
Birgit Pfarrkirchner, BSc

Automatic Lower Jawbone Segmentation

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Biomedical Engineering

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Institute of Computer Graphics and Vision

 Diplom-Ingenieurin

Supervisor

Advisor: Dr. Dr. Jan Egger

Graz, October 2017

Abstract

The aim of this master thesis is to segment automatically the lower jawbone in
humans’ computed tomography (CT) images with the support of trained deep
learning networks. To accomplish training, ten CT datasets of the head-neck
region were provided by the Department of Oral and Maxillofacial Surgery of
the Medical University of Graz. Moreover, physicians segmented manually the
mandible in order to generate the ground truths for supervised learning. Ten
CT datasets is an absolutely low amount to train neural networks efficiently.
Consequently, a module network and a macro module were implemented with
the MeVisLab software in order to enable a processing and a synthetic en-
largement of the datasets. The data augmentation was realised with the ap-
plication of affine transformations and noise addition on the original images.
Beyond that, the classification and segmentation networks were implemented
with Python and the deep learning toolkit TensorFlow, whereby training of
the networks was conducted with the processed CT slices. The classification
networks ought to decide whether an image shows parts of the lower jawbone
or not. Hence, the slices displaying the mandible are delivered to fully con-
volutional networks, which predict the lower jawbone with the support of an
upsampling approach. The results show that the networks perform better if
more images are utilised for training. However, the achieved metrics and the
visual predictions are quite satisfactorily in fact of the low amount of training
data. Nonetheless, a further training and testing with new, unseen CT images
is necessarily advised for future investigations.

Keywords: Deep Learning, Segmentation, Lower Jawbone, MeVisLab, Ten-
sorFlow

iii

Acknowledgments

I would like to thank everyone, who supported me with the establishment of
my master thesis and who encouraged me during my years of study.

In particular, I thank my advisor Dr. Dr. Jan Egger, who gave ben-
eficial hints for the progress of my work and he also enabled to acquire an
insight into daily scientific work. Additionally, I would like to show gratitude
to Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg, who permitted the
accomplishment of a master thesis in the interesting field of medical image
processing and deep learning at the Institute of Computer Graphics and
Vision.

On top of that, I would like to thank Dr. Dr. Dr. Jürgen Wallner,
who provided the medical image data and the ground truth segmentations
for the conduction of this thesis and he also assisted me with his sound
medical knowledge.

Apart from that, I gratefully thank all my friends and my family, es-
pecially my parents and my boyfriend, who supported me during my years
in Graz.

iv

Contents

1 Introduction 1
1.1 Motivation and Goal . 1
1.2 Thesis Structure . 2

2 Medical Background 3
2.1 Anatomy of the Mandibula . 3
2.2 Physiology of the Mandibula 5

3 Technical Background 7
3.1 Computed Tomography . 7

3.1.1 General Principle . 7
3.1.2 Hounsfield Units . 11
3.1.3 Artefacts . 12

3.2 MeVisLab . 12
3.3 Segmentation . 16

3.3.1 General Principle . 16
3.3.2 Segmentation Applications in Medicine 17
3.3.3 Validation of Segmentation Results 18

3.4 Deep Learning . 20
3.4.1 Fundamentals of Artificial Neural Networks 21
3.4.2 Convolutional Neural Networks 25

3.5 Deep Learning Toolkit: TensorFlow 30

4 Related Work 32
4.1 Data Augmentation . 32
4.2 Segmentation . 33

4.2.1 Patch-based Segmentation Approach 33
4.2.2 Upsampling-based Segmentation Approach 34

5 Methods 36
5.1 Available Computed Tomography Datasets 36

5.1.1 Overview . 36
5.1.2 Ground Truth Segmentations 37
5.1.3 Acquisition Parameters 38
5.1.4 Dataset Size . 39

5.2 Implementations in MeVisLab 40
5.2.1 “Save Slices for Deep Learning” Network 41
5.2.2 SaveAsSingleSlices Macro Module 45

5.3 Classification of the CT Images 54

v

5.3.1 Dictionary of Classification Labels 54
5.3.2 Data Processing . 56
5.3.3 Implementation of the Code Framework 57
5.3.4 Training Datasets . 61
5.3.5 Training of the CNNs 63
5.3.6 Testing of the trained CNNs 67

5.4 Segmentation of the Mandibula 68
5.4.1 Adaption of the Code Framework 68
5.4.2 Storage of the Datasets as TFRecords Files 75
5.4.3 Training Datasets . 77
5.4.4 Training of the Networks 78
5.4.5 Testing of the Networks 81
5.4.6 Combination of the Segmentation and Classification

Networks . 82

6 Results 86
6.1 Data Generation with the MeVisLab Implementations 86
6.2 Classification Results . 88
6.3 Segmentation Results . 97

7 Discussion and Future Outlook 108

8 Appendix 112
8.1 Additional Classification Results 112
8.2 Additional Segmentation Results 116

vi

List of Figures

1 Increasing number of Google’s search requests on “Deep Learn-
ing”. 1

2 Anatomy of the Cranium. 4
3 Anatomy of the mandible. 4
4 Evolution of the mandible during a human’s life. 6
5 Principle of X-Ray projection and example of a projection

image of the thorax. 8
6 CT principle and example of a CT image of the skull. 9
7 CT scanner SIEMENS Somatom Definition Edge. 9
8 Schematic spiral CT. 10
9 Schematic multi slice CT. 10
10 Hounsfield units of different tissue types. 11
11 Illustration of the three module types and the data connectors. 13
12 Example of a MeVisLab network. 14
13 Segmentation principle. 16
14 Graphical interpretation of a segmentation result. 18
15 Structure of a biological neuron. 21
16 Mathematical analogue of a biological neuron. 22
17 Structure of a multilayer network. 23
18 Comparison of the gradient descent method with different

learning rates. 24
19 Flowchart of the training process. 24
20 Structure of a convolutional neural network. 25
21 Example image applied to a convolutional and max-pooling

layer. 26
22 Convolution principle. 27
23 Local connectivity of a convolutional layer. 27
24 Max-pooling principle. 28
25 Schematic description of the upsampling operation. 29
26 Listings of a TensorFlow session and schematic representation

of the computational graph. 31
27 Difference between a classification (above) and a fully convo-

lutional network (below). 34
28 Example image segmented with the three different network

architectures (FCN-32s, FCN-16s and FCN-8s). 35
29 Examples of CT slices displaying parts of the mandible (red). 37
30 CT image corrupted by metal artefacts. 40
31 Implemented “Save Slices for Deep Learning” network. 41
32 Various representations created with the View2D modules. . . 43

vii

33 Depiction with OrthoView2D. 44
34 3D visualisation of a CT dataset and the segmented mandible. 45
35 Internal network of the SaveAsSingleSlices module. 46
36 Basic framework code of a Script-file. 48
37 Panel of the SaveAsSingleSlices module with selected Settings-

tab. 49
38 Panel of the SaveAsSingleSlices module with selected Affine

Transformations-tab. 50
39 Panel of the SaveAsSingleSlices module with selected Noise-tab. 51
40 Messages to inform the user. 52
41 Generated filenames of exported slices. 53
42 Listings to figure out the label of an examined mask. 55
43 Exemplary entries of the created “Labels Dictionary”. 55
44 Steps to get an image’s one-hot vector. 57
45 Division of the dataset into a training and a validation set. . . 58
46 Listings of the implemented input layer and of the first con-

volutional and pooling layer pair. 58
47 Listings of the fully connected, the dropout and the output

layer. 59
48 Launching the training process of the configured neural net-

work with the fit() function and thereafter, saving the trained
network. 60

49 Manual calculation of the accuracy. 61
50 Parameters influencing the network performance. 63
51 Listings of defined training parameters. 64
52 Workflow of the segmentation network implementations. . . . 68
53 Network architecture of the TF-Slim VGG-16 model. 70
54 Listings of the FCN-32s network topology. 71
55 FCN-32s network topology for input images with size of 512×

512. 71
56 Listings of the FCN-16s network topology. 72
57 FCN-16s network topology for input images with size of 512×

512. 73
58 Listings of the FCN-8s network topology. 74
59 FCN-8s network topology for input images with size of 512×512. 75
60 Listings of the generation of a TFRecords file. 76
61 Listings of the decoding of a TFRecords file. 79
62 Listings of the cross entropy calculation. 80
63 Listings of the weights recovery and storage of new trained

weights. 80

viii

64 Listings of the segmentation prediction and calculation of the
mean IoU of a test dataset. 82

65 Integration of the classification into the segmentation process. 83
66 MeVisLab network for the generation of 3D NRRD-files. . . . 83
67 MeVisLab network to compute the Dice Scores and the Haus-

dorff distances. 84
68 Original CT image. 86
69 Flipped CT image. 86
70 Original mask. 87
71 To −8◦ rotated mask. 87
72 Scaled image with scaling factors of 1.04 in x- and 0.96 in

y-direction. 87
73 Combined transformations: flipping, rotation (−6◦) and scal-

ing (1.03 in x- and y-direction). 87
74 Added Gaussian noise with a mean of zero and a standard

deviation of 300. 88
75 Added Salt and Pepper noise with amplitudes of ±2000 and a

density of 0.05. 88
76 Training accuracy of networks trained with dataset No. 1

(1680 images). 92
77 Loss of networks trained with dataset No. 1 (1680 images). . . 92
78 Training accuracy of networks trained with dataset No. 3

(13440 images). 93
79 Loss of networks trained with dataset No. 3 (13440 images). . 94
80 Training accuracy of five networks trained with dataset No. 4

(18480 images). 95
81 Loss of five networks trained with dataset No. 4 (18480 images). 95
82 Test images (50× 50) and their predicted classes. 96
83 Progress of the loss function during training the FCN-32s (1st),

the FCN-16s (2nd) and the FCN-8s (3rd) models with image
dataset No. IV. 104

84 Comparison of a CT slice (256 × 256), its ground truth and
the predicted segmentations. 105

85 Comparison of a CT slice (512 × 512), its ground truth and
the predicted segmentations. 106

86 Depiction of three CT slices, their ground truths and the pre-
dicted probability maps. 107

87 Training accuracy of networks trained with dataset No. 2
(6720 images). 112

88 Loss of networks trained with dataset No. 2 (6720 images). . . 113

ix

89 Training accuracy of networks trained with dataset No. 4
(18480 images). 113

90 Loss of networks trained with dataset No. 4 (18480 images). . 114
91 Test images (128× 128) and their predicted classes. 114
92 Overview of the segmentation metrics produced by the net-

works trained with dataset I. 117
93 Overview of the segmentation metrics produced by the net-

works trained with dataset II. 118
94 Overview of the segmentation metrics produced by the net-

works trained with dataset III. 119
95 Overview of the segmentation metrics produced by the net-

works trained with dataset IV. 120

List of Tables

1 Duration of manual segmentations to generate the ground
truth contours. 38

2 Acquisition parameters of the CT images. 39
3 Datasets to train classification networks. 61
4 Exportation settings in MeVisLab to create augmented images

for training CNNs. 62
5 Subdivision into training and validation data for classification. 62
6 Training configuration of a CNN with three convolutional and

three max-pooling layers. 65
7 Training configuration of a CNN with four convolutional and

four max-pooling layers. 65
8 Training configuration of a CNN with six convolutional and

six max-pooling layers. 65
9 Training configuration of a CNN with six convolutional and

six max-pooling layers and various convolutional filter sizes. . 66
10 Training configuration of a CNN with six convolutional and

six max-pooling layers and image sizes of 128× 128. 66
11 Exportation settings in MeVisLab to create augmented images

for testing CNNs. 67
12 Datasets to train segmentation networks. 77
13 Exportation settings in MeVisLab to create augmented images

for training segmentation networks. 78
14 Exportation settings in MeVisLab to create augmented images

for testing the segmentation networks. 85
15 Results of the trained classification networks. 89

x

16 Averaged validation and test accuracies of the four different
sized training datasets. 90

17 Averaged validation and test accuracies of the different net-
work topologies and image sizes. 91

18 Inter-observer variability of the manual segmentations pro-
duced by doctor A (ground truth) and doctor B (algorithmic
segmentation). 98

19 Mean intersection over union evaluated after accomplished
training. 99

20 Segmentation metrics of the FCN-8s model, which was trained
with dataset No. IV and analysed per patient. 101

21 Dice coefficients computed for the original CT slices and av-
eraged over the patients. 102

22 Segmentation metrics of testing the FCN-8s model, which was
initially trained with dataset No. IV. 103

23 Results of the trained classification networks in percent. 115

xi

Abbreviations

2D Two-dimensional

3D Three-dimensional

CNN Convolutional Neural Network

CT Computed Tomography

API Application Programming Interface

HU Hounsfield Units

MDL MeVisLab Definition Language

MRI Magnetic Resonance Imaging

US Ultrasound

GPU Graphics Processing Unit

ReLU Rectified Linear Unit

CNTK Computational Network Toolkit

FCN Fully Convolutional Network

IDE Integrated Development Environment

CSO Contour Segmentation Objects

DICOM Digital Imaging and Communications in Medicine

NRRD Nearly Raw Raster Data

CSV Comma-Separated-Values

No. Number

conv. convolutional

max-pool. max-pooling

acc. accuracy

valid. validation

xii

min. minimum

max. maximum

std. dev. standard deviation

i. a. inter alia

e. g. exempli gratia

µ Attenuation value of an arbitrary material

µH2O Attenuation value of water

DSC Dice Coefficient

IoU Intersection over Union

HD Hausdorff distance

TP True Positives

FP False Positives

FN False Negatives

wi Weight of a neural network

W Weight matrix

w0 Bias of a neuron

vi Input of a neural network

f() Activation function

y Output of a neural network

net Weighted input before activation

η Learning rate

∇E Gradient of the loss function

tnk Label for a distinct entry n and class k

ynk Predicted output for a distinct entry n and class k

zk Output of a neuron before activation for a class k

xiii

1 Introduction

Deep learning with neural networks is an increasingly important topic for
many research and economic purposes. To emphasize this remarkable gain,
Figure 1 illustrates Google’s search requests on “Deep Learning” during the
last five years.

Figure 1: Increasing number of Google’s search requests on “Deep Learning”.
The last five years (2012 – 2017) are the period under consideration, whilst
the numbers of search requests are percentage values. Adopted from [25].

Software giants use deep learning networks for the development of their latest
technological gadgets. Take, for example, Facebook’s face detection, Apple’s
speech recognition Siri or Google Translate, which all comprise deep learning
algorithms [31].

1.1 Motivation and Goal

The motivation of this master thesis is to utilise deep learning networks
for medical image processing and analysis. In particular, the aim is to
implement convolutional neural networks (CNNs) as well as to train and
test them with computed tomography (CT) images in order to enable an
automatic segmentation of the lower jawbone.

It has to be noticed that there is a substantial difference between
deep learning applications in medicine and general image processing tasks.
Public accessible datasets of medical images are diminutive and rare despite
to “ordinary” images. As a result, the question arises if deep networks work
also satisfactorily with medical images [60].

To train CNNs during this work, ten three-dimensional (3D) CT datasets of
the human head-neck region were provided by the Department of Oral and

1

Maxillofacial Surgery of the Medical University of Graz. Furthermore, two
physicians segmented manually the lower jaw of present CT images to gen-
erate the ground truths, which were regarded as the correct segmentations.
Ten CT datasets is an absolutely small amount to train a network efficiently
and to attain a good generalisation ability.

Nevertheless, it is common to artificially enlarge a dataset size in the
field of deep learning, which is also known as data augmentation. To
increase the amount of training data during this thesis, the initial available
images were noised and geometrically transformed. Therefore, a module
network and a macro module were implemented within the image processing
platform MeVisLab. Moreover, these MeVisLab implementations permit a
storage of the CT slices and the ground truth masks in a format that can be
processed with deep learning networks.

The deep learning implementations of this work comprise classification
as well as segmentation networks. The idea is to mark out with a trained
classification net the images, which show parts of the lower jawbone, and to
provide those slices to the segmentation networks. The reason for this two-
step implementation is that many CT slices occur, which don’t display the
anatomical region of interest. Hence, various classification and segmentation
networks were implemented as well as trained and tested with the deep
learning framework TensorFlow and its higher level application programming
interfaces (API). The results show that the automatic segmentation of the
mandible works adequately for the available CT datasets.

1.2 Thesis Structure

To stay on top of things, the thesis is divided into various chapters. Firstly,
an overview of the lower jawbone’s anatomical and physiological characteris-
tics is provided in the Medical Background chapter. Next, technical aspects,
which are fundamental for preceding thesis, are outlined in the Technical
Background section. Therein, the CT modality, the image processing toolkit
MeVisLab, general segmentation and deep learning aspects as well as the
framework TensorFlow are introduced. Additionally, the Related Work chap-
ter presents publications, that had an impact on the implementations of this
thesis. The Methods section introduces the available image datasets as well
as the MeVisLab implementations are discussed. Moreover, the classification
and the segmentation tasks are explained in detail. The Results chapter an-
notates the achieved outcomes and finally, the Discussion and Future Outlook
section gives the reader a resume and offers advices for further investigations.

2

2 Medical Background

The following subchapters outline medical fundamentals of the lower jaw-
bone’s anatomy and physiology. All instructions mentioned in the two sub-
script sections rely on the publications of Fanghaenel et al. [18] and Schuenke
et al. [53].

2.1 Anatomy of the Mandibula

The lower jawbone’s medical term is Mandibula, which corresponds to
the Latin expression “mandere” and implies chewing. It is part of the
Cranium, which is divided into the Viscerocranium and the Neurocra-
nium. The brain, the hearing organ and further brain tissues are located
within the Neurocranium. Despite that, the Viscerocranium forms the
basic frame of the human face and it holds the visual organ, the olfac-
tory organ and the teeth. The lower jawbone is also a part of the facial bones.

A human skull is composed of 22 bones, in total. The biggest ones
can be seen in Figure 2. The bones indicated by the yellow shaded numbers
belong to the Neurocranium, whilst the green shaded ones are part of the
Viscerocranium. 21 cranial bones are fixed together with sutures, which are
visible in Figure 2 as jagged lines in the surroundings of the Neurocranium.
The lower jaw, however, is the only bone that is attached with a joint to
the remaining skull by the Articulatio temporomandibularis. Parts of the
auditory canal are immediately located behind the socket of this joint.
Thus, fractures of the Mandibula may lead to injuries of the auditory canal.

On top of that, Figure 3 illustrates anatomical structures of the mandible,
which consists of three main sections. The lower region is termed as Corpus
mandibulae (I) and the left and right side of this structure as Angulus
mandibulae (II). The superior regions are known as Ramus mandibulae
(III). The Corpus mandibulae and the two Anguli mandibulae have a shape
like a parable. The Maxilla (No. 6 in Figure 2) forms also a parable, but its
arc is greater. Hence, the teeth of the upper jaw protrude lateral beyond
the teeth of the lower jaw.

3

Figure 2: Anatomy of the Cranium. The yellow shaded numbers label struc-
tures of the Neurocranium, while the green shaded ones indicate bones of the
Viscerocranium. Adopted from [53].

Figure 3: Anatomy of the mandible. The arabic numerals label important
structures. Besides that, the Corpus mandibulae (I), the Angulus mandibulae
(II) and the Ramus mandibulae (III) are highlighted. Adopted from [18].

4

At the bottom of the Corpus mandibulae, the Tuberculum mentale (No. 5
in Figure 3) is located, whilst the surface in cranial direction is called Pro-
tuberantia mentalis (No. 4). These structures compose the protuberance
of a chin. Additionally, the region at the top edge of the lower jaw is la-
belled as Pars alveolaris (No. 3), which contains recesses (Dental alveoli)
for positioning the teeth. A subsequent crista is sited at the dorsal ends of
the Pars alveolaris, which is termed as Linea obliqua (No. 7). Furthermore,
No. 6 in Figure 3 shows the Foramen mentale and No. 11 the Foramen
mandibulae. Both bone cavities are connected by the Canalis mandibulae.
This canal encloses vessels and nerves that supply the structures in the sur-
roundings of the mandible. Besides that, the two Anguli mandibulae build
a transition from the Corpus mandibulae to the Rami mandibulae. At the
top of the Rami mandibulae are the Processus condylaris (No. 1) and the
Processus coronoideus (No. 2) located. The Processus condylaris is part of
the mandibular joint and consists of the Caput mandibulae (No. 9) and the
Collum mandibulae (No. 8). The Caput mandibulae forms the joint head of
the Articulatio temporomandibularis. Opposed to this, the Processus coro-
noideus serves as an attachment of muscles. Furthermore, the edge between
the Processus condylaris and the Processus coronoideus is termed as Incisura
mandibulae (No. 10).

2.2 Physiology of the Mandibula

The mandible as well as the adjacent muscles and joints are involved in
speech synthesis. Furthermore, the teeth, which are held by the lower jaw,
are a part of the gastrointestinal tract, as they support the fragmentation of
nourishment.

The Mandibula’s bone tissue isn’t fully evolved from the beginning of
life. The jawbone of new-borns consists of two separate fragments that
are connected by conjunctive tissue. However, the bone fragments grow
together during the first years of life. This development of bone is called
ossification. We distinguish between two methods of ossification. The
first one is about bone development from mesenchymal conjunctive tissue,
which is also known as desmal ossification. The second method involves a
conversion from cartilage and is termed as chondral ossification. However,
the Mandibula is deployed through the desmal ossification.

Additionally, the appearance of the Pars alveolaris varies with aging.
Figure 4 shows the evolving steps of the bone. New-borns don’t have
teeth, thus the Pars alveolaris doesn’t exist. In the course of primary teeth

5

formation, the Pars alveolaris arises. The Pars alveolaris of an adult is
fully established. Elderly people often lose their teeth which results in a
degradation of the bone. Consequently, the mouth and the face seem to sink
if artificial teeth will not be inserted.

Moreover, not only the Pars alveolaris, but also the Anguli mandibu-
lae evolve with aging. In the first years of life those bones show an angle
of about 150◦. During adult’s age, this angle reduces itself to values from
about 120◦ to 130◦. With progressing age, the angle finally increases again.

