
Daniel Kales, BSc

Cryptanalysis of Tweakable Block Ciphers
Application to MANTIS and QARMA

Master’s Thesis

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to
Graz University of Technology

Supervisor
Dipl.-Ing. Maria Eichlseder

Univ.-Prof. Dipl.-Ing. Dr.techn. Christian Rechberger

Institute of Applied Information Processing and Communications

Faculty of Computer Science and Biomedical Engineering

Graz, October 2017

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master’s thesis.

Date Signature

ii

Abstract

Cryptography is the science of secure communication over a possibly insecure
channel. One of the classical fundamental building blocks is the block cipher,
which maps a plaintext to an encrypted ciphertext using a transformation
selected by a secret key. Tweakable block ciphers (TBCs) are a modern crypto-
graphic primitive that is better suited to protect both the confidentiality and
authenticity of long messages. However, their security is not as well understood
as classical block ciphers. In contrast to classical block ciphers, we also need to
consider so-called “related-tweak” attacks where the attacker has full control
over the tweak input. In this thesis we propose several improvements to existing
differential attacks on tweakable block ciphers and apply these improvements
to the lightweight tweakable block cipher MANTIS. We provide a practical
implementation for an existing key-recovery attack on MANTIS5 and use the
improved methodology to improve its data and time complexity. Furthermore,
we propose a new key-recovery attack on MANTIS6, which can recover the secret
key while staying below the general security limit of 2n data and 2126−n time
complexity. Finally, we try to apply the ideas of the attacks to other modern
tweakable block ciphers and observe the implications of the different cipher
structures on the practicability of the attack.

iii

Kurzfassung

Kryptografie ist die Wissenschaft der sicheren Kommunikation über einen
möglicherweise unsicheren Kanal. Ein grundlegender Baustein der Kryptografie
ist die Blockchiffre, die einen Klartext auf einen verschlüsselten Geheimtext
abbildet, wobei ein geheimer Schlüssel die verwendete Transformation definiert.

”
Tweakable“ Blockchiffren (TBCs) sind moderne kryptografische Algorithmen,

die besser dafür geeignet sind, sowohl die Vertraulichkeit als auch die Authen-
tizität von langen Nachrichten zu beschützen. Jedoch ist die Sicherheit von
TBCs bisher weniger gut untersucht als die von klassischen Blockchiffren. Im
Gegensatz zu klassischen Blockchiffren sind auch noch sogenannte

”
related-

tweak“ Angriffe zu berücksichtigen, bei denen ein Angreifer volle Kontrolle
über den zusätzlichen Tweak-Parameter hat. In dieser Arbeit stellen wir einige
Verbesserungen zu bestehenden differentiellen Angriffen auf TBCs vor und
wenden diese auf MANTIS an, einen kürzlich publizierten TBC, der besonders
für Anwendungen mit strikten Latenzanforderungen optimiert ist. Wir stellen
eine praktische Implementierung für einen bestehenden Angriff auf MANTIS5

vor und benutzen unsere neuen Methoden, um die Daten- und Zeitkomplexität
des Angriffs zu verbessern. Des Weiteren stellen wir einen neuen Angriff auf
MANTIS6 vor, der den geheimen Schlüssel schneller findet als die allgemeinen
Sicherheitsschranken von 2n Datenkomplexität und 2126−n Zeitkomplexität.
Schlussendlich wenden wir die Ideen des Angriffs auf andere moderne TBCs
an und beobachten die Einflüsse der unterschiedlichen internen Strukturen der
Chiffren auf die Ergebnisse des Angriffs.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction and State of the Art 1
1.1 Block Ciphers . 1
1.2 Differential Cryptanalysis . 2
1.3 Tweakable Block Ciphers . 5

1.3.1 TWEAKEY . 6
1.3.2 MANTIS . 7
1.3.3 QARMA . 8

1.4 Summary of Contributions of this Thesis 9
1.5 Overview . 9

2 Description of Target Ciphers 11
2.1 MANTIS . 11
2.2 QARMA . 13
2.3 Differences between MANTIS and QARMA 16

3 Verification of Key-Recovery Attack on MANTIS5 19
3.1 Summary of Key Recovery Attack on MANTIS5 19
3.2 Practical Implementation of Key Recovery Attack on MANTIS5 22

4 Improving Search Methods to Find a Family of Characteristics 26
4.1 MILP Model for Truncated Differential Characteristics 26
4.2 Differential Search Tool . 27
4.3 Extending one Differential Characteristic to a Family 29
4.4 Exact Computation of Probabilities 32
4.5 Implementation . 35
4.6 Improved Probability Bounds for Attack on MANTIS5 37

v

Contents

5 Staged Key Recovery Attack on MANTIS6 39
5.1 Extending the 5-Round Characteristics to 6 Rounds 39
5.2 Generating Plaintext Pairs using Initial Structures 40
5.3 Pre-Filtering Ciphertexts for Wrong Pairs 43
5.4 Recovering 61 bits of key material from k′0 + k1, k0 + k1 and k1 44
5.5 Recovering 43 bits of key material from k′0 + k1, k0 + k1 and k1 47
5.6 Recovery of k0 and k1, and Summary of Complexities 49
5.7 Additional Comments . 49
5.8 Remarks on MANTIS7 . 52

6 Applicability and Results for other Tweakable Block Ciphers 53
6.1 Extending Methods used for MANTIS to QARMA 53
6.2 Results and Workarounds . 55
6.3 Future Work . 56

7 Conclusion 59

Bibliography 61

vi

List of Figures

1.1 Differences between classical and tweakable block ciphers. . . . 6
1.2 The TWEAKEY framework. 7

2.1 PRINCE-like structure of MANTISr, illustrated for MANTIS5. . 12
2.2 The permutations P and h used in MANTIS. 13
2.3 Structure of QARMAr, illustrated for QARMA5. 14
2.4 The permutations τ and h used in QARMA. 16
2.5 Differential Distribution Tables (DDT) of the S-Boxes used in

MANTIS and QARMA. 17
2.6 DDTs for the truncated differential behavior of the different

MixColumns operations. 18

3.1 Family of differential characteristics for MANTIS5. 21

4.1 MILP variables for truncated differential model of MANTISr. . 27
4.2 Truncated differential MILP model of MANTISr. 28
4.3 General look of the tool for probability calculation. 36
4.4 Exported PDF document for MANTIS5. 37
4.5 Family of differential characteristics for MANTIS5, improved

version. 38

5.1 Truncated differential characteristic for MANTIS6. 41
5.2 Family of differential characteristics for MANTIS6. 42
5.3 Initial structure with 8 · 4 pairs from 2 · 8 queries per cell. . . . 43
5.4 Detailed view of cells influencing the 29-bit key-recovery process. 47
5.5 Detailed view of cells influencing the 14-bit key-recovery process. 48

6.1 Approximations of the truncated DDT of MixColumns used in
QARMA. 55

6.2 Differential characteristic for QARMA5 (using the S-Box σ0). . 57

vii

List of Tables

1.1 Differential Distribution Table (DDT) of S-Box S1. 4

5.1 Exact probabilities of conditions used for key recovery. 46
5.2 Summary of complexities and probabilities for the key recovery

process. 49

viii

1 Introduction and State of the Art

Block ciphers are one of the most fundamental building blocks in cryptography.
They are used in various constructions to provide encryption and/or authentica-
tion. Both Feistel as well as Substitution-Permutation primitives have been the
focus point of extensive research over the last few decades and their problems
(especially against linear and differential cryptanalysis) are now well understood.
Basic block ciphers (which are essentially pseudo-random permutations) are
deterministic by design. They take a key k and a message m and output a
ciphertext c and as long as the key and message are the same, so is the result
of the encryption. However, this is a problem for security. When using an
encryption, we do not want to be able to tell whether the same message is
sent twice. Therefore, many higher-level modes of operation that use block
ciphers as a basic building block add a so-called “nonce” as a further input.
This nonce (“number only used once”) is a number that is unique for each
encryption, which is added to the input or the output of the block cipher, giving
it a non-deterministic behavior. Liskov et al. [LRW02] aimed to bring this
often-used primitive down to the block cipher level and proposed the concept
of “Tweakable Block Ciphers” (TBCs).

The security of tweakable block ciphers is not as well understood as the security
of classic block ciphers. That is why we investigate the differential behavior of
modern tweakable block ciphers.

1.1 Block Ciphers

Block ciphers are one of the oldest symmetric cryptographic primitives and can
be used to guarantee confidentiality of data. A block cipher is a cryptographic
algorithm operating on a fixed number of bits (called block). The secret key

1

1 Introduction and State of the Art

selects the transformation the algorithm is performing and the result is deter-
ministic when using the same key. Formally, a block cipher is specified by its
encryption function

E(K,P) : {0, 1}k × {0, 1}n → {0, 1}n,

where K is the secret key of size k bits, P is the plaintext (often also called
message M) of size n, where n is the block size. The result of the operation
is the ciphertext C, which is also of length n. The encryption function has an
inverse function, the decryption function

D(K,C) : {0, 1}k × {0, 1}n → {0, 1}n,

which takes a key K and the ciphertext C and returns the original plaintext
P .

Two of the most widely known algorithms are the Data Encryption Standard
(DES) [Cop94] and the Advanced Encryption Standard (AES) [DR02]. Two of
the main design approaches for block ciphers are Feistel networks (for example
DES) and Substitution-Permutation networks (for example AES). The security
of both of these constructions is a topic that was researched intensely during
the last four decades and is well understood today.

Two of the main attack methods for block ciphers are linear and differential
cryptanalysis. In the following section we will describe differential cryptanalysis
in more detail.

1.2 Differential Cryptanalysis

One of the main ways to analyze the security of a block cipher construction
is the field of differential cryptanalysis. It is one of the oldest cryptanalysis
techniques, first proposed back in the late 1980s by Biham and Shamir [BS90],
although the original designers of the Data Encryption Standard (DES) stated
that they knew about the concept of differential cryptanalysis as early as 1974
and that security against it was one of the design goals [Cop94].

Differential cryptanalysis is (usually) a chosen-plaintext attack, based on pairs
of plaintexts with an attacker-chosen difference in some bits. This difference

2

1 Introduction and State of the Art

is usually added via the XOR function. By observing the propagation of these
differences throughout the cipher structure, an attacker is hoping to detect a
statistical pattern in the distribution of the resulting ciphertexts.

The Substitution-Box (S-Box) step of block ciphers is of special importance for
differential cryptanalysis. We look at a pair of values x1, x2 and their difference

∆x = x1 ⊕ x2.

We then compute the output of these values after the application of the S-Box
layer S,

y1 = S(x1), y2 = S(x2)

and their difference
∆y = y1 ⊕ y2.

Due to the deterministic nature of the S-Box it follows that if ∆x = 0, then
∆y must also be 0. However, for non-zero differences in the input, we also have
non-zero differences in the output. One common way to represent the differential
behavior of an S-Box is a so-called Differential Distribution Table (DDT). It
is generated by enumerating all possible combinations of input values x1, x2,
calculating ∆x and ∆y, and incrementing the respective cell in the DDT.

Example. We can take the following S-Box S1 borrowed from [KR11] and
analyze its differential behavior using a DDT.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S1(x) 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b

This S-Box S1 results in the DDT given in Table 1.1. We observe that the
probability that an input difference of f maps to an output difference of d is
especially high: DDT(f, d) = 10

16 .

An attacker can now mount attacks on a cipher using this S-Box by choosing
input plaintext pairs with a difference of f, and they will map to an output
difference of d with a probability of 10

16 . By stitching together multiple of
these small high-probability transitions, an attacker can get a high-probability

3

1 Introduction and State of the Art

∆x \∆y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 - - - - - - - - - - - - - - -
1 - - 6 - - - - 2 - 2 - - 2 - 4 -
2 - 6 6 - - - - - - 2 2 - - - - -
3 - - - 6 - 2 - - 2 - - - 4 - 2 -
4 - - - 2 - 2 4 - - 2 2 2 - - 2 -
5 - 2 2 - 4 - - 4 2 - - 2 - - - -
6 - - 2 - 4 - - 2 2 - 2 2 2 - - -
7 - - - - - 4 4 - 2 2 2 2 - - - -
8 - - - - - 2 - 2 4 - - 4 - 2 - 2
9 - 2 - - - 2 2 2 - 4 2 - - - - 2
a - - - - 2 2 - - - 4 4 - 2 2 - -
b - - - 2 2 - 2 2 2 - - 4 - - 2 -
c - 4 - 2 - 2 - - 2 - - - - - 6 -
d - - - - - - 2 2 - - - - 6 2 - 4
e - 2 - 4 2 - - - - - 2 - - - - 6
f - - - - 2 - 2 - - - - - - 10 - 2

Table 1.1: Differential Distribution Table (DDT) of S-Box S1.

differential characteristic for multiple rounds of the block cipher. The overall
probability of that characteristic is the product of the individual S-Box transition
probabilities. The next part of the attack involves requesting enough pairs from
an encryption oracle so that enough pairs follow this differential characteristic.
The attacker can then guess parts of the last round-key, and compute backwards
to check the validity of the key guess. This is done by comparing the expected
allowed differences and the computed difference. We can reduce the key space
by filtering keys that lead to impossible transitions. Repeating this process over
multiple iterations allows to filter the key space down to a single result. This
approach allows the attacker to recover (parts of) the secret key.

This approach is still valid for modern block ciphers and the main factor
impacting the time and data complexity of this kind of attacks is the overall
probability of the best differential characteristic. Therefore, modern block
ciphers follow some guidelines to decrease the theoretical maximum probability
of differential characteristics:

4

1 Introduction and State of the Art

• The maximal differential probability should be as low as possible (for
a 4-bit S-Box like in the previous example, the maximum differential
probability should not exceed 4

16 = 1
4 .)

• The linear mixing layers should ensure a large number of active S-Boxes
for the cipher (An S-Box is active with regards to differential cryptanalysis
if it has a non-zero difference).

A variant of differential cryptanalysis is “truncated” differential cryptanalysis.
This method looks only at a reduced version of the cipher, where the n-bit
S-Boxes are represented only by one bit, indicating whether the S-Box is active.
This allows for a simplified view of the differential characteristic and is often
used to greatly reduce the search space when using automated search tools.
However, due to the simplified view, a truncated differential characteristic can
lead result in contradictions when extended to a full differential characteristic.

