TU

Grazm

Markus Nager, BSc MA

Real-Time Multiplexing of
Mixed-Criticality Data Streams for
Automotive Multi-Core Test Systems

Master’s Thesis
to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Software Development and Business Administration

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat. Marcel Carsten Baunach

Institute of Technical Informatics
Embedded Automotive Systems Group

Graz, November 2017

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TuGrRAZOnNline is
identical to the present master’s thesis.

Date Signature

Abstract

With the integration of sophisticated features in modern cars, such as
automatic parking, traffic sign recognition, or advanced driver assistance
systems (ADAS), vehicles are becoming increasingly complex. To keep
up with in-vehicle systems, automotive verification and validation (V&V)
systems need to be redesigned and enhanced.

Historically, automotive test systems were designed for a single core ar-
chitecture. This, however, limited the utilization of shared resources and
generated high hardware costs.

In this thesis we present a redesigned AVL automotive test system that
was upgraded to a multi-core architecture. As part of the redesign, we
implemented a Connectivity Manager (CM) for the V&V system that is in
charge of multiplexing mixed-criticality data streams from multiple cores
across a shared network. Particularly, we used a controller are network
(CAN) as shared communication network, since CAN is the most common
and utmost widespread automotive communication network. Due to the
increased complexity of our system, a more flexible scheduling approach is
required.

Our solution to this problem is a dynamic priority communication schedul-
ing approach that adapts to bandwidth changes on the shared communica-
tion network. Through simulations with realistic workloads, we prove the
proper functioning of our algorithm with the result that higher critical data
streams are favoured over less critical data streams in case of an overloaded
system caused by a bottleneck on the CAN bus.

In a long term test-run we prove the stability of our demonstrator, which
persisted functioning throughout 88 hours with a CAN bus utilization of
67.80%. Via an external device we also simulated other nodes on the bus.

As a result, we were able to demonstrate the real world applicability of our
system, as the demonstrator seeks for maximum CAN bus utilization and

therefore extends the utilization limit of 40% in live systems [Davis et al.,
2007].

Kurzfassung

Durch die Integration von hochentwickelten Funktionen, wie zum Beispiel
Parkassistent, Verkehrszeichen-Detektion oder Fahrerassistenzsysteme
(ADAS), wurden moderne Autos zunehmend komplexer. Um mit den
Fahrzeug internen Systemen Schritt zu halten miissen somit auch die in
Verbindung stehenden Testsysteme erweitert werden.

Historisch bedingt sind Fahrzeug-Testsysteme fiir eine single-core Architek-
tur ausgelegt. Das allerdings schriankt die Nutzung von gemeinsamen
Ressourcen sehr ein und resultiert daher in hohen Hardware Kosten.

In dieser Diplomarbeit prasentieren wir ein umgestaltetes AVL Fahrzeug-
Testsystem, welches auf eine Mehrkern-Architektur hochgestuft wurde. Als
Teil dieser Umgestaltung haben wir eine Connectivity Manager Kompo-
nente fiir das Testsystem implementiert. Dieser Connectivity Manager ist
verantwortlich fiir das Multiplexen von unterschiedlich kritischen (mixed-
criticality) Datenstromen, die von mehreren Kernen stammen, tiber ein
gemeinsames Netzwerk. Insbesondere haben wir das Controller Area Net-
work (CAN) als gemeinsames Netzwerk verwendet, da CAN das meist
verbreitetste Kommunikationsnetzwerk im Automotive Bereich ist. Auf
Grund der erhohten Komplexitdt unseres Systems, musste ein dynamischer
Verteilungsalgorithmus (scheduling algorithm) gefunden werden.

Unsere Losung fiir dieses Problem ist ein dynamisch priorisierenden Ver-
teilungsalgorithmus, der flexibel auf Bandbreitenveranderungen des gemein-
samen Kommunikationsnetzwerkes reagiert. Durch Simulationen unter
realistischen Bedingungen, konnen wir aufzeigen, dass der Algorithmus
ordnungsgemafs funktioniert, sodass hochkritische Datenstrome weniger
kritischen Datenstromen vorgezogen werden sofern das System auf Grund
eines Bottelnecks am CAN Bus tiberlastet ist.

In einem Langzeit-Testlauf konnten wir die Stabilitdt unseres Demonstrators,
der tiber 88 Stunden hinweg bei einer CAN Bus Auslastung von 67,80%
funktionsfdhig blieb, unter Beweis stellen. Des Weiteren konnten wir mittels
externen Gerit zusédtzliche Busteilnehmer simulieren. Hiermit konnten
wir eine reale Anwendbarkeit unseres Systems demonstrieren. Da unser
Demonstrator eine maximale CAN Busauslastung anstrebt, kann dadurch
die Buslastbegrenzung von 40% in Produktivsystemen erhort werden [Davis
et al., 2007].

Vi

Acknowledgments

First of all I would like to thank my supervisor Prof. Dr. Marcel Baunach of
the Institute of Technical Informatics at the Technical University of Graz, for
his tremendous support. Without his great commitment, critical reviewing
and advising this research would not have yielded such great findings.

Equally grateful I am for the precious support of Peter Priller. Not just for
giving me the opportunity to accomplish this thesis in cooperation with
AVL List GmbH, but also for his invaluable dedication and encouragement.
His devoted commitment was crucial for the success of this thesis and its
scientific contribution. In addition, I would also like to thank Thomas Strunz,
Markus Strobich and Georg Macher, for their help and assistance with AVL
frameworks and tools. This leads me to the great support of the members
of the Technology Research department. I want to thank you for all the
constructive discussions and ideas.

Further acknowledgements go to Jiirgen Wurzinger and Lisa Kandlhofer,
who were not just AVL colleagues, but friends who encouraged and moti-
vated me. Especially our coffee breaks were absolutely inspiring.

Besides these persons I want to thank my friends and flatmates for support-
ing me and dealing with my moods. Especially, I would like to mention
Theresa Rauchberger, who was a really good friend in tough times and
provided me with food regularly.

Finally, I would like to thank my family for their patience and support. They
always encouraged me to pursue my goals.

Furthermore, research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement 621429 (project EMC2),
and from the Endowed Professorship “Embedded Automotive Systems”
(bmwfw, AVL List GmbH, and TU Graz).

vii

Contents

Abstract
Kurzfassung
Acknowledgments
1 Introduction
1.1 Motivation oL
1.2 Problem
1.3 Solution
1.3.1 Objectives
1.3.2 OutlookonResults
1.4 Outline
2 Preliminaries
2.1 Terminology and Definitions
2.1.1 Electronic Control Unit
212 ECUSystem
213 V&VSystem.............
2.2 In-Vehicle Communication Systems
2.3 Controller Area Network
2.3.1 History and Standardization
2.3.2 Characteristics
2.3.3 Arbitration. o Lo
234 BitCoding
23.5 FramesTypes
2.4 Real-Time Systems and Environment
2.5 Real-Time Scheduling

2.5.1

Hard Deadlines

vii

Contents

252 SoftDeadlines. 30

2.5.3 Workload Characteristics 30

2.5.4 Static Scheduling 32

2.5.5 Dynamic Scheduling 33

26 INtime 34
2.6.1 INtime Terminology 36

2.6.2 Processes. oo 37

2.6.3 Memory Management 37

2.6.4 Thread Scheduling 39

26.5 Mailboxes oo 41

2.6.6 Semaphores 42

3 Related Work 45
4 Connectivity Manager (CM) 49
4.1 StatusQuoSystem L 50
4.2 Notationand Model, 52
421 Notation 53

4.2.2 Communications Model 55

423 SystemModel o oo 57

4.2.4 Requirements 58

43 Concept. 58
431 TargetSystem 59

4.3.2 DataDistinction 60

4.3.3 Characteristics of Target System 61

4.4 Architectureand Design 62
4.4.1 Architecture Lo 62

442 Design Lo oo 64

4.4.3 Inter-Core Communication 66

4.4.4 Communication Flow 69

4.5 Dynamic Priority Scheduling 77
451 SystemStates 0 0L 77

4.5.2 Schedulability Test 79

4.5.3 Deadline Calculation 81

4.5.4 Functioning of the Scheduler 83

4.5.5 EDF Scheduling (non-overloaded) 90

4.5.6 Best Effort Scheduling (overloaded) 92

Contents

4.6 Implementation 94
4.6.1 Connectivity Manager 95

4.6.2 Connectivity Interface 96

4.6.3 Inter-Core Communication 98

4.6.4 Scheduler 101

465 Ring-Buffer00, 101

4.6.6 Further Implementation Challenges 103

4.7 Limitations 105

5 Evaluation and Analysis 107
5.1 Hardware and Software Specification 107
5.1.1 Hardware 107

51.2 Software 108

5.2 Usage of the Demonstrator 109
53 Results 111
53.1 TestCases 113

5.3.2 Dynamic Priority Communication Scheduling 116

5.3.3 Maximum CAN Utilization 121

534 LongTerm 123

5.3.5 Minimum Cycle-Time 125

54 Analysis o o 128
5.4.1 Worst-Case Execution Time 128

542 CPUUsage 131

54.3 MemoryUsage 134

5.4.4 Comparison to Other Approaches 135

6 Outlook and Conclusion 137
Bibliography 147

Xi

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9
2.10
2.11

Increasing usage of ECUs.
Electronic architecture of a vehicle.
Voltage levels of the CAN bus.
Arbitration example of three bit streams.
Detailed illustration of data frames with different formats. . .
Classification of real-time scheduling.
Comparison between soft and hard deadlines with regard to
damage in case of violating deadlines [Audsley and Burns,
1990« o o e e e
Architecture of the INtime distributed RTOS configuration.
INtime process tree.
State transitions of a INtime thread.
INtime round-robin thread execution.

