52] generalized gradient approximation (GGA) for the
exchange-correlation functional.
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From the DFT Bloch states we construct projective Wannier functions for the
Mn-3d orbitals in an energy window from ´5.00 eV to 3.40 eV for BaMn2As2. Likewise,
we choose an energy window from ´5.50 eV to 3.25 eV for LaMnAsO. Using such a
large energy window for the projections results in a much better localization of the
Mn-3d Wannier functions [112, 116, 195], which plays to the strengths of the DMFT
approximation.

In DMFT we work with a full rotationally invariant Slater Hamiltonian (see Sec. 2.2)
for the five Mn-3d orbitals with a Coulomb interaction U “ F 0 of 5.0 eV and a Hund’s
coupling J “ pF 2 ` F 4q{14 of 0.9 eV (F 4{F 2 “ 0.625). We estimate our interaction
parameters from the values used in iron pnictide calculations [119, 177, 196], increasing
them slightly to account for the stronger correlations expected in Mn compounds. It
is established that the physics of the nominally half-filled Mn-3d shells is strongly
governed by J [62, 179]. We find that our J is consistent with values used in other
recent works on manganese pnictides [21, 22, 197]. Due to the localized nature of
the compounds and the substantial electron-electron correlations, we choose the fully
localized limit (FLL) as double-counting correction [125]. In general the choice of the
double counting is less crucial in fully charge self-consistent calculations [119].

The TRIQS/CTHYB solver [88] is used to obtain the solution of the impurity model
on the Matsubara axis at an inverse temperature β “ 40 eV´1, corresponding to room
temperature. We use the stochastic method by Beach [101] for the analytic continuation
of the self-energy to the real-frequency axis. In the antiferromagnetic case the DFT
part is performed without spin polarization; thus the magnetic splitting of the Mn-3d
spins is purely introduced by DMFT. To describe the desired antiferromagnetic state,
the same self-energy is taken for both Mn atoms in the unit cell, but with swapped
spins.

We calculate the optical properties within the Kubo formalism, neglecting vertex cor-
rections, as implemented in the TRIQS/DFTTools package [112] and discussed in Ch. 3.
For the optical calculations we increase the number of k-points to 150 000 for BaMn2As2

and 100 000 for LaMnAsO in the full BZ. To analyze the influence of structural dif-
ferences, we construct maximally localized Wannier functions (Sec. 2.7) and real-space
Hamiltonians with wien2wannier [198] and Wannier90 [151].
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5. Importance of effective dimensionality in manganese pnictides

5.3. Results

5.3.1. Electronic structure

In this section we present our DFT+DMFT results. While we focus on the antifer-
romagnetic (AFM) phase, we also consider the paramagnetic (PM) solution to gain
insight into the origin of the insulating state (Mott or Slater mechanism).

We start our discussion with the PM spectral functions in Fig. 5.2 (top). In DFT,
the total non-spin-polarized DOS (light gray lines) in both compounds are clearly
metallic, in contrast to DFT+DMFT, where the weight at the Fermi level is drastically
reduced, nearly opening a gap. The structure of the correlated Mn-3d spectral function
(shaded areas in Fig. 5.2) is very similar in both compounds and consists of a heavily
smeared-out contribution below the Fermi energy, which shows strong hybridization
with the As-4p bands along its full width of about 5.0 eV, and a sharp peak ranging
from 0.0 eV to about 2.0 eV. On the other hand, the total spectral functions (thick
lines in Fig. 5.2) differ below ´2.0 eV due to oxygen states present in LaMnAsO but
not in BaMn2As2.

The strong electron-electron correlations in the half-filled Mn-3d shells place both com-
pounds near the metal-insulator transition. This is also seen in the k-resolved param-
agnetic spectral function in Fig. 5.3. At the Fermi energy, no remnants of DFT bands
are observable, indicating that the spectral weight is solely introduced by the imaginary
part of the self-energy. This picture is supported by the quasiparticle weights, which
are below 0.15 for the x2´y2 and the z2 orbitals.27 For the other orbitals the estimation
of the quasiparticle weights is not meaningful as they show a too strong deviation from
the linear Fermi-liquid behavior of = rΣpiωn Ñ 0qs. In the orbital-resolved PM spectral
functions of the Mn-3d shell (Fig. 5.4 top row), we observe orbital-selective behavior:
While the x2 ´ y2 orbital is still unequivocally metallic, electronic correlations drive
the z2 and xz{yz orbitals close to the insulating phase. The xy orbital is even more
correlated.
27 We estimate the quasiparticle weights with a polynomial fit of the self-energies on the Matsubara

axis. It should be noted that these are quasiparticle weights in the Wannier basis, and cannot
be directly understood as the renormalization of the spectral function in the Bloch basis, where
bands are influenced proportionally to their Mn character.
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Figure 5.2.: DFT+DMFT paramagnetic (top row) and antiferromagnetic (bottom row)
spectral functions of BaMn2As2 (red) and LaMnAsO (blue) compared to
DFT (gray). The shaded areas correspond to the Mn-3d projected spectral
functions. The Fermi level is set to ω “ 0 eV. This figure is taken from
Ref. [174].

To substantiate our claim that the investigated compounds are close to a Mott tran-
sition we perform additional calculations for LaMnAsO. At room temperature and
an interaction strength of U “ 6.0 eV and J “ 1.0 eV it remains metallic. However,
both lower temperature (β “ 100 eV´1) and stronger interactions (U “ 7.0 eV and
J “ 1.1 eV) are independently sufficient to drive the material into the insulating phase.
Hence, we conclude that our compounds are indeed close to an insulating phase. Addi-
tionally, it was shown that LaMnAsO is Mott-insulating for U “ 2.2 eV and J “ 0.5 eV
in a d-only model (W “ r´1.6, 2.2s eV) [175].28

28 In this calculation the spin-flip and pair-hopping terms of the Hamiltonian were neglected. The
d-only model does not take the ligand As/O-p states into account, and thus charge transfer and
hybridization effects are not captured.
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Figure 5.3.: Spectral function Apk, ωq for the paramagnetic (left) and antiferromagnetic
(right) state of LaMnAsO. The thin solid lines show the DFT bands,
while the shading shows the DFT+DMFT spectral weight. For the k-path
connecting the high symmetry points of the BZ zone see Fig. A.3. The
Fermi level is set to ω “ 0 eV. This figure is taken from Ref. [174].

It has been pointed out before that in comparison to BaFe2As2 electronic correlations
have a stronger effect in BaMn2As2, placing the latter significantly closer to the Mott
localization picture [23, 199]. Our paramagnetic DFT+DMFT results confirm this
observation and extend it to LaMnAsO, which is also more localized than its itinerant
Fe relative [116].

Conversely, the AFM spectral functions do feature a gap (Fig. 5.2 bottom). DFT pre-
dicts small gaps of 0.1 eV for BaMn2As2 and 0.5 eV for LaMnAsO (see also App. A),
consistent with earlier theoretical results [24, 27, 29, 33, 175]. In DFT+DMFT, the gap
remains similar in BaMn2As2 but is somewhat enlarged in LaMnAsO, to about 0.6 eV.
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Figure 5.4.: DFT+DMFT orbital-resolved paramagnetic (top row) and antiferromag-
netic (bottom row) spectral functions of the correlated manganese atom
for BaMn2As2 (left) and LaMnAsO (right). The Fermi level is set to
ω “ 0.0 eV. This figure is taken from Ref. [174].

In the case of BaMn2As2, the strong incoherence, the finite temperature, and the influ-
ence of the analytic continuation prohibit the statement of an exact value for the band
gap. Nevertheless, the gap is clearly very narrow in BaMn2As2 and of the same order
as the DFT result. Although the increase in the band gaps, due to the DFT+DMFT
treatment, is smaller than 0.1 eV, electronic correlations lead to important differences
in the spectral functions relative to DFT: First, a strong renormalization of the band-
width of the unoccupied Mn states, and second, a substantial smearing of the occupied
Mn spectral weight (see Figs. 5.2 and 5.3). We note that a one-shot DFT+DMFT
calculation for LaMnAsO in the AFM phase, where DMFT is converged without up-
dating the DFT charge density, leads to a stronger static spin splitting and in turn to
a gap enlarged by about 0.4 eV.
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Experiments indicate that BaMn2As2 has, at least at low temperatures, an indirect
band gap of about 0.03 eV [26, 28, 188, 189]. To our knowledge, the only experimental
results for the LaMnAsO gap are 1.1 eV from resistivity measurements of a polycrys-
talline sample at high temperatures [24] and 1.4 eV for LaMnAsO thin films, deduced
from optical absorption spectra [25]. In both materials the fundamental gap is indi-
rect, and the smallest direct gap occurs at the Γ point. For BaMn2As2, this direct gap
is about 0.7 eV, close to the recently published value of 0.8 eV [21]. For LaMnAsO,
we find a direct gap of about 0.8 eV (see also Fig. 5.3). Unsurprisingly, the AFM
k-resolved spectral function and the indirect/direct gaps of LaMnAsO agree well with
DFT+DMFT calculations for the closely related manganese pnictide LaMnPO [197].

Since both compounds share the structure of the Mn-As layers (Fig. 5.1), it is nat-
ural to ask why the band gap of BaMn2As2 is narrower. The orbital-resolved AFM
DFT+DMFT spectral functions projected on the Mn-3d states (Fig. 5.4 bottom) re-
veal that the gap is between the z2 orbital on the unoccupied side and the xy orbital
on the occupied side in BaMn2As2. On the other hand, in LaMnAsO the xy gap is
considerably wider. Therefore, within the assumptions of our calculation, we can at-
tribute the narrower band gap of BaMn2As2 to the different spectral contributions of
the xy and the z2 orbitals. Interestingly, the structural difference between the inves-
tigated compounds mainly impacts those two orbitals, as we will see in the next section.

5.3.2. Maximally localized Wannier functions

To understand the influence of the structural differences on the Mn-3d orbitals, and on
the resulting physical properties, we construct an effective real-space Hamiltonian for
both compounds. For the present section, we set aside the projective Wannier functions
we use in DFT+DMFT and construct ten maximally localized Wannier functions from
the non-spin-polarized Mn-3d bands. This model has the advantage that it directly
provides the effective hopping between Mn atoms, including all hopping paths over
intermediate atoms (Ba, La, As, O). Thus, it allows us to compare the two compounds
on the same footing. The maximally localized Wannier functions for the Mn-3d orbitals
are shown in Fig. 5.6.
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Figure 5.5.: Real-space Hamiltonian matrix elements |t| for BaMn2As2 (red) and
LaMnAsO (blue) from a Wannier90 construction of the Mn-3d orbitals.
Shown are all hoppings between Mn atoms separated by the distance R.
The given multiplicities correspond to the number of neighbors at that
distance. This figure is taken from Ref. [174].

The matrix elements of the resulting effective real-space Hamiltonian as a function of
distance are plotted in Fig. 5.5. For each pair of Mn atoms all 25 matrix elements
between their five Mn-3d orbitals are shown. Considering the in-plane hopping first
(circles), both materials are described by a very similar Hamiltonian, which is expected
due to the shared structure of the Mn-As layers and the comparable Mn-Mn distance
within those layers. Turning to the interlayer hoppings (triangles), a completely dif-
ferent picture emerges. The Mn atoms in BaMn2As2 couple substantially to their
respective neighbors on adjacent planes, in contrast to LaMnAsO, where the interlayer
coupling is on average more than 25 times lower and not visible on the shown scale.
From this it follows that LaMnAsO is built up by quasi-two-dimensional Mn-As lay-
ers coupled only very weakly to each other, whereas BaMn2As2 shows much stronger
interlayer coupling.
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Figure 5.6.: Real-space representation of the maximally localized Wannier orbitals for
the Mn-3d shell of BaMn2As2 constructed with wien2wannier [198] and
Wannier90 [151] and visualized in VESTA [154]. The xz orbital, which
is not shown here, is related to the yz orbital by crystal symmetry. The
thin lines connect the central Mn atoms to the four nearest As atoms.
The xy and z2 orbitals have significant weight also on the As atoms of the
neighboring Mn-As layers. To emphasize this contribution, in the magnifier
symbols we show it enlarged both by applying a zoom and selecting a
smaller isovalue (by a factor of ten). By contrast, in LaMnAsO, no weight
would be seen on the adjacent Mn-As layers at these isovalues. This figure
is taken from Ref. [174].
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It bears mentioning that in BaMn2As2 the interlayer hoppings follow a different decay
than the in-plane hoppings with distance, as visible in the much stronger coupling for
similar atomic distances. The responsible hoppings for the interlayer coupling can be
nearly exclusively attributed to the xy and z2 orbitals, as the coupling of the xz, yz
orbitals is already below 0.05 eV. The x2 ´ y2 orbitals practically do not contribute to
the interlayer coupling. The largest hopping strength is found between the xy orbitals,
followed by xy to z2 and z2 to z2.

