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Abstract

Embedded systems have become widely available during the last years and are now
integrated in several devices, such as cars, industrial machines or electric power plants.
Although there is a lot of ongoing research to secure embedded systems, there have been
various successful attacks on these systems in the past [FMC11; MR12].

Nevertheless, the security of embedded Control Devices is still not taken into account
very often, since they are mostly located in a private network and therefore meant to be
secure. But such a misinterpretation can be very dangerous, especially if we think of Cyber
Physical Systems like for example in hydro-electric power plants, where an attack could
cause a black out or cost human lives.

Since it is nearly impossible to prevent every potential attack either caused by vulner-
abilities in software or human failure, the goal of this work is to detect attacks in an early
stage. This way counter measures can be applied to minimize the impact of an attack.
In our approach we use an improved Remote Attestation protocol to ensure the binary
integrity of the software running on an embedded Control Devices. This protocol is not
only able to statically verify the system state, but it also recognises attacks at runtime.
To obtain continuous information about the state of a Control Device we extended the
Linux kernel. The improved Remote Attestation protocol also integrates well into the
Scari framework [IRK+17]. Whenever malicious behaviour is detected, the improved Re-
mote Attestation protocol hands over the system control to the Scari framework. Scari
may then isolate the attacked device and moves the control tasks to a backup Control
Device.



iv

Kurzfassung

Eingebettete Systeme wurden in den letzten Jahren weit verbreitet eingesetzt und sind
mittlerweile in vielen Geräten, wie Autos, Industriemaschinen oder Kraftwerken integriert.
Obwohl es viele laufende Forschungsarbeiten zur Sicherung von eingebetteten Systemen
gibt, waren in der Vergangenheit verschiedene Angri�e auf diese Systeme erfolgreich [FMC11;
MR12].

Dennoch wird die Sicherheit von eingebetteten Steuergeräten noch nicht sehr oft be-
rücksichtigt, da sie meist in einem privaten Netzwerk angesiedelt sind und somit als sicher
erachtet werden. Eine solche Fehlinterpretation kann aber sehr gefährlich sein, besonders
wenn wir an Cyber-Physikalische Systeme denken, wie sie zum Beispiel in Wasserkraft-
werken zu �nden sind. Dort könnte ein Angri� einen Stromausfall verursachen oder Men-
schenleben kosten.

Da es nahezu unmöglich ist, jeden denkbaren Angri� zu verhindern, der entweder durch
eine Schwachstelle in der Software oder durch menschliches Fehlverhalten verursacht wird,
ist es das Ziel dieser Arbeit, Angri�e frühzeitig zu erkennen. Auf diese Weise können
Gegenmaÿnahmen ergri�en werden, um die Auswirkungen eines Angri�s zu minimieren.
In unserem Ansatz verwenden wir ein verbessertes Remote Attestation-Protokoll, um die
binäre Integrität der Software, die auf einem eingebetteten Steuergerät ausgeführt wird,
sicherzustellen. Dieses Protokoll ist nicht nur in der Lage den Systemzustand einmalig zu
veri�zieren, sondern erkennt auch Angri�e während der Laufzeit. Um kontinuierliche Infor-
mationen über den Zustand eines Steuergerätes zu erhalten, wurde der Linux-Kernel von
uns erweitert. Das verbesserte Remote Attestation-Protokoll integriert sich auch gut in
das Scari-Framework [IRK+17]. Wenn ein Angri� erkannt wurde, übergibt das verbesser-
te Remote Attestation-Protokoll die Kontrolle über das System an das Scari-Framework.
Scari kann dann das angegri�ene Gerät isolieren und die Kontrollaufgaben an ein Backup-
Steuergerät weiterleiten.
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Chapter 1

Introduction

In this thesis we introduce a modi�ed Remote Attestation (RA) protocol, that simpli�es
the deployment process of distributed systems. This is achieved by the use of certi�cates
and signatures for the trusted applications. Additionally we want to detect and mitigate
possible malicious changes in the system before any damage can happen. The improved RA
protocol, we introduce, allows to continuously monitor the system state of an embedded
Control Device (CD). Detected malicious changes can be used by the Scari framework
[IRK+17] to adopt the system, which should mitigate the attack.

1.1 Motivation

In the past industrial machines were controlled by Control Systems (CSs) that were built
for exactly one speci�c task. Nowadays embedded CDs are usually built with Commercial-
O�-The-Shelf hardware and require an Operating System (OS) and software to work. On
the one hand this comes with the advantage that they are cheaper than custom systems and
may also provide more functionality in many cases. On the other hand more functionality
may result in more attack vectors on the system. Moreover these systems are often prone to
common attacks [DAD+11]. Usually they also have a network connection, since this makes
it much easier to maintain them. But by connecting these Cyber Physical Systems (CPSs)
it is also much easier to attack them. This is why security has become more important
than it ever was. Especially as an attack on CPSs can potentially have a big impact: e.g.
an attack on a hydro-electric power plant could result in a blackout or physical damage.

Attacks to CPSs, which have already happened in the past, show that it is nearly
impossible to prevent them. If an attacker really wants to get into a speci�c system, there
may always be an exploit. For example Stuxnet used several zero-day-exploits and was
designed to destroy the CDs controlling centrifuges used for the enrichment of uranium
[FMC11; Lan11]. The attack on the Ukrainian power grid in 2015 caused an outage
for about 225, 000 people [LAC16]. Obviously there are much more attacks targeting
critical infrastructure and Supervisory Control and Data Acquisition (SCADA) systems
as summarized by [MR12]. These attacks show us that it is nearly impossible to build
a system that does not have a single vulnerability. A more detailed description of these
attacks can be found in Section 3.1.

One approach to make CPSs as part of critical infrastructure more secure against

1



CHAPTER 1. INTRODUCTION 2

di�erent types of attacks, is to detect a potential attack in an early stage. This way
countermeasure can be applied before it comes to an impact or the infection can spread
in the network. To do so, many di�erent aspects of the system have to be monitored, like
network tra�c, application sandboxing or binary system integrity.

1.2 Goal

The goal of this thesis is to provide one building block to increase the security of CPSs by
detecting malicious software changes within a system. This is basically done by an adopted
RA protocol. In contrast to default RA our approach also detects changes at runtime.
Furthermore, malicious changes in the system are reported to initiate countermeasures.
One possible countermeasure would be to transfer the control tasks of the machine to
another device and isolate it from the rest of the network. This would prevent the infection
to spread to other devices in the CPS.

1.3 Outline

In Chapter 2 we give a short introduction to the basics, needed to understand the rest
of our work. Next, in Chapter 3 we discuss work related to ours. After that Chapter 4
contains an overview over our domain. We discuss the problems and our solutions including
a detailed protocol description. Chapter 5 contains a description of the implementation
of our prototype of the RA protocol for embedded control devices used in hydro-electric
power plants. This implementation can be used to simply verify the state of a remote host,
that is also running the protocol, to build up a secure and trusted network connection or
for a monitor connection. We also describe the requirements of the implementation to the
system where it is supposed to run on. In Chapter 6 we evaluate our work concerning
di�erent aspects like performance, maintenance e�ort and data tra�c. Finally, we give a
conclusion and discuss open problems and what is needed to be done to use our protocol
in a real system in Chapter 7.



Chapter 2

Background

This chapter brie�y introduces the technologies our work is based on. Section ?? gives
a short overview over the concept of Trusted Computing (TC), including all technologies
and terms that are important for this work. TC de�nes a set of technologies to establish
trust within a system. It is developed and supported by the Trusted Computing Group
(TCG).

2.1 Trusted Platform Module

The Trusted Platform Module (TPM) is a hardware module that implements a set of cryp-
tographic algorithms in hardware, like Rivest, Shamir und Adleman (RSA), Secure Hash
Algorithm (SHA) 1 and Keyed-Hash Message Authentication Code (HMAC) [Tru11a]. It
provides a non-volatile memory that is used as secure store for keys, as well as a volatile
memory that consists basically out of Platform Con�guration Registers (PCRs). What is
special about these registers is that all of them can only be changed by the extend operation
shown in Figure 2.1. By only allowing to change the values by the extend operation, the
new value always depends on the old one. This can be used for building up a chain of trust
like described in Section 2.3. Usually a TPMs has 24 registers, where the PCRs 0-15 can
only be reset to zero by performing a system reboot. In addition, there is also a hardware
Random number generator (RNG). There exist di�erent versions of TPMs speci�ed by the
TCG. The latest TPM version is version 2.0, that adds support for SHA-2 256, Elliptic
Curve Cryptography (ECC) and the Advanced Encryption Standard (AES) [Tru16].

PCR_Extend(i, extentvalue)
1 : PCRinew := hash(PCRiold||extentvalue)

Figure 2.1: TPM_Extend operation [Tru11a, p. 29] [Tru11b, pp. 160-161]

The extent operation takes the index i of the PCR and the value that will be extended
extentvalue to the current value of this register. The new value of the register is the hash
of the old value and the extentvalue.

3
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2.2 Trusted Software Stack

The Trusted Software Stack (TSS) is an interface for accessing the low level TPM. There
are several implementations for di�erent platforms and programming languages.

TrouSerS: TrouSerS is an implementation of the TSS written in ANSI C and maintained
by IBM [Lai+16].

uTSS: µTSS is a lightweight C++ implementation for embedded devices, Linux and Win-
dows by Sirrix [SZ10]. The goal of µTSS is to simplify the TPM usage by removing
overhead. Since it is proprietary software there is no public implementation available.

jTSS: jTSS is an TSS implementation in Java, developed and maintained at the Institute
for Applied Information Processing and Communication (IAIK) at Graz University
of Technology [IAI13]. It comes with a dual license, that means for Free and Open-
Source Software (FOSS) projects the GNU GPLv2 license is applied. For all other
types of projects, the "Stiftung SIC Java (tm) Crypto-Software Development Kit
Licence Agreement" applies.

TSS.MSR: With TSS.MSR Microsoft actually provides two TSS implementations. One
for C# (TSS.Net) and one for C++ (TSS.CPP) [MB17]. While the C++ version
only supports Windows 8+, the .NET version is actually cross platform and can run
on any device which is supported by the .NET Framework, .NET Core or Mono.

A detailed comparison of these TSS implementations can be found in Table 2.1 on the
next page.

2.3 Integrity Measurement

When we are talking about measurement in the context of TC, we do not mean that we
are measuring a physical unit. Instead of that we are talking about calculating a crypto-
graphic hash of the complete static byte-representation of a �le or memory region. Such a
measurement can then be compared with other measurements. Either both measurements
are the same, meaning that the measurement input was the same, or the measurements
are not the same, which implies that the input was di�erent. Besides that, no additional
information can be derived from comparing two measurements.

To measure the integrity of a system everything that could probably in�uence the
behaviour of a system must be measured. This starts at boot time with the Basic Input
Output System (BIOS). Since the chain of trust starts with this measurement it is also
called static Core Root of Trust Measurement (CRTM). This chain continues with the
bootloader and the OS kernel. All these measurements during system boot up are security
critical, since they are the base of the system. Only if this Trusted Computing Base (TCB)
is trusted, it is possible to extend the trust to the whole system. After system boot, every
executable, shared library, con�guration �le and so on have to be measured and stored in
the Stored Measurement Log (SML). With the help of the SML one can build up a chain
of trust. This is possible since every measurement is extended to the PCR on the TPM,
which serves as root of trust. To be able to establish trust into a system, every entry in the
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SML must by veri�ed and trusted. In addition to that the value in the PCR must match
the calculated value from the SML.

In Linux, this is done by the Integrity Measurement Architecture (IMA) which was
originally implemented by Sailer et al. in [SZJ+04] and o�cially introduced in the Linux
kernel 2.6.30 in 2009. The IMA creates measurements with so called template-hashes.
Template-hashes are built by calculating the hash of a �le. This hash is then extended by
the �le name and hashed again. The exact calculation and the used hash algorithm can be
con�gured during the Linux kernel con�guration. If a TPM is connected to the machine,
the template-hash will also be extended to the PCR 10 of the TPM.