Differential cryptanalysis is the main attack technique used in this work.

1.3 Tweakable Block Ciphers

Liskov et al. [LRW02] defined a few basic properties a tweakable block cipher
must have:

• In addition to the key and the message, a tweakable block cipher has a
third input called “tweak”. This can be seen in Figure 1.1. A tweakable
block cipher is a family of permutations, and each key-tweak pair selects
one permutation.

• The tweakable block cipher must be secure even if the attacker is able to
control the tweak input.

It should also be able to change this tweak efficiently, e.g., no expensive key-
schedule operations should be involved.

In addition to these properties, they also proposed two methods to construct
secure tweakable block ciphers from existing block ciphers:

Given a block cipher EK(M), where K is the secret key and M is the message,
we can construct a secure tweakable block cipher with an additional tweak input

5

1 Introduction and State of the Art

EM

K

C

(a) Block cipher.

EM

K

C

T

(b) Tweakable block cipher.

Figure 1.1: Differences between classical and tweakable block ciphers.

T as follows [LRW02]:

EK(M,T) = EK(T ⊕ EK(M))

The second method makes use of a secure hash function h to improve overall
efficiency. Using this hash function we can construct a secure tweakable block
cipher as follows [LRW02]:

EK(M,T) = EK(M ⊕ h(T))⊕ h(T)

These constructions are proven to be secure, however they are considerably
slower than the basic block cipher itself. Because of this, there has been a push
to design more dedicated lightweight tweakable block ciphers which still provide
strong security bounds.

Tweakable block ciphers are also a useful building block for authenticated
encryption. Many of the candidates in the ongoing CAESAR authenticated
encryption competition use or introduce tweakable block ciphers as an internal
building block (e.g., Deoxys [Jea+16], a TWEAKEY [JNP14] design).

1.3.1 TWEAKEY

Jean et al. [JNP14] proposed the TWEAKEY framework to “unify the design
of tweakable block ciphers”. In contrast to the approach taken by Liskov et al.
[LRW02], which uses existing block ciphers as a black-box to create a secure
tweakable block cipher, their approach is based on adapting key-alternating
ciphers. They introduce the concept of a tweakey input, which can refer to
both key or tweak material. This aims to unify the importance of both the key

6

1 Introduction and State of the Art

TWEAKEY Scheduling Algorithm

P = s0 f
s1

. . . f
sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

Figure 1.2: The TWEAKEY framework (see [LRW02]).

and tweak, with the reasoning that key material obviously has to kept secret,
however the tweak input may be controllable by the attacker and is therefore
also of high importance.

One of the advantages gained by this approach is that existing work on key
schedule design can be leveraged to build a secure tweakey schedule. The
TWEAKEY framework consists of three components:

• A subtweakey extraction function g, to extract a subtweakey from the
tweakey state and incorporate it into the internal state (the XOR function
would be a simple choice).

• An internal state update function f , which is analogous to the round
function for classical block ciphers.

• A tweakey state update function h, which is analogous to the key schedule
for classical block ciphers.

The complete framework with its three core components can be seen in Fig-
ure 1.2.

1.3.2 MANTIS

Beierle et al. [Bei+16] presented a family of tweakable block ciphers called
SKINNY. The SKINNY family is designed to be a high-performance competitor
to other modern block ciphers, while still providing strong security guarantees.
In addition, they presented a dedicated variant of SKINNY called MANTIS,
designed as an efficient solution for memory encryption.

7

1 Introduction and State of the Art

MANTIS is a low-latency tweakable block cipher, which aims to be competitive
with PRINCE while also adding a tweak input. Turning PRINCE into a tweakable
block cipher can be done by using the TWEAKEY framework. PRINCE’s round
function follows the well-understood AES structure, with the overall design being
symmetric around an inner linear layer, enabling the α-reflection property of
PRINCE. α-reflection is a property coined by the designers of PRINCE. Through
the use of a symmetric cipher structure and a smart choice of the round-
constants, the structure used for encryption can also be used for decryption,
decreasing the area of the cipher circuit. Using the PRINCE round function in
the TWEAKEY framework in combination with a good tweak schedule creates
a secure tweakable block cipher. However, to be secure against related-tweak
attacks, the number of rounds needs to be increased to a certain level, in turn
increasing the overall latency of the cipher.

The goal of MANTIS is to find a design using components that provide sufficient
security with a minimal number of rounds. Therefore, some components of
PRINCE were replaced by their counterparts from the then recently proposed low-
energy block cipher MIDORI [Ban+15]. Both the S-Box as well as the ShiftRows
step were taken from MIDORI, while keeping the symmetrical structure and the
resulting α-reflection property, as well as the FX-construction from PRINCE.
The designers of MANTIS also presented a tweak schedule that ensures a high
number of active S-Boxes even if the attacker can control the tweak input.

A detailed description of the tweakable block cipher MANTIS can be found
in the design paper [Bei+16], and short summary description will be given in
section 2.1.

1.3.3 QARMA

QARMA is a tweakable block cipher designed by Avanzi [Ava16]. Its core design
is very similar to MANTIS, with a few changes made to improve resistance
against certain attacks. Furthermore, QARMA will be used in ARMv8 [Bra16]
for pointer authentication.

The first change concerns the MixColumns step and is one of the main contri-
butions of his paper: A family of Almost MDS matrices that allows to encode
rotations, while allowing to keep the minimal latency of {0, 1}-matrices. The

8

1 Introduction and State of the Art

second change is concerning the S-Box used in MANTIS. Avanzi describes
search heuristics for low-latency S-Boxes and gives a choice of three distinct
S-Boxes that can be used in QARMA. The final changes is to the inner round of
the cipher. QARMA is a three-round Even-Mansour scheme that uses a keyed
permutation in the inner round. Finally, the tweak schedule is updated to
incorporate a linear feedback shift register for some of the state cells.

A detailed description of the tweakable block cipher QARMA can be found in
the design paper [Ava16], and a short summary description will be given in
section 2.2.

1.4 Summary of Contributions of this Thesis

First, we provide a practical implementation to an existing attack on MANTIS
(in particular the MANTIS5 variant) by Dobraunig et al. [Dob+16]. We then
extend the existing methods for this kind of attack and use these improvements
to attack the 6-round variant of MANTIS. We present a key-recovery attack on
MANTIS6, which can recover the 128-bit secret key using 256.72 chosen plaintexts
and 256.72 time complexity. Finally, we try to apply the attack concept to other
modern tweakable block ciphers and show how the different design of these
other ciphers influence the result.

1.5 Overview

In chapter 1, we gave a short overview and basic summary of the topics relevant
to this thesis. Chapter 2 contains a description of the ciphers which are attacked
in this thesis. Their structure and components are listed in detail and differences
are highlighted. Following that, in chapter 3 we give a short summary of an
existing attack on the cipher MANTIS and present a practical implementation
of the attack. We also give additional insights that were discovered during
the practical implementation. In chapter 4, we improve the methods used to
search for families of differential characteristics. We present a semi-automated
toolchain that searches for truncated differential characteristics, extends them
to full differential characteristics, combines them to a family of differential

9

1 Introduction and State of the Art

characteristics and finally calculates the overall probability of the family. This
toolchain is then used to improve the attack described in chapter 3. Using
these new methods, we present a new attack on the 6-round variant of MANTIS
in chapter 5. We describe this key-recovery attack on MANTIS6 in detail and
give additional comments on search strategies and the security of the 7-round
variant, MANTIS7. In chapter 6, we try to apply the idea of the attack to other
tweakable block ciphers. The methods from chapter 4 are modified and results
and encountered difficulties are discussed. Finally, we give a summary and
conclusion in chapter 7.

10

2 Description of Target Ciphers

2.1 MANTIS

MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle
et al. [Bei+16]. MANTIS is the dedicated variant of their SKINNY block cipher
family designed for low-latency applications, such as memory encryption. To
achieve this low-latency design, they use the α-reflection property of PRINCE
by Borghoff et al. [Bor+12], while using parts of the round function of MIDORI
by Banik et al. [Ban+15]. The tweak is added using a variant of the TWEAKEY
framework by Jean et al. [JNP14].

The designers proposed multiple variants of MANTIS that differ only in the
number of rounds. MANTIS5 is a 5-round variant, with a security claim that
no related-tweak attack is possible using 2d less than 230 chosen or 240 known
plaintexts and 2126−d time. MANTIS7 is the full 7-round variant with a security
claim that no attacks are possible using 2n chosen plaintext/ciphertext pairs
and 2126−n encryption function calls.

MANTIS takes 64-bit plaintext blocks M = M0||M1|| . . . ||M15, a 64-bit tweak
T = T0||T1|| . . . ||T15 and a (64 + 64) = 128-bit key K = (k0 + k1). The internal
state S is composed of 4× 4 state cells Si, which are 4-bit in size:

S =

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10S11

S12S13S14S15

.

The cipher’s internal structure is composed of r forward rounds R and r
backwards rounds R−1. They are connected with an involutory, unkeyed middle

11

2 Description of Target Ciphers

M

T

C

k1

k1+α

k0

k′0

R1

R−1
1

h

R2

R−1
2

h

R3

R−1
3

h

R4

R−1
4

h

R5

R−1
5

h

S

M

S

Figure 2.1: PRINCE-like structure of MANTISr, illustrated for MANTIS5.

layer composed of SubCells ◦ MixColumns ◦ SubCells. The two key parts k0

and k1 serve different purposes. The subkey k0 and its derived counterpart
k′0 = (k0 ≫ 1) + (k0 � 63) are used as whitening keys. The subkey k1 is
used as the round key for the round functions R and R−1, and is added in
conjunction with the tweak T according to the TWEAKEY construction. The
overall structure of MANTIS is illustrated in Figure 2.1.

Round Functions R and R−1 . The round functions are based on the round
function of MIDORI. The internal state is updated using a sequence of state
transformations:

R = MixColumns ◦ PermuteCells ◦ AddTweakey ◦ AddConstant ◦ SubCells.

R−1 = SubCells ◦ AddConstant ◦ AddTweakey ◦ PermuteCells−1 ◦MixColumns.

SubCells (S). The used S-Box S is taken from MIDORI [Ban+15]. It is invo-
lutory and takes a 4-bit input and has a 4-bit output:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

12

2 Description of Target Ciphers

AddTweakey (A) and AddConstant (C). For R, the round constant Ci, the
subkey k1 and the round tweakey Ti = hi(T) are added to the state using XOR.
For R−1, the constant α is added in addition to the previously mentioned values.
The round tweakey is updated via the tweakey update function h, which is
given in Figure 2.2b.

PermuteCells (P). The 4× 4 cells of the state are permuted by P , given in
Figure 2.2a.

0 01 112 63 13

4 105 16 127 7

8 59 1410 311 8

12 1513 414 915 2

P

(a) State permutation P.

0 61 52 143 15

4 05 16 27 3

8 79 1210 1311 4

12 813 914 1015 11

h

(b) Tweakey update permutation h.

Figure 2.2: The permutations P and h used in MANTIS.

MixColumns (M). The state is multiplied column-wise with the following
matrix M over GF(24). M is an involutory, near-MDS matrix:

M =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

2.2 QARMA

QARMA is a tweakable block cipher designed by Avanzi [Ava16]. QARMA’s
design and overall structure is very similar to that of MANTIS, but it aims
to improve a few of the design choices made by the authors of MANTIS to
improve the overall security. The designer proposed several components that
can be used in the round function of QARMA, leaving the final choice to the
user. Additionally, QARMA offers two variants for its state size, a 64-bit and a
128-bit variant. We will only summarize the QARMA-64 variant of the cipher

13

2 Description of Target Ciphers

M

T

C

k0

k0+α

w0

w1

R1

R−1
1

ω h

R2

R−1
2

ω h

R3

R−1
3

ω h

R4

R−1
4

ω h

R5

R−1
5

ω h

w1

w0

S τ

M

τS

k1

Figure 2.3: Structure of QARMAr, illustrated for QARMA5.

in the following and refer to the design paper [Ava16] for more details on the
128-bit variant.

The internal state is mapped to 16 4-bit state cells, arranged as a 4× 4 matrix
S:

S =

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10S11

S12S13S14S15

.

The plaintext is given as M = M1||M2|| . . . ||M15 and the tweak is given as
T = T0||T1|| . . . ||T15, so they can be easily mapped to the internal state repre-
sentation.

QARMA is a three-round Even-Mansour construction and its overall structure
can be seen in Figure 2.3.

SubCells (S). The designer proposed three different S-Boxes that can be used
with QARMA.

σ0 is a lightweight, involutory S-Box with only two fixed points (in comparison
to the 4 fixed points of the MIDORI S-Box used in MANTIS). Additionally it
has the same depth (3.5) as the MIDORI S-Box and an area of 14 GE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

σ0(x) 0 e 2 a 9 f 8 b 6 4 3 7 d c 1 5

14

2 Description of Target Ciphers

σ1 is a homogeneous, involutory S-Box. It has a depth of 4 and an area of 16
GE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

σ1(x) a d e 6 f 7 3 5 9 8 0 c b 1 2 4

σ2 is an affine equivalent of the S-Box S6 from the PRINCE family. σ2 and its
inverse have a depth of 4.5 and 4 respectively and and area of approximately
20 GE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

σ2(x) b 6 8 f c 0 9 e 3 7 4 5 d 2 1 a

These three S-Boxes have been carefully selected by the designer of QARMA,
following a few desirable cryptographic properties. Furthermore, the user has the
final choice over the used S-Box and can consider their cryptographic properties
and latency. We refer to the design document [Ava16] for a more detailed
description and the rationale behind the choice of these S-Boxes.

AddTweakey (A) and AddConstant (C). For R, the round constant Ci, the
subkey k1 and the round tweakey Ti = hi(T) are added to the state using
XOR. For R−1 the constant α is added in addition to the previously mentioned
values. The round tweakey is then updated via the tweakey update function:
The tweakey permutation h (given in Figure 2.4b) is applied to the tweak, and
in addition a linear feedback shift register (LFSR) ω is applied to the tweak
state cells T0, T1, T3, T4, T8, T11 and T13. ω is a maximal period LFSR that maps
a cell (b3, b2, b1, b0) to (b0 + b1, b3, b2, b1).

PermuteCells (P). The 4× 4 cells of the state are permuted by τ , given in
Figure 2.4a. Note that QARMA, like MANTIS, also reuses the MIDORI cell
permutation, therefore τ = P.