The difference in the interlayer coupling of the Mn-As layers can be traced back to
multiple factors. First, the distance between the Mn-As layers is much shorter in
BaMn2As2 (6.73Å versus 9.04Å), where they are separated only by the rather narrow
Ba layer in contrast to the thicker La-O layer in LaMnAsO (see Fig. 5.1). The fact that
the in-plane coupling on distances comparable to the interlayer distance is substantially
smaller than the out-of-plane coupling indicates that the spatial distance between the
layers is not enough to fully explain the enhanced out-of-plane coupling. The second
important difference is the stacking inversion of the Mn-As layers in BaMn2As2. In
LaMnAsO the As atoms do not sit directly above each other as they do in BaMn2As2,
where the small As-As distance leads to a simple hopping path via the As atoms. In
the maximally localized Wannier functions, this can be seen in the electronic weight
of the xy and z2 orbitals on the As atoms in the adjacent layer (Fig. 5.6 magnifier
symbol).

5.3.3. Néel temperature

The highest Néel temperature TN in a class of compounds is usually found close to
the Mott transition. This was first shown for the single-band Hubbard model on the
Bethe lattice [9] and the same argument was recently found to be valid for the 4d
perovskite SrTcO3 [190] with its exceptionally high transition temperature of 1000K.
When starting from an itinerant picture, for a model with bandwidth W , where the
interactions of order U are treated on a mean-field level, the transition temperature
scales as TN „ expp´W {Uq. On the fully localized side, the adequate picture is the
Heisenberg model, where the scaling is TN „ W 2{U . Between these two extreme cases
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we can expect a crossover around U « W , which coincides with the crossover from
an itinerant to a localized system. These qualitative considerations identify the Mott
transition as a hotspot for magnetism, and hence materials in this critical region are
prone to higher transition temperatures.

From the paramagnetic DFT+DMFT spectral function and the quasiparticle weights,
we have seen that BaMn2As2 and LaMnAsO are close to a Mott transition, and their
experimental Néel temperatures are indeed high, with reports of 317K to 360K in
LaMnAsO [31, 35] and even 625K in BaMn2As2 [32]. In Fig. 5.7 we present our
DFT+DMFT results for the ordered moment as a function of temperature. For
BaMn2As2 we find an ordering temperature of around 1350K. The overestimation
of the transition temperature by a factor of more than two is not unusual and can be
expected due to the mean-field character of DMFT [120, 190]. Under the assumption
of a S “ 2 Heisenberg model the reduction of the mean-field Néel temperature for
BaMn2As2 was estimated to a factor of 2.75 [36]. Considering these aspects, the pre-
diction of the Néel temperature in our calculation is in reasonable agreement with the
experimental value. Also, the ordered moment at low temperatures agrees well with
the experimental result of 3.9 µB/Mn [32].

The situation is different for LaMnAsO. There, the experimental ordering temperature
is a factor of two smaller than for BaMn2As2. However, the DFT+DMFT result is
smaller only by about 150K. The reason is that in quasi-two-dimensional systems,
as it is the case for LaMnAsO, spatial fluctuations become important. They in turn
decrease the ordering temperature significantly. In the same way, DFT+DMFT yields a
saturated magnetic moment of 4.0 µB/Mn in contrast to the measured 3.6 µB/Mn [31,
192]. We note in passing that the one-shot DFT+DMFT calculation for LaMnAsO
does result in an even higher magnetic moment of 4.4 µB/Mn.

Our observations are very similar to recent studies in technetium oxides. In the cubic
case (SrTcO3) the local DMFT approximation works well [190], but for the layered
counterpart Sr2TcO4 it overestimates the ordering temperature substantially [200].

The claim that the overestimation of the Néel temperature is tied to the mean-field
character of DMFT was quantified for the 3D Hubbard model. It was shown that
taking diagrammatic extensions of the theory into account leads to a sizable reduction
of the Néel temperature (by more than 30%) in comparison to single-site DMFT [201,
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Figure 5.7.: Magnetic momentm versus temperature T from fully charge self-consistent
DFT+DMFT for BaMn2As2 (red triangles) and LaMnAsO (blue trian-
gles). Experimental points are taken from Refs. [31, 35, 192] for LaMnAsO
(blue crosses) and from Ref. [32] for BaMn2As2 (red crosses). The hori-
zontal dotted lines mark the saturated magnetic moments and the vertical
dotted lines the approximate Néel temperatures. This figure is taken from
Ref. [174].

202]. Furthermore, for the 2D Hubbard model single-site DMFT yields a finite Néel
temperature, which is in contradiction to the Mermin-Wagner theorem. Again, this
can be cured by the inclusion of spatial correlations [201]. To give an example, it was
shown for La2NiTiO6, which nominal hosts two electrons in the eg orbitals, that the
mean-field solution of a corresponding S “ 1 Heisenberg model yields Néel tempera-
tures very similar to the DFT+DMFT result [203].29

From another point of view, it is well known that the strength of the interlayer coupling
is a crucial factor influencing the magnetic properties of layered materials [204], for
instance in the copper oxides [205, 206]. In such compounds, the crossover from a
three-dimensional to a layered system leads to a suppression of the Néel temperature
as a function of the interlayer exchange coupling JK. As we have observed above,
the strong decrease of dimensionality in LaMnAsO is confirmed by a reduction of the
hopping in the z direction (by a factor larger than 25). This will also be reflected in an
29 In the same work a careful analysis of the dependence of the Néel temperature on the interaction U

was provided. A 1{U behavior was observed, which is expected as La2NiTiO6 is a Mott-insulator
located far in the strong-coupling limit; thus the adequate picture is the one provided by the
Heisenberg model.
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5. Importance of effective dimensionality in manganese pnictides

effective JK. Band theoretical estimates and experiments suggest that JK{J‖ ă 0.015
in LaMnAsO [33] and JK{J‖ « 0.1 in BaMn2As2 [36], with J‖ being the in-plane
nearest neighbor exchange coupling. This supports the conclusion that the reduced
Néel temperature in LaMnAsO can be attributed to the lower dimensionality of the
system.

5.3.4. Optical properties

Finally, we turn to the optical conductivity σαβpΩq, Eq. 3.22, which will not only
exemplify the dimensional differences of the investigated compounds but also allow a
comparison with experimental observations.

Starting with BaMn2As2 (Fig. 5.8 red lines), we observe only a weak anisotropy in
the optical conductivity. Besides the depression around Ω « 2.5 eV, there is not
much of a difference between the in-plane and out-of-plane contributions. This il-
lustrates the more isotropic nature of BaMn2As2. A small Drude peak present in the
in-plane component is in accordance with the observation of a weak metallic behavior
at room temperature in Refs. [26, 189]. On the contrary, there is no Drude peak in the
out-of-plane component, indicating that BaMn2As2 is insulating along the z direction,
in agreement with the optical experiments of Ref. [26]. The optical conductivity of
LaMnAsO (Fig. 5.8 blue lines) in the x direction shows a similar trend, but is reduced
by about 1{3 in comparison to BaMn2As2. Since σzzpΩq is strongly suppressed in
LaMnAsO, the total optical conductivity becomes largely dominated by the in-plane
contribution. The similar in-plane conductivity of both compounds originates from
the common Mn-As layer structure, though the effect of the structural differences be-
comes apparent in the distinct optical properties in the z direction. We emphasize
that the dimensional difference is also visible in the static conductivity (Ω Ñ 0). The
ratio σxxp0q{σzzp0q, an indicator for the anisotropy, is 17 in LaMnAsO but only 7 in
BaMn2As2.

For LaMnAsO the optical conductivity was measured using ellipsometry for a poly-
crystalline sample [24]. To compare the experimental results to our calculations, we
average our theoretical results over all Cartesian directions to obtain a “polycrystalline
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Figure 5.8.: Optical conductivity tensor components σzzpΩq (solid lines) and σxxpΩq
(dotted lines) of BaMn2As2 (red) and LaMnAsO (blue) from fully charge
self-consistent DFT+DMFT including uncorrelated bands outside the pro-
jective window. The inset shows the low frequency region of the optical
conductivity in the same units as the main panel. This figure is taken from
Ref. [174].

conductivity” (Fig. 5.9). In general, the spin-polarized DFT result (solid gray line)
follows the trend of the experimental data (black circles), but it severely overestimates
the optical conductivity, at some points by more than a factor of two. Similarly, the
one-shot DFT+DMFT calculation (dashed blue line) cannot explain the experimen-
tal data. As discussed above, the static spin splitting leads to a larger gap, which is
clearly visible in the suppressed optical conductivity below 1.5 eV. Additionally, the
unoccupied Mn states are less correlated due to smaller electron-electron scatterings
as compared to the fully charge self-consistent DFT+DMFT result. The consequence
is a different distribution of the optical weight. On the other hand, in the fully charge
self-consistent treatment, the optical results are not only influenced by the modified
spectral function but also by the altered velocities of the updated Kohn-Sham bands.
Indeed, the fully charge self-consistent DFT+DMFT calculations correctly reproduce
the experimental result over a wide range of frequencies (dotted blue line).

The upper limit of our projective energy window is at 3.25 eV, but the chemical po-
tential (µ “ 1.6 eV) effectively shifts this level down to 1.65 eV. If we also consider
that the Fermi energy is close to the unoccupied states, we see that there can be
transitions at Ω « 2 eV, which are already not captured with our energy window. Of
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Figure 5.9.: Optical conductivity of LaMnAsO calculated with DFT (solid gray line),
fully charge self-consistent DFT+DMFT in the correlated window (dotted
blue line) and including uncorrelated bands (solid blue line) as well as
one-shot DFT+DMFT (dashed blue line); compared to experimental data
(black circles) from Ref. [24]. Above 3 eV DFT+DMFT (including the
outer window) starts to deviate from the experimental data due to the
onset of the La-4f bands, which are placed much too low in energy by
DFT [125]. This figure is taken from Ref. [174].

course, this effect sets in very slowly as there are still many other transitions possible
at Ω « 2 eV. To this end, we extend the trace in Eq. (3.23); now, the spectral function
is a matrix built by a block Aij for the correlated bands, as well as blocks for uncorre-
lated bands below and above the correlated subspace, Aνν1 . Note that Aνν1 „ δνν1 is a
non-interacting DFT spectral function. The resulting optical conductivity yields ex-
cellent agreement with the experimental data up to about 3 eV (solid blue line). The
strong increase above 3 eV is caused by the onset of the La-4f bands, which are known
to be placed much too low in energy by DFT [125].

The remarkable agreement with experimental data underlines the importance of the
fully charge self-consistent approach and suggests that our choice of the parameters U
and J is appropriate. Furthermore, the experimental and theoretical results indicate
that the direct band gap of bulk LaMnAsO may be well below the 1.4 eV obtained from
thin-film measurements [25].
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5.3.5. Further comparisons to experiments

Due to two recent publications on BaMn2As2 [207] and LaMnAsO [208], we supplement
this chapter with a further comparison to this new experimental data.