All measurements are stored in an IMA measurements list. To verify the authenticity
of this list, several conditions have to be ful�lled. First, the template-hash for each entry
must be recalculated and match the value in the list. Second, the template-hash of each
entry is added with the extend operation to the previous result and the �nal result must
match the value in the PCR number 10. The �rst measurement that is made by an IMA is
always the boot aggregate which is a SHA-1 over the PCRs 0-7. These registers contain the
measurements made during the system boot, such as the measurements of the bootloader
or the BIOS. If no TPM is present during the boot time, the boot aggregate is zero. In
addition to the measurement calculation, it is also possible to de�ne the kind of �les, which
should be measured by the IMA. [Km15]

2.4 Remote Attestation

The basic RA protocol involves two parties. The remote host, which is going to be attested,
is called Prover. The party, which wants to attest the Prover, is called Challenger. The
goal of the protocol is that the Prover convinces the Challenger, that the Prover is in a
trustworthy system state. This is basically done by measuring every binary that is loaded
during the system boot, starting from the BIOS to the OS Kernel modules, applications
and libraries and their con�gurations. Figure 2.2 on the following page shows the execution
of a basic RA protocol.
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C P TPM

establish
secure connection

nonce

nonce, PCR#, AIK

Quote{nonce, PCR#10}AIK

Quote{nonce, PCR#10}AIK ,
AIKcert, SML

Verify(Quote{nonce, PCR}AIK , AIKcert, SML)

valid

Figure 2.2: Basic Remote Attestation

The Challenger starts the RA protocol by building up a secure connection to the Prover.
After the connection is established, a fresh unpredictable random number (nonce) is created
by the Challenger and sent to the other party. The Prover loads the Attestation Identity
Key (AIK) into the TPM and creates a quote of the PCR containing the system state and
the nonce. A quote is a TPM operation that signs a structure containing the value of a
single or multiple PCRs and an additional data payload with the AIK.
The quote structure, the signature of this structure, the AIK certi�cate as well as the
SML is then sent back to the Challenger. The Challenger has to validate the signature
of the quote. If the signature is valid, the Challenger has to compare the nonce of the
structure with the previous created nonce to make sure that the quote is fresh. Only if
both conditions are ful�lled the Challenger can be sure that the Prover was not able to
cheat and the quote contains the current system state. Now the Challenger has to calculate
the expected system state of the remote host with the help of the SML. If the calculated
system state matches the value of the quote, the Challenger knows that the SML was not
modi�ed and is authentic. Now every entry in the SML must be checked in order to build
up the chain of trust. This is usually done by comparing every entry with a database of
trusted values. If all entries are trustworthy the Prover is in a trusted state. If only one
entry is untrusted, the integrity of the remote host is probably violated.



Chapter 3

Related Work

In this chapter, we describe and discuss work related to our RA protocol. In Section 3.1 we
describe previous attacks on CPSs, that were already mentioned in the motivation section
of this work. In Section 3.2 we discuss work trying to mitigate masquerading attacks
on RA. Section 3.3 covers possible ways for increasing the privacy for the Prover during
RA. Section 3.4 describes a way how to not only attest the static load time but also the
dynamic runtime integrity of the attested system. The approaches in Section 3.5 try to
reduce the amount of trusted measurements by only taking measurements of components
that are able to in�uence the behaviour of the system. An open standard that uses RA for
controlling network access is described in Section 3.6. The problems and solutions of TPMs
in combination with Virtual Machines (VMs) are discussed in Section 3.7. Section 3.8
covers two possible ways of how to isolate the integrity measurement component from the
measured system in a virtualised environment with the help of a Hypervisor. Finally,
Section 3.9 gives a short overview of how remote attestation can be done with the Trusted
Execution Environment (TEE) of Central Processing Units (CPUs).

3.1 Previous Attacks on Cyber Physical Systems

In this section we describe some of the attacks already mentioned in the motivation of this
work in more detail. A better understanding of previous attacks increases the understand-
ing of the security problems we are facing today.

Stuxnet is probably one of the best known attacks on CPSs. In contrast to typical
cyber attacks it did not try to steal or destroy information like in industrial espionage. It
did not try to overtake the system to build up a botnet that can be used for other attacks.
Instead it was designed to physically destroy speci�c machines. In this particular case
centrifuges used for enrichment of uranium were attacked and only centrifuges in the Iran
were destroyed. So, it was designed in a way that Stuxnet infected devices around the
world, but only activated its harmful part after checking model number and program code
of the infected CS to identify its target.

The goal of Stuxnet is to modify the behaviour of the infected Industrial Control System
(ICS) in a way that they are slightly operating outside of its destined boundaries in order
to let them fail after some time. This is done by injecting additional harmful code to the
control loop, written in a way that the original control task can not notice any irregularities.

8
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Another important fact we learn from Stuxnet is that the attacked CPS is not required
to have a direct connection to the Internet. But how could the attacker in�ltrate a facility
with multiple faces and guarded towers? In fact this was very easy, they just threw a couple
of infected Universal Serial Bus (USB) sticks on the parking lot of the facility. When the
employees came to work, they found them, picked them up and took them to work. There
they probably wanted to know what was on the sticks and plugged them into a PC. Once
Stuxnet infected one device it could spread into the network and infect other CSs that
where operating the centrifuges. [FMC11; Lan11]

There are two facts making Stuxnet to one of the �rst known Cyberwarfare weapons.
First it was designed to destroy centrifuges used for enrichment of uranium that could be
seen as a military target. Secondly the e�ort and quality put into it, makes it very likely
that it was done by a big organisation that was �nanced by a government.

Another example for the impact of an attack on critical infrastructure is the cyber
attack on the Ukrainian power grid in 2015. This attack was launched on three power
distribution companies at the same time, causing an outage for about 225, 000 customers
for several hours. This attack was initially started with stolen credentials that were stolen
with the help of phishing mails. [LAC16]

And even if we assume that a system is secure and without vulnerability there is still
man as a factor of uncertainty. Attacker use social engineering to create phishing mails that
are hard to recognise as such. Even if everyone knows about phishing mails, these attacks
are very successful, because most people believe that this does not happen to themselves.
In fact [Sol15] found out that an attacker sends 100 phishing mails, 33 of them are opened
and even more appalling, 11 recipients open the attachments.

To sum up, securing a system is important. However not every attack can be prevented.
So, in order to secure a system, it is also important to detect successful attacks in an early
stage to mitigate them or at least to know that there is a problem.

3.2 Masquerading Attack on Remote Attestation

One problem of the RA de�ned by the TCG is, that the Challenger is only able to verify
if the quote was done by a trusted TPM. The Challenger is not able to be sure that it
was done by the attested system. As shown in Figure 3.1 on the next page a malicious
attested system (PM ) could simply forward all requests from the Challenger (C) to another
system in a valid state (PV ). The good Prover has no possibility to distinguish a normal
RA request from a forward one, since it basically only consists of a set of nonce. So the
Prover quotes the nonce and sends everything that is needed to verify the system state
back to the malicious Prover. Now PM forwards all these data to the Challenger. Since PV

was in a valid system state, the Challenger will decide to trust the system. The problem
is that Challenger can not distinguish between PV and PM . As a result, the Challenger
will establish trust into a malicious system. This is caused by the fact that there is no
technique present that allows to detect the forwarding of RA requests.

An obvious approach to solve this vulnerability would be to use the AIK to establish
a secure connection and authenticate the involved parties. But this is not possible since
in the TPM speci�cation [Tru11a] AIKs are de�ned to be only allowed to sign data that
is internally generated by the TPM. AIKs must not be used to encrypt or sign arbitrary
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, AIKPV cert, SML)

valid

Figure 3.1: Masquerading Attack on RA

data. Since the private part of an AIK cannot leave the TPM it is not possible to abuse it
for these operations.

There are several works available that try to solve this issue. The approach described
in [GPS06] tries to establish a link between the RA and the secure tunnel endpoints. This
is done by linking the Secure Sockets Layer (SSL) certi�cate to the AIK certi�cate. Since
the SSL endpoint private key could become compromised this is not done directly. Instead
an additional Platform Property Certi�cate is used for this task. This certi�cate contains
the AIK public key and information from the SSL certi�cate like the domain name. It
does not include the public key of the SSL certi�cate. This way there is no need to revoke
the Platform Certi�cate in case of a compromised private SSL key. This approach has the
disadvantage that the Challenger has to verify three certi�cate chains instead of only two.
However, this can be changed by making the SSL certi�cate to a self-signed certi�cate since
it does not provide any additional trust, when used together with the Platform Property
Certi�cate and the AIK certi�cate.

The solution provided by Stumpf et al. in [STR+06] uses a di�erent approach. This
work extended the RA with an adopted De�e-Hellman (DH) key exchange. As shown in
Figure 3.2 on page 12 the Challenger starts with generating a fresh 160 bit nonce, like in
the default RA protocol. In addition, the Challenger creates a new key-pair (KC

priv,K
C
pub)

with a generator g and group m on which both parties agreed before. Then a challenge
with the nonce and the public part KC

pub of the key-pair is sent to the Prover. The Prover

generates the key-pair (KP
priv,K

P
pub) and computes the session key KCP from KC

pub and

KP
priv. Now the Prover can generate a quote, but in di�erence to the default RA protocol

the Prover does not simply use the nonce from the Challenger as payload. Instead the
hash of the nonce and KP

pub is calculated and used for it. After that the resulting quote,



CHAPTER 3. RELATED WORK 11

KP
pub, the SML and the AIKcert are sent back to the Challenger. Since the Challenger

knows the nonce and also has KP
pub, the quote can be veri�ed. In addition, the Challenger

can be sure that KP
pub really belongs to the Prover under inspection. If all entries from

the SML are trusted and the PCR value from the quote and the value computed from the
SML matches, the Challenger can be sure that the other party runs a trusted OS. Since a
trusted system would not give away or leak private information, the Challenger can also
rely on the fact that only the Prover is holding the private key KP

priv. This means that
only the Challenger and the Prover, that has generated the quote, are able to generate the
session key. After the Challenger has computed the session key KCP from KC

priv and K
P
pub,

the Challenger generates an additional nonce and sends it to the Prover. The Prover has
to encrypt this nonce with the session key KCP and sends the result back to Challenger.
The Challenger encrypts the nonce with this session key. By comparing the result with the
response from the Prover the Challenger can be sure that the Prover is also holding the
correct session key. From this point on all further messages are encrypted with the session
key. This way no malicious entity can read or modify any message.

In comparison to the solution from [GPS06] this protocol does not build a link between
the SSL connection and the machine that has created the quote. This means if it is only
used to attest a remote host without any further communication, a malicious remote host
could still forward all messages from the protocol to a valid remote host. This way, the
Challenger would still think that the malicious Prover is trusted. To prevent this, the
protocol has to be extended by an additional step where the Prover has to send some
information that can be linked to the SSL connection. If the use case just requires that
only trusted hosts can read the data, which is sent to them the protocol can be used as
speci�ed by [STR+06]. For our use case this is not su�cient, since we want to identify the
device that is challenged.

3.3 Property-based Attestation

As pointed out by Sadeghi and Stüble in [SS04] the Challenger is usually not interested
in the exact con�guration of the Prover. In fact, it is su�cient to know if the Prover
satis�es speci�c properties or not. Therefore, Sadeghi and Stüble came up with the idea of
a property-based attestation. This means that a Challenger only wants to verify that the
other party o�ers certain properties in order to check if all required security requirements
are satis�ed. These properties are attested and certi�ed by an additional Trusted Third
Party (TTP). They describe several ways how this new TTP is integrated into the archi-
tecture and how a host can prove that his current con�guration has speci�c properties.
In general, these solutions can be categorised into three classes. The �rst two categories
require hardware changes of the TPM, or software changes of the TSS. The last category
does not require any changes in the existing TC architecture. All of these methods have
their own advantages and disadvantages. But since changes to the TCG speci�cations are
not an option for us, we only discuss the last category.