15

2 Description of Target Ciphers

0 01 112 63 13

4 105 16 127 7

8 59 1410 311 8

12 1513 414 915 2

τ

(a) State permutation τ .

0 61 52 143 15

4 05 16 27 3

8 79 1210 1311 4

12 813 914 1015 11

h

(b) Tweakey update permutation h.

Figure 2.4: The permutations τ and h used in QARMA.

MixColumns (M). The state is multiplied column-wise with the following
matrix M4,3 over GF(24). M4,3 is an involutory, Almost-MDS matrix:

M4,3 =

0 ρ ρ2 ρ
ρ 0 ρ ρ2

ρ2 ρ 0 ρ
ρ ρ2 ρ 0

 .

ρ denotes a circular rotation of the bits by one (to the left), i.e., (b3, b2, b1, b0)
to (b2, b1, b0, b3).

2.3 Differences between MANTIS and QARMA

QARMA-64’s main differences to MANTIS are:

• A choice of three different S-Boxes σ0, σ1, σ2.
• A new MixColumns layer using the matrix M4,1.
• An improved, keyed inner round.
• The addition of a LFSR to the tweak update function.

We will now go into more detail about each of these properties.

The S-Boxes σ0, σ1, σ2. The DDTs of the MIDORI S-Box used in MANTIS
and the three S-Boxes σ0, σ1, σ2 used in QARMA can be seen in Figure 2.5. We
can see the different number of high-probability differential transitions for the
four S-Boxes. Avanzi suggests that the S-Box σ0 could be used as a replacement
for the MIDORI S-Box used in MANTIS, due to their similar area and behavior
of their fixed points. The differential behavior of QARMA’s S-Boxes is not as

16

2 Description of Target Ciphers

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.

1
1
4

1
8

(a) MIDORI-S.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.

1
1
4

1
8

(b) QARMA-σ0.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.

1
1
4

1
8

(c) QARMA-σ1.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out
prob.

1
1
4

1
8

(d) QARMA-σ2.

Figure 2.5: Differential Distribution Tables (DDT) of the S-Boxes used in MANTIS and
QARMA.

beneficial for the attacks described in this thesis as the differential behavior of
the MIDORI S-Box.

The new linear layer M4,1. The matrix M used in MANTIS has the property
that all transitions with a branch number of 4 are valid if all 4 active cells
have the same difference. This is not the case with the matrix M4,1 used in
QARMA, since the combination of different rotations prevent this fact. This
makes it harder to propagate chosen differences through the cipher structure.
The linear layer M4,1 is designed with the observation that it is important “that
the diffusion layer does not always map the bits to the same places and the

17

2 Description of Target Ciphers

round constants also influence other bits, to prevent characteristics that map a
small subset of possible states onto itself.” [Ava16]. This is one of the properties
that we use in the attacks described in this thesis, and this new linear layer has
a large impact on the probability of families of differential characteristics.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(a) M used in MANTIS.

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(b) M4,3 used in QARMA.

Figure 2.6: DDTs for the truncated differential behavior of the different MixColumns operations.

The inner round construction. The inner round function of QARMA has two
major differences to the inner round function of MANTIS. First, an additional
PermuteCells step is added in both the forward and backwards direction. Second,
a key addition is added in between the two SubCells steps. This removes one
of the negative properties of MANTIS. MANTIS’s inner round is essentially
the steps SubCells–MixColumns–SubCells. This creates a super-box property,
meaning the two SubCells steps and the MixColumns step can be combined to
one large super step, which has improved probabilities for some transitions.
This property is used in the attacks described in this thesis.

The tweak update function. The tweak update function of QARMA includes
an LFSR in addition to the tweak state permutation h (which is also used
in MANTIS). This makes it harder for an attacker to construct related-tweak
attacks, since it is not possible to keep differences in the tweak state constant.
Since this LFSR does not exist in MANTIS, it is possible to keep the differences
in the tweak constant. This property is used in the attacks described in this
thesis.

18

3 Verification of Key-Recovery Attack
on MANTIS5

Dobraunig et al. [Dob+16] proposed a key-recovery attack on MANTIS5 which
violates the security claims given by the designers. We showed that the attack
is practical and verified its theoretical time and data complexities by providing
a practical implementation and discovered additional insights. This implementa-
tion and the insights discovered directly contributed to the paper by Dobraunig
et al. [Dob+16].

This chapter is structured as follows. First the attack by Dobraunig et al. and
its structure are summarized in section 3.1. Section 3.2 is dedicated to the
practical implementation and its details.

3.1 Summary of Key Recovery Attack on MANTIS5

The designers of MANTIS analyzed their proposal with respect to differential
attacks using a mixed-integer linear program (MILP) that models the differential
behavior of the cipher (truncated to state cells). Using this truncated model,
they analyzed the lower bound of active S-Boxes and computed the minimum
number of active S-Boxes to be 34 for the 5-round version of MANTIS. The
best differential probability of the S-Box is 2−2, resulting in an overall upper
limit of 2−2·34 = 2−68 < 2−64 for the probability of a differential characteristic.
Therefore, the designers concluded that “no related tweak linear or differential
distinguisher based on a characteristics is possible for MANTIS5” [Bei+16] and
that MANTIS5 is secure against “practical” attacks with a data complexity 2d

at most 230 chosen plaintexts and computational complexity of 2126−d.

The attack by Dobraunig et al. is based on a differential characteristic with 36
active S-Boxes. This differential characteristic was found using the MILP model

19

3 Verification of Key-Recovery Attack on MANTIS5

of the truncated version of MANTIS5. Although it does not match the lower
bound of 34 S-Boxes, its properties are superior for the attack when compared
to solutions with 34 active S-Boxes.

Consider the properties of the used S-Box, in particular the differential distribu-
tion table given in Figure 2.5a. All transitions from and to a have the highest
differential probability of 1

4 . Furthermore, the transition a → a is included.
Since MixColumns has only binary coefficients, all transitions that match its
branch number of 4 are valid when all active cells have a difference of a.

This means that if a truncated differential characteristic exists where the
MixColumns step has only transitions with a branch number of 4, all differences in
the truncated characteristic can be set to a and a valid differential characteristic
with the highest possible probability is obtained.

The structure of the S-Box allows for more improvement. By allowing more
differences in some state cells instead of just a, essentially clustering multiple
differential characteristics together, the overall probability can be improved
further. Due to the differential properties of the S-Box, values in the set that
map to and from a, namely {5, a, d, f}, are of particular interest. By carefully
choosing the allowed differences in the state cells and using the last round for key
recovery, the overall probability of the characteristic can be improved from 272

to 240.51. This family of differential characteristics can be seen in Figure 3.1.

Generating and pre-filtering plaintext-ciphertext pairs. This improved prob-
ability is still not enough to perform an attack that violates the security claims
given by the designers of MANTIS. The data complexity of such an attack should
not exceed 230 chosen plaintexts. By using a smart structure of initial plaintexts
and combining them, the overall data complexity can be reduced greatly. Using
the cells of the plaintext with an allowed set of differences of {5, a, d, f}, we can
generate the necessary 241 plaintext pairs using only 228 chosen plaintext-tweak
queries (this process is described in more detail in section 5.2).

Once enough plaintext-tweak-ciphertext pairs have been generated, they can
be pre-filtered based on their ciphertext differences. Cells S1, S4, S11, S13, S15

have a difference of zero. Random plaintext pairs fulfill this property with a
probability of 2−24, so the total amount of 241 plaintext-tweak-ciphertext pairs
can be filtered down to 219 pairs i ∈ Ir.

20

3 Verification of Key-Recovery Attack on MANTIS5

M

C

T

k0

k′0

a
a

k1

k1+α

1

10

a

a

a
a

1

1
2
2
2

=

=
6

7

8
8
8

9
9

9

·2−13.08

·1

S

S

a

a
h ◦ C

a

a
a

1

1
2
2
2

=

=
6

7

8
8
8

9
9

9

k1

k1+α

a
a
a

1
1

2
2
2

=
=

6
7

8
8
8

9
9
9

·2−2.43

·1

P

P

M

M

a

8

96
7

1
1

2

a
a

a
a

3

3

5

5

·2−6

·1

S

S

a
ah ◦ C

3

3

5

5

k1

k1+α

3
3

5
5

P

P

M

M

2

9

·2−1

·2−2

3
3

5
5

. . .

. . .

. . .h ◦ C

3
3

5
5

3

8

. . .

. . .

. . .

a
a

a
a

·2−4

·1

S

S

a
a

a

a

a

a

k1

k1+α

a
a

a
a

·1

·1

P

P

M

M

a
a

a
a

4

7

a
a

a
a

a
a

a
a

·2−4

·2−4

S

S

a
ah ◦ C

k1

k1+α

5

6

a
ah ◦ C

a
a

a
a

k1

k1+α

P-M-S

P-M-S

a

a

a

a

·1

·1

P

P

M

M

*

*

a

a

a

a

4

4

4

4

S

S

M·2−4

a ∆ = a
1 2 3 ∆ ∈ {a, f}

4 5 6 7 ∆ ∈ {a, f, d, 5}

∆↔ ∆ + a
i ∆ identical

8 9 = Key recovery

Figure 3.1: Family of differential characteristics for MANTIS5 (see [Dob+16]).

Recovering 44 bits of k′0+k1. After filtering the generated pairs, the next step
is the recovery of 44 bits of the final whitening key k′0 + k1. We guess parts of
the key corresponding to the columns of the MixColumns step in round 10. The
overall probability that a 44-bit keyguess follows the family of characteristics in
Figure 3.1 up to that point is 2−30. This means for each pair, 244−30 = 214 key
guesses remain which satisfy the conditions. For the total 219 pairs, this results
in 219 · 214 = 233 keyguesses remaining, reducing the keyspace by a factor of
211. To filter the keyspace down to a single correct key, this process needs to be
repeated a total of 4 times. For each repetition r ∈ 1, 2, 3, 4, we get a set of 233

possible keys and their intersection results in the single correct 44-bit subkey.

21

3 Verification of Key-Recovery Attack on MANTIS5

Recovering 32 bits of k0 + k1. Using the recovered 44 bits of key information,
the plaintext-tweak-ciphertext pairs can be filtered down to just the pairs
following the family of characteristics. A wrong pair gets identified as a correct
one with a probability of 2−30, so only the correct 4 pairs should remain. Using
these correct pairs, we can compute forward through the S-Box layer of round
1, and check our keyguess for cells S0, S5, S6, S7, S8, S10, S12, S14. The overall
probability that a wrong key matches the family of characteristics for all correct
pairs is 2−62.04. Therefore, only the correct 32-bit subkey should remain.

Recovering the full key k0 + k1. Up until now 76 bits of the key material
have been recovered. Using the structure of rounds 2, 3, 8 and 9, we can recover
14 more keybits using a guess-and-determine approach. This leaves us with 38
bits of the full key that are unknown. To recover the full secret key, we guess
the remaining 38 key bits and perform 238 trial encryptions.

3.2 Practical Implementation of Key Recovery Attack
on MANTIS5

Since the attack described in section 3.1 has a complexity requirement that
is close to “practical”, one of the goals of this thesis was to provide an imple-
mentation of the attack. Especially for modern ciphers, attacks that are able
to be executed on a standard single-core CPU in a reasonable time frame (less
than one day) are quite rare. An implementation of the attack serves to both
validate the correctness of the theoretical attack as well as the proposed time
and data complexity. Furthermore, some minor issues with the theoretical attack
arose during the practical implementation and corresponding workarounds were
found and implemented. The structure of the implementation with all issues,
workarounds and optimizations is described in the following.

Generating and pre-filtering plaintext-ciphertext pairs. The complexity of
the trivial approach to combine the chosen plaintext-tweak-ciphertext pairs is
4 · 241 state XOR operations. This would dominate the time complexity of the
attack. However, a more efficient solution exists. Instead of iterating all possible
plaintext-tweak-ciphertext pair combinations and then filtering based on the

22

3 Verification of Key-Recovery Attack on MANTIS5

difference in the ciphertext, we can group each single plaintext-tweak-ciphertext
into partitions based on the values of the ciphertext cells S1, S4, S11, S13, S15.
Since these cells have a difference of zero in our characteristic, we can then
only iterate over all possible combinations in each partition. Since we query
225 plaintexts for both the tweak and the tweak with differences, the expected
size of each partition is 25. Combining each of those 25 candidates with their
respective 25 possible matches for all 220 partitions brings the total complexity
down to 25 · 25 · 220 = 230 state XOR operations. This results in about 219

plaintext-tweak-ciphertext pairs that follow the constraints in the plaintext, the
tweak and the ciphertext states. This part takes about 16 minutes on a single
desktop core.

Recovering 44 bits of k′0 + k1. We now need to guess 44 bits of the subkey
k′0 + k1 and verify the keyguess against the 4 · 219 pairs remaining after the
pre-filtering phase. To verify a keyguess for one pair, we need to perform 2 · 11
S-Box lookups. Using a trivial approach, this would result in 2 · 11 · 244+19+2 ≈
269.46 S-Box lookups in total, which corresponds to roughly 261.87 MANTIS5

encryptions (based on the total number of 12·16 S-Boxes in MANTIS5). However,
we do not need to guess the whole 44 bit subkey at once. The 4 conditions
described in section section 3.1 are independent of each other, meaning we
can guess (and verify) a 16-bit subkey, two 12-bit subkeys and a 4-bit subkey
separately from each other. This reduces the total number of S-Box lookups to
2 ·(216 ·4+2 ·212 ·3+24) ≈ 219.13 or an equivalent of 211.54 MANTIS5 encryptions
per pair. For the total number of 4 · 219 pairs that are left after the pre-filtering
phase, this results in a time complexity corresponding to approximately 232.54

MANTIS5 encryptions, which is a huge improvement to the trivial version.

This phase of the key recovery is dominating the data complexity requirement.
When performing this step in a straightforward implementation, we get 4 lists
of 233 key candidates. We then need to find intersections between the lists
which adds a computational complexity of about 233. However, it is again not
necessary to store the full 44-bit key guess. Since the 4 parts of the key are
independent, we can store them in 4 separate sets. Set Cr,i

14 holds the valid 4-bit
key guesses for the conditions in column 2 of the MixColumns step in round
10, set Cr,i

0,5,10 holds the valid 12-bit keyguesses for the conditions in column

1, set Cr,i
2,7,8 holds the valid 12-bit keyguesses for the conditions in column 4

23

3 Verification of Key-Recovery Attack on MANTIS5

and set Cr,i
3,6,9,12 holds the valid 16-bit keyguesses for the conditions in column

3 for a given repetition r ∈ 1, 2, 3, 4 and pair i ∈ Ir. The expected set of 214 key
candidates is the product of these 4 sub-sets.

