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Abstract

The trend of ever shrinking microelectronics makes it interesting to investigate the
behavior – most importantly the current-voltage characteristics – of single molecules
connecting two metallic contacts. Of interest for this thesis are in particular the
effects of vibrations within such a molecule on the electronic transport. This is
investigated in the work at hand by analyzing properties of the Anderson-Holstein
model, which is a simplified system containing an electronic level coupled to a
single harmonic oscillator. The model is solved with the auxiliary master equation
approach, whereby the contacts are approximated by an open quantum system,
consisting of a small number of bath sites coupled to a Markovian environment,
whose dynamics are governed by the Lindblad master equation. Because this
approach is non-perturbative, it allows for calculations in any parameter regime.
The goal of this thesis is to implement numerical procedures to efficiently solve the
master equation and investigate its outcome. The results for the spinless version
of the model for weak to strong electron-phonon coupling at different phonon
energies are compared with the outcome of other methods. The prominent effect
of the Franck-Condon blockade is reproduced in the full interacting system at
finite temperature, and calculations investigating the influence of on-site Coulomb
repulsion at the impurity on the current are also presented.
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Kurzfassung

Der Trend zu immer kleineren Strukturen in der Mikroelektronik macht es interes-
sant das Verhalten – speziell die Strom-Spannungs-Charakteristik – von einzelnen
Molekülen zwischen zwei metallischen Kontakten zu untersuchen. In dieser Arbeit
interessieren wir uns vor allem für die Effekte, die interne Schwingungsfreiheits-
grade solcher Moleküle auf den elektronischen Transport haben. Diese werden in
unserem Fall durch die Analyse des Anderson-Holstein Modells untersucht, das
ein vereinfachtes System darstellt, bestehend aus einem einzelnen elektronischen
Niveau, gekoppelt an einen harmonischen Oszillator. Dieses Modell wird mit dem
Auxiliary Master Equation Approach gelöst, bei dem die Kontakte durch ein offenes
Quantensystem dargestellt werden, welches aus einer endlichen Zahl an Badplätzen
besteht, die an eine Markovsche Umgebung gekoppelt sind. Die Dynamik wird in
diesem Fall von der Lindblad Mastergleichung beschrieben. Weil dieses Vorgehen
nicht störungstheoretisch ist, kann es für Berechnungen in jedem Parameterbereich
angewandt werden. Das Ziel der Arbeit ist es, die numerischen Methoden zur
Behandlung des Modells effizient zu implementieren und die Lösungen zu unter-
suchen. Die Ergebnisse der spinlosen Version des Modells für schwache bis starke
Elektron-Phonon-Kopplungen bei unterschiedlichen Phononenenergien werden mit
den Ergebnissen anderer Methoden verglichen. Der markante Effekt der Franck-
Condon-Blockade wird im vollständig wechselwirkenden System beobachtet und
Berechnungen, die den Einfluss lokaler Coulomb-Abstoßung untersuchen, werden
ebenfalls präsentiert.
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“
The code that is the hardest to
debug is the code you know
cannot possibly be wrong. ”
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Chapter 1

Introduction

Since the introduction of electronic circuits, their size gradually decreased. Especially
with the rise of microchips, starting in the early 1970s with the Intel 4004 being the
first microprocessor [1], electronic components shrunk dramatically. The minimum
feature size – which is the length of an element on a processor that can be accurately
generated – decreased from 10 µm for the Intel 4004 [2, 3] to only 14 nm for chips
produced in 2017 [4].

At the length scales involved in commercially available microelectronics today, their
behavior – except for some nifty techniques like flash memory – can be treated
mostly in a classical picture. But, upon further miniaturization, quantum effects
will start playing an increasingly important role for the description of such devices,
until for single-molecular and single-atomic structures they completely dominate
their properties. Such a device, consisting of only one organic molecule, was first
proposed by Aviram and Ratner [5] in 1947.

To manufacture devices at molecular and atomic levels, their properties must
first be studied extensively. One important field of interest is the voltage-current
characteristic of junctions at the nano scale. Such a junction consists of two leads
at different chemical potentials (a bias voltage) that are connected by a microscopic
structure. Numerous experiments have been conducted in recent years investigating
such properties of junctions consisting of, for example, quantum dots [6–9] and
single molecules [10–17].

Interesting effects can arise from the fact that charged and uncharged states of
such a molecular junction may have different equilibrium geometries. Thus, when
electrons are transferred onto and off of the junctions, they induce vibrations that
will affect the overall transport properties. This has in part already been studied
experimentally [18–22] as well as theoretically under various assumptions [23–27].
We will apply an approach suggested by Arrigoni et al. [28] to this specific problem
and implement a method that – in principle – works in any parameter regime.
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Chapter 1. Introduction

The structure of the thesis is as follows. First, in chapter 2, we elaborate on the
existing theoretical frameworks made use of. Chapter 3 focuses on the details of
our implementation and the numerical methods used – namely the Arnoldi scheme
[29] and the two-sided Lanczos [30] – as well as computational considerations like
convergence criteria. Lastly, in chapter 4, we present our results, compare them to
other methods treating the same model, and conclude the thesis with final remarks
in chapter 5, where also the strengths and weaknesses of the approach and the
algorithms are elaborated.

The original work done within the present thesis are the analytical section 2.4.3,
the numerics in sections 3.1 and 3.2, as well as investigating the suitability of the
presented algorithms for the solution of the problem. Furthermore, because of the
bosonic degrees of freedom, the code for the numerical solution had to be written
and tested from scratch.
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Chapter 2

Model and Method

In this chapter we introduce the model, method, notation, and formalism used, as
well as give the analytical basics needed to treat the problem at hand. Section 2.1
gives a mathematical and physical description of the system we investigate, namely
the Anderson-Holstein model [31–33]. Our goal is to treat it with a scheme named
auxiliary master equation approach [28, 34]. Tools needed for this method are the
density operator formalism, and consequently open quantum systems, described in
sec. 2.2 and 2.3, loosely following references [35] and [36]. To numerically treat such
systems, the so-called superfermion formalism, introduced by Dzhioev and Kosov
[37], is explained and extended by us to the case of bosons in sec. 2.4. Moreover,
nonequilibrium Green functions are covered in sec. 2.5, making extensive use of
reference [38]. These concepts are then combined in section 2.6 to motivate the use
of the auxiliary master equation approach. Lastly, we apply a useful transformation
suggested by Lang and Firsov [39] to the auxiliary open quantum system.

2.1 Anderson-Holstein model

To study transport phenomena out of equilibrium with electron-phonon coupling,
we will investigate a simplified model which is a combination of a single impurity,
first suggested by Anderson [31] and originally used to study magnetic impurities in
metals, coupled to a small polaron, as described by Holstein [32, 33]. It is therefore
often referred to as the Anderson-Holstein model.

The system at hand constists of two leads – one left and one right, with different
chemical potentials µL and µR – in which the electrons do not interact with each
other. These leads are coupled to a central region – the junction, which we will
call impurity from here on – by electronic hopping terms. The impurity itself is
described by a spin-degenerate electronic single-particle state which has an onsite
energy and a Coulomb repulsion term. Vibrations are described by a harmonic

3



Chapter 2. Model and Method
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Figure 2.1: Energy sketch of the system. The filled states in the leads are marked
in light gray. The parabolas are the potentials of the uncharged ( ),
singly charged ( ), and doubly charged ( ) electronic states with their
allowed energy levels (if the impurity was isolated).
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Figure 2.2: Spatial sketch of the model. The triangles left and right represent the
leads, the dashed frame in the center is the impurity, where the colors
stand for the mutually exclusive differently charged states. The filled
circles connected by springs mark the atoms of the impurity in their
neutral , singly charged , and doubly charged equilibrium positions.
The x-axis is vertical in this illustration. The horizontal offset of the
atoms is for better visibility only.
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2.1. Anderson-Holstein model

oscillator with its energy levels. The electronic and vibrational degrees of freedom
are coupled by an electron-phonon coupling term. So the total Hamiltonian of the
system in second quantization reads as

Ĥ =
∑
σ

εf c
†
fσcfσ + Uc†f↑cf↑c

†
f↓cf↓ +

∑
k,α,σ

εkαc
†
kασckασ

+
∑
k,α,σ

tα

(
cfσc

†
kασ + c†fσckασ

)
+
∑
σ

λ(b† + b)c†fσcfσ + ~ωbb†b (2.1)

where σ ∈ {↑, ↓} is the spin, α ∈ {L,R} denotes the left and right lead, k numbers the
electronic states in the leads, f means the electronic state localized at the impurity,
variants of c† and c create and annihilate electrons in the states characterized by their
indices, respectively, and b† and b are the ladder operators of the harmonic oscillator.
Hats on creation and annihilation operators are omitted for readability throughout
the thesis. The first four terms describe the purely electronic system, the last term
is the unperturbed harmonic oscillator, and the term in between characterizes the
electron-phonon coupling. This coupling term, which is proportional to the position
operator of the harmonic oscillator, (b† + b) ∼ x̂, models the aforementioned fact
that if electrons are present, the equilibrium distances within the impurity change.

The parameters of the model are U , which is the Coulomb repulsion at the impurity,
all ε, which are onsite energies for every single-electron state, the energy level
spacing of the harmonic oscillator ~ωb, the hopping strength from lead α to the
impurity tα, and λ, which is the electron-phonon coupling strength.

It is often convenient to not consider spin and investigate phononic effects of a
spinless system, which is equivalent to the limit U → ∞. In this case, all σ in
eq. 2.1 as operator and summation indices are dropped, and the U -term vanishes.
Therefore, the Hamiltonian becomes

Ĥ = εf c
†
fcf +

∑
k,α

εkαc
†
kασckα +

∑
k,α

tα

(
cfc
†
kα + c†fckα

)
+ λ(b† + b)c†fcf + ~ωbb†b. (2.2)

Figure 2.1 shows a simple representation of the energy levels in the system. Electrons
are transferred from and to the leads with amplitudes tL and tR. Depending on the
onsite energy εf and the Coulomb repulsion U , the charged and uncharged impurities
have shifted energies. Most importantly, with n being the number of electrons
at the impurity, the electron-phonon coupling term shifts the charged potential
additionally by ∆E = −n2λ2/~ωb in energy, and also by ∆x = n(2λ2/m~ω3

b )1/2 in
position (see sec. A.1). However, for such a one-dimensional sketch it is hard to
find a meaningful physical interpretation.

To visualize what the model actually represents, figure 2.2 is much more useful.
There, the vertical axis is x, and y is plotted horizontally. In contrast to fig. 2.1,

5



Chapter 2. Model and Method

the leads are now off in the y- instead of the x- direction. But since they couple
exclusively with the constant hopping amplitudes tL and tR, the precise direction
is not relevant. The dashed frame in the central region shows the impurity in its
neutral, its singly charged, and its doubly charged state. So, depending on the
charge, it will be in one of the three shown configurations.

The important thing to note is that the x̂-operator in the harmonic oscillator no
longer means a displacement of the impurity itself, but rather the magnitude of
a distortion within the impurity. Now it is easy to see how the electron-phonon
coupling models the shift of atomic equilibrium positions in a molecule. For the
sketch we chose the simplest form of such an impurity, namely a diatomic one. In
the neutral state, the atoms have some equilibrium distance x0. Upon adding a
negative charge to the molecule, their equilibrium separation increases, as can be
seen in the sketch. One might argue that the model also holds approximately for
more complicated molecules, if the frequency separation of the lowest eigenmode
from the rest is large.

For all considerations in this thesis we always assume that a unique steady state
exists, i. e. the driven system has one and only one stable state that does not change
over time.

Unless otherwise noted, we will from here on set e ≡ ~ ≡ me ≡ kB ≡ 1. For the
energy we will use different units depending on whatever is most convenient for a
specific setup, which will be discussed later.

2.2 Statistical ensembles of quantum states

One distinct realization of a quantum mechanical system can always be described by
some state vector |ψ〉. If, however, the state of the system is not definitely known,
but rather only the probability of the system being in each of its possible states,
like is the case in an ensemble of particles, state vectors are no longer sufficient to
describe the physical situation. Roughly following the basics in [35] and [36], such
cases must be described by an operator which projects onto the individual states
with their respective probabilities, which is called the density operator.

ρ̂ =
∑
i

pi |ψi〉〈ψi| (2.3)

The possible states the system can be in are numbered by i. If all |ψi〉 are
orthonormal, pi is the probability of the system being in that particular state. Since
ρ̂ is Hermitian, one can always choose the vectors |ψi〉 to be orthonormal. For the
following arguments we will therefore assume such an orthonormal set of vectors.
Clearly, the probabilities must sum up to 1, so∑

i

pi = 1.

6



2.2. Statistical ensembles of quantum states

The trace of an operator is independent of the basis, and from the equation above
one can see that in the |ψi〉 basis, tr(ρ̂) = 1, which is therefore an intrinsic property
of ρ̂. Additionally, because pi ≥ 0, ρ̂ is also positive semidefinite.

To calculate expecation values, one must now average over the individual expecation
values of the states the system can be in, weighted with their respective probabilities.
With a complete orthonormal basis |ϕi〉 this reduces to

〈Ô〉 =
∑
i

pi 〈ψi|Ô|ψi〉 =
∑
i,j

pi 〈ψi|Ô|ϕj〉 〈ϕj |ψi〉

=
∑
i,j

〈ϕj |ψi〉 pi 〈ψi|Ô|ϕj〉 =
∑
j

〈ϕj |
(∑

i

pi |ψi〉〈ψi| Ô
)
|ϕj〉

=
∑
j

〈ϕj |ρ̂ Ô|ϕj〉 = tr(ρ̂ Ô).

Density operators are particularly useful when dealing with large systems, where
one is actually only interested in a small subsystem. For consistent terminology
we will in such cases refer to the total system as universe, the subsystem will be
called just system, and the universe without the subsystem is the environment. A
pure state of the universe, that is one which is described by a sinlge state vector
|Ψ〉, can in general not be mapped to a single state in the system, as there might
be entanglement between the it and the environment.

This pure state of the universe can of course also be written as a density operator

ρ̂ = |Ψ〉〈Ψ| ,

which has the the property of ρ̂2 = ρ̂, which is unique to pure states.

If the universe is comprised of a system s and an environment e, |Ψ〉 can be written
as a linear combination of orthonormal basis states |si〉 ⊗ |ej〉, where i and j take
the quantum numbers of the system and the environment, respectively. One can
define the so-called partial trace as

tre(ρ̂) :=
∑
i,j,k

|si〉
(
〈si| ⊗ 〈ek| ρ̂ |sj〉 ⊗ |ek〉

)
〈sj | .

All expectation values of operators acting solely on the system remain invariant
under this operation, as is shown in sec. A.2.

tr
(
ρ̂ (Ôs ⊗ 1)

)
= trs

(
ρ̂sÔs

)
trs, analogous to tre, is the trace only over the degrees of freedom of s. If the
system is entangled with the environment, the reduced density matrix ρ̂s = tre(ρ̂)
will no longer be pure, even if ρ̂ is (see sec. A.3). This is why, even if one is not
dealing with an ensemble of particles, it is necessary to treat systems interacting
with environments in this denisty matrix formalism, rather than with state vectors.

7



Chapter 2. Model and Method

2.2.1 Time evolution of a density matrix

The time evolution of a vector in an isolated system is given by the Schrödinger
equation.

i
∂

∂t
|ψ〉 = Ĥ |ψ〉

If Ĥ is not explicitly time dependent, the solution is

|ψ(t)〉 = e−iĤ(t−t0) |ψ(t0)〉 .

For explicitly time dependent Hamiltonians (containing e. g. varying external fields),
the order in time must be considered, because Ĥ(t) might not commute with itself
at different times t. Therefore a time-ordering operator T̂ is introduced, that sorts
operators in such a way that earlier times always appear to the right of later times.
This way, the most general solution for t > t0 is

|ψ(t)〉 = T̂ e−i
∫ t
t0
Ĥ(t′)dt′ |ψ(t0)〉 .

The time-ordered exponential can be combined into the unitary time-evolution
operator Û , in which case the equation above becomes

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 ,

where
Û(t, t0) := T̂ e−i

∫ t
t0
Ĥ(τ)dτ

.

Note that the Hermitian adjoint of Û contains the anti-time-ordering operator ˆ̃T ,
which sorts in exact reverse order from T̂ .

With the definiton of ρ̂ for a closed system introduced in the last section it is
straightforward that the time evolution is given by

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0),

from which follows that

∂

∂t
ρ̂(t) =

(
∂

∂t
Û(t, t0)

)
ρ̂(t0)Û †(t, t0) + Û(t, t0)ρ̂(t0)

(
∂

∂t
Û †(t, t0)

)
= −iĤ(t)Û(t, t0)ρ̂(t0)Û †(t, t0) + Û(t, t0)ρ̂(t0)Û †(t, t0)iĤ(t)

= −i(Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)) = −i[Ĥ(t), ρ̂(t)], (2.4)

where the fact that the inner derivative is once on the left and once on the right of
Û is a consequence of the different time-ordering operators.

8



2.3. Open quantum systems

2.3 Open quantum systems

Combining the time evolution with the previously introduced partial trace, the
reduced density matrix at time t is given by

ρ̂s(t) = tre(Û(t, t0)ρ̂(t0)Û †(t, t0)). (2.5)

This will necessitate the knowledge of the full system, which is often infeasable.
One therefore seeks to describe the time evolution of the system by a quantum
Markov process [35], which is an extension of a classical Markov process to a
quantum mechanical system. This is equivalent to dropping all memory effects
in the environment, as the basic property of a Markov process is exactly that the
history need not be known for the next time step [40].

Analogous to a classical Markov process, the time evolution of a quantum Markov
process is described by a semigroup, called a quantum dynamical semigroup [41].
Its most important property is

Ûs(t3, t2)Ûs(t2, t1) = Ûs(t3, t1),

where Ûs is now the (non-unitary) time evolution operator of the system and the
propagation occurs only forward in time with t3 > t2 > t1 ≥ 0. If the system is not
externally driven with a time-dependent influence – that is it is homogenious in
time – only differences in time must be considered and with Ûs(t2− t1) := Ûs(t1, t2)
the equation above reduces to

Ûs(t1)Ûs(t2) = Ûs(t1 + t2),

with t1, t2 ≥ 0.

It can be shown [42, 43] that the most general time evolution described by a
quantum dynamical semigroup (as defined in [40]) that is homogenious in time is
given by

∂

∂t
ρ̂s(t) = −i[Ĥs, ρ̂s(t)] +

∑
k,l

Γlk

(
2L̂kρ̂s(t)L̂

†
l − {ρ̂s(t), L̂

†
l L̂k}

)
=: ˆ̂Lρ̂s(t) (2.6)

with the Hermitian, positive semidefinite matrix Γ and a Hermitian operator Ĥs,
acting as a Hamiltonian of the system. Eq. 2.6 is called the Lindblad equation, where
the L̂k – often named Lindblad operators – form a complete basis of orthonormal
operators in the subspace s, which is defined as

trs(L̂
†
i L̂j) = δi,j .

