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Abstract

This thesis deals with the inverse problem for the dielectric conductivity σ, which was
first posed by Calderón in 1980, see [2]. We start with proving the uniqueness of this
problem and go through similar steps as in [10]. Next we derive different algorithms
to compute σ from the given boundary data. Then we look at a posed reconstruction
problem and discretize the algorithms. In the end we compare the numerical results.

In dieser Arbeit behandeln wir das inverse Problem zur Bestimmung der dielek-
trischen Leitfähigkeit σ, welches erstmals von Calderón in [2] gestellt wurde. Zunächst
zeigen wir die Eindeutigkeit des gestellten Problems und gehen dabei ähnlich vor wie
in [10]. Als nächstes leiten wir verschiedene Algorithmen zur Bestimmung von σ her.
Danach beschäftigen wir uns mit einem Rekonstruktionsproblem und diskretisieren
die einzelnen Algorithmen. Am Ende vergleichen die numerischen Ergebnisse.
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Posing the problem

In this thesis we work on the inverse problem for the dielectric conductivity and com-
pare algorithms to solve it. This inverse problem finds application for example in the
Electrical impedance tomography (EIT). The idea behind the problem is to compute
the dielectric conductivity, which is substance specific, by sending electricity into the
body and measuring it’s outcome on the boundary.
Therefore we consider a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 2, with the boundary
Γ = ∂Ω. Furthermore we assume for the dielectric conductivity σ:

• σ ∈ C2(Ω).

• There exists a σ0 ∈ R+ such that σ−1
0 ≥ σ(x) ≥ σ0 > 0 for all x ∈ Ω.

• Let σ be known on the boundary.

In case of d = 2 we have additionally the restriction diam(Ω) < 1. The differential
equation which we want to use to compute σ is one of the Maxwell equations namely

−div(σ∇u) = 0 in Ω,

u = g on Γ,

where ∇u is the electrical field. For the boundary data g we will assume g ∈ H1/2(Γ).
We will derive a method to compute σ from the Dirichlet-to-Neumann operator S
which assigns the boundary data g to the Neumann data of the solution of the dif-
ferential equation above. Therefore we begin with proving the uniqueness of this
procedure in the first two chapters. Then we will proceed to finding this Dirichlet-
to-Neumann operator S in chapter three. After that the goal is to compute σ from
the Dirichlet-to-Neumann operator S. From then on we will consider only d = 2 and
d = 3. In chapter four we derive several algorithms to get σ. Following that we work
on the discretization of the algorithms for a posed reconstruction problem in chapter
five and end up with some numerical results in chapter six.

An overview on this topic is given in [13] for d = 2 and in [14] for d = 3. However
they are using one more assumption for σ which is σ ≡ 1 in a neighborhood of Γ. For
some proofs of convergence rates in [13] σ ∈ C∞(Ω) is required and Ω needs a C∞

boundary. In [14] they use as well that Ω = Ba(0), which is the ball around 0 with
radius a.
The uniqueness of this problem was first shown by Sylvester and Uhlmann in [4]
for σ ∈ C∞(Ω), d ≥ 3 and Ω ⊂ Rd with a smooth boundary. One of the weakest
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8 Einleitung

assumptions to show uniqueness of this problem was taken by Brown und Torres in
[12] who only needed σ ∈ W 3/2,p(Ω) for p ≥ 2d and Ω ⊂ Rd.



1. Introduction

1.1. Solvability of the original problem

We start with the problem: Find u ∈ H1(Ω) such that

−∇ · σ∇u = 0 in Ω, (1.1)

u = g on Γ,

holds in a weak sense. Therefore we take an extension g̃ ∈ H1(Ω) of g in Ω. Then we
consider u0 := u − g̃. After putting the differential equation into the L2(Ω) duality
pairing with a test function v ∈ H1

0 (Ω) and applying integration by parts, we get the
variational formulation for this problem: Find u0 ∈ H1

0 (Ω) such that∫
Ω

σ∇u0 · ∇v dx = −
∫
Ω

σ∇g̃ · ∇v dx ∀v ∈ H1
0 (Ω) (1.2)

with u = u0 + g̃. Therefore we are looking at the bilinear form

a(u, v) :=

∫
Ω

σ∇u · ∇v dx. (1.3)

From the assumption σ ≥ σ0 > 0 we get that

d∑
i=1

σ(x)ηiηi ≥ σ0

d∑
i=1

η2
i ∀η ∈ Rd

and therefore

a(u, u) ≥ σ0‖∇u‖2
L2(Ω).

With the Poincaré inequality (B.1) we get that a(., .) is H1
0 (Ω)-elliptic, i.e. there exists

a constant c > 0 such that

a(u, u) ≥ c‖u‖2
H1(Ω) ∀u ∈ H1

0 (Ω).

Since a(., .) is as well bounded due to the assumption

σ(x) ≤ σ−1
0 ∀x ∈ Ω,

we get from the lemma of Lax-Milgram, see Thm. (B.3), unique solvability and the
estimate

‖u‖H1(Ω) ≤ c1‖g‖H1/2(Γ).

9



10 1. Introduction

1.2. Definition of the Dirichlet-to-Neumann

Operator

The Dirichlet-to-Neumann operator (DtN operator) is defined as the Poincaré-Steklov
Operator S. We write the DtN operator for (1.1) as

Sσg(x) := lim
Ω3x̃→x

σ(x̃)∇ug(x̃) · nx

for x ∈ Γ, where ug solves (1.2) and n is the normal which is pointing outside of
Ω almost everywhere. Sσ : H1/2(Γ) → H−1/2(Γ) is well defined because for every
g ∈ H1/2(Γ) there exists a unique solution ug ∈ H1(Ω) that solves the equation (1.2).
Now we find a weak formulation for Sσ. For that let vh ∈ H1(Ω) be a bounded
extension for a given h ∈ H1/2(Γ) which suffices γint0 vh = h and

‖vh‖H1(Ω) ≤ c2‖h‖H1/2(Γ)

for a c2 > 0 and solves the corresponding variational formulation (1.2). If we apply
the first Green’s identity (B.2) to u and vh, we get

〈Sσg, h〉Γ =

∫
Γ

σ
∂ug
∂n

h dsx

(B.2)
=

∫
Ω

[(∇ · σ∇ug)vh + σ∇ug · ∇vh] dx

(1.2)
=

∫
Ω

σ∇ug · ∇vh dx.

Now we have a weak definition of the operator Sσ for g, h ∈ H1/2(Γ) :

〈Sσg, h〉Γ =

∫
Ω

σ∇ug · ∇vh dx, (1.4)

where ug and vh are the extensions of g and h which solve the corresponding equation
(1.2). With this the self-adjointness of the operator Sσ follows as well.
We get with the Cauchy–Schwarz inequality and the theorem of Fréchet-Riesz, see
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Thm. B.4, that

‖Sσg‖H−1/2(Γ) = sup
h∈H1/2(Γ)

h6=0

|〈Sσg, h〉Γ|
‖h‖H1/2(Γ)

= sup
h∈H1/2(Γ)

h6=0

| (σ∇ug,∇vh)L2(Ω) |
‖h‖H1/2(Γ)

≤ sup
h∈H1/2(Γ)

h6=0

‖σ‖L∞(Ω)‖ug‖H1(Ω)‖vh‖H1(Ω)

‖h‖H1/2(Γ)

≤ c2‖σ‖L∞(Ω)‖ug‖H1(Ω)

Thm.A.13

≤ c2c1‖σ‖L∞(Ω)‖g‖H1/2(Γ),

where we get the last inequality from the trace operator, see Thm. A.13. So the DtN
operator Sσ is linear and bounded as well as not dependent on the extension ug, since
it holds true that for u0 ∈ H1

0 (Ω)

〈Sσg, γint0 u0〉Γ =

∫
Γ

σ
∂ug
∂n

0 dsx = 0.

Therefore we can substitute ug with (ug + u0) and still get the same result for the
integral. If we take ug, u

′
g ∈ H1(Ω) with γint0 ug = g = γint0 u′g, then u′g − ug ∈ H1

0 (Ω)
and it follows that

〈Sσg, γint0 u′g〉Γ = 〈Sσg, γint0 ug〉Γ.

Our original goal is to derive the dielectric conductivity σ from the boundary values
g or furthermore from the DtN operator S. However we first have to consider the
unique solvability of this problem. In the first three chapters we want to show the
following theorem:

Theorem 1.1. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain, σ1 and σ2 two
positive functions in C2(Ω). If Sσ1 = Sσ2, then it holds true that σ1 = σ2 almost
everywhere in Ω.

This theorem implies uniqueness to this problem, that was first posed by Calderon
in [2]. In the case d = 2, under the condition that there exists a R ∈ R such that
R > σi > R−1 for i = 1, 2 Astala and Päivärinta proved this theorem in [9]. We will
prove the uniqueness for d ≥ 3 as it was done in [10] to get a better understanding of
the nature of this problem. However to prove this theorem, we first must transform
the problem into another one.
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1.3. Transformation to the Schrödinger equation

Since the solution of the differential equation (1.1) is unique we can transform it to
another uniquely solvable equation which will give us more information about σ.
Let σ, u ∈ C2(Ω). For vσ = σ1/2u it holds true that

0
(1.1)
= −∇ · (σ∇u) = −∇ ·

(
σ∇

(
σ−1/2vσ

))
= −∇ ·

(
−σ 1

σ
(∇σ1/2)vσ +

σ

σ1/2
∇vσ

)
= −∇ ·

(
−(∇σ1/2)vσ + σ1/2∇vσ

)
= (∆σ1/2)vσ − σ1/2∆vσ.

Therefore we get

(−∆ + q) vσ = 0 in Ω, (1.5)

vσ = σ1/2g on Γ

with

q :=
∆σ1/2

σ1/2
. (1.6)

This transformation can be done as well for u ∈ H1(Ω):

Lemma 1.2. Let σ ∈ C2(Ω), σ ≥ σ0 > 0 for σ0 ∈ R and u ∈ H1(Ω). Then it holds
true for vσ = σ1/2u

∇ · σ∇(σ−1/2vσ) = σ1/2 (−∆ + q) vσ

in a weak sense.

Proof.
The idea of the proof was given in [10, p.16].
We know that for the dual of H1

0 (Ω) holds true that

H−1(Ω) := [H1
0 (Ω)]∗

with the norm

‖F‖H−1(Ω) := sup
‖u‖

H1
0(Ω)

=1

|F (u)|, (1.7)

see Thm. A.11 and Thm. A.9 for more details. Remember that H−1(Ω) is a Banach
space, for the proof see [3, Cor. II.2.2, p.58].
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First we show that for vσ ∈ H1(Ω) there exists a sequence (vσ,k)k∈N ⊂ C2(Ω) that
converges in H1(Ω) and satisfies

‖∇ · ∇σ−1/2(vσ,k − vσ)‖H−1(Ω) → 0 as k →∞.

Since Ω is a Lipschitz domain C∞0 (Ω) is dense in H1(Ω) with respect to the H1(Ω)-
norm, for the proof see [15, p.77]. Hence C2(Ω) is dense in H1(Ω) since C∞0 (Ω) ⊂
C2(Ω) ⊂ H1(Ω). We choose (vσ,k)k∈N ⊂ C2(Ω) with ‖vσ,k − vσ‖H1(Ω) → 0 for k →∞.
It holds true that

σ−1/2 ≤ σ
−1/2
0 .

With 2a2 + 2b2 ≥ (a+ b)2, a, b ∈ R, we get

‖σ−1/2vσ,k − σ−1/2vσ‖2
H1(Ω) = ‖σ−1/2(vσ,k − vσ)‖2

L2(Ω) + ‖∇(σ−1/2(vσ,k − vσ))‖2
L2(Ω)

≤ σ−1
0 ‖vσ,k − vσ‖2

L2(Ω)

+ ‖∇(σ−1/2)(vσ,k − vσ) + σ−1/2∇(vσ,k − vσ)‖2
L2(Ω)

≤ σ−1
0 ‖vσ,k − vσ‖2

L2(Ω)

+
(
‖∇(σ−1/2)(vσ,k − vσ)‖L2(Ω) + ‖σ−1/2∇(vσ,k − vσ)‖L2(Ω)

)2

≤ σ−1
0

(
‖vσ,k − vσ‖2

L2(Ω) + 2‖∇(vσ,k − vσ)‖2
L2(Ω)

)
+ 2‖∇σ−1/2‖2

L∞(Ω)‖vσ,k − vσ‖2
L2(Ω).

Due to σ ∈ C2(Ω) we know that ∇σ is bounded in Ω. Therefore it follows that

‖∇σ−1/2‖L∞(Ω) = ‖ − 1

2
σ−3/2∇σ‖L∞(Ω)

≤ 1

2
σ
−3/2
0 ‖∇σ‖L∞(Ω) =: C <∞.

As a consequence we get

‖σ−1/2vσ,k − σ−1/2vσ‖H1(Ω) ≤ (2σ−1
0 + 2C2)1/2‖vσ,k − vσ‖H1(Ω)

→ 0 for vσ,k → vσ.

In the end we have

‖σ∇σ−1/2(vσ,k − vσ)‖L2(Ω) ≤ ‖σ‖L∞‖σ−1/2(vσ,k − vσ)‖H1(Ω)

→ 0 for vσ,k → vσ. (1.8)

For the next step we need the definition of derivatives in the H−1(Ω) duality pairing:
Let u ∈ L2(Ω), w ∈ H1

0 (Ω) and α ∈ Nd with |α| = 1, then we define Dαu ∈ H−1(Ω)
with

〈Dαu,w〉H−1(Ω)×H1
0 (Ω) := −〈u,Dαw〉L2(Ω)
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see [1, p. 22]. The Cauchy Schwartz inequality implies∣∣∣∣〈 ∂∂xi σ ∂

∂xi
σ−1/2(vσ,k − vσ), w〉H−1(Ω)×H1

0 (Ω)

∣∣∣∣ =

∣∣∣∣−〈σ ∂

∂xi
σ−1/2(vσ,k − vσ),

∂

∂xi
w〉L2(Ω)

∣∣∣∣
≤ ‖σ ∂

∂xi
σ−1/2(vσ,k − vσ)‖L2(Ω) ‖

∂

∂xi
w‖L2(Ω)

≤ ‖σ ∂

∂xi
σ−1/2(vσ,k − vσ)‖L2(Ω) ‖w‖H1

0 (Ω)

for i = 1, ..., d. Therefore we get

‖ ∂
∂xi

σ
∂

∂xi
σ−1/2(vσ,k − vσ)‖H−1(Ω) ≤ ‖σ

∂

∂xi
σ−1/2(vσ,k − vσ)‖L2(Ω)

with the theorem of Fréchet-Riesz, see Thm B.4, which tells us that we can rewrite
the norm that was defined in (1.7) as

‖ ∂
∂xi

σ
∂

∂xi
σ−1/2(vσ,k − vσ)‖H−1(Ω) = sup

0 6=w∈H1
0 (Ω)

〈 ∂
∂xi

σ ∂
∂xi

σ−1/2(vσ,k − vσ), w〉
‖w‖H1

0 (Ω)

.

