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Abstract

Nowadays, Global Navigation Satellite Systems (GNSS) enable us to determine our
position whenever desired in outdoor areas. In spite of the global availability of GNSS,
their signals cannot be used in indoor areas for positioning. A widely used indoor
positioning method has therefore emerged in the last decade: fingerprinting.

Fingerprinting consists of two phases. There is an offline phase, where a radio map is
recorded by measuring the signal strength of signals received in indoor areas (such as
Bluetooth low energy or WLAN signals) at reference points. There is also an online
positioning phase, where the same signals are measured and compared to the signals in
the radio map to estimate a position. As the offline phase is time-consuming, there is a
need to optimize fingerprinting.

This thesis focuses on radio fingerprinting optimization tailored to vehicles in parking
garages. It evaluates deterministic and probabilistic fingerprinting methods regarding
their optimization potential and investigates approaches to the algorithmic and economic
optimization as well as an integrated solution with vehicle sensor data.

The algorithms developed were tested in a parking garage near Graz. The algorithmic
optimization showed that the best results are achieved using deterministic Weighted
K Nearest Neighbour (WKNN) fingerprinting with distance metrics based on the L1

norm. The economic optimization revealed that the achievable accuracy does not decrease
when fingerprints are only recorded in areas where the vehicle is allowed to drive. The
integration with vehicle sensor data lowered the Root Mean Square Error (RMSE) of the
trajectories to less than 3 m.

IV



Kurzfassung

Globale Satellitennavigationssysteme (GNSS) ermöglichen heutzutage die weltweite
Positionsbestimmung in Außenbereichen. Trotz der globalen Verfügbarkeit können GNSS-
Signale in Innenräumen nicht zur Positionsbestimmung herangezogen werden. Eine weit-
verbreitete Positionierungsmethode in Innenbereichen ist das sogenannte Fingerprinting.

Fingerprinting besteht aus zwei Phasen, der Offline- und der Online-Phase. In der Offline-
Phase wird eine Merkmalskarte aufgenommen, indem in Innenräumen verfügbare Signale
(wie beispielsweise Bluetooth Low Energy oder WLAN Signale) an Referenzpunkten
aufgenommen und gespeichert werden. In der Online-Phase werden dieselben Signale
gemessen und mit den in der Merkmalskarte gespeicherten Signalen verglichen, um
eine Position zu schätzen. Da die Offline-Phase sehr zeitaufwendig ist, besteht beim
Fingerprinting Optimierungsbedarf.

Diese Masterarbeit beschäftigt sich mit der Optimierung von Fingerprinting mit Radio-
signalen für Autos in Parkgaragen. Sowohl deterministische als auch probabilistische
Fingerprinting Ansätze werden hinsichtlich ihres Optimierungspotentials untersucht.
Hierbei werden die Optimierung der Algorithmen, die ökonomische Optimierung sowie
die Integration von Fahrzeugtelemetriedaten diskutiert.

Die entwickelten Algorithmen wurden umfangreich in einer Parkgarage in der Nähe von
Graz getestet. So zeigte die algorithmische Optimierung, dass sich deterministisches
Fingerprinting mit einem gewichteten K-nächste-Nachbarn Ansatz und L1-basierten
Normen für Fahrzeuge in Parkgaragen am besten eignet. Als Ergebnis der ökonomischen
Optimierung wurde festgestellt, dass es ausreicht, wenn nur Referenzpunkte an tatsäch-
lich befahrbaren Bereichen der Garage aufgenommen werden. Durch die integrierte
Positionslösung mit Fahrzeugtelemetriedaten konnte die mittlere Abweichung der
Trajektorien von der Referenztrajektorie auf unter 3 Meter verringert werden.
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Chapter 1

Introduction

This chapter aims at giving a general introduction to this Master’s thesis on radio
fingerprinting tailored to vehicles in parking garages. Section 1.1 discusses the motivation
behind this thesis, explaining in which scenarios fingerprinting is needed, and evaluating
why fingerprinting still needs to be optimized. The research aims are then covered in
Section 1.2. To conclude this chapter, an overview of the structure of this thesis is given
in Section 1.3.

1.1 Motivation

This section aims at explaining the relevance of fingerprinting and the need to optimize
the process.

For several millennia, travelling the world has been of interest to mankind. Military
interests such as the expansion of territory, economic interests, especially trade, and
scientific advancements through the exchange of knowledge with other cultures could not
have been realized without navigation, and navigation requires the knowledge of one’s
position.

Nowadays we are used to being able to determine our position whenever desired through
Global Navigation Satellite Systems (GNSS). However, as soon as we move indoors, be
it as a pedestrian entering a big building or as a driver entering a parking garage, GNSS
signals can no longer be used for positioning. In the last years, fingerprinting has become
a standard method in absolute indoor positioning.
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Chapter 1 Introduction

Fingerprinting makes use of signals of opportunity, i.e. signals which are already present
in indoor environments such as magnetic field strength, signals within Wireless Local
Area Networks (WLAN) or Bluetooth Low Energy (BLE) signals. If the latter two are
used, we speak of radio fingerprinting. In general, radio fingerprinting consists of two
phases. In the offline phase or training phase of radio fingerprinting, Received Signal
Strengths (RSS) are measured at Reference Points (RP) and stored in a radio map along
with the coordinates of the reference point and information from which Access Points
(AP) the RSS were recorded. In the online phase or positioning phase, RSS are recorded
and matched to the radio map to estimate a position.

Given that fingerprinting has already become a common indoor positioning method, why
is there a need for optimization? One of the main drawbacks of fingerprinting is that the
offline phase is extremely time-consuming. Radio maps change over time and need to be
updated regularly; it is therefore desirable to minimize the time needed to create and
update radio maps. Additionally, hardware and hardware maintenance costs can still
be minimized. The algorithms used have potential for improvement in order to describe
relationship between RSS and position in a more stable manner. If additional data, e.g.
relative positioning data, is present to support the algorithm, it can be used to compute
an integrated positioning solution.

1.2 Research aims

The aim of this thesis is to compare existing algorithms for fingerprinting and evaluate their
optimization potential. Both deterministic and probabilistic fingerprinting are investigated
in terms of their principles, functioning and potential algorithmic optimization.

Furthermore, sparse fingerprinting as well as the automated interpolation of fingerprints
with path loss models are analysed in order to optimize the time needed to create radio
maps.

As this thesis focuses on fingerprinting tailored to vehicles, an integrated positioning
solution using both fingerprinting and vehicle sensor data is developed for real-time
applications. Finally, the evaluated algorithms are tested in a parking garage.
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Chapter 1 Introduction

1.3 Outline

This thesis is divided into three parts. Part I deals with the theoretical foundations
of radio fingerprinting; it includes a chapter on commonly used radio signals in indoor
navigation and examines the fundamental principles of fingerprinting. Part II presents
the theoretical background of fingerprinting optimization and comprises chapters on
algorithmic and economic optimization as well as the combination of fingerprinting with
vehicle sensor data. Part III describes the practical investigations carried out during the
research project and presents the results as well as an outlook for further research.
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Chapter 2

Radio signals in indoor navigation

This chapter will focus on the two types of radio signals which are commonly used
in indoor navigation in combination with fingerprinting, namely Wireless Local Area
Network (WLAN) and Bluetooth Low Energy (BLE). Both technologies are based on
electromagnetic radio waves and operate in the unlicensed Industrial, Scientific and
Medical (ISM) band. The properties of both technologies and their application in
indoor positioning will be discussed. Furthermore, the attributes of the Received Signal
Strength (RSS) are investigated.

2.1 Wireless local area networks

This section will introduce WLAN and give a brief overview of its standardization and
application in indoor positioning.

WLAN is a technology used to wirelessly connect computers which are close to each
other. WLAN can operate in two modes, ad-hoc mode and infrastructure mode [7]. In an
ad-hoc network, two computers communicate peer-to-peer, i.e. they are hierarchically
equal. In infrastructure mode, two or more devices are connected to the network using a
distribution system which is realized by one or more Access Points (AP). A schematic
view of the system architecture of WLAN operating in infrastructure mode is given in
Figure 2.1. Usually, AP are at a fixed location and wireless clients connect to them
to join the WLAN. All AP and clients have a Medium Access Control (MAC) address,
which allows identifying them uniquely within the network. Most WLAN operate in
infrastructure mode, which is also the mode used in indoor positioning systems.
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Chapter 2 Radio signals in indoor navigation

Figure 2.1: System architecture of WLAN in infrastructure mode.

Table 2.1: Release year, spectrum and channel width of the most important WLAN protocols
according to [40] and [48]

Protocol Release year Spectrum [GHz] Channel width [MHz]
802.11a 1999 5 20
802.11b 1999 2.4 22
802.11g 2003 2.4 20
802.11n 2009 2.4 20/40

5 20/40
802.11ac 2013 5 20/40/80/160

2.1.1 IEEE standardization

WLAN is a standard of the Institute of Electrical and Electronics Engineers (IEEE)
802.11 family, with its first specification published in 1997. The initial specification only
defined the use of the 2.4 GHz band with data rates of 1 or 2 Mbit/s. Later the standard
was expanded and the working group was split into two task groups working with a
2.4 GHz band (IEEE 802.11b) and a 5 GHz band (IEEE 802.11a) [27]. Ever since then,
the development of the standard has led to an increase in performance and at the same
time a decrease in costs [42]. With the growth of the market, the standards 802.11g,
802.11n, 802.11ac emerged, allowing data rates of up to 1300 Mbit/s (IEEE 802.11ac at
a bandwidth of 80 MHz). Table 2.1 gives an overview of the most important standards
and channel bandwidths.
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Chapter 2 Radio signals in indoor navigation

2.1.2 Indoor positioning using wireless local area networks

Positioning in WLAN environments is attractive due to the fact that WLAN have become
ubiquitous in modern indoor environments and no additional hardware is needed [51],
since all smartphones and computers are capable of exchanging data using the IEEE
802.11 standard. Indoor positioning using WLAN is based on beacon signals which are
transmitted between the fixed access points and the mobile clients.

According to Kushki et al. (2012), four types of radio signal features in WLAN can be
used for positioning:

• Angle of Arrival (AoA): The angle of the arriving wave is measured with an
antenna. With waves coming from two or more AP with known coordinates, the
position of the antenna can be calculated.

• Time of Arrival (ToA): The time which the signal needs to travel from the AP
to the receiver is used to calculate the distance between them. With three or more
distances and the known coordinates of the AP in a two dimensional coordinate
system, the position of the client can be computed through circular lateration.

• Time Difference of Arrival (TDoA): At two receivers, the ToA is measured
and the difference between the two ToAs is calculated. Hyperbolic lateration can be
used to calculate the position of the user with three or more TDoA measurements.

• RSS: The received signal power at the user’s location is measured. As the distance
increases, the RSS decreases. However, the RSS is also influenced by other factors,
which will be further discussed in Section 2.3.

AoA requires special antennae to detect the direction on the incoming radio wave, which
leads to additional hardware costs. For ToA and TDoA, the transmitters must be precisely
synchronised, which is not easily achievable in WLAN systems [29]. The most commonly
used feature of WLAN radio signals used in indoor positioning is therefore RSS.

2.2 Bluetooth low energy

BLE is a technology which emerged in 2009, when the Special Interest Group (SIG)
published the Bluetooth standard 4.0. It is also known as Bluetooth Smart. In contrast to
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Chapter 2 Radio signals in indoor navigation

classic Bluetooth, where the data rates were increased with every published standard, BLE
was designed for very low power consumption [19]. Fulfilling the low power requirements
requires the data rate to be lowered, as can be seen in Table 2.2. BLE can be used
for a number of applications in the fitness and health care sectors, in wearable devices,
proximity sensing and car electronics [23].

Table 2.2: Development of the data rates of the Bluetooth standard according to Heydon
(2013)

Version Data rate
Bluetooth v1.1 1 Mbps
Bluetooth v2.0 3 Mbps
Bluetooth v3.0 54 Mbps
Bluetooth v4.0 (BLE) 0.3 Mbps

2.2.1 Specification

Bluetooth and BLE, like 802.11b, 802.11g, and 802.11n WLAN, operate on the 2.4 GHz
ISM band. Both BLE and Bluetooth classic use frequency hopping. While classic
Bluetooth uses 79 channels with a bandwidth of 1 MHz, BLE operates on 40 channels
with a bandwidth of 2 MHz each [4]. Of the 40 channels, BLE only uses three to
broadcast its identifier while the other 37 channels are used for data transmission. The
three advertisement channels (37, 38 and 39) are centred at 2402 MHz, 2426 MHz, and
2428 MHz, respectively, and are depicted in dark red in Figure 2.2. Their frequencies
were chosen to minimize interference with the commonly used WLAN channels 1, 6 and
11 [15], which are also displayed in Figure 2.2.
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Figure 2.2: BLE spectrum and three WLAN channels in the 2.4 GHz band
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Chapter 2 Radio signals in indoor navigation

As BLE uses different channels than Bluetooth classic, they are not compatible. Therefore,
three types of devices have existed since the Bluetooth 4.0 standard was introduced
[19]:

• Single-mode: Single-mode devices only support BLE. They can communicate
with other single-mode devices as well as with dual-mode devices.

• Dual-mode: Dual-mode devices are capable of receiving both Bluetooth classic
and BLE. They support communication with single-mode, other dual-mode and
classic devices.

• Classic: Classic devices only support Bluetooth classic and cannot communicate
with single-mode devices. However, they can communicate with dual-mode devices.

Since BLE was designed for low power consumption, BLE single-mode devices are small,
low-cost and can run on batteries [14]. Modern smartphones, such as the Samsung Galaxy
S3, Google Nexus 5 or iPhone 5S and later versions, are equipped with BLE receivers
[62].

2.2.2 Beacons

BLE access points, or beacons, transmit their advertising data according to a standardized
protocol. iBeacon is a standard developed by Apple Inc. in 2013 [54] and is now widely
used in indoor positioning. It was established to determine whether a user is in a certain
region around the beacon [1] and allows estimating the proximity to the beacon.

An iBeacon advertisement consists of a Universally Unique Identifier (UUID) and a Major
and Minor, which identify the beacon. The RSS is used to estimate the distance from
the beacon.

Various manufacturers produce BLE beacons which transmit data with the iBeacon
protocol. For this thesis, beacons by the Spanish Accent Systems were used. They run
on coin cell batteries and an example is displayed in Figure 2.3.

9



Chapter 2 Radio signals in indoor navigation

Figure 2.3: BLE beacon by Accent Systems

2.2.3 Advantages of Bluetooth low energy in indoor
positioning

In indoor positioning, the use of WLAN fingerprinting has become a common approach.
However, BLE can also be used for fingerprinting, and has a series of advantages compared
to WLAN.

Due to the fact that BLE beacons have a very low power consumption, are small and run
on batteries, they can easily be placed at many desired positions in indoor environments.
WLAN routers, on the other hand, are larger, more expensive and need to be plugged into
a socket for power supply, which limits the possibilities of deploying them at positions
which are geometrically ideal for positioning.

BLE scans are faster than WLAN scans and enable a higher update rate. With WLAN
more than 50 channels are available in the 2.4 and 5 GHz bands. Each access point
broadcasts a Service Set Identifier (SSID), and a broadcast intervall has a duration of
100 ms. During a passive WLAN scan, a device waits for the SSID to be broadcast, and
with so many available bands the scan durations are high [15]. Faragher and Harle (2015)
showed that the scan rate of a Samsung Galaxy S4 is 0.25 Hz when scanning 2.4 and 5
GHz WLAN channels1. BLE scans, in contrast, are significantly shorter, as a scan cycle
only hops over the three advertising channels.

Furthermore, a 2014 study conducted in one floor of a university building [62] showed
that BLE can outperform WLAN at 2.4 GHz in indoor positioning in terms of accuracy.
The authors attribute these results to the significantly higher sampling rate of BLE,
its channel hopping, and its lower transmission power. Channel hopping helps BLE to
minimize interferences, whereas the low transmission power minimizes multipath effects.
Lohan et al. (2015) conducted multi-floor tests for BLE and WLAN 2.4 GHz as well as
WLAN 5 GHz and showed that WLAN 2.4 GHz and BLE achieve similar results. The

1Note that active WLAN scans can also be used, but they increase network traffic.
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Chapter 2 Radio signals in indoor navigation

results of WLAN 5 GHz were of poor quality, which is attributed to the fact that less
AP were able to transmit at this frequency.

2.3 Properties of the received signal strength

When using the RSS of WLAN and BLE for indoor positioning, it is vital to understand
its characteristics in indoor environments.

RSS is measured in decibel-milliwatts (dBm), a logarithmic power ratio which refers to
the power of one milliwatt. In free space, the RSS decreases inversely proportional to the
square of the distance between transmitter and receiver [31]. In indoor environments,
such as buildings or parking garages, radio channels are affected by interference and noise
and the RSS varies both spatially and temporally.

When it comes to the spatial properties of the RSS of radio signals, the signal strength
not only decreases with increasing distance, it is also strongly attenuated by walls and
propagates asymetrically. Given that the resonance frequency of water lies at 2.4 GHz
[25], radio signals with a frequency of 2.4 GHz, such as BLE and 2.4 GHz WLAN, are
absorbed by water. As the human body mainly consists of water, it is a strong attenuator
for radio signals at this frequency. This implies that when a radio map is recorded, the
operator should not block the signal path. Objects located in indoor environments can
cause shadowing or multipath effects due to reflection and scattering of the signal.