There are two proposed solutions for property-based attestation that are realizable with
the current TCG speci�cations. Both add the TTP as a service that has to be called either
on system state changes or during the RA process. This service certi�es the properties
of the current system con�guration. This is done with a conventional (binary) RA. The
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Figure 3.2: Robust Remote Attestation Protocol introduce by [STR+06]
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TTP issues a property-certi�cate, which includes the system state (PCR value) for which
it is valid and the properties which are ful�lled by this con�guration. A Challenger can
now attest a remote host by requesting a quote for the fresh nonce. But in contrast to the
default RA the Prover does not return the SML. The SML is replaced by the property-
certi�cate. In order to establish trust into the Prover, the Challenger has to verify several
things: The signature of the quote as well as the property-certi�cate must be valid. The
properties of property-certi�cate must match the required properties. The system state of
the quote must match the system state from the property-certi�cate. Moreover, the nonce
from the quote have to match the nonce sent to the Prover. Since the Challenger does not
need to validate the SML, it is much easier to check if the Challenger can trust the Prover
or not. But the downside of this approach is, that this complexity is only moved to the
new service, which has to be trusted by the Challenger and the Prover.

The work by Chen et al. describes a property-based attestation scheme avoiding the
need for a TTP [CLM+08]. This is done by using ring signatures. Before the actual pro-
tocol starts the Prover proposes a set of possible system con�gurations to the Challenger.
The Challenger can now select a subset of trusted con�gurations CS = {cs1, ..., csn}. In
addition, both agree on a prime modulus P , a prime order Q and the generator g and h
of a subgroup of Z∗p of order P . To prevent the Prover from cheating, the discrete log-
arithm logg(h) mod P must not be known to the Prover. Assuming that the size of P
and Q where chosen big enough, the discrete logarithm problem ensures the security of
the protocol. During the protocol execution the TPM of the Prover creates and signs a
commitment of the current system con�guration csP . This commitment is then used to
create a ring signature. By verifying the commitment, the signature of the commitment
and the ring signature the Challenger can be sure that the committed con�guration is in
CS, without revealing which one it was. For creating and signing of the commitment a new
TPM command would be needed. But this could be achieved by some �rmware changes.
But even with this approach it might be possible that a TTP is needed in some cases. The
main problem is that the Prover and the Challenger have to agree on trustworthy system
states. Deciding which state is trustworthy and which is not, might be di�cult or even
impossible. In these cases, both parties must rely on a TTP for this decision. This method
has the advantage that the Prover does not reveal its exact system state, increasing his
privacy, while the Challenger is still be able to establish trust. But in order to achieve this
privacy there are a few important things needed. First of all, the size n of CS has to be
large enough to prevent the Challenger from guessing the con�guration csP . But this can
be easily ensured by the Prover itself by simply not proceeding with the protocol if the
selected set of system states CS is too small. The second thing is, that the Prover also
has to ensure that the Challenger cannot learn anything about its actual system state by
simply executing the protocol several times, while selecting a di�erent set of system states
CS on every run. The detailed steps of the protocol can be found in Figure 3.3 on the
next page.

3.4 Dynamic Property Attestation

The default RA, as well as most modi�cations of it, like the property-based attestation
from Section 3.3, only use static system properties like program binaries. They are called
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static, because as long as the binary is not changed the measurement will always be the
same static result. While an application is running, the memory is not static anymore, since
the stack as well as the heap are changing dynamically. Attacks that change the runtime
behaviour of a process by modifying return pointers can therefore not be detected by these
techniques. Thus, a RA protocol that uses dynamic runtime properties was introduced
by Kil et al. in [KSA+09] to attest the runtime integrity of a remote host. Only if all
dynamic properties of a process are ful�lled during the whole execution time, the process
is trustworthy. In order to establish trust into a system, this must hold for all processes
that are running on it. There are many possibilities for dynamic properties. But since
these properties have to be monitored in a way that they are evaluated before they are
changed again, not all of them can be used in an e�cient way. Since �nding a way to
monitor such a dynamic property in a way that does not add too much overhead to the
system execution is not a trivial task. The work of Kil et al. focused only on the following
properties:

Structural Integrity: This dynamic property describes structural characteristics that
must be ful�lled by the memory objects of a process. Such structural properties
are for example that the function return address on the stack must always point to
the address of the original CALL instruction. Another example is the frame pointer
acting as the base address of the stack frame. Like the return pointer it is not allowed
to change during the function execution. But there are also many constraints for the
heap that must be ful�lled. One example would be that allocated memory chunks
must always be linked together by meta data with a linked list. To �nd structural
constraints for a speci�c application a static analysis was applied to the binaries.
This is done by a dynamic property collector for every application.

Global Data Integrity: This category concerns global variables in a process. Even vari-
ables must satisfy certain properties during runtime, these properties concern their
value or relations to other variables. So, the value of a constant variable is not al-
lowed to change during execution. Or two variables must have the same value at a
particular execution point. The problem with these constraints is that they are very
di�cult to obtain from an application in an automated way, since they may depend
on the program input and the exact execution path. To solve this problem each
application runs multiple times with di�erent input during a training phase. The
generated data traces from this training phase are then used to obtain the dynamic
properties. In order to not obtain incorrect constraints from this training phase,
which would result in false positives during the system runtime, it is important to
use a good training set. The idea of Kil et al. was that if the program source code is
fully covered during the execution of the training set, it should be good.

During the system runtime the obtained properties are then monitored by an integrity
measurement component that is implemented as Linux Kernel Module (LKM). Whenever
a system call is �red the measurement component interrupts and monitors the application
properties. In addition, whenever a function that e�ects the heap is executed this is also
interrupted to check its properties. Doing so guarantees that an attack is detected before
it can take e�ect. If a violation has been detected the evidence is stored and extended to
the PCR 8 of the TPM. This PCR acts as a kind of violation �ag, whenever it does not
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Figure 3.4: Dynamic-property-based RA by [KSA+09].

have the default value, the system is not trustworthy anymore. Since the PCR 8 is one of
the registers that cannot be reset and its value is obtained through the quote command,
an attacker cannot hide the violation during RA. Like shown in Figure 3.4 The dynamic
RA process works similar to the default RA protocol. The Challenger starts by sending a
fresh set of nonce to the Prover. The TPM of the Prover creates a quote on the PCR 8 and
the nonce from the Challenger. After that the Prover sends the integrity evidence list, the
quote and the signature back to the Challenger. The Challenger checks the signature and
the nonce. If both are ok, the integrity evidence list is validated with the help of the value
of the PCR 8. By validating the quote, the Challenger can be sure that the Prover was not
able to modify the value of the PCR. In order to establish trust into the other system the
Challenger must also be sure that the Prover runs an unmodi�ed integrity measurement
component. To ensure this the Challenger has to run the default RA protocol to attest
the static boot and load-time integrity. In other words the dynamic property attestation
does not replace the static binary attestation, in fact it is an extension to it. One problem
of [KSA+09] is that in order to obtain all dynamic constrains for an application, not only
its binary is needed, but also the source code must be available.

3.5 Policy-based Attestation

Another problem of most RA solutions is that the amount of measurements that have to
be veri�ed and trusted is very high. The system is either completely trusted or if there is
only a single unknown measurement, the entire system is untrusted.

To reduce the amount of measurements that have to be veri�ed and allow untrusted
objects on a system, Jaeger et al. came up with a solution that used an information �ow
integrity approach named Policy-Reduced Integrity Measurement Architecture (PRIMA)
[JSS06]. The basic idea is that the Challenger only has to check the measurements of
trusted objects and their dependencies. As long as there is no read to an untrusted ob-
ject the system can still be trustworthy. This is done by using Security-enhanced Linux
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(SELinux) that enforces Mandatory Access Control (MAC). The MAC policies are then
used to get the information �ow of applications. This information �ow data does not only
contain dependencies between processes and static data, that can be measured by the IMA,
but also for example untrusted dynamic network input. By using the Biba integrity model
[Bib77] this would lead to an integrity violation. Since for certain applications such inputs
should not have an impact on their trustworthiness, a modi�ed version of the Clark-Wilson
integrity model [SJS06] was used. This allows to add �lters between speci�c applications
and untrusted inputs that allow this dependencies without an integrity violation.

A comparison of load-time, Biba and Clark-Wilson-Lite integrity is shown by Figure 3.5
on the next page. The load-time integrity model does not take relations between processes
into account. If there is a low integrity process the integrity is always violated. Moreover
it does not handle network data that is usually also untrusted. In contrast to that the Biba
integrity model uses data �ows between processes. A high integrity process is only allowed
to use data from other high integrity processes. If there is a data �ow from a low integrity
process or from a network to a high integrity process, the integrity is violated. Since the
use of network data or data from low integrity processes should be allowed in some cases,
the Clark-Wislon-Lite integrity model adds the possibility of �lters. These �lters are used
to �lter untrusted data from a speci�c source to allow this dependency without integrity
violation.

To allow the Challenger to get and verify all this information the IMA measurement
list is extended to measure the following things:

Trusted Subjects: These subjects that must be trusted by the Challenger to establish
trust in the remote system. Trusted subjects are extracted from the MAC policies
and build the TCB of the system.

Trusted Code/Data: Code and data used by the trusted subjects. The entry in the
measurement list contains not only the data itself, but also the subject. This mapping
information is needed to verify the information �ow graph.

Information Flow: Since the information �ow is constructed from the MAC policies they
have to be measured during the boot process. This allows the Challenger to verify
the correctness of the information �ow model.

To establish trust, the Challenger needs to verify the measurement list. In addition,
the measurement list can be used to extract the trusted subjects and the MAC policies.
With this information the information �ow graph can be constructed and then used to
identify trusted and untrusted subjects.

To establish trust into a remote host the Challenger has to verify that the Prover
runs the expected MAC policies. After that the extracted information �ow is analysed by
checking its dependencies of every trusted subject in it. To establish trust into a system all
trusted subjects are only allowed to use other trusted subjects or trusted code and data.
Furthermore all the corresponding measurements must be veri�ed and valid. If there is
a dependence to an untrusted application or data there must be a �lter interface in the
trusted subject and a �lter implementation in the code of the subject to establish trust.

The solution of [JSS06] has two limitations. First it does not handle the possibility
of MAC policies updates during the system runtime. And second like most RA solution
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Figure 3.5: Comparison of integrity models. Figure adapted from [JSS06, page 22]

it only allows a binary trust decision. To overcome this limitations Xu et al. extended
the information �ow approach with a domain-based integrity model in [XZH+12]. Like in
PRIMA the MAC policies of SELinux were used to obtain the information �ows. They
also used a Clark-Wilson integrity model with �lters, to allow high integrity processes to
access processes with lower integrity. Trusted objects are divided into two categories. The
system domain (TCBs) contains everything that must always be trusted, for example the
kernel of the OS, policy enforcement or the IMA. The second category is the application
domain (TCBd) that contains every subject that can possibly have an impact on the
trustworthiness of a speci�c application running on the attested host. All subjects that are
not in TCBs or TCBd are called NON-TCB. The TCBs domain is protected if there is
no information �ow from NON-TCB or TCBd without a �lter. For an application domain
TCBd all information �ows must be from TCBs or TCBd. If there is an information
�ow from NON-TCB there must be a �lter for this to protect the domain. To reduce the
amount of system states measured by the TPM, not every binary measurement is directly
extended to the PCR. Instead of that the measurement architecture maintains separate
lists for trusted subjects, code, policies, �lters and processes. To allow the Challenger to
verify these lists, only these lists are measured and extended to the PCR or the TPM.
Whenever there is a change in one of the subjects of TCBs the system has to be rebooted
and remeasured, since TCBs also contains the measurement architecture itself. After
that TCBs is measured as the initial system state T0. If there is a change in TCBd

during runtime, it will be measured and added to a new system state Ti. The system
also introduces a way to rank integrity violation and calculate a risk level of it. This risk
level should re�ect the trustworthiness of the Prover. If the risk level is zero there was
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no integrity violation and the system can be completely trusted. But since they did not
clarify how values greater than zero should be treated by the Challenger to decide if trust
can be establish or not, we are not going into detail here.

