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fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
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Abstract

We present an approach for fully automatic urinary bladder segmentation in
CT images with artificial neural networks in this thesis. Automatic medi-
cal image analysis has become an invaluable tool in the different treatment
stages of diseases. Especially medical image segmentation plays a vital role,
since segmentation is often the initial step in an image analysis pipeline.
Since deep neural networks have made a large impact on the field of image
processing in the past years we use two different deep learning architec-
tures to segment the urinary bladder. Both of these architectures are based
on pre-trained classification networks that are adapted to perform semantic
segmentation. Since deep neural networks require a large amount of training
data, specifically images and corresponding ground truth labels, we further-
more propose a method to generate such a suitable training data set from
Positron Emission Tomography/Computed Tomography image data. This is
done by applying thresholding to the Positron Emission Tomography data for
obtaining a ground truth and by utilizing data augmentation to enlarge the
dataset. In this thesis, we discuss the influence of data augmentation on the
segmentation results, and compare and evaluate the proposed architectures
in terms of qualitative and quantitative segmentation performance. The re-
sults presented in this thesis allow concluding that deep neural networks can
be considered a promising approach to segment the urinary bladder in CT
images.

Keywords: Image Segmentation, Deep Learning, Convolutional Neural Net-
works, Urinary Bladder, Computed Tomography
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Kurzfassung

In dieser Arbeit wird eine Methode zur vollautomatischen Harnblasenseg-
mentierung in Computertomographiebildern mit künstlichen neuronalen Net-
zen vorgestellt. Die automatisierte Analyse von medizinischen Bilddaten
hat sich als wertvolles Instrument in verschiedensten Behandlungsstadien
von Krankheiten etabliert. Vor allem die Segmentierung von medizinischen
Bildern spielt dabei eine wichtige Rolle, da sie oft den ersten Schritt in einer
Bildanalysepipeline darstellt. Da tiefe, neuronale Netze in den letzten Jahren
sehr erfolgreich im Bereich der Bildverarbeitung angewandt wurden, wer-
den auch in dieser Arbeit ”Deep Learning” Algorithmen zur Harnblasenseg-
mentierung verwendet. Genauer werden zwei unterschiedliche Architekturen
solcher Netze vorgestellt, die auf vortrainierten Klassifizierungsnetzwerken
beruhen, welche für semantische Bildsegmentierung adaptiert werden. Da
solche Netze eine große Anzahl an Daten benötigen, um von ihnen zu ler-
nen, wird in dieser Arbeit ebenfalls ein Ansatz zur Generierung eines solchen
Datensatzes aus Positronenemmissionstomopgraphie/Computertomographie-
Bilddaten vorgestellt. Dabei wird durch ein Schwellenwertverfahren, welches
auf die Positronenemmissionstomographie Bilder angewandt wird, eine Ref-
erenzsegmentierung gewonnen. Zusätzlich soll durch Augmentation der Bilder
der Datensatz vergrößert werden. Der Einfluss von augmentierten Daten
auf das Ergebnis der Segmentierung wird in der Arbeit diskutiert. Auer-
dem werden die vorgestellten Netzwerkarchitekturen bezüglich ihrer quali-
tativen und quantitativen Segmentierungsergebnissen ausgewertet und ver-
glichen. Die Arbeit kommt zu dem Schluss, dass tiefe neuronale Netze einen
vielversprechenden Ansatz zur Segmentierung der Harnblase in CT Bildern
darstellen.

Schlüsselwörter: Bildsegmentierung, Deep Learning, Convolutional Neural
Network, Harnblase, Computertomographie
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1 Introduction

1.1 Motivation

Since imaging modalities like computed tomography (CT) are widely used
in diagnostics, clinical studies and, treatment planning and evaluation, au-
tomatic algorithms for image analysis have become an invaluable tool in
medicine. Image segmentation algorithms are of special interest, since seg-
mentation plays a vital role in various medical applications [1]. Typically,
segmentation is the first step in a medical image analysis pipeline and there-
fore incorrect segmentation affects any subsequent steps heavily. However,
automatic medical image segmentation is known to be one of the more com-
plex problems in image analysis [2]. Therefore, to this day delinearation
is often done manually or semi-manually, especially in regions with limited
contrast and for organs or tissues with large variations in geometry. This
is a tedious task, since it is time consuming and requires a lot of empiri-
cal knowledge. Furthermore, the process of manual segmentation is prone
to errors and since it is highly operator dependent, not reproducible, which
emphazises the need for accurate, automatic algorithms. One up-to-date
method for automatic image segmentation is the usage of deep neural net-
works. In the past years, deep learning approaches have made a large impact
in the field of image processing and analysis in general, outperforming the
state of the art in many visual recognition tasks, e.g. in [3]. Artificial neu-
ral networks have also been applied successfully to medical image processing
tasks such as segmentation. Therefore, in this thesis we propose an approach
to automatic urinary bladder segmentation in CT images using deep learning.

Currently there are two main applications for segmentation of the urinary
bladder. In clinical practice, it is used in radiation treatment planning. The
delineation of organs at risk and target tissue is an important step in planning
radiation therapy. The urinary bladder is considered such an organ at risk
that should be protected against high doses of radiation in e.g. treatment of
prostate cancer, which is the second most common cancer in men worldwide
and the most common cancer in Europe for men [4], [5]. Furthermore, seg-
mentation of the urinary bladder is a key step in computer-aided detection
of urinary track abnormalities, such as bladder cancer, since the segmented
bladder defines the search region for further detection steps. Bladder cancer
currently ranks fourth in the most common cancers in men [6]. Additional
applications include the measurement of parameters such as bladder wall
thickness or bladder volume, which are critical indexes for many bladder-
related conditions [7].
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1.2 Objective

The goal of this thesis is to examine, implement and compare deep neural
network models for semantic segmentation of medical image data, specifi-
cally CT scans of the urinary bladder. Deep Neural Networks usually re-
quire a large amount of labelled training data to specify all connections in
the network. This is often problematic when working with medical image
data. Compared to general image databases, which frequently offer millions
of labelled entries, open medical image databases are generally small, often
consisting of only one or a couple of patient datasets. Furthermore, for the
segmentation task at hand a ground truth, e.g. images of the already seg-
mented urinary bladder, are required as labels. Since segmentation is such a
time consuming task, large medical image databases that contain already seg-
mented images for a specific task are basically impossible to find. Therefore,
a method for generating suitable training and testing data needs to be found.

In short, there are two main objectives pursued in this thesis:

1. Create a suitable dataset for training and testing artificial neural net-
works from an open medical image database;

2. Use the generated data to train and test different deep neural network
architectures for semantic segmentation.

2



2 Medical Background

This chapter provides medical background information about the topics dis-
cussed in this thesis. In the first section, an outline of the anatomy and
functionality of the urinary bladder and prostate is given. Furthermore, im-
portant pathologies of these organs, like bladder and prostate cancer, and how
their detection and treatment could benefit from automatic urinary bladder
segmentation are presented to provide further insight in the motivation be-
hind this thesis. Section 2.2 explains relevant medical imaging techniques.
Since medical data for this thesis was obtained from combined Positron Emis-
sion Tomography/Computed Tomography (PET/CT), both modalities are
first described individually before the concept behind combined PET/CT is
outlined. The purpose of this section is to clarify the characteristics as well
as advantages of disadvantages of these techniques.

2.1 The Urinary Bladder and Prostate

2.1.1 Anatomy and Functionality

The urinary bladder is a hollow smooth muscle organ that is located at the
pelvic floor. It acts as a receptacle for urine and it’s capacity is approxi-
mately 350-500 ml. In males, it lies below the peritoneal cavity, between
the pubis and the rectum, in females, the vagina and the uterus intervenes
between. Figure 1 shows sagittal sections through the male and female pelvis
to illustrate the position of the urinary bladder.

Figure 1: Location of the urinary bladder in the male and female pelvis. 1:
peritoneal cavity, 2: urinary bladder, 3: pubic bone, 4: rectum, 5: prostate,
6: uterus, 7: vagina. Adapted from [8].

The anatomy of the urinary bladder is outlined in figure 2. The bladder
is often described to have a pyramidal shape. The apex of the pyramid
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points forward and forms a fibrous cord, the median umbilical ligament. The
posterior surface of the bladder is called the base or fundus and contains the
trigone, which is named after its triangular shape. Urine is transported into
the urinary bladder through the ureters, which enter the trigone through two
orifices. It exits the bladder through the urethra, which is directly connected
to the neck of the urinary bladder. The muscle coat of the bladder is called
detrusor muscle and is a composite of interlacing, disorganized muscle fibres.
At the bladder neck, the detrusor is thickened to form the internal urethral
sphincter. In the male, the prostate gland lies between the internal and
external sphincter, in the female, the external sphincter lies just below the
bladder neck. The inner walls are coated with a thick mucous membrane, that
are thrown into folds when the bladder is empty and allow for the expansion
of the bladder. This membrane is lined with transitional cells making up
the urothelium or uroepithelium, which is a tissue type highly specific to the
urinary tract [9] [8].

Figure 2: Anatomy of the male urinary bladder and prostate in frontal and
sagital view. 1: detrusor muscle, 2: base or fundus of the bladder, 3: bladder
neck, 4: internal urethral sphincter, 5: prostate, 6: urethra, 7: uretal orifices,
8: trigone of the bladder, 9: median umbilical ligament, 10: apex of the
bladder. Adapted from [10].

The prostate is a compound tubuloalveolar exocrine gland of the male re-
productive system. It surrounds the urethra and lies between the bladder
neck and the urogenital diaphragm. In healthy individuals, it has approxi-
mately the size of a walnut. It comprises multiple lobes, that contain glands
producing a secretion that is added to the seminal fluid [8].
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2.1.2 Prostate Cancer

Prostate cancer is the most common cancer in northern and western Euro-
pean males, and the second most common cancer in men worldwide. In the
European Union, 345.000 new cases were estimated in 2012, which accounted
for 24% of all new cancers in this year. It is especially common in more devel-
oped countries, with about 68% of cases occurring in Europe, North America
and Australia and New Zealand. Much of these variations in incidence rates
might stem from differences in screenings, with regions with higher screening
density having significantly higher incidence rates. However, the detected
tumors are often clinically insignificant [11], [4].

The majority of prostate cancers (95%) are adenocarcinomas. Adenocarcino-
mas are cancerous tumours that occur in tissue that has glandular origin or
characteristics. For diagnosis, there are three major tools: prostate-specific
antigen screening of blood serum, digital rectal examination and transrectal
ultrasonography. The tumor is staged and graded based on values obtained
from these examinations, then treated accordingly [11].

External beam radiation therapy plays a critical part in the treatment of both
localized and advanced diseases. It uses high energy radiation, like x-rays or
gamma rays, to kill cancer cells, an therefore shrink tumours. It effectively
damages the DNA of cells, causing them to stop dividing or to die. However,
the radiation also damages normal cells. Modern 3D-conformal radiother-
apy (3D-CRT) systems are able to apply large target doses, while excluding
adjacent normal tissue from the high dose region. Through segmentation
of organs in the target region, toxicities in the rectum and bladder can be
minimized while treating prostate cancer. Intensity modulated radiotherapy
(IMRT) poses a further technological advancement that allows improved cov-
erage of the clinical target volume while minimizing the volume of bladder
and rectal tissue exposed to high radiation doses. In 3D-CRT and IMRT,
3D image data obtained by computed tomography is used to segment tu-
mours and normal tissue. However, the delineation is mostly done manually
and comes with uncertainties. Therefore, margins extending into normal tis-
sue are usually added to the planning target volume to decrease the rist of
missing tumour cells. Obviously, the inclusion of healthy tissue limits the
applicable radiation dose. Hence, accurate, reliable segmentation of tumours
and organs at risk is crucial for effective radiation therapy [11], [12].
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2.1.3 Urinary Bladder Cancer

Cancer in the urinary bladder is the ninth most common cancer in the world,
with 430,000 new cases diagnosed in 2012. Men are four times more likely to
get bladder cancer than women, with bladder cancer being the fourth most
common type of cancer in men. As prostate cancer, it is more common in de-
veloped countries, with highest incidence in Northern America and Europe.
Cancer occurance is often related to tobacco smoking [4]. Over 90% of blad-
der cancers are transitional cell carcinoma. It arises from the transitional
cells making up the urothelium.

Medical imaging modalities, especially computed tomography, play a big role
in detecting and staging bladder cancer. CT scans of the kidney, ureters and
bladder is known as CT urogram. In these scans, radiologists can detect
tumours in the urinary tract and gain detailed information, like their size,
shape and position. However, the interpretation of CT urograms is tedious
and time consuming, as each individual slice has to be evaluated for lesions.
Furthermore, the process leads to a substantial variability between radiolo-
gists in the detection of cancer, and there is also the chance of missing small
lesions due to the large workload. Computer aided detection (CAD) might
aid radiologists in finding lesions in the bladder. The first step in a CAD
system is to define a search region for further detection, specifically to seg-
ment the urinary bladder. By excluding non-bladder structures for the search
process, the possibility of false positive detections is decreased. Therefore,
accurate bladder segmentation is a critical component in the computer aided
detection of bladder cancer [6].

In the treatment of urinary bladder cancer, radiation therapy, again, plays
a critical part. However, since the urinary bladder is an organ which shows
significant variations in size and position between patients and even within
patients between individual therapy sessions, which limits the allowed radi-
ation dose and results in large amounts of healthy tissue receiving the same
radiation dose. Therefore, a technique called adaptive ratiotherapy is used
to re-optimize the plan during treatment to account for deformations of the
target. Usually, a cone beam CT is taken before every treatment to select the
optimal plan for the day. For quick and accurate plan selection, automatic
segmentation of the urinary bladder in these CT scans is desirable [13].
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2.1.4 Other relevant Pathologies

Segmentation of the urinary bladder can also aid in the measurement of pa-
rameters such as bladder wall thickness or bladder volume. These parameters
are critical indexes for many bladder-related issues [7]. For example, bladder
wall thickness can be a useful parameter in the evaluation of benign prostatic
hyperplasia, a non-cancerous enlargement of the prostate [14] and has been
shown to be a useful predictor for bladder outlet obstruction and destrusor
overactivity [15]. Furthermore, focal bladder wall thickening is a sign for
bladder cancer. Measuring bladder volume can be useful to look for urinary
retention.

2.2 Medical Imaging Techniques

2.2.1 Computed Tomography

Computed Tomography (CT) is an X-ray imaging modality. It uses the
same principles of generation, interaction and detection as conventional X-
ray, however, the generation of a sliced view of the body is enabled through
computed reconstruction of X-ray attenuation inside the patient.

The basic measurement principle behind computed tomography relies on the
rectilinear propagation and attenuation of X-rays through the patient. X-
rays are generated by a X-ray tube and measured by an opposing detector
array. The human body is inhomogeneous, consisting of regions with varying
compositions and densities. Consequently, X-ray attenuation differs for each
region. To image the inside of the human body, the spatial distribution of
attenuation coefficients is reconstructed in CT imaging. For this reconstruc-
tion, various projections of the object are taken. Each projection consists of
multiple beams, often in a fan-shape, and is characterized by it’s projection
angle. By backprojecting these projections taken at various angles all around
the object, a sliced view can be obtained. The measurement principle of CT
is outlined in figure 3.

The spatial distribution of the attenuation coeficients is measured in Hounsfield
units (HU)

Ii,j = 1000

(
µ(xi, yi)

µw
− 1

)
HU (1)

where Ii,j is the resulting pixel value in the image matrix, µ(xi, yi) is the at-
tenuation coefficient on the corresponding position, and µw is adjusted so as
to give water a pixel value of zero. A normal CT contains Hounsfield values
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Figure 3: Measuring principle of CT. The object is radiographed with a fan-
shaped x-ray beam. X-rays are attenuated inside the object and a detector
array measures the remaining intensity. The intensity profile is then con-
verted into an attenuation profile, also called projection. This is repeated for
multiple angles as x-ray tube and detector array rotate around the object.

between -1024 HU (Air) and 3071 HU (Bone). Theoretically, the Hounsfield
scale can be extended to even higher or lower values, but restricting the grey
values to a range of 4096 allows 12 Bit representation. Since soft tissue con-
tains mainly water, it usually ranges between -100 HU (tissue with fat) and
100 HU (blood clot). However, only 30-40 gray values can be discriminated
by the human eye. To obtain high contrast, windowing has to be applied to
display gray values that cover the structures and tissues of interest. Even
with windowing, the contrast for soft tissue is still limited in CT scans [16].

