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2. Introduction

Magnetic resonance imaging (MRI) is inherently slow. Therefore, physiological
motion such as breathing, heartbeat and also involuntary movement of the patient
presents a fundamental challenge and is one of the most frequent sources of im-
age artifacts [70]. Respiratory motion can, in many applications, be controlled by
breath-holding but imaging of the beating heart requires synchronization of the
MR measurement to cardiac activity. In cardiac MRI, still images are typically
created by capturing data during short periods of relative cardiac quiescence. Al-
ternatively, partial images are acquired throughout the cardiac cycle and averaged
over several heartbeats [44]. Synchronization to the patient’s heartbeat is com-
monly achieved by the use of electrocardiogram (ECG) or photoplethysmography
(PPG) acquired simultaneously during the scan. Common synchronization strate-
gies are triggering and gating. In triggering, the MR acquisition begins after a
physiological event, typically the ECG R-wave, has been detected. Gating may be
prospective or retrospective. In retrospective gating, data is acquired constantly
and is then sorted based on ECG information. In prospective gating, acquisition
is started by e.g. the first R-wave and stops shortly before the next R-wave. This
cycle is then repeated until the scan is completed. In segmented acquisitions such
as cine, the acquisition is subdivided into segments across several R-R intervals
and only a fraction of the complete k-space matrix is acquired during each seg-
ment. Thus, data is collected over several cardiac cycles and sorted retrospectively.
Triggering is usually restricted to the R-wave as this is the only feature that can
reliably be extracted from the ECG.
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2. Introduction

Proper patient preparation such as shaving of chest hair, cleaning of skin with an
abrasive prepping gel and careful placement of surface electrodes is time consuming
but also of vital importance for successful ECG monitoring. PPG is typically only
used as a fallback solution in cases where ECG can not be reliably obtained. Due
to the lowpass e�ect of the vasculature, features in the PPG are not as well defined
as the ECGs R-peak. Since PPG is typically measured at the fingertip or earlobe,
a patient specific delay between cardiac activity and measured signal is introduced.

When used inside an MR scanner, the ECG is contaminated by additional e�ects,
namely the magnetohydrodynamic (MHD) e�ect and gradient induced currents
in the electrode leads. The MHD is due to motion of charged blood-particles
perpendicular to the static magnetic field B0. Charged particles flowing in B0 get
deflected by the Lorentz force, resulting in a Hall potential across vessel walls,
altering the waveform of the ECG. The MHD e�ect on the ECG is strongest when
the flow direction is perpendicular to B0 and flow velocity is maximal. This is
usually the case during the blood ejection phase in the aorta, which coincides
with ventricular repolarization (T-wave). Hence, the major MHD-caused e�ect
observed is an increase in T-wave magnitude [2]. The MHD e�ect increases with
field-strength. While T-wave increase is relatively moderate at 1.5 T, it can, at
higher field-strengths result in T-waves that are larger in amplitude than the QRS-
complex. Figure 2.1 shows a comparison of ECG traces at 0 to 7 T of the same
patient. To ensure reliable R-wave triggering, more advanced detection algorithms
such as vectorcardiogram (VCG) [18] need to be used.

Gradient induced artifacts are caused by the rapidly switching gradients needed for
image acquisition. These time-varying magnetic fields cause induction in the ECG
signal leads which manifests as artifacts in the ECG signal. These artifacts can
be reduced by filtering. If the gradients and the ECG systems impulse-response
are known, more advanced signal processing methods are possible, such as model-
ing the systems response to gradient switching as an LTI (linear, time-invariant)
system [17] or calculating the gradient-induced signal using approximations of
Maxwell’s equations [71]. However, real-time processing with only minimal de-

2



2. Introduction

Figure 2.1.: ECG traces using the same electrode placement in the same patient at
di�erent field strengths. The MHD e�ect becomes more pronounced
at higher field strengths. Figure from [63].

lay (< 150 ms [17], ideally much less) is necessary for triggering, rendering some
more advanced processing methods infeasible. One possibility to reduce gradient-
induced artifacts is to keep the signal leads as short as possible. Today, wireless
ECG amplifiers are commonly used that connect to the ECG electrodes by short
leads of only a few centimeters. These amplifiers must however be heavily shielded
to operate within the scanners bore, increasing their cost. The e�ect of gradient-
switching is vastly increased when the amplifier and ECG leads are far from the
scanners isocenter where gradient switching amplitudes are significantly higher.
This is typically the case in angiography of the extremities or head.
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2. Introduction

Another possibility for motion synchronization are navigator echoes. Navigators
are additional radiofrequency (RF) pulses used to dynamically track anatomic
motion. Navigators may be based on spin echo (SE) or gradient echo (GRE) [1].
Navigators are more commonly used for respiratory motion, where a thin 2D slice
or a pencil-beam is commonly placed intersecting the liver-dome, but can also be
used for cardiac motion [46].

An alternative to navigator echoes are self-navigated sequences in which the center
of k-space is sampled more frequently and the 1-dimensional fast Fourier transform
(FFT) of this readout is treated as a 1D projection of the imaging volume on the
superior-inferior (SI) axis [53]. This projection is then compared to a reference
taken at the beginning of the scan, usually by taking the cross-correlation to
quantify respiratory motion.

However, one fundamental problem of both navigator pulses and self-navigation
is that some additional time is needed. Figure 2.2 shows a pulse diagram of a
simple spin-echo sequence with an additional navigator pulse played out after the
180 ¶ inversion pulse. This demand for extra time may be di�cult to meet in some
applications, especially cardiac MR where fast imaging sequences such as gradient
recalled echo (GRE), turbo spin-eche (TSE), balanced steady-state free precession
(bSSFP) or echoplanar imaging (EPI) are commonly used and continuous coverage
of the cardiac cycle is intended. Introducing navigator echoes in bSSFP for instance
would require interrupting the steady-state, which then needs to be build up again.
An advantage of navigators however is that motion can be measured quantitatively.
Using e.g. a respiratory navigator, both the direction and displacement of the
liverdome can be quantified.

Pilot Tones (PT), introduced by Speier et al. [62] are a promising new technique
based on the modulation of a locally generated constant RF signal by physiological
motion. The PT signal is generated by a low-cost local RF transmitter and is
received by the standard MR local coils. Due to the large receive bandwith of the
MR scanners receiver, the frequency of the PT signal can be chosen well outside
the imaging bandwidth but still inside the receivers bandwidth.

4
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Figure 2.2.: Pulse-diagram of a spin-echo sequence with an additional navigator
pulse and echo. G

x

= x-axis gradient, G
y

= y-axis gradient, G
z

=
z-axis gradient, RF = radiofrequency pulse. The navigator echo is
similar to an image echo, except that no phase encoding is applied.
Figure adapted from [15].

It was previously shown by Schröder and Wetzl et al. that the PT signal contains
multidimensional respiratory information [59, 61, 67]. PilotTone navigation has
an important advantage to navigators and self-navigation: No additional pulses
and readouts are necessary. PT navigation works with essentially any sequence
without increasing acquisition time. Schröder et al. also found anecdotal evidence
of cardiac information encoded in the PT signal [59, 60]. This thesis shall focus
on the cardiac information contained in the PT signal and evaluate whether it can
be reliably extracted and potentially be used as an alternative to ECG for cardiac
triggering and/or gating.
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3. Methods

3.1. A Short History of Electromagnetic Diagnostic
Methods

The use of electromagnetic waves for contactless monitoring of physiological ac-
tivity dates back at least to the 1950s, when Moskalenko [42, 43] used microwaves
of approx. 1 GHz and measured changes in transmission and reflection caused by
changes in volume of blood or respiratory volume. Guy repeated Moskalenkos’s
experiments at 915 MHz in a human subject and found transmission loss to be
proportional to ventricular volume change [32]. Several other groups applied sim-
ilar methods for monitoring of both cardiac and respiratory activity, e.g. Lin et
al. [36, 37] and more recently Pfanner et al. [51, 52].

Fig. 3.1 shows results from above groups: (a) Moskalenko’s transmission exper-
iments at 1 GHz in 1958. Oscilloscope traces from top to bottom: Rubber hose
filled with NaCl and expanded by squeezing a gummi ball. Beating human heart
with transmitter at 5th intercostal space (breath-hold). Beating human heart with
transmitter at 2nd intercostal space (breath-hold). Respiratory motion. Sagittal
transmission through the brain. Image from [42] (b) Guy’s experiments at 915 MHz
in 1972. From top to bottom: Ventricular volume change as reference. Recorded
transmission loss. Recorded ECG as reference. Timing signal. Image from [32]
(c) Lin et al’s "Apexcardiogram" at 2.4 GHz, with phono- and electrocardiogram
as reference. The transmitter was positioned over the apex. Image from [37] (d)
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Pfanner et al. used continuous wave radar at 869 MHz and an array of receive
antennas for cardiac gating in computed tomography (CT). Image from [51]

Note that while Moskalenko, Guy and Lin et al. measured transmission, Pfanner
et al. used continuous-wave radar.

A commonality shared by all of the methods presented above is that the applied
frequency is in or near the GHz range, corresponding to wavelengths in air of ap-
prox. 10 ≠ 30 cm. This means, that for typical transmitter/receiver placements
(e.g. some centimeters to meters anterior and posterior of the thorax) and elec-
trically large antennas (i.e. antennae physically larger than one half-wavelength),
interaction with the patient happens well within the far-field region (sometimes
called the Fraunhofer region), in which E- and H-fields are orthogonal and in-phase
to each other. Figure 3.2 shows the most common definition of the reactive and
radiative near-field, the far-field and the transition zone between them.

3.2. The Pilot Tone Navigator

Speier et al. [62] introduced Pilot Tone (PT) navigation for use in respiratory
synchronization in magnetic resonance imaging (MRPT). This chapter shall focus
on describing how the PT signal is generated and how it a�ects the received MR
signal. Finally, a hypothetical model is presented that describes how physiological
motion modulates the PT carrier-wave.

In telecommunications engineering, pilot tones (pilots) are defined as e.g. "a signal,
usually a single frequency, transmitted over a communications system for supervi-
sory, control, equalization, continuity, synchronization, or reference purposes" [45].
Pilot tones can e.g. be used to infer information about the transmission channel.
The sender transmits a pilot of known waveform, e.g. a sine wave with known am-
plitude and frequency. This pilot is then subjected to the channels transmission
characteristics, i.e. dampening or amplification, filtering, compression, distortion

7
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Figure 3.1.: Electromagnetic waves used for measuring physiological signals, 1958-
2013.
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Source

1 wavelength

NEAR-FIELD REGION
reactive radiative

TRANSITION ZONE FAR-FIELD REGION

x

/2
=

0.159
wavelength

2 wavelengths from 2 wavelengths to in inity

Figure 3.2.: Diagram showing the approximate distances of the near- and
far field. Note that the distance at which the far-field starts
is dependent on the dimension D of the antenna. Gener-
ally, a distance of 2D2/⁄ is used for the near/far-field bound-
ary. Modified from https://commons.wikimedia.org/wiki/File:

Field_regions_for_typical_antennas_vector.svg

etc. By measuring the pilot at the receiver and comparing it to the original signal,
one can infer information about the channel.

Here, the pilot is a continuous wave RF signal outside of the field of view (FOV),
but inside the application bandwidth (approx. 63 MHz ± several 10 ≠ 100 kHz at
1.5 T). The pilot signal can be created either by a standard synthesizer and a non-
resonant pickup coil, mounted on e.g. the scanner’s cover [62] or by a standalone
device. For this thesis, a prototype standalone implementation, built by Jan Bol-
lenbeck (Siemens Hardware R&D), was provided (see Fig. 3.3), transmitting at a
frequency of 63.4429 MHz.

The amplitude of the pilot signal was chosen to be received with significantly lower
magnitude than the MR signal. In Fig. 3.4 one readout through the center of k-
space (top) and its Fourier-tansform (bottom) are plotted. The left peak is the

9
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3. Methods

Figure 3.3.: Standalone variant of the pilot tone transmitter (PTx). The fixed fre-
quency of 63.4429 MHz is generated using a quartz-stabilized oscillator
circuit and output through a printed half-loop antenna.

PT signal, well outside the frequency range used for imaging. Here, the PT peak
is slightly larger than the amplitude of the MR signal.

Figure 3.5 shows an MR image reconstructed from one coil prior to removal of the
PT signal on the left. On the right, a single line of k-space in readout-direction,
indicated by the red line, is plotted over 500 repetitions (5.5 images/s, GRE, TR =
189 ms, TE = 1.04 ms, Pixel BW: 975 Hz).

Contrary to the methods presented in the previous section, where the frequency
can be chosen relatively freely, the pilot’s frequency range is constrained by the field
strength B0 (f0 = B0“) and the receiver’s bandwidth, usually some 10 ≠ 100 kHz
above and below f0.

10
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Figure 3.4.: Single readout through the center of k-space (top) and its Fourier-
transform (bottom).

Figure 3.5.: Left: Image reconstructed from one coil. Right: One k-space line in
readout direction, indicated by the red line in the left image, plotted
as a time-series over 500 repetitions. PE-direction: H-F, readout-
direction: A-P.

Typically, this necessitates some degree of oversampling to ensure that the PT
navigator signal is within the field of view.