Both methods discussed so far have one disadvantage, they rely on already well pre-
de�ned MAC policies in order to work correctly. In addition, the work of Xu et al. does
not clearly point out if it is possible to have di�erent application domains that have a
di�erent trustworthiness running on an attested system at the same time. To come around
this limitations Rauter et al. proposed a privilege-based RA solution in [RHK+15]. Since
this method does not need prede�ned MAC policies, the privileges of an application have
to be obtained from another source. The work proposes two di�erent solutions for doing
so. Both use the application binary to retrieve this information. The �rst solution uses
the program call graph to search calls to libraries and resource accesses in it. In case of a
resource access it �gures out if this is a read or write operation and which �le is used. If
it can not �gure out this information, the highest possible privilege is used. This means
that for example unde�ned �le accesses are handled like a write operation to the whole
�le system. The second proposal tries to �nd known symbols to system libraries directly
in the application binaries. This method has the disadvantage that it does not provide
the parameters that are used for these calls. But execution time measurements that were
taken by Rauter et al. show that it is much faster than the �rst method. Since the resource
access information has to be extracted and measured during runtime, the performance of
the used method is signi�cant. In addition to this, the correctness and completeness of
the obtained access information is critical for the solution, to allow a Challenger to do
correct reasoning about the trustworthiness of a remote system. To check the integrity of
the information �ow the Biba model is used. Since this would not allow network access at
all, like seen in Figure 3.5 on the preceding page, network access for a speci�c module can
be permitted by adding a policy for it.

To build up a TCB a set of privileged modules has to be de�ned by the administrator
of the system. This set contains all modules that have to be trusted in any case. Usually
this contains the whole OS since every application is running on top of it. For all binaries
in this set of privileged modules privileges are not measured any more. This means if
there are no privilege measurements for a module, this automatically means that this is a
privileged module that belongs to the TCB.

The systems extents the IMA to measure binaries and privileges. Both measurements
are stored in one list, that contains the name of the measured module, the measurement
type and some attributes. There are two types of measurements. The �rst type is the binary
measurement that is already known from the IMA. In the case of a binary measurement the
attributes �eld of the resulting entry in the measurement list contains only the measurement
hash. The second type is the privilege measurement. Like already mentioned this type
of measurements are only done for non-privileged modules. The attributes �eld is here
used to store the Resource Access Descriptions (RADs) that are obtained from the binary.
Basically, the systems supports two di�erent types of RADs. The �rst is a network access
RAD and does not contain any further information. The second is a �le access RAD
that contains the �le or folder that is accessed and the type of operation (read or write).
Like in the original IMA a PCR of the TPM is used to store the veri�cation hash of the
measurement list.

Like in the other RA protocols the Challenger starts by sending a fresh nonce to the
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Prover and receiving the quote for the PCR and the nonce and the measurement list. If
the measurement list was not manipulated it can be used to verify the trustworthiness
of a system or a speci�c service of the Prover. To do so the Challenger has a list of so
called communication policies that has one entry for every module of interest. This policies
contain varied information about one module. For example, if a module is privileged or not.
In addition, these policies contain �le dependencies with the allowed mode of operation.
Dependencies to other modules that are able to in�uence the behaviour of this module,
are also part of the policies. Finally these policies also de�ne if network access is allowed
for a module or not.

These policies are used to obtain a list of modules that must be fully trusted. This
list contains all modules that are marked as privileged and all services that are used by
the Challenger. Then all their dependencies are added. For all modules in the resulting
list a binary integrity check has to be performed. This is done by comparing the binary
measurement of the module in the measurement list with a set of trusted measurements.

In addition, the resource access rules for all modules have to be checked. If there is
a rule violation of a privileged process, it is added to the dependence list. If the process
belongs to the non-privileged processes the veri�cation fails. Like before this is done with
the help of the measurement list, but this time the privilege measurements of the modules
are used.

3.6 Trusted Network Connection

The Trusted Network Connection (TNC) is an open standard for controlling network access
and is speci�ed by the TCG in [Tru12]. The idea of TNC is that only endpoints that are
trusted should be able to gain full access to a network. This is done by checking the
integrity and the identity of this entity, which is basically done by RA. If an endpoint is
not trustworthy, it can be isolated from the network. Since this isolation is done on layer-2
and layer-3 of the Open Systems Interconnection model (OSI model), switches and routers
with support for the TNC standard are needed. The TNC speci�cation de�nes multiple
roles with di�erent sets of functions that must be provided by these entities and can be
found in Figure 3.6 on page 22:

Access Requestor: The entity wanting to have access to the network. In order to be
able to gain access, several functions must be provided. A Network Access Requestor
(NAR) initialises the process of getting access to a network on the Network Access
Layer. On the Integrity Evaluation Layer a TNC Client is needed to provide integrity
information. And on the Integrity Measurement Layer there have to be Integrity
Measurement Collectors (IMCs) providing integrity measurements.

Policy Enforcement Point: For example, switches and routers that have to ensure that
the security policies are realized. They are also called Network Access Enforcer
(NAE) and operate only on the Network Access Layer.

Policy Decision Point: Decides if an Access Requestor should gain access to the net-
work and what action should be taken. To be able to do so, the Policy Decision Point
has corresponding functions to the Access Requestor on every layer. On the Network
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Access Layer a Network Access Authority (NAA) is needed. On the Integrity Eval-
uation Layer a TNC Server collects integrity information and makes decisions based
on this information. On the Integrity Measurement Layer Integrity Measurement
Veri�ers (IMVs) are needed to process the integrity measurements from the Access
Requestor by comparing them with stored valid measurements.

Metadata Access Point: Gathers and shares information about the state of TNC ele-
ments.

Metadata Access Point Client: Can provide or consume information about Access Re-
questors from the Metadata Access Point. For example, this can be information about
network activities of Access Requestors.

For each of these roles there exists hardware or software that implements the needed
functionality from several di�erent companies. Hence, one big advantage of TNC is that
one is not depending on a single manufacturer. On the other hand, the TNC architecture
is very complex and involves several roles and entities.

The process for a TNC Client to get access to a TNC network is shown in Figure 3.7
on page 23 and works as follows. Before the actual process can start, the client loads
each Integrity Measurement Collector (IMC) that is relevant (0). The same holds for the
TNC Server, that has to initialize each Integrity Measurement Veri�er (IMV) (0). The
protocol starts with the Network Access Requestor (NAR) sending a connection request to
the Network Access Enforcer (NAE) (1). At this point a network access decision request is
generated and sent to the Network Access Authority (NAA) (2). Receiving this request, the
NAA checks the user authentication, platform credentials and the integrity of the requester.
If one of these checks fails the connection is refused. While the user authentication check is
done by the NAA itself, it sends a request to the TNC Server to perform the other checks
(3). The TNC Server starts with the platform credentials authentication by checking the
validity of the AIK certi�cate (4). To perform the integrity handshake the TNC Server
informs the IMVs about this (5). The same thing is done by the TNC Client and the
IMCs (5). The IMCs return some messages containing measurement data to the client.
The integrity measurement information is then exchanged between the TNC Client and
the TNC Server (6A). The client uses the IMCs to retrieve the requested information,
while the TNC Server uses the corresponding IMV to analyse it. If a IMV needs more
data from an IMC, a request is sent over the TNC Server to the TNC Client (6B). The
client uses the IMCs to retrieve this information and sends it back. Once the IMV has
enough information, the TNC Server is informed about the evaluation result (6C). As soon
as the TNC Server has completely �nished the integrity handshake, a recommendation is
sent back to the NAA (7). Based on this recommendation the NAA can now decide if the
network access will be granted to the Access Requestor or not. The �nal decision is sent
to the NAE and the TNC Server to implement it (8).

3.7 Virtual TPM

Concerning virtualisation, it is not possible to simply pass through the TPM, since usually
only one TPM is present on a machine, while every VM would need its own. An additional
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problem is that one of the big advantages of virtualisation is that VMs can be easily
migrated to other hardware. By using a TPM this would not be possible any more.

To solve these problems a virtual TPM (vTPM) has been introduced by Perez et
al. in [PSD+06]. The solution consists of a vTPM that implements the TCG TPM 1.2
speci�cation and a vTPM Manager that is able to handle multiple vTPM instances. They
provided two solutions how the vTPM can be used. The �rst one is a pure software solution
where the vTPM Manager and the vTPM instances are running in the userspace of a
Management VM. Every guest systems has its own vTPM instance and can communicate
with it over a client-side TPM driver. The Hypervisor forwards this communication to
the Management VM where a server-side TPM driver is needed to work with the vTPM
Manager. The vTPM Manager works as a multiplexer that forwards the commands to
the corresponding vTPM instance of the guest VM. The Management VM itself uses the
hardware TPM of the system for its own integrity measurement. This way the integrity
of the Management VM executing the vTPM instance can be veri�ed. The architecture
of this solution can be found in Figure 3.8 on the next page. The second solution uses
a secure co-processor to run the vTPM Manager and the vTPM instances. The secure
co-processor is tamper resistance and therefore adds again this property of a TPM that
has been lost by the pure software solution. In comparison to the �rst solution, by using
the secure co-processor there is no need for a hardware TPM in the system, since the
Management VM owns the hardware and simply reserves the �rst vTPM instance for its
own integrity measurement. Like in the �rst solution, guest VMs can communicate with
their vTPM instance over the Management VM where a proxy forwards the communication
to the vTPM Manager in the secure co-processor. The vTPM Manager and the vTPM
instances work the same way as before. In Figure 3.9 on the following page the changed
architecture with the secure co-processor can be found.

Both solutions allow to have multiple VMs, where every guest system has its own TPM.
The vTPM acts like a real TPM, thus it is possible to use applications that use a TPM
without any changes. But at least for RA it should be possible to distinguish a vTPM
from a real TPM since they don't have the same security properties. To establish trust in a
system a Challenger must also check the measurements of the Management VM providing
the vTPM, the Hypervisor and its boot process. To allow this the vTPM instance of a
guest VM has its PCR divided into two sections. Register 0 to 8 are mapped from the
hardware TPM (or the �rst vTPM instance in case of the secure co-processor) to the vTPM
instance. These registers are read only and contain the measurement of the boot process
and the integrity measurement of the Management VM OS. All registers starting from PCR
9 can be used like on a hardware TPM and contain for example the integrity measurement
of the guest VM itself. If the Challenger decides that verifying the trustiness of the VM
alone is not enough, the vTPM allows the Prover to provide additional measurements of
the underlining platform.

To solve the TPM migration problem Perez et al. also designed a secure protocol. With
this protocol it is possible to migrate the VM and its vTPM with minimal downtime to
another host. The migration process is started with the creation of a vTPM instance at
the target host. This new instance then creates a nonce and sends it to the source vTPM.
The source vTPM is then locked to this nonce and they are added to the TPM state and is
validated by the destination TPM that was import before. This prevents the vTPM to be
migrated to multiple instances. All the data of the vTPM, like PCRs, keys, counters and
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so on are collected and encrypted with a symmetric key. During the serialisation of the
TPM state the vTPM is locked and cannot be used by the system. At the end a migration
digest is updated and included into the TPM state. The symmetric key itself is encrypted
with a parent TPM storage key. To encrypt the symmetric key at the destination vTPM
the storage key has to be migrated �rst. After that the TPM state can be decrypted and
restored. Before the migrated vTPM instance resumes, the calculated migration digest is
compared to the included one, to ensure that no malicious entity was able to modify the
data.

Since 2006 when Perez et al. introduced the vTPM, it is still not supported by in
many Hypervisors. A comparison of Hypervisors and their support for vTPMs is shown in
Table 3.1 on the next page.

The only Hypervisors with build-in support for vTPMs are Xen and Hyper-V, both
support TPM 1.2 and 2.0 for the host as well for the vTPM instances. But there are at least
two Hypervisors where a community patch exists to add limited support. For example,
Berger one of the authors of [PSD+06] released a software TPM implementation [Ber14b]
and a patch for Qemu [Ber14a] to add vTPM support. This software TPM does not
implement the migration feature of [PSD+06] but allows to have multiple vTPM instances
running on the host system. It does not need a hardware TPM in the host system. Another
TPM emulator is available from [Str04]. As far as we found out it is only possible to use
one TPM instance at a time. There is also a vTPM extension for VirtualBox [WH12].