The superoperator ˆ̂L is often referred to as Liouvillian. In this form, the system is
an open quantum system, as the environment is no longer part of its state, but the
system is still “open” for interactions with it.

9



Chapter 2. Model and Method

The commutator in eq. 2.6 bears some resemblence to eq. 2.4 for a closed system
and describes the Hermitian part of the time evolution, while the other terms
generate a dissipative contribution. Note that Ĥs is often simply the Hamiltonian
of the isolated system – as is in our model – but this is not necessarily the case.
There might be Hermitian influences of the environment on the system, which are
then part of Ĥs.

The Lindblad equation can also be derived from the microscopic dynamics of the
universe, using certain approximations [35]. This involves starting from eq. 2.5 and
assuming the environment part of the density operator trs(ρ̂) is time independent,
which implies that the environment is only negligibly influenced by the system
(called Born approximation). Then the Markov property is imposed, which, as
mentioned before, postulates that the time evolution of the system density operator
at time t only depends on the state of the system at t, and not its history. These
assumptions, combined as Born-Markov approximation, are justified whenever the
correlations in the environment decay much faster than the time scale over which the
state of the system changes. Lastly, a so-called secular approximation is performed,
which averages over fast oscillating terms in the environment and leads to eq. 2.6.

From here on we will omit the index s for ρ̂s and rename ρ̂ to ρ̂u.

2.4 Superfermion formalism

Because the time evolution of an open quantum system (eq. 2.6) contains ˆ̂L, a
superoperator, it is not convenient to work with the density operator directly,
since its application to ρ̂ can not be described by a matrix-vector multiplication.
Instead, we employ a scheme suggested by Dzhioev and Kosov [37] for purely
fermionic systems and extend it to bosons, which allows us to re-write eq. 2.6 into
a matrix-vector form.

2.4.1 Basics

For this section, first a fermionic system of N single-particle states |k〉, characterized
by the quantum number k ∈ {1, 2, . . . , N} will be considered. It is convenient to
work in second quantization and choose the basis vectors as |n〉, where n is a
sequence of numbers n := (n1, n2, n3, . . . , nN ), and nk is the occupation number of
the single-particle state |k〉. In this basis, the density operator can be written as

ρ̂ =
∑
i

pi |ψi〉〈ψi| =
∑
m,n

∑
i

pi 〈m|ψi〉 〈ψi|n〉 |m〉〈n| =
∑
m,n

ρm,n |m〉〈n|

where the sum over m and n means all possible configurations (m1,m2, · · · ,mN )
and (n1, n2, · · · , nN ).

10



2.4. Superfermion formalism

To write this density matrix ρm,n as a vector, a new Fock space is introduced, which
contains the original single-particle states, and also a duplicate of each of those
states. These – now twice as many – states are used to construct a new Fock space,
the so-called superfermion – or augmented – space. To distinguish them from the
original states, all duplicates are denoted with a tilde over their quantum numbers.
They will also be referred to as tilde states, as opposed to the original, or non-tilde
states. The basis vectors in this superfermion space are |n, m̃〉, where both n and
m contain occupation numbers (n1, n2, · · · , nN ) and (m1,m2, · · · ,mN ) as above,
n is the occupation in the original, and m is the occupation in tilde space.1

Because of the additional single-particle states, there are now more creation and
annihilation operators, which by construction of the Fock space have the usual
anticommutation properties.

{cm, cn} = {c̃m, c̃n} = {cm, c̃n} = 0

{c†m, c†n} = {c̃†m, c̃†n} = {c†m, c̃†n} = 0

{cm, c†n} = {c̃m, c̃†n} = {cm, c̃†n} = δm,n

Here, c†m (cm) creates (annihilates) a particle in the single-particle state |m〉 in
original space, and c̃†m (c̃m) creates (annihilates) a particle in the single-particle
state |m̃〉 in tilde space.

Any operator Ô in second quantization in the original space can be written as a
sum of products of creation and annihilation operators. To transfer them to the
superfermion space, their operators in the non-augmented space are replaced by
the corresponding counterparts in the augmented space.

Because of the linearity of the following argument, it is sufficient to consider only
products of creators and annihilators. The matrix elements of operators acting only
in the original space defined in this way are

〈m, p̃|Ô|n, q̃〉 = (−1)N
basis
m,p (−1)NpNO(−1)N

basis
n,q 〈m|Ô|n〉 δp,q

where Nbasis
m,p is the number of transpositions needed to sort all tilde creators to the

left of all non-tilde creators in a state |m, p̃〉, which of course depends on the order
of operators chosen for |m, p̃〉. The choice made in this thesis will be discussed
in the next subsection. Furthermore, Np =

∑
k pk is the number of fermions

represented by the quantum number p, in this case the number of electrons in
tilde single-particle-states, and NO is the number of fermionic operators in Ô. This
sign comes about from the fact that all tilde annihilators in the state 〈m, p̃| must
first be interchanged with all creators and annihilators in Ô, before meeting their

1Note that the tilde only indicates that the quantum number signifies the occupations in tilde
space, not that ñ is a different number from n. So a state |n, ñ〉 has the exact same occupations
in original and tilde space.
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Chapter 2. Model and Method

counterpart in |n, q̃〉, giving a factor of −1 at every transposition. The Kronecker
delta δp,q arises from the fact that Ô only contains non-tilde operators.

The first operator to investigate is the denisty operator, which in the chosen basis
for the superfermion space takes the form

ρ̂ =
∑
m,n
q,r

|m, q̃〉〈m, q̃| ρ̂ |n, r̃〉〈n, r̃| =
∑
m,n
q,r

〈m, q̃|ρ̂|n, r̃〉︸ ︷︷ ︸
∼ρm,nδq,r

|m, q̃〉〈n, r̃|

=
∑
m,n,r

(−1)N
basis
m,r (−1)N

basis
n,r ρm,n |m, r̃〉〈n, r̃|

where fermi signs occur only from re-sorting the basis, not from transpositions with
ρ̂, because in the density operator creators and annihilators always appear in pairs.

Now, with the definition of the vector

|I〉 :=
∑
m

eiϕm |m, m̃〉

with arbitrary phases ϕm and, subsequently

|ρ〉 := ρ̂ |I〉 =
∑

k,m,n,r

eiϕk(−1)N
basis
m,r (−1)N

basis
n,r ρm,n |m, r̃〉 〈n, r̃|k, k̃〉︸ ︷︷ ︸

δn,kδr,k

=
∑
m,n

eiϕn(−1)N
basis
m,n (−1)N

basis
n,n ρm,n |m, ñ〉

the density matrix can effectively be turned into a density vector.

The quantities of interest are actually expectation values of operators in the original
non-augmented space. Conveniently, sandwiching a non-tilde operator Ô with an
even number of creators and annihilators between 〈I| and |I〉 in the superfermionic
space is equivalent to taking its trace in the original Fock space.

〈I|Ô|I〉 =
∑
m,n

(
e−iϕm 〈m, m̃|

)
Ô
(
eiϕn |n, ñ〉

)
=
∑
m,n

ei(ϕn−ϕm) 〈m, m̃|Ô|n, ñ〉︸ ︷︷ ︸
〈m|Ô|n〉δm,n

=
∑
n

〈n|Ô|n〉 = tr(Ô)

Here, no fermi sign appears, because the number of creation and annihilation
operators in Ô is even, and the basis resorting sign is cancelled by δm,n. With this
result, one can immediately see that

〈I|ρ〉 = 〈I|ρ̂|I〉 = tr (ρ̂) = 1

and calculating expectation values in the original Fock space reduces to

〈I|Ô|ρ〉 = 〈I|Ôρ̂|I〉 = tr (Ôρ̂) = 〈Ô〉

if the number of creators and annihilators in Ô is even.
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2.4.2 Operator properties

Because fermions anticommute, one must decide on the order of operators for the
basis states. It is convenient to choose

|m, ñ〉 :=
∏
k

[
(c†k)

nk(c̃†k)
mk
]
|0〉

with an arbitrary but fixed sequence of k, and the vacuum state in superfermion
space |0〉. For this case, Nbasis

m,n is given in section A.6. The phases in the vector |I〉
are chosen to be

ϕm :=
3π

2

∑
k

mk

which means that

eiϕm = e
3πi
2

∑
kmk = (−i)

∑
kmk = (−i)Nm .

With these choices, some helpful relations arise. The application of non-tilde
creation and annihilation operators to the vector |I〉 (see section A.5) yields the
important results

ck |I〉 = −ic̃†k |I〉 and c†k |I〉 = −ic̃k |I〉 . (2.7)

Because operators in original and tilde space anticommute with each other in any
case, for bilinear operators this extends to

fkfl |I〉 = fk(−if̃ †l ) |I〉 = if̃ †l fk |I〉

= if̃ †l (−if̃ †k) |I〉 = f̃ †l f̃
†
k |I〉

where f is either c or c†. More general, this holds for all even-numbered products
of operators.

fkfl . . . fmfn |I〉 = fkfl . . . f̃
†
nf̃
†
m |I〉

= f̃ †nf̃
†
m . . . fkfl |I〉 = f̃ †nf̃

†
m . . . f̃

†
l f̃
†
k |I〉 (2.8)

Notice that in addition to taking the Hermitian conjugate of every operator, the
order of the tilde operators is reversed when comparing it to the original space
operators. These relations will later be helpful in re-writing the Liouville operator
into matrix form.
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Chapter 2. Model and Method

2.4.3 Extension to bosons

To be able to treat molecular vibrations in this formalism, we need to extend it to
also include phonons, i. e. bosonic particles. To the best of our knowledge, this has
not been done before. For the model at hand it is sufficient to introduce a single
boson level.

In the non-augmented space, the bosonic part of the system in second quantization
is given by the basis states |p〉, with p ∈ N0 being the occupation number of the
level. The total state of the system is then the tensor product of the electronic and
the phononic part |m〉f ⊗ |p〉b.

To construct an augmented space for this system, the electronic part is treated
as before, and analogously the bosonic level is duplicated and incorporated into a
new bosonic Fock space. The copy is again denoted with a tilde to distinguish it
from the original level. This bosonic augmented space now has operators with the
commutation rules

[b, b̃ ] = [b†, b̃†] = 0

[b†, b̃ ] = [b, b̃†] = 0

[b, b†] = [b̃, b̃†] = 1

where b† and b are the known bosonic creation and annihilation operators

b† |p, q̃〉 =
√
p+ 1 |p+ 1, q̃〉 and b |p, q̃〉 =

√
p |p− 1, q̃〉 ,

and tilde variants are the analogous operators for the tilde level.

The total augmented space is given by the tensor product of the fermionic and
bosonic Fock spaces, with the basis states |m, ñ〉f ⊗ |p, q̃〉b which will be denoted
as |m, ñ, p, q̃〉.

For the electronic part, the order of operators in the basis states is taken over from
above. Since the tilde and non-tilde bosonic creators commute with each other and
also all electronic operators, the order in which they are specified is not relevant.
Thus, the basis states are

|m, ñ, p, q̃〉 :=
(b†)p√
p!

(b̃†)q√
q!

∏
k

[
(c†k)

nk(c̃†k)
mk
]
|0〉f ⊗ |0〉b

=
∏
k

[
(c†k)

nk(c̃†k)
mk
]
|0〉f ⊗ |p, q̃〉b

where variants of |0〉 denote the vacuum states in the augmented fermionic and
bosonic space.

With phonons, the vector |I〉 is redefined to be

|I〉 :=
∑
m,q

(−i)Nm |m, m̃, q, q̃〉 .
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2.5. Nonequilibrium Green functions

With this, sandwiching a non-tilde operator with an even number of fermionic
operators between 〈I| and |I〉 is still equivalent to taking its trace in non-augmented
space, as can be seen from

〈I|Ô|I〉 =
∑

m,n,p,q

(
iNm 〈m, m̃, p, p̃|

) (
Ôf ⊗ Ôb

) (
(−i)Nn |n, ñ, q, q̃〉

)
=
∑

m,n,p,q

iNm−Nn 〈m, m̃|Ôf |n, ñ〉︸ ︷︷ ︸
〈m|Ôf |n〉δm,n

〈p, p̃|Ôb|q, q̃〉︸ ︷︷ ︸
〈p|Ôb|q〉δp,q

=
∑
m,p

〈m|Ôf |m〉 〈p|Ôb|p〉 = tr(Ô)

where Ô = Ôf ⊗ Ôb with Ôf being the part of the operator acting in the electronic
space, and Ôb acting only on the phonons.

Because the bosons do not interfere with the electronic creation and annihilation
operators, eqs. 2.7 still apply. Additionally, we also get such rules for the bosonic
operators (see Section A.5), which are

b |I〉 = b̃† |I〉 and b† |I〉 = b̃ |I〉 . (2.9)

2.5 Nonequilibrium Green functions

To calculate properties of the impurity, we will use the framework of nonequilibrium
Green functions (Negf). This formalism provides powerful tools to calculate local,
experimentally accessible quantities like e. g. density of states, electron density, and
electrical current, without diagonalizing the full manybody Hamiltonian, which in
practice is very often impossible.

The central objects are two-time correlation functions of field operators, the Green
functions. For the purposes of our model – as we are interested in the electronic
transport properties of the impurity – the operators are electron creators and
annihilators of the level at the impurity c(†)fσ. The Green functions are in general
matrices with the degrees of freedom of their creation and annihilation operators.
To keep the notation simple, we will suppress these indices of the operators in
this section and not explicitly mark the Green functions as matrices. Also, scalar
quantities implicitly become diagonal matrices, wherever appropriate.

Covering the full spectrum of properties and derivations for equilibrium- and
nonequilibrium Green functions is beyond the capacity of this thesis, so we will only
give a brief sketch of the differences of equilibrium- and nonequilibrium formulations,
and state the most important results needed for the implemented method. Details
on the fundamentals of the formalism and full derivations can be found in numerous
introductory books [38, 44–46].
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t+0 t+1

t−2

t0 − iβ

χ = +

χ = −

Re(t)

Im(t)

Figure 2.3: Sketch of the Keldysh contour C. Lines are offset from the axes for better
visibility only. The dashed part is not relevant for the steady state. The
marked times are arbitrary examples to illustrate the contour ordering.
In the contour-ordered sense, t+0 >C t+1 >C t−2 .

Keldysh contour In equilibrium, the starting point is usually the time-ordered
Green function, because of its perturbation expansion. To calculate it, one makes
use of the Gell-Mann and Low theorem [47], and the fact that the wave functions
at t→ −∞ and t→ +∞ differ only by a phase factor. In nonequilibrium, however,
this will in general not be the case, as there is no physical reason for a driven system
to ever return to its ground state, if the driving force is not turned off.

From here on it is best to switch to the Heisenberg picture, where – in contrast
to the Schrödinger picture – instead of the states, the operators evolve with time.
Both pictures are set to coincide at a reference time t = t0, where the driving force
is not yet present. From the basic definition of a two-time correlation function

〈c(t1)c†(t2)〉 = tr
(
ρ̂t0Û

†(t1, t0) c Û(t1, t0)Û †(t2, t0) c† Û(t2, t0)
)

one can see that the system time-evolves from t0 to t1, where c is applied, then
to t2 (the parts back to and from t0 cancel), where c† is applied, and then back
to t0.2 This can be summed up as a “round-trip”, starting from some initial time,
time-evolving in the positive direction and then back to the initial time, applying
the operators in appropriate places along the way. Such a path is called a Keldysh
contour C.

Often times, one wants to start from a density operator in thermal equilibrium at
t0. This can be achieved by also evolving the system along the imaginary time axis
fromt = t0 to t = t0 − iT−1 which then adds a third branch to the Keldysh contour.
We are, however, only interested in steady state properties, i. e. times t→∞, or,
equivalently, t0 → −∞. In this case, initial correlations are usually lost and this
so-called Matsubara branch can be ignored.

2Note that Û contains the full Hamiltonian, so in most cases direct evaluation of the expression
above is not possible.
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Contour ordering The concept of the Keldysh contour leads to the introduction
of the contour-ordered Green function

G(tχ1
1 , tχ2

2 ) = −i 〈T̂C [c(tχ2
2 )c†(tχ1

1 )]〉 = −i tr
(
ρ̂t0 T̂C [c(t

χ2
2 )c†(tχ1

1 )]
)
.

The additional index χ ∈ {+,−} defines whether the time resides on the contour
part of increasing (+) or decreasing (−) time. The contour-ordering operator T̂C
sorts its arguments in the sequence they appear on the Keldysh contour, so all
“+” times before all “−” times, two “+” times chronologically, and two “−” times
antichronologically. It can be shown [38, p. 68] that G(tχ1

1 , tχ2
2 ) has a perturbation

expansion analogous to the time-ordered Green functions in equilibrium. Therefore,
the Dyson equation [48]

G(tχ1
1 , tχ2

2 ) = G0(tχ1
1 , tχ2

2 ) +

∫
C
G0(tχ1

1 , t′)Σ(t′, t′′)G(t′′, tχ2
2 )dt′dt′′

where G0 is the (so-called bare) Green function of the noninteracting system
and Σ is the self-energy,3 also holds for the contour-ordered Green functions in
nonequilibrium [49].

There are four different combinations for χ1 and χ2, and depending on those, one
can define different Green functions, which are all contained in G.

Gc(t1, t2) = −i 〈T̂ [c(t2)c†(t1)]〉 χ1 = + χ2 = +

G>(t1, t2) = −i 〈c(t2)c†(t1)〉 χ1 = + χ2 = −

G<(t1, t2) = +i 〈c†(t1)c(t2)〉 χ1 = − χ2 = +

Gc̄(t1, t2) = −i 〈 ˆ̃T [c(t2)c†(t1)]〉 χ1 = − χ2 = −

The time-ordering (T̂ ) and anti-time-ordering operator ( ˆ̃T ) are the same as intro-
duced in section 2.2.1, and sort earliest times to the right and left, respectively,
accounting for any possible fermi signs. G> and G< are called the greater and
lesser, and Gc and Gc̄ are the time-ordered (causal) and anti-time-ordeded (anti-
causal) Green functions, respectively. The two latter can be constructed from the
two former by introducing appropriate Heaviside step functions Θ. Furthermore,
G>+G< = Gc+Gc̄, so one of the functions can be replaced by a linear combination
of the others. It is convenient to choose

GR(t1, t2) = Θ(t2 − t1)(G>(t1, t2)−G<(t1, t2))

GA(t1, t2) = Θ(t1 − t2)(G<(t1, t2)−G>(t1, t2))

GK(t1, t2) = G>(t1, t2) +G<(t1, t2)

as linearly independent functions, where GR is the retarded, GA is the advanced,
and GK is the Keldysh Green function.