Figure 4: Evolution of the mandible during a human’s life. No. 1 shows the
lower jaw of a new-born, No. 2 indicates a young child’s mandible, No. 3
displays an adult’s jaw and No. 4 illustrates the Mandibula of a geriatric
human. Adopted from [53].

Apart from that, one distinguishes between three types of jaw movements.
The first one is a rotation, which enables closing and opening of the mouth.
The joint works here as a hinge joint. The second one is a translation move-
ment that allows to slide the jaw forwards and backwards. The forward
movement is termed as Protrusion and the backward movement is known as
Retrusion. The third and last one is the possibility to swing the bone to the
left or right in order to accomplish grinding. Mostly, a combination of these
movement types is conducted.

6

3 Technical Background

The content of this chapter involves descriptions of technical principles that
are used to accomplish the goals of this master thesis. Initially, fundamentals
of the image acquisition technique CT are supplied, since the medical images,
that are provided for this work, are acquired with this modality. Moreover,
basic concepts of the medical image processing platform MeVisLab are out-
lined, as this framework supports the preparation of the available image
datasets to facilitate training and testing of neural networks. Besides that,
central principles of segmentation as well as neural networks are outlined and
the deep learning toolkit TensorFlow is discussed in detail.

3.1 Computed Tomography

Computed tomography is a medical image acquisition technique that
generates sectional images of the human body. A fundamental step of the
CT development was made with the detection of X-Rays by W. C. Roentgen
in 1895. The mathematical basics to reconstruct images were provided a
few years later by J. Radon. Moreover, in 1969 G. Hounsfield developed the
first CT scanner for research purposes. After that, the application of CT
scanners started to spread in hospitals [9], [8].

Nowadays, the computed tomography is an essential device for diag-
nosis in clinical routine. A main advantage is its fast image acquisition,
which allows a usage in the trauma room. Moreover, it provides images of
high quality and supplies tissues’ electron density values, which are required
for planning radiation therapies. Besides that, current developments enable
a gradual reduction of the harmful radiation exposure [8], [24].

3.1.1 General Principle

The image acquisition is based on X-Ray tubes that are used with the classical
roentgen, too. For that, the X-Ray tube is fixed at one side of the human
body and the detector is placed at the opposite side. This layout can be
seen in Figure 5. The collimator forms the shape of the photon beam, whilst
the grid in front of the detector allows a reduction of scattered X-Rays, as
it absorbs these quanta. All structures that lie in the X-Ray beam path
(blue lines in Figure 5) are displayed on top of each other. Thus, there is a
superposition of different tissues in the created projection images [9], [1].

7

Figure 5: Principle of X-Ray projection and example of a projection image
of the thorax. The X-Ray source sends out a wide fan beam (blue lines) and
the attenuated intensity is measured by the detector. The detector and the
source are fixed. Adopted from [1], [29].

Opposed to this, a CT scanner produces transversal slices of the human
body. These transversal cuts don’t suffer from a superposition of tissues,
which results in a better image quality. Therefore, the X-Ray tube and the
opposing detector are similar arranged as it is depicted in Figure 5. However,
they move around the patient. There are several methods to transfer the
source and the detector. For example, there are hardware realisations with
a combined translation and rotation of the X-Ray source and detector, but
there are also systems that just conduct a rotation. Furthermore, different
forms of the photon beams are possible. The most common one is a fan
beam that covers the whole patient [9].

The different hardware approaches are termed as “generations of scanners”,
whereas the most frequently used type in clinical routine is the CT scanner
of the third generation (see Figure 6). The hardware equipment of the
third generation conducts a rotation around the patient as the beam is
wide enough to cover all body structures. In general, the patient is lying
on a table in the centre of the gantry, which is a circular construction in
which the devices rotate around the patient. Various image projections are
acquired after every small rotation angle of the hardware devices. At the
end, the tomographic image can be calculated from these projection images
with the filtered backprojection. A typical CT scanner manufactured by
Siemens can be seen in Figure 7 [9].

8

Figure 6: CT principle and example of a CT image of the skull. The X-
Ray source and the detector rotate around the patient (left). The calculated
image is a transversal cut of the human body (right).

Figure 7: CT scanner SIEMENS Somatom Definition Edge. The circular
gantry contains the X-Ray tube, the detector and further electronic devices.
The patient is positioned on the table [19].

If the patient table is evenly moved during image acquisition, it is possible
to cover a greater volume of the body. However, the generated images do
not lie in the axial plane because of the motion of the table. Thus, the image
acquisition is conducted in a helical way, which can be imagined with the
illustrations of Figure 8. The correct transversal planes are calculated with
interpolation [15].

9

Figure 8: Schematic spiral CT. The table with the patient is moving while
the image acquisition is conducted continuously.

Apart from the spiral CT, an acceleration of the image acquisition is also
accomplished with the help of multi slice scanners. The detectors of these
devices measure simultaneously neighbouring slices. Nowadays, some scan-
ners are able to acquire up to 256 slices coincidentally. Consequently, the
X-Ray beam must be widened in longitudinal direction of the patient. The
schematic principle can be seen in Figure 9 [9].

Figure 9: Schematic multi slice CT. The X-Ray tube extracts a beam that
is widened in longitudinal direction. The measurement is accomplished with
a 4-slice CT detector. Adopted from [9].

The CT image contrast depends on different attenuation properties of the
tissues. In general, there is a higher attenuation of the beam’s intensity if
the X-Ray beam’s frequency decreases as well as the atomic number, the
thickness or the density of the tissue increase. This is the reason why bones
(high atomic number) are high in contrast compared to soft tissues [15].

10

3.1.2 Hounsfield Units

In the field of computed tomography the Hounsfield units (HU) are intro-
duced, which enable a comparison of grey values between images that are
recorded with different scanners but with the same tube voltage. Therefore,
the attenuation value of a tissue type is related to water. As a result, the
Hounsfield unit (1) can be calculated with

HU =
µ− µH2O

µH2O

· 1000 (1)

where µ indicates the attenuation value of an arbitrary material, µH2O is the
reference value. According to this definition, water has a HU of zero, air
has a value of -1000 and bone shows a value of about 3000. The calculated
Hounsfield units are stored as the grey values of an image. Figure 10 displays
a graphical interpretation of the Hounsfield units. Soft tissues have a rather
small range of HU values, whereas the values of bone protrude clearly. Tissues
that contain fat or air exhibit negative values [9].

Figure 10: Hounsfield units of different tissue types. Adopted from [15].

11

3.1.3 Artefacts

Artefacts, which lead to images that do not coincide with real circumstances,
are a common issue in CT. Mainly occurring types according to [9] and [15]
are listed below.

• Partial Volume Artefact : Two different tissues with dissimilar attenu-
ation values, that are placed within the same voxel, lead to a resulting
grey value that neither corresponds to the first tissue nor to the second
one. As a result, the image seems to be blurred. A possibility to reduce
this artefact is to decrease the slice thickness.

• Metal Artefact : Metals, such as implants or screws, lead to dark stripes
in the image, because of the upcoming beam hardening effect. In gen-
eral, a photon beam consists of a continuous energy range. Photons
with lower energy are absorbed easier. Thus, with an ongoing travers-
ing of the beam, the photons with high energy remain.

• Motion Artefact : Patient movements lead to blurred images. A faster
acquisition of the slices reduces this artefact.

3.2 MeVisLab

The MeVisLab software tool is used to process image data for training and
testing deep learning networks. The instructions of this chapter can also be
found in my Master Project [48], although modifications are conducted. All
outlined statements depend on the Getting started tutorial [3] and on the
MeVisLab Reference Manual [5]. Both references are provided by the MeVis
Medical Solutions AG.

MeVisLab [16], [17] is a semi-open source software tool for image pro-
cessing and visualisation with special focus on medical images. A clear
benefit of this software tool is that it enables a graphical user interaction.
There are various model components available, which are termed as modules,
that can be intuitively connected in order to form a MeVisLab network.
These MeVisLab networks are stored as mlab-files. The internal modules
already implement basic image processing operations, such as low-pass
filtering or segmentation algorithms like thresholding. Thus, the user
doesn’t have to bother about implementing fundamental image processing
steps, but can rather focus on the deployment of new algorithms.

12

The development of an own MeVisLab network means to select the built-
in modules, that should be successively carried out, and to connect them
via data connections for passing on the processed information to achieve a
desired functionality. MeVisLab provides three different module types that
can be joined:

• ML Modules: The blue coloured boxes enable a processing of the voxels
of an image;

• Open Inventor Modules: The green coloured boxes allow a processing
of three-dimensional scenes;

• Macro Modules: The brown coloured boxes are a combination of fun-
damental built-in modules.

Specific parameters of the modules, for instance, thresholds, can be adjusted
with the modules’ graphical panels.

Furthermore, there is a distinction between three types of data con-
nectors, which allow a transfer of information from one module to the
next one. The triangles indicate that ML images are passed. Half-circles
are available to transfer inventor scenes and data structures are processed
by the square connectors. The three module types and the different data
connectors are visible in Figure 11.

Figure 11: Illustration of the three module types and the data connectors.

The MeVisLab internal implementation defines which connectors are deliv-
ered for a distinct module. Data connections are only allowed between con-
nectors of the same type. Typically, input connectors are located at the

13

bottom of a module and output connectors are placed at the top. Hence,
processing data in a network starts at the bottom and goes upwards through
the linked modules. Additionally, MeVisLab provides a parameter connec-
tion, which enables a conjunction of fields between modules. This is a bene-
ficial tool to synchronise values between several modules. In order to get an
overview across all modules, they can be grouped. In Figure 12 is an example
network with a module group displayed.

Figure 12: Example of a MeVisLab network. There are several macro
modules (brown) and a ML module (blue) visible. The “Display Results”
group holds three macro modules. The parameter connections are depicted
as grey lines, whereas the data connections are plotted as thick blue lines.

To conclude, MeVisLab provides a lot of internal modules that are used for
fundamental image processing. However, it is frequently occurring that more
complex problems appear. As a result, it is necessary to generate new user
specific functionalities. Two approaches are possible in order to address this
issue:

1. Implementation of C++ modules: New ML and Open Inventor modules
can be implemented in C++ using Microsoft Visual Studio;

2. Implementation of macro modules: New macro modules based on ex-
isting MeVisLab modules are developed with the support of Python or
JavaScript.

14

Hence, if there are completely new image processing algorithms developed,
it is obligatory to use C++. If the problem is solvable with already
existing MeVisLab modules and further added scripted functionalities, the
implementation of a new global macro module is indicated. The desired
tasks of this master thesis were feasible with the implementation of a new
macro module. As a result, there is an outline of the generation of macro
modules.

Macro Modules:

A specific functionality can be attained with a self-implemented global macro
module that is built with the MeVisLab Project Wizard. A macro module is
a delimitation of processing steps that allows a compact representation in a
MeVisLab network. There is a distinction between local and global macros.
Local macros can be used in one certain network, but they are inaccessible
from others. Global macros are integrated into the MeVisLab module
database, which means that they can be called up from every network.

The Project Wizard automatically creates the Script- and the Definition-file.
These two files are obligatory in order to build a new global macro.
Moreover, a macro module may consist of a Python-file as well as a network
of basic MeVisLab modules, termed as the macro network.

The Definition-file is mandatory to integrate the macro module into
the MeVisLab module database. The extended functionality is implemented
with the Python script. It is also possible to use JavaScript, nevertheless
it is recommended to use Python. The requested functions of this master
thesis were achieved by Python scripting. Additionally, a graphical user
panel is created with the MeVisLab Definition Language (MDL) in the
Script-file. Therein is determined which fields are visible in the panel and
how they are arranged. Moreover, the input, output and parameter fields of
the macro module are declared.

15

3.3 Segmentation

The following subscripts introduce the principles of segmentation and the
necessity of its application in the medical domain. Moreover, methods to
validate segmentation algorithms are described.

3.3.1 General Principle

Segmentation is the process of dividing an image into various regions.
All pixels that belong to the same object are assigned to one segmented
region. Thus, segmentation is strictly speaking a method to extract related
areas from an image, but it doesn’t comprise a classification of these
regions. However, it is not possible to rigorously separate these two steps in
practice [30], [36].

Figure 13 displays a schematic representation of segmentation. The
left image shows some coins that should be segmented. The right part
illustrates these segmented areas, whereby the black colour indicates the
background and the red one displays the foreground.

Figure 13: Segmentation principle. The left image demonstrates some coins
placed on a surface, whereas the right one displays a corresponding segmen-
tation. Red areas stand for the coins (foreground) and black areas indicate
the background.

One possible approach to segment objects in an image is a manual segmen-
tation. Hence, in the case of medical images a physician has to delineate
anatomical structures by hand. However, this non-automatic method is
tremendously time consuming and it is not objective, which means that two
different doctors in general never segment exact same areas [11], [24].

16

Despite that, there are also automatic and semi-automatic procedures
distinguished. Typical approaches are the threshold method, region-based
and edge-based algorithms, the watershed transformation or active contours.
Nevertheless, it is not possible to declare one segmentation algorithm as
the “gold standard”. It depends on the examined image types and on the
definition of the task, which segmentation procedure is intended to address
the problem. In this work, an automatic segmentation should be achieved
with the application of neural networks [7].

According to [14], three difficulties, that might appear in medical seg-
mentation tasks, have to be kept in mind:

1. Medical images are heterogeneous: Organs don’t only appear equal
across different patients and various views, but also across images of
the same patient recorded at diverse timepoints.

2. Tissues don’t have obvious boundaries in medical images. Conse-
quently, it is difficult to detect certain objects.

3. Segmentation algorithms must be absolutely reliable, because decisions,
which are made depending on segmentation results, affect humans’ di-
agnosis and therapy.

3.3.2 Segmentation Applications in Medicine

Segmentation algorithms are applied on images that are acquired with differ-
ent imaging modalities, like magnetic resonance imaging (MRI), computed
tomography, X-Ray, Ultrasound (US) or nuclear medical techniques.

In general, segmentation of anatomical structures is important for di-
agnostics but also for planning therapies. With the help of segmentation
algorithms, pathologic lesions can be separated from healthy structures. For
instance, it is possible to delineate a tumour from its surrounding tissue.
Therefore, the shape and the size of cancerous tissue can be examined with
images, that are acquired at different timepoints, to monitor a treatment
outcome. Furthermore, segmentation is necessary to visualise 3D models
of certain organs to enable a superior imagination of diseases and injuries.
The visualisation is a useful opportunity for physicians to plan a surgical
procedure [22].

In addition to this, segmentation is important to plan radiotherapies.
During a radiation therapy, electrons or photons are brought into the

17

tumour region to destroy the cancerous tissue. However, the energy should
not be applied on the surrounding organs to prevent long-term effects.
Hence, the tumour as well as the adjacent regions have to be delineated.
In case of the Mandibula, an unintended radiation exposure may lead to a
destruction of the teeth and implants [24].

3.3.3 Validation of Segmentation Results

To compare the performance of segmentation approaches, the results of
the algorithms must be assessed with standardised methods. Therefore, it
is necessary to have a ground truth segmentation, which is equal to the
correct segmentation. In this work, the correct segmentation is produced
by physicians, who segmented manually CT images of the mandible. As
already mentioned, different humans are not able to produce exact same
ground truths. The deviation of segmentation results, that are achieved
by different physicians, is termed as the inter-observer variability. Despite
that, the variance of segmentation contours, that are generated by the same
physician at distinct time points, is called as intra-observer variability [22].

To evaluate the segmentation results of this work, the mean intersec-
tion over union (IoU), the Dice coefficient (DSC) and the Hausdorff distance
(HD) are calculated. Figure 14 displays a schematic interpretation of the
accordance of an algorithmic segmentation and the ground truth. The
true positives (TP) are the number of correctly segmented voxels by the
segmentation algorithm. The false positives (FP) are the voxels, which are
incorrectly assumed to be part of the segmentation object, whilst the false
negatives (FN) are part of the segmentation object, but the algorithm didn’t
suppose them as such.

Figure 14: Graphical interpretation of a segmentation result. The yellow
area indicates the false positives (FP), the green one the true positives (TP)
and the blue one the false negatives (FN).

18

To determine the IoU (2), the fraction of

IoU =
TP

TP + FP + FN
(2)

has to be calculated. The mean IoU is averaged over the different segmen-
tation classes [21].

According to [24], the Dice coefficient (3) is computed with

DSC =
2 · TP

2 · TP + FP + FN
(3)

where a result of one implies a perfect segmentation. In general, the higher
the IoU and the DSC, the better are the segmentation predictions.

Apart from that, the Hausdorff distance (4) is calculated with

HD(A,B) = max(h(A,B), h(B,A)) (4)

and

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (5)

where A and B are the segmented objects of the ground truth and the auto-
matic segmentation. The symbols a and b are individual voxels of the regions
A and B. Hence, for each point of the ground truth is the minimal distance to
a point of the algorithmic segmentation identified (and vice versa), whereby
the largest appearing range is the Hausdorff distance. A small Hausdorff
distance proves that the segmenation result is good [44].

19

3.4 Deep Learning

The automatic segmentation of the mandible from CT images should be
obtained with deep learning networks.

Deep learning with artificial neural networks is a branch of computa-
tional intelligence. Neural networks can be imagined as a mathematical
system of neurons, which are the basic elements of a network. The neurons
are arranged in several layers, whereby the neurons of one layer are connected
to those of adjacent layers via weights. However, a connection between the
neurons of the same layer is not allowed. The values of these weights have
to be learned. Neural networks support the processing of information: The
input of the deep learning network is reprocessed by the neurons and their
trained connection weights in an abstract manner [56], [57], [34], [35].

Two learning types are distinguished: supervised and unsupervised learning.
Supervised learning means that for an input signal, the correct result of
the output is known. Take, for instance, the case of object classification:
If images display animals, which should be classified, there exists also a
label with the proper class (like “cat”, “dog”, “mouse”, ...) for every input
image. Thus, the ideal solution of an input is already offered to learn a
network. Despite that, for unsupervised learning, the correct solution of the
classification task is not known. The image data of this work is segmented
by medical doctors. Therefore, supervised learning is indicated, since the
correct solution of the segmentation task is already present [37].

In addition to this, the term “deep” refers to the number of layers of
a neural network. The more layers are present in a network, the deeper it is.
Networks with only a few layers are shallow ones. However, according to the
work of J. Schmidhuber [52], there is not a general agreement which layer
number divides networks in deep or shallow ones. Nonetheless, it is stated
that networks with more than ten layers refer to very deep learning. Deep
neural networks were implemented after the spread of shallow ones. The
reason is that such capable Graphics Processing Units (GPUs) to process
information along the substantial number of layers didn’t occur [57].

Furthermore, a lot of training data is necessary to train deep net-
works and achieve satisfactory results. Thus, these days standardised image
data bases, like ImageNet [13] or kaggle [27], are introduced to offer a giant
number of images, which promote training of networks [57].

20

Apart from that, information processing with neural networks offers
wide application opportunities. It is possible to utilise deep learning nets
with visual image tasks, like classification and segmentation of objects, but
they are also relevant for speech processing and audio tasks. Additionally,
neural networks are applicable for economic purposes, like forecasting stock
prices [35], [32].

3.4.1 Fundamentals of Artificial Neural Networks

The instructions of this section rely on the textbooks of H. Handels [22] and
H. Suk [57].

Neural networks in computer science are originally based on a biologi-
cal analogue: the human brain. The brain consists of up to 100 billion
of biological neurons, which are partly connected. Computer scientists
tried to simulate these biological structures with mathematical neural
networks, because they would like to achieve a similar performance as the
brain. For instance, the human brain exhibits an efficient ability to process
information. It processes information in a parallel manner and learns new
connections between neurons. A biological neuron (see Figure 15) consists
of many inputs, termed as the dendrites, as well as of one single output, the
axon. The axon is connected to the dendrites of a succeeding neuron with a
synaptic body. If enough input signals occur from the dendrites, the neuron
emits a signal.

Figure 15: Structure of a biological neuron. The dendrites transfer the input
signals to the neuron and the axon passes on the output signal.

21

The mathematical analogue of a neuron can be seen in Figure 16. The output
(6) is calculated with

y = f(net) = f(
D∑
i=1

vi · wi) = f(wT · v) (6)

where v = (v1, v2, ... , vD) are the inputs of the neuron, w = (w1, w2, ... , wD)
are their corresponding weights and f() is the activation function. The values
of the weights are determined during the training process. Furthermore, the
activation function f() has to be a nonlinear function.

Figure 16: Mathematical analogue of a biological neuron. Adopted from [22],
[43].

A neural network is composed of several basic neurons arranged in layers.
The smallest network possesses an input and an output layer. It is also
termed as a single layer model, as the input layer is not part of the layer
number. Moreover, neurons may have a bias, which is not multiplied with
the weights. Thus, the output (7) results with

y = f(net) = f(
D∑
i=1

vi · wi + w0) = f(wT · v + w0) (7)

where the bias is indicated by w0.

If a network consists of more than one layer, it is termed as a multi-
layer network. The layers between the input and output layers are known as
hidden ones. Moreover, if every neuron of a foregoing layer is connected to
each neuron of the succeeding layer, the net is denoted as a fully connected
network. Figure 17 shows the structure of a multilayer and fully connected
network with three input neurons, three hidden neurons and a single output
neuron.

22

Figure 17: Structure of a multilayer network. There is an input layer with
three neurons (green), a hidden layer with three neurons (yellow) and an
output layer with one neuron (orange) displayed. The units of the adjoining
layers are fully connected. Adopted from [12].

To calculate the output (8) of a two-layer network without a bias,

yk = f (2)(
M∑
j=1

W
(2)
kj f (1)(

D∑
i=1

W
(1)
ji vi)) (8)

has to be computed. The outcome of the calculation of the first layer is the
input of the subsequent layer. Wkj and Wji are matrices, which comprise
the weights between two layers. The first index corresponds to the following
neuron and the second one to the previous neuron. As the input is brought
in at one side of the network and the calculation is obtained in a stepwise
forward way, this net is also labelled as a feed forward network.

