Silvia Madritsch, BSc

## Helicobacter pylori Genomics

## MASTER'S THESIS

to achieve the university degree of
Master of Science
Master's degree progamm: Biomedical Engineering

# submitted to <br> Graz University of Technology 

Supervisor
Dr. Gerhard Thallinger

Institute of Computational Biotechnology
Petersgasse 14, A - 8010 Graz
Institute of Neural Engineering
Stremayrgasse 16/IV, A - 8010 Graz

Graz, October 2017


#### Abstract

Helicobacter pylori is a gram-negative bacterium that is found in the human gastric mucosa in more than $50 \%$ of the world's population. It is a pathogen and infections can lead to chronic gastritis or gastric ulcers, but also a positive effect on asthma in children was observed. Since this bacteria has a high genomic variability it is important to sequence and assemble different H. pylori strains to determine intraand intergenomic variability and the association with diseases.

This Master's thesis is divided into two main parts. First, different assembly tools were compared on a range of different bacterial sequencing data. In particular, the results of the popular GS De Novo Assembler (Newbler) were compared to the results of a previously published assembler benchmark. The performances of the assemblers were quite different depending on the genomic data. In general MaSuRCA, Cabog and SPAdes performed best while SGA and Abyss got the lowest scores. Newbler achieved good results especially in relation to the reference coverage, less overlapping bases and low rate of mismatches and indels. It obtained better results with Illumina MiSeq than with HiSeq data.

The second and main part of this thesis covers the assembly of four Helicobacter pylori strains. These strains were sequenced using Illumina and PacBio sequencing technologies. Assemblies were performed with two different long-read assembly strategies. The first one was a hybrid approach where the long PacBio reads are corrected by mapping of the short Illumina reads before used for assembly. But fully finished and closed genomes were only achieved with the second method, a so called stand-alone-assembly approach of Canu assembler followed by a circularisation step and a consensus building step using Illumina reads. It could be shown that H. pylori is a bacterium that has a high genomic variability, including large inversions of about 400 kbp , different copy numbers of the cagA region and a high amount of local variations affecting different genes.


## Kurzfassung

Helicobacter pylori ist ein gram-negatives Bakterium welches sich in mehr als $50 \%$ der menschlichen Bevölkerung in der Magenschleimhaut befindet. Es ist ein Krankheitserreger und kann chronische Gastritis sowie Magengeschwüre auslösen, aber auch ein positiver Einfluss auf Asthma bei Kindern wurde beobachtet. Da das Bakterium eine hohe genetische Variabilität aufweist, ist es wichtig, unterschiedliche Stämme des Bakteriums zu sequenzieren und zu assemblieren um darauf Rückschlüsse auf Krankheiten und deren Verlauf zu gewinnen.

Diese Masterarbeit ist in zwei Bereiche unterteilt. Zuerst wurden verschiedene Assembly Tools an unterschiedlichen DNA-Sequenzen angewendet und verglichen. Im Speziellen wurden die Ergebnisse vom GS DE Novo Assembler (Newbler) mit den Ergebnissen einer früheren Publikation verglichen. Die Performances der Assembler waren unterschiedlich, abhängig von den verwendeten Daten. Im Allgemeinen haben MaSuRCA, Cabog und SPAdes die besten Ergebnisse geliefert, während SGA und Abyss eher schlechter abschnitten. Newbler hat gut funktioniert, im Speziellen erreichten die Assemblies eine hohe Referenz Coverage, wenige überlappenden Basen und eine geringen Rate an Mismatches und Indels. Newbler lieferte bessere Ergebnisse mit Illumina MiSeq als mit HiSeq Daten.

Der zweite Teil der Arbeit beinhaltet das Assemblieren von vier H. pylori Stämmen, welche mit der Sequenziertechnologie von Illumina und zusätzlich mit der von PacBio sequenziert wurden. Die Assemblies wurden mit zwei unterschiedlichen Strategien durchgeführt. Bei der Hybrid Technologie werden die langen PacBio DNA-Fragmente durch Mapping von Illumina Reads korrigiert. Vollständige und geschlossene Assemblies konnten aber nur mit der 2. Methode, einem sogenannten Stand-AloneAssembly Ansatz mit Canu Assembler, gefolgt von einem Zirkularisierungsschritt und Konsensus-Bildung mit Hilfe der Illumina Reads, erzielt werden. Es wird gezeigt, dass H. pylori ein Bakterium mit einer hohen Variabilität ist, welches eine große Inversion von 400 kbp , unterschiedliche Anzahl von cagA Kopien und eine hohe Anzahl an lokalen genetischen Variationen aufweist.

## Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present Master's thesis.

Date
Signature

## Acknowledgement

I would like to express deep gratitude to my supervisor Dr. Gerhard Thallinger for his guidance, encouragement and gracious support throughout my work. I further want to thank Dr. Sabine Kienesberger for providing the data for this thesis.

A big thanks to Dr. Martin Blaser from the NYU Langone Medical Center, USA who accepted me as an intern in his lab and highly supported me in my scientific work. I would also like to acknowledge Dr. Sandra Breum-Anderson of the Blaser's lab group at NYU for reading through my thesis, and I am gratefully indebted for her very valuable comments on this thesis.

Finally, I express gratitude to my parents for providing me with financial support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. Thank you!

## Contents

1 Introduction ..... 1
1.1 Genome Sequencing ..... 1
1.1.1 Illumina Sequencing ..... 1
1.1.2 PacBio Sequencing ..... 3
1.1.3 Error Correction of PacBio Reads ..... 3
1.1.4 Proovread Error Correction ..... 4
1.1.5 Canu Self-Error-Correction ..... 6
1.2 Genome Assembly ..... 6
1.2.1 Challenges in Genome Assembly ..... 6
1.2.2 Assembly and Scaffolding Process ..... 6
1.2.3 OLC versus de Bruijn Graph Assembler Algorithms ..... 8
1.2.4 Newbler Assembler ..... 8
1.2.5 Canu Assembler ..... 10
1.2.6 Performance Comparison of Different Assembly Tools ..... 10
1.3 Helicobacter pylori ..... 11
1.4 Aims of the Thesis ..... 12
2 Methods ..... 13
2.1 Assembly Tools for Small Genomes ..... 13
2.1.1 Data ..... 13
2.1.2 Newbler ..... 14
2.1.3 MUMmer Package ..... 14
2.2 Helicobacter pylori Assemblies ..... 14
2.2.1 Study Description ..... 14
2.2.2 Data ..... 15
2.2.3 Hybrid Approach ..... 15
2.2.4 Stand-Alone Approach with Canu Assembler ..... 17
2.3 Comparison of the H. pylori Genomes ..... 17
2.3.1 Creating a Phylogenetic Tree ..... 17
2.4 Used R Packages ..... 18
3 Results ..... 19
3.1 Assembly Tools for Small Genomes ..... 19
3.1.1 R Script to Align and Compare Assemblies ..... 19
3.1.2 Description of Computed Parameters for Comparison ..... 21
3.1.3 Ranking of Assembly Tools ..... 23
3.2 Helicobacter pylori Genomics ..... 24
3.2.1 PacBio Reads Statistics ..... 24
3.2.2 Illumina Reads Statistics ..... 26
3.2.3 Hybrid Approach ..... 28
3.2.4 Stand-Alone Approach with Canu Assembler ..... 32
3.2.5 Comparison of the Genomes ..... 38
4 Discussion ..... 42
4.1 Assembly Tools for Small Genomes ..... 42
4.1.1 GAGE-B and GABenchToB ..... 42
4.1.2 Evaluation of the Assemblies ..... 43
4.2 Helicobacter pylori ..... 45
4.2.1 Available Data ..... 45
4.2.2 Hybrid Approach ..... 45
4.2.3 Stand-Alone Assembly ..... 46
4.2.4 Comparison of the Genomes ..... 47
4.3 Conclusions ..... 48
5 References ..... 51
6 Appendix ..... 58
6.1 Implemented R Functions ..... 58
6.2 Assembly Tools for Small Genomes ..... 66
6.3 Helicobacter Pylori ..... 66

## 1 Introduction

The aim of genome sequencing is to obtain a digital copy of the organism's DNA bases in the exact order they appear inside the target genome [12]. The genome sequencing process can be divided into four steps: At first sequencing, second assembly, third finishing and finally annotation.

First the genomic DNA is isolated from the organism and read by a sequencer. Since current sequencing technologies read at most a few thousand contiguous base pairs, the genome is broken up into small fragments, which are sequenced to yield the reads and through computational algorithms these reads are assembled into a genome [1]. The goal of the final annotation step is to identify functional regions of DNA in the genome [2].

### 1.1 Genome Sequencing

Until 2005 Sanger technology was solely used for DNA sequencing [3,4]. It creates reads with a length of approximately 800 bp and is very accurate but expensive and slow. To overcome these limitations, over the last years new sequencing technologies, called next generation sequencing technologies, were developed. These technologies are much faster and less expensive because they use a massive parallel processing and so it is possible to sequence millions of DNA fragments simultaneously [5]. They have the drawback that they produce shorter reads, which are less accurate making the assembly process much more complicated.

Today there are various DNA sequencers on the market and each sequence DNA in a different manner. NGS reads are in the range of 100 bp to $25,000 \mathrm{bp}$ [6|7].

In the following section Illumina sequencing and PacBio sequencing is described as these technologies are used in this Master thesis.

### 1.1.1 Illumina Sequencing

Illumina sequencing technologies can sequence thousand of bases in parallel on a flow cell surface. As it is shown in Figure 1, DNA is randomly cut into fragments and adapters are ligated to both ends of the fragments. The DNA strands are denaturated and the single-stranded DNA fragments bind randomly on the surface
of the flow cell channels. On the flow cell a dense arrangement of primers are fixed and the free end of the fragments can now bind to these complementary primers (adapters). By adding nucleotides, polymerase and enzymes the strands are amplified and denaturated again. This process is repeated until million of clusters of DNA sequences are generated in each channel on the flow cell. Now the sequencing process can begin by adding labeled nucleotides with terminators. A laser detects the emitted fluorescence when the first bases of each cluster bind to the sequence. An optical scanner detects the signals from each fragment cluster. The terminator is removed and the sequencing process is repeated until every base of the fragment is sequenced. [8,9].



Figure 1: Illumina sequencing process. Adapters are annealed to the ends of the sequence fragments. Fragments bind to primer on the flow cell and build a bridge. Each fragment is amplificated and denaturated until clusters of fragments are produced. For sequencing, fluorescence labeled nucleotides are added to the growing strands. A laser detects the fluorescence signals from all the fragments and the first base of each cluster is sequenced. Then the sequencing terminator is removed and the next sequencing cycle starts (Image taken from [9).

For the scaffolding process, see Section 1.2 .2 , the so called paired-end information is necessary. Mate-pair or paired-end information means that segments of DNA of known length are sequenced on both ends. For mate-pair sequencing special libraries are needed. The DNA is circulated, the joint is cut out, the ends are ligated and these ends are sequenced. The final libraries consist of short fragments made up of two DNA segments that were originally separated by several kilo-bases [10]. Paired-end sequencing uses fragments with less than 1kbp. Different adapters are placed at both ends. Sequencing begins at the forward end as described above and in a second step the reverse end is sequenced [11]. Illumina sequenced reads have a length between 150 and 250 bp and the error rate is less than $1 \%$ [6].

### 1.1.2 PacBio Sequencing

Pacific Biosciences [7] introduced Single Molecule Real Time DNA Sequencing (SMRT), a highly parallelized sequencing technology. It is based on two main key technologies, phospholinked nucleotides and zero-mode waveguides (ZMWs).

DNA sequencing is done on a chip that contains many visualisation chambers with ZMVs. These chambers allow visualisation on a single-fluorophore level. A polymerase is attached on the bottom of a ZMV and creates double stranded DNA from the single stranded template DNA (Figure 2). The nucleotides that are used in this process have a fluorescence label, distinguishable by the kind of nucleotide, linked at a phosphor end, which is cleaved off upon incorporation of the nucleotide and optically detected [12].

This technology is a high speed and long read sequencing technology. It produces reads in the length of up to 60 kbp with an average length up to 10 kbp but reads have an error rate of at least $15 \%$ [13|14].

### 1.1.3 Error Correction of PacBio Reads

Before PacBio reads can be used in genome assembly, they have to be corrected for sequencing errors. The expected error rate for insertions is about $10 \%$ and up to $5 \%$ for deletions [15]. Two main strategies exist, self-error correction or hybrid error correction. Self-error-correction methods are based on aligning the long reads against each other. Currently available tools are for example LoRMA [16] and Canu [17].


Figure 2: Principle of single-molecule, real-time DNA sequencing. (1) A phospholinked nucleotide bind to the complementary base on the template DNA strand in the polymerase active site. (2) This cause an increasing of the fluorescence on the corresponding color channel. (3) The fluorescent dye is cleaved off while creating a phosphodiester bond and diffuses out of the ZMW. (4) The polymerase moves to the next nucleotide on the template strand and (5) again the next phospholinked nucleotide binds (Image taken from [12]).

Because the aligning process is computationally expensive and a high PacBio read coverage is necessary and long read sequencing leads to high financial costs, hybrid long read error correction methods were developed. They use the much more accurate short read data from next generation sequencing technologies like Illumina to correct the long reads. Pairwise comparisons between long reads is avoided thereby. Most of the hybrid error correction tools like LSC [18, PacBioToCA [19] and proovread [15] rely on mapping short reads to long reads and computing the consensus sequence from the multiple alignment. Recently published error correction software like LoRDEC [20] and Jabba [21] build a de Bruijn graph, see Section 1.2.3, from the short reads and then map the reads on this graph [21]. These two methods achieve similar accuracy as other hybrid error correction methods but they have significantly improved run-times [20,21].

### 1.1.4 Proovread Error Correction

The proovread error correction pipeline corrects long reads by mapping short reads to the long reads. Therefore a special scoring model specifically for the distribution of PacBio sequencing errors was introduced for the alignment. The work-flow of proovread error correction is shown in Figure 3. It includes iterative pre-correction steps with increasing sensitivity in all three cycles. To improve runtime only a subsample of the short reads ( 20,30 and $50 \%$ ) is used for mapping at each iteration.

Regions with enough coverage (minimum per base coverage of five) are masked. With every cycle the sensitivity and the amount of used short reads are increased. The unmasked regions of the pre-processed long reads act as seeds for the next cycle. In each cycle the consensus is build to correct the reads. In the final cycle all short reads map to regions that are not masked yet at high specificity. In the end, the majority of errors are corrected and chimeric break points (wrong ligation of the read) identified. The resulting reads are then trimmed using a quality cutoff and the chimera annotation.


Figure 3: Principle of proovread's error correction pipeline. In the pre-correction cycles (c1-c3) a subsample of short reads (green bars) are mapped against a long read (blue bar). After each iteration the consensus is build. Regions with enough short read coverage are masked (red line). In the final finishing cycle all short reads are mapped onto unmasked preprocessed long reads at high specificity (Image taken from [15]).

### 1.1.5 Canu Self-Error-Correction

Canu is a recently published hierarchical single-molecule sequence assembler. It does not require a second short-read set. It uses multiple rounds of read overlapping and error correction prior to graph construction and assembly. It selects the best overlaps for correction, estimates the corrected read lengths and generate the corrected reads by building the consensus [17].

### 1.2 Genome Assembly

With the introduction of next generation sequencing technologies, the focus of sequencing has shifted from data generation to data processing. The assembly and especially the finishing of the short reads to reconstruct the whole genome sequence can be very complicated and time consuming.

### 1.2.1 Challenges in Genome Assembly

One main challenge in the assembly of genomes are repeat sequences. These lead to reads mapping to multiple locations in the target genome. Repeats that are longer than the read length create gaps in the assembly. Since the read length from NGS is shorter than from Sanger sequencing an assembly is much more fragmented [22].

A possible solution to the repeat problem is to sequence both sides of a longer fragment. The insert size of this fragment is known so the distance between the two sequenced reads can be approximated. Such reads are called mate-paired or paired-end, depending on the library preparation, and are essential for the assembly process [23], see Section 1.1.

### 1.2.2 Assembly and Scaffolding Process

The first step of the assembly process is grouping the reads that have overlapping regions into longer contigs. In the following scaffolding step these contigs are ordered, orientated as well as the sizes of the gaps between these contigs are computed [24]. For this step the assembler needs the paired-end information of the reads. A schematic sketch of an assembly process is shown in Figure 4.

## 1. Fragment DNA and sequence


2. Find overlaps between reads
...AGCCTAGACCTACAGGATGCGCGACACGT
GGATGCGCGACACGT CGCATATCCGGT...
3. Assemble overlaps into contigs

4. Assemble contigs into scaffolds


Figure 4: Genome assembly process. Small sequenced DNA fragments (1) are aligned to each other to find overlaps (2). Based on overlaps, reads are combined together to form contigs (3). The assembly of contigs into larger scaffolds is based on the paired-end information of short-reads (4) (Image taken from [25]).

### 1.2.3 OLC versus de Bruijn Graph Assembler Algorithms

Today all common de novo assemblers are based on two main methods: the Overlap Layout Consensus (OLC) assembly algorithm and the de Bruijn Graph algorithms. Both have in common that they are based on graphs.

Graphs are widely used in computer science. They consist of nodes and edges which connect them. A path is a way that visit nodes in a specific order. In the graph of the OLC algorithm nodes represent the reads and edges represent overlaps between the reads. Paths through the graph are putative contigs [24].

The OLC algorithm starts by computing and building the overlap graph that represents the sequencing reads and their overlaps [26]. It involves all-against-all, pair-wise read alignment. Then the graph is compressed, manipulated and finally the consensus sequence is determined based on the graph generated in the previous two steps [24].

The second method is based on the de Bruijn Graph algorithm. It was first developed to represent strings from a finite alphabet [24]. Concerning DNA sequencing nodes represent fix-length subsequences with length k of a read, called k -mer, and the edges represent all the fixed length consecutive overlaps between these subsequences, usually with length k-1. The differences of the two main assembly algorithms are illustrated in Figure 5. The advantage of de Bruijn Graph algorithms are they do not have to compute pairwise overlaps and efficient algorithms exist for computing the path through the graph (Eulerian path) [5].

### 1.2.4 Newbler Assembler

The $G S$ de novo Assembler also called Newbler is a widely used assembly software distributed by 454 Life Sciences [28]. Newbler is an OLC like algorithm with two OLC cycles. In the first pass it generates so called unitigs, which are small contigs that do not have overlaps with other unitigs [26]. In the second OLC run unitigs are joined to larger contigs based on pair-wise overlaps between unitigs. It could happen that unitigs are split and its prefix and suffix align to different contigs leading to reads placed in multiple contigs. Such reads can be chimera or they are derived from a repeat region [26].

In contrast to other assemblers, Newbler's source code is not publicly available [24].

A Read Layout
$\mathrm{R}_{1}$ : GACCTACA
$\mathrm{R}_{2}$ : ACCTACAA
$\mathrm{R}_{3}$ : CCTACAAG
$\mathrm{R}_{4}: \quad$ CTACAAGT
A: TACAAGTT
B: ACAAGTTA
C: CAAGTTAG
X: TACAAGTC
Y: ACAAGTCC
Z: CAAGTCCG

B Overlap Graph



Figure 5: Differences between the OLC and the de Bruijn Graph algorithm.
A: A set of reads is represented. B: based on the reads in A an overlap graph can be build where each read is a node and overlaps with more than 5 base pairs are indicated by edges. C: In a de Bruijn graph, the nodes represent every k-mer in all the reads. Here k has size 3. Edges are drawn where the k-mer overlap by k-1 bases (Image taken from [27]). Such forks that are illustrated in green and violet may indicate a repeat region where the "blue" contig exists two times in the genome.

### 1.2.5 Canu Assembler

Canu assembler was specifically introduced to assemble the long PacBio reads. The Canu assembly pipeline includes three steps: correction, trimming and assembly. Each step can be performed independently, for example only read error correction or assembly without correction [17].

Canu uses a variant of the greedy best overlap graph (BOG) algorithm from Miller et al. [29] to correct reads and build the assembly. The overlap error rate is defined as the edit distance [30] (minimum number of operations need to transform one string into another) divided by the length of the overlap. Overlaps are filtered to include only overlaps that are within a tolerance of the global median error rate. The longest overlaps are then recomputed with the new subset.

The greedy algorithm can lead to mis-assemblies caused by repeats that are longer than the overlap length. Canu's new "Bogart" algorithm can filter repeat-induced overlaps and inspect the graph for potential errors retrospectively [17].

### 1.2.6 Performance Comparison of Different Assembly Tools

Evaluating the different genome assemblies can be very challenging, especially when no finished reference genome is available. Recently, two papers have been published that compare the performance of different assemblers on a range of bacterial genomes. One is GAGE-B published by Magoc et al. [31] and the other is GABenchToB published by Jünemann et al. [32]. Evaluating the different assembly results is a complex problem and there does not exist a single parameter to determine the best assembly software. Important metrics to measure the quality of an assembly include the N50 value, the number of mis-assemblies or the total run time. Recently, QUAST, a quality assessment tool for evaluating and comparing genome assemblies was introduced [33]. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. In the studies of GAGE-B 31] and GaBenchToB [32] QUAST was used to measure assembly contiguity and accuracy.

### 1.3 Helicobacter pylori

Helicobacter pylori is a gram-negative bacterium that resides in the epithelium of the human stomach in more than $50 \%$ of the world's population. It stimulates immune and inflammatory cells, which leads to chronic gastritis. Infections generally occur in children but also ulcers and gastric cancer due to a Helicobacter infection has been recorded. In these severe cases principally adults are affected [34].

It is of great interest to determine if bacterial, host or environmental factors can influence the disease. A recent study investigated the influence of H. pylori on the host's microbiota and immunity [35].