3Like G, Σ is a matrix in the degrees of freedom of the creators and annihilators, and their
products are matrix products in the usual sense.
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Langreth theorem For the steady state, the contour integrals of the products
appearing in the Dyson equation C(t1, t2) =

∫
C A(t1, t

′)B(t′, t2)dt′ can – by analytic
continuation of the integrand on the complex plane – be expressed by integrals on
the real time axis, using the definitions of greater and lesser Green functions [50].
These relations, known as Langreth theorem, are

C
>
<(t1, t2) =

∫ ∞
−∞

AR(t1, t
′)B

>
<(t′, t2) +A

>
<(t1, t

′)BA(t′, t1)dt′

CK(t1, t2) =

∫ ∞
−∞

AR(t1, t
′)BK(t′, t2) +AK(t1, t

′)BA(t′, t1)dt′

CA,R(t1, t2) =

∫ ∞
−∞

AA,R(t1, t
′)BA,R(t′, t2)

which immediately generalize to multiple products by repeated application.

Matrix form The Langreth theorem can be very elegantly implemented by
casting the advanced, retarded, and Keldysh Green function into a matrix of the
form

G(t1, t2) :=

(
GR(t1, t2) GK(t1, t2)

0 GA(t1, t2)

)
where the usual matrix product rules apply, and products of the elements of
such a matrix A(t1, t2) and B(t1, t2) implicitly mean an integration of the form
C(t1, t2) =

∫
A(t1, t

′)B(t′, t2)dt′.

Frequency domain In the steady state, by definition, the system is not changing
with time. Therefore, the Green functions can only depend on the time difference
t = t2 − t1. With the definition

G(t) = G(t2 − t1) := G(0, t2 − t1)

they become one-variable functions. Of course, the expectation values are now to
be evaluated with the steady-state density operator ρ̂ss. Furthermore, they can be
transformed into frequency domain by a Fourier transformation. In this context,
the prefactor of (2π)−1 is usually attributed to the inverse transformation, i. e. no
prefactor appears from time- to frequeny domain.

G(ω) = F [G(t)] =

∫ ∞
−∞

G(t)eiωtdt
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Very conveniently, the convolution-type products defined above become regular
multiplications in frequency space.

C(ω) = F [C(t)] =

∫ ∞
−∞

A(t′)

∫ ∞
−∞

B(t− t′)eiωtdt︸ ︷︷ ︸
eiωt′F [B(t)]

dt′

=

∫ ∞
−∞

A(t′)eiωt
′
dt′︸ ︷︷ ︸

F [A(t′)]

B(ω) = A(ω)B(ω)

Consequently, the products in the Dyson equation

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω) (2.10)

become regular matrix products of objects with the structure

G(ω) =

(
GR(ω) GK(ω)

0 GA(ω)

)
. (2.11)

The explicit forms of these Green functions in the frequency domain in terms of
the Hamilton eigenstates and energies are given in sec. A.4. From these it can be
seen that GA(ω) = GR†(ω), such that it is sufficient to know one of the two.

Fluctuation-dissipation theorem In equilibrium, these Green functions are
all linked together by the fluctuation-dissipation theorem [38, p. 45]. They can be
expressed in terms of the so-called spectral function

A(ω) =
i

2π
[GR(ω)−GA(ω)] =

i

2π
[G>(ω)−G<(ω)] = − 1

π
Im(GR(ω)) (2.12)

whose diagonal elements represent the local density of states. For systems in thermal
equilibrium, the relations

G<(ω) = 2πif(ω;T, µ)A(ω)

G>(ω) = −2πi[1− f(ω;T, µ)]A(ω)

hold, where

f(ω;T, µ) :=
(
e
ω−µ
T − 1

)−1

is the Fermi function at temperature T with the chemical potential µ. Since all
other Green functions can be expressed by means of G><(ω), there is only one
independent function in equilibrium. These expressions also show the interesting
propterty that G<(ω) contains the occupied states, while G>(ω) represents the
empty states.

In nonequilibrium, however, the distribution of electrons is not simply given by
the Fermi function, but instead is not derivable from first principle. Therefore, to
describe the physics of the model, two functions are required, of which G><(ω) in
our case is the most convenient choice.
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Hybridization function The electronic Green function of the noninteracting
impurity, i. e. the system with the Hamiltonian

Ĥ =
∑
σ

εf c
†
fσcfσ +

∑
k,α,σ

εkαc
†
kασckασ +

∑
k,α,σ

tα

(
cfσc

†
kασ + c†fσckασ

)
with the parameters mentioned in the introduction, is given by [38, p. 191]

G−1
0 (ω) = g−1

0 (ω)−∆(ω) (2.13)

where g0(ω) is the Green function of the decoupled noninteracting impurity, and
the so-called hybridization function is given by

∆(ω) =
∑
α

t2αgα(ω)

with gα(ω) being the Green function of the noninteracting lead α. Because the
disconnected leads are in thermal equilibrium, their Green functions are completely
determined by their density of states, temperature, and chemical potential.

In the spin basis, gR
0 and gK

0 are diagonal. The retarded Green function is given by
gR

0 = (ω − εf + i0+)−1 (cf. eq. A.1). The Keldysh part (eq. A.3) for a single spin
reduces to

gK
0 = 2πiδ(ω − εf )

(
pk|〈ψk|1〉|2 − pk|〈ψk|0〉|2

)
where |0〉 and |1〉 are the empty and filled states of the impurity, respectively, and
pk and |ψk〉 are the weights and states in the density operator. Obviously, this
expression depends on the initial configuration of the impurity. In most cases,
however, this is not relevant for the coupled Green function in the steady state, with
the argument from above that initial correlations will be lost in the limit t→∞.

This can also be seen by inverting eq. 2.13. In general, components of the inverse
of a Keldysh structure as defined in eq. 2.11 are given by(

G−1
)R,A

=
(
GR,A

)−1 and
(
G−1

)K
= −

(
GR
)−1

GK
(
GA
)−1

as can easily be checked by simple multiplication. Substituting eq. 2.13 in for
(G−1)K and multiplying from the left and right by GR

0 and GA
0 yields

GK
0 = −GR

0

((
g−1

0

)K −∆K
)
GA

0 = GR
0

(
gR

0

)−1
gK

0

(
gA

0

)−1
GA

0 +GR
0 ∆KGA

0 .

Using GA = GR†, the first summand is

|gR
0 −∆R|−2 · 2πi 1

π

0+

(ω − εf )2 + (0+)2︸ ︷︷ ︸
δ(ω−εf )

[(ω − εf )2 + (0+)2]

which can be neglected if Im[∆R(ω)] 6= 0 at all zeros of (ω − εf − Re[∆R(ω)]),
because then |gR

0 − ∆R|−2 = [(ω − εf − Re[∆R(ω)])2 + (0+ − Im[∆R(ω)])2]−1 is
finite and the whole term is proportional to 0+.
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2.6. Auxiliary master equation approach

Current The current across the impurity can be expressed in terms of local Green
functions by the Meir-Wingreen formula [51], of which we use a symmetrized version
suggested by Haug and Jauho [38, p. 190].

J =
i

4π

∫
tr
(
[γL(ω)− γR(ω)]G<(ω)

+ [f(ω;T, µL)γL(ω)− f(ω;T, µR)γR(ω)][GR(ω)−GA(ω)]
)
dω (2.14)

In this expression, γL,R = −2t2L,R Im(gR
L,R) is proportional to the imaginary part

of the retarded hybridization function of lead L or R, f is the Fermi function as
defined above, and µL,R is the chemical potential of each lead.

2.6 Auxiliary master equation approach

In determining the full interacting (so-called dressed) Green function at the impurity,
the most difficult part is usually finding the self-energy. The auxiliary master
equation approach (Amea) [28, 34] provides an approximate, non-perturbative
method do accomplish this.

By combining eq. 2.13 and the Dyson equation 2.10, the Green function at the
impurity is given by

G−1(ω) = g−1
0 −∆− Σ.

The vital point to recognize is that the effect of the environment on the impurity’s
Green function is completely determined by the hybridization function. This gives
rise to the idea of replacing the inifinite physical leads with a numerically treatable,
finite open quantum system, whose hybridization function approximates that of the
physical system reasonably well.

Such a finite open – so-called auxiliary – system is realized by considering only
the isolated impurity and connecting it to NB artificial electronic bath sites and a
continuous environment as introduced in sec. 2.3. The Lindblad equation describing
this system is defined in a slightly different form from above.

ˆ̂Lρ̂ = −i[Ĥaux, ρ̂] +

NB∑
k,l=0

∑
σ

[
Γ

(1)
lk

(
2 ckσ ρ̂ c

†
lσ − {ρ̂, c

†
lσckσ}

)
+ Γ

(2)
lk

(
2 c†lσ ρ̂ ckσ − {ρ̂, ckσc

†
lσ}
)]

(2.15)

All indices except f now number the states localized at the bath sites, while f
still stands for the single-electron state located at the impurity. The auxiliary
Hamiltonian is given by the sum of that of the isolated impurity and the hoppings
in the bath sites.

Ĥaux =
∑
k,l

∑
σ

Ekl c
†
kσclσ +

∑
σ

λ(b† + b) c†fσcfσ + Uc†f↑cf↑c
†
f↓cf↓ + ωb b

†b (2.16)
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≈

Figure 2.4: Sketch of the mapping from the infinite physical system with an arbitrary
density of states (left) to the auxiliary system with NB = 6 (right).4 The
grey circle segment represents the continuous environment.

The parameters of the auxiliary system are the three matrices E, Γ(1), and Γ(2),
where the latter two contain complex numbers, and the former is chosen to be real
and tridiagonal without loss of generality [52]. The hybridization can be calculated
by considering just the noninteracting part of the Hamiltonian, i. e. only the term
containing E. The bare Green functions are given by [34]

GR
0 (ω) = (ω − E + iΛ) and GK

0 = 2iGR
0 ΩGA

0

where Λ = Γ(2) +Γ(1) and Ω = Γ(2)−Γ(1). The local noninteracting auxiliary Green
functions at the impurity are then the components with indices (f, f) of GR

0 and
GK

0 . With these, the hybridization can be calculated using eq. 2.13.

The parameter matrices can now be chosen such that the hybridization of the
auxiliary system approximates the hybridization of the physical system as closely
as possible.

∆aux(ω) ≈ ∆phys(ω)

For a reasonably small number of NB, the interacting auxiliary system can be
solved numerically, which means that the full Green function at the impurity is
computable. Therefore, from the Dyson equation of the auxiliary system

G−1
aux = g−1

0,aux −∆aux − Σaux

the auxiliary self energy can be determined. This serves as an estimation for the
physical self energy

Σphys ≈ Σaux

which can be used to approximate the dressed physical Green function using the
Dyson equation. The quality of the result depends of course on how closely the
auxiliary hybridization reproduces the physical one. Naturally, the approximation
becomes better for bigger NB, and is exact for NB →∞ [52]. To characterize an
auxiliary setup, we will use the total number of sites, which is N = NB + 1.

4The drawing on the right is incomplete insofar as there are also dissipative terms in the
Liouville operator that take electrons from one site and put it on another (like a bath-assisted
hopping).
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2.6. Auxiliary master equation approach

2.6.1 Superfermionic representation

With the superfermion formalism established in section 2.4, the Liouville superop-
erator of the auxiliary system can be re-written into a regular operator.

By multiplying it from the right with |I〉, eq. 2.15 becomes

˙̂ρ |I〉 = ˙|ρ〉 =
ˆ̂Lρ̂ |I〉 =

ˆ̂LHρ̂ |I〉+
ˆ̂LDρ̂ |I〉 . (2.17)

Considering the summands seperately, one finds (cf. sec. A.7)

ˆ̂LHρ̂ |I〉 = −i[Ĥaux, ρ̂] |I〉 = −i(Ĥaux − ˆ̃Haux) |ρ〉

for the Hermitian part, with Ĥaux as in eq. 2.16 and
ˆ̃Haux =

∑
k,l

∑
σ

Ekl c̃
†
lσ c̃kσ +

∑
σ

λ(b̃+ b̃†) c̃†fσ c̃fσ + Uc̃†f↓c̃f↓c̃
†
f↑c̃f↑ + ωb b̃

†b̃.

Similarly, the dissipative part becomes (cf. sec. A.7)

L̂D |ρ〉 =
∑
k,l

∑
σ

[
Γ

(1)
lk

(
−2i ckσ c̃lσ − c̃

†
kσ c̃lσ − c

†
lσckσ

)
+

+ Γ
(2)
lk

(
−2i c†lσ c̃

†
kσ − ckσc

†
lσ − c̃lσ c̃

†
kσ

)]
|ρ〉 . (2.18)

Because in our case the Liouvielle operator is time-independent, the time evolution
of |ρ〉 is now given by

|ρ(t)〉 = eL̂t |ρ(0)〉 .

In this formalism, the problem of determining the steady state has been reduced to
finding an eigenvector of L̂, because in the steady state, the density operator – and
thus |ρ〉 – is stationary. From

∂

∂t
|ρss〉 = L̂ |ρss〉

!
= 0

follows that the steady state vector |ρss〉 is the right eigenvector of L̂ with eigenvalue
0. The corresponding left eigenvector (which must exist, see sec. A.10), can be
found by taking the time derivative of the density operator’s trace. It must vanish,
because the trace is statically one.

d

dt
tr(ρ̂) = 〈I| ˙̂ρ|I〉 = 〈I|Lρ̂|I〉 = 〈I|L|ρ〉 !

= 0

This must be true for any density vector, so 〈I| L̂ = 0.

Another useful property is that the eigenvalues ηk of L̂ must all have Re(ηk) ≤ 0,
because eL̂t |ρ〉 is a valid density vector for any t, and exponentially growing
solutions could not preserve the trace. Furthermore, L̂ commutes with the operator
δ̂n := c†fcf − c̃

†
f c̃f . Since δ̂n |I〉 = 0, the steady state must also satisfy δ̂n |ρss〉 = 0.
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2.6.2 Green functions

Due to the Markovian nature of the auxiliary system, special care must be taken
in order to correctly calculate the Green functions. They can be obtained using
the quantum regression theorem [35, 53]. It states that the time evolution of Âρ̂,
with an arbitrary operator Â, is given by the same quantum dynamical semigroup
as that of ρ̂. The requirement for its validity is that all assumptions made before
about the universe density operator ρ̂u also hold for Âρ̂u. One must be extra careful
when dealing with fermionic operators, as some terms in the Liouville operator in
the non-augmented space get negative signs [54]. In the superfermion formalism,
however, these signs cancel and the time evolution becomes

∂

∂t
|ρA(t)〉 = L̂ |ρA(t)〉

with |ρA(t1)〉 := Â |ρ(t1)〉. This again has the formal solution

|ρA(t)〉 = eL̂(t−t1) |ρA(t1)〉

with the important restriction that t > t1, because the Liouvillian only propagates
forwards in time.

From the original definition of G><(t) one can see that G><(t) = −G><
†
(−t). This

can be used to construct the Green function for all times from forward propagation
only, because in the steady state 〈c†c(−t)〉 = 〈c†(t)c〉. For G> the conditions are
obvious, for G< one must consider that it contains a propagation forwards in time
only for negative arguments.

G>(t) = Θ(t)G>(t)−Θ(−t)G>†(−t)

G<(t) = Θ(−t)G<(t)−Θ(t)G<
†
(−t)

(2.19)

The transformation to the frequency domain is very similar to that of GR and
GA (see sec. A.8), with the only difference worth mentioning being that no i0+

is required, because after applying c or c† to |ρss〉, the resulting vector has zero
overlap with the steady state and is therefore – as mentioned above – exponentially
damped anyway. The explicit results for the impurity are

G>σσ(ω) = 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉 − 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉†

G<σσ(ω) = 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉 − 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉† .

The retarded and advanced Green functions can be pieced together from the different
Θ(±t) parts of G><(t), and the Keldysh Green function is again the sum of G><(t).

GA
σσ = 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉+ 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉†

GR
σσ = 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉+ 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉†

GK
σσ = 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉 − 〈I|cfσ(ω − iL̂)−1c†fσ|ρss〉†

+ 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉 − 〈I|c†fσ(ω + iL̂)−1cfσ|ρss〉†

(2.20)
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2.7. Unitary transformations

2.7 Unitary transformations

To a quantum mechanical system one can always apply a unitary transformation
that will not change the physics of the problem. Such a transformation consists of
a unitary operator Û , i. e. Û† = Û−1. Operators then transform like

Ô 7→ Û†ÔÛ =: Ô′

and the transformed vectors are given by

|ψ〉 7→ Û† |ψ〉 =: |ψ′〉 .

This way, whenever products of transformed operators with each other or with state
vectors appear, the transformations in between them cancel out, since

Ô′P̂ ′ |ψ′〉 = Û†ÔÛ Û†P̂ Û Û† |ψ〉 = Û†(ÔP̂ |ψ〉).

Furthermore, the transformation matrices will multiply to 1 whenever expectation
values or traces are calculated, because 〈ψ′|φ′〉 = 〈ψ|Û Û†|φ〉 = 〈ψ|φ〉, as well as
tr(ρ̂′Ô′) = tr (Û†ρ̂ Û Û†ÔÛ) = tr (Û Û†ρ̂ Ô) = tr (ρ̂ Ô), due to the invariance of the
trace under cyclic permutation of its argument.

2.8 Lang-Firsov transformation

In the case of eqs. 2.1 and 2.2, a very useful transformation was proposed by Lang
and Firsov [39], which takes the form

Û = eŜ (2.21)

with the anti-Hermitian operator

Ŝ =
∑
σ

γc†fσcfσ(b† − b) (2.22)

where γ = − λ
ωb
. Applying this transformation to the original Hamiltonian will

remove the electron-phonon coupling term, albeit at the expense of other terms
entering the equation.

We can use the same transformation in the auxiliary system, also with the intent of
removing the electron-phonon coupling. Multiplying eq. 2.6 from the left and right
by e−Ŝ and eŜ , respectively, yields

˙̄̂ρ := e−Ŝ ˙̂ρ eŜ = e−Ŝ
ˆ̂Lρ̂ eŜ = e−Ŝ

ˆ̂LHρ̂ e
Ŝ + e−Ŝ

ˆ̂LDρ̂ e
Ŝ

where a bar means the transformed operator as in ˆ̄O := e−ŜÔeŜ .
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The first summand is

e−Ŝ
ˆ̂LHρ̂ e

Ŝ = −ie−Ŝ [Ĥaux, ρ̂] eŜ

= −i
(
e−ŜĤaux e

Ŝe−Ŝ︸ ︷︷ ︸
1

ρ̂eŜ − e−Ŝ ρ̂ eŜe−Ŝ︸ ︷︷ ︸
1

Ĥauxe
Ŝ
)

= −i
(

ˆ̄Haux ˆ̄ρ− ˆ̄ρ ˆ̄Haux

)
= −i[ ˆ̄Haux, ˆ̄ρ]

which means that the Hamiltonian governing the Hermitian part of the time
evolution of the transformed density operator ˆ̄ρ is given by the transformed auxiliary
Hamiltonian e−Ŝ Ĥaux e

Ŝ .