11
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This restriction to approx. 63 MHz at 1.5 T leads to some interesting di�erences
compared to the methods shown above. Most notably, when using frequencies of
1 GHz and above, wavelengths are on the order of several cm, whereas at 63 MHz,
⁄0 ¥ 4.8 m (in vacuum). This means, that for a typical setup, where the receivers
and the transmitter are placed on or a few centimeters away from the patient, all
interaction with biological tissue happens well within the reactive near-field region
which, for electromagnetically short antennae (i.e. shorter then one half of the
transmitted wavelength), is defined as the region with a radius r < ⁄

2fi

(r < 0.73 m
at 1.5 T). In this region, the relationship between the electric and magnetic field
is usually quite complex. The name "reactive near-field" stems from the fact that
in this region, the antenna itself reacts to EM absorption, whereas absorption far
from the antenna has no e�ect on the near-field [57]. Essentially, energy from the
source (the oscillator) is stored in the magnetic (H) and electric (E) fields close to
the antenna. Since both fields are out of phase with each other by 90 ¶, no energy
is radiated close to the antenna as this would require the E- and H-field to be
in-phase.

This also means, that mathematical models typically used to describe the interac-
tion between transmitter- and receiver-antenna do not apply. Instead, the system
might best be described as inductive coupling between two coils, separated by a
conductive and/or magnetic medium and with arbitrary orientations to each other,
similar to a transformer or near-field communication (NFC). The fact that both
the PT antenna and the scanners receive antennae are loop antennae (or half-loop
in the case of the PT transmitter) means that they will transmit and receive mostly
the magnetic field as opposed to dipole antennae, which would transmit/receive
mainly the electric field.

In this model, two phenomena are expected to contribute to the PT signal (see
Fig. 3.6): The transmitter loop generates a magnetic field, which is changed by
the medium and then induces a current in the receiving coils. Any change in the
composition of the separating medium is reflected in a change of the magnetic field

12
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and subsequently the induced current, a phenomenon called inductive- or magnetic
coupling.

N1

PTx Rx

i1

Figure 3.6.: Inductive coupling: An AC electric current generates a magnetic field
in coil 1. Field lines intersecting coil 2 induce an electric current in
coil 2. Eddy-currents i

e

are induced in conductive tissues and take
away energy from the magnetic field which is ultimately dissipated as
heat P

e

.

This inductive coupling can be described in terms of mutual inductance: Let coil
L1 in Fig. 3.6 have N1 turns and carry a current of i1(t), giving rise to a magnetic
field B1. Some of the magnetic field lines of B1 will intersect the receive coil L2

and induce a current. Let �21 be the magnetic flux through one turn of coil L2,
having N2 turns, then by Faraday’s law of induction the resulting electromotive
force Á in the receiving coil is

Á(t) = ≠N2
d�21
dt

= ≠ d

dt

⁄⁄

coil2
B1 · dA2 (3.1)

13
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with the sign given by Lenz’s law. dA2 is a surface element in the plane spanned
by the receiving coil. The rate of change of Á(t) is proportional to the change of
current i1(t)

N2
d�21(t)

dt
Ã M

di1(t)
dt

(3.2)

with M the so called mutual inductance, which is dependent on geometrical factors
such as the number of turns and the coils radii . This is, however, only strictly true
for coupling in vacuum. In tissue, the magnetic field B1 at distance r from the
transmitting coil will be influenced by the surrounding mediums magnetic perme-
ability µ, which is either scalar for isotropic or a second rank tensor for anisotropic
media and may also be complex at high frequencies. Magnetic permeability µ is
the distinguishing magnetic property of matter and describes a materials ability
to conduct magnetic flux. Figure 3.7 shows the behaviour of magnetic field lines
in vacuum, dia- (µ < 1) and paramagnetic (µ > 1) matter.

Permeability is often given as relative permeability to the permeability in vacuum:

µ
r

= µ

µ0
(3.3)

Vacuum Ferro /Paramagnetic Diamagnetic

B B B

>1, >0=1, =0 <1, <0
Figure 3.7.: Magnetic field lines in vacuum, ferro-/ paramagnetic and diamagnetic

media.

Thus, in practice Eqn. (3.1) must be reformulated to

14
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N2
d�21(t)

dt
= kM

di1(t)
dt

(3.4)

where k is a coupling factor 0 < k < 1 that is proportional to the permeability µ

at position r and, in the case of PilotTone navigation, also on time as the motion
of the heart and lung changes the geometric distribution of µ in the transmission
volume.

Permeability in biological tissue is relatively close to that of vacuum and and most
tissues are diamagnetic, with the notable exception of desoxigenated blood, which
contains a Fe-atom in the hemoglobin molecule. If it binds oxygen, it changes to
a diamagnetic state [20], a phenomenon which is exploited in functional BOLD
(blood oxygen level dependent) imaging.

Table 3.1 gives magnetic susceptibility (‰ = µ ≠ 1) values for some tissues.

Additionally, as most biological tissues are conductive (see Tab. 3.2), the changing
magnetic field will also give rise to eddy-currents in tissues. This conversion of
energy stored in the magnetic field to electrical currents and ultimately heat,
further decreases the magnetic fields amplitude at the receiver. In a transformer
with a (typically iron) core, this loss due to eddy-currents is characterized as

P
e

= K
e

f 2K2
f

B2 (3.5)

where K
e

is an material dependent eddy-current constant, K2
f

is a geometry con-
stant and B is the magnetic field. The eddy-current constant K

e

is given mainly
by the electrical conductivity ‡. Contrary to permeability/susceptibility, the con-
ductivity of blood is, to the authors best knowledge, not a�ected by factors such
as oxygenation. Therefore, the eddy-current loss P

e

can be assumed to be modu-
lated mainly by changes in geometry. Table 3.2 gives the conductivities for some
biological tissues at several frequencies.

It is not known whether eddy-current loss or changes in susceptibility contribute
more to the PT signal, but seeing that susceptibility in biological tissues is ex-
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Table 3.1.: Magnetic susceptibility ‰ = µ ≠ 1 for air, water and some biological
tissues. Data from Glaser [20].

After Maniewski (1991) After Khenia et al.
in: Maret et al (1986)

10≠6 10≠6

Air +0.34 +0.264
Water -9.05 -9.04
Arterial blood -9.1 -9.3
Oxygenized erythrocytes -9.03
Venous blood -8.4 -7.8
Desoxygenized erythrocytes +3.88
Lungs (inhaled) -3.9
Lungs (exhaled) -4.1
Lungs (15% air content) -4.2
Muscle -9.0 -9.03
Liver -8.8 -8.26
Bone -10 -10

Table 3.2.: Conductivity of some biological tissues at di�erent frequencies. Excerpt
from [50].

Conductivity at frequency
13.56 MHz 27.12 MHz 433 MHz 915 MHz

S/m S/m S/m S/m

Blood 1.16 1.19 1.27 1.41
Lungs (inhaled) 0.11 0.13 - -
Lungs (exhaled) 0.29 0.32 0.71 0.78
Muscle 0.74 0.76 1.12 1.45
Liver 0.49 0.58 0.89 1.06
Fat 0.21 0.21 0.26 0.35
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tremely low, it seems reasonable to assume that eddy-current loss should be the
main factor in modulation of the PT signal.

3.2.1. PilotTone raw-data extraction

As the pilot signal is always active, it needs to be separated from the readout. For
each ADC (analog to digital converter) readout and for each of the m channels
k = 1 . . . m, a model for the pilot signal s

P T,k

is fit to the measured data s
meas,k

and then subtracted to get the MR signal s
MR,k

, which, owing to the quadrature
demodulation used in MRI systems is complex

s
P T,k

(t) = a
k

ejÊt

s
MR

(t) = s
meas,k

(t) ≠ s
P T,k

(t)
(3.6)

where Ê is the known pilot signal frequency and a
k

is a complex amplitude. The
model is based on the assumption that a single ADC readout is short enough to
ignore modulation due to motion. The PT signal is not synchronized to the down-
mixing oscillator, resulting in arbitrary phase. Therefore, the phases of signals
s

P T,k

(t) are normalized sample by sample to an arbitrary reference channel by

c
phase

=
A

s
P T,ref

[i]
|s

P T,ref

[i]|
Bú

s
P T,k,norm

[i] = s
P T,k

[i] · c
phase

= a
k,norm

[i]ejÊt[i]

i œ [1, . . . , T ]

(3.7)

where ú denotes complex conjugate and i is the sample number. s
P T,ref

is the PT
signal in an arbitrarily chosen channel used for phase-normalization. The complex
amplitude a

k,norm

is logged as raw PT navigator date for further processing.

A modified image reconstruction program, implemented in ICE (Image Computa-
tion Environment, Siemens Healthcare, Erlangen, Germany) was provided for this
thesis by Matthias Fenchel (Siemens MR Predevelopment).
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In this thesis, only magnitude PT data is used and magnitude is taken before
removing the PT signals o�set.

Figure 3.8 shows example magnitude raw PT navigator data for one channel and
its spectum after o�set removal. Peaks at 1.17 Hz (cardiac motion) and around
0.26 Hz (respiratory motion) are clearly visible.
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3. Methods

3.3. Independent Component Analysis

Consider the case where physical phenomena, emanating from k di�erent sources
inside a measurement volume V

meas

are measured simultaneously by m sensors
placed at arbitrary positions around V

meas

. The signal being measured at each
of the n sensors then is a (non)linear, unknown mixture of these sources. For
instance, an electrode placed at the scalp receives a linearly weighted sum of the
electrical activities from the underlying brain areas. The problem of separating
these sources, without further knowledge of the characteristics of the sources and
V

meas

, is known as "Blind Source Separation". One popular method to solve this
problem is Independent Component Analysis (ICA), proposed by Comon [12].

3.3.1. Principal Component Analysis

PCA tries to find a new orthogonal basis of the data, such that the variance is
maximized in the direction of the new base vectors. This can be accomplished be
calculating the eigenvectors and eigenvalues of the covariance matrix. The goal of
PCA is, given a set of multivariate measurements, to find a smaller set of variables
with less redundancy, that gives as good a representation of the original data as
possible [27].

Consider the m ◊ n matrix X = [x1 . . . x

m

]T , where x

i

is the centered (i.e. zero-
mean) 1◊n vector of measurements of sensor i. The covariance-matrix �

X

is then
given by

�

X

= cov(X) = E{XX

T } ¥ 1
n ≠ 1XX

T (3.8)

where E(·) is the expectation and 1
n≠1 is a normalization factor used when es-

timating the mean. In �

X

, the ijth element is the product of the ith and jth

vector of measurements, i.e. the diagonal elements of �

X

are the variances of the
measurements whereas the o�-diagonal elements represent the covariances between
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measurement vectors. The covariance matrix is always a square, symmetric m◊m

matrix and, without proof, semi-definite.

-4 -2 2 4

x

-4

-2

2

4

y

Figure 3.9.: Scatterplot of artificial data from two sensors. Probability densities
are shown along the original x- and y-axis. Eigenvectors of the covari-
ance matrix �

X

are shown in red and blue.

Fig. 3.9 shows an artificial, two-dimensional example of two noisy sensors with
means µ1 = µ2 = 0, ‡1 = 6 and standard deviations ‡2 = 6

4 . The covariance
matrix is

�

X

=
S

U1.7395 2.8068
2.8068 7.5415

T

V (3.9)

Clearly, x1 and x2 are correlated, as suggested by the nonzero o�-diagonal elements
of �

X

. Eigendecomposition yields the two orthogonal eigenvectors, scaled by their
respective eigenvalues, shown in blue and red. This demonstrates qualitatively how
the variance is maximal along the first axis e1 in this new base. The second axis,
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e2 corresponds to the maximal variance in the direction orthogonal to the first axis
and so on.

In this new coordinate system {e1, e2} the random vectors x1 and x2 are uncor-
related. The principal components are then the projections y

i

= e

i

x

i

of X on
{e1 . . . e

n

}. In practice, many of the variances will be so small that they can be
discarded, considerably reducing the dimensionality with minimal loss of informa-
tion.

Thus, the principal components y

i

are guaranteed to be uncorrelated. Uncorre-
latedness, however, is a weaker condition for separation of sources than statistical
independence, as is used in ICA.

Statistical independence is mathematically defined in terms of probabilities P (·):
Let X, Y be random variables. These random variables are said to be statistically
independent if and only if

P
X,Y

(X, Y ) = P (X)P (Y ) (3.10)

which leads to the basic property

E{g(X)h(Y )} = E{g(X)} E{h(Y )} (3.11)

with g(·) and h(·) absolutely integrable functions. Recall that two random vari-
ables X and Y are said to be uncorrelated if the property

r
XY

= E{XY } = E{X} E{Y } (3.12)

holds. Comparing Eq. (3.11) and Eq. (3.12) reveals, that independence is a much
stronger property than uncorrelatedness. If g(·) and h(·) are linear functions, Eq.
(3.11) reduces to Eq. (3.12). In the special case that all random variables are
gaussian distributed, uncorrelatedness and independence are the same thing and
ICA reduces to PCA. In ICA, at most one source is allowed to be gaussian.
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3.3.2. The ICA Model

Independent Component Analysis expands on the idea of PCA by demanding
not only uncorrelatedness but actual independence of components. In practice,
components will not be completely independent, but their mutual independence
can be maximized. The ICA problem can be formulated as follows: Given a set
of observations of random variables (x1(t), x2(t), . . . , x

n

(t)), where t is the time or
sample index, assume that they are generated as a linear mixture of independent
components:

Q

ccccccca

x1(t)
x2(t)

...
x

n

(t)

R

dddddddb

= A

Q

ccccccca

s1(t)
s2(t)

...
s

n

(t)

R

dddddddb

(3.13)

with A an unknown mixing matrix. Independent Component Analysis now con-
sists of estimating both A and the s

i

(t) when only observing the x
i

(t) [27].