The aim of training a net is to determine the values of the weights.
Therefore, an input is provided to the network and the resulting solution is
compared with the known, ideal solution. The goal is to achieve a difference,
as small as possible, between the ideal and the actual output. Thus, an
error function (also cost function) is stated and ought to be minimised.
In practice, the weights are not calculated analytically. They are rather
initialised with arbitrary values at the beginning of the training process
and during training, their values change iteratively to minimise the cost
function. The adaption of the parameters is conducted with the gradient
descent method. Thereby, the gradient of the loss function is calculated for
the trainable parameters. The update of this parameter set is accomplished
in the way that the negative gradient is followed [12].

23

According to this, the mathematical formulation (9)

W t+1 = W t − η ∇E(W t) (9)

can be stated. W indicates trainable parameters, the index t stands for the
iteration step and ∇E denotes the derivation of the cost function. Moreover,
η signifies the learning rate. Figure 18 displays a loss function and the
influence of the learning rate. The best parameter values are those, on which
the loss function exhibits the minimum. If the learning rate is small, the
steps towards the optimal parameter are also small. However, if the learning
rate is large, it is possible that the optimal parameters are overleaped.

Figure 18: Comparison of the gradient descent method with different learning
rates. A small learning rate leads to a slow progress of finding the best
solution (left). However, a large learning rate may result in an overleap of
the best parameter (right). Adopted from [12].

The iteration is accomplished until the stopping criterion is fulfilled: Either
convergence is achieved or the maximum number of iterations is exhausted.
The flowchart of Figure 19 visualises these training steps.

Figure 19: Flowchart of the training process. Firstly, the output is calculated
according to a provided input. This computed outcome is compared to the
ideal solution. Secondly, the weights of the network are adjusted. These
steps are conducted until the stopping criterion is fulfilled.

24

In addition to this, there are diverse types of neural networks distinguished
depending on the topology (arrangement) of the units. For visual tasks, it is
common to use convolutional neural networks.

3.4.2 Convolutional Neural Networks

Despite to standard networks characterised in the previous chapter, convolu-
tional neural networks receive 2D and 3D images as an input. As a result, the
input data is not flattened into a vector, which leads to a preservation of the
compositional information of an image. Two basic layer types are essential
to build a CNN: the convolutional and the pooling layer. Moreover, the final
layers of CNNs are frequently fully connected layers. Considering classifica-
tion networks, each output unit represents one class and its probability of
occurrence. The schematic structure of a typical convolutional network can
be seen in Figure 20 [57].

Figure 20: Structure of a convolutional neural network. The first convo-
lution produces four feature maps (blue) with the same size as the image.
Max-pooling is used to down-sample the matrix sizes (green). The second
convolution is accomplished with eight filter kernels. Following the two con-
volution and max-pooling layers, a fully connected layer and a final output
layer are added. Adopted from [57].

Figure 21 shows an example image, that is convolved with two filters, and
afterwards, max-pooling is applied.

25

Figure 21: Example image applied to a convolutional and max-pooling layer.
The input image is convolved with two different kernels. Adopted from [23].

Convolutional layer: The first layer of a CNN is a convolutional layer,
which produces images with the same size as the input image (28×28).
The aim of the convolution with different filter kernels is to extract distinct
features, for instance, edges or shapes. Therefore, the values of the kernels
are determined during the training process. In the example of Figure 20 are
four kernels for the first convolution applied, which accordingly generate
four feature maps. For the second convolutional layer are eight trainable
kernels used [57], [56].

The mathematical principle of a convolution is illustrated in Figure
22. The input image has the same size as the filter kernel in this example.
Nevertheless, it has to be noticed that the image size is usually larger than
the size of the kernel. This circumstance leads to the effect that there have
to be less parameters determined, because there is not an entire conjunction
of neurons of adjacent layers (global connectivity). The smaller filter size
engenders a local connectivity (see Figure 23). To calculate each matrix
entry of the convolution, the kernel (blue dashed box) slides across the input
image with a stated stride size. The stride size of this example is one, since
the kernel slides in a step of one pixel. Hence, convolutional kernels lead to
a weight sharing, because once the kernels are trained, they are just moved
over the image and are applied at different positions, but with the same
filter weights. Furthermore, zero padding is indicated to ensure a calculation
of outer matrix entries [57], [56].

26

Figure 22: Convolution principle. The convolution of a 3×3 image with a
3×3 kernel is shown above, whilst one single convolution step to calculate the
red highlighted value is exemplified below. The blue doted box illustrates the
overlay of the filter on the image. At the surroundings of the image are zeros
added (yellow) to ensure a calculation of the outer entries. The convolution
can be imagined as a multiplication of each voxel value with its overlaid filter
value and a summation of these products (equation at the bottom).

Figure 23: Local connectivity of a convolutional layer. The grey square
indicates one extract of the image that is convolved with the filter kernel and
slides across the entire image to calculate each element of the feature map.
The blue lines imply the local connectivity: Only the elements of the grey
area are used to calculate one entry of the feature map.

27

Pooling layer: A pooling layer usually follows a convolutional layer. Figure
24 displays the concept of a max-pooling layer. Therefore, a receptive field
slides with a determined stride size across the matrix. The receptive field has
a size of 2×2 and the stride size is scheduled as two in this example. This
ensures that from each considered 2×2 area, the maximum value is selected.
Consequently, the four matrix entries are replaced by their highest value.
As a result, the pooling layer halves the side length of the feature maps.
The main advantage of pooling is that less parameters have to be trained
in a subsequent convolutional layer. In general, there are also other pooling
methods used, for instance, average pooling. However, max-pooling is the
most frequently used one [57], [56].

Figure 24: Max-pooling principle. The pooling layer down-samples the size
of an image. In case of max-pooling, the highest value of a receptive field is
extracted. The orange dotted box indicates the receptive field (2×2) for the
computed, orange highlighted (5) result.

Fully connected layer: Finally, fully connected layers are added after the
alternation of convolution and pooling operations. This layer type exhibits
global connectivity since all units of the latter pooling layer are connected
to all neurons of the following fully connected layer [56].

Activation function: Nonlinear activations are also used with CNNs.
Thereby, the activation function is applied on the calculations of the
convolutional layer. The mainly occurring type for CNNs is the Rectified
Linear Unit (ReLU) function. To apply ReLU activation (10) on a value x,

f(x) = max(0, x) (10)

has to be calculated [56], [12].

Dropout: Training a network suffers frequently from overfitting, which
means that the network produces remarkable results for the available
datasets, but not for new test datasets. Dropout is a method to solve this

28

poor generalisation ability. Therefore, some neurons are randomly switched
off with a determined probability during each training step. As a result, the
network is trained with fewer units. However, testing the network involves
all neurons [56].

Deconvolution: On top of that, a segmentation network, as it is
implemented during this work, requires upsampling layers, which resize
down-sampled feature maps to greater matrix sizes. This procedure can
be achieved with deconvolution, also known as transposed convolution.
Figure 25 illustrates graphically the upsampling operation. At the left is
the down-sampled feature map (2 × 2) shown, whilst at the right is the
calculation of the upsampling simulated. For example, the green value in the
down-sampled input is the weight that is multiplied with a bilinear filter.
The weighted filter has a size of 4 × 4 (green dashed line). Moreover, the
stride size, which equals the upsampling factor, indicates the steps for the
next deconvolution computation. In this case, a stride size of 2 is defined.
Thus, the bilinear filter, that is weighted with the initial blue value, is
shifted two pixels downwards. The values of the different filters are added
up at the positions where filters overlap (grey striped pixels) [45], [46].

Figure 25: Schematic description of the upsampling operation. At the left is
the initial input visible, whilst at the right ist the upsampled output (grey)
and examples of two weighted filters (green and blue dashed lines) depicted.
Adopted from [45], [46].

29

3.5 Deep Learning Toolkit: TensorFlow

Deep learning toolkits support the implementation, training and also testing
of neural networks. The main advantage is that the software developer has
not to code a network and its optimisation from scratch, because these
toolkits already offer functions to define layers, train the weights and apply
a trained network on new data. A wide variety of toolkits are supplied to
accomplish deep learning tasks with different purposes.

To achieve the aim of this master thesis, the frameworks CNTK [62],
Caffe [61] and TensorFlow [2] seemed to be suitable. The Computational
Network Toolkit (CNTK) was released by Microsoft and it is utilised with
Python or C++ [40], [41]. TensorFlow, which also offers a Python and a
C++ binding, was introduced by the Google Brain Team [56], [26]. In con-
trast, Caffe (Python and MATLAB interface) was developed by the Ph.D.
student Jia Yangqing at the University of California, Berkeley [56], [51].
All of these toolkits are open-source and enable image processing with
CNNs as it is desired for this work. TensorFlow, however, emerged to be
the appropriate library for the thesis tasks. Compared to the other two
frameworks, it offers complete documentation as well as pre-trained models.

TensorFlow is Google’s successor of their first deep learning frame-
work DistBelief. Both toolkits were developed for deep learning research but
also for economic purposes. By now, Google uses its frameworks for their
well-known products, for instance, Google Search, Google Maps or Street
View. The TensorFlow API was published for anyone in 2015 [2].

During this work, TensorFlow was used with its Python interface. To
utilise TensorFlow functions with the Python programming language, this
toolkit has to be included as a library into the Python script.

TensorFlow provides a two-step programming principle: Firstly, a com-
putational graph, which is a concatenation of several nodes, is defined
by the user and as a second step this graph is executed. The nodes are
equivalent to operation types, for instance, mathematical calculations or
layer building methods. Moreover, the variables, that are processed within
a computational graph, are termed as tensors. The tensors don’t have to
be initialised within the computational graph definition. To execute the
computational graph, a TensorFlow session has to be created and the run()
method is called up. This method receives variables of the computational
graph as arguments and returns their explicit calculated values [2], [26].

30

Figure 26 shows the programming code of the definition and execution of
a TensorFlow session and a schematic representation of the computational
graph. The statements of the code lines from four to six create three tensors
initialised with constant values. Besides that, the calculations in line seven
and eight perform a multiplication and addition with operations provided by
TensorFlow. The variables “result1” and “result2”, however, don’t deliver
yet the concrete results of the mathematical operations. Thus, a TensorFlow
session is created (line 10) and the run() method launches the computation
of “result1” and “result2”, whereby “mult result” and “add result” deliver
the demanded results.

Figure 26: Listings of a TensorFlow session (left) and schematic representa-
tion of the computational graph (right).

Apart from that, there are several high-level application programming
interfaces available to simplify the usage of TensorFlow classes and methods.
The APIs TFLearn [58] and TF-Slim [21] were of importance for this work.
TFLearn enables a simple layer definition and the user doesn’t have to
bother about TensorFlow sessions. The library TF-Slim provides network
definitions of famous deep learning networks, for example, the VGGnet [55].

In addition to this, TensorFlow offers the visualisation tool TensorBoard.
This tool creates considerable overviews of implemented computational
graphs and visualises the alteration of tensor values, which change during
training progress like the loss or the accuracy. Therefore, these values
are stored in a log-file in the course of network training. The resulting
TensorBoard visualisation can be observed with a web browser [2].

31

4 Related Work

This section presents publications, that encourage the implementations of the
master thesis. Initially, there are investigations in the field of data augmen-
tation outlined, which is a widely known method to artificially increase the
size of a dataset for training neural networks. Beyond that, two approaches
for an automatic segmentation with deep learning techniques are discussed.

4.1 Data Augmentation

It is generally accepted that the larger the size of the training dataset, the
better are the results of a trained network. P. Y. Simard et al. [54] analysed
the influence of an artificially enlarged dataset. They generated synthetic
images from basic images with affine transformations including translation,
rotation and skewing. This enlarged training dataset led to an improvement
of the classification results on the MNIST digit dataset compared to a
training with the original dataset. An increase of the initial dataset with
elastic deformations, however, offered the best results [54].

Furthermore, K. Chatfield et al. [10] also analysed differences in the
network outcomes of various sized training datasets. Firstly, they didn’t
apply any augmentation method. Secondly, they flipped the images of
the initial dataset and finally, they combined cropping and flipping. Their
accuracy results have shown that the flipping approach leads to a slightly
improvement compared to no augmentation, whereas the combination of
cropping and flipping exhibits the best results [10].

Moreover, the artificial increase of the available image amount prevents
overfitting, which was outlined in the seminal publication of A. Krizhevsky
et al. [33], who applied translations and modifications of RGB values. All in
all, extending the datasets is proved to enhance the performance of neural
networks. Thus, augmentation approaches are utilised for the lower jawbone
datasets of this work, too.

32

4.2 Segmentation

Two publications emerged to be beneficial to achieve an automatic mandible
segmentation with deep learning methods.

4.2.1 Patch-based Segmentation Approach

B. Ibragimov and L. Xing presented in their work [24] “Segmentation of
organs-at-risks in head and neck CT images using convolutional neural
networks” a tri-planar patch-based segmentation approach. Their goal
was to segment automatically several organs of the head and neck region
(inter alia the mandible) in CT datasets. For this purpose, they had 50
CT datasets at their disposal, which were manually segmented by medical
doctors to produce the ground truth segmentations [24].

In the main, a classification CNN determines the object appearing in
an image. The authors of this contribution used a classification network
architecture, too. Nevertheless, they classified each voxel of the CT images
whether it is part of the organ of interest or not and thus, built up the final
segmentation. Therefore, tri-planar patches (small regions) were extracted
around the voxel of interest. Tri-planar means that the patches are pulled
out from three orthogonal layers and the voxel in the intersection is the
voxel of interest. These patches were utilised to train the CNNs. They
used positive (center voxel is part of the examined organ) and negative
patches (center voxel is part of the background) for training. Moreover,
the patches were just extracted from areas where the organ of interest
can appear on anatomical grounds. The implementation of the CNNs was
achieved with Microsoft’s CNTK framework. On top of that, they did
some post processing with applying i. a. dilation and erosion operations.
To evaluate the segmentation results, the Dice coefficients were calculated.
They achieved the best result for the mandible segmentation (mean DSC of
89.5% ± 3.6%). The reason for this circumstance is that the lower jaw is
very large compared to other segmented structures, its stature is rigid and
the bone tissue is clearly visible in CT images [24].

33

4.2.2 Upsampling-based Segmentation Approach

Another approach to obtain an automatic segmentation is announced by
J. Long et al. [38] in their “Fully Convolutional Networks for Semantic
Segmentation” contribution. Contrary to the previous presented work,
they implemented a fully convolutional network (FCN), which produces an
output of the same size as the input image. The output is, consequently, the
direct pixel-wise prediction of the segmentation [38].

To create a fully convolutional network, they used the architectures of
classification networks (AlexNet, VGGnet and GoogleLeNet), removed the
classification layers and replaced the fully connected layers by convolutional
ones. Nonetheless, these network adaptations still produce a down-sampled
output. Thus, an upsampling layer is added to create the pixel-wise
segmentation from the down-sampled network result. The upsampling is
conduced with a deconvolution, whereby the deconvolutional filter is learned
during training. Figure 27 illustrates the replacement of fully connencted
layers with convolutional ones. Beyond that, the vague segmentation result
is depicted [38].

Figure 27: Difference between a classification (above) and a fully convolu-
tional network (below) [38].

To sum up, they used pre-trained classification models, adapted the initial
networks to get fully convolutional networks and trained the upsampling lay-
ers with the PASCAL VOC 2011 segmentation dataset. Hence, the entire
ground truth images were used for supervised training and not only the labels
as it is the case for classification networks. The adopted VGGnet, which was
initially trained with the dataset from the ImageNet challenge 2014, pointed

34

out to deliver the best segmentation results. They termed this network con-
figuration as FCN-32s. Based on the VGGnet, two further segmentation
architectures were introduced, whereby these networks include information
from lower layers. The first net is the FCN-16s, which accomplishes upsam-
pling in two steps and includes the fourth pooling layer in one upsampling
step. Moreover, the net is initialised with the already trained weights of the
FCN-32s network. The second one is the FCN-8s, which conducts the up-
sampling in three steps and integrates information of the fourth and third
pooling layer. The FCN-8s is initialised with trained weights of the FCN-16s
network. J. Long et al. also denote the involvement of the max-pooling lay-
ers in the upsampling computation as “adding skips”. All in all, their results
have shown that the segmentation results improve (see Figure 28) with the
integration of pooling layers in the upsampling procedure [38], [55].

Figure 28: Example image segmented with the three different network archi-
tectures (FCN-32s, FCN-16s and FCN-8s) [38].

The segmentation networks of this master thesis are based on the fully con-
volutional network architecture. Moreover, a method to exclude CT slices
from training, that don’t contain the mandible, was implemented.

35

5 Methods

The succeeding chapter illustrates accomplished work of this master thesis.
An overview of available image data is provided as well as the genera-
tion of the MeVisLab “Save Slices for Deep Learning” network and the
SaveAsSingleSlices macro module to ensure data augmentation is described.
Apart from that, the implementation of deep learning networks to classify
and segment CT images with the toolkit TensorFlow and its high-level APIs
TFLearn and TF-Slim is outlined.

All implementations were achieved on a computer with a Intel-Core
i5-3470 CPU (3.20 GHz), a RAM of 8 GB and a Windows 8 (64 bit)
operating system. Moreover, a NVIDIA GeForce GTX 960 (2 GB memory)
was provided. The Python coding was performed with the integrated
development environment (IDE) PyCharm.

5.1 Available Computed Tomography Datasets

The CT datasets of the human’s mandible are supplied by the Department
of Oral and Maxillofacial Surgery of the Medical University of Graz.

5.1.1 Overview

In total, ten CT datasets were available to train deep learning networks for
achieving an automatic segmentation of the mandible. A dataset is saved
as one file, but there are several transverse slices stored within this file. It
is usual to create lots of tomographic images during one CT examination.
However, to apply deep learning networks, it is obligatory to store these
image slices as separate files. Therefore, a MeVisLab macro module was
developed (see ensuing chapter 5.2).

Additionally, the available tomographic images cover various sections
of the head-neck region of a human. Hence, the datasets encompass tissues
below and above the lower jawbone. Figure 29 displays three examples of
the available image slices that show parts of the Mandibula (red shaded
areas).

36

Figure 29: Examples of CT slices displaying parts of the mandible (red).

5.1.2 Ground Truth Segmentations

It is necessary to produce ground truth segmentations to enable a supervised
training of deep networks. Therefore, two physicians segmented manually
the lower jawbone from all slices of the present CT datasets. Exceptionally,
the mandible of dataset nine was segmented by three physicians. All
segmentation contours are stored as Contour Segmentation Objects (CSO)
files.

Table 1 lists the timespans, that were required to create the ground
truth contours, in order to accentuate the enormous effort of segmenting
manually anatomical structures. The different physicians are distinguished
by the letters A, B and C. Besides that, the average value of timespan,
that is needed to segment one dataset manually, results in a duration of 38
minutes and 33 seconds.

37

Table 1: Duration of manual segmentations to generate the ground truth
contours. The datasets were processed by two doctors, exceptionally dataset
nine was segmented by three physicians.

Dataset
Doctor A Doctor B Doctor C
min. sec. min. sec. min. sec.

1 36 15 39 43
2 45 55 40 18
3 38 9 39 27
4 37 36 38 2
5 37 24 35 5
6 42 46 40 1
7 38 5 41 48
8 35 48 37 27
9 38 10 37 57 38 40
10 35 52 35 17

The segmentation contours, that are created by the doctors, were converted
into voxelised images during this work. This conversion was achieved with
the MeVisLab toolkit. The complete implementation steps are outlined in
the succeeding chapter 5.2.

5.1.3 Acquisition Parameters

The CT image acquisition was accomplished with various recording param-
eters. Table 2 shows an overview of these values. For instance, the slice
thicknesses differentiate from each other. There are datasets recorded with
1 mm slice thickness, but there are also images with a thickness of up to
2 mm present. Thus, the image datasets show different resolutions in lon-
gitudinal direction. This is also the reason why the slice numbers of the
datasets, that indeed contain parts of the mandible, suffer from obvious vari-
ations. Besides that, thicker slices lead to a worse image quality. The effect
of increasing slice thicknesses causing blurred images is termed as the partial
volume effect (chapter 3.1.3). Moreover, the in-plane resolution varies to-
wards different datasets. All voxels have a square base, but the side lengths
are dissimilar. Nonetheless, every available CT slice consists of a quadratic
512× 512 image matrix.

38

Table 2: Acquisition parameters of the CT images. The in-plane resolution
is indicated by the “Side length of voxels” column. Two slice numbers in one
entry indicate that the doctors segmented a diverse number of slices.

Dataset
Side Length Slice Number Number of Slices

of Voxels Thickness of Slices incl. the Mandible
mm mm

1 0.428 1.0 217 90
2 0.383 1.0 154 92/91
3 0.420 2.0 136 39
4 0.523 1.999 141 39
5 0.510 1.0 232 97/98
6 0.461 1.5 168 66/65
7 0.465 1.0 200 73
8 0.451 2.0 110 49
9 0.383 1.0 154 91
10 0.461 1.5 168 66

5.1.4 Dataset Size

To sum up, 1680 CT slices and 3514 ground truths exist for training and test-
ing deep learning networks. Considering the image slices that display parts
of the mandible, then there are only 1494 ground truths available. However,
training deep learning networks requires a larger amount of datasets. Take,
for example, the work of B. Ibragimov and L. Xing [24], who had 50 CT
datasets at their disposal to train and test a network for lower jawbone seg-
mentation. Accordingly, there is a lack of medical images that can be used
for this work. Several reasons can be marked out for this circumstance: One
issue is that all ground truths are generated manually by doctors. In daily
routine, they don’t have plenty of time to conduct these manual segmenta-
tions. Another reason is that images, that are acquired during daily routine
in hospital, are usually stored as Digital Imaging and Communications in
Medicine (DICOM) files [42], which comprise private patient information
like the patient’s name or date of birth. Thus, these types of images are not
public accessible. To fulfil ethical demands, the images must be anonymised.
Therefore, the CT images, that are used for this master thesis, were provided
as Nearly Raw Raster Data (NRRD) files. NRRD-files don’t include any per-
sonal information about the patient. Finally, the CT images, that are used
for this work, must not have any teeth. Teeth often contain metallic implants,
which produce distinct artefacts (see Figure 30). Hence, a segmentation of
the lower jawbone is difficult to accomplish.