3.8 Hypervisor-based Attestation

All solutions so far have one big disadvantage, namely the lack of a strong isolation of
the measurement architecture to the system that is measured. Of course, the IMA runs
in the kernel space and is therefore protected, but if an attacker could get access to the
kernel it might be possible to modify executables between measurement and execution.
This problem is called Time of Check To Time of Use (TOCTTOU). To come around this
problem Azab et al. used a di�erent approach in [ANS+09]. They introduced a solution
named HIMA for virtual systems, where the integrity measurement is done by the Hyper-
visor and therefore strongly isolated from the system that is measured. Since the integrity
measurement is done by the Hypervisor, an attacker is not able to manipulate it, even if the
attacker has full access to the guest and manages to modify the kernel. To achieve this the
HIMA actively monitors guest events and the guest memory. This way the HIMA always
gets track of the guest memory layout. So even when a process is modi�ed in the guest
VM this is detected and measured by the HIMA. This is done by interrupting the guest
events whenever a user process or kernel module is created, terminated or modi�ed. All
measurements are done before the process is executed. By doing so the TOCTTOU consis-
tency for the integrity of the measured programmes can be guaranteed. The measurements
done by the HIMA are stored in a dedicated Management VM guest. In comparison to
the IMA, that has to be con�gured for every system, the HIMA works as an "out-of-the-
box" solution for every guest without any con�guration or software needed. Figure 3.10
on page 28 shows the architecture of the HIMA. The Hypervisor and the management VM
are assumed to be trustworthy at any time in this solution. This brings up the question:
What happens if one of these components gets corrupted in any form? Since the HIMA
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Figure 3.10: Architecture of the HIMA. Figure adapted from [ANS+09, page 463]

does not use a TPM it can only be used as a local solution, hence it is not able to provide
evident prove that the measurements are not modi�ed to another remote host.

Another solution that used the Hypervisor-based attestation approach is the Sensory
Integrity Measurement Architecture (SIMA)[SKU10]. Like by HIMA [ANS+09] the guest
systems are monitored, but how this is done di�ers. Furthermore, not only VMs, but
also the host system itself is monitored. Many di�erent specialist sensors monitor various
aspects of the guest systems as well as the Hypervisor. The results of this sensors are
then sent to a monitor that evaluates them and decides what actions should be performed.
This way even attacks on the Hypervisor can be detected by the SIMA. The sensors are
placed in guest VMs in the kernel space in order to monitor the guest system itself. And
in die Hypervisor to monitor physical and virtual memory of the whole system including
the Hypervisor and its guest VMs. As already mentioned every sensor is specialised to one
speci�c aspect to keep the complexity low and therefore make them easier to develop and
hold the resource consumption low. Sensors can run in di�erent modes of operation. In
the autonomous mode they just send detected irregularities to the monitor. In the monitor
driven mode the monitor is able to send commands to the sensor. In the autonomous mode
not all sensors are active or not all its functionality is activated to save system resources
and do not slow down the system too much. In the monitor driven mode, the monitor
can trigger further investigation into one speci�c aspect of the system or even a complete
system check. The communication of the sensors and the monitor is done through the
blackboard, a shared memory region, where every VM has some mapped memory. This
should keep possible attack vectors to the monitor and the Hypervisor as small as possible.
The monitor itself operates as a state machine with the following states. In the normal
operation state, everything works as expected and no irregularity has been detected. In
the error state, abnormal system behaviour has been reported. The monitor can switch
sensors into monitor mode to get additional information about the problem in order to
isolate it. The critical error state is entered if the isolation fails. The monitor induces a
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complete in deep system check. If this check indicates an attack the SIMA switches into the
alert state and completely isolates the a�ected VM. The last state is the panic state, it is
entered if everything to con�ne the problem has failed. In this state the monitor indicates
a core dump and restarts the guest or freezes the VM. Since there are some sensors placed
directly in the guest VM it might be possible that an attacker detects them and tries to
manipulate their results, but doing so would also produce a row of system events that
make it possible to detect the attack by other sensors. To ensure that the Hypervisor, the
monitor and sensors start in a trusted state they are measured by a hardware TPM in
a secure boot process. For guest VMs this is done with a vTPM. An overview over the
architecture of the SIMA can be found in Figure 3.11.

3.9 Trusted Execution Environment based Attestation

Another technology that has become widely available is the TEE. TEE provided a way to
execute code in an isolated secure environment. TEE functionality is directly implemented
by some CPUs in hardware. The memory and registers of this environment are separated
in a way that it is not possible for normal applications to access or modify them. How this
is exactly done di�ers between the manufacturers.

ARM: TrustZone is the name of the TEE of ARM. The processor can switch between two
worlds, called normal world and secure world. The secure world runs a secure OS
that allows the execution of signed programs that are called Trusted Applications
(TA). The CPU is able to boot directly into the secure world to initialise it �rst and
eventually start a rich OS in the normal world afterwards. The CPU has its own set
of registers for the normal and the secure world. The memory mapping to normal or
secure world is done with an additional bit, this means in a 32 bit CPU an additional
33th bit is used for this.

Intel: The Software Guard Extensions (SGX) provide a TEE for Intel CPUs. In SGX the
equivalent to the secure world is called secure enclave. This secure enclave can be
started by normal applications and is a protected area in the address space of the
application. To secure this area, it is encrypted. Since secure enclaves are created
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by normal programs the source is loaded from unprotected memory. Whenever code
is loaded into a secure enclave, it is �rst measured. [Cor14]

AMD: AMD uses a dedicated Platform Security Processor that is basically an ARM
processor with TrustZone directly integrated into some of their CPUs.

There exist di�erent approaches how the TEE can be used for RA. The �rst one tries to
implement a subset of TPM functions in software that can run in ARM TrustZone [KR15].
This is useful because usually devices with an ARM CPU do not have a dedicated TPM
available. In their approach they only implemented functionalities needed by the default
RA protocol. The software TPM was implemented in a way that it is loaded by the kernel
before the �rst measurement is done by the IMA. But this also means, that since it is
loaded by the OS it cannot measure the boot process itself. One thing that is completely
missing in this work is how they solved the problem of securely storing the Endorsement
Key (EK) of the TPM, since the TEE is missing a secure non-volatile memory. They
only generate an AIK that is securely stored in volatile memory. But this means that a
generated AIK gets lost with a reboot. If there is no EK there is no way for a private
Certi�cation authority (CA) to identify the TPM during the certi�cate creation.

The work of Raj et al. tries to implement the full functionality of the TPM speci�cation
in software and calls this �rmware-TPM (fTPM) [RSW+15]. Like in the work of Kylänpää
and Rantala they implemented the software TPM for the ARM TrustZone. But they
actually tried to ful�ll the whole TPM speci�cations. To implement a TPM with the same
probabilities as a hardware TPM there are some limitations of the ARM TrustZone as well
as the SGX that have to be solved in order to achieve this goal.

No trusted non-volatile memory: Neither the ARM TrustZone nor the SGX of Intel
provide a trusted non-volatile memory. This is a problem since the TPM needs at
least an EK and a Storage Root Key (SRK) that can only be read and used by the
TPM itself. And even for the other data like PCR values encryption alone is not
enough, since there is still no place to store the key in a secure way. In addition,
encryption alone does not prevent roll-back attacks. Since the state of the TPM is
encrypted an attack can not change it to a arbitrary value. But an attacker could use
an old encrypted state and overwrite the current state with it. This way an attacker
can simply roll-back changes made to the PCR.

No entropy source: Like before both environments leak the existence of an entropy
source that is only available for the TEE. But this is needed for the RNG func-
tionality of the TPM. If the TPM uses a shared entropy source it is possible that the
random values are foreseen or in�uenced by the normal world.

No secure clock: Many security functions need a secure clock. But since TrustZone has
no protection for peripherals, they could be manipulated by the normal world and
therefore be insecure.

Lack of access to �rmware: Another problem is that the �rmware of the most System-
on-a-Chip (SoC) manufacturers is not open. This makes it very di�cult to deploy
software to the TrustZone.
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To solve the problem with the trusted storage they add additional requirements to the
hardware needed to run the fTPM. Since many mobile devices already have an embedded
Multi-Media Controller that has a replay-protected memory block this memory can be
used to protect from roll-back attacks. In conjunction with encryption it can also be used
for storing the fTPM state. In addition to that a secure hardware fuse is needed that is
exclusive to the secure world. The hardware fuse contains a unique key for the device and
a secure entropy source. As already mentioned, there are some commands that need a
secure clock in order to be secure. But the TrustZone has only a secure timer, that ticks in
a prede�ned rate. This timer can be used to implement some of this commands in a secure
way. But there are still a few commands that cannot be supported. In contrast of the work
of Kylänpää and Rantala the fTPM is loaded before the rich OS. Like the name already
lets assume, it is loaded with the �rmware of the device. This way it could measure the
whole system starting from boot time.



Chapter 4

Concept and Architecture

In this chapter we aim to give an overview of our solution and which problems we attempt
to solve with it. Although our proposal contains a very generic solution that can be used
in many ways, with only a few restrictions to the system, we start with a description of
our system domain. This is meant to give an understanding about the constraints that
are linked to it and why certain problems are solved in the way we did. We discuss the
problems and possible solutions and in some cases why some of these solutions are not
suitable for our system domain. In addition, this chapter contains a detailed description
of the proposed protocol.

4.1 System Overview

The proposed RA system is designed to run on a customized and light weight Linux distri-
bution on embedded CDs used in hydro-electric power plants. This embedded CD consists
of a communication controller with a x86 CPU. This controller is called Communication
CPU (CCPU) and is running a Linux OS. The CCPU has a network interface connected
to the network of the company. Furthermore an application controller with a real time OS
is connected to the CCPU. This so-called Application CPU (ACPU), is using sensors and
actuators to perform critical control tasks that are de�ned by loadable software modules.
The software modules are loaded by the CCPU. Usually one device handles multiple con-
trol tasks. Figure 4.1 on the following page shows a simpli�ed overview of such a CD used
in hydro-electric power plants. Although these CDs are connected to each other and are
remotely maintainable, they do not have access to the internet. The software running on
these devices is also strongly controlled by a central authority. This means that there is a
well de�ned set of applications that is allowed to run on such a CD.

Although the protocol we are going to introduce was designed with the presented in
mind, it could actually run on any device with Linux and a TPM. Even though main-
taining the system for big Linux distributions might be di�cult, because there are more
measurements that must be checked and trusted.

32
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4.2 Attacker Model

Like de�ned in the TPM speci�cation [Tru11a] we assume that an attacker does not have
physical access to the attested CD (or at least not to the TPM). This is important since
the TPM only has basic protection against tempering through timing changes. This means
that the TPM is maintaining a tick count for every session. If the tick count di�ers from
the expected count this is treated as an attack and the TPM shuts down. But of course,
this cannot protect against all possible physical attacks like TPM reset attacks or bus
manipulations like described by Winter and Dietrich in [WD13]. Furthermore, it cannot
protect against side channel attacks or even (semi-)invasive attacks. By not having physical
access it is not possible for an attacker to read the private part of any of the keys (like the
AIK) protected by the TPM. This is essential since if there would be a way for the private
AIK protecting the quote, to leave the TPM, the whole security concept would be broken.

4.3 Problem: Trusted Measurements Database

The ACPUs are running critical control tasks which are de�ned by software. We want to
be sure that attacks on the CCPU loading this software module or any other application
that could a�ect the stability of the CD, are detected in order to take appropriate steps
against it.

One possible solution to detect software changes is the use of RA. But the default RA
comes with one big disadvantage. Namely how to decide if the corresponding binary to a
measurement is trustworthy or not. So there need to be a database with measurements
of trusted applications for comparison. There are two possibilities. Either each device
running the RA protocol has an own database or there is a central service. The �rst
one comes with the disadvantage that whenever a new application is deployed to any of
the devices running the protocol, the database of all devices in the distributed system
has to be updated. That makes the deployment of new software very complex and error
prone. If there is a central service where protocol participants can ask if a measurement is
trustworthy or not it reduces the complexity of deployments. So only the central database
has to be updated. But it also rises new problems: How can we trust the central service?
What happens if the central service is not available for some reason?

4.4 Solution: Trusted Measurements Database

The main idea of this work is that we want a RA protocol without a local database of
trusted measurements, making deployments to a di�cult and error prone task. Further-
more, we do not want a TTP that has to be online and reachable during the protocol
execution.