In the second summand, however, the transformation only affects ρ̂. This comes
about because Ŝ commutes with all operators except b, cf , and Hermitian conjugates
thereof. In order for the bath hybridization function to have the correct asymptotic
behavior, the coefficients Γ

(1,2)
ij must vanish whenever one of the indices matches

the index f of the impurity [52, p. 7]. Therefore, in the term

e−Ŝ
ˆ̂LDρ̂ e

Ŝ

the unitary operators can be swapped to positions left and right of the density
operator, which gives

e−Ŝ
ˆ̂LDρ̂ e

Ŝ =
∑
k,l

∑
σ

[
Γ

(1)
lk

(
2 ckσ ˆ̄ρ c†lσ − { ˆ̄ρ, c

†
lσckσ}

)
+ Γ

(2)
lk

(
2 c†lσ ˆ̄ρ ckσ − { ˆ̄ρ, ckσc

†
lσ}
)]

for the transformed dissipative part. So in total, the time derivative of the trans-
formed density operator is

˙̄̂ρ = −i[ ˆ̄Haux, ˆ̄ρ] +
∑
k,l

∑
σ

[
Γ

(1)
lk

(
2 ckσ ˆ̄ρ c†lσ − { ˆ̄ρ, c

†
lσckσ}

)
+ Γ

(2)
lk

(
2 c†lσ ˆ̄ρ ckσ − { ˆ̄ρ, ckσc

†
lσ}
)]
. (2.23)

The calculation of ˆ̄Haux is straightforward, and is given in its entirety in section
A.9, with the result being

ˆ̄Haux =
∑
k 6=f
l 6=f

∑
σ

Ekl c
†
kσclσ + Uc†f↑cf↑c

†
f↓cf↓ + ωb b

†b− 1

ωb

(∑
σ

λc†fσcfσ

)2

+
∑
kσ

(
Ekfc

†
kσcfσe

− λ
ωb

(b†−b)
+ Efkc

†
fσe

λ
ωb

(b†−b)
ckσ

)
. (2.24)
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2.8. Lang-Firsov transformation

The transformation removes the electron-phonon coupling term as intended, but re-
introduces such a coupling in the creation and annihilation operators for electrons at
the impurity, which are of the form c̄f = cfe

γ(b†−b). Additionally, a term effectively
attracting electrons onto the impurity enters, reducing the onsite energy and the
Coulomb repulsion.

The changes have a rather intuitive interpretation. The operator Ŝ is proportional
to the momentum operator p̂ of the harmonic oscillator, which is the generator for
a spatial shift. Therefore, exp(Ŝ) performs a shift in x. The parameter γ is chosen
such that the magnitude of the shift is exactly that of the charged parabolas drawn
in fig. 2.1. Furthermore, the associated energy shift ∆E, also given in sec. A.1,
now turns up explicitly in the Hamiltonian.

Consequently, when charge is created or annihilated at the impurity, the x-position
of the parabola is adjusted accordingly by c̄ = ceγ(b†−b) and its Hermitian conjugate,
so that the minimum is always centered around zero. Without transformation, the
eigenstates of the shifted oscillators must be produced by linear combinations of
the states of the unshifted oscillator. This means that, if the shift is large, high
bosonic occupation numbers will be present in the steady state, as they are needed
to make up the states shifted off to the side. For the implementation this property
will play a crucial role, as lower occupation numbers mean a smaller Fock space.

From here, the same transition to superfermion space as in section 2.6.1 can be
made, giving the analogous equation

˙|ρ̄〉 := ˙̄̂ρ |I〉 = −i( ˆ̄Haux −
ˆ̄̃
Haux) |ρ̄〉+ L̂D |ρ̄〉

with L̂D from eq. 2.18, ˆ̄Haux from eq. 2.24, and

ˆ̄̃
Haux =

∑
k 6=f
l 6=f

∑
σ

Ekl c̃
†
lσ c̃kσ + Uc̃†f↓c̃f↓c̃

†
f↑c̃f↑ + ωb b̃

†b̃− 1

ωb

(∑
σ

λc̃†fσ c̃fσ

)2
+

+
∑
kσ

(
Ekf c̃

†
fσ c̃kσe

λ
ωb

(b̃†−b̃)
+ Efk c̃

†
kσ c̃fσe

− λ
ωb

(b̃†−b̃)
)
.
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Chapter 3

Implementation

This chapter will focus on the technical aspects of how the model was treated
numerically. Some details on how the states and operators were implemented and
the algorithms used will be given. The considerations about efficiently storing
states and operators in computer memory, which were critical to the development
of this work, are original to the best of our knowledge. A very important aspect
that caused some problems which we were able to solve is the numerical treatment
of unitary transformations highlighted in section 3.2. The presented algorithms
discussed in sections 3.3 and 3.4 are of course known and have also been used in
combination with Amea before [34], but their suitability for this specific problem
had to be investigated.

3.1 Code basics

The code to treat the model numerically was mostly written in Matlab, with
resource-intense calculations not involving matrix-vector products implemented in
C (using the Mex interface). This section gives some short comments on the basic
aspects of the implementation.

Binary representation of states A state in the superfermion representation
consists of 2N binary numbers – N for non-tilde and N for tilde-fermions – and the
occupations of the tilde- and non-tilde bosonic levels, which – in principle – could
be arbitrarily high. So one must first decide to cap the occupation number for
bosons at some value. Then a state consists of 2N binary numbers and 2 numbers
from 0 to the maximum occupation number.

To keep such a state |m, ñ, p, q̃〉 in memory efficiently, we first calculate the number
of bits needed to store the maximum occupation number for the bosonic levels
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Nb,max, which is Nb,bits = dlog2(Nb,max + 1)e. Then, a 64 bit unsigned integer
(uint64 in Matlab, uint64_t in C) is split up as follows. The first Nb,bits bits on
the least significant bit side are used to store the occupation of the non-tilde boson
level, the next Nb,bits bits store the occupation of the tilde bosonic level. Going
further from the LSB- to the MSB-side, the occupations of the electronic levels are
each stored using a single bit in the order n1↑, m̃1↑, n1↓, m̃1↓, n2↑, m̃2↑, n2↓, . . .

· · · p · · ·· · · q̃ · · ·m1↑ñ1↑m1↓ñ1↓m2↑· · ·

Nb,bitsNb,bits

Figure 3.1: Representation of a state in memory. The whole block is 64 bits wide,
each section represents one bit.

Fock space Most importantly, one does not need to consider the full Fock space
of the problem. As we are interested in the steady state, and it has been shown in
sec. 2.6.1 that this vector satisfies c†fcf − c̃

†
f c̃f |ρss〉 = δ̂n |ρss〉 = 0, it is sufficient to

calculate the matrix representation of L̂ for basis states |ϕ〉, where δ̂n |ϕ〉 = 0, in
order to find the steady state.

When calculating Green functions, this condition changes to δ̂n |ρ〉 = ± |ρ〉, depend-
ing on whether a creation or annihilation operator was applied to the steady state,
because one non-tilde electron was removed or added.

Sparse Liouville operator The matrix representation of the Liouville operator
in the superfermion space – even if only the relevant sector mentioned before is
considered – is very sparse. Consequently, one must take advantage of this property
by using the compressed column storage (the default sparse format in Matlab).
This decreases the speed of matrix-vector multiplications on multicore processors
siginficantly, which is why we parallelized this operation using Mex.

Auxiliary parameters To calculate the parameters Eij , Γ
(1)
ij , and Γ

(2)
ij , we used

code developed by Dorda et al. [52]. The algorithm implements parallel tempering
[55] to minimize the cost function given by

χ2 =
∑

α∈{R,K}

∫ ∞
−∞

W (ω)
∣∣∣∆α

aux

(
ω;Eij ,Γ

(1),Γ(2)
)
−∆α

phys(ω)
∣∣∣2 dω

which is a measure of the deviation from the auxiliary hybridization to the physical
one. The weighting function W (ω) can be used to favour smaller deviations in the
central region.
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3.2. Numerical Lang-Firsov transformation

3.2 Numerical Lang-Firsov transformation

As derived before, the Lang-Firsov transformation removes the coupling term,
but modifies the electronic creation and annihilation operators on the impurity
like c̄f = eγ(b†−b)cf . The matrix elements of eγ(b†−b) can – in principle – be
calculated analytically. However, when used in a basis with a cutoff for the bosonic
occupation number, this operator with the elements Lan

mn = 〈m|eγ(b†−b)|n〉b (where
it is sufficient to consider the purely bosonic basis) is no longer unitary, which has
some undesired consequences. Applying a transformed creation or annihilation
operator to a state now effectively lowers its norm, which, in turn, leads to e. g. the
spectral function no longer being normalized.

To avoid this, we can, instead of using Lan in the trucated basis, construct an opera-
tor that is in fact unitary for any cutoff. First, we evaluate Bmn = 〈m|γ(b† − b)|n〉b,
and only then numerically exponentiate this matrix to L := exp(B). This operation
is computationally very cheap, as the bosonic cutoff is usually on the order of 10–100.
Because B is anti-Hermitian even in the truncated basis, L is always unitary.

Consequently, the matrix for the transformed annihilation operator at the impurity
becomes c̄f = cf ⊗ L, where cf is the matrix representation of the annihilation
operator in the electronic basis.

3.3 Steady state calculation

To find the steady state vector |ρss〉, one could in principle diagonalize L̂ to find
the eigenvector with eigenvalue 0. But, because the Fock space is very large, this
method is not feasible in most cases. Instead, we can use the properties of the time
evolution of a state in the auxiliary system.

The density vector at arbitrary times is given by

|ρ(t)〉 = eL̂t |ρ(0)〉 . (3.1)

As mentioned before, the Liouville operator preserves trace, hermiticity, and semi-
positive definiteness by construction. Using the spectral theorem, the time evolution
becomes

|ρ(t)〉 =
∑
m

eηmt |mr〉 〈ml|ρ(0)〉 , (3.2)

where |mr〉 are the right-sided, and |ml〉 are the left-sided eigenvectors of L̂ with
eigenvalues ηm. One can see that all eigenvalues must have Re(ηm) ≤ 0, otherwise
the properties of |ρ(t)〉 could not be conserved. Because we assume the physical
system to have a unique steady state, all except one eigenvector have Re(ηm) < 0
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and are exponentially damped. Therefore, for large t, any density vector |ρ(t)〉
(except for cases where 〈ρ(0)|ρss〉 = 0) approaches the steady state.

lim
t→∞
|ρ(t)〉 = |ρss〉

Unfortunately, direct calculation of the time evolution would require the exponenti-
ation of a matrix with dimensions as large as the Fock space, which cannot be done
numerically. Instead, we need to rely on an approximative algorithm. From eq. 3.2
one can see that for a small time interval ∆t the most important summands are
the ones where the |ηm| are large, because they either oscillate or decay the fastest.
It is therefore advisable to use a method which approximates large-magnitude
eigenvalues and their associated eigenvectors.

A very simple candidate would be the so-called von Mises iteration [56], which
uses the following simple principle. If a diagonalizable matrix A is multiplied by
a random normalized vector x, and the result is then again normalized, the new
vector has the form

Ax

‖Ax‖
=

1

‖Ax‖
SDS−1x =

1

‖Ax‖
∑
k

rk ηk (l†k x)

where S contains the right-sided eigenvectors rk in its columns, S−1 has the left-
sided eigenvectors l†k in its rows and D is a diagonal matrix with the corresponding
eigenvalues ηk. The result is a sum of right-sided eigenvectors, weighted by the
overlap of the left-sided eigenvectors with the original vector, and, more importantly,
the associated eigenvalues of the eigenvectors. So within x the proportion of the
largest-eigenvalue eigenvector, with which x had finite overlap, has increased.

Thus, doing this process iteratively, with some start vector x(0) := x, the sequence

x(n) =
Ax(n−1)∥∥Ax(n−1)

∥∥ (3.3)

will converge to the right-sided eigenvector associated with the largest eigenvalue,
given that the overlap of x(0) with this eigenvector is non-zero.

From this result, one might expect the N largest eigenvalues to be approximated in
the projection of A onto the space spanned by the first N iterations of this process.
The subspace KN (A,x) := span{x, Ax, A2x, . . . , AN−1x} is called the N -th order
Krylov space of A with start vector x [57]. A method using such a Krylov space to
approximate the eigenvalues and eigenvectors of a non-Hermitian matrix was first
described by Arnoldi [29] and is therefore often called Arnoldi iteration.

Even though the Arnoldi iteration only approximates the right-sided eigenvectors
of L̂, is a suitable method to find the steady state, because we only need those in
order to evaluate 3.1.
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3.3. Steady state calculation

Working in KN (A,x), is most convenient with an orthonormal basis, which generally
does not directly originate from eq. 3.3. Therefore, the Arnoldi iteration usually
uses a stabilized Gram-Schmidt orthogonalization to extract such a basis from
{x, Ax, A2x, . . . , AN−1x}.

It can also happen that depending on the starting vector, it might not be possible to
produce N linearly independent vectors by repeatedly applying A, in which case K
is an invariant subspace and eq. 3.1 becomes exact in this basis. The total Arnoldi
algorithm works as follows.

function Arnoldi(A, x, N)
V ← 0, k ← 1, x0 ← x/‖x‖
while k ≤ N do . Loop over all vectors to produce
xk ← A · xk−1
for l = 0, (k − 2) do . Loop for Gram-Schmidt

Vl,k−1 ← x†l · xk . Overlap with previous basis vector
xk ← xk − Vl,k−1 · xl

Vk,k−1 ← ‖xk‖
if Vk,k−1 = 0 then . Have we found an invariant subspace?

N ← k . We can produce only k vectors
else
xk ← xk/Vk,k−1

k ← k + 1

return V ,N,x0, . . . ,xN−1

Algorithm 1: The Arnoldi iteration.

Note that to produce xk it is sufficient to apply A to xk−1, instead of Ak−1 to x0,
because span{x0, Ax0, A

2x0, . . .} = span{x0, a0x0 + a1x1, A(a0x0 + a1x1), . . .} =
span{x0,x1, Ax1, . . .}.

It is convenient to define a matrix P := (x0,x1, . . . ,xN−1), which has the new
basis vectors in its columns. The projector onto KN is then PP †. The projection
of A can therefore be written as AK = PP †APP † = PV P † with V := P †AP . The
elements of the matrix V are easily calculated as

Vlk = x†lAxk = x†l

(
‖Axk‖xk+1 +

k∑
m=0

(x†mAxk)xm

)

= ‖Axk‖x†lxk+1︸ ︷︷ ︸
δl,k+1

+
k∑

m=0

(x†mAxk)x
†
lxm︸ ︷︷ ︸
δl,m

, (3.4)

which already come up during the construction of the basis. Because this expression
is zero whenever k + 1 < l, V has upper Hessenberg form.
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To evaluate eq. 3.1 using this algorithm, we choose A ≡ L, the Liouville matrix
in our established manybody basis, and x ≡ ρ0, the density vector at t = 0. By
construction, the density vector in the Krylov basis is P †ρ0 = (‖ρ0‖, 0, 0, . . . )T.
With this, and P †P = 1, eq. 3.1 becomes

ρ(t) = etLρ0 ≈ etLKρ0 = etPV P
†
ρ0 = PetV P †ρ0

where V is now only an N ×N matrix, which we can choose to be small, so etV is
a numerically tractable operation.

How large t can be chosen without too much deviation from the exact solution,
depends on the number of Krylov vectors N . Or, equivalently, how many Krylov
vectors are needed depends on how big the timestep t should be. In both cases, a
good criterion to inspect is the coefficient vector of the result in the Krylov space
c := etV P †ρ0. Naturally, from the construction of the Krylov space, the magnitude
of the elements in c = (c1, c2, . . . , cN )T will become negligibly small at some index
k, such that cj � ‖c‖ for j ≥ k. In the ideal case, k is equal to N , which means
all but one Krylov vectors contribute to the result, so no computational time was
wasted creating too many vectors, and the result is still accurate.

To evaluate the steady state, we decided to fix the number of Krylov vectors at
N = 20 and adjust the timestep accordingly, such that the relative weight of the
last coefficient is negligible. We chose this limit to be

cN
‖c‖

!
< εc. (3.5)

A reliable choice was εc = 10−10. One needs to be careful, however, when checking
for this condition. An almost-vanishing coefficient cN does not necessarily mean
convergence. Instead, the timestep might be too large and the N -th vector just
happens to not contribute to the result. Therefore, we always start at some small
initial time step (t = 0.01 proved to be stable in most cases), and then repediately
increase t until eq. 3.5 is no longer fulfilled, which means the result from the last
iteration is still acceptable. This method is computationally cost-effective, because
exponentiating a 20× 20 matrix is much cheaper than generating Krylov vectors.

Finally, we chose I as the initial vector ρ0 and applied the procedure described
above, i. e. time-evolved as far as permitted by the condition 3.5 to get ρ1. From
this point, we time-evolved again to ρ2 and so on, until convergence was reached.
The break condition was that the relative change of ρn is small.

∆ρn :=
‖ρ̇n‖
‖ρn‖

=
‖Lρn‖
‖ρn‖

!
< ∆ρ

In our calculations ∆ρ = 10−6 in inverse time units given by the parameters showed
to be sufficient and was therefore used for all produced results.
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3.4 Green functions

From the steady state, we are now interested in numerically calculating retarded
and Keldysh Green functions GR

σσ(ω) and GK
σσ(ω).

3.4.1 Time evolution

Since we already implemented a time evolution algorithm, one obvious choice
would be to calculate equations 2.19 directly in the time domain and then Fourier
transform the results to get GR

σσ(ω) and GK
σσ(ω). One detail in contrast to the

last chapter must be considered, which is that the size of the time steps has to be
constant for every step. Therefore, the number of Krylov vectors must be adapted
accordingly.

This method, however, turned out to be inefficient and suffer from numerical
instabilities. All results given later were therefore achieved using the two-sided
Lanczos method discussed below.