A limitation of CT usage is it’s high radiation dose, often delivering more
than a hundred times the radiation dose of conventional X-ray scans. Al-
ternative methods like magnetic resonance imaging (MRI) do not use any
ionizing radiation, while offering comparable, if not better, image quality.
Still, utilization of computed tomography has increased over the past several
decades [17]. CT systems are widely available, much cheaper than MRI sys-
tems and scanning times are short. Furthermore, CT scanners are still the
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best modality to image bone. That is why CT scanning is still as relevant as
ever.

2.2.2 Positron Emission Tomography (PET)

The following chapter is based on my master’s project report in [18].

Positron Emission Tomography (PET) imaging is based on measuring radi-
ation emitted by a so called radiotracer injected into the patient. Naturally
occuring biologically active molecules, like glucose, water or ammonia, are
labelled with positron-emitting radioisotopes with short half-lives such as
11C, 15O and 18F. The so formed compounds are called radiopharmaceu-
ticals or radiotracers. The organism can not distinguish them from their
non-radioactive pendants and therefore, radiotracers partake in the normal
metabolism. This allows non-invasive imaging of functional and metabolical
processes.

Figure 4: Detection Principle
of PET. A detector ring ar-
ray measures detection coinci-
dences and the point of anni-
hilation is determined along a
straight line between these de-
tector elements

Radiotracers are chosen to accumulate in
regions relevant for specific screening, like
inflammatory sites or tumour cells. Al-
though many radiotracers have been devel-
oped, the most commonly used is fluorine-
18-labelled fluorodeoxyglucose (18F-FDG)
[19]. Metabolically active lesions show a
higher glucose metabolism than surrounding
regions. For example, the high rate of cell
division in cancer or the immune response to
infections requires glucose. FDG molecules
act like glucose during their initial reactions
within cells, but their altered structure pre-
vents further metabolism, which causes 18F-
marked glucose to accumulate in these areas
[20]. A downside of using 18F-FDG is, that
normal uptake of FDG occurs in all sites
of the body which may cause confusion in
interpreting PET images. Such a physio-
logical uptake of FDG usually appears in
the brain, heart, active skeletal muscle and
other areas with naturally high glucose levels and consumption [21]. Fur-
thermore, FDG is not, like glucose, reabsorbed in the proximal tubules of
the kidney, which leads to accumulation of the radioactive trace in the urine.
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This causes high FDG activity in the urinary bladder, even if the patient
empties his bladder before the scan [22].

The basic principle behind PET systems is the detection of annihilation
gamma rays following the decay of positrons. Positrons emitted by a radio-
tracer interact with electrons in the tissue, resulting in annihilation of the
particles into a pair of 511-keV gamma photons that are emitted at approx-
imately 180 relative to each other. These photon rays are detected by a de-
tector array surrounding the patient. If a coincidence between two opposing
detector elements is registered within a short time period (usually a couple
of nanoseconds), the point of the annihilation event can be localized along a
straight line of coincidence between the detector elements [23]. An illustra-
tion of this detection principle can be seen in figure 4. While PET images
usually offer a good contrast, spatial resolution is rather low. Positrons travel
some distance in the subject before annihilation, regions of high radiotracer
uptake are blurred. Other factors to consider are the intrinsic spatial reso-
lution of the detector and noncolinearity (deviations from the 180 emission
angle). Therefore, spatial resolution in PET images is limited to 2-6 mm [24].

PET scanners usually measure the in vivo radioactivity concentration in
[kBq/ml], which is directly linked to the radiotracer concentration in the
tissue. However, there are many factors besides the tissue uptake of the
tracer influencing this measure. The most significant sources of variation
are the amount of injected radiotracer and the patient size. Therefore, the
standardized uptake value (SUV) is commonly used as a measure for tracer
uptake. The basic expression for SUV is

SUV =
r

(a′/w)
(2)

where r is the radioactivity concentration a′ is the amount of injected radio-
tracer and w is the weight of the patient [25].

2.2.3 Combined PET/CT

A combined Positron emission tomography/Computed Tomography (PET/CT)
system unites the functionality of PET and CT into a single device with a
shared operating system. While functional imaging with PET provides in-
formation about metabolic activities inside a patient, anatomical context is
not obtained, which makes the task of anatomical registration difficult. By
adding CT to PET, patients can be scanned with both modalities at the same
time without moving the patient, which allows for the correct anatomical lo-
calization and quantification of tracer uptake. It also provides additional
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diagnostic information, like accurate tumour size. Furthermore, CT data is
used for attenuation correction of PET emission data. From the viewpoint
of a radiologist, malignancies show up with higher sensitivity, since metabol-
ical changes already show up where morphological change is still very little.
In effect, the addition of PET to CT provides a metabolic contrast agent.
Figure 5 highlights the advantage of a combined PET/CT scan for the three-
dimensional case.

(a) CT data (b) PET data (c) combined PET/CT

Figure 5: 3D image data obtained from CT, PET and combined PET/CT
of the torso and part of the head. While CT data in (a) shows important
anatomical structures, the contrast for soft tissue, in example in the abdom-
inal region, is poor. PET data in (b) only shows metabolical active regions,
without providing anatomical context, making it impossible to accurately
localize lesions. In the co-registered PET/CT scan in (c), it is possible to
properly assign active regions anatomically. The urinary bladder, a lesion in
the left lung and parts of the brain are highlighted via the PET data.

Most applications of PET/CT exams are related to oncology, since PET/CT
systems enable a much better differentiation between healthy tissue and tu-
mour tissue than single PET or CT scans. Especially in areas with high
anatomical structure densitiy, like the head, neck and abdomen, this is very
useful. Furthermore, PET/CT studies can help with the planning of biopsies,
interventional procedures and radiation therapy [16], [23].
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3 Technical Background

In this chapter, technical background information about subjects relevant to
this thesis is given. The first section focuses on the principles of artificial
neural networks. Basic concepts like neurons, layers and activation functions
are explained. Then, this section goes into greater detail about how neural
networks are trained by the minimization of an error function and error back-
propagation. Lastly, basic principles of convolutional neural networks, like
convolutional layers and pooling layers, as well as their importance in im-
age processing, are presented. In the second section, some popular concepts
in medical image segmentation are explained. Furthermore, this section pro-
vides and overview of image segmentation with deep learning artificial neural
networks. It’s purpose is to show how the deep learning approach proposed
in this thesis could improve upon other state of the art methods. The last
two sections give an introduction to two important software tools used for
this thesis to give a better understanding about the presented methods. The
medical imaging framework MeVisLab, as discussed in section 3.3, was used
for the generation of training and testing data. Implementation of deep learn-
ing neural networks, their training and evaluation was performed using the
machine learning software library TensorFlow, which is described in section
3.4.

3.1 Artificial Neural Networks

In machine learning, artificial intelligence (AI) systems acquire their own
knowledge from raw data, rather than using information input by a human
user. One algorithmic approach to this problem is the usage of artificial neu-
ral networks (ANNs), which are inspired by the human brain. The brain is
a complex network made up of a large number of simple elements (neurons)
that are connected via synapses to form complex networks that are able to
process complex high-level information. Contrary to biological neural net-
works, where neurons can connect to any other neuron, ANNs consist of
discrete layers with specific connections and directions of information prop-
agation [26], [27].

3.1.1 The Perceptron

The basic building block of ANNs are artificial neurons, often referred to as
nodes. An outline of its function can be seen in figure 6. It processes inputs
with a set of three rules. First, the inputs xi are multiplied with individual
weights wi, then, the weighted inputs are summed up (sometimes a bias b
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is added). Lastly, the summed weighted inputs are passed to a transfer or
activation function f(.) that determines the output y of the node:

y(xxx,θθθ) = f

(
D∑
i=1

xiwi + b

)
(3)

where D denotes the dimension of the input, xxx is a vectorized representation
of inputs and θ is a vector concatenated from connection weights and biases.

The activation function is chosen depending on the problem the artificial neu-
ron should solve. It is usually a step function, linear function or non-linear
function [28]. Single-layer networks with only one output are commonly
referred to as perceptrons. This simple model can be easily extended to mul-
tiple outputs (i.e. for multi-class classification) by adding multiple output
units and their respective connection weights [27].

Figure 6: An artificial neuron. The inputs xi are multiplied with the weights
wi and summed up. A bias b might also be added. The result is transformed
by an activation function f(.) that determines the output y. Adapted from
[28].

3.1.2 Multilayer Neural Networks

Perceptrons are limited to linear separation tasks for which simpler tech-
niques are more practical. The full potential of artificial neurons is exhausted
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when so-called hidden layers are introduced between the input and output
layer. While the design of the input and output layer are usually consid-
ered fixed (the number of input nodes is dependent on the dimensions of the
input and the number of output nodes determines the number of classes),
the amount of hidden layers and artificial neurons in each layer is dependent
on application. Hidden layers have to be designed to be able to model all
useful patterns in the input, while not over-fitting the data. Each hidden
layer consists of several nodes that are connected to the nodes of the next
layer in a specific way.

The most simple architecture of a multilayer network is the multilayer per-
ceptron. It consists of one hidden layer and each layer is fully connected
to the next one. A graphical representation can be seen in figure 7. Its
composition function can be written as:

y(xxx,θθθ) = f (2)

(
M∑
j=1

w
(2)
kj f

(1)

(
D∑
i=1

w
(1)
ji xi + b(1)

)
+ b(2)

)
(4)

where M is the number of nodes in the hidden layer and the subscript de-
notes the layer number. Note that the input layer is usually not counted,
making the multilayer perceptron a 2-layer neural network. A network like
the multi-layer perceptron in figure 7 is referred to as feed-forward neural
network (FNN). FNNs propagate information from input to output in only
one direction. The other main group of networks are recurrent neural net-
works (RNNs) that allow for information to flow in the opposite direction.

3.1.3 Activation Functions

Usually, the same type of non-linear, sigmoidal activation function is applied
to the hidden layers. The most commonly used functions are either the
logistic sigmoid function

f(x) = σ(x) =
1

1 + e−x
(5)

or the hyperbolic tangent function

f(x) = tanh(x) =
ex − e−x

ex + e−x
(6)

A plot of these functions can be observed in figure 8. The major difference
between these two activations is the range of output values. While the logis-
tic sigmoid function results in values between [0, 1], the hyperbolic tangent

14



Figure 7: A multilayer perceptron. It has one hidden layer and all layers are
fully connected, meaning that each node of a layer connects with all nodes
of the next layer.

function yields values in the range of [−1, 1]. Because of its zero-centered
output, tanh activation functions are usually preferred [27].

(a) logistic sigmoid (b) hyperbolic tangent

Figure 8: Non-linear, sigmoidal activation functions. The logistic sigmoid in
(a) maps input values to a range of [0, 1], the hyperbolic tangent function in
(b) to values between [−1, 1].

For output layers, the activation function depends on the problem being
solved. While for binary classification, sigmoidal output funcitons as seen in
equations 5 and 6 are appropriate, linear activation functions are chosen for
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regression problems. For multi-class problems, a softmax activation function
of the form

p(Ck|xxx) =
eak∑
j e

aj
(7)

with
ak = ln p(x|Ck)p(Ck) (8)

is commonly used. Here, p(Ck|xxx) is the posterior probability for class Ck,
p(x|Ck) are the class-conditional densities and p(Ck) are the class priors.
The softmax function is the generalization of the logistic sigmoid to K > 2
classes. Its name comes from the fact that it represents a smoothed version of
the max function [29]. The outputs of a softmax funciton is the probability
of an input xxx belonging in a class Ck, which are values between 0 and 1
that add up to 1. Therefore, the output of a softmax layer can be seen as a
probability distribution.

3.1.4 Training a Neural Network

The fundamental problem in learning a neural network is the determination
of network parameters. The connection weights an biases of each node to-
gether make up the parameter vector θθθ, which defines the overall behaviour
of the network. Identification of the optimal parameters for a given problem
can be formulated as the minimization of an error function E(θθθ).

The error function is a measure of discrepancy between the desired output
and the actual output of the model. Its choice depends, similar to that of
the activation function, on the type of problem being solved. For regression,
a sum-of-squares error function

E(θθθ) =
1

2

N∑
i=1

(y(xi, θθθ)− ti)2 (9)

where N is the number of observations x1, ..., xN and t1, ..., tN are the corre-
sponding target values, is used. A cross-entropy function is used for binary
classification. It has the form

E(θθθ) = −
N∑
i=1

(ti ln(yi)(1 + ti) ln(1− yi)) (10)

where yi denotes y(xi, θθθ). The cross-entropy error function can be generalized
to multi-class problems with K classes using

E(θθθ) = −
N∑
i=1

K∑
k=1

tki ln yk(xi, θθθ) (11)
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[29].

The error function can be viewed as a surface sitting over the parameter
space defined by the vector θθθ, as seen in figure 9. It is a smooth and contin-
uous, but also a non-linear, non-convex function. Therefore, the parameter
set θθθ that minimizes the function can not be computed analytically, because
the function possesses local minima besides the global minimum [27].

Therefore, computation of the minimizing parameter vector is usually done
iteratively, recalculating the parameter vector in each step:

θθθ(τ+1) = θθθ(τ) + ∆θθθ(τ) (12)

τ is the current iteration step and ∆θθθ(τ) is the update of the parameter vector
in this step.

Figure 9: Graphical interpretation of
an error function E(θ) in two dimen-
sions. It can be viewed as a surface
over the parameter space defined by
the vector θθθ. Point θθθA shows a local
minimum, θθθB is the global minimum.
The local gradient of the error function
is given by the vector ∇EEE and can be
calculated in every point, like in θθθC .
Adapted from [29].

The most common way to calculate
the update is by using gradient in-
formation:

θθθ(τ+1) = θθθ(τ) − η∇E(θθθ(τ)) (13)

η is called learning rate. This pro-
cedure is called gradient descent al-
gorithm. The gradient of the error
function ∇E(θθθ) always points into
the direction of greatest rate of in-
crease of the function. By moving
in the opposite direction, the error
is therefore reduced. Since E(θθθ) is a
smooth, continuous function, a vec-
tor θθθ for which the gradient vanishes
exists [27], [29]. The learning rate
η is used to control the length of
each step taken in the current direc-
tion. This prevents over-correction
of the current variables, which could
lead to divergence. So to speak, the
learning rate determines how fast a
network changes established param-
eters for new ones. Often a decay function is used for the learning rate, so
big steps are taken in the beginning of the algorithm, then learning rate is
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gradually decreased to make smaller steps.

There are two different approaches for timing the update of the parameter
vector. In batch gradient descent, the parameters are updated based on the
gradients ∇E evaluated over the whole training set. In stochastic gradient
descent, the gradient is calculated for one sample in each iteration step and
the parameters are updated accordingly. In deep networks, stochastic gradi-
ent descent is more commonly used [30].

The gradient of the error function for a network with L layers is given by

∇E(ΘΘΘ) =

[
∂E

∂ΘΘΘ(1)
· · · ∂E

∂ΘΘΘ(l)
· · · ∂E

∂ΘΘΘ(L)

]
, (14)

where the superscript denotes the layer index. For the gradient descent
algorithm, this gradient needs to be calculated in every update step. To
compute this efficiently, error backpropagation is usually used. The idea
behind error backpropagation is to propagate the resulting error from the
output layer back to the input layer [31]. For this, a so-called error message
δ(l) is calculated for every layer 1, ..., l, ..., L. The error message of each node
can be seen as a measure for the contribution of said node to the output
error. Since the states and desired outputs for hidden layers are not known,
error terms can not be calculated but have to be estimated by propagating
the error messages backwards through the network. Layer l receives an error
message δ(l+1) from layer l + 1 and updates it using

δ(l) = f ′(zzz(l)) ·
[
(ΘΘΘ(l+1))ᵀδ(l+1)

]
(15)

where zzz(l) is the input vector of layer l and f ′(.) is the inverse of the activation
function, and passes it on to layer l− 1. Furthermore, the activation of layer
l aaa(l) is used to calculate the gradient of the error function with respect to
the parameters of the current layer:

∂E(ΘΘΘ)

∂ΘΘΘ(l)
= δ(l)aaa(l). (16)

This is repeated for every layer [27]. The basic concepts of error backpropa-
gation are illustrated in figure 10.