The RSS at a fixed location also changes over time when objects in the environment
change, e.g. in buildings when furniture is moved or people walk around.

To calculate positions from RSS measurements, parametric and non-parametric methods
can be used. Parametric methods are based on path-loss models. These models are
used to compute the distances to the AP from RSS. If the coordinates of the AP are
known, the distances to the AP can be used to compute the position of the receiver using
circular lateration. Non-parametric methods, or fingerprinting-based methods do not
use functional relationships to model the relation between RSS and position and will be
described in more detail in Chapter 3.
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Chapter 3

Fingerprinting

In Chapter 2, it was concluded that the RSS is a commonly used feature of radio signals
to determine positions indoors. Walls and objects located in indoor environments cause
irregular, spatially varying RSS patterns, and fingerprinting exploits exactly this property.
This chapter will present the basic principles of fingerprinting and then focus on the two
types of fingerprinting methods, deterministic and probabilistic fingerprinting.

3.1 Basic principles

Fingerprinting consists of two phases: an offline training phase and an online location
estimation phase [12], [33], [56].

In the offline phase, a radio map is built. WLAN or BLE Access Points (AP) are placed
in the target environment in a way that full coverage is ensured. At Reference Points
(RP), sample measurements of the RSS from the surrounding AP are taken. These RSS
patterns are so-called fingerprints and are stored in a database called radio map together
with location information, i.e. the coordinates of the fingerprint. Consequently, at each
RP the following information is stored:

• The coordinates of the RP,

• RSS measurements received from the AP,

• information on which RSS measurement belongs to which AP.
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Table 3.1: Requirements that, according to Niedermayr (2015), attributes used for fingerprinting
should fulfil.
Property Description
Spatial variation The attribute of the field has to change significantly with

the position.
Temporal stability The attribute of the field should not change over time or

the temporal changes should be predictable with
sufficient accuracy.

Observability The attribute used for fingerprinting has to be measurable.
Robustness The attribute field should be as robust as possible against

changes in the environment.
Unambiguity The vector of attributes should be unique for one position.
Availability Generating the attribute field should be easy or the

attribute field should already be available.

In the online phase, the user measures RSS at an unknown location. The RSS measured
are compared to the fingerprints in the radio map to estimate the user’s location.

Note that fingerprinting cannot only be done with radio signal RSS, it can also use
other physical quantities, i.e. magnetic field strength. Whichever attribute is used for
fingerprinting, it has to fulfil a series of requirements, which are listed in Table 3.1.
The first attribute listed, spatial variation, determines the achievable accuracy of the
positioning system: the higher the gradient of the attribute field, the more accurately a
position can be determined [43]. As temporal stability is not given for radio fingerprinting,
radio maps need to be updated regularly. The observability of radio fingerprinting is
given through RSS measurements. Radio signals are robust enough in order to be used for
fingerprinting. Unambiguity is achieved through the unique propagation characteristics
of radio signals in indoor environments. The availability of radio signals in indoor
environments can be taken for granted, as WLAN is already ubiquitous. BLE beacons
can easily be deployed, and even some light bulbs are already equipped with BLE.

The methods used for fingerprinting can be divided into two groups: deterministic and
probabilistic fingerprinting [6]. Sections 3.2 and 3.3 will focus on them in more detail.
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Chapter 3 Fingerprinting

Figure 3.1: Schematic view of a deterministic radio map. At every reference point (dark red),
the RSS received from the surrounding AP are stored as a single deterministic value.

3.2 Deterministic fingerprinting

Deterministic fingerprinting techniques use deterministic parameters and observations to
estimate locations. They are based on the computation of distances between the observed
vector of RSS and the vector of RSS stored at the reference points in the radio map
[43].

Let a radio map consist ofN AP andM RP. In the offline training phase, only one value for
the RSS from every accessible AP is stored in the radio map for every reference point. The
radio map now contains M vectors (one for every reference point) containing N elements
each (the measured RSS for every AP). Figure 3.1 shows a schematic representation of a
deterministic radio map with four reference points and four access points (N = M = 4).
As shown in the example, it can also happen that not all AP are visible at every reference
point.

During the online phase, a receiver is situated at the unknown position p(x, y). At this
position, the RSS received from all access points APi are measured and stored in a vector
rp

rp =


RSSAP1,p

RSSAP2,p

...
RSSAPN ,p

 . (3.1)
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The measured signal pattern rp is now compared to all M fingerprints stored in the radio
map. A distance metric D is used as a measure of similarity, for which the Euclidean
norm is often used [56]:

Di = ||rp − ri||2 =

√√√√ N∑
n=1

[rp(n)− ri(n)]2 i = 1 . . .M. (3.2)

Formula 3.2 is used to compute the distance to every RP. The list of distances is sorted
in ascending order. The RP at the top of the list are the RP which are closest (smallest
computed distance) to the position of the receiver. The simplest deterministic method
to estimate the unknown position P (x, y) is called Nearest Neighbour. This technique
simply selects the RP with the minimum distance and assumes the user is located at
this RP. A more sophisticated approach is the K Nearest Neighbour, which takes the K
RP with the smallest distances and computes the unknown position by averaging the
coordinates of these K RP.

Apart from Nearest Neighbour methods other deterministic fingerprinting methods have
also been developed. They are based on techniques for data classification, like Support
Vector Machines [16] and Neural Networks [32]. The investigation and optimization of
classification-based schemes in combination with fingerprinting, however, lies beyond the
scope of this thesis.

A problem can occur in deterministic fingerprinting when RSS values received from AP
are observed which are missing in the reference vectors. An incomplete reference vector
will result in a computed distance which cannot be compared to a distance calculated
from a full reference vector. In general, the distance is bigger if it is calculated from more
observations, as each element contributes positively to the calculated distance (except
when the observation equals the reference value, then the contribution is 0). To overcome
this problem, Roos et al. (2002) and Hotta et al. (2012) set the missing reference values
to a fixed value, e.g. the smallest observable RSS.

3.3 Probabilistic fingerprinting

In probabilistic fingerprinting, the RSS vector of observations r and the position p are
seen as multivariate random variables [41]. The variables r and p are dependent, meaning
that if one is known, the other one can be predicted [31].
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A probabilistic radio map contains fingerprints which express the probability of measuring
an RSS pattern r at the position p; this conditional probability can be expressed as

P (r|p). (3.3)

In the online location estimation phase, an RSS vector r is observed. The aim is to find
the most likely (argmaxP ) position given our observations [61] :

p̂ = argmax
p

P (p|r), (3.4)

where P (p|r) is the conditional probability density function of the state p given the
measurements r. This conditional probability can be rewritten using Bayes’ theorem [60],
[35]:

P (p|r) = P (r|p)P (p)
P (r) . (3.5)

P (r|p) is the likelihood, the conditional probability of the RSS vector at the reference
positions. P (p) is the a-priori distribution, or prior probability. P (r) is a normalizing
constant [21], [28]. The position can therefore be estimated from

p̂ = argmax
p

P (r|p)P (p). (3.6)

Equation 3.6 can be used in combination with particle filtering to estimate the positions
along the trajectory of a moving object. Information on the prior probability P (p) of the
position can be extracted from the particle filter. If the prior is unknown or only one
position is estimated, the prior is assumed to be uniform [46], and equations 3.4 and 3.6
can be rewritten as

p̂ = argmax
p

P (r|p). (3.7)

The Maximum Likelihood (ML) estimator in Equation 3.7 has one disadvantage: the
estimated position will always be at one of the reference points, which limits the positioning
accuracy to the density of the RP. To overcome this problem, a K Nearest Neighbour
estimator can be used which takes the K most probable RP and averages their coordinates
to obtain the estimated position [31].

3.3.1 Probabilistic radio map

While a deterministic radio map only requires one observed RSS to be stored at every RP
for each AP, probabilistic radio maps need to store a density function which expresses
the likelihood that an RSS pattern r is observed at the position of each RP.
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The likelihood density P (r|p) at every RP is multivariate. A common assumption in radio
fingerprinting is that the AP are independent, so that the probability to observe an RSS
pattern at a certain position pi can be calculated from the product of the probabilities of
observing each RSS sample at this position [61],[60], [21]:

P (r|pi) =
N∏
j=1

P (rj|pi). (3.8)

To obtain the likelihood density, a time series of RSS has to be measured at each RP for
every AP. These time series are then used to estimate a probability density using either
a non-parametric approach or a parametric approach.

Parametric approach. Parametric approaches assume a model, i.e. an underlying
distribution, and estimate the parameters of the model. In radio fingerprinting, the
density is often assumed to be Gaussian [31]. If Gaussian distribution is assumed, only
the mean and the variance of each time series have to be stored in the radio map, as they
fully describe Normal distribution.

A schematic representation of a probabilistic radio map with four AP and four RP is
portrayed in Figure 3.2. At every reference point, time series of the RSS of the AP were
measured and used to estimate a probability density. The density function describes
the probability of measuring a certain RSS value at this reference point. To obtain the
probability to measure a RSS pattern, the probabilities of measuring every single value
in this pattern have to be multiplied according to Equation 3.8.

Non-parametric approaches: the histogram. Non-parametric methods estimate
the density without assuming a specific statistical form of the data. A widely used
non-parametric technique to estimate the density is the histogram. Histograms are
constructed by counting the frequency of values falling into a certain interval, a so-called
bin. The relative frequency of a value is an estimate of the probability of occurrence.

Multiple methods exist to estimate the ideal number of bins, k, and the bin width, b.
One example is given by [47]:

k ≈ 1 + 3.3 log10 n (3.9)

b ≈ xmax − xmin√
n+ 1 . (3.10)

Equation 3.9 calculates the number of bins from the number of samples n. Equation
3.10 yields the bin width, taking into account the maximum and minimum values of the
samples xmax and xmin as well as the total number of samples n.
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Figure 3.2: Schematic view of a probabilistic radio map. At every reference point (dark red),
a probability distribution which describes the likelihood that a certain RSS value will be
received from a specific AP, is stored.

Figure 3.3: Histogram obtained from 2721 RSS measurements received from a BLE access
point.
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An example of an RSS histogram is given in Figure 3.3. 2721 RSS measurements received
from a BLE access point were taken to construct the histogram, using equations 3.9 and
3.10 to estimate the number of bins and the bin width.

The histogram estimate obtained by taking measurements from one AP at a specific
RP is univariate. It yields an estimate of the probability P (rj|pi) that an RSS value
from one AP rj is observed at the RP pi. To obtain the multivariate estimate for the
probability of observing a signal pattern r, the single probabilities have to be multiplied
according to Equation 3.8.

Using histograms to estimate the likelihood density has the advantage that no prior stat-
istical form of the data has to be assumed. However, there are also several disadvantages.
First, the density estimated from the histogram is zero outside the range of the sample
data. At the bin boundaries, the density is discontinuous. Furthermore, a large number
of bins need to be stored to construct a radio map, and the likelihood density can also be
obtained from other methods which need less storage space.

Non-parametric approaches: Kernel density estimators. Kernel density estim-
ators provide an alternative to histograms and are often used in radio fingerprinting
[30]. A kernel density estimate results from a superposition of kernel functions which are
placed at the measured data points. For a set of n RSS samples ri at the reference point
pi, the kernel density estimate is defined as follows [31]:

f̂(r|pi) = 1
nσr

n∑
t=1

K
(r− ri(t)

σr

)
, (3.11)

with the kernel function K(·) and σr being the kernel bandwidth.

A d-dimensional kernel function K(·) which is used to model the likelihood density must
fulfil the following four conditions [31], [49]:

1. The range of the kernel function has to be positive:

K(r) ≥ 0,∀r ∈ Rd. (3.12)

2. The kernel function should have unit area:∫
Rd
K(r) = 1. (3.13)
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3. The mean of the kernel function is zero:∫
Rd

rK(r) = 0. (3.14)

4. The covariance matrix of the kernel corresponds to the identity matrix:∫
Rd

rrTK(r) = Id×d. (3.15)

Examples of univariate kernel functions are the Epanechnikov kernel, the triangular kernel
and the Gaussian kernel. According to [31], the Epanechnikov kernel function is defined
as:

KEpanechnikov(x) =


3
4(1− 1

5x
2)/
√

5, for x <
√

5
0, for x ≥

√
5
, (3.16)

and the triangular kernel is defined as:

Ktriangular(x) =

1− |x|, for |x| < 1
0, for |x| ≥ 1.

(3.17)

A commonly used kernel in radio fingerprinting is the Gaussian kernel [46]:

KGauss(x) = 1√
2πσ

exp
(
− x2

2σ2

)
. (3.18)

The parameter σ in Equation 3.18 defines the kernel bandwidth. The influence of this
parameter will be discussed in Section 4.2.1. As with histograms, a multivariate kernel is
obtained by multiplying univariate Kernels.

Using Gaussian kernels instead of histograms has the advantage that a continuous
likelihood density is obtained and the probability for values outside the range of the
sample data does not become zero. However, a likelihood density obtained from kernel
density estimation requires a lot of memory space, as every data point needs to be stored.
Parametric methods can significantly reduce the storage space, at the disadvantage that
prior assumptions regarding the likelihood distribution have to be made.
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Optimization theory
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Chapter 4

Algorithmic optimization

In this chapter, approaches to optimizing deterministic and probabilistic fingerprinting
algorithms will be discussed. For deterministic fingerprinting, a WKNN approach and
various distance metrics will be presented. For probabilistic fingerprinting, the influence
of the kernel bandwidth will be discussed, and different weights for a probabilistic WKNN
approach will be examined.

4.1 Deterministic fingerprinting

This section will focus on the optimization of deterministic fingerprinting algorithms
based on Nearest Neighbour techniques.

In the offline phase of deterministic fingerprinting, one RSS value received from every
AP is stored at each RP in the radio map. During the online positioning phase, the
user measures an RSS pattern rp, which is then compared to the patterns ri stored in
the radio map. Using the K Nearest Neighbour technique, the K most similar RP are
determined with Equation 3.2 and their coordinates are averaged to obtain an estimate
of the user’s position p̂.

4.1.1 Weighted k nearest neighbour

An algorithmic improvement can be achieved by using the WKNN technique. The WKNN
method assumes that the distances Di computed from the RSS can be compared to
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actual distances between the user and the RP. The user’s position p̂ is computed from a
weighted average of the K most similar RP [56]:

p̂WKNN =
K∑
i=1

1
Di

pi · (
K∑
i=1

1
Di

)−1. (4.1)

The K most similar points in Equation 4.1 are the K points with the smallest computed
distance metric Di. The distances Di can be computed using the Euclidean norm (see
Equation 3.2). In WKNN fingerprinting, the inverse distances are used as weights, giving
the coordinates of a more similar (closer) RP a higher weight than those of a RP where
the RSS pattern is less similar and the distance is bigger. The inverse sum of the inverse
distances (∑K

i=1
1
Di

)−1 is used as a normalizing factor.

The size of K can be any integer from 1 to the number of RP M . If only one RP is taken
into consideration (K = 1), the estimation corresponds to a simple Nearest Neighbour
method. If all RP are considered (K = M), the estimation might not necessarily yield
the best result, as RP which are further away might have a too strong influence. Kushki
et al. (2012) showed that the optimal number of AP in WKNN fingerprinting is K = 4.

4.1.2 Norms

Even though the Euclidean norm is commonly used to determine the most similar
fingerprints and to compute the weights for WKNN fingerprinting, other metrics might
better express the relationship between distance and RSS similarity. Del Corte-Valiente
et al. (2009) and Torres-Sospedra et al. (2015) investigated different distance metrics for
indoor positioning systems and found that there are alternatives which outperform the
Euclidean distance. Out of the 5 metrics tested by Del Corte-Valiente et al. (2009) and
out of the 51 metrics proposed by Torres-Sospedra et al. (2015), the most efficient ones
will be presented in this thesis.

Recall that we have defined a deterministic radio map with N AP and M RP in Section
4.1. At every RP, N RSS values (one received from every AP) are stored along with the
coordinates of the RP. In the online positioning phase, the user measures an RSS pattern
rp which is compared to the RSS patterns ri at the RP. Distance metrics Di are used as
measures of similarity between the stored fingerprints and the measured RSS pattern.
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Cha (2007) divides distance norms into subgroups, so-called families. This nomenclature
will be adopted for this thesis. The norms presented are taken from [52] and [5].

The Minkowski Lp family. The Minkowski family includes the Lp norms, such as the
Manhattan distance (L1), Euclidean distance (L2) and the Chebyshev distance (L∞).
The most general member of this family, the Minkowski distance Lp, is calculated as

DLp,i = p

√√√√ N∑
n=1
|rp(n)− ri(n)|p i = 1 . . .M. (4.2)

All other norms from the Minkowski family can be derived from Equation 4.2. The
Euclidean distance was already addressed in Section 4.1 in Equation 3.2. The Manhattan,
or City Block distance (p = 1), is computed from the absolute value of the difference of
the measured RSS rp(n) received from AP n and the RSS value ri(n) from AP n stored
at the RP i.