Therefore, some measure of independence has to be defined. The central limit
theorem states that a sum of non-gaussian random variables approaches gaussian-
ity as n æ Œ. This means, that any linear combination of "true" independent
components will be closer to gaussianity than either of its constituents. Taking
linear combinations y = q

i

b
i

x
i

of the observed (mixed) signals, maximizing the
non-gaussianity of y leads to an independent component.

Several contrast-functions have been proposed to quantify non-gaussianity, e.g.
kurtosis, negentropy or mutual information [12]. In general, higher-order cumu-
lants, i.e. generalizations of variance using higher order polynomials, work well as
contrast functions as these are zero for gaussian random variables.

3.3.3. Estimation of Independent Components

Recall the mixing model from Eq. (3.13),
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x = As (3.14)

which is a linear mixture of the individual components. Since A is invertible, the
independent components are

s = A

≠1
x (3.15)

Each individual independent component is a linear combination of the form

y = b

T

x =
ÿ

i

b
i

x
i

(3.16)

where the independent component y is an estimation of s. Finding a vector b̂ that
maximizes non-gaussianity gives one independent component. The optimization
landscape for nongaussianity in the n-dimensional space of vectors b has 2n lo-
cal maxima, two for each independent component, corresponding to ≠s

i

and s
i

.
This also means, that independent components can be estimated only up to a
multiplicative sign [27].

3.3.4. Preprocessing

Prior to performing ICA, some preprocessing will, in practical applications, be
necessary. In particular, ICA relies on the data to be centered (zero mean) and
of unit variance, i.e. whitened. Additionally, the data may be reduced in dimen-
sionality by performing PCA and discarding components with small corresponding
eigenvalues.

After centering the data, its covariance matrix �

X

is computed. If the data were
white, the diagonal of �

X

would be unity. In practice, this will likely not be the
case, and a whitening transform will be necessary. Whitening is usually combined
with decorrelation, that is, a transformation is computed such that �

X

= I, where
I is the unit matrix.
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This transform is found by first solving the eigenvalue problem on �

X

,

�

X

� = ��

�

T

�

X

� = �

(3.17)

where � is a diagonal matrix of eigenvalues. The columns of � are the eigenvectors
of �.

The matrix � diagonalizes �

X

and thus decorrelates the data X.

X

decorr

= X� (3.18)

To achieve whiteness, the covariance matrix must not only be diagonal but unity.
Observing that

�

≠1/2
��

≠1/2 = I (3.19)

and substituting this in Eq. (3.17) yields

�

≠1/2
�

T

�

X

��

≠1/2 = I (3.20)

Thus, whitening the data means multiplying by the scaling factor �

≠1/2
�.

X

decorr,white

= Z = X�

≠1/2
� (3.21)

Fig. 3.10 shows a two-dimensional geometric interpretation of the whitening pro-
cess. Removing the mean of X centers the joint distibution around the mean
(top right). Eigenvectors of �

X

are the major and minor axes of an ellipse or,
for n Ø 4, of an hyperellipsoid. Decorrelation is essentially a rotation, such that
the eigenvectors of �

X

coincide with the x1 and x2 axis. Finally, whitening scales
the joint distribution along x1 and x2 to ensure equal variance. Note, that the
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Figure 3.10.: Scatterplot of artificial data. Two random variables, one from a gaus-
sian distribution and one from a uniform distribution. Top left:
original data. Top right: data after removing the mean. Bottom
left: decorrelation transform applied to the centered data. Bottom
right: whitening transform applied to centered data. Eigenvectors
are shown in red and have been scaled by a factor of 3 to improve
readability.

eigenvectors are now of equal length and form radii of a unit-(hyper)sphere (this is
why whitening is sometimes called "sphering"). The whitening transform consists
of a rotation followed by scaling - it is an a�ne transform.
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3.3.5. The FastICA Algorithm

The FastICA (FICA) algorithm, proposed by Hyvärinen [28], works by minimizing
mutual information between transformed variables s

i

, building on the method by
Comon [12], expressing mutual information using negentropy.

Negentropy is approximated based on the maximum entropy principle [26] in the
form

J(y
i

) Ã c [E{G(y
i

)} ≠ E{G(v)}]2 (3.22)

where G is any non-quadratic function, c is a constant and v is a standardized
gaussian variable. Choice of G determines the quality of the negentropy estimation.
Choosing a G that does not grow too fast gives a more robust estimator [27].
Finding an independent component means maximizing J

G

(b)

J
G

(b) =
Ë
E{G(bT

x)} ≠ E{GÕ(bT

x)}
È2

(3.23)

with b an m-dimensional vector of weights under the constraint E{(bT

x)2} = 1.
This can be extended to up to n independent components, maximizing the sum of
n contrast functions, taking into account the constraint of decorrelation [28]:

maximize
nÿ

i=1
J

G

(b
i

) w.r.t. b

i

, i = 1, . . . , n

under constraint E{
1
b

T

k

x

2 1
b

T

j

x

2
} = ”

jk

(3.24)

where every vector b

i

gives one row of the unmixing matrix B. The independent
components are then

y = Bx (3.25)

27



3. Methods

The optimization problem from Eq. (3.24) can be solved using a gradient descend
algorithm. Taking the gradient Ò(·) of the approximization of negentropy from
Eq. (3.8) and considering the normalization in Eq. (3.24), gives the update rule

�b Ã “ E{zÒ(bT

z)} (3.26)

To ensure b projects on the unit-hypersphere, keeping the variance of b

T

z constant
and unity, b is normalized

b Ω b/||b|| (3.27)

The step-size “ is calculated as

�“ Ã
1
G(bT

z) ≠ E{G(v)}
2

≠ “ (3.28)

Some possible choices for G are given by Hyvärinen [27]:

G1(y) = 1
–1

log cosh –1y

G2(y) = ≠ exp(≠y2/2)
(3.29)

with 1 Æ –1 Æ 2 some suitable constant. Consequently, g are the derivatives of
Eqs. (3.29)

g1(y) = tanh(–1y)

g2(y) = y exp(≠y2/2)
(3.30)

Alternatively, the problem can be solved much faster using Newton’s method.
While the Newton method usually converges in a small number of steps, it has the
computational disadvantage of needing a matrix-inversion in each step. Hyvärinen
developed an algorithm approximating Newton’s method that does not require
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matrix inversion but still, in theory, converges roughly with the same number of
iterations as the real Newton method [28], called FastICA.

For estimating more than one independent component, FICA can be run using
deflationary orthogonalization. Independent components are estimated one by one.
After estimating p vectors b1, . . . , b

p

, the projections of the previously estimated p

vectors are subtracted and b

p+1 is re-orthonormalized. For an in-depth derivation
of the algorithm see [27, 28]

Data: whitened data z, # of independent components to estimate k

Result: demixing vectors b

initialization: choose an initial (e.g. random) vector bp, set p Ω 1
for p Æ k, p Ω p + 1 do

while not converged do

Let b Ω E{zg(bT

z)} ≠ E{gÕ({b

T

z)}b

Orthogonalize b

p

Ω b

p

≠ q
p≠1
j=1

1
b

T

p

b

j

2
b

j

Normalize b Ω b/||b||
end

end

Algorithm 1: FastICA algorithm for estimating m ICs with deflationary orthog-
onalization. The expectations are in practice estimated as sample means.

Alternatively, re-orthonormalization can be done once all k demixing vectors have
been updated on the matrix of demixing vectors B by solving

B =
1
BB

T

2≠ 1
2

B (3.31)

using an appropriate method such as eigendecomposition of BB

T = FDF

T as
1
BB

T

2
= FD

≠ 1
2
F

T or, as is used in FastICA the iterative algorithm by Hyväri-
nen [28]:

In this approach, no vectors are "privileged" over others which might be beneficial
in some applications [33].
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Data: matrix of demixing vectors B =
1
b

T

1 , b

T

2 . . . b

T

k

2

Result: symmetric re-orthonormalization of demixing vectors B

Let B = B
||BB||

while not converged do

B = 3
2B ≠ 1

2BB

T

B

end

Algorithm 2: Hyvärinens algorithm for symmetric orthonormalization of demix-
ing vectors. The norm || · || can be, in theory, any ordinary matrix norm, except
the Frobenius norm [28].

3.3.6. ICA Quality & Reliability Measures

The performance of ICA, i.e. it’s ability to reliably separate components, is highly
dependent on the chosen parameters, such as the degree of dimensionality reduc-
tion in the preceding PCA, the number of independent components that are to
be fit, preprocessing of data (lowpass filtering to improve SNR), the used contrast
function and the choice of separation algorithm (i.e. deflationary, see Algorithm
1) or the symmetric approach (Algorithm 2) described in more detail in [28].

The ICA demixing matrix is, in the absence of a more reliable starting guess,
initialized with random numbers and the algorithm is expected to produce slightly
di�erent solutions with each new run and may also be prone to getting trapped in
local minima (or maxima, if maximizing e.g. non-gaussianity).

Therefore, any evaluation of ICA performance must be done statistically, using a
Monte-Carlo approach, that is, running ICA several times and comparing results.
Himberg et al. [23] have developed ICASSO, a Matlab toolbox aimed at assessing
both the algorithmic stability and reliability of independent components using
clustering and visualization.

To assess the validity of found components, the ICA algorithm is run several times
on the same dataset using random initial guesses for the demixing matrix. Results
are then compared by some kind of similarity measure. In the case of ICASSO,
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Himberg at al. use the mutual corellation coe�cient of the estimated independent
components.

Recall the ICA model from Eq. 3.13

x = As (3.32)

and

s = Wx (3.33)

where A is the mixing matrix and W its pseudo-inverse, i.e. the demixing matrix
separating independent components. FastICA [28] is then run M times, each run
producing an estimate Ŵ

i

with i = 1 . . . M , of the demixing matrix which is
collected in a single matrix Ŵ = [ŴT

1 , Ŵ

T

2 . . . Ŵ

T

M

]T . Estimating a fixed number
n

i

of independent components in each round, the resulting matrix Ŵ will be of
size K ◊ k, where K = q

i

n
i

and k is the dimension of each individual component
vector.

The mutual correlation coe�cient r
ij

, i, j = 1, . . . , K are then the ijth element
of the matrix

R = ŴCŴ

T (3.34)

where C = cov{x} is the covariance matrix of the original data. Since in ICA the
sign of the ICs is undetermined, correlations can be positiv or negative. The final
similarity matrix is therefore taken as

‡
ij

= |r
ij

| (3.35)

In ICASSO, also a dissimilarity index is used, defined intuitively as
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d
ij

= 1 ≠ ‡
ij

(3.36)

The clustering method used in ICASSO is agglomerative hierarchical clustering
(AHC), a bottom up clustering method. The basic algorithm for doing AHC is
given below, for a more in-depth description see e.g. Everitt et al. [16].

Data: data points x
i

Result: Cluster C = {x1, . . . , x
K

} containing all data points and dendogram
Initialization: each cluster contains one data point: C

i

= {x
i

}
while number of clusters > 1 do

Find a pair of clusters that is closest: min
i,j

D(C
i

, C
j

)
Merge the clusters C

i

, C
j

into a new cluster cCi + j

Remove C
i

, C
j

from the collection C, add C
i+j

end

Algorithm 3: Basic algorithm for agglomerative hierarchical clustering. The
algorithm is run until there is only a single cluster left. A dendogram is produced,
which is a hierarchical tree of clusters. Computational complexity: O(n2K +n3).
The operator D(·, ·) defines a distance metric over clusters.

The dendogram is an intuitive visualization of the clustering process: In Figure
Fig. 3.11 the individual data points ("leafs") are drawn at the abscissa, the distance
metric D(·, ·) on the ordinate. First, the two closest data points min

i,j

D(x
i

, x
j

)
are found and a connecting horizontal line is drawn at the corresponding distance.
These two data points now form the cluster C

i+j

. Now this process is repeated
until only one big cluster containing all data points is left.

Several metrics can be used for distance D(·, ·). In ICASSO, group average-linkage
(AL) is used:

D
AL

(C
k

, C
l

) = 1
n

Ck
n

Cl

ÿ

iœCk,jœCl

d
ij

(3.37)

that is, the distance between clusters C
k

and C
l

is the average euclidian distance
over all pairwise distances between data points in those clusters.
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Figure 3.11.: Right: Data points and clustering into two clusters. Left: corre-
sponding dendogram. The dashed line represents the distance d

cut

used to generate the two clusters.

To produce L disjoint clusters, the user can either specify a distance at which
clusters should be considered to be seperate (essentially cutting the dendrogram
with a horizontal line at some arbitrary distance d

cut

or the user specifies a specific
number L of clusters and the distance d

cut

is found such that the cut results in L

clusters.