1:1 relationship between ECU system and V&V system
Visualization of relevantitems.
Concrete example of a send-queue.
Basic concept of the target system.
Architecture of the demonstrator.

Inter-core communication scheme.
Communication flow of the old open sequence.
Communication flow of the extended open sequence.
Communication flow of the write sequence.
Communication flow of the read sequence.
Communication flow of the close sequence.
A simplified example of a data stream sending messages.

Flow diagram of the message picking procedure.
Flow diagram of the clean up procedure.

29
35
37
40
41

50
53

55
61

62

66
70
71
73
74
75
84
86

xiii

List of Figures

X1V

4.16
4.17
4.18
4.19
4.20
4.21

4.22
4.23
4.24
5.1

5.2

53
5-4
5-5
5.6

A more complex example of the send procedure. 90
A more complex example of the send procedure (cont.). ... 91
Comparison of EDF and Best Effort scheduling. 93
Connectivity Manager - class diagram. 96
Connectivity Interface - class diagram. 97
Communication between Connectivity Manager class and

Connectivity Interfaceclass. 98
Communication between Connectivity Manager class and

Connectivity Interface class including message types. 100
Illustration of the ring-Buffer. 102
Illustration of drifting creation-times. 104

Connectivity Interface on Node B - input parameters and

connection establishing. 112
Connectivity Manager on Node A - important information of

test-run. oo 113
Graph of the prioritization example. 118
Maximum CAN utilization. 122
Results of the long term test-run. 124
Two connections with same cycle-time but different data

volume. 125
Two connections with the same cycle-time of 1 millisecond

got delayed to the sameextent. 127
Composition of the worst-case execution time. 129
Example of worst-case execution time (WCET). 130
Difference of CPU usage of Connectivity Manager and Con-

nectivity Interface. o 000 L 132
Different CPU load phases of the Connectivity Manager. . . . 133
Detailed memory list of INtime real-time processes. 135

Complex sequence diagram of the extended open operation. . 143

Complex sequence diagram of the write operation. 144
Connectivity Interface - detailed class diagram. 145
Connectivity Manager - detailed class diagram. 146

Index of Abbreviations

ABS Antilock Braking System

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistant Systems
API Application Programming Interfaces
ASC Automatic Stability Control

CAN Controller Area Network

CIM Computer-Integrated Manufacturing
CRC Cyclical Redundancy Checks
CSMA/CR Carrier-Sense Multiple Access/Collision Resolution
DLC Data Length Code

DM Deadline Monotonic

ECU Electronic Control Unit

EDF Earliest Deadline First

EOF End of Frame

ESP Electronic Stability Program

FIFO First In First Out

GDT Global Descriptor Table

GPOS General-Purpose Operating System
HiL. Hardware-in the-Loop System

XV

HMI Human Machine Interface
ICC Inter-Core Communication
IDE IDentifier Extension

IFS Inter Frame Space

IPC Inter-Process Communication

ISO/OSI International Organization for Standardization/Open System
Interconnection

ISO International Organization for Standardization
LIN Local Interconnected Network
LVDS Low-Voltage Differential Signaling
MAU Medium Access Unit

MCU Microcontroller

MDI Medium Dependent Interface
MOST Media Oriented Systems Transport
MTS Mixed Traffic Scheduler

NRZ Non Return to Zero

QoS Quality of Service

RED Robust Earliest Deadline

RM Rate-Monotonic

RT Real-Time

RTOS Real-Time Operating System

RTR Remote Transmission Request

SAE Society of Automotive Engineers
SOF Start of Frame

SRR Substitute Remote Request

XVi

TDMA Time-Division Multiple Access
TPMS Tire Pressure Monitoring System
V&V Verification and Validation

VMM Virtual Machine Manager

VSEG Virtual Segment

XVii

1 Introduction

1.1 Motivation

In the past few years the components within a vehicle shifted increasingly
from mechanical to hydraulic and now to electrical components [Leen and
Heffernan, 2002]. Nowadays cars can be seen as highly distributed control
systems, considering that in modern luxury cars up to 100 electronic con-
trol units (ECUs) are interconnected [Albert, 2004], [Charette, 2009]. Due
to upcoming features such as automatic parking, traffic sign recognition
or advanced driver assistance systems (ADAS), vehicles are becoming in-
creasingly sophisticated. To cope with the rising number of ECUs, while
keeping weight, costs, and complexity at a minimum, networks with multi-
plexed communication over a shared medium were introduced [Navet and
Simonot-Lion, 2013].

However, with greater sophistication comes greater complexity of those
in-vehicle systems, networks, but also automotive test systems [Kraus et al.,
2016]. For the development, verification and validation (V&V) of such
complex, distributed control systems, the industries use powerful multi-
core test systems like HiL (Hardware in the loop) or powertrain test-beds
systems. Each test bed is controlled by automotive test systems, which are,
amongst other things, responsible for providing the embedded in-vehicle
system with simulation data. Additionally, the embedded in-vehicle system
returns diagnosis as well as analysis data with the result of a prevalent
bidirectional communication [Nager et al., 2017].

Hence, not only the communication within the car is of high relevance,
but also the information exchange between in-vehicle communication net-
works and external real-time test systems. The most common and utmost
widespread automotive communication network is the Controller Area

1 Introduction

Network (CAN) [Navet and Simonot-Lion, 2013]. There might be various
applications in the automotive system which vary in demands on computa-
tional power and latency. Multiple applications might run simultaneously,
requiring data exchange with varying criticality. Thus, the test system (V&V
system) must be capable of dealing with workloads of different criticality
(mixed-criticality data) but also with data in different time intervals [Nager
et al., 2017].

With this thesis we introduce a Connectivity Manager (CM) for the V&V
system that is in charge of multiplexing several data streams across a shared
communication network. Equally important for this research is the dynamic
priority communication scheduling mechanism that is implemented as part
of the Connectivity Manager. In the following chapters the Connectivity
Manager approach is described.

1.2 Problem

At AVL List GmbH, the communication among embedded systems and
automotive test systems is designed for a single core architecture. This
results in a 1:1 relationship between the ECU on the embedded system and
the test-application running on the automotive test system. Hence, for every
further application, an additional core with a separate network interface
would be required. Obviously, this approach would result in high hardware
costs, what can be seen as a major problem.

As already mentioned before, in-vehicle systems become increasingly so-
phisticated. Inherently, this trend is also valid for automotive test systems to
keep up with the in-vehicle systems. Therefore, V&V systems are required
to be enhanced accordingly, which can be seen as a major challenge of this
thesis.

A further challenge, this thesis focuses on, is the variety of data the Connec-
tivity Manager has to deal with. As in automotive systems the data varies
in terms of latency and criticality, such as periodic and aperiodic data as
well as real-time and non-real-time data, a flexible approach with regard to
multiplexing is required.

1.3 Solution

1.3 Solution

With this thesis we redesigned AVL's status quo system and created an
automotive test system that is based on a multi-core architecture. Conse-
quently, this approach enables the sharing of resources, such as memory
management, network interfaces, or global wall-clock time. The impact of
this redesign is twofold. On the one hand side, this approach effectively
reduces the hardware costs since less network interfaces and CPUs are
required. Furthermore, the data exchange among cores is enhanced due
to our inter-core communication mechanism. On the other hand side, the
multi-core architecture likewise increases the complexity of our system.

Our solution to this problem is a dynamic priority communication schedul-
ing algorithm that considers the importance of data streams and is therefore
able to handle mixed-criticality data. Furthermore, our dynamic scheduling
approach is capable of adapting to bandwidth changes on the network by
applying a prioritization policy. Meaning that higher critical data streams
are favoured over less critical data streams in case of an overloaded system
caused by a bottleneck on the CAN bus.

1.3.1 Objectives

The major goals for this thesis are:

e Upgrading the status quo system to an automotive test system (V&V
system) that is based on a multi-core architecture

e Developing a fast and efficient communication mechanism for inter-
core communication

e Designing a scheduling algorithm that considers mixed-criticality data
and dynamically adapts to bandwidth changes

e Creating a system design that maximizes the sharing of resources,
such as memory, network connections, or time management

e Implementing a demonstrator that can be used for evaluation and
analysis

1 Introduction

e Proving the proper functioning of our scheduling algorithm in the
sense that higher critical data streams are favoured over less critical
data streams in case of an network bottleneck

e Analysing the performance of the demonstrator in terms of maximum
bandwidth utilization, long term stability and minimum cycle-time

e Evaluating the impact of demonstrator with regard to CPU utilization
and memory consumption

1.3.2 Qutlook on Results

In this thesis we demonstrate a redesigned automotive test system (V&V
system) which is based on a multi-core architecture and therefore enables
a n:m relationship between the ECU on the embedded system and the
test-application running on the automotive test system. Due to the increased
complexity of the system, a central managing component, called Connectiv-
ity Manager, is introduced. This Connectivity Manager is responsible for
providing shared resources as well as managing communications among
cores of the test system. To handle mixed-criticality data of the data streams,
a dynamic priority communication scheduling mechanism is implemented
as part of the Connectivity Manager.