With (1.8) we get for vσ,k → vσ that

‖∇ · σ∇σ−1/2(vσ,k − vσ)‖H−1(Ω) → 0.

By using integration by parts and Cauchy Schwartz inequality we get for w ∈ H1
0 (Ω)∣∣∣〈σ1/2(−∆ + q)(vσ,k − vσ), w〉H−1(Ω)×H1

0 (Ω)

∣∣∣
≤ ‖σ1/2‖L∞(Ω)

d∑
i=1

∣∣∣∣〈 ∂∂xi (vσ,k − vσ),
∂

∂xi
w〉L2(Ω)

∣∣∣∣
+ ‖σ1/2‖L∞(Ω)‖q‖L∞(Ω)‖vσ,k − vσ‖L2(Ω)‖w‖L2(Ω)

≤ ‖σ1/2‖L∞(Ω)

(
1 + ‖q‖L∞(Ω)

)
‖vσ,k − vσ‖H1(Ω)‖w‖H1

0 (Ω).

Due to σ ∈ C2(Ω) the function σ is bounded as well as q that was defined in (1.6).
Since vσ,k is converging to vσ in H1(Ω), we get∣∣∣〈σ1/2(−∆ + q)(vσ,k − vσ), w〉H−1(Ω)×H1

0 (Ω)

∣∣∣→ 0 for vσ,k → vσ.

Because vσ,k ∈ C2(Ω), it holds true that

∇ · σ∇(σ−1/2vσ,k) = σ1/2 (−∆ + q) vσ,k,
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see the arguments above, and we get

‖∇ · σ∇(σ−1/2vσ)− σ1/2 (−∆ + q) vσ‖H−1(Ω)

≤ ‖∇ · σ∇(σ−1/2(vσ − vσ,k))‖H−1(Ω)

+ ‖σ1/2 (−∆ + q) (vσ − vσ,k)‖H−1(Ω)

+ ‖∇ · σ∇(σ−1/2vσ,k)− σ1/2 (−∆ + q) vσ,k‖H−1(Ω)

→ 0 for vσ,k → vσ.

2

Remark 1.1. To get the variational formulation of the Schrödinger equation (1.5),
we consider g̃ as an extension of the boundary data σ1/2g. With this we get∫

Ω

∇vσ · ∇w dx+

∫
Ω

qvσ w dx = −
∫
Ω

∇g̃ · ∇w dx−
∫
Ω

qg̃ w dx ∀w ∈ H1
0 (Ω).

(1.9)

The lemma 1.2 also implies the equivalence of the variational formulation (1.2) of the
original problem and this variational formulation of the Schrödinger equation (1.5).
Due to the discussion in the beginning of this chapter we know of the unique solvability
of the first variational formulation (1.2). Therefore we know that (1.9) is uniquely
solvable.

1.4. Definition of the DtN operator for the

Schrödinger equation

Now we can look at the Dirichlet-to-Neumann operator for the Schrödinger equation
as well. For every boundary data g ∈ H1/2(Γ) there exists a unique weak solution vσ
of (1.9) and c4 > 0 with

‖vσ‖H1(Ω) ≤ c4‖g‖H1/2(Γ).

Formally we define S̃q as

S̃qg(x) := lim
Ω3x̃→x

∇vσ(x̃) · nx̃

for x ∈ Γ, where vσ solves the variational formulation (1.9) of the Schrödinger equation
(1.5) with boundary data g. For the weak definition of S̃q we look at g, h ∈ H1/2(Γ)
and the extensions vg, wh ∈ H1(Ω) which solve the variational formulation (1.9) with
boundary data g and h respectively, where γint0 wh = h and

‖wh‖H1(Ω) ≤ c5‖h‖H1/2(Γ)
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for a c5 > 0. Such vg and wh exist due to the trace theorem A.13 and previous
theorems. With the first Green’s identity (B.2) for vg and wh we get

〈S̃qg, h〉Γ =

∫
Γ

∂vg
∂n

h dsx

(B.2)
=

∫
Ω

{∆vg wh +∇vg · ∇wh} dx

Rem.1.1
=

∫
Ω

{qvg wh +∇vg · ∇wh} dx. (1.10)

With this we get the self-adjointness of the operator S̃q. S̃q is linear and bounded
because q is bounded in Ω and with the trace Thm. A.13 it follows that

‖S̃qg‖H−1/2(Γ) = sup
h∈H1/2(Γ)

h6=0

|〈S̃qg, h〉Γ|
‖h‖H1/2(Γ)

= sup
h∈H1/2(Γ)

h6=0

|(qvg, wh)L2(Ω) + (∇vg,∇wh)L2(Ω)|
‖h‖H1/2(Γ)

ThmA.13

≤ sup
h∈H1/2(Γ)

h6=0

{
(‖q‖L∞(Ω) + 1)‖vg‖H1(Ω)‖wh‖H1(Ω)

‖h‖H1/2(Γ)

}
≤
(
‖q‖L∞(Ω) + 1

)
c5‖vg‖H1(Ω)

≤
(
‖q‖L∞(Ω) + 1

)
c4c5 ‖g‖H1/2(Γ).

With the same argumentation as in Chapter 1.3 we get that S̃q is as well not dependent
on the extension vg. Therefore we get that S̃q is well defined, linear, bounded and
independent of the extension vg.

Next we will look at the dependency between the two DtN operators. Let g ∈
H1/2(Γ) and vσ the corresponding solution of the variational formulation (1.9) with
the boundary value g. Remember that vσ = σ1/2u and Sσu = σ ∂u

∂n
. Then it holds true∫

Γ

S̃qgh dsx =

∫
Γ

∂

∂n
(σ1/2u)h dsx

=

∫
Γ

1

2
σ−1/2∂σ

∂n
uh dsx +

∫
Γ

σ1/2 ∂u

∂n
h dsx

=

∫
Γ

1

2
σ−1/2∂σ

∂n
σ−1/2vσh dsx +

∫
Γ

σ−1/2Sσ(u)h dsx

=

∫
Γ

1

2
σ−1∂σ

∂n
gh dsx +

∫
Γ

σ−1/2Sσ(σ−1/2g)h dsx
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for every h ∈ H1/2(Γ). Therefore we get

S̃qg =
1

2
σ−1∂σ

∂n
g + σ−1/2Sσ(σ−1/2g) (1.11)

in the weak sense for every g ∈ H1/2(Γ).

We now look at the slightly different uniqueness theorem.

Theorem 1.3. Let Ω ⊂ Rd be a bounded Lipschitz domain, g1, g2 ∈ H1/2(Γ) and q1

and q2 two functions in L∞(Ω), for which

(−∆ + q1)u1 = 0 in Ω,

u1 = g1 on Γ,

and

(−∆ + q2)u2 = 0 in Ω,

u2 = g2 on Γ,

are uniquely solvable in a weak sense. If S̃q1 = S̃q2, then it holds true that q1 = q2

almost everywhere in Ω.

This theorem implies Thm. 1.1 due to the following reasoning:
Let σ1, σ2 ∈ C2(Ω) be two positive functions and Sσ1 = Sσ2 . So it holds true for any
g ∈ H1/2(Γ) that

Sσ1g = σ1
∂g

∂n
= σ2

∂g

∂n
= Sσ2g

on Γ. With this we follow with the right choice of g

γint0 σ1(x) = γint0 σ2(x) =: γint0 σ(x),

∂σ1

∂n
(x) =

∂σ2

∂n
(x)

for x ∈ Γ. For qi =
∆σ

1/2
i

σ
1/2
i

holds qi ∈ L∞(Ω). We get for g ∈ H1/2(Γ)

S̃q1g =
1

2
σ−1

1

∂σ1

∂n
g + σ

−1/2
1 Sσ1(σ

−1/2
1 g)

=
1

2
σ−1

2

∂σ2

∂n
g + σ

−1/2
2 Sσ2(σ

−1/2
2 g)

= S̃q2g



18 1. Introduction

and that the equations

(−∆ + q1)u1 = 0 in Ω,

u1 = g1 on Γ,

and

(−∆ + q2)u2 = 0 in Ω,

u2 = g2 on Γ,

are well posed and uniquely solvable in a weak sense for g1, g2 ∈ H1/2(Γ) due to the
reasoning of chapter 1.3 and 1.4.
Thm. 1.3 now implies that

q1 =
∆σ

1/2
1

σ
1/2
1

=
∆σ

1/2
2

σ
1/2
2

= q2 =: q

almost everywhere in Ω. However both σi, i = 1, 2, solve the equation

(−∆ + q)σ
1/2
i = 0 in Ω,

σi = γint0 σ on Γ,

and we know that this equation is uniquely solvable in a weak sense. Hence we get

σ1 = σ2

almost everywhere in Ω. Therefore the equivalence is proven.



2. Uniqueness of the inverse
problem

We look at the Schrödinger equation

(−∆ + q) vσ = 0 in Ω,

vσ = σ1/2g on Γ

with

q :=
∆σ1/2

σ1/2
. (2.1)

Our goal is to derive σ from S̃qvσ. However we do not know anything about the
uniqueness of this problem. Therefore we are going to prove Thm. 1.3, which tells
us that if we have two DtN operators S̃q1 and S̃q2 of the Schrödinger equation and
S̃q1 = S̃q2 , then q1 and q2 are identical almost everywhere in Ω. As the first step in
this direction we prove the following lemma.

Lemma 2.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, g1, g2 ∈ H1/2(Γ) and q1, q2 ∈
L∞(Ω) for which

(−∆ + q1)u1 = 0 in Ω,

u1 = g1 on Γ,

and

(−∆ + q2)u2 = 0 in Ω,

u2 = g2 on Γ,

are uniquely solvable in a weak sense. Then〈(
S̃q1 − S̃q2

)
g1, g2

〉
Γ

=

∫
Ω

(q1 − q2)u1u2 dx,

holds true with u1, u2 ∈ H1(Ω) as the weak solutions of the differential equations above.

19
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Proof.
This statement follows directly from the weak definition (1.10) of S̃q. 2

Since we consider the case S̃q1 = S̃q2 we get

0 =

∫
Ω

(q1 − q2)u1u2 dx.

To show that q1 = q2 we need that the products u1u2 of all solutions ui of the
Schrödinger equation above are dense in L2(Ω). Since we know that {eik·x}k∈Zd form a
orthonormal basis in L2(Ω), see Thm. B.7, we would like the product u1u2 to behave
like eik·x, where k ∈ Zd. In the following chapter we will discuss such solutions.

2.1. Solution of Schrödinger equation

In this chapter we prove a special behavior of solutions of the Schrödinger equation:

Theorem 2.2. Let q ∈ L∞(Ω). Then there is a constant C0(Ω, d), such that for every
η ∈ Cd\{0} with η · η = 0 and |η| ≥ max(C0‖q‖L∞(Ω), 1) and for any a ∈ H2(Ω) with

η · ∇a = 0

almost everywhere, the equation (−∆ + q)u = 0 in Ω has a solution

u(x) = eiη·x(a(x) + r(x)) (2.2)

almost everywhere, where r ∈ H1(Ω) and

‖r‖L2(Ω) ≤
C0

|η|
‖(−∆ + q)a‖L2(Ω), (2.3)

‖∇r‖L2(Ω) ≤ C0‖(−∆ + q)a‖L2(Ω). (2.4)

Proof.
This proof was given in [10, p. 22-25].
If

u(x) = eiη·x(a(x) + r(x))

and u solves (−∆ + q)u = 0 in Ω then it holds true that

e−iη·x(−∆ + q(x))eiη·x(a(x) + r(x)) = 0.
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It holds true that

e−iη·x∇ · ∇
(
eiη·x(a(x) + r(x))

)
= e−iη·x∇ ·

(
iηeiη·x(a(x) + r(x)) + eiη·x∇(a(x) + r(x))

)
= e−iη·x{−η · ηeiη·x(a(x) + r(x))

+ 2ieiη·xη · ∇(a(x) + r(x))

+ eiη·x∇ · ∇(a(x) + r(x))}
= (−η · η(a(x) + r(x)) + 2iη · ∇(a(x) + r(x))

+∇ · ∇(a(x) + r(x)))
η·η=0

= (2iη · ∇(a(x) + r(x)) +∇ · ∇(a(x) + r(x))).

Therefore we study the equation

(−∆− 2iη · ∇+ q)(a+ r) = 0.

Since η · ∇a = 0 almost everywhere, we now look for a r ∈ H1(Ω) which solves the
differential equation

(−∇ · ∇ − 2iη · ∇+ q)r = (−∇ · ∇+ q)a,

and for which the two estimates (2.3) and (2.4) hold true. We split this problem into
two. First we study the equation

(∇ · ∇+ 2iη · ∇)r = f in Ω

and it’s solutions for f ∈ L2(Ω) in Lem. 2.3. Afterwards we consider

(−∆− 2iη · ∇+ q)r = f in Ω

for f ∈ L2(Ω) and solve the equation in Lem. 2.5. Finally we sum up and end with
the proof of Thm. 2.2.

Lemma 2.3. There exists a constant C0(Ω, d) such that for any η ∈ Cd\{0} with
η · η = 0 and |η| > 1 and for any f ∈ L2(Ω) the differential equation

(∇ · ∇+ 2iη · ∇)r = f in Ω

has a solution r ∈ H1(Ω) satisfying

‖r‖L2(Ω) ≤
C0

|η|
‖f‖L2(Ω) (2.5)

‖∇r‖L2(Ω) ≤ C0‖f‖L2(Ω) (2.6)
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Proof.
This proof was given in [10, Thm 3.7]. Since we have constant coefficients and a linear
differential equation we might think of the Fourier transform first. With

F(∇ju)(ξ) = ξjFu(ξ)

for ξ ∈ Rd, we get the transformed differential equation

(ξ · ξ + 2iη · ξ)Fr(ξ) = Ff(ξ)

for ξ ∈ Rd. However the term (ξ · ξ + 2iη · ξ) is zero for certain ξ ∈ Rd. Therefore we
try to use Fourier series instead.
Write η = s(ω1 + iω) with s = |η|√

2
, where ω1 and ω2 are orthogonal unit vectors in Rd.

Without loss of generality we can assume that ω1 = e1 is the first coordinate vector
and ω2 = e2 is the second coordinate vector, because otherwise we can rotate and shift
the coordinate system. It follows that

(∆ + 2is(∂1 + i∂2))r = f,

and therefore

(∆ + 2is∂1 − 2s∂2)r = f.

Let x0 ∈
◦
Ω. For simplicity we assume that Ω ⊂ [−π, π]d =: Q. Otherwise we scale

and shift Ω by an bijective function hx0 : Ω→ Ωscale

d :=
1

π
max{|x− x0| : x ∈ Ω},

hx0(x) :=
x− x0

d
,

and look instead at the functions

r̃(x̃) := r(h−1
x0

(x̃)),

f̃(x̃) := f(h−1
x0

(x̃)),

where x̃ ∈ Ωscale.
Let wk(x) := ei(k+ 1

2
e2)·x for k ∈ Zd. Consider the Fourier series in the lattice Zd + 1

2
e2.