For visual inspection, Himberg et al. also provide a tool for nonlinear projection
of data points into a 2D space. A convex hull bounds the data points belonging
to a cluster and data points are connected by lines whose thickness or color is
determined by their similarity ‡

ij

[23]. In this visualization, the smaller the convex
hull is the more compact is it’s corresponding cluster. An ideal cluster would
contract into a single point [23]. An example of this visualisation is shown in
Fig. 3.13. Essentially, tightly clustered and well separated data points correspond
to estimated ICs that di�er only little between realizations of FastICA and are
maximally dissimilar to other ICs. In this example, the following ICA parameters
were used:
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• Algorithm: symmetric

• Contrast: gauss

• Number of ICs: 10

• Reduced dimensionality: 12

Figure. 3.12 left shows the found independent components, ranked from top to
bottom by their quality index I

q

. Quality- and reliability indices are plotted in the
middle and rightmost plots respectively. The independent components plotted on
the left represent the "mean" component from 200 runs of FastICA. These so called
"centrotypes" are also indicated in Fig. 3.13 by blue circles. The cardiac component
(number 1, plotted in blue) was found 199 times out of 200 and appears compact
and isolated, indicating high reliability.. Note that the number of centrotypes
in this example is 12 instead of the expected 10. This is because in some runs,
components were found that did not lie in any of the clusters. These rarely found
components (9 and 6) therefore form clusters of their own. Clusters 9, 10, 11 and
12 are overlapping and have comparatively low I

q

and I
r

.

Let C be the set of all estimated ICs, C
m

the set of indices that belong to the mth

cluster and |C
m

| the size of the mth cluster. The quality index I
q

is then defined
as

I
q

(C
m

) = 1
|C

m

|2
ÿ

i,jœCm

‡
ij

≠ 1
|C

m

||C≠m

|
ÿ

iœCm

ÿ

jœC≠m

‡
ij

(3.38)

where C≠m

is the set of indices that does not belong to the mth cluster. Thus,
I

q

is essentially the di�erence between the average intra-cluster similarity and the
average extra-cluster similarity [23].

Additionally, the number of times the component was found is given, which can
be used to measure the reliability as

I
r

= #found

#trials
œ [0, 1] (3.39)
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Quality index

Figure 3.12.: Independent components, ranked by I
q

(left), corresponding quality
index I

q

(center) and times the component was found over 200 tri-
als with randomized starting-guess. The traces on the left are the
"mean" components, i.e. centrotypes shown in Fig. 3.13. The cardiac
component is shown in blue. The labels used in this plot correspond
to those in Fig. 3.13.
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Figure 3.13.: Example cluster visualization. FastICA was run 200 times. Clusters
are colored by their average intra-cluster similarity. Note cluster
number 1 (top left), corresponding to the cardiac IC and cluster
numbers 2 and 8 corresponding to respiratory motion.
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4. Experimental setup

To assess the feasibility of PilotTone based cardiac triggering, several factors need
to be evaluated: First, the cardiac signal needs to be reliably extracted from
the raw data and separated from other components such as respiratory motion.
Secondly, triggers obtained from the cardiac signal need to correspond well to
those obtained from the ground truth ECG. Additionally, since the Transmitter is
a small standalone device and can be positioned freely it is necessary to evaluate
the influence of transmitter position on the end result. The following chapter will
explain the di�erent analyses used to answer these questions.

Figure in the Appendix shows a flow-chart of all steps, from acquisition of the raw
data through (pre)processing of the PilotTone signal to final statistical analysis.

All experiments were performed on a 1.5T system (MAGNETOM Aera, Siemens
Healthcare GmbH, Germany) on a diverse group of healthy volunteers recruited
from the Siemens volunteer pool (14 male, 6 female, age: 56 ± 15 a, height: 1.72 ±
0.08 m, weight: 77 ± 15 kg, BMI: 26 ± 5.3).

The prototype standalone MRPT transmitter (Tx) was a�xed to a Body 18 coil
(Siemens Healthcare GmbH, Germany), roughly anterior to the volunteers heart.
Additionally, the 16 most proximal channels of the 32 channel Spine 32 coil embed-
ded in the patient table were active, covering the volunteers abdomen and thorax.
The coil- and PTx placement is shown in Fig. 4.1. Volunteers were instructed
to either breathe freely or to perform breath-holds during the 90 s scan at their
discretion.
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4. Experimental setup

Figure 4.1.: The PT transmitter was a�xed to the Body 18 coil array so as to lie
roughly anterior to the volunteers heart.

On each volunteer multiple free-breathing, fluoroscopic scans (GRE, TR = 2.78 ms,
TE = 1.04 ms, 5 images/s) were performed over 93 s each. This resulted in an
e�ective sampling-rate of the PilotTone signal s

P T

of f
s

= 359.7 s≠1. A stan-
dard four-lead electrocardiogram (ECG) and ECG R-peak positions (T

ECG

) were
recorded alongside as ground truth.

The PilotTone signal for each scan was processed by a prototype reconstruction
program implemented in ICE (Image Calculation Environment, Siemens Health-
care GmbH, Germany) as described in section 3.3.4, yielding a complex valued
N ◊ k navigator matrix N

P T

where k is the number of receive channels and N is
the number of complex samples per channel.

4.1. Modulation Depth

Modulation depth is essentially a measure of what fraction of the received signals
amplitude carries actual information relative to the carrier waves amplitude. Ac-
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4. Experimental setup

cording to the model proposed in Sec. 3.2, any physiological motion modulates the
continuous wave PT carrier. Processing using the ICE program described in Sec.
3.2.1 results in a complex T ◊ k matrix x where k is the number of channels and
T is the length of the PT signal, dependent on acquisition duration and e�ective
sampling rate, containing the phase-normalized complex amplitude a

k,norm

, see Eq.
(3.7). The complex amplitude a

k,norm

consists of a DC o�set and some AC com-
ponent due to modulation. To quantify the strength of modulation, modulation
depth (in percent) is defined as

m = 100 · M

A
(4.1)

where M is the peak-to-peak modulation amplitude and A is the carriers ampli-
tude. Here, M and A are defined as

M
k

= max(a
k,norm

) ≠ min(a
k,norm

) (4.2)

and

A
k

= mean(a
k,norm

) (4.3)

resulting in

m
k

= 100 · max(a
k,norm

) ≠ min(a
k,norm

)
mean(a

k,norm

) (4.4)

Modulation depth was computed for all available datasets (16 volunteers, free-
breathing and interspersed breath-holds, 119 datasets total, 90 s acquisition each).

Additionally, the same analysis was performed on only free-breathing datasets (69
datasets total).
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4. Experimental setup

4.2. Optimized ICA Parameters

The performance of ICA depends on a number of parameters: In the preprocessing
step, dimensionality reduction is performed by PCA. Here, the user can choose
freely how many principal components should be retained. ICA then must be
set up with the number of individual components that should be estimated, the
contrast function and the algorithm used for performing FastICA (deflationary or
symmetric approach).

This experiment is designed to determine what combination of parameters o�ers
the overall best quality and reliability.

To this end, FastICA was run 200 times (runs) for each combination of

• Algorithm: symmetric, deflationary

• Contrast function: tanh, exp, power, gauss and skewness

• Number of independent components (3-12)

giving a total of 80 possible combinations and a total of 16.000 FastICA runs. The
IC corresponding to cardiac motion was then picked by visual inspection and its
quality index and reliability stored for further analysis.

Due to the extremely high computational burden, dimensionality reduction by
PCA was fixed to the 12 largest principal components and the analysis was run
only on one dataset of a free breathing volunteer (volunteer 08, see App. Tab.).
Magnitude data was centered and lowpass filtered prior to PCA/ICA.

The number of clusters L was chosen to correspond to the number of ICs. This
should give an indication of how many ICs can be reliably estimated.

If a component is not found in every trial, i.e. I
r

<< 1, it is more likely that
those few datapoints are closer together, giving a high quality index I

q

. Therefore,
a combined quality- and reliability-index I

qr

= I
r

I
q

was used to assess overall
quality and reliability, essentially penalizing those components that are not found
consistantly.
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Following this analysis, the three best performing combinations were applied to all
datasets of free-breathing volunteers (68 total) to evaluate whether those param-
eters perform consistently over a wide range of volunteers.

Results were statistically analyzed using Wilcoxon’s signed-rank test and Quade’s
test. For in-depth information on the statistical tests used, the reader is referred
to e.g. [8, 49]. Statistical computations were performed using R (R Foundation for
Statistical Computing, Vienna, Austria [55]).

The ideal combination of FastICA parameters found in this analysis, while poten-
tially not truly "optimal", nevertheless should provide a good starting point for
robust FastICA performance and was subsequently used for all other experiments
in this thesis.

4.3. Comparison of PT & ECG Triggers

In the following experiments, the independent component relating to cardiac mo-
tion was extracted using the FastICA parameters found in Section 4.2 (pre-filtered
data, symmetric algorithm, tanh contrast function and 12 ICs) and compared to
ECG ground truth.

Independent components were extracted in Matlab 2016a (MathWorks, Natick,
USA) using the FastICA package (Hyvärinen et al. [28]). The independent com-
ponent relating to cardiac motion s

P T

(t) was identified automatically by choosing
the component with the highest spectral power in the frequency band 0.8 ≠ 3 Hz.

To further suppress high-frequency noise and any possible contribution from res-
piratory motion due to imperfect separation of components, s

P T

(t) was bandpass
filtered in the time-domain using a FIR filter of order N = 2000. The filter was set
to a passband of [0.7 . . . 5.5 ]RR

≠1 where RR
≠1 is the inverse of the mean R-R in-

terval calculated from ECG data. Passband frequencies were chosen to include the
fundamental heart rate (RR

≠1) and up to four possible harmonics. Typically, the
fundamental heart-rate and one to four peaks at approximately the corresponding
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4. Experimental setup

harmonic frequency could be identified in the spectrum, see e.g. Fig. 4.2 and Fig.
4.3.

Cardiac independent component power spectrumVol06
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Figure 4.2.: Power spectrum of an unfiltered cardiac independent component. In
this volunteer, the fundamental and 4 harmonics are visible.
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Figure 4.3.: Spectrogram of the same data as in Fig. 4.2, showing the time evo-
lution over approx. 90 s. Fundamental heart rate and four harmonics
are visible.

The filtered cardiac IC s
P T,f

(t) was then numerically di�erentiated and the maxima
of the 1st derivative were identified using Matlab’s findpeak() function to serve as
trigger points t

P T

.
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Figure 4.4 (a) shows a plot of raw- and filtered cardiac IC data and Fig. 4.4 (b)
ECG data with triggers and the filtered cardiac IC and its numerical 1st derivative
and its maxima.

Figure 4.4.: (a) unfiltered (blue) and filtered (orange) cardiac IC over four heart-
beats. (b, top) ECG ground truth and R-peak trigger points t

ECG

(red
triangles). (b, bottom) Filtered cardiac IC (blue) and its 1st derivative
d

dt

s
P T,f

(t). Maxima of the negative 1st derivative are marked with red
triangles.

The 1st derivative

ṡ
P T,f

(t) = d

dt
s

P T,f

(t) (4.5)

of s
P T,f

should, under the assumption that s
P T,f

represents cardiac volume, cor-
respond to velocity of the cardiac wall. The maximum of ≠ṡ

P T,f

is then the point
of maximum velocity of the cardiac wall, which is reached slightly after the R-
peak, which marks the depolarization of the myocard. This means, that t

ECG

can
not coincide with t

P T

. The delay DT [n] between time points t

ECG

[n] and t

P T

[n]
should however be relatively constant.
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The time delay DT is expected to vary with the volunteers heart rate, therefore
DT was calculated in percent of the mean RR-interval RR:

DT [n] = 100t

P T

[n] ≠ t

P T

[n]
RR

(4.6)

and mean DT

DT = 100Èt
P T

≠ t

ECG

Í
RR

(4.7)

where È·Í represents the mean of a vector.

Additionally, trigger-jitter j
P T

(in %RR) was defined as ± one standard-deviation
around the mean time-delay DT , see Fig. 4.5

j
P T

= 2 · 100 · sd
3

t

P T

≠ t

ECG

RR

4
(4.8)

or in ms as

j
P T

= 2 · sd (t
P T

≠ t

ECG

) (4.9)

Figure 4.5.: Trigger-jitter j
P T

is defined as 2 ± one standard deviation around the
mean time di�erence DT .
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Some trigger-points, either in t

P T

or in t
ECG

might conceivably be wrong. Move-
ment of the volunteer for instance is likely to interfere with the ECG resulting in
spurious triggers. This would then result in unrealistically large time delays be-
tween t

P T

and t

ECG

. Since mean and standard deviations (i.e. DT and j
P T

) are
highly susceptible to outliers, these erroneous measurements need to be removed.
An upper threshold DT [n] > 0.1 RR was arbitrarily chosen, above which DT [n]
would be excluded from calculation of DT and j

P T

. The number of outliers was
automatically logged for each dataset alongside DT and j

P T

.

This automated analysis was repeated 30 times with randomly varying FastICA
initial guesses to quantify whether these slight di�erences in the estimated demix-
ing matrices have any significant e�ect on trigger positions and thus DT .

Analysis of Variances (ANOVA) was performed on DT of the repeated ICA real-
izations to determine whether the stochastic nature of ICA results in significant
di�erences in trigger times.

Finally, Bland-Altman plots [40] were generated comparing absolute trigger times
found by ECG and PT.

4.4. Influence of Transmitter Placement

Assuming the transformer-like model of PT signal generation, it is reasonable to
assume that the placement of the transmitter with respect to the receiving coils
is an important factor. To test robustness against slight variations in transmitter
placement, additional measurements were done on one volunteer with the trans-
mitter positioned at eleven di�erent positions and evaluated DT . ICA was again
run 10 times. Transmitter positions are shown in Fig. 4.6, where the circles
roughly indicate the position of the transmit loop. Mean time-di�erence TD and
trigger-jitter j

P T

were calculated for all ten realizations of ICA.
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4. Experimental setup

Figure 4.6.: Approximate positions of the PT Transmitter. Positions 11 and 3 are
posterior of the volunteer, between the volunteer and the spine array.
All other positions are anterior of the volunteer. In positions 4 and 2,
the transmitter was placed between the volunteer and the coil array.
In all other positions the transmitter was positioned above the coil
array.
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5. Results

5.1. Modulation Depth

Figure 5.1 shows a histogram of observed modulation depth per channel m
k

for
real and imaginary components. Median modulation depth was (4.09 ≠ j1.13) %

For free-breathing only datasets, median m
k

was (2.96 + j1.08) %, min: (0.75 ≠
j0.18) % and max: (83.84 ≠ j12.14) %. When using magnitude data the median
modulation depth was 2.52 %, min: 0.75 % and max: 82.44 %.