With the help of well-defined test cases, we prove the correct functioning
of the Connectivity Manager implementation, referred to as demonstrator.
One test case for example yields to find the maximum CAN bus utilization
of the demonstrator without generating failures. Moreover, we point out
the minimum cycle-time that our demonstrator can successfully handle.
Another test case focuses on testing the demonstrator on its long-term
stability.

Additionally, through simulations with realistic workloads, we demonstrate
that with our dynamic priority communication scheduling approach we
are able to multiplex mixed-criticality data streams over a shared CAN bus
while dynamically adapting to bandwidth changes.

1.4 Qutline

1.4 OQOutline

This thesis starts with preliminaries (Chapter 2). This chapter is dedicated
to provide a common understanding of terms and definitions, technologies,
protocols as well as concepts that are used within this thesis. In Chapter 3 we
give a brief discussion on related work that influenced this thesis. Chapter
4 is devoted to introduce our real-time multiplexing component, called
Connectivity Manager (CM). In the following sub-chapters the concept,
design, and implementation of the Connectivity Manager is discussed. In
Chapter 5 the functioning as well as the performance of our demonstrator is
evaluated. Finally, Chapter 6 is dedicated to summarize our work and give
an outlook on possible future work.

2 Preliminaries

In this chapter the major concepts, technologies and systems are being
introduced. Moreover, important terms are defined and an overview of
relevant approaches, with regard to real-time scheduling, is given.

2.1 Terminology and Definitions

This section is dedicated to describe different terms and systems, which are
used within this thesis.

2.1.1 Electronic Control Unit

ECU stands for Electronic Control Unit, which is a self-contained automotive
embedded system. An ECU can be seen as a subsystem composed of a micro-
controller, and a set of sensors and actuators [Navet et al., 2005]. ECUs are
increasingly used in the automotive domain to control almost every aspect
within a car [Mishra and Gurumurthy, 2014].

Historically, the first ECU was introduced in the late 1970s to fulfil the Cali-
fornia Clean Air Act (and subsequent federal legislation) for US vehicles.
By dynamically measuring the oxygen present in exhaust fumes, the ECU
was able to adjust the mixture of fuel and oxygen before combustion. Con-
sequently, this led to improved efficiency and reduced pollution. Due to this
applicability, the automotive embedded system was initially called Engine
Control Unit. However, the term ECU was generalized, since nowadays
these control units operate various aspects of a car and not only the engine
[Koscher, 2014]. Commonly, there are multiple ECUs within a car, each with

2 Preliminaries

a different task. Two examples for ECUs are the aforementioned Engine
Control Unit and the Speed Control Unit [Kraus et al., 2016].

These days, such embedded systems have been integrated into virtually
every aspect of the functioning and diagnostics of a vehicle. Such as throttle,
brakes, transmission, telematics, passenger climate, lighting control and
entertainment support [Koscher, 2014]. This leads to 30 to 50 ECUs in
low-end cars and up to 100 ECUs in a modern luxury sedan [Charette,
2009].

These embedded systems are also used for technologies supporting the
driver, passengers and assist in certain driving situations. Those features
encompass technologies such as Anti-lock Braking System (ABS), Electronic
Stability Control (ESP) or Advanced Driver Assistant Systems (ADAS) [Leen
and Heffernan, 2002]. Furthermore, it is common practice to separate the
different systems according to their functionality and temporal demands
[Kraus et al., 2016]. This system distribution can further be seen in Section
2.2.

As it can be seen in Figure 2.1, since 1978, ECUs are being increasingly
used for multiple applications within a vehicle. Further, this illustration
emphasises that modern vehicles are mainly based on electronic components
rather than on mechanical or hydraulic components.

2.1.2 ECU System

Within this thesis we differentiate between ECU System and V&V system.
As already mentioned above, ECU stands for Electronic Control Unit which
is an automotive embedded system composed of a micro-controller and
a set of sensors and actuators. The ECU system, in particular the specific
ECUs of the system, is responsible to independently control almost every
aspect within a vehicle without requiring external input. Thus, the ECU
system consists of multiple ECUs connected through a in-vehicle network,
such as the Controller Area Network (CAN). Hence, the ECU system can
be seen as an independently functioning system that is embedded into the
vehicle, also referred to as automotive embedded in-vehicle system.

2.1 Terminology and Definitions

0‘:/0 100%

: Dynamic driving control
i
Mechanical
1924 4— Hydraulic
ABS Antilock brake system
1931 — ACC Adaptive cruise control
EBD Electronic brakeforce distribution
1937 4— TCM ECU Electronic control unit
EHB Electrohydraulic brakes Hydraul
1951 —— S EMB Electromechanical brakes yCratlic
ESP Electronic stability program
Vacuum HCU Hydraulic control unit
1952 —4—
< TCS Traction control system
4 Hydraulic
R
15
Sown s [e
e
= 1989 +— § Sensors | ECU
g nesvres [emon [R0 [RFGUR
>
- ABS/EBD ECU
1994 5 EEl Fisaar
1995 — & ESP [[sensors [Ecu [HeU | potental
3
1998 4— 8 ACC [sensos | e [HoU
S
2002 = EHB S ECU Heu £
> T g | SS01S | | | H Electronic
E EMB I Sensors | ECU | Actuator -E'
=
=

Figure 2.1: The increasing usage of ECUs presents a clear shift from mechanical to hydraulic
components to almost exclusively electrical components [Leen and Heffernan,
2002].

In the literature, a general definition of an embedded system is as follows.
According to the definition of Li Q. and Yao C. [Li and Yao, 2003], an
embedded system is a computing system with tightly coupled hardware
and software integration. Furthermore, embedded systems are designated
to perform a dedicated function, whereas the term embedded reflects the
fact that these systems are usually part of a larger system, the so called
embedding system.

With regard to our research, this definition acknowledges that one particular
ECU can be seen as the embedded system which is part of the larger in-vehicle
distributed ECU system (embedding system). Since this thesis mainly focuses
on the automotive test system (V&V system), which is the system that tests
and analyse the ECU systems, we specifically do not further focus on the
embedded in-vehicle system.

2 Preliminaries

2.1.3 V&V System

While the ECU system is in charge of controlling the vehicle, the V&V system
is responsible for validating and verifying the embedded in-vehicle systems.
For the development, verification and validation (V&V) of such complex,
distributed control systems, the industries increasingly use powerful (multi-
core) test systems like HiL (Hardware-in the-loop) or powertrain test-bed
systems. Each test bed is controlled by automotive test systems, which are,
amongst other things, responsible for providing the embedded in-vehicle
system with input data, such as simulation scenarios. Additionally, the
embedded in-vehicle system returns diagnosis as well as analysis data with
the result of a prevalent bidirectional communication [Nager et al., 2017].

Moreover, also Lawrenz W. [Lawrenz, 2013] describes HilL as a method for
testing and validating embedded systems by an existing hardware that can
be integrated into a simulated system to test the functionality.

Since AVL's V&V systems are neither embedded into the vehicle nor are
they composed of micro-controllers, a regular x86 processor architecture
usually builds the foundation. To fulfil the real-time demands of the au-
tomotive micro-controllers, a real-time operating system (RTOS) is used
instead of a regular operating system (OS). Further information regarding
the architecture of our V&V system is discussed in Section 4.4.1.

2.2 In-Vehicle Communication Systems

At the very beginning of automotive electronics, every function was im-
plemented as stand-alone electronic control unit. However, this approach
appeared to be insufficient with the need for functions to be distributed
over several ECUs. Moreover, information exchange among functions was
also a considerable need [Navet and Simonot-Lion, 2013]. For example, the
vehicle speed estimated by the engine controller, needs to be known by the
steering module to adapt the steering effort or to control the suspension.
This information exchange can lead to 2500 shared variables, so called ”sig-
nals”, exchanged between up to 100 ECUs in modern luxury cars [Albert,
2004], [Charette, 2009].

10

2.2 In-Vehicle Communication Systems

In the past, ECUs exchanged data through point-to-point links, which
required a vast number of communication channels and complex wiring.
This strategy was unable to cope with the increasing number of ECUs due
to the problem of weight, cost, complexity and reliability. Motivated by
these issues, the use of a network where the communication channels are
multiplexed over a shared medium, was aimed for [Navet and Simonot-
Lion, 2013]. Since the early 1980s, almost all automobile manufacturers
had started intensive efforts to find or develop a suitable communication
protocol which fulfils the increasing need for in-vehicle communication.
A further requirement was to reduce not only the weight but also the
impending increase in the complexity of the wiring harness in the car
[Lawrenz, 2013].