We know that the {wk}k∈Zd form an orthonormal basis in L2(Q) with respect to scalar
product

(u, v) = (2π)−d
∫
Ω

uv dx,
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u, v ∈ L2(Ω), see Thm. B.8. The Parseval equality from Thm. B.8 tells us that for

f =
∑
k∈Zd

fkwk, fk := (f, wk),

the equation

‖f‖L2(Ω) =
∑
k∈Zd
|fk|2

holds true. Because we search for an r ∈ L2(Ω), we can rewrite r as

r =
∑
k∈Zd

rkwk, rk := (r, wk).

With

∇wk = i(k +
1

2
e2)wk

we get

pkrk = fk ∀k ∈ Zd, (2.7)

where

pk := −(k +
1

2
e2)2 − 2sk1 − i 2s(k2 +

1

2
).

Therefore the imaginary part of pk is never zero for s > 0, which is the reason why we
were looking at the shifted lattice Zd + 1

2
e2 and η 6= 0. Now we can compute

rk =
fk
pk
.

It follows that

|rk| ≤
1

|pk|
|fk| ≤

1

|2s(k2 + 1
2
)|
|fk| ≤

1

s
|fk|. (2.8)

Therefore we get

‖r‖L2(Q) =

(∑
k∈Zd
|rk|2

)1/2

≤ 1

s

(∑
k∈Zd
|fk|2

)1/2

=
1

s
‖f‖L2(Q) =

√
2

|η|
‖f‖L2(Q).

It remains to show that ∇r ∈ L2(Q) and the estimate (2.6). We know that

∇r =
∑
k∈Zd

i(k +
1

2
e2) rk wk.
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So we show that

|(k +
1

2
e2)rk| ≤ 4|fk| ∀k ∈ Zd,

which implies

‖∇r‖L2(Q) =

(∑
k∈Zd
|(k +

1

2
e2)rk|2

)1/2

≤ 4

(∑
k∈Zd
|fk|2

)1/2

= 4‖f‖L2(Q).

For this we consider two cases:

• |k + 1
2
e2| ≤ 4s,

• |k + 1
2
e2| > 4s.

In the first case we have

|(k +
1

2
e2)rk| ≤ 4s|rk|

(2.8)

≤ 4s

s
|fk| ≤ 4|fk|.

In the second case we have

1

2
|k +

1

2
e2| − 2s > 0

and therefore∣∣∣∣ |k +
1

2
e2|2 + 2sk1

∣∣∣∣ ≥ |k +
1

2
e2|2 − 2s|k +

1

2
e2|

=

(
1

2
|k +

1

2
e2|+

1

2
|k +

1

2
e2| − 2s

)
|k +

1

2
e2|

≥ 1

2
|k +

1

2
e2|2.

Now we have an estimate for the real part of pk and we get

|(k +
1

2
e2)rk| =

|k + 1
2
e2|

|pk|
|fk|

≤
|k + 1

2
e2|

1
2
|k + 1

2
e2|2
|fk|

≤ 1

2s
|fk|.

With the condition s > 1√
2
, which is full filled if |η| > 1, we get that C0 = 4. Therefore

we have proven this lemma. 2
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Continuation of the proof of Thm. 2.2
And so we have a r that behaves quit similar to the desired solution.
Consider

Definition 2.4. Define

Gη : L2(Ω) ⊂ H−1(Ω)→ H1(Ω), f 7→ r

where r is the constructed solution of the last lemma and solves

(∇ · ∇+ 2iη · ∇)r = f in Ω.

Now we want to consider the case that q 6= 0:

Lemma 2.5. Let q ∈ L∞(Ω), η ∈ Cd\{0} with η ·η = 0. Then there exists an C0(Ω, d)
such that for |η| ≥ max(2 C0‖q‖L∞(Ω), 1) and for any f ∈ L2(Ω) the equation

(−∆− 2iη · ∇+ q)r = f in Ω, (2.9)

has a solution r ∈ H1(Ω) almost everywhere which satisfies

‖r‖L2(Ω) ≤
C0

|η|
‖f‖L2(Ω),

‖∇r‖L2(Ω) ≤ C0‖f‖L2(Ω).

Proof.
This proof was given in [10, Thm. 3.8]. For q ≡ 0 we already have the solution
r = Gηf .
Consider that q is not 0 everywhere. Let r = Gηg, where g has to be determined. If
we put this into the differential equation, we get

f = (∇ · ∇+ 2iη · ∇+ q)Gηg

= (∇ · ∇+ 2iη · ∇)Gηg + qGηg
Lem2.3

= (I + qGη)g.

Now we have to verify that (I + qGη) is invertible. We know from Lem. 2.3

‖qGηg‖L2(Ω) ≤ ‖q‖L∞(Ω)‖Gηg‖L2(Ω) ≤ ‖q‖L∞(Ω)
C0

|η|
‖g‖L2(Ω)

for g ∈ L2(Ω). Therefore we get

‖qGη‖L2(Ω)→L2(Ω) ≤
C0

|η|
‖q‖L∞(Ω).
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For |η| ≥ max(2 C0‖q‖L∞(Ω), 1) it holds true that

‖qGη‖L2(Ω)→L2(Ω) ≤
1

2
.

Due to the Neumann series (I + qGη) is invertible and it holds true that

‖(I + qGη)
−1‖L2(Ω)→L2(Ω) ≤ (1− ‖qGη‖L2(Ω)→L2(Ω))

−1 ≤ 2,

for the proof of this equivalence see [3, Thm II.1.11, p.56]. Hence we can compute

g = (I + qGη)
−1f.

This implies

(−∆− 2iη · ∇+ q)r = (−∆− 2iη · ∇)Gηg + qGηg
Lem.2.3

= g + qGηg

= (I + qGη)g

= f

and therefore r solves the equation (2.9). Since

‖(I + qGη)
−1‖L2(Ω)→L2(Ω) ≤ 2

we get that

‖g‖L2(Ω) ≤ 2‖f‖L2(Ω).

With lemma 2.3 it follows that

‖Gηg‖L2(Ω) ≤
C0

|η|
‖g‖L2(Ω)

≤ C0

|η|
‖(I + qGη)

−1f‖L2(Ω)

≤ 2
C0

|η|
‖f‖L2(Ω),

‖∇Gηg‖L2(Ω) ≤ C0‖g‖L2(Ω)

≤ 2C0‖f‖L2(Ω).

2
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Continuation of the proof of Thm. 2.2
Due to lemma 2.5 we know now, that

(−∇ · ∇ − 2iη · ∇+ q)r = (−∇ · ∇+ q)a,

has a solution r with

‖r‖L2(Ω) ≤
C0

|η|
‖(−∆ + q)a‖L2(Ω),

‖r‖L2(Ω) ≤ 2C0‖(−∆ + q)a‖L2(Ω).

Therefore

u(x) = eiη·x(a(x) + r(x)

is the required solution to (−∆ + q)u = 0 in Ω. 2

2.2. Uniqueness of the inverse problem

In chapter one we have already proven the equivalence of the uniqueness of the original
problem as it was stated in Thm. 1.1 to the following one:

Theorem 1.3 Let Ω ⊂ Rd be a bounded Lipschitz domain, g1, g2 ∈ H1/2(Γ) and q1

and q2 two functions in L∞(Ω), for which

(−∆ + q1)u1 = 0 in Ω,

u1 = g1 auf Γ

and

(−∆ + q2)u2 = 0 in Ω,

u2 = g2 auf Γ

are uniquely solvable in a weak sense. If S̃q1 = S̃q2 then it holds true that q1 = q2 in Ω
almost everywhere.

In addition we haven proven:
Lemma 2.1 Let Ω ⊂ Rd be a bounded Lipschitz domain, g1, g2 ∈ H1/2(Γ) and
q1, q2 ∈ L∞(Ω) for which

(−∆ + q1)u1 = 0 in Ω,

u1 = g1 auf Γ
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and

(−∆ + q2)u2 = 0 in Ω,

u2 = g2 auf Γ

are uniquely solvable in a weak sense. Then〈(
S̃q1 − S̃q2

)
g1, g2

〉
Γ

=

∫
Ω

(q1 − q2)u1u2 dx,

holds true, where u1, u2 ∈ H1(Ω) solve the differential equations above.

We will now proof the Thm. 1.3:
This proof was given in [10, Thm 3.2]. Since we consider the case S̃q1 = S̃q2 we get
with Lem. 2.1

0 =

∫
Ω

(q1 − q2)u1u2 dx. (2.10)

To show that q1 = q2 we need that the products u1u2 of all solutions ui of the differential
equations above are dense in L2(Ω). The following proof comes from [10]. We consider
only the case of d ≥ 3. For the case d = 2 please read [9] from Astala and Päivärinta.
Choose for an arbitrary fixed value ξ ∈ Rd, where d ≥ 3, two orthogonal vectors
ω1, ω2 ∈ Rd which are as well orthogonal to ξ and full fill ωi · ωi = 0 for i = 1, 2. Then
we get an orthogonal set {ξ, ω1, ω2} in Rd. Let s ∈ R be arbitrary and pick

η = s(ω1 + iω2).

It follows that η · η = 0. Due to σi ∈ C2(Ω) and qi =
∆σ

1/2
i

σ
1/2
i

, we get qi ∈ L∞(Ω) for

i = 1, 2. Now we want to use the Thm. 2.2. It holds true that

η · ∇eiξ·x = iη · ξeiξ·x = 0.

From Thm. 2.2 we know for s sufficiently large there exist functions r1 and r2 such
that

w1(x) := e−iη·x(eiξ·x + r1(x)),

w2(x) := eiη·x(1 + r2(x))

solve the equation (−∆ + qi)wi = 0 in Ω with boundary data g1 := γint0 w1 and g2 :=
γint0 w2. Additionally we get

‖ri‖L2(Ω) ≤
c̃

s
(2.11)
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for i = 1, 2 and for c̃ > 0. If we insert w1, w2 in the equation (2.10), we see that

0 =

∫
Ω

(q1 − q2)(x)(eiξ·x + r1(x))(1 + r2(x)) dx

for s large enough. We get with the Cauchy-Schwarz inequality∣∣∣∣∣∣
∫
Ω

(q1 − q2)(x)
(
r1(x)(1 + r2(x)) + eiξ·xr2(x)

)
dx

∣∣∣∣∣∣
≤ ‖q1 − q2‖L∞(Ω)

∫
Ω

|r1(x)(1 + r2(x))| dx+

∫
Ω

∣∣eiξ·xr2(x)
∣∣ dx


≤ ‖q1 − q2‖L∞(Ω)

∫
Ω

|r1(x)| dx+

∫
Ω

|r1(x)r2(x)| dx+

∫
Ω

∣∣eiξ·xr2(x)
∣∣ dx


≤ ‖q1 − q2‖L∞(Ω)(‖1Ω‖L2(Ω)‖r1‖L2(Ω) + ‖r1‖L2(Ω)‖r2‖L2(Ω)

+ ‖eξ‖L2(Ω)‖r2‖L2(Ω))

= ‖q1 − q2‖L∞(Ω)

(
‖r1‖L2(Ω)‖r2‖L2(Ω) + |Ω|(‖r1‖L2(Ω) + ‖r2‖L2(Ω))

)
s→∞→ 0,

because of (2.11). Hence we get

0 =

∫
Ω

(q1 − q2)(x)eiξ·x dx.

We did this for an arbitrary ξ ∈ Rd. Since q1, q2 ∈ L∞(Ω) we know that the Fourier
transform of (q1−q2) exists, see Thm A.6, and is zero for every frequency ξ. Therefore
q1 = q2 must hold, which we can derive from the Plancherel formula, as it was stated
in Thm. B.5. With this we get the uniqueness of the inverse problem. 2





3. An integral equation to compute
S̃qψη

3.1. A formula for ψη on Γ

We know now of some behavior and the existence of the solution of the equation

(−∆ + q)vσ = 0 in Ω,

vσ = σ1/2g on Γ.

Choose a η ∈ Cd\{0} with η · η = 0 and consider the continuation ψη of vσ that solves
the Laplace operator in the exterior of Ω:

(−∆ + q̃)ψη = 0 in Rd\Γ, (3.1)

ψη = σ1/2g on Γ,

ψη(x) = eiη·x +O(
1

|x|
) for |x| → ∞,

where η · η = 0, η ∈ Cd\{0} and

q̃ =

{
q in Ω,

0 in Rd\Ω.

Additionally we know about the unique solvability of the inverse problem. In this
chapter we will derive a method to compute the DtN operator S̃q from the Dirichlet
data of ψη so that we can compute σ from S̃q in the next chapter. For that we first
prove the following theorem which tells us about the behavior of the solution ψη of
the equation (3.1) for x ∈ Γ.

Theorem 3.1. Let d ≥ 2, Ω ⊂ Rd be a bounded Lipschitz domain and η ∈ C2\{0}
with η · η = 0. Then the solution of the equation (3.1) has the form

ψη(x) = eiη·x −
∫
Ω

G0(x, y)q(y)ψη(y) dy.

for x ∈ Γ, where G0 is the fundamental solution of the Laplace operator.

31
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We will later see in Thm. 3.3 under what conditions the integral exists.
To prove this theorem we consider w = e−iη·xψη. Then it holds true that

−q̃ψη(x)
(3.1)
= −∆ψη(x) = −∇ ·

(
∇
(
eiη·xw(x)

))
= −∇ ·

(
iηeiη·x + eiη·x∇w(x)

)
= −(i)2η · ηeiη·xw(x)− 2eiη·xiη · ∇w(x)− eiη·x∆w(x).

Let e−η(x) := e−iη·x. Under the condition η · η = 0 we get for w

−∆w − 2iη · ∇w = −e−η q̃ ψη in Rd\Γ, (3.2)

w = e−η σ
1/2g on Γ,

w = 1 +O(
1

|x|
) for |x| → ∞.

To solve this equation we first look at the homogeneous equation

−∆w − 2iη · ∇w = 0. (3.3)

Since w(x) = e−iη·x does not solve the equation (3.3) we consider w(x) = e−iη·xr(x),
where r is a correction term to get the exact solution. It holds true that

∂

∂xj
w(x) = −iηje−iη·xr(x) + e−iη·x

∂

∂xj
r(x),

∂2

∂x2
j

w(x) = −η2
j e
−iη·xr(x)− 2iηje

−iη·x ∂

∂xj
r(x) + e−iη·x

∂2

∂x2
j

r(x),

for j = 1, ..., d. If we put this result into (3.3) we get:

0
(3.3)
= η · η e−iη·xr(x) + 2ie−iη·xη · ∇r(x)− e−iη·x∆r(x)− 2η · η e−iη·xr(x)

− 2ie−iη·xη · ∇r(x)
η·η=0

= 2ie−iη·xη · ∇r(x)− e−iη·x∆r(x)− 2ie−iη·xη · ∇r(x)

= −e−iη·x∆r(x).