We start our discussion with the valance-band photoemission (PE) spectrum for
LaMnAsO measured at room temperature with a photon energy of hν “ 7.6 keV [208].
In Fig. 5.10 we compare the experimental spectrum30 (dashed green line) to the total
DFT+DMFT spectral function in the AFM phase (black line) and the total DFT DOS
(blue line). Additionally, the projected DFT DOS of the O-2p orbitals (blue area),
which are the determining states from ´5.5 eV to ´3.0 eV, is shown. A notable dis-
crepancy between experiment and theory is the difference in the total band width. If
we assume that the small kink in the experimental data at about ´3.8 eV originates
from the onset of the O-2p states, we might deduce that this discrepancy is caused
by O-2p orbitals located approximately 0.8 eV too high in energy by DFT. We believe
that this could be corrected in the DFT+DMFT calculation by treating the double
counting as an effective parameter, adjusted such that the experimental spectrum is
best reproduced (cf. Refs. [209, 210]).

Now we turn to ARPES measurements for BaMn2As2 single crystals [207]. In Fig. 5.11
we show the DFT+DMFT k-resolved spectral function along the Γ to M high symmetry
path, plotted in consistency with Fig. 3b of Ref. [207]. The different graphs illustrate
the contribution of the Mn and As orbitals (left column) and the influence of the
imaginary part of the self-energy (right column). At the used photon energy of hν “
46.6 eV the ARPES measurement probes for the most part the Mn-3d orbitals due to
the low cross section of the As-4p orbitals (see Fig. 4b of Ref. [207]). Thus, mainly
the Mn-3d spectral function (middle left plot of Fig. 5.11) should be considered for the
comparison to the experiment.

Overall, the DFT+DMFT result agrees extremely well with what is found in the exper-
iment. All dispersive features of the spectral function are captured in the full energy
range. Especially important is the good representation of the strongly pronounced
bands close to the chemical potential at the Γ point. In this region the highest inten-
sities are observed along the considered k-path. Other high intensity regions are also
30 We scaled the area of the PE spectrum such that it has the correct filling.
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Figure 5.10.: Antiferromagnetic DFT+DMFT spectral function Apωq (black line), total
spin-polarized DFT DOS (blue line) and O-2p projected DFT DOS (filled
blue area), compared to a recent room temperature valance-band PE
measurement at hν “ 7.9 keV (dashed green line) [208]. The Fermi level
is set to ω “ 0 eV.

found at the Γ point at ´2.6 eV and around the M point between ´3.0 eV and ´2.0 eV.
Even the lowest band with its bottom at the Γ point at approximately ´5.0 eV is
present in experiment and theory.

One additional band, visible only in the experiment, with its bottom at the Γ point
near ´1.7 eV cannot be explained with the DFT+DMFT spectral function. As this
band is also not present in spin-polarized DFT calculations, it is argued in Ref. [207]
that its likely origin are surface effects, which can be either caused by a magnetic or
a crystal structure distortion. Of course, surface effects are not captured by our bulk
DFT+DMFT calculations.

The little kink present in all graphs of Fig. 5.11, at about a quarter of the path from
Γ to M, is an artifact of the projective Wannier function construction. Such kinks
can occur if a band enters or leaves the (k-independent) energy window. In our case
this is related to the fact that bands crossing the upper energy boundary still possess
some minor Mn-3d character. Due to the already large energy window it is only a
small artifact, however if this concerns bands with a strong character of the correlated
orbitals the choice of the energy window should be reconsidered.
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Figure 5.11.: Antiferromagnetic spectral functions Apk, ωq for the occupied states
of BaMn2As2 on the high symmetry k-path between Γ and M. Left
column: Full DFT+DMFT self-energy. Right column: Only the
frequency-dependent real part of the self-energy is used and the imag-
inary part is set to ´0.015 eV. Top row: Total spectral function. Middle
row: Mn-3d projected spectral function. Bottom row: As-4p projected
spectral function. All figures are plotted with the same color range and
color map. The limits of the energy axis and the k-path are selected
in accordance with the ARPES intensity plot (hν “ 46.6 eV) shown in
Fig. 3b of Ref. [207]. The Fermi level is set to ω “ 0 eV in all graphs.
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Figure 5.12.: Detail of the spin-polarized (antiferromagnetic) DFT band structure (cf.
Fig. 5.11). The bands with Mn-3d character are colored in red and with
As-4p character in blue, respectively. The Fermi energy is set to ω “
0.0 eV. The prima Wien2k add-on [211] was used to create this figure.

The right column of Fig. 5.11 shows the same information as the corresponding graphs
on the left, but with the imaginary part of the self-energy set to ´0.015 eV in the
calculation of Apk, ωq. At first sight, this “band structure” is very similar to the
spin-polarized (AFM) DFT band structure (shown in Fig. 5.12 for comparison). How-
ever, important difference of the top right plot in Fig. 5.11 and the band structure
in Fig. 5.12 are, for example, apparent at the Γ point in the Mn-like bands. We ob-
serve that the bands below ´2.0 eV are located about 1.0 eV lower in energy in the
DFT+DMFT result. The Mn-3d band slightly below ´2.0 eV in the DFT band struc-
ture, is shifted below the two bands with As-4p character. This shows the importance
of dynamical effects present in the real part of the self-energy. The weakly dispersing
bands between ´4.5 eV and ´3.0 eV possess a strong Mn-3d character (middle right
plot of Fig. 5.11) and exactly these bands are completely washed out if the imaginary
part of the self-energy is restored (middle left plot of Fig. 5.11). In this energy region
the imaginary part of the self-energy is about ´1.5 eV.

We have seen in Sec. 5.3.1 that the DFT and DFT+DMFT spectral functions dif-
fer quite substantially in the PM phase of BaMn2As2 and LaMnAsO. Certainly,
non-spin-polarized DFT cannot correctly describe the localized nature of the corre-
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lated compounds under investigation. This is not so much the case in the AFM ground
state, where the DFT band structure fits relatively well to the DFT+DMFT results (see
also Fig. 5.3). Overall, the occupied states show only a negligible band renormaliza-
tion in DFT+DMFT, which would also indicating that the magnetism-induced static
spin splitting (captured already in DFT) is the fundamental ingredient determining
the spectrum. The authors of Ref. [207] attribute the negligible band renormalization
of the occupied states in BaMn2As2 to this rather simple insight, and speculated that
also the Hund’s coupling could be strongly suppressing charge and spin-fluctuations
in the Mn-3d shells. For the related 122-compound BaCr2As2 one-shot DFT+DMFT
calculations show that the formation of ordered moments reduces the degree of cor-
relations [212]. Subsequently, lower quasiparticle renormalizations in the AFM than
in the PM phase are observed. In our calculations the estimated quasiparticle renor-
malizations in the AFM state, with Z ranging between 0.3 and 0.5 for the majority
spin and between 0.6 and 0.7 for the minority spin, are still substantial, but also show
the less correlated nature in comparison to the PM state. We want to add here that
also the strong Mn-As hybridization of the occupied states is an important factor, as
it might be responsible for a “pinning” of the band structure. On the other hand, the
unoccupied states, which hybridize only very weakly with ligand orbitals (see Fig. A.2),
are considerably renormalized in our DFT+DMFT calculation (Fig. 5.3).

In Ref. [212] it was shown for BaCr2As2 that using only density-density terms in
the Hamiltonian does considerably alter the imaginary part of the self-energy (for
iωn Ñ 0). The standard outcome for the PM phase, where calculations without
spin-flip and pair-hopping terms show stronger correlations due to the lower degen-
eracy of the atomic ground state, is reversed in the AFM case. Neglecting the spin-flip
and pair-hopping terms reduces local spin fluctuations, which ultimately leads to a
higher magnetic moment and reduced dynamic correlations [212]. We performed a
density-density calculations for BaMn2As2 in the PM phase and observed an enhance-
ment of dynamic correlations. Anyhow, this discussion points out the importance of the
spin-flip and pair-hopping terms, which we take fully into account in all DFT+DMFT
calculations for the manganese pnictides.

We want to emphasize that the experimental works [207, 208] addressed in this section
were published after our work [174]. Therefore, the presented comparisons illustrate
the capabilities of fully charge self-consistent DFT+DMFT.
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5.4. Conclusion

We investigated the manganese pnictides BaMn2As2 and LaMnAsO in their paramag-
netic and antiferromagnetic phases. These manganates represent two points along the
dimensional crossover: While BaMn2As2 is quite isotropic with comparable couplings
within and between the Mn-As layers, LaMnAsO is effectively two dimensional with
only a weak residual interlayer coupling. This difference, which is already visible in the
crystal structure, is substantiated, and its origins are accounted for by the maximally
localized Wannier functions for the Mn-3d bands and their hopping amplitudes. We
demonstrated that differences in physical properties such as the Néel temperature, the
band gap, and the static as well as the optical conductivity can be traced back to a
large extent to the difference in the effective dimensionality.

Our fully charge self-consistent DFT+DMFT calculations yield good agreement with
experimental measurements of the optical conductivity and ARPES spectra. Our con-
fidence in the applicability of the method to our compounds thus confirmed, we estab-
lished that both materials are near a metal-insulator transition, which helps explain
their high Néel temperatures. Our results constitute an important example where fully
charge self-consistent DFT+DMFT is demonstrably superior to the one-shot approxi-
mation.
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6. Thermopower of electron-doped
LaMnAsO

Preamble

In this chapter we use DFT+DMFT to simulate electron-doped LaMnAsO. Method-
ical details, especially with respect to DFT+DMFT calculations under doping, are
provided in Sec. 6.2. In Sec. 6.3 we first discuss the applicability of the virtual crys-
tal approximation and then present the DFT and DFT+DMFT electronic structure of
electron-doped LaMnAsO in the antiferromagnetic phase. Finally, we discuss the origin
of the calculated Seebeck coefficients and put our results in the context of experimental
observations.

G. Kraberger contributed the VASP super-cell DFT calculations. All other calcula-
tions, the analysis of the results, a literature study, and the discussion presented in
this chapter were solely carried out by the author of this thesis.

6.1. Introduction

In times of a drastic increase in energy consumption alternative sources of electric
energy become increasingly important. Thermoelectric materials can intrinsically con-
vert heat into electric energy, and therefore they are often considered as an alternative
source of power generation [45, 46]. Otherwise wasted heat, e.g. from car engines or
power plants, can be utilized in an environmentally friendly way. The fact that the
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power conversion through the Seebeck effect is essentially a material property opens
the possibility of designing reliable, maintenance-free and long-living devices. Under
these aspects, the investigations carried out in the following are not only of purely
academic interest.

Studying the underlying microscopic mechanisms that promote high thermoelectricity
is a pivotal aspect not only in the search of new thermoelectric materials, but also
in view of tuning and improving existing ones by targeted structural modifications,
e.g. chemical substitution, external deformation or even heterostructure design [44].
Although semiconductors are already used for certain applications (with Bi2Te3 [213]
being the most famous one), there is still an urge to increase the efficiency of thermo-
electric materials. The efficiency of a thermoelectric device is measured with the figure
of merit ZT “ S2Tσ{κ [133], where T is the operating temperature, S the Seebeck
coefficient, σ the electric conductivity, and κ is the thermal conductivity.31 We will
mainly focus on the Seebeck coefficient in the following.