3.1.5 Regularization

As already mentioned, the number of hidden units in an ANN is a parameter
which significantly influences the performance of the network, since it also
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Figure 10: Error backpropagation. The error message δ is propagated from
output to input and updated in every layer. In each layer, the partial deriva-
tives with respect to the parameters ΘΘΘ(l) are calculated using the error mes-
sage. Together, these partial derivatives make up the gradient of the error
function ∇E.

controls the number of trainable parameters. It has to be chosen to find a
balance between over- and underfitting. If the number of hidden layers and
parameters is to small, the model won’t work accurately. If it is too big, it
will lose its ability to generalize beyond the training data and become too
specialized [29].

The most common way to avoid overfitting is regularization. For this ap-
proach, a regularization term is added to the error function. This is often a
quadratic term, resulting in a regularized error function of the form

Ẽ(ΘΘΘ) = E(ΘΘΘ) +
λ

2
ΘΘΘᵀΘΘΘ. (17)

λ is called the regularization coefficient and can be used to model the com-
plexity of the resulting network. By minimizing this regularized error func-
tion, one encourages the network parameters (weights and biases) to adopt
small values, therefore the regularization term is often referred to as weight
decay [32].

3.1.6 Convolutional Neural Networks (CNNs)

In the multi-layer networks discussed in the previous sections, inputs were
in vector form and network layers were fully connected. However, this is not
practical for image data. Each pixel in the input image counts as one input
dimension. If each of these inputs were connected to a hidden layer with
a few 100 hidden units, an image of size 200 ×200 would already result in
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several 40,000 weights per neuron and over 4,000,000 weights for the whole
layer. Training all these weights would require a large amount of training
data and memory. Furthermore, a lot of information is gained from the topol-
ogy of the input, in example local correlations among neighbouring pixels.
This information is destroyed when vectorizing image data. Therefore, con-
volutional layers are introduced into the network architecture. These layers
force the network to extract local features by restricting the receptive fields
of hidden units to a certain neighbourhood of the input. Such features could
be oriented edges, end-points or corners [33].

Figure 11: Convolution and pooling. An 8×8 image is convolved with a
3×3 filter kernel to make up a feature map. For a stride of 1 and with
zero padding, the feature map has the same dimensions as the input. The
feature map is then pooled using a receptive field of size 2× and a stride of
2, resulting in a 4×4 feature map. By using several different filter kernels,
three-dimensional feature maps are obtained. Adapted from [29].

Each unit of a convolutional layer receives inputs from a small neighbourhood
of units in the previous layer. This neighbourhood is also called receptive
field. Sets of neurons whose receptive fields are located at different parts
of the image are grouped together to have identical weight vectors (”weight
sharing”). As an output, these sets produce so-called feature maps. A convo-
lutional layer consists of several such unit sets, therefore, the output of these
layers is a three dimensional volume where width and height are dependent
on width and height of the input, and the depth is equivalent to the number
of neuron sets in the layer. This process can also be understood as convolv-
ing the input with several different filter kernels, each kernel contributing one
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feature map to the output. The filters are defined by their values, given by
the weights of the network, and their size, defined by the size of the receptive
fields. Besides the number of filters, there are two more parameters that in-
fluence the size of the feature map. Firstly, the stride is the number of pixels
by which the kernel slides over the input image in each step. A larger stride
results in reduced width and height of the feature map, a stride of 1 would
leave widht and height unchanged. Secondly, zero-padding is sometimes ap-
plied to the borders of the image to allow for the application of the filter to
bordering pixels. Since in convolutional layers many neurons share the same
weights, the number of parameters to train is greatly reduced. Furthermore,
if the input image is shifted, the feature maps will shift in the same way
but remain otherwise unchanged. This makes the network invariant to small
shifts [33], [29].

Figure 12: Rectified Linear Unit
(ReLU) activation function. It is
equal to thresholding the values at
zero, setting all negative values to
zero.

Since convolution is a linear operation,
but the data a CNN should learn is
mostly non-linear, non-linearity must
be introduced via a suitable activation
function. Convolutional layers can use
non linear activation functions such as
the hyperbolic tangent or logistic sig-
moid, but another type of activation
function has been found to perform bet-
ter, namely the Rectified Linear Unit
(ReLU) function

f(x) = ReLU(x) = max(0, x), (18)

which can be seen in figure 12.

Subsequently, another new type of layer is introduced, the pooling layer. Its
purpose is to downsample an input feature map by reducing the width and
height of each map, but leaving the depth unchanged. Similar to the convo-
lution layer, each unit of the pooling layer is connected to a receptive field of
units from the previous layer. There are several variants for pooling, such as
max pooling where the maximal value inside a receptive field is taken, or av-
erage or mean pooling, where the average/mean value is calculated. Pooling
has the purpose of decreasing the feature dimensions and therefore, further
reduce the number of parameters (weights, biases) of the network. Further-
more, it makes the network invariant to small scaling. Image 11 shows an
illustration of convolving and pooling layers applied to an input image [27].
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In a convolutional neural networks, several convolutional and pooling layers
can be applied successively. The deeper the network becomes (the more
hidden layers it has), the better the ability of the network to extract useful
features. The outputs of such a network are high level, low dimensional
features of the input that finally have to be classified. Fully connected layers
with appropriate activation functions, as discussed in the previous sections,
are usually used for this task. A typical neural network architecture can be
seen in figure 13

Figure 13: Convolutional neural network with two convolution and pooling
layers. The input image of dimension 8×8 is convolved with three kernels
to produce a 3×8×8 feature map. Width and height are reduced in the first
pooling layer to the dimension 3×4×4. The feature map is then convolved
and pooled for a second time in the same manner. The output layer is fully
connected and produces a vector of 24×1×1. Adapted from [33].

3.2 Medical Image Segmentation

Segmentation is the process of subdividing an image in its constituent re-
gions or objects. For non-trivial, natural images, automatic segmentation is
one of the most challenging tasks in image processing. Since segmentation is
often the first step in computerized image analysis algorithms, it’s accuracy
is determining the success of subsequent steps. Therefore, segmentation al-
gorithms must be very precise. Generally, there are two basic approaches to
automatic image segmentation:

1. Discontinuity-based approaches aim to find sharp, local changes of in-
tensities in images, such as edges, and partition the image based on
those discontinuities.
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2. Similarity-based approaches partition an image into regions that are
similar according to a pre-defined criterion. Intensity is a criterion
that is most often used, but other characteristics like colour or texture
might be used as well [34].

In medical image processing, segmentation plays an important role in many
applications, such as the quantification of tissue volumes, the study of anatom-
ical structures, the localization of pathologies, treatment planning (especially
radiotherapy planning), computer-integrated surgery and computer aided di-
agnosis.

3.2.1 Common Segmentation Methods in Medical Imaging

Medical image data is very hard to segment automatically due to its com-
plexity. Anatomical structures usually have a large variability in shape and
location, and medical images are prone to artefacts and noise, furthermore
their resolution is often limited. Therefore, in clinical practise, segmentation
is mostly done manually or semi-manually. Manual segmentation is usually
performed by one or more physicians who delineate regions of interest slice
by slice using simple drawing tools. This process obviously has many short-
comings: First of all, the workload for individual physicians is huge since
delineation is very time consuming, which in turn leads to errors. Further-
more, results are not reproducible. This, as well as the growing size and
number of medical image data, has led to the increasing importance of auto-
matic segmentation algorithms for the delineation of anatomical structures
or other regions of interest.
The following section provides an overview over common medical image seg-
mentation methods found in recent literature and is adapted from [1], which
the reader might refer to for in-depth information.

• Thresholding
Thresholding based methods create a binary partitioning of the image
based on intensity values. In the thresholding procedure, the inten-
sity histogram of an image is usually used to find an intensity value
that best separates the desired classes from one another. This value is
called the threshold. An example for this can be seen in figure 14(a).
Subsequently, all pixels with intensity values below the threshold are
grouped to one class (frequently labelled background) and the remain-
ing pixels belong to the object. Thresholding is widely used due to its
simplicity, however, it requires structures to have distinct contrasting
intensities. Furthermore, it does not take spatial information into ac-
count, which makes it sensitive to noise and intensity inhomogeneities
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which are often present in medical image data. Therefore, thresholding
is seldom used alone. It is, however, often used as an initial step for
further processing operations.

• Region Growing
Region growing methods, in their simplest form, usually start from
a seed point inside a region of interest, and then progressively include
neighbouring pixels which satisfy a predefined similarity criterion. Usu-
ally, a fixed interval around a certain intensity is chosen as a criterion,
which makes this approach similar to thresholding, but with the consid-
eration of spatial information. Region growing is also most commonly
used within a more complex segmentation pipeline. One disadvantage
of region growing is that, in general, user input in form of a seed point
is required for every region to extract.

• Classifiers and Clustering
Classifier algorithms assign a certain label to an image or an image
patch. For this, the classifier must be trained using image data with
known labels. Usually, multidimensional features, which are abstract,
reduced representations of images (i.e. edge directions), are calculated.
Then the classifier is chosen in a way that best separates the feature
space into the desired categories. This can be seen in figure 14(b). The
classifier can then be used to decide in which category a new image or
image patch belongs. A downside of classifiers is, that they use hand
crafted features. This means that the user must decide which type of
features best represent the information he wants to extract to obtain
the best results.
Clustering algorithms are very similar in their functionality to classi-
fier methods, but they do not require training data. These algorithms
group similar instances together, based on previously extracted fea-
tures. Clustering methods, however, can’t assign predefined labels to
these groups.

• Deformable Models
Deformable models use parametric curves or surfaces that are deformed
by internal or external influences. For this, an initial model is placed
near the boundary one wants to delineate. Then external influences
drive the model towards the desired boundary, while internal con-
straints ensure that the model stays smooth.
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(a)

(b)

Figure 14: Graphical interpretation of thresholding and classification. (a)
Finding a threshold based on the image histogram. The threshold T is chosen
in a way that best separates the intensity values in an image. (b) Seperating
a 2D-feature space with a linear classifier. First, features with known labels
(circles, triangles) are seperated. This classifier can then be used to assign
unlabelled objects to one of the two classes.

3.2.2 Deep Learning Artificial Neural Networks for Image Seg-
mentation

Deep learning algorithms using ANNs have made a large impact on the field
of automatic image analysis in the past years, outperforming state of the art
methods in many visual recognition tasks. They possess various advantages
over the established methods discussed before. Deep learning approaches
don’t require user interaction, like a seed point in region growing or a initial
model like with deformable models. Furthermore, contrary to classifiers or
clustering, no hand crafted features are needed. Deep ANNs learn multiple
layers of representation. Input data can be represented in many ways, but
certain representations are better suited to learn a task of interest (e.g. clas-
sification). Deep learning algorithms attempt to find the best representation
of images by learning complex relationships amongst the input data. Usually,
many layers of non-linear data processing are used in the course of this [35].

Convolutional neural networks are commonly used for classification tasks,
where input data (e.g. an image) is assigned to a single class label. How-
ever, in many recognition tasks, especially in biomedical imaging, localization
should be considered in the output, i.e. a label prediction should be made
at every pixel. The CNNs as discussed in chapter 3.1 are not applicable
on semantic segmentation since they produce low dimensional, non spacial
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feature maps which don’t allow pixel-wise labelling. An early idea to transi-
tion from classification to segmentation was to classify each pixel based on a
patch around that pixel [36]. However, this approach is rather slow and has a
trade-off between localization accuracy and context depending on the patch
size [37]. A better solution to this problem is the application of fully convo-
lutional neural networks (FCNs) as proposed by Long et al. in [38]. These
networks take an arbitrary sized input and produce a segmented output of
corresponding size. Contrary to traditional classification networks, FCNs
use only convolution and pooling layers combined with non-linear activation
functions, and no fully connected layers. FCNs will be discussed in greater
detail in section 4.2. A further development in semantic segmentation using
CNNs is the Encoder-Decoder Convolutional Neural Network (ED-CNN),
like SegNet in [39] or U-Net in [37]. In an ED-CNN, the contracting path
(encoder) is followed by a expansive path (decoder) that performs upsam-
pling in many steps, using the stored pooling indices. This way, context
information is propagated to higher resolution layers. Both paths are more
or less symmetric, yielding a u- or v-shaped architecture. Higher level fea-
tures from the encoder path can be combined with upsampled outputs from
the decoder path to produce a more precise result.

3.3 MeVisLab

The following section follows my masters’ project report in [18] and is adapted
from the MeVisLab Getting Started Guide [40], the MeVisLab Reference
Manual [41] as well as [42] and [43].

MeVisLab is a modular framework for the development of medical image
processing algorithms and visualization of medical data. The framework of-
fers a wide range of features, from basic image processing algorithms like
filters and transformations, to more advanced medical imaging modules, in
example for segmentation or registration. Development can be done on three
levels. A visual level using graphical programming enables the creation of
image processing networks via the inclusion of processing, visualization and
interaction modules. On a scripting level, macro modules can be created
using Python scripting to control interactions between network modules, the
graphical user interface (GUI) and internal parameters. Lastly, new modules
can be programmed and integrated using the C++ class library. Further-
more, the MeVisLab Definition Language (MDL) allows the design of GUIs.
Visual programming and setting up macro modules will be explained in more
detail in the following sections. Since module programming in C++ was not
part of this project, no further information will be provided about it.
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3.3.1 Visual Programming

Visual programming using modules integrated in the MeVisLab framework
and connections between modules is the most basic form of implementing
algorithms in MeVisLab. Three basic module types distinguished by their
colors, are available. They are shown in figure 15. Blue modules represent
algorithms from the MeVis Image Processing Library (ML). They contain
page-based, demand-driven processing functions. Open Inventor modules (in
green) provide visual, three dimensional scene graphs or scene objects. Fi-
nally, a brown color indicates macro modules, which represent a combination
of other module types, connected by a specific hierarchy and scripted inter-
actions. Most modules have connectors, the bottom ones indicating module
inputs and the top ones module outputs.

Figure 15: Basic module types and module connectors of MeVisLab. A
blue color indicates ML modules, green modules are Open Inventor modules
and a brown color marks macro modules. Connectors can have the form of
triangles (ML images), half circles (Open Inventor scenes) or rectangles (data
structure pointers).

Modules can be connected in two basic ways. By connecting the module
connectors, image data or Open Inventor information is transported between
modules. Each connector shape defines a certain type: Triangles indicate the
transportation of ML images, half circles of Inventor scenes and squares of
pointers to data structures. These connector types can also be seen in figure
15. The second way to connect modules is via parameter connection. With
this, any field of a module can be connected to a compatible field. This allows,
for example, the synchronization of parameters between different modules.
Figure 16 shows an example for a fully connected network in MeVisLab.
ML, Open Inventor and macro modules are used. Data connections as well
as parameter connections are shown.

3.3.2 Creation of Macro Modules

A macro module is a combination of several other modules that allows the
implementation of hierarchies and scripted interactions between modules. To
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Figure 16: Example network in MeVisLab. All three types of modules are
used. Blue and green lines indicate connetions between module connectors
(data connections), grey arrows indicate parameter connections.

implement a macro module in MeVisLab, several files are necessary:

1. The module definition file (*.def). This file contains some general
information about the module, like name, author and date of creation.
It is also possible to define a genre and keywords of the module to make
it easier to find for other users.

2. The MeVisLab Definition Language (MDL) script file (*.script). This
file defines the interface of the module, like input-, output- and param-
eter fields. Furthermore, the graphical user interface (GUI) can be
manipulated here.