So we need ∆r(x) = 0. For that reason we take the fundamental solution of the
Laplace operator

r(x) =

{
− 1

2π
log |x| if d = 2,

1
d(d−2)α(d)

1
|x|d−2 if d ≥ 3

where α(d) is the volume of the unit ball in Rd, see [8, p.22] for more details. Hence
w(x) = e−iη·xr(x), x 6= 0, solves the equation (3.3). The fundamental solution of (3.2)
for which we were searching, is therefore

Gη(x, y) :=

{
− e−iη·(x−y)

2π
log |x− y| if d = 2,

1
d(d−2)α(d)

e−iη·(x−y)

|x−y|d−2 if d ≥ 3
(3.4)

for x 6= y, x, y ∈ Rd.
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Lemma 3.2. Let the same conditions as in Thm. 3.1 hold true. Then the solution of
the equation (3.2) has the form

w(x) = 1−
∫
Ω

Gη(x, y)(e−iη·yq(y)ψη(y)) dy.

for x ∈ Γ.

Proof.
We first look at the interior problem

−∆w − 2iη · ∇w = −e−η q ψη in Ω,

w = e−η σ
1/2g on Γ.

For the homogeneous equation

−∆w − 2iη · ∇w = 0, (3.5)

we already have a fundamental solution Gη(x, y). Next look at the dual problem of
the homogeneous differential equation, which is

−∆w + 2iη · ∇w = 0. (3.6)

With the same steps as above, we can show that

G∗η(x, y) :=

{
− eiη·(x−y)

2π
log |x− y| if d = 2,

1
d(d−2)α(d)

eiη·(x−y)

|x−y|d−2 if d ≥ 3
(3.7)

is the fundamental solution of the dual problem. With the representation formula for
the interior Dirichlet problem, which was proven in [15, Thm 7.5, p.226], we get

w(x) = −
∫
Ω

Gη(x, y) (e−η(y)q(y)ψη(y)) dy −
∫
Γ

(
∂nyG

∗
η(x, y)

)
e−ησ

1/2g dsy

+

∫
Γ

Gη(x, y)∂ny (e−η(y)ψη(y)) dsy

for x ∈ Ω, where ny is the normal vector which is pointing outside of Ω almost
everywhere. As the next step we look at the problem in the exterior

−∆w − 2iη · ∇w = 0 in Rd\Ω,
w = e−η σ

1/2g on Γ,

w = 1 +O(
1

|x|
) for |x| → ∞.
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With the representation formula for the exterior Dirichlet problem, which was proven
in [15, Thm 7.12, p.235], we get

w(x) = 1 +

∫
Γ

(
∂nyG

∗
η(x, y)

)
e−ησ

1/2g dsy −
∫
Γ

Gη(x, y)∂ny (e−η(y)ψη(y)) dsy

for x ∈ Rd\Ω. By using the super position principle and traces we get for x ∈ Γ

w(x) = 1−
∫
Ω

Gη(x, y) (e−η(y)q(y)ψη(y)) dy.

2

If we transform this result back to ψη we get

ψη(x) = eiη·x −
∫
Ω

Gη(x, y)eiη·(x−y)q(y) ψη(y) dy

= eiη·x −
∫
Ω

G0(x, y)q(y) ψη(y) dy,

for x ∈ Γ, where G0 is the fundamental solution of the Laplace operator as well as Gη

with η = 0. With this Thm. 3.1 is proven.

The next step to compute the DtN operator S̃q is to transform this equation in a way
such that it is independent of q. But before we solve this question we look at a special
case of the Schrödinger equation (1.5) where σ ≡ 1. In this case we get the Laplace
operator

−∆v1 = 0 in Ω, (3.8)

v1 = σ1/2g on Γ.

Now we go back to the representation of ψη on Γ. For x ∈ Γ we get with the Schrödinger
equation (3.1)

ψη(x) = eiη·x −
∫
Ω

G0(x, y) q(y) ψη(y) dy

= eiη·x −
∫
Ω

G0(x, y) ∆yψη(y) dy

(3.8)
= eiη·x −

∫
Ω

G0(x, y) (∆yψη(y)−∆yv1(y)) dy.

In the following theorem we look at the well posedness of this problem:
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Theorem 3.3. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. If

(∆yψη −∆yv1) ∈ L∞(Ω),

then the integral ∫
Ω

G0(x, y) (∆yψη(y)−∆yv1(y)) dy

exists for every x ∈ Ω.

Proof.
The idea comes from [11, Lem. 6.7, p.119].
Consider first d ≥ 3:
Let x ∈ Ω and 0 < r0 < 1, then it holds true for all y ∈ Ω with |x− y| < r0∣∣∣∣ 1

d(d− 2)α(d)

1

|x− y|d−2
(∆yψη(y)−∆yv1(y))

∣∣∣∣
≤ 1

d(d− 2)α(d)

1

|x− y|d−2
sup

y∈Br0 (x)

|∆yψη(y)−∆yv1(y)|

≤ C

|x− y|d−2

where Br0(x) = {y ∈ Rd : |x− y| < r0} and

C >
1

d(d− 2)α(d)
‖∆yψη(y)−∆yv1(y)‖L∞(Br0 (x)).

For this proof of existence it is enough if we show for 0 < r1 < r2

1

d(d− 2)α(d)

∫
r1<|x−y|<r2

∣∣∣∣ 1

|x− y|d−2
(∆yψη(y)−∆yv1(y))

∣∣∣∣ dy → 0, for r2 → 0,

since the rest of the integral is bounded. We get for 0 < r1 < r2

1

d(d− 2)α(d)

∫
r1<|x−y|<r2

∣∣∣∣ 1

|x− y|d−2
(∆yψη(y)−∆yv1(y))

∣∣∣∣ dy
<

∫
r1<|x−y|<r2

C

|x− y|d−2
dy.
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By applying substitution with spherical coordinates on the integral, we get with
φ1, .., φd−2 ∈ [0, π) and φd−1 ∈ [0, 2π)

∫
r1<|x−y|<r2

C

|x− y|d−2
dy

=

r2∫
r1

π∫
0

...

2π∫
0

C

rd−2
rd−1 sind−2(φ1) sind−3(φ2)... sin(φd−1) dφd−1 ...dφ1 dr.

With the theorem of Fubini and α(d) as the volume of the unit ball in Rd, we get

r2∫
r1

π∫
0

...

2π∫
0

C

rd−2
rd−1 sind−2(φ1) sind−3(φ2)... sin(φd−1) dφd−1 ...dφ1 dr

= C

r2∫
r1

r dr

π∫
0

...

2π∫
0

sind−2(φ1) sind−3(φ2)... sin(φd−1) dφd−1 ...dφ1︸ ︷︷ ︸
=α(d)

= Cα(d)

(
r2

2

2
− r2

1

2

)
→ 0, for r2 → 0.

Therefore the integral exists.
Now consider d = 2:

∣∣∣∣− 1

2π
log |x− y| (∆yψη(y)−∆yv1(y))

∣∣∣∣ ≤ 1

2π
log |x− y| sup

y∈Br0 (x)

|∆yψη(y)−∆yv1(y)|

≤ C log |x− y|.

with

C >
1

2π
‖∆yψη(y)−∆yv1(y)‖L∞(Br0 (x)).



3.2. An integral equation for S̃qψη 37

We get with the same reasoning as above

∫
r1<|x−y|<r2

C log |x− y| dy =

r2∫
r1

2π∫
0

C log r r dφ dr

= 2πC

r2∫
r1

log r r dr

= 2πC

[
1

4
r2(2 log(r)− 1)

]r2
r=r1

= πC
[
r2

2(log(r2)− 1)− r2
1(log(r1)− 1)

]
.

With L’Hopital’s rule we can easily see, that the last term tends to zero as r2 → 0.
Therefore the integral exists. 2

3.2. An integral equation for S̃qψη

In this chapter we derive an equation for the DtN operator S̃q and discuss the solvabil-
ity of this equation. For this let η ∈ Cd\{0} with η · η = 0. In the beginning we have
the boundary data of ψη and therefore as well for v1. Now we want to transform the
integral so that we just need the boundary data as input to solve an integral equation
to get S̃qψη.
Consider the second Green’s formula∫

Ω

∆u v dx−
∫
Ω

u ∆v dx =

∫
Γ

∂u

∂n
v ds−

∫
Γ

u
∂v

∂n
ds. (3.9)

Let u = Gη and v = ψη − v1. Then we get for x ∈ Γ

ψη(x) = eiη·x −
∫
Ω

G0(x, y) (∆yψη(y)−∆yv1(y)) dy

(3.9)
= eiη·x +

∫
Γ

∂

∂ny
(G0(x, y)) (ψη(y)− v1(y)) dsy

−
∫
Γ

G0(x, y)
∂(ψη − v1)

∂ny
(y) dsy

−
∫
Ω

∆y (G0(x, y)) (ψη(y)− v1(y)) dy



38 3. An integral equation to compute S̃qψη

Since v1 and ψη have the same boundary data on Γ and G0(x, y) solves the Laplace
equation for x 6= y, we get that for x ∈ Γ and η ∈ Cd\{0} with η · η = 0

ψη(x) = eiη·x −
∫
Γ

G0(x, y)
∂(ψη − v1)

∂ny
(y) dsy.

With the definition of S̃q we have

ψη(x) = eiη·x −
∫
Γ

G0(x, y)
(
S̃q − S̃0

)
ψη(y) dsy (3.10)

for x ∈ Γ, where S̃0 is the DtN operator for the Laplace equation. Hence we want to
solve this integral equation to get S̃q. As the next step we look at the solvability of
this equation.

3.2.1. Solvability

In this subsection we only consider d = 3 and d = 2. Remember the assumptions in
the beginning:

• Ω ⊂ Rd is a bounded Lipschitz domain

• σ ∈ C2(Ω)

• There exists a σ0 ∈ R+ such that σ−1
0 ≥ σ(x) ≥ σ0 > 0 for all x ∈ Ω.

• Let σ be known on the boundary Γ := ∂Ω.

In d = 2 we have additionally the restriction diam(Ω) < 1. Now we look at the
solvability of the integral equation (3.10). For the DtN operator S̃0 we have on Γ

S̃0 = V −1

(
1

2
I +K

)
, (3.11)

for details see [11, p.148], where I is the identity, V is the single layer potential operator
and K the double layer potential operator defined as follows:

V : H−1/2(Γ)→ H1/2(Γ)

K : H1/2(Γ)→ H1/2(Γ)

with

V v(x) :=

∫
Γ

G0(x, y)v(y) dsy,

Kw(x) :=

∫
Γ

∂

∂ny
G0(x, y)w(y) dsy
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where x ∈ Γ, w ∈ H1/2(Γ), v ∈ H−1/2(Γ) and G0(x, y) is the fundamental solution of
the Laplace equation with

G0(x, y) =

{
− 1

2π
log |x− y| if d = 2,

1
4π

1
|x−y| if d = 3.

We know that V and K are linear and that

‖Kw‖H1/2(Γ) ≤ cK2 ‖w‖H1/2(Γ)

‖V v‖H−1/2(Γ) ≤ cV2 ‖v‖H1/2(Γ)

hold true for all w ∈ H1/2(Γ) and v ∈ H−1/2(Γ), see [11, Thm. 6.34, p.154] for more
details. If we use the theorem of Fubini, see [5, Chapter 5.2., p.175 et seq.], we can
easily see that V is self-adjoint. It holds true as well that V is elliptic

〈V v, v〉Γ ≥ cV1 ‖v‖2
H−1/2(Γ),

see [11, Thm. 6.23, p. 143] for d = 2 with the restriction, that diam(Ω) < 1 and [11,
Thm. 6.22, p.141] for d = 3. Therefore V −1 is bounded and elliptic, see [11, p.144]
and [11, Lem. 3.5, p.47] for the proof. When we look at the integral equation

ψη(x) = eiη·x −
∫
Γ

G0(x, y)
(
S̃q − S̃0

)
ψη(y) dsy

for x ∈ Γ, we can rewrite it as

ψη(x) + V S̃qψη(x)− V S̃0ψη(x) = eiη·x.

Let eη(x) := eiη·x. With (3.11) we get(
1

2
I −K

)
ψη + V S̃qψη = eη

on Γ. If we take into consideration that ψη = σ1/2g on Γ, see the equation (3.1), we
get

V S̃qψη = eη −
(

1

2
I −K

)
σ1/2g (3.12)

on Γ. We had as assumption for σ is bounded by σ−1
0 in Ω and therefore σ1/2g ∈

H1/2(Γ) for g ∈ H1/2(Γ) due to the norm equivalence in Lem. A.17. Since Ω is
bounded eη is as well in H1/2(Γ). Hence the right hand side of this equation is in
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H1/2(Γ). If we look at the equation in the L2(Γ) duality pairing with w ∈ H−1/2(Γ),
we get the variational formulation∫

Γ

V (S̃qψη) w dsy =

∫
Γ

eη w dsy −
∫
Γ

(
1

2
I −K

)
(σ1/2g) w dsy

for all w ∈ H−1/2(Γ). Since V is elliptic and bounded, see the argumentation above,
we know that this variational formulation is uniquely solvable due to the lemma of
Lax Milgram B.3.



4. Solution of the inverse problem

4.1. Computation of q

Let d = 2 or d = 3 and η ∈ Cd\{0} with η · η = 0. In the last three chapters we
considered ψη which solves

(−∆ + q̃)ψη = 0 in Rd,

ψη = σ1/2g on Γ,

ψη(x) = eiη·x +O(
1

|x|
) for |x| → ∞, (4.1)

where

q̃ =

{
∆σ1/2

σ1/2 in Ω,

0 in Rd\Ω.

We concluded that ψη solves the equation 3.12

V S̃qψη = eη −
(

1

2
I −K

)
σ1/2g

on Γ, where K and V are defined as in chapter 3.2.1 and eη(x) := eiη·x. This boundary
integral equation is uniquely solvable for S̃qψη and so we are able to compute the
Neumann data S̃qψη from the boundary data of ψη.

With this information we now try to compute q from S̃qψη. Therefore we use the
second Green’s identity (B.2). If we take v ∈ H2(Ω) arbitrary and u = ψη, we get
with the Schrödinger equation∫

Ω

(v qψη − ψη∆v) dx =

∫
Γ

(
v S̃qψη − σ1/2g γint1 v

)
dsx.

On the other hand if we take u = v1 with

−∆v1 = 0 in Ω,

v1 = σ1/2g on Γ,

41
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we get with the same Green’s identity (B.2)

−
∫
Ω

v1∆v dx =

∫
Γ

(
v S̃0v1 − σ1/2g γint1 v

)
dsx.

To compute this equation we have to calculate S̃0v1 as well. For this we use the
equation (3.11) and have to solve

V S̃0v1 =

(
1

2
I +K

)
σ1/2g.

Next we subtract both integral equation from each other and get∫
Ω

v qψη dx =

∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx. (4.2)

Since we are able to compute S̃qψη with the equation (3.12), we can compute the right
hand side as long as the second integral vanishes. Therefore we have to choose our
v wisely to compute q from this equation. Now we will discuss several possible vs to
choose from and in chapter 6 we will compare the results.