Regarding the class of manganese pnictides, experiments have repeatedly reported
remarkable thermoelectric properties. For example, a Seebeck coefficient of about
220 µVK´1 was measured in BaMn2Sb2 single crystals at room temperature [37, 38].
This value further increased to 520 µVK´1 by Zn doping of the Mn atoms
(BaMn1.7Zn0.3Sb2) [38]. On the other hand, BaMn2Bi2 crystals show a lower – but
still high – Seebeck coefficient of 120 µVK´1 at 300K [39]. In polycrystalline samples
of 1111 manganese pnictides similar values were measured. For example, hole dop-
ing in LaMnPO was experimentally achieved by a substitution of La with Ca or by a
substitution of Mn with Cu [40]. These samples, with doping levels between 5% and
10%, exhibit a positive Seebeck coefficient in the range of 100 to 300 µVK´1. Sim-
ilarly, S “ 240 µVK´1 for La0.9Sr0.1MnAsO was reported at room temperature [41].
A negative Seebeck coefficient of ´350 µVK´1 was measured for an oxygen-deficient
SmMnAsO0.925 sample [42]. Polycrystalline LaMnAsO1-δFδ samples with δ = 0.03,
0.05, 0.07 and 0.1 were synthesized in Ref. [43]. The room temperature Seebeck co-
efficient of these samples increases from about ´290 µVK´1 at 3% doping to about
´190 µVK´1 at 7% doping and jumps to only ´30 µVK´1 for a doping level of 10%.
31 Optimizing ZT is a difficult task due to interdependencies of S, σ and κ [45]. Take for example

the Wiedemann-Franz law for metals [48], σ „ κT ; hence a high electric conductivity is usually
accompanied by a high thermal conductivity.
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These experimental findings call for an investigation of the thermoelectric properties
exhibited by manganese pnictides. Still, fairly little work on the theoretical side is avail-
able in the literature. Only for BaMn2As2 the Seebeck coefficient was calculated within
DFT and the const.-τs approximation, which resulted in values of around 200 µVK´1

for hole doping and ´150 µVK´1 for electron doping at 300K [27].

In the same way, we will show for LaMnAsO that also in this manganese pnictide high
Seebeck coefficients can be obtained already in the const.-τs approximation on the level
of DFT calculations. Our subsequent analysis attributes the resulting values to a good
extent to the peculiar properties of the band structure. However, these calculations
have to be taken with care, as DFT+DMFT shows that the high Seebeck coefficient is
actually a consequence of the special properties of the spectral function.

6.2. Methods

Besides the details stated in the following, our simulations were performed with the
same settings and tools as used in Ch. 5. For each doping level we consider the
same number of Bloch states by adjusting the (k-independent) energy window of the
projective Wannier function construction for the Mn-3d orbitals. To be consistent
with the previous chapter, we use for all doping levels the crystal structure of the
undoped compound measured at 290K [187]. The lattice parameters are only weakly
influenced by the doping, and a test calculation performed with the experimental values
of Ref. [43] for 10% electron doping showed no qualitative change in our results. Except
stated otherwise, calculations in this chapter are carried out at room temperature
(β “ 40 eV´1). In all magnetic calculations we use the C-type AFM ordering as
determined experimentally for the undoped compound [31].

We take the doping already into account on the DFT level. In Wien2k [117, 118] this
can be accomplished with the virtual crystal approximation (VCA) [214], where the
atomic numbers of the substituted atoms are modified according to the desired doping
level. Additionally, we perform super-cell calculations using VASP 5.4.1 [147–150]
with the projector augmented wave (PAW) method [215, 216] and pseudopotentials
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v.54.32 A plane wave energy cutoff of 400 eV is employed, consistent with the VASP
default value for these pseudopotentials. Like in the Wien2k calculations, the PBE
density functional [52] is used. The VASP super-cell calculations are performed with the
same crystal structure parameters as used for the Wien2k calculations, apart from the
modifications to achieve the doping effect in the super-cell. We obtain all results with
the same lattice parameters, and thus possible doping-induced structural distortions
are not taken into account. The full BZ of the super-cell is sampled with a 10ˆ10ˆ12
Γ-centered Monkhorst-Pack [217] k-grid, whereas for the Wien2k calculation 10 000
k-points in the BZ of the initial cell, which is 9 times smaller in real space, are used.

6.3. Results

6.3.1. Virtual crystal approximation (VCA)

In practice, doping is often achieved by replacing a fraction of the open-shell atom
(here Mn) by a similar element, preferentially to the left or right in the periodic table.
Successful doping in LaMnAsO was accomplished by changing the charge of the La-O
layers, which are sandwiched between the Mn-As layers, by a fractional replacement of
the La atoms with Ca or Sr [41, 43], or by the fractional replacement of the O atoms
with F or H [43, 186, 218]. The additional (or missing) charge on the La-O layers
becomes a valence charge of the Mn-As layers, which in turn shifts the Fermi energy of
the band structure. One could, thus, approximately model the effect of doping using a
rigid energy shift of all bands without modifying the shape of the non-interacting DOS;
this is the simplest way to take doping into account. Although appropriate in specific
cases on the DFT level, it does not mean that shifting the correlated DFT+DMFT
spectral function is justified.

A more advanced way of incorporating the effect of doping in band-structure methods
is the virtual crystal approximation (VCA) [214]. The VCA neglects charge localiza-
tion and assumes that there is a virtual atom on all possible sites which interpolates
32 The pseudopotentials are: La 06Sep2000, Mn 06Sep2000, As 22Sep2009, O 08Apr2002, F

08Apr2002, Sr_sv 07Sep2000.
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between the original atom and the dopant. In other terms, the VCA can be seen as a
“delocalized” distribution of the additional carriers, where short-range order and local
distortions are neglected. This approach is a mean-effect picture where no information
specific to the dopant atom is incorporated. The picture of a virtual atom is only ad-
equate for atoms with similar radii and the same number of core electrons. Therefore,
the VCA is only believed to give reliable results for low doping levels and if the dopant
is a neighboring atom in the periodic table. Computationally the VCA is an efficient
way to simulate doping, because calculations can be carried out at the same cost as
for the corresponding undoped structure.

Another possibility to incorporate doping effects is the super-cell approach, where the
doped atoms are directly replaced by the dopant in a larger unit cell. Therefore, the
dopants are incorporation in a translationally invariant way, which can be described
as “maximally ordered” doping. Super-cells assume a long-range order of the dopants
in the crystal matrix. Using this approach within DFT+DMFT is certainly feasible
for high enough doping levels, however it would be much too demanding for the low
doping levels used in this work due to the huge super-cells needed.

To be consistent with the experiment, we replaced the O atoms by F atoms for the
electron doping case in a 3 ˆ 3 ˆ 1 super-cell, which corresponds to a doping level of
11.1% (see inset of Fig. 6.1 top). Hole doping of the same level is taken into account
by replacing La atoms in the same super-cell by Sr atoms (inset of Fig. 6.1 bottom).
In Wien2k the electron doping is incorporated with the VCA by adjusting the atomic
number of the O atoms to Z “ 8.11. Likewise, the atomic number of La is adjusted to
Z “ 56.89 for hole doping.

In Fig. 6.1 we compare the VCA Wien2k DOS for electron- and hole-doped LaMnAsO
to the super-cell calculations carried out with VASP. The agreement of VCA and the
super-cell calculations is especially good in the energy region with no or only weak
hybridization of the La-O and Mn-As layers, which is roughly between ´3 eV and 2 eV.
It should be also noted that the Mn-3d projected DOS are in even better agreement
than the total DOS. The former is the more important quantity as only the Mn-3d
orbitals are treated within DMFT.
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Figure 6.1.: Comparison of the total Wien2k VCA DOS in the antiferromagnetic state
at 11% doping (filled areas) with the VASP super-cell (SC) DOS for a
3ˆ 3ˆ 1 super-cell (lines), i.e. a doping of 11.11%. Top: Electron doping
(substitution of O with F). Bottom: Hole doping (substitution of La with
Sr). The total DOS is colored in green and the projected Mn-3d DOS in
blue. In the insets (prepared with VESTA [154]), which show a top view
of the La-O layer, the positions of the F atoms (green) substituting the
O atoms (red) and the Sr atoms (blue) substituting the La atoms (grey)
are indicated. The La and Sr atoms sitting below the O plane are lighter
colored than those above. The Fermi energy is set to ω “ 0 eV. Note that
the VCA cannot distinguish between dopants in the same column of the
periodic table (e.g. Ba, Sr, Ca).
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Of course, in energy regions exhibiting dopant states, one cannot expect a good agree-
ment between VCA and the super-cell calculation. This is especially apparent from
´6 eV to about ´3 eV, where the DOS is mainly determined by O states, i.e. the prop-
erties of the La-O layer. Super-cell calculations with a different arrangement of the
dopants in the unit cell did not substantially change the DOS. We also compared the
VCA and super-cell calculation for the non-spin-polarized state, because this is actually
used as input for the DMFT calculation. An agreement is found on the same level as
for the spin-polarized calculations (not shown). As we are mainly interested in spectral
properties in the vicinity of the Fermi energy, which are to a great extent determined
by the Mn-As layer, the comparison presented in Fig. 6.1 underlines that VCA is an el-
igible approximation for studying doped LaMnAsO. Similarly, for the earlier discussed
BaMn2As2, it was shown with super-cell calculations that the main features of the
undoped band structure were retained under a doping of 25% [29]. Hence, all results
discussed in the remainder of this chapter are obtained with Wien2k and the VCA.

6.3.2. Spectral functions under electron doping

In this section we use the VCA and DFT+DMFT to simulate LaMnAsO1-δFδ with
electron doping levels of δ “ 3, 5, 7 and 10%. We start our discussion with the total
DFT+DMFT spectral functions Apωq in the AFM phase (top left graph of Fig. 6.2).
In comparison to undoped LaMnAsO (dashed line), doping has three major effects:
First, there is some small spectral weight at the chemical potential. Second, the edge
of the spectral function between 0.0 eV and 0.25 eV in the undoped compound is pushed
towards ω “ 0.0 eV when the doping level is increased. Although the slope of this edge
is steeper in comparison to the undoped spectral function, it does not substantially
change for the different doping levels. Third, additional weight below the chemical
potential emerges, which increases with the doping level and develops into a shoulder,
well visible for 10% doping. We will see below in the analysis of the k-resolved spectral
function Apk, ωq that the spectral weight appearing below the chemical potential is not
the result of, e.g., an electron pocket, but is rather incoherent weight originating from
electronic correlations.
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Figure 6.2.: Top left: Evolution of total DFT+DMFT antiferromagnetic spectral func-
tions for 3, 5, 7 and 10% electron doping (colored lines). The undoped
spectral function (dashed black line) is shown for comparison and a simple
energy shift of it, adjusted to a filling corresponding to the four doping
levels, is indicated by the dotted black lines. Bottom left: DFT+DMFT
orbital-resolved spectral functions of the correlated Mn atom (sum of up
and down spin) for 5% electron doping (solid lines) compared to the un-
doped spectral functions (dashed lines). Top right: Evolution of total
antiferromagnetic DFT DOS for 3, 5, 7 and 10% electron doping (colored
lines). Additionally, the undoped spectral function (dashed black line)
shifted by ´0.51 eV is shown. This shift was determined such that the
onset of the unoccupied states is at the Fermi energy. Bottom right: DFT
orbital-resolved DOS of the Mn atoms for 5% electron doping (solid lines)
compared to the (shifted) undoped spectral functions (dashed lines).
Note that the doping levels given in the legends are per O atom, but the
total spectral function is shown for a unit cell containing two atoms of each
kind (2 LaMnAsO). The magenta lines in the bottom graphs correspond
to only one orbital and not the sum of the xz and yz orbitals. The Fermi
level is set to ω “ 0.0 eV and is indicated by the vertical dotted black line
in all graphs.
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Additionally, we show in Fig. 6.2 (top left) spectral functions which are generated by
simply shifting the undoped spectral function by ∆ω according to the different doping
levels (dotted black lines). These energy shifts ∆ω are determined by integrating from
0.0 eV up to ∆ω, such that the area corresponds to δ. The fact that not much spectral
weight is present in the first 0.05 eV above the chemical potential result in a substantial
shift already for the lowest doping level of 3%. A further increase of the doping gives
only small additional shifts. Importantly, these simple energy shifts do not correctly
reproduce the three effects mentioned in the above paragraph, and are therefore not
justified on the level of the DFT+DMFT spectral function.