3. The Python script files (*.py). Here, functions and interactions be-
tween modules can be implemented using Python scripting.

4. The internal network (*.mlab). This file contains the internal network
structure of the macro module.

For creating macro modules, MeVisLab provides a tool named Project Wiz-
ard, which sets up all required files and their connections.
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3.4 TensorFlow

TensorFlow is a platform independent open-source software library for nu-
merical computation, mostly used for machine learning. It is both an in-
terface for expressing machine learning algorithms, as well as an implemen-
tation for executing these algorithms. This section explains basic concepts
of TensorFlow and is adapted from the TensorFlow whitepaper [44] and the
TensorFlow developement guide [45].

3.4.1 Tensors

All data within a TensorFlow program is represented as a tensor, as the name
suggests. Tensors can be thought of as multi-dimensional arrays or lists that
are passed between operations. A tensor is characterized by its rank, which
describes the dimensionality of the tensor, its shape and its data type, e.g.
signed or unsigned integer types, IEEE float and double types or string type.

3.4.2 Computation Graphs and Sessions

In TensorFlow, programs are divided into two phases:

1. The construction phase

2. The execution phase

In the construction phase, a computation graph is assembled. The nodes
of the graph represent operations, and information is passed between nodes
along the edges of the graph in the form of tensors. Operations are abstract
computations, in example ”add” or ”matrix multiply”. Usually, computa-
tion graphs are started using operations that don’t require inputs, e.g. a
tf.constant:

1 const1 = tf.constant (3.0, dtype = tf.float)

2 const2 = tf.constant (4.0, dtype = tf.float)

3 print(const1 , const2)

which would produce the output

Tensor("Const :0", shape =(), dtype=float32) Tensor("Const_1 :0", shape =(),

dtype=float32)

It can be seen from this simple example, that constant1 is not an actual
value, but a node that outputs a tensor. It is important to note that a
computation graph doesn’t compute anything, but is rather a description
of computations and operations. Computations are done in the execution
phase by launching the graph in a session. Within the session, the graph is
translated to executable operations which can be distributed across different

29



compute devices, such as the CPU or GPU. When running a session, the
user can define a set of outputs that should be computed. TensorFlow then
executes the appropriate nodes to compute the desired output:

1 sess = tf.Session ()

2 print(sess.run([const1 , const2 ]))

which now produces the expected values:
[3.0, 4.0]

Now, operations, like element-wise matematical operations can be applied to
the outputs of these nodes:

1 const1 = tf.constant (3.0, dtype = tf.float)

2 const2 = tf.constant (4.0, dtype = tf.float)

3 sum = tf.add(const1 , const2)

4 print(sess.run(sum))

which results in:
7.0

Another common way of starting a graph is to use tf.placeholder, to which
external inputs can be assigned during running sessions. When running a
session by specifying the desired output, the user has to feed values to every
placeholder node that will be evaluated to compute this output:

1 a = tf.placeholder(tf.float32)

2 b = tf.placeholder(tf.float32)

3 sum = tf.add(a, b)

4 print(sess.run(sum , {a: 2.0, b:6.0}))

5 print(sess.run(sum , {a: [1.0, 4.0], b:[3.0, 2.0]}))

Now, the result is:
8.0

[4.0, 6.0]

A graph can be executed multiple times within a session, in example when
training deep neural networks with thousands of training data batches.

3.4.3 Training with Tensorflow

Since computation graphs are usually executed multiple times, tf.Variable
operations are needed to be able to access tensors across multiple execu-
tions of a graph. For deep learning applications, the network parameters
like weights and biases are usually stored in tensors held in variables. This
way, when training a network with many data batches, those network pa-
rameters can be updated in every run of the training graph. Contrary to
constants, which are initialized when calling tf.constant and their value
never changes, variables are not initialized by calling tf.Variable but must
be initialized within a session.
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TensorFlow provides a large variety of optimizers that slowly change each
variable in order to minimize the loss function within the tf.train module,
in example a simple gradient descent optimizer as described in section 3.1.
A full example for training a simple linear regression model is shown in Code
1. At first, model parameters (weight W and bias b) are defined as variables
with the values [0.3,−0.3]. Then, the input of the model x and the desired
output y are initialized as placeholders and the model function is defined. By
defining the input and output as a placeholder, the model can be evaluated
for several values at the same time. Next, the error function (the discrepancy
between the desired output and the actual model output) is calculated using
sum-of-squares error. An optimizer to minimize the loss returned from the
error function is defined. Then, a training data set is defined by providing
inputs and desired outputs of the model. A session is started and training
is done for 1000 iterations, changing model parameters each iteration and
consequently minimizing the error function via gradient descent.

1 import tensorflow as tf

2

3 # define model parameters as variables:

4 W = tf.Variable ([.3], tf.float32)

5 b = tf.Variable ([-.3], tf.float32)

6

7 # define model input and desired output as placeholders:

8 x = tf.placeholder(tf.float32)

9 y = tf.placeholder(tf.float32)

10

11 # define the model:

12 linear_model = W * x + b

13

14

15 # calculate an error function (sum of squares)

16 loss = tf.reduce_sum(tf.square(linear_model - y))

17

18 # optimizer

19 optimizer = tf.train.GradientDescentOptimizer (0.01)

20 train = optimizer.minimize(loss)

21

22 # provide training data

23 x_train = [1, 2, 3, 4]

24 y_train = [0, -1, -2, -3]

25

26 # start the session and initialize the variables:

27 sess = tf.Session ()

28 init = tf.global_variables_initializer ()

29 sess.run(init)

30 # train for 1000 iterations:

31 for i in range (1000):

32 sess.run(train , {x:x_train , y:y_train })

33

34 # evaluate training accuracy

35 curr_W , curr_b , curr_loss = sess.run([W, b, loss], {x:x_train , y:y_train })

36 print("W: %s b: %s loss: %s"%(curr_W , curr_b , curr_loss))

Code 1: Training a simple linear regression model in TensorFlow
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Running this program displays the final model parameters as well as the final
loss:

W: [ -0.9999969] b: [ 0.99999082] loss: 5.69997e-11

3.4.4 TensorBoard

TensorBoard is suite of visualization tools for inspecting and understanding
TensorFlow graphs and sessions. It is designed to enable easier understand-
ing, debugging and optimization of TensorFlow programs.

TensorBoard requires a log file, called a summary, from which it reads data to
visualize. While creating the TensorFlow graph, the user can annotate nodes
with summary operations which will export information about the node they
are attached to. Like any other node, a summary operation needs to be run
within a session to actually generate data. The collected summary data can
then be written to a log directory, from which TensorBoard acquires all the
information it needs for visualization. A popular application for TensorBoard
is to monitor the development of the loss during training. For the linear
regression model above, a summary node can be added with the following
line:

tf.summary.scalar(’sum_of_squared_differences ’, loss)

Then, all summary nodes are merged and a summary file writer is defined:

merged = tf.summary.merge_all ()

train_writer = tf.summary.FileWriter("path/to/log/folder", sess.graph)

and within the session, this file writer is run:

for i in range (1000):

sess.run(train , {x:x_train , y:y_train })

summary = sess.run(merged , {x:x_train , y:y_train })

train_writer.add_summary(summary , i)

Now, a log file will be created in the specified folder. When opening this file
with TensorBoard, the progress of loss during training can be observed and
manipulated using different visualization tools, as seen in figure 17.

TensorBoard also enables the visual inspection of the constructed graphs by
displaying all operation nodes and how tensors are passed between them.
The example for the linear regression model graph in figure 18 (a) shows,
that even for simple models those graphs contain numerous nodes, making
visualization confusing. Therefore, TensorFlow allows to name nodes, and to
scope nodes together, defining a hierarchy in the graph. Figure 18 (b) shows
a graph of the same linear regression model, but this time, nodes are named
and grouped together using name scopes.
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Figure 17: Visualization of the development of sum-of-squares error during
training a linear regression model in TensorBoard. Development is shown for
1000 training iterations. It can be seen how the error quickly decreases with
every iteration.

(a) Unedited Graph of a linear regression
model (b) Graph of a linear regression model,

structured by using name scopes and
named nodes

Figure 18: Graph visualization in TensorBoard. Image (a) shows an unedited
graph, which can get confusing quickly. (b) shows the same graph, structured
using name scopes and with some named nodes, which makes understanding
the graph easier. Nodes in one name scope are displayed collapsed, but scopes
can be expanded to reveal their inner structure, like the sum of squared
differences error scope in this example.
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3.4.5 TensorFlow-Slim

TensorFlow-Slim (TF-Slim) is a high-level library for defining, training and
evaluating complex models in TensorFlow. It is designed to make program-
ming with TensorFlow simpler and to improve the readability of code by

• the usage of argument scoping, allowing the user to define default ar-
guments for specific operations, reducing repetitive code,

• providing high level functions for defining layers, variables, regularizers,
losses etc,

• providing network definitions for popular computer vision models, e.g.
VGG-Net or ResNet, including pre-trained parameters in the form of
model checkpoints.

Since TensorFlow is very low-level, defining complex models can result in
complicated scripts with a lot of boilerplate code. TF-Slim offers an easy
way around this and can also be mixed with native TensorFlow and other
TensorFlow frameworks.
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4 Related Work

Important publications related to the work in this thesis are discussed in this
chapter. At first, previous attempts at automatic urinary bladder segmenta-
tion in CT scans are considered. It is shown that the presented approach has
not yet been applied to this task. In section 4.2, the architectures of deep
neural networks for image classification and segmentation on which the seg-
mentation concept in this thesis is based on are reviewed. There are two main
designs for semantic segmentation networks explored in this thesis: The first
one uses fully convolutional neural networks (FCNs), the second is based on
the utilization of so-called atrous convolution. Both of these designs are build
upon deep neural networks for image classification, VGG Net and ResNet.
Insight is given in all of these four network architectures.

4.1 Automatic Urinary Bladder Segmentation

Even though urinary bladder segmentation is still mostly done manually,
many different techniques have been attempted in the past years for au-
tomatic segmentation of the bladder in CT images. Earlier concepts used
deformable models to delineate the urinary bladder wall in 3D, in example in
[46] or [47]. Shi et al. [5] proposed a three step algorithm for segmentation
of the urinary bladder. The first step is to apply a mean shift algorithm to
obtain a rough contour of the bladder, then, again, region growing is used,
followed by a rolling ball algorithm to refine the obtained contour. However,
a major problem with region growing approaches is the leaking problem, es-
pecially at interfaces of the bladder and other soft tissue, like the prostate. A
segmentation attempt using convolutional neural networks was made by Cha
et al. [48]. They extracted patches of 32×32 pixels from CT urography scans
and classified them using the Convolutional Neural Network by Krizhevsky
et al. [3]. However, they found that DL-CNN segmentations alone don’t fol-
low detailed structures of the bladder sufficiently. Therefore, in [6], a CNN
was trained to output the likelihood that an input region of interest is inside
the bladder and assembled a bladder likelihood map from this information.
This map was then used as a initial contour for a cascading level-set based
bladder segmentation. All of these publications rely on manually segmented
CT images for training, evaluation and validation of their algorithms. Obvi-
ously, this limits the size of validation data sets.

The idea of using combined PET/CT scans for generating a reference stan-
dard/ground truth from PET images to train an automatic segmentation
algorithm, as introduced in this thesis, is, to the best of our knowledge, a
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new approach. Furthermore, advanced deep learning techniques for semantic
segmentation, relying on fully convolutional neural networks and upsampling
of coarse feature maps instead of patch-wise classification, have not yet been
applied to the problem of urinary bladder segmentation in CT images, as far
as we know.

4.2 Neural Networks for Image Classification and Seg-
mentation

4.2.1 VGG Classification Network

Figure 19: VGG 16 architecture. The network consists of five convolution
blocks, each containing several convolutions, and followed by a max pooling
layer. After the stack of convolutional layers, three fully connected layers are
applied. The last layer uses a softmax activation function to map the output
of the network to probabilities.

The very deep convolutional networks for large-scale image recognition [49],
developed by the Visual Geometry Group of the University of Oxford (hence,
the short term VGG-Net) were a runner-up in ImageNet Large Scale Visual
Recognition Competition (ILSVRC) 2014 and have since then been used for
various tasks such as object detection and image segmentation. The CNN
is trained on fixed-size 224×224 RGB images. Convolution layers use filters
with a kernel size of 3×3 and a stride and pad of one pixel. Therefore, the
spatial resolution of a convolution layer input is preserved after the convolu-
tion. Pooling is carried out by max-pooling layers over a 2×2 pixel window,
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with a stride of two and without padding, dividing the spatial resolution of
an input by two. While different configurations are introduced in the paper
cited above, the most popular architecture is the VGG 16 architecture, fea-
turing 13 convolutional layers, five max-pool layers and three fully connected
layers, the first two having 4096 channels, the last one 1000 channels which
corresponds to the number of classes in the ILSVRC classification problem
the VGG 16 Net was trained on. All hidden layers are equipped with a ReLU
activation function. The last layer utilizes a softmax activation function to
map the output of the last layer to class probabilities. While deeper ar-
chitectures were tested, this configuration offered the best trade-off between
performance and accuracy. The full network architecture can be seen in
figure 19. In total, the network has approximately 138 million parameters.

4.2.2 ResNet Classification Network

ResNet architectures were introduced by He et al. in [50]. In this paper it
is shown that extremely deep network architectures of up to 152 layers can
be trained through the use of residual modules. Their deepest networks won
the first place in the ILSVRC 2015.

A major problem with very deep architectures is the degradation problem:
the training accuracy of a network saturates with increasing depth, and even-
tually degrades very quickly. He et al. introduce so-called shortcut connec-
tions that skip one or more layers, perform identity mapping and add their
output to the output of a stack of layers to overcome this degradation. Fig-
ure 20 shows the transition from a normal stack of network layers in (a) to
a residual module, the building block of ResNet architectures, in (b). This
makes the resultant mapping easier to optimize without adding additional
parameters or computational complexity to the model. The basic ResNet
architecture uses 34 weight layers and is inspired by VGG Net, using mainly
3×3 convolution filters. Several convolutions are applied successively, then
downsampling is performed. Instead of using max pooling layers for down-
sampling, convolutional layers with a stride two are applied. At the end of the
network, global average pooling is performed, followed by a fully connected
layer and a layer with softmax activation function. Additionally, shortcut
connections are inserted after each pair of 3×3 filters. The architecture can
be seen in figure 21.
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(a) normal stack of lay-
ers

(b) ResNet building
block using a shortcut
connection

(c) ResNet bottleneck
building block

Figure 20: Comparison between ResNet building blocks. While an output
F (x) is computed from and input x in a traditional network as seen in (a),
a ResNet building block in (b) performs identity mapping of the input and
adds it to the output, producing and output F (x) + x. Building blocks
using bottleneck design as seen in (c) speed up the training process by first
reducing the input dimensions using 1×1 convolution, then convolving with
a 3×3 kernel, and then upsampling the dimensions using 1×1 convolution
again. Adapted from [50].

Figure 21: Basic ResNet architecture with 34 layers. After an initial 7×7
convolution and 2×2 max pooling, the input is convolved with a series of
3×3 kernels. Downsampling is performed using these filters and a stride of
two. After each pair of convolutions, a shortcut connection is added. At the
end of the network there is a global average pooling layer, followed by a fully
connected layer and a softmax activation function.
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To implement even deeper networks, building blocks are modified to a bot-
tleneck design for faster training. This design uses three layers instead of
two, where the dimension of the input is first reduced by a 1×1 convolution,
then convolved with a 3×3 kernel, and then dimensions are restored with an-
other 1×1 convolution. This building block can be seen in figure 20 (c). The
best performing ResNet uses 152 layers, grouped together in such three-layer
bottleneck blocks.