4.1.1. Computation of q with the Fourier transform

We choose v(x) = e−i(ξ+η)·x, where ξ ∈ Rd and η ∈ Vξ with Vξ := {η ∈ Cd\{0}|η · η =
(η+ ξ) · (η+ ξ) = 0}. Next we compute S̃qψη accordingly. Since v is harmonic, we get∫

Ω

e−(ξ+η) qψη dx =

∫
Γ

e−(ξ+η)

(
S̃qψη − S̃0v1

)
dsx.

The left hand side approximates the Fourier transform F q̃(ξ) of q̃ at ξ ∈ Rd for
|η| → ∞ because∣∣∣∣∣∣
∫
Rd

q̃(x)ψη(x)e−i(ξ+η)·x dx−
∫
Rd

q̃(x)e−iξ·x dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ω

q(x)ψη(x)e−i(ξ+η)·x dx−
∫
Ω

q(x)e−iξ·x dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ω

q(x)e−iξ·x (e−iη·xψη(x)− 1) dx

∣∣∣∣∣∣
≤ ‖e−iη·xψη(x)− 1‖L2(Ω) ‖q(x)e−iξ·x‖L2(Ω)

(4.1)−→
|η|→∞

0.
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Since σ ∈ C2(Ω) we get q ∈ C∞(Ω). Hence q̃ ∈ L1(Rd,C)∩L2(Rd,C) and F q̃ ∈ L2(Rd)
due to Thm. A.6. On the other hand we have a bound from Thm. 2.9

‖e−iη·xψη − 1‖L2(Ω) ≤
C0

|η|
‖(−∆ + q)eiη·.‖L2(Ω),

=
C0

|η|
‖qeiη·.‖L2(Ω).

So we get a linear convergence if eη is bounded. For example in the case of =(η) ≥ 0
or =(η) fixed, eη would be bounded.
In the end, if we want to get q̃, we have to take the inverse Fourier transform of

F q̃(ξ) = lim
|η|→∞
η∈Vξ

∫
Γ

e−(ξ+η)

(
S̃qψη − S̃0v1

)
dsx.

However we have to be careful with d = 2. In this case the space Vξ is finite. So we
cannot take the limit.

4.1.2. Computation of q with G0

Let y ∈ Rd\Ω. If we choose v(x) = G0(x, y), we get the integral equation∫
Ω

G0(x, y) qψη dx =

∫
Γ

G0(x, y)
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆G0(x, y) dx

=

∫
Γ

G0(x, y)
(
S̃qψη − S̃0v1

)
dsx.

For η ∈ Cd\{0} with very large absolute value |η| and η · η = 0 we get∫
Ω

G0(x, y) qeη dx ≈
∫
Γ

G0(x, y)
(
S̃qψη − S̃0v1

)
dsx.

On the left side we have the Newton potential used on qeη. We know it is bounded for
qeη ∈ H̃s(Ω) with s ∈ [−2, 0], see [11, p.153]. However, we can only choose y ∈ Rd\Ω,
since we do not know how ψη is behaving inside of Ω. If we still choose y ∈ Ω we get the
term −(ψη(y)− v1(y)) added on the right hand side. The only way to approximate ψη
in Ω we know of is to use eη instead. We will see in chapter 6, that this approximation
does not work very well.
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4.1.3. Computation of q with basis functions

Let y ∈ Rd. If we choose v(x) = φ1
i (x) ∈ S1

h(Ω) where S1
h(Ω) is the space of piecewise

linear and continuous functions. Then we get the integral equation∫
Ω

φ1
i qψη dx =

∫
Γ

φ1
i

(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆φ1
i dx

=

∫
Γ

φ1
i

(
S̃qψη − S̃0v1

)
dsx.

For η ∈ Cd\{0} with a very large absolute value |η| and η · η = 0, we get∫
Ω

φ1
i qeη dx ≈

∫
Γ

φ1
i

(
S̃qψη − S̃0v1

)
dsx.

We will see in chapter 5 that this equation is uniquely solvable if we choose the
discretization of q and the function φ1

i wisely. However we will see in chapter 6 that
this method does not yield very good results either.

4.2. Computation of σ

If we know q in Ω, there is nothing to hold us back from computing σ, because

(−∆ + q)σ1/2 = 0 in Ω

since q = ∆σ1/2

σ1/2 . The boundary data of σ is known as a condition to the whole inverse
problem. Let this boundary data be σΓ and σ̃ the extension of σΓ in Ω. Then we try
to find a σ

1/2
0 = σ1/2 − σ̃1/2 ∈ H1

0 (Ω) with∫
Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

q σ
1/2
0 v dx = −

∫
Ω

∇σ̃1/2 · ∇v dx−
∫
Ω

q σ̃1/2v dx ∀v ∈ H1
0 (Ω).

This equation is uniquely solvable due to the work we did in chapter 1.
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4.3. The algorithm

We will be working with the equation

(−∆ + q̃)ψη = 0 in Rd, (4.3)

ψη = σ1/2g on Γ,

ψη(x) = eiη·x +O(
1

|x|
) for |x| → ∞.

In the beginning we have the boundary data g and σΓ as the boundary data of σ on
Γ. Our goal is to compute σ by knowing the boundary data g and σΓ. The three steps
to that goal are

1. Computing S̃qψη and S̃0v1.

2. Computing q.

3. Computing σ.

4.3.1. Compute the Neumann data

Now we want to compute

• the Neumann data t := S̃qψη.

• the Neumann data t0 := S̃0v1 = ∂v1

∂n
.

First we have to solve

V t = eη − (
1

2
I −K)σ

1/2
Γ g on Γ.

If we put this equation into the duality pairing with w ∈ H1/2(Γ) we get the variational
formulation to find t ∈ H−1/2(Γ) with∫

Γ

V (t) w dsy =

∫
Γ

(−1

2
I +K)(σ

1/2
Γ g) w dsy +

∫
Γ

eηw dsy ∀w ∈ H−1/2(Γ).

(4.4)

This equation is uniquely solvable, because V is bounded and elliptic, for more details
see the discussion we had in chapter 3.2.1. Next we compute

V t0 = (
1

2
I +K)σ

1/2
Γ g on Γ.

We use again the duality pairing and get to the variational formulation: Find t0 ∈
H−1/2(Γ) which solves∫

Γ

V (t0) w dsy =

∫
Γ

(
1

2
I +K)(σ

1/2
Γ g) w dsy ∀w ∈ H−1/2(Γ). (4.5)

This equation is as well uniquely solvable.
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4.3.2. Compute q

With this Neumann data we can solve∫
Ω

v qψη dx =

∫
Γ

v (t− t0) dsx +

∫
Ω

(ψη − v1) ∆v dx.

by using

1. v1(x) = e−i(ξ+η)·x with ξ ∈ Rd and η ∈ Vξ.
2. v2(x) = G0(x, y) with y ∈ Rd\Ω.

3. v3(x) = φ1
i (x) with φ1

i ∈ S1
h(Ω).

In chapter 6 we will compare the results for the different vi, i = 1, 2, 3.

4.3.3. Compute σ

Afterwards we solve

(−∆ + q)σ1/2 = 0 in Ω,

σ1/2 = σ
1/2
Γ on Γ.

with σΓ as the given boundary data of σ on Γ. We use a continuation σ̃ of the boundary
data. Then we try to find a σ

1/2
0 = σ1/2 − σ̃1/2 ∈ H1

0 (Ω) with∫
Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

qσ
1/2
0 v dx = −

∫
Ω

∇σ̃1/2 · ∇v dx−
∫
Ω

qσ̃1/2v dx ∀v ∈ H1
0 (Ω).

(4.6)

4.3.4. Summary

We start with the boundary data g and σΓ. First we solve the two variational formu-
lations∫

Γ

V (t) w dsy = −
∫
Γ

(
1

2
I −K)(σ

1/2
Γ g) w dsy +

∫
Γ

eηw dsy ∀w ∈ H−1/2(Γ),

∫
Γ

V (t0) w dsy =

∫
Γ

(
1

2
I +K)(σ

1/2
Γ g) w dsy ∀w ∈ H−1/2(Γ)

to get the Neumann data t, t0 ∈ H−1/2(Γ). Next we solve∫
Ω

v qψη dx =

∫
Γ

v (t− t0) dsx +

∫
Ω

(ψη − v1) ∆v dx
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by using one of the methods which were explained above. In the end we solve∫
Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

qσ
1/2
0 v dx = −

∫
Ω

∇σ̃1/2 · ∇v dx−
∫
Ω

qσ̃1/2v dx ∀v ∈ H1
0 (Ω)

to get the desired dielectric conductivity σ.





5. The reconstruction problem

5.1. Introduction

Let d = 2. Consider Ω = B((0.75, 0.75), 0.25
√

2). If we try to solve the reconstruction
problem we first take σ as a given function. In this case we use

σ1(x) =

{
(1 + 10 exp( 1

|x−xm|2− 8
9
r2 ))2 if |x− xm|2 < 8

9
r2,

1 otherwise,

where r = 0.25
√

2 and xm = (0.75, 0.75). The function σ1 full fills our assumptions
for σ since σ ∈ C2(Ω).
To be able to use the algorithm of chapter four we first need to get the boundary data
of u. For this we solve∫

Ω

σ1∇u · ∇v dx =

∫
Γ

∂u

∂n
v dsy ∀v ∈ H1(Ω).

However this equation is not uniquely solvable without the boundary data g of u, so
we need another equation. We get from the equivalence of the DtN operators (1.11)

S̃q(γ
int
0 ψη) = Sσ(γint0 u),

and that

g = γint0 u = γint0 ψη

holds true, since σ1 ≡ 1 in a neighborhood of Γ. If we put this into the equation (3.12),
we have

V t = eη − (
1

2
I −K)g on Γ,

with t := S̃qψη = Sσu. So we need to solve the variational formulation∫
Γ

V (t) w dsy =

∫
Γ

eηw dsy −
∫
Γ

(
1

2
I −K)(g) w dsy ∀w ∈ H−1/2(Γ),

49
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as well as the variational formulation for u. After that we go trough the algorithm
as explained in the previous chapter. In short we start by solving the two variational
equations∫

Ω

σ1∇u · ∇v dx =

∫
Γ

t v dsy ∀v ∈ H1(Ω),

∫
Γ

V (t) w dsy =

∫
Γ

eηw dsy −
∫
Γ

(
1

2
I −K)(g) w dsy ∀w ∈ H−1/2(Γ).

With the data we get from solving them, we compute t0 by solving∫
Γ

V (t0) w dsy =

∫
Γ

(
1

2
I +K)(g) w dsy ∀w ∈ H−1/2(Γ).

Afterwards we solve the equation∫
Ω

v qψη dx =

∫
Γ

v (t− t0) dsx +

∫
Ω

(ψη − v1) ∆v dx

with different v. The last step is to compute σ. Since σ1 ≡ 1 on Γ, we use 1Γ as the
continuation of the boundary data. For this we try to find a σ

1/2
0 = σ1/2−1Γ ∈ H1

0 (Ω)
with∫

Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

qσ
1/2
0 v dx = −

∫
Ω

∇1Γ · ∇v dx−
∫
Ω

q1Γv dx ∀v ∈ H1
0 (Ω).

5.2. Discretization

Now we need to solve the two equations:∫
Ω

σ1∇u · ∇v dx =

∫
Γ

t v dsy ∀v ∈ H1(Ω),

∫
Γ

V (t) w dsy =

∫
Γ

eηw dsy −
∫
Γ

(
1

2
I −K)(g) w dsy ∀w ∈ H−1/2(Γ).

To discretize this problem we use as the solution space for u the space of piecewise
linear and continuous functions S1

hu
(Ω) with the basis functions {φ1

i }Ni=1 and hu as
the step in space. For the solution space for t we use the space of piecewise constant
functions S0

hu
(Γ) with the basis functions {φ0

k}Mk=1 and as well the space step hu. For
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the test function space we choose S1
hu

(Ω) for the integral equation with u and S0
hu

(Γ)
for the boundary integral equation with t. From this discretization we get the equationAII AΓI

AIΓ AΓΓ −M>
h

(1
2
Mh −Kh) Vh

uIuΓ

t

 =

 0
0
fη

 , (5.1)

where

u[j] := 〈u, φ1
j〉L2(Ω) ∀j = 1, ..., N,

t[l] := 〈∂u
∂n
, φ0

l 〉Γ ∀l = 1, ...,M,

fη[k] := 〈eη, φ0
k〉Γ ∀k = 1, ...,M,

A[i, j] := 〈σ∇φ1
j ,∇φ1

i 〉L2(Ω) ∀i, j = 1, ..., N,

Vh[k, l] := 〈V φ0
l , φ

0
k〉Γ ∀k, l = 1, ...M.

Let {φ1
i }Ni=1 be ordered by the basis functions in Ω̊ and functions on Γ. Choose

1 ≤ P ≤ N so, that the first P basis functions are the functions of points in Ω̊ and
(N − P ) = M . Hence we can write

Mh[k, j − P ] := 〈φ1
j , φ

0
k〉Γ ∀j = P + 1, ...N,∀k = 1, ...,M,

Kh[k, j − P ] := 〈Kφ1
j , φ

0
k〉Γ ∀j = P + 1, ...N,∀k = 1, ...,M,

uI [j] := u[j] ∀j = 1, ..., P,

uΓ[j − P ] := u[j] ∀j = P + 1, ..., N,

AII [i, j] := A[i, j] ∀i, j = 1, ..., P,

AΓI [i, j − P ] := A[i, j] ∀i = 1, ..., P, ∀j = P + 1, ..., N,

AIΓ[i− P, j] := A[i, j] ∀j = 1, ..., P, ∀i = P + 1, ..., N,

AΓΓ[i− P, j − P ] := A[i, j] ∀i, j = P + 1, ..., N.

Since we know now the boundary data g = uΓ, we are able to compute t0 by solving∫
Γ

V (t0) w dsy =

∫
Γ

(
1

2
I +K)(g) w dsy ∀w ∈ H−1/2(Γ).

To solve this variational formulation we take S0
hu

(Γ) as test function and solution
space. With this we get the equation

Vht0 = (
1

2
Mh +Kh)uΓ. (5.2)

where

t0[l] := 〈t0, φ0
l 〉Γ ∀l = 1, ...,M.
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With all the data we have computed, we now solve∫
Ω

v qψη dx =

∫
Γ

v (t− t0) dsx +

∫
Γ

∆v (ψη − v1) (x)dx.

We will discuss several methods to get q by solving this equation in chapter 5.2.1,
5.2.2, 5.2.3 and 5.2.4.
After we have computed q, we solve the following variational formulation to find a
σ

1/2
0 = σ1/2 − 1Γ ∈ H1

0 (Ω) with∫
Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

qσ
1/2
0 v dx = −

∫
Ω

∇1Γ · ∇v dx−
∫
Ω

q1Γv dx ∀v ∈ H1
0 (Ω).