39

Figure 30: CT image corrupted by metal artefacts. The artefacts are visible
as stripes. Adopted from [28].

However, to circumvent the problem of too few available images, data aug-
mentation is an opportunity to enlarge artificially the size of the dataset.
To increase the magnitude of the datasets of this work, the augmentation
methods noise addition and affine transformation were implemented with
MeVisLab.

5.2 Implementations in MeVisLab

It was necessary to achieve three desired functionalities with the medical im-
age processing platform MeVisLab, before the training of the neural networks
could be accomplished:

1. Conversion of the ground truth segmentation contours into voxelised
images;

2. Automatic storage of the image slices as separate files;

3. Application of data augmentation methods.

Therefore, the MeVisLab module network “Save Slices for Deep Learning”
and the macro module SaveAsSingleSlices were implemented. The generated
network enables the conversion of a segmentation contour into a binary
mask and a depiction of the patients’ CT images. In addition to this, the
macro module SaveAsSingleSlices stores the slices as separate and perhaps
modified image files.

40

Following subchapters depend on the MeVisLab modules’ HTML help. The
network and the macro module implementations were obtained with the
support of the MeVisLab Definition Language (MDL) Reference [4] and
the MeVisLab Scripting Reference [6]. A part of the conducted work was
already achieved during my Master Project [48], [49], [47], [20]. Thus, sim-
ilar instructions can also be found in the documentations of this preceding
work. However, modifications of the network and the documentations were
conducted.

5.2.1 “Save Slices for Deep Learning” Network

As a first step, the MeVisLab network “Save Slices for Deep Learning”,
which can be seen in Figure 31, was created. The functions of the particular
modules are explained in the paragraphs below.

Figure 31: Implemented “Save Slices for Deep Learning” network. The “Load
Data” group enables the integration of the CT images and the CSO files into
the network. The View2D and View3D modules visualise medical data and
the macro module SaveAsSingleSlices provides the storage of separate and
probably deformed images.

41

At the lower section of the network is the “Load Data” group visible. The
patient’s CT dataset is imported into the MeVisLab environment with
the itkImageFileReader module. The contours of the lower jawbone are
loaded into MeVisLab with the CSOLoad module. A CSO file encloses all
contours of a CT dataset as a CSOList. To make these segmented contours
available in MeVisLab, the CSOManager module is used. The output of the
CSOManager module isn’t the ground truth information for deep learning
networks yet, because the CSOs represent the border of the mandible in
each image slice, but they aren’t voxelised images.

Nevertheless, neural networks for image segmentation require voxelised
masks for training. As a consequence, the CSOs are converted into voxelised
images with the CSOConvertToImage module. This module requires the
original CT images as well as the CSOLists as an input, while the output
delivers binary images. The segmented areas, that belong to the lower
jaw, are indicated as the foreground with a voxel value of one, whilst the
background is set to zero. It is central to tick the “Voxelise Border” checkbox
at the module’s panel to add the path points of the CSOs to the generated
image. Furthermore, it was adjusted to fill the segmentation borders. The
output of the CSOConvertToImage module is composed of multiple slices,
too. There are not only output masks with visible segmentation regions,
but there are also slices without any foreground voxels. The reason for this
circumstance is that the input CT includes slices below as well as above the
mandible. Thus, there aren’t any segmentation contours of the mandible
at these slices present, which results in output masks containing only voxel
values of zero.

The four View2D modules are selected to display the patient CT dataset
and the generated segmentation masks. It is possible to scroll through the
individual slices within the viewer panels. Three resulting representations of
these modules are visible in Figure 32. All displayed images show slice No.
32 from patient CT one and the contours are segmented by physician A.

The View CT module depicts a two-dimensional (2D) representation
of the transversal CT slices (No. 1 of Figure 32). Moreover, the module
View CSO displays the original CT image and the segmentation contour.
Therefore, the CT images and the contours are provided as inputs to this
module. Before the CSOs are brought to the View2D module, the CSOList
is added to a SoView2DCSOExtensibleEditor module. This module ensures
a visualisation of the single contours. Furthermore, the module View Mask
shows the output of the CSOConvertToImage module. As a result, there

42

is the binary mask of the segmented areas visible (No. 2 of Figure 32).
Finally, the View CT and Mask module is added, which illustrates the CT
images and the overlaid masks (No. 3 of Figure 32). Again, there are two
inputs for the View2D module necessary: the original CT image and the
output of the SoView2DOverlay module. The latter module supports an
overlay of a 2D image over another one. In this case, the output binary mask
of the CSOConvertToImage module should be superposed on the original
patient CT. The SoView2DOverlay module parameter “Base Color” is set
to orange and for the “Alpha Factor” is a value of 0.4 chosen. The alpha
factor indicates the transparency of the superposed mask. An alpha factor
of zero means complete transparency, whereas greater values lead to higher
opacities.

Figure 32: Various representations created with the View2D modules. No.
1 shows the original CT, No. 2 the binary mask (white) and No. 3 the CT
with the overlaid binary mask (orange).

SyncFloat is a module that synchronises the currently shown image slices
between various View2D modules. As a consequence, a comparison between
different representations of one slice is automatically possible. It is noticeable
that MeVisLab maps specific image information, for example, the in-plane
resolution, slice thickness or grey values in the viewer panels of the modules.

Additionally, the OrthoView2D module, termed as OrthoView CT and CSO,
shows orthogonal views of the patient and the contours. There is the stan-
dard transversal plane (No. 1 of Figure 33), the sagittal plane (No. 2
of Figure 33) and the frontal plane (No. 3 of Figure 33) visible. The
yellow crossed lines in one image indicate the location of the other two
planes. This module needs the imported CT image and the output of the
SoView2DCSOExtensibleEditor as an input.

43

Figure 33: Depiction with OrthoView2D. No. 1 shows the original transversal
plane, No. 2 the sagittal plane and No. 3 the frontal plane. The green areas
correspond to the segmentation contours.

Last, the View3D module, named as 3DView CT and Mask, is added to
the network in order to present a 3D visualisation of the CT dataset and
the overlaid masks (see Figure 34). The SoGVRVolumeRenderer module
enables the rendering of the generated masks. There are gradations along
the longitudinal axis of the body visible, but they can’t be seen along the
sagittal or the transversal axis. The reason for this fact is that the in-plane
pixel size has a value of 0.428 mm, but the out-of-plane resolution is worse,
as the slice thickness has a value of 1 mm.

44

Figure 34: 3D visualisation of a CT dataset and the segmented mandible.

Finally, each slice of the CT and mask datasets ought to be saved as single
slices in detached files. As there aren’t any MeVisLab internal modules avail-
able to accomplish this task, an own macro module was implemented. This
macro module, termed as SaveAsSingleSlices, is also able to apply geometric
transformations and noise on the original datasets to increase the amount of
training and testing data.

5.2.2 SaveAsSingleSlices Macro Module

As a next step, the global macro module SaveAsSingleSlices was developed
in order to achieve a separate storage of image slices and to apply data
augmentation. Both claimed functionalities were implemented within one
macro module. A quite small part of the module is based on forum posts of
the Fraunhofer MeVisLab forum [39].

As already mentioned in section 3.2, a macro module consists of a
macro network, a Definition-, a Script- and a Python-file. The Definition-file
was created automatically by the MeVisLab Project Wizard, hence this file
wasn’t changed. The implementation of the other three parts is outlined in
the following paragraphs.

45

Macro Network

The SaveAsSingleSlices module appearance with its two ML image connec-
tors is shown on the left side of Figure 35, whilst the macro network itself
can be seen in the right part.

Figure 35: Internal network of the SaveAsSingleSlices module. On the left
side is the module surface (brown) visible, whereas the right side shows the
internal network consisting of basic MeVisLab modules.

The implemented macro offers two module inputs: The first ML image
input is required for the CT images and the second one is needed for the
created masks. The processing steps are the same for the CTs and the
masks. Accordingly, the modules and their chosen settings are identical for
the left and the right “network wing”.

The Info modules (InfoPatient and InfoMask) list specific information
about the input images, for instance, image size or bit depth. To ensure
further processing steps, the slice number of a dataset was identified with
this module.

The SubImage modules (SubImagePatient and SubImageMask) are re-
quired to select one distinct slice from the image stack. Beyond the
SubImage modules, the network divides into two further processing paths.
One path is utilised for affine transformations and the other one is used for

46

adding noise. Moreover, four Scale modules (ScalePatient, ScalePatient-
Noise, ScaleMask and ScaleMaskNoise) are added in order to scale the grey
values onto a bit depth of UINT16 (65536 grey values) or onto a depth of
UINT8 (256 grey values).

To save a single slice, the ImageSave modules (SavePatient, SavePa-
tientNoise, SaveMask, SaveMaskNoise) are appended to the macro network.
Generally, it is possible to select between numerous datatypes to save the
slices with this module, for example, TIFF or DICOM. For this macro
module, the datatypes TIFF (default), JPEG, PNG and DICOM are
enabled. The ImageSave module is able to export only one slice. To ensure
that all slices are saved without any user interaction, an iteration loop was
implemented within the Python script.

In addition to this, it is claimed to implement opportunities for data
augmentation. Firstly, the modules AffineTransformation2D (TransPatient
and TransMask) qualify the macro to create new transformed slices,
that are also separately saved. In the main, this module type involves
the transformations translation, rotation, scaling and shearing as well as
combinations of them depending on the parameters that are set. Nev-
ertheless, the transformations scaling and rotation are supported for the
SaveAsSingleSlices macro. Moreover, a mirroring of the image around the
sagittal axis is provided by setting the scaling parameter along the x-axis
to a value of -1. These transformation types are enabled, because they are
physiological: The head can be turned a view grades to the left or right
and it is possible that there are small size variations of the human anatomy.
The flipping of the image is a practical occasion to double the number
of images. Shearing isn’t provided, because this transformation doesn’t
produce physiological deformations. Translation wasn’t supported, since
a human is positioned in the isocentre of a computed tomograph. Thus,
a translation is not absolutely necessary. Furthermore, it is possible to
apply several geometric transformations simultaneously to achieve combined
deformations like flipping-rotation, flipping-scaling, rotation-scaling and
flipping-rotation-scaling.

Finally, the AddNoise modules (AddNoisePatient and AddNoiseMask)
append noise on the CT images and perhaps on the masks. It can be
distinguished between various types including Uniform noise, Gaussian noise
and Salt and Pepper noise. However, it is possible to apply one noise type,
but not a superposition of these noise options.

47

Script-file

The Script-file is obligatory to create a macro module. Figure 36 shows the
basic programming code of this file without own specifications. This file is
mandatory to define the interface of the SaveAsSingleSlices module block.
The inputs of the module are declared in the Interface section of Figure 36.
As module outputs are not provided, there isn’t any programming code added
at the Outputs section. Nevertheless, lots of parameters are declared that
facilitate the user to define settings of the macro module. These parameters
involve general adjustments, such as the target folder, but also parameters
for data augmentation. Furthermore, a conjunction to the Python script
(Commands section in line 14) was implemented and a Field-Listener was
added to trigger the Python script in case of a started image exportation by
the user. Finally, the Window section in line 17 defines the appearance of
the user panel to set the module’s parameters for saving original slices and
applying data augmentation.

Figure 36: Basic framework code of a Script-file.

Figure 37 shows the resulting user panel of the implemented
SaveAsSingleSlices macro module with the selected Settings-tab. The
General Settings area allows to assess the parameters for an exportation of
the slices. The path for saving the CT and mask slices must be determined.
It is possible to save the masks and the CT images in separate folders.
Furthermore, templates for the filenames have to be stated. There is the
occasion to export all slices (default) or just a distinct number of slices.
The checkbox “Export original image” has to be ticked to store the original
dataset, as it is also possible to export only modified images. Moreover, the
user can select between exporting TIFF, PNG, DICOM or JPEG files. If
“Mask values: 1 and 0” is checked, the generated masks have grey values of
zero and one. Otherwise, the foreground is represented with pixels of the

48

maximum grey value (255 for UINT8 and 65535 for UINT16). To verify the
entered parameters, some checks are implemented in the Python script (e.g.
meaningful numbers or existing file paths).

Figure 37: Panel of the SaveAsSingleSlices module with selected Settings-
tab.

If it is intended to save affine transformed slices, the user has to open the
Affine transformations-tab, which can be seen in Figure 38, and tick the
“Apply Transformation” checkbox. Provided that “Flip around y-axis” is
checked, the code of the Python script sets the scaling factors along the x-
axis of the AffineTransformation2D modules to -1. Ticking “Rotate image”
allows to enter parameters for saving rotated images. The user is able to state
the start and stop rotation angles in degrees and the incremental step size
of the rotation. Thus, it is possible to save several differently rotated images
with one exportation. Additionally, checking the “Scale image” box permits
to save scaled images. In this case, the user has to enter the start and stop
scale factors in x- and y-direction and the step size for the adjustment of these
parameters. If “Symmetric Scaling” is true, the same scaling parameters are
applied in x- and y-direction. Hence, there is a smaller number of scaled
images created. As described, all these transformation types are applied
apart from each other. Nevertheless, there is the possibility to combine two
or three transformation types. Therefore, the Checkbox “Combine types”
should be ticked. After applying a transformation, it was important to ensure

49

that the transformation parameters are set to initial values, otherwise the
changed parameters are saved and they are also applied during a following
function call, even though this isn’t desired.

Figure 38: Panel of the SaveAsSingleSlices module with selected Affine
Transformations-tab.

Finally, adding noise for data augmentation is possible by ticking the “Add
noise” checkbox at the Noise-tab of the implemented panel (see Figure 39).
As default, the noise is added on the CT images but not on the generated
masks. However, if the checkbox “Add noise to mask” is ticked, the noise is
also applied on the masks. To add Uniform, Gaussian or Salt and Pepper
noise, the respective checkboxes have to be marked. If Uniform noise is
chosen, a start and stop value for the amplitude has to be defined. Moreover,
the step size must be stated to generate automatically multiple noisy images.
The parameters of Gaussian noise cover the mean value and the standard
deviation, which can be varied with a chosen step size. Provided that Salt
and Pepper noise is selected, the amplitudes of salt and pepper have to be
specified. Besides that, the start and stop values of the density and also
the step size must be declared. Adding various noise types is, however,
possible separately, but not in combination as it is the case for the affine
transformations.

50

Figure 39: Panel of the SaveAsSingleSlices module with selected Noise-tab.

If all necessary parameters are entered, the data exportation is launched
with the “Start Export” button at the Settings-tab (see Figure 37). A
progress bar shows the progression of the exportation of an image dataset
and its corresponding mask dataset. Examples of the synthetic generated
transformed and noisy images can be found in the Results section 6.1.

Python-file

The Python script controls the functionality of the macro module. It passes
on by the user entered parameters to the modules of the macro network.
Thereby, the plausibility of the stated values is checked. Beyond that, the
Python script permits a “communication” with the user. Messages, which
inform about executed transformations or incorrect input parameters, are
displayed in the debug output of the MeVisLab surface. For example, Figure
40 shows several types of messages.

51

Figure 40: Messages to inform the user.

• “No CT and mask inputs” means that there isn’t any data connection to
the inputs of the module joined, which leads to an abortion. However,
the exportation with one connected input is allowed.

• “No mask input” informs that there isn’t a mask input offered. Never-
theless, a CT input is fixed.

• “Invalid slice numbers” indicates that there are wrong slice numbers,
for instance, negative values entered. An exportation is disabled.

• “Invalid path” warns that there isn’t an existing path for storage stated.
Thus, the slices aren’t saved.

• “Invalid noise parameters” implies that a non-meaningful noise param-
eter, for example, a negative density is stated. Hence, adding noise is
not possible.

• “Invalid transformation parameters” indicates that there isn’t a rea-
sonable transformation parameter, such as a positive step size, entered.
Consequently, a transformation is not executable.

• “Original images are exported” informs that the original version of the
input is successfully stored.

• “Applied Transformation: Flipping” communicates that a deformed
version of the original image is stored. In this case, the applied trans-
formation is flipping.

• “Applied Noise: Salt and Pepper” informs that a noisy version of the
original image is saved. In this case, the applied noise type is Salt and
Pepper.

52

Moreover, the implementations of the Python-file support iterations over
the individual slices as well as the automatic variation of parameters like the
rotation angle. Finally, the Python script manages the self-acting generation
of the filenames of the exported slices. Therefore, the software adds name
extensions to the chosen template filename in order to distinguish between
the slices and the applied data augmentation methods as well as to prevent
an overwriting of files.

Figure 41 lists exported files of slice 50 of image dataset one. “Pat1”
is the template filename (stated by the user) and “ Slice50” is automatically
attached for the slice number by the Python script. Furthermore, if flipping
is applied, “ Flip” is added to the file name. The rotation is indicated by
“Rot8” and the scaling by “X1.04Y0.96”, whereby the numbers after the
abbreviations represent the applied transformation parameters: “Rot8”
means that the image is rotated by an angle of 8◦. The last three examples
of Figure 41 illustrate the filenames for adding noise. The numbers for
Gaussian noise indicate the mean and the standard deviation, those for Salt
and Pepper noise stand for the two amplitudes and the noise density and
the value of Uniform noise indicates the amplitude.

Figure 41: Generated filenames of exported slices. “Pat1” corresponds to
the entered template filename and “Slice50” designates the number of the
exported image slice. The further name extensions indicate applied defor-
mations.

The generation of these standardised filenames is important to ensure the
succeeding deep learning implementations.

53

5.3 Classification of the CT Images

Succeeding deep learning implementations comprise a classification of the
CT slices. The idea is to achieve a self-acting decision whether the mandible
appears in an image or not, because many images occur that don’t show
the lower jawbone. These CT slices should be eliminated with a trained
classification network and consequently, the segmentation network was
just trained with images that show parts of the lower jaw. B. Ibragimov
and L. Xing removed in their work [24] also CT slices, that don’t include
the mandible, from training and testing neural networks. They applied,
however, geometrical methods for slice exclusion.

During this work, various classification networks were trained with
TensorFlow and its API TFLearn. The CNN, which offers the best
performance, was selected for the further segmentation task.

5.3.1 Dictionary of Classification Labels

Before a training of classification networks can be accomplished, it is
necessary to know the label of every image. These labels indicate which
class an image is attending. In the course of this work, two classes exist:
There is the case that the lower jawbone appears in a CT slice and
alternatively, that the mandible doesn’t occur. The labels of the images
can be extracted from the ground truth segmentations. Therefore, the
masks, which are generated from the manual segmentations of physician
A, were exported with the MeVisLab implementations. Those masks are
binary images, as there appear only black and white pixels. If a CT slice
contains the mandible, its corresponding mask encompasses white pixels.
Otherwise, the mask exhibits only pixel values of zero. Thus, it is pos-
sible to infer the classification label of a CT slice from the mask’s pixel values.

The implemented Python script Dictionary Labels Classification.py per-
mitted the extraction of the labels and the storage of them as a “Labels
Dictionary” in a Comma-Separated-Values (CSV) file. Within this dictio-
nary are the labels of the original images and their unique identifiers stored.
The identifier enables a look up of the label of a distinct image slice of a
dataset. Besides that, the storage of the labels in a dictionary offers the
advantage that they don’t have to be determined from the masks every time
before a new network is trained.

54

The listings in Figure 42 demonstrate the determination of the labels.
The code within the if-statement is executed if any pixel of an examined
image is white. If this is the case, the image identifier is stored with a
label of 1, which stands for an appearing mandible. The implemented
create identifier() function generates this identifier. In contrast, the else-
statement leads to a label of 0. These investigations are executed for each
of the 1680 masks.

Figure 42: Listings to figure out the label of an examined mask.

To generate the identifiers with the create identifier() function, the filenames
of the exported masks are used. The masks’ filenames have a format of
the type: Mask1a Slice1.tif. The first numeral indicates the number of the
dataset and the second one stands for the slice number. Both numbers were
extracted from the filenames with the assistance of string processing functions
in Python. Moreover, the character “a” stands for ground truth masks, which
were generated by physician A. The resulting identifier has a formatting
of dataset slice. Figure 43 illustrates examples of the identifiers and their
determined labels stored in the CSV-file.

Figure 43: Exemplary entries of the created “Labels Dictionary”. The first
column contains consecutive numbers, the second one comprises the identi-
fiers (ID) with the format of dataset slice and the LABEL column lists the
related labels.

Apart from that, it is sufficient to store the labels of the original images even
if networks are trained with artificial enlarged datasets. Take, for example,

55

an image slice that is rotated. This rotated instance exhibits the same label
as the original one. As a result, it is not necessary to determine the label
for every augmented image from its ground truth mask. The labels of the
transformed images can be marked out from the dictionary with the support
of the identifier, too. Thereby, the ID is extracted from the augmented
images’ filenames, since they also enclose the numbers of the dataset and of
the slice.

5.3.2 Data Processing

To train neural networks in TensorFlow and TFLearn, the image data has
to be processed and put into a distinct format. Therefore, the Python
programme Data Processing Classification.py was implemented.

As a first step, this script permits the loading of a set of images,
which should be used for training or testing a network. For that, the CT
images are stored within one folder. Moreover, the order of the particular
image slices is shuffled to ensure, for instance, a random division of the
images into a training and a validation dataset. Another issue is that
the images might be down-sampled for a processing with neural networks.
Down-sampling of images is a common trick, because smaller images lead to
less input nodes of the network and as a consequence, less parameters have
to be trained.