Since the type of data as well as the time criticality differs from application
to application, modern cars use more than one communication system to
fulfil bandwidth requirements and reduce costs at the same time. For this
reason, the Society of Automotive Engineers (SAE) defined a classification
for automotive communication protocols in 1994. Four automotive network
categories were defined, namely Class A, Class B, Class C, and Class D,
which can be seen in Table 2.1 [Navet and Simonot-Lion, 2013].

In 1998, Motorola reported that replacing wiring harnesses with LANs
in the four doors of a BMW reduced the weight by 15 kilograms while
functionality could be enhanced [Leen and Heffernan, 2002].

In consideration of the circumstances that there are different classes of
applications, different bus protocols have emerged, such as the Controller
Area Network CAN, Local Interconnected Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay [Lawrenz, 2013]. In 2008, BMW
released the BMW 7 series, which implements four CAN buses, a FlexRay
bus, a MOST bus, several LIN buses, an Ethernet bus and also wireless
interfaces [Navet and Simonot-Lion, 2013].

As it can been seen in Table 2.1, Class A networks have a data rate lower
than 10 kbit/s and are used to transmit simple control data, such as trunk
release, seat control, door lock or lightning. LIN is one of the most com-
mon representative of Class A networks [Navet and Simonot-Lion, 2013],
[Lawrenz, 2013].

11

2 Preliminaries

Table 2.1: Classification of the four automotive networks with their applicability [Leen et al.,

1999)-
Network s
classification Speed Application
) convenience features,
Class A <10 kbit/s e.g. trunk release, electric
low speed . .
mirror adjustment
10-125 kbit /s general 1nformat10n
Class B . transfer, e.g. instruments,
medium speed .
power windows
. . 1-ti], e.g.
125 kbit/s -1 Mbit/s real-time .contro 1 &8
Class C . power train, vehicle
high speed d .
ynamics
multimedia applications,
e.g. Internet, digital TV
Class D >1 Mbit/s hard real-time critical
functions, e.g. X-by-wire
applications

Class B networks operate at medium speed, which is specified with a
data rate between 10 kbit/s and 125 kbit/s. The main purpose of Class B
networks is to reduce the number of sensors by supporting data exchange
between ECUs. The most common used network for this classification is the
low-speed CAN bus [Navet and Simonot-Lion, 2013], [Leen and Heffernan,
2002].

Class C networks, that operate at a data rate between 125 kbit/s and 1
Mbit/s, are used for real-time control applications, such as power train
control and vehicle dynamics. Data transmitted on a Class C network, has
high demands concerning real-time and failure resistance. Mostly a high-
speed CAN bus is used to fulfil the requirements of a Class C network
[Tuohy et al., 2015].

For the Class D networks, the SAE has not yet defined specific standards.

However, networks that exceed a data rate of 1 Mbit/s are classified as
Class D networks [Leen et al., 1999]. This classification is most relevant for

12

2.2 In-Vehicle Communication Systems

multimedia applications and hard real-time critical functions. For this type
of application the MOST protocol, with a bandwidth of up to 150 Mbit/s, is
primarily used [Tuohy et al., 2015].

The most common automotive networks are outlined in Table 2.2.

Table 2.2: Current automotive network technologies with corresponding maximal bit rate
[Tuohy et al., 2015].

Protocol Maximal bitrate Medium Protocol
LIN 19.2 kbit/s Single wire Master/Slave
CAN 1 Mbit/s Twisted pair CSMA/CR
FlexRay 20 Mbit/s Twisted pair/Optical fibre TDMA
MOST 150 Mbit/s Optical fibre TDMA
LVDS 655 Mbit/s Twisted pair Serial /Parallel

All functions embedded within a vehicle differ in terms of performance,
timeliness but also in safety demands. Therefore, different QoSs, such
as response time, jitter, bandwidth, redundant communication channels
for tolerating transmission errors, and efficiency of the error detection
mechanism, are required. For this reason, the embedded in-vehicle system
is commonly divided into several functional domains that correspond to
different features, constraints and demands [Navet et al., 2005].

e Powertrain: Through micro-controllers with high computing power
and several complex control laws with sampling rates of the order of
milliseconds, the powertrain domain is responsible for controlling the
engine. Due to the high rotation speed of the engine, strict timing con-
straints are imposed on the scheduling of critical tasks. Furthermore,
frequent data exchanges with other vehicle domains are required. For
example data exchange with the chassis domain to enable ABS and ESP
functionality and also data exchange with the body domain to provide
climate control and dashboard information [Navet and Simonot-Lion,
2013], [Navet et al., 2005].

e Chassis: The main function of the chassis domain is to gather informa-
tion concerning steering/braking solicitations and driving conditions
(ground surface, wind, etc.) to provide functionalities such as ABS,
ESP, ASC (Automatic Stability Control), or 4WD (4 Wheel Drive). Since

13

2 Preliminaries

Mator TCs Gearbox
FlexRay

Povertrain/Chassis X-by-Wire/Databackbone

Navigation
System

Multimedia

Telefon

Comfart

I |

Ail
Door Roof Seat Conilition Computer

LIN

Sensor/Actuator

Figure 2.2: Electronic architecture of a vehicle that is divided into different functional
domains. Each domain, such as Powertrain, Chassis, Body, and Multimedia,
consist of different ECUs and network protocols [Mayer, 2006].

the chassis domain has a strong impact on the vehicle’s stability, agility
and dynamics, the communication of the chassis functions are more
critical from a safety standpoint.

Furthermore, the chassis domain introduces the “X-by-wire” tech-
nology, which refers to the replacement of mechanical or hydraulic
systems by fully electrical/electronic ones. The powertrain and chassis
functions operate mainly as closed-loop control systems with a time-
triggered implementation to ensure deterministic real-time behaviour
of the system [Navet and Simonot-Lion, 2013], [Navet et al., 2005].

e Body: The body domain consists of software-based systems that con-
trol dashboard, wipers, lights, doors, windows, seats, mirrors, and
climate control. Functions within the body domain require many ex-
changes of small pieces of information among themselves. Therefore,
not all nodes require a large bandwidth, which led to the introduction
of low-cost networks such as Local Interconnect Network (LIN). The
activation of body functions is mainly event-triggered, for example
driver/passenger opens a door [Navet and Simonot-Lion, 2013], [Navet
et al., 2005].

e Telematics: Telematics functions provide functionality such as in-car

14

2.3 Controller Area Network

navigation system or remote vehicle diagnostics. In general, telematics
functions, such as vehicle monitoring, wireless communication, and
location devices, have a high demand on deadline constraints, since
applications engaged in this domain, rely on real-time data [Navet
and Simonot-Lion, 2013], [Navet et al., 2005].

e Multimedia: In comparison to the telematics domain, applications of
the multimedia domain do not require real-time information exchange.
The multimedia domain is responsible for rear seat entertainment, CD,
DVD, and hands-free phone control. Furthermore, this domain inte-
grates human-machine interface (HMI) and defines multimedia QoS,
wherever preserving the integrity and confidentiality of information is
crucial [Navet and Simonot-Lion, 2013], [Navet et al., 2005].

e Safety: An emerging domain, usually referred to as “active and pas-
sive safety” domain, focuses on functions ensuring the safety of the
occupants. Electronic-based systems, such as Tire Pressure Monitor-
ing System (TPMS), Adaptive Cruise Control (ACC), deployment of
airbags, or impact and roll-over sensors, are increasingly embedded
within vehicles [Navet and Simonot-Lion, 2013], [Navet et al., 2005].

Today’s vehicles commonly consist of an electronic architectures that in-
cludes four different types of networks interconnected by gateways. Such an
electronic architecture as well as the different domains can be seen in Figure
2.2. Within the Volvo XCgo for example, up to 40 ECUs are interconnected
by a LIN bus, a MOST bus, a low-speed CAN, and a high-speed CAN
[Navet and Simonot-Lion, 2013]. Most likely, a bus dedicated to occupant
safety systems such as the ”safe-by-wire plus” will be added in the near
future [Navet and Simonot-Lion, 2008].

Since the practical part of this thesis was mainly developed for the CAN bus,
the concept of the Controller Area Network is discussed in more detail.

2.3 Controller Area Network

The Controller Area Network (CAN) is an automotive-specific multicast-
based communication protocol developed by Robert Bosch GmbH, to pro-
vide a cost-effective communications bus for automotive applications [Tuohy

15

2 Preliminaries

et al., 2015], [Di Natale et al., 2012]. Typically, CAN is used to exchange
control traffic between ECUs within a vehicle. However, it is also used in
factory and plant controls, in robotics, medical devices, and also in some
avionics systems [Johansson and Martin, 2005].

2.3.1 History and Standardization

In 1986, the Controller Area Network was officially released by Robert Bosch
GmbH. Although the first CAN chip was offered to car manufacturers in the
late 1980s by Intel, the eventual standardization of CAN was in November
1993 [Lawrenz, 2013]. CAN on a twisted pair of copper wires became an ISO
standard and is now a de-facto standard in Europe for data transmission in
automotive applications [Navet et al., 2005].