In the bottom left graph of Fig. 6.2 we present the Mn-3d orbital projected spectral
function for the undoped compound and for an electron doping of 5%. In undoped
LaMnAsO, the lowest unoccupied weight is mainly of xz{yz character (dashed magenta
line, see also Sec. 5.3.1), and unsurprisingly the low-energy properties of these two
orbitals are affected the most by the doping (full magenta line).33 This is manifested
in the position of the peak present in the undoped xz{yz spectral function at about
0.2 eV, which lies more than ´0.14 eV lower in energy at 5% doping. On the contrary,
the positions of the peaks present in the spectral functions of the other orbitals are
shifted by only about ´0.07 eV. Additional spectral weight develops below the chemical
potential and the slope of the xz{yz becomes considerably steeper under doping. Note
that at the chemical potential the spectral weight of the z2 and the x2 ´ y2 orbitals is
much lower than the xz{yz weight. Furthermore, we observe that the small shoulder in
the z2 spectral function around 0.1 eV is not present in the undoped spectral function.

The total and the Mn-3d orbital projected spin-polarized (AFM) DFT DOS are shown
in the right graphs of Fig. 6.2. In Wien2k the Fermi energy EF of an insulator is defined
by the valance band edge. For a better comparison to the doped results we shift the
undoped DOS by ´0.51 eV, such that the onset of the unoccupied states is at EF .
Like in DFT+DMFT, also the DFT DOS shows that the degenerate xz{yz orbitals
dominate the low-energy region. However, in the doped case the spectral weight at
EF is about 10 times larger and the DOS in the vicinity of EF is sharply peaked in
comparison to the DFT+DMFT spectral function. The slope of the DFT DOS does
not become steeper with doping and also the additional spectral weight below EF is
not observed.
33 The magenta lines in Fig. 6.2 correspond to only one orbital and not the sum of the xz{yz orbitals.
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Figure 6.3.: Spin-polarized (antiferromagnetic) DFT band structure along the k-path
shown in Fig. A.3. The band character of the summed up and down spin
of the xz{yz orbitals is colored in red and the z2 orbitals are colored in
blue, respectively. The prima Wien2k add-on [211] was used to create this
figure. The Fermi energy is set to ω “ 0.0 eV.

The DFT band structure for 5% electron doping is shown in Figs. 6.3, where the bands
are colored according to their characters: red for the xz{yz orbitals and blue for the
z2 orbital. The DFT picture is that of a band insulating LaMnAsO which becomes
metallic under doping as EF is shifted into the unoccupied states. The doping is mainly
affecting the hole pockets of the xz{yz orbitals at the A and M points. Especially at
the M point the bands are rather flat, resembling a mold-like shape. For all electron
doping levels (ą 0) the bottom of the bands at the A and M points lies below EF .

We turn now to the correlated DFT+DMFT band structure Apk, ωq shown in the top
graph of Fig. 6.4. Already in the discussion of Fig. 5.3 we have seen that electronic
correlations lead to important differences in comparison to the DFT band structure.
Around the A and M points the spectral weight has a stronger pronounced flat part
than the corresponding DFT bands, e.g. apparent in the lowest unoccupied DFT band
on the path from M to Γ. Up to the middle of the path this band is relatively flat in
energy in the DFT+DMFT result, but substantially more dispersive in the DFT band
structure. The middle and bottom graphs of Fig. 6.4 show that these strong spectral
weights have the same orbital character (xz{yz) like in the DFT calculation. Away
from the M and A points the character of the lowest band changes to z2 and xy (see
bottom graph of Fig. 6.4). These orbitals are strongest visible in the weakly dispersing
spectral weight between the Γ and Z point.
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Figure 6.4.: Correlated spectral functions Apk, ωq at 5 % electron doping on the BZ
path shown in Fig. A.3. Top: Total spectral function, Middle: Projection
onto the xz and yz orbitals, Bottom: Projection onto the z2 and xy or-
bitals. All figures are plotted with the same color range and color map.
The Fermi level is set to ω “ 0.0 eV in all graphs.

103



6. Thermopower of electron-doped LaMnAsO

Another consequence of electronic correlations is the emergent incoherent weight of the
electronic states, which can be seen from the washed out spectral features in Fig. 6.4.
In the DFT+DMFT calculation the effect of doping is to move the chemical potential
into the incoherent part, present due to =Σ pωq, of these states. To be more precise,
an artificial band structure, where only <Σ pωq is used and =Σ pωq is set to zero, does
not have bands crossing EF (not shown here). In sharp contrast to the DFT result,
the prominent spectral features in the correlated band structure at the A and M point
lie clearly above the chemical potential.

The fact that the bottom of the xz{yz bands is below EF in DFT, whereas the pro-
nounced spectral features of these orbitals are still located above the chemical potential
in DFT+DMFT, does lead to a completely different interpretation of the high Seebeck
coefficients in electron-doped LaMnAsO. Overall, the special case of relatively flat
spectral features around the chemical potential constitutes an interesting case for the
Seebeck coefficient, because both, a high asymmetry in the spectral function and, at
the same time, a high asymmetry in the velocities is present. To what extent these
asymmetries influence the Seebeck coefficient is the focus of the following section.

6.3.3. Seebeck coefficient and its origin

Due to the ω-factor in the kinetic coefficient Kαα1

1 (Eq. 3.25), electron contributions
(with ω > 0 ) and hole contribution (with ω < 0) influence the Seebeck coefficient S
in an opposite way. Having a high electron-hole asymmetry, i.e. a strongly asymmetric
transport distribution Γαα1 (Eq. 3.23), is a necessary ingredient for a high Kαα1

1 , and
in turn a high S. There are two different mechanisms to promote a strong asymmetry
in Γαα1 , as there are likewise two quantities entering Γαα1 : the velocity matrices vαpkq
and the spectral function Apk, ωq.

The obvious situation, which is shown in sketch (1) of Fig. 6.5, is to have a very asym-
metric spectral function Apk, ωq, i.e. a steep slope of the spectrum close to EF [219–
221]. A high positive Seebeck coefficient is expected if there are many more states below
EF than above and a high negative Seebeck coefficient for cases with many more states
above EF than below, respectively. Thus, a high Seebeck coefficient can be understood
on the level of the DOS. In the context of strongly correlated systems this picture was
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also discussed with regard to a sharp Kondo peak directly above or blow the chemical
potential [145, 222]. An indicator for the influence of the asymmetry present in the
spectral function is to evaluate S (Eq. 3.25) with vαpkq “ const.ˆ 11. In this case the
velocities drop out and we end up with34

Sv“11
“ ´

ş

dω βω p´Bf pωq {Bωq
ř

k TrA2pk, ωq
ş

dω p´Bf pωq {Bωq
ř

k TrA2pk, ωq
. (6.1)

In the literature it was pointed out that not just an asymmetry in Apk, ωq, but also
peculiar band shapes can strongly enhance the Seebeck coefficient [223–225]. In this
scenario, a strong asymmetry is found directly in vpkq. If we assume a constant isotropic
scattering time τs, the kinetic coefficients (Eq. 3.35) can be approximated as [223]

K0 „
ÿ

k

`

v2
Apkq ` v2

Bpkq
˘

K1 „
ÿ

k

`

v2
Apkq ´ v2

Bpkq
˘

. (6.2)

Here the summation runs only over states in the range of |ω ´ EF | À 1{β. The
velocities v2

A and v2
B are characteristic velocities for the states above (A) and below (B)

EF . A linear dispersion in the vicinity of EF means that v2
A « v2

B, and thus K1 will be
low, like it is the case for usual metals [223]. The optimal situation for a high S are
“pudding-mold”-like bands which are non- or only weakly-dispersive below/above EF
and show a strongly dispersive behavior above/below EF (see sketch (2) in Fig. 6.5). If
EF is located close to the flat portion of a band and the temperature is high enough, we
find v2

A " v2
B, and consequently K1 „ v2

A. In general, asymmetries in vpkq provide an
opposing picture and add a second facet to the theoretical understanding of materials
with good thermoelectric properties.

Of course, vpkq and Apk, ωq are intertwined and for real materials the influence of the
electronic structure on the thermoelectric properties should be always considered as
an interplay of these two ingredients [226, 227]. A band structure showing a strong
asymmetry in vpkq usually comes with an asymmetry in Apk, ωq, which can be such
that it will partially compensate the asymmetry in vpkq. For example, it was shown
that this is the case in Na0.7CoO2 [226]. Coming back to sketch (2) in Fig. 6.5, one
34 For a better readability we omit the directional indices α and α1 in the remainder of this chapter.
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6. Thermopower of electron-doped LaMnAsO

Figure 6.5.: Sketch of two scenarios promoting a high Seebeck coefficient. (1):
Particle-hole asymmetry in the spectral function Apωq. (2): Asymme-
try in the velocities vA " vB due to the flat portion of the band below the
Fermi energy EF and a high dispersion above.

would expect many more states below EF , and thus also a much higher spectral function
below EF . For energies above EF the spectral function would sharply diminish to a
lower value. However, if the bending point of the band is very close to EF and the
temperature high enough, one could again have a scenario where more states above EF
contribute in total. This would not compensate the effect of the asymmetry in vpkq,
but even enhance S. We will show below, in the discussion of Fig. 6.6, that this is
indeed the case for LaMnAsO in the const.-τs approximation.

We have seen in Ch. 5 and in Sec. 6.3.2 that in both quantities, vpkq and Apωq,
asymmetries are present in LaMnAsO. In the remainder of this section we will focus on
how these thermoelectrically-favorable properties influence the Seebeck coefficient.

As all experimentally synthesized samples of LaMnAsO (doped and undoped) are poly-
crystalline, we simulate a “polycrystalline” Seebeck coefficient by averaging over the
three Cartesian coordinates (see also Eq. B.3) [228]

Sav “
Sxxσxx ` Syyσyy ` Szzσzz

σxx ` σyy ` σzz
. (6.3)

We show the averaged Seebeck coefficient Sav as a function of electron doping level
in Fig. 6.6. The DFT+DMFT Sav in the AFM phase is ´290 µVK´1 at 3% doping
and increases up to ´190 µVK´1 for 10% doping (blue circles). At a doping of 3% the
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calculated value coincides with the experimental data [43] (black circles), but consid-
ering the uncertainties present on the experimental and the theoretical side, also the
results at doping levels of 5 and 7% are still in very good agreement. However, the
DFT+DMFT Sav deviates from the experimental result at 10% doping. On the other
hand, in the PM DFT+DMFT calculations Sav is only ´40 µVK´1 at 5% doping and
´15 µVK´1 at 10% doping (blue squares). The large discrepancy at 5% doping in com-
parison to the AFM result suggest that the magnetic ground state, which is a property
most manganese pnictides share, is, at least at lower doping levels, an essential ingre-
dient to describe the thermoelectric properties of LaMnAsO. Controversially, at 10%
doping we actually find that the PM solution agrees better with the experiment.

Interestingly, the experimental measurement of the conductivity as a function of tem-
perature reveals a rather abrupt change to a clearly metallic regime at a doping level
of 10% [43]. This might be connected to a magnetic phase transition as also a 14%
H doping leads to the destruction of the AFM ground state in LaMnAsO [186]. A
similar behavior has been observed for SmMnAsO1-δ samples [42]. In this compound
the Seebeck coefficient is S “ ´350 µVK´1 for an oxygen-deficiency of δ “ 0.075 and
S “ ´280 µVK´1 for δ “ 0.17 at room temperature. However, upon a further in-
crease of doping it jumps to only ´40 µVK´1 for δ “ 0.2. The Néel temperature of
the δ “ 0.2 sample is about 30K, whereas no transition to a PM state is observed
up to the highest measured temperature of 400K for the samples with lower dopings.
Clearly, further experimental investigation would be necessary to definitely determine
the magnetic state of LaMnAsO0.9F0.1 at room temperature.