DManhattan,i =
N∑
n=1
|rp(n)− ri(n)| i = 1 . . .M. (4.3)

As p approaches infinity, the Chebyshev distance is derived:

DChebyshev,i = max
n
|rp(n)− ri(n)| i = 1 . . .M. (4.4)

The L1 family. Another family of norms is the L1 family, whose members are based
on the Manhattan (L1) distance. A prominent member of this family is the Sørensen or
Bray-Curtis distance, which is caluclated as

DSørensen,i =
∑N
n=1 |rp(n)− ri(n)|∑N

n=1(|rp(n)|+ |ri(n)|)
i = 1 . . .M. (4.5)

The Gower norm also belongs to the L1 family. It is computed from the L1 norm divided
by the number of RSS, which in WKNN methods is equivalent to the Manhattan norm,
as it yields the same distances just divided by a constant:

DGower,i = 1
N

N∑
n=1
|rp(n)− ri(n)| = 1

N
DManhattan,i i = 1 . . .M. (4.6)

Another representative of the L1 family is the Soergel distance,

DSoergel =
∑N
n=1 |rp(n)− ri(n)|∑N

n=1 max(|rp(n)|, |ri(n)|)
i = 1 . . .M, (4.7)

which is similar to Kulczynski:

DKulczynski =
∑N
n=1 |rp(n)− ri(n)|∑N

n=1 min(|rp(n)|, |ri(n)|)
i = 1 . . .M. (4.8)
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While Soergel divides the L1 by the maximum absolute value of the RSS values compared,
Kulczynski uses the minimum absolute value. The Canberra norm might at first resemble
Sørensen but it normalizes the Manhattan norm individually for every RSS comparison:

DCanberra =
N∑
n=1

|rp(n)− ri(n)|
(|rp(n)|+ |ri(n)|) i = 1 . . .M. (4.9)

The Lorentzian norm applies the natural logarithm to the L1 norm. To avoid negative
distances the integer value 1 is added:

DLorentzian =
N∑
n=1

ln(1 + |rp(n)− ri(n)|) i = 1 . . .M. (4.10)

The squared L2 or χ2 family. A further group of norms is the squared L2 or χ2

family. Norms belonging to this family are based on the square of the Euclidean distance
and include the squared Euclidean, Neyman, or the squared χ2 distance. The squared
Euclidean is most simple metric belonging to the squared L2 family. As its name suggests,
it is calculated from the square of the Euclidean distance:

DsquaredEuclidean =
N∑
n=1

(rp(n)− ri(n))2 i = 1 . . .M. (4.11)

The Neyman distance is calculated from the Euclidean distance divided by the RSS value
at the RP

DNeyman,i =
N∑
n=1

(rp(n)− ri(n))2

|ri(n)| i = 1 . . .M. (4.12)

Note that the absolute value is taken in the denominator in Equation 4.12 to avoid
negative distances. Another version of the Neyman distance can be obtained by dividing
the Euclidean distance by the absolute value of the measured RSS:

DNeyman2,i =
N∑
n=1

(rp(n)− ri(n))2

|rp(n)| . i = 1 . . .M (4.13)

The distance metric squared χ2 is obtained by dividing the Euclidean distance by the
sum of the absolute value of the measured RSS and the stored RSS at the RP:

Dχ2,i =
N∑
n=1

(rp(n)− ri(n))2

|rp(n)|+ |ri(n)| i = 1 . . .M. (4.14)
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4.2 Probabilistic fingerprinting

In probabilistic fingerprinting, likelihood distributions P (r|p) expressing the probability
of measuring an RSS pattern r at the position of the RP p are stored in the radio
map. These likelihood distributions can be obtained using parametric or non-parametric
techniques (see Section 3.3.1). Parametric techniques assume an underlying distribution
and estimate the parameters of the distribution function from the given data. Non-
parametric methods estimate the likelihood density only from the given data and include
histograms and kernel density estimation techniques. The advantage of kernels over
histograms is that they yield continuous density functions with a non-zero probability
of values outside the sample range. A factor which strongly influences the shape of the
resulting likelihood density is the kernel bandwidth, whose optimization will be discussed
in Section 4.2.1.

In the online positioning phase of probabilistic fingerprinting, the most likely position given
the measured RSS pattern is estimated. To overcome the problem of solely estimating
positions located at one of the reference points, WKNN methods can be used. Section
4.2.2 will focus on the weights which can be used in probabilistic fingerprinting.

4.2.1 Optimal kernel bandwidth

During the offline phase in probabilistic fingerprinting, time series of the RSS received from
the surrounding access points are measured at each reference point. The observed RSS
are then used to model a likelihood distribution P (r|p), which describes the probability
of measuring an RSS pattern r at the position of the RP p.

The likelihood distribution described above can be obtained using kernel density estimators.
Kernel density estimators place kernel functions at the measured data points and calculate
the density estimate from the superposition of these functions. The properties which
kernel functions have to fulfil as well as examples of kernel functions are given in Section
3.3.1.

Kernel density estimates are influenced by the chosen kernel function and the kernel
bandwidth. In radio fingerprinting, the Gaussian kernel is most commonly used [46] [31].
The influence of the kernel bandwidth will be discussed in this section.

26



Chapter 4 Algorithmic optimization

The kernel bandwidth defines the broadness of the region of influence of each measured
RSS sample. The bigger the bandwidth, the broader the region of influence of each value
becomes. Kushki et al. (2012) explain this influence by demonstrating the effects when
the bandwidth approaches extreme values:

• When the bandwidth comes closer to zero, the region of influence shrinks and the
kernel density estimate approaches a delta function:

σr → 0, K
(r− ri(t)

σr

)
→ δ(||r− ri(t)||). (4.15)

• As the bandwidth approaches infinity, the region of influence of each observed
RSS value becomes infinitely large and the density estimate becomes a uniform
distribution:

σr →∞, K
(r− ri(t)

σr

)
→ 1. (4.16)

The influence of the bandwidth is further illustrated in Figure 4.1. Three RSS values were
used as training points to estimate the kernel density: -65 dBm, -70 dBm and -73 dBm.
The values of the training points are portrayed as black circles on the horizontal axis of
the graph. A Gaussian kernel (see Equation 3.18) was selected to estimate the density,
and the bandwidth was varied from σ = 1 dBm over σ = 3 dBm to σ = 10 dBm. The
higher the bandwidth, the smoother the density estimate becomes. The density estimate
obtained with a bandwidth of 1 dBm shows sharp peaks at the values of the training
points, a local structure which does not necessarily have to occur in the actual density.
The density estimates resulting from a σ of 3 dBm and 10 dBm are smooth and have
a broader region of influence. However, a broad range of RSS values with almost equal
probability, which results from the estimate using a bandwidth of 10 dBm, is not ideal
for fingerprinting either.

The optimal kernel bandwidth, which should yield a minimal difference between the
estimated and real density, depends on the training data. For Gaussian kernels, Scott
(1992) found the optimal bandwidth to be

σ =
( 4
d+ 2

) 1
d+4
σ̂n

−1
d+4 , (4.17)

where n stands for the number of samples, in the case of radio fingerprinting the number
of RSS values used to estimate the density; d is the dimension of the measurements,
which in radio fingerprinting is one; and σ̂ is an estimate of the standard deviation of the
training data [31].
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Figure 4.1: Influence of bandwidth σ on the kernel density estimate. The training points lie at
-65 dBm, -70 dBm and -73 dBm, a Gaussian kernel was used to obtain the density estimate.

4.2.2 Weighting

In the online positioning phase of probabilistic fingerprinting, the observed RSS pattern
r is compared to the likelihood distributions stored at the reference points in the radio
map. Using a maximum likelihood estimator as defined in Equation 3.7, the resulting
position estimate will lie at one of the reference points [31]. The achievable positioning
accuracy is therefore limited to the distance between the reference points.

Higher accuracies can be achieved by adding more reference points, which is extremely
time-consuming in the offline phase and significantly increases the computational com-
plexity in the online phase. An efficient alternative to increasing the number of reference
points is the use of WKNN methods.

In WKNN probabilistic fingerprinting, the K most probable reference points are selected
and their coordinates are used to compute a position estimate through weighted averaging.
The general form of a WKNN position estimation with weights ωi and coordinates of the
selected reference points pi reads as follows:

p̂WKNN =
∑K
i=1 ωipi∑K
i=1 ωi

. (4.18)
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Figure 4.2: Natural logarithm. Domain {x|x ∈ R>0}, range {y|y ∈ R}.

Different weights may be used. The most simple form,

ωi = 1, (4.19)

assigns equal weights to all K most probable reference points. A more sophisticated and
widely used approach uses the probabilities that the RSS patterns are observed at the
RP as weights:

ωi = P (r|pi). (4.20)

Ma et al. (2015) observed that the magnitudes of the probabilities of the K selected
reference points differ greatly. If a position estimate is calculated using weights from
Equation 4.20, it will lie at the RP with the highest probability. Ma et al. (2015) therefore
suggest using logarithmic weights to achieve a better estimation.

Logarithms, as shown in the example of the natural logarithm ln(x) in Figure 4.2, have the
set of positive real numbers R>0 as their domain. For values smaller than one, the values
of logarithms are negative, at x = 1 they are zero. Probability density functions have a
range from zero to one. To avoid negative and zero weights, the following formulation is
suggested for logarithmic weights:

ωi = ln
(
c+ P (r|pi)

)
, c > 1. (4.21)
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Economic optimization

When it comes to the economic optimization of radio fingerprinting, several aspects
should be considered:

• AP hardware acquisition and maintenance costs,

• the amount of time needed to create radio maps,

• the amount of time it takes to update a radio map.

As far as hardware costs are concerned, BLE beacons are generally cheaper than WLAN
routers. However, more BLE beacons need to be deployed to ensure the same coverage.
An example is given in [54], where a 4 800 m2 parking garage was equipped with 60 BLE
access points and 10 WLAN routers. The BLE beacons by Accent Systems cost 12.50 €
each, the WLAN routers (Linksys E2500) supporting both 2.4 GHz and 5 GHz WLAN
cost approximately 60 € per router. The total financial effort to construct the radio map
with WLAN routers was smaller (600 € compared to 750 € for BLE beacons), yet the
accuracy of the position estimate obtained from the radio map with BLE beacons was
significantly higher: a point positioning error of 9-12 m was achieved for WLAN and
3-6 m for BLE in the static case.

Ji et al. (2015) analysed how the positioning accuracy depends on the number of beacons.
In a simulation for a 100 m × 100 m floor, they deployed between 10 and 100 BLE
beacons both randomly and on a regular grid. Not surprisingly, they found out that the
more beacons are deployed, the more accurate the positioning result becomes. However
they also discovered that once a certain number of beacons is used (in their case 80),
hardly any improvements in accuracy can be made by adding more. There seems to be a
threshold or an optimal number of beacons, which can be found through simulations. If
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the ideal number of beacons is found, the hardware acquisition costs can be reduced by
avoiding buying too many beacons.

Even though hardware costs can be optimized, the biggest optimization potential lies
in the expenditure of time needed to create and update radio maps. Chai and Yang
(2007) illustrate an example of how labour intensive the offline phase of fingerprinting
is. If a radio map is designed with N AP that construct an RSS sample and M RP and
T is the sampling time needed to obtain WLAN RSS measurments from one AP, the
total sampling time can be computed from N ·M · T . The more AP, the more RP or
the higher the sampling time, the more time it takes to construct the radio map. For
large indoor areas such as public parking garages or shopping malls, collecting the sample
measurements can take more than a day’s work. Methods which reduce the time needed
to obtain the measurements for the radio map, with a focus on path loss models, will
therefore be discussed in Section 5.1.

Given that radio maps change over time, they need to be updated regularly. To avoid
having to repeat the tedious procedure of measuring the whole radio map anew, two
approaches to how radio maps can be automatically updated will be presented in Section
5.2, one of which is based on crowdsourcing.

Finally, crowdsourcing and path loss models will be combined and presented in an
approach which allows obtaining a radio map only from crowdsourced data in Section
5.3.

5.1 Sparse fingerprinting

As discussed in the introduction of this chapter, the creation of radio maps in the offline
phase is a tedious and time-consuming procedure. The time needed to create the radio
map can be reduced by reducing the sampling time or by reducing the number of reference
points, though this inevitably deteriorates the achievable positioning accuracy. Chai and
Yang (2007) reduced both the sampling time and the number of RP by two-thirds in a
testbed for probabilistic WLAN fingerprinting and showed that the accuracy decreased
by 26 percent.

Aiming to compensate for the loss of accuracy resulting from a reduced number of RP
and reduced sampling times, a number of researches have focused on the area of sparse
fingerprinting. Li et al. (2015) propose using a cost function which combines not only the
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degree of similarity but also the dimension of the fingerprint, meaning that RP should
preferably be selected if they have a large number of AP in common with the measured
sample. Furthermore they introduce a spatial constraint, represented by a circle around
the last position. The radius of the circle depends on the speed of the moving user and
the update interval.

Sorour et al. (2015) and Majeed et al. (2015) propose a machine learning algorithm,
Manifold Alignment, which makes use of RSS correlations and calculates a radio map
from very few observations.

Khalajmehrabadi et al. (2017) propose interpolation techniques to obtain a finer grid of
reference points. A selection of possible interpolation techniques will be covered in the
following subsection.

5.1.1 Radio map interpolation

Radio map interpolation is an efficient method to obtain a dense radio map from only
a few fingerprints measured. Interpolation methods for radio fingerprinting are based
on models which express the indoor propagation characteristics of radio signals. Radio
propagation models used for interpolation model the path loss in the direction of the
direct path from the AP to the receiver.

Ji et al. (2006) divide radio propagation models into three categories, with ascending
complexity:

• simple attenuation models,

• partition models and

• site-specific models.

Simple attenuation models describe path loss depending on an attenuation exponent n.
An example of a simple attenuation model would be

P (d)[dB] = P (d0)[dB]− 10 · n · log10

(
d

d0

)
, (5.1)

where d is the distance to the transmitter (i.e. the access point), P (d) the power and
P (d0) the power at the reference distance d0. The attenuation exponent n is two in free
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space, and bigger than two in indoor environments. For office buildings with numerous
floors, the attenuation exponent lies between 2 ≤ n ≤ 6 [31].

Partition models are based on simple attenuation models and consider attenuation effects
of partitions occurring in indoor environments, such as walls, doors and floors. Bahl
and Padmanabhan (2000) introduce a partition model which considers walls with a Wall
Attenuation Factor (WAF):

P (d)[dB] = P (d0)[dB]− 10 · n · log10

(
d

d0

)
−

nW ·WAF, for nW < C

C ·WAF, for nW ≥ C
. (5.2)

In Equation 5.2, nW is the number of walls, WAF the Wall Attenuation Factor and C the
highest number of walls where the WAF still has an influence. Bahl and Padmanabhan
(2000) determined the WAF empirically by first measuring the RSS at a known distance
from the AP with no obstructions in the line of sight and then repeating the RSS
measurements with walls between the AP and the receiver. By varying the number of
walls between the receiver, they found the WAF to lie at 3.1 dBm for their testbed and
C to be four.

Site-specific models are more sophisticated than partition models, as they model path loss
dependent on parameters which are specific to the site. These parameters can describe
the thickness of walls, the materials used and the geometry of objects located in indoor
environments.

An example of a site-specific model can be found in Lott and Forkel (2001). The authors
derived a multi-wall-and-floor model from ray tracing. The model can be parametrized
by

P (d)[dB] = P (d0)[dB]− 10 · n · log10

(
d

d0

)
−

I∑
i=1

Kwi∑
k=1

Lwik −
J∑
j=1

Kfj∑
k=1

Lfjk, (5.3)

where Lwik is the attenuation caused by wall type i and the k-th passed wall, Lfjk is the
loss in signal strength caused by floor type j and the k-th passed floor, I and J are the
number of wall and floor types respectively, Kwi is the number of passed walls belonging
to category i and Kfj is the number of passed floors belonging to category j.

The more complex the model, the more time needs to be invested in determining the
specific parameters of the model. While simple attenuation models only require finding a
representative attenuation exponent n, site-specific models require detailed information
about the materials and geometries in indoor environments.
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Even though a dense radio map can be obtained using path loss models, a simulated radio
map will differ from a measured radio map. Deasy and Scanlon (2007) examined this
aspect to find out how the positioning accuracy is affected if measurements are replaced
by models. They tested both deterministic and probabilistic fingerprinting in two test
bed locations and compared the accuracy of the estimated result when simulated and
measured radio maps were used. Even though their propagation model underestimated
RSS by up to 15 dB, the accuracy of the estimated positions only decreased by about 30
percent in both deterministic and probabilistic fingerprinting when interpolated radio
maps were used.

5.2 Automatic updating of radio maps

Radio maps change over time and need to be updated on a regular basis. Wilk et al.
(2015) even declare that fingerprinting does not only consist of an offline and an online
phase, it also requires a maintenance phase. Radio maps can be updated manually by
repeating the offline phase and measuring the RSS samples anew. They can also be
updated automatically, which will be described in more detail below.

Yin et al. (2005) introduced adaptive radio maps which relied on receivers which are
placed at reference points and measure temporal RSS variations. They used a regression
analysis to learn about the temporal relationship between RSS values at the reference
points and model the changes for the whole radio map. This approach relies on additional
infrastructure.