3.4.2 Two-sided Lanczos

One other option to calculate the Green functions is to calculate them directly in
the frequency domain using the equations 2.20. Therefore, we need to numerically
evaluate

I†c†fσ
1

ω + iL
cfσ ρss and I†cfσ

1

ω − iL
c†fσρss. (3.6)

These expressions suggest that eigenvalues of L̂ whose imaginary part lies in the
range of the ω-values we consider will have the largest contribution. However, the
matrix is again far too large to invert numerically, which is why we approximate it
by a Krylov space method.

One major drawback of the Arnoldi iteration is that the Gram-Schmidt orthog-
onalization becomes more and more expensive for each added vector, because it
must be orthogonalized against the full already existing basis. Since for the time
evolution we could simply choose a sufficiently small number of Krylov vectors, this
did not pose a problem. For the Green functions, however, we can not make that
choice. We need a subspace that approximates all important eigenvalues of L̂ at
once, which might be significantly larger than is practical for the Arnoldi scheme.

An algorithm without this orthogonalization problem is the two-sided Lanczos
method [30], sometimes also called unsymmetric Lanczos or Bilanczos. Instead of
relying on only products of the start vector with the matrix from the left to form
a basis – which approximates the right-sided eigenbasis – the two-sided Lanczos
algorithm uses also an approximation to the left-sided eigenbasis.
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Two pairwise orthogonal bases, lj and rj , are constructed such that l†irj = δij . The
former is extracted from the already known right-sided Krylov vectors with some
start vector r, which are kr

j = Ajr, j ∈ N0, and the latter comes from the Krylov
vectors approximating the left eigenbasis with a possibly different start vector l,
which are kl

j = l†Aj , j ∈ N0.

function Bilanczos(A, l, r, N)
V ← 0, k ← 1

l0 ← l/
√
l† · r, r0 ← r/

√
l† · r

l1 ← 0, r1 ← 0

l2 ← 0, r2 ← 0

V0,0 ← l†0 ·A · r0
while k < N do
l†kmod 3 ← l†(k−1)mod 3 ·A− Vk−1,k−1 · l

†
(k−1)mod 3 − Vk−1,k−2 · l

†
(k−2)mod 3

rkmod 3 ← A · r(k−1)mod 3 − Vk−1,k−1 · r(k−1)mod 3 − Vk−1,k−2 · r(k−2)mod 3

Vk,k−1 ←
√
l†kmod 3 · rkmod 3

Vk−1,k ← Vk,k−1

if Vk,k−1 = 0 then
if ‖lkmod 3‖ = 0 or ‖rkmod 3‖ = 0 then . Invariant subspace?

N ← k . We can only produce k vectors
else

error Breakdown at iteration k
else
l†kmod 3 ← l†kmod 3/Vk,k−1, rkmod 3 ← rkmod 3/Vk,k−1 . Normalize
Vk,k ← l†kmod 3 ·A · rkmod 3

k ← k + 1

return V ,N

Algorithm 2: Algorithmic sketch of the two-sided Lanczos method. Corrections for
finite-precision errors and numerical optimizations are omitted for
readability.1

In our case, where we are only interested in the eigenvalues of A, there are three
possible end states. Normal termination occurs when either N Krylov vectors were
produced, or invariant left- or right-sided subspaces were found. In the latter case,
analogous to the Arnoldi iteration, at least one of the two last produced vectors
had a norm of zero.

If, however, the overlap between two newly produced left- and right-sided vectors
vanishes without one of them being zero, a so-called breakdown occurs, from which
the algorithm can not recover. Even though there are methods to prevent this [58],
we did not encounter such problems in the first place.

1In this symbolic sketch, Matrix elements of negative indices are defined to be 0.
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In contrast to the Arnoldi scheme, the newly produced vectors only need to be
orthogonalized against the last two. This can be seen by explicitly calculating the
unnormalized vector r′k+1.

r′k+1 = Ark −
k∑

m=0

(l†mArk)rm = Ark −
k∑

m=k−1

(l†mArk)rm

= Ark − (l†k−1Ark)rk−1 − (l†kArk)rk

The second equality holds because l†mA is in span{l0, . . . , lm+1}, which is orthogonal
to rk if m < k − 1. The results for l′k+1 are analogous. In addition to this saving
computational time, this three-term recurrence has the benefit of saving memory,
because at all times only six vectors (three for each basis) must be kept in memory.

Since all ri can be multiplied by some factor α and li by α−1 without violating the
orthonormality, there is an additional degree of freedom for the bases. We chose
to split the normalization evenly between the left- and right-sided vectors, which
makes the super- and subdiagonals equal.

rk+1 = r′k+1

(
l′†k+1r

′
k+1

)− 1
2

l†k+1 = l′†k+1

(
l′†k+1r

′
k+1

)− 1
2

Analogous to the Arnoldi method, one can define matrices P l = (l0, l1, . . . , lN−1)
and P r = (r0, r1, . . . , rN−1) with the new basis vectors in their columns. To get
A in the subspace, an operation comparable to a similarity transformation with a
cut-off basis is performed.

A ≈ P rP
†
lAP rP

†
l = P rV P

†
l

Here, V := P †lAP r is the representation of A in the subspace, and the eigenvalues
of V approximate those of A. The elements of V can be calculated analogous to
equation 3.4, with A being the matrix to approximate. Unlike for the Arnoldi
iteration, A can now also be applied to the left to give a different basis vector.

Vjk = l†jArk = ‖Ark‖ l†jrk+1︸ ︷︷ ︸
δj,k+1

+
k∑

m=0

(l†mArk) l
†
jrm︸︷︷︸
δj,m

= ‖l†jA‖ l
†
j+1rk︸ ︷︷ ︸
δj+1,k

+

j∑
m=0

(l†jArm) l†mrk︸ ︷︷ ︸
δm,k

This expression vanishes whenever j > k + 1 (first line), or k > j + 1 (second
line). Thus, the representation V is tridiagonal, with Vkk = l†kArk on its diagonal
and Vj+1,k = ‖l†jA‖ = ‖Ark‖ = Vj,k+1 on its super- and subdiagonal. The center
equality only holds with the our exact choice of basis normalization.
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Because P †lP r = 1 by construction, the powers of A in the subspace are

(P rV P
†
l )
n = P rV

nP †l .

If we now start with

r ≡ c(†)
fσρss, l ≡ c(†)

fσI, and A ≡ L,

the representations in the subspaces are

P †l c
(†)
fσρss = (‖c(†)

fσρss‖ , 0, 0, . . .)T

c
(†)
fσI

†P r = (‖c(†)
fσI‖ , 0, 0, . . .).

The eqs. 3.6 therefore turn into

I†c
(†)
fσ

1

ω ± iL
c

(†)
fσρss ≈

(
1

ω ± iV

)
0,0

which can be evaluated numerically, e. g. using left-division in Matlab, because
the dimension of V is typically smaller than 10 000.

To converge the Green functions GR
σ (ω) and GK

σ (ω) with this method, we first omit
the spin index σ for a moment and denote the functions computed with N Krylov
vectors as GR

N (ω) and GK
N (ω). We now produce Krylov vectors and calculate the

Green functions when N is a multiple of some number n. During this iteration
we check how much the functions changed within a given interval [−ωmax, ωmax],
which should include all sections of interest, by integrating the squared absolute
difference between successive functions.

∆Gk :=
1

2ωmax

∑
α∈{R,K}

∫ ωmax

−ωmax

∣∣Gαkn(ω)−Gαkn+n(ω)
∣∣2 dω !

< ∆G

Convergence is reached when the change is smaller than some upper bound ∆G.
The choice n = 10 proved to be efficient in our calculations, while ∆G must be
adjusted depending on the model parameters. It is usually in the range 10−6–10−8

in the inverse squared energy units the calculation was carried out in.
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Results

Here we will first show calculations to check the accuracy of the approach by
comparing our results with previous work using different approximations [23, 27].
Then we present some further results on the Franck-Condon blockade and with
on-site Coulomb repulsion.

4.1 General remarks

In the calculations carried out here, the hoppings and chemical potentials were
always symmetrical, so

µR = −µL =
Φ

2
and tL = tR,

with Φ being the bias voltage. If not stated otherwise, the energy unit is always the
negative height of the imaginary part of the retarded hybridization at ω = 0, which
is often referred to as the hybridization strength and denoted by Γ := − Im[∆R

phys(0)].

We worked with two different types of density of states in the leads. The first is a
flat band with a finite bandwidth of 2ωc and smoothed-out edges. Smooth edges are
generated by fermi functions at a chosen inverse temperature βedge. The spectral
density is therefore

Alead(ω) =
1

Z

[
1 + eβedge(ω−ωc)

]−1 [
1 + e−βedge(ω+ωc)

]−1
,

where Z is the partition function. From eq. 2.12, the imaginary part of the retarded
hybridization of lead α is directly given by Im[∆R

α(ω)] = −πt2αAlead(ω). The real
part is then fixed by the Kramers-Kronig relations [45, p. 147]

Re[∆R
α (ω)] = − 1

π
P
∫ ∞
−∞

Im[∆R
α (ω′)]

ω − ω′
dω′,
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where P means the Cauchy principal value, and the integration is carried out
numerically to obtain the full retarded hybridization.

Because the band is flat, we do not shift the whole density of states by the chemical
potential, but rather only the filling, i. e. the energy up to which the states are
occupied. Consequently, the total retarded hybridization is

Im[∆R(ω)] =
∑
α

Im[∆R
α (ω)] = Γ

[
1 + eβedge(ω−ωc)

]−1 [
1 + e−βedge(ω+ωc)

]−1

with its numerically determined real part. The Keldysh hybridization is purely
imaginary (cf. eq. A.3), and because the disconnected leads are in equilibrium, it
satisfies the fluctuation-dissipation theorem.

∆K(ω) = ∆K
L (ω) + ∆K

R(ω) = 2i Im[∆R(ω)](1− f(ω;T, µL)− f(ω;T, µR))

The second type of lead density of states we worked with was a single Lorentzian
as in [27], which results in

∆R
α (ω) =

Γ

2

D

(ω − µα) + iD

and
∆R = ∆R

R + ∆R
L ,

which can effectively be turned into a flat band again by choosing D very large. As
above, the Keldysh part of the hybridization is determined by ∆R

α , T , and µα.

In the following, we will refer to the former density of states as flat band, and to the
latter as Lorentzian. Additionally, whenever no U is mentioned in the parameters,
the calculation was done without spin.

4.2 Lang-Firsov transformation

As a first integrity check, we performed calculations with identical parameters,
with and without the Lang-Firsov transformation. Since for Nb,max →∞ both the
transformed and untransformed systems are equivalent, their characteristics – and
with that their Green functions – must converge to the same results. However, for
reasons discussed in sec. 2.8, we expect smaller deviations from the true result in
the transformed system.

The check is done in the auxiliary system only, because then the accuracy of the
convergence is more easily controllable. The results shown here were calculated
with no potential difference between the leads and for a system without spin. The
results with a bias voltage and the ones with spin show very similar behavior to
the ones plotted.
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Figure 4.1: Sum of the integrated quadratic differences of the auxiliary Green func-
tions with and without Lang-Firsov transformation δGLF vs the maxi-
mum bosonic occupation numbers Nb,max. The grey dashed line marks
the maximum expected deviation of δGLF = 4 · 10−9 Γ−1.
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Figure 4.2: Exemplary convergence behavior of the spectral function A(ω) for both
transformed (solid lines) and untransformed (dotted lines) systems with
the parameters ωb = 0.1 Γ, λ = 0.1 Γ, εf = 0.1 Γ. The plot shows the
difference of the impurity spectral functions to the converged solution at
Nb,max = 40 for different cutoffs.
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We used a flat band with the parameters

ωb ∈ {0.1, 0.2, 0.5}Γ λ ∈ {0.1, 0.2, 0.5}Γ εf = λ2/ωb T = 0.05 Γ

N = 3 Φ = 0 Γ ωc = 10 Γ βedge = 2 Γ−1.

Because this is only a consistency check within our approach, three sites were used
for faster computational time. A plot of the physical and the auxiliary hybridizations
is given in figure B.1. The chosen onsite energy ensures a symmetric spectral density.

To measure the deviation from the converged result we used the integrated quadratic
absolute difference of the transformed and untransformed systems, summed over
the Keldysh and retarded Green function.

δGLF =
∑

α∈{R,K}

∫ +ωmax

−ωmax

|Gαaux,LF(ω)−Gαaux(ω)|2 dω

The convergence criterion for the individual results was chosen to be ∆G = 10−9 Γ−1,
which means we can expect δGLF to drop to the order of 4 · 10−9 Γ−1 for sufficiently
large cutoff.

We see good convergence in fig. 4.1, which of course depends on the specific choice
of parameters. Higher ratios of λ/ωb tend to converge slower than lower ones. For
equal ratios, higher bosonic energies also accelerate convergence. Furthermore,
upon inspection of the spectral functions – like in the example in fig. 4.2 – we
see that the transformed calculations converge quicker than their untransformed
counterparts, in the sense that for equal cutoff they have a smaller total deviation
from the converged result.

4.3 Limit of weak coupling to the leads

To ensure correct asymptotic behavior, we examined the case of diminishing elec-
tronic coupling to the leads, so tL,R → 0. In this case, the spectral density of the
interacting system should approach that of the isolated impurity, which is easy to
calculate by numerically evaluating the analytical formulas for the Green functions
in sec. A.4. This is possible because the Fock space of the isolated impurity is
reasonably small. As small imaginary unit we used 5i · 10−4, and the density
operator at the impurity was set to thermal equilibrium.

The fit was the same as for the Lang-Firsov transformation check (fig. B.1) and
the parameters were

ωb = 0.5 Γ λ = 0.5 Γ εf = 0.5 Γ T = 0.05 Γ

N = 3 Φ = 0 Γ ωc = 10 Γ βedge = 2 Γ−1.
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Figure 4.3: Impurity spectral functions in the limit of weak coupling to the leads.

We then repeated the calculation with smaller values of tL/R, such that the height
of the hybridization was scaled down by powers of ten. In contrast to before, the
results are those for the physical system with only the self energy estimated from
the auxiliary one.

Figure 4.3 shows the results. We see very good agreement in the position of the
peaks for the weak couplings. Upon close inspection, the peak heights of the
manybody calculations do not perfectly match up with the ones of the isolated
impurity. This could be attributed to the fact that the temperature is not accurately
reproduced by the auxiliary system.

For weak electronic lead couplings, the two-sided Lanczos converges quite slowly,
because the many narrow peaks necessitate a large number of Krylov vectors.
Therefore, we did not repeat this calculation with more bath sites.

4.4 Comparison with other approximate methods

We now compare our results to two previous results, which treat the Anderson-
Holstein model in the spinless case, but with different methods. These are the
real-time path integral approach (Rtpia) by Mühlbacher and Rabani [23], and the
hierarchical quantum master equation approach (Hqme) by Schinabeck et al. [27].
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Figure 4.4: Comparison of current I vs bias voltage Φ with results obtained by
the real-time path integral approach at ωb = 3 Γ. The Amea subscript
stands for the number of sites used.
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Figure 4.5: Comparison of current I vs bias voltage Φ with results obtained by
the real-time path integral approach at ωb = 5 Γ. The Amea subscript
stands for the number of sites used.
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4.4.1 Real-time path integral approach

The real-time path integral approach is an approximative Monte Carlo method
that uses time evolution to calculate the steady state current. The reference paper
[23] starts from an initially empty impurity. Because the numerical time evolution
becomes exponentially more expensive over time, convergence may not be obtainable
for all sets of parameters. Our results even suggest that the published data for high
bias voltages might not be completely converged.

In accordance with the parameters in the paper, we used a flat band density of
states and performed calculations with the following parameters.

ωb ∈ {3, 5}Γ λ = 4 Γ εf = λ2/ωb T = 0.2 Γ

N ∈ {5, 7} Φ ∈ {0.25 . . . 20}Γ ωc = 20 Γ βedge = 5 Γ−1

Two example fits for N = 5 and N = 7 at Φ = 8 Γ are depicted in the appendix
(figures B.2 and B.3).

The results are shown in fig. 4.4 and 4.5. The step-like shape is typical for such
a phononic system. With the chosen onsite energy, the density of states shows
symmetric peaks around zero with the spacing of roughly the phonon energy (see
fig. 4.6 and 4.7). Because the bias voltage is applied symmetrically, the steps in
the current show a separation of twice the phonon energy.

In the case of ωb = 3 Γ, we see very good agreement for low voltages up to about
Φ = 6 Γ. For higher biases, our results consistently show a lower current, even
though the positions of the steps still match.

Because of the finite number of bath sites, Amea sometimes tends to wash out
results a bit, since sharp features in the hybridization cannot be resolved. This
could also be the case here, as in our results the steps are not as pronounced as in
the reference.

However, if we consider the fits for 4 and 6 bath sites, i. e. 5 and 7 total sites, they
show a great improvement in accuracy. Still, the corrections to the current are
minor. It is therefore justified to assume that the further corrections for even more
bath sites will also be small. We are therefore confident that our results are very
close to the exact manybody solution.

Similar arguments apply for the case of ωb = 5 Γ. The qualitative agreement is good,
while the heights of the steps are smaller in our calculation. However, the corrections
for more bath sites remain small, which again suggests that the differences to the
exact result are at most of the same order.
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Figure 4.6: Impurity spectral functions of the calculations used for the comparison
with Rtpia at ωb = 3 Γ.
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Figure 4.7: Impurity spectral functions of the calculations used for the comparison
with Rtpia at ωb = 5 Γ.
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Figure 4.8: Comparison of current I vs bias voltage Φ with results obtained by
the hierarchical quantum master equation approach at λ = 0.12 eV and
Γ = 1 eV. The Amea subscript stands for the number of sites used.
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Figure 4.9: Comparison of current I vs bias voltage Φ with results obtained by
the hierarchical quantum master equation approach at λ = 0.12 eV and
Γ = 0.1 eV. The Amea subscript stands for the number of sites used.
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Figure 4.10: Comparison of current I vs bias voltage Φ with results obtained by the
hierarchical quantum master equation approach with λ = 0.4 eV and
Γ = 1 eV. The Amea subscript stands for the number of sites used.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω [eV]

A
(ω

)
[e

V
−
1
]

Φ[Γ]
0.0
0.4
0.8
1.2
1.6
2.0

Figure 4.11: Impurity spectral functions of the calculations used for comparison
with Hqme at λ = 0.12 eV, Γ = 1 eV, and N = 7.
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4.4.2 Hierarchical quantum master equation approach

The hierarchical quantum master equation approach is a perturbative method, i. e.
its strengths are in the regime of small hybridizations ∆. Naturally, one would
expect some drawbacks in systems with bigger hybridizations. Nevertheless, we
were able to confirm the results for the largest hybridization published in the paper
[27] with a high degree of accuracy.