We refer to this structured set of key candidates as a bundle B(r,i), where

B(r,i) = C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

Storing all bundles requires only about 4 · 219 · 10.25 < 225 MANTIS states. To
find the correct value of all 44 bits, we now need to compute

4⋂
r=1

⋃
i∈Ir
|Ir|≈219

C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

The computational complexity of intersecting these lists is again lowered when
starting the intersection with the most restrictive subkey Cr,i

3,6,9,12. For each

possible 16-bit subkey Cr,i
3,6,9,12, we build a list of references to each bundle

containing this subkey. Since the expected size of each set is 24 and we have 219

bundles per iteration, the size of each list should be ≈ 27. We use these lists to
intersect the bundles of two repetitions as follows. We look up the containing
bundles for each possible 16-bit subkey Cr,i

3,6,9,12 in both repetitions and intersect

the keyguesses in the expanded set C(r,i)
0,5,10×C

(r,i)
14 ×C

(r,i)
2,7,8 (this expanded set should

contain ≈ 210 keyguesses). This results in an overall computational complexity
of ≈ 216 · 27 · 27 · 210 = 240. Although the set intersection of the expanded set
containing the ≈ 233 key candidates would be more computationally efficient,
we would need to store 233 · 6 · 2 ≈ 236.58 bytes of key data, which is more
prohibitive for a practical implementation than the additional computational
complexity.

During the practical implementation, we found that for the valid 44-bit subkey,
there exists one differentially equivalent subkey which also fulfills all conditions.
This always occurs due to the second-order differential properties of the MIDORI
S-Box (An in-depth analysis of the second-order differential properties of the
S-Boxes used in MANTIS and QARMA can be found in [Eic17]). Therefore, the
total number of recovered bits is only 43, but this number is still sufficient to
filter the plaintext-tweak-ciphertext pairs for the next step.

24

3 Verification of Key-Recovery Attack on MANTIS5

Recovering 32 bits of k0 + k1. Using the recovered 43-bit subkey, the 4 · 219

plaintext-tweak-ciphertext pairs are filtered, so that only pairs that follow the
family of characteristics in Figure 3.1 remain. In theory, this should result
in about 4 pairs remaining, but over several runs, the average was found to
be about 8 pairs (all of which follow the family of characteristics) instead.
We need to perform a 32-bit key guess for each of the remaining 4 pairs
and verify it by performing 2 · 8 S-Box lookups per pair and verifying cells
S0, S5, S6, S7, S8, S10, S12, S14 against the family of characteristics in Figure 3.1.
This results in a total of 2 · 4 · 8 · 232 = 238 S-Box lookups, corresponding to
roughly 230.42 MANTIS5 encryptions. This key can again be split in several
smaller subkeys and verified independently, quite similar to the approach taken
in the 44-bit key guessing phase. Due to the already acceptable computational
complexity, this was not done in practice.

Again, the practical implementation revealed some difficulties.Instead of just
one of the 232 subkeys surviving the second phase, 28 subkeys stayed valid. This
is again happening due to the second-order differential properties of the MIDORI
S-Box. Because of this, only 24 bits of the subkey are recovered in practice.

Recovery of the full k0 and k1. The procedure presented in the theoretical
attack first recovers 14 more bits from the second and third round, before
performing 238 trial encryptions to recover the final 38 bit of the secret key.
This approach was not taken in the practical implementation. Instead, the full
structure of the cipher was encoded as a boolean satisfiability problem [Dob+16],
and the recovered 43 + 24 bits of the subkey, as well as the filtered plaintext-
tweak-ciphertext pairs are added as constraints. To easily describe the cipher
structure and its bit-vector operations, the STP constraint solver [GD07] and
its higher-level python bindings were used. A multithreaded SAT-solver can
find the remaining bits of the secret key in less than 2 minutes on a modern
desktop machine.

25

4 Improving Search Methods to Find a
Family of Characteristics

In this chapter we will cover the basic methodology used to find families of
characteristics. The different steps are explained in detail and improvements
to existing methods are discussed and implemented to form a semi-automated
toolchain.

4.1 MILP Model for Truncated Differential
Characteristics

The truncated differential behavior of the cipher is modeled as a mixed-integer
linear program (MILP). A mixed-integer linear program is an optimization
program in which some of the variables are constrained to integers. The model
is composed of a objective function to be minimized or maximized and several
linear equalities and inequalities over R. The model is then given to a MILP
solver which minimizes the objective function and returns an assignment for all
variables corresponding to the optimal solution found.

To model the truncated differential behavior of our target cipher MANTIS, we
use the MILP model proposed by Eichlseder [Eic17] as a starting point. In the
following we will shortly summarize the decision variables used in the MILP
model and refer to the full model and its description in [Eic17].

The MILP model by Eichlseder uses the following decision variables for r-round
MANTISr, indexed by their round i ∈ R = {1, . . . , r}, forward or backward
direction ± ∈ {+,−}, where i± ∈ R± is shorthand for (i,±) ∈ R×{+,−}, and
cell position b ∈ B = {0, . . . , 15}, or state row x ∈ X = {0, . . . , 3} and column
y ∈ Y = {0, . . . , 3}, such that b = 4x+ y (Figure 4.1):

26

4 Improving Search Methods to Find a Family of Characteristics

• α±i [b] ∈ {0, 1} for i± ∈ (R∪ {0})±, b ∈ B: Truncated difference of cell Sb
of the input and output state of SubCells in forward round Ri or backward
round R−1

i .
• β±i [b] ∈ {0, 1} for i± ∈ R±, b ∈ B: Truncated difference of cell Sb of the

output state of AddTweakeyi in forward round Ri (or the input state in
backward round R−1

i).
• τ [b] ∈ {0, 1} for b ∈ B: Truncated difference of cell Sb of the tweak T .

Note that we do not need to model the differences in the plaintext m and
in the ciphertext c to optimize the number of active S-boxes.

The MILP model must be linear over R (+ denotes integer addition in the
MILP inequalities), whereas the linear layers (MixColumns and AddTweakey)
are linear over F2 (+ or ⊕ denotes xor). Therefore, the AddTweakey step is
modeled using its differential branch number of 2. To model MixColumns, we
use the description proposed in [Eic17], which uses a number of helper variables
to model the exact truncated behavior of the MixColumns step used in MANTIS.
The full MILP model, including all constraints and the objective function, is
given in Figure 4.2. This model is later tweaked further to influence the structure
of the solutions found. We list these additional constraints in section 5.7.

4.2 Differential Search Tool

The MILP solver outputs truncated differential characteristics when given the
task to minimize the given MILP model. However, the truncated differential

M

C

T

i

(2r+1)-i

*

*

m

k0+k1

α+
0 · · · α+

i−1

k1

β+
i α+

i

S P M · · · α+
r

S

c

k′0+k1+α

α−0 · · · α−i−1

k1+α

β−i α−i
S P M · · · α−r

S

τ hi(τ) M

Figure 4.1: MILP variables for truncated differential model of MANTISr (from [Eic17]).

27

4 Improving Search Methods to Find a Family of Characteristics

min
∑

i±∈(R∪{0})±

∑
b∈B

α±i [b] (active S-boxes)

s.t. ∀b ∈ B, i± ∈ R± : (AddTweakeyi)

2χ±i [b] ≤ α±i−1[b] + hi(τ)[b] + β±i [b] ≤ 3χ±i [b]

∀y ∈ Y, i± ∈ R± : (PermuteCellsi, MixColumnsi)

4µ±i,y ≤
∑
x∈X

(
P(β±i)[4x+ y] + α±i [4x+ y]

)
≤ 8µ±i,y

µ±i,y ≤
∑
x∈X

P(β±i)[4x+ y], µ±i,y ≤
∑
x∈X

α±i [4x+ y]

4 ≤ 4ν±i,y,8 +
∑
x∈X

ν±i,y,x

6ν±i,y,8 ≤
∑
x∈X

(
P(β±i)[4x+ y] + α±i [4x+ y]

)
2ν±i,y,8 =

∑
x∈X

P(β±i)[4x+ y]− 2ν±i,y,9 − ν
±
i,y,10

ν±i,y,10 = 2ν±i,y,x+4 + 1− ν±i,y,x − P(β±i)[4x+ y]− α±i [4x+ y] ∀x ∈ X

∀y ∈ Y : (Inner MixColumns)

4µ∗y ≤
∑
x∈X

(
α+
r [4x+ y] + α−r [4x+ y]

)
≤ 8µ∗y

µ∗y ≤
∑
x∈X

α+
r [4x+ y], µ∗y ≤

∑
x∈X

α−r [4x+ y]

4 ≤ 4ν∗y,8 +
∑
x∈X

ν∗y,x

6ν∗y,8 ≤
∑
x∈X

(
α+
r [4x+ y] + α−r [4x+ y]

)
2ν∗y,8 =

∑
x∈X

α+
r [4x+ y]− 2ν∗y,9 − ν∗y,10

ν∗y,10 = 2ν∗y,x+4 + 1− ν∗y,x − α+
r [4x+ y]− α−r [4x+ y] ∀x ∈ X

1 ≤
∑
b∈B

α+
0 [b] +

∑
b∈B

τ [b] (Non-triviality)

Figure 4.2: Truncated differential MILP model of MANTISr (from [Eic17]).

28

4 Improving Search Methods to Find a Family of Characteristics

characteristics may not result in a valid non-truncated differential characteristic.
Since the truncated model is only abstracting each cell as 1 bit (active/inactive)
instead of the real cell size of 4 bits, impossible dependencies may appear when
extending the truncated characteristic to a full one. To quickly verify truncated
differential characteristics output by the MILP solver, we use a non-linear
differential search tool originally designed to find differential characteristics in
hash functions.

This tool has been used to find differential characteristics for SHA-1 [DR06], SHA-
256 [MNS11; MNS13] and SHA-512 [EMS14; DEM15], among others. Its basic
search strategy is based on a guess-and-determine approach. Guided by user-
chosen priorities, unrestricted bits are guessed and then the new restrictions
arising from that guess are propagated to other bits. If an inconsistency is
encountered, the search is reverted to a previous state, and another guess is
made. Look-ahead strategies are applied to guide the search towards more
promising branches in the search tree.

Due to the size of the search space, a search for differential characteristics
using just this tool does not yield high-probability results in a reasonable time.
However, by taking the results of the MILP model and using them to constrict
which cells are active and which are not, the search space is greatly reduced.
When given a truncated characteristics as input that does not contain any
contradictions, the search tool finds a concrete solution in a few seconds. The
search tool can however not prove that no solution exists and therefore we stop
the search after a short amount of time since valid solutions are usually found
quickly.

4.3 Extending one Differential Characteristic to a Family

Once one concrete characteristic has been found by the non-linear differential
search tool described in section 4.2, we now want to cluster several of these
characteristics together, in an attempt to improve the overall probability. One
approach that was considered was to collect several characteristics from the
search tool and add their probabilities accordingly. However, it was soon evident
that this approach is time consuming and additionally, due to the random nature

29

4 Improving Search Methods to Find a Family of Characteristics

of the search tool, there is no guarantee when and if all possible characteristics
have been found and added to the family.

For the key recovery attack on MANTIS5, all of the work finding and extending
the truncated characteristic into a family of characteristics was done by hand.
Of course this approach is time consuming, error prone and (due to its time
constraints) not easily comparable.

Because an attack on MANTIS6 requires to compare multiple different truncated
characteristics with different properties with respect to their probability and the
probability of the associated family of characteristics, a computer-aided solution
was needed. The basic methodology to extend one differential characteristic to
a family of differential characteristics is described in the following.

We start with one concrete solution from the non-linear differential search tool.
Since such a solution was found, we now know that the truncated differential
characteristic is valid and that likely, more solutions following the truncated
differential characteristic exist. First, the concrete solution is inserted into our
cipher structure. Afterwards, all other active cells are extended to allow every
possible non-zero difference {1, 2, . . . , f}. We keep the tweak cells constrained
to one single possible difference, since testing has shown that this improves the
overall probability greatly (In the case of MANTIS, this difference is almost
always a, due to the differential properties of the MIDORI S-Box). Of course not
all differences are valid for each cell, so we apply rules based on the properties of
the different steps in the round function to constrict the values of cells to remove
the impossible differences. In contrast to classical block ciphers, for tweakable
block ciphers, the linear tweakey schedule imposes many constraints on the
possible differences. In the following ∆i denotes the set of possible differences
at the input of the step function and ∆o denotes the set of possible differences
at the output. ∆̃i and ∆̃o denote the updated sets after the application of the
propagation rules.

SubCells (S). For the S-Box step, differences that are not valid for the re-
spective input and output difference are removed from the set. We calculate
the set of possible output differences based on the current set of input differ-
ences, and perform a set intersection with the current output differences. This
eliminates all output differences that are not reachable with the possible input

30

4 Improving Search Methods to Find a Family of Characteristics

differences. This process is then repeated in the other direction, calculating the
possible input differences based on the current set of output differences and
again performing a set intersection with the current set of input differences.

To ease notation we define the function σ : X 7→ Y , so that

σ(X) = { y ∈ {0, . . . , f} | ∃x ∈ X : DDT(x, y) > 0 }.

The function takes a set of differences X and returns a set of differences Y ,
which includes all differences that are possible S-Box transitions for the input
differences in X. Note, that due to the involutory property of the MIDORI
S-Box, σ−1 = σ. We can now describe the performed set intersections using this
function:

∆̃i = ∆i ∩ σ (∆o) ,

∆̃o = σ (∆i) ∩∆o .

PermuteCells (P). For the state permutation step, differences are propagated
linearly. We perform a set intersection between the set of differences possible at
the input cell and the corresponding output cell of the PermuteCells step. This
removes any differences in both cells that are not possible:

∆̃i = ∆i ∩∆o ,

∆̃o = ∆i ∩∆o .