Another approach is crowdsourcing, which does not require additional hardware and
has become attractive, especially for smartphone manufacturers. Wilk et al. (2015)
developed a crowdsourcing system to automatically update radiomaps which is based on
Pedestrian Dead Reckoning (PDR). They describe the maintenance phase of radio maps
as a four-step-procedure:

1. The observed RSS samples are logged together with PDR information and uploaded
to a server. The PDR data are provided by an external algorithm which computes
speed and heading change from accelerometer and gyroscope measurements obtained
from the sensors inside the smartphone.

2. On the server, the fingerprints are processed. The building and floor is identified
from the measured RSS samples.
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3. In the third step, locations are assigned to the observed fingerprints. This procedure
is divided into two smaller steps: first, a relative trajectory is determined using a
PDR algorithm, then the locations of the fingerprints are estimated using the PDR
trajectory and the RSS similarity to the radio map.

4. Finally, the existing radio map is updated using the measured RSS samples and
the locations estimated in the third step.

Wilk et al. (2015) found that the positioning accuracy can be improved if the radio map
is updated in combination with PDR. If PDR is not used, their maintenance algorithm
cannot achieve any improvements and can therefore not directly be used for indoor vehicle
positioning. However, if relative car sensor data, such as heading change and covered
distance, are available, their algorithm could be adapted for vehicle indoor positioning.

Wu et al. (2015) developed a similar crowdsourcing system to update radio maps. They
use a combination of Dead Reckoning (DR) and map-matching to determine the user’s
position within the building and then update the radio map when the user is not moving.
The smartphones are seen as movable reference points which collect a sufficient number
of RSS samples during a static phase; these samples are then used to update the radio
map.

5.3 Fully automatic creation of radio maps

Another crowdsourcing approach, the EZ Localization algorithm is able to automatically
create radio maps without prior knowledge of the environment and was developed by
Chintalapudi et al. (2010). In order for the proposed approach to work, occasional absolute
position fixes have to be obtained, either by GNSS near windows or near entrances of the
building.

Chintalapudi et al. (2010) assume that users move in an indoor environment and are
equipped with devices, such as smartphones or notebooks, which are able to collect RSS
samples. The smartphones or notebooks must be connected to a server. The scenario in
Figure 5.1 should help to illustrate how the algorithm works: if all 9 distances between
three receivers and three access points are known in a 2D plane, their relative positions
are fixed. If the coordinates of three non-collinear objects of this constellation can be
fixed, the coordinates of the other three objects can be determined. The three position
fixes can be achieved by fixing the positions through GNSS close to windows or entrances.
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Figure 5.1: If the distances between three receivers and three AP are known, the relative
geometry of the constellation is rigid.

However, the distances to the AP cannot be measured directly, only RSS values are
measured. To overcome this problem, Chintalapudi et al. (2010) use a simple path loss
model which describes the distance-RSS relationship:

pij = Pi − 10ni log(dij) +R. (5.4)

In the equation above, dij is the distance between the j-th user’s position and AP i and
pij is the RSS received at the j-th user’s position from AP i. Pi is the reference RSS at a
distance of 1 m from the AP and ni is the attenuation exponent for AP i. Both ni and
Pi are treated as unknowns. R is a random variable which should account for multipath
effects and other RSS variations. Equation 5.4 can be rewritten to obtain the distance:

dij = 10
Pi−pij

10ni . (5.5)

In a 2D coordinate system with m AP which are visible at n unknown locations, the
number of observations is m · n.

The number of unknowns can be calculated as follows: each of the n unknown user
locations has two unknowns (the 2D coordinates x and y), which gives 2n unknowns.
Each AP has four unknowns, two of which are its coordinates. The others are the
parameters Pi and ni, which yields 4m unknowns for all AP. In total, the number of
unknown parameters is therefore 4m+ 2n.
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If the number of observations is bigger than the number of unknowns (m · n > 4m+ 2n),
the system of equations can be solved.

If the coordinates of the AP are estimated together with the path loss coefficient of a
simple attenuation model, this simple attenuation model can then be used to interpolate
the RSS observations on a grid of reference points.
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Integration of vehicle sensor data

For many applications in navigation, the desired accuracy cannot be reached using a
single positioning system. To achieve higher accuracy, more robustness and reliability,
different sensors can be combined. In the application case of indoor positioning for
vehicles in parking garages, radio fingerprinting can be combined with a DR obtained
from vehicle sensor data.

This chapter will first give a general introduction to sensor fusion for navigation applica-
tions in Section 6.1. It will take a look at the different types of redundancies, possible
updating techniques an then explain the principle of Kalman filtering and different stages
of integration. Section 6.2 will describe vehicle sensor data which can be used to compute
relative position differences, focusing on sensor data which can be retrieved through a
Controller Area Network (CAN) bus in real-time. Section 6.3 will then present a real-time
filter combining radio fingerprinting with vehicle sensor data, which has been developed
in the scope of this thesis.

6.1 Sensor fusion

This section deals with the principles of sensor fusion in navigation. It discusses redund-
ancies, updating techniques and Kalman filtering. The following explanations are based
on Hofmann-Wellenhof et al. (2003).

Redundancies. Sensor fusion is based on redundant information, meaning that more
information is present to solve a task than required. Four types of redundancy can be
distinguished:
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• Parallel redundancy: occurs when various identical sensors are used. An example
of parallel redundancy would be mounting two BLE antennas on a vehicle.

• Complementary redundancy: arises when several sensors with different op-
eration principles and characteristics are used. The sensors are complementary,
meaning that the disadvantage of one sensor can be complemented by the advantage
of the other sensor. The most well-known example of complementary redundancy is
the use of GNSS sensors in combination with inertial navigation. The combination
of fingerprinting with DR also falls into this category.

• Dissimilar redundancy: occurs when two ore more non-identical and non-
complementary sensors are used. An example would be the combination of Loran-C
and GNSS: both allow computing positions and are based on electromagnetic radio
waves, but their signal structures and system architectures differ completely.

• Analytical redundancy: can occur when there is additional analytical knowledge
which can be used to compute the position. An example would be map aiding:
information from a digital map can serve as pseudo-observations. In a scenario
where only two GNSS pseudoranges are available due to an obstructed signal path,
the position of the receiver cannot be computed (at least four pseudoranges would
be needed). If analytical information from a map is present, i.e. if it is known that
the receiver is located in a street and the height and direction of the street are
known from the map, the position of the receiver can be obtained.

Updating techniques. Based on the type of redundancy, different updating techniques
can be considered for sensor fusion. Hofmann-Wellenhof et al. (2003) distinguish between
three types of updating techniques:

• Signal blending: is applied to compute a simple weighted average of the sensor
output; it is mostly used for parallel redundancy. It can only be employed when
sensors produce the same output [11]. Information on the quality of the output can
be used for weighting.

• Filtering: is a more sophisticated method which requires a dynamic motion model
and uses stationary stochastic models of the system noise.

• Optimal filtering: also requires a dynamic motion model. In contrast to conven-
tional filtering, a time-variant stochastic model is used for the system noise.
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The updating techniques presented above differ in the complexity and quality of the
achievable result. Signal blending is the most simple updating technique; however it can
only be used for identical sensors and does not consider dynamic motion. Optimal filtering
is the most complex updating technique, yet it yields the best results for navigation
applications. Optimal filtering can be achieved with the use of a particle filter or a
Kalman filter. The latter was used in this thesis and will now be presented in more
detail.

6.1.1 Kalman filtering

A Kalman filter is a recursive filter algorithm which can be used to estimate time-varying
parameters of a dynamic process. An example of a dynamic process is a moving vehicle. A
Kalman filter can be used to estimate the parameters and covariance of the vehicle’s state
(coordinates, velocity, accelerations and attitude). The filter combines noisy observations
with a dynamic motion model to estimate the state and its stochastic behaviour [18].

Figure 6.1: Schematic process of Kalman filtering based on Dorn (2014).

An overview of the filtering process is given in the schematic diagram in Figure 6.1. The
filter is based on a recursive least squares adjustment. In contrast to a classical least
squares adjustment, it considers the state and its stochastic process as time-dependent,
nonstationary random processes. The filter algorithm itself consists of three major steps:
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gain computation, measurement update and time update. The Kalman filter is a Best
Linear Unbiased Estimator (BLUE) for the state vector [20]. Best means that the variance
of the estimate is lowest [53], linear that the parameters of the state can be estimated
from a linear combination of the observations, and unbiased means that the estimated
value corresponds to the expected value.

In the following, the three major steps of the Kalman filtering algorithm will be explained.
The notation used is taken from Hofmann-Wellenhof et al. (2003).

1. Gain computation. In the first step of the Kalman filter, the Kalman weigth Kk

is calculated. Here the subscript k stands for the discrete epoch tk. The Kalman
gain weighs the observations in relation to the prediction of the previous epoch. It
is calculated from

Kk = P̃kHT
k (HkP̃kHT

k + Rk)−1, (6.1)

where P̃k is the predicted covariance matrix at epoch tk and Rk is the covariance
matrix containing the measurement noise. Hk is the design matrix which describes
the functional relationship between the measurements and the parameters of the
state vector. Note that the Kalman gain is only computed from covariance informa-
tion and the design matrix and not the actual measurements or prediction itself.
For the first epoch, the predicted covariance matrix of the parameters does not
exist yet and is therefore replaced with the initial covariance matrix.

2. Measurement update (correction step). In the second filter step, the predicted
state vector x̃k and predicted covariance matrix P̃k are updated or corrected with
the measurements from epoch tk. The measurement update is computed from the
following formulas:

x̂k = x̃k + Kk(zk −Hkx̃k) (6.2)

Pk = (I−KkHk)P̃k. (6.3)

In Equation 6.2, the Kalman weight Kk weighs the measurements zk in relation to
the prediction. If the Kalman weight is high, the measurements are highly precise
and given a strong weight. If the measurements have a high standard deviation
and are less precise than the prediction, the Kalman weight is close to zero and the
measurements are therefore given a low weight. In the latter case, the estimated
parameters x̂k are mainly calculated from the prediction x̃k. In Equation 6.3, I
stands for the identity matrix. Note that in the first epoch, the initial state vector is
used instead of the predicted state vector in Equation 6.2 and the initial covariance
matrix replaces the predicted covariance matrix in Equation 6.3.
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3. Time update (prediction step). During the time update, the previously es-
timated parameters x̂k and their covariance matrix Pk are predicted for the next
epoch using a dynamic motion model. It models the behaviour of the moving object
between two consecutive epochs. For vehicles, a model of linear motion is often
assumed. The state vector is predicted for the epoch tk+1 with

x̃k+1 = Φkx̂k, (6.4)

where Φk is the transition matrix containing the motion model. The covariance
matrix is predicted for the next epoch with

P̃k+1 = ΦkPkΦT
k + Qk, (6.5)

where Qk is the covariance matrix of the motion model. Qk contains the un-
certainties of the dynamic model and is computed from the following variance
propagation:

Qk = NkRnNT
k . (6.6)

Equation 6.6 expresses the system noise via Rn, a covariance matrix of the para-
meters neglected by the motion model. If a linear motion model (no accelerations)
is assumed, Rn contains the covariances of the accelerations. Nk expresses the
functional relationship between the estimated parameters x̂ and the parameters
neglected by the motion model.

The three steps of the Kalman filter are repeated recursively. For epoch tk+1, the predicted
covariance matrix Pk+1 from the previous time update is used to compute the new Kalman
weight Kk+1 together with the covariance matrix Rk+1 of the new measurements. The
predicted state vector x̃k+1 is then corrected in the measurement update, using the
Kalman weight and the new observations zk+1. The corrected state vector x̂k+1 and
covariance matrix Pk+1 are then predicted in the time update and the whole process
starts anew.

6.1.2 Stages of integration

The Kalman filter can be used to process data from one sensor to compute the state
vector along a trajectory, but it can also be used to integrate measurements from different
sensors by means of optimal filtering.
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When data from multiple sensors are processed, centralized and decentralized filters
can be considered [20]. A central filter directly processes all sensor data in one step.
Decentralized filters use a two-step procedure: first, data from different sensors are
preprocessed individually; then a master filter processes the preprocessed data together
in the second step.

When it comes to the integration of different sensor data with a Kalman filter, three
levels of integration can be distinguished, using uncoupled, loosely coupled and tightly
coupled filters. Uncoupled and loosely coupled filters are decentralized, while tightly
coupled filters are centralized.

In navigation applications, sensors which are complementarily redundant are often
integrated. The idea behind this type of integration is that the advantages of one sensor
compensate for the disadvantages of the other. The integration is therefore expected to
be a fusion of advantages. An example of sensors which are complementarily redundant
and often fused is the combination of a GNSS receiver and an Inertial Measurement
Unit (IMU). While the IMU compensates for the mediocre short-term stability and
vulnerability due to exterior disturbances of GNSS, GNSS makes up for the poor long-
term stability of the IMU. The example of a GNSS and IMU sensor fusion is used in the
following to illustrate the different stages of integration for filtering.

Uncoupled integration. Uncoupled integration, as pictured in Figure 6.2, relies on a
two-stage, decentralized filter. In the first filter step, the sensor data are pre-processed.
In the case of GNSS, the raw data are processed to obtain position, velocity and time; for
an IMU, a strapdown algorithm can be used to calculate position, velocity and attitude.
The end products of the pre-processing stage are then integrated in a common master
filter.

Loosely coupled integration. Loose coupling also uses a two-stage, decentralized filter
and is shown in Figure 6.3. Similar to uncoupled integration, the sensor data are first
pre-processed and then processed together in a master filter. What differentiates loose
coupling from an uncoupled integration is that in a loosely coupled scenario the master
filter is used to estimate additional parameters, such as systematic sensor errors. These
parameters are then returned as feedback to the filters in the pre-processing stage, where
they are used to better process the sensor data.

Tightly coupled integration. In the case of tight coupling, a central filter is used, as
depicted in Figure 6.4. The central filter directly processes the raw sensor data. If GNSS
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Figure 6.2: Uncoupled integration of GNSS and IMU.

and IMU are tightly coupled, the master filter processes pseudorange, Doppler and the
carrier phase obtained by GNSS together with the angular rates and specific forces of
the IMU. The mathematical formulation of a tightly coupled filter is complex because a
functional relationship between raw data and the parameters of the state vector has to
be found. The advantage of tight coupling is that updates can be computed even if not
enough observations are present to obtain an individual position from the sensor data. In
the example of GNSS, at least four pseudoranges from satellites are needed to calculate a
position (to account for four parameters, the receiver clock error and a three-dimensional
coordinate tuple). If less than four satellites are tracked by the receiver, uncoupled and
loosely coupled filters discard the GNSS observations, as they are unable to compute a
position in the pre-processing stage. A tightly coupled filter can integrate raw data from
less than four satellites and use them to improve the IMU-only solution.

When it comes to the integration of fingerprinting with additional sensor data, only
uncoupled or loosely coupled filters can be considered. Fingerprinting is a non-parametric
method, which means that there is no mathematical function which describes the relation
between the raw data (the observed RSS) and the position. A tightly coupled filter can
therefore not be used in combination with fingerprinting.
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Figure 6.3: Loosely coupled integration of GNSS and IMU.

Figure 6.4: Tightly coupled integration of GNSS and IMU.
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6.2 Vehicle sensor data

Modern vehicles are equipped with a variety of sensors, which are necessary in vehicle
control systems such as the Anti-lock Braking System (ABS) or Electronic Stability
Programme (ESP). Some of the sensors can also be used for positioning. In this section,
an interface which can be used to retrieve vehicle sensor data will be presented along
with the sensor data which can be used for positioning.

A variety of bus standards are used nowadays in vehicles, such as Local Interconnected
Network (LIN), FlexRay, Media Oriented System Transport (MOST), K-Line, Ethernet
and CAN [56]. CAN is a serial bus protocol which was originally developed by Bosch [34]
at the beginning of the 1980s. It became a standard protocol as ISO-11898 (high-speed
CAN, 1 Mbit/s) and ISO-11519 (low-speed CAN, 125 kbit/s) and is now widely used in
the automotive sector [44]. Reasons for the popularity of CAN are its simple protocol,
low cost and reduced wiring complexity, as only two cables are needed to communicate
over a CAN bus [44] [56].

Via a CAN bus, sensor data can be retrieved from the vehicle. In previous investigations
[55] [56], these data included acceleration, wheel speeds, yaw rate, steering wheel rate
and angle, yaw rate and various integer flags for vehicle states. The yaw rate and speed
are of particular interest for positioning.

Yaw rate. Yaw is an angle of rotation referring to a turn around a body’s x3-axis.
The axes of a vehicle body system and the attitude parameters roll, pitch and yaw are
depicted in Figure 6.5. The origin of the system lies in the vehicle’s center of mass. The
x1-axis points towards the front, x3 is orthogonal to x1 and points upwards. The x2-axis
is orthogonal to x1 and x3, forming a left-handed three-dimensional Cartesian coordinate
frame. The attitude parameter roll describes a turn around the vehicle’s x1-axis (e.g.
when the vehicle is in a tilted position), pitch describes a turn around the x2-axis (e.g.
when the vehicle is driving upwards or downwards) and yaw is a turn around the x3-axis
(e.g. resulting from the turn of the steering wheel in a plane).