The paper uses a Lorentzian density of states exactly as described in the general
remarks with D = 104 eV. Even though with such a large width the Lorentzian
essentially describes a flat band again, it influences the real part of the retarded
hybridization. We therefore also used such a Lorentzian and performed the first
calculation with the following parameters.

ωb = 0.2 eV λ = 0.12 eV εf = 0.3 eV T = 0.026 eV

N ∈ {5, 7} Φ ∈ {0 . . . 2} eV D = 104 eV Γ ∈ {1, 0.1} eV

The second set of parameters was

ωb = 0.2 eV λ = 0.4 eV εf = 1.05 eV T = 0.026 eV

N ∈ {5, 7} Φ ∈ {0 . . . 2} eV D = 104 eV Γ = 1 eV.

Again, example fits at Φ = 1 eV for N = 5 and N = 7 are in the appendix (fig. B.4
and B.5).

The first thing to note is that the step-like structure from the last section is no
longer present in these results. This is a consequence of the low phonon energy.
The phononic peaks are so closely spaced that they merge together when broadened
by the hybridization with the leads, as can be seen in figure 4.11. Also note that
because the onsite energy is no longer λ2/ωb, the whole spectrum is shifted off
to the right. Spectral densities for the other parameter sets can be found in the
appendix. Figures 4.8 and 4.9 show results for the lower of the two electron-phonon
couplings.

As mentioned before, the two-sided Lanczos has some convergence issues when
there are too many narrow peaks in the spectral density, which is why we only used
N = 5 for the lower electronic lead coupling of Γ = 0.1 eV. Still we see very good
agreement even for N = 5. The case of Γ = 1 eV shows excellent agreement with
the reference, and the results for N = 7 even cover the N = 5 result markers, so we
can assume that these are converged.

For stronger electron-phonon coupling (figure 4.10), we find good agreement for low
voltages already at N = 5, but see slight deviations for Φ & 0.6 eV. However, with
N = 7, these disagreements vanish and the data matches up very well.
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Figure 4.12: Wavefunctions of the harmonic oscillator to visualize the overlap be-
tween the unshifted ( ) and shifted ( ) ground state wavefunctions
(top), and between the shifted ground state and the sixth excited state
( ) wavefunctions (bottom).
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Figure 4.13: Current I versus bias voltage Φ reproducing the Franck-Condon block-
ade for different coupling strengths λ and ωb = 2 Γ.
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4.5 Franck-Condon blockade

One effect correctly reproduced by our calculations is the so-called Franck-Condon
blockade. In a very simple sequential tunneling picture without spin at T = 0, the
transport takes place as follows. The empty impurity is in its ground state, of which
the harmonic oscillator wavefunction is a Gaussian centered at zero. To transfer an
electron onto the impurity without expending extra energy to the oscillator, it must
also be in the charged ground state, which is a shifted Gaussian (see fig. 4.12). The
rate for this process is – by Fermi’s golden rule – proportional to the overlap of
the two wavefunctions, which decreases exponentially with the spatial shift of the
charged oscillator. Therefore, the higher the electron-phonon coupling, the smaller
the rate for this process will be.

Other processes, like transferring an electron onto the impurity and at the same
time exciting the harmonic oscillator, have a higher rate due to the greater overlap
of the wavefunctions (see again fig. 4.12), but require the additional phonon energy
in order to take place. In this very simplified picture, we therefore expect the
current to be suppressed for large electron-phonon couplings and low bias voltages.

To investigate this effect, we performed a calculation with a Lorentzian density of
states (example fit in figure B.10) and the following parameters.

ωb = 2 Γ λ ∈ {0.5, 2, 4}Γ εf = 0 Γ T = 0.2 Γ

N = 5 Φ ∈ {0 . . . 8}Γ D = 104 Γ

The results in figure 4.13 confirm that this behavior is also present for the full
interacting manybody system at finite temperature. Weak coupling (λ = 0.5 Γ)
leads to a fairly steep and linear increase in the current, while for moderate coupling
(λ = 2 Γ) the slope decreases significantly. Upon further increasing the coupling to
λ = 4 Γ, the current is almost completely suppressed for low biases.

4.6 On-site Coulomb repulsion

We also investigated the effect of on-site Coulomb repulsion on the current char-
acteristics. To this end, we used the same fits as in section 4.5 and performed
calculations with the following parameters.

ωb = 2 Γ λ = 2 Γ εf = −U/2 T = 0.2 Γ

N = 5 Φ ∈ {0 . . . 8}Γ D = 104 Γ U ∈ {1, 2, 4}Γ

Figure 4.14 shows the results for the current, which for this choice of parameters
increases for bigger U , but seems to keep its general shape. This is a consequence
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Figure 4.14: Current I versus bias voltage Φ of the model with finite Coulomb
repulsion U .
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Figure 4.15: Spectral functions for the model with finite Coulomb repulsion U at
bias voltage Φ = 0 Γ.
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of the spectral functions depicted in figure 4.15, as well as figures B.14 and B.15 in
the appendix.

We will try to motivate these changes by investigating the Lang-Firsov transformed
Hamiltonian of the isolated impurity (eq. 2.24 without the leads).

Ĥiso =
∑
σ

εf c
†
fσcfσ + Uc†f↑cf↑c

†
f↓cf↓ + ωb b

†b− 1

ωb

(∑
σ

λc†fσcfσ

)2

For simplicity, we will leave out the factor of Γ in this discussion. The eigenstates
and their energies of the purely electronic part of the impurity can immediately be
identified as

Ĥiso |0〉 = 0 |0〉 Ĥiso |↑〉 =

(
−U

2
− λ2

ωb

)
|↑〉

Ĥiso |↓〉 =

(
−U

2
− λ2

ωb

)
|↓〉 Ĥiso |↑↓〉 = −4λ2

ωb
|↑↓〉

because εf = −U/2. This makes the doubly occupied state the ground state
consistently over all chosen parameters, and we can assume that it will constitute
the main contribution to the steady state. The electronic transition energies from
the doubly to the singly occupied state are also easily calculated to be

∆E = −3λ2

ωb
+
U

2
=


−5.5 U = 1

−5 U = 2

−4 U = 4

Combined electron-phonon transitions will then have the energies ∆E ± nωb with
n ∈ N0. Therefore we can expect the whole spectrum to be shifted to more positive
energies with increasing U , as can be seen in figure 4.15. The exact positions of the
peaks and their weights are subject to manybody interactions, but this can serve as
a sketch of the general process going on.

The shift to more positive energies and the changing weights of the peaks give rise
to a higher density of states around zero energy, which then in turn leads to a
higher current (cf. eq. 2.14) observed in figure 4.14.

These results can of course not cover all aspects of different parameter regimes
involving Coulomb repulsion. As of writing of this thesis, further calculations
investigating this behavior are still underway, and the results presented here should
serve more as a proof-of-concept rather than a full coverage of the topic.
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Chapter 5

Conclusions

In this work we were able to successfully apply the auxiliary master equation
approach (Amea) to the Anderson-Holstein model and reproduce results from other
methods with varying degrees of agreement.

Amea has some distinct advantages over many other methods, of which the most
noteworthy is the access to all local – and especially dynamical – quantities at
the impurity, like spectral functions, even in nonequilibrium. This comes about
from the fact that the intractable infinite environment is approximated by a finite,
numerically treatable system, making it possible to estimate the Green functions of
the impurity, and thereby all its local properties. Even though not implemented
in the course of this work, it is in principle possible to also calculate the bosonic
Green functions, giving more detailed insight into the dynamics of the harmonic
oscillator. For other schemes – especially Monte Carlo methods – this is often not
possible out of equilibrium.

Furthermore, it is a non-perturbative approach, meaning that it does not depend on
any quantity being small and it is – in principle – possible to perform calculations
in any parameter regime. With that in mind, it is worth mentioning – as can
immediately be seen from the example fits in appendix B – that the approach
performs better for higher temperatures, as the features in the hybridization are
then smoother and easier to approximate using a small number of bath sites.

There are also some shortcomings of the numerical methods used for this work.
First, depending on the parameters, the convergence of the time evolution to the
steady state can be quite slow. This is an intrinsic property of some parameter sets
and tends to happen whenever vastly different energy scales are present, i. e. when
one or more parameters is significantly smaller or larger than the others. Since the
task of finding the steady state essentially reduces to finding the eigenvector to
the eigenvalue zero, it might be worth looking into alternative numerical methods
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to obtain it. We should mention, however, that the method of time evolution is
numerically extremely stable, as errors are by nature damped exponentially.

Secondly, the two-sided Lanczos scheme used for calculating the Green functions is
very efficient for strong electronic couplings to the environment – i. e. high values of
the hybridization – because then the peaks in the Green functions are significantly
broadened and yield a smoother shape, for which a small number of Krylov vectors
is sufficient. If, however, the hybridization is small, the peaks tend to be very slim
and – even if the phonon energy is small – do not merge with each other. Such a
finely peaked structure needs very many Krylov vectors, to the extent that in some
rare cases accurate calculations become infeasable. This is mostly the case whenever
the phonon energy and the hybridization are simultaneously much smaller than the
bias voltage and electron-phonon coupling. However, as the reference calculations
in [27] show, in these cases existing perturbative approaches like the Born-Markov
master equation and the fourth order non-Markovian master equation work very
well.

Another aspect to consider is the limited number of auxiliary bath sites that can
be included, especially when dealing with a system with spin. In this case, the
maximum treatable number of sites with our code on a node with e. g. 64GB
memory is N = 5. For the spinless case, N = 7 or 9 can be reached, depending
on the cutoff for the bosonic occupation number. Fortunately, due to the fast
convergence upon increasing the number of bath sites, even for N = 5 the results
show remarkable accuracy.

The code written was shown to produce accurate results in the tested parameter
regimes and can be used to study further properties of the model. We were able
to demonstrate the suitability of Amea for this system and give some prelimi-
nary results for the model with on-site Coulomb repulsion. These are still being
investigated and provide an interesting possibility for further research.
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Appendix A

Mathematical Details

In this appendix, we collect longer derivations of mathematical results that would
disrupt the main text. These results – with the exception of section A.6 and
the bosonic part of section A.5 – are known from the literature (see for example
references [35–39, 45]) but are still useful to be presented here for completeness and
later reference.

A.1 Charged position shift

To show that an additional term λ(b† + b) in the Hamiltonian of an harmonic
oscillator is equivalent to a spatial shift and an energy correction, one can complete
the square in x̂.

ωbb
†b+ λ(b† + b) =

p̂2

2m
+
mω2

b x̂
2

2
+ λ

√
2mωb
~

x̂

=
p̂2

2m
+

√mω2
b

2
x̂+ λ

√
1

~ωb

2

− λ2

ωb~

=
p̂2

2m
+
mω2

b

2

(
x̂+ λ

√
2

m~ω3
b︸ ︷︷ ︸

x0

)2

− λ2

~ωb︸︷︷︸
∆E

=
p̂2

2m
+
mω2

b

2
(x̂+ x0)2 −∆E

In this form it is easy to see that the linear term shifts the equilibrium position by
x0 and corrects the energy by ∆E.
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A.2 Partial trace

The fact that the partial trace leaves the expectation value of an operator acting
only in the subspace s undisturbed can be seen as follows.

tr(ρ̂ Ô) =
∑
i,j

〈si| ⊗ 〈ej | ρ̂(Ôs ⊗ 1) |si〉 ⊗ |ej〉

=
∑
i,j,k,l

〈si| ⊗ 〈ej | ρ̂ |sk〉 ⊗ |el〉 〈sk| ⊗ 〈el|︸ ︷︷ ︸
1

(Ôs ⊗ 1) |si〉 ⊗ |ej〉

=
∑
i,j,k,l

〈si| ⊗ 〈ej | ρ̂ |sk〉 ⊗ |el〉 〈sk|Ôs|si〉 〈el|ej〉︸ ︷︷ ︸
δl,j

=
∑
i,j,k

〈si| |si〉 〈si| ⊗ 〈ej | ρ̂ |sk〉 ⊗ |ej〉 〈sk|︸ ︷︷ ︸
tre(ρ̂)

|sk〉 〈sk|Ôs|si〉

=
∑
i,k

〈si|ρ̂s|sk〉 〈sk|Ôs|si〉 =
∑
i

〈si|ρ̂sÔs|si〉 = tr(ρ̂sÔs)

A.3 Reduced density matrix of an entangled state

The fact that an entangled state of the universe does not yield a pure reduced
density matrix can be seen by straightforwardly calculating the example of

|Ψ〉 =
1√
2

(|↓↑〉+ |↑↓〉),

where the first spin belongs to the environment, and the second one to the system.
The density operator is then

ρ̂ = |Ψ〉〈Ψ| = 1

2
(|↓↑〉〈↓↑|+ |↓↑〉〈↑↓|+ |↑↓〉〈↓↑|+ |↑↓〉〈↑↓|).

In the |s1s2〉 basis this becomes

ρ =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

With the definition of the partial trace as given in sec. 2.2, the reduced density
matrix is

ρ̂s =
∑
m,n,k

|m〉 〈k,m|ρ̂|k, n〉 〈n| = 1

2
(|↑〉〈↑|+ |↓〉〈↓|)
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which in the |s2〉 basis becomes

ρs =
1

2

(
1 0
0 1

)
.

This density matrix is no longer pure, because ρ2
s 6= ρs.

A.4 Green functions in the frequency domain

To Fourier transform the retarded Green function to the frequency domain, it is
best to split it in two parts in the time domain and transform individually.

GR(r) = −iΘ(t)( 〈c(t)c†〉+ 〈c†c(t)〉)
= −i(Θ(t) 〈c(t)c†〉︸ ︷︷ ︸

GR
1 (t)

+ Θ(t) 〈c†c(t)〉︸ ︷︷ ︸
GR

2 (t)

)

GR
1 (ω) =

∫ ∞
−∞

Θ(t) tr(ρ̂c(t)c†)ei(ω+i0+)tdt

=

∫ ∞
0

∑
k

pk 〈ψk|eiĤtce−iĤtc†|ψk〉 ei(ω+i0+)tdt

=

∫ ∞
0

∑
k,l,m

pk 〈ψk|l〉 〈l|eiEltce−iEmt|m〉 〈m|c†|ψk〉 ei(ω+i0+)tdt

=

∫ ∞
0

∑
k,l,m

pk 〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉 ei(El−Em+ω+i0+)tdt

=
∑
k,l,m

pk 〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉
ei(El−Em+ω+i0+)t

i(El − Em + ω + i0+)

∣∣∣∣∣
∞

t=0

= i
∑
k,l,m

pk
〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉
El − Em + ω + i0+

GR
2 (ω) =

∫ ∞
−∞

Θ(t) tr(ρ̂c†c(t))ei(ω+i0+)tdt

=

∫ ∞
0

∑
k

pk 〈ψk|c†eiĤtce−iĤt|ψk〉 ei(ω+i0+)tdt

=

∫ ∞
0

∑
k,l,m

pk 〈ψk|c†|l〉 〈l|eiEltce−iEmt|m〉 〈m|ψk〉 ei(ω+i0+)tdt

=

∫ ∞
0

∑
k,l,m

pk 〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉 ei(El−Em+ω+i0+)tdt
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=
∑
k,l,m

pk 〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉
ei(El−Em+ω+i0+)t

i(El − Em + ω + i0+)

∣∣∣∣∣
∞

t=0

= i
∑
k,l,m

pk
〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉
El − Em + ω + i0+

Here, l and k label the eigenstates of the Hamiltonian, El,k are the corresponding
energies, and i0+ means an infinitesimal positive imaginary quantitiy with the
formal definition

i0+ := lim
ε↘0

iε.

where of course the limit of the whole expression containing i0+ must be taken,
and the order of operations is usually important.

The total retarded Green function is then given by

GR(ω) = −i(GR
1 (ω) +GR

2 (ω))

=
∑
k,l,m

pk
〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉+ 〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉

El − Em + ω + i0+
. (A.1)

The calculation for GA is very similar and straightforward, which is why we only
state the result here. The only difference is an overall sign and that instead of Θ(t)
it contains a Θ(−t), which necessitates a (−i0+) in the exponent in order for the
integral to converge. The sign exactly cancels with the fact that 0 is now the upper
bound of the integral.

GA(ω) =
∑
k,l,m

pk
〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉+ 〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉

El − Em + ω − i0+
(A.2)

It is easy to see that GA(ω) = GR†(ω).

For the Keldysh Green function, the greater and lesser must first be evaluated
separately.

G>(ω) =

∫ ∞
−∞
−i 〈c(t)c†〉 eiωtdt = −i

∫ ∞
−∞

tr(ρ̂eiĤtce−iĤtc†)eiωtdt

= −i
∫ ∞
−∞

∑
k

〈ψk|eiĤtce−iĤtc†|ψk〉 eiωtdt

= −i
∫ ∞
−∞

∑
k,l,m

〈ψk|l〉 〈l|eiEltce−iEmt|m〉 〈m|c†|ψk〉 eiωtdt

= −i
∑
k,l,m

〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉
∫ ∞
−∞

ei(El−Em+ω)tdt
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With the inverse transfromation of a δ-distribution being

F−1[δ(ω − a)] =
1

2π

∫ ∞
−∞

δ(ω − a)e−iωtdω =
1

2π
e−iat,

the integral in the last line is proportional to δ(ω+El−Em) and the Green function
becomes

G>(ω) = −2πi
∑
k,l,m

〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉 δ(ω + El − Em).

The lesser Green function is again very similar.