Additionally, median modulation depths for all datasets of free-breathing volun-
teers were tested for correlation with body mass index (BMI) but no significant
correlation was found (real part: r = 0.176, imaginary part: r = 0.176).

Most subjects were scanned repeatedly during the same session without reposi-
tioning of the PT transmitter. Modulation depth varied strongly between repeat
scans in some subjects. Figure 5.2 shows boxplots (real and imaginary parts) of
intra-subject modulation depths where repeat scans were available.

Clearly, only a small part of the PT signal contributes useful information necessi-
tating highly sensitive receivers.

5.2. Optimized ICA Parameters

Increasing the number of individual components from three to 12 resulted in an
increase in both reliability I

r

and quality I
q

and subsequently I
qr

. When using
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Figure 5.1.: Histograms of real and imaginary parts of the complex modulation
depth m

k

(top, middle) and m
k

when using magnitude PT data. Data
come from 119 scans with 34 channels each.

fewer ICs, the reliability tends to decrease heavily: The cardiac component could
be found in less than 50% of trials when using seven or fewer ICs. Reliability
reached a plateau at approximately 9-12 individual components, achieving an I

r

>

0.9. Figure 5.3 shows reliability I
r

and cluster quality I
q

plotted over the number
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Figure 5.2.: Boxplot of intra-subject variance in modulation depth m
k

. Boxes show
the distribution of median modulation depth for repeat scans. Where
no box is plotted only one scan has been performed. Volunteers were
free-breathing for all scans.

of ICs for all algorithm and contrast combinations. In both diagrams, skewness
contrast was excluded, as it consistently failed to separate the cardiac component.

49



5. Results

3 4 5 6 7 8 9 10 11 12

number of ICs

0.88

0.9

0.92

0.94

0.96

0.98

1
Q
ua
lit
y
in
de
x
I q

def , tanh

def , pow3

def, gauss

symm, tanh

symm, pow3

symm, gauss

3 4 5 6 7 8 9 10 11 12
number of ICs

0

0.2

0.4

0.6

0.8

1

R
el
ia
bi
lit
y
in
de
x
I r

def , tanh

def , pow3

def , gauss

def , skew

symm, tanh

symm, pow3

symm, gauss

symm, skew

Figure 5.3.: Reliability index I
r

and cluster-quality index I
q

plotted over the num-
ber of ICs used. Note that combinations using skewness as a contrast
function are excluded in the I

q

plot to improve readability, as those
consistently failed to find the independent component associated with
cardiac activity (I

r

= 0).

Cluster quality was high (I
q

> 0.9) for almost all combinations of algorithm,
number of ICs and contrast function, except skewness. However, as mentioned
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earlier, cluster-quality tends to increase for less reliable components. Figure 5.4
shows the combined quality- and reliability index I

qr

.
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Figure 5.4.: Combined reliability- and quality index I
qr

.

These results indicate, that the number of ICs should be set to 10-12 for best
results.

As for the choice of algorithm, a Wilcoxon Signed-rank test indicated that I
qr

does
not di�er significantly (at the – = 0.01 significance level) between the symmetric
and deflationary approach (Z = 411, p = 0.3734).

Following this analysis, the three best performing combinations were then used
on free-breathing datasets of all volunteers, using the symmetric estimation ap-
proach, to determine whether these parameters perform consistently well over a
wide variety of volunteers.

ICA was performed on a total of 67 datasets from 16 free-breathing volunteers
using the symmetric algorithm, 12 ICs and three di�erent contrast functions:

• symmetric, tanh, 12 ICs

• symmetric, pow3, 12 ICs

• symmetric, gauss, 12 ICs
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The cardiac independent component was again chosen manually and its I
q

, I
r

and
I

qr

values calculated.

Using the tanh contrast function, the algorithm failed to find the cardiac compo-
nent in eight of 67 datasets, while using the pow3 and gauss contrasts the algorithm
failed twelve and five times, respectively.

To find the overall best performing combination, I
qr

-values were analyzed statis-
tically to determine whether significant di�erences in I

qr

exist. As I
qr

was not
distributed normally, the number of groups was less then five and ICA was ran re-
peatedly on the same set of volunteers, the non-parametric Quade-test was used.
Datasets for which one or more combinations failed to reliably find the cardiac
component were excluded (12 datasets total).

Figure 5.5 shows a boxplot representation of I
qr

values for all three contrast func-
tions used, the histograms for I

qr

are pictured in Fig. 5.6.
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Figure 5.5.: Box-and-whiskers plot of combined reliability- and quality index I
qr

for di�erent contrast functions. The box ranges from the 1st to the
3rd quartile, i.e. the inter-quartile range IQR. The line represents the
median and the notch the medians 95 % confidence interval. Whiskers
cover ±1.5IQR.
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Figure 5.6.: Histograms of reliability- and quality index I
qr

for di�erent contrast
functions.

To determine, whether di�erent contrast functions produce di�erent results, I
qr

data were tested under the Null-Hypothesis that the distributions of I
qr

for each
contrast are equal.

Quade’s test found significant di�erences between contrasts at the – = 0.01 sig-
nificance level (F = 6.2421, p = 0.00272), indicating that at least one contrast
performs significantly di�erent.

Post-hoc analysis, using Bonferroni correction to account for multiple comparisons,
revealed that the tanh and gauss contrasts do not di�er significantly from each
other in I

qr

, while the pow3 contrast performs significantly worse.

Therefore, using either tanh or gauss as contrast functions seems to be ideal. Since
the gauss contrast failed to find the cardiac IC less often (five times) than tanh,
gauss contrast, with 12 ICs and using the symmetric approach was subsequently
used for all other experiments in this thesis.
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5.3. Comparison of PT & ECG Triggers

Out of a total of 67 datasets from 18 volunteers, six datasets were excluded because
FastICA failed to reliably extract the cardiac IC. The automatic selection of the
cardiac IC based on signal energy in the 0.8≠3 Hz band correctly chose the correct
component in all cases.

The number of missed triggers was low overall: Over repeated runs of FastICA,
an average of 0.75 %, sd:1.58 % of ECG triggers were classified as missed triggers
under the (TD[n] > 0.3RR) criterion. In 57 % of all datasets no ECG triggers
were missed.

Figure 5.7 shows mean time-delay TD plotted against mean R-R interval RR.
Error bars represent the ±1sd interval, i.e. trigger jitter. Volunteers are stratified
by color. As a visual aid to the viewer, the size of the circles qualitatively shows
the percentage of missed triggers.

Mean trigger-jitter j
P T

was 30.1 ms with a standard-deviation of 5.5 ms or 1.47 %RR
with standard-deviation 0.6 %RR.

A moderate positive correlation (r = 0.55, sd : 0.04) was found between TD

and RR, suggesting that TD increases with the R-R interval (intercept: ≠6.98,
sd : 1.05 and slope: 14.45, sd : 1.04).

To determine whether the stochastic nature of ICA results in significantly di�erent
resulting trigger points, ANOVA was performed, testing the null-hypothesis H0 :
µ1 = µ2 = · · · = µ

n

where n = 1 . . . 30 are repeated applications of FastICA.

Figure 5.8 show boxplots of TD for all 30 realizations of FastICA. Before using
ANOVA, the underlying assumptions of normality of the data and homoscedas-
ticity were tested positively at the 0.01 confidence level (Shapiro-Wilk test for
normality: W = 0.95, p = 0.014).

ANOVA found no significant di�erences in TD between ICA realizations at the
0.01 confidence level (F = 0.09, p > 0.01).
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Figure 5.7.: Mean time-delay TD plotted against mean R-R interval RR. Volun-
teers stratified by color. Error-bars represent trigger jitter and size of
circles denotes the percentage of missed triggers. The dotted red line
shows a linear fit between TD and RR.

Bland-Altman plots (see Fig. 5.9 for an example) showed good agreement between
absolute trigger times found by ECG and PT. According to Bland and Altman,
if 95 % of data points fall within the ±1.96 sd interval (sometimes given as ±2 sd)
around the mean, variance in the new method (PT) can be explained by variance
in the reference method (ECG). The number of triggers outside this interval was,
on average, below 5 % (mean: 4.66 %, sd: 1.63 %, min: 0 %, max: 10.11 %). Bland-
Altman plots also give a good graphical representation of the (mean) o�set TD

between the two methods under comparison. It is evident from the choice of
1st derivative as trigger point, that such an o�set must exist and be positive in
relation to the R-peak (see Fig. 5.3). TD was found to be 66.3 ms on average
(mean: 66.3 ms, sd: 33.0 ms, min: 17.0 ms, max: 169.3 ms). Two measurements
had o�sets of > 800 ms: Here, the automatic determination of the cardiac ICs sign
failed and the measurements were excluded from the analysis.
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Figure 5.8.: Boxplot of mean time-di�erence TD over 30 realizations of FastICA.

5.4. Influence of Transmitter Position

Figure 5.10 shows a scatterplot of mean time-di�erence TD vs. mean R-R interval
RR. Positions are stratified by color and the ±1 sd interval (trigger-jitter j

P T

is
plotted as error bars.

Tight clustering of ICA realizations and low trigger-jitter are taken as indication
for good positions of the PT transmitter. Overall, positions 2 (red, anterior to
the volunteers heart and positioned between the thorax and the coil array) and 6
(pink, anterior to the volunteers heart and positioned on the coil array) produced
the best results, i.e. low j

P T

and tight clustering of results from repeated ICA.
Quality decreases when the transmitter is positioned farther away from the heart.
The linear relation between TD and RR found in Sec. 5.3 is plotted as a dashed
red line. For positions 8, 9 and 10 the FastICA algorithm failed to converge reliably
or results were too polluted by respiratory and other components.
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Figure 5.9.: Exemplary Bland-Altman comparing the di�erence between methods
(y-axis) to the mean of both methods (x-axis) . Dashedred and blue
lines show mean and ±1.96 sd limits of agreement and their respective
95 % confidence intervals.
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Figure 5.10.: Scatterplot of TD vs. RR. Error-bars depict the ±1 sd interval
(trigger-jitter). Each dataset was reconstructed several times using
randomized FastICA starting-guesses. The dashed red line shows the
linear relationship between TD and RR found in section 5.3.
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6. Discussion & Outlook

The goal of this thesis was to evaluate whether cardiac triggering based on the
PilotTone navigator would be a feasible alternative to ECG based triggering. To
this end, a variety of methods from di�erent fields were used. This section shall
attempt to combine these results and to determine whether PT navigation is a
feasible technique in practical applications.

Since PT navigation is a new method, a processing framework had to be developed
that enables reliable extraction of cardiac motion data. In this thesis, several
methods of analysis were used, each contributing a piece of a broader picture.

1. Determining the modulation depth, i.e. the fraction of the total PT signal
carrying physiological motion information is an important parameter as it
defines the requirements on the receiver.

2. Independent component analysis has been shown to be a viable approach
to separation of the cardiac signal. However, ICA itself is a relatively new
technique and still actively being researched. Being stochastic in nature,
validation of components found by ICA is a challenging task. In Sec. 4.2,
Monte-Carlo like procedures were used to evaluate the reliability and quality
of components found under di�erent ICA parameters and randomized start-
ing conditions. While by no means exhaustive, this analysis resulted in a
set of ICA parameters that achieved reliable, high quality separation of the
cardiac component. The results obtained from this experiment (Sec. 5.2)
were then used in all following experiments.
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3. In Sec. 4.3, triggers obtained from PT and ECG are compared. The
PT trigger was chosen as maximum velocity of cardiac motion. Statisti-
cal hypothesis-testing and Bland-Altman plots were used to determine how
well triggers derived from the PT signal correspond to those from ECG. In
evaluating the agreement of PT triggers with those obtained from ECG, the
challenge was that triggers from PT navigation and those from ECG are
based on two separate but strongly linked processes: PT navigation essen-
tially measures mechanical activity whereas ECG measures electrical activity.
This necessarily results in a delay between PT and ECG triggers. This delay
was found to be non-constant. Possible causes for this shall be discussed in
Sec. 6.3.

4. The statistical methods used in Sec. 4.3 were also used in Sec. 4.4 to
determine the methods sensitivity to variations in transmitter placement.
To be a feasible alternative to ECG, PT navigation must also be easy to use
in clinical practice. In Sec. 4.4 PT navigation was found to be relatively
robust against variations in transmitter placement.

Independent Component Analysis is still under active research and a multitude
of enhancements to the basic FastICA algorithm used in this thesis have been
proposed. For a comprehensive review of new developments in the field of ICA see
e.g. Hyvärinen [29], Girolami [19] and Bingham et al. [7]. Some of these might
o�er further improvements and are discussed briefly in this chapter.