4.2.3 Fully Convolutional Networks for Semantic Segmentation
(FCNs)

The FCNs introduced by Long et al. in [38] made a large impact on seman-
tic segmentation with neural networks by providing end-to-end, pixel-to-pixel
segmentation networks. The basic idea behind this approach is to transform
established classification networks to fully convolutional networks, suitable
for semantic segmentation. They achieved best results with the VGG 16 net-
work. For this, fully connected layers are transformed into convolution layers,
which allows the network to output a spacial heatmap. This is illusrated in
figure 22. However, these output maps are considerably downsampled from
the input image because of pooling layers, making the output very coarse. It
can be seen from figure 19, that in case of VGG 16 Net, an input image is
downsampled by a factor of 32 after the last max pooling layer.

Figure 22: Transition from image classification to image segmentation in
CNNs. In the classification network, the last layer is fully connected, in the
segmentation network, this layer is transformed to an additional convolu-
tional layer. This enables the network to output a heatmap for the object of
interest. Adapted from [38].
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To map these coarse outputs to dense predictions, learnable upsampling lay-
ers, which resample the image to its original size, are proposed. For up-
sampling, not only the features from the last downsampling layer are used.
Instead, so-called skip connections are introduced to use convolutional fea-
tures from different layers in the network, which have different scales. Since
shallower layers produce bigger feature maps where more spatial information
is preserved, this helps capturing finer details from the original image. Up-
sampling layers are learned for each of these skip connections individually.
The approach from Long et al. resulted in three network architectures. The
basic FCN 32s architecture simply upsamples the feature map obtained from
the adapted VGG 16 network by a factor of 32. For the FCN 16s architec-
ture, the two times upsampled VGG 16 feature map is combined with the
features from the fourth pooling layer of VGG 16 and then upsampled by
factor 16. The best performing architecture is their FCN 8s architecture,
where the combination of upsampled VGG 16 features and fourth pooling
layer results is combined with features obtained from the third pooling layer
of VGG 16 and then upsampled by a factor of eight. An illustration of these
architectures can be seen in figure 23.

Figure 23: FCN architectures. The input image is downsampled by max
pooling layers, getting coarser from layer to layer. In the FCN 32s, the
output of the last pooling layer is upsampled by factor 32 in a single step.
In FCN 16s, features from the last layer and pool4 layer are combined and
then upsampled by factor 16. For FCN 8s, predictions from pool3 layer are
inlcuded. Adapted from [38].
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4.2.4 Atrous Convolution for Semantic Segmentation

DeepLab systems as proposed in [51] follow a different approach to deal with
the problem of considerably downsampled feature maps resulting after a tra-
ditional classification networks. They utilize so-called atrous convolution,
also called dilated convolution, which is convolution with upsampled filters.
By replacing convolutional layers in classification networks such as VGG 16
or ResNet with atrous convolution layers, the resolution of feature maps of
any layer within a CNN can be controlled. Furthermore, the receptive field
of filters can be enlarged without increasing the number of parameters.

Figure 24: Atrous convolution. In all examples the kernel size is 3 × 3, but
the rate differs. The rate defines by which factor the filter is dilated. Empty
values are filled with zeroes. The larger the rate, the larger the receptive
field of the filter becomes. For a rate of one, atrous convolution corresponds
to standard convolution. Adapted from [52].

In atrous or dilated convolution layers, instead of downsampling the input
image resolution by a factor of e.g. two and then performing convolution
with a certain kernel, the full resolution image is convolved with a filter
’with holes’. This filter can be seen of an upsampled version of the kernel
applied to the downsampled image, where zeroes are inserted in between
filter values. Convolution with such kernels is called atrous convolution and
can be defined for a 1-D input signal x[i] as

y[i] =
K∑
k=1

x[i+ r · k]w[k] (19)

where w[k] is a filter of lenght K and r denotes the rate which is equivalent
to the stride with which the input signal is sampled. For a rate of one, atrous
convolution is equivalent to normal convolution. Atrous convolution in 2-D
is illustrated in figure 24.
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This convolution allows the construction of many layered networks without
decreasing resolution, and since only non-zero values have to be accounted
for in convolutions, the number of filter parameters does not increase. How-
ever, computing feature maps at the original image resolution is not very
efficient, therefore, hybrid approaches are mostly used. Atrous convolution
layers are applied in a way to downsample the original image by a factor of
eight in total (compared to a factor of 32 in VGG Nets or ResNets), followed
by bilinear interpolation to recover feature maps of the original image res-
olution. Compared to approaches using fractionally strided convolution for
upsampling, no new parameters are learned within the network, which leads
to faster training.
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5 Methods

This chapter discusses the methods with which underlying ideas were set into
practice. The first section describes the used Reference Image Database to
Evaluate Therapy Response as well as the image data obtained from it. Sec-
tion 5.2 explains how suitable training and testing data was generated from
this image data using a macro module implemented in MeVisLab. The macro
module generates ground truth labels from PET image data and applies data
augmentation. The implementation of deep neural networks for image seg-
mentation using the TensorFlow library under Python is outlined in section
5.3. At first, the TensorFlow-own file format TFRecords, and how it is used
to process input data efficiently, is introduced. Next, the implemented seg-
mentation network architectures are described, which were created using the
TF-Slim library and pre-trained classification networks. Lastly, the process
of training, testing and evaluating these networks is demonstrated.

5.1 Dataset and Preprocessing

The implemented methods were trained and tested on the Reference Image
Database to Evaluate Therapy Response (RIDER) [53]. RIDER is a col-
lection of Computed Tomography, Magnetic Resonance Imaging (MRI) and
PET/CT data.

The RIDER PET/CT dataset provides serial patient studies (without meta-
data) as well as data from multi-vendor and multi-parameter calibration
phantoms. It consists of de-identified Digital Imaging and Communications
in Medicine (DICOM) serial PET/CT lung cancer patient data and pro-
vides serial scans of 28 lung cancer patients (a total of 65 scans), as well as
data from studies with a long half-life calibration phantom. As radiotracer,
fluorine-18-labelled fluorodeoxyglucose was used in all PET scans. The pub-
lic database can be downloaded from the National Cancer Imaging Archive
(NCIA) at [54].

To obtain an overview of the database, the DICOM datasets were loaded
into the medical image visualization software 3DSlicer [55]. For each patient,
several CT and PET scans with different scanning and visualization param-
eters are available. For this project, CT scans with a resolution of 512×512
and a slice thickness of 2.5 mm were selected. The chosen PET scans have a
resolution of 128×128 pixel and a slice thickness of 3.27 mm, and use stan-
dardized uptake values to measure radiotracer uptake. Patient data with
very high noise levels in either the CT or PET data or with unusually low
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contrast in the region of interest, as well as the phantom data, were rejected.
The DICOM images were converted to Nearly Raw Raster Data (NRRD)
file format. This format has the advantage of representing three dimensional
data in a single file, in contrary to the DICOM format which saves each slice
individually.

After removing patient data with low contrast and high noise from the
RIDER PET/CT database, a total of 29 patient datasets were obtained.
The CT datasets offer between 148 and 358 transversal slices, yielding a to-
tal of 8754 CT scans. Since these scans cover the whole torso the urinary
bladder is only visible on a fractional amount of the images, with an aver-
age of 25 transversal slices per dataset covering the bladder. It would not
be sensible to train our deep network with such a large amount of negative
training examples, therefore, a total amount of 845 CT image slices around
the urinary bladder were extracted from the whole dataset. A full overview
of the used datasets, including the number of total slices and slices showing
the urinary bladder can be seen in table 6 in appendix A.

5.2 Generation of Image Data

Parts of this section follow my master’s project report [18]. A paper about
the exploitation of 18F-FDG enhanced urinary bladder in PET data for deep
learning ground truth generation in CT scans was accepted at SPIE Medical
Imaging 2018 [56].

The 845 images obtained from the RIDER PET/CT database are probably
not enough to train a deep neural network with. It also has to be considered
that not all data can be used for training, since testing data must also be
taken from the same dataset. Furthermore, a reference standard in the form
of segmented CT images is not available. The first problem, the small size
of the databases, is overcome by using data augmentation. The basic idea
behind data augmentation is to apply plausible changes, which preserve label
information, to the existing data to generate new, additional training data.
These images are similar to, but not the same as the existing data [57]. To
enlarge our dataset we applied rotation and scaling to CT images as well as
the masks generated from the corresponding PET data. Furthermore, zero-
mean Gaussian noise was added to CT images.

The generation of segmentations of the urinary bladder as a ground truth for
training a deep neural network is performed by using combined positron
emission tomography-computed tomography scans. The most commonly

44



used radiotracer, 18F-FDG, accumulates in the urinary bladder, therefore,
the bladder always shows up in these PET scans. Contrary to CT, PET
images exhibit high contrast and are therefore comparably easy to segment
automatically. We automatically segment PET images using a simple thresh-
olding approach to generate binary masks of the urinary bladder that match
CT data acquired from the same patients at the same time.

At first, the available 29 patient datasets containing a total of 845 image
slices showing the urinary bladder were split into training and testing data.
A standard for this split commonly found in literature is 80% training data,
20% testing data. Loosely following this guideline, 630 images were used for
training and 215 images were reserved for testing, corresponding to 21 and
8 patient datasets, respectively. Next, the 21 patient datasets for training
were processed with the proposed MeVisLab network to obtain individual,
augmented CT slices as well as corresponding ground truth labels. For the 8
datasets reserved for testing, only a ground truth label was created and no
augmentation was applied. To additionally be able to analyse the effect of
data augmentation, a training dataset containing only the 630 unaugmented,
original images and labels as well as a dataset with only transformed image
data (without noise) was put together.

The necessary steps for data generation were implemented with the medi-
cal imaging framework MeVisLab. The corresponding Macro module and
Python source code is freely available under [58]. The general network con-
structed in MeVisLab can be seen in figure 25.

The purpose of this network is to load, process and visualize the given input
data using modules already integrated in the MeVisLab framework, as well
as a self-implemented macro module.

Corresponding PET and CT image data is loaded into the module in integer
type for CT images and double type for PET data using the itkImageFileRe-
ader. This module permits accessing file formats supportet in the Insight
Segmentation and Registration Toolkit (ITK), like the NRRD files gener-
ated in the first step. These three-dimensional images are then fed into the
DataPreperation macro module. This self-implemented module is the cen-
trepiece of the data generation step in this thesis. It calculates binary masks
from the PET data, performs data augmentation as specified by the user
and saves the created training data. It will be explained in greater detail in
section 5.2.1. Furthermore, the PET data is segmented using the Threshold

module and the threshold calculated within the DataPreperation module.
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Figure 25: General Network for loading, processing and visualizing PET and
CT data, implemented in MeVisLab.

For three-dimensional visualization of the data, the SoGVRVolumeRenderer

is used for volume rendering of the segmented PET data. The View3D macro
module overlays the three dimensional CT data with the rendered PET vol-
umes. To visualize the data in 2D, the SoView2DOverlay module is used to
blend the thresholded PET data over the CT data in the two-dimensional
viewer View2D. For visualization, CT data is converted to 16 bit unsigned
integer file type using the Scale module to match the images generated
within the DataPreperation module. Because CT images offer rather low
contrast for soft tissue, it is common practice to apply windowing to them.
This means that only a certain range of pixel values around a defined center
are displayed over the full range from white to black, and pixels outside of
this window are displayed in all black or white. This greatly improves the
contrast for soft tissue in the CT datasets. MeVisLab provides the Window

module for the application of windowing. The center and width for this win-
dow are calculated for each dataset individually within the DataPreperation
module.

5.2.1 The DataPreperation Macro Module

Internal Network
The internal network of the DataPreperation macro module can be seen in
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Figure 26: The internal network of the DataPreperation macro module.

figure 26. Generally, the network consists of two groups, one for CT and one
for PET image processing. In this section, the MeVisLab Image Processing
Library (ML) Modules used and their purpose are explained.

• PET image processing:
First, general information about the input image is extracted via the
InfoPET module. This module provides information like image size,
image type, maximal and minimal pixel value, etc. The Reformat

module reformats the PET dataset to the local coordinate system of
the CT dataset using trilinear interpolation. This step is necessary
because the PET and CT datasets do not have the same dimensions.
The reformated image is then fed into the SubImagePET module. This
module allows the extraction of subregions from input images. By
iterating over the z-coordinate of a dataset and leaving the other pa-
rameters unchanged, individual transversal slices can be selected and
manipulated. Next, the extracted PET slices are segmented by the ap-
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plication of the Threshold module. A fixed threshold is calculated for
each dataset within the Python script. Every pixel above the threshold
is considered foreground, all other pixels are labelled as background.
The output of this module is a binary image of the urinary blad-
der. Data augmentation of the binary masks is performed using the
AffineTransformation2DPET module. This module enables the ap-
plication of several affine transformations in 2D. Translation, rotation,
shearing and scaling can be entered, however, for this macro module,
only rotation and scaling are enabled. Before saving the image, it is
converted to 8 bit unsigned integer and scaled to a range between 0
and 255 using the ScalePET module. At last, the produced slices are
saved in TIFF format using the ImageSavePET module.

• CT image processing:
Again, image information is obtained using the InfoCT module. Transv-
ersal slices are extracted from the three-dimensional image data using
the SubImageCT module. The CT images are converted and scaled to 16
bit unsigned integer right away, because the AffineTransformation2D
module requires a datatype of 16 bit unsigned integer or lesser to
work. In the AffineTransformation2DCT, the same transformations
as with the PET masks are applied to the CT slices. Additionally,
the AddNoise module enables the addition of noise from various dis-
tributions to the input image. In this project, uniformly distributed,
zero-mean Gaussian and Salt and Pepper noise can be chosen. Even-
tually, windowing is applied to the CT images to improve contrast for
the urinary bladder. Then again, the slices are saved as TIFF using
the ImageSaveCT module.

MDL Script and Panel
The MDL Script DataPreperation.script consists of three main sections:

• The interface section defines the inputs (CT and PET image data)
and outputs (no outputs are used for this module) of data connections.
Furthermore, the parameters fields of the implemented macro module
are declared here. The fields declared in the interface section can either
be independent script fields or they can be defined as aliases for internal
fields of the internal network.

• The commands section defines the scripting file containing the func-
tions to be executed upon the activation of certain fields. Also, the
commands for calling these functions are defined.
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• The window section can be used to create a panel for the macro module,
as seen in figure 27.

Figure 27: Panel of the DataPreperation macro module.

The DataPreperation module’s panel is shown in figure 27. It is used to set
the desired parameters and to monitor the progress of the file export. In the
export section of the panel, the user can enter or browse to the desired export
paths to which the created images and labels will be saved. Furthermore, the
file name can be specified. It is also possible to choose between exporting all
slices of the dataset or to only select certain slices.

The data augmentation section of the panel is for choosing the desired data
augmentation steps and parameters. For rotation, the user can specify the
maximal angle (in degrees) to which the images will be rotated. Furthermore,
the number of rotations performed on each slice can be entered. The algo-
rithm will then produce images that are rotated to equally distributed angles
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between the negative and positive maximal rotation angle. When choosing
scaling, the user can enter the desired maximal scale factor as well as the
number of scaling steps performed in x- and y-direction. The algorithm will
calculate scale factors in a range defined by the maximal scale factor around
one and will apply these scalings to the input images. If noise should be
applied to the input images, the number of slices generated can be speci-
fied. Other parameters depend on the noise type. For uniform noise, the
maximal noise amplitude can be entered. For zero-mean Gaussian noise, one
must define the maximal standard deviation and for salt and pepper noise,
the maximal noise density is used as an input. An overview over all input
parameters, their default values and their minimal and maximal values is
shown in table 1. Minimal, maximal and default values were chosen such to
limit the user to parameters that produce meaningful outputs.

By pressing the Calculate button, the number of images and labels created
with the given parameters and for the specified slices are pre-calculated. This
allows an easy overview over the amount of data obtained. Once all the pa-
rameters are entered and the user is satisfied with the number of created data,
the algorithm can be started by pressing the Export button. Progress of the
data export can be monitored via the progress bar at the bottom of the panel.

Table 1: Parameters for data augmentation. This table shows all parameters
specifiable by the user, as well as their default, minimal and maximal values.