The yaw rate refers to the change of the parameter yaw. Yaw rate sensors measure the
angular rate around the x3-axis. The sensor used in previous research [55] [56] was a
Microelectromechanical System (MEMS), located in the Engine Control Unit (ECU)
together with accelerometers.
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Figure 6.5: Body system of a vehicle.1

Vehicle speed. The speed of the individual wheels can be measured with a Hall sensor
[56]. The individual wheel speeds are used in the ABS to detect when a vehicle starts to
slip. For positioning, it is not the individual wheel speeds but the vehicle speed which is
of interest.

To obtain the vehicle speed, the wheel speeds of the non-propelled wheels are averaged
for vehicles with a two-wheel drive. The propelled wheels are not taken into consideration
as they might be affected by wheel slip. The average of left and right wheel is taken due
to the fact that in curves, the outer wheel covers a larger distance than the inner wheel
in the same time interval; therefore the wheel speed of the outer wheel is higher than
the one of the inner wheel. By averaging the two speeds, the speed in the middle of the
vehicle, where the origin of the body system lies, is obtained.

1Picture of the vehicle taken from: http://diysolarpanelsv.com/images/black-mustang-car-clipart-3.
jpg, last accessed 21.09.2017
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6.3 Real-time filter

One of the main research aims of this thesis is the development of a filter capable of
integrating positions obtained through fingerprinting and vehicle sensor data in real-time.
As discussed in Section 6.1.2, only decentralized filters can be taken into consideration
for fingerprinting. An uncoupled integration was chosen. A basic overview of the filter
architecture is given in Figure 6.6.

Figure 6.6: Decentralized filter architecture combining BLE fingerprinting and DR from vehicle
sensor data.

The RSS are pre-processed using a fingerprinting algorithm to obtain a two-dimensional
position. The vehicle sensor data are pre-processed to obtain the mean vehicle speed
and a heading change. Whenever new, pre-processed information comes in, the master
filter computes an update. The advantage of combining BLE fingerprinting, an absolute
positioning technique, with DR from vehicle sensor data, a relative positioning technique,
is their complementary redundancy. Fingerprinting has a poor short-term accuracy due
to its noisiness; a DR from vehicle sensor data is affected by drift, as systematic errors
are accumulated. However, a high short-term accuracy can be achieved by using vehicle
sensor data; and fingerprinting is not affected by drifts, as it is an absolute positioning
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method. Integrating both methods should lead to a fusion of advantages, i.e. to a smooth
trajectory unaffected by drift.

This section is structured as follows: first, the pre-processing stage will be explained.
Afterwards, the filter architecture of the master filter will be presented, where the vehicle
sensor data and BLE updates are investigated separately. Lastly, the implementation of
a possible pseudo-heading update will be discussed.

6.3.1 Pre-processing

In decentralized filters, the observations are pre-processed before they are handed over to
the master filter. The flowchart in Figure 6.7 shows the workflow of the pre-processing
stage for a filter combining RSS measurements and vehicle sensor data.

The observations for absolute positioning, RSS, are received from AP. The RSS are used
to estimate a position with a fingerprinting algorithm as described in Chapter 3.

The vehicle sensor data used for positioning, wheel speeds and yaw rate, are first sampled
down to the desired sampling rate. The wheel speeds of the non-propelled wheels are
averaged to obtain the mean vehicle speed v:

v = vleft + vright
2 . (6.7)

The yaw rate ḣ is measured in degrees per second. It has to be converted to radians
by multiplying it by the time difference and a conversion factor to obtain the heading
change δh. In doing so, it is important to ensure that the time difference which is used
refers back to the previous vehicle sensor update:

δhCAN(tk) = ḣ(tk) ·∆tCAN ·
π

180 with ∆tCAN = tk − tpreviousCAN . (6.8)

Figure 6.7: Pre-processing stage of a filter combining RSS and vehicle sensor data.
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6.3.2 Master filter

The master filter is a Kalman filter which integrates the pre-processed data: a two-
dimensional position obtained from fingerprinting, and the vehicle speed and heading
change obtained after pre-processing vehicle sensor data.

First, the motion model and the parameters of the state vector will be explained. Then
the measurement updates with the vehicle speed, heading change and position will be
presented individually.

Dynamic model. The filter developed was designed for vehicles in parking garages. As
parking garages can be expected to be plane, the state vector of the vehicle includes
two-dimensional coordinates (x, y); moreover it also contains the velocities in the direction
of the coordinate axes (ẋ, ẏ) and the heading h (oriented direction of movement of the
vehicle in the local-level frame):

x =



x

y

ẋ

ẏ

h


. (6.9)

For the initialization of the filter, the first coordinate pair is taken from fingerprinting.
The heading has to be set manually and the velocity can either be initialized with zero
or with the speed obtained from the vehicle sensor data, which has to be brought to the
local-level frame.

Taking into consideration that the filter should be capable of dealing with real-time data,
the time update has to be the first computation for each epoch. The time difference is
calculated by subtracting the time of the previous update from the current time:

δt = tk − tk−1. (6.10)

During the time update, the estimated parameters of the state vector from the previous
epoch Φk−1 are predicted for the current epoch. The prediction x̃k is computed from:

x̃k = Φk−1x̂k−1, (6.11)

where Φk−1 is the transition matrix describing the dynamic behaviour of the vehicle from
the previous to the current epoch. A model of linear, uniform motion was chosen to
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describe the vehicle dynamics. For the state vector given in Equation 6.9, the transition
matrix Φ for linear motion is defined as follows:

Φk−1 =



1 0 δt 0 0
0 1 0 δt 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


. (6.12)

Not only the parameters of the state vector, also the covariance matrix of the measurements
is predicted for the current epoch:

P̃k = Φk−1Pk−1ΦT
k−1 + Qk−1, (6.13)

with Pk−1 being the covariance matrix of the parameters of the estimated state vector in
the previous epoch, and Qk−1 the covariance matrix describing the uncertainty of the
dynamic model. Qk−1 is calculated from the variance propagation in Equation 6.6. The
matrix N expresses the functional relationship between the parameters of the state vector
x and the parameters neglected by the motion model n:

x = N · n. (6.14)

For a linear motion model, the accelerations (ẍ, ÿ) and the heading change (ḣ) are
neglected:

n =


ẍ

ÿ

ḣ

 . (6.15)

Taking equations 6.9, 6.14 and 6.15 into consideration, the matrix N takes on the following
form:

N =



0.5δt2 0 0
0 0.5δt2 0
δt 0 0
0 δt 0
0 0 δt


. (6.16)

Assuming the accelerations and heading change to be uncorrelated, the system noise Rn

is modelled as follows:

Rn =


σ2
ẍ 0 0

0 σ2
ÿ 0

0 0 σ2
ḣ

 . (6.17)
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Figure 6.8: Stages of the master filter.

Measurement update with vehicle sensor data. After the computation of the
time update, the master filter computes the Kalman gain (see Equation 6.1) and the
measurement update. An overview of the stages of the master filter is given in Figure
6.8.

In order to compute the Kalman gain and then conduct the measurement update, the
functional relationship between the pre-processed sensor data and the parameters of
the state vector has to be known. In the case of heading change and vehicle speed, the
functional relationship to the parameters of the state vector is nonlinear and therefore
Extended Kalman Filtering (EKF) has to be applied [20].

In EKF, the non-linear functional relationships are linearized [2] [13]. If the changes
of the parameters of the state vector are small, the behaviour of the functional models
between two epochs is almost linear. The predicted values of the previous epoch can
be taken as approximations of the state vector, and the linearized models are used to
estimate the small changes.

To derive the mathematical formulation of the linearized design matrix Hk, assume the
following notation for a nonlinear set of observation equations [20] with lk observations
and n parameters of the state vector:

zk = hk(xk) + vk. (6.18)

In Equation 6.18, zk are the observations (of dimension 1× lk), xk is the state vector (of
dimension 1× n) and hk is a vector containing the observation functions hk(xk). The
vector vk contains the observation noise, which is assumed to be normally distributed
with the null vector as the expected value (vk ∼ N (0,Rk)).
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The elements of the design matrix Hk (dimension lk × n) can be obtained by linearizing
the observation functions as follows [20]:

Hk(i,p) = ∂hk(i)(x)
∂xp

∣∣∣∣∣∣
x=x̃k

with

i = 1, . . . , lk,
p = 1, . . . , n,

(6.19)

where x̃k is the predicted state vector.

For the measurement updates it was decided that only parameters relative to the previous
epoch should be estimated to avoid jumps in the time series of the heading. The change
in the state vector, δx, contains the following elements:

δx =



δx

δy

δẋ

δẏ

δh


. (6.20)

The observations, the pre-processed vehicle sensor data, are reduced by subtracting the
predictions:

zk,reduced = zk − hk(x̃k) =


v

δh

0

−


˜̇x · cos(h̃)− ˜̇y · sin(h̃)
0

˜̇x · sin(h̃) + ˜̇y · cos(h̃)

 . (6.21)

Equation 6.21 includes three observations: the mean vehicle speed, the heading change,
and the speed in the lateral direction of the vehicle, which is zero. To subtract the predicted
speeds, they have to be brought to the same coordinate system as the measurements.
The predicted parameters of the state vector are given in a local-level frame, whereas
the vehicle speed measurements refer to the body frame of the vehicle. As the speeds
are relative and the vehicle is expected to move parallel to the (xy)-plane of the local
level system, only a rotation around the x3-axis by the heading has to be performed.
The predicted heading change is always zero as the linear motion model does not assume
changes in the direction of movement.

The linearized design matrix has the following form:

Hk =


0 0 cos(h̃) − sin(h̃) −˜̇x · sin(h̃)− ˜̇y · cos(h̃)
0 0 0 0 1
0 0 sin(h̃) cos(h̃) ˜̇x · cos(h̃)− ˜̇y · sin(h̃)

 . (6.22)
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The uncertainties of the observations are assumed to be uncorrelated:

Rk =


σ2
v 0 0

0 σ2
δh 0

0 0 σ2
vlateral

 . (6.23)

Now, all matrices are defined to calculate the Kalman gain according to Equation 6.1.
The measurement update for EKF when only relative parameters of the state vector (as
defined in Equation 6.20) are used can be simplified to:

δx̂ = Kk · zk,reduced. (6.24)

The covariance matrix Pk is updated according to Equation 6.3.

The absolute parameters of the state vector are obtained by adding the estimated change
δx̂ to the predicted state vector:

x̂ = x̃ + δx̂. (6.25)

Measurement update with fingerprinting. The measurement update for finger-
printing is simpler, as the relationship between the observations and parameters of the
state vector is linear. To allow the simultaneous updating of both fingerprinting and
vehicle sensor data, the fingerprinting filter was also designed to update the relative
parameters of the state vector (Equation 6.20).

The observation vector is therefore reduced as follows:

zk,reduced = zk −Hkx̃k =
xfp
yfp

−
x̃k
ỹk

 , (6.26)

with the design matrix

Hk =
1 0 0 0 0

0 1 0 0 0

 . (6.27)

The observations are assumed to be uncorrelated:

Rk =
σ2

x 0
0 σ2

y

 . (6.28)

The Kalman gain is computed according to Equation 6.1. The measurement update is
calculated analogously to Equation 6.24:

δx̂ = Kk · zk,reduced. (6.29)

As for the measurement update with vehicle sensor data, the covariance of the parameters
is updated with Equation 6.3 and the state vector is updated with Equation 6.25.
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6.3.3 Pseudo-heading update

Given that only relative parameters are estimated and the heading update is only
computed from heading changes, the heading itself is never directly updated from
absolute (fingerprinting) data. Correlations between the position and heading during the
filter process were investigated, but they were of a very low magnitude (10−3). In order
to overcome this problem, a pseudo-heading-update calculated from fingerprinting data
can be implemented.

The heading update cannot be computed from the filtered position. Assume that a wrong
start-heading was chosen and only vehicle sensor data are available. In this case, the
filtered trajectory would be rotated with respect to the real trajectory by the difference
between the chosen start-heading and the real heading. If a heading were computed from
these positions, it would not yield any additional information and also point into the
direction of the rotated, filtered trajectory.

Taking these thoughts into consideration, it becomes clear that the heading update must
be calculated from positions obtained by fingerprinting. Since the positions obtained
by fingerprinting have a high standard deviation, the heading updates should only be
computed when the vehicle drives straight ahead for a longer period of time to minimize
the influence of outliers. To ensure that the vehicle is driving straight ahead when the
heading update is computed, a heading change threshold is set (1.5°). The yaw rates are
multiplied by their respective time intervals and added up (from last to first) until the
cumulative sum hchange exceeds the threshold:

hchange =
∑
i

ḣi ·∆ti. (6.30)

When the threshold is exceeded, the time stamp texceed of the exceeding heading is stored.
The pseudo- heading is then computed as the azimuth from the first fingerprinting
position, where tfp ≥ texceed, to the current fingerprinting position:

hpseudo = tan−1
(∆y

∆x
)
. (6.31)

The pseudo-heading update is added to the fingerprinting measurement update in the
Kalman filter. The reduced observations are computed according to the following
equation:

zk,reduced =


xfp

yfp

hpseudo

−

x̃k

ỹk

h̃k

 . (6.32)
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The design matrix is extended by a third row:

Hk =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 . (6.33)

The measurement update with the pseudo-heading is then computed analogously to the
fingerprinting update.
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Practical investigations and results
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Chapter 7

Practical investigations

This chapter presents the practical investigations which were carried out for this thesis.
It deals with considerations about different measurement setups, which lead to the final
test measurements.

7.1 RSS distribution

For probabilistic fingerprinting, the likelihood P (r|p) of measuring an RSS sample r at
the position of a reference point p needs to be modelled. If the likelihood distribution is
modelled using parametric approaches, assumptions concerning the underlying distribution
have to be made. In radio fingerprinting, a normal distribution is most commonly assumed
[31]. To find out whether this assumption is valid or not, test measurements were carried
out in the scope of this thesis.

An office at the Institute of Geodesy at the Graz University of Technology (Steyrergasse
30, 2nd floor) served as the test bed for the measurements. The measurement setup
is depicted in Figure 7.1. Four BLE beacons were deployed in the room: two with no
obstacles in the line of sight (beacons 39 and 40), one behind the metal frame of a
door (beacon 38) and one partly hidden behind a metal cable channel (beacon 37). The
beaconing rate was set to 10 Hz. The receiver was placed on an office chair so that it could
easily be rotated. Four test time series were measured, two with a static receiver, and two
when the receiver was rotated. The measurements were recorded for 5 minutes. In each
measurement series between 2100 and 2800 RSS samples were obtained per beacon.
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Figure 7.1: Measurement setup for testing the RSS distributions.

The time series obtained were analysed with histograms and quantile-quantile plots
(QQ-plots). Histograms show the relative frequency of how many of the samples fall into
certain bins with a defined bin width. An approach to estimate the number of bins and
the bin width was already presented in Chapter 3 (in Equation 3.9 and Equation 3.10).
In a QQ-plot, quantiles of the sample are plotted against the quantiles of a theoretical
distribution. If the plotted points lie on a straight line, the sample data follow the
distribution against which they were plotted [45]. To test whether the RSS samples are
normally distributed, they were plotted against a standard normal distribution.

An analysis of the time series obtained showed that when the receiver is not rotated while
recording the RSS measurements, the data are not normally distributed. The time series
for beacons 38,39 and 40 are analysed in more detail. Figure 7.2 shows the histogram
and QQ-plot for a static measurement of the RSS received from beacon 39. The curve of
a normal distribution N (µ, σ2) with mean µ and variance σ2 estimated from the time
series is shown in black together with the histogram. In the QQ-plot, the line is depicted
on which the samples should lie if they were normally distributed. It can be seen that
the RSS distribution is slightly left-skewed. Figure 7.3 shows the histogram and QQ-plot
for the static measurement setup with RSS received from beacon 40. The sample data
are strongly left-skewed and do not follow a normal distribution. The left-skewness of
RSS samples was also observed in [31].
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Figure 7.2: Histogram and QQ-plot for the static measurement setup for beacon 39.

Figure 7.3: Histogram and QQ-plot for the static measurement setup for beacon 40.
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Figure 7.4: Histogram and QQ-plot for the measurement setup with a rotating receiver for
beacon 38.

Figure 7.5: Histogram and QQ-plot for the measurement setup with a rotating receiver for
beacon 40.

Figures 7.4 and 7.5 show histograms and QQ-plots obtained from two RSS time series
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when the receiver was rotated. The data seem to follow a normal distribution, however
the time series for beacon 40 is also slightly left-skewed.

7.2 Test bed for probabilistic fingerprinting

In a previous project ([54], [55], [56]), a radio map had already been recorded in a large
parking garage (4800 m2) which also served as a test site for the investigations carried out
for this thesis. Probabilistic fingerprinting was not yet taken into consideration during
the previous project, thus measurements at the reference points were taken at a frequency
of only 1 Hz. At each reference point, RSS were measured for 30 seconds. This leads to a
maximum of 30 observations received from each AP at each reference point. Such a short
time series is not ideal to compute the underlying stochastics of the data set and leads to
a poor estimate of the mean and standard deviation if normal distribution is assumed.