Although we initially break the spin-symmetry in the AFM DFT+DMFT calculations,
the system is in principle free to converge to the PM solution, as it does indeed at high
enough temperatures (see Sec. 5.3.3). However, even for 10% electron doping we find
the AFM ground state strongly prevailing. The ordered magnetic moment only reduces
by 0.1 µB/Mn in comparison to the undoped result, and also the total energy clearly
favors the AFM phase. In the same way as DMFT is not reliable in predicting the
absolute value of magnetic transition temperatures (cf. Sec. 5.3.3), we do not expect
DMFT to correctly describe a possible transition from the AFM to the PM phase with
increasing doping levels due to the mean-field character of the theory.
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Figure 6.6.: Averaged Seebeck coefficient Sav as a function of the electron doping
level δ calculated with spin-polarized (antiferromagnetic) DFT+const.-τs
(red circles), DFT+DMFT in the antiferromagnetic phase (blue circles),
DFT+DMFT in the paramagnetic phase (blue squares) and compared to
experimental results from Ref. [43] (black circles). The dashed lines cor-
respond to the evaluation of Sav with vpkq “ 11 (Eq. 6.1) for the antifer-
romagnetic DFT+DMFT result (blue triangles) and the DFT result (red
triangles). The lines are a guide to the eye.

Using spin-polarized DFT and the const.-τs approximation,35 we also obtain high neg-
ative values for Sav (red circles in Fig. 6.6). At 10% doping the DFT+const.-τs Sav
is comparable to the DFT+DMFT result, but at 3% doping |Sav| is by more than
100 µVK´1 smaller than the DFT+DMFT value and the experimental data.36 On a
qualitative level, one might argue that already the const.-τs approximation is sufficient
to provide an understanding of the high Seebeck coefficient. However, the evaluation
of Sv“11

av , using Eqs. 6.1 and 6.3, reveals a completely different interpretation for the
two approaches (red and blue triangles in Fig. 6.6).

35 In the TRIQS/DFTTools transport code we achieve this by setting Σpωq “ ´i{τs with 1{τs “
0.05 eV. Note that the actual value of τs is not relevant as it cancels in the calculation of S.

36 In contrast to PM DFT+DMFT, the non-spin-polarized DFT+const.-τs calculation even results
in a positive Seebeck coefficient of 10 µVK´1 at 5% doping and 15 µVK´1 at 10% doping.
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In the DFT+const.-τs calculation |Sv“11
av | is about 100 µVK´1 smaller than |Sav|, i.e

|Sav| reduces by 60-70% when the velocity matrices vpkq are set to 11, suggesting that
the asymmetry in vpkq are a dominant ingredient of |Sav|. This insight is supported
by our analysis of the band structure and the spectral function in the previous section.
The rather flat bottom of the xz{yz bands lying below EF and their more disper-
sive character above EF (see Fig. 6.3) already indicates a strong influence of vpkq on
Sav. Furthermore, the asymmetry in the DOS (top right graph of Fig. 6.2) does not
compensate the vpkq asymmetry, but rather gives a contribution with the same sign,
confirmed by the negative values of Sv“11

av for all doping levels in the DFT+const.-τs
results (red triangles in Fig. 6.6). We attribute this to the fact that at β “ 40 eV´1

there are still more relevant states above EF than below; selected by the derivation of
the Fermi function in Eq. 3.25 (cf. Fig. 3.1 and the top right graph in Fig. 6.2).

On the other hand, the same analysis for the DFT+DMFT calculation shows only a
slight reduction of |Sav| by about 15% when setting vpkq “ 11. Therefore, we draw the
conclusion that in this case the asymmetry in the DFT+DMFT spectral function is
the determining factor for the Seebeck coefficient of LaMnAsO. Again, we can deduce
this already from the spectral function and the correlated band structure (Figs. 6.2
and 6.4). Here we have strongly pronounced spectral features present slightly above
the chemical potential, leading to a considerable spectral asymmetry. The situation is
such that v2

A and v2
B are small, but v2

A « v2
B.37

Clearly, the flat bands, i.e. spectral features of the xz{yz orbitals, are the decisive in-
gredient for the Seebeck coefficient in electron-doped LaMnAsO, but the ways how the
specific properties of these bands enhance the Seebeck coefficient are completely differ-
ent in the DFT+const.-τs approximation and the DFT+DMFT calculation. Due to the
strong effect of the electronic correlations on the unoccupied states of LaMnAsO, and
the better agreement with experiments, we are convinced that DFT+DMFT provides
the appropriate picture for understanding the observed Seebeck coefficients.

Additionally, we show in Tab. 6.1 the Seebeck coefficient calculated at 5% doping
for a lower temperature of 145K (β “ 80 eV´1). In the DFT+const.-τs calculation
the difference is basically a narrowing of the energy window by the derivative of the
Fermi function. However, within DFT+DMFT we have to perform a full calculation
37 Even if v2

A and v2
B are small, the Seebeck coefficient can still be high, because the velocities enter

both coefficients K0 and K1.
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at the new β, because also the correlated Apk, ωq changes with temperature. It turns
out that |Sav| is a little bit lower than at room temperature in both approaches. In
DFT+const.-τs the difference to Sv“11

av is still 100 µVK´1. We infer that the effect
of the velocity asymmetry is roughly the same as at room temperature, whereas the
contribution from the spectral function is slightly lower. This is plausible, because the
narrower energy window effectively captures less unoccupied states in the DFT DOS
(cf. Fig. 3.1 and the top right graph in Fig. 6.2). For the DFT+DMFT calculation,
deducing from the spectral function at room temperature, one would expect a much
lower |Sav| at the two times lower temperature. However, this is compensated by an
even stronger asymmetric Apωq at T “ 145K (not shown).

Although the agreement of the calculated DFT+DMFT Seebeck coefficients for
electron-doped LaMnAsO with experimental data is intriguing, we should, for the
sake of a conscientious discussion, put this comparison into a broader perspective. On
the theoretical side the details of DFT+DMFT can have an influence on the resulting
Seebeck coefficients, as the double counting, the analytic continuation, and the inter-
action values U and J have an effect on the precise shape of the spectral function. For
example, increasing or decreasing the input error of the Beach algorithm by a reason-
able factor of 5 can change S by about 20%. Due to the strong hybridization of the
Mn-3d orbitals with the As-4p orbitals below the chemical potential, the details of the
occupied spectral function might be influenced by the double counting, choice, because
it determines the effective location of the Mn-3d states with respect to the As-4p bands.
We think that this is less severe for the unoccupied states, which have mainly Mn-3d
character (cf. Fig. A.1). Anyhow, we emphasize that we did not modify the double
counting and the interaction parameters with regard to the calculations in Ch. 5.

On the other hand, also the experimental data has to be treated with care, because it is
obtained from only one polycrystalline sample per doping level [43]. Indeed, measure-
ments for the related compound LaMnPO, which has overall very similar physical prop-
erties [22], show Seebeck coefficients scattered from ´100 µVK´1 to ´300 µVK´1 for
undoped samples [40]. This wide range of Seebeck coefficients is attributed to the non-
stoichiometry of the synthesized samples, because the chemical composition is difficult
to control precisely (especially the anion ratio P:O). Further, the fact that an undoped
LaMnAsO sample and a sample with 5% Ca doping show both S « 340 µVK´1 [43]
might point towards difficulties in the synthesis of precise doping levels.
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Table 6.1.: Averaged Seebeck coefficients Sav and Sv“11
av (in µVK´1) of LaMnAsO cal-

culated with DFT+const.-τs and DFT+DMFT at 5% electron doping and
temperatures of 145K (top) and 290K (bottom).

T = 145 K DFT+const.-τs DFT+DMFT
Sav ´150 ´230
Sv“11
av ´50 ´205

T = 290 K DFT+const.-τs DFT+DMFT
Sav ´170 ´250
Sv“11
av ´70 ´220

Finally, for thermoelectric applications not only S is crucial, but more so the
power-factor S2σ (numerator of ZT ). The calculated out-of-plane conductivity σzz

of electron-doped LaMnAsO is about a factor 50 lower in our DFT+DMFT calcu-
lations and still 5 to 10 times lower in DFT+const.-τs than the in-plane conduc-
tivity σxx (not shown). As we have seen in Sec. 5.3, this is a consequence of the
quasi-two-dimensional nature of LaMnAsO. The crystal symmetries demand equal
properties of the in-plane directions, i.e. σxx “ σyy and Sxx “ Syy. Thus, following
from Eq. 6.3, the averaged Seebeck coefficient is mainly determined by its in-plane
value Sav « Sxx. Interestingly, the difference in the dimensionality is not pronounced
in the direction dependent Seebeck coefficient itself. For all studied doping levels in
the AFM phase |Szz| is less than 40 µVK´1 smaller than |Sxx|.

Putting everything together, the in-plane direction offers a similarly high Seebeck coef-
ficient, but exhibits a much higher conductivity than the out-of-plane direction. There-
fore, we predict that a possible single-crystalline LaMnAsO1-δFδ sample should show
the highest power-factor if thermoelectricity is harvested in the in-plane direction.
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6. Thermopower of electron-doped LaMnAsO

6.4. Conclusion

In this chapter we studied LaMnAsO under electron doping in the framework of fully
charge self-consistent DFT+DMFT. To incorporate an effective electron doping we
employed the virtual crystal approximation on the DFT level, which we first demon-
strated to give reasonable results by a comparison to VASP super-cell calculations. A
detailed study of the effect of doping on the DFT and DFT+DMFT (k-resolved) spec-
tral functions revealed a completely different picture. On the DFT level, the doping
pushes the Fermi energy into the flat xz{yz bands, with the bottom of the bands below
the Fermi energy. On the contrary, the incorporation of electronic correlations within
DMFT shows that doping leads to incoherent weight below the chemical potential,
whereas stronger pronounced spectral features are still located above it. We investi-
gated the implications of these differences on the Seebeck coefficient by emphasizing
the role of the magnetic ground state, the contribution of band-structure effects and
the degree of particle-hole asymmetry in the spectral function. In principle, it might
be possible to further enhance the present asymmetries with a targeted modification of
the crystal structure, e.g. by applying external pressure. At this point, we leave such
investigations open for future works.
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7. Conclusions

This thesis dealt with the description of strongly correlated materials; namely SrVO3,
BaMn2As2, LaMnAsO and Sr2RuO4. A special emphasis was geared on the calculation
of transport quantities (optical conductivity, Seebeck coefficient and Hall number) in
a post-processing step to DFT+DMFT calculations. To this end, we presented the
transport code of the TRIQS/DFTTools package.

We started with SrVO3, one of the simplest correlated materials, for which we have
discussed various DFT+DMFT results including transport properties. Despite being
branded as benchmark material in the DMFT community, we were able to reveal an
atomic multiplet structure in the upper Hubbard band provided by the recently devel-
oped FTPS impurity solver. The first observation of a distinct multiplet structure in a
real-material calculation is an important affirmation of the atom-centered view pro-
moted by DMFT. We showed that such spectral features cannot be resolved with
conventional CTQMC impurity solvers, because then the calculation of real-frequency
spectra is plagued by the necessary ill-posed analytic continuation.