AddTweakey (A). At the AddTweakey step, difference can be introduced,
canceled or changed due to differences in the tweakey. For each state cell, we
take the possible input differences and XOR them with the respective difference
T in the tweakey. The resulting set is then intersected with the set of possible
differences at the output of the operation. This eliminates all output differences
that are not reachable with the possible input differences. This process is again
repeated for the backwards direction:

∆̃i = ∆i ∩ (∆o + T) ,

∆̃o = (∆i + T) ∩∆o .

31

4 Improving Search Methods to Find a Family of Characteristics

MixColumns (M). For transitions that have a branch number of 4, all cells
need to have the same value to cancel out during the multiplication with the
linear matrix M . Therefore, we can just perform a set intersection of the sets
of the 4 active cells in the input and output for each column of the state. This
eliminates all output differences that are not reachable with the possible input
differences. For transitions with branch number > 4, we need to perform the
calculation of the MixColumns step for each possible combination of allowed
differences, and restrict the cells based on the result of this calculation. The
following description covers only the case where the branch number is equal to
4, since this is the only case needed for the families of characteristics considered
in this thesis. Below, ∆1, . . . ,∆4 denote the 4 active cells in the MixColumns
step:

∆̃1 = ∆̃2 = ∆̃3 = ∆̃4 = ∆1 ∩∆2 ∩∆3 ∩∆4 .

Since these restrictions impact the set of possible differences for their neighboring
operations, we perform them repeatedly, until no more changes in any state cells
are observed. This results in the most unrestricted family of characteristics for
a given truncated differential characteristic. However, this does not necessarily
mean that this family has the highest probability. For example, the input cells
in the plaintext may have a high number of possible differences, but restricting
these cells to a smaller subset can improve the probability of the first round S-
Box transitions greatly. Furthermore, restricting cells in further rounds can also
lead to improved probabilities. For example, in MANTIS, S-Box transitions

{5, a, d, f} → {5, a, d, f} → {a}

over 2 rounds can be improved by restricting the first set, resulting in the
2-round transition

{a, f} → {5, a, d, f} → {a},

which has a higher overall probability.

4.4 Exact Computation of Probabilities

One of the main contributions of this work is the refinement of the calculation of
the probability of the family of characteristics. In the case of MANTIS, the used

32

4 Improving Search Methods to Find a Family of Characteristics

MIDORI S-Box has some differential properties that allow clustering several
characteristics into a more probable family of characteristics. However, the
calculation of the overall probability is not that trivial, since allowing more than
one possible difference for a state cell can introduce dependencies for following
state cells. The main problem is that the allowed difference values for one state
cell do not have to be uniformly distributed. Let’s look at a quick example.

Example. Assume we have the set of allowed state values A = {5, a, d, f}. If we
assume a uniform distribution of the input difference set (25% each), the proba-
bility that a S-Box step maps the input difference set A to an output difference
set of A again is 50%. This percentage is the result of a weighted summation
of the possible transition probabilities from the DDT given in Figure 2.5a.
However, due to the nature of the MIDORI S-Box, if the input distribution is
more heavily weighted towards a difference of a, the overall probability improves.
If we assume a probability distribution of p(A) = {0.2, 0.4, 0.2, 0.2}, meaning
a is twice as likely as the other three possibilities, the probability that the
difference set A maps to itself increases to 60%.

Even if we start with a uniform distribution of differences at the plaintext
input, both the SubCells and the MixColumns step can change the distribution
of these probabilities. We can approximate the overall probability if we assume
a uniform distribution of input differences for each step, and this was the
original method used in the key recovery attack on MANTIS5. However, a more
thorough investigation shows that this estimation results in a probability that
is too low, and for the attack on MANTIS6, the probability estimation is even
off by a factor that would render an attack that violates the security claims
impossible. One possible method to calculate the exact probability of a family
of characteristics is to enumerate every possible characteristic in the family and
sum their probabilities. This approach is easy to implement, since calculating
the probability of a single characteristic is easy. However, for families with
a huge number of characteristics, the effort needed to enumerate the family
becomes prohibitive quite fast. In this section we will now describe a method
that allows us to calculate the exact probability of a family of characteristics
all at once and show that the overall probability improves when compared to
the basic probability estimation.

We define a state S = {S0, S1, . . . , S15} to represent a full state of the cipher,

33

4 Improving Search Methods to Find a Family of Characteristics

with Si being one 4-bit state cell. For each state cell Si, we have a difference
vector ∆i, which contains all possible differences for this state cell. We further
define the distribution p(∆i) = {pi,0, pi,1, . . . , pi,15}, where pi,j is the probability
that a difference of j is present in the state cell i. For all variables, a version with
a tilde above represents the resulting variable after one state transformation is
applied.

Additionally we define the four state transformations f ∈ {A,P,S,M}, where
f : S 7→ S̃. We will now describe in detail how the probability vector is affected
by each of the four state transformations.

SubCells (S). To calculate the probability for the SubCells step, we need to
iterate over all the possible input differences and sum the probabilities from
the DDT that allow to reach a respective output probability:

p̃i,j =

{∑
k∈∆i

pi,k ·DDT (k, j) , if j ∈ ∆̃o ,

0, otherwise.
.

The probability distribution p̃i,j is normalized after this step.

AddTweakey (A). For the tweak addition we will only look at a simpler case,
where we only allow one specific difference T in the tweak state cell. This
simpler case is all that is needed to describe the probability for the families of
characteristics in this thesis, since we fix the allowed tweak difference to a:

p̃i,j = pi,j+T .

In this simple case, the AddTweakey step is just a simple permutation of the
difference set and the probability vector.

PermuteCells (P). The state permutation step is also very similar to the
simple case of the AddTweakey step, since the output state is just a permutation
of the input state:

p̃P (i),j = pi,j ,

where P is the PermuteCells permutation.

34

4 Improving Search Methods to Find a Family of Characteristics

MixColumns (M). For the MixColumns step, we calculate the probability for
each column c ∈ 1, 2, 3, 4. We also consider only the case where the branch
number is 4, similar to the rules for propagation. A branch number of 4 for
the matrix M used in MANTIS results in the property that all 4 active cells
must have the same difference. Therefore, all cells that are active at the output
have the same probability distribution. We consider three cases with one, two
and three active cells at the input respectively. Although we only provide a
description of one ordering of the active cells for each case, the rest follow the
same rules with swapped cell indices. The probability distribution p̃i,j is again
normalized after this step.

Case 1 (one active cell at the input of MixColumns):

p̃c+4,j = p̃c+8,j = p̃c+12,j = pc+0,j .

Case 2 (two active cells at the input of MixColumns):

p̃c+0,j = p̃c+4,j = pc+0,j · pc+4,j .

Case 3 (three active cells at the input of MixColumns):

p̃c+12,j = pc+0,j · pc+4,j · pc+8,j .

This method also works for calculating the exact probability of the conditions
used in the key recovery steps in chapter 5. All listed probabilities were calculated
using this tool by performing the steps described in this section backwards from
the ciphertext.

4.5 Implementation

During the course of this work we developed a tool that enables a user to
experiment with a family of characteristics, restricting and extending the
possible values for a state cell, while having a real-time feedback about the
current probability for each step. This allows for a computer-aided search of
the best family for the given characteristic.

35

4 Improving Search Methods to Find a Family of Characteristics

Figure 4.3: General look of the tool for probability calculation.

The tool was implemented in python, using a basic graphical user interface
written in TkInter. The underlying characteristic is composed of multiple step
operations (e.g., SBOXStep, PermutationStep, . . .) which are arranged in the
correct order to build a full block cipher like MANTIS. This design also allows
for users to add other ciphers with minimal effort by just implementing new
and/or reusing old step operations.

Figure 4.3 shows the general look of the tool while working on the family of
characteristics for the attack on MANTIS5. We can see the general structure
of the characteristic as well as the different possibilities for state cells and the
resulting probability for both the SubCells and MixColumns steps. The tool
also offers an option to save and load the current family of characteristics,
as well as export the family of characteristics to a LATEX document, enabling
easy generation of printable and shareable PDFs. The output for the family of
characteristics illustrated in Figure 4.3 can be seen in Figure 4.4.

36

4 Improving Search Methods to Find a Family of Characteristics

Initialization

2−15.37

2−6.00

Round 0

S

S

h

P

P

M

M

2−6.08

2−5.00

Round 1

S

S

h

P

P

M

M

2−4.00

20.00

Round 2

S

S

h

P

P

M

M

2−4.00

2−4.00

Round 3

S

S

h

P

P

M

M

20.00

20.00

Round 4

S

S

h

P

P

M

M

2−4.00

Inner

S

S

M

1,3,4,5,6,7,9,a,b,c,d,e,f

0,7,5,f

a

a,f,d,5

a,f

Figure 4.4: Exported PDF document for MANTIS5.

4.6 Improved Probability Bounds for Attack on
MANTIS5

Using this new method to calculate the exact probability reveals an improvement
to the previous approximation used in the original attack on MANTIS5 [Dob+16].
For instance, the transition from the set {5, a, d, f} to the set {a, f} in round 1
has a probability that is slightly better than the result from the approximation
assuming uniformly distributed input sets.

Furthermore, while rebuilding the original characteristic in the tool used to cal-
culate the exact probability, we discovered a new, almost identical characteristic
that has an even better probability than the characteristic used in the original
attack. The new, improved characteristic and its probability can be seen in
Figure 4.5. The calculation of the exact probability and the new structure in
the first two rounds reduce the overall probability from 2−40.51 to 2−39.45. This
can be used to improve the attack on MANTIS5 described in section 3.1 further.
The overall probability improved by a factor of ≈ 2, so the data complexity
can also be reduced by that factor. This coincides with the observation given
in section 3.2 that the number of valid pairs after the filtering process is 8
instead of the expected 4. The reduction in data complexity also reduces the
time complexity for the first phases of the attack, as both the generation of the
pairs and the recovery of the 44-bit subkey should be faster by a factor of 2.

37

4 Improving Search Methods to Find a Family of Characteristics

M

C

T

k0

k′0

a
a

k1

k1+α

1

10

a

a

a
a

1

1
2
2
2

=

=
6

7

8
8
8

9
9

9

·2−12.25

·1

S

S

a

a
h ◦ C

a

a
a

1

1
2
2
2

=

=
6

7

8
8
8

9
9

9

k1

k1+α

a
a
a

1
1

2
2
2

=
=

6
7

8
8
8

9
9
9

·2−3.13

·1

P

P

M

M

a

8

96
7

1
1

2

a
a

a
a

3

3

5

5

·2−4.08

·1

S

S

a
ah ◦ C

3

3

5

5

k1

k1+α

3
3

5
5

P

P

M

M

2

9

·2−2

·2−2

3
3

5
5

. . .

. . .

. . .h ◦ C

3
3

5
5

3

8

. . .

. . .

. . .

a
a

a
a

·2−4

·1

S

S

a
a

a

a

a

a

k1

k1+α

a
a

a
a

·1

·1

P

P

M

M

a
a

a
a

4

7

a
a

a
a

a
a

a
a

·2−4

·2−4

S

S

a
ah ◦ C

k1

k1+α

5

6

a
ah ◦ C

a
a

a
a

k1

k1+α

P-M-S

P-M-S

a

a

a

a

·1

·1

P

P

M

M

*

*

a

a

a

a

4

4

4

4

S

S

M·2−4

a ∆ = a
2 ∆ ∈ {a, f}

1 3 4 5 6 7 ∆ ∈ {a, f, d, 5}

∆↔ ∆ + a
i ∆ identical

8 9 = Key recovery

Figure 4.5: Family of differential characteristics for MANTIS5, improved version.

38

5 Staged Key Recovery Attack on
MANTIS6

With the attack on MANTIS5 being both theoretically and practically verified,
the next step is analyzing the higher round versions of MANTIS. Using the same
methodology used in the 5-round version however leads to several practical
limitations that quickly raise the combined data and computational complexity
cost above the bound of 2126.

We will discuss the encountered issues and used workarounds in this chapter
and present an attack on MANTIS6 that recovers the secret key with a data
complexity of 256.72 and a computational complexity of 256.72. The combined
complexity of 2113.44 is well below the general bound of 2126 for related tweak
attacks.

5.1 Extending the 5-Round Characteristics to 6 Rounds

As with the 5-round version of the attack, a characteristic with (close to) optimal
probability is needed to keep the data complexity as low as possible. To generate
such a characteristic we took two different approaches:

• Extend the existing 5-round characteristic to 6 rounds: Using the
inner structure of the existing 5-round characteristic we can manually add
another round to get a 6 round version of the characteristic. While this
approach seems simple, most of the work is done by hand and there is
no guarantee that the number of active S-Boxes is minimal. Furthermore,
while the existing characteristic seems very suitable for the 5-round version
there is the possibility of a completely different characteristic better suited
for an attack on MANTIS6.

39

5 Staged Key Recovery Attack on MANTIS6

• Search for a new 6 round characteristic: Because of the reasons
mentioned above, we also extended the MILP model used to find a trun-
cated characteristic for MANTIS6. The MILP solver outputs a lower bound
of 44 active S-Boxes for MANTIS6, however all resulting characteristic
have some properties that are undesirable for the other steps: There exist
MixColumns transitions with branch number 6= 4 and there are 3 active
tweak cells instead of only 2. Adding constraints for these parameters
to the MILP model, we get a lower bound of 48 active S-Boxes. Upon
further examination of the results it also becomes apparent that most of
the resulting differential characteristic have the same inner structure as
the existing 5-round characteristic.

Ultimately, both approaches resulted in the same truncated differential charac-
teristic seen in Figure 5.1.

Using the methods and tool described in chapter 4, the truncated characteristic
is developed into a family of characteristics which can be seen in Figure 5.2.
We notice that the family of characteristics has more active S-Boxes in round
12 than the truncated version. This was done to improve the overall probability
by allowing all possible S-Box transitions from round 11 onward for some cells,
resulting in more possible differences in the round 12. We want to strike a
balance between a good probability by allowing more S-Box transitions in
the later rounds, a good filtering option by keeping more cells inactive in the
ciphertext and a good key-recovery process by having more active cells in rounds
11 and 12. We got the best results by having exactly half of the cells in the
ciphertext active and half inactive.