The ISO family 11898 describes the architecture of CAN in terms of the
layers of the International Organization for Standardization/Open System
Interconnection (ISO/OSI) model. While ISO 11898-1 specifies both parts of
the physical layer and parts of the data link layer for transmission rates up
to 1 Mbit/s, ISO 11898-2 focuses on high-speed medium access unit (MAU)
and some medium dependent interface (MDI) features. Further extensions
of the ISO 11898 family describe features such as low-speed, faul-tolerant,
time-triggered communication, or power saving mode. CAN is also specified
by the Society of Automotive Engineers (SAE) by the standard J2284-1 to

_3.

In 1992, CAN was used first in the Mercedes S-Class and served there as
a high-speed network for communication between engine control, trans-
mission control and dashboard. Simultaneously, a low-speed CAN bus
was used for distributed climate control. Shortly after, various manufac-
turers such as BMW, Porsche, and Jaguar, put CAN into series-production.
Since 1994-1995, CAN is the most widely used communication protocol for
automotive applications [Lawrenz, 2013].

The latest version of the CAN protocol is the version 2.0, which is further
on divided into 2.0a and 2.0b. Both specifications are identical, except for
the length of the message identifier (ID). Specification 2.0a defines a 11-bit
message identifier that is known as the standard frame format. The second

16

2.3 Controller Area Network

specification 2.0b defines the extended frame format which uses a 29-bit
message ID [Navet et al., 2005].

Each CAN message is labelled by an ID, that is transmitted within the
message and is unique to the whole system. This serves two purposes, on
the one hand the identifier can be used for giving priority for transmission,
since the lower the numerical value of the identifier, the greater is the
priority of the message. On the other hand unique IDs enable message
filtering upon reception [Navet et al., 2005].

With regard to this thesis and also in general, both CAN versions, specifica-
tion 2.0a and specification 2.0b, can be used simultaneously.

2.3.2 Characteristics

CAN is a contention-based multi-master network that efficiently handles
data which needs to be transmitted periodically, aperiodically, or on demand.
Due to CAN'’s collision resolving algorithm, a high schedulable utilization
and guaranteed bus access latency of less than 150 s for the highest-priority
message on a 1 Mbit/s bus, can be achieved [Zuberi and Shin, 1995], [Navet
et al., 2005]. However, for lower priority messages, a bus access latency of
less than 150 ys cannot be guaranteed.

In the CAN specification in its version 2.0 by Bosch R. [Bosch, 1991] in 1991,
the following properties are being stated:

Prioritization of messages

Guarantee of latency times

Configuration flexibility

Multicast reception with time synchronization

System wide data consistency

Multimaster

Error detection and signalling

Automatic retransmission of corrupted messages as soon as the bus is
idle again

e Distinction between temporary errors and permanent failures of nodes
and autonomous switching-off of defect nodes

17

2 Preliminaries

Further characteristics of CAN are its high reliability in noisy environments
through CRC checks and bit-stuffing, as well as its reconfiguration flexibility
[Zuberi and Shin, 1995].

2.3.3 Arbitration

The fact, that any network node can start to transmit a message once
the CAN bus is free, raises the problem of possible conflicts. The CAN
protocol follows the Carrier Sense Multiple Access with Collision Detection and
Arbitration on Message Priority (CSMA /CD+AMP) approach. All nodes have
to observe the bus (Carrier Sense) and wait until it is in idle state before
writing onto the bus. Whereas writing onto the bus can be initiated by
multiple nodes simultaneously (Multiple Access). Conflicts of simultaneously
transmitting units are detected (Collision Detection) and resolved by bit-wise
arbitration (Arbitration on Message Priority) using the identifier of each unit
[Johansson and Martin, 2005], [Lawrenz, 2013].

The arbitration on the CAN bus relies on the fact that a sending node
monitors the bus while transmitting. Therefore, the signal must be able to
propagate to the most remote node and return back before the bit value
is decided. This, by implication, requires the bit time to be at least twice
as long as the propagation delay that influences the data rate [Navet and
Simonot-Lion, 2013].

Hence, a dependency between the bit time and the signal propagation delay
clearly exists. Meaning that the maximum achievable bit rate depends on
the length of the CAN bus [Di Natale et al., 2012].

For example, at a bus length of 40 meters, 1 Mbit/s is feasible. Whereas,
lowering the data rate to 250 kbit/s, the bus length can be extended up to
250 meters [Navet and Simonot-Lion, 2013]. In Table 2.3 a more detailed
listing can be observed.

In the idle state, the CAN bus has a voltage of 2.5 V, which is also called the
recessive state of the CAN bus and is represented by a logical “1”. In the
dominant state, the idle voltage of 2.5 V is changed by 1 V. Meaning that the
dominant state of a high-speed CAN (CAN_H) is indicated by the voltage

18

2.3 Controller Area Network

Table 2.3: Typical bit rates in respect to bit time and CAN bus length [Di Natale et al., 2012].

Bit rate | Bit time | Bus length
1 Mb/s 1us 25m
8oo kb/s | 1.25 us 50m
500 kb/s 2 us 100m
250 kb/s 4 us 250m
125 kb/s 8 us 500m
62.5 kb/s | 16 us 1000m
20 kb/s 50 Us 2500m
10 kb/s | 100 s 5000M

of 3.5V, and for a low-speed CAN (CAN_L) the voltage is at 1.5 V. For both
versions, the dominant state is represented by a logical “0” [Mischo et al.,
2015], [Di Natale et al., 2012]. This specification can be seen in Figure 2.3.

Every time a ”0” bit level was sent by one of the nodes, the bus is in
the dominant state regardless if other nodes transmitted the ”"1” bit level.
Therefore, ”0” is the dominant bit value, while ”1” is the recessive bit value
[Navet and Simonot-Lion, 2013], [Zuberi and Shin, 1995].

Whenever a node transmits a recessive bit onto the bus while another node
transmits a dominant bit, the resulting bus level is dominant due to the
logical “and” operation realized by the physical layer. Hence, every node
sending a recessive bit but detects a dominant bit on the bus, immediately
stops transmitting [Navet and Simonot-Lion, 2013].

Identifiers are located at the beginning of each message and transmitted
"most significant bit first”. Thus, the node with the numerically lowest iden-
tifier will gain bus access. Nodes that have lost arbitration wait with the
retransmits until the CAN bus is free again [Navet and Simonot-Lion,
2013].

The CAN transceiver, on the receiver side, provides the recessive signal level
and protects the controller chip input comparator against excessive voltages
on the bus lines [Di Natale et al., 2012].

In Figure 2.4, an example arbitration can be seen. The bit streams S1-5S3,
which are outlined in Table 2.4, are simultaneously competing for the CAN

19

2 Preliminaries

differential
$voltage
CAN_H
3.5
25 recessive 1 dominant
1.5
CAN_L

Figure 2.3: Voltage levels of the CAN bus [Di Natale et al., 2012].
bus, so that a bit-wise arbitration based on the identifier is performed.

Table 2.4: Concrete bits of the three bit streams S7-53 [Johansson and Martin, 2005].
Bit stream Bits

S1 (Node 1) | 11001101010
S2 (Node 2) | 11001011011
S3 (Node 3) | 11001011001

The bus acquisition algorithm works in the manner, that messages with their
associated ID are transferred to the bus interface chip, which waits until the
bus is idle. Once the bus is in idle state, the bus interface chip writes the ID
onto the bus, one bit at a time, starting with the most significant bit. After
each written bit, all interface chips on the bus wait long enough for signals
to propagate along the network, before reading the bus. If the writing chip
had written a recessive bit but reads a dominant bit, which means that there
is another node on the bus with a message that is of higher priority, the
chip drops out of contention [Zuberi and Shin, 1995].

A major advantage of CAN'’s arbitration mechanism is, that neither address
data nor extra bus control information needs to be sent. Hence, every
node picks up all traffic from the bus and filters out the relevant messages.

20

2.3 Controller Area Network

Identifier R Control
1 2 3 4 5 6 7 8 9 10 1

Node 1 | l_‘ | ‘ ‘
e L LML \

Node 3

mow
-

Bus

Figure 2.4: Arbitration example of three bit streams (Nodes) competing for transmission
onto the CAN bus. Node 3 manages to transmit onto the CAN bus after
succeeding in the arbitration due to exceeding dominant bits "0” [Johansson
and Martin, 2005].

Consequently, units with a low priority may experience large latency if
high-priority units are very active. That represents a crucial drawback of
the CAN arbitration mechanism [Johansson and Martin, 2005].

2.3.4 Bit Coding

As for the bit coding, the CAN protocol makes use of the Non Return to
Zero (NRZ) method to encode the bit stream on the bus line. This method
has the advantage that only a minimum bandwidth for signal transmission
is required. However, the NRZ encoding, where the bit level is constant
during the bit time, contains no information about the bit clock, which
may cause problems with synchronization and thus lead to erroneous bit
detection [Di Natale et al., 2012].

The bit time, is the time between the emission of two successive bits of the
same frame. Nodes need to resynchronize periodically to not lose the bit
time. Hence, long sequences without bit transitions should be prevented to
avoid drifts in the node clocks [Navet et al., 2005], [Di Natale et al., 2012].