As a next step, the labels of the images are looked up in the previ-
ously generated “Labels Dictionary”. Therefore, the IDs (dataset slice) of
all images are extracted from their filenames (see Figure 44). Afterwards, the
labels are converted into one-hot vectors, which is necessary for supervised
training. A one-hot vector has as many entries as classes are distinguished
and each vector entry stands for a distinct class. This vector type has only
zero-valued entries, except the entry, that represents the occurring class, is
set to one. Hence, the one-hot vectors of this task have two entries, whereby
[1, 0] indicates that there isn’t the mandible and [0, 1] means that a part of
the lower jaw appears in the image. Besides that, each one-hot vector entry
can be imagined as one output unit of the neural net.

56

Figure 44: Steps to get an image’s one-hot vector. The identifier for the look
up is extracted from the number of the dataset and the slice (green). The
determined label is converted into a one-hot vector.

At last, the images and their corresponding one-hot vectors are converted
into NumPy arrays, which are merged into one list. Afterwards, this list
is stored as a NPY-file, since this format is specific to save NumPy arrays
on a storage medium and it can also be processed by TensorFlow. Apart
from that, a CSV-file with a register of the filenames and their labels in the
shuffled order is stored to permit a manual check during training, since the
NPY-file comprises only numerical data.

5.3.3 Implementation of the Code Framework

It is required to implement the code framework, which encompasses
the structure as well as the training and testing options of the net.
Therefore, the classification network was implemented in the Python-file
Classification Network.py with TFLearn. This library offers many prac-
tical functions to build the scaffold of a convolutional neural network
as well as to train and test it. The documentation of TFLearn [58] and
also the online tutorial [50] supported the implementation of following CNNs.

Firstly, the dataset, which is stored as a NPY-file and covers the im-
ages and their one-hot vectors, is loaded into the Python script. Thereafter,
the shuffled images are divided into a training set and a validation set
(see Figure 45), whereby the variable “SPLIT TRAINSET” defines the
subdivision of the loaded dataset. The training set permits the calculation
of the network’s weights. Despite that, the TFLearn network uses the
validation set during training to review the training process, since the
accuracy of the validation dataset should not decrease after weight updates.

57

Figure 45: Division of the dataset into a training and a validation set.

As a next step, the topology of the network is defined. Figure 46 displays
the programming code of the input and of the following convolutional and
max-pooling layers. The TFLearn function input data() generates the first
layer and requires the size of the input images as a parameter. Further-
more, the convolutional layer is created with the conv 2d() function. The
number of the feature maps, which should be generated, is determined with
the “NUM FEATURES[0]” variable and the size of the convolutional filter is
defined with “CONV FILTER SZ”. The convolutional filter is shifted with
the default stride size of one. Besides that, the typical ReLU function is
chosen as the activation function. The max-pooling layer is constituted with
max pool 2d(), whereby the variable “MAX POOL SZ” stands for the size
of the receptive field. Again, the receptive field is shifted with the default
stride size, which equals the size of the receptive field itself. To achieve a
connection between adjacent layers, each preceding layer is a parameter of
the layer-function of the succeeding one. For an extension of the network
with further convolutional and pooling layers, the functions of the lines 154
and 155 have to be copied and attached to the present programming code.

Figure 46: Listings of the implemented input layer and of the first convolu-
tional and pooling layer pair.

In addition to this, Figure 47 shows the listings of the fully connected,
the dropout and the output layer. The TFLearn function fully connected()
supplies the fully connected layer after alternating convolutional and max-

58

pooling ones. The variable “NUM FULLY NODES[0]” holds the unit num-
ber and ReLU is used for the activation of this layer type. Furthermore,
dropout() enables the exclusion of random nodes during the training pro-
cess, whereby the variable “DROPOUT” defines the percentage of remain-
ing units during a training step. The output layer is also generated with the
fully connected() function. Nevertheless, the number of output neurons is set
to a value of two, since there are two classes discriminated in this task. The
activation of the output layer is a softmax function, which is the frequent
case for classification tasks [57]. A softmax function (11) is calculated with

s(zk) =
exp(zk)
K∑
l=1

exp(zl)

(11)

where zk denotes the output of a neuron before activation for a distinct class
k, whilst the symbol K stands for the occurring classes. Despite that, zl is
the output of a neuron before activation for any class l out of K [57].

Finally, the function regression() is needed to define a gradient de-
scent optimizer, the learning rate and the loss function. In this case,
the default TensorFlow “adam” optimizer and the default loss function
“categorical crossentropy” were adjusted. In contrast, the learning rate is
defined by the user. The cross entropy cost function (12) is defined as

E(parameters) = −1

2

N∑
n=1

K∑
k=1

tnk ln ynk (12)

where N is the number of data entries and K is the amount of appearing
classes. Moreover, tnk, which stands for the ground truth label of a data
entry, is multiplied with the logarithmic of ynk. The formular symbol ynk
indicates the predicted output of the data entry [57].

Figure 47: Listings of the fully connected, the dropout and the output layer.

59

Following the definition of the net topology, the CNN training can be
launched. For this purpose, TFLearn provides the fit() method (see Figure
48). The training and the validation set are stated with Python dictionarys.
Moreover, the user defines the number of epochs with the “NUM EPOCHS”
variable. The higher the number of epochs, the more often is the network run
with the training data [32]. Furthermore, if the parameter “show metric” is
set to True, the user is informed about important metrics during the training
process like the loss or the accuracy. A loss value of almost zero means that
the predicted results are nearly the same as the ideal ones. Moreover, the
accuracy states the amount of correct predicted items of a dataset. Hence,
a value of one implies that all images are predicted correctly with a trained
network. After accomplished training, the network weights are stored. As a
result, it is possible to reload this model and to train it again.

Figure 48: Launching the training process of the configured neural network
with the fit() function and thereafter, saving the trained network.

To keep track of the defined settings and achieved accuracies of various
trained networks, a CSV-file with all those values is automatically stored
after each launched training process. For this purpose, a function was im-
plemented to calculate manually the accuracy of a dataset (see Figure 49).
The method predict() forecasts the class of a delivered input according to
the trained model. Hence, a vector with two entries is returned, whereby
the first entry stands for the class of no appearing mandible and the second
one stands for the opposite case. These two values are the class probabilities
and the sum of them must be one. Thus, the class, that is more likely, has
the higher probability. The NumPy argmax() function allows an extraction
of the index of the highest value and in this way, a comparison between the
predicted and the real label is possible. The accuracy is calculated with the
code in line 249 of the listings displayed below.

60

Figure 49: Manual calculation of the accuracy.

5.3.4 Training Datasets

The implemented code framework of a CNN was trained with four different
sized datasets, which were exported with the generated MeVisLab network
and macro module. Each dataset contains a diverse number of images, as
there were different augmentation methods applied. As a result, it is possible
to examine the behaviour of the network performance according to the arti-
ficially enlarged datasets. Table 3 lists these datasets and the applied data
augmentation methods. The first image set involves the initial CT images,
the second one is enlarged with noisy images and the third one with affine
transformed images. Dataset four covers both data augmentation types.

Table 3: Datasets to train classification networks. The original images were
exported and various combinations of data augmentation methods were ap-
plied.

Dataset Settings
Number of

Generated Images

1 Original 1680

2 Original and Noise 6720

3
Original and

13440
Affine Transformations

4
Original, Noise and

18480
Affine Transformations

61

Table 4 shows the declared MeVisLab settings to produce the augmented
training datasets. These exportation parameters are the default values of
the MeVisLab implementations. If synthetic images are generated with affine
transformations, seven new images can be created per one original slice. The
geometric transformations are applied separately from each other. If noise is
added, three new images can be exported.

Table 4: Exportation settings in MeVisLab to create augmented images for
training CNNs. The affine transformations are applied independently from
each other.

Data Aug-
Type Settings

Adjusted Created Images
mentation Values per Slice

Separate Flipping - - 1
Affine Rotation Rot. Angles: ±8◦ 2
Transf. Scaling Scal. Factors: 0.96 & 1.04 4

Noise

Uniform Amplitude: 800 1

Gaussian
Mean: 0

1
Std. Dev.: 300

Salt & Amplitudes: ±2000
1

Pepper Density: 0.05

As already mentioned, the TFLearn function fit() requires a division into
training and validation data. According to [59], the validation set (13) should
have a minimum proportion of

V al =
1√
2T

(13)

of the total available amount of training data T . Thus, the fragmentation of
the four generated datasets happened the following way (Table 5):

Table 5: Subdivision into training and validation data for classification.

Dataset

Total Minimum Actual Size Actual Size
Number Size of of Training of Valid.

of Images Valid. Set Dataset Dataset

1 1680 28.98 1650 30
2 6720 57.97 6600 120
3 13440 81.98 13300 140
4 18480 96.12 18300 180

62

5.3.5 Training of the CNNs

The goal of this section was to find a network, which is able to discriminate
CT images according to an appearing mandible. Moreover, the metrics
ought to deliver optimal values, which means that the accuracy should be
high and the loss should be low.

To produce meaningful results with a trained network, it is required
to figure out optimal training and network parameters. The choice of these
values influence eminently the results of the net. Figure 50 gives an overview
of factors that can be varied and consequently, lead to completely different
results. For instance, dataset properties (red arrows in Figure 50) and also
the arrangement of diverse layer types (orange) influence the behaviour of
a net. Additionally, parameters concerning the training process (green) and
parameters of the network layers itself (black) affect the results.

Unfortunately, there aren’t any generally applicable rules to select
these parameters. The seek for appropriate values is more about trying
out. Neural networks are also often declared as “black magic” [31]. As a
result, the aim was to find out values of the listed parameters, that deliver
adequate network results [43].

Figure 50: Parameters influencing the network performance. Dataset proper-
ties (red), the topology of the net (orange), training settings (green) and pa-
rameters of the network layers itself (black) influence a network’s behaviour.

63

Figure 51 shows values of some of these variables that emerged to be assistant
to train an appropriate classification network. Good accuracies were achieved
with a max-pooling filter size of five, with 1024 nodes of the fully connected
layer and feature map numbers of 32 and 64. Moreover, the dropout rate
is defined with 0.8, the learning rate was set to 0.00001 and the number of
epochs per launched training is stated as 20.

Figure 51: Listings of defined training parameters. The values of the yellow
shaded variables are stated for further examinations of deep networks.

The remaining influencing factors (dataset size, image size, topology and
convolutional kernel size) were examined in more detail. Hence, networks
with miscellaneous values of these parameters were trained. In total, the
training was conducted four times for each configured model.

As a first investigation, the impacts of the network topology and the
dataset size were surveyed. To enable a faster training, the images were
down-sampled to a size of 50 × 50. Initially, a CNN was trained with three
convolutional and three max-pooling layers and with the settings of Table
6. Furthermore, the network exhibited an input layer, one fully connected
layer and the output layer. The learning rate and the epochs were defined
with the values of Figure 51. Beyond that, this network configuration was
trained with the four different sized datasets.

64

Table 6: Training configuration of a CNN with three convolutional and three
max-pooling layers.

3 Conv. and 3 Max-pooling Layers

Dataset Image Conv. Max-Pool. Feature Fully
DropoutSize Size Kernel Kernel Maps Nodes

1680 50 3 5 32 64 32 1024 0.8
6720 50 3 5 33 64 32 1024 0.8
13440 50 3 5 34 64 32 1024 0.8
18480 50 3 5 35 64 32 1024 0.8

Two further CNN configurations were trained with the same parameter set-
tings as the networks of the previous example. Nevertheless, one network
was composed of four convolutional and max-pooling layer pairs (see Table
7) and the second one consisted of six convolutional and six max-pooling
layers (see Table 8). Again, four datasets were used as training data.

Table 7: Training configuration of a CNN with four convolutional and four
max-pooling layers.

4 Conv. and 4 Max-pooling Layers

Dataset Image Conv. Max-Pool. Feature Fully
DropoutSize Size Kernel Kernel Maps Nodes

1680 50 3 5 32 64 32 32 1024 0.8
6720 50 3 5 33 64 32 32 1024 0.8
13440 50 3 5 34 64 32 32 1024 0.8
18480 50 3 5 35 64 32 32 1024 0.8

Table 8: Training configuration of a CNN with six convolutional and six
max-pooling layers.

6 Conv. and 6 Max-pooling Layers

Dataset Image Conv. Max-Pool. Feature Fully
DropoutSize Size Kernel Kernel Maps Nodes

1680 50 3 5 32 64 32 32 32 32 1024 0.8
6720 50 3 5 33 64 32 32 32 32 1024 0.8
13440 50 3 5 34 64 32 32 32 32 1024 0.8
18480 50 3 5 35 64 32 32 32 32 1024 0.8

65

The previous network topologies were trained with a convolutional filter size
of three. The CNN topology with six convolutional and six pooling layers was
also examined with a filter size of five and seven. Table 9 lists the respective
training settings.

Table 9: Training configuration of a CNN with six convolutional and six
max-pooling layers and various convolutional filter sizes.

6 Conv. and 6 Max-pooling Layers

Dataset Image Conv. Max-Pool. Feature Fully
DropoutSize Size Kernel Kernel Maps Nodes

1680 50 5 5 32 64 32 32 32 32 1024 0.8
6720 50 5 5 32 64 32 32 32 32 1024 0.8
13440 50 5 5 32 64 32 32 32 32 1024 0.8
18480 50 5 5 32 64 32 32 32 32 1024 0.8

1680 50 7 5 33 64 32 32 32 32 1024 0.8
6720 50 7 5 34 64 32 32 32 32 1024 0.8
13440 50 7 5 35 64 32 32 32 32 1024 0.8
18480 50 7 5 36 64 32 32 32 32 1024 0.8

After all, the datasets were down-sampled to a larger image size of 128×128 in
order to explore the influence of a larger matrix size on the network results.
Therefore, a training with the topology of six convolutional and six max-
pooling layers was conducted. The convolutional filter size was again assigned
as seven. Table 10 lists an overview of the settings of this training process.

Table 10: Training configuration of a CNN with six convolutional and six
max-pooling layers and image sizes of 128× 128.

6 Conv. and 6 Max-pooling Layers

Dataset Image Conv. Max-Pool. Feature Fully
DropoutSize Size Kernel Kernel Maps Nodes

1680 128 7 5 32 64 32 32 32 32 1024 0.8
6720 128 7 5 33 64 32 32 32 32 1024 0.8
13440 128 7 5 34 64 32 32 32 32 1024 0.8
18480 128 7 5 35 64 32 32 32 32 1024 0.8

66

Apart from that, it was not feasible to train the delineated network configura-
tions with the initial image size of 512×512. The reason for this circumstance
is a run out of memory of the GPU while allocating the TensorFlow tensors
with the larger image size.

5.3.6 Testing of the trained CNNs

After training the various network configurations, the nets had to be tested
with a new dataset. Therefore, novel images were generated with the
MeVisLab macro module SaveAsSingleSlices, whereby the chosen exporta-
tion parameters can be seen in Table 11. The test dataset includes noisy
images (Gaussian as well as Salt and Pepper) and geometric transformed
ones, but not the initial CT images. The selected affine transformation types
were combined, but the scaling was symmetrically applied. As a result, six
images were generated per one original slice. In total, 10080 test images were
created with MeVisLab.

Table 11: Exportation settings in MeVisLab to create augmented images for
testing CNNs. The affine transformations were combined. Thus, flipping,
rotation and scaling are simultaneously applied.

Data Aug-
Type Settings

Adjusted Created Images
mentation Values per Slice

Combined Flipping - -

4Affine Rotation Rot. Angles: ±6◦

Transf. Scaling Scal. Factors: 0.97 & 1.03

Noise
Gaussian

Mean: 0
1Std. Dev.: 200

Salt & Amplitudes: ±1000
1

Pepper Density: 0.05

Comparing all trained models according to their achieved loss values and
accuracies leads to the conclusion that the network with the topology of six
convolutional and six max-pooling layers as well as the filter size of seven
provides the best results. As a consequence, the model, which was trained
with the 50×50 sized images, was utilised for the further image segmentation.
A detailed delineation of the results can be found in chapter 6.2.

67

5.4 Segmentation of the Mandibula

In the succeeding sections is the implementation and also the training and
testing of the segmentation networks described. The programming of the
deep networks was conducted with TensorFlow and its API TF-Slim.

Beyond that, the realised segmentation method follows the upsam-
pling principle presented by J. Long et al. [38] in their “Fully Convolutional
Networks for Semantic Segmentation” contribution. The implementation of
the code framework and also the present outline rely on the TensorFlow [26]
and the TF-Slim [21] documentation as well as on the GitHub tutorial
“TF Image Segmentation: Image Segmentation framework” [45], [46].
Nevertheless, the programming code of the tutorial was adapted according
to specific requirements of this thesis.

5.4.1 Adaption of the Code Framework

As already outlined, J. Long et al. [38] recommended a 3-step training prin-
ciple of a FCN. Figure 52 illustrates the workflow of the model implemen-
tations. The first segmentation network is the FCN-32s, which is an ad-
justment of the VGG-16 net. The VGG-16 model is originally trained for a
classification with the ImageNet dataset of the ILSVRC 2014 challenge [13],
whereby the weights for FCN-32s initialisation were provided by the tuto-
rial [45], [46]. Moreover, the second segmentation net is the FCN-16s, which
assumes weights of the trained FCN-32s model. The third and last one is the
FCN-8s, which is again initialised with the weights of the previous network.

Figure 52: Workflow of the segmentation network implementations. The
classification part was provided by the TF-Slim library, whereas the segmen-
tation part was trained with the CT datasets during this work.

68

FCN-32s

The first segmentation network, termed as FCN-32s, was implemented
within the Python script Training Segmentation Network.py. To create the
FCN-32s net, the VGG-16 model definition is required. The TF-Slim library
already offers the implemented VGG-16 layers in order to use them for fully
convolutional networks.

Figure 53 shows a graphical interpretation of the VGG-16 architecture
supplied by the TF-Slim library, whereby the layers Fc6, Fc7 and Fc8 are
implemented as convolutional ones. Originally, these three layers are fully
connected ones.

Moreover, the red box in Figure 53 indicates an image with a size of
a×a, which is provided as an input to the VGG-16 model. The blue boxes
stand for the convolutional layers, whereby two or three convolutional layers
are stacked. The filter sizes of the convolutional layers, that are illustrated
by the blue coloured boxes, have a value of three. Despite that, the blue
ellipses indicate the max-pooling layers, which hold receptive fields of 2× 2.
Thus, the feature maps’ side lengths are halved after each max-pooling step.
In the end, the matrices of the feature maps have a side length of 1/32
of the original input image. This is the reason why the first segmentation
network is known as the FCN-32s. As a result, to gain a segmentation with
the initial image size, the down-sampled feature maps have to be upsampled
with a factor of 32.

Apart from that, the grey blocks in Figure 53 constitute the convolu-
tional layers that replace the original fully connected ones. The Fc6 layer
exhibits a convolutional filter size of seven, whilst the other two layers have
a filter size of one.

69

Figure 53: Network architecture of the TF-Slim VGG-16 model.

On top of that, Figure 54 shows the extension of the VGG-16 archi-
tecture and consequently, the generation of the FCN-32s network. The
code lines from 124 to 126 import the described VGG-16 model from TF-
Slim, whereby the variable “net logits” holds the output for an input im-

70

age “train image slice f”. The number of classes is two, since the voxels
are distinguished if they are part of the mandible or not. The upsam-
pling of the VGG-16 output is accomplished with the TensorFlow function
conv2d transpose() (code line 135). This function requires the output of the
VGG-16 network, the upsampling filter, the size of the final output and the
filter strides as parameters. The upsampling filter is implemented as a bi-
linear filter, which is shifted with the upsampling factor of 32. To get the
demanded final output size, the bilinear filter must have a size of the product
of two times the upsampling factor, which can be imagined with Figure 25.

Figure 54: Listings of the FCN-32s network topology.

Furthermore, Figure 55 depicts the FCN-32s net topology assuming that the
input images have a size of 512 × 512. The output of the VGG-16 model
has a size of (1, 16, 16, 2), where the first numeral indicates the batch size,
which means that one image is used for the computations of a training step.
The last value stands for the two voxel classes and the remaining numerals
imply that feature maps with side lengths of 16 × 16 are produced. Thus,
an upsampling with a factor of 32 is necessary to gain a segmentation of the
initial image size. The upsampling is conducted with one additional layer
(green).

Figure 55: FCN-32s network topology for input images with size of 512×512.

71

FCN-16s

The FCN-16s network was implemented within the Python-file Train-
ing Segmentation Network Step2.py. The main programming steps, that
implement the network topology, are outlined in Figure 56. Despite to the
previous introduced net, the FCN-16s achieves upsampling in two steps.
Therefore, the function conv2d transpose() (code line 141) accomplishes the
first upsampling with a factor of two. Again, the down-sampled output of
the VGG-16 is provided as an input to the layer function.

Additionally, the output of the max-pooling layer four is involved in
the upsampling process. For this purpose, a convolutional layer is created
with the TF-Slim function conv2d(), which receives the result of the max-
pooling layer four. The convolutional filter has a size of one and the amount
of created feature maps equals two for the appearing classes of this task.
According to [38], the additional convolutional layer is added to determine
voxel predictions after the fourth pooling layer. This outlined information
is combined with the output of the first upsampling layer (code line 154).
The second and last upsampling step is conducted with the implementations
from lines 161 to 163, whereby a factor of 16 is necessary to reach the initial
image size for the final output.

Figure 56: Listings of the FCN-16s network topology.

72

Figure 57 depicts the schematic of the implemented FCN-16s topology for
input images with a size of 512×512. The output of the first upsampling layer
produces feature maps with a size of (1, 32, 32, 2). The fourth max-pooling
layer of the VGG-16 network creates an output of the same size. Hence, a
combination of those two layers is feasible. The convolutional layer, which
was appended to the fourth max-pooling layer for upsampling (blue box), is
not depicted for reasons of clarity. The result of the combination is supplied
to the second upsampling step. To create the final segmentation prediction,
an upsampling factor of 16 is indicated.

Figure 57: FCN-16s network topology for input images with size of 512×512.