For this we choose S1
hσ

(
◦
Ω), the space of piecewise linear and continuous functions which

have support in Ω and the space step hσ, as the solution and the test function space
with the basis functions {φ1

i }Nσi=1, Nσ ≤ N . Hence we get

ÃIIσ
1/2
0 = f̃ , (5.3)

where

ÃII [i, j] :=

∫
Ω

∇φ1
j · ∇φ1

i dx+

∫
Ω

qφ1
jφ

1
i dx ∀i, j = 1, ..., Pσ

ÃΓI [i, j − Pσ] :=

∫
Ω

∇φ1
j · ∇φ1

i dx+

∫
Ω

qφ1
jφ

1
i dx ∀i = 1, ..., Pσ,∀j = Pσ + 1, ..., Nσ,

f̃ := −ÃΓI1,

and the first Pσ basis functions are the functions of inner points of Ω.

5.2.1. Compute q with the Fourier transform

For arbitrary ξ ∈ R2 and η ∈ Vξ := {η ∈ Cd\{0} : η · η = (ξ + η) · (ξ + η) = 0}, it
holds true that ∫

Ω

e−(ξ+η) qψη dx =

∫
Γ

e−(ξ+η)

(
S̃qψη − S̃0v1

)
dsx.

For η with very large absolute value |η| it holds true that

F q̃(ξ) ≈
∫
Γ

e−(ξ+η) (t− t0) dsx.
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We approximate the integration domain of the inverse Fourier transform by a Ω̃ ⊂ R2

big enough and it should hold true that Ω ⊂ Ω̃. For Ω̃ we chooseB((0.75, 0.75), 10.25
√

2)
in this example. In chapter D we explain this choice and compare different Ω̃ based
on some results of [6].

Now consider qh ∈ S1
hq

(
◦
Ω) with the basis functions {φ1

j}
Nq
j=1 with Nσ ≤ Nq ≤ N of Ω

and the supporting points {xj}Nqk=1. Then we get

qh(x) =

Nq∑
j=1

qjhφ
1
j(x),

where qjh ≈ q(xj). We will look at the Fourier transform q̂ of q̃ in the space S1
h̃
(Ω̃) with

the basis functions {φ1
k}Ñk=1 and the supporting points {ξk}Ñk=1 so that

q̂h(ξ) =
Ñ∑
k=1

q̂khφ
1
k(ξ).

with q̂kh ≈ q̂(ξk). Now we have to do the following step for every k = 1, ..., Ñ :

Take η ∈ Vξk = {η ∈ Cd\{0} : η · η = (ξk + η) · (ξk + η) = 0} with maximum absolute
value of all η in Vξk . In chapter C we discuss how Vξk looks like in more detail. For
this example we choose η = x+ iy, x, y ∈ R2, as follows:

If the first component ξk,1 of ξk is not zero, we choose

x2 =
−a
b
,

y2 =

√
1

b
((
ξ2
k,1 + ξ2

k,2

2ξk,1
− a

b

ξk,2
ξk,1

)2 +
a2

b2
),

x1 =
ξ2
k,1 + ξ2

k,2 + 2x2ξk,2

−2ξk,1
,

y1 =
−ξk,2y2

ξk,1
,

where

a :=
ξ2
k,1 + ξ2

k,2

2ξk,1

ξk,2
ξk,1

,

b := (1 +
ξ2
k,2

ξ2
k,1

).
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For ξk,1 = 0 and ξk,2 6= 0 we choose

x2 = −ξk,2
2
,

y2 = 0,

x1 = 0,

y1 = −ξk,2
2
.

If ξi = 0, we take

x2 = 10,

y2 = −10,

x1 = 10,

y1 = 10.

These η are in Vξ and have maximal norm except for the last case with ξk = 0. For
more details about the space Vξ see [6].

In the end we compute

q̂kh =
M∑
l=1

(t[l]− t0[l])

∫
Γl

e−(ξk+η) dsx.

When we are done computing q̂kh for k = 1, ..., Ñ , we can approximate

qjh =
1

4π2

∫
Ω̃

q̂h(ξ)e
iξ·xj dξ

for j = 1, .., Nq. In chapter six we will look at the error of this approximation and
compare the results.

5.2.2. Compute q with G0

Again we start with the integral equation∫
Ω

v qψη dx =

∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx.

For η ∈ Cd\{0} with very large absolute value |η| and η · η = 0 we get∫
Ω

v qeη dx ≈
∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx.
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Let {xk}Nqk=1 be the inner supporting points of Ω, where Nσ ≤ Nq ≤ N . Furthermore

we assume that qh ∈ S1
hq

(
◦
Ω), which is the space of piecewise linear functions with

support in Ω and the space step hq. Let {φ1
k}

Nq
k=1 be the basis of S1

hq
(
◦
Ω). We will break

this problem into two problems. First we consider w := qeη and solve∫
Ω

v w dx =

∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx.

After that we will solve ∫
Ω

qeηφ
1
j dx =

∫
Ω

wφ1
j dx

for j = 1, .., Nq. Let us assume that w ∈ S1
hq

(
◦
Ω). Then we can rewrite w and q as

w(x) =

Nq∑
k=1

wkφ1
k(x),

q(x) =

Nq∑
k=1

(<(qk) + i=(qk))φ1
k(x)

with wi = w(xi) and qi = q(xi). Hence we get

Nq∑
k=1

wk
∫
Ω

v φ1
k dx =

∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx (5.4)

and

Nq∑
k=1

∫
Ω

(
<(qk)<(eη)−=(qk)=(eη) + i(<(qk)=(eη) + =(qk)<(eη))

)
φ1
kφ

1
j dx (5.5)

=

Nq∑
k=1

(<(wk) + i=(wk))

∫
Ω

φ1
kφ

1
j dx

for j = 1, .., Nq. Now we need Nq different test functions v ∈ H2(Ω) to get an equation

for {wk}Nqk=1.

In this example we choose the fundamental solution of the Laplace operator v =
G0(x, yl), defined in (3.4), yl ∈ Rd\Ω for l = 1, ..., Nq. Consider

yl = (0.25
√

2 + h)

(
sin(αl)
cos(αl)

)
+

(
0.75
0.75

)
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with

αl =
2πl

Nq

for l = 1, ..., Nq and h > 0 as step in space. Then we get

Nq∑
k=1

wk
∫
Ω

G0(x, yl) φ
1
k(x) dx =

∫
Γ

G0(x, yl)
(
S̃qψη(x)− S̃0v1(x)

)
dsx,

for l = 1, ..., Nq. Therefore we end up with the equation

A w = f,

where

A[l, k] :=

∫
Ω

G0(x, yl) φ
1
k(x) dx ∀l, k = 1, ..., Nq,

w[k] := wk ∀k = 1, ..., Nq,

f [l] :=

∫
Γ

G0(x, yl)
(
S̃qψ

h̃
η (x)− S̃0v1(x)

)
dsx ∀l = 1, ..., Nq.

With this we want to solve (
A 0
0 A

)(
<(w)
=(w)

)
=

(
<(f)
=(f)

)
. (5.6)

The integral in f is the single layer potential V applied on (S̃qψη − S̃0v1). On the
other hand the integral in A is the Newton potential applied on φ1

k. Hence we know
of the existence of these integrals and how they behave on the discrete level, see [11]
for more details. After we solved the first equation, we have to calculate

KRe[j, k] :=

∫
Ω

<(eη)(x)φ1
kφ

1
j dx ∀j, k = 1, ..., Nq,

KIm[j, k] :=

∫
Ω

=(eη)(x)φ1
kφ

1
j dx ∀j, k = 1, ..., Nq,

gRe[j] :=

Nq∑
k=1

<(wk)

∫
Ω

φ1
kφ

1
j dx ∀j = 1, ..., Nq,

gIm[j] :=

Nq∑
k=1

=(wk)

∫
Ω

φ1
kφ

1
j dx ∀j = 1, ..., Nq
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to be able to compute the second equation(
KRe −KIm

KIm KRe

)(
<(q)
=(q)

)
=

(
gRe

gIm

)
with

q[k] := qk ∀k = 1, ..., Nq.

Furthermore let

K :=

(
KRe −KIm

KIm KRe

)
, (5.7)

g :=

(
gRe

gIm

)
.

The matrix K will make us some problems since the function eη can be hard to ap-
proximate for large η. This we see from the numerical results in chapter six. Therefore
we look at a second way to solve eηq = w.

5.2.3. Second way to compute q with G0

Again let {xk}Nqk=1 be the inner supporting points of Ω and we are staying with the
same solution and test function spaces. Hence we can write

w(x) =

Nq∑
k=1

wiφ1
k(x),

qh(x) =

Nq∑
k=1

(<(qk) + i=(qk))φ1
k(x)

with wi = w(xi) and qi = q(xi). We remain with first equation (5.6) and solve(
A 0
0 A

)(
<(w)
=(w)

)
=

(
<(f)
=(f)

)
with

A[l, k] :=

∫
Ω

G0(x, yl) φ
1
k(x) dx ∀l, k = 1, ..., Nq,

w[k] := wk ∀k = 1, ..., Nq,

f [l] :=

∫
Γ

G0(x, yl)
(
S̃qψ

h̃
η (x)− S̃0v1(x)

)
dsx ∀l = 1, ..., Nq.
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However we take a different approach for the second step to solve

qψη = w.

Now we use the equation∫
Ω

qφ1
j dx =

∫
Ω

w

eη
φ1
j dx ∀j = 1, ..., Nq (5.8)

and we get for j = 1, ..., Nq

Nq∑
k=1

∫
Ω

(<(qk) + i=(qk))φ1
k(x)φ1

j(x) dx

=

Nq∑
k=1

∫
Ω

<(wk) + i=(wk)

<(eη)(x) + i=(eη)(x)
φ1
k(x)φ1

j(x) dx

=

Nq∑
k=1

∫
Ω

<(wk)<(eη)(x) + =(wk)=(eη)(x)

<(eη)(x)2 + =(eη)(x)2
φ1
k(x)φ1

j(x) dx

+ i

∫
Ω

=(wk)<(eη)(x)−<(wk)=(eη)(x)

<(eη)(x)2 + =(eη)(x)2
φ1
k(x)φ1

j(x) dx.

Therefore we want to solve (
K 0
0 K

)(
<(q)
=(q)

)
=

(
<(f)
=(f)

)
with

K[j, k] :=

∫
Ω

φ1
kφ

1
j dx ∀j, k = 1, ..., Nq,

gRe[j] :=

Nq∑
k=1

∫
Ω

<(wk)<(eη)(x) + =(wk)=(eη)(x)

<(eη)(x)2 + =(eη)(x)2
φ1
k(x)φ1

j(x) dx ∀j = 1, ..., Nq,

gIm[j] :=

Nq∑
k=1

∫
Ω

=(wk)<(eη)(x)−<(wk)=(eη)(x)

<(eη)(x)2 + =(eη)(x)2
φ1
k(x)φ1

j(x) dx ∀j = 1, ..., Nq,

q[k] := qk ∀k = 1, ..., Nq.

In this case K is the Mass matrix and we know that this matrix is invertible, see [11]
for more details. Hence we can solve this equation even though we won’t get very
good results since the function eη is still behaving badly.
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5.2.4. Compute q with basis functions

For η ∈ Cd\{0} with very large absolute value |η| and η · η = 0 we get∫
Ω

v qeη dx ≈
∫
Γ

v
(
S̃qψη − S̃0v1

)
dsx +

∫
Ω

(ψη − v1) ∆v dx.

Furthermore we assume that q ∈ S1
hq

(
◦
Ω) and let {φ1

k}
Nq
k=1 be the basis of S1

hq
(
◦
Ω).

Now we consider v(x) = φ1
k and look at the equation∫

Ω

φik qeη dx ≈
∫
Γ

φ1
k

(
S̃qψη − S̃0v1

)
dsx.

Hence we want to solve

Nq∑
j=1

qj

∫
Ω

φ1
k φ

1
jeη dx =

∫
Γ

φ1
k

(
S̃qψη − S̃0v1

)
dsx ∀k = 1, ..Nq.

So we end up with the equation

Aq = f,

where

A[k, j] :=

∫
Ω

φ1
k φ

1
jeη dx ∀k, j = 1, ..., Nq, (5.9)

f [k] :=

∫
Γ

φ1
k

(
S̃qψη − S̃0v1

)
dsx ∀k = 1, ..., Nq,

q[j] := qj ∀j = 1, ..., Nq. (5.10)

Here we will have the same problems with the matrix A as with the matrix K in
chapter 5.2.2. The function eη can be hard to approximate for large η and this we will
see in the numerical results of the next chapter.





6. Numerical results

In this chapter we work with the same Ω and σ1 as in chapter 5, therefore we have

Ω = B((0.75, 0.75), 0.25
√

2)

and

σ1(x) =

{
(1 + 10 exp( 1

r2− 8
9
r2
M

))2 if r2 < 8
9
r2
M ,

1 otherwise.

with

∆σ
1/2
1 (x) =


2 · 10 exp( 1

r2− 8
9
r2
M

)
[

4r2

(r2− 8
9
r2
M )3 ( 1

r2− 8
9
r2
M

+ 2)− 4
(r2− 8

9
r2
M )2

]
+2 · 102 exp( 2

r2− 8
9
r2
M

)
[

8r2
M

(r2− 8
9
r2
M )3 ( 1

r2− 8
9
r2
M

+ 1)− 4
(r2− 8

9
r2
M )2

]
if r2 < 8

9
r2
M ,

0.0 otherwise.

where r := |x− xm|, rM := 0.25
√

2 and xm := (0.75, 0.75) is the radius of Ω. We first
look at the approximation of q and compare the different methods. In the end we look
at numerical results for the approximation of σ.

6.1. Approximation of q

6.1.1. Results for approximating q with the Fourier transform

We now test the approximation which was given in the previous chapter. For the forth
level of refinement for Ω and different levels for Ω̃ = B((0.75, 0.75), 10.25

√
2)

Level ‖qh − q‖L2(Ω)

0 0.101697
1 0.087418
2 0.0882527
3 0.0825344
4 0.085346
5 0.0519215

If we take a look at the graphical approximation, we see
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Level q original <(q)

4

5

Before we make a decision about the quality of this approximation, we look at the
profile of this plot to get a better understanding of it.