G<(ω) =

∫ ∞
−∞

i 〈c†c(t)〉 eiωtdt

= i

∫ ∞
−∞

tr(ρ̂c†eiĤtce−iĤt)eiωtdt

= i

∫ ∞
−∞

∑
k

〈ψk|c†eiĤtce−iĤt|ψk〉 eiωtdt

= i

∫ ∞
−∞

∑
k,l,m

〈ψk|c†|l〉 〈l|eiEltce−iEmt|m〉 〈m|ψk〉 eiωtdt

= i
∑
k,l,m

〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉
∫ ∞
−∞

ei(El−Em+ω)tdt

= 2πi
∑
k,l,m

〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉 δ(ω + El − Em)

Therefore, the Keldysh Green function GK = G< +G> in the frequency domain is
is

GK(ω) = 2πi
∑
k,l,m

δ(ω + El − Em)
[
〈ψk|c†|l〉 〈l|c|m〉 〈m|ψk〉

− 〈ψk|l〉 〈l|c|m〉 〈m|c†|ψk〉
]
. (A.3)

A.5 Tilde conjugation rules

Proving eqs. 2.7 is straightforward.

ck |I〉 = ck
∑
m

(−i)
∑
pmp |m, m̃〉 = ck

∑
m

(−i)
∑
pmp

∏
p

(c†pc̃
†
p)
mp |0〉

= ck
∑
m

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1(c†k c̃

†
k)
mk(c†k+1c̃

†
k+1)mk+1 . . . |0〉
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=
∑
m

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1 δ1,mkckc

†
k c̃
†
k (c†k+1c̃

†
k+1)mk+1 . . . |0〉

=
∑
m

mk=1

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1 c̃†k(1− c

†
k ck) (c†k+1c̃

†
k+1)mk+1 . . . |0〉︸ ︷︷ ︸

0

= (−i) c̃†k
∑
m

mk=1

(−i)
∑
p6=kmp(c†k−1c̃

†
k−1)mk−1(c†k+1c̃

†
k+1)mk+1 . . . |0〉

= (−i) c̃†k
∑
m

mk=0

(−i)
∑
pmp

∏
p

(c†pc̃
†
p)
mp |0〉 = −ic̃†k |I〉

The summation switches from mk = 1 to mk = 0 because summing over all states
where the k-th single-particle state would be occupied, but removing the creation
operator at index k, is equal to summing over all states where the single-particle
state k is empty. The last equality holds true, because application of c̃†k to |I〉 will
yield a δ0,mk , since (c̃†k)

2 = 0. Also, note that no fermi signs appear when swapping
the operators to their final positions, because they are only interchanged with pairs
of operators. The calculation for c†k |I〉 is similar to the one for ck |I〉.

c†k |I〉 = c†k

∑
m

(−i)
∑
pmp |m, m̃〉 = c†k

∑
m

(−i)
∑
pmp

∏
p

(c†pc̃
†
p)
mp |0〉

= c†k

∑
m

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1(c†k c̃

†
k)
mk(c†k+1c̃

†
k+1)mk+1 . . . |0〉

=
∑
m

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1 δ0,mkc

†
k (c†k+1c̃

†
k+1)mk+1 . . . |0〉

=
∑
m

mk=0

(−i)
∑
pmp . . . (c†k−1c̃

†
k−1)mk−1 c†k c̃k c̃

†
k︸︷︷︸

1

(c†k+1c̃
†
k+1)mk+1 . . . |0〉

= −c̃k
∑
m

mk=0

(−i)
∑
p6=kmp . . . (c†k−1c̃

†
k−1)mk−1 c†k c̃

†
k (c†k+1c̃

†
k+1)mk+1 . . . |0〉

= −c̃k
∑
m

mk=1

(−i)
∑
pmp

−i
∏
p

(c†pc̃
†
p)
mp |0〉 = −ic̃k |I〉

When swapping c̃k to the beginning of the expression, there is a fermi sign from
exchanging it with c†k. All other operators are in pairs. Moreover, the sum changes
from mk = 0 to mk = 1, because summing over all states with the k-th single-
particle state being empty and inserting creators with index k is the same as
summing over all states where the single-particle state k is occupied. However, the
sum in the exponent then gets an extra 1, which leads to a factor of −i that needs
to be divided out. The last equality holds true, because applying c̃k to |I〉 yields a
δ1,k.

62



A.5. Tilde conjugation rules

Eq. 2.9 for the annihilation operator can be proven as follows.

b |I〉 = b
∑
m

∞∑
q=0

(−i)
∑
kmk |m, m̃, q, q̃〉

=
∑
m

∞∑
q=0

√
q (−i)

∑
kmk |m, m̃, q − 1, q̃〉

=
∑
m

∞∑
q=1

√
q (−i)

∑
kmk |m, m̃, q − 1, q̃〉

=
∑
m

∞∑
q=0

√
q + 1 (−i)

∑
kmk |m, m̃, q, q̃ + 1〉

=
∑
m

∞∑
q=0

√
q + 1 (−i)

∑
kmk

b̃†√
q + 1

|m, m̃, q, q̃〉

= b̃†
∑
m

∞∑
q=0

(−i)
∑
kmk |m, m̃, q, q̃〉 = b̃† |I〉

The creation operator is analogous.

b† |I〉 = b†
∑
m

∞∑
q=0

(−i)
∑
kmk |m, m̃, q, q̃〉

=
∑
m

∞∑
q=0

√
q + 1 (−i)

∑
kmk |m, m̃, q + 1, q̃〉

=
∑
m

∞∑
q=1

√
q (−i)

∑
kmk |m, m̃, q, q̃ − 1〉

=
∑
m

∞∑
q=0

√
q (−i)

∑
kmk |m, m̃, q, q̃ − 1〉

=
∑
m

∞∑
q=0

√
q (−i)

∑
kmk

b̃√
m
|m, m̃, q, q̃〉

= b̃
∑
m

∞∑
q=0

(−i)
∑
kmk |m, m̃, q, q̃〉 = b̃ |I〉
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A.6 Basis reordering sign

For the order of fermionic operators used in this thesis, the number of permutations
to sort all tilde operators to the left of non-tilde operators can be counted as follows.

The first tilde operator, if present, changes place with only the first non-tilde
operator, also if present.

Nbasis
m,n,1 = n1m1

The second tilde operator then changes places with all present non-tilde operators
with index 1 and 2.

Nbasis
m,n,2 = n2(m1 +m2)

Applying this procedure to all tilde operators, for the k-th tilde operator we find

Nbasis
m,n,k = nk

k∑
l=1

ml.

The total number of permutations is then the sum over all k.

Nbasis
m,n =

N∑
k=1

(
nk

k∑
l=1

ml

)

A.7 Liouville operator in superfermion formalism

For the Hermitian part of the Liouville superoperator we find

i
ˆ̂LHρ̂ |I〉 = [Ĥaux, ρ̂] |I〉

= Ĥaux ρ̂ |I〉 − ρ̂ Ĥaux |I〉

= Ĥaux |ρ〉 − ρ̂

∑
k,l

∑
σ

Ekl c
†
kσclσ +

∑
σ

λ(b† + b) c†fσcfσ

+ Uc†f↑cf↑c
†
f↓cf↓ + ωb b

†b

 |I〉
= Ĥaux |ρ〉 − ρ̂

∑
k,l

∑
σ

Ekl c̃
†
lσ c̃kσ +

∑
σ

λ(b̃+ b̃†) c̃†fσ c̃fσ

+ Uc̃†f↓c̃f↓c̃
†
f↑c̃f↑ + ωb b̃

†b̃

 |I〉
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= Ĥaux |ρ〉 − ρ̂ ˆ̃Haux |I〉 = Ĥaux |ρ〉 − ˆ̃Haux ρ̂ |I〉

= Ĥaux |ρ〉 − ˆ̃Haux |ρ〉 = (Ĥaux − ˆ̃Haux) |ρ〉 .

ρ̂ only contains bilinear fermi operators and therefore commutes with any tilde
fermi operator. Additionally, bosonic operators in original space commute with all
bosonic operators in tilde space. So since ˜̂Haux does not contain non-tilde operators,
it can simply be swapped with ρ̂.

A similar calculation can be done for the dissipative part, where the same properties
as above are used.

ˆ̂LDρ̂ |I〉 =
∑
k,l

∑
σ

[
Γ

(1)
lk

(
2 ckσ ρ̂ c

†
lσ − {ρ̂, c

†
lσckσ}

)
+ Γ

(2)
lk

(
2 c†lσ ρ̂ ckσ − {ρ̂, ckσc

†
lσ}
)]
|I〉

=
∑
k,l

∑
σ

[
Γ

(1)
lk

(
−2i ckσ ρ̂ c̃lσ − ρ̂ c̃

†
kσ c̃lσ − c

†
lσckσ ρ̂

)
+ Γ

(2)
lk

(
−2i c†lσ ρ̂ c̃

†
kσ − ρ̂ ckσc

†
lσ − c̃lσ c̃

†
kσ ρ̂

)]
|I〉

=
∑
k,l

∑
σ

[
Γ

(1)
lk

(
−2i ckσ c̃lσ − c̃

†
kσ c̃lσ − c

†
lσckσ

)
+ Γ

(2)
lk

(
−2i c†lσ c̃

†
kσ − ckσc

†
lσ − c̃lσ c̃

†
kσ

)]
ρ̂ |I〉

=
∑
k,l

∑
σ

[
Γ

(1)
lk

(
−2i ckσ c̃lσ − c̃

†
kσ c̃lσ − c

†
lσckσ

)
+ Γ

(2)
lk

(
−2i c†lσ c̃

†
kσ − ckσc

†
lσ − c̃lσ c̃

†
kσ

)]
|ρ〉

A.8 Green functions of the auxiliary system

The Green functions of the auxiliary system in the frequency domain are again
obtained by a Fourier transformation.

G>(ω) =

∫ ∞
−∞
−iΘ(t) 〈c(t)c†〉 eiωt −Θ(−t)(−i 〈c(−t)c†〉)†eiωtdt

=

∫ ∞
0
−i 〈ceL̂tc†〉 eiωtdt− i

∫ 0

−∞
〈ce−L̂tc†〉† eiωtdt

= −i

〈
c
e(L̂+iω)t

L̂+ iω
c†

〉∣∣∣∣∣
∞

t=0

− i

〈
c
e(−L̂−iω)t

−L̂ − iω
c†

〉†∣∣∣∣∣∣
0

−∞
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= i

〈
c

1

L̂+ iω
c†
〉

+ i

〈
c

1

L̂+ iω
c†
〉†

=
〈
c(ω − iL̂)−1c†

〉
−
〈
c(ω − iL̂)−1c†

〉†
The calculation for the lesser Green function is very similar.

G<(ω) =

∫ ∞
−∞

Θ(−t)i 〈c†(−t)c〉 eiωt −Θ(t)(i 〈c†(t)c〉)†eiωtdt

=

∫ 0

−∞
i 〈c†e−L̂tc〉 eiωtdt+ i

∫ ∞
0
〈c†eL̂tc〉† eiωtdt

= i

〈
c†

1

iω − L̂
c

〉
− i
〈
c†

1

L̂ − iω
c

〉†
=
〈
c(ω + iL̂)−1c†

〉
−
〈
c(ω + iL̂)−1c†

〉†
In the superfermion formalism all these expectation values become expressions in
the form of 〈I|· · ·|ρss〉. GR(ω) and GA(ω) can be deduced by simply taking only
the relevant integral of the derivation above.

A.9 Lang-Firsov transformation of the auxiliary
Hamiltonian

To make it more readable, the unitary transformation matrix is renamed to L̂ := eŜ ,
with Ŝ as in eq. 2.22. Because a unit-operator in the form of 1 = L̂L̂† can be
inserted between any two operators, it is sufficient to transform all the operators
appearing in Ĥaux separately.

L̂†ĤauxL̂ =
∑
k,l

∑
σ

Ekl L̂
†c†kσL̂L̂

†clσL̂+
∑
σ

λ(L̂†b†L̂+ L̂†bL̂) L̂†c†fσL̂L̂
†cfσL̂

+ UL̂†c†f↑L̂L̂
†cf↑L̂L̂

†c†f↓L̂L̂
†cf↓L̂

† + ωb L̂
†b†L̂L̂†bL̂

=
∑
k,l

∑
σ

Ekl c̄
†
kσ c̄lσ +

∑
σ

λ(b̄† + b̄) c̄†fσ c̄fσ + Uc̄†f↑c̄f↑c̄
†
f↓c̄f↓ + ωb b̄

†b̄

=: ˆ̄Haux (A.4)

The number operator n̂fσ := cfσc
†
fσ commutes with all creation and annihilation

operators with an index different from f . Therefore, the transformed electronic
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creators and annihilators for indices except f simplify to

c̄kσ = e−
∑
σ′ γn̂fσ′ (b

†−b) ckσ e
∑
σ′ γn̂fσ′ (b

†−b) = ckσ

and c̄†kσ = c†kσ.

For cfσ, first the commutator with the number operator must be evaluated.

n̂fσcfσ = c†fσ cfσcfσ︸ ︷︷ ︸
0

= 0

cfσn̂fσ = cfσ c†fσcfσ︸ ︷︷ ︸
1−cfσc

†
fσ

= cfσ − cfσcfσ︸ ︷︷ ︸
0

c†fσ = cfσ

From this, it is obvious that also

n̂kfσcfσ = 0 and cfσn̂
k
fσ = cfσ

hold. Taking the Hermitian conjugate of the above equations and using that n̂ is
self-adjoint, the equations for the creators read as

c†fσn̂
k
fσ = 0 and n̂kfσc

†
fσ = c†fσ.

Also note that the above relations are only valid if the spin component also matches.
If it does not, the operators commute. With these results, the transformed electronic
operators are

c̄fσ = e−
∑
σ′ γn̂fσ′ (b

†−b) cfσ e
∑
σ′ γn̂fσ′ (b

†−b) = e−γn̂fσ(b†−b) cfσ e
γn̂fσ(b†−b)

=

∞∑
k=0

[
−γn̂fσ(b† − b)

]k
k!

cfσ

∞∑
k=0

[
γn̂fσ(b† − b)

]k
k!

= cfσ

∞∑
k=0

[
γ(b† − b)

]k
k!

= cfσ e
γ(b†−b)

and

c̄†fσ = e−
∑
σ′ γn̂fσ′ (b

†−b) c†fσ e
∑
σ′ γn̂fσ′ (b

†−b) = e−γn̂fσ(b†−b) c†fσ e
γn̂fσ(b†−b)

=
∞∑
k=0

[
−γn̂fσ(b† − b)

]k
k!

c†fσ

∞∑
k=0

[
γn̂fσ(b† − b)

]k
k!

=
∞∑
k=0

[
−γ(b† − b)

]k
k!

c†fσ = e−γ(b†−b) c†fσ.
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The needed basic commutators to calculate the transformed bosonic ladder operators
are

[b, (b† − b)k] =
k−1∑
j=0

(b† − b)k−1−j [b, b† − b]︸ ︷︷ ︸
1

(b† − b)j

=
k−1∑
j=0

(b† − b)k−1 = k(b† − b)k−1

and

[b†, (b† − b)k] =

k−1∑
j=0

(b† − b)k−1−j [b†, b† − b]︸ ︷︷ ︸
1

(b† − b)j

=

k−1∑
j=0

(b† − b)k−1 = k(b† − b)k−1.

With these, the transformed bosonic operators become

b̄ = e−
∑
σ γn̂fσ b e

∑
σ γn̂fσ

= e−
∑
σ γn̂fσ b

∞∑
k=0

[∑
σ γn̂σ(b† − b)

]k
k!

= e−
∑
σ γn̂fσ e

∑
σ γn̂fσ︸ ︷︷ ︸

1

b+ e−
∑
σ γn̂fσ

∞∑
k=0

k
[∑

σ γn̂fσ
] [∑

σ γn̂fσ(b† − b)
]k−1

k!

= b+ e−
∑
σ γn̂fσ

∞∑
k=1

[∑
σ γn̂fσ

] [∑
σ γn̂fσ(b† − b)

]k−1

(k − 1)!

= b+ e−
∑
σ γn̂fσ

[∑
σ

γn̂fσ

] ∞∑
k=0

[∑
σ γn̂fσ(b† − b)

]k
k!

= b+ e−
∑
σ γn̂fσ

[∑
σ

γn̂fσ

]
e
∑
σ γn̂fσ

= b+
∑
σ

γn̂fσ

and, because the commutator of (b† − b) with b† is the same as with b,

b̄† = b† +
∑
σ

γn̂fσ.

68



A.9. Lang-Firsov transformation of the auxiliary Hamiltonian

So in eq. A.4, the hopping term becomes∑
k,l,σ

Eklc̄
†
kσ c̄lσ =

∑
k 6=f
l 6=f

∑
σ

Eklc
†
kσclσ

+
∑
kσ

(
Ekfc

†
kσcfσe

− λ
ωb

(b†−b)
+ Efkc

†
fσe

λ
ωb

(b†−b)
ckσ

)
,

the electron-phonon coupling is∑
σ

λ(b̄† + b̄) c̄†fσ c̄fσ =
∑
σ

λ
(
b† +

∑
σ′

γn̂fσ′ + b+
∑
σ′

γn̂fσ′
)
n̂fσ

=
∑
σ

λ(b† + b) n̂fσ + 2λ
∑
σ,σ′

γn̂fσ′ n̂fσ

=
∑
σ

λ(b† + b) n̂fσ −
2

ωb

(∑
σ

λn̂fσ

)2
,

the Coulomb repulsion remains unchanged

Uc̄†f↑c̄f↑c̄
†
f↓c̄f↓ = Uc†f↑cf↑c

†
f↓cf↓,

and the energy of the phonons transforms to

ωb b̄
†b̄ = ωb

(
b† +

∑
σ

γn̂fσ

)(
b+

∑
σ

γn̂fσ

)
= ωb b

†b+ ωb b
∑
σ

γn̂fσ + ωb b
†
∑
σ

γn̂fσ + ωb

(∑
σ

γn̂fσ

)2

= ωb b
†b+ ωbγ(b† + b)

(∑
σ

n̂fσ

)
+ ωb

(∑
σ

γn̂fσ

)2

= ωb b
†b−

∑
σ

λ(b† + b)n̂fσ +
1

ωb

(∑
σ

λn̂fσ

)2
.

When added together, these terms combine to the final result

ˆ̄Haux =
∑
k 6=f
l 6=f

∑
σ

Ekl c
†
kσclσ + Uc†f↑cf↑c

†
f↓cf↓ + ωb b

†b− 1

ωb

(∑
σ

λc†fσcfσ

)2

+
∑
kσ

(
Ekfc

†
kσcfσe

− λ
ωb

(b†−b)
+ Efkc

†
fσe

λ
ωb

(b†−b)
ckσ

)
.
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A.10 Left- and right-sided eigenvalues

A right eigenvector xR to the eigenvalue λR of a matrix M satisfies the equation

(M − λR1)xR = 0.

For solutions except the trivial xR = 0, the determinant of the coefficient matrix
must vanish.

det(M − λR1) = 0

The determinant is invariant with respect to transposing its argument, so also

det
(
MT − λR1

)
= 0

must hold. But this equation implies that

(MT − λR1)xT
L = 0 (A.5)

has non-tivial solutions for the row vector xL. Transposing the whole equation
gives

xL(M − λR1) = 0 (A.6)

which is the definition of a left eigenvector of M with eigenvalue λR. Therefore, λR

is also a left-sided eigenvalue of M , which is better called λ := λR.
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Appendix B

Additional Plots

In this appendix we collect plots which are not absolutely necessary for the main
text but could be useful as a later reference.
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Figure B.1: Fits used for the calculation of the convergence behavior of the Lang-
Firsov transformation, with the parameters as given in section 4.2.
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Figure B.2: Example fit for the Rtpia calculations with N = 5, Φ = 8 Γ, and all
other parameters as given in section 4.4.1.
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Figure B.3: Example fit for the Rtpia calculations with N = 5, Φ = 8 Γ, and all
other parameters as given in section 4.4.1.
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Figure B.4: Example fit for the Hqme calculations with N = 5, Φ = 1 eV, and all
other parameters as given in section 4.4.2.