A lot of different Helicobacter pylori strains have been isolated from patients. Two main morphotypes of the bacteria exists, bacillary and coccoid. It is believed that the bacillary form is the virulent morphology. In general bacteria cause disease through three different processes: adhesion, invasion or toxin elaboration [34]. H. pylori infection is limited to the lumen and causes damage to the gastric mucosa. It has the ability to induce vacuolization in the membrane of epithelial cells [36]. Two major toxins have been purified and studied. The vacuolating toxin VacA and the cytotoxicity-associated immunodominant antigen CagA. CagA is often coexpressed with VacA. CagA has been associated with duodenal ulcers and gastric cancer while VacA can cause epithelial cell damage and gastritis in mice. [34,37,38].

However, there is still a significant lack of understanding of the mechanisms H. pylori uses to cause disease. It was also shown that H. pylori can have early-life benefits. An positive effect on diseases like asthma, gastro intestinal and systemic infections have been observed [39].

Strain PMSS1 is often used for studies in mice because it is one of the few strains of H. pylori that stably infect mice and express the virulence factors vacA and cagA. A patient biopsy was plated, and subcultured. The original strain from the patient is called PMSS1 (pre mouse), the strain after mouse passage SS1 40].

### 1.4 Aims of the Thesis

The overall goal of this Master's Thesis is to assemble four strains of the Helicobacter pylori genome (SS1, PMSS1, PM21, PM22) where Illumina HiSeq data and PacBio reads are available.

To this end, the following should be achieved:

- alignment of all assembly results from the GAGE-B study as well as the result of Newbler assembler to a standard reference genome available at NCBI [41] to compare important assembly quality parameters like coverage, mismatches or overlapping regions
- alignment of finished contigs of each assembly to Newbler assembly and analysis of differences and similarities such as the amount of identical contigs in both assembly results.
- a general evaluation of the different assembler, especially the Newbler assembler, performed on the GAGE-B data and comparison with the results in the GAGE$B$ as well as the GaBenchToB paper.
- computation of assemblies of four Helicobater pylori strains with a stand-alone assembly tool (self-error-correction of PacBio reads) and with a hybrid approach (correction of PacBio reads using Illumina reads).
- comparison of these two concepts based on the available sequence data
- annotation and alignments of the assemblies against each other and against a reference
- detection of the number of SNPs, affected genes, synonym, non-synonym mutations, hot spots and structural variations
- visualisation of the phylogeny based on the SNPs as a network.


## 2 Methods

### 2.1 Assembly Tools for Small Genomes

### 2.1.1 Data

All the sequence data as well as the finished contigs to analyse the different assembly tools were taken from GAGE-B study [31]. They used Illumina sequence data of

Table 1: The bacteria used in GAGE-B study 31].

| Name | Accession | Source | Size <br> $(\mathrm{Mbp})$ | GC <br> $(\%)$ | Platform | Read <br> Length |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aeromonas hydrophila | SRR488186 | SRA 42 | 4.7 | 65 | HiSeq | 101 |
| Bacillus cereus | - | Illumina website 43 | 5.4 | 35 | MiSeq | 250 |
| Bacillus cereus | SRR497464 | SRA 42 | 5.4 | 35 | HiSeq | 101 |
| Bacteroides fragilis | SRR488170 | SRA 42 | 5.3 | 43 | HiSeq | 101 |
| Rhodobacter sphaeroides | SRR522244 | SRA 42 | 4.6 | 69 | HiSeq | 101 |
| Rhodobacter sphaeroides | SRR522246 | SRA 42 | 4.6 | 69 | MiSeq | 251 |
| Staphylococcus aureus | SRR569301 | SRA 42 | 2.9 | 33 | HiSeq | 101 |
| Xanthomonas axonopodis | SRR522415 | SRA 42 | 2.9 | 33 | HiSeq | 101 |
| Mycobacterium abscessus | SRA043447 | U. of Maryland 44 | 5.1 | 64 | MiSeq | 250 |
| Mycobacterium abscessus | SRA043447 | U. of Maryland 44 | 5.1 | 64 | HiSeq | 100 |
| Vibrio cholerae | SRA037376 | U. of Maryland 44 | 4.0 | 48 | MiSeq | 250 |
| Vibrio cholerae | SRA037376 | U. of Maryland 44 | 4.0 | 48 | HiSeq | 100 |

eight bacteria (Table 1). The genome size ranges from 2.9 to 5.4 Mb and the GC content from 33 to $69 \%$. HiSeq and MiSeq data sets were included to compare these technologies. To achieve the same quality of all the data Magoc et al. [31] ran a common set of data cleaning steps for all datasets. They removed adapter sequences and performed Q10 quality trimming using the ea-utils package from Aronesty [45]. All the finished assemblies (contigs and scaffolds) as well as the sequence data of the bacteria can be downloaded from the GAGE-B website [46]. They compared eight different assemblers that are presented in Section 2.3 in the GAGE-B paper 31.

Table 2: The assemblers used in GAGE-B study [31] including the GS De Novo Assembler.

| Name | Version | Type | Author | Ref. |
| :--- | :--- | :--- | :--- | :--- |
| Abyss | 1.3 .4 | DBG | Simpson et al. 2009 | 47 |
| CABOG | 7.0 | OLC | Miller et al. 2008 | $[29$ |
| Mira | 3.4 .0 | OLC | Chevreux et al. 2004 | $[48$ |
| MaSuRCA | 1.8 .3 | OLC \& DBG | Zimin et al. 2013 | $[49$ |
| SGA | 0.9 .34 | String Graph | Simpson and Durbin 2012 | $[50$ |
| SoapDenovo2 | 2.04 | DBG | Luo et al. 2012 | $[51$ |
| SPAdes | 2.3 .0 | DBG | Bankevich et al. 2012 | 52 |
| Velvet | 1.2 .08 | DBG | Zerbino and Birney 2008 | $[53$ |
| GS De Novo Assembler | 2.9 | OLC | 454 Life Sciences | $[28$ |

### 2.1.2 Newbler

The GS De Novo Assembler (Newbler) software, Version 2.9, was downloaded from Roche/454 website [28] and installed. To compare the performance of Newbler assembler with the other assemblies from the study, Newbler assembler was invoked with all the trimmed sequence data from GAGE-B [31] using default parameter and a minimum contig length of 1 (runAssembly -o output_dir -a 1 seq_data.fasta).

### 2.1.3 MUMmer Package

MUMmer is an open source software package for the rapid alignment of very large DNA and amino acid sequences. Nucmer is part of the MUMmer package and allows DNA alignment of multiple closely related nucleotide sequences [54]. It starts by finding maximal exact matches of a given length. Then it clusters these matches to larger alignment regions. Finally, it extends alignments outward from each of the matches to join the clusters into a single high scoring pair-wise alignment 54. To include a high rate of possible alignments, the minimum cluster length was set to 50 . For all the other parameters default values were used. The results of Newbler were used as Query file and the other assemblies respectively the reference genome from NCBI as Reference.

### 2.2 Helicobacter pylori Assemblies

### 2.2.1 Study Description

Illumina HiSeq and PacBio sequence data was provided by Dr S. Kienesberger, University of Graz [35]. Kienesberger et al. studied the interactions of H. pylori with mouse hosts over 6 months. They analysed gastric and pulmonary tissues and investigated an increase in the expression of multiple immune response genes over time in the stomach and in the lungs. Moreover H. pylori infection led to significant differences in both the gastric and intestinal microbiota 35]. PMSS1 is a Helicobacter pylori strain taken from the stomach of a 42 year-old Greek-born female in Sydney in 1997 [55] and a mouse was infected with this strain. The resulting SS1 strain was reisolated after infection and became a standardized mouse model for compound screening, and studies in pathogenesis. Both strains are publicly available
for research purposes [55]. In the study of Kienesberger and colleagues [35], 3 weeks and 5 weeks old mice were inoculated with strain PMSS1 and strains were isolated every month after infection. SK represents the name of mice group challenged at 4 weeks of age, PM the mice group challenged at 6 weeks of age. All 46 available Illumina sequenced strains are shown in Figure 6. PM21 and PM22 are both isolated after 6 months presence in the mouse.

### 2.2.2 Data

PacBio read data is available of the Helicobacter pylori strains PMSS1 (09), PM21 (45), PM22 (48) and SS1 (01). It has to be mentioned that the PacBio sequenced strain PMSS1 (09) is not from the same colony with whom the mice were inoculated at NYU. Colonies with the number 13 and 14 were used to inoculate the mice (Figure 6). Illumina reads are available for all strains shown in Figure 6. They have a read length of 151 bp and an insert size of 200 bp . As reference genome the NCBI genome assembly PMSS1 with GenBank accession CP018823.1 and the plasmid pHPYLPMSS1 CP018824.1 was used. For comparison of strain SS1 the references CP009259.1 and CP009260.1 was used [40].

### 2.2.3 Hybrid Approach

The software and tools used for hybrid assembly are shown in Table 3 .
Table 3: Software used for hybrid assembly

| Software | Version | Usage | Ref. |
| :--- | :--- | :--- | :--- |
| LoRDEC | 0.6 | long read error correction <br> long read error correction | $[20]$ |
| Jabba |  | long read error correction | $[21]$ |
| Proovread | 2.13 .13 | adapter trimming illumina reads | $[15]$ |
| Cutadapt | 1.13 | trimming illumina reads | $[56]$ |
| Trimmomatic | 0.36 | assembly | $[57]$ |
| Newbler | 2.9 | assembly | $[28]$ |
| Canu | 1.4 | alignment of multiple nucleotide seq. | $[17]$ |
| MUMmer | 3.1 |  | $[54]$ |



Figure 6: Phylogeny of all available H. pylori strains at NYU, including information how long they were present in the mice. W sac denotes the length of time after infection when mice were sacrificed. (provided by Tadasu Iizumi, NYU \& NMS based on a mapping of the Illumina data to H. pylori 26695 as the reference).

### 2.2.4 Stand-Alone Approach with Canu Assembler

All software used for the assembly of the stand-alone approach is listed in Table 4.
Table 4: Software used for stand-alone assembly and finishing.

| Software | Version | Usage | Ref. |
| :---: | :---: | :---: | :---: |
| Canu | 1.4 | assembly | [17] |
| BWA | 0.7.12 | reads alignment | 58 |
| samtools | 1.3.1 | sort and index sam, bam files | 59 |
| Circlator | 1.4.1 | circularisation of assembly | [14] |
| SPAdes | 3.10 .0 | assembly included in Circlator | 55 |
| BLAST |  | alignment | 60 |
| GATK | 3.7 | consensus building | $61]$ |
| Picard | 2.9.0 | create dictionary of sequence | 62 |
| IGV | 2.3.91 | alignment viewer | $63]$ |
| Qualimap | 2.2.1 | alignment statistics | [64] |
| Prodigal | 2.6.3 | protein prediction | $65]$ |
| Trimmomatic | 0.36 | trimming Illumina reads | 57 |
| BASys |  | annotation | 66 |

### 2.3 Comparison of the H. pylori Genomes

Tools that were used to compare the assembled genomes are shown in Table 5.
Table 5: Software used for the comparison of the genomes.

| Software | Version | Usage | Ref. |
| :--- | :--- | :--- | :--- |
| Mauve | 2.4 .0 | genome alignment, annotation viewer | $\boxed{67}$ |
| snpEff | 4.3 | variant file annotaion | $\boxed{68}$ |
| RaxML | 8.2 .11 | creating phylogeny | $\underline{69}]$ |

### 2.3.1 Creating a Phylogenetic Tree

To create a phylogeny of all the six genomes the output file of the SNPs produced by whole genome alignment with Mauve was converted to an aligned fasta file containing all the SNPs with R, transformed to a special phylip file format using a published perl script and RaxML [69 invoked. RAxML creates a phylogenetic tree using maximum
likelihood methods based on the SNPs. Ten parsimony random seeds and the GTR- $\Gamma$ model was chosen, (raxmlHPC -s align_snps.phyl -n out_dir -m GTRGAMMA -p 10). The tree in the newick file format could be read and plotted in R using the ape package [69]. The pairwise distances between the tips of the phylogenetic tree could be computed with the function cophenetic.phylo from the ape package and the mst function was invoked to compute the minimum spanning tree (MST).

### 2.4 Used R Packages

$R$ is a free software environment for statistical computing and graphics. R-Version 3.2.3 was downloaded and installed [70]. R packages that are used to evaluate different assembly tools of the GAGE-B study are shown in Table 6, those packages for assembly and evaluation of the $H$. pylori strains in Table 7. All the implemented R-functions are described in Section 6.1.

Table 6: R packages that are used to evaluate different assembly tools of GAGE-B study.

| Package Name | Version | Comment | Ref. |
| :--- | :--- | :--- | :--- |
| Biostrings | 2.38 .4 | IRanges, findOverlaps, .. | $[71]$ |
| stringr | 1.0 .0 | str_length to get sequence lengths <br> str_locate_all to find pattern " $>"$ | $[72]$ |
| seqinr | $3.1-5$ | in delta file |  |
| plyr | 1.8 .3 | read.fasta and write.fasta <br> stargazer | 5.1 |

Table 7: R packages that are used to assemble and evaluate Helicobacter pylori strains.

| Package Name | Version | Comment | Ref. |
| :--- | :--- | :--- | :--- |
| Biostrings | 2.38 .4 | XStringSet, substring, .. | $[71$ |
| stringr | 1.2 .0 | str_length, str_pad to format indices | $[72]$ |
| seqinr | $3.3-3$ | read.fasta and write.fasta | $[73]$ |
| ShortRead | 1.28 .0 | FASTQ input and manipulation | $[76]$ |
| stargazer | 5.1 | create LATEX code for Tables | $[75]$ |
| VariantAnnotation | 1.16 .4 | read in a vcf-file | $[77]$ |
| ape | 4.1 | read in newick tree file format, mst | $[78]$ |

## 3 Results

### 3.1 Assembly Tools for Small Genomes

### 3.1.1 R Script to Align and Compare Assemblies

To compare the different assemblies an appropriate R script was implemented. The corresponding flow-diagram is shown in Figure 7.

FASTA files, containing the contigs of the assembly results, are read using the function read.fasta() from the package seqinr. Also the reference files from the NCBI [41] website are imported. The contigs are sorted by length and assigned numbers (Function sort_contigs() in Section 6.1).

Some general parameters of the assemblies are computed directly from these files. These includes the total Contig Number, the Total Length of the assembly, Minimum and Maximum Contig Length, N50 value, the Number of Identical Contigs (more than $99,5 \%$ matches in the longer sequence) and the number of contigs, which are shorter than 200 base pairs. The N50 value of a set of contigs is the size of the largest contig for which half the total size is contained in that contigs and those larger.

To compare the assemblies among each other and with the finished reference genomes respectively, Nucmer is invoked with parameters nucmer -maxmatch -l 15 -c 50 <Referencefile.fasta> <QueryFile.fasta> where -maxmatch uses all anchor matches regardless of their uniqueness. The minimum length of a maximal exact match was set to 15 and the minimum cluster length was reduced to 50 (default 65) to get also alignment results matching over a short distance. The output of nucmer is a delta file [54] including a header and all matches with information about the names of the query and reference contigs, the length of these contigs, start and the end positions as well as the number of errors including mismatches and indels.

With read.table() this delta file is read and sorted in a data fame, see function create_table_of_delta().

The nucmer result table is filtered as follows: Alignment matches, where the Reference region in that contig as well as the Query region is fully covered by other matches are excluded, see function remove_overlaps(table). In the next step a detailed table of the alignment is created, function detail_table(). It performs a detailed analysis on each contig compared to all reference contigs. For the computation


Figure 7: Flow diagram of the implemented R script to compare the different assemblies. Description of the implemented functions see Section 6.1.
of the overlap every base which is aligned more than once to the reference is counted. So more than $100 \%$ overlap is possible. This information is stored in the data frames reference_detail_table and query_detail_table respectively. For detailed information of the output tables see the listing in Section 3.1.2. For every bacteria all the assemblers were matched sequentially with the corresponding reference genome. In the second run every assembler was again matched but now the Newbler assembly was used as reference.

### 3.1.2 Description of Computed Parameters for Comparison

For every Assembler-Reference and also for every Assembler-Newbler pair, nine data frames were computed and saved as RData-file. In the following the names of these data frames and the computed parameters are listed.

- delta_sort_ref/delta_sort_q: parameters correspond to the results of Nucmer. delta_sort_ref is sort by $R_{-}$Number while delta_sort_q is sort by $Q_{-}$Number.
- Q_Number: Number of the query contig that is part of the match
- R_Number: Number of the reference contig that is part of the match
- Q_Length: number of bases in the query contig that is part of the match
- R_Length: number of bases in the reference contig that is part of the match
- Q_Begin: start coordinate of the alignment match in the query contig
- Q_End: End coordinate of the alignment match in the query contig
- $R_{-}$Begin: start coordinate of the alignment match in the reference contig
- R_End: End coordinate of the alignment match in the reference contig
- Aligned Length: length of the alignment match
- Number of Errors: Number of bases including mismatches an indels
- detail_table_query and detail_table_reference. Each of the parameters are computed in four units; Number of Contigs, \% of Contigs, Number of Bases and $\%$ of total Length of the assembly.
- All Contigs: Number of contigs
- Contigs <200 bp : Number of contigs that are shorter than 200 bp .
- Contigs Not Mapping: Number of contigs that do not map to any range in the reference
- Contigs Partially Not Mapping: Number of contigs that do not map in $100 \%$ of their length
- Contigs not Mapping or Contigs Partially Not Mapping: sum of Contigs Not Mapping and Contigs Partially Not Mapping
- Reference Covered by Contigs/Contigs Covered by Reference
- Bases Overlapping Query/Reference
- Mismatches and Indels : Number of bases that have mismatches or indels in the alignments
- overview_table: short summary of the main parameters of an assembly.
- Contig Number: Number of contigs
- Total Length: Sum of the length of all contigs
- Minimum Contig Length
- Maximum Contig Length
- N50_value: size of the largest contig for which half the total size is contained in that contigs and those larger
- Number of Identical Contigs: after alignment - number of contigs that share more than $99,5 \%$ matches in the longer sequence
- missing_bases_query and missing_bases_reference show the ranges that do not map to the contigs of the reference and the query respectively.
- Contig_Number
- Contig_Length
- Start_Point
- End_Point
- Length: Length of the range that do not map
- query_detail_table and reference_detail_table computes to every contig the number of aligned contigs, how many bases cannot be matched and how many bases matched multiple times.
- Contig_Number
- Contig_Length
- Number_of_Aligned_Contigs: How many contigs (partially) matched to the particular contig
- Missing_Bases: How many bases of the particular contig cannot be matched
- Overlap_Bases: How many bases matched more than once. Multiple matches counted every time.
- Percentage_Missing_Bases
- Percentage_Overlap_Bases
- Mapped_Contigs: The number of all the contigs that aligned to the particular Contig_Number


### 3.1.3 Ranking of Assembly Tools

Another R script was implemented to create a summary table with the main parameters of all of the nine data frames (Tables A.1 A. 12 in Section 6 Appendix), except for the Bacteria B. cereus HiSeq, because the analysis of the results of SGA was not possible due to the high number of contigs and it was not possible to assemble X. axonopodis HiSeq data with Newbler. The process always stalled while computing the alignment 428000 of 5501870 .

The number of contigs ranges from 173 (MaSuRCA) to 1901 (SGA) for $V$. chcolorae MiSeq and from 130 (MaSuRCA) to 12,186 (SGA) for R. sphaeroides HiSeq. The amount of reference that is covered by the contigs ranges from $91.93 \%$ (CABOG) up to $99.99 \%$ (SPAdes) and the number of bases in the assembly that do not map to the reference from 620 (SPAdes) to 371,652 (CABOG); (Tables 8 and 9). To get an clear overview of the results a ranking was computed of all nine assembley tools, for each parameter, as well as a global ranking. The ranks for each assembler in every bacteria was summed up. MaSuRCA achieved the best overall rank while

SGA the last (Table A.13). In each cell you can see the sum of the ranks that the corresponding assembler achieved for the specific parameter. An additional ranking was determined based on the most important parameters regarding quality and accuracy of the assemblies with the references. In that special case Newbler ranked best while SGA again performed worst (Table A.14).

It is also interesting to see the effect of the different read lengths of MiSeq (250 $\mathrm{bp})$ and HiSeq ( 100 bp ) reads on the individual assemblers. To this end, the three bacteria R. sphaeroides, V. cholerae and M. abscessus where both HiSeq and MiSeq results were available, are compared. Significant differences are observed for Newbler (2nd place for MiSeq and 4th for HiSeq) and for CABOG (5th place for MiSeq and 3rd for HiSeq); (Tables A. 15 and A.16).

Further all assemblies of the GAGE-B study were compared with the results of Newbler assembly as reference following the same R script as described before. The assemblies compared to Newbler assembly are quite different, for example, identical contigs with Newbler ranges from 0 to 68 .