Augmentation Type Parameter Default Minimum Maximum

Rotation
Maximal Rotation Angle 20 0 180
Number of Rotations per Slice 3 1 9

Scaling

Maximal Scale Factor 0.1 0.05 0.15
Number of Scalings in x-Direction 3 0 5
Number of Scalings in y-Direction 3 0 5

Noise

Number of Noisy Slices 2 1 6

Uniform Maximal Amplitude 1500 500 2500
zero-mean Gaussian Maximal Standard Deviation 500 100 1000
Salt and Pepper Maximal Density 0.2 0.05 0.5

50



Python Script
Within the Python script, interactions between module fields, inputs, panel
fields and outputs can be defined. This section gives an overview of the most
important functions implemented in the DataPreperation.py file.

When pressing the Export button on the panel, the function that is called is
the setThreshold() function. This function calculates the threshold T for
segmenting PET data and passes it to the Treshold module. The threshold
is defined as a fixed percentage, in this case 20%, of the maximal SUV within
the dataset:

T = SUVmax · 0.2 (20)

The next function to be executed is the setWindow() function, which calcu-
lates a suitable window center c for contrast enhanced visualization of soft
tissue in the CT data. For this, the following formula was derived:

c =
65535

|Imin|+ Imax
· 2800 (21)

where Imin and Imax are the minimal and maximal intensity value of the input
image, respectively. As already mentioned, a CT contains Hounsfield values
between -1024 HU and 3071 HU and the window center for soft tissue usually
lies around 0 HU. Our input images, however, have variable intensity ranges
around -3000 to +3000 and are already scaled to 16 bit unsigned integer,
ranging between 0 and 65535. Therefore, these conversions have to be made.
The factor 2800 was determined empirically to obtain optimal contrast for
the urinary bladder.

Next, the functions exportCT(field) and exportPET(field) are called.
These functions check whether the export path specified by the user is
valid and then iterates over the slices to export, calling the main function
augmentAndSafe for each slice. Furthermore, the progress bar is updated in
this function. The augmentAndSafe(...) performs the augmentation steps
specified by the user and safes the generated data to the export directory. The
parameter name defines, whether PET or CT images are processed. Rotation
angles, scaling factors and noise levels are determined using the respective
functions. Then, the algorithm loops over all these values and passes them
to the corresponding fields in the AffineTransformation2D and Addnoise

modules. The file name is assembled by concatenating the input parame-
ters and the transformation parameters, then the images or labels are saved.
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The angles to which the input image should be rotated are calculated in the
getRotationAngles() function. If rotation is disabled, the rotation angles
will be set to zero. The function getScales returns all scaling factors to
which an image will be transformed. It returns scaling factors of one, if scal-
ing is disabled. In the function getNoiseLevels, noise type and noise levels
are determined. For uniformly distributed noise, a range of noise amplitudes
added to the input image is returned. In case of gaussian noise, a range of
standard deviations is calculated. For salt and pepper noise, a variation of
different densities is returned. If the adding of noise is disabled, noise type
is set to none and all parameters are set to zero.

The function switchNoiseType() enables the input of different noise param-
eters in the module panel, depending on which noise type was selected. If
the user activates the Calculate button in the panel, the function calcSlice

Number() is called to display the number of total slices generated from both
PET and CT data.

5.3 Image Segmentation using Deep Neural Networks

Algorithms for image segmentation using deep neural networks were imple-
mented using TensorFlow 1.3 under Python 3.5. The code is divided up into
several files:

• tf records.py: Contains functions for creating and reading from the
TensorFlow recommended file format TFRecords. Those functions are
used to transform image data into a file format that is easy and fast to
process in TensorFlow.

• make tfrecords dataset.py: This script can be used to put together
a TFRecords dataset from a directory of image files.

• networks.py: Includes the model definitions for the implemented im-
age segmentation networks. These functions can be run in training or
testing mode.

• upsampling.py: Contains tools for creating bilinear upsampling fil-
ters used for upsampling the predictions made by the networks using
transposed convolution.

• FCN training.py and ResNet training.py: These scripts are used for
training the deep neural network models defined in networks.py.
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• FCN testing.py and ResNet testing.py: These scripts can be used
for testing the previously trained deep neural networks.

• metrics.py: Provides metrics for evaluating the segmentation results
by calculating similarity measures between network prediction and ground
truth.

5.3.1 Working with TFRecords files

There are two main ways of providing a TensorFlow program for training a
deep neural network with data:

1. Feeding: The computation graph is constructed using placeholders,
then data is loaded using python code and fed into the graph during
the session.

2. Reading from files: The user provides a list of file names from which a
file queue is created. The data is then read and decoded from this file
queue, during which batching and shuffling can be performed.

Since loading image data is a time-consuming operation, data is provided in
this project via reading from files. The standard, recommended TensorFlow
format for this is a TFRecords file. A TFRecords file represents a sequence
of binary strings, which enables the user to store images and ground truth
annotations in a single binary file which is efficient to read. This way, the
TFRecords file has to be created only once, and can then be used during ex-
perimenting with and fine tuning the network without having to open image
data individually each time.

Tools for writing and reading TFRecords files are found in the file tf records

.py. Writing image and label data into a TFRecords file is performed with
the function write to tfrecords(image path, label path, tfrecords

filename, height, width). The first step is to gather the filenames of
each image specified in image path and label path. Those images are then
opened, resized to a resolution specifiable by the height and width param-
eters, and converted to string. An Example called protocol buffer is put
together from the data one wishes to store. Properties of the data set, like
images, labels and image size, are stored within the protocol buffer as proto-
cols called Features. Features have one of three base types: bytes, float or
int64. The example buffer is then serialized and written to a TFRecords file
specified by tfrecords filename.
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To read image data from the previously created TFRecords file, the function
read and decode(tfrecords filename) was created. The name of a suit-
able TFRecords file is passed to this function in tfrecords filename from
which records are read and decoded by taking the serialized examples and
mapping the features back to tensor values. At first, image and label data
is parsed in string format, then this raw data is decoded to unsigned integer
8. Since image dimensions are lost when converting image data to string,
images and labels have to be reshaped to their original dimensions. For this,
image height and width are parsed from the TFRecords file as integer values.

5.3.2 Creating TFRecords files for Training and Testing

The file make tfrecords dataset.py contains a script for writing image data
to TFRecords using the function described above. Paths to image and cor-
responding label data must be provided. Furthermore, the user can specify
the target resolution of images and labels. This script was used to produce
several TFRecords files used for further training and testing. From each raw
image dataset TFRecords files containing images and labels downsampled
by a factor of two to a resolution of 256×256 were created. Furthermore,
two TFRecords files were generated from the unaugmented and transformed
training data. Due to the unsatisfactory performance of training data with
additional noise in the case of downsampled images and the long training
times, we refrained from training our networks with fully augmented images
at their full resolution.

Testing data was also converted to TFRecords files with one file containing
downsampled images of resolution 256×256 and one file with original image
resolution. Table 2 provides an overview over the created files. It shows the
filenames of the TFRecords files, the augmentations applied, the resolution
as well as the total number of labelled images within the dataset.

5.3.3 Segmentation Networks using TF-Slim and pre-trained Clas-
sification Networks

Neural networks for complex tasks like image segmentation need to be large
and deep, resulting in many thousands of parameters. This means that train-
ing such networks requires huge datasets and a lot of computational power,
and the training process might still require days or even weeks to complete.
Therefore, pre-trained models were used for the segmentation task at hand.
The TF-Slim API contains a set of standard model definitions implemented
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Table 2: Created TFRecords files for training and testing.

File Name Augmentations Image Resolutions Number of Images

Training NoAug 256.tfrecords none 256x256 630

Training NoAug 512.tfrecords none 512x512 630

Training TransAug 256.tfrecords rotation, scaling 256x256 17010

Training TransAug 512.tfrecords rotation, scaling 512x512 17010

Training FullAug 256.tfrecords rotation, scaling, noise 256x256 34020

Testing 256.tfrecords none 256x256 215

Testing 512.tfrecords none 512x512 215

with TF-Slim as well as checkpoints for pre-trained parameters. An overview
of the implemented models, corresponding code and links to the model check-
points can be found at [59]. The models were trained on the ILSVRC-2012
dataset for image classification. The TF-slim model library contains imple-
mentations of VGG 16 and ResNet V2, which are adapted for segmentation
tasks, as explained in section 4.2.

The model definitions of the implemented segmentation networks are found
in the file networks.py. The implementation of these models is based on
the implementation found in [60]. The first network definition, FCN(...)

uses a pre-trained version VGG 16, which is already implemented in a fully
convolutional way in the TF-slim model library, which means that the last
three fully connected layers are also implemented as convolutional layers. By
calling the vgg.vgg 16(...) function using ’SAME’ padding, a map of un-
scaled log probabilities of the classes (logits), downsampled by a factor of 32,
is returned. Furthermore, a dictionary called end points is obtained, which
contains the logits of each network layer. These coarse feature maps are then
upsampled using bilinear interpolation and skip connections, resulting in a
FCN 8s architecture as described by Long et al. in [38]. In the first step,
logits of the last layer are upsampled by factor two. Features produced by
the pool4 layer of the VGG 16 classification network are extracted from the
endpoints and combined with the upsampled final logits. The combination is
once again upsampled by a factor of two, and then combined with the features
obtained from the pool3 layer. As a last step, this combination is upsampled
by a factor of eight, to produce an output of the same size as the original
input to the classification network. This output represents the final unscaled
log probabilities of the FCN 8s model and is returned by the function. Note
that while upsampling filters could be defined as a learnable variable, they
are kept fixed in this model, since Long et al. stated in their paper that
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learnable upsampling kernels didn’t significantly improve the performance of
the model, while making computation more expensive. The network archi-
tecture was illustrated using TensorBoard, which can be seen in figure 28
(a). For easier further processing, the FCN(...) function also returns a dic-
tionary which maps the variables from the VGG 16 name scope to the new
name scope of our segmentation model by removing the ’vgg 16 part of the
variable names. Since the variables for the skip connections, pool4 skip and
pool3 skip, should be initialized and not restored from the checkpoint file,
these variables are ignored in the mapping. This dictionary is later used to
initialize the model’s parameters by using the pre-trained parameters of the
VGG 16 network.

The second model definition, upsampled ResNet(...) utilizes a pre-trained
version of ResNet V2 with 152 layers and atrous convolution to perform im-
age segmentation. To run ResNet in fully-convolutional mode, the model
definition resnet v2.resnet v2 152(...) must be called with the parame-
ter global pool set to False, otherwise global average pooling will be per-
formed before computing the unscaled log probabilities of classes. Further-
more, spatial squeeze must also be set to False, to ultimately obtain
output logits which are of the same shape as the inputs. With the parameter
output stride the user can specify the factor by which the logits produced
by ResNet V2 will be downsampled. For this task, a factor of eight was
chosen to obtain a good trade-off between density of the computed feature
maps and computational and memory expenditure. Once the downsampled
logits are obtained, they again need to be upsampled by a factor of eight to
obtain a result of the same size as the input image. Again, a visualization of
the network architecture was obtained using TensorBoard, as seen in figure
28 (b). Once more, a variable mapping dictionary is created to map variable
names to the right name scope by removing the ’resnet v2’ from variable
names.
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(a) FCN architecture (b) upsampled ResNet architecture

Figure 28: Network Graphs for FCN and upsampled ResNet visualized with
TensorBoard. Figure (a) shows the implemented FCN architecture, which is
based on a pre-trained VGG 16 network and upsampling with skip connec-
tions. Figure (b) shows our upsampled ResNet architecture, which is based
on a pre-trained ResNet V2 152 network. The layers of this network are
condensed within 4 building blocks.
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5.3.4 Bilinear Upsampling

It was stated by Long et al. in [38], that upsampling can be performed by us-
ing transposed convolution. It is also often referred to as fractionally strided
convolution or deconvolution. Convolution can be seen as sliding a convolu-
tion filter over an image and computing the dot product between filter and
input in every step, which gives one element of the output image. Depending
on the stride of the convolution filter, the resolution of the output image
might be of lower resolution than the input. Fractionally strided convolu-
tion performs the opposite operation, going from a small resolution input
to a bigger resolution output. One element in the input image defines the
weights for the convolution filter, which is then copied to the output. Where
filter regions overlap, the filter values are added. This operation is actu-
ally equivalent to the backward pass of a traditional convolution performed
during error backpropagation. An illustration of this can be seen in figure 29.

TensorFlow has a built in function for this operation, conv2d transpose(

value, filter, output shape, strides). This function requires a filter
in the form of a 4-D tensor with shape [height, width, out channels,

in channels]. To calculate a filter kernel of specified shape, the file up-

sampling.py contains a function adapted from [60]. At first, the function
bilinear upsampling weights determines the size of the filter kernel which
is calculated from the stride s as

k = 2 · s− s%2 (22)

where % is the modulo operator. An appropriate weight matrix is initialized.
Then, the scaling factor is determined and the center point c is calculated as

c =

{
s− 1 if k%2 = 1

s− 0.5 else
(23)

Next, grid g containing values from 0 to kernel size k is created. The elements
of the weight matrix w are calculated with the formula

wi,j =

(
1− |gi − c|

s

)
·
(

1− |gj − c|
s

)
(24)

5.3.5 Training the Segmentation Networks

Training of the deep neural networks is performed using the files FCN training

.py and ResNet training.py. Both files follow the same pattern, however,
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Figure 29: Comparison between normal convolution and transposed convo-
lution. Both operations use a 3×3 kernel and a stride of two. Traditional
convolution determines the output value as the dot product between filter
and input, by moving the filter kernel for two pixels in every step, the input
is downsampled by factor two. For transposed convolution, the input value
determines the filter values that will be written to the output. Where fil-
ters overlap, the values are summed up. The stride defines the movement of
the filter kernel in the output image, and therefore influences the factor of
upsampling.

since networks are trained from different checkpoint files, there are some dif-
ferences between training a fully convolutional network and an upsampled
ResNet network. While the FCN architecture requires a VGG 16 checkpoint
to work, a ResNet V2 152 checkpoint is needed for the upsampled ResNet
architecture. Segmentation is performed into two classes, background and
foreground (urinary bladder), so the number of classes is chosen accordingly.
Batch size is chosen as 1 as it was in the original architectures. A larger
batch size would result in tensor sizes exceeding GPU memory. A batch size
of 1 means that each image will be processed individually and no batch nor-
malization is performed. Then, images and labels are loaded from a specified
TFRecords training data file.

Next, random batching of the obtained image data is performed. The func-
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tion tf.train.shuffle batch(tensors, batch size, capacity, min

after dequeue, num threads) takes a list of tensors defined in tensors,
creates a file queue of maximum size capacity from these tensors and then
returns batches of size batch size randomly sampled from this queue. The
parameter min after dequeue controls the minimum number of elements
left in the queue after a dequeue and can be used to ensure that elements
still get mixed.

As a next step, label tensors of shape [batch size, height, width, number

of classes] are assembled. This is done since labels up to this point are
of shape [batch size, height, width] and are therefore not comparable
to the predictions made by the network models. However, this comparison
is necessary to calculate a loss function which then can be minimized by the
optimizer to find the optimal model parameters.

The generated batch of images is then fed to one of the network models,
either FCN(...) or upsampled ResNet(...) which return the network’s
logits with the current parameters, as well as the variable mapping dictio-
nary. A cross entropy error function is calculated between the logits of the
model and the labels. As an optimizer, instead of the simple gradient descent
algorithm, the more sophisticated optimizer following the Adam algorithm
proposed in [61] with a learning rate of 10−4, as suggested in the paper, is
used. While this optimizer requires more computations for each parameter
in each training step, it usually converges more quickly without the need to
fine tune the learning rate. The learning rate is chosen as a fixed value, since
Adam optimizer performs learning rate decay internally.

Before checkpoint variables are loaded into the network using the variable
mapping created by the model, the mapping must be adjusted to the cur-
rent task. Since the pre-trained VGG 16 and ResNet V2 152 models are
trained for image classification with 1000 classes, the last layer of these net-
works which is responsible for the number of classes must be omitted. For
VGG 16, this last layer is called fc8, for ResNet V2 152 it is called logits,
so all parameters containing this name scope are ignored. With the up-
dated dictionary, the variables from the pre-trained Checkpoints can now
be loaded and mapped to the right name scope using the TF-Slim function
slim.assign from checkpoint fn(...).