In order to test probabilistic fingerprinting and compare it to its deterministic counterpart,
a new radio map with a sufficiently large number of observations per reference point to
each AP had to be measured. A test scenario was set up in a lecture room of the geodesy
building at the Graz University of Technology (Steyrergasse 30) on the first floor. A
picture of the lecture room is shown in Figure 7.6.

Figure 7.6: Lecture room AE01 at Graz University of Technology.

In total, 6 BLE beacons were set up along the walls of the room and set to broadcast
a signal at 10 Hz. At each reference point, a Lenovo IdeaPad 510S laptop (operating
system Linux Mint 18) equipped with a LogiLink BT0015 antenna was set up. The
programme Vehicle Positioning Suite, developed at the Institute of Geodesy, was used to
record the RSS. Every 30 seconds, the antenna was turned by 90° so that after 2 minutes
measurements had been taken in four directions. The procedure was repeated for all 16
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Figure 7.7: Overview of reference points, access points and measurement points in lecture
room AE01.

reference points. The coordinates of the reference points were obtained from a building
plan and distometer measurements.

The deterministic radio map was constructed by averaging the RSS samples received from
each of the AP at every RP. To obtain the likelihood densities for the probabilistic radio
map, a parametric approach was chosen and the parameters of a normal distribution
were estimated from the sample data.

In the online phase, the laptop was positioned at 11 measurement points. For 30 seconds,
the laptop remained static at each measurement point and measured the RSS received
from the surrounding access points. The true reference coordinates of the measurement
points were obtained from distometer measurements. An overview of the reference, access
and measurement points is given in Figure 7.7.

In post-processing, the RSS obtained at the measurement points were sampled down to
1 Hz by averaging. Both deterministic and probabilistic fingerprinting algorithms were
used to estimate the position of the measurement points. A WKNN-approach was used
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with K = 4 reference points. For deterministic fingerprinting, the reciprocal value of the
Euclidean distance (Equation 3.2) was used as the weight. In the case of probabilistic
fingerprinting, logarithmic weighting was applied (see Equation 4.21). Finally, the Root
Mean Square Error (RMSE) was computed as follows:

RMSE =
√∑n

i=1(xfp,i − xref )2 + (yfp,i − yref )2

n
, (7.1)

where (xref , yref ) are the coordinates of the true (reference) position, (xfp, yfp) the coordin-
ates of the position computed from fingerprinting and n is the number of fingerprinting
positions.

The RMSE results are depicted in Table 7.1. When relating the values to the placement
of the measurement points in Figure 7.7, it can be seen that the points located in the
edges of the setup (especially 2001, 2003 and 2011) have the highest RMSE. For almost
all measurement points (except for points 2006 and 2011), probabilistic fingerprinting
yields a higher RMSE than deterministic fingerprinting. Figure 7.8 shows a comparison of
the results of deterministic and probabilistic fingerprinting for measurement point 2009.
It can be seen that the estimated positions resulting from probabilistic fingerprinting
are more scattered than those resulting from deterministic fingerprinting. A similar
result was observable for the other measurement points as well. It can be concluded
that the probabilistic fingerprinting algorithm is more sensitive to small changes in the
observations, whereas the deterministic algorithm is more robust.
Table 7.1: RMSE of deterministic and probabilistic fingerprinting in lecture room AE01. A

WKNN approach with K = 4 reference points was used to obtain the results.
Measurement Deterministic fingerprinting Probabilistic fingerprinting

point RMSE [m] RMSE [m]
2001 2.73 3.83
2002 2.92 3.62
2003 4.48 4.54
2004 1.14 1.83
2005 0.86 1.03
2006 1.98 1.52
2007 0.57 0.72
2008 1.57 2.03
2009 0.55 1.03
2010 3.71 3.80
2011 0.88 0.71
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Figure 7.8: Comparison of deterministic and probabilistic fingerprinting for measurement
point 2009.

7.3 First real-time tests

On 2 May 2017 the real-time filter developed to integrate vehicle sensor data and
fingerprinting was first tested. The tests were carried out in a parking garage in Thondorf
(Liebenauer Hauptstraße 316), which had already served for tests in a previous project
[54]. A deterministic radio map for the garage had already been recorded in the scope of
the previous project.

Figure 7.9 shows a picture of the test vehicle which was provided by Magna Steyr. The
CAN interface was accessible as the car is a prototype. A sensor platform provided by
the Institute of Geodesy was mounted on the roof of the vehicle. On the sensor platform,
both the IMU for the reference trajectory and the BLE antennna for fingerprinting was
mounted.

Hardware used. To collect the RSS measurements, a LogiLink BT0015 BLE antenna
was connected via a USB cable to the laptop, a Lenovo IdeaPad 510S. A Peak-System
PCAN-USB adapter was needed to connect the laptop to the vehicle bus interface.
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Figure 7.9: Test vehicle with the sensor platform mounted on the roof.

Reference trajectory. In order to investigate the achievable accuracy, a reference
solution had to be set up. In a previous project [54], a tachymeter was used for tracking
the vehicle. The disadvantage of this approach is that the tracking was only possible
when there were no obstructions in the line of sight between the tachymeter and the
vehicle, so only a small part of the actual trajectory was tracked.

To overcome these limitations, a new approach for the reference trajectory was developed
using an IMU and a tachymeter. An IMU (iMar iNav-RQH) was mounted on the sensor
platform. This highly precise IMU contains accelerometers and gyroscopes, whose sensor
outputs can be used to calculate a trajectory with a strapdown algorithm. The strapdown
algorithm requires the initial position and attitude as starting values. To obtain these
initial values, a tachymeter was used. Figure 7.10 shows the IMU positioned on the
platform and the tachymeter which was used for the measurements to obtain the absolute
coordinates and attitude of the initial vehicle position.

The tachymeter (a Leica total station provided by the working group on Remote Sensing
and Photogrammetry at the Insitute of Geodesy) was positioned on a tripod in the
parking garage. The distances, horizontal and zenith angles to three points with known
coordinates (which had already been placed in the parking garage in the previous project)
were measured so that a 3D resection could be performed. Before every test round, a
prism was placed at a marked point on top of the IMU and a second prism was placed
on the sensor platform further at the front, in the direction of the x1-axis of the vehicle.
The total station then measured the distance from and angles to these two prisms so that
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Figure 7.10: An IMU and tachymeter measurements are needed to obtain the reference
trajectory.

the coordinates of their positions could later be obtained in the post-processing stage.

Time synchronisation. In order to compare the reference trajectory from IMU and
tachymeter measurements to the trajectory obtained from the integration of BLE fin-
gerprinting and vehicle sensor data, the time stamps of the trajectories need to be
synchronised. To achieve this synchronisation, the IMU and the laptop logging the RSS
from the surrounding BLE AP as well as vehicle sensor data were connected to GNSS re-
ceivers. The IMU was connected to a Javad SIGMA TriPad and the Lenovo IdeaPad 510S
to a u-blox receiver. Antennas connected to the receivers were held out of the windows of
the parking garage so that they were able to receive signals from GNSS satellites. The
offset between Global Positioning System (GPS)-time and system time of the laptop was
logged. The same procedure was repeated after the test rounds. In post-processing, the
time stamps of the reference and the computed integrated trajectories were brought to
GPS time.

Position of the BLE antenna. Two different scenarios for the position of the BLE
antenna were tested (see Figure 7.11). First, the BLE antenna was mounted on the
central front pillar of the sensor platform. For the second rounds of testing it was placed
inside the vehicle to find out whether this change had an impact on the accuracy of the
positioning result.

7.3.1 Comparison to the reference trajectory

To compute the reference trajectory, the tachymeter data were processed using the
software Geosi VERM (version 17) by IDC EDV GmbH. First, a 3D resection was
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Figure 7.11: The BLE antenna was first mounted on the platform (left) and then placed inside
the vehicle (right).

performed to obtain the position and orientation of the standpoint. Then the coordinates
of the prisms were calculated with the first principal task. For the first principal task,
the coordinates of the standpoint, the oriented direction to the unknown point, and the
distance from the standpoint to the unknown point are used to calculate the coordinates
of the unknown point. All coordinates were obtained in a Gauß-Krüger (GK) system.

Using the coordinates of the prism placed in the front part of the sensor platform and the
coordinate of the position of the IMU, the initial heading was calculated with Equation
6.31. The heading and position of the IMU were used as initial values for the strapdown
algorithm. The data obtained from the IMU were processed using the Inertial Explorer®
by NovAtel.

Inertial Explorer® requires the input data to be given in the World Geodetic System
1984 (WGS84). Thus, the coordinates obtained through the tachymeter measurements
had to be transformed from GK to WGS84. The reference trajectory calculated with
Inertial Explorer® then had to be transformed to GK-coordinates. For information on
coordinate transformations the reader is referred to [20].

In the next step, the lever arm between IMU and BLE antenna had to be considered.
The coordinates of the reference trajectory refer to the centre of the IMU, whereas the
integrated trajectory refers to the position of the BLE antenna. The reference trajectory
was brought to the same position as the integrated trajectory by shifting it by r = 1.73 m
in the direction of the heading h:

yBLE = yIMU + r sin(h) (7.2)

xBLE = xIMU + r cos(h). (7.3)
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Now, the RMSE of the trajectory computed from fingerprinting and the integration of
vehicle sensor data with respect to the reference trajectory can be computed as:

RMSE =
√∑n

i=1(xmeas,i − xref,i)2 + (ymeas,i − yref,i)2

n
, (7.4)

where n is the number of epochs of the trajectories, (xmeas, ymeas) are the coordinates of
the computed trajectory and (xref , yref ) are the coordinates of the reference trajectory.

7.3.2 Results

The preliminary real-time tests showed that it is possible to integrate BLE fingerprinting
and vehicle sensor data with the filter described in Section 6.3. When the achieved
accuracy was assessed in post-processing, the accuracy of the fingerprinting solution was
worse than expected. An overview of the RSME obtained from a deterministic, unfiltered
fingerprinting-only solution is given in Table 7.2. A WKNN approach with K = 4 and
the inverse Euclidean norm as weights was used. The table shows the results obtained
when the full radio map was used as well as the results for sparse fingerprinting, with
33 % and 50 % of the original fingerprints remaining respectively.

Table 7.2: RMSE of the unfiltered, deterministic fingerprinting solution for the test rounds on
2 May 2017.

Full radio map Sparse radio map
Antenna above vehicle 33% of original data 50% of original data
RMSE [m] round 1 6.81 6.11 6.48
RMSE [m] round 2 5.81 5.47 5.80
Antenna inside vehicle 33% of original data 50% of original data
RMSE [m] round 1 4.67 4.49 4.80

It can be seen that the RMSE is lower when the antenna is placed inside the vehicle and
that the sparse radio map leads to a higher accuracy than the full radio map. These
somewhat illogical results and the poor absolute accuracy lead to the conclusion that the
radio map is outdated and needs to be measured anew.
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7.4 Recording a new radio map for the Thondorf
parking garage

On 23 May 2017, the radio map for the 5th floor of the Thondorf parking garage was
measured anew. In total, RSS measurements were recorded at 568 reference points. 60
BLE beacons were placed on the steel girders at the ceiling of the parking garage. Their
beaconing rate was set to 10 Hz.

To record the radio map within one day, two laptops were used simultaneously. When
recording radio maps, it is important that the measurements are taken at a height at
which the BLE antenna is later located during the online-phase [43]. Both laptops were
therefore placed on small tables. To avoid obstructions in the signal paths, the LogiLink
BT0015 BLE antennas were placed on top of the laptops. Furthermore, the observers
knelt down while the RSS measurements were being recorded to avoid attenuating the
BLE signals sent from the BLE beacons located at the ceiling. At each RP, RSS were
recorded for 30 seconds. Figure 7.12 shows two pictures of the measurement setup at
each reference point.

Figure 7.12: To avoid obstructing the signal path, the observers knelt down while the RSS
were being recorded.
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Results. Figures 7.13 and 7.14 show a comparison of the RSS received from AP 36 and
AP 44, for the radio maps recorded in 2015 and in 2017. The plots were obtained through
a linear interpolation between the RP in Matlab.

Figure 7.13: Comparison of the RSS received from AP 36, for the radio maps recorded in
2015 (left) and 2017 (right).

Figure 7.14: Comparison of the RSS received from AP 44, for the radio maps recorded in
2015 (left) and 2017 (right).

When comparing the RSS patterns from 2015 and 2017, it can be seen that the BLE
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signals recorded in 2017 seem to have a greater range than those recorded in 2015. This
can be attributed to the changes of the objects located in the parking garage. In 2015,
when the first radio map was recorded, hardly any vehicles were parked on the 5th floor
of the parking garage. In 2017, almost all parking spaces were occupied. As metal is a
strong reflector for 2.4 GHz radio signals [17], the vehicles cause multipath effects. Due to
multiple reflections, the BLE signals are carried further when more vehicles are present.

The new radio map was then used to compute trajectories from the test rounds on 2 May
2017. The results are shown in Table 7.3. When comparing it to the results obtained
from the outdated radio map in Table 7.2, it can be seen that the accuracies improved
with the use of the new radio map. All RMSE are below 5 m. When comparing these
results to a study by Faragher and Harle (2015), who also investigated fingerprinting with
BLE beacons, these results seem plausible. When Faragher and Harle (2015) used one
BLE beacon per 100 m2, they achieved a positioning accuracy of < 5.5 m. The Thondorf
parking garage has an area of approximately 4800 m2. With 60 beacons deployed, the
beacon density is one beacon per 80 m2. With this beacon density, an accuracy of < 5 m
was achieved.

Table 7.3: RMSE of the unfiltered, deterministic fingerprinting solutions for the test rounds
on 2 May 2017 using the newly recorded radio map.

Full radio map Sparse radio map
Antenna above vehicle 33% of original data 50% of original data
RMSE [m] round 1 4.40 4.05 4.56
RMSE [m] round 2 4.25 4.45 4.58
Antenna inside vehicle 33% of original data 50% of original data
RMSE [m] round 1 4.24 4.61 4.64

7.5 Final test measurements

On 19 June 2017, the final test measurements took place in cooperation with colleagues
from the Signal Processing and Speech Communication (SPSC) Laboratory of Graz
University of Technology, who tested Ultra-Wideband (UWB) for the indoor localization
of the test vehicle.
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Figure 7.15: Two types of test rounds were used: a longer one (left) and a shorter one (right).

The test measurements were carried out analogously to the preliminary test measurements,
which were already described in Section 7.3. Again, the prototype vehicle provided by
Magna Steyr was used, and the IMU and tachymeter measurements were recorded for
the reference trajectory. In addition to the IMU and BLE antenna, an UWB receiver was
mounted on the sensor platform. In total, 13 test rounds were recorded, in 8 of which
the BLE antenna was located on the sensor platform and in 5 of which the antenna was
inside the vehicle, as depicted in Figure 7.11. The test rounds differed in length and are
illustrated in Figure 7.15. The short test round only went through the south-eastern
part of the parking garage, as the UWB solution by the SPSC Laboratory only provided
coverage for this area.

Already before the final test measurements, battery problems with some BLE beacons
occurred. When examining the BLE beacons again after the test rounds, it was found
that some had stopped sending signals. To obtain representative measurements when all
60 beacons broadcast BLE signals, it was decided to repeat the test measurements.

60 new batteries were ordered to replace the old batteries in the BLE beacons. On
22 June 2017, the final test measurements were repeated. As the team of the SPSC
Laboratory did not have to repeat their measurements, only long test rounds (see left
side of Figure 7.15) were recorded. In total, 10 test rounds were measured, 5 with the
antenna mounted on the sensor platform on top of the vehicle, and 5 with the antenna
placed inside the vehicle. Before and after the test rounds, it was investigated whether
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all beacons broadcast their advertisements. No battery problems occurred on 22 June
2017.

The recorded final test measurements serve as the basis for the investigations of finger-
printing optimization carried out in post-processing. The results will be presented in
Chapter 8.
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Results

This chapter presents the results of the investigations of fingerprinting optimization. The
radio map recorded in May 2017 (see Section 7.4) in the parking garage in Thondorf
and the test rounds driven in June 2017 (see Section 7.5) served as the basis for these
investigations.

Section 8.1 will describe the algorithmic optimization, Section 8.2 the economic optimiza-
tion and Section 8.3 the integration of vehicle sensor data. To conclude this chapter and
the thesis, an outlook for further research will be given in Section 8.4.

8.1 Algorithmic optimization

This section investigates the algorithmic optimization carried out in the scope of this thesis.
The main focus is placed on finding the ideal weights for deterministic fingerprinting and
on testing probabilistic fingerprinting.

8.1.1 Deterministic fingerprinting

For deterministic fingerprinting, the radio map was obtained by averaging the RSS time
series received from each AP at every RP. A WKNN approach with the K most similar
RP was used to estimate the positions in the online phase. K was set to four.
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Various norms were tested to find the K most similar RP and then used as weights in the
WKNN algorithm. Of the norms presented in Section 4.1.2, the Euclidean, Manhattan,
Sørensen, Neyman, Neyman2 and χ2 norms were compared.