### 3.2 Helicobacter pylori Genomics

### 3.2.1 PacBio Reads Statistics

The number of reads available for the four strains ranged from 18 to 122 thousand with an estimated coverage of 48 to 470 -fold. The least data was available for PM22. Average read length is between 3.7 and 6.2 kbp. Statistics of the provided raw PacBio reads is shown in Table 10 and the distribution of the read length in Figure 8, After hybrid error correction with proovread, the average read length ranges from 5 to 7 kbp. In all cases the coverage is still higher than 35 -fold (Table 11). Proovread can trim and split reads in the last correction step at low quality regions. The average read length drops to $3,251 \mathrm{bp}$ for SS1 up to $4,097 \mathrm{bp}$ for PM22 (Table 12). Reads after using the self-error-correction tool of Canu assembler have an average read length of 5 (PMSS1) to 14 (SS1) kbp and a coverage above 33x (Table 13).
Table 8: V. cholerae MiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 564 | 242 | 241 | 501 | 173 | 1,901 | 1,486 | 209 | 312 | 2 |
| Total Length | 3,959,969 | 3,945,419 | 3,953,298 | 4,112,140 | 4,034,988 | 4,357,240 | 4,451,154 | 3,960,394 | 3,954,533 | 4,033,464 |
| Minimum Contig Length | 63 | 1 | 1,007 | 122 | 357 | 87 | 100 | 95 | 101 | 1,072,315 |
| Maximum Contig Length | 178,118 | 285,908 | 140,691 | 450,326 | 255,146 | 105,420 | 741,022 | 246,346 | 246,179 | 2,961,149 |
| N50 Value | 60,973 | 136,901 | 33,710 | 112,926 | 76,131 | 23,501 | 246,623 | 92,036 | 71,357 | 2,961,149 |
| Reference Covered by Contigs \% | 99.62 | 99.74 | 98.07 | 99.75 | 98.51 | 99.66 | 99.76 | 99.66 | 99.58 |  |
| Bases Overlapping Query \% | 14.9 | 5.11 | 3.72 | 6.7 | 3.15 | 22.77 | 6.24 | 5.02 | 6.36 |  |
| Mismatches and Indels \% | 0.9 | 0.3 | 0.22 | 0.3 | 0.18 | 1.16 | 0.34 | 0.23 | 0.41 |  |
| Bases not Mapping | 15,419 | 10,656 | 77,920 | 10,073 | 60,192 | 13,563 | 9,782 | 13,834 | 16,770 |  |
| Contigs Covered by Reference \% | 99.98 | 99.67 | 99.85 | 99.54 | 99.97 | 99.83 | 90.11 | 99.84 | 99.79 |  |
| Bases Overlapping Reference \% | 13.18 | 2.77 | 3.45 | 8.58 | 4.67 | 32.81 | 6.56 | 3.31 | 4.49 |  |
| Identical Contigs with Newbler | 10 | - | 0 | 11 | 10 | 1 | 3 | 5 | 9 |  |

Table 9: R. sphaeroides HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 1,557 | 1,014 | 539 | 1,581 | 130 | 12,186 | 350 | 798 | 7,436 | 7 |
| Total Length | 4,633,465 | 4,548,770 | 4,216,057 | 4,725,855 | 4,489,204 | 5,704,978 | 4,670,077 | 4,525,236 | 5,220,141 | 4,602,977 |
| Minimum Contig Length | 31 | 4 | 101 | 45 | 301 | 101 | 56 | 97 | 100 | 37,100 |
| Maximum Contig Length | 66,408 | 41,908 | 41,321 | 110,511 | 358,962 | 75,323 | 291,333 | 59,062 | 45,522 | 3,188,524 |
| N50 Value | 13,002 | 10,095 | 12,421 | 17,052 | 176,783 | 8,907 | 74,486 | 13,775 | 8,960 | 3,188,524 |
| Reference Covered by Contigs \% | 99.92 | 99.87 | 91.93 | 99.98 | 97.83 | 96.01 | 99.99 | 99.02 | 99.43 |  |
| Bases Overlapping Query \% | 4.11 | 3.15 | 2.37 | 5.15 | 4.08 | 24.17 | 5.04 | 4.04 | 5.09 |  |
| Mismatches and Indels \% | 0.31 | 0.16 | 0.18 | 0.33 | 0.27 | 1.04 | 0.25 | 0.25 | 0.36 |  |
| Bases not Mapping | 3,892 | 5,780 | 371,652 | 803 | 99,810 | 183,509 | 620 | 45,223 | 26,383 |  |
| Contigs Covered by Reference \% | 99.69 | 99.97 | 99.98 | 99.98 | 100 | 99.9 | 99.44 | 99.98 | 99.96 |  |
| Bases Overlapping Reference \% | 4.57 | 2.03 | 1.82 | 7.96 | 3.67 | 57.8 | 6.03 | 3.24 | 19.69 |  |
| Identical Contigs with Newbler | 37 | - | 68 | 5 | 1 | 1 | 1 | 11 | 6 |  |

Table 10: Provided PacBio reads (Coverage based on a reference length of 1,618,480 bp)

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | 39,311 | 18,021 | 20,547 | 122,600 |
| Number of Bases | $146,364,886$ | $100,941,738$ | $77,252,921$ | $760,983,670$ |
| Average Read Length | 3,723 | 5,601 | 3,760 | 6,207 |
| Minimum Read Length | 35 | 35 | 35 | 35 |
| Maximum Read Length | 36,553 | 32,949 | 34,327 | 35,250 |
| Reference Coverage | 90 | 62 | 48 | 470 |

Table 11: Untrimmed PacBio reads after hybrid error correction with proovread. Illumina reads were removed from adapter sequences using Cutadapt.

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | 15,936 | 11,688 | 11,358 | 17,437 |
| Number of Bases | $96,500,914$ | $80,829,246$ | $57,584,368$ | $115,043,036$ |
| Average Read Length | 6,056 | 6,916 | 5,070 | 6,598 |
| Minimum Read Length | 261 | 277 | 258 | 263 |
| Maximum Read Length | 36,553 | 31,373 | 33,436 | 32,919 |
| Reference Coverage | 59.62 | 49.94 | 35.58 | 71.08 |

Table 12: Trimmed PacBio reads after hybrid error correction with proovread. Illumina reads were removed from adapter sequences using Cutadapt.

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | 22,893 | 18,611 | 14,737 | 32,036 |
| Number of Bases | $89,287,563$ | $76,254,408$ | $54,234,516$ | $104,157,835$ |
| Average Read Length | 3,900 | 4,097 | 3,680 | 3,251 |
| Minimum Read Length | 30 | 27 | 403 | 34 |
| Maximum Read Length | 34,370 | 30,914 | 29,566 | 25,531 |
| Reference Coverage | 55,17 | 47.11 | 33.51 | 64.35 |

Table 13: PacBio reads after self-error-correction with Canu

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | 6,501 | 8,034 | 9,728 | 4,255 |
| Number of Bases | $60,496,929$ | $52,637,619$ | $52,964,011$ | $59,247,115$ |
| Average Read Length | 9,306 | 6,552 | 5,444 | 13,924 |
| Minimum Read Length | 1,012 | 1,001 | 1,001 | 1,292 |
| Maximum Read Length | 34,312 | 28,790 | 33,091 | 29,696 |
| Reference Coverage | 37 | 33 | 33 | 37 |

### 3.2.2 Illumina Reads Statistics

To get the best results for hybrid error correction of the PacBio reads, the Illumina reads were trimmed and adapter sequences were removed using either Cutadapt or Trimmomatic. Trimmomatic provides a FASTA file with Illumina specific sequences used in the sequencing process and removes the adapter and further trims the ends


Figure 8: Read length distribution of raw PacBio data of Helicobacter pylori strains PM21, PM22, PMSS1 and SS1.
of the reads if the quality falls below 3 . The minimum length of the corrected reads is 36 bp . In another run of Illumina read trimming (Trimmomatic modified) the minimum length of the corrected reads and the quality threshold were reduced to 1 . The statistic of PacBio reads of strain PMSS1 after proovread, depending on the use of these three methods for Illumina reads adapter removal, does not show significant differences (Table 14). The reference coverage of the Illumina reads drops to around 100 base pairs in all strains after adapter removal with Cutadapt (Table 15).

Table 14: Trimmed PacBio reads for strain PMSS1 after proovread. Illumina reads were removed from adapter sequences using either Cutadapt or Trimmomatic.

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Reads | 14,737 | 14,890 | 14,892 |
| Number of Bases | $54,234,516$ | $55,023,769$ | $53,964,429$ |
| Average Read Length | 3,680 | 3,695 | 3,624 |
| Minimum Read Length | 403 | 335 | 500 |
| Maximum Read Length | 29,566 | 29,433 | 29,565 |
| Reference Coverage | 34 | 34 | 33 |

Table 15: Initial Illumina reads ( 151 bp ) statistic of both Illumina paired-end files and reads statistic after adapter removal with Cutadapt

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | $7,811,358$ | $17,222,998$ | $8,771,554$ | $15,211,292$ |
| Initial |  |  |  |  |
| Number of Bases | $1,179,515,058$ | $2,600,672,698$ | $1,324,504,654$ | $2,296,905,092$ |
| Reference Coverage | 738 | 1,628 | 828 | 1,438 |
| After Cutadapt |  |  |  |  |
| Number of Bases | $1,086,163,522$ | 139 | $2,463,928,852$ | $1,242,993,451$ |
| Average Read Length | 143 | 142 | $2,108,718,948$ |  |
| Reference Coverage | 671 | 1,522 | 768 | 139 |

### 3.2.3 Hybrid Approach

Prior to the hybrid assembly, the six subread PacBio files available for each strain were combined with the function get_one_short_read_set_q(). Different hybrid error-correction tools were tested on strain PM21. LoRDEC trim corrected reads have an average length of 3.5 kbp and a coverage of 80 x while corrected reads with Jabba just had a length of 0.3 kbp and a coverage of 7 x . Proovread's results are in the middle with 4.5 kbp average read length and 60 -fold coverage (Table 16). Error corrected PacBio reads of strain PM21 were used for assembly with Newbler and Canu. Canu produced 17 contigs with a coverage of $93 \%$ using proovread corrected reads and produced $99 \%$ coverage as well as 257 contigs with LoRDEC corrected reads. Newbler produced a higher amount of contigs (58 and 1300) and the coverage was $26 \%$ and $63 \%$ respectivley (Table 17). After evaluation of the three correction tools all further assemblies were executed with proovread.

As the evaluation of the assemblies with Qualimap showed that most of the Illumina reads are clipped during the mapping process, it may be assumed that Illumina reads still have adapters. Remaining adapters were removed with Trimmomatic and Cutadapt using Illumina adapter sequences provided by Trimmomatic to get best hybrid correction and assembly results. Trimming results of Cutadapt and Trimmomatic on the Illumina reads of strain PMSS1 are similar, therefore reads were further trimmed only with Cutadapt using default parameters.

The trimmed Illumina reads and the PacBio reads are the input for proovread. The output are two files, one with all corrected and trimmed long reads (trimmed) and one with all the corrected reads including regions that did not have enough Illumina reads mapped (untrimmed). The statistic of the error corrected PacBio files after proovread and Cutadapt is shown in Tables 11 and 12 .

Assemblies were created with both kinds of reads being assembled into slightly fewer contigs with Canu and proovread's trimmed reads and for Newbler with proovread's untrimmed reads, because Newbler has a trimming step included that is adapted for its own assembler algorithm. Newbler produced 22 contigs for PM21 to 32 contigs for SS1 with a reference coverage of $98.5 \%$ in each assembly. Canu produced 3 contigs for strain PM21 and up to 9 for strain SS1. In each case the coverage is almost $100 \%$ (Tables 18 and 19). Assemblies with Canu and Newbler are also performed with the published reference PMSS1 genome to know the maximum possible contiguity of these assemblers when dealing with error free reads. To this end, the reference GenBank sequence CP018823.1 and the plasmid CP018824.1 was split with random length between 1500 and 1999 bp and coverage 40 using reference_splitting(). The split reads are the input for Newbler and Canu, respectively (Tables 18 and 19 ).

With nucmer [54] the contigs of the assemblies were aligned to the reference assembly. To evaluate these assemblies the R-function create_table_of_delta() produces two tables one with all the ranges of overlaps with the reference and one with the ranges not included in the contigs of the assemblies. At two regions of the genome there are missing ranges of more than thousand base pairs for strain PMSS1 in the Canu assembly (Table 20), while Newbler has no missing ranges (Table 21). In strain PM21 there are 5 missing regions in the Newbler assembler, in each less than 50 base pairs, and one missing region with 17 base pairs in the Canu assembly (Tables 22 and 23). All the missing ranges for strain PMSS1 using the different trimming and assembly tools are shown in Tables A.36 to A.50.

Table 16: LoRDEC, Jabba and proovread hybrid error correction reads statistics on strain PM21.

|  | LoRDEC split | LoRDEC trim | Jabba | proovread |
| :--- | ---: | ---: | ---: | ---: |
| Number of Reads | 180,972 | 37,319 | 32,098 | 20,379 |
| Number of Bases | $56,319,064$ | $128,586,429$ | $11,688,414$ | $92,814,063$ |
| Average Read Length | 311 | 3,446 | 364 | 4,554 |
| Minimum Read Length | 100 | 19 | 43 | 376 |
| Maximum Read Length | 2,181 | 35,050 | 3,485 | 30,441 |
| Coverage | 34 | 77 | 7 | 58 |

Table 17: Assemblies of strain PM21 after error correction with LoRDEC (L) or proovread (p).

|  | Newbler (L) | Newbler (p) | Canu (L) | Canu (p) |
| :--- | ---: | ---: | ---: | ---: |
| Number of Contigs | 1,358 | 58 | 257 | 17 |
| Number of Bases | $1,046,766$ | 771 | $1,591,992$ | 434,122 |
| Average Contig Length | 100 | 27,448 | 1,689 | $1,491,292$ |
| Minimum Contig Length | 5,338 | 348 | 1,001 | 87,723 |
| Maximum Contig Length | 0.63 | 178,232 | 5,897 | 10,292 |
| Coverage | 1,266 | 0.26 | 0.99 | 207,150 |
| N50 | 1,708 | 72,359 | 0.93 |  |



Figure 9: Flow diagram of the implemented R-Script using a hybrid assembly approach.

Table 18: Canu hybrid assembly statistic after proovread (trimmed) and adapter removal of Illumina reads with Cutadapt.

|  | PM21 | PM22 | PMSS1 | PMSS1 Ref. | SS1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Number of Contigs | 3 | 4 | 5 | 11 | 9 |
| Number of Bases | $1,611,458$ | $1,610,425$ | $1,618,840$ | $1,624,016$ | $1,599,252$ |
| Average Contig Length | 537,153 | 402,606 | 323,768 | 147,638 | 177,695 |
| Minimum Contig Length | 8,492 | 10,131 | 10,153 | 2,692 | 21,351 |
| Maximum Contig Length | 908,828 | 787,101 | 849,867 | 531,590 | 723,822 |
| Reference Coverage | 0.996 | 0.995 | 1.000 | 1.00 | 0.988 |
| N50 | 908,828 | 696,545 | 849,867 | 236,000 | 214,592 |

Table 19: Newbler assembly statistic after proovread (untrimmed) and adapter removal of Illumina reads with Cutadapt.

|  | PM21 | PM22 | PMSS1 | PMSS1 Ref. | SS1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Number of Contigs | 22 | 29 | 23 | 23 | 32 |
| Number of Bases | $1,594,561$ | $1,594,639$ | $1,592,198$ | $1,595,242$ | $1,594,523$ |
| Average Contig Length | 72,480 | 54,988 | 69,226 | 69,358 | 49,829 |
| Minimum Contig Length | 303 | 187 | 461 | 462 | 167 |
| Maximum Contig Length | 500,017 | 499,456 | 499,602 | 319,311 | 500,014 |
| Reference Coverage | 0.985 | 0.985 | 0.984 | 0.986 | 0.985 |
| N50 | 190,506 | 189,026 | 180,015 | 178,900 | 178,737 |

Table 20: Ranges of reference genome that are not covered by PMSS1 Canu contigs.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | CP018823.1 | 627,520 | 627,790 |
| 2 | CP018823.1 | 688,747 | 689,186 | 271 |
| 3 | CP018823.1 | 689,364 | 690,365 | 440 |
| 4 | CP018823.1 | 691,389 | 691,508 | 1,002 |
| 5 | CP018823.1 | 826,509 | 826,519 | 120 |
| 6 | $1,395,521$ | $1,398,498$ | 11 |  |

Table 21: Ranges of reference genome that are not covered by PMSS1 Newbler contigs.

| GenBank accession | start | end | width |  |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | $1,438,186$ | $1,438,189$ | 4 |

Table 22: Ranges of reference genome that are not covered by PM21 Canu contigs.

| GenBank accession | start | end | width |  |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | $1,398,481$ | $1,398,497$ | 17 |

Table 23: Ranges of reference genome that are not covered by PM21 Newbler contigs.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | CP018823.1 | $1,033,069$ | $1,033,113$ |
| 2 | CP018823.1 | $1,162,150$ | $1,162,150$ | 45 |
| 3 | CP018823.1 | $1,400,968$ | $1,400,969$ | 2 |
| 4 | CP018823.1 | $1,404,779$ | $1,404,822$ | 44 |
| 5 | $1,409,206$ | $1,409,206$ | 1 |  |

### 3.2.4 Stand-Alone Approach with Canu Assembler

The general work-flow of the implemented R-script to produce a suitable assembly using the whole pipeline of the Canu assembler and following steps to improve the assembly and annotation is shown in Figure 10.

PacBio files belonging to one strain were merged into one fastq-file. This file is the input for the stand-alone long read Canu assembler.

The statistics of the assemblies produced by Canu with default parameter using only the long uncorrected PacBio reads is shown in Table 25. The statistic of the corrected PacBio reads using Canu pipeline is shown in Table 13. The corrected PacBio reads were realigned to the genome sequences created by Canu using BWA-MEM [58] to evaluate the assemblies. It can be observed, that no reads could be mapped over the joined ends of the assembly (Figure 11a). It was necessary to trim and reassemble the ends of the genomes with Circlator [14]. Circlator successfully trimmed and assembled these ends again using the corrected PacBio reads and SPAdes assembler [52], built a circularised genome and present the linear sequence [14]. For the circularised genome reads map over the ends of the genome (Figure 11b).

To compare the sequences with the recently published assembly of strain PMSS1 CP018823.1 [79] the R-function rearrange_assembly() (Section 6.1), was implemented. It rearranges the sequence to have the same start point and the same strand orientation as the reference PMSS1 genome.

To evaluate the current assembled sequences, mappings with PacBio or Illumina reads were made. The software IGV [63] and Qualimap [64] were used to evaluate these mappings. Qualimap showed a peak with more than 3 times average coverage in the region of the cagA gene. To control the coverage of the Illumina reads across the assembled sequence in comparison with the number of cagA copies, cagA copies were inserted and the mapping and Qualimap analysis repeated. Using this approach, a drop to average coverage could be observed with four and five times cagA copy numbers (Figure 12).

Comparison of the Canu PMSS1 sequence with the published PMSS1 sequence using the NCBI nucleotide BLAST online tool with default parameters 60] showed that there were still hundreds of indels present in the assembly (Table 24). Mappings of the Illumina and PacBio reads to the stand-alone Canu assembly in two regions are shown in Figures 13 and 14.


Figure 10: Flow diagram of the implemented $R$ script to gain the assembly using a stand alone approach with Canu assembler.
(a)

(b)


Figure 11: Visualisation of the alignment of the PacBio reads of strain PMSS1 to the corresponding Canu assembly with the software IGV [63]. The ends of the assembly were rearranged in the middle of the genome. On top the visible portion of the genome is shown indicating the location. Underneath the amount of read coverage and on the bottom the aligned reads are presented. Coverage drops down to zero in the middle which indicates an assembly failure at these ends of the assembly. In (a) the mapping before circularisation, and in (b) the mapping after trimming and circularisation with Circlator is shown.

To improve the assemblies the sequences had to be polished using the more accurate Illumina reads for consensus building. To this end, the HaplotypeCaller tool from the software GATK 61] was used. All steps to build the consensus performed within the function gatk(). After Circlator around ten thousand bases were trimmed from the Canu assemblies and around thousand bases were introduced after using GATK. There are no changes in the plasmid of PM21 after using GATK (Table 25). BLAST showed that in strain PMSS1 the number of indels compared to the published PMSS1 strain could be reduced from 1468 to 26 . In all the assemblies the final number of gap opens is now around 30 (Table 24).

Protein coding genes were predicted using Prodigal. The number of proteins predicted with Prodigal for the published PMSS1 strain is 1,505 , the number of CDS that are annotated is 1,535 . To evaluate the assembly after GATK and differences between the assembled PMSS1 strain and the recently published PMSS1 assembly in GenBank, the Prodigal results were compared according to the number of identical proteins and mismatched or shorter/longer proteins. The assembled strain PMSS1 has 1484 out of 1510 identical proteins with the reference strain (Table 26). With the finished assembly and the results of Prodigal the CDSs could be annotated using the BASys server [66].

Table 24: Number of mismatches and gap opens compared to the reference PMSS1 genome. Alignments performed with BLAST.

|  | PM21 | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: |
| Before GATK |  |  |  |  |
| \# Mismatches | 182 | 73 | 15 | 68 |
| \# Gap Opens | 508 | 1086 | 1468 | 237 |
| After GATK |  |  |  |  |
| \# Mismatches | 106 | 69 | 44 | 68 |
| \# Gap Opens | 29 | 28 | 26 | 31 |

Table 25: Statistic after Canu self-error-correction and assembly, after Circularisation with Circlator and after consensus building with GATK. Canu produced one contig per strain, two for strain PM21, PM22 one including the plasmid.

|  | PM21 Genome | PM21 Plasmid | PM22 | PMSS1 | SS1 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| After Canu |  |  |  |  |  |
| Number of Bases | $1,613,639$ | 10,137 | $1,610,809$ | $1,618,182$ | $1,627,980$ |
| Reference Coverage | 0.997 | 1.657 | 0.995 | 1.000 | 1.006 |
|  |  |  |  |  |  |
| After Circlator |  |  |  |  |  |
| Number of Bases | $1,602,465$ |  | 1.058 | $1,602,056$ | $1,607,011$ |
| Reference Coverage | 0.990 |  | 0.990 | 0.993 | $1,613,791$ |
|  |  |  |  |  | 0.997 |
| After GATK |  |  |  |  |  |
| Number of bases | 0.990 | 1,058 | $1,602,971$ | $1,608,333$ | $1,614,005$ |
| Reference Coverage |  |  | 0.990 | 0.994 | 0.997 |

Table 26: Prodigal protein comparison of PMSS1 final assembly with the reference GenBank sequence CP018823.1.

|  | Own PMSS1 | PMSS1 (CP018823) |
| :--- | ---: | ---: |
| \# Proteins | 1,510 | 1,505 |
| \# Identical Proteins* | 1,484 | 1,486 |
| \# Proteins with sequence mismatches | 5 | 5 |
| \# Shorter/Longer Proteins | 21 | 14 |

* Identical Proteins: Different results due to multiple occurrences of the same protein in one strain.