We solved this problem by using certi�cates and signatures. Every binary that gets
measured by the IMA has a signature generated during the deployment or production
process. Therefore, we introduced a new CA controlled by us. This private CA is used
as the root of trust for these signatures. During the RA protocol the Challenger has to
verify the signature of every measurement. If the Challenger does not have the signature
of a measurement, the protocol allows to request it from the Prover. This way signatures
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only have to be deployed to the host where the corresponding binary has been deployed to,
since the signatures will be distributed during the protocol execution. Lets assume a new
version of a application and the corresponding signature is only deployed to one Prover.
After that a Challenger connects to this Prover and starts the RA protocol. When the
Challenger receive the IMA measurements, there is no signature for the new measurement
entry present. Now the Challenger simply requests this signature form the Prover. After
the Challenger receives the signature for this measurement from the Prover, everything
needed to verify the state of the Prover is available.

The use of signatures for measurements results in a new problem. How can we revoke
the trustworthiness of a speci�c binary, for example if a vulnerability was found in it?
Signatures can be invalidated by revoking the certi�cate used to create it. But if we want
to revoke only a speci�c signature it is necessary to use a new certi�cate for every binary
and every version of it. We propose to use 2 additional layers of certi�cates in addition
to the root certi�cate. The �rst Layer contains a certi�cate for every application that is
only allowed to create new certi�cates. By revoking this certi�cate all versions of a binary
could be revoked. This can be useful if an application should no longer be used by any
device. The certi�cates issued by this application level certi�cate are only allowed to create
signatures and are mapped to a speci�c version of the application. This application version
level certi�cates are used to revoke only a speci�c version of a binary. Another possibility
would be to add a fourth level that represents the context of the certi�cate hierarchy under
it. Possible contexts are software and hardware. An example for this certi�cate hierarchy
can be found in Figure 4.2 on the next page.

Technically the use of the Online Certi�cate Status Protocol (OCSP) would be the
best solution for the certi�cate revocation, since this would be very simple and always up
to date. But since one of our goals was that we do not want to call a TTP during the
protocol execution, we propose to use an o�ine Certi�cate Revocation List (CRL). This
CRL could be deployed to all devices whenever a certi�cate has been revoked. Another
possibility would be that the devices fetch a new version of the CRL from a central service
from time to time. This way the deployment process stays as simple as possible, while
there is still no need for a TTP that is reachable during the protocol execution.

4.5 Improved Remote Attestation Protocol

The RA process was designed in a way that we do not need any information about the
Prover before starting it. Moreover, during the protocol execution there is no need to
contact a TTP to check the correctness of the measurements. This means that everything
that is needed to verify the state of the Prover is available through the protocol and can
be requested by the Challenger. This is done with the help of Public Key Infrastructure
(PKI). All measurements in the IMA must have a valid signature from a CA we trust.
In our case, we used certi�cate pinning to our own private CA root-certi�cate. Since we
control this CA, we can be sure that only software we signed during deployment will have
a valid signature. By using signatures for the measurements, we were also able to reduce
the deployment complexity of new or updated software. This is caused by the fact that
we only have to deploy the signature of the measurement to the machine where we deploy
the software. We do not have to care about all the other machines running the protocol,
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since they can simply request the new signature during the protocol execution. In contrast
to the default RA protocol, every machine running the server part has exactly one AIK.
This AIK is generated during production. In addition, a certi�cate for it is generated by
our private CA. This certi�cate contains all the information needed to uniquely identify
the owner, since we want to know exactly to whom we are talking.

To attest a remote host, the protocol from Figure 4.3 on the following page is used.
The Challenger starts the process by building up a secure connection to the Prover. If the
Challenger does not have the AIK certi�cate of the remote host, an AIKCerti�cateRequest
is sent to the Prover. The received certi�cate is stored in the local certi�cate store in order
to reuse it the next time it connects to the same Prover.

After the correct AIK certi�cate is present at the Challenger, a new set of nonce is
generated and sent to the Prover as part of a QuoteRequest. Now the Prover has to
execute the quote Command of the TPM with the nonce from the Challenger on the PCR
10. The resulting signature and the quote structure containing the nonce and the indexes
of the PCRs that have been quoted as well as the composite hash are sent back to the
Challenger. The Challenger veri�es the quote by comparing the nonce, created in the
step before and the nonce from the TPM_QUOTE_INFO2 structure, received from the
Prover. If they are the same, the signature is checked.

If signature and the AIK certi�cate are valid we can be sure that the Prover was not
able to manipulate the result of the quote. Now the Challenger has to check, if there is a
stored composite hash for this speci�c Prover. If this is the case and the stored composite
hash equals the composite hash from the quote structure we can trust the Prover. If there
is no stored composite hash or it di�ers from the received hash, the Challenger sends
an IMARequest. This way the Challenger can retrieve the IMA measurements from the
Prover in order to recalculate the composite hash. Before the Challenger can calculate
the composite hash, a signature for every entry in the IMA measurement list must be
available at the Challenger. If this is not the case, the Challenger has to request the
missing signatures from the Prover with a SignatureRequest.

When the IMA measurements and their signatures are available at the Challenger,
we check the signature for every entry in the list. If all entries have a valid signature,
the Challenger can use the entries to recalculate the composite hash. If this calculated
composite hash equals the composite hash from the quote, the Prover is trustworthy. Only
if this is the case we store the calculated composite hash for future connections with this
Prover.

If the AIK certi�cate, at least one signature, the nonce from the quote or the composite
hash is not valid, we cannot establish trust in the Prover, since this indicates a manipulation
by the Prover.

4.6 Problem: Noti�cation on State Changes

The protocol above allows us to establish trust into the state of another device at the time
we execute it. But if the state of the device changes after we have already established
trust, we would not notice this. Thinking of a use case where we want to transfer very
sensitive data only to another device in a trusted state, another solution is needed. So,
we would need something like a TNC. The problem with the TNC as de�ned by the TCG
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Figure 4.3: Sequence diagram of our RA protocol
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is that it does not guarantee that we will be informed about a state change immediately.
This is caused by the fact that TNC only checks the trustworthiness of a device when it
tries to get access to a network. Of course, there are mechanisms to detect changes and
revoke network access, after access to the network has been granted to the device. But
this mechanism cannot ensure that the device is in a trustworthy state at any time after
the �rst connection. But even when we are not interested in something like a TNC, an
instant noti�cation about a system state can be helpful. The faster an integrity violation
is detected the more likely it is to take appropriate steps to prevent a possible infection
from spreading to other devices.

4.7 Solution: Noti�cation on State Changes

Our proposed idea to solve this problem is that every time we want to build a TNC to
another device, we establish a secure connection to it. After that the protocol we introduce
is used to establish trust. To get immediately informed about changes in the IMA after
the protocol has been executed successfully, we propose some changes to the Linux kernel
of the Prover. These changes ensure that after the IMA detects a change of a binary
or con�guration all active Transmission Control Protocol (TCP) sockets are closed. This
way the Challenger gets informed that the system state of the Prover has been changed.
To check if the Prover is still in a trusted state the Challenger reconnects to the Prover
and executes the protocol again. There are two important things when using this. First
of all, the Challenger must ensure that trust is only established if the Prover is running
the modi�ed kernel, since otherwise there would be no noti�cation about changes. This
can be done since the kernel is also measured during boot time. Secondly to get perfect
con�dentiality, the same connection as used for the protocol has to be used for further
communication, since as long as this connection is up there has been no state change at
the Prover device. For use cases where availability is more important than con�dentiality
and where for example very strict requirements to response times are in place it might be
not possible to cut this communication. In such cases this solution can still be used for a
separate monitor connection that is established and kept alive as long as we want to be
informed about the state of the Prover. This way the Challenger still gets informed about
changes immediately. This information can then be used to isolate the compromised device
and move its tasks to another device. To only disconnect such monitor connections on IMA
changes, the changes in the Linux Kernel must respect that by using a con�gurable white
or black list. This list contains all applications that use a monitor connection. We would
suggest using a white list, since most connections would not gain any information by an
unexpected disconnection and this way it is much easier to con�gure. In our case there
is only one application that is running the Prover on this list. Another possibility would
be to disconnect all connections using the port that is used by the improved RA protocol.
This way there would be no need to con�gure a list of applications.



Chapter 5

Design and Implementation

In the previous chapter we discussed all problems that we had to solve and how we solved
them. This chapter explains how we actually used the concepts from before to implement a
prototype of our protocol. It also explains how we integrated it into an existing framework
to report integrity violations. In addition, we also discuss technical problems related to
the use of certi�cates and signatures and how we solved them.

5.1 Modules

Our implementation of the system consists of several modules, all with their own purpose.
There are 3 applications, 2 libraries and one Linux Kernel Module (LKM). In Figure 5.1 on
the next page we can see the direct dependencies of these modules. Depending on which
parts of the protocol should be executed, a di�erent set of those modules are needed. If
only the Challenger part of the protocol should be executed on a host, one only needs the
RemoteAttestation module and both libraries.

Figure 5.2 on page 42 shows a simpli�ed class dependency digram of our implementa-
tion. It does not contain all classes from our implementation, but it should be su�cient
to get an idea how of our solution.

There are several constraints to the Linux distribution we are running on, for example
the IMA and the Grand Uni�ed Bootloader (GRUB) have to be active and con�gured to
measure the system. To guarantee the detection of a compromisation, a physical TPM
must be connected. The LKM needs at least a Linux kernel 4.5 with an additional change
in the IMA, that calls the LKM, to work. If the system is used without the Terminator
LKM it can still be used for RA, but not for trusted network connections or monitor
connections.

Since the devices that will run the protocol are equipped with a version 1.2 TPM, our
implementation is based on this version. In contrast to the TPM version 2.0, version 1.2
only supports SHA-1. This can become a problem because SHA-1 should not be used any
more, since collisions have been found [SBK+17; SKP16]. Nevertheless it should be very
straightforward to change the implementation in order to use version 2.0.

40
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Figure 5.1: System Architecture

5.1.1 RemoteAttestation

This module implements the RA protocol. It provides a client (Challenger) and a server
(ProverServer). Theoretically it can be used only for a single RA or for building up a
trusted network connection. Since the current implementation is only a prototype, some
changes are necessary for productive use. The RemoteAttestation Module depends on
LibTpm and LibUtil. If the server is started it also needs the LocalImaReaderService
running and optionally the Terminator LKM. Basically, the server starts a QTcpServer
that listens on a prede�ned port for incoming connections. If there is a new connection,
a new instance of a ProverConnection is created that handles all incoming requests from
the Challenger. The ProverConnection is implemented in a stateless way. This means
that the Challenger could actually send the request in a di�erent order than de�ned or
execute a step several times. While this made the implementation of our prototype very
straightforward, it could perhaps also be used for some kind of Denial-of-Service attack.
In order to prevent this in productive usage, some kind of counter measures should be
implemented, like limiting the allowed request count for each Challenger. In contrast to
the Prover, the Challenger part is implemented as state machine. Figure 5.3 on page 43
shows the state machine used by the Challenger. Basically there is a state for every step
from the improved RA shown by Figure 4.3 on page 38. This way we ensure that for every
Request only the correct response is accepted.

Since it is possible that a host only needs the client or the server part of the protocol,
this module could be split into 3 new modules:

RemoteAttestationClient: This module would only contain the client part of the pro-
tocol and would only depend on the LibUtil and the new LibRemoteAttestation
module.

RemoteAttestationServer: Here we would locate the server part of the protocol. This
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Figure 5.3: State machine of the Challenger
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module would have the same dependencies as the original RemoteAttestation module.
In addition to this it would also need the new LibRemoteAttestation module.

LibRemoteAttestation: This module would contain all the shared code between the
RemoteAttestationClient and the RemoteAttestationServer modules. It would also
depend on the LibUtil module.

5.1.2 LocalImaReaderService

On a Linux system, the measurements of the IMA are available through the
ascii_runtime_measurements �le under /sys/kernel/security/ on the �le system. This
�le can only be opened by root. Since we need to read the ascii_runtime_measurements
during the protocol execution and we do not want to run the application which runs
the ProverServer as root, we introduce the LocalImaReaderService. This is a service
which provides the ascii_runtime_measurements to other processes on the same ma-
chine. It must run as root to read the ascii_runtime_measurements �le. It simply
provides a local socket where other local applications can connect to and read the cur-
rent ascii_runtime_measurements without needing root privileges. This service only has
a dependency to the LibUtil module.