21

2 Preliminaries

For this reason, the bit-stuffing mechanism was introduced. The stuffing
method requires the transmitter, after having sent five consecutive bits of
identical value, to insert (“stuff”) an additional bit of inverse value into
the bit stream. A sequence of five consecutive bits of identical value is
then recognized by the receiving side, so that the following bit, the stuff
bit, can be removed before processing the content of the frame. Thus, the
maximal distance between signal edges in a bit stream is five bits, which is
a compromise between the lengthening of the frames and the tolerance of
synchronization and drifts [Lawrenz, 2013], [Di Natale et al., 2012].

2.3.5 Frames Types

The CAN protocol uses four different types of frames: Data Frame, Error
Frame, Remote Frame, and Overload Frame. While the data frame is the only
frame that actually transports message data, all other frames are for fault
containment, triggering and synchronization [Lawrenz, 2013], [Di Natale
et al.,, 2012].

e Data Frame: Carries data from a transmitter to possibly multiple
receivers.

e Remote Frame: Is transmitted by a bus node to request the transmis-
sion of the Data Frame with the same identifier.

e Error Frame: Is transmitted by any node on detecting a bus error.

e Overload Frame: Is used to provide an extra delay between the pre-
ceding and the succeeding Data or Remote Frames [Bosch, 1991], [Di
Natale et al., 2012].

Since the Data Frame is the most relevant frame type within this thesis,
it is discussed in more detail while the other frame types can be largely
neglected.

Data Frame

Data Frames are used to carry data from a transmitter to one or more
receivers. According to the specification by Bosch R. in 1991, a Data Frame

22

2.3 Controller Area Network

is composed of seven different bit fields: Start of Frame, Arbitration Field,
Control Field, Data Field, CRC Field, ACK Field, and End of Frame. With
reference to Figure 2.5, the Data Field can also be of length zero [Bosch,

1991].

Data Frame CAN 2.0A (11-Bit-ldentifier)

L L [] l LT

Start : Identifier RTR !IDE ‘r0 DLC Data CRC ACK EOF + IFS
1Bit 11 Bits 1Bit 1Bit 1Bt 4Bis 0..8 x 8 Bits 15+ 1 Bits 1+1Bit 7+ 3Bits

Data Frame CAN 2.0B (29-Bit-ldentifier)

LL T 11 [1 [] | LT

Start * Identifier SRR 'IDE - identifier RTR ‘'r1 1] pLC Data CRC ACK EOF + IFS
1Bit 11Bits 1Bit 1Bit 18 Bits 1Bit 1Bit 1Bit 4Bits 0.8 x 8 Bits 15+ 1 Bits 1+1Bit 7+3Bits

Figure 2.5: Detailed illustration of data frames with different formats, the standard CAN
frame format and the extended CAN frame format. Additionally all relevant
fields including their length can be seen [Lawrenz, 2013].

o Start of Frame (SOF): This single bit represents the very beginning of
every CAN message. It is always set to “0” (dominant) so that the bus
idle state of “1” (recessive) is overruled [Lawrenz, 2013].

e Arbitration Field: The Arbitration Field consists of the Identifier Field
and the RTR (Remote Transmission Request) bit. However, there are
two different formats of CAN messages, as already outlined in Section
2.3.1. CAN messages with the standard frame format use an Identifier
Field with a length of 11 bits plus 1 additional bit. The Identifier
Field of extended CAN frames is 29 bits plus 3 additional bits long.
Both, the standard frame and the extended frame, start with the 11
bits (the most significant bits in chase of the extended format) of the
identifier, followed by the RTR bit in the standard format and by the
SRR (Substitute Remote Request) in the extended format. The RTR
bit is used to distinguish Data Frames from Remote Request Frames.
In case of Data Frames it is set to “0” (dominant), and conversely it
is set to “1” (recessive) in case of Remote Request Frames. The SRR
in the extended frame format is always set to “1” (recessive) and
solely a placeholder for guaranteeing the deterministic resolution of
the arbitration between standard and extended frames. The extended
frame continues with a single IDE (IDentifier Extension) bit, which

23

2 Preliminaries

24

is always recessive, followed by the remaining 18 least significant
identifier bits and the RTR bit.

Control Field: With regard to the standard frame format, the IDE bit
is part of the Control Field and always dominant. Thus, the IDE bit
can be used for the distinction between the standard frame format and
the extended frame format [Di Natale et al., 2012]. Furthermore, the
IDE bit indicates that the identifier is completed. While the Control
Field of the extended format contains two reserved bits (r1, r0), the
standard format has only one reserved bit (r0). The last four bits of
the Control Field are dedicated to the DLC (Data Length Code), that
defines the length of the following Data Field.

Data Field: The Data Field contains the actual data of the message,
whereas the length may vary between 0 and 8 byte depending on the
Data Length Code [Bosch, 1991].

Cyclic Redundancy Check (CRC) Field: This field contains the check-
sum for the preceding bits of the frame, such as SOF, Arbitration Field,
Control Field, Data Field (if present). Hence, every transmitted frame
provides a 15-bits-long checksum (CRC Sequence) that can be used to
verify the correctness of the frame. This mechanism, however, is only
used for fault detection, not for error correction. The calculation of the
CRC polynomial enables the detection of up to five single-bit errors in
one message. Moreover, so called burst-errors can be recognized up
to the length of the CRC Sequence [Lawrenz, 2013]. A more detailed
explanation of this polynomial calculation can be found in the CAN
specification by Bosch R. [Bosch, 1991].

Each receiving node independently recalculates the CRC checksum,
based on the received message, and compares it to the CRC Sequence
provided in the message. If an error is detected, an automatic and
instant retransmission of the incorrect message is performed. This
error detection mechanism leads to a high data integrity and a short
error recovery time [Johansson and Martin, 2005]. The CRC Delimiter,
which is set to recessive, completes the CRC Field.

Acknowledge Field: The Acknowledge Field is 2 bits long, whereas
the first bit represents the actual acknowledgement (ACK Slot) and
the second bit is always set to "1” (recessive) and serves as a delimiter.
The reception of a syntactically correct message on the CAN bus is
acknowledged by all nodes by sending a dominant value in the ACK

2.4 Real-Time Systems and Environment

Slot. The transmitting node sends out the message with a recessive
value in the ACK Slot and expects that this recessive level is overwrit-
ten by a dominant value. A missing dominant value in the ACK Slot
is considered to be an acknowledgement error by the transmitter of
the message. A successful detection of the dominant value in the ACK
Slot does not mean that the frame was received by all nodes, however,
it guarantees that at least one node received it [Lawrenz, 2013].

e End of Frame (EOF): The frame is concluded with 7 recessive bits
representing the End of the Frame. As already mentioned before, bit-
stuffing is not applied in this section, so that the end of the frame can
be recognized [Lawrenz, 2013].

e Inter Frame Space (IFS): The Inter Frame Space consists of 3 bits
which are used to separate the current frame from the following frame.
This period is also used for transferring a correctly received message
from protocol controller into the receive buffer, or for transferring a
message from transmit buffer to the protocol controller [Davis et al.,
2007], [Lawrenz, 2013].

In consideration of Figure 2.5, bit-stuffing is applied to the fields from Start
of Frame to the CRC (Cyclic Redundancy Check) Field, with reference to
Data and Remote Frames. Bit-stuffing is not applied in any other field and
also not in Error or Overload Frames [Lawrenz, 2013].

2.4 Real-Time Systems and Environment

To create a common understanding, the terms real-time system as well as
real-time environment are briefly discussed.

A real-time system is a computerized system with explicit deterministic
or probabilistic timing requirements [Sha et al., 2004], [Risat, 2010]. Real-
time computer systems are required to react to events within time intervals
dictated by its environment. This instant, at which the event or result
has to be processed, is called deadline. The deadline, which is a timing
information, is a common characteristic of many real-time systems. If a real-
time system consists of a set of nodes that are interconnected by a real-time

25

2 Preliminaries

Table 2.5: Hard real-time versus soft real-time systems [Kopetz, 1997].

Characterisitic Hard real-time | Soft real-time
Response Time hard-required | soft-desired
Peak-load Performance | predictable degraded
Control of Pace environment computer
Safety often critical non-critical
Size of Data Files small/medium | large

communication network, it is called a distributed real-time system' [Kopetz,
1997]. Furthermore, real-time systems can be classified as hard real-time
systems or soft real-time systems, which also applies for the classification of
deadlines.

In hard real-time systems, a set of concurrent real-time tasks must be
processed in such a way, that their specified deadlines are met. In contrast
to this, in a soft real-time system deadlines should be met but can also be
violated without a catastrophic result [Audsley and Burns, 1990].

From the design perspective, hard real-time systems and soft real-time
systems distinguish themselves fundamentally. While the design of hard
real-time systems has to consider guaranteed temporal behaviour for all
specified load and fault conditions, for a soft real-time system it is acceptable
to miss a deadline occasionally [Kopetz, 1997].

A brief summary of the differences between hard and soft real-time systems
is outlined in Table 2.5.