Figure 12: Illumina read coverage across PMSS1 assembly with different copy numbers of the cagA region. Peak (red circle) returns to average with 4 and 5 times cagA copies.


Figure 13: Mapping of reads to the PMSS1 assembly (position 246,195 to 246,220 ) before GATK, visualised with IGV. Dark gray beams represent the coverage at that point. Light gray lines are the mapped reads. Blue "I"s denote insertions, black lines deletions and letters mismatches. On the top the bases of the assembly in that region are given. (a) mapping of uncorrected PacBio reads, (b) mapping of self-error corrected PacBio reads using Canu, (c) mapping of hybrid error corrected PacBio reads using proovread, (d) mapping of Illumina reads.


Figure 14: Mapping of reads to the PMSS1 assembly (position 229,281 to 229,306 ) before GATK, visualised with IGV. Dark gray beams represent the coverage at that point. Light gray lines are the mapped reads. Blue "I"s denote insertions, black lines deletions and letters mismatches. On the top the bases of the assembly in that region are given. (a) mapping of uncorrected PacBio reads, (b) mapping of self-error corrected PacBio reads using Canu, (c) mapping of hybrid error corrected PacBio reads using proovread, (d) mapping of Illumina reads.

### 3.2.5 Comparison of the Genomes

After executing the Canu_assembly_pipeline.R script with all the four assembled genomes, the finished and annotated assemblies as well as the two available reference genomes PMSS1 (CP018823) and SS1 (CP009259) could be aligned with Mauve [67]. The alignment shows differences in length according to the different cagA copy numbers from 1 to 5 (Table 27) and a large inversion of 400 kbp in strain PM22 and in SS1 (CP009259) respectively (Figure 15). The initial assembled cagA copy numbers ranges from 1 for PM21 and PM22, 2 for PMSS1 to 3 for SS1. The estimated number of cagA copies determined by Illumina read coverage changed to 2 for PM22, 4 for PMSS1 and 5 for SS1 (Table 27).

To assess the effect of genetic variants, for example what gene is affected and is it a missense or synonymous mutation, an annotated vcf file has to be created. The Illumina reads of the different strains were mapped against the assembled PMSS1 strain of this project and the HaplotypeCaller of GATK was invoked to find all possible variants. The annotated PMSS1 assembly and the vcf-file was used to annotate the variants with snpEff [68. The R-function snps_statistic() reads in the annotated vcf file and creates a detail and a summary table of all local variants compared to strain PMSS1. The number of variants ranges from 78 for PM21 to 94 for SS1. The majority of these are synonymous mutations. A hot spot with more than 40 SNPs could be observed in the engB gene (Tables 28 and A.51). There are 46 common SNPs in all the strains PM21, PM22 and SS1 compared to the PMSS1 strian. PM21 and PM22 do not share any further SNPs, PM22 and SS1 share 1 further SNP (Figure 16).

In the phylogenetic tree created with RAxML it can be observed that two main clusters are formed, one with the SS1 strains and one with PMSS1, PM21 and PM22 (Figure 17). The minimum spanning tree shows that the published PMSS1 genome is connected to almost all of the other strains (Figure 18).


Figure 15: Alignment of the six H. pylori genome assemblies with Mauve 67. Inversion of about 400 kbp in PM21 and in the reference strain SS1 (green bar) compared to the others. Slight differences in the length of the assemblies due to different numbers of cagA copies. Mauve produced alignment errors in this region in PM22 and PMSS1 (white field in the green bar).

Table 27: CagA copy number in the Canu assembly (C) and final number of cagA copies determined by the Illumina read coverage in this region (Q), predicted number of CDS with Prodigal and the final length of the genomes.

|  | cagA copy <br> number (C) | cagA copy <br> number (Q) | predicted <br> number of CDS | genome <br> length (bp) |
| :--- | ---: | ---: | ---: | ---: |
| PMSS1 | 2 | 4 | 1,510 | $1,618,489$ |
| PMSS1 (CP018823) | - | 4 | 1505 | $1,618,480$ |
| PM21 | 1 | 1 | 1,497 | $1,602,972$ |
| PM22 | 1 | 2 | 1,505 | $1,608,054$ |
| SS1 | 3 | 5 | 1,507 | $1,624,153$ |
| SS1 (CP009259) | - | 4 | 1,507 | $1,619,098$ |

Table 28: Number of genetic variants (SNPs, Deletions, Insertions) compared to strain PMSS1.

|  | PM21 | PM22 | SS1 |
| :--- | ---: | ---: | ---: |
| \# Variants | 78 | 99 | 94 |
| \# Intergenic | 10 | 10 | 16 |
| \# SNPs | 65 | 87 | 77 |
| \# Deletions | 6 | 3 | 6 |
| \# Insertions | 7 | 9 | 11 |
| \# Missense | 21 | 25 | 23 |
| \# Synonymous | 41 | 60 | 46 |
| \# Nonsense | 1 | 0 | 1 |
| Hot Spots | VirB10, rfaI, | infC, yejF, | topA, virB10, |
|  | engB | acsA, engB | ssb, engB |



Figure 16: Venn diagram showing the number of shared SNPs of strains PM21, PM22 and SS1.


Figure 17: Phylogenetic tree of the six assembled genomes including the reference genomes published on NCBI. Tree created based on the SNPs of the whole genome alignment using a maximum likelihood model with RAxML 69.


Figure 18: Minimum spanning tree of the six assembled genomes including the reference genomes published on NCBI. MST is based on the phylogenetic tree created in Figure 17.

## 4 Discussion

In this Master's thesis it could be shown that different assembly tools perform quite differently depending on the bacterial genome and the kinds of reads. Fully finished genomes of 4 H . pylori strains could be assembled using the stand-aloneerror correction tool Canu, followed by a trimming and circularisation step and a consensus-building step with Illumina reads. Further it could be shown that the genome of H. pylori is highly variable.

### 4.1 Assembly Tools for Small Genomes

### 4.1.1 GAGE-B and GABenchToB

One of the main goals of this part was to compare the Newbler assembler with the results of GAGE-B and GABenchToB.

The GAGE-B study compared nine assemblers and especially measured metrics like N50 value, number of contigs, global errors (relocations, translocations and inversions) as well as local errors but also the number of proteins fully contained in contigs. The authors came to the overall conclusion that MaSuRCA and SPAdes produced the best assemblies across the twelve bacterial organisms investigated 31.

Newbler, a widely used assembler, was not reviewed in GAGE-B. To assess the performance of Newbler the trimmed Illumina sequence data accessible on the GAGE-B website was used.

In contrast, GaBenchToB compared nine assembler on three different bacterial genomes, E. coli, S. aureus and M. tuberculosis, sequenced either with Illumina MiSeq or with PGM platforms [80. Six of these assemblers (Abyss, Mira, SoapDenovo2, SPAdes, Velvet and Newbler) are analysed in this project. MaSuRCA, SGA and CABOG were not used in GABenchToB. In particular, NGA50 values and the number of mis-assemblies were analysed. The NGA50 value is like the N50 value but for the total length the real length of a reference genome is used so the values of the different assemblies can be easily compared. Further they also had a focus on the computational cost of an assembly. They came to the conclusion that none of the assembler emerges as the overall winner. The individually assembler performance strongly depends on the nature of the data [32].

### 4.1.2 Evaluation of the Assemblies

As described in the GAGE-B and GABenchtoB studies, it is hard to find an assembler which performs best on all kinds of bacterial data and organisms. Assembly algorithms are developed to deal with specific types of sequencing platforms as well as genomic data and this fact is reflected in the results of this project too. They all have some benefits but also drawbacks.

Referring to often determined metrics like Number of Contigs, N50 value and the Maximum Contig Length, MaSuRCA performed best for all bacteria in this project. Also, SPAdes got the best total rank for the parameter Maximum Contig Length and made the second place for the N50 value (Table A.14). Referring to the Number of Contigs, SPAdes performs averagely because it sometimes produces a high number of contigs. For all of this three parameters SGA performed worst. It came last place for seven of the ten bacteria concerning the Number of Contigs, in eight concerning the N50 value and in seven concerning the Maximum Contig Length.

Another important parameter is the coverage of the reference genome by the contigs of the assemblies (Reference Covered by Contigs). If no contig of the assembly aligns to a specific region in the reference, genome information is missing and this area can never be reproduced without a reference genome. For eleven of the twelve bacterial genomes SPAdes achieved the best results while in eleven CABOG got the worst. It is the only parameter for which MaSuRCA performed the worst, achieving the eighth rank.

Newbler has the fewest Mismatches and Indels by far, which means that Newbler produces the least local errors like Single Nucleotide Polymorphisms (SNPs) or small insertions and deletions, which improves the accuracy of the finished genome.

The results of the Bases Overlapping Query and Bases Overlapping Reference analyses highly depends on the parameters of the achieved alignment. If the alignment produces multiple matches it is hard to exclude non contiguous match-pairs without reducing the coverage of the assembly and the reference, and that is why the Overlapping Bases are rising. MUMmer 54 does not provide a proper filter of the alignment results, therefore an additional filter was implemented.

If one focuses on parameters that indicates the quality and accuracy of the assembly (Reference Covered by Contigs, Bases Overlapping Query, Mismatches and Indels, Contigs Covered by Reference and Bases Overlapping Reference) the assembly tools
perform quite similar except Newbler that achieved the best rank. Newbler produces a high number of small contigs, but a very accurate assembly covering most of the reference genome with few multiple regions and local errors. The ranges of the values for the most important parameters are large. For example, while MaSuRCA creates only 130 contigs for $R$. sphaeroides HiSeq, SGA creates 12186 contigs. Also the total length of the assemblies ranges from 4216 kbp for CABOG to 5220 kbp for Soap, while the length of the reference genome is 4603 kbp . Of note, CABOG shares 68 identical contigs with Newbler in the $R$. sphaeroides HiSeq assembly, while CABOG does not share any contig with Newbler in the $V$. cholerae MiSeq assembly. The metric Reference Covered by Contigs \% in R. sphaeroides HiSeq is about $99 \%$ in most of the assemblies but CABOG has a bad value with $91,1 \%$ (Tables 8 and 9 ). If one focuses on the parameters that represent the accuracy compared to the reference genome (Reference Covered by Contigs, Bases Overlapping Query, Mismatches and Indels, Contigs Covered by Reference and Bases Overlapping Reference), Newbler, CABOG and MaSuRCA achieved the best results. In this case the only parameter Newbler performed worse is Contigs Covered by Reference (Table A.14). But in all of the 12 data sets this value is only slightly lower than in the other assemblies (Tables A.1-A.12). A reason could be that the Minimum Contig Length for Newbler was set to 1 and contigs smaller than 50 bp are not aligned with Nucmer.

Most of the used assembler perform quite similar when dealing with MiSeq or with HiSeq data (Tables A. 15 and A.16). Noticeable is that Newbler in comparison with the other assembler performed two ranks better on the longer MiSeq (2nd) than HiSeq data (4th). The reason could be that Newbler was developed to assemble the longer ( $\sim 450 \mathrm{bp}$ ) Roche 454 sequenced reads [81. CABOG performed better on HiSeq data (3rd vs. 5th) in general.

To determine how similar the assemblies to the common Newbler assembly are, the R script was run again with Newbler as reference genome. The highest similarity is observed with CABOG, except for the parameter Reference Covered by Contigs, and also Velvet has a high similarity to Newbler, especially concerning the Number of Identical Contigs (Tables A.17-A.21).

### 4.2 Helicobacter pylori

### 4.2.1 Available Data

The PacBio reads have a length distribution as expected, but the average read length of about 3700 bp for strain PM21 and strain PMSS1 is relatively short compared to the average length of PacBio reads published on the PacBio website [7], where the average read length can be more than $10,000 \mathrm{bp}$ (Table 10). The genome coverage between 48x for strain PMSS1 and 470x for strain SS1 is sufficient for any hybrid approach. The usual recommendation is a minimum long read coverage of about 20x to 30x [82]. For a standard stand-alone approach the read coverage should be around 75 x [83] but Canu can deal with much lower coverage of about 30x [84].

### 4.2.2 Hybrid Approach

A main part of hybrid assembly is the correction of the PacBio reads that have an error rate of at least $15 \%$ with the help of the more accurate Illumina reads that have an error rate of less than $1 \%$. A lot of different tools are available (Section 1.1.3), three tools LoRDEC, Jabba and proovread were used on the PacBio data sets. Both LoRDEC and Jabba correct reads by building a de Bruijn Graph of the short reads and threading the long reads through this graph. It has been shown that they are as accurate as mapping error correction tools like proovread [16|21]. For strain PM21, Jabba generated reads with an average length of 300 bp and the remaining coverage was only 7 x (Table 16). Reads might be very accurate but most of the reads are filtered during correction, making an assembly impossible. The reads after LoRDEC split, where all the corrected reads are trimmed and split at regions that could not be corrected, are as short as from Jabba and have a coverage of 34 x . Reads that are not split (LoRDEC trim) are much longer with 3446 bp average and could be used for assembly with Newbler and Canu. Reads generated with proovread are the longest of about 4500 bp average length and still have enough coverage with 58 x .

The assembly for all strains using the corrected long reads were done with Newbler assembler because it achieved best results in the comparison of the assembly tools and with Canu, an assembler especially developed to assemble SMRT-reads. Newbler performed best using proovread's untrimmed reads because Newbler has its own trimming algorithm. Canu achieved better results using the trimmed reads proovread produced. Newbler produced 58 contigs and the coverage is $26 \%$. The best results
produced Canu when using proovread's corrected and trimmed reads, but there are still 17 contigs and missing reference genome ranges.

It was observed, that most of the Illumina reads are clipped when mapped to the reference genome. Therefore we suspected that Illumina reads may still contain adapters. This was confirmed by the more contiguous assemblies resulting from the assemblies of the trimmed reads with either Canu or Newbler (Tables A.32-A.35). Additionally, most of the ranges of the PMSS1 reference genome are covered for strain PMSS1 (Tables A.36-A.50). Especially the Newbler assembler produced more contigs with no missing ranges while Canu produced less contigs but the assembly has missing bases in the range of 1000 bp at regions that have low Illumina read coverage for strain PMSS1. Furthermore Canu sometimes does not assemble the plasmid. Canu produced best hybrid result for strain PM21. It assembled only 2 contigs for the genome and one plasmid (Table 18) and there are just 17 bases missing compared to the reference PMSS1 genome (Table 22). As the assemblies still consisted of more than one contig, creating finished and annotated genomes was not possible.

### 4.2.3 Stand-Alone Assembly

The stand-alone assembly with the recently published Canu assembler [17] was a good choice because it could directly assemble our genomes into a single contig per strain. Mappings of the raw PacBio data for all strains to the reference PMSS1 Plasmid CP018824.1 showed a high coverage indicating that the plasmid is present in the PacBio data, but could be only assembled for strain PM21. In all the other strains the plasmid was removed in the corrected PacBio reads and the assembly. According to the Canu documentation [84] it is recommended to increase in that case the corrected read coverage, because Canu uses only the longest 40x coverage reads for correction. The assembly for the strains PMSS1, PM22 and SS1 was performed again with the corOutCoverage parameter set to 100 and a plasmid was now present in the assembly of PM22 too. For PMSS1 and SS1 it was not possible to assemble the plasmid. Canu recommends a coverage above 30 for assembly, which is quite low for a stand-alone assembly approach. After evaluation of the assembly by mapping the corrected PacBio reads to the assembly and visualise the mapping with the software IGV it was evident that the assembly is incorrect at the ends because the coverage falls close to zero at these ends. Furthermore Canu does not recognise the contigs
as circular. To trim and circularise the contigs Canu produced, Circlator was used, which generated a complete circular chromosome (Figure 11b).

One of the important genomic regions of bacteria that cause inflammation of the human's stomach are pathogenicity islands (PAI) that include the cytotoxin associated gene A (cagA), which has a high copy number variation 40]. One cagA region has a size of 5072 bp . In strain PM21 some PacBio reads could be found that span across the whole cagA region of the assembly, indicating that the repeat region is assembled correctly. For all the other strains it was not possible to find such long reads, which is why further investigation of the read coverage with Qualimap was necessary. A coverage peak could be observed in the cagA region indicating that in fact there are more cagA copies present in the genome sequence. The coverage in that area reduces to average with four and five times cagA copies. There is also a second peak slightly before the cagA region that is an unresolved repeat problem in the assembly. (Figures 12ad 12d). For final assembly four times cagA for PMSS1 is used. The final number of cagA is determined in all strains through investigating the Illumina read coverage in that region (Table 27).

During the course of this thesis the research group of Draper et al. 40] published a complete assembly of strain PMSS1 (chromosome and plasmid), that could now be used for further evaluation. The plasmid of strain PM21 identified in this thesis after Circlator is identical to the published PMSS1 plasmid, but BLAST showed that there are small indels in the range of hundreds of base pairs between the PMSS1 chromosome and the published one (Table 24). It seems that Canu does not correct all of the insertions and deletions of the PacBio reads to its full extend. Koren et al. report a maximum quality of Q40 $(99.99 \%$ or one incorrect base in 10,000$)$ for Canu on bacterial genomes [17]. To improve the accuracy an additional polishing step is necessary. Canu recommends Quiver for polishing of the assemblies [17]. The polishing in this thesis is done by mapping the accurate Illumina reads to the assembly and building the consensus with the software GATK. The number of SNPs and indels could be reduced by more than 2 orders of magnitude for all four strains (Table 24).

### 4.2.4 Comparison of the Genomes

After predicting protein coding genes of PMSS1 with Prodigal, the resulting sequences were compared to those of the published PMSS1 genome. Most of the proteins, 1484 of 1510 are identical (Table 26), 21 of the proteins are shorter or longer due to insertions or deletions of bases. 5 proteins have mismatches in the aminoacid chain due to mismatched bases. Reasons for the differences could be mutations in the sequenced genomes or sequencing errors in homopolymer regions.

After aligning all the six genomes (including the two reference strains) with Mauve structural differences can be determined (Figure 15). Strain PM21 and the reference strain SS1 have an inversion of about 400kp and the strains have different lengths due to different numbers of cagA copies. To analyse the differences in the Helicobacter pylori genomes the assembled strain PMSS1, which is the initial strain the mice were inoculated with, was used as the reference strain. The number of SNPs compared to strain PMSS1 is between 65 for PM21 and 87 for PM22 (Table 28). The affected genes vary from strain to strain but hotspots with more than 3 SNPs in one gene were observed for topA, infC, yejF, acsA, virB10, rfaI, ssb and engB (Table 28). Noticeable are an inframe deletion in PM21 and a frameshift insertion in SS1 at the gene virB10 (cagY); (Table A.51). Further, there are 44 mutations in the same way in all strains (PM21, PM22 and SS1); (Figure 16), 41 of these SNPs are in the engB region. Notably, the published PMSS1 strain has these mutations too. The reason could be that the assembled PMSS1 strain (10) is not from the same colony that were used for inoculation of the mice at NYU (Figure 6). The protein EngB is necessary for normal cell division. As concluded in the work of Draper et al. 40], the $H$. pylori strains have a high variability between and within one single colony including large inversions and variations in cagA copy number from 1 to 4 . The two SS1 strains (the published one and the assembled one in this project) are closely related (Figure 17) and the published PMSS1 genome has few mutations to most of the other strains (Figure 18). It is difficult to distinguish modifications with time the strains are present in the mouse due to the high variability and the low number of strains that were sequenced with PacBio technology.

### 4.3 Conclusions

To sum up, the overall performances of the different assembler, MaSuRCA and CABOG are ranked the best but lowest considering reference coverage. Newbler performed very well according to assembly accuracy especially when dealing with Illumina MiSeq data and is an appropriate alternative to MaSuRCA even though Illumina sequence data is used.

In fact it is also important to analyse the computational cost of the assembler but no information of this parameter is available in GAGE-B paper; however, this is in general not relevant if you work with small genomes like bacteria, which have a genome size in the range of a few mega-bases. In GABenchToB DBG-assemblers are much quicker than OLC-assemblers.

The String Graph Assembler (SGA) was developed especially to reduce runtime by using memory efficient data structures to assemble mammalian-sized genomes 50. SGA is not appropriate for the assembly of small genomes and it is not surprising that it achieved the lowest score.

A drawback in this study is that only Illumina sequencing runs are used and it is possible that the assembler perform quite differently on different data types especially in matters of read length and read coverage. MaSuRCA, for example, can assemble data sets containing a mixture of short reads and long reads (Sanger, 454, PacBio and Nanopore) [49], while Newbler was developed specifically for assembly of sequence data generated by the 454 GS-series of pyrosequencing platforms [28]. In the GABenchToB study [32] it was concluded, that Newbler produces high rates of mis-assemblies when dealing with MiSeq data, but this can not be confirmed in this thesis.

According to the hybrid error correction of the H. pylori PacBio reads using Illumina reads it could be shown that the recently published and fast correction tools LoRDEC and Jabba that both build a de Bruijn Graph of the short reads can not produce enough and long enough reads for an assembly. Proovread is a slower alternative and if the Illumina adapter sequences are trimmed, assemblies could be build with Canu and Newbler. Newbler build more contigs ( $>20$ ) while Canu produced less contigs (2-9) but the assemblies have more missing regions compared to the reference genome. An accurate, annotated and fully closed assembly using PacBio sequenced long reads of the Helicobacter pylori strains could be only achieved with a stand-alone approach
using the new Canu long-read assembler. To achieve a circular genome, Circlator had to be applied to the Canu generated sequences. The Canu assemblies still contain hundreds of SNPs and indels that could be reduced by mapping the accurate short Illumina reads and build the consensus.