5.2 Generating Plaintext Pairs using Initial Structures

The family of differential characteristics in Figure 5.2 has an overall end-to-end
probability of 2−64.19. Therefore we need to generate 264.19 message pairs to
have an expected number of ≈ 1 pair following the family of characteristics. The
trivial approach of generating these pairs would result in 2 · 264.19 encryption
oracle calls, exceeding the combined data and computational complexity bounds.
Furthermore, note that the end-to-end probability of 2−64.19 is smaller than the
“generic” probability of a fixed output difference of 2−64 and much smaller than

40

5 Staged Key Recovery Attack on MANTIS6

M

C

T

k0

k′0

k1

k1+α

1

12

S

S

h ◦ C

k1

k1+α

P

P

M

M

S

S

h ◦ C

k1

k1+α

P

P

2

11

h ◦ C

. . .

. . .

. . .

. . .

. . .

. . .

M

M

3

10

S

S

k1

k1+α

P

P

M

M

4

9

S

S

h ◦ C

k1

k1+α

P

P

M

M

. . .

. . .

. . .h ◦ C

. . .

. . .

. . .

5

8

S

S

k1

k1+α

P

P

M

M

6

7

S

S

h ◦ C

k1

k1+α

P

P

M

M

*

*

S

S

M

Figure 5.1: Truncated differential characteristic for MANTIS6.

41

5 Staged Key Recovery Attack on MANTIS6

M

C

T

a

k0

k′0

a

a
a

k1

k1+α

1

12

·2−8.42

·1

a
a

1
2

2
2

10

11

12

12

12

13

13

13

S

S

a
a

h ◦ C

a
a a
a

1
2

2
2

10

11

12

12

12

13

13

13

k1

k1+α

a
a
a
a

1 2

2
2

10

1112

12

12

13

13

13

P

P

M

M

·2−2.79

·2−7.52

a

a
a

a 1
1
1

2

10

10

10

11

11

11

1213

·2−6.53

·2−3.08

a

a
a

a

a
a

4

4

3
3
3

8

8

9
9
9

S

S

a

a
h ◦ C

a
a

a

a
a

a

4

4

3
3
3

8

8

9
9
9

k1

k1+α

a
a
a

a
a
a

4
4

3
3
3

8
8

9
9
9

P

P

2

11

. . .

. . .

. . .

. . .

. . .

. . .

a
a
a

a
a
a

4
4

3
3
3

8
8

9
9
9

M

M

·2−6

·2−2

3

10

a

a

4
4

3

8
8

9

·2−4.86

·2−3

a
a

a
a

5

5

7

7

S

S

a
ah ◦ C

5

5

7

7

k1

k1+α

5
5

7
7

P

P

M

M

·2−2

·2−2

4

9

5
5

7
7

·2−4

·1

a
a

a
a

S

S

a
ah ◦ C

a

a

a

a

k1

k1+α

a
a

a
a

P

P

M

M

·1

·1

a
a

a
a

. . .

. . .

. . .h ◦ C

. . .

. . .

. . .

5

8

a
a

a
a

·2−4

·2−4

a
a

a
a

S

S

a
a

k1

k1+α

P

P

M

M

·1

·1

·1

·1

6

7

S

S

a
ah ◦ C

a
a

a
a

k1

k1+α

a

a

a

a

·1

·1

P

P

M

M

*

*

a

a

a

a

6

6

6

6

S

S

M·2−4

a ∆ = a
1 ∆ ∈ {a, f}

2 . . . 12 ∆ ∈ σ({a}) = {a, f, d, 5}
13 ∆ ∈ σ({a, f, d, 5})

∆ ∈ σ(σ({a, f, d, 5}) + a)

∆↔ ∆ + a
i ∆ identical

∆ ∈ σ({a, f, d, 5}+ a)
∆ ∈ σ(σ({a, f, d, 5}))

Figure 5.2: Family of differential characteristics for MANTIS6.

42

5 Staged Key Recovery Attack on MANTIS6

the family of output differences allowed in our family of characteristics. This
prevents a traditional key-recovery approach.

We can use the same approach as in the key recovery attack on MANTIS5 to
reduce the overall data complexity and the associated computational complexity
by using an initial structure of plaintexts and combining them accordingly,
using the set {5, a, d, f} to our advantage.

We repeat the following process for 234.19 base plaintext-tweak tuples. For each
plaintext-tweak tuple, we query two sets of derived plaintext-tweak pairs, one for
the base tweak, and one for the modified tweak with difference a in cells S10, S13.
We vary each of the 6 active cells (,) over 8 values: the base plaintext plus
differences {0, a, f, 5, d, 8, 7, 2}. The second set for the modified tweak contains
the same 86 messages. The total number of messages we query is

234.19 · 2 · 86 = 253.19.

By combining all possible message pairs as outlined in Figure 5.3, the total
number of message pairs generated is equal to

234.19 · 86 · 46 = 264.19.

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(a) Differences {a, f, d, 5} ().

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(b) Differences {0, 5, 7, f} ().

Figure 5.3: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell (from [Dob+16]).

5.3 Pre-Filtering Ciphertexts for Wrong Pairs

The family of characteristics given in Figure 5.2 has a number of conditions
for valid ciphertext pairs we can use to filter generated pairs before the key
guessing phase:

43

5 Staged Key Recovery Attack on MANTIS6

(F1) 8 Cells (S0, S1, S3, S5, S7, S9, S12, S15) have a difference of zero. This con-
dition holds with a probability of 2−4 per cell, resulting in an overall
probability of 2−32.

(F2) Cells S2, S6 and S8 have to have differences in the set σ({5, a, d, f}).
Additionally cell S13 has to have a difference in the set σ({5, a, d, f})
when accounting for the tweak difference. This condition holds with a
probability of 2−0.299 per cell, resulting in an overall probability of 2−1.196.

(F3) Cell S10 has to have a difference in the set σ({5, a, d, f} + a) when ac-
counting for the tweak difference. The probability of this is 2−0.193.

(F4) Cells S4 and S11 must have differences in the set σ(σ({5, a, d, f})). The
probability per cell is 2−0.093, resulting in a total probability of 2−0.186.

Combining the filtering conditions (F1), (F2), (F3) and (F4), we have a filter with
probability 2−33.58. We can use this filter while generating our plaintext pairs
to reduce the number of overall pairs from 264.19 to 230.61 per repetition. This
step can be implemented efficiently by grouping the ciphertexts into partitions
based on the values of the relevant ciphertext cells and only combining pairs in
each partition. The expected number of valid pairs per base plaintext is < 1,
resulting in a complexity of ≈ 253.19 state XOR operations per repetition.

5.4 Recovering 61 bits of key material from k′0 + k1,
k0 + k1 and k1

The first step of the attack is the recovery of 61 total bits of information about
the key material. We check our key guesses against several constraints in the
differential pattern of the family of characteristics in Figure 5.2.

Round 1. Guessing 24 bits of the subkey k0 +k1 allows us to compute forward
until after the SubCells step in round 1. We can check our key guesses against
the following conditions:

(C1) Cells S4, S11 will have differences in the set {a}.
(C2) Cells S2, S8, S13 will have differences in the set {5, a, d, f}, and, due to

the properties of the MixColumns step, these differences will be equal.
(C3) Cell S6 will have a difference in the set {a, f}.

44

5 Staged Key Recovery Attack on MANTIS6

Round 12. We can additionally guess 32 bits of the subkey k′0+k1 and compute
back before the last SubCells step in round 12. We can check the key guesses
against the following conditions:

(C4) Cells S2, S8, S13 will have differences in the set {5, a, d, f} when computing
backwards, and, due to the properties of the MixColumns step, these
differences will be equal.

(C5) Cells S4, S11, S14 will have differences in the set σ({5, a, d, f}), and, due
to the properties of the MixColumns step, these differences will be equal
after accounting for the difference introduced by the tweak addition.

(C6) Cell S6 will have a difference in the set {5, a, d, f}.
(C7) Cell S10 will have a difference in the set {5, a, d, f}, after accounting for

the difference introduced by the tweak addition.

Rounds 2 and 11. Guessing keys for further rounds proves to be more com-
putationally intensive, since keyguesses are dependent on both keyguesses for
previous rounds, as well as inactive cells in the plaintext/ciphertext, for which
the key also would have to be guessed. However, due to the linear nature of the
MixColumns step, we can attack some more state cells:

(C8) Cells S7 after the SubCells step in rounds 2 and 11 will have differences in
the set {a}. Cells S7 in round 2 and 11 depend on the keyguesses made
for conditions (C2) and (C4), respectively. Furthermore, we do not need
to guess the full 12 bits of k1 that are affecting the cells S2, S8, S13 in
rounds 1 and 12, since only the XOR of these state cells, and therefore the
XOR of the 4-bit cell keys is relevant to the result. However, analyzing
the nature of the previously guessed key bits reveals that 3 of the 4 bits in
question are already predetermined as they are not linearly independent.
We only need to guess one additional bit to verify this condition.

(C9) In a similar fashion, Cell S5 in round 11 only depends on the keyguesses
made for condition (C5). Again, we do not need to guess the full 12 bits
of k1 that are affecting the cells S4, S11, S14 in round 12, but only their
4-bit linear combination. Cell S5 in round 11 will have a difference in the
set {5, a, d, f}.

The probability that a pre-filtered plaintext-tweak-ciphertext follows these
conditions (C1–9) was calculated using the methods described in section 4.4

45

5 Staged Key Recovery Attack on MANTIS6

Round Condition Probability Dependencies

1
(C1) 2−4 -
(C2) 2−5.79 -
(C3) 2−1.41 -

12

(C4) 2−9.1 -
(C5) 2−8.11 -
(C6) 2−1.7 -
(C7) 2−1.8 -

2,11 (C8) 2−4 (C2),(C4)
11 (C9) 2−1.7 (C5)

Table 5.1: Exact probabilities of conditions used for key recovery.

and is summarized in Table 5.1. The overall probability can be computed as

2−4︸︷︷︸
, →a ,a

(C1)

· 2−3−2.79︸ ︷︷ ︸
, , → 2 , 2 , 2

(C2)

· 2−1.41︸ ︷︷ ︸
→ 1

(C3)

· 2−9.1︸ ︷︷ ︸
, , →12,12,12

(C4)

· 2−8.11︸ ︷︷ ︸
, , →13,13,13

(C5)

·

2−1.7︸ ︷︷ ︸
→11

(C6)

· 2−1.8︸ ︷︷ ︸
→10

(C7)

· 2−4︸︷︷︸
2 ,12→a ,a

(C8)

· 2−1.8︸ ︷︷ ︸
13→ 9

(C9)

= 2−35.9.

Due to this probability, for one single plaintext-tweak-ciphertext pair, of the
261 possible sub-keys only 261−35.9 = 225.1 should follow the conditions (C1–9).
Repeating this process for all 230.61 pairs results in a total of 225.1+30.61 = 255.71

valid subkeys, reducing the key space by a factor of 25.29. We need to repeat
this process a total of 12 times to filter out the correct 61-bit subkey. These 12
repetitions increase the overall time and data complexity by a factor of 23.53.

We compute the set of 255.71 valid sub-keys for each repetition r ∈ 1, 2, . . . , 12
and finally perform a set intersection of all 12 sets to calculate the correct
61-bit subkey. Using a hash-set as a data structure this can be done with a
computational complexity of 256.71 (only the first intersection is this expensive,
as the set of valid keys shrinks with each intersection performed).

46

5 Staged Key Recovery Attack on MANTIS6

5.5 Recovering 43 bits of key material from k′0 + k1,
k0 + k1 and k1

Using the recovered 61 bits of information about the secret key, we can further
filter the plaintext pairs i ∈ Ir that are leftover from the pre-filtering process. The
probability that the right key misidentifies a pair as false positive is 2−35.9, given
by the combined probability of the key-recovery conditions (C1–9). Therefore,
it is likely that only pairs exactly following the family of characteristics remain
after filtering the 12 · 230.36 pairs, resulting in approximately 12 pairs.

We can now use those 12 valid pairs to recover 43 bits of information about the
key in two steps.

Rounds 1 and 2. We can recover 29 bits of key material by attacking the
first two rounds. We want to verify that cells S0, S5, S10 of the S-Box output in
round 2 follow the family of characteristics (they are in the set {5, a, d, f} and
are equal). However, as mentioned in section 5.4, these cells already depend on
a lot of key bits. All cells that influence the result, including the key cells, can
be seen in Figure 5.4.

k0

a
a

k1

1
S

a
a

k1

I

I

I

II

II

II

III

III

III

h ◦ C

P M 3
3
3

S

2

aa ∆ = a 3 ∆ ∈ σ({a}) = {a, f, d, 5}
Cells relevant to the result Key cells relevant to the result

i ∆ identical I , II , III only XOR of cells relevant

Figure 5.4: Detailed view of cells influencing the 29-bit key-recovery process.

Taking into account the previously recovered 61 bits of key material, we need to
guess 29 further bits of key information to be able to compute the partial cipher

47

5 Staged Key Recovery Attack on MANTIS6

until after the S-Box layer of round 2 for each of our remaining 12 plaintext-
tweak-ciphertext pairs. We can then verify that cells S0, S5, S10 follow our
family of characteristics. These conditions hold with a probability of ≈ 2−4.25,
or ≈ 2−51 for all 12 remaining pairs. Due to this probability, only the correct
29-bit subkey should remain.

Rounds 12 and 11. In a similar fashion, we can recover 14 more bits of
information about the key by attacking the last two rounds. We want to
verify that cells S6, S12 of the S-Box input in round 11 follow the family of
characteristics (their differences are in the set {5, a, d, f} and are equal). Again,
these cells depend on a number of key bits, and all cells and key cells that
influence the result can be seen in Figure 5.5.

k′0

a
a

k1

12

S

a
a

k1

I

I

I

II

II

II

h ◦ C

P M 8

8

S

11

aa ∆ = a 8 ∆ ∈ σ({a}) = {a, f, d, 5}
Cells relevant to the result Key cells relevant to the result

i ∆ identical I , II only XOR of cells relevant

Figure 5.5: Detailed view of cells influencing the 14-bit key-recovery process.

Taking into account the previously recovered 61 + 29 bits of key material, we
need to guess 14 further bits to be able to compute the partial cipher backwards
from the ciphertext until the just before the S-Box layer of round 11. We
can then verify that cells S6, S12 follow our family of characteristics. These
conditions hold with a probability of ≈ 2−2.54, or ≈ 2−30.48 for all 12 remaining
plaintext-tweak-ciphertext pairs. Due to this probability, only the correct 14-bit
subkey should remain.