FCN-8s

The final segmentation network is the FCN-8s, which is initialised with
trained weights of the FCN-16s model. This network was implemented
within the Python-file Training Segmentation Network Step3.py, whereby
the upsampling is performed with three steps.

Figure 58 introduces the programming code of the FCN-8s net topol-
ogy. The first upsampling is conducted in the same manner as it was
achieved with the FCN-16s network. Hence, the output of the VGG-16
model is delivered as an input to the first upsampling layer (code line 142),
which executes a resize with a factor of two. Moreover, the involvement
of the fourth max-pooling layer (code lines 150 and 155) is achieved in
the same way as it was done for the FCN-16s network. The resize factor
of the second upsampling layer exhibits, however, a value of two. Finally,
the third upsampling layer involves the output of the third max-pooling
layer of the VGG-16 network. Therefore, a convolutional layer (code line
170) is appended to the max-pooling layer three in order to provide the

73

voxel predictions. The implementations of line 175 combine the information
of the third max-pooling layer and the output of the second upsampling
step. To gain the original matrix size for the final segmentation prediction,
an upsampling factor of eight is essential. The last upsampling layer is
generated in line 182 with the TensorFlow function conv2d transpose().

Figure 58: Listings of the FCN-8s network topology.

Furthermore, Figure 59 shows a visualisation of the implemented FCN-8s
topology. The blue rectangles illustrate the max-pooling layers that are
utilised for upsampling. Nevertheless, the convolutional layers, which are
added at the max-pooling ones, are not displayed. The first upsampling
layer generates feature maps with a size of (1, 32, 32, 2), which allows a
combination with the fourth max-pooling layer. Besides that, the second
upsampling is conducted with a factor of two. Consequently, an addition of
the second upsampling output and the third max-pooling layer is possible.
The final upsampling is achieved with a factor of eight.

74

Figure 59: FCN-8s network topology for input images with size of 512×512.

5.4.2 Storage of the Datasets as TFRecords Files

TensorFlow and TF-Slim are not able to process the images with their
stored PNG file formats. Hence, it is necessary to convert the CT slices and
also the masks into file types that can be utilised with TensorFlow. For the
classification task of this thesis, all images of a dataset were converted into
NumPy arrays and stored as one NPY-file.

A further method is to save the image data in a TFRecords file. TensorFlow
promotes this specific file format to address problems that might appear
with large amounts of training data. For instance, a separate importation
of every image and the corresponding mask during one iteration step is
time-consuming. Hence, TensorFlow introduced the TFRecords format in
order to load the data efficiently and to embed the data importation in the
computational graph. Therefore, all images and masks are stored within
one TFRecords file. Another feature is that TensorFlow is able to batch the
images from this file type. This means that a defined number of images are
used for one training iteration, whereby the images are selected randomly.
Moreover, it is important to mention that the information about image
dimensions is lost if the training data is stored as such a binary file. Thus,
the width and height must be stored within the TFRecords file for every
data entry [45], [26].

To accomplish the conversion of the mandible images and masks into
the TFRecords format, the Python file SaveAsTFRecords.py was consti-
tuted. Figure 60 presents the essential parts of this script. Initially, a
TensorFlow TFRecordWriter has to be launched (line 85). The implemented
function import datalist() stores automatically the filenames of the CT slices

75

and the names of their corresponding masks in a Python list. As a result,
it is possible to import the matching training images and masks with the
functions of the lines 91 and 92. It should be noticed that the CT slices
have originally one channel as they are grey-value images. The VGG-16
network, however, is trained with images featuring three color channels.
Thus, the CT slices were converted into images containing three channels,
too. Therefore, the original grey value channel was copied twice (line 100).
Additionally, the image data has to be converted into string format to
enable a storage with the binary file (lines 107 and 108). Finally, one entry
of the image data is generated with the TensorFlow function of line 111. A
TFRecords entry involves the CT slice and the mask saved as strings as well
as the height and width of the images. To finish the TFRecords generation,
the TFRecordWriter has to be closed (line 135). Apart from that, the
implemented Python file permits a down-sampling of the training data.

Figure 60: Listings of the generation of a TFRecords file.

76

5.4.3 Training Datasets

During this thesis, the segmentation networks were trained with four differ-
ent datasets, which were exported with the MeVisLab implementations and
converted into the TFRecords format with the previous presented SaveAsT-
FRecords.py script. Table 12 lists the generated training datasets. Two of
the training sets (I and II) contain the original images, whereby the images
of the first dataset are down-sampled to a size of 256 × 256. The other two
datasets (III and IV) cover the original images and also artificially generated
ones. Again, one dataset comprises the original sized images, while the other
one contains down-sampled CT slices. It has to be noticed that only slices,
which show parts of the lower jawbone, were used to train the segmentation
networks. Hence, the number of available training images reduces compared
to the training data of the classification networks. The extraction of the
slices, that don’t comprise the mandible, was executed manually.

Table 12: Datasets to train segmentation networks. The original images were
exported and augmented datasets were generated.

Dataset Settings
Image Number of
Sizes Generated Images

I Original 256 702

II Original 512 702

III
Original, Noise and

256 4212
Affine Transformations

IV
Original, Noise and

512 4212
Affine Transformations

On top of that, Table 13 lists the MeVisLab settings for the exportation of
the augmented image slices. The scaling factors 0.96 and 1.04 were applied
in different directions. Thus, the original slices were scaled with 0.96 in x-
and 1.04 in y-direction and vice versa. In total, five synthetic images were
generated per one original CT slice.

77

Table 13: Exportation settings in MeVisLab to create augmented images
for training segmentation networks. The affine transformations are applied
independently from each other.

Data Aug-
Type Settings

Adjusted Created Images
mentation Values per Slice

Separate Flipping - - 1
Affine Rotation Rot. Angle: 8◦ 1
Transf. Scaling Scal. Factors: 0.96 & 1.04 2

Noise
Salt & Ampl.: ±2000

1Pepper Density: 0.05

5.4.4 Training of the Networks

The training of the three network architectures was accomplished
within the Training Segmentation Network.py (FCN-32s), the Train-
ing Segmentation Network Step2.py (FCN-16s) and the Train-
ing Segmentation Network Step3.py (FCN-8s), which comprise the in-
troduced network definitions of preceding chapter 5.4.1. Nevertheless, the
training by itself was conducted similarly according to the three different
network topologies. Thus, the following instructions pertain to all segmen-
tation implementations of this work.

As a first step of the training process, the data, which was stored as
a TFRecords file, was imported into the training script. Therefore, the
import training data() function was implemented to decode the images and
masks (see Figure 61). TensorFlow provides the TFRecordReader() (line 53)
and the decode raw() functions (lines 62 and 63) to convert the strings into
numerals. The numerals are, however, arranged in a “line”. Thus, a reshape
into square images was conducted with the functions of the lines 70 and 71.

78

Figure 61: Listings of the decoding of a TFRecords file.

Apart from that, TensorFlow offers the function shuffle batch() to ensure
that a random image mask pair is used for the calculations of every training
iteration. The number of images, that are utilised for one iteration, is also
termed as the batch size. In this case, one image mask pair is used for
the computations of the weight updates. On top of that, the number of
epochs was set to ten for the three implemented networks, whereas the
learning rate changed with the various topologies. The learning rate of the
FCN-32s net had a value of 0.0001, while the rates of the FCN-16s and
FCN-8s networks were set to 0.000001 and 0.0000001. The decrease of these
values was conducted with the same factors as it was defined in the original
experiments by J. Long et al. [38].

Moreover, the cross entropy was calculated for the minimisation task.
TensorFlow supplies the softmax cross entropy with logits() function, which
receives the ground truth and the upsampled prediction as input parameters
(see line 267 in Figure 62). The variable “logits reshaped” comprises
the output of the network topology (FCN-32s, FCN-16s or FCN-8s),
whilst the variable “labels reshaped” holds the manual segmentation. The
reduce sum() function (line 269) defines the calculation of the final result
of the cross entropy. Furthermore, the minimisation is achieved with
TensorFlow’s Adam Optimizer, whereby “Adam” stands for denotation of
the optimisation algorithm. The value, which should be minimised with
this optimiser, is the “cross entropy sum”. Despite to the TFLearn library,
which was used for the classification task, TensorFlow requires a manual
retention of data for the toolkit TensorBoard. Therefore, the function of
line 252 permits the storage of scalar values for TensorBoard illustrations.
During this work, the computed cross entropy is stored for every iteration.

79

Figure 62: Listings of the cross entropy calculation.

Before a TensorFlow session could be started, the trained weights
of the previous network were loaded with the TF-Slim function as-
sign from checkpoint fn(). The values of the network weights are stored in a
so-called checkpoint-file. In the case of the listings of Figure 63, the values of
the VGG-16 net were restored for the FCN-32s configuration. The Tensor-
Flow session for network training is stated in line 279 , whereby the number
of iteration steps depends on the product of the epochs times the number
of training images. After accomplished training, the weights were stored in
a new checkpoint-file with the support of a TensorFlow saver (line 262 and
296).

Figure 63: Listings of the weights recovery and storage of new trained
weights.

80

The segmentation networks were trained on the CUDA04 Server delivered
by the TU Graz for datasets comprising images with a size of 512×512. The
training with the down-sampled images was conducted on a PC providing a
Intel-Core i7-6700 CPU (3.40 GHz) and 8 GB RAM. However, as there was
such a small amount of data available, it was also achievable to train the
segmentation networks on a CPU. The consecutive training of the FCN-32s,
the FCN-16s and the FCN-8s models took in total about one day and a half
for the smaller sized datasets (I and II), while training with the datasets III
and IV lasted about five days. The stated values are estimations, because
the times were not exactly stopped.

5.4.5 Testing of the Networks

The three trained segmentation networks were tested with
the implemented Python files Test Segmentation Network.py
(FCN-32s), Test Segmentation Network Step2.py (FCN-16s) and
Test Segmentation Network Step3.py (FCN-8s). The implementations
of these scripts are similar with the exception of the topology definitions.

During testing of the networks, the image data was converted into
the TFRecords format with the introduced script of section 5.4.2. Further-
more, the network topology was defined in the same way as it was realised
within the training scripts. Thus, an outline of the network structure is not
conducted once more.

Apart from the training implementations, the testing scripts calculate
the mean intersection over union between predicted segmentations and
the ground truths of a whole test dataset (see Figure 64). Therefore, the
output is generated with the implemented network structure (line 157),
whereby the function fcn 32s() defines the net topology and the variable
“upsampled logits” holds the forecasted segmentation. It is important to
set the “train bool” variable of this function to false in order to prevent the
launch of a new training. TensorFlow’s argmax() function returns the class
labels for each voxel. If the case “background” is more likely for a voxel,
zero is returned. Otherwise, if the voxel is presumably part of the mandible,
the function returns one. The class probabilities are directly computed with
the implemented code in line 164. Furthermore, the expand dims() function
extends the dimension of the predicted network output. This has to be
done in order to allow the computation of the mean IoU with the TF-Slim
straming mean iou() function in line 167.

81

Figure 64: Listings of the segmentation prediction and calculation of the
mean IoU of a test dataset.

In addition to this, the predicted segmentations might be stored automat-
ically as PNG-files if this is desired by the user. Moreover, the concrete
calculations are conducted with launching the TensorFlow sessions.

5.4.6 Combination of the Segmentation and Classification Net-
works

To bring to mind, the classification CNNs were trained to distinguish if an
image slice contains parts of the lower jawbone or not. The segmentation
networks were just trained with images that comprise the mandible. To
join the two networks, the First Step Testing.py script was implemented. It
has to be noticed that following investigations were always deployed on a
patient’s dataset comprising all slices of the head-neck region.

Firstly, the CT images were imported and down-sampled to a size of
50× 50 to ensure a prediction with the classification CNNs. As a next step,
the classification topology, which emerged to deliver the best results, and
also the trained weights were loaded. The “neural net model” of line 162 in
Figure 65 holds the classification network and the TFLearn method predict()
forecasts the label of an image slice. The returned “predicted probability”
contains the likelihoods of the two classes, whereby NumPy’s argmax()
function determines the absolute labels zero or one. If a slice is showing the
mandible, the slice number is appended to a list. After testing all slices of
a dataset, the minimum and the maximum slice displaying the Mandibula
are established from the stored list (“min slice” and “max slice”). These
two slices build the limitation of the images that are converted into a
TFRecords file for the succeeding segmentations (for-loop of line 196). The
segmentation is achieved with the scripts of section 5.4.5.

82

Figure 65: Integration of the classification into the segmentation process.

In addition to this, the Python scripts for testing the predicted segmen-
tations permit a storage of every result as a PNG-file. To calculate the
3D Dice-coefficients and the Hausdorff distances, my advisor provided a
MeVisLab network that accomplishes these calculations. This module
network receives, however, all ground truths and predicted segmentations
of one patient as 3D NRRD-files. Thus, the segmentation slices, that were
stored as single slices after the performed segmentation, have to be stacked
to re-build a 3D image set.

On these grounds, MeVisLab modules were combined to carry out
this conversion (see Figure 66). The module Compose3DFrom2DFiles stacks
images of a determined folder in order to get a 3D dataset. The single images
are arranged alphabetically according to their names, where the View2D
module allows a review if the slices are correctly combined. Furthermore,
the itkImageFileWriter module stores the image piles as one NRRD-file.

Figure 66: MeVisLab network for the generation of 3D NRRD-files.

83

The MeVisLab network for the computations of the DSC and the Haus-
dorff distance is shown in Figure 67, whereby the emphasised modules are
of most importance. The red highlighted itkImageFileReader modules are
utilised to import the created NRRD stacks of the ground truths (left) and
the predictions (right). Moreover, the yellow framed module itkHausdorffDis-
tanceImageFilter calculates the Hausdorff distance between the two inputs.
The result of the Dice coefficient is visible within the yellow highlighted
Arithemtic0 module’s viewer panel.

Figure 67: MeVisLab network to compute the Dice Scores and the Hausdorff
distances. The ground truths and predictions are imported with the modules
at the bottom (red), whereas the results of the DSCs and the Hausdorff
distances are shown within the user panels of the yellow framed modules.

84

Beyond that, detailed information about the datasets, which were utilised
for testing, is outlined in Table 14. The test images were generated with the
MeVisLab implementations, too. Nevertheless, they don’t encompass the
original images, but they comprise affine transformed and noisy ones, which
were not used for training the networks. The affine transformations were
simultaneously applied, whereby the scaling was conducted with the same
factors in x- and y-direction (symmetric scaling). It was possible to generate
six new images per one original slice.

Table 14: Exportation settings in MeVisLab to create augmented images for
testing the segmentation networks. The affine transformations were com-
bined. Thus, flipping, rotation and scaling were simultaneously applied.

Data Aug-
Type Settings

Adjusted Created Images
mentation Values per Slice

Combined Flipping - -

4Affine Rotation Rot. Angles: ±6◦

Transf. Scaling Scal. Factors: 0.97 & 1.03

Noise
Gaussian

Mean: 0
1Std. Dev.: 200

Uniform Amplitude: 800 1

All in all, it has to be mentioned that it was pledged that new and indepen-
dent images will be delivered for testing the networks. Unfortunately, it was
too difficult to acquire new CT datasets, which exhibit non-fractured bones
and teeth without metallic implants. As a consequence, the networks were
tested with augmented images.

85

6 Results

Following chapters present the results of this master thesis. Some artificially
generated CT images are shown as well as the classification and also the
segmentation results are outlined. All listed tables were analysed with the
support of Microsoft Excel, which delivers functions to compute the mean
values, the standard deviations as well as the minimum and maximum values.

6.1 Data Generation with the MeVisLab Implementa-
tions

The displayed figures depict examples of synthetic generated CT images,
which were created with the implemented MeVisLab network and macro
module. All images show slice 44 of dataset seven. Figure 68 illustrates the
initial acquired CT slice, whilst Figure 69 displays the mirrored version.

Figure 68: Original CT image. Figure 69: Flipped CT image.

Additionally, the ground truth mask, which pertains to the CT slice of Figure
68, is visible in Figure 70. Figure 71 displays the with −8◦ rotated segmen-
tation mask, as the affine transformations are also applied on the masks.

86

Figure 70: Original mask. Figure 71: To −8◦ rotated mask.

Furthermore, Figure 72 illustrates a scaled image with different applied scal-
ing factors in x- and y-direction. It has to be noticed that scaling factors
greater than one lead to a shrinking and factors smaller than one lead to an
enlargement of the anatomical structures. Figure 73 shows the application
of a combination of all implemented geometric transformation types. Hence,
flipping, symmetric scaling and rotation are simultaneously deployed.

Figure 72: Scaled image with scal-
ing factors of 1.04 in x- and 0.96 in
y-direction.

Figure 73: Combined transforma-
tions: flipping, rotation (−6◦) and
scaling (1.03 in x- and y-direction).

Moreover, the added noise types Gaussian as well as Salt and Pepper are
shown in the Figures 74 and 75.

87

Figure 74: Added Gaussian noise
with a mean of zero and a standard
deviation of 300.

Figure 75: Added Salt and Pepper
noise with amplitudes of±2000 and
a density of 0.05.

6.2 Classification Results

The performance of the trained classification CNNs, listed in chapter 5.3.5,
was mainly evaluated with the obtained validation and test accuracies as
well as with the loss values. Furthermore, the graphical progress of the
training accuracy and the loss were investigated.

Table 15 lists an overview of the achieved training and test results of
deep learning networks for classification. In Appendix 8.1 is Table 23 visible,
which presents these results as percentage values. The validation accuracies
and the test accuracies are displayed for the different network topologies, the
four different sized training datasets, the various sized convolutional kernels
and the two down-sampled image sizes. To remember, dataset one comprises
the 1680 original CT images, dataset two the noisy and the original ones
(6720 images) and dataset three the affine transformed and also the original
ones (13440 images). Dataset four involves both augmentation methods as
well as the original images (18480 images). Additionally, the differences of
the validation accuracies and the test accuracies are calculated. There is
usually a decline of the test accuracy compared to the validation accuracy,
with the exception of two values. These two improvements, however, are
small. Besides that, the minimal validation accuracy is 0.8333 and the
maximum value is one, which appears in eight cases. The minimal test
accuracy shows a value of 0.8217 and the highest test accuracy is 0.9883.

88

Table 15: Results of the trained classification networks. The accuracies of the
validation as well as of the artificial generated test dataset are listed below.
Furthermore, the differences between these two accuracies are calculated.

Topo- Dataset Conv. Validation Test Difference of
logy No. Kernel Accuracy Acc. Accuracies

Image Size: 50× 50

1 3 0.9333 0.8217 0.1116
3 conv. 2 3 0.9250 0.9209 0.0041
layers 3 3 0.9500 0.9058 0.0442

4 3 0.9833 0.9578 0.0255

1 3 0.8333 0.8518 -0.0185
4 conv. 2 3 0.9417 0.9354 0.0063
layers 3 3 0.9786 0.8909 0.0877

4 3 0.9667 0.9699 -0.0032

1 3 0.9667 0.8536 0.1131
6 conv. 2 3 0.9917 0.9449 0.0468
layers 3 3 0.9786 0.9210 0.0576

4 3 0.9944 0.9752 0.0192

1 5 1.0000 0.8719 0.1281
6 conv. 2 5 0.9833 0.9620 0.0213
layers 3 5 0.9857 0.9643 0.0214

4 5 1.0000 0.9848 0.0152

1 7 1.0000 0.8969 0.1031
6 conv. 2 7 1.0000 0.9704 0.0296
layers 3 7 0.9929 0.9443 0.0486

4 7 1.0000 0.9877 0.0123

Image Size: 128× 128

1 7 0.9667 0.9161 0.0506
6 conv. 2 7 1.0000 0.9777 0.0223
layers 3 7 1.0000 0.9701 0.0299

4 7 1.0000 0.9883 0.0117

89

On top of that, Table 16 shows the accuracies, which are averaged over the
dataset sizes, and the corresponding standard deviations. It can be noticed
that a larger dataset produces a higher validation and test accuracy (except
the averaged test accuracy of dataset No. 3). Accordingly, the artificial
enlargement of the CT datasets improves the performance of neural networks.

Table 16: Averaged validation and test accuracies of the four different sized
training datasets.

Dataset Mean Valid. Std. Dev. Mean Test Std. Dev.
No. Accuracy Valid. Accuracy Test

Image Size: 50× 50

1 0.9467 0.0691 0.8592 0.0277
2 0.9683 0.0330 0.9467 0.0199
3 0.9771 0.0163 0.9253 0.0294
4 0.9889 0.0142 0.9751 0.0120

Additionally, Table 17 presents the validation and test accuracies, which
are averaged over the diverse network topologies. Moreover, the calculated
standard deviations are listed. It can be concluded that both accuracy
values are higher for deeper networks (except the validation accuracy of
the net with four convolutional/max-pooling layers). Furthermore, training
with a larger convolutional kernel leads to higher accuracy values.

Comparing the averaged values of the networks, which consist of a six
convolutional/max-pooling layer topology and a kernel size of seven, shows
that the validation accuracies are nearly the same for the two down-sampled
image sizes. Although, the averaged test accuracy of the 128 × 128 images
is a bit higher than that of the smaller sized images.

90

Table 17: Averaged validation and test accuracies of the different network
topologies and image sizes.

Topology
Conv. Mean Valid. Std. Dev. Mean Test Std. Dev.
Kernel Accuracy Valid. Accuracy Test

Image Size: 50× 50

3 conv. 3 0.9479 0.0258 0.9016 0.0575
4 conv. 3 0.9301 0.0663 0.9120 0.0516
6 conv. 3 0.9828 0.0128 0.9237 0.0517
6 conv. 5 0.9923 0.0090 0.9458 0.0503
6 conv. 7 0.9982 0.0036 0.9499 0.0395

Image Size: 128× 128

6 conv. 7 0.9917 0.0167 0.9630 0.0322

In addition to this, the progression of the loss and the training accuracies
can be evaluated graphically with the support of TensorFlow’s TensorBoard
tool. The library TFLearn enables an automatic storage of the metrics
during training. Beyond that, the history of the accuracy and also the loss
are printed over the training steps in the following figures. Networks, which
use the same dataset, were trained with a equal number of iteration steps in
order to allow a comparison of the results.