Tables 8.1 and 8.2 show the RMSE of the unfiltered trajectories obtained from determin-
istic WKNN fingerprinting on 19 and 22 June respectively. When comparing the results
for the measurement setups with different BLE antenna locations (above and inside the
vehicle), it can be seen that all RMSE are smaller than or equal to 5.05 m when the
antenna is located above the vehicle and smaller than or equal to 6.03 m when the BLE
antenna is located inside the vehicle.

The different norms used have hardly any impact on the achievable positioning accuracy.
The difference in minimum and maximum RMSE for each round is a few decimetres only,
with the maximum range being 75 cm (round 7 on 22 June 2017, where the Sørensen
norm yielded an RMSE of 5.46 m and Neyman2 an RMSE of 4.71 m).

Table 8.1: Deterministic fingerprinting results for the measurements on 19 June 2017.
RMSE [m]

Norm used
Eucli- Man- Søren- Ney- Ney-

χ2
dean hattan sen man man2

Antenna above vehicle
Round 1 (long) 4.12 4.03 4.08 4.05 4.10 4.11
Round 2 (long) 3.74 3.66 3.74 3.80 3.71 3.76
Round 3 (long) 3.88 3.92 3.94 4.02 3.87 3.91
Round 4 (long) 4.08 4.48 4.49 4.19 4.04 4.05
Round 5 (short) 4.96 4.70 4.70 4.98 4.95 4.99
Round 6 (short) 4.14 3.99 4.00 4.27 4.15 4.20
Round 7 (short) 4.60 4.82 4.93 4.61 4.58 4.63
Round 8 (short) 4.88 4.68 4.75 4.80 4.86 4.80
Antenna inside vehicle
Round 9 (long) 5.48 5.65 5.71 5.53 5.48 5.49
Round 10 (long) 5.54 5.37 5.44 5.66 5.61 5.62
Round 11 (long) 4.60 4.57 4.61 4.93 4.65 4.76
Round 12 (long) 4.64 4.49 4.52 4.70 4.63 4.71
Round 13 (long) 4.46 4.77 4.86 4.83 4.54 4.73
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Table 8.2: Deterministic fingerprinting results for the measurements on 22 June 2017.
RMSE [m]

Norm used
Eucli- Man- Søren- Ney- Ney-

χ2
dean hattan sen man man2

Antenna above vehicle
Round 1 (long) 4.56 4.60 4.70 4.53 4.54 4.56
Round 2 (long) 4.22 4.37 4.33 4.32 4.19 4.25
Round 3 (long) 4.60 4.54 4.66 4.61 4.53 4.54
Round 4 (long) 5.05 4.86 4.92 5.05 5.03 5.04
Round 5 (long) 4.45 4.40 4.38 4.43 4.39 4.41
Antenna inside vehicle
Round 6 (long) 5.49 5.08 5.16 5.61 5.49 5.54
Round 7 (long) 4.74 4.92 5.46 4.89 4.71 4.77
Round 8 (long) 4.90 4.80 4.98 5.33 4.96 5.11
Round 9 (long) 6.03 6.05 6.19 5.99 6.03 6.05
Round 10 (long) 5.59 5.68 5.70 5.60 5.48 5.56

Since the RMSE provides only one value per trajectory, one might argue that hardly
any changes are visible when different norms are used as weights because the RMSE
averages the results of the individual positioning solutions. However, the individual
positioning solutions were also investigated. Figures 8.1 and 8.2 show the time series of
the deviations of the unfiltered fingerprinting solutions from the IMU reference trajectory
for test round 1 on 22 June 2017. Here the term deviation refers to the distance between
the coordinates of the reference trajectory and the coordinates of the computed trajectory
obtained through fingerprinting. All time series show a similar course, meaning that the
different norms used yield a similar positioning accuracy for the individual deterministic
fingerprinting solutions. When investigating the maxima of the time series, it can be
seen that the biggest outlier occurs after approximately 26 seconds and has a magnitude
of 15 metres. The Euclidean norm as well as Neyman, Neyman2 and χ2 show a second
outlier of over 10 metres at epoch t = 69 seconds. For the Manhattan and Sørensen
norm, the deviation from the reference trajectory at epoch t = 69 is approximately 9
metres. Both Manhattan and Sørensen belong to the L1 family of norms, which seems to
be more robust against outliers. Norms based on the L2 or Euclidean norm, such as the
Euclidean itself or the Neyman, Neyman2 and χ2 norms, which belong to the squared L2

family, are more sensitive to outliers.
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Figure 8.1: Accuracy of the unfiltered fingerprinting solution using the Euclidean, Manhattan
and Sørensen norms for round 1 on 22 June 2017.
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Figure 8.2: Accuracy of the unfiltered fingerprinting solution using the Neyman, Neyman2,
and χ2 norms for round 1 on 22 June 2017.
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8.1.2 Probabilistic fingerprinting

For probabilistic fingerprinting, a parametric approach was used to estimate the likelihood
density P (r|pi) at every reference point. As the examinations of the RSS distribution
carried out in Section 7.1 showed that the shape of the RSS likelihood distribution is
similar to the shape of a Gaussian bell curve if the receiver is rotated while the radio
map is recorded, the parameters of a normal distribution (mean µ and variance σ2) were
estimated from the measured RSS samples.

In the online phase, a WKNN maximum likelihood estimator taking the four most
probable reference points was used. Both linear (see Equation 4.20) and logarithmic
weights (see Equation 4.21) were tested.

Table 8.3: Deterministic and probabilistic fingerprinting results for the test rounds on 19 June
2017.

RMSE [m]

Weight used
Deterministic Probabilistic Probabilistic
Euclidean norm linear weights logarithmic weights

Antenna above vehicle
Round 1 (long) 4.12 5.83 5.87
Round 2 (long) 3.74 5.42 4.31
Round 3 (long) 3.88 5.87 5.56
Round 4 (long) 4.08 6.37 5.89
Round 5 (short) 4.96 6.71 6.34
Round 6 (short) 4.14 6.21 5.66
Round 7 (short) 4.60 6.16 6.05
Round 8 (short) 4.88 6.16 5.70
Antenna inside vehicle
Round 9 (long) 5.48 6.11 5.95
Round 10 (long) 5.54 5.75 5.44
Round 11 (long) 4.60 5.08 5.12
Round 12 (long) 4.64 5.30 5.24
Round 13 (long) 4.46 5.49 5.38

Table 8.3 shows the RMSE of the trajectories obtained from weighted probabilistic
fingerprinting. To compare the results to deterministic fingerprinting, the RMSE of
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Table 8.4: Deterministic and probabilistic fingerprinting results for the test rounds on 22 June
2017.

RMSE [m]

Weight used
Deterministic Probabilistic Probabilistic
Euclidean norm linear weights logarithmic weights

Antenna above vehicle
Round 1 (long) 4.56 6.20 6.22
Round 2 (long) 4.22 5.82 5.53
Round 3 (long) 4.60 5.83 5.51
Round 4 (long) 5.05 6.72 6.54
Round 5 (long) 4.45 6.45 6.53
Antenna inside vehicle
Round 6 (long) 5.49 7.33 7.09
Round 7 (long) 4.74 6.39 6.07
Round 8 (long) 4.90 6.13 5.51
Round 9 (long) 6.03 6.18 5.87
Round 10 (long) 5.59 6.43 6.61

WKNN deterministic fingerprinting with the Euclidean norm is shown in the same table.
Table 8.4 is structured in the same way and shows the RMSE for the trajectories measured
on 22 June 2017. When comparing the probabilistic weights, it can be seen that the
logarithmic weights yield a lower RMSE for almost all test rounds (except for rounds 1
and 11 on 19 June and rounds 1, 5 and 10 on 22 June 2017, where the linear weights yield
slightly better results). When the probabilistic results are compared to their deterministic
counterpart, it can be seen that deterministic fingerprinting yields a higher accuracy for
almost all test rounds (except for round 10 on 19 June and round 9 on 22 June). The
RMSE of the deterministic trajectories are all smaller than or equal to 6.03 m, whereas
the RMSE of the probabilistic trajectories are up to 7.33 m. A study which compared the
performance of deterministic and probabilistic fingerprinting as well as neural network
approaches [35] also found that deterministic WKNN fingerprinting yields the best results
in terms of accuracy and robustness.
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8.2 Economic optimization

For sparse fingerprinting, either the number of AP or the number of RP can be reduced.
The radio map in the Thondorf parking garage consists of 60 BLE AP and 568 RP. When
the RP are thinned out, every nth RP can be taken out automatically. When the number
of AP is reduced, special attention has to be paid to the coverage and the geometry
of the AP. All investigations carried out for the economic optimization were done with
deterministic fingerprinting as it yielded more accurate and robust results (see Section
8.2).

Section 8.2.1 presents the results of the fingerprinting positioning solution with a reduced
number of reference points. Furthermore it covers the achievable accuracy when simple
path loss models are used to patch the sparse radio map. Section 8.2.2 shows the results
for different scenarios with a reduced number of access points.

8.2.1 Reducing the number of reference points

When the number of reference points is reduced, the positioning accuracy inevitably
decreases. To investigate how strongly the positioning accuracy deteriorates, the number
of reference points in the radio map was reduced by 50% and 67%, so that one half or one
third of the RP remained. Again, the RMSE was computed for each of the trajectories
measured on 19 and 22 June 2017. To show the difference between the sparse and the
full radio maps, the difference ∆full is introduced:

∆full = RMSEsparse −RMSEfull. (8.1)

If ∆full is positive, the RMSE obtained with the sparse radio map is higher than the
one obtained form the full radio map. If ∆full is negative, the sparse radio map yields a
better solution than the full radio map.

Tables 8.5 and 8.6 show the RMSE of the trajectories computed from the sparse radio maps
with 50% and 33% of the original reference points remaining. The BLE measurements
were taken on 19 June 2017 for Table 8.5 and 22 June 2017 for Table 8.6, respectively.
To compare the results to the full radio map, the RMSE obtained from the computations
with the full radio map as well as the differences ∆full are also shown in the same tables.

When the number of fingerprints is reduced by 50%, the maximum RMSE increase is
70 cm for the trajectories obtained on 19 June and 73 cm for the trajectories obtained
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on 22 June 2017. The average RMSE increase is only 10 cm for 19 June and 18 cm for
22 June, as the sparse radio map yields lower RMSE for some trajectories. When the
radio map is reduced further so that only 33% of the original fingerprints remain, the
maximum RMSE increase is 1.20 m for 19 June and 1.25 m for 22 June 2017, respectively.
The average RMSE increases are 24 cm for the trajectories of 19 June and 15 cm for the
trajectories obtained on 22 June, as again the sparse radio map yields better results for
some trajectories. Even though ∆full is sometimes negative, meaning that the positioning
accuracy achieved with the sparse radio map is better for the trajectory investigated, the
positioning accuracy deteriorates more often than it improves when fingerprints are taken
out of the radio map. It can therefore be concluded that the Thondorf radio map does
not consist of too many reference points.

Table 8.5: RMSE obtained from the sparse radio maps (50% and 30% of the original fingerprints
remaining) for the measurements on 19 June 2017.

RMSE [m]
Full radio Sparse radio Sparse radio

map map (50%) ∆full map (33%) ∆full

Antenna above vehicle
Round 1 (long) 4.12 4.24 0.12 4.54 0.42
Round 2 (long) 3.74 4.26 0.52 4.17 0.43
Round 3 (long) 3.88 3.85 -0.03 4.07 0.19
Round 4 (long) 4.08 4.78 0.70 5.25 1.17
Round 5 (short) 4.96 4.75 -0.21 4.68 -0.28
Round 6 (short) 4.14 4.20 0.06 4.12 -0.02
Round 7 (short) 4.60 4.28 -0.32 4.68 0.08
Round 8 (short) 4.88 4.90 0.02 4.72 -0.16
Antenna inside vehicle
Round 9 (long) 5.48 5.76 0.28 5.17 -0.31
Round 10 (long) 5.54 5.29 -0.25 5.46 -0.08
Round 11 (long) 4.60 4.71 0.11 4.75 0.15
Round 12 (long) 4.64 4.91 0.27 4.93 0.29
Round 13 (long) 4.46 4.46 0.00 5.66 1.20

Radio map interpolation. When the number of reference points is reduced, the radio
map can be patched or densified through interpolation with path loss models. A simple
attenuation model (see Equation 5.1) was used to interpolate the sparse radio maps for
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Table 8.6: RMSE obtained from the sparse radio maps (50% and 30% of the original fingerprints
remaining) for the measurements on 22 June 2017.

RMSE [m]
Full radio Sparse radio Sparse radio

map map (50%) ∆full map (33%) ∆full

Antenna above vehicle
Round 1 (long) 4.56 4.60 0.04 4.76 0.20
Round 2 (long) 4.22 4.71 0.49 4.58 0.36
Round 3 (long) 4.60 4.95 0.35 4.79 0.19
Round 4 (long) 5.05 5.24 0.19 4.95 -0.10
Round 5 (long) 4.45 4.74 0.29 4.50 0.05
Antenna inside vehicle
Round 6 (long) 5.49 5.36 -0.13 5.02 -0.47
Round 7 (long) 4.74 5.47 0.73 5.99 1.25
Round 8 (long) 4.90 5.16 0.26 5.33 0.43
Round 9 (long) 6.03 6.08 0.05 5.96 -0.07
Round 10 (long) 5.59 5.11 -0.48 5.28 -0.31

the Thondorf parking garage. Both of the sparse radio maps, with 50% and 30% of
the original access points remaining, were interpolated so that the original number of
reference points was restored. The attenuation exponent was determined empirically
and found to be n = 2.75. The closest neighbouring original reference point was taken
to compute the reference distance d0 and to obtain the power at the reference distance
P (d0) for every interpolated RP.

Table 8.7 shows the RMSE for the trajectories measured on 19 June 2017 and computed
from the interpolated radio maps with 50% and 30% of the original RP remaining. Again,
the RMSE for the full radio map as well as the differences between the RMSE of the
interpolated maps and the RMSE of the full radio map are shown for comparison. Table
8.8 shows the same results for the trajectories measured on 22 June 2017.

When 50% of the RP are interpolated, the maximum RMSE increase of the trajectories
is 54 cm for 19 June and 1.39 m for 22 June 2017. The average RMSE increases are
29 cm and 66 cm for 19 and 22 June respectively, when 50% of the original RP are kept
and the rest is interpolated. When only 33% of the original RP are kept and the rest is
interpolated, the maximum RMSE increase rises to 1.46 m for the trajectories obtained
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on 19 June and 1.59 m for the trajectories of 22 June. The average RMSE increase when
two thirds of the total reference points of the radio map are interpolated is 87 cm for
both measurement days.

When the radio map is interpolated with a simple path loss model, the RMSE increases
are higher than they are in the case when the RP are just taken out and not interpolated.
The weighting with the sparse, truly measured RP yields better results than WKNN
fingerprinting with interpolated RP. This can be attributed to the fact that the simple
path loss model assumes an ideal propagation medium in which the waves attenuate
equally in all directions. In reality, the BLE signals are attenuated, reflected or refracted
when they hit obstacles in the parking garage. As the BLE beacons are placed on steel
girders, the closest RP to the interpolation point might lie on the other side of the steel
girder, where the RSS which serves as the reference power might be much stronger or
much weaker than it is for the point which is interpolated.

Table 8.7: RMSE obtained from the interpolated radio maps (with 50% and 33% of the original
reference points) for 19 June 2017.

RMSE [m]
Full ra- Interpolated ra- Interpolated ra-
dio map dio map (50%) ∆full dio map (33%) ∆full

Antenna above vehicle
Round 1 (long) 4.12 4.37 0.25 5.58 1.46
Round 2 (long) 3.74 4.06 0.32 4.90 1.16
Round 3 (long) 3.88 4.35 0.47 5.07 1.19
Round 4 (long) 4.08 4.20 0.12 5.28 1.20
Round 5 (short) 4.96 5.07 0.11 6.05 1.09
Round 6 (short) 4.14 4.55 0.41 5.17 1.03
Round 7 (short) 4.60 4.79 0.19 5.39 0.79
Round 8 (short) 4.88 5.36 0.48 5.33 0.45
Antenna inside vehicle
Round 9 (long) 5.48 6.02 0.54 5.87 0.39
Round 10 (long) 5.54 5.58 0.04 5.98 0.44
Round 11 (long) 4.60 4.98 0.38 4.85 0.25
Round 12 (long) 4.64 4.85 0.21 5.43 0.79
Round 13 (long) 4.46 4.74 0.28 5.55 1.09
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Table 8.8: RMSE obtained from the interpolated radio maps (with 50% and 33% of the original
reference points) for 22 June 2017.