5.1.3 Terminator

This LKM closes (terminates) all open TCP sockets by sending a TCP RESET after the
Linux IMA detects a change and has already measured it. To do so there is a small change
in the IMA source code required that is needed to call the terminator. This changes
only a�ect two �les namely the "LinuxKernel/security/integrity/ima/ima.h" and "Lin-
uxKernel/security/integrity/ima/ima_main.c". The changes to this �les can be seen in
Listing 5.1 for "ima.h" �le and Listing 5.2 contains the changes to the "ima_main.c" �le.
Basically there are only two declarations, two symbol exports and one if statement that
checks if the terminator module is loaded. In total there are only 7 new lines of code. The
terminator LKM itself needs at least a Linux kernel 4.5 to be able to close open sockets in
a proper way. Closing open sockets guarantees that the Challenger recognizes, a change on
the remote host during the execution of the RA protocol. As already mentioned the sockets
are closed by sending a TCP RESET. This guaranties that the Challenger is instantly no-
ti�ed about the closed socket and does not have to wait for a time out. If the RA protocol
is used to build up trusted network connections this is even more important because this
is the only reliable way a client gets informed that the RA protocol has to be executed
again to be sure that the remote host is still in a trusted state. Since not all applications
use the RA protocol, the terminator module has a white list of applications whose sockets
should be closed on IMA changes. We also thought about using a black list of applications
that should not be a�ected, but since the number of applications that actually run our
protocol and therefore gain information from a closed network socket should be very small,
we decided to use the white list approach. Doing so makes the correct con�guration of the
LKM much simpler and reduces the danger of unexpected problems in other applications
regarding their active connections.
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Listing 5.1: New declarations in ima.h of the IMA LKM.

stat ic struct module * terminator_mod ;
stat ic void (* t e rminato r_k i l lA l l_pt r ) ( void ) ;

Listing 5.2: Changes to the IMA Kernal Module in ima_main.c.

EXPORT_SYMBOL( terminator_mod ) ;
EXPORT_SYMBOL( te rminato r_k i l lA l l_ptr ) ;
. . .
stat ic int process_measurement ( struct f i l e * f i l e , char *buf ,

l o f f_ t s i z e , int mask , enum ima_hooks func , int opened )
{
. . .

i f ( a c t i on & IMA_MEASURE) {
ima_store_measurement ( i i n t , f i l e , pathname ,

xattr_value , xattr_len , pcr ) ;
i f ( terminator_mod ){

(* t e rminato r_k i l lA l l_ptr ) ( ) ;
}

}
. . .
}
. . .

5.1.4 ProductionTools

The production tools are meant to run during the production on the new machine, that
should later run the server part of the RA protocol. It creates a new AIK and a certi�cate
for it. Currently the certi�cate is also created on the new machine. This part should be
extracted and run on the production machine or another trusted authority in order to not
have to copy the private key of the root certi�cate to the new machine. For example the
production tool would only create the new AIK. After that it would create a certi�cate
signing request and send it to our own PKI. But since providing a tool to set up new
devices was out of scope of this work, we only implemented a simple tool in order to set up
our own environment. In order to run this application the LibTpm and LibUtil modules
are needed.

5.1.5 LibTpm

The LibTpm library provides classes and functionality to work with the TPM. Right now,
it only contains those parts which are actually needed by more than one other module.
This library wraps the communication with the TPM to make it easy to use. Internally
it uses the TrouSerS library in order to communicate with the TPM. Further it hides
the complexity with all the special structs and memory allocation and deallocation when
working with TrouSerS. This is done by the TPM class that uses the command pattern to
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execute TPM commands represented by the TPMCommand class. Since the logic, how a
Quote or AIK is created, is encapsulated into own commands, the TPM class is kept very
simple. In addition it is very easy to add new commands in the future if needed.

5.1.6 LibUtil

This is a very simple library that only provides helper functions. It contains functionality
that is needed by nearly all the other applications and libraries, like an easy way to work
with byte arrays. In addition, it contains the functionality to read and write a QDataS-
tream from a socket. For example the BlockDataStreamReader ensures that the whole
message from the TcpSocket is available for read and provides it through a QDataStream.

5.2 Scari Integration

Scari (Secure and reliable infrastructure) is the name of an existing self-adaptive software
system by Iber et al. introduced in [IRK+17], that was designed with the same industrial
setting in mind as in our work. As shown in Figure 5.4 on the next page, Scari consists
of �ve blocks. The knowledge base holds a hierarchical world model. Each device running
the Sari framework only knows its parent node and subgraph. The informations of this
model can be used by the other parts of the Scari framework during the adoption loop.
In the observe phase a monitor detects something suspicious and creates a noti�cation
for it. There exist several di�erent monitors, where every monitor is specialist for a spe-
ci�c monitoring task. Noti�cations generated by these monitors are then analysed in the
orienting phase by Syndrome Processors. Like the monitors there are multiple specialist
Syndrome Processors. Each Syndrome Processor �lters the incoming noti�cations for those
he can handle. If a problem is detected the Syndrome Processor generates one or multiple
recommendations. In the case where the knowledge base does not contain enough infor-
mation to generate a recommendation, the noti�cation is forwarded to the parent entity
in the hierarchical representation. Recommendations generated in the orienting phase are
consumed in the deciding phase by a Recommendation Decision Maker, who selects the
best recommendation and forwards it to a Plan Maker. The Plan Maker generates one
or multiple plans how the recommendation can be implemented and sends it to the Plan
Decision Maker. In this step the best plan is picked and forwarded to the acting phase of
the adaptive loop. In this phase the actions of the plan are executed to adapt the system
and changes are fed back to the knowledge base.

The integration of our RA protocol into Scari allows use to report detected integrity
violations and react on it in an automated way. We added an integrity monitoring service
which is informed about integrity violations of remote hosts by the process that is running
the Challenger part. The monitor then creates an integrity violation event. This event
is passed by the framework to a higher layer until a node decides that it can handle the
event, by creating a plan what has to be done with the a�ected system. In our case, it
checks if there is a hot standby machine available that is able to take over the task of the
violated system. If this is the case, all resources are transferred to the new system and the
old system is isolated from the network. If there is no hot standby machine available it
would also be possible to �nd devices with available capacities and split the tasks between
them.
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Figure 5.4: Scari adaptive loop. Reprinted from [IRK+17, page 72] with permission

5.3 Signatures and Certi�cates

As already mentioned we use signatures in order to detect manipulations in the measure-
ment list. To store and transfer signatures we decided to use the Cryptographic Message
Syntax (CMS) format which is based on Public Key Cryptography Standards (PKCS) #7
and de�ned by [Hou99]. There are several reasons for this decision. It is a well-known
standard that is also supported by many libraries like OpenSSL, that we use in our imple-
mentation. It gives us the ability to include a certi�cate or a whole certi�cate chain that
is needed to verify the signature. This simpli�es the veri�cation process of the signature.
The disadvantage of including certi�cates is the size of the signature �les. In our current
implementation, all signatures are signed by the same certi�cate, so including this certi�-
cate in every signature might not seem like a brilliant idea. Actually, we foresee to use
multiple layers of certi�cates. Therefore, it would be possible that every application has its
own certi�cate or even that there is a new certi�cate for every version of the application.
This would give us the ability to revoke the trustworthiness of the whole applications or of
speci�c versions with known vulnerabilities. Since this implementation should only show
that our concept actually works, we simply signed every signature with the root certi�cate.
Since we already used the CMS format for signatures we decided to use it for storing and
transferring the AIK certi�cates too. But there is no further reason to prefer the CMS
format to one of the other possible formats.

Beside of the �le format for signatures there was also the problem of how to link them
to the application that is signed. Since the only information about an application are the
attributes that are included in the IMA measurement list, we used the template-hash of
the measurement to link it to the signature. This way the Challenger only has to calculate
the template-hash for an entry in the measurement list. In addition the Challenger has
to check if there has a signature for this hash in the signature store. If this is the case
the Challenger can use the signature to verify the measurement, otherwise the signature is
requested from the Prover �rst. Linking the AIK certi�cates is an even bigger problem. As
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already discussed in Section 3.2 this is also important to prevent masquerading attacks on
the RA process. In the �rst place, we planned to include the serial number of the device
into the AIK certi�cate as well as into the SSL certi�cates. Since this would be a strong
link of both certi�cates to a speci�c hardware. But also, the solution form [GPS06] which
was already discussed previously, would be su�cient. Although we planned to establish a
strong link, our current implementation simply used the IP address of a machine. We are
aware that this is actually not a good idea since IP addresses can change and we strongly
recommend to not use this for productive operation!

One thing that should be mentioned when working with OpenSSL and TrouSerS, the
format of the public AIK key from the X509 certi�cate and the format that is needed to
verify the signature of the quote, are not the same. In addition, there is no functionality
in one of both libraries to convert between this blob formats. This means that we had
to implement a manual conversion. Actually, this is not a hard task, since most values in
the structure are �xed, but since it took us some time to realize why the validation of the
quote fails, we felt like we should mention this.



Chapter 6

Evaluation

This chapter contains the evaluation of our introduced protocol and modules. In Section 6.1
we describe the test environment we used to evaluate our implementation. In the next
Section 6.2 we present our results regarding the execution time of the protocol. After
that we discuss the maintenance e�orts for our system in Section 6.3, followed by the
evaluation of the amount of data that has to be transferred during the protocol execution
in Section 6.4. In the end we describe possible applications for our protocol in Section 6.5.

6.1 Test Environment

To test and evaluate our implementation we used VM running on an Ubuntu 16.04 distri-
bution with a version 4.4 Linux kernel as host OS on a Personal Computer (PC) with an
Intel® Core�i5-2500 at 3.3GHz and 8GB of RAM. QEMU was used for virtualisation.

The �rst problem we had to solve was that our host system did not have a hardware
TPM. But since Xen and Hyper-V need a hardware TPM in order to enable their build-in
vTPM support we were not able to use them. In addition, we had some problems with
the TPM emulator [Str04] as well as the VirtualBox extension for it. This problem was
solved by using the software TPM [Ber14b] created by Berger. With this software TPM
it is possible to have multiple TPMs running on the host system. The second problem
was that QEMU has no build-in support for TPMs, neither virtual TPMs nor passed
through hardware TPMs. Fortunately, Berger created a patch for QEMU [Ber14a] that
adds support for vTPMs. This allowed us to create a software TPM on the host system
for each VM and pass it through to each guest. By doing so the virtual TPM is already
present during boot time of the VM allowing to create and store measurements of the boot
process in it. The IMA can then calculate a boot aggregate from it. This way the IMA
measurement list of our VMs does not di�er from machines with a real TPM regarding to
what measurements are in there.

Like the host system, also the VMs are running on Ubuntu 16.04. But in di�erence
to the host system a customized version 4.8 Linux Kernel was used, to be able to use the
Terminator LKM. Figure 6.1 on the following page illustrates the architecture of our test
environment. While the guest VM 1 is used as Challenger, the guest VM 2 runs the Prover
part and the IMARequestorService. In our tests we used the Challenger of guest VM 1 to
check the integrity of the guest VM 2.
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Figure 6.1: Test setup used for the evaluation of our implementation

6.2 Performance

Since there was no budget to test our implementation with multiple real CDs, we had to
use virtualization to test our implementation. Nevertheless we decided to take performance
measurements, to at least get some approximated values of the runtime of our improved
RA protocol.

To take time measurements, we modify the code of the Challenger and add a "QE-
lapsedTimer". This timer is started just before the protocol is started and stopped when
it has �nished. To take timings of single steps of the protocol we save the current elapsed
time to a preallocated array. By holding this timings in memory during the protocol exe-
cution we try to minimize the impact of our measurements to the execution times of the
protocol. The timings in this array are saved to a �le on the hard-disk after the protocol
has �nished. Every data sample consists of 50 measurements to get a signi�cant result.