The stand-alone assembly with Canu is a very fast and suitable assembly approach because a PacBio read coverage of 30 x is sufficient and it is much faster than correcting PacBio reads by mapping of Illumina reads (Hybrid approach), but post-processing steps for polishing including short-read data are necessary and small plasmids are sometimes not assembled.

In this thesis it could be shown that Helicobacter pylori is a bacterium that has a high genomic variability. There are different numbers of the cagA region in all the four strains and a huge inversion of 400 kbp in strain PM21. A quite high number of SNPs are present but they do not necessarily increase with the duration that isolates were present in the mouse. As the H. pylori strains PMSS1 and SS1 have high genomic variability within one single strain [40], it is hard to determine one representative genome for a specific strain and creating a phylogeny that shows the modification in time is almost impossible. Future analyses should include the determination of the exact cagA copy number in the genomes and the generation of a SNP based phylogeny based on all the 46 strains sequenced with Illumina to get an overview of the mutations of PMSS1 with time in the mouse and the mutations in virulence factors.

## 5 References

[1] Taylor D, Heyer L, Campbell A, Denham S and Wessner D: PHAST (Phage Assembly Suite and Tutorial): A Web-Based Genome Assembly Teaching Tool. Master's thesis, Davidson College, Davidson, North Carolina, USA, 2012.
[2] Campbell A and Heyer L: How are Genomes Sequenced. In: Discovering Genomics, Proteomics and Bioinformatics., volume 2. Benjamin Cummings, San Francisco, USA, 2007.
[3] Perkel J: Sanger Who? Sequencing the next generation. Science 2009. 324(5924):275279.
[4] Sanger F, Nicklen S and Coulson A: DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1977. 74(12):5463-5467.
[5] Pop M, Canzar S, Liu X, Su Q, Puiu D, Tallon L and Salzberg S: Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics 2009. 10(4):354-366.
[6] Buermans H and den Dunnen J: Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014. 1842(10):1932-1941.
[7] Pacific Bioscience. 2017. URL http://www.pacb.com. Last visited 2017-01-01.
[8] Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG and et al.: Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. Nature 2008. 456(7218):53-59.
[9] 3402 Bioinformatics Group: Illumina Illustration. 2017. URL http:// www.3402bioinformaticsgroup.com/service/. Last visited 2017-06-06.
[10] Illumina Technology: Mate Pair Sequencing. 2016. URL http://www.illumina.com/ technology/next-generation-sequencing/mate-pair-sequencing_assay.html. Last visited 2016-07-25.
[11] Mardis E: Next-Generation Sequencing Platforms. Annual Review of Analytical Chemistry 2013. 6:287-303.
[12] Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G and et al.: Real-time DNA sequencing from single polymerase molecules. Science 2009. 323(5910):133-138.
[13] Pacific Bioscience: SMRT Sequencing. 2017. URL http://www.pacb.com/smrt-science/ smrt-sequencing/. Last visited 2017-01-02.
[14] Hunt M, Silva N, Otto T, Parkhill J, Keane J and Harris S: Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biology 2015. 16(294).
[15] Hackl T, Hedrich R, Schultz J and Förster F: proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 2014. 30(21):3004-3011.
[16] Salmela L, Walve R, Rivals E and Ukkonen E: Accurate self-correction of errors in long reads using de Bruijn graphs. Bioinformatics 2017. 33(6):799-806.
[17] Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH and Phillippy AM: Canu: scalable and accurate long-read assembly via adaptive $k$-mer weighting and repeat separation. Genome Research 2017. 27:722-736.
[18] Au K, Underwood J, Lee L and Wong W: Improving PacBio Long Read Accuracy by Short Read Alignment. PLoS ONE 2012. 7(10):e46679.
[19] Koren S, Schatz MC, Walenz J, B. P. amd Martin, Howard J, Ganapathy G, Phillippy AM and et al.: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 2012. 30(7):693-700.
[20] Salmela L and Rivals E: LoRDEC: accurate and efficient long read error correction. Bioinformatics 2014. 30(24):3506-3514.
[21] Miclotte G, Heydari M, Demeester P, Rombauts S, Van de Peer Y, Audenaert P and Fostier J: Jabba: hybrid error correction for long sequencing reads. Algorithms for Molecular Biology 2016. 11:10.
[22] Ye L, Hillier LW, Minx P, Thane N, Locke DP, Martin JC, Chen L, Mitreva M, Miller JR, Haub KV et al.: A vertebrate case study of the quality of assemblies derived from next-generation sequences. Genome Biology 2011. 12(3):R31.
[23] Kim S, Tang H and Mardis ER: Genome sequencing technology and algorithms. Artech House, MA, USA, 2007.
[24] Miller J, Koren S and Sutton G: Assembly algorithms for next-generation sequencing data. Genomics 2010. 95(6):315-327.
[25] Baker M: De novo genome assembly: what every biologist should know. Nature Methods 2015. 9:333-337.
[26] Myers E: Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology 1995. 2:275-290.
[27] Schatz MC, Delcher AL and Salzberg SL: Assembly of large genomes using secondgeneration sequencing. Genome Research 2010. 20(9):1165-1173.
[28] 454 Life Sciences: GS De Novo Assembler. 2016. URL http://www.454.com/products/ analysis-software. Last visited 2016-07-24.
[29] Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C and Sutton G: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 2008. 24(24):2818-2824.
[30] Atallah M: Algorithms and Theory of Computation Handbook. CRC Press LLC, Purdue University, Lafayette, USA, 1999.
[31] Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ and Salzberg SL: GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 2013. 29(14):1718-1725.
[32] Junemann S, Prior K, Albersmeier A, Albaum S, Kalinowski J, Goesmann A and et al.: GABenchToB: A Genome Assembly Benchmark Tuned on Bacteria and Benchtop Sequencers. PLoS ONE 2014. 9:e107014.
[33] Gurevich A, Saveliev V, Vyahhi N and Tesler G: QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013. 29(8):1072-1075.
[34] Ernst P and Gold B: The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annual Review of Microbiolgy. 2000. 54:615-640.
[35] Kienesberger S, Cox LM, Livanos A, Zhang XS, Chung J, Perez-Perez GI, Blaser MJ and et al.: Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Reports 2016. 14(6):1395-1407.
[36] Leunk R, Johnson P, David B, Kraft W and Morgan D: Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. Jounal Medical Microbiology 1988. 26(2):93-99.
[37] Blaser M, Perez-Perez G, Kleanthous H, Cover T, Peek R, Chyou P, Stemmermann G and Nomura A: Infection with Helicobacter pylori Strains Possessing cagA Is Associated with an Increased Risk of Developing Adenocarcinoma of the Stomach. Cancer Research 1995. 55:2111-15.
[38] Telford J, Ghiara P, Dellorco M, Comanducci M, Burroni D and et al.: Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. Journal Experimental Medicine 1994. 179:1653-58.
[39] Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C and Müller A: Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. The Journal of Clinical Investigation 2011. 121(8):3088-3093.
[40] Draper J, Hansen L, Bernick D, Abedrabbo S, Underwood J, Kong N and et al.: Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains. mBio 2017. 8(1): e02321-16.
[41] RefSeq: NCBI Reference Sequence Database. 2016. URL https:// www.ncbi.nlm.nih.gov/refseq/. Last visited 2017-06-08.
[42] NCBI: Sequence Read Archive (SRA). 2016. URL http://www.ncbi.nlm.nih.gov/sra Last visited 2016-08-01.
[43] Illumina Technology: B. cereus MiSeq data. 2016. URL http://www.illumina.com/ systems/miseq/scientific_data.html. Last visited 2016-08-01.
[44] University of Maryland, Institute for Genome Sciences: DRASearch. 2017. URL https: //trace.ddbj.nig.ac.jp/DRASearch/query?center_name=UMIGS Last visited 2017-09-13.
[45] Aronesty E: Ea-utils: command-line tools for processing biological sequencing data. 2011. URL https://expressionanalysis.github.io/ea-utils/. Last visited 2016-08-05.
[46] Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ and Salzberg SL: GAGE-B website. 2016. URL ccb.jhu.edu/gage_b. Last visited 2016-08-01.
[47] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ and Birol ABySS: A parallel assembler for short read sequence data. Genome Research 2009. 19(6):1117-1123.
[48] Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T and Suhai S: Using the MiraEST Assembler for Reliable and Automated mRNA Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Research 2004. 14(6):1147-1159.
[49] Zimin A, Marçais G, Puiu D, Roberts M, Salzberg SL and Yorke JA: The MaSuRCA genome Assembler. Bioinformatics 2013. 29(21):2669-2677.
[50] Simpson JT and Durbin R: Efficient de novo assembly of large genomes using compressed data structures. Genome Research 2012. 22(3):549-556.
[51] Luo R, Liu B, Xie Y, Li Z and Huang Wea: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2015. 1:18.
[52] Bankevich A, Nurk S, Antipov D, Gurevich AA and Dvorkin Mea: SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology 2012. 19(5):455-477.
[53] Zerbino D and Birney E: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 2008. 18(5):821-829.
[54] Delcher AL, Phillippy A, Carlton J and Salzberg SL: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Research 2002. 30(11):2478-2483.
[55] Lee A, O'Rourke J, De Ungria M, Robertson B, Daskalopoulos G and Dixon M: A standardized mouse model of Helicobacter pylori infection: Introducing the Sydney strain. Gastroenterology 1997. 112(4):1386-1397.
[56] Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011. 17(1):10-12.
[57] Bolger AM, Lohse M and Usadel B: Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014. 30(15):2114-2120.
[58] Li H and Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Bioinformatics 2009. 25(14):1754-1760.
[59] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G and Durbin R: The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009. 25(16):2078-2079.
[60] Altschul S, Gish W, Miller W, Myers E and Lipman D: Basic local alignment search tool. Journal of Molecular Biology 1990. 215(3):403-410.
[61] DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel $G$ and et al.: A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. Nature Genetics 2011. 43(5):491-498.
[62] Broad Institute: Picard. 2017. URL https://broadinstitute.github.io/picard/. Last visited 2017-04-14.
[63] Thorvaldsdóttir H, Robinson JT and Mesirov JP: Integrative genomics viewer (igv): highperformance genomics data visualization and exploration. Briefings in Bioinformatics 2013. 14(2):178-192.
[64] García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF and Conesa A: Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012. 28(20):2678-2679.
[65] Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW and Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010. 11(1):119.
[66] Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X and et al.: BASys: a web server for automated bacterial genome annotation. Nucleic Acids Research 2005. 33(Web Server issue):W455-W459.
[67] Darling AE, Mau B and Perna NT: progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 2010. 5(6):e11147.
[68] Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land S, Lu X and Ruden D: A program for annotating and predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012. 6(2):80-92.
[69] Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014. 30(9):1312-1313.
[70] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015. URL http://www.R-project.org/. Last visited 2016-09-25.
[71] Pages H, Aboyoun P, Gentleman R and DebRoy S: Biostrings: String objects representing biological sequences, and matching algorithms, 2016. R package version 2.38.4.
[72] Wickham H: stringr: Simple, Consistent Wrappers for Common String Operations., 2015. URL http://CRAN.R-project.org/package=stringr. R package version 1.0.0. Last visited 2016-09-25.
[73] Charif D and Lobry J: SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In U Bastolla, M Porto, H Roman and M Vendruscolo, editors, Structural approaches to sequence evolution: Molecules, networks, populations, Biological and Medical Physics, Biomedical Engineering, pages 207-232. Springer Verlag, New York, USA, 2007.
[74] Wickham H: The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software 2011. 40(1):1-29.
[75] Hlavac M: stargazer: LaTeX/HTML code and ASCII text for well-formatted regression and summary statistics tables. Harvard University, Cambridge, USA, 2014. URL http: //CRAN.R-project.org/package=stargazer. Last visited: 2016-10-06.
[76] Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H and Gentleman R: ShortRead: a Bioconductor package for input, quality assessment and exploration of highthroughput sequence data. Bioinformatics 2009. 25:2607-2608.
[77] Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P and Morgan M: VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 2014. 30(14):2076-2078.
[78] Paradis E, Claude J and Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004. 20(2):289-290.
[79] NCBI: Helicobacter pylori PMSS1 assembly. 2017. URL https:// www.ncbi.nlm.nih.gov/assembly/GCF_001991095.1. Last visited 2017-04-13.
[80] Ion PGM ${ }^{\text {TM }}$ System for Next-Generation Sequencing. 2016. URL https: //www.thermofisher.com/at/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-pgm-system-for-next-generationsequencing.html. Last visited 2016-08-08.
[81] Luo C, Tsementzi D, Kyrpides N, Read T and Konstantinidis KT: Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample. PLoS ONE 2012. 7(12):e30087.
[82] Chakraborty M, Baldwin-Brown J, Long A and Emerson J: A practical guide to de novo genome assembly using long reads. bioRxiv 2015. doi:https://doi.org/10.1101/029306.
[83] Haeyoung J, Dae-Hee L, Choong-Min R and Seung-Hwan P: Toward Complete Bacterial Genome Sequencing Through the Combined Use of Multiple Next-Generation Sequencing Platforms. Journal of Microbiology and Biotechnology 2017. 26(1):207-212.
[84] Phillippy A, Koren S and Walenz B: canu Documentation. 2017. URL https:// media.readthedocs.org/pdf/canu/latest/canu.pdf. Last visited 2017-06-14.

## 6 Appendix

### 6.1 Implemented R Functions

Following the name of all implemented R functions, as well as a description and input parameter.

- sort_contigs(reads)
- description: sequences of fasta file are sorted by length and assigned with numbers. The longest sequence has the number 1 , second number 2 and so on. It returns the sorted DNAStringSet.
- input parameter:
* reads: a DNAStringSet object containing reads/contigs.
- detail_table(table)
- description: the function computes for every contig the Number_of_Aligned_Contigs as well as the name/number of them (Mapped_Contigs), how many bases cannot be matched (Missing_Bases) and how long the overlap is (Overlap_Bases). Here every base which is aligned more than once to the reference is counted. So more than $100 \%$ overlap is possible.
- input parameter:
* table: a Table that was created by create_table_of_delta() function
- remove_overlaps(table)
- description: filters nucmer alignment results. Alignment matches, where the Reference region in that contig as well as the Query region is fully covered by other matches are excluded. Therefore the object class IRanges from the R package Biostrings as well as the function findOverlaps was used. It returns the filtered Table in the same format as the input table.
- input parameter:
* table: a Table that was created by create_table_of_delta() function
- not_mapped_contigs(table)
- description: returns a data frame with the information on the ranges of not mapped contigs. Ranges that are not in the alignment are determined using setdiff() from package Biostrings.
- input parameter:
* table: a Table that was created by create_table_of_delta() function
- read_splitting(input,overlap)
- description: split reads if they are longer than 1999 bp into subreads with overlap length specified. Therefore the functions readFasta from the package ShortRead and substring from the package Biostrings are used. The id of the reads are normalized, starting with an R, following underline, read number, underline, start point, underline end point.
- input parameter:
* input: fasta file name
* overlap: overlap length of split reads (integer)
- create_dataset(dna_string_set,strain_name)
- description: creates a data.frame() with basic statistics on the read set. It computes number of reads, number of bases, average read length, minimum and maximum read length.
- input parameter:
* dna_string_set: a DNAStringSet object
* strain_name: name of the bacteria (string)
- histogram(dna_file,strain_name)
- description: creates a histogram that shows the read length distribution of a fastq file.
- input parameter:
* dna_file: a fastq file name
* strain_name: name of the title
- coverage(number_bases, ref_seq)
- description: computes the coverage of the reference sequence.
- input parameter:
* number_bases: integer
* ref_seq: reference sequence in fasta format
- N50(contigs)
- description: computes the N50 value of a read set. N50 is the shortest contig length at $50 \%$ of the genome size.
- input parameter:
* contigs: list of the length of each contig
- ill_trim(ill_raw_1, ill_raw_2)
- description: the raw Illumina paired files are used as input, the software trimmomatic is invoked and the trimmed paired files are returned. Reads are trimmed if the quality falls below 3 . No adapters are cut off.
- input parameter:
* : ill_raw_1: raw Illumina paired-end read file 1.
* : ill_raw_2: raw Illumina paired-end read file 2.
- assembly_statistic(assembly_statistics_list, name_list, ref_seq, format)
- description: computes a dataframe with standard statistics. The files of assembly_statistics_list are read in and function create_dataset, as well as coverage and N50 is invoked to compute the statistic.
- input parameter:
* assembly_statistics_list: a list of file names used for statistics
* name list: names of the strains
* ref_seq: reference sequence in fasta format
* format: " f " for FASTA files and "fq" for FASTQ files.
- get_one_short_read_set(read_set_list)
- description: reads in a set of fasta files with readFasta and returns one ShortRead object.
- input parameter:
* read_set_list: a list of fasta file names
- get_one_short_read_set_q(read_set_list)
- description: reads in a set of fastq files with readFastq and returns one ShortReadQ object.
- input parameter:
* read_set_list: a list of fastq file names
- rearrange_middle(read_list)
- description: rearrange assemblies with ends in the middle and writes the assembly in fasta format.
- input parameter:
* read_list: list of assembly fasta file names

```
- introduce_cagA(input,input_name, ref_file)
```

- description: it uses the cagA region of the PMSS1 ref file and matches this sequence to the input sequence with matchPattern() from package Biostrings. This function returns all the positions of this pattern with maximum of two mismatches or gaps. It then introduces one more copy of the cagA gene at the end of the first cagA region and writes the result to a file with extension [cagA number]xcagA.fasta.
- input parameter:
* input: name of the genome file
* input_name: name of the genome
* ref_file: reference PMSS1 file in fasta format
- rearrange_assembly (assembly_name, ref_seq)
- description: uses the first 300 bp of the reference assembly to find the start position in the assembly and rearrange it. It uses the pairwiseAlignment () function from Biostrings package to find this position. If the sequence is in the complementary strain it uses the function reverseComplement () from package ShortRead to get the same strain as the reference strain.
- input parameter:
* assembly_name: name of the assembly file to rearrange
* ref_seq: reference sequence in fasta format
- gatk(input, ill_1,ill_2)
- description: the gatk function includes
* creates reference index for bwa, with bwa index
* creates reference dictionary with picard.jar CreateSequenceDictionary * creates reference index for GATK with samtools faidx
* performs bwa mem with defined read groups with the fasta file and the illumina reads for mapping.
* converts result in bam, sort and index bam files with bwa view/sort/index
* calls GATK HaplotypeCaller with haploid ploidy to find potential variant alleles and creates a vcf file.
* GATK FastaAlternateReferenceMaker is invoced to build the consensus sequence based on the vcf file.
* returns the consensus sequence.
- input parameter:
* input: assembled, rearranged fasta file
* ill_1: trimmed paired Illumina reads
* ill_2: trimmed paired Illumina reads
- prodigal(name_strain, gatk_consensus_file)
- description: invokes prodigal and saves a protein description gff file, an additional gbk formatted file as well as a gene locus file. The gff file is converted to a text file with the function convertProdigalToBasys() that can be used for BASys annotation.
- input parameter:
* name_strain: name that should be used in output files
* gatk_consensus_file: input file used for protein prediction
- create_table_of_delta(table)
- description: creates a demonstrative data frame of a delta file. Columns include the names of the contigs, the length, the start and the end positions and the number of alignment errors including mismatches and gaps. $R$ stands for the Reference genome and $Q$ for the assembly to compare.
- input parameter:
* table: a delta file data frame that is read in with read.table()
- nucmer_compare(name_strain, input, ref_file)
- description: an assembly is aligned against a reference file and the multiple aligner nucmer-maxmatch is invoked. After applying the delta filter the delta file is read in and the own function create_table_of_delta() is invoked. The obtained data frame shows all the ranges that have overlaps with the reference. The ranges that have no overlaps are determined using the provided function setdiff() from the package Biostrings. The return value is a list where the first entry is the Table obtained from the create_table_of_delta function. The second entry is a Table with the ranges of the reference that are not covered by the query.
- input parameter:
* name_strain: name of the strain used to name the delta file
* input: input fasta file name that should be aligned
* ref_file: name of the reference file
- ill_trim_cut(ill_raw_1, ill_raw_2, ill_seq)
- description: the Illumina reads are trimmed and adapter sequences provided with the ill_seq fasta file are cut from the read with the software Trimmomatic. The results are four files, one pair of paired reads and one including unpaired reads.
- input parameter:
* ill_raw_1: forward Illumina paired-end file to trim
* ill_raw_2: reverse Illumina paired-end file to trim
* ill_seq: all possible adapter sequences in fasta format
- ill_trim_cutadapt(ill_raw_1, ill_raw_2, ill_seq)
- description: the adapter sequences provided with the ill_seq fasta file are cut from the reads with the software Cutadapt. The forward and reverse trimmed fasta files are returned.
- input parameter:
* ill_raw_1: forward Illumina paired-end file to trim
* ill_raw_2: reverse Illumina paired-end file to trim
* ill_seq: all possible adapter sequences in fasta format
- reference_splitting(input_file)
- description: The DNAString object of a reference fasta file is split into pieces with a random length between 1500 and 1999 bp . Therefore the functions sample() and substring() from the package Biostrings are used. The whole reference genome is split 40 times to achieve a coverage of 40 . This function conduces to control the assembly process of Canu and Newbler.
- input parameter:
* input_file: reference fasta file that has to be split
- snps_statistic(vcf_file,fasta_file, name_strain)
- description: reads in an annotated vcf-file using readVcf from package VariantAnnotation. The return value is a list with the first entry showing a detail Table with number of variants, effected genes, snps, indels, deletions, missense mutations, synonymous mutations and the number of nonsense mutations. The second Table is a detail Table showing all the variants positions, the reference bases of strain PMSS1, the actual (alternative) bases, the kind of effect and the gene/protein if the variant is in an exon region.
- input parameter:
* vcf_file: an annotated vcf file
* fasta_file: the reference fasta file
* name_strain: name of the strain


### 6.2 Assembly Tools for Small Genomes

Following is a summary of the assembly results for all of the twelve data sets used in this study compared with the reference genome (Tables A.1-A.12).