Response Time: Applications designated for hard real-time systems often
demand a response time in the order of milliseconds or less. Thus, a hard
real-time system must be highly autonomous to ensure a flawless processing
without human interaction. In contrast, the response time requirements of
soft real-time systems are in the order of seconds, so that human interaction
is not precluded. Consequently, if a deadline of a soft real-time application
is missed, the system is not compromised in this way.

'INtime for instance can be operated as a distributed real-time system (more details in
Section 2.6).

26

2.5 Real-Time Scheduling

Peak-load Performance: While in soft real-time systems degraded opera-
tions in rarely occurring peak load scenarios are tolerated for economic
reasons, hard real-time systems must guarantee by design that the computer
system meets the specified deadline in all situations. For soft real-time
systems the average performance is considered, whereas for hard real-time

systems the performance in all possible peak-load scenarios must be pre-
dictable.

Control of Pace: Hard real-time systems are paced by the state changes
occurring in the environment and thus remain synchronous with the envi-
ronment (controlled object and human operator). Soft real-time systems on
the other hand can influence the pace of the environment in case of overload
situations. For example, a reservation system that cannot keep up with the
demands of the operators, simply extends the response times and forces the
operators to slow down.

Safety: While safety violations in a hard real-time system may lead to
catastrophic results, soft real-time systems tolerate violations due to non-
critical consequences.

Size of Data Files: Since the temporal accuracy of information is invalidated
by the flow of time, the key concern in hard real-time systems is on the
short-term temporal accuracy of rather small data sets. This is in contrast to
soft real-time systems, where the long-term integrity of large data sets is
the key issue [Kopetz, 1997].

2.5 Real-Time Scheduling

The term “real-time scheduling” refers to the process of calculating a sched-
ule for a set of competitors that share the same limited resource in a real-time
system. Mostly a scheduler component is in charge for this calculation by
providing an algorithm or policy for ordering [Audsley and Burns, 1990].

In the literature, many articles dealing with real-time scheduling can be
found. Most of them focus on process scheduling, in which the processor
(-time) is the limited shared resource and the competing processes are the
competitors.

27

2 Preliminaries

However, within this thesis we focus on message scheduling, since the
shared resource is a network and the competing competitors are data
streams [Natale and Meschi, 2001], [Zuberi and Shin, 1995], [Tindell and
Hansson, 1994]. Whereas data streams are understood as active connections
of an application.

With regard to the literature, all concepts and principles described in the fol-
lowing sections, are focused on process (task) scheduling, however, are also
valid for message scheduling unless stated elsewise. Figure 2.6 illustrates
the classifications of real-time scheduling.

Real-Time Scheduling

/\

Hard (Deadlines) Soft (Deadlines)

/\

periodic aperiodic

preemptive non-preemptive preemptive non-preemptive

AN AN AN AN

static dynamic static dynamic static dynamic static dynamic

Figure 2.6: Classification of real-time scheduling [Kopetz, 1997].

With regard to Figure 2.6, the first distinction is based on the timing informa-
tion. Time-critical competitors are required to provide timing information,
in the form of a deadline, to meet real-time constraints. To ensure a proper
functioning of the scheduler, the competitors, regardless if tasks/processes
or messages, must have a start-time as well as a deadline. The start-time
is the instant of the occurrence of an event and is mostly represented as
an absolute value (timestamp). The deadline is dated in the future and can
either be an absolute value (timestamp) or a relative value. Irrespectively,
whether relative or absolute value, the deadline is always in relation to the
start-time. Not only real-time systems but also deadlines can be divided

28

2.5 Real-Time Scheduling

into hard real-time deadlines and soft real-time deadlines [Audsley and
Burns, 1990], [Kopetz, 1997].

. :
' Starttime Deadline ' Start-time Deadline

(a) Soft Deadline (b) Hard Deadline in a saftey critical sys-
tem

Figure 2.7: Comparison between soft and hard deadlines with regard to damage in case of
violating deadlines [Audsley and Burns, 1990].

2.5.1 Hard Deadlines

For a competitor with a hard deadline, it is a necessity that the processing
is completed before its respective deadline [Kopetz, 1997]. In case of not
meeting its hard deadline, the consequences have the potential to be catas-
trophic, as outlined by Figure 2.7. As already outlined in Section 2.4, a hard
real-time system is one, in which the consequences of violating the hard
deadline are much greater than any benefits provided by the service being
delivered in time [Audsley and Burns, 1990].

Thus, the following assumption applies for hard real-time events [Audsley
and Burns, 1990]:
C<D (2.1)

C : computation-time
D : deadline

29

2 Preliminaries

Which means, that the computation-time must not be longer than the deadline,
given that both values are relative to the same start-time. Examples for
such systems, which use a hard deadline, are air-traffic controls, heart
pacemaker as well as engine controllers in cars. Further on, more and more
embedded systems can be considered as hard real-time systems [Kopetz,
1997], [Audsley and Burns, 1990].

2.5.2 Soft Deadlines

Even if a system is considered to be a hard real-time system, not all com-
putational events will be hard or critical. Soft, or also called non-critical,
real-time deadlines can be missed without compromising the integrity of
the system [Audsley and Burns, 1990].

Often soft and hard real-time deadlines are coexistent in real-time systems.
While for time critical events, such as engine control, a hard deadline is
necessary, for non-critical events, for example house-keeping tasks, a soft
deadline is sufficient [Sprunt, 1990], [Audsley and Burns, 1990], [Spuri and
Buttazzo, 1994].

With reference to our research, we consider a system in which both, hard
and soft deadlines, are being used. Consequently, our system can be seen as
a mixed real-time system. Further details about the communications model
can be found in Section 4.2.2.

2.5.3 Workload Characteristics

In the automotive domain as well as in Computer-Integrated Manufacturing
(CIM), computing devices such as controllers, actuators and sensors are
being used. Due to this variety of devices, several message types must be
considered. While some devices exchange messages periodically, others
are more event-driven, such as smart sensors. Additionally, status informa-
tion is usually exchanged without timing constraints, which leads to the
classification of three message types [Zuberi and Shin, 1995]:

1. Hard deadline periodic messages

30

2.5 Real-Time Scheduling

2. Hard deadline aperiodic messages
3. Non-real-time (best effort) aperiodic messages

The next distinction in the classification Figure 2.6, concerning real-time
scheduling, is periodic or aperiodic.

Periodic Messages

In the context of real-time scheduling, an event is called periodic when
it occurs repeatedly at regular time intervals to the extend of a certain
tolerance. Usually, the period of the event is well known, thus it can be
scheduled in advance [Risat, 2010]. Periodic events can be considered as
time-critical, in the sense that the system cannot function without punctual
completion. In the automotive application, if the antilock braking system is
not activated within a short time interval after a wheel is locked, the vehicle
is likely to become uncontrollable [Shin and Ramanathan, 1994].

Periodic messages are defined as information which is periodically ex-
changed. Since the functioning of one or more listening devices depends
on the timely transmission of the message, the deadline of the message is
crucial. Hence, for time critical functions a hard deadline is used. This kind
of message type is usually used for sensor-based systems in the automotive
and robotic domain [Zuberi and Shin, 1995].

With reference to this thesis, all messages are generally considered to be
periodic messages unless stated elsewise. Further information can be found
in Section 4.2.2.

Aperiodic Messages

Aperiodic, also known as sporadic, messages are characterized by the fact,
that these kind of messages occur regardless of time. Often sporadic mes-
sages are also referred to as event-driven messages, since their occurrence is
mostly coupled to events. For this type of message, smart sensors are most
suitable for detecting such events [Zuberi and Shin, 1995].

31

2 Preliminaries

Within this thesis, such aperiodic messages are used to simulate additional
workload and sporadic bursts. Furthermore, such messages are used to
prove the proper functioning of the dynamic priority scheduling algorithm,
which is discussed in Section 4.5.

Non-real-time Messages

Messages of the non-real-time message type have no timing constraints and
can therefore be accommodated by any communication protocol. Usually,
status information or operational data is exchange with this type of message
[Zuberi and Shin, 1995].

Non-real-time messages do not find application within this thesis. However,
periodic as well as aperiodic messages can turn into non-real-time messages
in case of a network bottleneck which causes deadline violations.

2.5.4 Static Scheduling

The next distinction in the classification Figure 2.6, concerning real-time
scheduling, is preemptive or non-preemptive.

Most of the literature focuses on preemptive scheduling algorithms, which
means that a running task or outgoing message can be interrupted by the
request of a higher-priority task or higher-priority message. This behaviour
in turn, creates the possibility for priority inversion and also deadlocks
[Natale and Meschi, 2001], [Zuberi and Shin, 1995], [Tindell and Hansson,

1994].

In this thesis we use a real-time scheduling algorithm which follows the
non-preemptive approach and therefore limits the risk of priority inversion,
see Section 4.6.6.