Next, a variable initializer and a summary writer are created. Then, the ses-
sion can be launched and the actual training is started. Training is performed
for a given set of iterations. The loss function is evaluated and the summary
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is updated in each step. Every 100th iteration, the current loss is printed
to allow easy monitoring of the training process. Furthermore, the current
model parameters are saved to the checkpoints directory every 1000th step,
as well as after training has finished.

5.3.6 Testing the Segmentation Networks

For testing the neural network models, the files FCN testing.py and ResNet

testing.py are provided. Similar to the scripts for training, both files have
the same structure and only differ in the used model definition and check-
point files. After defining the paths to checkpoint files and the testing data,
once again, image data is read and decoded from the specified TFRecords
file. This time, random batching is not performed. However, since the neural
network model definitions require a tensor of shape [batch size, height,

width, depth] to work, an additional dimension has to be added to the im-
age and label tensors. Afterwards, inference is performed to obtain unscaled
log probabilities of classes. To obtain a binary prediction, meaning a tensor
containing zeroes and ones, from these logits, tf.argmax is applied. For cal-
culating normalized probabilities of classes, the softmax function tf.softmax

is used. Next, the similarity metrics true positive rate, true negative rate and
dice coefficient are calculated. Those metrics will be discussed in more detail
in the next section. Before starting the session, variables and checkpoint
saver are initialized.

Within the session, parameters trained in the previous step are loaded into
the model. Vectors for calculating the evaluation metrics are initialized and
the number of iterations performed, corresponding to the size of the testing
dataset, is specified. The current image, label, prediction, scaled probabil-
ities as well as the Dice coefficient are evaluated at every testing iteration.
The Hausdorff distance similarity metric is calculated within the session us-
ing numpy arrays instead of Tensors, which proved to be more efficient since
the numpy library already contains many operations needed for calculation.
Note that Hausdorff distance is only calculated for samples where both pre-
diction and label are not empty, e.g. containing at least one pixel belonging
to the foreground. Metric values are stored in their corresponding vectors.
Images, corresponding labels and predictions are saved in jpeg file format
to a specifiable directory. Furthermore, the option to display a sample of
input images, their corresponding label and the prediction made by the seg-
mentation network is implemented here. After the testing loop is finished,
the mean of true positive rate (TPR), true negative rate (TNR), Dice co-
efficient (DSC) and Hausdorff distance (HD) are calculated. Furthermore,
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histograms of TPR, TNR, DSC and HD are created. Histograms of these
evaluation metrics are useful for evaluating per-image scores of the dataset.
Per-image scores are important because measures averaged over the whole
testing dataset are not suitable to distinguish between algorithms that per-
form mediocre on all images and algorithms that perform very well on some
images, but very bad on others [62].

5.3.7 Evaluation Metrics

To evaluate the results achieved with the proposed neural networks, sev-
eral metrics that are commonly applied for measuring similarity between the
ground truth and the segmentation result when working with medical image
data are calculated. True Positive Rate, True Negative Rate and Dice co-
efficient are metrics commonly found in literature. However, these metrics
might be a poor measure for images with a lot of background and small ob-
ject segments. Therefore, the Hausdorff distance is additionally measured. It
is also a useful estimate when the boundary delineation of the segmentation
is of special interest, as it is the case in this thesis. However, it should be
noted that Hausdorff distance is very sensitive to outliers [63]. Functions for
calculating evaluation metrics are found in the file metrics.py

True Positive Rate and True Negative Rate
The true positive rate (TPR), commonly referred to as sensitivity, measures
the amount of positive pixels (foreground pixels) in the ground truth that are
also identified as positives by the segmentation algorithm. The true negative
rate (TNR), also called specificity, on the other hand, measures the portion
of negative pixels (background pixels) in the ground truth segmentation that
are correctly identified as such by the algorithm. The measures are defined
as

TPR =
TP

TP + FN
(25)

and

TNR =
TN

TN + FP
(26)

where

• TP are the true positives, meaning pixels which are correctly classified
to the foreground

• FN are false negatives, pixels that are incorrectly classified to the back-
ground
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• TN are true negatives, pixels which are correctly assigned to back-
ground

• FP are false positives, meaning pixels that are incorrectly identified as
foreground [64].

Calculation of TPR and TNR can be performed with the functions tpr(label,
prediction) and tnr(label, prediction), respectively.

Dice Coefficient
The Dice coefficient [65], also called Sorensen-Dice coefficient (DSC), is the
most used metric for validating medical image segmentation. It is an overlap
based metric. For a ground truth segmentation Sg and a predicted segmen-
tation Sp, the DICE can be calculated as

DSC =
2|Sg ∩ Sp|
|Sg|+ |Sp|

(27)

where |Sg ∩ Sp| is the intersection between ground truth segmentation and
predicted segmentation. This intersection corresponds to the true positives
TP . |Sg| and |Sp| denote the total amount of pixels classified to foreground
in the ground truth and the prediction, respectively. The DSC takes values
between 0 and 1, where 1 equals a perfect match. DSC calculation is imple-
mented in the function DSC coeff(label, prediction).

Hausdorff Distance
The Hausdorff distance (HD) is a spatial distance based similarity measure,
which means that the spatial position of pixels are taken into consideration.
The Hausdorff distance between two point sets A and B is defined as

HD(A,B) = max(h(A,B), h(B,A)) (28)

where h(A,B) is the directed Hausdorff distance. It describes the maximal
distance of point set A to the closest point in point set B. It’s mathematical
definition is

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (29)

where a and b are points of point set A and B respectively and ‖...‖ is a norm,
in example `2 norm to calculate Euclidian distance between the two points.
A graphical representation of the Hausdorff distance and directed Hausdorff
distance can be seen in figure 30. The Euclidian distance can be calculated
by

‖a− b‖2 =

√∑
i

(ai − bi)2 (30)
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[66].

Figure 30: Graphical inter-
pretation of Hausdorff dis-
tance. h(A,B) is the dis-
tance between the most dis-
tant point of point set A from
the closest point of point set
B. For h(B,A), it is opposite.
HD is the maximum between
h(A,B) and h(B,A). Adapted
from [67].

Calculation of the HD is included in
the function HD distance(label, pred-

iction). In this function, the indices of
pixels classified as foreground are extracted
from labels and predictions to produce the
point sets A and B. These are then passed
to the directed hausdorff(A, B) function
to calculate the directed Hausdorff distance.
At first the algorithm iterates over all points
found in point set A. Then, the Euclidian
distance between the current point in point
set A and all points in point set B is calcu-
lated. The minimal value of these Euclid-
ian distances is then stored in a vector and
the same is repeated for the next point in
point set A, until all points have been eval-
uated. The directed Hausdorff distance is
the maximal value of all distances stored in
this vector. This distance is returned from
the function. Directed Hausdorff distance is
calculated from point set A to B as well as from B to A, and the greater of
these two values is the final Hausdorff distance.
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6 Results and Evaluation

In this chapter, we present the results of our experiments. It starts with
some examples taken from the training datasets to document the agreement
between image data and generated labels, as well as the effects of data aug-
mentation. In the second section 6.2, training and testing times using the
two different architectures and different training datasets are evaluated. Seg-
mentation results obtained from the various models described in this thesis
are presented in section 6.3. Quantitative results are given in the form of
various segmentation evaluation scores as well as their histograms to allow
per-image evaluation. Furthermore, examples of qualitative segmentation
results are shown.

6.1 Generation of Training and Testing Data

To illustrate the agreement between the ground truth labels obtained from
thresholding the PET data and corresponding CT images, overlays between
CT images and generated labels were produced. Some examples of these
overlays can be seen in figure 31.

(a) (b) (c)

(d) (e) (f)

Figure 31: Examples of overlays between CT data and generated ground
truth labels. The underlying CT images are shown in greyscale, while the
ground truth labels obtained from PET segmentation are added in red.

65



By applying data augmentation with the default parameters specified in ta-
ble 1 to the original 630 training images, a total amount of 34,020 augmented
images and labels were obtained. This equals a magnification factor of the
original dataset by 54. A magnification factor of 27 was achieved by the
transformation, specifically the combination of rotations and scaling of the
input images. The amount of transformed data was then doubled by the
addition of zero-mean Gaussian noise on each image slice. The remaining
noise types included in the DataPreperation MeVisLab macro module have
not yet been explored. By fully exploiting the maximal parameters defined
in table 1, a magnification factor of up to 1350 could be achieved, which
would result in a total of 850,500 augmented image slices. However, since
such large amounts of data are hard to handle with the available resources,
such a large dataset was not created. A sample taken from the augmented
training data is shown in figure 32.

(a) Original (b) Rotated and
scaled

(c) Added noise

Figure 32: Example for an augmented dataset. Image (a) shows the original
CT image and ground truth label without augmentations. Image (b) shows
the dataset after applying a rotation of 20◦ and scaling to a scale factor
of 0.9 in x-direction and 1.1 in y-direction to both the CT image and the
binary mask. In image (c), zero-mean Gaussian noise with a standard devi-
ation of 500 was added to the transformed image. The binary mask remains
unchanged by the addition of noise.
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6.2 Training and Testing

Training was performed for 34,020 iterations (corresponding to the size of the
largest training data set) on a server equipped with a NVIDIA Tesla K20Xm
with 5 GB memory size. Testing was executed using a NVIDIA GeForce
GTX 960 with 2 GB of memory.

On average, FCN models took 21 hours to train with images with a resolu-
tion of 256×256, while upsampled ResNet architectures took an average of
39 hours of training time with the same datasets. For images at their original
resolution, training an FCN architecture required 71 hours on average, while
for a ResNet architecture, 115 hours were needed. Table 3 gives a comparison
over the time required to train our network models with the stated training
data. Furthermore, the average time needed to perform inference, which is
the average time needed to calculate a prediction for a single input image
from the training dataset, is stated.

Table 3: Comparison of training and inference times. Training time is given
in hours needed to complete the training process, inference time is averaged
over all testing samples and given in milliseconds.

Network Model Image Resolution Training Data
Training Time av. inference time

(hours) (ms)

FCN

256×256

no augmentation 24 9.7
transformed images 14 9.9

fully augmented images 25 9.8

512×512
no augmentation 56 18.4

transformed images 86 17.7

upsampled ResNet

256×256

no augmentation 62 108.2
transformed images 27 108.6

fully augmented images 28 108.0

512×512
no augmentation 99 219.4

transformed images 130 222.6

A visualization of the development of cross-entropy loss during training ob-
tained from TensorBoard can be seen in appendix B, figure 36.
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6.3 Image Segmentation Results

Table 4 shows the results of segmentation evaluation for models trained with
different training datasets at a resolution of 256×256. Table 5 presents the
same metrics for segmentation results obtained from models with images at
their original resolution. True positive rate, true negative rate, Dice coeffi-
cient, each in percent, and Hausdorff distance, in pixels, averaged over all
215 training datasets are listed.

Table 4: Segmentation evaluation results for images rescaled to 256×256.
This Table compares evaluation metrics for FCN and upsampled ResNet
architectures trained using unaugmented training data, transformed training
data (rotation, scaling) and fully augmented training data (transformations
and zero-mean Gaussian noise).

Network Model Training Data
mean TPR mean TNR mean DSC mean HD

(%) (%) (%) (pixel)

FCN

no augmentation 82.7 99.9 77.6 6.9
transformed images 85.0 99.9 80.4 6.1
fully augmented images 79.2 99.9 77.6 6.7

upsampled ResNet

no augmentation 80.7 99.9 73.5 7.9
transformed images 82.5 99.9 76.9 6.3

fully augmented images 79.7 99.9 76.7 7.7

Table 5: Segmentation evaluation results for images of resolution 512×512.
This Table compares evaluation metrics for FCN and upsampled ResNet ar-
chitectures trained using unaugmented training data and transformed train-
ing data (rotation, scaling).

Network Model Training Data
mean TPR meanTNR mean DSC mean HD

(%) (%) (%) (pixel)

FCN
no augmentation 80.9 99.9 77.6 13.3

transformed images 83.1 99.9 81.9 11.9

upsampled ResNet
no augmentation 68.7 99.9 71.1 23.9

transformed images 86.5 99.8 67.1 16.9

To visualize per-image evaluation scores of our models, the Histograms in
figure 33 of evaluation metrics (true positive rate, true negative rate, Dice
coefficient and Hausdorff distance) were plotted.
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(a)

(b)

Figure 33: Histograms of evaluation metrics. Figure (a) shows the results for
images of resolution 256×256, figure (b) for 512×512 images. The histograms
plot the frequency of certain evaluation metric value ranges for TPR, TNR,
DSC and HD and for both FCN and upsampled ResNet models and different
data augmentation approaches.
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Figures 34 and 35 show several representative examples of the obtained seg-
mentation results for images downsampled to a resolution of 256×256 and
images at original resolution of 512×512, respectively. For better illustra-
tion, original image data was overlaid with the contour of the ground truth
in green as well as the prediction made by our deep networks in red. Original
image, label and prediction data is shown in appendix C, figures 37 and 38.

Sample (a) Sample (b) Sample (c) Sample (d) Sample (e)

FCN trained

with

unaugmented

data

FCN trained

with

transformed

data

FCN trained

with fully

augmented data

ResNet trained

with

unaugmented

data

ResNet trained

with

transformed

data

ResNet trained

with fully

augmented data

Figure 34: Qualitative segmentation result overlays for images scaled to
256×256. Ground truth labels are shown by the contours in green, the pre-
dictions made by the deep learning models are overlaid in red.
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Sample (a) Sample (b) Sample (c) Sample (d) Sample (e)

FCN trained

with

unaugmented

data

FCN trained

with

transformed

data

ResNet trained

with

unaugmented

data

ResNet trained

with

transformed

data

Figure 35: Qualitative segmentation result overlays for images with resolu-
tion 512×512. Ground truth labels are shown by the contours in green, the
predictions made by the deep learning models are overlaid in red.
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7 Discussion

Agreement between Image Data and Ground Truth

Concerning the evaluation of agreement between CT data and the ground
truth labels generated from PET data, it can be observed that agreement is
generally good, but not perfect. Examples are shown in figure 31. However,
accuracy differs from dataset to dataset and even within individual slices. It
can be observed that accuracy is worse in images were the urinary bladder
only covers a small area surface of the image, like in image 31 (d) and (f).
This is due to the nature of PET imaging, which has low spatial resolution
and therefore, object boundaries might appear blurred. This is especially
problematic when objects are small.

Figure 31 also shows some of the unique challenges one is confronted with
when automatically segmenting the urinary bladder in CT images. It can
be noted that size and position of the urinary bladder is varying between
patients. In some image slices, for example in figure 31 (c), the shape of the
urinary bladder highly differs from it’s conventional, round form. Further-
more, low contrast between the bladder and surrounding soft tissue, as seen
in figure 31 (b), poses a big difficulty. This especially occurs at the ambiguous
bladder-prostate interface, as shown in figure 31 (e). It also becomes evident
that not all CT data offers the same quality. In example, images 31 (c) and
(f) show noticeable streak artefacts. Those artefacts are commonly found in
CT scans and appear between dense objects like bone or metal due to beam
hardening. Furthermore, since feature maps are significantly downsampled
within our network architectures, images with a small area surface of the
urinary bladder, as seen in figure 31 (f) might pose a problem, since small
details could be lost as a result of downsampling.