The performance of each of the assembler compared with Newbler assembler on all of the twelve data sets is summarised in Tables A.17-A.27. The individual rank of each assembler across all nine bacteria is shown in Figures A.13- A.16.

### 6.3 Helicobacter Pylori

Detail statistics of LoRDEC and Jabba error correction on PM21 PacBio read files is shown in Table A.28. Statistic of PMSS1 Illumina reads after adapter removal by different tools is shown in Table A.29. PacBio read statistic for strain PMSS1 after hybrid error correction with proovread depending on the different short read adapter removal software tools is shown Tables A.30 and A.31, and the assembly statistics after Canu and Newbler in Tables A.32-A.35. For missing ranges of the assembly see Tables A.36- A.50.
Table A.1: $R$.sphaeroides MiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 846 | 282 | 148 | 885 | 63 | 1,032 | 275 | 655 | 441 | 7 |
| Total Length | 4,567,617 | 4,567,635 | 3,952,878 | 4,662,776 | 4,247,935 | 4,621,116 | 4,618,855 | 4,537,774 | 4,554,476 | 4,602,977 |
| Minimum Contig Length | 49 | 18 | 172 | 85 | 318 | 112 | 66 | 61 | 169 | 37,100 |
| Maximum Contig Length | 71,578 | 118,527 | 127,844 | 67,456 | 241,348 | 44,874 | 286,217 | 71,713 | 115,051 | 3,188,524 |
| N50 Value | 21,558 | 36,722 | 41,794 | 15,445 | 142,742 | 9,086 | 118,093 | 24,300 | 33,829 | 3,188,524 |
| Reference Covered by Contigs \% | 99.68 | 99.94 | 86.48 | 99.81 | 92.57 | 99.43 | 99.98 | 99.25 | 98.9 |  |
| Bases Overlapping Query \% | 4.63 | 2.97 | 2.48 | 3.45 | 1.8 | 5.62 | 5.5 | 3.84 | 3.28 |  |
| Mismatches and Indels \% | 0.28 | 0.09 | 0.17 | 0.2 | 0.1 | 0.26 | 0.23 | 0.27 | 0.11 |  |
| Bases not Mapping | 14,693 | 2,723 | 622,292 | 8,917 | 342,146 | 26,338 | 994 | 34,355 | 50,819 |  |
| Contigs Covered by Reference \% | 99.97 | 99.99 | 99.98 | 100 | 100 | 99.98 | 99.7 | 100 | 99.86 |  |
| Bases Overlapping Reference \% | 4.11 | 2.23 | 1.51 | 4.98 | 1.38 | 6.6 | 5.61 | 3.11 | 3.15 |  |

Table A.2: R. sphaeroides HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 1,557 | 1,014 | 539 | 1,581 | 130 | 12,186 | 350 | 798 | 7,436 | 7 |
| Total Length | 4,633,465 | 4,548,770 | 4,216,057 | 4,725,855 | 4,489,204 | 5,704,978 | 4,670,077 | 4,525,236 | 5,220,141 | 4,602,977 |
| Minimum Contig Length | 31 | 4 | 101 | 45 | 301 | 101 | 56 | 97 | 100 | 37,100 |
| Maximum Contig Length | 66,408 | 41,908 | 41,321 | 110,511 | 358,962 | 75,323 | 291,333 | 59,062 | 45,522 | 3,188,524 |
| N50 Value | 13,002 | 10,095 | 12,421 | 17,052 | 176,783 | 8,907 | 74,486 | 13,775 | 8,960 | 3,188,524 |
| Reference Covered by Contigs \% | 99.92 | 99.87 | 91.93 | 99.98 | 97.83 | 96.01 | 99.99 | 99.02 | 99.43 |  |
| Bases Overlapping Query \% | 4.11 | 3.15 | 2.37 | 5.15 | 4.08 | 24.17 | 5.04 | 4.04 | 5.09 |  |
| Mismatches and Indels \% | 0.31 | 0.16 | 0.18 | 0.33 | 0.27 | 1.04 | 0.25 | 0.25 | 0.36 |  |
| Bases not Mapping | 3,892 | 5,780 | 371,652 | 803 | 99,810 | 183,509 | 620 | 45,223 | 26,383 |  |
| Contigs Covered by Reference \% | 99.69 | 99.97 | 99.98 | 99.98 | 100 | 99.9 | 99.44 | 99.98 | 99.96 |  |
| Bases Overlapping Reference \% | 4.57 | 2.03 | 1.82 | 7.96 | 3.67 | 57.8 | 6.03 | 3.24 | 19.69 |  |

Table A.3: V. cholerae MiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 564 | 242 | 241 | 501 | 173 | 1,901 | 1,486 | 209 | 312 | 2 |
| Total Length | 3,959,969 | 3,945,419 | 3,953,298 | 4,112,140 | 4,034,988 | 4,357,240 | 4,451,154 | 3,960,394 | 3,954,533 | 4,033,464 |
| Minimum Contig Length | 63 | 1 | 1,007 | 122 | 357 | 87 | 100 | 95 | 101 | 1,072,315 |
| Maximum Contig Length | 178,118 | 285,908 | 140,691 | 450,326 | 255,146 | 105,420 | 741,022 | 246,346 | 246,179 | 2,961,149 |
| N50 Value | 60,973 | 136,901 | 33,710 | 112,926 | 76,131 | 23,501 | 246,623 | 92,036 | 71,357 | 2,961,149 |
| Reference Covered by Contigs \% | 99.62 | 99.74 | 98.07 | 99.75 | 98.51 | 99.66 | 99.76 | 99.66 | 99.58 |  |
| Bases Overlapping Query \% | 14.9 | 5.11 | 3.72 | 6.7 | 3.15 | 22.77 | 6.24 | 5.02 | 6.36 |  |
| Mismatches and Indels \% | 0.9 | 0.3 | 0.22 | 0.3 | 0.18 | 1.16 | 0.34 | 0.23 | 0.41 |  |
| Bases not Mapping | 15,419 | 10,656 | 77,920 | 10,073 | 60,192 | 13,563 | 9,782 | 13,834 | 16,770 |  |
| Contigs Covered by Reference \% | 99.98 | 99.67 | 99.85 | 99.54 | 99.97 | 99.83 | 90.11 | 99.84 | 99.79 |  |
| Bases Overlapping Reference \% | 13.18 | 2.77 | 3.45 | 8.58 | 4.67 | 32.81 | 6.56 | 3.31 | 4.49 |  |

Table A.4: V. cholerae HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 338 | 491 | 128 | 2,673 | 105 | 2,596 | 207 | 325 | 344 | 2 |
| Total Length | 4,115,424 | 3,922,846 | 3,855,763 | 4,337,203 | 3,994,617 | 4,171,725 | 3,955,126 | 3,939,751 | 3,969,747 | 4,033,464 |
| Minimum Contig Length | 51 | 1 | 163 | 33 | 304 | 70 | 100 | 97 | 100 | 1,072,315 |
| Maximum Contig Length | 280,277 | 153,905 | 256,726 | 316,666 | 555,664 | 108,154 | 214,711 | 157,783 | 425,556 | 2,961,149 |
| N50 Value | 94,508 | 47,372 | 61,249 | 87,069 | 241,604 | 22,871 | 83,518 | 40,877 | 135,118 | 2,961,149 |
| Reference Covered by Contigs \% | 99.73 | 99.71 | 96.93 | 99.76 | 99.48 | 99.58 | 99.75 | 99.69 | 99.75 |  |
| Bases Overlapping Query \% | 11.66 | 5.09 | 3.42 | 6.61 | 3.79 | 76.48 | 7.67 | 7.67 | 8.12 |  |
| Mismatches and Indels \% | 0.6 | 0.36 | 0.25 | 0.4 | 0.23 | 4.68 | 0.48 | 0.44 | 0.44 |  |
| Bases not Mapping | 10,903 | 11,594 | 124,000 | 9,548 | 20,885 | 16,892 | 9,967 | 12,659 | 9,936 |  |
| Contigs Covered by Reference \% | 99.9 | 99.88 | 99.97 | 99.59 | 99.97 | 99.97 | 99.89 | 99.98 | 99.92 |  |
| Bases Overlapping Reference \% | 14.11 | 2.39 | 1.92 | 14.45 | 3.27 | 82.89 | 5.72 | 5.45 | 6.57 |  |

Table A.5: H. fragilis HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 168 | 588 | 138 | 542 | 119 | 2,291 | 151 | 246 | 402 | 1 |
| Total Length | 7,041,280 | 5,300,437 | 5,214,282 | 5,433,200 | 5,396,385 | 5,508,253 | 5,332,156 | 5,289,907 | 5,314,517 | 5,373,121 |
| Minimum Contig Length | 83 | 1 | 141 | 35 | 318 | 56 | 96 | 145 | 100 | 5,373,121 |
| Maximum Contig Length | 419,237 | 203,398 | 363,813 | 378,585 | 391,846 | 188,622 | 534,462 | 286,976 | 384,109 | 5,373,121 |
| N50 Value | 106,769 | 79,346 | 95,840 | 134,263 | 158,716 | 41,205 | 157,732 | 125,214 | 125,627 | 5,373,121 |
| Reference Covered by Contigs \% | 81.94 | 81.92 | 81.06 | 81.94 | 81.88 | 81.9 | 81.94 | 81.91 | 81.94 |  |
| Bases Overlapping Query \% | 2.03 | 2.18 | 1.4 | 2.92 | 1.94 | 8.9 | 1.93 | 2.06 | 2.18 |  |
| Mismatches and Indels \% | 0.8 | 0.82 | 0.86 | 0.88 | 0.84 | 1.1 | 0.82 | 0.82 | 0.82 |  |
| Bases not Mapping | 970,573 | 971,486 | 1,017,555 | 970,126 | 973,536 | 970,573 | 970,258 | 972,062 | 970,368 |  |
| Contigs Covered by Reference \% | 82.9 | 82.04 | 83.12 | 81.38 | 82.27 | 81.7 | 82.09 | 82.53 | 82.49 |  |
| Bases Overlapping Reference \% | 29.3 | 1.17 | 1 | 3.31 | 2.7 | 10.9 | 1.44 | 1.39 | 1.82 |  |

Table A.6: A. hydrophila HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 174 | 458 | 113 | 1,314 | 32 | 2,186 | 339 | 103 | 216 | 1 |
| Total Length | 4,985,428 | 4,948,435 | 5,009,370 | 5,269,026 | 4,915,618 | 5,123,704 | 5,011,698 | 4,895,627 | 4,915,552 | 4,744,448 |
| Minimum Contig Length | 65 | 1 | 69 | 35 | 302 | 70 | 96 | 95 | 100 | 4,744,448 |
| Maximum Contig Length | 654,090 | 565,723 | 710,684 | 290,325 | 1,124,684 | 199,964 | 592,124 | 526,254 | 455,879 | 4,744,448 |
| N50 Value | 237,457 | 234,867 | 278,382 | 244,066 | 828,647 | 64,647 | 379,681 | 180,361 | 243,851 | 4,744,448 |
| Reference Covered by Contigs \% | 89.16 | 89.08 | 88.09 | 89.17 | 88.76 | 89.1 | 89.17 | 89.1 | 89.15 |  |
| Bases Overlapping Query \% | 4.27 | 1.92 | 1.12 | 4.03 | 2.41 | 13.4 | 4.68 | 2.15 | 3.33 |  |
| Mismatches and Indels \% | 5.86 | 5.72 | 5.83 | 5.7 | 5.87 | 6.1 | 5.8 | 5.83 | 5.88 |  |
| Bases not Mapping | 514,113 | 518,215 | 564,881 | 513,783 | 533,169 | 515,160 | 513,826 | 517,025 | 514,639 |  |
| Contigs Covered by Reference \% | 85.1 | 84.12 | 85.5 | 80.6 | 85.1 | 84.3 | 84 | 85.3 | 85.2 |  |
| Bases Overlapping Reference \% | 4.9 | 0.71 | 3.4 | 4.9 | 2 | 16.5 | 4.5 | 1.1 | 2.6 |  |

Table A.7: S. aureus HiSeq overview table

Table A.9: M. abscessus MiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 328 | 368 | 857 | 2,167 | 326 | 1,230 | 910 | 286 | 197 | 2 |
| Total Length | 5,149,082 | 5,167,890 | 5,116,733 | 5,922,392 | 5,418,490 | 5,380,709 | 5,412,372 | 5,161,555 | 5,152,802 | 5,090,491 |
| Minimum Contig Length | 58 | 1 | 423 | 54 | 382 | 92 | 100 | 193 | 100 | 23,319 |
| Maximum Contig Length | 245,660 | 182,170 | 40,668 | 279,306 | 104,386 | 59,847 | 498,363 | 226,629 | 286,460 | 5,067,172 |
| N50 Value | 70,424 | 55,820 | 8,655 | 81,728 | 36,211 | 12,516 | 215,400 | 47,327 | 131,561 | 5,067,172 |
| Reference Covered by Contigs \% | 99.38 | 99.43 | 96.4 | 99.44 | 98.43 | 99.38 | 99.43 | 99.13 | 99.42 |  |
| Bases Overlapping Query \% | 3.69 | 0.63 | 0.39 | 1.1 | 0.25 | 2.34 | 0.55 | 1.18 | 2.63 |  |
| Mismatches and Indels \% | 0.09 | 0.02 | 0.05 | 0.07 | 0.03 | 0.13 | 0.03 | 0.06 | 0.05 |  |
| Bases not Mapping | 31,401 | 29,206 | 183,126 | 28,767 | 79,862 | 31,587 | 29,025 | 44,250 | 29,646 |  |
| Contigs Covered by Reference \% | 98.3 | 97.96 | 98.54 | 97.66 | 98.45 | 98.4 | 93.8 | 98.08 | 98.22 |  |
| Bases Overlapping Reference \% | 3.79 | 0.65 | 3.04 | 15.47 | 6.63 | 7.12 | 0.88 | 1.51 | 2.67 |  |

\footnotetext{
Table A.10: M. abscessus HiSeq overview table

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 147 | 169 | 127 | 16,036 | 66 | 679 | 99 | 189 | 143 | 2 |
| Total Length | 5,134,453 | 5,132,927 | 5,116,091 | 7,760,947 | 5,146,013 | 5,183,701 | 5,139,836 | 5,136,597 | 5,150,322 | 5,090,491 |
| Minimum Contig Length | 57 | 5 | 1,196 | 25 | 327 | 74 | 100 | 97 | 116 | 23,319 |
| Maximum Contig Length | 610,290 | 653,368 | 238,341 | 338,337 | 375,149 | 101,254 | 627,055 | 191,465 | 474,277 | 5,067,172 |
| N50 Value | 119,446 | 125,716 | 81,416 | 104,848 | 246,830 | 28,533 | 150,258 | 60,955 | 148,639 | 5,067,172 |
| Reference Covered by Contigs \% | 99.38 | 99.42 | 98.98 | 99.44 | 99.42 | 99.35 | 99.44 | 99.38 | 99.42 |  |
| Bases Overlapping Query \% | 3.2 | 2.83 | 0.86 | 1.4 | 0.18 | 2.65 | 1.53 | 2.49 | 2.12 |  |
| Mismatches and Indels \% | 0.1 | 0.04 | 0.09 | 0.18 | 0.07 | 0.13 | 0.06 | 0.06 | 0.04 |  |
| Bases not Mapping | 31,694 | 29,650 | 52,120 | 28,742 | 29,673 | 33,028 | 28,703 | 31,723 | 29,255 |  |
| Contigs Covered by Reference \% | 98.47 | 98.39 | 98.49 | 97.27 | 98.49 | 98.49 | 98.45 | 98.45 | 98.27 |  |
| Bases Overlapping Reference \% | 3.19 | 2.65 | 0.88 | 51.01 | 0.33 | 3.65 | 1.52 | 2.48 | 2.14 |  |

Table A.11: B. cereus MiSeq overview table

|  | Abyss | Newbler | CABOG | Mira M | MaSuRCA |  | SGA | SPAdes | Velvet | Soap | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 617 | 364 | 78 | 164 | 90 | 90 | 3,344 | 50,090 | 444 | 123 | 2 |
| Total Length | 5,431,491 | 5,360,290 | 5,419,995 5, | 5,422,635 | 5,440,292 | 926,180 | 0,355 | 17,888,992 | 5,325,180 | 5,352,193 | 5,432,652 |
| Minimum Contig Length | 49 | 1 | 425 | 35 | 300 | 0 | 149 | 86 | 58 | 130 | 208,369 |
| Maximum Contig Length | 430,487 | 151,588 | 258,489 | 311,769 | 766,822 |  | 6,317 | 346,945 | 91,844 | 606,530 | 5,224,283 |
| N50 Value | 130,570 | 51,065 | 155,352 | 116,480 | 246,697 |  | 2,044 | 251 | 24,577 | 246,346 | 5,224,283 |
| Reference Covered by Contigs \% | 99.97 | 99.95 | 99.51 | 99.99 | 99.87 |  | 99.96 | 99.99 | 99.28 | 99.18 |  |
| Bases Overlapping Query \% | 6.49 | 2.13 | 1.37 | 4.31 | 5.32 |  | 01.08 | 16.19 | 3.45 | 3.13 |  |
| Mismatches and Indels \% | 0.34 | 0.07 | 0.04 | 0.11 | 0.1 | . 1 | 0.89 | 5.22 | 0.16 | 0.14 |  |
| Bases not Mapping | 1,681 | 2,457 | 26,649 | 771 | 7,096 |  | 2,263 | 778 | 39,266 | 44,568 |  |
| Contigs Covered by Reference \% | 99.88 | 99.9 | 99.96 | 99.96 | 99.96 |  | 99.94 | 80.85 | 99.95 | 99.96 |  |
| Bases Overlapping Reference \% | 6.43 | 0.72 | 1.59 | 4.1 | 5.58 |  | 128.8 | 219.69 | 2.07 | 2.36 |  |
| Table A.12: B. cereus HiSeq overview table |  |  |  |  |  |  |  |  |  |  |  |
|  | Abyss | Newbler | CABOG | G Mir |  | MaSuRCA |  | SPAdes | Velvet | Soap | Reference |
| Contig Number | 894 | 1,212 | 164 | 468 | 7 | 259 |  | 1,127 | 527 | 3,161 | 2 |
| Total Length | 5,879,341 | 5,614,401 | 4,797,470 | 5,670,388 |  | 5,640,375 |  | 5,962,659 | 5,016,338 | 5,991,251 | 5,432,652 |
| Minimum Contig Length | 65 | 1 | 476 |  | 75 | 96 |  | 76 | 62 | 100 | 208,369 |
| Maximum Contig Length | 257,581 | 184,282 | 387,299 | 5 524,448 |  | 397,830 |  | 459,337 | 267,159 | 268,115 | 5,224,283 |
| N50 Value | 38,893 | 28,984 | 79,405 | 543,373 |  | 97,165 |  | 90,150 | 42,292 | 48,403 | 5,224,283 |
| Reference Covered by Contigs \% | 73.22 | 73.06 | 59.1 | $1 \quad 71.88$ |  | 71.46 |  | 73.32 | 66.5 | 73.3 |  |
| Bases Overlapping Query \% | 6.22 | 2.18 | 2.7 | $7 \quad 1.88$ |  | 3 |  | 4.14 | 3.89 | 29.8 |  |
| Mismatches and Indels \% | 7.63 | 7.64 | 7.7 | 7.7 7.79 |  | 7.89 |  | 7.58 | 7.83 | 8 |  |
| Bases not Mapping | 1,454,867 | 1,463,431 | 2,223,123 | 1,527,588 |  | 1,550,507 |  | 1,449,234 | 1,819,713 | 1,452,551 |  |
| Contigs Covered by Reference \% | 68.9 | 70.3 | 67.8 | 8 70.6 |  | 69.9 |  | 67.5 | 72 | 69.6 |  |
| Bases Overlapping Reference \% | 7.9 | 1.7 | 3.1 | $1 \quad 3.6$ | . 6 | 4.1 |  | 5.2 | 3.5 | 36.2 |  |

Table A.13: Sum of the ranks of all bacteria for each assembler for all parameters

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 54 | 59 | 27 | 73 | 13 | 86 | 46 | 42 | 50 |
| Maximum Contig Length | 45 | 58 | 61 | 45 | 26 | 83 | 26 | 64 | 42 |
| N50 Value | 54 | 58 | 58 | 43 | 20 | 88 | 28 | 61 | 40 |
| Reference Covered by Contigs \% | 41 | 45 | 88 | 18 | 74 | 60 | 14 | 58 | 47 |
| Bases Overlapping Query \% | 70 | 36 | 18 | 58 | 26 | 86 | 53 | 43 | 59 |
| Mismatches and Indels \% | 63 | 18 | 40 | 58 | 35 | 86 | 50 | 46 | 51 |
| Contigs Covered by Reference \% | 53 | 65 | 21 | 66 | 27 | 47 | 76 | 32 | 49 |
| Bases Overlapping Reference \% | 70 | 20 | 25 | 72 | 41 | 86 | 52 | 31 | 51 |
| Sum of the Ranks | 450 | 359 | 338 | 433 | 262 | 622 | 345 | 377 | 389 |
| Global Rank | 8 | 4 | 2 | 7 | 1 | 9 | 3 | 5 | 6 |
| Table A.14: Sum of the ranks of all bacteria for each assembler for the most improtant quality parameters |  |  |  |  |  |  |  |  |  |
|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| Reference Covered by Contigs \% | 41 | 45 | 88 | 18 | 74 | 60 | 14 | 58 | 47 |
| Bases Overlapping Query \% | 70 | 36 | 18 | 58 | 26 | 86 | 53 | 43 | 59 |
| Mismatches and Indels \% | 63 | 18 | 40 | 58 | 35 | 86 | 50 | 46 | 51 |
| Contigs Covered by Reference \% | 53 | 65 | 21 | 66 | 27 | 47 | 76 | 32 | 49 |
| Bases Overlapping Reference \% | 70 | 20 | 25 | 72 | 41 | 86 | 52 | 31 | 51 |
| Sum of the Ranks | 297 | 184 | 192 | 272 | 203 | 365 | 245 | 210 | 257 |
| Global Rank | 8 | 1 | 2 | 7 | 3 | 9 | 5 | 4 | 6 |