Finally, while the results in this thesis were obtained from retrospective evalua-
tions, real-time processing is of prime importance if the PT navigator is to be
used as a means of triggering cardiac MRI sequences. Some preliminary results of
real-time processing the PT data are shown in Sec. 6.5.
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6.1. Modulation depth

Modulation depth varied strongly between channels but does not seem to correlate
with BMI. This indicates that even in more massive volunteers PT signal pene-
tration was su�cient for reliable reconstruction of the PT navigator. The higher
median m

k

observed when considering all datasets can easily be explained by the
fact that for 52 of the 119 datasets volunteers were asked to repeatedly perform
breath-holds during the 90 s acquisition. This stronger peak inhalation volume
resulted in increased modulation depth. Curiously, in three datasets modulation
depths of m

k

> 100 % where observed in one channel each. Upon further inspec-
tion of these channels, the PT signal was found to exhibit strong drift in the o�set,
going from positive to negative (or vice versa) over the duration of the acquisition,
the cause of which could not be determined.

In general, modulation depth was not equal in the real and imaginary component.
It has been observed, that the complex PT signal in most channels is non-circular
and improper. A circular complex random variable has a probability distribution
that is invariant to rotation in the complex plane, i.e. a circular disc:

X

d= Xej◊ ’◊ (6.1)

Additionaly, a complex random variable is considered proper, if its pseudo-covariance
vanishes, that is

E{X

2} = E{X

2
r

≠ X

2
i

+ 2j E(X
i

X

r

)} = 0 (6.2)

where subscripts r and i denote real- and imaginary parts respectively. Note
that circularity implies propriety, but not vice versa and impropriety implies non-
circularity, but not vice versa [3].

In many algorithms for processing of complex data circularity and/or propriety
are implicitly assumed. While these assumptions are conveniant, as they simplify
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computation, Adah et al. [3] claim that, at least in some cases, exploitation of
non-circularity and impropriety can greatly improve performance of statistical sig-
nal processing. However, the existence of non-circularity and impropriety does not
necessarily mean that the complex signals phase is informative, i.e. o�ers addi-
tional, physiologically relevant information. Some preliminary experiments using
complex raw data and the complex-valued JADE [10] ICA algorithm did not result
in significant improvements. Additionally, complex ICA is computationally more
expensive than real-valued ICA using e.g. FastICA.

6.2. Optimized ICA Parameters

The results in chapter 5, section 5.2 show that the quality and reliability of source
separation is largely dependent on the proper choice of contrast function and the
number of assumed independent components. In this thesis, FastICA default con-
trast functions were used but in principle one is free to choose any non-quadratic
function G(y) as contrast. Recall Eq. 3.22, the approximation of negentropy used
as an objective function in FastICA

J(y
i

) Ã c [E{G(y
i

)} ≠ E{G(v)}]2 (6.3)

where g(y) = GÕ(y) is the contrast function, c is some constant, v is a zero-mean
gaussian variable with unit variance and E{·} denotes expectancy. It is clear from
Eq. 6.3, that a hypothetical (zero-mean) gaussian component y1 would lead to
J(y

i

) = 0. Since the goal of FastICA is to maximize negentropy J(y
i

), a good
contrast function thus transforms y

i

such that it is as "non-gaussian" as possible.

In Fig. 6.1 the pdf of a typical cardiac IC signal is shown (top) together with its
pdf after transformation with several contrast functions.

This example also demonstrates, why the skew contrast repeatedly failed to find
the cardiac component: Under skew contrast, the PDF appears to be closer to
zero-mean gaussian than before transformation, leading to very low J(y

i

).
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cardiac IC

skew pow3 gauss tanh

Figure 6.1.: Top: PDF of the cardiac component (Volunteer 01). Bottom: PDFs
of of the cardiac component under transformation by G(y

card

). PDFs
were obtained by Kernel Density Estimation using a gaussian kernel.

Other implementations of ICA are based not on negentropy but use e.g. kurtosis
as objective function - using such an algorithms, skew contrast might perform
significantly better, as it produces a highly leptokurtic PDF.

Independent component analysis has so far primarily been used as a exploratory
data analysis tool and the contrast functions used in this thesis have been found
to produce good results in a wide variety of applications (CITE). In the context
of PT navigation however, at least the basic shape of the cardiac signal is known
a priori. It therefore seems reasonable that a contrast function can be found that
is optimized to this particular application. In the literature, optimized contrast
functions have been suggested in recent years for diverse applications, such as e.g.
twin fetal ECG [34], functional magnetic resonance imaging (fMRI) [58] and image
processing [4, 38].
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Another aspect that might significantly improve ICA performance is continuous
updates of the demixing matrix. Currently, ICA is being computed once after
a short training period. It is reasonable to assume that the obtained demixing
matrix is primarily a representation of the underlying geometry and the subjects
anatomy, i.e. the relative position of the PT transmitter and receive coils and
the subjects body composition. Both are non-stationary in practice, especially in
free-breathing exams where the respiratory movement of the chest wall also moves
the PT transmitter relative to the receive coils in the spine array. Any demixing
matrix calculated from a free-breathing training set can thus only be a kind of
"mean-demixing" matrix, representing the average coil geometry and respiratory
state. While this has been shown to be su�cient for robust and reliable separation
of the cardiac component, some respiratory can often be identified in the cardiac
IC resulting in low-frequency o�set. Non-stationary ICA, wherein the mixing
matrix is allowed to vary over time, has been actively researched in recent years
and several solutions to the problem have been proposed, implemented using e.g.
a sliding window approach [21, 27], recursive algorithms [25] or using particle
filters [19].

It is somewhat surprising that the ideal number of independent components to
search for is between 10 ≠ 12 ICs. Respiratory motion accounts for two individual
components. Schroeder et al. have demonstrated that the respiratory information
contained in the PT signal can be separated into anterior-posterior and superior-
inferior components [61], but the splitting of respiratory motion as found by ICA
could also represent a separation of motion of the lungs and liver.

This however leaves 7≠9 ICs of unknown origin. One additional component should,
in theory, be mostly gaussian noise as ICA is capable of finding exactly one compo-
nent that is gaussian distributed. Some of the remaining components may possibly
be attributed to gradient switching and other sources of imperfections in the mea-
surement chain. If this assumptions holds, the number of components found by
ICA should be reduced when measuring just the PT signal without any concurrent
imaging.
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Finally, the ICA problem is essentially a non-convex optimization problem. This
means, that there are several local maxima/minima in which the solver can get
stuck. For instance, the sign of each component is indeterminate in the ICA model
and two maxima exist, one for positive and one for negative sign. Especially the
symmetric algorithm could often be observed continuously switching the sign of
some components, essentially ping-ponging between two equally good solutions.
This case can easily be prevented by either stopping after a predefined number of
iterations or by using some algorithm for step size selection such as randomized
step sizes (stochastic gradient descent).

The more problematic case is when the solver runs into a local minimum/maxi-
mum, resulting in an imperfect solution to the demixing matrix. Selection of a
good contrast function should help to alleviate this problem to some extent, but in
the absence of some a-priori knowledge about the demixing matrix, a small chance
remains that the randomized starting guess is too far from the global maximum
to achieve convergence. Assuming, as in the discussion above, that the demixing
matrix is mostly determined by geometry and underlying anatomy, it seems fea-
sible that some initial guess can be found that is, on average, closer to the global
solution than a purely randomized initial guess.

6.2.1. A Note on Convergence of the FastICA Algorithm

To the authors knowledge, global convergence of the FastICA algorithm has not
been proven for the general case. For some special cases only, global convergence
has been proven theoretically, see e.g. Oja & Yuan [47] for the case of pow3
contrast function and infinite samples. However, the FastICA algorithm has been
used extensively and global convergence is known to be quite good [64]. Tichavsky
et al. [64] found failure rates of 0.01≠1 % when running FastICA repeatedly 10.000
times using randomized initial conditions, depending on model dimension, stopping
criterion and data-length. They also found that in most cases, failure to converge
was due to the algorithm getting stuck at a saddle point lying approximately
halfway between two solutions. They propose an improved version of FastICA

65



6. Discussion & Outlook

where a check for saddle points is performed and, if one is found, one or two
additional iterations are performed. Using this improved algorithm, they found
failure rates to be approaching zero, except for very short input data. In this thesis,
the complete acquisition (approx. 90 s) were used for training, but preliminary
results using a real-time capable prototype show that some 2 ≠ 3 heartbeats are
su�cient for solving the ICA problem. As the PT signal is always active, this
training data can, in practical applications, easily be recorded during the imagers
calibration phase, thus incurring no time penalty on total examination-time.

6.3. Cardiac IC vs. ECG

In general, trigger points could be reliably extracted from the PilotTone signal and
showed a high degree of correlation to those extracted from ECG. These results
indicate, that triggering and/or gating using the PilotTone navigator is feasible and
should lead to results comparable to using ECG. When running ICA repeatedly
on the same data, the algorithm tended to converge to the same solution with only
rare cases were the cardiac IC was not reliably estimated. Since the basic shape of
the cardiac IC is known a-priori, these cases should be easy to detect in practice
and ICA can be run again, possibly with adapted parameters.

However, the approach used herein for validating PT to ECG triggers may not be
entirely precise. One fundamental challenge in comparing trigger points obtained
from PT to those from ECG is that while ECG measures the electrical activity of
the heart, PT data must be assumed to be a representation of the hearts mechani-
cal state. The electrical and mechanical activity are intricately linked, each feeding
back to the other on a cellular level. This mechano-electrical feedback is mediated
by factors such as stretch-dependent Ca2+-channels [65]. It is a well established
fact in the field of numerical cardiac modeling that simply solving the electrical
problem and then feeding results to the mechanical model is insu�cient to cap-
ture the intricacies of cardiac activity. Instead, multiphysics, multiscale coupled
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electromechanical models are necessary. See e.g. Trayanova and Rice [65] for an
excellent overview of cardiac electromechanics in a numerical modeling context.

The ECG QRS complex marks the beginning of the ventricular systole, i.e. depo-
larization of ventricular cells. In MRI, the R peak is used for triggering as it is
usually the only feature that can be reliably identified. In this thesis, the minimum
of the 1st derivative of the pilot tone signal s

P T

was used because it is close to
the R-peak and easy to compute. Mechanically it marks the point of maximum
velocity of myocardial contraction, assuming that s

P T

indeed is representative of
cardiac volume. It is therefore not surprising that PT trigger points, i.e. maximum
velocity of contraction, lag behind those obtained from ECG by some 30≠ 100 ms.
This time di�erence TD was found to be moderately correlated to the mean R-
R interval RR. This result seems reasonable, as both systolic and diastolic time
intervals were previously found to be dependent on heart-rate [11, 35, 41].

Lance et al. [35] found left ventricular ejection time (LVET) (see Fig. 6.2) to be
strongly correlated to heart-rate. Mertens et al. [41] later demonstrated that also
the electromechanic systole, i.e. the Q-S2 interval defined as starting with the Q-
wave and ending with the onset of the aortic component of the second heart-sound
(S2), shortens with RR. As the PT trigger lies in the first half of the electrome-
chanic systole, it can be expected to also exhibit this behavior. Furthermore, Gurev
et al. [22] evaluated electro-mechanical delays in a electro-mechanically linked nu-
merical model of a rabbit’s heart. Their results agree well with experimental data
and show that electro-mechanical delay (EMD), i.e. the delay between local depo-
larization of myocytes and the onset of myocyte shortening, changes with pacing
and mechanical preload and is in the range of 25 ≠ 40 ms. Constantino et al. [13]
found similar results in a computational study using a electromechanically cou-
pled numerical model of a canine heart. Both groups also found electromechanical
delay to be spatially varying [13, 22]. Figure 6.3 [13] shows 3D maps of electrical
activation, mechanical activation and electromechanical delay in canine ventricular
models. Neither group mentiones how this translates to humans, but rabbits are
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often used as transgenic model to the human heart [39], even though they have
much higher heart-rate (R ≠ R ¥ 300 ms).

In humans, Provost et al. [54] measured the electromechanical wavefront using
electromechanic wave imaging (EWI), a relatively new, ultrasound-based imaging
technique. 2D ultrasound CINE movies provided by the authors show the propaga-
tion of the electromechanic wavefront together with the ECG. From these movies,
the time from R-peak to onset of contraction was found to be around 20 ms in
two healthy volunteers whereas TD (R-peak to peak velocity of contraction) was
63 ± 26 ms. Furthermore, Brookes at al. confirmed that measures of cardiac con-
tractile function are subject to beat-to-beat variances [9]. In summary, while this
does not completely rule out the possibility that the observed trigger-jitter j

P T

(on
average TD ± 15 ms) and time-delay DT come from systematic problems with the
PT method, it nevertheless strongly suggests that at least part of this variation is
well explained by physiological processes.

6.4. Influence of Transmitter Placement

Overall, positions 2 (red) and 6 (purple) seem to be preferable. Notably, having the
coil array as an additional barrier between the transmitter and the coils posterior
to the volunteer does not appear to compromise separation or trigger quality.
This increases patient comfort and ease of use, as the transmitter need not be
wedged between the volunteer and coil array but can instead easily be a�xed to
the coil array. Positions 3 (green), 4 (blue), 5 (turquoise) could still be considered
adequate. Position 1 (black), while still close to the heart seems to be less reliable,
possibly because in this position the transmitter is very close to the electronics
box of the used Body 18 coil which might distort the magnetic field.

Mean time-delay seems to increase with distance of the transmitter from the heart,
but the volunteers mean R-R interval increased during the scan session and the
observed increase in DT might also, at least in part, be explained by the linear
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Figure 6.2.: Wiggers Diagram showing aortic, atrial and ventricular pressure, ven-
tricular volume, electrocardiogram and phonocardiogram over time.
The approximate position of the PT 1st-derivative trigger has been
marked in red. Modified from: https://commons.wikimedia.org/

wiki/File:Wiggers_Diagram.svg

relation between DT and RR observed in Sec. 5.3, plotted as a dashed red line in
Fig. 5.10.