Influence of Data Augmentation on Segmentation Performance

Segmentation evaluation results in tables 4 and 5 show that the application of
data augmentation in the form of scaling and rotation to the original dataset
does improve segmentation performance significantly. For mean TPR and
DSC an increase of 2.3% and 2.8%, respectively, was achieved with the FCN
architecture and training and testing images with resolution of 256×256. For
data with resolution 512×512 a similar increase of 2.1% mean TPR and 4.3%
mean DSC was achieved. With the upsampled ResNet architecture the cor-
responding enhancement was 1.8% and 3.5% with downsampled images or
17.8% TPR and a decrease of 4% DSC with original image resolution. Av-
erage Hausdorff distance was decreased by 0.8 pixels and 1.4 pixels in FCN
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models, as well as 1.6 pixels and 7 pixels using upsampled ResNet for the
256×256 and 512×512 datasets, respectively. The mean true negative rate
exhibited very high values regardless of the used network model and shows no
significant variations between different training data sets. Although trans-
formation of training data did increase segmentation performance, it can be
noted that segmentation results obtained from the network trained with the
original dataset consisting of only 630 images and labels are also quite satis-
factory for models trained with downsampled image resolution. This shows
that when using pre-trained networks, one can achieve passable results with
only a small amount of training data.

From the evaluation scores achieved with models trained with fully aug-
mented data in table 4, it can be seen that the addition of noise to the
transformed training dataset does not improve the performance of of our pro-
posed networks. In fact, all metrics show a worse performance of networks
trained with artificially noisy training data compared to networks trained
with only transformed training data. Using the FCN architecture, mean
TPR even showed higher results when the network was only trained with
630 un-augmented training sets, with a TPR of 82.7% compared to 79.2%
achieved with the fully augmented training set. The same is true for the up-
sampled ResNet architecture, although to a lesser extend, with an achieved
TPR of 80.7% using un-augmented data compared to 79.7% using fully aug-
mented data. One explanation for this could be that the applied Gaussian
noise is not meaningful in the presented context. Therefore, the network
learns spurious patterns that are not present in the training data. Another
reason for the decrease in performance might be that the added noise is not
strong enough. This results in the model seeing very similar images repeat-
edly, which might lead to overfitting. The model starts to fit too specific to
the training set and loses it’s ability to generalize to the new examples found
in the testing set. Since we didn’t obtain satisfactory results with the noisy
training data, network architectures were not trained with this data at it’s
original resolution of 512×512.

Segmentation Results

The comparison of our FCN and upsampled ResNet architectures trained
with differently augmented datasets in table 4 shows that in case of images
rescaled to 256×256, best results can be achieved with the FCN architecture
trained with images that are augmented with scaling and rotation. This net-
work resulted in the highest true positive rate (85.0%) and Dice coefficient
(80.4%) as well as the lowest Hausdorff distance (6.1 pixels). The true nega-
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tive rate at 99.9% is the same for all tested models. The very high specificity
indicates that our models are very accurate when it comes to correctly la-
belling background. However, this measure is highly dependent on segment
size. Images with a lot of background, as it is the case in our examples,
naturally show a higher TNR. Regardless of the used training data, the FCN
architecture outperforms the upsampled ResNet architecture in all evalua-
tion metrics. Moreover, the comparison of training and inference times in
table 3 shows that our FCN architecture is significantly faster. On average,
it took 21 hours to train our FCN models with images of resolution 256×256,
while it took 39 hours to train the upsampled ResNet models with the same
datasets. When calculating a prediction from a single input image, our FCN
models show an average inference time of 9.8 ms, which is over 10 times faster
than the average inference time of the upsampled ResNet architectures with
an average inference time of 108.3 ms.

Inspecting the evaluation results using images at their original resolution of
512×512 in table 5, again, the FCN architecture generally performs better
in terms of our evaluation metrics. Especially Dice coefficient is notably
higher at 81.9% for FCN than for ResNet at 67.1% for our best performing
models. Also, the Hausdorff distance is shorter by 5 pixels, indicating that
our upsampled ResNet architecture produces more outliers. Only in terms
of true positive rate, the ResNet architecture achieved better results with a
TPR of 86.5 % compared to 83.1% for the FCN architecture. Again, training
and inference times are also considerably lower for FCNs than for upsampled
ResNets.

Looking at per-image evaluation of our models illustrated by histograms in
figure 33, it is evident that frequency distribution of our evaluation met-
rics is similar for FCN and upsampled ResNet. It is still recognizable that
FCN performance is in general slightly better than upsampled ResNet perfor-
mance. Looking at the True Positive Rate, it can be seen that most testing
images by far were segmented with a TPR between 90% and 100%. There is
also a significant amount of testing sets with a TPR between 80% and 90%,
which can also be considered a good result. However, a not negligible num-
ber of images resulted in a very low TPR between 0% and 10%. The same
is even more clear when looking at the Dice coefficient. While most testing
images resulted in a DSC of 80% or higher, up to more than 25 images from
our testing dataset were segmented with a DSC between 0% and 10%. Af-
ter inspecting our qualitative segmentation results, it became apparent that
most of these incorrectly segmented images are false positives. Our models
frequently produced a prediction for testing datasets in which the CT im-
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age did not show a segment of the urinary bladder and correspondingly, the
ground truth label was empty. Additionally, a couple of false negatives were
produced, primarily in image slices were the urinary bladder had a small area
surface plus the image possessed rather low soft tissue contrast. Looking at
Hausdorff distance distribution, it can be seen that most testing datasets
resulted in a HD of zero to four pixels. After that, frequency exponentially
decreases. However, Hausdorff distance reaches very high values for up to 40
pixels in some images which indicates that our models sometimes produce
outliers in the segmentation.

The qualitative segmentation results for images scaled to 256×256 shown in
figure 34 illustrate that for input images with good soft tissue contrast, a
large, homogeneous area surface and a regular shape of the urinary blad-
der, as seen in sample (a), all network models perform well. In sample (b),
contrast between the urinary bladder and surrounding tissue is not ideal,
moreover, the bladder itself includes varying grey values, meaning that the
area surface is not homogeneous. It is evident that while our FCN archi-
tecture has no trouble in detecting the urinary bladder in these images, the
upsampled ResNet architecture performs poorly. Apparently the upsampled
ResNet models are more sensitive against contrast and grey values. How-
ever, it can be seen from sample (c), that the ResNet models are better in
adapting to distinct shapes. Sample (d) is interesting because our generated
ground truth annotation does not follow the very unusual shape of the blad-
der very well in this example. While the ResNet models seem to fit better
to the ground truth label, the segmentation predicted by the FCN models,
especially the network trained with transformed data, seems to correspond
better to the actual outline of the bladder. Sample (e) shows, that despite
our initial concerns, the proposed models are able to identifying the urinary
bladder when only a small portion of it is visible in a slice, as long as con-
trast is good. In fact, the predictions made by our models in some cases even
follow the outline of the urinary bladder better than our underlying ground
truth segmentation.

The same observations can be made when looking at the qualitative segmen-
tation results for images of higher resolution in figure 35. For input images
of high quality, both architectures perform well. FCN does better when seg-
menting images with low contrast and inhomogeneous grey values as seen
in sample (b), while ResNet adapts better to unusual shapes as in sample
(c). Again, sample (d) allows for some very interesting observations. Here,
our upsampled ResNet architecture does a very good job in detecting the
urinary bladder, even recognising the small, detached portion of the bladder
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at the top. The FCN architecture also produces a more accurate segmenta-
tion than our underlying ground truth, but in this case, upsampled ResNet
trained with augmented data performs very well. It is also notable that
qualitative results for upsampled ResNet trained with unaugmented data of
images with resolution 512×512 are worst amongst all achieved predictions.
Segmentation results appear very uneven and edged, also they show a lot of
outliers which is supported by the high Hausdorff distance of averagely 23.9
pixels for this model. Obviously, a network for higher resolution images also
has more parameters that need to be tuned, and in this case, the 630 unaug-
mented training images apparently did not provide sufficient information to
specify all these parameters correctly.

It can be noted that while our networks trained with images of higher res-
olution don’t necessarily show a better segmentation performance in terms
of our evaluation metrics, as seen in tables 4 and 5, qualitative results are
to some extend much better for images with resolution 512×512, especially
for network models trained with augmented data. The reason for this is our
non-perfect ground truth. In many cases, predictions made by our models
don’t fit the ground truth we compare it to accurately, which results in low
evaluation scores. Nevertheless, looking at the image data one can see that
the predictions correspond well with the actual outline of the urinary blad-
der. This subjectively improved segmentation performance comes at the cost
of significantly longer training times. With an average training time of 71
hours, training a FCN architecture with images of full resolution requires
more than three times the training time than with images of downsampled
resolution. The same applies to training the upsampled ResNet architecture,
where 130 hours were required to train the network with 512×512 images.

7.1 Conclusion and Future Outlook

We introduced an approach to generate suitable training and testing datasets
for deep learning algorithms by exploiting 18F-FDG accumulation in the uri-
nary bladder to produce ground truth labels, and by the application of data
augmentation to enlarge a small dataset. Although in general, our method
for generating ground truth labels from PET data produces good results, the
agreement of image data with ground truth labels obtained by this approach
is most certainly not as high as with manually created ground truth segmen-
tations obtained from experienced physicians. Obviously, these non-perfect
labels influence the results produced by our segmentation networks. It is
shown in this thesis that when comparing segmentation results with these
non-perfect ground truth labels, evaluation metrics like Dice coefficient and
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true positive rate do not suffice to assess model performances, instead, quali-
tative evaluation by comparison with the underlying image data is preferable.
Again, manually created ground truth labels would be beneficial to calculate
more representative evaluation scores. However, since already segmented
medical image data is very rare and databases are generally very small, our
method is promising for creating a good starting position for training and
testing. In future work, it would be interesting to re-train our networks
with one or two accurately, manually segmented image datasets to analyse
whether the segmentation performance increases, and to compare segmenta-
tion results with manually created labels.

We demonstrated that training data augmentation in the form of transfor-
mations, like rotation and scaling, can significantly improve the performance
of segmentation networks, however, the addition of zero-mean Gaussian noise
to the training data did not result in an enhanced performance in our case.
Subsequent work could go into further exploring the effects of data augmen-
tation on the segmentation results, by generating even bigger augmented
datasets and by applying different noise types to the original image data.

Furthermore, we implemented and compared two different well-known deep
learning models for semantic image segmentation and tested them on our cre-
ated datasets. Our qualitative results show that the proposed segmentation
methods can accurately segment the urinary bladder in CT images and are in
many cases more accurate than the ground truth labels obtained from PET
image data. It is shown that the used FCN architecture generally performs
better in terms of evaluation metrics than the proposed ResNet architecture.
We achieved the best segmentation performance with our FCN network which
was trained with transformed image data. A proposal for future work is the
implementation of post-processing algorithms. In many publications, includ-
ing in [51] by Che et al., fully-connected conditional random fields are used
to accurately recover object boundaries that are smoothed within the deep
neural network. In our case, this might especially improve performance in
cases were the urinary bladder has irregular, distinct shapes.

Semantic image segmentation using deep learning algorithms is an ongoing
topic of research. Therefore, new network architectures for semantic seg-
mentation are frequently introduced. Most of these architectures are based
on the approaches used in this thesis and rely on a deep contracting path,
followed by a symmetric expansive path that performs upsampling in many
steps, for example U-Net [37], SegNet [39] or, more recently, the networks
introduced in [68]. One final proposal for future work is to apply such incom-
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ing architectures to our dataset. However, unless pre-trained networks can
be usefully integrated in these architectures, larger image datasets and more
computational power are probably required to train such networks efficiently.
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[30] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Müller. Efficient backprop. In Neural networks: Tricks of the trade,
pages 9–48. Springer, 2012. 18

[31] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling,
5(3):1, 1988. 18

81

http://www.deeplearningbook.org


[32] Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural networks: Tricks of the trade, pages
437–478. Springer, 2012. 19

[33] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural net-
works, 3361(10):1995, 1995. 20, 21, 22

[34] C Rafael Gonzalez and Richard Woods. Digital image processing. 2002.
23

[35] Li Deng and Dong Yu. Deep learning: Methods and applications. Tech-
nical report, May 2014. 25

[36] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen
Schmidhuber. Deep neural networks segment neuronal membranes in
electron microscopy images. In Advances in neural information process-
ing systems, pages 2843–2851, 2012. 26

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pages 234–241. Springer, 2015. 26, 77

[38] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3431–
3440, 2015. 26, 39, 40, 55, 58

[39] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet:
A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv preprint arXiv:1505.07293, 2015. 26, 77

[40] Mevislab getting started guide. http://mevislabdownloads.mevis.

de/docs/current/MeVisLab/Resources/Documentation/Publish/

SDK/GettingStarted.pdf. Accessed: 2017-10-09. 26

[41] Mevislab reference manual. http://mevislabdownloads.mevis.de/

docs/current/MeVisLab/Resources/Documentation/Publish/SDK/

MeVisLabManual.pdf. Accessed: 2017-10-09. 26

[42] Jan Egger, Junichi Tokuda, Laurent Chauvin, Bernd Freisleben,
Christopher Nimsky, Tina Kapur, and William Wells. Integration of the
openigtlink network protocol for image-guided therapy with the medical

82

http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted.pdf
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted.pdf
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted.pdf
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual.pdf
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual.pdf
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual.pdf


platform mevislab. The international Journal of medical Robotics and
Computer assisted Surgery, 8(3):282–290, 2012. 26

[43] Jan Egger, Markus Gall, Jürgen Wallner, Pedro Boechat, Alexander
Hann, Xing Li, Xiaojun Chen, and Dieter Schmalstieg. Htc vive
mevislab integration via openvr for medical applications. PloS one,
12(3):e0173972, 2017. 26

[44] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
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A Dataset Overview

Table 6: Used datasets obtained from RIDER PET/CT. The name of the
datasets, the used PET and CT data as well as the number of total slices
and the number of slices showing the urinary bladder are stated.

RIDER Dataset PET CT Total Slices Bladder Slices

1284094278 PET FDG SUV CT 2.5MM STD 358 40

1542248368 PET FDG SUV CT 2.5MM STD 351 35

1887858289 PET FDG SUV CT 2.5MM STD 354 35

1940675042 PET FDG SUV CT 2.5MM STD 354 40

2069446030 PET FDG SUV CT 2.5MM STD 291 25

2112049538 PET FDG SUV CT 2.5MM STD 295 30

217238498-1 PET FDG SUV CT 2.5MM STD 293 20

217238498-2 PET FDG SUV CT 2.5MM STD 291 25

2189009649 PET FDG SUV CT 2.5MM STD 293 20

2310941115 PET FDG SUV CT 2.5MM STD 291 30

2414443006-1 PET FDG SUV CT 2.5MM STD 293 25

2414443006-2 PET FDG SUV CT 2.5MM STD 298 25

2479814957 PET FDG SUV CT 2.5MM STD 298 35

2491061956 PET FDG SUV Recon 2: CTAC 2.5 THICK 291 25

2609389147-1 PET FDG SUV CT 2.5MM STD 292 35

2609389147-2 PET FDG SUV CT 2.5MM STD 291 25

2609389147-3 PET FDG SUV CT 2.5MM STD 297 25

2610856938 PET FDG SUV CT 2.5MM STD 294 25

2624615528 PET FDG SUV CT 2.5MM STD 358 65

2736200846 PET FDG SUV CT 2.5MM STD 338 25

2766484014 PET FDG SUV CT 2.5MM STD 295 20

2779755504 PET FDG SUV CT 2.5MM STD 304 20

2852173628 PET FDG SUV CT 2.5MM STD 295 25

2871069045 PET FDG SUV CT 2.5MM STD 291 25

3117097391 PET FDG SUV CT 2.5MM STD 303 25

3270637687 PET FDG SUV CT 2.5MM STD 296 20

3640513565 PET FDG SUV CT 2.5MM STD 306 30

5572739776 PET FDG SUV CT 2.5MM STD 295 35

6525572907 PET FDG SUV Recon 2: CTAC 2.5 THICK 148 35
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B Loss Development during Training

(a)

(b)

Figure 36: Development of the cross entropy loss during training. Figure
(a) displays the development of loss for training with images of resolution
256×256, while figure (b) shows the same for 512×512 image resolution. Loss
development is shown over the whole training process (34,020 iterations).
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C Seperate Segmentation Results
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Figure 37: Segmentation results for images scaled to 256×256.
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Figure 38: Segmentation results for images with original resolution of
512×512.
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