Table A.15: Sum of the ranks of the three MiSeq data ( $R$. sphaeroides, V. cholerae and M. abscessus) for each assembler for all parameters

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 18 | 13 | 11 | 23 | 5 | 26 | 18 | 10 | 11 |
| Maximum Contig Length | 18 | 13 | 20 | 13 | 13 | 26 | 3 | 16 | 13 |
| N50 Value | 18 | 11 | 20 | 14 | 13 | 26 | 4 | 16 | 13 |
| Reference Covered by Contigs \% | 15 | 8 | 27 | 6 | 24 | 15 | 4 | 18 | 18 |
| Bases Overlapping Query \% | 24 | 11 | 6 | 17 | 3 | 25 | 16 | 15 | 18 |
| Mismatches and Indels \% | 25 | 6 | 11 | 17 | 6 | 25 | 14 | 17 | 14 |
| Contigs Covered by Reference \% | 12 | 18 | 9 | 17 | 5 | 13 | 27 | 11 | 19 |
| Bases Overlapping Reference \% | 20 | 5 | 10 | 23 | 13 | 26 | 16 | 9 | 13 |
| Sum of the Ranks | 150 | 85 | 114 | 130 | 82 | 182 | 102 | 112 | 119 |
| Global Rank | 8 | 2 | 5 | 7 | 1 | 9 | 3 | 4 | 6 |

Table A.16: Sum of the ranks of the three HiSeq data ( $R$. sphaeroides, $V$. cholerae and $M$.abscessus) for each assembler for all parameters

|  | Abyss | Newbler | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contig Number | 16 | 18 | 8 | 25 | 3 | 25 | 7 | 15 | 18 |
| Maximum Contig Length | 12 | 17 | 21 | 12 | 7 | 22 | 10 | 21 | 13 |
| N50 Value | 13 | 18 | 19 | 13 | 3 | 27 | 9 | 20 | 13 |
| Reference Covered by Contigs \% | 13 | 13 | 27 | 4 | 20 | 23 | 6 | 19 | 10 |
| Bases Overlapping Query \% | 22 | 13 | 4 | 15 | 7 | 25 | 15 | 15 | 19 |
| Mismatches and Indels \% | 21 | 5 | 10 | 20 | 11 | 26 | 15 | 11 | 16 |
| Contigs Covered by Reference \% | 18 | 20 | 6 | 20 | 4 | 10 | 21 | 9 | 19 |
| Bases Overlapping Reference \% | 19 | 10 | 4 | 24 | 8 | 26 | 14 | 12 | 18 |
| Sum of the Ranks | 134 | 114 | 99 | 133 | 63 | 184 | 97 | 122 | 126 |
| Global Rank | 8 | 4 | 3 | 7 | 1 | 9 | 2 | 5 | 6 |

Table A.17: H. fragilis HiSeq comparison with Newbler

|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Covered by Contigs \% | 99.03 | 98.02 | 99.6 | 99 | 99.08 | 99.22 | 99.01 | 99.06 |
| Bases Overlapping Query \% | 1.48 | 1.31 | 1.49 | 1.19 | 3.17 | 1.34 | 1.23 | 1.44 |
| Mismatches and Indels \% | 0.17 | 0.2 | 0.18 | 0.18 | 0.4 | 0.17 | 0.1 | 0.15 |
| Bases not Mapping Query | 3,104 | 1,911 | 17,526 | 1,996 | 20,142 | 2,656 | 1,368 | 3,809 |
| Bases not Mapping Reference | 51,428 | 104,828 | 21,265 | 53,266 | 48,754 | 41,224 | 52,511 | 50,040 |
| Contigs Covered by Reference \% | 99.96 | 99.96 | 99.68 | 99.96 | 99.63 | 99.95 | 99.97 | 99.93 |
| Bases Overlapping Reference \% | 35.73 | 1.66 | 4.1 | 3.99 | 7.76 | 2.67 | 2 | 2.59 |
| Number of Identical Contigs | 4 | 2 | 7 | 1 | 23 | 6 | 25 | 20 |
| Table A.18: A. hydrophila HiSeq comparison with Newbler |  |  |  |  |  |  |  |  |
|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| Reference Covered by Contigs \% | 98.69 | 98.52 | 99.77 | 98.66 | 98.73 | 99.11 | 98.68 | 98.71 |
| Bases Overlapping Query \% | 3.36 | 1.8 | 2.3 | 1.77 | 3.41 | 2.21 | 2.96 | 1.64 |
| Mismatches and Indels \% | 0.05 | 0.06 | 0.1 | 0.1 | 0.14 | 0.04 | 0.04 | 0.04 |
| Bases not Mapping Query | 4,828 | 1,281 | 224,831 | 1,858 | 29,209 | 55,073 | 2,866 | 4,227 |
| Bases not Mapping Reference | 64,585 | 73,183 | 11,215 | 66,372 | 62,887 | 44,009 | 65,483 | 63,993 |
| Contigs Covered by Reference \% | 99.9 | 99.97 | 95.73 | 99.96 | 99.43 | 98.9 | 99.94 | 99.91 |
| Bases Overlapping Reference \% | 5.35 | 4.54 | 4.62 | 2.4 | 7.77 | 3.29 | 3.14 | 2.18 |
| Number of Identical Contigs | 7 | 3 | 8 | 0 | 9 | 3 | 9 | 5 |

[^0]Table A.20: M. abscessus MiSeq comparison with Newbler

|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Covered by Contigs \% | 99.5 | 96.39 | 99.97 | 98.47 | 99.51 | 99.69 | 99.3 | 99.59 |
| Bases Overlapping Query \% | 2.61 | 0.43 | 0.53 | 0.29 | 1.52 | 0.26 | 0.75 | 1.37 |
| Mismatches and Indels \% | 0.06 | 0.05 | 0.06 | 0.02 | 0.1 | 0.02 | 0.03 | 0.04 |
| Bases not Mapping Query | 5,379 | 777 | 25,926 | 628 | 2,240 | 245,054 | 13,559 | 9,077 |
| Bases not Mapping Reference | 25,744 | 186,630 | 1,439 | 79,220 | 25,507 | 15,945 | 35,950 | 21,050 |
| Contigs Covered by Reference \% | 99.9 | 99.98 | 99.56 | 99.99 | 99.96 | 95.47 | 99.74 | 99.82 |
| Bases Overlapping Reference \% | 2.64 | 3.03 | 14.73 | 6.67 | 6.16 | 0.57 | 1.06 | 1.3 |
| Number of Identical Contigs | 11 | 0 | 52 | 4 | 4 | 19 | 4 | 8 |
| Table A.21: M. abscessus HiSeq comparison with Newbler |  |  |  |  |  |  |  |  |
|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| Reference Covered by Contigs \% | 99.86 | 99.46 | 99.98 | 99.89 | 99.83 | 99.91 | 99.85 | 99.92 |
| Bases Overlapping Query \% | 1.91 | 1.98 | 1.71 | 0.46 | 1.9 | 2.37 | 2 | 1.91 |
| Mismatches and Indels \% | 0.07 | 0.06 | 0.15 | 0.08 | 0.08 | 0.02 | 0.04 | 0.03 |
| Bases not Mapping Query | 1,688 | 880 | 98,988 | 779 | 4,043 | 2,467 | 4,592 | 13,832 |
| Bases not Mapping Reference | 7,257 | 27,758 | 1,205 | 5,572 | 8,827 | 4,571 | 7,487 | 4,104 |
| Contigs Covered by Reference \% | 99.97 | 99.98 | 98.72 | 99.98 | 99.92 | 99.95 | 99.91 | 99.73 |
| Bases Overlapping Reference \% | 2.06 | 2.17 | 51.87 | 0.8 | 3 | 2.54 | 2.13 | 2.07 |
| Number of Identical Contigs | 15 | 3 | 5 | 9 | 3 | 16 | 13 | 8 |
| Table A.22: B. cereus MiSeq comparison Newbler |  |  |  |  |  |  |  |  |
|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| Reference Covered by Contigs \% | 99.85 | 99.88 | 99.94 | 99.91 | 99.89 | 99.96 | 99.19 | 99.79 |
| Bases Overlapping Query \% | 2.05 | 0.45 | 0.6 | 0.51 | 2.67 | 1.41 | 1.49 | 1.16 |
| Mismatches and Indels \% | 0.17 | 0.06 | 0.08 | 0.04 | 0.26 | 3.83 | 0.08 | 0.08 |
| Bases not Mapping Query | 15,183 | 1,521 | 3,952 | 1,731 | 27,183 | 3,516,008 | 2,541 | 1,870 |
| Bases not Mapping Reference | 8,234 | 6,232 | 3,438 | 4,791 | 5,754 | 2,345 | 43,699 | 11,196 |
| Contigs Covered by Reference \% | 99.72 | 99.97 | 99.93 | 99.97 | 99.56 | 80.35 | 99.95 | 99.97 |
| Bases Overlapping Reference \% | 3.3 | 1.64 | 1.76 | 2.07 | 17.97 | 172.91 | 1.6 | 1.18 |
| Number of Identical Contigs | 1 | 7 | 9 | 1 | 46 | 9 | 17 | 9 |

Table A.23: B. cereus HiSeq comparison with Newbler

|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Reference Covered by Contigs \% | 99.43 | 99.88 | 98.84 | 98.08 | 99.59 | 99.83 | 88.57 |
| Bases Overlapping Query $\%$ | 4.79 | 0.45 | 3.61 | 3.73 | 7.24 | 3.76 | 4.15 |
| Mismatches and Indels \% | 0.5 | 0.06 | 0.41 | 0.48 | 0.96 | 0.44 | 0.45 |
| Bases not Mapping Query | 15,853 | 1,521 | 6,991 | 8,550 | 188,126 | 216,293 | 7,993 |
| Bases not Mapping Reference | 31,767 | 6,232 | 65,141 | 107,592 | 22,929 | 9,347 | 641,649 |
| Contigs Covered by Reference \% | 99.73 | 99.97 | 99.88 | 99.85 | 97.86 | 96.37 | 99.84 |
| Bases Overlapping Reference \% | 10 | 1.64 | 5.66 | 5.95 | 64.59 | 9.035 |  |
| Number of Identical Contigs | 8 | 7 | 6 | 7 | 40 | 9.54 | 4.33 |

[^1]|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Reference Covered by Contigs \% | 99.67 | 86.85 | 99.81 | 92.57 | 99.43 | 99.99 | 99.24 |
| Bases Overlapping Query \% | 2.9 | 1.91 | 2.55 | 2.71 | 2.58 | 3.08 | 2.91 |
| Mismatches and Indels \% | 0.23 | 0.14 | 0.15 | 0.15 | 0.16 | 0.07 |  |
| Bases not Mapping Query | 8,181 | 1,033 | 3,366 | 1,636 | 3,799 | 18,947 | 3.25 |
| Bases not Mapping Reference | 14,878 | 600,441 | 8,712 | 339,401 | 26,097 | 554 | 34,691 |
| Contigs Covered by Reference \% | 99.82 | 99.97 | 99.93 | 99.96 | 99.92 | 99.59 | 99.92 |
| Bases Overlapping Reference \% | 3.05 | 1.31 | 4.81 | 2.92 | 9.579 |  |  |
| Number of Identical Contigs | 29 | 3 | 8 | 2.83 |  |  |  |

[^2]Table A.26: V. cholerae MiSeq comparison with Newbler

|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Covered by Contigs \% | 99.94 | 99.99 | 99.91 | 99.98 | 99.82 | 90.41 | 99.98 | 99.85 |
| Bases Overlapping Query \% | 6.56 | 2.5 | 7.47 | 5.13 | 18.55 | 4.89 | 2.31 | 2.46 |
| Mismatches and Indels \% | 0.35 | 0.14 | 0.37 | 0.23 | 0.7 | 0.28 | 0.18 | 0.18 |
| Bases not Mapping Query | 17,843 | 33,355 | 4,979 | 30,155 | 10,528 | 946 | 10,126 | 12,741 |
| Bases not Mapping Reference | 2,278 | 489 | 3,768 | 730 | 7,942 | 426,822 | 970 | 6,032 |
| Contigs Covered by Reference \% | 99.55 | 99.16 | 99.87 | 99.24 | 99.73 | 99.98 | 99.74 | 99.68 |
| Bases Overlapping Reference \% | 5.78 | 1.47 | 3.09 | 2.08 | 7.29 | 2.55 | 1.7 | 2.05 |
| Number of Identical Contigs | 10 | 0 | 11 | 10 | 1 | 3 | 5 | 9 |
| Table A.27: V. cholerae HiSeq comparison with Newber |  |  |  |  |  |  |  |  |
|  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
| Reference Covered by Contigs \% | 99.69 | 99.91 | 99.49 | 99.93 | 98.66 | 99.87 | 99.76 | 99.81 |
| Bases Overlapping Query \% | 6.92 | 1.68 | 12.61 | 3.73 | 8.99 | 2.76 | 1.82 | 3.11 |
| Mismatches and Indels \% | 0.24 | 0.14 | 0.38 | 0.33 | 0.48 | 0.22 | 0.21 | 0.23 |
| Bases not Mapping Query | 5,220 | 75,074 | 2,420 | 7,339 | 11,004 | 2,879 | 7,275 | 3,003 |
| Bases not Mapping Reference | 12,729 | 3,367 | 22,262 | 2,614 | 56,105 | 5,306 | 9,395 | 7,569 |
| Contigs Covered by Reference \% | 99.87 | 98.09 | 99.94 | 99.81 | 99.72 | 99.93 | 99.81 | 99.92 |
| Bases Overlapping Reference \% | 2.1 | 1.59 | 2.32 | 1.75 | 3.58 | 1.99 | 1.44 | 2.02 |
| Number of Identical Contigs | 12 | 1 | 1 | 0 | 23 | 10 | 11 | 10 |

Table A.28: LoRDEC and Jabba error correction statistics on PM21 strain and subsequent data

|  | Number of Reads | Number of Bases | Average Read Length | Minimum Read Length | Maximum Read Length | Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM21_corr | 39,311 | 143, 755, 371 | 3,657 | 34 | 36,462 | 86.191 |
| PM21_split | 180, 972 | 56, 319, 064 | 311 | 100 | 2,181 | 33.767 |
| PM21_trim | 37,319 | 128, 586, 429 | 3,446 | 19 | 35,050 | 77.096 |
| PM21-jabba | 32,098 | 11,688,414 | 364 | 43 | 3,485 | 7.008 |
| PM21_1_X01_corr | 5, 990 | 22, 344, 166 | 3,730 | 35 | 27,577 | 13.397 |
| PM21_1_X02_corr | 6,754 | 24, 792, 935 | 3, 671 | 35 | 31,893 | 14.865 |
| PM21_1_X03_corr | 7,982 | 30, 166, 041 | 3,779 | 34 | 35,335 | 18.087 |
| PM21_2_X01_corr | 5,829 | 19, 145, 856 | 3, 285 | 35 | 33, 181 | 11.479 |
| PM21_2_X02_corr | 6,522 | 22, 301, 080 | 3,419 | 35 | 32,963 | 13.371 |
| PM21_2_X03_corr | 6, 234 | 25, 005, 293 | 4, 011 | 35 | 36,462 | 14.992 |
| PM21_1_X01_split | 28, 122 | 8, 719, 368 | 310 | 100 | 2, 178 | 5.228 |
| PM21_1_X02_split | 31,546 | 9, 864, 231 | 313 | 100 | 2,181 | 5.914 |
| PM21_1_X03_split | 38, 169 | 11, 838,801 | 310 | 100 | 2,180 | 7.098 |
| PM21_2_X01_split | 23,894 | 7, 343,891 | 307 | 100 | 2,156 | 4.403 |
| PM21_2_X02_split | 28,307 | 8, 922,547 | 315 | 100 | 2, 178 | 5.350 |
| PM21_2_X03_split | 30,934 | 9, 630, 226 | 311 | 100 | 2, 178 | 5.774 |
| PM21_1_X01_trim | 5,740 | 20, 105, 402 | 3, 503 | 19 | 26,894 | 12.055 |
| PM21_1_X02_trim | 6,375 | 22, 232, 101 | 3,487 | 19 | 31,247 | 13.330 |
| PM21_1_X03_trim | 7,625 | 27, 134,092 | 3,559 | 19 | 35,050 | 16.269 |
| PM21_2_X01_trim | 5,522 | 16, 853,537 | 3, 052 | 19 | 32,503 | 10.105 |
| PM21_2_X02_trim | 6, 167 | 19, 795, 122 | 3, 210 | 19 | 32,814 | 11.869 |
| PM21_2_X03_trim | 5,890 | 22, 466, 175 | 3,814 | 19 | 34,706 | 13.470 |
| PM21_1_X01-jabba | 4, 974 | 1, 821, 403 | 366 | 45 | 2,880 | 1.092 |
| PM21_1_X02-jabba | 5, 424 | 1, 903, 477 | 351 | 43 | 3,012 | 1.141 |
| PM21_1_X03-jabba | 6,770 | 2, 551, 445 | 377 | 44 | 3,001 | 1.530 |
| PM21_2_X01-jabba | 4,582 | 1, 662, 146 | 363 | 44 | 2, 179 | 0.997 |
| PM21_2_X02_jabba | 5, 235 | 1, 901, 774 | 363 | 44 | 2,514 | 1.140 |
| PM21_2_X03-jabba | 5,113 | 1, 848, 169 | 361 | 45 | 3,485 | 1.108 |

Table A.29: Illumina reads statistic after adapter removal for strain PMSS1

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Reads | $8,771,554$ | $7,261,142$ | $7,329,607$ |
| Number of Bases | $1,242,993,451$ | $1,004,083,398$ | $1,005,824,793$ |
| Average Read Length | 142 | 138 | 137 |
| Minimum Read Length | 1 | 36 | 2 |
| Maximum Read Length | 151 | 151 | 151 |
| Reference Coverage | 768 | 620 | 621 |

Table A.30: Trimmed PacBio reads after proovread for strain PMSS1.

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Reads | 14,737 | 14,890 | 14,892 |
| Number of Bases | $54,234,516$ | $55,023,769$ | $53,964,429$ |
| Average Read Length | 3,680 | 3,695 | 3,624 |
| Minimum Read Length | 403 | 335 | 500 |
| Maximum Read Length | 29,566 | 29,433 | 29,565 |
| Reference Coverage | 34 | 34 | 33 |

Table A.31: PacBio reads after proovread with untrimmed reads included for strain PMSS1.

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Reads | 11,358 | 11,428 | 11,384 |
| Number of Bases | $57,584,368$ | $57,522,225$ | $57,623,746$ |
| Average Read Length | 5,070 | 5,033 | 5,062 |
| Minimum Read Length | 258 | 223 | 245 |
| Maximum Read Length | 33,436 | 33,442 | 33,422 |
| Reference Coverage | 36 | 36 | 36 |

Table A.32: Canu hybrid assembly statistic on strain PMSS1.

|  | Cutadapt | Trimmomatic | Trimmomatic mod. | Canu | Ref. Canu |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Number of Contigs | 5 | 4 | 3 | 1 | 11 |
| Number of Bases | $1,618,840$ | $1,612,244$ | $1,608,236$ | $1,618,182$ | $1,624,016$ |
| Average Contig Length | 323,768 | 403,061 | 536,079 | $1,618,182$ | 147,638 |
| Minimum Contig Length | 10,153 | 132,723 | 132,725 | $1,618,182$ | 2,692 |
| Maximum Contig Length | 849,867 | 697,030 | $1,218,223$ | $1,618,182$ | 531,590 |
| Reference Coverage | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 |
| N50 | 849,867 | 487,513 | $1,218,223$ | $1,618,182$ | 236,000 |

Table A.33: Canu hybrid assembly statistic with untrimmed long reads included for strain PMSS1.