The core focus of this thesis was the investigation of the manganese pnictides BaMn2As2

and LaMnAsO in their paramagnetic and antiferromagnetic phases. We analyzed the
properties of these two compounds within the framework of fully charge self-consistent
DFT+DMFT. In our study of the paramagnetic phase, we established that both ma-
terials are close to the Mott metal-insulator transition, which helps explain their high
Néel temperatures. Additionally, we substantiated the differences between the two
materials, which are already present on the level of the crystal structure. A maxi-
mally localized Wannier function analysis of the real-space Hamiltonian for the Mn-3d
orbitals confirmed that LaMnAsO can be classified as effectively two-dimensional mate-
rial with only a weak interlayer coupling. On the other hand, BaMn2As2 is much more
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three-dimensional due to the substantial coupling of the Mn-As layers. We demon-
strated that differences in physical properties such as the Néel temperature, the band
gap, and the optical conductivity can be traced back largely to this difference in the ef-
fective dimensionality. Furthermore, by a comparison of (k-resolved) spectral functions
and transport quantities to experimental data, we confirm our confidence in the appli-
cability of DFT+DMFT to the compounds under consideration. The presented results
constitute an important example where fully charge self-consistent DFT+DMFT is
superior to one-shot calculations.

Finally, we studied the electronic influences on the Seebeck coefficient of electron-doped
LaMnAsO. To model experimentally synthesized LaMnAsO1-δFδ we employed the vir-
tual crystal approximation for electron doping levels of δ “ 3, 5, 7 and 10%. Our
analysis showed that the xz{yz orbitals are the decisive ingredient to understand the
observed Seebeck coefficients. In DFT+DMFT electronic correlations lead to inco-
herent spectral weight below the chemical potential, whereas the more strongly pro-
nounced spectral features of these orbitals are located above it. We demonstrated that
this is in sharp contrast to the spin-polarized DFT results, where the bottom of the
xz{yz bands lies below the Fermi energy. Both, DFT and DFT+DMFT calculations,
predict considerably high Seebeck coefficients, however with completely opposing un-
derlying mechanisms. While DFT points towards a picture where the asymmetry in
the velocities is pivotal, DFT+DMFT traces the Seebeck coefficient almost exclusively
back to the asymmetry of the correlated spectral function. We predict that a possi-
ble single-crystalline LaMnAsO1-δFδ sample would exhibit the highest power-factor if
thermoelectricity is harvested in the in-plane direction.

Our work shows the importance of electronic correlations for the understanding of
manganese pnictides, which opens new paths towards a targeted modification of these
materials to, e.g., further enhance their thermoelectric properties.
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A. DFT band structure of BaMn2As2
and LaMnAsO
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Figure A.1.: BaMn2As2 total non-spin-polarized (left) and spin-polarized (right) DFT
(GGA-PBE) band structure along the BZ path shown in Fig. A.3. The
bands are colored according to their character: green for Ba, red for Mn
and blue for As. Note that in the antiferromagnetic ground state (right)
the up and the down spins are equal in the total band structure. The
Fermi energy is set to ω “ 0.0 eV. The prima Wien2k add-on [211] was
used to create this figure.
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Figure A.2.: LaMnAsO total non-spin-polarized (left) and spin-polarized (right) DFT
(GGA-PBE) band structure along the BZ path shown in Fig. A.3. The
bands are colored according to their character: green for La, red for Mn
and blue for As and O. Note that in the antiferromagnetic ground state
(right) the up and the down spins are equal in the total band structure.
The Fermi energy is set to ω “ 0.0 eV. The prima Wien2k add-on [211]
was used to create this figure.

Figure A.3.: High symmetry points and k-path (green arrows) through the conventional
unit cell of LaMnAsO and BaMn2As2. This figure was generated with
XCrySDen [229].
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B. Hall number of Sr2RuO4

Preamble

In this appendix we investigate how electronic correlations influence the temperature
dependence of the Hall number of Sr2RuO4. The presented calculations and discussions
were carried out by the author of this thesis. A. Georges, O. Parcollet, J. Mravlje, and
M. Aichhorn greatly contributed to the analysis of the results. A. Georges initiated
this project.

B.1. Motivation

We aim to shed light on the unusual temperature behavior of the Hall number RH of
Sr2RuO4. Experiments show a rather complex temperature dependence of RH [230–
233].38 Below 1K RH is essentially temperature independent (´1.2ˆ 10´10 m3 C´1),
but with increasing temperature a rapid rise of RH from its T ă 1K value to zero
at about 30K (green triangles in Fig. B.3) is observed. After a positive maximum of
0.1ˆ 10´10 m3 C´1 at T « 80K RH starts a slow decay and becomes negative again at
about 120K.

In contrast to the distinct temperature behavior of RH , the Seebeck coefficient S is
purely positive in the full temperature range up to 1000K [234–236]. A maximum in
S is found around 400K [236]. The signs of both transport quantities, S and RH ,
38 In our discussion we only consider the experimental findings of Refs. [231–233]. Although the first

measurement of RH , presented in Ref. [230], shows a similar temperature behavior, the detailed
values differ. This is possibly related to the fact that this measurement was performed under a
higher magnetic field.
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Figure B.1.: Left: Sr2RuO4 DFT band structure along the BZ path Γ-X-M-Γ-Z. The Ru
bands with xy character are colored in blue, the xz and yz in red and the
x2´y2 and z2 in green. The prima Wien2k add-on [211] was used to create
this band structure. The Fermi energy is set to ω “ 0.0 eV. Right: Fermi
surface of Sr2RuO4 showing the hole-like α sheet and the electron-like β
and γ sheets. This Fermi surface was generated with XCrySDen [229].

carry information on the type of carrier (hole or electron) in a material. At first sight,
the opposite signs, outside the intermediate temperature region (30K ą T ą 120K),
might seem contradicting, but it is actually a clear indication for Sr2RuO4 being a
multi-carrier system. This is also verified by the DFT band structure and the Fermi
surface (Fig. B.1). The bands with Ru-xy character (blue) and Ru-xz{yz character
(red) cross the Fermi energy and thus determine the low-energy physics. The Fermi
surface consists of the hole-like α sheet centered at the M point and two electron-like
sheets (β and γ) in the center of the BZ. The γ sheet can be attributed to the xy
orbitals, whereas the α and β sheets show xz{yz character. The weakly dispersive
nature on the Γ-Z path of the band structure and the cylindrical shape of the Fermi
surface are a consequence of the layered crystal structure.

Assured of the multi-band nature of Sr2RuO4, we will show now that different signs
of S and RH can result from differences in averaging individual contributions to these
transport quantities (see also Refs. [234, 237, 238]). We start with S and two type of
carriers (with index h for holes and e for electrons) and assume a temperature gradient
in x direction. For diagonal σ and S, this results in an electric field and a current also
pointing in x direction. Therefore, we neglect the directional index in the following
and note that σ and S are only scalar numbers. Using Eq. 3.1, the individual currents
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are given as
je “ σeE ` σeSe∇T and jh “ σhE ` σhSh∇T , (B.1)

which sums to a total current of

j “ je ` jh “ pσe ` σhqE ` pσeSe ` σhShq∇T “ σE ` σS∇T . (B.2)

By comparing to prefactors of E and S we see that the total static conductivity σ and
the total Seebeck coefficient S are

σ “ σe ` σh and S “
σeSe ` σhSh
σe ` σh

. (B.3)

This means that σ is the sum of the individual contributions (e.g. holes and electrons),
but S is averaged with weights given by the individual conductivities.39

For RH we assume an external magnetic field in z direction and an electric field in x
direction. The induced currents in y direction jK (perpendicular to the applied electric
and magnetic fields) are (Eq. 3.1)

jKe “ σH,eEB and jKh “ σH,hEB . (B.4)

Again, we have dropped the directional indices. With Eq. 3.9, which further simplifies
here to σH “ σ2RH , we obtain for the total perpendicular current

jK “ jKe ` j
K
h “

`

σ2
eRH,e ` σ

2
hRH,h

˘

EB “ σ2RHEB “ pσe ` σhq
2RHEB , (B.5)

where we have used Eq. B.3 in the last step. From Eq. B.5 follows the average of RH

RH “
σ2
eRH,e ` σ

2
hRH,h

pσe ` σhq
2 . (B.6)

In comparison to Eq. B.3, we see that the individual RH are multiplied by the square
of the corresponding conductivities. In general, Se and RH,e are negative and Sh and
RH,h are positive. However, it becomes apparent from the different averages in Eqs. B.3
and B.6 that certain regions of σe{σh can exist where S and RH show opposite signs.

39 Exactly the same way of averaging is used in Eq. 6.3 to obtain a “polycristalline” S for LaMnAsO.
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B. Hall number of Sr2RuO4

B.2. Methods

Similar to the ordinary conductivity σxx, expressed in terms of the derivatives Bενk{Bkα

and the spectral function A pk, ωq (Eq. 3.31 with n “ 0), the Hall conductivity σxyzH

can be described with [15, 239]

σxyzH “
2Nσπ

2

3V

ż

dω

ˆ

´
Bf

Bω

˙

ˆ
ÿ

ν

ÿ

k

ˆ

Bενk
Bkx

˙ˆˆ

Bενk
Bky

˙

B2ενk
BkxBky

´

ˆ

Bενk
Bkx

˙

B2ενk
pBkyq2

˙

Aννpk, ωq3 . (B.7)

In contrast to σxx (Eq. 3.31), Eq. B.7 requires the evaluation of second derivatives of
the Bloch band dispersion ενk.40 Eq. B.7 is in principle a single-band formulation (see
Sec. 3.3); off-diagonal elements of the velocity matrices are neglected and only a simple
sum over the individual bands ν is performed. Whether this is justified for Sr2RuO4

will be tested on the level of σ and S in Sec. B.3. Like for the other transport quanti-
ties, the derivatives are taken with respect to the bare (unrenormalized) dispersion, but
many-body effects are incorporated via the correlated spectral function A pk, ωq. Note
that A pk, ωq enters Eq. B.7 with its 3rd power. In the context of strongly correlated
systems Eq. B.7 was used in Ref. [241]. Therein, correlations were taken into account
with a quasiparticle approximation for Apk, ωq and quasiparticle renormalizations ob-
tained from DMFT self-energies.

The calculation of the ενk derivatives is not a trivial task. We take advantage of the im-
plementation in the BoltzTraP code [141], which evaluates Eq. B.7 in the
const.-τs approximation. To this end, it offers a stable way to obtain the derivatives of
ενk. The basic idea is the following: First, for each band an inverse Fourier transform is
performed to real space (H0pkq Ñ H0prq). Usually, the number of r-points is chosen to
be the same as the number of k-points so that the same information is carried by the
quantities H0pkq and H0prq. However, BoltzTraP performs the Fourier transform to a
40 An alternative equation for σH was derived by Itoh (Eq. 2.30 in Ref. [240]). Surprisingly, it does

not require second derivatives and σH is only given in terms of the spectral function and the
velocity matrices. However, our numerical tests for simple single-band models showed that the
results are only equivalent to Eq. B.7 in some special cases. The likely source of the error is in
the step from A10 to A11 in the appendix of Ref. [240]. We believe that the used symmetrization
would also require a change of the sign, which prohibits the remaining derivation after this step.
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denser r-grid and uses the gained additional freedom to minimize a roughness function
(see Ref. [141] for details). The back transform opens the possibility to change the
initial k-grid, or to use a denser k-grid, which is basically a Fourier interpolation. The
benefit of this scheme is that it provides an “analytical” expression for ενk, and thus
allows to evaluate ενk, Bενk{Bkα and B2ενk{Bk

αBkα
1 on an arbitrarily dense k-mesh. The

BoltzTraP package offers a Wien2k interface, however we have modified the code for
our specific purposes. This involves the option to write the ενk derivatives to data files
on a customized output k-grid. Further, this output data can be split into multiple
files to allow for a batch-by-batch processing in the evaluation of RH , providing a sim-
ple way to parallelizing the computation. Additionally, we reduce the computational
demand by incorporating the crystal symmetries.

We perform one-shot DFT+DMFT calculations for Sr2RuO4 at inverse temperatures
between β “ 200 eV´1 and 25 eV´1 (cf. Tab. B.2 for the used β and the corresponding
temperatures in K). In accordance with Ref. [242], we use a Kanamori Hamiltonian
with UK “ 2.3 eV and JK “ 0.4 eV. The projective energy window is set to W “

r´3.0, 1.0s eV with respect to the Fermi energy. For the analytic continuation we employ
the Padé approximation [95, 96] and the stochastic analytic continuation method by
Beach [101] (Sec. 2.5).