−1

−0.5

0

0.5

∆
R
[e

V
]

Im(∆aux) Re(∆aux) Im(∆phys) Re(∆phys)

−10 −8 −6 −4 −2 0 2 4 6 8 10

−2

0

2

ω [eV]

∆
K
[e

V
]

Im(∆aux)

Im(∆phys)

Figure B.5: Example fit for the Hqme calculations with N = 7, Φ = 1 eV, and all
other parameters as given in section 4.4.2.
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Figure B.6: Impurity spectral functions of the calculations used for comparison with
Hqme at λ = 0.12 eV, Γ = 0.1 eV, N = 5, and all other parameters as
given in section 4.4.2.
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Figure B.7: Impurity spectral functions of the calculations used for comparison with
Hqme at λ = 0.12 eV, Γ = 1 eV, N = 5, and all other parameters as
given in section 4.4.2.
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Figure B.8: Impurity spectral functions of the calculations used for comparison with
Hqme at λ = 0.4 eV, Γ = 1 eV, N = 5, and all other parameters as
given in section 4.4.2.
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Figure B.9: Impurity spectral functions of the calculations used for comparison with
Hqme at λ = 0.4 eV, Γ = 1 eV, N = 7, and all other parameters as
given in section 4.4.2. The dip at Φ = 0 looks like numerical instabilities,
but the results for N = 5 show a similar feature, albeit washed out. We
therefore assume its origin is physical, not numerical.
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Figure B.10: Example fit for the calculations reproducing the Franck-Condon block-
ade with N = 5, Φ = 2.5 Γ, and all other parameters as given in section
4.5.
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Figure B.11: Impurity spectral functions of the calculations reproducing the Franck-
Condon blockade at λ = 0.5 Γ, and all other parameters as given in
section 4.5.
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Figure B.12: Impurity spectral functions of the calculations reproducing the Franck-
Condon blockade at λ = 2 Γ, and all other parameters as given in
section 4.5.
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Figure B.13: Impurity spectral functions of the calculations reproducing the Franck-
Condon blockade at λ = 4 Γ, and all other parameters as given in
section 4.5.
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Figure B.14: Impurity spectral functions for the model with finite Coulomb repulsion
at Φ = 4 Γ, and all other parameters as given in section 4.6.
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Figure B.15: Impurity spectral functions for the model with finite Coulomb repulsion
at Φ = 8 Γ, and all other parameters as given in section 4.6.

78



Bibliography

[1] B. Becker and P. Molitor. Technische Informatik: Eine einführende Darstellung,
page 13. Oldenbourg Verlag, 2008. isbn: 978 3 486 58650 3.

[2] H. Wong and H. Iwai. The road to miniaturization. Physics World, 18(9):40,
2005. doi: 10.1088/2058-7058/18/9/31.

[3] C.A. Mack. Seeing double. IEEE Spectrum, 45(11), 2008. doi: 10/fdg6md.

[4] Y. Laplanche. Implementation of ARM® Cores in FinFET technolgies. In
45th European Solid State Device Research Conference, pages 80–83. IEEE,
2015. doi: 10.1109/ESSDERC.2015.7324718.

[5] A. Aviram and M.A. Ratner. Molecular rectifiers. Chemical Physics Letters,
29(2):277–283, 1974. doi: 10.1016/0009-2614(74)85031-1.

[6] D. P. E. Smith. Quantum Point Contact Switches. Science, 269(5222):371,
1995. doi: 10.1126/science.269.5222.371.

[7] Y. Cui and C.M. Lieber. Functional Nanoscale Electronic Devices Assembled
Using Silicon Nanowire Building Blocks. Science, 291(5505):851–853, 2001.
doi: 10.1126/science.291.5505.851.

[8] F.Q. Xie, L. Nittler, C. Obermair, and T. Schimmel. Gate-Controlled
Atomic Quantum Switch. Physical Review Letters, 93(12):128303, 2004.
doi: 10.1103/PhysRevLett.93.128303.

[9] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono. Quantized conductance
atomic switch. Nature, 433(7021):47–50, 2005. doi: 10.1038/nature03190.

[10] N.B. Zhitenev, H. Meng, and Z. Bao. Conductance of Small
Molecular Junctions. Physical Review Letters, 88(22):226801, 2002.
doi: 10.1103/PhysRevLett.88.226801.

[11] J. J. Parks, A.R. Champagne, G.R. Hutchison, S. Flores-Torres, H.D.
Abruna, and D.C. Ralph. Tuning the Kondo Effect with a Mechanically
Controllable Break Junction. Physical Review Letters, 99(2):026601, 2007.
doi: 10.1103/PhysRevLett.99.026601.

79

http://dx.doi.org/10.1088/2058-7058/18/9/31
http://dx.doi.org/10/fdg6md
http://dx.doi.org/10.1109/ESSDERC.2015.7324718
http://dx.doi.org/10.1016/0009-2614(74)85031-1
http://dx.doi.org/10.1126/science.269.5222.371
http://dx.doi.org/10.1126/science.291.5505.851
http://dx.doi.org/10.1103/PhysRevLett.93.128303
http://dx.doi.org/10.1038/nature03190
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1103/PhysRevLett.99.026601


Bibliography

[12] M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. C. Cuevas,
and J.M. van Ruitenbeek. Highly Conductive Molecular Junctions Based on
Direct Binding of Benzene to Platinum Electrodes. Physical Review Letters,
101(4):046801, 2008. doi: 10.1103/PhysRevLett.101.046801.

[13] J.M. Beebe, B. Kim, C.D. Frisbie, and J.G. Kushmerick. Measuring Relative
Barrier Heights in Molecular Electronic Junctions with Transition Voltage
Spectroscopy. ACS Nano, 2(5):827–832, 2008. doi: 10.1021/nn700424u.

[14] H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, and T. Lee. Ob-
servation of molecular orbital gating. Nature, 462(7276):1039–1043, 2009.
doi: 10.1038/nature08639.

[15] S.Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S.G. Louie, M. S.
Hybertsen, J. B. Neaton, and L. Venkataraman. Mechanically controlled binary
conductance switching of a single-molecule junction. Nature Nanotechnology, 4
(4):230–234, 2009. doi: 10.1038/nnano.2009.10.

[16] M. Kiguchi. Electrical conductance of single C60 and benzene molecules
bridging between Pt electrode. Applied Physics Letters, 95(7):213, 2009.
doi: 10.1063/1.3204466.

[17] S. Kaneko, T. Nakazumi, and M. Kiguchi. Fabrication of a Well-Defined Single
Benzene Molecule Junction Using Ag Electrodes. The Journal of Physical
Chemistry Letters, 1(24):3520–3523, 2010. doi: 10.1021/jz101506u.

[18] H. Park, J. Park, A.K. L. Lim, E.H. Anderson, et al. Nanomechani-
cal oscillations in a single-C60 transistor. Nature, 407(6800):57–60, 2000.
doi: 10.1038/35024031.

[19] W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha,
and L.P. Kouwenhoven. Electron transport through double quantum dots.
Reviews of Modern Physics, 75(1):1, 2002. doi: 10.1103/RevModPhys.75.1.

[20] A.N. Pasupathy, J. Park, C. Chang, A.V. Soldatov, S. Lebedkin, R.C. Bialczak,
J. E. Grose, L.A.K. Donev, J. P. Sethna, D.C. Ralph, et al. Vibration-Assisted
Electron Tunneling in C140 Transistors. Nano Letters, 5(2):203–207, 2005.
doi: 10.1021/nl048619c.

[21] J. Hihath, C.R. Arroyo, G. Rubio-Bollinger, N. Tao, and N. Agraït. Study of
Electron-Phonon Interactions in a Single Molecule Covalently Connected to
two Electrodes. Nano Letters, 8(6):1673–1678, 2008. doi: 10.1021/nl080580e.

[22] O. Tal, M. Krieger, B. Leerink, and J.M. Van Ruitenbeek. Electron-
Vibration Interaction in Single-Molecule Junctions: From Contact to
Tunneling Regimes. Physical Review Letters, 100(19):196804, 2008.
doi: 10.1103/PhysRevLett.100.196804.

80

http://dx.doi.org/10.1103/PhysRevLett.101.046801
http://dx.doi.org/10.1021/nn700424u
http://dx.doi.org/10.1038/nature08639
http://dx.doi.org/10.1038/nnano.2009.10
http://dx.doi.org/10.1063/1.3204466
http://dx.doi.org/10.1021/jz101506u
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1021/nl048619c
http://dx.doi.org/10.1021/nl080580e
http://dx.doi.org/10.1103/PhysRevLett.100.196804


Bibliography

[23] L. Mühlbacher and E. Rabani. Real-Time Path Integral Approach to Nonequi-
librium Many-Body Quantum Systems. Physical Review Letters, 100(17):
176403, 2008. doi: 10.1103/PhysRevLett.100.176403.

[24] J. Mravlje and A. Ramšak. Electron Transport Through Molecules in the
Kondo Regime: The Role of Molecular Vibrations. In Physical Properties of
Nanosystems, pages 45–60. Springer, 2010. doi: 10.1007/978-94-007-0044-4_4.

[25] S. Maier, T. L. Schmidt, and A. Komnik. Charge transfer statistics of a
molecular quantum dot with strong electron-phonon interaction. Physical
Review B, 83(8):085401, 2011. doi: 10.1103/PhysRevB.83.085401.

[26] R. Hützen, S. Weiss, M. Thorwart, and R. Egger. Iterative summation of path
integrals for nonequilibrium molecular quantum transport. Physical Review B,
85(12):121408, 2012. doi: 10.1103/PhysRevB.85.121408.

[27] C. Schinabeck, A. Erpenbeck, R. Härtle, and M. Thoss. Hierarchical quantum
master equation approach to electronic-vibrational coupling in nonequilibrium
transport through nanosystems. Physical Review B, 94(20):201407, 2016.
doi: 10.1103/PhysRevB.94.201407.

[28] E. Arrigoni, M. Knap, and W. von der Linden. Nonequilibrium Dynamical
Mean-Field Theory: An Auxiliary Quantum Master Equation Approach. Phys-
ical review letters, 110(8):086403, 2013. doi: 10.1103/PhysRevLett.110.086403.

[29] W.E. Arnoldi. The principle of minimized iterations in the solution of the
matrix eigenvalue problem. Quarterly of Applied Mathematics, 9(1):17–29,
1951. doi: 10.1090/qam/42792.

[30] C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators. Journal of Research of the National
Bureau of Standards, 45(4):255–282, 1950. doi: 10.6028/jres.045.026.

[31] P.W. Anderson. Localized Magnetic States in Metals. Physical Review, 124
(1):41, 1961. doi: 10.1103/PhysRev.124.41.

[32] T. Holstein. Studies of Polaron Motion – Part I. The Molecular-Crystal Model.
Annals of Physics, 8(3):325–342, 1959. doi: 10.1016/0003-4916(59)90002-8.

[33] T. Holstein. Studies of Polaron Motion – Part II. The “Small” Polaron. Annals
of Physics, 8(3):343–389, 1959. doi: 10.1006/aphy.2000.6021.

[34] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni. Auxiliary master
equation approach to nonequilibrium correlated impurities. Physical Review B,
89(16):165105, 2014. doi: 10.1103/PhysRevB.89.165105.

[35] H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems,
chapter 3.3. Oxford University Press, 2002. isbn: 978 0 19 852063 4.

81

http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1007/978-94-007-0044-4_4
http://dx.doi.org/10.1103/PhysRevB.83.085401
http://dx.doi.org/10.1103/PhysRevB.85.121408
http://dx.doi.org/10.1103/PhysRevB.94.201407
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1006/aphy.2000.6021
http://dx.doi.org/10.1103/PhysRevB.89.165105


Bibliography

[36] G. Schaller. Open Quantum Systems Far from Equilibrium, volume 881.
Springer, 2014. isbn: 978 3 319 03876 6.

[37] A.A. Dzhioev and D. S. Kosov. Super-fermion representation of quantum
kinetic equations for the electron transport problem. The Journal of Chemical
Physics, 134(4):044121, 2011. doi: 10.1063/1.3548065.

[38] H. Haug and A.P. Jauho. Quantum Kinetics in Transport and Optics of
Semiconductors. Springer, 2008. isbn: 978 3 540 73561 8.

[39] I.G. Lang and Y.A. Firsov. Kinetic Theory of Semiconductors with Low
Mobility. Journal of Experimental and Theoretical Physics, 16(5):1301, 1963.
url: jetp.ac.ru/cgi-bin/dn/e_016_05_1301.pdf.

[40] J. R. Norris. Markov Chains, chapter Introduction. Cambridge University
Press, 1998. isbn: 978 0 521 48181 6.

[41] A. Kossakowski. On quantum statistical mechanics of non-Hamiltonian sys-
tems. Reports on Mathematical Physics, 3(4):247–274, 1972. doi: 10.1016/0034-
4877(72)90010-9.

[42] G. Lindblad. On the Generators of Quantum Dynamical Semigroups. Communi-
cations in Mathematical Physics, 48(2):119–130, 1976. doi: 10.1007/BF01608499.

[43] V. Gorini, A. Kossakowski, and E.C.G. Sudarshan. Completely positive
dynamical semigroups of N -level systems. Journal of Mathematical Physics,
17(5):821–825, 1976. doi: 10.1063/1.522979.

[44] L. P. Kadanoff and G.A. Baym. Quantum Statistical Mechanics: Green’s
Function Methods in Equilibrium and Nonequilibirum Problems. Benjamin,
1962. isbn: 978 0 201 41046 4.

[45] W. Nolting. Grundkurs Theoretische Physik 7 – Viel-Teilchen-Theorie. Springer,
eighth edition, 2015. isbn: 978 3 642 25807 7.

[46] G. Tatara, H. Kohno, and J. Shibata. Microscopic approach to current-
driven domain wall dynamics. Physics Reports, 468(6):213–301, 2008.
doi: 10.1016/j.physrep.2008.07.003.

[47] M. Gell-Mann and F. Low. Bound States in Quantum Field Theory. Physical
Review, 84(2):350, 1951. doi: 10.1103/PhysRev.84.350.

[48] F. J. Dyson. The S Matrix in Quantum Electrodynamics. Physical Review, 75
(11):1736, 1949. doi: doi.org/10.1103/PhysRev.75.1736.

[49] L.V. Keldysh et al. Diagram Technique for Nonequilibrium Processes.
Journal of Experimental and Theoretical Physics, 20(4):1018–1026, 1965.
url: jetp.ac.ru/cgi-bin/dn/e_020_04_1018.pdf.

82

http://dx.doi.org/10.1063/1.3548065
http://jetp.ac.ru/cgi-bin/dn/e_016_05_1301.pdf
http://dx.doi.org/10.1016/0034-4877(72)90010-9
http://dx.doi.org/10.1016/0034-4877(72)90010-9
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1016/j.physrep.2008.07.003
http://dx.doi.org/10.1103/PhysRev.84.350
http://dx.doi.org/doi.org/10.1103/PhysRev.75.1736
http://jetp.ac.ru/cgi-bin/dn/e_020_04_1018.pdf


Bibliography

[50] D.C. Langreth and J.W. Wilkins. Theory of Spin Resonance in Dilute Magnetic
Alloys. Physical Review B, 6(9):3189, 1972. doi: 10.1103/PhysRevB.6.3189.

[51] Y. Meir and N. S. Wingreen. Landauer formula for the current through
an interacting electron region. Physical Review Letters, 68(16):2512, 1992.
doi: 10.1103/PhysRevLett.68.2512.

[52] A. Dorda, M. Sorantin, W. von der Linden, and E. Arrigoni. Optimized auxiliary
representation of non-Markovian impurity problems by a Lindblad equation.
New Journal of Physics, 19:063005, 2017. doi: 10.1088/1367-2630/aa6ccc.

[53] M. Lax. Formal Theory of Quantum Fluctuations from a Driven State. Physical
Review, 129(5):2342, 1963. doi: 10.1103/PhysRev.129.2342.

[54] F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A. Weichselbaum, and
J. von Delft. Lindblad-driven discretized leads for nonequilibrium steady-
state transport in quantum impurity models: Recovering the continuum limit.
Physical Review B, 94(15):155142, 2016. doi: 10.1103/PhysRevB.94.155142.

[55] D. J. Earl and M.W. Deem. Parallel tempering: Theory, applications, and new
perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.
doi: 10.1039/B509983H.

[56] R. von Mises and H. Pollaczek-Geiringer. Praktische Verfahren der Gle-
ichungsauflösung. Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):
58–77, 1929. doi: 10.1002/zamm.19290090206.

[57] A.N. Krylov. On the numerical solution of the equation by which, in technical
questions, frequencies of small oscillations of material systems are determined.
Izvestija AN SSSR, Otdel. mat. i estest. nauk, 7(4):491–539, 1931.

[58] B.N. Parlett, D.R. Taylor, and Z.A. Liu. A Look-Ahead Lanczos Algorithm
for Unsymmetric Matrices. Mathematics of Computation, 44(169):105–124,
1985. doi: 10.1090/S0025-5718-1985-0771034-2.

83

http://dx.doi.org/10.1103/PhysRevB.6.3189
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1088/1367-2630/aa6ccc
http://dx.doi.org/10.1103/PhysRev.129.2342
http://dx.doi.org/10.1103/PhysRevB.94.155142
http://dx.doi.org/10.1039/B509983H
http://dx.doi.org/10.1002/zamm.19290090206
http://dx.doi.org/10.1090/S0025-5718-1985-0771034-2

	Introduction
	Model and Method
	Anderson-Holstein model
	Statistical ensembles of quantum states
	Time evolution of a density matrix

	Open quantum systems
	Superfermion formalism
	Basics
	Operator properties
	Extension to bosons

	Nonequilibrium Green functions
	Auxiliary master equation approach
	Superfermionic representation
	Green functions

	Unitary transformations
	Lang-Firsov transformation

	Implementation
	Code basics
	Numerical Lang-Firsov transformation
	Steady state calculation
	Green functions
	Time evolution
	Two-sided Lanczos


	Results
	General remarks
	Lang-Firsov transformation
	Limit of weak coupling to the leads
	Comparison with other approximate methods
	Real-time path integral approach
	Hierarchical quantum master equation approach

	Franck-Condon blockade
	On-site Coulomb repulsion

	Conclusions
	Mathematical Details
	Charged position shift
	Partial trace
	Reduced density matrix of an entangled state
	Green functions in the frequency domain
	Tilde conjugation rules
	Basis reordering sign
	Liouville operator in superfermion formalism
	Green functions of the auxiliary system
	Lang-Firsov transformation of the auxiliary Hamiltonian
	Left- and right-sided eigenvalues

	Additional Plots