We see an approximation which is quit good. The range of the values is almost in the
same range as in the original. It rather looks like q was smoothed by the approximation.
However we will see, that this is the best method compared to to the others.
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6.1.2. Results for approximating q with G0

Let η =

(
−100
i100

)
. We refine the neighborhood of yl twice to compute the entries of

A, which was defined in (5.6). Then we look at the smallest eigenvalues of A. If we
take h = 0 in the definition of yl, we get

Dof of q smallest Eigen value
5 -1.72464e-34 + i 2.56731e-34
25 5.08604e-18 + i 0
113 6.24598e-19 + i 0

For h > 0 as the discretization step we get

Dof of q smallest Eigen value
5 -6.20407e-08 + i 0
25 -9.42247e-18 + i 0
113 -1.39933e-19 + i 0

Therefore matrices are singular and we can’t compute the following steps. However
if we look at the inner points of Ω yl = xl, l = 1, ..., Nq, the equation Aw = f
as it was stated in (5.6) is solvable. Which means as well that we ignore the term
−(ψη(yl) + v1(y) on the right hand side. But now K is singular, what we see from the
following results:
For the smallest eigenvalue of K in each refinement step, we get

Dof of q smallest Eigen value
5 -1.72464e-34 + i 2.56731e-34
25 3.37291e-44 + i 1.82075e-44
113 -2.05844e-49 + i 0

We conclude that we can’t compute σ with this method. Therefore we use a slightly
different method:

6.1.3. Results for the second way to approximate q with G0

In the last chapter we tried to solve∫
Ω

qeηφ
1
j dx =

∫
Ω

wφ1
j dx

for j = 1, ..., Nq. Now we solve instead the equation (5.8)∫
Ω

qφ1
j dx =

∫
Ω

w

eη
φ1
j dx ∀j = 1, ..., Nq.
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The matrix we get by discretizing this equation is uniquely solvable.

Let η =

(
−10
i10

)
. We get for the system error between the matrix applied on the

original values of q and the right hand side for different degrees of freedom of q

Dof of q ‖Kq − g‖L2(Ω)

5 0.54235
25 0.268102
113 0.0622128

Here we see a convergence. Therefore we look at the approximation error and we get

Dof of q ‖q − q‖L2(Ω)

5 4.19236
25 3.30176
113 1.37379

Here we can see a convergence as well. However we take a look at the graphical
approximation get a better understanding how good the approximation actually is.

Dof of q q original <(q) =(q)

113

Now we see, that q is not approximated at all, since the pictures show a completely
different function.

Therefore we take another η and hope for better results. If we choose η =

(
−100
i100

)
,

then we get for 113 degrees of freedom for q the errors

Dof of q ‖Kq − g‖L2(Ω) ‖q − q‖L2(Ω)

113 4.28126e+22 1.00813e+24

We already see that this is a very bad approximation and the pictures tell us the same:
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Dof of q q original <(q) =(q)

113

As a last choice we take η =

(
−20
i20

)
and compare the results. We get for 113 degrees

of freedom for q the errors

Dof of q ‖Kq − g‖L2(Ω) ‖q − q‖L2(Ω)

113 1.10034 25.3053

We already expect bad results in the graphical approximation from these errors and
the pictures tell us that this guess it right:

Dof of q q original <(q) =(q)

113

Since we were not able to produce good results, we yet again take a different ap-
proach. Now we try to use the Least square method by taking (Nq + Nq,bound) points
on the boundary Γ, where Nq,bound is the number of boundary points of the refinement
step with the space step hq and which gives us Nq inner points. With this we get the
following results:
For the smallest Eigen value of the matrix ATA we get

Dof of q smallest Eigen value
5 1.00319e-10 + i 0
25 1.07312e-19 + i 0
113 -7.82646e-22 + i 4.32274e-21
481 1.10415e-21 + i 0
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The smallest Eigen value of K is for different degrees of freedom for q

Dof of q smallest Eigen value
25 2.67125e-07 + i 1.80736e-07
113 1.49145e-09 + i 4.62069e-08
481 1.59458e-09 + i 8.13272e-09

For the error of the solution we get

Dof of q ‖q − q‖L2(Ω)

5 60357.6
25 107712
113 7263.13
481 29.7206

Here we do not have a good convergence and in the pictures we do not have a graphical
approximation either

Dof of q q original <(q) =(q)

481

Therefore we can conclude that this method does not work well. So we look at the
next method and hope for better results.

6.1.4. Results for approximating q with basis functions

Now we look the third method to approximate q in which we use basis functions for v
in the equation (4.2).

Let η =

(
−100
i100

)
. Again we are unable to solve the equation Aw = f , which was

posed in (5.9), because A is singular as we see from the smallest eigenvalues of A,
which are

Dof of q smallest Eigen value
5 -2.472e-35 + i 0
25 -2.73198e-45 + i 0
113 -7.91374e-50 + i 0
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Therefore we choose another η =

(
−10
i10

)
. We yet again start with the smallest

eigenvalues

Dof of q smallest Eigen value
25 2.67125e-07 + i 1.80736e-07
113 1.49145e-09 + i 4.62069e-08
481 1.59458e-09 + i 8.13272e-09

The Eigen values are small but still big enough so we can solve the equation Aw = f .
So we look at the error of the approximation q

Dof of q ‖q − q‖L2(Ω)

5 76.5604
25 6.26376
113 6.0203
481 0.0890929

In case of 481 degrees of freedom for q we get the zero solution, which we see in the
pictures below. We also see that there is no approximation of q.

Dof of q q original <(q) =(q)

113

481

Since we do not have any approximation of q with this method, we a different ap-
proach. Now we try the Least square method to get better results. We test with all
the N basis functions, which we used to compute ψη and uΓ, to get an over determined
equation.
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For the smallest Eigen value of ATA we end up with

Dof of q smallest Eigen value of ATA
5 1.04245e-11 + i 0
25 4.70264e-14 + i 0
113 7.71787e-16 + i 0
481 2.51413e-17 + i 0

Especially in the case of 481 degrees of freedom the Eigen value with the smallest norm
is very small and we can’t expect to get a good approximation. When we calculate
the error of the solution we get

Dof of q ‖q − q‖L2(Ω)

5 1.95721
25 1.09349
113 1.96717
481 0.0890929

In case of 481 degrees of freedom for q we get the zero solution again. This we could
have expected from the very small Eigen values. If we now look at the results in
pictures, we get:

Dof of q q original <(q) =(q)

113

481

We see as well in the pictures, that we get the zero solution in case of 481 degrees of
freedom for q. With this we can conclude that this method does not show any good
results. Even if we try to use the Least square method we don’t end up with sufficient
solutions.
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6.2. Approximation of σ

We look at the equation

(−∆ + q)σ1/2 = 0 in Ω,

σ1/2 = 1 on Γ,

and solve the variational formulation (4.6) which was discretized in (5.3) in chapter 5.
Let Ω be refined four times. Now we use the results of the approximation of q with
the Fourier transform from chapter 6.1.1 on the fifth level of refinement for Ω̃ which
yielded the error

Level ‖qh − q‖L2(Ω)

5 0.0519215

and the graphical approximation

Level q original <(q)

5

If we solve the equation (5.3), we get the error

‖σh − σ‖L2(Ω)

0.000149404

and the graphical approximation

σ original σh
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We see that the values of the approximation σh are almost in the same range as the
original function. In the same way as the function qh the approximation σh seems to
be smoothed. This happened probably when we chose to cut the integral domain of
the inverse Fourier transform from R2 to Ω̃.



7. Conclusion

In this thesis we derived several methods to compute σ. We tested them and concluded
that we get the best approximation for q if we use the method with the Fourier
transform as it was described in chapter 4.1.1. On the other hand we did not take
computational time into consideration. The method with the Fourier transform does
take the most time, because we need to compute S̃qψη for every discretization point
ξk of Ω̃ since η ∈ Vξk , as it was explained in chapter 5.2.1. But in the end we see that
this computation time is well spend since we can see in chapter 6.2 that the results
are acceptable and much better compared to the other methods. Therefore we end up
with the algorithm:

We start with the boundary data g and σΓ and solve∫
Γ

V (t0) w dsy =

∫
Γ

(
1

2
I +K)(σ

1/2
Γ g) w dsy ∀w ∈ H−1/2(Γ)

to get t0 ∈ H−1/2(Γ). Then we choose the integration domain Ω̃ ⊂ Rd for the inverse
Fourier transform. For every discretization point ξk, k = 1, ..., Ñ , of Ω̃ we choose
ηk ∈ Vξk with a large enough absolute value. Next we do the following two calculations
for every k = 1, ..., Ñ :

First we solve the equation∫
Γ

V (tk) w dsy =

∫
Γ

eηkw dsy −
∫
Γ

(
1

2
I −K)(σ

1/2
Γ g) w dsy ∀w ∈ H−1/2(Γ),

to get the Neumann data tk ∈ H−1/2(Γ). Secondly we compute

Fhq̃(ξk) =

∫
Γ

e−(ξk+ηk) (tk − t0) dsx.

By interpolating the approximation of the Fourier transform Fhq̃ we can compute the
approximated inverse Fourier transform and get

qh(x) =
1

(2π)d

∫
Ω̃

Fhq̃(ξ)eiξ·x dξ.
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Now we are able to solve the variational formulation∫
Ω

∇σ1/2
0 · ∇v dx+

∫
Ω

qhσ
1/2
0 v dx = −

∫
Ω

∇σ̃1/2 · ∇v dx−
∫
Ω

qhσ̃1/2v dx ∀v ∈ H1
0 (Ω)

for σ̃ as the extension of the boundary data σΓ to get the desired dielectric conductivity
σ = (σ

1/2
0 + σ̃1/2)2.



Appendices

73





A. Definitions

First we will state some definitions, that are used in this thesis. The following two
definitions for Lipschitz domains come from the book [15, p.89]:

Definition A.1. The open set Ω ⊂ Rd is called a Lipschitz hypograph if there exists
a function ζ : Rd−1 → Rd such that

Ω = {x = (x′, xn) ∈ Rd : xn < ζ(x′), ∀x′ = (x1, ..., xn−1) ∈ Rd−1}

and ζ is Lipschitz, i.e. if there is a constant M > 0 such that

|ζ(x′)− ζ(y′)| ≤M |x′ − y′| ∀x′, y′ ∈ Rd−1.

Definition A.2. The open set Ω ⊂ Rd is called a Lipschitz domain if its boundary
Γ = ∂Ω is compact and if there exist finite families {Wj} and {Ωj} having the following
properties:

• The family {Wj} is a finite open cover of Γ, i.e., each Wj is an open subset of
Rd, and Γ ⊂

⋃
j

Wj.

• Each Ωj can be transformed to a Lipschitz hypograph by a rigid motion, i.e. by a
rotation plus a translation.

• The set Ω satisfies Wj ∩ Ω = Wj ∩ Ωj for each j.

From now on let Ω ⊂ Rd open and bounded. The following definition of the Lp(Ω)
space comes from [15, p.58]:

Definition A.3. The space Lp(Ω) is defined by the norm

‖u‖Lp(Ω) :=

∫
Ω

|u(x)|p dx

1/p

for 1 ≤ p <∞. We define

〈u, v〉Ω :=

∫
Ω

u(x)v(x) dx.
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The definition of Ck(Ω) is from [15, p.61]:

Definition A.4. The space of k-times continuous differentiable functions, k ∈ N, is
called

Ck(Ω) := {f |∂αf exists and is continuous in Ω for any α ∈ Nd with |α| ≤ k}

and

C∞(Ω) =
⋂
k≥0

Ck(Ω).

The following definition for compact supported function spaces comes from [15, p.
61,65,72]:

Definition A.5. • Let K be a compact subset of Ω and r ∈ N0, then define the
space of compactly supported Cr- functions as

Cr
K(Ω) := {u ∈ Cr(Ω) : supp(u) ⊆ K},
D(Ω) := {u : u ∈ C∞K (Ω) for some K which is a compact subset of Ω}

• We define the Schwartz as the space of rapidly decreasing C∞-functions with

S(Rd) := {ψ ∈ C∞(Rd) : sup
x∈Rd
|xα∂βψ(x)| <∞ for all α, β ∈ Nd}.

For the definition of the Fourier transform we need the theorem of Plancherel as
stated as in [7, p.188, Thm 6.44]:

Theorem A.6 (Theorem of Plancherel). There is a unique operator F : L2(Rd,C)→
L2(Rd,C) with

(Ff,Fg)L2(Ω) = (f, g)L2(Ω) ∀f, g ∈ L2(Rd,C),

such that

Ff(.) = (2π)−d/2
∫
Rd

e−ix·.u(x) dx,

for f ∈ L1(Rd,C) ∩ L2(Rd,C). It holds true that

(F−1f)(x) = (Ff)(−x)

almost everywhere for all f ∈ L2(Rd,C).

The following definition is from [15, p.70,75]:
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Definition A.7. • The operator

Fu(ξ) := (2π)−d/2
∫
Rd

e−iξ·xu(x) dx

is called the Fourier transform for ξ ∈ Rd.

• We define the Bessel potential of order s ∈ R by

J su(x) := (2π)d/2
∫
Rd

(1 + |ξ|2)s/2Fu(ξ)eiξ·x dξ

for x ∈ Rd.

With this we can now define H spaces as follows:

Definition A.8. We define for s ∈ R

Hs(Rd) := {u ∈ S∗(Rd) : J su ∈ L2(Rd)},

and

Hs(Ω) := {u ∈ D∗(Ω) : u = U |Ω for some U ∈ Hs(Rd)}.

Furthermore we define

H̃s(Ω) := closure of D(Ω) in Hs(Rd),

Hs
0(Ω) := closure of D(Ω) in Hs(Ω).

This definition is from [15, p.76-78]. For Lipschitz domains we get a relation between
H̃s and H1

0 :

Theorem A.9. Let s ≥ 0. If Ω is a Lipschitz domain, then

H̃s(Ω) = {u ∈ L2(Ω) : ũ ∈ Hs(Rn)} ⊂ Hs
0(Ω)

where ũ denotes the extension of u by zero:

ũ =

{
u(x) if x ∈ Ω,

0 if x ∈ Rd\Ω.

In fact

H̃s(Ω) = Hs
0(Ω) provided s /∈ {1

2
,
3

2
,
5

2
, ...}.
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for the proof see [15, Thm. 3.33, p.95]. In comparison we define W spaces as in [15,
p.74]:

Definition A.10. We define the Sobolev space W k
p (Ω), k, p ∈ N, as follows

W k
p (Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for |α| ≤ k}

with

‖u‖Wk
p (Ω) :=

∑
|α|≤k

∫
Ω

|∂αu(x)|p dx

1/p

.

We denote the Slobodechiĭ seminorm by

|u|µ,p,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+pµ
dx dy

1/p

for 0 < µ < 1. For s = k + µ, k ∈ N, 0 < µ < 1, we define

W s
p (Ω) := {u ∈ W k

p (Ω) : |∂αu|µ,p,Ω <∞ for |α| = k}

and equip it with the norm

‖u‖W s
p (Ω) :=

‖u‖p
Wk
p (Ω)

+
∑
|α|=k

|∂αu|pµ,p,Ω

1/p

.

The equivalence we get from the following theorem, as was stated in [15, p.92].

Theorem A.11. If Ω is a Lipschitz domain, then

• Hs(Ω)∗ = H̃−s(Ω) and H̃s(Ω)∗ = H−s(Ω) for all s ∈ R;

• W s(Ω) = Hs(Ω) for all s > 0.

Theorem A.12. For any non-empty open set Ω ⊂ Rd, and for any integer r ≥ 0, it
holds true that

H−r(Ω) = W−r(Ω)

with equivalent norms.

Proof.
Look at [15, p.81]. 2

One of the most important theorems in this work is the trace theorem:
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Theorem A.13. Define the trace operator γ : D(Ω)→ D(Γ) by

γu = u|Γ.