In Figure 76 is the course of the training accuracy of three network
configurations, which were trained with the first dataset (1680 images),
shown. All displayed nets utilised a convolutional filter size of three and the
images were down-sampled to a size of 50 × 50. It is observable that the
network with six conv./max-pooling layers (purple) reaches higher accuracy
values compared to the shallower networks (orange and cyan). Moreover, a
deeper network obtains a higher accuracy after fewer training steps.

Figure 77 shows the corresponding progression of the loss during the
training process. It is obvious that the deepest net (purple) has ini-
tially a lower loss, while the shallower networks start with higher loss
values. Furthermore, the networks with three (orange) and four (cyan)
conv./max-pooling layers don’t reach such a low loss as the deepest network
does.

91

Figure 76: Training accuracy of networks trained with dataset No. 1 (1680
images). The conv. kernel was set to three and the images had a size of
50× 50.

Figure 77: Loss of networks trained with dataset No. 1 (1680 images). The
conv. kernel was set to three and the images had a size of 50× 50.

92

For comparison, the Figures 78 and 79 also illustrate the training history of
the metrics of the three network configurations analysed priorly. However,
the training datasets cover 13440 images. Again, the deeper the networks,
the earlier approximate both metrics towards optimal values. Nevertheless,
even shallower topologies reach nearly an accuracy of one and a loss of zero
in the case of a bigger dataset.

Figure 78: Training accuracy of networks trained with dataset No. 3 (13440
images). The conv. kernel was set to three and the images had a size of
50× 50.

93

Figure 79: Loss of networks trained with dataset No. 3 (13440 images). The
conv. kernel was set to three and the images had a size of 50× 50.

For reasons of clarity, the diagrams of the networks, which were trained
with dataset No. 2 (6720 images) and No. 4 (18480 images), can be found
in the Appendix section 8.1. These two augmented datasets produce similar
results as the examples before.

Apart from that, the following two Figures 80 and 81 display the
training accuracy and loss of five networks, which were trained with dataset
No. 4 (18480 images). The networks with the topology including three
conv./max-pooling (orange) and four conv./max-pooling layers (cyan)
exhibit worse progressions of the metrics compared to the nets with six
conv./max-pooling layers. Thereby, the networks with the higher filter size
of seven (green and yellow) produce the best results. These two curves show
nearly the same behaviour, whereby one network is trained with 50 × 50
sized images and the other one is trained with 128× 128 sized images. Both
correspond to the two networks, which achieved the best results for the
validation and test accuracies (bold values in the Tables 15 and 23).

94

Figure 80: Training accuracy of five networks trained with dataset No. 4
(18480 images). The networks were trained with different filter sizes and a
diverse image matrix.

Figure 81: Loss of five networks trained with dataset No. 4 (18480 images).
The networks were trained with different filter sizes and a diverse image
matrix.

95

On top of that, Figure 82 depicts some classified images of the test dataset.
The classification was achieved with the network comprising six conv./max-
pooling layers and a filter size of seven, whilst the training images had a
size of 50× 50 (green curves in the Figures 80 and 81). The numerical data
next to the image displays the class-prediction vectors (probabilities of the
classes) of the tested images.

Figure 82: Test images (50 × 50) and their predicted classes. The network
had six conv./max-pooling layers and a filter size of seven.

To conclude, the two neural models with the topology of six conv./max-
pooling layers, the filter size of seven and the largest training dataset deliver
the best validation and test accuracies for both image sizes (bold values in
Tables 15 and 23). The test accuracy of the dataset with the 128 × 128
images is a bit better. However, training the network with the 50 × 50
sized images took 19 minutes and 29 seconds, whilst training with the larger
sized images took 42 minutes and 38 seconds. Not only the training time,
but also the time required for testing was prolonged for the larger sized
images: Testing the images with a size of 50 × 50 lasted about 33 seconds,
whereas testing the 128×128 sized ones took about 1 minute and 20 seconds.

As a consequence, the network, which was trained with the smaller
sized images and the shorter training and testing time duration, was used
for the further segmentation task.

96

6.3 Segmentation Results

The performance of the segmentation networks was evaluated with the mean
intersections over unions, which were calculated with the TF-Slim library
after finishing the network training, as well as with the Dice coefficients
and the Hausdorff distances, which were computed with the MeVisLab
implementations for a patient’s dataset. Furthermore, the training progress
was analysed with the loss function visualised in TensorBoard.

All datasets were manually segmented by two physicians, whereby the
ground truths of doctor A were utilised for training the networks of this
thesis. Nonetheless, the inter-observer variability was appreciated between
the two available manual segmentations. Therefore, the contours of doctor
A were supposed to be the ground truths, whereas the segmentations of
physician B were assumed to be the algorithmic results. Table 18 displays
the calculations of the Dice coefficients and the Hausdorff distances between
the two manual segmentations evaluated separately for each patient. It is
obvious that a down-sampling of the masks leads to a deterioration of the
Dice scores and the Hausdorff distances.

It has to be kept in mind that the Hausdorff values diminish, because
the down-sampling of the image matrix leads also to a down-sizing of the
depicted objects and thus, the distances exhibit smaller values. A further
issue is that the information about absolute voxel sizes (listed in Table 2)
is lost after down-sampling the images within the Python implementations.
The loss of these dimensions invokes that all predicted segmentations have
voxels with a shape of 1× 1× 1, whereby the units, for instance millimeters,
are not defined. The values of Hausdorff distances of this section always
refer to these new, unitless voxel sizes.

In addition to this, the inter-observer Dice coefficients and Hausdorff
distances are averaged over the patients, the standard deviations are listed
as well as the extrema are stated in subsequent table.

97

Table 18: Inter-observer variability of the manual segmentations produced
by doctor A (ground truth) and doctor B (algorithmic segmentation).

Patient DSC Hausdorff DSC Hausdorff

256× 256 512× 512

1 0.9168 3.0000 0.9433 4.2426
2 0.8874 4.1231 0.9176 7.0000
3 0.8960 3.0000 0.9266 5.4772
4 0.9149 3.1623 0.9469 6.3246
5 0.9008 2.4495 0.9368 4.1231
6 0.9125 3.1623 0.9447 6.4031
7 0.9183 5.0990 0.9412 6.4031
8 0.9125 3.0000 0.9424 3.3166
9 0.8943 3.7417 0.9253 7.2801

10 0.9095 2.8284 0.9373 4.5826

Mean 0.9063 3.3566 0.9362 5.5153
Std. Dev. 0.0108 0.7696 0.0098 1.3668

Min. 0.8874 2.4495 0.9176 3.3166
Max. 0.9183 5.0990 0.9469 7.2801

On top of that, the mean intersection over union was calculated for
each dataset after accomplished training. Table 19 lists these values
for the four different training datasets. To remember, dataset I and II
encompass the original available CT slices, whilst the other two train-
ing sets (III and IV) involve augmented images. Moreover, two datasets
(I and III) were down-sampled to a size of 256×256 for training the networks.

Besides that, Table 19 displays also the mean IoU of the test dataset,
which consists of geometric transformed and noisy images that were not
utilised for training. The test images were also down-sampled if they were
applied to segmentation networks, which were trained with images consisting
of a size of 256× 256.

The influence of the various deep architecures (FCN-32s, FCN-16s
and FCN-8s) is clearly recognisable from the values of the table below. The
integration of max-pooling layers into the upsampling step improves the
results. Hence. the more max-pooling layers are involved, the better is the
mean IoU of the whole dataset. Furthermore, the computed metrics of the

98

down-sampled datasets are distinctly worse compared to a training with the
original sized images. Nevertheless, a comparison of the datasets, which
comprise the original available images, and the datasets, which involve
artificial generated images, shows that the mean IoU improves slightly
for the augmented training sets with the exception of the FCN-32s model
trained with the datasets I and III. Apart from that, the testing mean IoU
is expectedly a bit worse for each network configuration.

Table 19: Mean intersection over union evaluated after accomplished train-
ing. The mean IoU was computed for the training datasets and the test
dataset. Furthermore, all utilised CT slices and masks have a quadratic
shape. However, there is only one numeral listed for the resolution of the
images.

Training Image FCN Training Testing
Datasets Size Type mean IoU mean IoU

I (702 images)

256 FCN-32s 0.6246 0.5748
256 FCN-16s 0.7588 0.6784
256 FCN-8s 0.8558 0.7671

II (702 images)
512 FCN-32s 0.7677 0.6853
512 FCN-16s 0.8817 0.8415
512 FCN-8s 0.9148 0.8776

III (4212 images)
256 FCN-32s 0.6102 0.5976
256 FCN-16s 0.7622 0.7461
256 FCN-8s 0.8511 0.8291

IV (4212 images)
512 FCN-32s 0.7955 0.7835
512 FCN-16s 0.8927 0.8791
512 FCN-8s 0.9243 0.9132

Beyond that, the original datasets were provided separately to the combined
classification and segmentation networks (see chapter 5.4.6). Consequently,
an evaluation per patient was feasible. Therefore, the whole dataset of
one patient was supplied to the best performing classification network.
Ideally, all slices were correctly classified. Afterwards, the images, that were
identified to show the lower jawbone, were delivered to the FCN networks
in order to produce algorithmic segmentations. These predictions were
automatically stored as PNG-files to permit a re-build of a 3D image stack
and subsequently to evaluate the Dice scores and the Hausdorff distances

99

in MeVisLab. It can be imagined that the analysis per patient produces a
huge amount of numerical results. To keep the overview, there are only the
results of the segmentation network, which generated the best evaluation
metrics, listed in Table 20. The FCN-8s, which was trained with dataset IV,
emerged to offer the best performance.

Table 20 also informs about correct classified slices. All images of the
patients were identified accurately with the exception of patient nine. The
classification network forecasted that 92 slices instead of 91 show the lower
jawbone. Thus, the slice, that was wrongly predicted, was also used as an
input for the segmentation networks.

Additionally, the table below outlines the averaged segmentation met-
rics, the standard deviations and the extrema. The mean Dice coefficient
shows a value of 0.9203, which is a bit lower than the inter-observer
variability of 0.9362. By contrast, the averaged Hausdorff distance exhibits
a higher value of 7.3221 compared to the inter-observer variability of 5.5153.
As a result, the FCN-8s model produces for the original CT slices poorer
results than the inter-observer variability. However, the decline is actually
slight.

100

Table 20: Segmentation metrics of the FCN-8s model, which was trained
with dataset No. IV and analysed per patient. The original CT slices were
provided as an input to the trained models.

FCN-8s: Trained with dataset IV

Patient Dice Hausdorff mean IoU Correct Classified

1 0.9368 5.0000 0.9401 X
2 0.9008 6.7823 0.9092 X
3 0.9119 9.4340 0.9185 X
4 0.9243 10.4403 0.9290 X
5 0.9103 10.7238 0.9171 X
6 0.9223 6.0828 0.9275 X
7 0.9387 5.3852 0.9415 X
8 0.9304 5.3852 0.9345 X
9 0.8996 8.6023 0.9082 92 instead of 91

10 0.9277 5.3852 0.9321 X

Mean 0.9203 7.3221 0.9258
Std. Dev. 0.0140 2.2575 0.0120

Min. 0.8996 5.0000 0.9082
Max. 0.9387 10.7238 0.9415

For the sake of completeness, screenshots of the Microsoft Excel tables,
which comprise the segmentation metrics of all networks, are displayed in
the Appendix section 8.2. Thereby, the original CT slices were provided
as an input to the networks, while the results are evaluated separately per
patient.

Nevertheless, a summary of the averaged Dice scores and standard
deviations of the referred Appendix 8.2 is shown in Table 21. Hence, the
averaged metrics are displayed for all trained FCNs. Again, the values
of this table approve that the FCN-8s model delivers better results than
the FCN-16s and the FCN-32s networks. Moreover, down-sampling has a
negative effect on the Dice scores. Despite that, the more images are utilised
for training, the better are the segmentation metrics with the exception of
training the FCN-32s model with the datasets I and III. Another aspect is
that the standard deviations most commonly decrease for the FCN-16s and
the FCN-8s networks.

101

Table 21: Dice coefficients computed for the original CT slices and averaged
over the patients. The averaged Dice scores are displayed for all network
configurations as well as the standard deviations are listed. Furthermore, all
utilised CT slices and masks have a quadratic shape. However, there is only
one numeral listed for the resolution of the images.

Training Image FCN Mean Std. Dev.
Datasets Size Type Dice Score Dice Score

I (702 images)

256 FCN-32s 0.3974 0.0686
256 FCN-16s 0.6755 0.0501
256 FCN-8s 0.8293 0.0239

II (702 images)
512 FCN-32s 0.6940 0.0519
512 FCN-16s 0.8634 0.0214
512 FCN-8s 0.9048 0.0151

III (4212 images)
256 FCN-32s 0.3631 0.0551
256 FCN-16s 0.6835 0.0553
256 FCN-8s 0.8306 0.0249

IV (4212 images)
512 FCN-32s 0.7398 0.0493
512 FCN-16s 0.8824 0.0206
512 FCN-8s 0.9203 0.0140

On top of that, the classification and segmentation networks with the
best performance were tested with artificially generated images, while the
metrics were analysed per patient. However, not all images of the test
dataset were applied, but only the slices, which were deformed with a
simultaneous application of flipping, rotation (+6◦) and symmetric scaling
(0.97 in x- and y-direction). The other test images were not deployed, be-
cause the evaluation per patient was not automatically feasible in MeVisLab.

Table 22 lists the mean intersections over unions, the Dice coefficients
and the Hausdorff distances of the augmented slices. The segmentation
metrics were averaged as well as the standard deviations and the minima
and maxima are displayed. A comparison of the averaged metrics of the test
images with those of the original images (Table 20) outlines that the results
delivered by the test datasets are expectedly a bit poorer. Following this,
the averaged test mean IoU and Dice score decrease, whereas the averaged
Hausdorff distance of the test dataset shows a higher value. Moreover, it

102

has to be noticed that the slices were not correctly classified in eight cases.
However, only the images, which were predicted to show the lower jawbone,
were provided to the segmentation networks.

Table 22: Segmentation metrics of testing the FCN-8s model, which was
initially trained with dataset IV. Augmented patient CT slices were provided
as an input to the trained model, whilst the evaluation is conduced separately
for each patient.

Testing of the FCN-8s model (trained with dataset IV)

Patient Dice Hausdorff mean IoU Correct Classified

1 0.8922 16.7332 0.9331 81 instead of 90
2 0.8710 9.6954 0.8943 88 instead of 92
3 0.8983 10.2956 0.9028 X
4 0.9097 12.3693 0.9158 X
5 0.9025 11.4455 0.9140 98 instead of 97
6 0.9103 23.9374 0.9214 65 instead of 66
7 0.9122 8.3666 0.9299 70 instead of 73
8 0.9016 12.4097 0.9288 44 instead of 49
9 0.8624 9.2195 0.8924 88 instead of 91

10 0.9035 24.6779 0.9237 65 instead of 66

Mean 0.8964 13.9150 0.9156
Std. Dev. 0.0169 5.9509 0.0147

Min. 0.8624 8.3666 0.8924
Max. 0.9122 24.6779 0.9331

In addition to this, Figure 83 shows the progress of the loss function during
training the FCN-32s, the FCN-16s and the FCN-8s networks with dataset
No. IV. There is only one curve visible, as the subsequent models are ini-
tialised with trained weights of the previous one. The FCN-32s training
lasted till iteration step 42120, FCN-16s training was finished with step 84240
and the FCN-8s was trained until the final iteration step 126360. Hence, the
TensorBoard visualisation was generated within one illustration. Moreover,
TensorBoard offers the opportunity to smooth curves if a lot of variations
occur. The actual loss values are illustrated with the bright orange curve,
whereas the smoothed curve is depicted with the dark orange colour. It is
remarkable that the first segmentation model (FCN-32s) exhibits higher loss
values than the following networks. Towards the end of training, there are

103

smaller variations of the loss function occurring and a general lower loss is
achieved despite to the beginning. Additionally, there are peaks visible if
training of a succeeding network is launched. The reason for this is that
there are new, un-trained upsampling layers introduced with the subsequent
networks.

Figure 83: Progress of the loss function during training the FCN-32s (1st),
the FCN-16s (2nd) and the FCN-8s (3rd) models with image dataset IV.

Beyond that, Figure 84 depicts exemplary segmentations, which were pre-
dicted with the FCN-32s, the FCN-16s and the FCN-8s models. The net-
works, which were utilised for the forecast, were trained with dataset III
(down-sampled images). Moreover, the initial CT image (slice 30 of patient
one) and the ground truth are displayed. Not only the evaluation metrics of
preceding tables indicate an improvement of the segmentation results with
the involvement of max-pooling layers, but also the depicted visual results
support this aspect. The predicted mandible of the FCN-32s net seems to
be awkward, whilst the lower jawbone of the FCN-16s has already an arched
shape. The result of the FCN-8s model is the smoothest one.

104

Figure 84: Comparison of a CT slice (256 × 256), its ground truth and the
predicted segmentations. The segmentations were forecasted with the FCN-
32s, the FCN-16s and the FCN-8s models, which were trained with dataset
III.

Despite to the previous examples, Figure 85 shows forecasted segmentations
of slice 48 of patient one, whereby the networks were used for prediction,
which were trained with dataset IV (original image sizes). The generated
segmentations are not that jerky as the down-sampled ones. Furthermore,
the lower jaw, which is forecasted with the FCN-8s model, achieves the most
similar shape as the the ground truth.

105

Figure 85: Comparison of a CT slice (512 × 512), its ground truth and the
predicted segmentations. The segmentations were forecasted with the FCN-
32s, the FCN-16s and the FCN-8s models, which were trained with dataset
IV.

On top of that, Figure 86 displays predicted probability maps of three differ-
ent input images. Therefore, the CT slices 38, 58 and 78 of patient one were
tested with the FCN-32s, the FCN-16s and the FCN-8s models, which were
initially trained with dataset IV. The displayed color maps refer to the prob-
ability of an occurring mandible. Hence, yellow coloured voxels indicate that
they are more likely part of the lower jawbone, whereas blue coloured ones
imply the background. It is remarkable that the probabilities are clearer with
the usage of max-pooling layers. Moreover, the ground truths are displayed.

106

Figure 86: Depiction of three CT slices, their ground truths and the pre-
dicted probability maps. The maps were forecasted with the networks trained
with dataset IV. The brighter the voxels, the more likely they are part of
the mandible (M), whilst the blue color implies that there is probably no
mandible (NM) appearing.

107

7 Discussion and Future Outlook

To bring up to mind, a MeVisLab network and a macro module were gen-
erated to process and enlarge the head-neck CT datasets during this thesis.
Moreover, the ultimate objective was to implement deep networks, which
permit an automatic segmentation of the mandible. Therefore, classification
networks were trained in order to distinguish whether a slice comprises the
lower jawbone or not and consequently, segmentation networks computed
the algorithmic demarcations within these slices. All networks were trained
and tested with images exported by the MeVisLab realisations.

To summarise the implementations in MeVisLab, the “Save Slices for
Deep Learning” network as well as the SaveAsSingleSlices macro module
were generated, which support the conversion of the ground truth contours
into binary masks and the automatic storage of the image slices as separate
files. The provided graphical user interface enables a comfortable adjust-
ment of the exportation settings. Moreover, the user is able to define the
parameters for a synthetic image generation. If the default augmentation
parameters are applied, 18480 CT slices are exported compared to the
initial available 1680 images. Although, it would be even possible to create
a higher number of augmented images, as the exportation parameters are
adjusted depending on the user’s intention. However, it is not meaningful
to overcome the problem of too few training data with the exportation of
millions of synthetic images, since the basic CT slices are still the same.

The specific values of the augmentation parameters (Tables 4, 11, 13
and 14) were chosen according to physiological reasonable ranges. A human
may turn the head a view degrees to the left or right during standard CT
scans, but a rotation angle in the range of up to 180◦ won’t be feasible.
Moreover, the scaling parameters simulated small size variations. The
mirroring of anatomical structures was only allowed over the y-axis, as it is
not customary to position a patient face down in a CT scanner. Apart form
that, the noise parameters were chosen in such a way that the anatomical
structures were still identifiable.

108

In addition to this, the generated module’s user interface enables that all
parameters are stated before the exportation is launched with the Start
Export button. Hence, the original as well as the synthetic images are
generated with one exportation step. Besides that, the CT slices are
imported as NRRD-files into the MeVisLab software. Consequently, if any
other medical data, for instance MR images, are stored as NRRD-files,
they can be processed with the implemented network and macro module, too.

Nevertheless, it has to be noticed that each dataset must be imported
separately into the MeVisLab environment. This was not a problem during
this thesis, as there were only ten different datasets present. However, if
there might be more datasets available in the future, it is advised to enhance
the module network with the opportunity of an automatic loading and
processing of several files. A further improvement might be an extension
of the MeVisLab network with other augmentation methods, for instance
elastic deformations. Despite that, it is important to mention that the more
images are available for training, the more memory capacity is required
to store the CT slices locally. This was not a challenge during this work,
but it might be advised to augment the images online for huge datasets.
Online augmentation implies that the synthetic slices are not stored lo-
cally, but the original images are rather deformed during the training process.

All in all, the MeVisLab implementations emerged to be absolutely
helpful to process the CT datasets in order to permit a training of the
classification and segmentation networks of this master thesis.

On top of that, the main difference between the created classification
and segmentation models was - apart from the network topologies - that
the classification nets were trained from scratch with the available data,
whilst the segmentation models were built on a pre-trained network. This
pre-trained VGG-16 model was initially trained to classify images of the
ImageNet database. Nevertheless, both approaches delivered satisfying
results. The classification is a “simplier” task, as it is only decided if the
whole image shows the mandible or not. The segmentation task, however,
requires a determination of every voxel of an image.