RMSE [m]
Full ra- Interpolated ra- Interpolated ra-
dio map dio map (50%) ∆full dio map (33%) ∆full

Antenna above vehicle
Round 1 (long) 4.56 5.16 0.60 5.57 1.01
Round 2 (long) 4.22 5.02 0.80 5.81 1.59
Round 3 (long) 4.60 5.99 1.39 5.95 1.35
Round 4 (long) 5.05 5.94 0.89 5.94 0.89
Round 5 (long) 4.45 5.54 1.09 5.62 1.17
Antenna inside vehicle
Round 6 (long) 5.49 5.61 0.12 5.79 0.30
Round 7 (long) 4.74 5.33 0.59 5.80 1.06
Round 8 (long) 4.90 5.38 0.48 5.43 0.53
Round 9 (long) 6.03 6.70 0.67 6.73 0.70
Round 10 (long) 5.59 5.59 0.00 5.73 0.14

Removing the reference points in areas where the vehicle should not drive.
Another approach which was chosen to test sparse fingerprinting in parking garages was
to keep reference points only on the roadway and not in the parking spaces. In a certain
way, removing RP in areas where the vehicle is not allowed to drive is similar to adding
additional information to the radio map: if only a simple nearest neighbour fingerprinting
algorithm was used, the position estimate must lie on the roadway. (Note that as soon as
a K nearest neighbour algorithm is used, the position estimate can also lie between two
roadways.)

Tables 8.9 and 8.10 show the RMSE for the fingerprinting trajectories measured on 19
and 22 June 2017 and computed from the radio map with reference points located on
the roadway only. A WKNN deterministic fingerprinting algorithm was used with the
inverse Euclidean distance as weight. The RMSE obtained from the computations with
the full radio map as well as the difference ∆full between the sparse radio map and the
full radio map are shown for comparison. For all rounds where the antenna was mounted
on the sensor platform (above the vehicle), the sparse radio map with fingerprints on
the roadway always yielded better results (i.e. a lower RMSE) than the full radio map.
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When the antenna was placed inside the vehicle, the positioning accuracy sometimes
deteriorated when the sparse radio map was used.

Table 8.9: RMSE obtained from the sparse radio map with fingerprints only in areas where
the vehicle should drive. The trajectories were obtained during the final test measurements
on 19 June 2017.

RMSE [m]
Full radio map Sparse radio map (road only) ∆full

Antenna above vehicle
Round 1 (long) 4.12 3.88 -0.24
Round 2 (long) 3.74 3.28 -0.46
Round 3 (long) 3.88 3.06 -0.82
Round 4 (long) 4.08 3.94 -0.14
Round 5 (short) 4.96 3.87 -1.09
Round 6 (short) 4.14 3.63 -0.51
Round 7 (short) 4.60 4.11 -0.49
Round 8 (short) 4.88 3.80 -1.08
Antenna inside vehicle
Round 9 (long) 5.48 5.38 -0.10
Round 10 (long) 5.54 5.67 0.13
Round 11 (long) 4.60 4.55 -0.05
Round 12 (long) 4.64 5.03 0.39
Round 13 (long) 4.46 4.60 0.14
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Table 8.10: RMSE obtained from the sparse radio map with fingerprints only in areas where
the vehicle should drive. The trajectories were obtained during the final test measurements
on 22 June 2017.

RMSE [m]
Full radio map Sparse radio map (road only) ∆full

Antenna above vehicle
Round 1 (long) 4.56 4.03 -0.53
Round 2 (long) 4.22 3.71 -0.51
Round 3 (long) 4.60 4.39 -0.21
Round 4 (long) 5.05 4.07 -0.98
Round 5 (long) 4.45 4.15 -0.30
Antenna inside vehicle
Round 6 (long) 5.49 5.69 0.20
Round 7 (long) 4.74 4.80 0.06
Round 8 (long) 4.90 4.81 -0.09
Round 9 (long) 6.03 5.32 -0.71
Round 10 (long) 5.59 5.47 -0.12

Figure 8.3 shows two unfiltered trajectories obtained from sparse fingerprinting where the
radio map contained reference points which were only located in areas where the vehicle is
allowed to drive. The fingerprinting solution is shown in dark red, the reference trajectory
in light red. The left side of Figure 8.3 shows the trajectory obtained from measurement
round 1 on 22 June 2017, where the BLE antenna was placed on the sensor platform on
the roof of the vehicle. This trajectory is very smooth and follows the reference closely.
The right side of Figure 8.3 shows the trajectory of the 6th measurement round recorded
on the same day, when the antenna was placed inside the vehicle. With the antenna
placed inside, the fingerprinting trajectory is noisier and shows two large outliers. The
outliers occur when the position is estimated to be on a roadway where the vehicle is
allowed to drive, but it is not the roadway where the vehicle is truly located. Outliers of
this magnitude (>20 m) only occurred when sparse radio maps were used.
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Figure 8.3: Trajectories obtained from sparse fingerprinting with reference points only in areas
where the vehicle is allowed to drive. The fingerprinting trajectory is shown in dark red,
along with the reference trajectory in light red. While recording the BLE measurements on
22 June 2017, the antenna was first placed on top of the vehicle (left plot, round 1) and then
inside the vehicle (right plot, round 6).

8.2.2 Reducing the number of access points

The number of AP was first reduced automatically by taking out every 4th, 5th and 6th

AP from the radio map. When every 6th AP was taken out, the RMSE of the trajectories
deteriorated by about 50 cm, when every 4th and 5th AP were taken out, the RMSE
deteriorated by approximately 1 m. However, as soon as larger numbers of AP are taken
out, the RMSE is not representative any more, as large outliers occur close to the regions
where the AP were taken out.

Different scenarios were tested with AP located only in the corners, only in the centre or
only in the corners and around the ramps of the parking garage. Huge outliers of up to
60 m occurred and, especially for test rounds where the BLE antenna was located inside
the vehicle, no suitable positioning estimates were obtained.

The left side of Figure 8.4 shows an example of a fingerprinting trajectory which was
obtained when the antenna was located inside the vehicle and only AP in the middle row
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Figure 8.4: Trajectories obtained from sparse fingerprinting when only AP in the middle row
(left side) or only AP in the outer row (right side) of the parking garage were kept. The result
shown was computed for test round 9 on 22 June 2017, where the antenna was located inside
the vehicle. The fingerprinting trajectories are shown in dark red, the references in light red.

of the parking garage were used. The estimated positioning solutions are far away from
the actual trajectory and cannot be used in a positioning system for a parking garage.

The right side of Figure 8.4 shows the same trajectory obtained when AP are only
deployed close to the surrounding edges of the parking garage. The computed positions
are closer to the reference trajectory than the ones obtained from the radio map if the
only AP present are in the middle row. This solution might be better because the position
estimate tends to be close to the position of the AP, and the AP in the outer circle (right
side of Figure 8.4) are closer to the reference trajectory than the AP in the inner circle
(left side of Figure 8.4).

When a combination of AP in the outer circle and one row of AP in the middle of the
parking garage are used, the RMSE of the trajectories only increases by approximately
1.5 m in comparison to the trajectory of the full radio map. However, large outliers with
a magnitude of more than 20 m offset from the reference still occur, more frequently
when the antenna is placed inside the vehicle than when it is placed outside.

In conclusion it can be said that the number of AP should not be reduced, not even
if the estimated positions from fingerprinting are only used as initial values for a filter
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which then only continues with relative positioning updates through a DR algorithm. As
soon as the number of AP is reduced, outliers of the positioning estimate occur, with
a magnitude of over 20 m away from the true position. When a filter relying only on
DR uses a starting position 20 m away from the true starting position, the trajectory
computed will have this offset from the true trajectory.

8.3 Integration of vehicle sensor data

The real-time integration of BLE fingerprinting and vehicle sensor data was tested in
the course of the final test measurements on 19 and 22 June 2017. Statements about the
achievable accuracy can only be made when the integrated trajectories are compared
to the reference trajectory in post-processing, which will be described in this section.
First, the settings for the Kalman filter will be discussed, then the final results will be
presented.

Filter settings. For the fingerprinting solutions, a deterministic WKNN algorithm
with the four most similar RP was used. The weights were computed from the inverse
Manhattan norm, as L1 norms proved to be more stable than L2 norms (see Section
8.1.1).

The initial position was caluclated from the RSS of the first fingerprinting epoch. The
start heading was entered manually. A new fingerprinting update was computed every
second, while the updates with vehicle sensor data were carried out at 10 Hz.

The initial covariance matrix was modelled as follows:

P0 =



σ2
x 0 0 0 0

0 σ2
y 0 0 0

0 0 σ2
ẋ 0 0

0 0 0 σ2
ẏ 0

0 0 0 0 σ2
ḣ


=



12 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 12 0
0 0 0 0

(
10π
180

)2


, (8.2)

where (σx, σy) are given in metres, (σẋ, σẏ) in m/s and σḣ in radians. To model the
system noise, the covariance of the parameters neglected by the motion model is needed.
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It was designed as:

Rn =


σ2
ẍ 0 0

0 σ2
ÿ 0

0 0 σ2
ḣ

 =


22 0 0
0 22 0
0 0

(
90π
180

)2

 , (8.3)

with (σẍ, σÿ) in m/s2 and σḣ in radians.

For the standard deviations of the observations, the standard deviations of the velocities
(both forward and right) obtained from vehicle sensor data were set to be σv = 0.1m/s.
The standard deviation of the heading change was set to σh = 0.1°. The accuracy of the
fingerprinting updates was modelled with σx,y = 0.3m, which is a much lower standard
deviation than the actual standard deviation of fingerprinting. This high weight was
given to the fingerprinting observations due to the fact that if the initial position or
heading are incorrect, the integrated trajectory will not be corrected and drawn closer to
the true trajectory when the relative observations have a much lower standard deviation
and therefore a much higher weight.

Final results. Table 8.11 and Table 8.12 show the RMSE of the integrated, filtered
trajectories in comparison to the deterministic, fingerprinting-only trajectories for the
test rounds recorded on 19 and 22 June 2017, respectively. It can be seen that when
vehicle sensor data are added as additional information, the RMSE are lowered for all
trajectories. The improvement, which is calculated as

Improvement = RMSEfingerprinting −RMSEintegrated solution, (8.4)

is also shown in the same tables. The average improvement for all test rounds recorded
on both days is 2.24 m.

When the antenna is placed above the vehicle, slightly better results can be achieved
than when it is placed inside the vehicle. The maximum RMSE when the antenna is
placed outside is 2.82 m for the tests on 19 June and 2.76 m for the test rounds recorded
on 22 June 2017. When the antenna is placed inside the vehicle, the maximum RMSE
for the test rounds on 19 June is 3.49 m and 2.91 m for 22 June 2017.
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Table 8.11: RMSE of the integrated trajectories in comparison to the fingerprinting-only

trajectories for the test rounds recorded on 19 June 2017.
RMSE [m]

Deterministic Integrated solution Improve-
Manhattan norm with vehicle sensor data ment

Antenna above vehicle
Round 1 (long) 4.03 2.11 1.92
Round 2 (long) 3.66 1.71 1.95
Round 3 (long) 3.92 2.13 1.79
Round 4 (long) 4.48 2.82 1.66
Round 5 (short) 4.70 2.66 2.04
Round 6 (short) 3.99 2.06 1.93
Round 7 (short) 4.82 2.64 2.18
Round 8 (short) 4.68 2.36 2.32
Antenna inside vehicle
Round 9 (long) 5.65 3.49 2.16
Round 10 (long) 5.37 2.48 2.89
Round 11 (long) 4.57 2.80 1.77
Round 12 (long) 4.49 2.32 2.17
Round 13 (long) 4.77 3.42 1.35

Table 8.12: RMSE of the integrated trajectories in comparison to the fingerprinting-only
trajectories for the test rounds recorded on 22 June 2017.

RMSE [m]
Deterministic Integrated solution Improve-

Manhattan norm with vehicle sensor data ment
Antenna above vehicle
Round 1 (long) 4.60 1.77 2.83
Round 2 (long) 4.37 2.05 2.32
Round 3 (long) 4.54 2.70 1.84
Round 4 (long) 4.86 2.76 2.10
Round 5 (long) 4.40 2.36 2.04
Antenna inside vehicle
Round 6 (long) 5.08 2.45 2.63
Round 7 (long) 4.92 2.57 2.35
Round 8 (long) 4.80 2.05 2.75
Round 9 (long) 6.05 2.35 3.70
Round 10 (long) 5.68 2.91 2.77
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Figure 8.5: Accuracy of the integrated solution with respect to the IMU reference for test
round 1, recorded on 22 June 2017.

Figure 8.5 shows the deviations of the integrated, filtered solution from the reference
trajectory as a time series. It can be seen that the maximum deviation from the true
position is slightly higher than 4 m (at epoch t = 33 seconds), which corresponds to the
accuracy of fingerprinting. The absolute accuracy of a system integrating absolute and
relative positioning data cannot be higher than the accuracy of the absolute positioning
system, however the relative accuracy can be improved. When investigating the time
series more closely, small jumps or steps can be seen every second. These jumps result
from the absolute fingerprinting updates.
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Figure 8.6: Integrated solution (dark red) in comparison to the IMU reference (light red)
for test round 1, recorded on 22 June 2017. The fingerprinting accuracy was modelled as
σx,y = 0.3 m.

Figure 8.6 shows the combined, integrated solution of fingerprinting and vehicle sensor
data for test round 1 recorded on 22 June 2017 in dark red. The IMU reference is shown
in light red. It can be seen that the integrated trajectory closely follows the reference
trajectory. Only in the north-eastern part does it slightly deviate from the reference. This
deviation can also be seen in the time series in Figure 8.5, between seconds 30 and 40.
Furthermore, small jumps can be seen in the integrated solution, which occur whenever a
fingerprinting update is processed. These jumps can be reduced when a lower weight, i.e.
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a higher standard deviation, is given to the fingerprinting observations.

Figure 8.7 shows the integrated trajectory for test round 1 on 22 June 2017 when a
standard deviation of σx,y = 3 m was given to the fingerprinting updates. When comparing
it to Figure 8.6, which shows the exact same trajectory but with a standard deviation of
σx,y = 0.3 m for the coordinates obtained through fingerprinting, it can be seen that the
trajectory with a fingerprinting standard deviation of 3 m is smoother and follows the
reference trajectory more closely.

Figure 8.7: Integrated solution (dark red) in comparison to the IMU reference (light red)
for test round 1, recorded on 22 June 2017. The fingerprinting accuracy was modelled as
σx,y = 3 m.
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However, with a high standard deviation, the fingerprinting updates have hardly any
influence on the course of the trajectory. In the case of Figure 8.7, the integrated
trajectory is close to the true trajectory because the initial position (obtained from the
first fingerprinting epoch) is close to the true position, a correct initial heading was used
and the vehicle sensor data do not drift. If the initial position were 5 m away from the
true position, or if the start heading was chosen wrongly, it would take a long time before
the integrated trajectory came closer to the true trajectory, when only a low weight is
given to the fingerprinting updates. Moreover, if the vehicle sensor data start to drift,
this drift can be reduced better if a stronger weight is given to the absolute fingerprinting
updates. To conclude, a standard deviation of σx,y = 0.3 m was chosen as an ideal
weight for the filter, even if, visually, higher standard deviations might provide a more
appealing result in some cases. The filter is more stable when a higher weight is given to
fingerprinting.

8.4 Conclusion and outlook

To summarize the results of this thesis, it can be said that deterministic WKNN finger-
printing yields more accurate results than probabilistic fingerprinting with uniform prior
probabilities. Using different norms as a measure of RSS similarity and as weights in
WKNN fingerprinting has hardly any impact on the achievable accuracy of the result.
However, norms belonging to the L1 family proved to be more stable, i.e. more robust
against outliers, than distance metrics derived from the L2 norm.

As far as sparse fingerprinting is concerned, the accuracy decreases when the number of
fingerprints is reduced. When the radio map is interpolated with a simple path loss model,
the accuracy of WKNN fingerprinting deteriorates even further, as this model does not
describe the indoor propagation characteristics of radio waves accurately. The number of
AP in the Thondorf parking garage should not be reduced, as this would severely degrade
the achievable accuracy of the absolute positioning result. When fingerprints in areas
where the vehicle is not allowed to drive are taken out of the radio map, the achievable
accuracy of the positioning result can even be improved, but the BLE antenna should be
placed outside the vehicle in the online positioning phase.

When it comes to the real-time integration of BLE fingerprinting and vehicle sensor data,
the filter algorithm developed has proved to work. When fingerprinting is supported by
adding vehicle sensor data, the positioning solution can be improved. As the initial filter
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position is computed from the first fingerprinting epoch and the initial heading might
be erroneous, a high weight should be given to the fingerprinting updates so that the
integrated trajectory will approach the true trajectory faster in case of erroneous initial
values.

As an outlook for further research, the filter developed in this study could be combined
with GNSS measurements and also used for outdoor applications. In GNSS-denied areas
such as tunnels, a continuous positioning solution for vehicles would be possible through
the use of vehicle sensor data. As the filter is decentralized, BLE fingerprinting and GNSS
positioning can easily be interchanged, so that the continuous position determination of
the vehicle should be possible when it leaves the road and enters a parking garage.

For further improvements of the indoor positioning solution, an approach to determining
the initial heading has to be found. Moreover the combination of probabilistic finger-
printing and particle filtering could be investigated, as particle filtering computes prior
probabilities, which can be used in probabilistic fingerprinting.

Lastly, the radio maps in parking garages could be updated automatically. When vehicles
are static, i.e. parked, and the position of the parking space is known, BLE data could be
logged and used to update the radio map. Furthermore the radio map could be updated
in combination with DR from vehicle sensor data, as described in Section 5.2.
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