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Contigs | 9 | 13 | 17 |
| Number of Bases | $1,720,798$ | $1,781,498$ | $1,804,749$ |
| Average Contig Length | 191,200 | 137,038 | 106,162 |
| Minimum Contig Length | 11,473 | 15,680 | 11,474 |
| Maximum Contig Length | 470,219 | 409,372 | 464,730 |
| Reference Coverage | 1.1 | 1.1 | 1.1 |
| N50 | 418,706 | 304,083 | 240,898 |

Table A.34: Newbler hybrid assembly statistic for strain PMSS1

|  | Cutadapt | Trimmomatic | Trimmomatic modified | Ref. Newbler |
| :--- | ---: | ---: | ---: | ---: |
| Number of Contigs | 26 | 28 | 30 | 23 |
| Number of Bases | $1,592,469$ | $1,592,870$ | $1,592,200$ | $1,595,242$ |
| Average Contig Length | 61,249 | 56,888 | 53,073 | 69,358 |
| Minimum Contig Length | 461 | 461 | 212 | 462 |
| Maximum Contig Length | 500,015 | 295,061 | 292,685 | 319,311 |
| Reference Coverage | 0.98 | 0.98 | 0.98 | 0.99 |
| N50 | 180,012 | 149,354 | 180,015 | 178,900 |

Table A.35: Newbler hybrid assembly statistic with untrimmed reads included for strain PMSS1.

|  | Cutadapt | Trimmomatic | Trimmomatic modified |
| :--- | ---: | ---: | ---: |
| Number of Contigs | 23 | 23 | 23 |
| Number of Bases | $1,592,198$ | $1,592,250$ | $1,592,294$ |
| Average Contig Length | 69,226 | 69,228 | 69,230 |
| Minimum Contig Length | 461 | 461 | 461 |
| Maximum Contig Length | 499,602 | 499,655 | 499,651 |
| Reference Coverage | 0.98 | 0.98 | 0.98 |
| N50 | 180,015 | 180,015 | 180,013 |

Table A.36: PMSS1: Ranges of reference genome that are not covered by contigs using Cutadapt, proovread and Canu.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 627,520 | 627,790 | 271 |
| 2 | CP018823.1 | 688,747 | 689,186 | 440 |
| 3 | CP018823.1 | 689,364 | 690,365 | 1,002 |
| 4 | CP018823.1 | 691,389 | 691,508 | 120 |
| 5 | CP018823.1 | 826,509 | 826,519 | 11 |
| 6 | CP018823.1 | $1,395,521$ | $1,398,498$ | 2,978 |

Table A.37: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic, proovread and Canu.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 200,903 | 201,354 | 452 |
| 2 | CP018823.1 | 826,507 | 826,519 | 13 |
| 3 | CP018823.1 | $1,523,463$ | $1,524,403$ | 941 |
| 4 | CP018824.1 | 1 | 6,058 | 6,058 |

Table A.38: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic modified, proovread and Canu

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 426,830 | 431,440 | 4,611 |
| 2 | CP018823.1 | 826,505 | 827,082 | 578 |
| 3 | CP018824.1 | 1 | 6,058 | 6,058 |

Table A.39: PMSS1: Ranges of reference genome that are not covered by contigs using Cutadapt, proovread with untrimmed reads included and Canu

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 402,365 | 406,894 | 4,530 |
| 2 | CP018823.1 | $1,461,723$ | $1,461,833$ | 111 |
| 3 | CP018823.1 | $1,462,318$ | $1,462,446$ | 129 |
| 4 | CP018823.1 | $1,469,338$ | $1,469,851$ | 514 |

Table A.40: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic, proovread with untrimmed reads included and Canu

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 198,793 | 199,165 | 373 |
| 2 | CP018823.1 | 402,764 | 411,376 | 8,613 |
| 3 | CP018823.1 | $1,043,425$ | $1,045,247$ | 1,823 |
| 4 | CP018823.1 | $1,406,665$ | $1,407,165$ | 501 |
| 5 | CP018823.1 | $1,509,145$ | $1,509,209$ | 65 |
| 6 | CP018823.1 | $1,510,017$ | $1,510,748$ | 732 |
| 7 | CP018824.1 | 1 | 6,058 | 6,058 |

Table A.41: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic modified, proovread with untrimmed reads included and Canu

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 162,745 | 166,000 | 3,256 |
| 2 | CP018823.1 | 876,443 | 892,557 | 16,115 |
| 3 | CP018823.1 | 892,825 | 892,992 | 168 |
| 4 | CP018823.1 | $1,149,454$ | $1,149,819$ | 366 |
| 5 | CP018823.1 | $1,609,359$ | $1,616,704$ | 7,346 |

Table A.42: PMSS1: Ranges of reference genome using stand-alone Canu assembly

|  | GenBank accession | start | end | width |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018824.1 | 1 | 6,058 | 6,058 |

Table A.43: PMSS1: Ranges of reference genome that are not covered by contigs using splitted reads of the reference (1500-1999 bp) with coverage 40 and Canu

| GenBank accession | start | end | width |
| :---: | :---: | :---: | :---: |

Table A.44: PMSS1: Ranges of reference genome that are not covered by contigs using Cutadapt, proovread and Newbler.

|  | GenBank accession | start | end | width |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 321,342 | 321,342 | 1 |
| 2 | CP018823.1 | 691,444 | 691,456 | 13 |
| 3 | CP018823.1 | 691,499 | 691,508 | 10 |
| 4 | CP018823.1 | 826,505 | 826,519 | 15 |
| 5 | CP018823.1 | $1,409,206$ | $1,409,206$ | 1 |

Table A.45: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic, proovread and Newbler.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 200,903 | 200,910 | 8 |
| 2 | CP018823.1 | 826,510 | 826,519 | 10 |
| 3 | CP018823.1 | $1,409,206$ | $1,409,206$ | 1 |
| 4 | CP018823.1 | $1,524,299$ | $1,524,322$ | 24 |

Table A.46: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic modified, proovread and Newbler.

|  | GenBank accession | start | end | width |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 826,509 | 826,519 | 11 |
| 2 | CP018823.1 | $1,033,073$ | $1,033,073$ | 1 |

Table A.47: PMSS1: Ranges of reference genome that are not covered by contigs using Cutadapt, proovread with untrimmed reads included and Newbler.

| GenBank accession | start | end | width |  |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | $1,438,186$ | $1,438,189$ | 4 |

Table A.48: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic, proovread with untrimmed reads included and Newbler.

| GenBank accession | start | end | width |
| :---: | :---: | :---: | :---: |

Table A.49: PMSS1: Ranges of reference genome that are not covered by contigs using Trimmomatic modified, proovread with untrimmed reads included and Newbler.

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 707,790 | 707,790 | 1 |
| 2 | CP018823.1 | $1,033,073$ | $1,033,073$ | 1 |
| 3 | CP018823.1 | $1,409,206$ | $1,409,206$ | 1 |
| 4 | CP018823.1 | $1,438,138$ | $1,438,138$ | 1 |

Table A.50: PMSS1: Ranges of reference genome that are not covered by contigs using splitted reads (1500-1999 bp) of the Reference with coverage 40 and Newbler

|  | GenBank accession | start | end | width |
| :--- | ---: | ---: | ---: | ---: |
| 1 | CP018823.1 | 707,790 | 707,790 | 1 |
| 2 | CP018823.1 | 796,972 | 796,973 | 2 |
| 3 | CP018823.1 | 978,052 | 978,053 | 2 |
| 4 | CP018823.1 | $1,033,073$ | $1,033,073$ | 1 |
| 5 | CP018823.1 | $1,409,206$ | $1,409,206$ | 1 |

Table A.51: Genetic variants (SNPs and indels) compared to strain PMSS1. Numbers in Gene column indicate that mutation is in a region of a hypothetical protein.

| Position | Ref. | Alt. | Type | Gene | Strains |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5,928 | C | T | missense_variant | 1007 | PM21 |
| 6,327 | G | A | missense_variant | 1007 | PM22 |
| 6,328 | G | A | missense_variant | 1007 | PM21 |
| 7,165 | GTT | G | intergenic |  | SS1 |
| 7,165 | GT | G | intergenic |  | PM21, PM22 |
| 101, 464 | C | T | missense_variant | mcp4_[H] | SS1 |
| 102, 853 | A | AC | intergenic |  | SS1 |
| 116,556 | A | C | intergenic |  | SS1 |
| 116,558 | T | G | intergenic |  | SS1 |
| 116,595 | T | G | intergenic |  | SS1 |
| 116,597 | A | G | intergenic |  | SS1 |
| 116, 601 | T | C | intergenic |  | SS1 |
| 117, 183 | C | T | synonymous_variant | topA_[H] | SS1 |
| 117, 552 | T | C | synonymous_variant | topA_[H] | SS1 |
| 117, 564 | C | G | synonymous_variant | topA_[H] | SS1 |
| 118, 800 | T | C | synonymous_variant | topA_[H] | SS1 |
| 127, 408 | C | T | synonymous_variant | infC_[H] | PM22 |
| 127, 429 | G | A | synonymous_variant | infC_[ H$]$ | PM22 |
| 127, 465 | G | A | synonymous_variant | infC_[H] | PM22 |
| 127, 486 | G | A | synonymous_variant | infC_[H] | PM22 |
| 127, 501 | G | A | synonymous_variant | infC_[H] | PM22 |
| 127, 507 | T | C | synonymous_variant | infC_[H] | PM22 |
| 127, 522 | A | G | synonymous_variant | infC_[ H$]$ | PM22 |
| 127, 525 | C | T | synonymous_variant | infC_[H] | PM22 |
| 127, 630 | A | G | synonymous_variant | infC_[H] | PM22 |
| 127, 775 | T | C | synonymous_variant | infC_[H] | PM22 |
| 134, 530 | A | G | stop_lost\&splice_region_variant | sdaC_[H] | SS1 |
| 204,567 | C | T | stop_gained | 1195 | PM21 |
| 249, 916 | C | T | missense_variant | yejF-[H] | PM22 |
| 249, 924 | C | T | synonymous_variant | yejF-[H] | PM22 |
| 249, 951 | A | G | synonymous_variant | yejF_[H] | PM22 |
| 249, 984 | A | C | missense_variant | yejF_[H] | PM22 |
| 249, 985 | A | G | missense_variant | yejF_[H] | PM22 |
| 249, 986 | T | C | missense_variant | yejF-[H] | PM22 |
| 249, 990 | T | A | synonymous_variant | yejF-[H] | PM22 |
| 250, 028 | A | AT | frameshift_variant | yejF_[H] | SS1 |
| 250, 049 | A | G | synonymous_variant | yejF_[H] | PM22 |
| 250, 059 | A | G | synonymous_variant | yejF-[H] | PM22 |
| 250, 068 | C | T | synonymous_variant | yejF-[H] | PM22 |
| 250, 185 | C | T | synonymous_variant | yejF-[H] | PM22 |
| 250, 212 | T | C | synonymous_variant | yejF_[H] | PM22 |
| 250, 215 | A | G | synonymous_variant | yejF-[H] | PM22 |
| 343, 489 | CA | C | intergenic |  | PM21 |
| 343, 489 | C | CA | intergenic |  | PM22 |
| 400, 924 | T | C | synonymous_variant | $\operatorname{acsA}$ [ $[\mathrm{H}]$ | PM22 |
| 401, 068 | C | T | synonymous_variant | acsA_[ H$]$ | PM22 |
| 401, 074 | A | G | synonymous_variant | $\operatorname{acsA} A_{-}[\mathrm{H}]$ | PM22 |
| 401, 086 | C | T | synonymous_variant | acsA_[H] | PM22 |
| 401, 113 | A | G | synonymous_variant | acsA_[ H$]$ | PM22 |
| 401, 119 | G | A | synonymous_variant | acsA_[H] | PM22 |


| 401, 206 | C | T | synonymous_variant | $\operatorname{acs} \mathrm{A}_{[ }[\mathrm{H}]$ | PM22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 401, 294 | A | G | missense_variant | $\operatorname{acs} \mathrm{A}_{[ }[\mathrm{H}]$ | PM22 |
| 401, 299 | G | A | synonymous_variant | $\operatorname{acs} A_{[ }[\mathrm{H}]$ | PM22 |
| 401, 319 | T | G | missense_variant | $\operatorname{acs} A_{[ }[\mathrm{H}]$ | PM22 |
| 401, 369 | C | T | missense_variant | $\operatorname{acs} A_{[ }[\mathrm{H}]$ | PM22 |
| 401, 416 | G | A | synonymous_variant | acsA_[ H$]$ | PM22 |
| 419, 034 | T | G | missense_variant | fur_[H] | PM22, SS1 |
| 476, 442 | C | CA | intergenic |  | PM22 |
| 477, 181 | CA | C | frameshift_variant | katA_[H] | SS1 |
| 477, 326 | T | G | missense_variant | katA_[H] | PM21, PM22, SS1 |
| 538, 772 | CA | C | intergenic |  | SS1 |
| 584,930 | CG | C | intergenic |  | PM21, SS1 |
| 607, 693 | G | A | missense_variant | mrdB_[H] | PM21 |
| 627, 017 | A | G | synonymous_variant | 1605 | PM21 |
| 627, 446 | T | C | synonymous_variant | 1605 | SS1 |
| 628, 851 | A | AC | frameshift_variant\&start_lost | dcuA_[H] | PM21 |
| 630, 278 | C | A | synonymous_variant | 1608 | PM22 |
| 630, 281 | A | C | synonymous_variant | 1608 | PM22 |
| 630, 283 | A | C | missense_variant | 1608 | PM22 |
| 630, 479 | C | T | synonymous_variant | 1608 | SS1 |
| 630, 482 | G | A | synonymous_variant | 1608 | SS1 |
| 630,488 | G | A | synonymous_variant | 1608 | SS1 |
| 630,506 | G | A | synonymous_variant | 1608 | SS1 |
| 630, 656 | C | T | synonymous_variant | 1608 | SS1 |
| 632, 165 | C | CA | intergenic |  | PM22, SS1 |
| 634, 124 | A | G | missense_variant | yggA_[H] | SS1 |
| 667, 520 | ATT | A | intergenic |  | PM22 |
| 691, 443 | C | CT | intergenic |  | PM21, PM22 |
| 721, 372 | G | GT | frameshift_variant | pldA_[C] | SS1 |
| 733, 089 | G | A | missense_variant | 1696 | SS1 |
| 750, 920 | C | CA | frameshift_variant | 1713 | PM22 |
| 753, 543 | C | T | synonymous_variant | virB10_[H] | SS1 |
| 753, 564 | T | C | synonymous_variant | virB10-[H] | SS1 |
| 753, 567 | T | A | synonymous_variant | virB10_[H] | SS1 |
| 753, 628 | A | AGA... | frameshift_variant | virB10_[H] | SS1 |
| 753, 987 | G | A | synonymous_variant | virB10-[H] | PM21 |
| 754, 019 | C | A | missense_variant | virB10_[H] | PM21 |
| 754, 020 | T | C | synonymous_variant | virB10_[H] | PM21 |
| 754, 274 | AAA... | A | conservative_inframe_deletion | virB10_[H] | PM21 |
| 810, 173 | G | A | missense_variant | ykgB | PM22 |
| 835, 966 | G | GA | intergenic |  | SS1 |
| 885, 411 | C | CT | intergenic |  | SS1 |
| 1,009, 698 | C | A | missense_variant | czcA | SS1 |
| 1, 086, 712 | G | GA | frameshift_variant | 2000 | PM21 |
| 1, 086, 881 | G | A | synonymous_variant | 2000 | PM21 |
| 1,086, 893 | G | A | synonymous_variant | 2000 | PM21 |
| 1,086, 920 | G | A | synonymous_variant | 2000 | PM21 |
| 1,086, 937 | A | G | synonymous_variant | 2000 | PM21 |
| 1,090, 839 | G | T | synonymous_variant | hemH | PM21 |
| 1,119, 323 | A | G | synonymous_variant | rfaI | PM21 |
| 1,119,336 | A | G | synonymous_variant | rfaI | PM21 |
| 1,119, 469 | T | C | missense_variant | rfaI | PM21 |
| 1,119,476 | A | C | missense_variant | rfaI | PM21 |
| 1,119, 523 | C | CAAA | intergenic |  | PM21 |


| 1,119, 567 | C | T | intergenic |  | PM21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1,129, 510 | T | G | synonymous_variant | 2040 | PM21 |
| 1, 129, 513 | A | G | synonymous_variant | 2040 | PM21 |
| 1,170, 423 | T | C | intergenic |  | PM22 |
| 1, 188, 487 | G | A | stop_gained | cstA | SS1 |
| 1, 196, 576 | A | G | synonymous_variant | 2103 | PM22 |
| 1,238, 320 | TTA... | T | intergenic |  | SS1 |
| 1,242,314 | G | A | missense_variant | 2138 | SS1 |
| 1,271, 704 | C | CAA... | intergenic |  | PM21 |
| 1,272, 186 | A | C | missense_variant | ssb | SS1 |
| 1,272, 187 | A | G | synonymous_variant | ssb | SS1 |
| 1,272,195 | C | G | missense_variant | ssb | SS1 |
| 1,272, 199 | A | G | synonymous_variant | ssb | SS1 |
| 1,272, 203 | G | T | missense_variant | ssb | SS1 |
| 1,272, 241 | A | G | synonymous_variant | ssb | SS1 |
| 1,274, 668 | G | A | synonymous_variant | 2168 | SS1 |
| 1,279, 530 | A | AT | frameshift_variant | yejA | SS1 |
| 1,319, 161 | T | C | missense_variant | rplQ | PM21 |
| 1,333, 645 | ATT. | A | intergenic |  | PM22 |
| 1,350, 996 | CA | C | intergenic |  | PM21 |
| 1,379, 250 | T | TG | frameshift_variant\&stop_lost | 2286 | PM21, PM22, SS1 |
| 1,414, 470 | CGA | C | frameshift_variant | cptA | PM21 |
| 1,414, 470 | C | CGA | frameshift_variant | cptA | PM22 |
| 1,528, 405 | A | AC | frameshift_variant | 2422 | PM21, PM22, SS1 |
| 1,551, 199 | CTTT | C | intergenic |  | SS1 |
| 1,601, 213 | G | A | missense_variant | mrdA | PM21, PM22, SS1 |
| 1,601, 222 | G | GT | intergenic |  | PM21, PM22, SS1 |
| 1,601, 227 | G | T | intergenic |  | PM21, PM22, SS1 |
| 1,601, 232 | T | C | stop_retained_variant | engB | PM21, PM22, SS1 |
| 1,601, 236 | G | A | missense_variant | engB | PM21, PM22, SS1 |
| 1,601, 370 | C | A | missense_variant | engB | PM21, PM22, SS1 |
| 1,601,385 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 408 | T | A | missense_variant | engB | PM21, PM22, SS1 |
| 1,601, 463 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 481 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601,517 | T | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601,577 | T | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601,691 | A | C | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 721 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 751 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 774 | T | C | missense_variant | engB | PM21, PM22, SS1 |
| 1,601, 775 | G | C | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 792 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 796 | T | C | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601,799 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,601, 814 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602, 704 | C | T | missense_variant | engB | PM21, PM22, SS1 |
| 1,602, 712 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,738 | C | T | missense_variant | engB | PM21, PM22, SS1 |
| 1,602, 748 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602, 751 | G | C | missense_variant | engB | PM21, PM22, SS1 |
| 1,602, 752 | C | T | missense_variant | engB | PM21, PM22, SS1 |
| 1,602, 760 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602, 775 | T | C | synonymous_variant | engB | PM21, PM22, SS1 |


| 1,602,793 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1,602,796 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,826 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,840 | C | T | missense_variant | engB | PM21, PM22, SS1 |
| 1,602,901 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,928 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,933 | A | G | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,952 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,602,998 | T | C | missense_variant | engB | PM21, PM22, SS1 |
| 1,603, 070 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,603, 340 | G | A | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,603,359 | G | A | missense_variant | engB | PM21, PM22, SS1 |
| 1,603,425 | A | G | missense_variant | engB | PM21, PM22, SS1 |
| 1,603,427 | C | T | synonymous_variant | engB | PM21, PM22, SS1 |
| 1,603,433 | T | C | synonymous_variant | engB | PM21, PM22, SS1 |


[^0]:    Table A.19: S. aureus HiSeq comparison with Newbler

    |  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet | Soap |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | Reference Covered by Contigs \% | 99.57 | 97.91 | 99.83 | 98.59 | 99.59 | 99.68 | 99.47 | 99.61 |
    | Bases Overlapping Query \% | 1.73 | 1.66 | 1.34 | 0.87 | 3.96 | 1.25 | 1.25 | 1.2 |
    | Mismatches and Indels \% | 0.14 | 0.23 | 0.2 | 0.18 | 0.39 | 0.16 | 0.15 |  |
    | Bases not Mapping Query | 3,201 | 1,527 | 10,064 | 1,092 | 27,382 | 4,839 | 953 | 2,264 |
    | Bases not Mapping Reference | 12,080 | 58,986 | 4,749 | 39,874 | 11,619 | 8,960 | 15,068 | 10,956 |
    | Contigs Covered by Reference \% | 99.89 | 99.95 | 99.65 | 99.96 | 99.09 | 99.83 | 99.97 | 99.92 |
    | Bases Overlapping Reference \% | 9.77 | 2.66 | 3.46 | 4.77 | 10.73 | 2.68 | 1.88 | 2.59 |
    | Number of Identical Contigs | 4 | 0 | 1 | 0 | 23 | 0 | 5 |  |

[^1]:    Table A.24: R. sphaeroides MiSeq comparison with Newbler

[^2]:    Table A.25: R. sphaeroides HiSeq comparison with Newbler

    |  | Abyss | CABOG | Mira | MaSuRCA | SGA | SPAdes | Velvet |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | Reference Covered by Contigs \% | 99.86 | 92.32 | 99.96 | 97.78 | 95.95 | 99.96 | 98.97 |
    | Bases Overlapping Query \% | 1.92 | 1.91 | 2.32 | 1.86 | 4.03 | 3.07 | 2.33 |
    | Mismatches and Indels \% | 0.23 | 0.15 | 0.2 | 0.23 | 0.48 | 0.17 | 0.16 |
    | Bases not Mapping Query | 26,373 | 3,656 | 11,626 | 5,166 | 71,962 | 34,193 | 10,767 |
    | Bases not Mapping Reference | 6,364 | 349,164 | 1,797 | 100,955 | 184,120 | 1,705 | 46,736 |
    | Contigs Covered by Reference \% | 99.43 | 99.91 | 99.75 | 99.88 | 98.74 | 99.27 | 99.76 |
    | Bases Overlapping Reference \% | 3.37 | 2.06 | 6.08 | 28,343 |  |  |  |
    | Number of Identical Contigs | 37 | 68 | 5 | 2.63 | 32.95 | 5.11 | 2.59 |