Initially, we perform the DFT+DMFT calculation on a 21ˆ 21ˆ 21 k-mesh in the full
BZ. For the conductivity and the Seebeck coefficient obtained with the Wien2k optics
velocity matrices (shown in Tab. B.1) a 80ˆ80ˆ80 k-mesh is used. In the calculation
of RH an even denser k-mesh is necessary, and thus we use BoltzTraP to generate a
Fourier interpolated ενk (and its first and second derivatives) on a 250ˆ250ˆ250 k-grid
in the full BZ. Considering the crystal symmetries, in total 996 282 k-points have to
be processed.

B.3. Results

Before we discuss the Hall number RH , we want to judge the importance of
inter-band transitions for the transport properties of Sr2RuO4. We calculate σ and
S, once with off-diagonal elements of the Wien2k optics velocity matrices and once
without (Tab. B.1, “with off-diag” and “no off-diag” rows).
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B. Hall number of Sr2RuO4

Table B.1.: Influence of the velocity off-diagonal elements on the conductivity σ and the
Seebeck coefficient S in x and z direction. The results for β “ 50 eV´1 are
shown in the top table and for β “ 100 eV´1 in the bottom one, respectively.
We use the full Wien2k optics velocity matrices in the “with off-diag” rows.
The “no off-diag” rows show the results for calculation on the same k-
grid without off-diagonal elements. Additionally, we perform calculations
with velocities from BoltzTraP Bενk{Bk

α (“BoltzTraP” rows). Note that
these results are obtained on a denser k-grid. For all calculations we use
self-energies analytically continued with the Beach method.

β “ 50 eV´1 Sxx (µVK´1) Szz (µVK´1) σxx (mΩ´1 cm´1) σzz (mΩ´1 cm´1)
with off-diag 31.8 35.0 497 2.4
no off-diag 31.9 44.7 493 1.8
BoltzTraP 32.1 43.5 493 1.9

β “ 100 eV´1 Sxx (µVK´1) Szz (µVK´1) σxx (mΩ´1 cm´1) σzz (mΩ´1 cm´1)
with off-diag 21.2 24.9 1370 5.4
no off-diag 21.2 27.1 1366 4.8
BoltzTraP 21.2 26.7 1360 5.0

In the in-plane direction neglecting the off-diagonal elements results in a deviation of
less than 1% from the value obtained with the full velocity matrices. On the other
hand, such an agreement is not found for the z direction, where deviations of more
than 20% are present. Therefore, we conclude that for in-plane transport quantities the
off-diagonal elements of the velocity matrices can be neglected. Eq. B.7 is presumably
sufficient to describe the Hall effect in Sr2RuO4, because only x{y derivatives of ενk are
relevant in the evaluation of the in-plane RH .

Further, we show the results of evaluating σ and S with the BoltzTraP derivatives
Bενk{Bk

α. As expected, they compare well to σ and S calculated with the diagonal
part of the Wien2k optics velocities (see Sec. 3.3). We note that these calculations
have been performed on a denser k-grid (cf. Sec. B.2), and thus an exact agreement
cannot be expected. Overall, S agrees well with experimental data [234–236] of about
19 µVK´1 for β “ 100 eV´1 and 26 µVK´1 for β “ 50 eV´1.
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Figure B.2.: Hall number RH of Sr2RuO4 calculated with Eq. B.7 using
orbital-dependent constant scattering rates ηxy and ηxz. The ratio ηxy{ηxz
is measured on the x axis. Different colors (red, blue, and black) corre-
spond to different values of ηxz while ηxy is varied. For ηxy{ηxz “ 1 we
also show the result obtained with the BoltzTraP code [141] (red star).

Now, we turn to the discussion of RH within the simplest approximation, using just
a constant, but orbital-dependent, scattering rate η (Σ pωq “ ´iη) for the xy and the
xz{yz orbitals. We vary the ratio ηxy{ηxz between 1 and 6 (Fig. B.2).41 Already with
this simple approach we are able to obtain a sign change in RH . With increasing
ηxy{ηxz, the Hall number increases monotonically from its lowest negative value of
´0.68ˆ 10´10 m3 C´1 to become positive at around ηxy{ηxz “ 3. Interestingly, the
resulting RH does not depend on the specific values of the scatterings, as seen in the
very similar RH for different ηxz, i.e. the black, blue, and red lines fall on top of each
other. Although RH increases rather quickly as long as it is negative, it levels off
and reaches the highest calculated value of 0.11ˆ 10´10 m3 C´1 at ηxy{ηxz “ 6. This
behavior suggests that, for even higher ηxy{ηxz, the Hall number would not exceed
RH « 0.2ˆ 10´10 m3 C´1. As it should be, our result at ηxy{ηxz “ 1 coincides with
the BoltzTraP result (red star) within the const.-τs approximation. Even tough our
approximation seems quite crude, the range of the resulting RH agrees with what
is observed in the experiment, where RH ranges between ´1.2ˆ 10´10 m3 C´1 and
0.1ˆ 10´10 m3 C´1 (green triangles in Fig. B.3).

41 Note that ηxz “ ηyz.
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As the next step, we use the calculated DFT+DMFT self-energies to obtain a
material-specific estimate for the ratios ηxy{ηxz. Undoubtedly, the imaginary part of the
self-energies at ω “ 0, i.e. ωn Ñ 0, will have the strongest influence on RH due to
the derivative of the Fermi function present in Eq. B.7 (cf. Fig. 3.1). First, we use a
polynomial of 4th order to fit the lowest 5 points of the Matsubara self-energies and
extrapolate =Σ piωn Ñ 0q. As ratios we take

ηxy
ηxz

“
=Σxy piωn Ñ 0q
=Σxz piωn Ñ 0q . (B.8)

Additionally, we employ the Padé method and the Beach method to perform the ana-
lytic continuations. In these cases we use as ratio

ηxy
ηxz

“
=Σxy pω “ 0q
=Σxz pω “ 0q . (B.9)

All three methods provide similar ratios ηxy{ηxz (Tab. B.2). We point out that the
ratios drop monotonously with increasing temperature, where for all studied temper-
atures ηxy ą ηxz is valid. For an even higher temperature (β “ 12.5 eV´1) the ratio
does not change considerably (ηxy{ηxz “ 1.6, not shown here), which indicates that
it is converging towards a high temperature limit. Especially at the lowest studied
temperature, the extrapolation of the data to small frequencies becomes very sensitive
to fine details (order of polynomial, number of Matsubara points, ...), and thus the
ratios for β “ 200 eV´1 can be only seen as rough estimates.

We use our DFT+DMFT estimates for ηxy{ηxz (Tab. B.2) to calculate RH , again within
the constant (orbital-dependent) scattering approximation (cf. discussion above).42

Remarkably, the resulting temperature behavior of RH , shown in Fig. B.3 with the
blue stars and the cyan dots, even quantitatively resembles the experimental
data [231, 232] (green triangles). Additionally, we show RH calculated with the full
frequency-dependent self-energy analytically continued with the Padé method (black
down-pointing triangles) and with the Beach method (black up-pointing triangles) for

42 Due to the small η at the lower temperatures (β “ 100 eV´1 and 200 eV´1), we cannot directly use
ηxy and ηxz; an even denser k-mesh would be necessary. Instead, we use ηxz “ 0.05 eV and adjust
ηxy such that the estimated ratios are obtained.
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Table B.2.: Estimation of the ratios ηxy{ηxz from the imaginary part of the self-energy
at ω “ 0, i.e. ωn Ñ 0, with different methods: (i) Fit of the DFT+DMFT
Matsubara self-energy with a 4th order polynomial using the lowest 5
Matsubara points. The ratio is then given by Eq. B.8. (ii) Analytic
continuation of the Matsubara self-energy with the Padé method (low-
est 31 Matsubara points) using Eq. B.9 as definition of the ratio. (iii)
Same as (ii), but with the Beach method for the analytic continuation.
We note that the ratios for β “ 200 eV´1 are very sensitive to details (or-
der of polynomial, number of points used in Padé) and can thus be only
understood as approximate values.

β (eV´1) T (K) Matsubara Fit Padé AC Beach AC
25 464 1.7 1.7 1.7
50 232 2.1 2.2 2.3
100 116 3.2 3.3 3.4
200 58 5.4 5.0 4.7

β “ 50 eV´1 and 25 eV´1. The resulting RH agree well with the simple approxima-
tion of orbital-dependent constant scattering rates. This suggests that the frequency
dependence of the self-energy has only a minor influence, whereas the ratio ηxy{ηxz is
the pivotal factor determining RH of Sr2RuO4.

With our analysis we cannot access RH for temperatures below 40K. On the level of
the ratios, the rapid downturn would be accompanied by a decrease of ηxy{ηxz, which
is not observed in our DFT+DMFT calculations. Below 25K, Sr2RuO4 enters the
Fermi-liquid regime [243, 244], which is connected to real-frequency self-energies at
ω “ 0 of the form =ΣFL

α pω “ 0q “ ´AαT 2 with the orbital-dependent constants Aα
(α P txy, xz, yz u). The ratio ηxy{ηxz is temperature independent in this regime, and
subsequently our picture would also predict a temperature-independent RH . This is
not consistent with the experimentally observed downturn.

It was pointed out that at sufficiently low temperatures the scattering becomes domi-
nated by elastic impurity and defect scattering [244]. In this limit, it is often assumed
that the mean free path l is isotropic and depends only on the separation of the im-
purities (isotropic const.-l approximation). Then, it can be shown that the value of
RH is purely a consequence of the Fermi-surface topography in quasi-two-dimensional
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Figure B.3.: Temperature dependence of the Hall number RH of Sr2RuO4. We show
RH calculated in the orbital-dependent const.-τs approximation using
the ratios ηxy{ηxz from Tab. B.2 obtained with a fit on the Matsub-
ara axis (cyan dots) and from the real-frequency Padé self-energies at
ω “ 0 (blue stars). Additionally, we show RH calculated with the full
frequency-dependent Padé self-energy (black down-pointing triangles) and
the full frequency-dependent Beach self-energy (black up-pointing trian-
gles) for β “ 25 eV´1 (464K) and 50 eV´1 (232K). We compare our results
to experimental data EXP1 from Ref. [231] (green down-pointing trian-
gles) and EXP2 from Ref. [232] (green up-pointing triangles).

systems [231, 233, 245]. Within this approximation a low temperature value of RH “

´0.9ˆ 10´10 m3 C´1 was obtained [231] in good agreement with experiments. Addi-
tionally, already tiny amounts of Al impurities in Sr2RuO4 have a strong influence on
RH [233]. In the intermediate temperature range RH loses the positive shoulder and
only shows a monotonic increase with increasing temperature, without becoming pos-
itive anymore. The higher the amount of impurities, the stronger is this effect. For
T ă 1K and T ą 300K the signs are unchanged (minus) and the precise values of RH

are little affected by the introduced impurities. Thus, it is argued in Ref. [233] that
the low-temperature regime is strongly influenced by impurity scattering. Of course,
this is not captured within our DFT+DMFT calculations.
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B.3. Results

However, with increasing temperature the electron-electron scattering becomes more
and more important (initially with „ T 2 in the Fermi-liquid regime), which might help
explain the rapid increase of RH for T ă 40K. Likely, the positive maximum of RH is
a result of the large orbital differentiation ηxy{ηxz ą 3 in the Fermi-liquid regime. For
temperatures above 40K the scattering rates become slowly more orbital-independent
with a high-temperature limit of ηxy{ηxz « 1.5. We are confident that the observed
temperature behavior above 40K is well captured by our DFT+DMFT calculations,
where we were able to show that the sign of RH depends on the ratio ηxy{ηxz.
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B. Hall number of Sr2RuO4
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