If Ω is a Lipschitz domain, and if 1
2
< s < 3

2
, then γ has a unique extension to a

bounded linear operator

γ : Hs(Ω)→ Hs−1/2(Γ),

and this extension has a continuous right inverse.

Proof.
See [15, Thm. 3.37, p.102] and [15, Thm. 3.38, p.102]. 2

With this theorem, we can write a definition of the traces on Ω, which comes from
[11]:

Definition A.14. Let Ω ⊂ Rd be a Lipschitz domain. Then we define for u ∈ H1(Ω)
and x ∈ Γ = ∂Ω

γint0 u(x) := lim
x̃→x,x̃∈Ω

u(x̃),

γext0 u(x) := lim
x̃→x,x̃∈Rd\Ω

u(x̃).

If further u ∈ H2(Ω) holds, we define

γint1 u(x) := lim
x̃→x,x̃∈Ω

∂u

∂nint
(x̃),

γext1 u(x) := lim
x̃→x,x̃∈Rd\Ω

∂u

∂next
(x̃),

as the normal derivative for the Laplace operator, where nint is the normal of Ω and
next the normal of Rd\Ω.

These limits are to be understand as the use of the trace operator.
With this definition we can define the L2(Γ) product:

Definition A.15. For u, v ∈ H1(Ω) then we define

〈u, v〉Γ :=

∫
Γ

γint0 u γint0 v dsx.

We will also need the Sobolev space H1/2(Γ) for the weak formulation of the differ-
ential equations:
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Definition A.16. Let Ω be a Lipschitz domain and 0 ≤ s ≤ 1

Hs(Γ) := {u ∈ L2(Γ) : uζ(x
′) = u(x′, ζ(x′)) for some uζ ∈ Hs(Rd−1)}

with the norm

‖w‖2
Hs(Γ) := ‖uζ‖2

Hs(Rd−1).

See [15, p.98].

Lemma A.17. It holds true that

‖w‖2
H1/2(Γ) ∼ ‖uζ‖

2
L2(Γ) + |uζ |21/2,2,Rd−1 .

Proof.
By using the theorem of norm equivalence for W 1/2(Rd−1) and H1/2(Rd−1), [15, Thm.
3.16,p.80], we get

‖w‖2
H1/2(Γ) := ‖uζ‖2

H1/2(Rd−1)

∼ ‖uζ‖2
W 1/2(Rd−1)

= ‖uζ‖2
W 0(Rd−1) +

∑
|α|=0

|∂αuζ |21/2,2,Rd−1

(A.16)
= ‖uζ‖2

L2(Γ) + |uζ |21/2,2,Rd−1 .

And so this lemma is proven. 2



B. Tools

Let furthermore Ω ⊂ Rd be a bounded Lipschitz domain. Then there exists an inter-
esting inequality for H1

0 (Ω) functions:

Theorem B.1 (Poincaré inequality). There exists a constant c > 0 depending on Ω
such that

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω)

for all u ∈ H1
0 (Ω).

Proof.
Consider [8, Thm. 3, p.279] for the proof. 2

Next we look at the Green’s identities, which were proven in [15, p.4] :

Theorem B.2 (Green’s identities). Let u, v ∈ H2(Ω). Then it holds true that
1.

∫
Ω

∇u · ∇v dx =

∫
Γ

v γint1 u dsx −
∫
Ω

v∆u dx.

2.

∫
Ω

(v∆u− u∆v) dx =

∫
Γ

(
v γint1 u− u γint1 v

)
dsx.

We will be needing the lemma of Lax-Milgram as it was stated in [15, Lem. 2.32,
p.43]:

Theorem B.3 (Lemma of Lax-Milgram). Let H be a Hilbert space, H∗ its dual and
〈., .〉 the corresponding duality product. Let the operator A : H → H∗ be linear,
bounded and elliptic, i.e. there exists a constant c > 0 such that

|〈Au, u〉| ≥ c‖u‖2
H

for all u ∈ H. Then A has a bounded inverse A−1 : H∗ → H.
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Later we use the Fréchet-Riesz representation as it was stated in [3, Thm. V.3.6,
p.226]:

Theorem B.4 (Fréchet-Riesz representation theorem). Let H be a Hilbert space.
Then the operator A : H → H∗, y 7→ 〈., y〉 is bijective, isometric and conjungated
linear, i.e.

A(λy) = λA(y).

That means that for every x∗ ∈ H∗ exists exactly one y ∈ H with x∗(x) = 〈x, y〉 for
x ∈ H and it holds true that ‖x∗‖H∗ = ‖y‖H .

We will be also in need of some properties of the Fourier series which were proven
in [10, p.6-11].

Theorem B.5. Consider L2(Q) with Q := [−π, π]d and the inner product

(u, v) := (2π)−d
∫
Q

uv dx, u, v ∈ L2(Q).

If f ∈ L2(Q), then one has the Fourier series

f(x) =
∑
k∈Zd

fke
ik·x

with convergence in L2(Q), where the Fourier coefficients are given by

fk = (f, eik·x)

One has the Plancherel formula

‖f‖2
L2(Q) =

∑
k∈Zd
|fk|2.

The following definition is from [3, Def. V.4.1, p.230]:

Definition B.6. Let H be a Hilbertspace.

• A subset S ⊂ H is called an orthonormal system if for all e, f ∈ S, e 6= f holds

‖e‖H = 1,

〈e, f〉H = 0.

• An orthonormal system S ⊂ H is called an orthonormal basis if for every or-
thonormal set T with S ⊂ T ⊂ H follows T = S.
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With this definition we can prove the next Corollary:

Corollary B.7. Under the assumptions of the previous theorem {eik·x}k∈Zd is an or-
thonormal basis in L2(Q).

Proof.
We simply need to show, that {eik·x}k∈Zd is an orthonormal set in L2(Q). The rest
will follow due to the equivalence of the Placherel formula and the Parseval identity,
which on the other hand is equivalent to the condition that {eik·x}k∈Zd is a basis, see
[3, Thm. V.4.9, p.234].
Let k, j ∈ Zd. If k 6= j then there exists a n ∈ N so that kn 6= jn. For simplicity let
n = d. With the theorem of Fubini, see [5, Chapter 5.2., p.175 et seq.] for it’s proof,
we get

(eij·x, eik·x)
Fubini

= (2π)−d
∫

[−π,π]d−1

π∫
−π

cos

(
(jd − kd)xd +

d−1∑
n=1

(jn − kn)xn

)

+ i sin

(
(jd − kd)xd +

d−1∑
n=1

(jn − kn)xn

)
dxd d[xd−1, ..x1]

= (2π)−d
∫

[−π,π]d−1

0 d[xd−1, ..x1] = 0.

The last equation holds because we integrate the shifted cos and sin over (jd− kd) 2π.
However if k = j then

(eij·x, eik·x) = (2π)−d
∫
Q

1 dx = 1.

Therefore we have proven the statement. 2

In this thesis we need as well some properties of ei(k+ 1
2
e2)·x, where e2 is the second

basis unit vector, with k ∈ Zd. Therefore we look at the shifted lattice Zd + 1
2
e2:

Theorem B.8. Consider L2(Q) with Q := [−π, π]d and the inner product

(u, v) := (2π)−d
∫
Q

uv dx, u, v ∈ L2(Q).
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The functions

wk(x) = ei(k+ 1
2
e2)·x, k ∈ Zd

form an orthonormal basis. which implies the Parseval identity

‖u‖2
L2(Ω) =

∑
k∈Zd
|(u,wk)|2.

Proof.
First we show that {wk}k∈Zd is an orthonormal set which means

(wj, wk) =

{
1, j = k,

0, j 6= k.

Then we show the following property which is equivalent to the statement that {wk}k∈Zd
is an orthonormal basis:

For any v ∈ L2(Q) with

(v, wk) = 0, ∀k ∈ Zd

it holds that

v = 0.

The proof of the last statement is shown in [3, Thm. V.4.9, p.234].

1. Now show that {wk}k∈Nd is an orthonormal system:
Consider

(wj, wk) = (2π)−d
∫
Q

ei(j+
1
2
e2)·xe−i(k+ 1

2
e2)·x dx

= (eij·x, eik·x)

Cor.B.7
=

{
0, j 6= k,

1, j = k.

2. Let v ∈ L2(Ω) and

(v, wk) = 0, ∀k ∈ Zd.

We know that {eik·x}k∈Zd is an orthonormal basis in L2(Q). It holds that

0 = (v, wk) = (v, ei(k+ 1
2
e2)·x)

= (e−i
1
2
e2·xv, eik·x), ∀k ∈ Zd.
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We get with the Plancherel formula from Thm. B.5 that

‖v‖2
L2(Q) = ‖e−i

1
2
e2·xv‖2

L2(Q)

=
∑
k∈Zd
|(e−i

1
2
e2·xv, eik·x)|2.

= 0,

Therefore v ≡ 0 and we get that {wk}k∈Zd are indeed an orthonormal basis in L2(Q).
The Parseval identity follows because {wk}k∈Zd is an orthonormal basis and the iden-
tity is equivalent to that statement, see [3, Thm. V.4.9, p. 234] for more details. 2





C. The space Vξ

Let ξ ∈ R2. The space Vξ is defined as

{η ∈ C2\{0} : η · η = (ξ + η) · (ξ + η) = 0}.
For d = 2 and ξ 6= 0 the two equations η · η = 0 and (ξ + η) · (ξ + η) = 0 yield only
two solutions. In case the first component ξ1 of ξ is not zero, we get for η = x + iy,
x, y ∈ R2,

x2 =
−a
b
,

y2 = ±

√
1

b
((
ξ2

1 + ξ2
2

2ξ1

− a

b

ξ2

ξ1

)2 +
a2

b2
),

x1 =
ξ2

1 + ξ2
2 + 2x2ξ2

−2ξ1

,

y1 =
−ξ2y2

ξ1

,

where

a :=
ξ2

1 + ξ2
2

2ξ1

ξ2

ξ1

,

b := (1 +
ξ2

2

ξ2
1

).

In case of ξ2 6= 0, but ξ1 = 0, we get

x2 =
−ξ2

2
,

y2 = 0,

x1 = 0,

y1 = ±−ξ2

2
.

So for ξ 6= 0 the space Vξ is finite. To see the full computation see [6]. For ξ = 0 we
are left with only one complex equation which yields the two conditions

x2
1 − y2

1 + x2
2 − y2

2 = 0,

2x1y2 + 2x2y2 = 0.

Therefore V0 is not finite.
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D. Comparison between different Ω̃

In [6] we compared different Ω̃ to see how good the approximation of the inverse
Fourier transform is. All of the results in this chapter are from [6]. For a more
detailed explanation see [6].
Let Ω = B((0.75, 0.75), 0.25

√
2) and consider the function

w(x) =

{
exp( 1

|x−xm|2− 8
9
r2 ) if |x− xm|2 < 8

9
r2,

0.0 otherwise,

where r = 0.25
√

2 and xm = (0.75, 0.75). We compute the Fourier transform

Fw(ξ) =

∫
Ω

w(x)e−ix·ξ dx

after that we compute an approximation of the inverse Fourier transform

wih(x) =
1

4π2

∫
Ω̃i

Fw(ξ)eiξ·x dξ.

for different Ω̃i, i = 1, ..., 4. In the end we compare the result wih with the original w.
All the following results are for the forth refinement level for Ω and different refinement
levels for Ω̃i:
For Ω̃1 = B((0.75, 0.75), 10.25

√
2) we get the errors

Lvl ‖w1
h − w‖L2(Ω) eoc

0 1.55798e-05
1 1.56934e-05 -0.0118285
2 1.50754e-05 0.0596308
3 1.08646e-05 0.475869
4 9.4266e-06 0.205185

Next we look at Ω̃2 = B((0.75, 0.75), 20.25
√

2) and get

Lvl ‖w2
h − w‖L2(Ω) eoc

0 2.40924e-05
1 1.64794e-05 0.618569
2 1.53221e-05 0.108073
3 1.37403e-05 0.158306
4 5.94448e-06 1.2109
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To get a better understanding of the approximation we look at the graphics:

Lvl w original <(w1
h) <(w2

h)

0

1

2

3

4

The graphical approximation for Ω̃2 is more fitting, but the error is better for Ω̃1.
Next we compare this results with a very small and a very big Ω̃ to get a better
understanding for the choice of Ω̃. Therefore we choose Ω̃3 = B((0.75, 0.75), 0.25

√
2)

and get
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Lvl ‖w3
h − w‖L2(Ω) eoc

0 1.63354e-05
1 1.63328e-05 0.000254511
2 1.63321e-05 6.65223e-05
3 1.63319e-05 1.6857e-05
4 1.63319e-05 4.22949e-06

In comparison we choose Ω̃4 = B((0.75, 0.75), 100.25
√

2) and get the error

Lvl ‖w4
h − w‖L2(Ω) eoc

0 0.00017215
1 4.70614e-05 2.11233
2 2.34675e-05 1.03279
3 1.85175e-05 0.344169
4 1.46407e-05 0.339497

Again we compare the graphical approximation:

Lvl w original <(w3
h) <(w4

h)

0

1

2
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Lvl w original <(w3
h) <(w4

h)

3

4

We see that both Ω̃3 and Ω̃4 don’t yield any good results..

D.1. With refinement steps beforehand

For the forth refinement level of Ω we refine Ω̃1 five times and Ω̃2 six times beforehand,
so that we get h < 1 in the beginning of our computations.

‖w − w1
h‖L2(Ω) ‖w − w2

h‖L2(Ω)

9.18703e-06 8.98132e-06

w original <(w1
h) <(w2

h)

Here we see a better approximation in case of Ω̃2.

We don’t refine the space Ω̃3 beforehand, because h < 1 is already full filled in the
beginning. Ω̃4 we refine eight time beforehand to get h < 1 before we start the
computations. As a result we get

‖w − w3
h‖L2(Ω) ‖w − w4

h‖L2(Ω)

9.58595e-06 8.98035e-06
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For the graphical approximation we get

w original <(w3
h) <(w4

h)

We see that we still get a bad approximation for Ω̃3 since it is just too small. In
comparison we get a very good graphical approximation for Ω̃4. However we needed
to first refine the space eight times to get this approximation, what is quit costly in
computational time.
In case of the approximation of q which was explained in chapter 4.1.1 we will get a
different result:

With the same refinement steps beforehand that were stated above we get

L2- error for q in Ω̃1 L2- error for q in Ω̃2 L2- error for q in Ω̃4

0.0519215 0.110233 1.09258e+12

and for the graphical approximation

q original <(q1
h) <(q2

h)

We see a much a better approximation for Ω̃1. On the other hand we have a very bad
approximation for Ω̃4:

q original <(q4
h)



94 D. Comparison between different Ω̃

Here we do not see any kind of approximation. Therefore we see that Ω̃1 is the best
choice we can make for Ω̃ when we want to approximate q. That is the reason why we
chose Ω̃1 for Ω̃ in chapter 5.2.1.
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