In addition to this, the metrics of the classification task (Table 15),
but also of the segmentation task (Tables 19 and 22) show that test datasets
produce in general poorer results as the training datasets. A trained model
is, of course, adapted to the training images. Nevertheless, the goal of
network training is to achieve also good results for new and unseen data.

109

It is important to emphasize that the test data of this work was not
completely independent, because the test images were generated from the
original ones. The reason for this circumstance is that it was complete
impossible to acquire new test images during the establishment of this
thesis. New CT datasets must display an unbroken mandible as well as
the patients should not have any teeth. A fulfillment of both requirements
is rather unlikely and thus, such images are difficult to be found by the
doctors in the hospital’s image databases. Furthermore, the physicians
cannot spend a lot of time on searching for these special kinds of images
during the clinical routine. Moreover, it is also time-consuming to produce
the manual segmentations. Apart from that, new CT datasets could not be
acquired from test persons on grounds of radiation exposure. As a result, it
is definitely advised to accomplish further deep learning investigations with
medical databases, that contain a larger amount of images.

Nonetheless, the produced results are surprisingly acceptable in con-
sideration of the minor dataset size. Take, for example, the averaged Dice
coefficient of the test dataset of Table 22, which shows a value of 0.8964.
In contrast, the inter-observer variability is 0.9362. It is not meaningful to
achieve Dice coefficients of one. A value of one implies in fact a perfect
predicted segmentation, but even though two different physicians don’t
produce in general exact the same manual segmentations. Hence, the
results of the Dice scores are quite satisfying. Moreover, the Hausdorff
distance exhibits an averaged value of 13.9150, which is poorer than the
inter-observer variability of 5.5153. To remember, those values refer to the
unitless voxel dimensions. Thus, there are no units declared. Apart from
that, the mean IoU was not calculated for the inter-observer variability, as
this metric was computed after training the neural networks.

A probable reason for the achieved proficient metrics might be that
the mandible is considerably noticeable in CT images. The bone has a
higher attenuation ability of the X-Rays compared to the surrounding soft
tissue (Figure 10). Hence, the mandible can be easily demarcated from
the CT slices. Furthermore, a lower jawbone has a similar shape towards
different patients.

These aspects were also clarified by B. Ibragimov and L. Xing in their
publication [24]. They trained segmentation networks for the demarcation
of different anatomical structures of the head and neck region, but the
automatic mandible prediction produced the best mean Dice score of 89.5%.

110

Beyond that, not only the numerical results, but also the depictions of
the algorithmic segmentations in the Figures 84, 85 and 86 are gratifying.
During the evaluation of the results, it was realised that down-sampling of
the images reduces the training time of the segmentation networks, but the
results (visual predictions and metrics) are distinctively worse compared to
the original sized images. In general, training a network exhibits a long time
duration, but once it is trained efficiently, testing new images is achieved
quickly.

On the whole, the most essential problem, which must be solved for
additional deep learning implementations in medicine, is the lack of available
images. If there are databases utilised, which comprise a huge amount of
images, it must be kept in mind that the ground truths must be created
manually for supervised training. A trick to overcome this problem may
be the utilisation of overlaid images (e. g. registration of nuclear medical
images on CT or MR images). For instance, cancerous tissue might be seg-
mented in CT slices, whereby the nuclear medical information corresponds
to the ground truths, as the tracers accumulate in tumours. If the prob-
lems of the lack of available data are resolved, more detailed investigations
may be feasible in the field of network architectures or parallel GPU training.

To conclude, the implemented networks of this thesis were an explanatory
step for the application of deep models in the medical domain, but for a
usage in clinical routine a training and also a testing with a lot of more
images is essential.

111

8 Appendix

The Appendix lists additional achieved results of the classification and seg-
mentation tasks for the sake of completeness.

8.1 Additional Classification Results

Figure 87 illustrates the progress of the accuracy during training three
different classification networks. The convolutional filter size exhibits a
value of three and the net was trained with dataset No. 2 including 6720 CT
slices. Figure 88 shows the associated loss function. Moreover, the metrics
of three networks trained with dataset No. 4 (18480 images) are displayed
in the Figures 89 and 90. Again, the filter size is three and the images are
down-sampled to a size of 50× 50.

Besides that, Figure 91 shows classified examples of the network in-
cluding six conv./max-pooling layers, a convolutional filter size of seven and
the images were down-sampled to a size of 128× 128.

Figure 87: Training accuracy of networks trained with dataset No. 2 (6720
images). The conv. kernel was set to three and the images had a size of
50× 50.

112

Figure 88: Loss of networks trained with dataset No. 2 (6720 images). The
conv. kernel was set to three and the images had a size of 50× 50.

Figure 89: Training accuracy of networks trained with dataset No. 4 (18480
images). The conv. kernel was set to three and the images had a size of
50× 50.

113

Figure 90: Loss of networks trained with dataset No. 4 (18480 images). The
conv. kernel was set to three and the images had a size of 50× 50.

Figure 91: Test images (128× 128) and their predicted classes. The network
had six conv./max-pooling layers and a filter size of seven.

Table 23 lists the achieved classification accuracies, which can be found in
Table 15 in chapter 6.2, as percentage values.

114

Table 23: Results of the trained classification networks in percent. The
accuracies of the validation as well as of the artificial generated test dataset
are listed below. Furthermore, the differences between these two accuracies
are calculated.

Topo- Dataset Conv. Validation Test Difference of
logy No. Kernel Accuracy Acc. Accuracies

% % %

Image Size: 50× 50

1 3 93.33 82.17 11.16
3 conv. 2 3 92.50 92.09 0.41
layers 3 3 95.00 90.58 4.42

4 3 98.33 95.78 2.55

1 3 83.33 85.18 -1.85
4 conv. 2 3 94.17 93.54 0.63
layers 3 3 97.86 89.09 8.77

4 3 96.67 96.99 -0.32

1 3 96.67 85.36 11.31
6 conv. 2 3 99.17 94.49 4.68
layers 3 3 97.86 92.10 5.76

4 3 99.44 97.52 1.92

1 5 100.00 87.19 12.81
6 conv. 2 5 98.33 96.20 2.13
layers 3 5 98.57 96.43 2.14

4 5 100.00 98.48 1.52

1 7 100.00 89.69 10.31
6 conv. 2 7 100.00 97.04 2.96
layers 3 7 99.29 94.43 4.86

4 7 100.00 98.77 1.23

Image Size: 128× 128

1 7 96.67 91.61 5.06
6 conv. 2 7 100.00 97.77 2.23
layers 3 7 100.00 97.01 2.99

4 7 100.00 98.83 1.17

115

8.2 Additional Segmentation Results

The subsequent Figures 92, 93, 94 and 95 display screenshots of the metrics
produced by all available segmentation networks, whereby the results are
evaluated per patient. The original CT slices were provided as the test
images. Furthermore, the metrics are averaged over the patients as well
as the standard deviations and the extrema are stated. Beyond that, the
amount of correctly classified CT slices is listed.

116

Figure 92: Overview of the segmentation metrics produced by the networks
trained with dataset I. The original CT slices were provided for testing, whilst
the evaluation was accomplished separately for each patient.

117

Figure 93: Overview of the segmentation metrics produced by the networks
trained with dataset II. The original CT slices were provided for testing,
whilst the evaluation was accomplished separately for each patient.

118

Figure 94: Overview of the segmentation metrics produced by the networks
trained with dataset III. The original CT slices were provided for testing,
whilst the evaluation was accomplished separately for each patient.

119

Figure 95: Overview of the segmentation metrics produced by the networks
trained with dataset IV. The original CT slices were provided for testing,
whilst the evaluation was accomplished separately for each patient.

120

References

[1] T. Aach and O. Dössel. Bildgebung durch Projektionsröntgen. Biomedi-
zinische Technik - Medizinische Bildgebung, pages 9 – 58. Walter de
Gruyter, 2014. 7, 8

[2] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems. CoRR, abs/1603.04467, 2016. 30, 31

[3] MeVis Medical Solutions AG. Getting Started. Available: http://

mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/

Documentation/Publish/SDK/GettingStarted/index.html, October
2016. (Last access 17.04.2017). 12

[4] MeVis Medical Solutions AG. MeVisLab Definition Language (MDL)
Reference. Available: http://mevislabdownloads.mevis.de/

docs/current/MeVisLab/Resources/Documentation/Publish/SDK/

MDLReference/index.html, October 2016. (Last access 26.04.2017).
41

[5] MeVis Medical Solutions AG. MeVisLab Reference Manual. Available:
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/

Resources/Documentation/Publish/SDK/MeVisLabManual/index.

html, October 2016. (Last access 17.04.2017). 12

[6] MeVis Medical Solutions AG. MeVisLab Scripting Reference. Available:
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/

Resources/Documentation/Publish/SDK/ScriptingReference/

index.html, October 2016. (Last access 26.04.2017). 41

[7] I. N. Bankman and J. Rogowska. Handbook of Medical Image Processing
and Analysis, pages 71 – 90. Academic Press - Elsevier, 2009. 17

[8] T. M. Buzug. Einführung in die Computertomographie, pages 1 – 10, 44
– 52. Springer Verlag, 2004. 7

[9] T. M. Buzug and T. Flohr. Computertomographie. Biomedizinische
Technik - Medizinische Bildgebung, pages 59 – 111. Walter de Gruyter,
2014. 7, 8, 10, 11, 12

[10] K. Chatfield et al. Return of the Devil in the Details: Delving Deep into
Convolutional Nets. CoRR, abs/1405.3531, 2014. 32

121

http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/ScriptingReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/ScriptingReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MDLReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/ScriptingReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MDLReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MDLReference/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/GettingStarted/index.html

[11] P. F. Christ et al. Automatic Liver and Lesion Segmentation in CT Us-
ing Cascaded Fully Convolutional Neural Networks and 3D Conditional
Random Fields, pages 415 – 423. Springer International Publishing,
2016. 16

[12] V. Christlein and T. Würfl. Deep Learning Tutorial - Basics. BVM-
Workshop, Heidelberg, March 2017. 23, 24, 28

[13] J. Deng et al. ImageNet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248 – 255, June 2009. 20, 68

[14] T. M. Deserno. Medizinische Bildverarbeitung. Medizintechnik, pages
825 – 846. Springer Verlag, 2011. 17

[15] O. Dössel. Bildgebende Verfahren in der Medizin, pages 1 – 69, 107 –
145. Springer Verlag, 2000. 9, 10, 11, 12

[16] J. Egger et al. Integration of the OpenIGTLink Network Protocol for
Image-Guided Therapy with the Medical Platform MeVisLab. CoRR,
abs/1309.1863, 2013. 12

[17] J. Egger et al. HTC Vive MeVisLab integration via OpenVR for medical
applications. PLOS ONE, 12(3), 03 2017. 12

[18] J. Fanghänel et al. Waldeyer - Anatomie des Menschen, pages 177 –
354. Walter de Gruyter, 2003. 3, 4

[19] Siemens Healthcare GmbH. SOMATOM Definition Edge. Avail-
able: https://static.healthcare.siemens.com/siemens_hwem-

hwem_ssxa_websites-context-root/wcm/idc/groups/public/

@global/@imaging/@ct/documents/download/mdaw/mtyx/~edisp/

somatom_definition_edge_brochure-00024835.pdf, 2016. (Last
access 06.05.2017). 9

[20] C. Gsaxner et al. Exploit 18F-FDG Enhanced Urinary Bladder in PET
Data for Deep Learning Ground Truth Generation in CT Scans. SPIE
Medical Imaging, 2017. Accepted. 41

[21] S. Guadarrama and N. Silberman. TensorFlow-Slim. Avail-
able: https://github.com/tensorflow/tensorflow/tree/master/

tensorflow/contrib/slim, 2017. (Last access 27.09.2017). 19, 31,
68

122

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@ct/documents/download/mdaw/mtyx/~edisp/somatom_definition_edge_brochure-00024835.pdf
https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@ct/documents/download/mdaw/mtyx/~edisp/somatom_definition_edge_brochure-00024835.pdf
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@ct/documents/download/mdaw/mtyx/~edisp/somatom_definition_edge_brochure-00024835.pdf
https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@ct/documents/download/mdaw/mtyx/~edisp/somatom_definition_edge_brochure-00024835.pdf

[22] H. Handels. Medizinische Bildverarbeitung: Bildanalyse, Mustererken-
nung und Visualisierung für die computergestützte ärztliche Diagnostik
und Therapie, pages 63, 95 – 156, 220 – 249. Vieweg + Teubner Verlag,
2009. 17, 18, 21, 22

[23] A. W. Harley. An Interactive Node-Link Visualization of Convolutional
Neural Networks. In ISVC, pages 867 – 877, 2015. 26

[24] B. Ibragimov and L. Xing. Segmentation of organs-at-risks in head and
neck CT images using convolutional neural networks. Medical Physics,
44(2):547 – 557, 2017. 7, 16, 18, 19, 33, 39, 54, 110

[25] Google Inc. Google Trends. Available: https://trends.google.at/

trends/explore?q=Deep%20Learning, 2017. (Last access 23.07.2017).
1

[26] Google Inc. TensorFlow. An open-source software library for Machine
Intelligence. Available: https://www.tensorflow.org/, 2017. (Last
access 05.10.2017). 30, 68, 75

[27] Kaggle Inc. kaggle. Available: https://www.kaggle.com/, 2016. (Last
access 04.07.2017). 20

[28] Wikimedia Foundation Inc. Wikipedia Die freie Enzyklopädie
- Gefilterte Rückprojektion. Available: https://de.wikipedia.

org/wiki/Gefilterte_R%C3%BCckprojektion, 2016. (Last access
15.06.2017). 40

[29] Wikimedia Foundation Inc. Wikipedia Die freie Enzyklopädie - Rönt-
gen. Available: https://de.wikipedia.org/wiki/R%C3%B6ntgen,
2017. (Last access 24.05.2017). 8

[30] B. Jähne. Digitale Bildverarbeitung, pages 541 – 554. Springer Verlag,
2012. 16

[31] N. Jones. Computer science: The learning machines. Nature,
505(7482):146 – 148, January 2014. 1, 63

[32] U. Karrenberg. Neuronale Netze. Signale - Prozesse - Systeme, pages
443 – 476. Springer Vieweg, 2012. 21, 60

[33] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural

123

https://de.wikipedia.org/wiki/R%C3%B6ntgen
https://de.wikipedia.org/wiki/Gefilterte_R%C3%BCckprojektion
https://trends.google.at/trends/explore?q=Deep%20Learning
https://www.kaggle.com/
https://trends.google.at/trends/explore?q=Deep%20Learning
https://www.tensorflow.org/
https://de.wikipedia.org/wiki/Gefilterte_R%C3%BCckprojektion

Information Processing Systems 25, pages 1097 – 1105. Curran Asso-
ciates, Inc., 2012. 32

[34] R. Kruse et al. Computational Intelligence. Springer Vieweg, 2015. 20

[35] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436 – 444, May 2015. 20, 21

[36] T. Lehmann et al. Bildverarbeitung für die Medizin, pages 359 – 394.
Springer Verlag, 1997. 16

[37] M. Lenzen. Natürliche und künstliche Intelligenz, page 88. Campus
Verlag, 2002. 20

[38] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for
Semantic Segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015. 34, 35, 68, 72, 79

[39] Fraunhofer MEVIS. Fraunhofer MEVIS Forum. Available: https:

//forum.mevis.fraunhofer.de/index.php, 2016. (Last access
19.04.2017). 45

[40] Microsoft. CNTK. Available: https://github.com/Microsoft/CNTK,
September 2017. (Last access 14.09.2017). 30

[41] Microsoft. The Microsoft Cognitive Toolkit. Available: https://docs.
microsoft.com/en-us/cognitive-toolkit/, July 2017. (Last access
14.09.2017). 30

[42] P. Mildenberger, M. Eichelberg, and E. Martin. Introduction to the
DICOM standard. European Radiology, 12(4):920 – 927, April 2002. 39

[43] A. Nischwitz et al. Computergrafik und Bildverarbeitung, pages 458 –
482. Vieweg + Teubner, 2011. 22, 63

[44] National Library of Medicine Insight Segmentation and Reg-
istration Toolkit (ITK). itk::HausdorffDistanceImageFilter.
Available: https://itk.org/Doxygen/html/classitk_1_

1HausdorffDistanceImageFilter.html, 2017. (Last access
28.09.2017). 19

[45] D. Pakhomov. TF Image Segmentation: Image Segmentation frame-
work. Available: https://github.com/warmspringwinds/tf-image-

segmentation, May 2017. (Last access 30.09.2017). 29, 68, 75

124

https://forum.mevis.fraunhofer.de/index.php
https://forum.mevis.fraunhofer.de/index.php
https://github.com/warmspringwinds/tf-image-segmentation
https://github.com/Microsoft/CNTK
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://itk.org/Doxygen/html/classitk_1_1HausdorffDistanceImageFilter.html
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://github.com/warmspringwinds/tf-image-segmentation
https://itk.org/Doxygen/html/classitk_1_1HausdorffDistanceImageFilter.html

[46] D. Pakhomov et al. Deep Residual Learning for Instrument Segmen-
tation in Robotic Surgery. arXiv preprint arXiv:1703.08580, 2017. 29,
68

[47] B. Pfarrkirchner. Data Generation. Available: https://github.com/

birgitPf/Data_Generation, October 2017. (Last access 17.10.2017).
41

[48] B. Pfarrkirchner. Lower Jawbone Data Generation For Deep Learning
Tools. Masterproject, June 2017. 12, 41

[49] B. Pfarrkirchner et al. Lower Jawbone Data Generation for Deep Learn-
ing Tools under MeVisLab. SPIE Medical Imaging, 2017. Accepted. 41

[50] PythonProgramming. Classifying Cats vs Dogs with a Con-
volutional Neural Network on Kaggle. Available: https:

//pythonprogramming.net/convolutional-neural-network-kats-

vs-dogs-machine-learning-tutorial/, August 2017. (Last access
21.08.2017). 57

[51] BAIR (Berkeley Artificial Intelligence Research). Caffe. Available:
http://caffe.berkeleyvision.org/, 2017. (Last access 14.09.2017).
30

[52] J. Schmidhuber. Deep Learning in Neural Networks: An Overview.
CoRR, abs/1404.7828, 2014. 20

[53] M. Schünke, E. Schulte, and U. Schumacher. PROMETHEUS Kopf,
Hals und Neuroanatomie, pages 1 – 60. Georg Thieme Verlag, 2009. 3,
4, 6

[54] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolu-
tional neural networks applied to visual document analysis. In Seventh
International Conference on Document Analysis and Recognition, 2003.
Proceedings., pages 958 – 963, August 2003. 32

[55] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014. 31, 35

[56] S. Srinivas et al. An Introduction to Deep Convolutional Neural Nets for
Computer Vision. Deep Learning for Medical Image Analysis, pages 25
– 52. Academic Press - Elsevier, 2017. 20, 26, 28, 29, 30

125

https://pythonprogramming.net/convolutional-neural-network-kats-vs-dogs-machine-learning-tutorial/
https://pythonprogramming.net/convolutional-neural-network-kats-vs-dogs-machine-learning-tutorial/
http://caffe.berkeleyvision.org/
https://github.com/birgitPf/Data_Generation
https://pythonprogramming.net/convolutional-neural-network-kats-vs-dogs-machine-learning-tutorial/
https://github.com/birgitPf/Data_Generation

[57] H. Suk. An Introduction to Neural Networks and Deep Learning. Deep
Learning for Medical Image Analysis, pages 3 – 24. Academic Press -
Elsevier, 2017. 20, 21, 25, 26, 28, 59

[58] TFlearn. TFLearn: Deep learning library featuring a higher-level API
for TensorFlow. Available: http://tflearn.org/, August 2017. (Last
access 29.09.2017). 31, 57

[59] J. Walde. Design Künstlicher Neuronaler Netze, pages 46 – 47.
Deutscher Universitäts-Verlag, 2005. 62

[60] T. Würfl. Deep Learning Tutorial - Weakly- and Unsupervised Deep
Learning. BVM-Workshop, Heidelberg, March 2017. 1

[61] J. Yangqing et al. Caffe: Convolutional Architecture for Fast Feature
Embedding. In Proceedings of the 22Nd ACM International Conference
on Multimedia, MM ’14, pages 675 – 678. ACM, 2014. 30

[62] D. Yu et al. An Introduction to Computational Networks and the Com-
putational Network Toolkit. Technical report, October 2014. 30

126

http://tflearn.org/

	Introduction
	Motivation and Goal
	Thesis Structure

	Medical Background
	Anatomy of the Mandibula
	Physiology of the Mandibula

	Technical Background
	Computed Tomography
	General Principle
	Hounsfield Units
	Artefacts

	MeVisLab
	Segmentation
	General Principle
	Segmentation Applications in Medicine
	Validation of Segmentation Results

	Deep Learning
	Fundamentals of Artificial Neural Networks
	Convolutional Neural Networks

	Deep Learning Toolkit: TensorFlow

	Related Work
	Data Augmentation
	Segmentation
	Patch-based Segmentation Approach
	Upsampling-based Segmentation Approach

	Methods
	Available Computed Tomography Datasets
	Overview
	Ground Truth Segmentations
	Acquisition Parameters
	Dataset Size

	Implementations in MeVisLab
	"Save Slices for Deep Learning" Network
	SaveAsSingleSlices Macro Module

	Classification of the CT Images
	Dictionary of Classification Labels
	Data Processing
	Implementation of the Code Framework
	Training Datasets
	Training of the CNNs
	Testing of the trained CNNs

	Segmentation of the Mandibula
	Adaption of the Code Framework
	Storage of the Datasets as TFRecords Files
	Training Datasets
	Training of the Networks
	Testing of the Networks
	Combination of the Segmentation and Classification Networks

	Results
	Data Generation with the MeVisLab Implementations
	Classification Results
	Segmentation Results

	Discussion and Future Outlook
	Appendix
	Additional Classification Results
	Additional Segmentation Results