These results indicate, that the position of the transmitter should be chosen ap-
proximately anterior to the heart but allows for some imprecision in placement
while still producing reliable separation and triggering.

Crucially, the location dependent delay in the cardiac signal observed by Pfanner et
al. [52] at 869 MHz was not observed. Two factors might contribute to this: Firstly,
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ventricles (average EMD: 19.5 ! 5.0 vs. 33.28 ! 8.5, P "
0.05). Specifically, compared with nonfailing ventricles, local
EMD in the dyssynchronous HF ventricles was 11.3 and 17.4
ms longer at the early-activated septum and late-activated LV
lateral wall, respectively.

Determining the respective role of each HF remodeling
component in extending EMD in dyssynchronous failing
ventricles. To understand how each HF remodeling aspect
contributes to the prolongation of EMD, we computed EMD in
14 additional models in which different combinations of HF
remodeling aspects were included. The simulation results re-
vealed that Ca2# cycling dysfunction is the primary remodel-
ing characteristic responsible for the extension of EMD in HF.
Figure 4 shows electrical (left), mechanical (middle), and EMD
(right) maps for the model with only deranged Ca2# handling,
with all other electromechnical aspects being normal. Although
the electrical activation sequence was identical to that in
nonfailing LBBB ventricles, the mechanical activity was al-
tered such that EMD was prolonged throughout the LV (Fig. 4,
right). Similar to the full dyssynchronous HF ventricular
model, EMD was 10.4 and 13.5 ms longer at the septum and
lateral wall, respectively, than those values in nonfailing ven-
tricles (Table 2). When the results from all models were
compared (Table 2), EMD was significantly greater at the
early-activated septum and late-activated lateral wall in all
ventricular models in which deranged Ca2# handling was
incorporated, regardless of whether the other HF remodeling
components were present in the model or not.

In contrast, reduced stiffness, slowed conduction, and al-
tered ventricular structure (geometry and fiber/sheet orienta-
tion) did not play a marked role in altering EMD. The electrical

and mechanical activation and EMD distribution maps during
LBBB for ventricular models where only reduced stiffness
(top), only slowed conduction (middle), or only altered ven-
tricular structure (bottom) were included are shown in Fig. 5. In
the model with reduced stiffness only, electrical and mechan-
ical activation patterns were almost identical to those in dys-
synchronous nonfailing ventricles. Accordingly, EMD at the
septum was not different from that in nonfailing ventricles and
was extended only by 5.8% at the LV lateral wall (Table 2).
Although incorporating slowed conduction increased the total
electrical activation time by 18 ms, EMD and its distribution
were not dramatically altered during LBBB; EMD was un-
changed at the septum and reduced by only 1.7% at the LV
lateral wall (Table 2). Finally, EMD was not markedly altered
during LBBB in the model with altered ventricular structure.
Since the ventricles were larger in this case, the total electrical
activation time was longer than that in nonfailing ventricles
(143 ms). However, the distribution of EMD was similar to that
in the nonfailing case. EMD was not changed at the septum and
was extended marginally at the LV lateral wall (Table 2). In all
models with any combination of these three HF remodeling
aspects (slowed conduction, reduced stiffness, and altered
ventricular structure), EMD was not altered at the septum and
was only slightly increased at the LV lateral wall. Moreover,
when slowed conduction, reduced stiffness, altered ventricular
structure, or any combination of these three aspects of HF
remodeling were added to the model with Ca2# handling
dysregulation, EMD was altered marginally at the septum
("2.1 ms) and lateral wall ("4.5 ms) compared with the model
with Ca2# dysregulation only.

Table 2. Comparison of global metrics of electrical and mechanical function between the simulation and experiment

Characteristic

Dyssynchronous Nonfailing Model Dyssynchronous Failing Model

Simulation Experiment Simulation Experiment

Total activation time, ms 118 114.8 ! 5.6* (15) 165 150.2 ! 9.8* (15)
Ejection fraction, % 37 35.1 ! 2.7 (16) 11 23 ! 12.7 (22) and 15 ! 2 (37)
Peak LV pressure, mmHg 93 103 ! 10 (16) 78 86.6 ! 7.7 (22)
Maximal dP/dt, mmHg/s 2,732 2,487 ! 398 (16) 1,048 1,048 ! 242 (22)

LV, left ventricular. *QRS duration. Numbers in parentheses are citations which the values came from.
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Fig. 3. Electrical activation times (left), me-
chanical activation times (middle), and elec-
tromechanical delay (EMD; right) maps in
the dyssynchronous nonfailing (top) and dys-
synchronous HF (bottom) canine ventricular
models. The short- and long-axes views are
the same as those shown in Fig. 2.
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Figure 6.3.: Electrical activation times (left), mechanical actvation times (middle)
and electromechanical-delay (EMD, right) maps in dyssynchronous
non-failing (top) and dyssynchronous heart-failure (bottom) canine
ventricular models. Figure from Constantino et. al [13].

the frequency used for PT navigation is much lower, ranging from 64 MHz at 1.5 T
to 298 MHz at 7 T. This results in much lower spatial resolution. Secondly, ICA
would not be able to separate two components that are similar in waveform but
delayed as their respective PDFs would be almost identical. Both e�ects result
in a kind of "averaging" that is expected to smooth out such minor di�erences
and produce a robust estimate of total cardiac volume. As wavelength decreases
with increasing frequency, it will be interesting to see wether this would becomes
problematic at higher field strengths, which would require the pilot tone to be of
higher frequency, e.g. 294 MHz at 7 T.

6.5. Real-time processing

So far, all analyses in this thesis have been performed retrospectively, i.e. using
time-domain digital filtering to eliminate noise in the PT signal. While some
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applications may benefit from PT data evaluated retrospectively, to be a viable
alternative to ECG-based triggering the PT signal needs to be processed in real-
time. For cardiac applications, the e�ective PT sampling-rate, determined by echo-
spacing is expected to be approximately in the 200≠400 Hz range while the cardiac
signal is in the range of 0.65 ≠ 12 Hz (assuming heart-rates from 45 ≠ 180 bpm,
including two harmonics). Thus, extremely narrow-band filters would be necessary.
This is problematic for realtime applications as such powerful filters have a group
delay of several hundred samples.

Consider the following filter:

• Type: FIR Lowpass

• Sampling frequency: f
s

= 360 Hz

• Passband frequency: f
pass

= 6 Hz

• Stopband frequency: f
stop

= 8 Hz

• Stopband attenuation: 60 dB

• Design: Equiripple

Trying to meet these criteria results in a FIR filter of order 356 which has a group
delay of 178 samples - 0.5 s at f

s

= 360 Hz or half a heartbeat. Infinite-impulse-
response (IIR) filters can be designed with significantly shorter group-delay using
modern filter design techniques but will have non-constant group delay. Figure
6.4 shows the group-delay of an IIR filter equivalent to the one above designed in
Matlab using the constrained least P th-norm algorithm [6]. For a cardiac signal
with a heart rate of 1 bpm, the group delay would be between 25 and 30 samples
or 69 ≠ 83 ms while still performing relatively poorly (see insert in Fig. 6.4).

This chapter shall give a short outlook on the steps needed to enable real-time
processing of the PT signal following extraction of the cardiac independent com-
ponent using ICA showing some promising preliminary results not included in this
thesis due to time constraints.
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Figure 6.4.: Frequency dependent group-delay of an IIR lowpass filter. Passband:
f

pass

= 6 Hz, stopband: f
pass

= 8 Hz, Stopband attenuation: 60 dB.
Designed using the constrained least P th-norm algorithm.

Recall Figs. 4.2 and 4.3, showing the power-spectrum and time resolved spec-
trogram of a typical cardiac independent component: The fundamental frequency
(heart-rate) and some, typically two to four, harmonics can be identified. Further-
more, heartbeat is predominantly quasi-periodic [14]. This probabilistic compo-
nent is reflected in the broadening of spectral peaks, owing to variance in heart-
rate.

This suggests, that a simple, phenomenological model of the cardiac component
can be constructed by synthesis in the frequency domain, such that

ŝ
P T

= c0(t) +
Kÿ

k=0
a

k

(t) sin(kÊ(t)t + �
k

) (6.4)

where K is the number of peaks included in the model, c0(t) a time-varying o�set,
k the index of the spectral peak, Ê(t) the time-varying fundamental frequency
(heart-rate), a

k

(t) is each peaks time-varying amplitude and „
k

is each peaks
phase.
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Such a model can then be fit to the incoming data in real-time using e.g. an
Extended Kalman Filter (EKF). This has previously been proposed by e.g. Parker
and Anderson [48] and was since successfully implemented for several problems
where time-evolving, (quasi)-periodic signals need to be tracked such as the passive
Sonar-tracking and identification of submarines, where the vessels rotating engine
generates a approximately periodic sound, but frequency changes with the targets
speed and amplitude with distance [48, 66]. Yuen et al.[68, 69] used a model
similar to that from Parker and Anderson for synchronizing a surgical robot to
heart motion.

For denoising the PT signal, an EKF was implemented in Matlab using the Fourier-
synthesis model from Eq. 6.4 and the unfiltered cardiac independent component
as input. In short, the Kalman Filter uses the current state of the model to predict
the next incoming sample (prediction phase). Then the next sample is compared
to this prediction in a least-squares sense and the model is corrected, if necessary
(correction step). This process is repeated as samples come in and, based on the
covariance of measured data, the so called Kalman-gain K

G

is computed, which
determines whether more trust should be put in the predicted or the measured
data. This essentially means that when measured data is very noisy, it is less
reliable and more trust is put in the model-predicted value. Conversely, when
measured data is less noisy the amount of correction to the model is increased.
If the underlying model is non-linear, an Extended Kalman Filter is used which
linearizes the problem around the working point (1storder), requiring to either
know the models Jacobian or to compute it numerically. In above model, the
Jacobian can be easily computed analytically. For a good introduction to the
Kalman Filter and Extended Kalman Filter see e,g. Ribeiro [56] or Anderson and
Moore [5].

The EKF is an attractive alternative to classical digital time-domain filters as it
does not have any intrinsic delay other then that accrued by the computation itself,
which, if the Jacobians are known analytically, has complexity O(N3) with N the
number of free parameters [24]. In the authors opinion, an e�cient implementation
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of the EKF algorithm running on a powerful machine will produce only negligible
processing delays.

Figure 6.5 shows output of an EKF implemented in Matlab (top). The model was
chosen to include the fundamental frequency and one harmonic. The output ŝ

P T

of the EKF is plotted in red, black dots are the noisy input signal and the dashed
blue trace is the lowpass filtered input s

P T,filt

, used as ground truth. The bottom
plot shows residuals r(t) = s

P T,filt

≠ ŝ
P T

.

The distribution of residuals is plotted in Fig. 6.6 together with residuals over the
complete 90 s acquisition. Residuals are gaussian with nearly zero-mean, indicat-
ing that there are no systematic deviations from ground truth. Note the higher
residuals in the first 5 ≠ 10 s: The initial guess for the model parameters was not
ideal and the EKF therefore took some time to stabilized. This behaviour is also
noticeable in Fig. 6.7.
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Figure 6.5.: Output of the EKF using a one harmonic model. Top: noisy in-
put signal (black dots), ground truth (dashed blue) and EKF out-
put generated from the fitted model (red). Bottom: residual r(t) =
s

P T,filt

≠ ŝ
P T

.
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Figure 6.6.: Top: Distribution of residuals and gaussian best-fit. Bottom: Residu-
als over the full 90 s acquisition.

Figure 6.7 shows the tracked parameters over 90 s. O�set, amplitudes of the fun-
damental and harmonic, fundamental frequency and phase of fundamental and
harmonic are plotted. Ground truth exists for o�set (lowpass filtered input) and
frequency (from time-resolved spectrogram analysis) and are plotted in red. O�set
and frequency are tracked with high accuracy. The phases behave as expected,
simply increasing over time and �2(t) ¥ 2�1(t). Thus, it might be unnecessary to
have both phases as free parameters, reducing the complexity of the model to just
five free parameters.

This model-based approach o�ers another potential benefit: It is well known that
the problem of numerical di�erentiation is extremely ill posed, but di�erentiation
might be a useful tool in trigger detection algorithms. However, since the output
of the EKF is a parameterized model, much more stable di�erentiation can be
achieved by simply di�erentiating the model itself and using the EKFs results in
this new model. This is shown in Fig. 6.8, where the output of ŝ

P T

and d

dt

ŝ
P T

are
shown against the filtered ground truth s

P T,filt,BP

and its derivative d

dt

s
P T,filt,BP

.
The ground truth s

P T,filt,BP

has been bandpass filtered to remove low-frequency
o�set and the EKF output ŝ

P T,noDC

has been computed from the model by simply
omitting the o�set term c0(t).
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Figure 6.7.: Tracked parameters of the one-harmonic EKF. From top to bottom:
o�set c0(t), amplitude a1(t), amplitude a2(t), fundamental frequency
f1(t) = Ê1(t)

2fi

, phase of the fundamental �1 and phase of the harmonic
�2. If available, ground truth is plotted in red.

While this "pseudo-analytic" derivative fails to capture all the dynamics present in
the numerical derivative of the ground-truth, it should enable accurate and reliably
triggering on e.g. the "maximum-velocity" trigger used throughout this thesis.