48

5 Staged Key Recovery Attack on MANTIS6

5.6 Recovery of k0 and k1, and Summary of Complexities

So far, we have recovered 61+29+14 bits of information about the key material.
This results in 104 linearly independent linear equations for k0 and k1.

To recover the full key, we have to guess the 24 remaining bits, resulting in a
complexity of 224 trial encryptions.

A summary of various complexities and probabilities can be found in Table 5.2.

Overall probability 2−64.19

Enc. Oracle Calls per Bundle 253.19

Filter Probability in Ciphertexts 2−33.58

Filtered Plaintext Pairs per Bundle 230.61

Recovered Key Bits in First Phase 61
Probability of Key Recovery Conditions 2−35.90

Valid Keys per Plaintext Pair 225.10

Valid Keys per Repetition 255.71

Key Space Reduction per Repetition 25.29

Repetitions needed for Key Recovery 12 ≈ 23.53

Total Data Complexity 256.72

Total Computational Complexity 256.72

Table 5.2: Summary of complexities and probabilities for the key recovery process.

5.7 Additional Comments

While searching for truncated differential characteristics, we added a number
of additional constraints to the MILP model. These different constraints arose
from desired properties for high-probability characteristics. In the following,
we list a number of constraints that we experimented with and give a short
summary of the impact these constraints have on the solutions found.

• Restrict the MixColumns model to only include transitions with
a branch number of exactly 4. This constraint is intended to lead to

49

5 Staged Key Recovery Attack on MANTIS6

more valid truncated differentials, since transitions with a branch number
of exactly 4 are easy to fulfill. However, this raises the lower bounds for
active S-Boxes from 44 to 46 for MANTIS6. This constraint was present
in the final model used to find the truncated differential characteristics in
Figure 5.1.

∀y ∈ Y, i± ∈ R± :

4µ±i,y =
∑
x∈X

(
P(β±i)[4x+ y] + α±i [4x+ y]

)
µ±i,y ≤

∑
x∈X

P(β±i)[4x+ y], µ±i,y ≤
∑
x∈X

α±i [4x+ y]

• Restrict the number of active tweak cells to 2. From experimenta-
tion, we observed that limiting the number of active tweak cells leads to
improved probability in the final family of characteristics. This is due to
the lower number of conditions that are added in each AddTweakey step.
This constraint was also present in the final model, and raised the lower
bound from 46 to 48 active S-Boxes in combination with the previous
constraint. ∑

b∈B
τ [b] ≤ 2

• Only transitions with 1 or 2 active cells at the input are allowed
in the last MixColumns step. The goal of this constraint was to ensure a
large number of active cells at the output of the last MixColumns step, and
to improve the key-recovery process. These transitions have the condition
that all cells at the output are equal, which is a good type of condition
during the key-recovery process. However, the solutions found using this
conditions have a much worse probability for their inner rounds, making
them inferior for our attacks.

∀y ∈ Y :

1 ≤
∑
x∈X

α−1 [4x+ y] ≤ 2

50

5 Staged Key Recovery Attack on MANTIS6

• The total number of active cells at the output of the last Mix-
Columns step has to be at least 9. Having 9 or more active cells in
the last round gives us more conditions for key-recovery. But solutions
following this condition have more active tweak cells, leading to much
more contradictions when extending the truncated characteristic, or have
a much worse overall probability.

9 ≤
∑
b∈B

P(β−1)[b]

• Only optimize rounds 2-11 (for MANTIS6). The goal of this condi-
tion was twofold. Because we have fewer rounds, we have fewer variables
in the MILP model, reducing the overall time until an optimal solution
is found. Additionally, when a good solution has been found, the first
and last round could be modified by hand, using many of the active cells
in these rounds for the key-recovery process, therefore improving the
probability of the family of characteristics. However, this approach did not
result in any improvement when compared to the family of characteristics
in Figure 5.2.

min
∑

i±∈R±

∑
b∈B

α±i [b]

Like it was done for the practical implementation of the key-recovery attack
on MANTIS5, the last step (section 5.6) and most likely even the second step
(section 5.5) could be implemented using a SAT-solver. In practice, modeling the
cipher structure as a boolean satisfiability problem and using a high-performance
SAT-solver is likely to speed up the key-recovery process when compared to
enumerating the key space and performing trial encryptions.

Since the time and data complexities of this attack are not practical, we
cannot verify the attack in practice. We however expect that during a practical
implementation we would again encounter similar problems like differentially
equivalent keys due to the second-order differential behavior of the MIDORI
S-Box used in MANTIS. However, we also expect that these issues will not have
a huge impact on the overall time and data complexity and that the first phase
generating and pre-filtering the plaintext pairs will still dominate both the time
and data requirements of the attack.

51

5 Staged Key Recovery Attack on MANTIS6

5.8 Remarks on MANTIS7

MANTIS5 is the most lightweight version of MANTIS, and is the only one of
the MANTIS family that beats PRINCE in terms of latency and area. The
designers gave explicit security claims for MANTIS5 and MANTIS7, and the
attack presented by Dobraunig et al. [Dob+16] violates the security claims for
MANTIS5. In this work we present an attack on MANTIS6 that violates the
security claims for the full version of MANTIS. However, we expect that this
kind of attack is not possible against the full MANTIS7. The attack on MANTIS6

already is quite close to the security claims, and one additional round increased
the minimum number of active S-Boxes from 44 to 50. While this seems to be
not that bad when compared to the characteristic with 48 active S-Boxes used
in the attack on MANTIS6 in this work, characteristics with a structure leading
to the highest possible probability have more active S-Boxes. We have searched
for characteristics for MANTIS7 in the same way as was done for MANTIS6,
and the best one we found has an overall probability of ≈ 2−81. Even when
using the initial structure described in section 5.2, an attack using this 7-round
characteristic requires a minimum data complexity of ≈ 266, resulting in at least
the same computational complexity. This leads to a combined complexity of well
over 2128, rendering this kind of attack infeasible. Furthermore, the already tight
bounds in the key-recovery phase of the attack on MANTIS6 suggest that the
increased number of pairs leftover after the pre-filtering process in the 7-round
version prevent a reduction of the key space.

In conclusion, while MANTIS7 seems resistant against these kind of attacks,
the increased number of internal rounds means it does not offer many benefits
when compared to other tweakable block ciphers such as QARMA. In the next
chapter, we will discuss QARMA in detail and give a comparison to MANTIS
with regards to these kind of attacks.

52

6 Applicability and Results for other
Tweakable Block Ciphers

Over the course of this work we tried to apply the ideas of the attack to QARMA,
in particular the QARMA5 variant. Due to the success attacking MANTIS5 and
MANTIS6, which are similar in structure, we had high hopes for similar results.
However, the small differences between MANTIS and QARMA (highlighted in
section 2.3) made an attack on QARMA considerably harder.

In this chapter we will talk about the applied methods, the encountered prob-
lems and attempted workarounds. We will also give some further possible
enhancements to the attack method that could be explored in future work.

6.1 Extending Methods used for MANTIS to QARMA

Due to the similar structure of QARMA and MANTIS we applied the same
method to find families of characteristics to QARMA5.

We first updated the MILP model for finding differential characteristics for
QARMA5. This step includes encoding the new MixColumns layer in the mixed-
integer linear program and the updated middle round. Since the MILP model
for MANTIS5 was already written using smaller building blocks for the different
rounds, the insertion of another PermuteCells step in the inner round was easy.

The MixColumns layer of QARMA has a different truncated behavior (see Fig-
ure 2.6a) when compared to the MixColumns layer of MANTIS (see Figure 2.6b).
We encoded these new possible transitions by starting with the XOR model
proposed by Eichlseder [Eic17], which can be seen in Figure 6.1a. When com-
paring the truncated behavior of the MixColumns step used in QARMA to this
XOR model, we can see that there are still some invalid transitions. We simply

53

6 Applicability and Results for other Tweakable Block Ciphers

forbid these invalid transitions explicitly by adding the following inequalities to
the MILP model in Figure 4.2:

∀y ∈ Y, i± ∈ R± :

P(β±i)[0 + y]− P(β±i)[4 + y] + P(β±i)[8 + y]− P(β±i)[12 + y]

+ α±i [0 + y] + α±i [4 + y] + α±i [8 + y]− α±i [12 + y] ≤ 4 (5 9 7)

P(β±i)[0 + y] + P(β±i)[4 + y] + P(β±i)[8 + y]− P(β±i)[12 + y]

+ α±i [0 + y]− α±i [4 + y] + α±i [8 + y]− α±i [12 + y] ≤ 4 (7 9 5)

P(β±i)[0 + y]− P(β±i)[4 + y] + P(β±i)[8 + y]− P(β±i)[12 + y]

+ α±i [0 + y]− α±i [4 + y] + α±i [8 + y] + α±i [12 + y] ≤ 4 (5 9 d)

P(β±i)[0 + y]− P(β±i)[4 + y] + P(β±i)[8 + y] + P(β±i)[12 + y]

+ α±i [0 + y]− α±i [4 + y] + α±i [8 + y]− α±i [12 + y] ≤ 4 (d 9 5)

− P(β±i)[0 + y] + P(β±i)[4 + y]− P(β±i)[8 + y] + P(β±i)[12 + y]

+ α±i [0 + y] + α±i [4 + y]− α±i [8 + y] + α±i [12 + y] ≤ 4 (a 9 b)

P(β±i)[0 + y] + P(β±i)[4 + y]− P(β±i)[8 + y] + P(β±i)[12 + y]

− α±i [0 + y] + α±i [4 + y]− α±i [8 + y] + α±i [12 + y] ≤ 4 (b 9 a)

− P(β±i)[0 + y] + P(β±i)[4 + y]− P(β±i)[8 + y] + P(β±i)[12 + y]

− α±i [0 + y] + α±i [4 + y] + α±i [8 + y] + α±i [12 + y] ≤ 4 (a 9 e)

− P(β±i)[0 + y] + P(β±i)[4 + y] + P(β±i)[8 + y] + P(β±i)[12 + y]

− α±i [0 + y] + α±i [4 + y]− α±i [8 + y] + α±i [12 + y] ≤ 4 (e 9 a)

Furthermore, we built a representation of the QARMA cipher for the non-
linear differential search tool. The implementation of QARMA in the non-linear
differential search tool was tested with the official test vectors and is used to
verify the truncated differential trails output by the MILP solver.

54

6 Applicability and Results for other Tweakable Block Ciphers

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(a) XOR model (from [Eic17])

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(b) Exact model

Figure 6.1: Approximations of the truncated DDT of MixColumns used in QARMA.

6.2 Results and Workarounds

Using the methods described above, we started a search for truncated differential
trails using the MILP model. The minimal number of active S-Boxes for QARMA5

matches the number of active S-Boxes of 30 reported by Avanzi [Ava16]. However,
all truncated models output by the MILP solver for 30 active S-Boxes resulted
in contradictions when trying to find a concrete solution for the truncated
model.

This is a result of the interaction of rotations in the MixColumns layer and
the LFSR added to the tweak schedule, leading to impossible transitions over
multiple rounds. This also happens for most truncated results when relaxing
the minimization to 32 or 34 active S-Boxes. The small percentage of truncated
differential trails leading to a full differential trail pose additional problems. Many
S-Box transitions are low-probability transitions (probability of 2−3 instead of
2−2), leading to a very poor probability for the overall trail. Furthermore, the
structure of the different S-Boxes available in QARMA does not allow for easy
clustering of probabilities like it was the case for MANTIS.

Observations. One possible strategy to get a high-probability trail is to use the
S-Box σ1. Its DDT includes the high-probability transition f→ f. A difference
of f means that the rotations in the MixColumns have no effect. Furthermore,
if all differences are f, MixColumns transitions with a branch number of 4 will

55

6 Applicability and Results for other Tweakable Block Ciphers

always work. This allows us to build high-probability transitions for a single
round of QARMA. Stitching multiple of these rounds together results in a new
problem. To be able to incorporate the differences in the tweak during the
AddTweakey step, the differences in the tweak also need to be f. However, the
introduction of the LFSR in the tweak schedule does not allow for constant
differences in the tweak, as the LFSR in cells T0, T1, T3, T4, T8, T11, T13 changes
the difference of f to a difference of 7. This difference of 7 also has no possible
transition back to f, further complicating connecting multiple of these high-
probability rounds together. Searching for trails with a branch number of 4
results in a lower bound of 34 active S-Boxes for QARMA5.

Another condition that could improve the possibility of finding truncated trails
that lead to valid differential characteristics is to limit the number of active
cells in the tweak to 2. This reduces the number of interactions between the
tweak difference and the S-Box differences and also reduces the number of cells
influenced by the LFSR. Searching for trails with only two active tweak cells
results in a lower bound of 34 active S-Boxes for QARMA5. Combining the
two search criteria together, allowing both only MixColumns transitions with a
branch number of 4 and having only two active tweak cells, results in a lower
bound of 40 active S-Boxes.

A concrete differential characteristic for these combined condition can be found
relatively easily, but most of the 40 S-Box transitions are still not high-probability
transitions. The best probability for such a differential characteristic that we
could find is 2−104, which is too low for a practical key recovery attack. The
differential characteristic can be seen in Figure 6.2.

6.3 Future Work

In their paper “A Security Analysis of Deoxys and its Internal Tweakable Block
Ciphers”, Cid et al. [Cid+17] use a similar method to find differential paths
for round-reduced versions of another TWEAKEY design, Deoxys [Jea+16].
They use a MILP model of Deoxys and additionally developed a method to
incorporate linear incompatibilities into the MILP model. Their model is based
on the observation that the difference cancellation between the tweakey state
and the round state imposes a linear relationship between the tweakey and

56

6 Applicability and Results for other Tweakable Block Ciphers

M

C

T

5
9 c

4
8

5
3 c

8
9

w0

w1

5
9 c

4
8

5
3 c

8
9

5
5

k0

k0+α

1

10

9 9
4

8

3 9
8

9

5 5
a

a

a 5
a

5

S

S

5
a

ω ◦ h ◦ C

5

a

a

5

k0

k0+α

5
a

a
5

P

P

M

M

5
a

a
5

a
a

a
a

S

S

a
a

ω ◦ h ◦ C

k0

k0+α

2

9

. . .

. . .

. . .

. . .

. . .

. . .