In Figure 6.2 on page 52 you see the overall execution times of the protocol under
certain preconditions. The �rst sample shows the measurements of a protocol execution
where the Challenger connects to a certain Prover for the �rst time. So, the Challenger
cannot take any of the shortcuts implemented in the protocol and has to execute every
step. In average this takes 153ms. The next boxplot shows a protocol execution where the
Challenger already has the AIK certi�cate of the Prover, but there are some new signatures
that have to be requested. This leads to an average execution time of 150ms. The third
sample is nearly the same with the di�erence that the Challenger has all signatures needed.
The last plot shows the measurements of the case where the Challenger has a calculated
composite hash of this Prover that was trustworthy and the state of the Prover is still
the same. In this case the Challenger needs only one quote request to be sure that the
Prover is trustworthy. As we can see this still takes an average time of 125ms, although



CHAPTER 6. EVALUATION 51

in this case every shortcut in the protocol can be used. The reason for this can be seen in
Figure 6.3 on page 53 where the execution times of the single protocol steps are mapped. It
can easily be seen that the step with the biggest impact on the execution time is the quote
request that has to be done on every protocol execution. Since the amount of data is very
small during this step, the only operation that can consume that much time is the quote
command of the TPM. At this point we also want to mention that we are using a vTPM
so the Execution time of the quote command on a real TPM could be faster or even much
slower. [Par10] shows that di�erent TPM hardware implementations optimize di�erent
operations. Since the work only includes a plot of their results we had to approximate the
timings. In their set-up Execution times for the quote command from about 330ms to
888ms were measured, depending on the chip that was used. An even higher value was
measured by [RHI+17], where the quote command of the TPM on their embedded CD
took 1.9 s.

This leads us to the result that the overall performance of our protocol highly depends
on the performance of the quote command of the used TPM. Since we measured the single
protocol steps, it is no problem to estimate the performance for another chip, as long as
the execution time for the quote command is known. In our case the quote took 115ms on
average, all other steps together for the �rst time connection are 38ms on average. In the
case where all protocol shotcuts can be used the execution time without the quote is only
10ms. So, the protocol execution time can be estimated by simply adding these values to
the quote execution time. Of course, there are other factors that a�ect the execution time,
like network speed, used hardware and so on. But this was not taken into account since it
is very hard to consider this without knowing a speci�c scenario.

6.3 Maintenance E�ort

The e�ort for maintaining the system highly depends on the number of measurements done
by the IMA. Like described earlier there has to be a valid signature for every measurement.
In our case the IMA had about 600 entries. This would mean that we need at least 600
signatures. But since we also want to revoke every single signature, every signature needs
its own certi�cate. Resulting in the same amount of certi�cates. If we use the three-layer
certi�cate architecture we proposed, this would add at least another certi�cate for every
application. While this additional layer increases the amount of certi�cates, it simpli�es
the revocation of the trustworthiness of an application. Since we do not know how many
versions of a binary or con�guration are trusted, it is not possible to name a number of
total needed certi�cates, but if we also count certi�cates for no longer trusted version it
can easily reach a few thousand. But since all devices and used software are under strict
control, we think that maintaining the certi�cates for them should be feasible.

6.4 Data Tra�c

In this section we try to evaluate the amount of data that is sent over the network by our
protocol. Table 6.1 on page 54 shows the data tra�c of the RA protocol for a Prover with
600 entries in the IMA. Before the protocol execution the Challenger had no data about the
Prover so the AIK certi�cate as well as all signatures have been requested. As mentioned
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Quote Certi�cate IMA Signature

request 36B 12B 12B 14.41 kB

response 316B 1.37 kB 32.20 kB 2.22MB

sum 352B 1.38 kB 32.21 kB 2.23MB

Table 6.1: Data tra�c by protocol step, request and response for a Prover with 600 entries
in the IMA

in Section 6.3 on page 51 there are potentially a few thousand certi�cates. Nevertheless,
during the RA of a host there are never more signatures needed than entries in the IMA.
This means that in the worst case we have to request 1200 certi�cates and 600 signatures.

For certi�cates we used 4096 bit RSA with SHA256, which results in a �le size of about
14.41 kB per certi�cate with Distinguished Encoding Rules (DER) encoding. Our signa-
ture also used SHA256 and and contained the certi�cate chain to simplify the veri�cation
process. For our three-layer certi�cate structure this results in a �le size of about 3.7 kB
per signatures in PKCS #7 CMS DER encoding. Since the signatures already include the
certi�cate chain it is not necessary to request them. This means that in the worst case
only 600 signatures have to be requested with a total size of about 2.2MB. If we sum up
all protocol steps only about 2.26MB are transferred over the network.

6.5 Possible Applications

We identi�ed three possible use cases where our protocol could be used:

Single check: Like the default RA protocol, our improved version can be used for a single
integrity check of a remote host. When used in this mode our improved RA protocol
only simpli�es the deployment process of new software in the system. It is only
necessary to deploy the new software and the corresponding signature to devices
that are running this software. All the other devices will simply request the new
signature during the protocol execution.

Real trusted network connection: In conjunction with the Terminator LKM our pro-
tocol can be used for our own version of TNC, with the di�erence that the actual
network access is not managed by us. Rather we tested a way of establishing a secure
connection between devices and executing our RA protocol on them. If the Prover is
in a trusted state, we use the same connection for example to transfer data. As long
as the connection is open the Challenger can be sure that the system state of the
remote host has not been changed. This means that as long as the connection is open
all data is forwarded to a trusted device. As soon as the system state changes the
connection is automatically closed and the Challenger has to reconnect and check the
integrity again before sending data can be resumed. Of course it can be dangerous
to interrupt a network connection that is used to transmit important information, if
there is no mechanism in place that ensures that no package gets lost. Problem could
arise if the system requires a too short response time for our protocol execution. This
is why we did not put more e�ort into this possible application of our protocol.
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Monitor connection: The last use case we identi�ed is called monitor connection by us.
This means we have some kind of monitor process on the Challenger device that
opens a connection to a remote host and executes our protocol on it. Like in the
previous use case the Terminator LKM must run on the system of the Prover. If the
Prover is in a trusted state, the connection is kept open. In case of a system state
change at the remote host it is closed by the Terminator and the monitor process
is informed about this change. If this happens, the monitor reopens the connection
and executes the protocol again. Whenever the monitor detects an untrusted system
state at the monitored remote device, this is reported in order to take appropriate
steps. In our example the monitor is part of the Scari framework and reports the
integrity violation to the other modules of the framework that actually plan and
execute actions that should be taken to mitigate the possible attack.

Since the goal of this work was to detect attacks as soon as possible, we think that the
monitor connection is the best way to achieve this. Of course, the protocol can also be used
in the single check mode with polling. But this way we have a lot of overhead. In addition
to the overhead there is still the problem that we do not know the state of the remote
host between these single checks. Both problems are solved by the monitor connection. It
cuts down the overhead by reducing the amount of protocol executions by only running
on system state changes. In addition the timespan where the system state of the Prover
is not known by the Challenger is reduced to the execution time of the protocol. This is
possible since the Challenger is noti�ed by the Prover on system state changes, but before
this states actually is active.



Chapter 7

Conclusion and Future Work

In our implementation of the RA protocol, we split the default process up into several
steps. This has the advantage that some of these steps become optional after the �rst RA
execution, since we can simply cache some information like the AIK certi�cates, signatures
and also trusted system states. By doing so, we are able to reduce the amount of data that
has to be sent from the Prover to the Challenger. In the case of no system state change
at the Prover, there are also less calculations necessary for the Challenger. By the use of
signatures, we reduce the complexity of deploying new program versions. This is caused
by the fact that no other system than the system where we deploy to, has to be updated.
But using signatures has also several disadvantages, namely the added network tra�c for
exchanging the signatures during the protocol execution and the computation time needed
for checking the validity of the signatures. The �rst disadvantage we tried to minimize
by storing signatures and only requesting unknown signatures during the RA protocol.
One additional disadvantage could be seen in the e�ort of managing all these signatures
and certi�cates. Depending on the number of layers of certi�cates used for the signatures,
the size of the CRL, which is needed to revoke old versions of a program, could become
a problem. But using too little layers reduces the control over revoking trusted software.
This is why we would recommend using two layers of certi�cates per application. The
�rst layer would be a application-certi�cate that is only able to create new application-
version-certi�cates which are able to sign the actual program versions. This way every
application version would have its own certi�cate, allowing us to revoke single versions
with known vulnerabilities. The application-certi�cate would also give us the ability to
revoke all versions of an application by revoking a single certi�cate. This way we have
very high control over what application a version is trusted and which not. But there is
still one problem that has not been solved by us so far. It is not possible to deploy a new
version and revoke the trustworthiness of the old version without a system reboot.

This is caused by the way the TPM extent command works. When a new version of an
application is deployed, this new version is measured by the IMA and extent to previous
value of the PCR. The old measurement is still be part of the chain of trust that was
extended to this PCR. The problem is that the whole chain must be trusted in order to
establish trust into the device. If we would revoke the trustworthiness of the old version
while its measurement is still in the chain of trust, the system would be in an untrusted
state. As mentioned above, the only solution so far is to reboot the system to clear the
IMA measurement list. This is not a limitation of our protocol, rather a problem of RA in
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general.
As mentioned in Section 2.1 it should be considered to switch to TPM version 2.0 since

it is no longer recommended to use SHA-1. If this is done, the IMA should be con�gured to
measure with SHA256. Continuing using SHA-1 could open up a possible attack vector on
the RA process, since it is not any longer infeasible that an attack with su�cient computing
power or budget could construct a hash collision for a malicious executable.

For productive usage, it is essential to link AIK and SSL certi�cates, to prevent mas-
querading attacks on the RA process.

Another possible enhancement of our protocol could be the combination with a privilege-
based attestation approach from Section 3.5. This could cut down the number of trusted
measurements and therefore reduce the amount of certi�cates and signatures needed. Be-
sides the reduced maintenance e�ort for the certi�cates it would also reduce the amount
of measurements that have to be checked during the protocol execution.
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Glossary

Challenger The entity that wants to �nd out if a remote host is trustworthy during the
Remote Attestation process.

nonce A number used only once.

Prover The entity that is going to prove that it is trustworthy during the Remote Attes-
tation process.
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Acronyms

ACPU Application CPU

AES Advanced Encryption Standard

AIK Attestation Identity Key

BIOS Basic Input Output System

CA Certi�cation authority

CCPU Communication CPU

CD Control Device

CMS Cryptographic Message Syntax

CPS Cyber Physical System

CPU Central Processing Unit

CRL Certi�cate Revocation List

CRTM Core Root of Trust Measurement

CS Control System

DER Distinguished Encoding Rules

DH De�e-Hellman

ECC Elliptic Curve Cryptography

EK Endorsement Key

FOSS Free and Open-Source Software

fTPM �rmware-TPM

60
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GRUB Grand Uni�ed Bootloader

HMAC Keyed-Hash Message Authentication Code

ICS Industrial Control System

IMA Integrity Measurement Architecture

IMC Integrity Measurement Collector

IMV Integrity Measurement Veri�er

IOT Internet of Things

LKM Linux Kernel Module

MAC Mandatory Access Control

NAA Network Access Authority

NAE Network Access Enforcer

NAR Network Access Requestor

OCSP Online Certi�cate Status Protocol

OS Operating System

OSI model Open Systems Interconnection model

PC Personal Computer

PCR Platform Con�guration Register

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

PRIMA Policy-Reduced Integrity Measurement Architecture

RA Remote Attestation

RAD Resource Access Description

RNG Random number generator

RSA Rivest, Shamir und Adleman
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SCADA Supervisory Control and Data Acquisition

SELinux Security-enhanced Linux

SGX Software Guard Extensions

SHA Secure Hash Algorithm

SIMA Sensory Integrity Measurement Architecture

SML Stored Measurement Log

SoC System-on-a-Chip

SRK Storage Root Key

SSL Secure Sockets Layer

TA Trusted Applications

TC Trusted Computing

TCB Trusted Computing Base

TCG Trusted Computing Group

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TNC Trusted Network Connection

TOCTTOU Time of Check To Time of Use

TPM Trusted Platform Module

TSS Trusted Software Stack

TTP Trusted Third Party

USB Universal Serial Bus

VM Virtual Machine

vTPM virtual TPM
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