Although the proposed method has not yet been thoroughly investigated, these
preliminary results are very promising and should enable minimal-delay real-time
processing of PilotTone signals suitable for prospective triggering. Some consider-
ation needs to be given to the fact that the EKF takes, depending on the quality
of the initial guess, some seconds to stabilize. This initial guess could in practi-
cal implementations be derived from the calibration data that is needed for ICA.
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Figure 6.8.: Top: EKF output (blue) and filtered PT trace as ground truth (black).
Bottom: Derivative calculated analytically from EKF model param-
eters (orange), numerical derivative of filtered PT trace (blue) and
numerical derivative of EKF output (grey dots). Ground truth was
bandpass-filtered and EKF output was calculated without the o�set
term c0(t) to eliminate o�set.

Another interesting aspect is the EKFs ability to, to some extent, accurately pre-
dict future values of the model. It might be possible to predict at least some 10
or even 100 ms of cardiac activity which would be highly beneficial for cardiac
MRI sequences needing highly accurate preparatory pulses such as inversion- or
saturation recovery.
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It could be shown in this thesis that the cardiac component can be reliably ex-
tracted in a wide variety of volunteers (see Sec. 5.2) and that PT triggers corre-
spond well to ECG triggers (see Sec. 5.3). The PT transmitter should be placed
anterior to the patients heart, with some cm of tolerance (Sec. 5.4).

Furthermore, the method should o�er some additional benefits over ECG triggering
such as the ability to extract additional interesting trigger points such as the
start of diastole or diastasis or period of minimal motion between the rapid inflow
phase and the start of the atrial systole (see Fig. 6.2). However, it has not yet
been established that the PT cardiac signal indeed corresponds to total cardiac
volume. Further experiments are needed here such as comparing the PT signal
to cardiac volume-curves computed from e.g. real-time, compressed-sensing CINE
measurements.

Preliminary results also show that e�cient real-time processing is possible, which
is of paramount importance to practical implementations of PT navigation.

In order to establish PT navigation as an attractive, easy to use alternative to
ECG, some further development is necessary. In the current implementation, PT
data can only be acquired when imaging readouts are active. In sequences that
acquire data continuously this is not problematic, but many sequences introduce
pauses, for instance to wait until a desired relaxation state is reached. This would
result in gaps in the PT navigator signal. Also, PT navigators can not currently
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be acquired between imaging sequences. Preliminary results show that an ICA
solution computed at the beginning of the scan session can be reused as long as
the patient remains reasonably still. However, the Kalman filter used for realtime
processing requires some heartbeats to stabilize, taking away precious time before
triggering can start, especially in breath-held examinations. To solve this problem,
it will be necessary to reprogram the scanner to allow for ADC readouts even
when not imaging. In practice, this would also enable continuous monitoring of
the cardiac activity in high-risk patients.

Another useful enhancement would be the ability to control both frequency and
amplitude of the PT signal. While the PT navigator could be reliably extracted in
most datasets and all volunteers, it seems logical that slightly increased amplitude
could be necessary in very large patients. Amplitude is however limited as the PT
carrier should remain in the linear range of the receiver. Frequency adjustment
would be needed to use the PT navigator on arbitrary clinical sequences, as the
bandwidth used for imaging is application specific.

No experiments have so far been done on patients with arrhythmia. While arrhyth-
mic heartbeats are not expected to pose a problem in PT signal extraction, the
response time of the Kalman filter would depend on its current state, i.e. favoring
either measurement data over model-predicted data (fast adaptation) or vice versa
(slower adaptation). In theory, arrhythmic beats should result in a sudden increase
of prediction error, reflected in a change of Kalman gain. This information could
then be used to reject the heartbeat.

The physical model for modulation of the PT carrier presented in Sec. 3.2 has so
far not been evaluated against experimental data. At the time of writing of this
thesis, a phantom is being developed by a team at the Siemens Innovation Think
Tank (ITT) that should aid in validation of the proposed model. The phantom
consists of two compartments, an outer layer filled with a gel that has electrical
and magnetic properties similar to those in human tissues and a inner sphere that
can be inflated with either air or a liquid. The phantom will be MR compatible,
enabling experiments inside the scanners bore, but can also be used in a stan-
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dalone setup, with Pilot Tones being generated by the mobile PT transmitter and
measurements made using a simple receive coil and an amplifier. The phantoms
geometric simplicity should also enable validation of the experiments against a
numerical EM simulation.

Jaeschke et al. [30, 31] recently proposed a somewhat similar method, estimating
the scatter-matrix in a parallel-transmit (pTx) system at 7 T using the systems
SAR monitor. Instead of using a continuous-wave pilot, their method relies on the
RF pulses used for MR imaging. Cardiac signals generated by their method look
strikingly similar to those from PT navigation and measures of time di�erences
between ECG and triggers derived from the respective method are comparable:
Jaeschke et al. found a standard-deviation of 12.5 ms during breath-holding and
22 ms during free-breathing [30], while for PT navigation the average trigger-jitter
(defined more conservatively in this thesis as two times the standard-deviation,
see Fig. 4.5) was 30.2 ms during free breathing.

In conclusion, PT navigation has been shown to be a feasible alternative to ECG
triggering and further research in this direction is highly warranted.
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Table A.1.: Quality I
q

, reliability I
r

and combined index I
qr

for the symmetric
algorithm, 12 independent components and contrasts tanh, pow3 and
gauss. For the following statistical evaluation, datasets for which one
or more combination of parameters failed (marked in red) had to be
excluded.

Volunteer tanh contrast pow3 contrast gauss contrast

# N Iq NIC Ir Iqr Iq NIC Ir Iqr Iq NIC Ir Iqr

1 1 0.99 200 1.00 0.99 0.96 200 1.00 0.96 0.97 200 1.00 0.97
2 1 0.96 200 1.00 0.96 0.85 200 1.00 0.85 0.96 200 1.00 0.96
3 1 0.97 200 1.00 0.97 0.99 200 1.00 0.99 0.97 200 1.00 0.97
3 2 1.00 200 1.00 1.00 0.97 200 1.00 0.97 0.99 200 1.00 0.99
3 3 0.97 200 1.00 0.97 0.95 200 1.00 0.95 0.97 200 1.00 0.97
3 4 0.93 200 1.00 0.93 0.00 0 0.00 0.00 0.97 199 1.00 0.97
3 5 0.94 200 1.00 0.94 0.92 200 1.00 0.92 0.95 200 1.00 0.95
4 1 0.95 200 1.00 0.95 0.91 200 1.00 0.91 0.97 200 1.00 0.97
4 2 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00
4 3 0.75 200 1.00 0.75 0.92 200 1.00 0.92 0.67 200 1.00 0.67
4 4 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.61 163 0.82 0.50
4 5 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.80 142 0.71 0.57
4 6 0.72 200 1.00 0.72 0.92 200 1.00 0.92 0.56 200 1.00 0.56
4/2 1 0.74 161 0.81 0.60 0.00 0 0.00 0.00 0.72 190 0.95 0.68
4/2 2 0.97 200 1.00 0.97 0.95 200 1.00 0.95 0.92 200 1.00 0.92
4/2 3 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.62 200 1.00 0.62
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7 1 0.93 200 1.00 0.93 0.87 200 1.00 0.87 0.94 200 1.00 0.94
8 1 0.94 200 1.00 0.94 0.95 200 1.00 0.95 0.97 200 1.00 0.97
8 2 0.98 200 1.00 0.98 0.94 200 1.00 0.94 0.99 200 1.00 0.99
9 1 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00
11 1 0.94 200 1.00 0.94 0.81 200 1.00 0.81 0.95 200 1.00 0.95
12 1 0.98 200 1.00 0.98 0.96 200 1.00 0.96 0.98 200 1.00 0.98
12 2 0.98 200 1.00 0.98 0.97 200 1.00 0.97 0.97 200 1.00 0.97
12 3 1.00 200 1.00 1.00 0.96 200 1.00 0.96 0.98 200 1.00 0.98
12 4 0.98 200 1.00 0.98 0.94 200 1.00 0.94 0.98 200 1.00 0.98
12 5 0.99 200 1.00 0.99 0.92 200 1.00 0.92 0.99 200 1.00 0.99
12 6 0.99 200 1.00 0.99 0.97 200 1.00 0.97 0.97 200 1.00 0.97
12 7 0.94 200 1.00 0.94 0.96 200 1.00 0.96 0.94 200 1.00 0.94
13 1 0.94 200 1.00 0.94 0.94 200 1.00 0.94 0.92 198 0.99 0.91
13 2 0.97 200 1.00 0.97 1.00 200 1.00 1.00 0.98 200 1.00 0.98
13 3 0.96 200 1.00 0.96 0.94 200 1.00 0.94 0.95 200 1.00 0.95
13 4 0.69 191 0.96 0.66 0.96 200 1.00 0.96 0.78 181 0.91 0.71
13 5 0.98 200 1.00 0.98 0.97 200 1.00 0.97 0.98 200 1.00 0.98
13 6 0.90 200 1.00 0.90 0.94 200 1.00 0.94 0.90 200 1.00 0.90
14 1 0.97 200 1.00 0.97 0.95 200 1.00 0.95 0.98 200 1.00 0.98
14 2 0.96 200 1.00 0.96 0.82 200 1.00 0.82 0.94 200 1.00 0.94
14 3 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00
14 4 0.89 200 1.00 0.89 0.00 0 0.00 0.00 0.95 200 1.00 0.95
14 5 0.86 200 1.00 0.86 0.00 0 0.00 0.00 0.96 200 1.00 0.96
14 6 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00
15 1 0.99 200 1.00 0.99 0.98 200 1.00 0.98 1.00 200 1.00 1.00
15 2 0.98 200 1.00 0.98 0.98 200 1.00 0.98 0.98 200 1.00 0.98
15 3 0.98 200 1.00 0.98 0.95 200 1.00 0.95 0.99 200 1.00 0.99
15 4 0.98 200 1.00 0.98 0.99 200 1.00 0.99 0.98 200 1.00 0.98
15 5 0.99 200 1.00 0.99 0.96 200 1.00 0.96 0.99 200 1.00 0.99
16 1 0.98 200 1.00 0.98 0.77 200 1.00 0.77 0.95 200 1.00 0.95
16 2 0.99 200 1.00 0.99 0.97 200 1.00 0.97 0.98 200 1.00 0.98
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16 3 0.98 200 1.00 0.98 1.00 200 1.00 1.00 0.98 200 1.00 0.98
16 4 0.98 200 1.00 0.98 0.97 200 1.00 0.97 0.98 200 1.00 0.98
17 1 0.98 200 1.00 0.98 0.91 200 1.00 0.91 0.97 200 1.00 0.97
17 2 0.72 199 1.00 0.72 0.83 200 1.00 0.83 0.94 200 1.00 0.94
17 3 0.97 200 1.00 0.97 0.92 200 1.00 0.92 0.98 200 1.00 0.98
17 4 0.98 200 1.00 0.98 0.98 200 1.00 0.98 0.97 200 1.00 0.97
17 5 0.99 200 1.00 0.99 0.97 200 1.00 0.97 0.99 200 1.00 0.99
17/2 1 0.99 200 1.00 0.99 0.99 200 1.00 0.99 0.98 200 1.00 0.98
17/2 2 0.98 200 1.00 0.98 0.86 200 1.00 0.86 0.96 200 1.00 0.96
17/2 3 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00
18 1 0.98 200 1.00 0.98 0.96 200 1.00 0.96 0.97 200 1.00 0.97
18 2 0.91 200 1.00 0.91 0.97 200 1.00 0.97 0.92 200 1.00 0.92
18 3 0.98 200 1.00 0.98 0.93 200 1.00 0.93 0.98 200 1.00 0.98
18 4 0.87 197 0.99 0.86 0.66 194 0.97 0.64 0.94 200 1.00 0.94
18 5 0.96 200 1.00 0.96 0.98 200 1.00 0.98 0.97 200 1.00 0.97
19 1 0.98 200 1.00 0.98 0.94 200 1.00 0.94 0.98 200 1.00 0.98
19 2 0.96 200 1.00 0.96 0.93 200 1.00 0.93 0.97 200 1.00 0.97
19 3 0.93 199 1.00 0.92 0.89 200 1.00 0.89 0.87 198 0.99 0.86
19 4 0.96 200 1.00 0.96 0.96 200 1.00 0.96 0.94 200 1.00 0.94
19 5 0.88 200 1.00 0.88 0.77 200 1.00 0.77 0.93 200 1.00 0.93

Mean 0.83 175.33 0.88 0.83 0.76 164.09 0.82 0.76 0.86 183.15 0.92 0.85
Std 0.32 65.23 0.33 0.32 0.36 77.23 0.39 0.36 0.26 53.11 0.27 0.27

A
ll

da
ta

Median 0.96 200.00 1.00 0.96 0.94 200.00 1.00 0.94 0.97 200.00 1.00 0.97

Mean 0.94 199.10 1.00 0.94 0.90 192.88 0.96 0.90 0.93 197.92 0.99 0.92
Std 0.07 5.20 0.03 0.08 0.07 0.81 0.00 0.07 0.10 8.99 0.04 0.12

N
on

-fa
ile

d

Median 0.97 200.00 1.00 0.97 0.95 200.00 1.00 0.95 0.97 200.00 1.00 0.97
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all measuremens
(GRE)

Figure A.1.: Flow-chart of processing steps of all analyses described in Chap. 3
Sec. 4. Numbers next to connections are the number of channels.
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