P

P

M

M

3

8

S

S

a
a

ω ◦ h ◦ C

a
a

a
a

k0

k0+α

a

a

a

a

P

P

M

M

4

7

a

a

a

a

5

e

5

e

S

S

a
d

ω ◦ h ◦ C

5
a
d e

5
a
d e

k0

k0+α

. . .

. . .

. . .

. . .

. . .

. . .

5
a
d e

5
a
d e

5 d

e
a

5 d

e
a

P

P

M

M

5

6

b 5
d b

7
d a b

b 5
d b

7
d a b

6 6
b 6

3
d 3 d

6 6
b 6

3
d 3 d

S

S

d
d

ω ◦ h ◦ C

6 6
b 6

d

3
3 d

6 6
b 6
d 3
3 d

w1

w0

3
d 6 6
b 3
d 6

3
d 6 6
b 3
d 6

P

P

M

M

e
9

9 9

e
9

9 9

*

*

a
5

a 5

a
5

a 5

S

S

a a
5

5

a a
5

5

P

P

a a
5

5

M

k1

Figure 6.2: Differential characteristic for QARMA5 (using the S-Box σ0).

57

6 Applicability and Results for other Tweakable Block Ciphers

state differences, similar to the constraints discussed by Fouque et al. [FJP13]
in the context of related keys. As an additional benefit, their method can also
serve to provide tighter bounds for the theoretical minimum amount of active
S-Boxes. Cid et al. showed that using their new model and some additional
assumptions, the number of rounds to ensure 22 active S-Boxes can be reduced
from 10 to 8, improving the bounds given by the designers [Jea+16].

Additionally, they also briefly discuss the approach taken in this work, where
a large number of possible truncated differential trails are searched using a
MILP model and then in a second stage, differential paths are searched for
each truncated path until a feasible result is found. Cid et al. however found
that this approach has high run-time costs and the number of differential
trails grows large quite fast when compared to the improved MILP model. A
similar approach could be taken for the MILP model of QARMA. Being able
to incorporate linear incompatibilities into the model could lead to more and
overall better differential trails.

However, the work in this thesis could also improve the attacks by Cid et al.
[Cid+17]. In their work they only consider one characteristic out of those found,
and clustering different characteristics together into one family of characteristics
using the methods and tool described in section 4.3 could lead to improved
probabilities and, in turn, attacks on more rounds of Deoxys. Due to the only
recent public release of their work and the required effort, this approach was
not possible to explore within this thesis, but should be considered for future
research.

One further avenue to explore is the use of constraint programming (CP) based
techniques instead of MILP. Sun et al. [Sun+17] show that this approach can be
very efficient and even apply it to the SKINNY block cipher family to construct
an 18-round attack on SKINNY-64-128. Applying these methods to MANTIS, the
dedicated low-latency variant of the SKINNY family, and QARMA is something
to be considered for future work.

58

7 Conclusion

Over the course of this thesis we have investigated tweakable block ciphers and
their resistance against differential cryptanalysis. We provided an implemen-
tation for an existing key-recovery attack on MANTIS5 and discovered some
additional insights for the original theoretical attack. We then improved the
methods used to find high-probability families of differential characteristics for
tweakable block ciphers by creating a semi-automated toolchain.

This toolchain consists of a truncated differential model which is modeled using
a mixed-integer linear program (MILP) and an efficient MILP solver, which is
minimizing the number of active S-Boxes in the differential characteristic. The
intermediary solutions from the MILP solver are then given to a differential
search tool, which tries to find a concrete solution for the truncated solution.
This filters wrong truncated solutions which have impossible constraints when
extended to a full differential characteristic. Any solutions that are found are
then given to a tool which extends the characteristic to a family of characteristics.
This is done by allowing all possible characteristics that follow the original
truncated characteristic at once, essentially allowing all differences which do not
lead to contradictions for each cell. This tool then also calculates the probability
for the whole family of characteristics and allows a user to manually add more
constraints to single cells, further restricting or relaxing possible differences,
which may lead to improved probabilities.

Using this toolchain, we improved both the data and time complexity for the
original key-recovery attack on MANTIS5 by a factor of 2. Additionally, we
looked to apply the ideas of the attack to the 6-round variant of MANTIS,
MANTIS6. Using the toolchain, we found a promising family of characteristics
with an end-to-end probability of 2−64.19. Although this is less than the general
probability for a random MANTIS state (due to the state size of 64 bits), we
presented an attack on MANTIS6, that is able to recover the secret key using
256.72 data and 256.72 time complexity. The attack uses a smart choice of an

59

7 Conclusion

initial structure and pre-filtering to reduce the data complexity below the
bounds given by the probability of the family of characteristics. The secret key
is recovered using a multi-stage process spanning over multiple rounds, with the
first stage recovering 61 bits of key information, the second stage recovering 43
bits of key information and the final stage recovering the missing 24 bits. Since
the complexity bounds for this attack are already pretty close to the general
security claims of 2n data and 2126−n time complexity, we expect that this
attack will not be successful when applied to the 7-round variant, MANTIS7.

We also tried to apply the idea of the attack and the toolchain to other modern
tweakable block ciphers, in particular QARMA. QARMA is similar in structure
to MANTIS and it is to be used for pointer encryption in the new ARMv8
architecture. Using the toolchain we tried to find high-probability trails for
the 5-round variant, QARMA5, but the small differences between QARMA and
MANTIS proved to be more challenging to overcome than first thought. QARMA
has a much better interaction between its S-Box layer and the linear mixing
layer, leading to much more impossible constraints when trying to move from a
truncated differential characteristic to a full differential characteristic. We were
unable to find any differential characteristics with high enough probability to
build any attacks for QARMA5, however this does not mean that none exist. In
fact, we give some ideas for future work that could improve the methods to find
differential characteristics for QARMA.

In this thesis we have shown that although we can get lower bounds for active
S-Boxes for a cipher using MILP models, these bounds can not be blindly trusted
for security claims. The overall probability of differential characteristics can be
greatly improved by clustering several differential characteristics together into a
family of differential characteristics. Therefore it is of even greater importance to
look at the interaction of the non-linear and linear layers in a cipher design with
regards to differential cryptanalysis and to try to prevent clusters of differences
which have high-probability transitions.

60

Bibliography

[Ava16] R. Avanzi. “The QARMA Block Cipher Family – Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes.” In: IACR Transactions
on Symmetric Cryptology 2017.1 (2016), pp. 4–44. issn: 2519-173X.
doi: 10.13154/tosc.v2017.i1.4-44. eprint: 2016/444 (cit. on
pp. 8, 9, 13–16, 18, 55).

[Ban+15] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T.
Akishita, and F. Regazzoni. “Midori: A Block Cipher for Low
Energy.” In: Advances in Cryptology – ASIACRYPT 2015. Ed. by
T. Iwata and J. H. Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 411–
436. doi: 10.1007/978-3-662-48800-3_17. eprint: 2015/1142
(cit. on pp. 8, 11, 12).

[Bei+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y.
Sasaki, P. Sasdrich, and S. M. Sim. “The SKINNY Family of Block
Ciphers and Its Low-Latency Variant MANTIS.” In: Advances in
Cryptology – CRYPTO 2016. Ed. by M. Robshaw and J. Katz.
Vol. 9815. LNCS. Springer, 2016, pp. 123–153. doi: 10.1007/978-
3-662-53008-5_5. eprint: 2016/660 (cit. on pp. 7, 8, 11, 19).

[Bor+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger,
P. Rombouts, S. S. Thomsen, and T. Yalçın. “PRINCE – A Low-
Latency Block Cipher for Pervasive Computing Applications.” In:
Advances in Cryptology – ASIACRYPT 2012. Ed. by X. Wang
and K. Sako. Vol. 7658. LNCS. Springer, 2012, pp. 208–225. doi:
10.1007/978-3-642-34961-4_14. eprint: 2012/529 (cit. on p. 11).

61

https://doi.org/10.13154/tosc.v2017.i1.4-44
2016/444
https://doi.org/10.1007/978-3-662-48800-3_17
2015/1142
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
2016/660
https://doi.org/10.1007/978-3-642-34961-4_14
2012/529

Bibliography

[Bra16] D. Brash. ARMv8-A architecture – 2016 additions. ARM Commu-
nity. 2016. url: https://community.arm.com/processors/b/
blog/posts/armv8-a-architecture-2016-additions (cit. on
p. 8).

[BS90] E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like
Cryptosystems.” In: Advances in Cryptology – CRYPTO ’90. Ed. by
A. Menezes and S. A. Vanstone. Vol. 537. LNCS. Springer, 1990,
pp. 2–21. doi: 10.1007/3-540-38424-3_1 (cit. on p. 2).

[Cid+17] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and L. Song. “A Security
Analysis of Deoxys and its Internal Tweakable Block Ciphers.” In:
IACR Transactions on Symmetric Cryptology 2017.3 (2017), pp. 73–
107. issn: 2519-173X. doi: 10.13154/tosc.v2017.i3.73-107
(cit. on pp. 56, 58).

[Cop94] D. Coppersmith. “The Data Encryption Standard (DES) and its
strength against attacks.” In: IBM Journal of Research and De-
velopment 38.3 (1994), pp. 243–250. doi: 10.1147/rd.383.0243
(cit. on p. 2).

[DEM15] C. Dobraunig, M. Eichlseder, and F. Mendel. “Analysis of SHA-
512/224 and SHA-512/256.” In: Advances in Cryptology – ASI-
ACRYPT 2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9453. LNCS.
Springer, 2015, pp. 612–630. doi: 10.1007/978-3-662-48800-
3_25 (cit. on p. 29).

[Dob+16] C. Dobraunig, M. Eichlseder, D. Kales, and F. Mendel. “Practical
Key-Recovery Attack on MANTIS5.” In: IACR Transactions on
Symmetric Cryptology 2016.2 (2016), pp. 248–260. issn: 2519-173X.
doi: 10.13154/tosc.v2016.i2.248-260. eprint: 2016/754 (cit. on
pp. 9, 19, 21, 25, 37, 43, 52).

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptog-
raphy. Springer, 2002. isbn: 3-540-42580-2. doi: 10.1007/978-3-
662-04722-4 (cit. on p. 2).

[DR06] C. De Cannière and C. Rechberger. “Finding SHA-1 Characteristics:
General Results and Applications.” In: Advances in Cryptology –
ASIACRYPT 2006. Ed. by X. Lai and K. Chen. Vol. 4284. LNCS.
Springer, 2006, pp. 1–20. doi: 10.1007/11935230_1 (cit. on p. 29).

62

https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.1147/rd.383.0243
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.13154/tosc.v2016.i2.248-260
2016/754
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11935230_1

Bibliography

[Eic17] M. Eichlseder. “Differential Cryptanalysis of Modern Symmetric
Ciphers – Draft.” PhD thesis. Technical University Graz, 2017 (cit.
on pp. 24, 26–28, 53, 55).

[EMS14] M. Eichlseder, F. Mendel, and M. Schläffer. “Branching Heuristics
in Differential Collision Search with Applications to SHA-512.”
In: Fast Software Encryption – FSE 2014. Ed. by C. Cid and C.
Rechberger. Vol. 8540. LNCS. Springer, 2014, pp. 473–488. doi:
10.1007/978-3-662-46706-0_24 (cit. on p. 29).

[FJP13] P. Fouque, J. Jean, and T. Peyrin. “Structural Evaluation of AES
and Chosen-Key Distinguisher of 9-Round AES-128.” In: Advances
in Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay.
Vol. 8042. LNCS. Springer, 2013, pp. 183–203. doi: 10.1007/978-
3-642-40041-4_11 (cit. on p. 58).

[GD07] V. Ganesh and D. L. Dill. “A Decision Procedure for Bit-Vectors
and Arrays.” In: Computer Aided Verification – CAV 2007. Ed. by
W. Damm and H. Hermanns. Vol. 4590. LNCS. Springer, 2007,
pp. 519–531. doi: 10.1007/978-3-540-73368-3_52 (cit. on p. 25).

[Jea+16] J. Jean, I. Nikolic, T. Peyrin, and Y. Seurin. Deoxys v1.41. Submis-
sion to the CAESAR Competition, Round 3. 2016 (cit. on pp. 6,
56, 58).

[JNP14] J. Jean, I. Nikolić, and T. Peyrin. “Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework.” In: Advances in Cryptology
– ASIACRYPT 2014. Ed. by P. Sarkar and T. Iwata. Vol. 8874.
LNCS. Springer, 2014, pp. 274–288. doi: 10.1007/978-3-662-
45608-8_15. eprint: 2014/831 (cit. on pp. 6, 11).

[KR11] L. R. Knudsen and M. Robshaw. The Block Cipher Companion.
Information Security and Cryptography. Springer, 2011. isbn: 978-
3-642-17341-7. doi: 10.1007/978-3-642-17342-4 (cit. on p. 3).

[LRW02] M. Liskov, R. L. Rivest, and D. Wagner. “Tweakable Block Ciphers.”
In: Advances in Cryptology – CRYPTO 2002. Ed. by M. Yung.
Vol. 2442. LNCS. Springer, 2002, pp. 31–46. doi: 10.1007/3-540-
45708-9_3 (cit. on pp. 1, 5–7).

63

https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
2014/831
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3

Bibliography

[MNS11] F. Mendel, T. Nad, and M. Schläffer. “Finding SHA-2 Characteris-
tics: Searching through a Minefield of Contradictions.” In: Advances
in Cryptology – ASIACRYPT 2011. Ed. by D. H. Lee and X. Wang.
Vol. 7073. LNCS. Springer, 2011, pp. 288–307. doi: 10.1007/978-
3-642-25385-0_16 (cit. on p. 29).

[MNS13] F. Mendel, T. Nad, and M. Schläffer. “Improving Local Collisions:
New Attacks on Reduced SHA-256.” In: Advances in Cryptology
– EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen.
Vol. 7881. LNCS. Springer, 2013, pp. 262–278. doi: 10.1007/978-
3-642-38348-9_16 (cit. on p. 29).

[Sun+17] S. Sun, D. Gerault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and
L. Hu. “Analysis of AES, SKINNY, and Others with Constraint
Programming.” In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 281–306. doi: 10.13154/tosc.v2017.i1.281-
306 (cit. on p. 58).

64

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.13154/tosc.v2017.i1.281-306
https://doi.org/10.13154/tosc.v2017.i1.281-306