Scheduling algorithms for message interlocking were introduced to increase
the utilization of a shared communication channel. Process scheduling was
an important issue back in times, where multiprocessing architectures for
uniprocessor systems arose. For both applications, message and process

32

2.5 Real-Time Scheduling

scheduling, two different approaches with regard to real-time scheduling
are known [Natale and Meschi, 2001].

e Static Scheduling
e Dynamic Scheduling

Static as well as dynamic scheduling are commonly used, since both ap-
proaches come with advantages and disadvantages. A static scheduling
algorithm is also called fixed priority scheduling algorithm, since priorities®
are assigned to tasks once and for all [Liu and Layland, 1973].

Deadline Monotonic (DM) is a simple and effective solution, that uses a
static priority ordering to solve the contention for the channel. According
to the findings of Liu C. [Liu and Layland, 193], the rate-monotonic (RM)
priority assignment is optimum in the sense of processor utilization. RM
priority assignment means that priorities are assigned to tasks according to
their request rates, so that tasks with higher request rates will have higher
priorities.

However, static scheduling algorithms cannot adapt to changes of the pa-
rameter settings. For this reason, a more dynamic approach is required
whenever the scheduler shall adapt to environment changes. Within this
thesis, we mainly focus on dynamic scheduling, since our Communications
Model, in Section 4.2.2, requires a rather flexible scheduling approach.

2.5.5 Dynamic Scheduling

The main difference between fixed priority scheduling and dynamic priority
scheduling is that static priority scheduling algorithms rely on the premise
that the behaviour as well as the importance of the task or message is
known in advance. Dynamic priority (on-line) scheduling, on the other hand,
does not rely on a priori knowledge [Baruah et al., 2010]. This puts on-line
scheduling strategies in the advantageous position to dynamically adapt
the priority of the process or message at runtime. One of the most common

2As for the context of this thesis, the priority of a task cannot be compared to the
priority of a message.

33

2 Preliminaries

representatives of dynamic priority scheduling, is the earliest deadline first
(EDF) algorithm.

While EDF scheduling is the basis of many real-time process scheduling
algorithmes, it is rarely used to schedule real-time messages for networks
[Natale and Meschi, 2001]. According to Zuberi K. and Shin K. [Zuberi
and Shin, 1995], EDF is impractical for real-time message scheduling, since
absolute deadlines become larger and larger as time progresses. A large
number of bits for an efficient encoding would be required in the end. If the
granularity of a deadline representation is of the order of a microsecond,
more then 20 bits would be required to represent deadlines for several
seconds. With reference to CAN, this could still be realised with the extended
29-bits ID format. However, this means that 20-30% bandwidth will be
wasted because of using the extended ID format [Zuberi and Shin, 1995].

Even relative deadlines have the drawback, that the value requires to be
updated at each arbitration round. Moreover, the wide range of relative
deadlines of a typical communication workload in a manufacturing environ-
ment, ranging from the fraction of millisecond to a few seconds, is difficult
to handle [Natale and Meschi, 2001].

Further approaches, concerning static and dynamic real-time scheduling,
are discussed in the Related Work section 3.

2.6 INtime

INtime® is a Real Time Operating System (RTOS) developed by the TenAsys
Corporation. In the context of this thesis, INtime is used as Operating System
(OS) for V&V systems on non-embedded hardware. Additionally, TenAsys
provides an embedded Virtual Machine Manager (VMM). The VMM fa-
cilitates Inter-Process Communication (IPC), which can be used to extend
system functionality alongside Microsoft Windows or another General-
Purpose Operating System (GPOS). With the use of the VMM, features such
as low-interrupt latency, direct access to I/O and guaranteed ownership of
a CPU core are realized. Furthermore, by using the virtualization hardware
for partitioning a multi-core system, it is possible to share one platform

34

2.6 INtime

between multiple OSs, without a significant impact on determinism [Main,
2010].

TenAsys INtime software runs on single-core, hyper-threaded and multi-
core x86 PC platforms from Intel and AMD. Moreover, it can be used in two
configurations:

e INtime for Windows, where the INtime RTOS runs alongside Microsoft
Windows

e INtime Distributed RTOS, where INtime runs as a stand-alone RTOS
[TenAsys, 2009]

INtime Distributed RTOS

Machine Control Environment

System Management Environment

T e D D D .

1
(]
(]
(]
4
i —
(]
OPC UA : Control
Memory |3 Memory Application
]
(]
l i - EtherCAT
INtime API J 1
INtime API

[Shared Memory]

INtime RTOS Kernel

INtime RTOS Kernel

Real 1/Os

EtherCAT Traffic

L ettt

OPC UA Traffic

Figure 2.8: Architecture of the INtime distributed RTOS configuration [Grujon, 2011].

Figure 2.8 illustrates the concept of the INtime distributed real-time oper-

35

2 Preliminaries

ating system. As it can be seen, it enables multiple INtime RTOS kernels
to intercommunicate via shared memory and mailboxes in a deterministic

way.

2.6.1 INtime Terminology

To establish a common understanding throughout this thesis, the most
important INtime-specific terms are declared [TenAsys, 2009].

Host: A host consists of one or more processing elements, such as
cores or hardware threads.

e Node: A node is an instance of the INtime real-time operating system.
e Windows node: Is an instance of the Windows operating system,

whether running on a single hardware thread or on multiple hardware
threads.

Remote node: A node other than the node where the current process
is running.

e Location: A handle which uniquely identifies a node.
e RT kernel: Provides deterministic scheduling and execution of RT

36

threads within RT processes.

Real-time application, C, and C++ libraries: Provide direct access to
the RT kernel services for RT threads.

NTX library: Allows Windows threads to communicate and exchange
data with RT threads within the application by providing RT interface
extensions for the Win32 APL

Global Descriptor Table: The GDT is a memory segment that contains
descriptors for code, data and descriptor table segments.

Object: An object is an instance of a data structure that occupies mem-
ory. Each object type has a specific set of attributes or characteristics.
After creation, a handle that identifies the object is returned by the RT
kernel.

High-level object: A high-level object does not only consume memory,
but also gets assigned a slot in the system GDT.

Low-level object: Low-level objects consume memory without a GDT
slot assignment. The amount of system memory controls how many
low-level objects can be present at a given time.

2.6 INtime

2.6.2 Processes

The processes in a INtime system form a process tree, whereas each process
is an RT kernel object that contains threads and all necessary resources. RT
kernel processes have the following characteristics:

e Are passive and thus cannot make system calls,

e Include one or more threads,

e Isolate resources for the nested threads, particularly for dynamically
allocated memory. Threads of one process compete for the associated
memory of the process.

e Provide error boundaries, in the meaning that errors within one pro-
cess do not corrupt other processes, since they reside in separate
virtual address spaces.

e Objects associated with a process get deleted, once the process is
deleted.

In figure 2.9, the process tree of a regular INtime instance can be seen. The
root process is on top and builds the foundation, while each application
process obtains resources from the root process.

Root
process

|
Paging DSM User User User
subsystem Process 1 Process 2 Process n

C library

Figure 2.9: INtime process tree [TenAsys, 2009].

2.6.3 Memory Management

Part of the INtime node initialization is the reservation of system memory
for the exclusive use by INtime applications and the RT kernel. The RTOS
allocates memory which is either removed from the non-paged memory
pool available for Windows applications, or allocated from memory that has
been excluded from Windows use.

37

2 Preliminaries

Memory Protection

The INtime RT kernel provides several protection levels for RT memory:

e 32-bit segmentation: By keeping Windows and each RT process in a
separate address space, INtime isolates and protects addresses not
only between complex RT processes but also between RT processes
and Windows processes.

e Paging: Since code, data and stack are automatically placed in non-
contiguous areas of the virtual memory of an application, memory
overruns are trapped as page faults. Furthermore, demand paging is
not implemented although the RT kernel uses the processor’s paging
mode for virtual address translation. Each RT process loads into its
own virtual address space, which is defined by a 32-bit virtual segment.

e Virtual addressing: Due to the fact, that for each RT process a separate
memory space (defined by a virtual segment) is created by the RT
Application Loader, RT processes cannot address beyond the virtual
segment. Every RT process is partitioned into its own address space.

Furthermore, the RT kernel enables successful execution of RT threads even
in the event of a total Windows failure. Advantageously, even if Windows
stops operating, RT threads continue to run, unaffected by the failure, and
can execute an orderly shutdown of the hardware [TenAsys, 2009].

Virtual Memory

Every process is in possession of a VSEG (Virtual Segment), which has
the same size as the amount of Virtual Memory available to the process.
However, the VSEG size must be large enough to contain all the memory
dynamically allocated by the threads within the process.

Memory Pool

A memory pool consists of an certain amount of memory with a specified
minimum and maximum. Every process has an associated memory pool,
which is allocated to the process. The minimum size of memory can be

38

2.6 INtime

understood as a contiguous memory region. The memory needed for threads
to create objects, comes from the memory pool of the process. If there is
not enough contiguous memory available up to the maximum size of the
memory pool of the process, the RT kernel tries to borrow memory from
the root process. The total memory requirement of the system is always the
sum of the memory requirements of each process. Although static memory
allocation uses more memory than dynamic allocation, it is considered to
be safer.

2.6.4 Thread Scheduling

With a priority-based scheduling policy the RT kernel ensures that the pro-
cessor always executes the thread with the highest priority. The scheduling
policy is enforced on every interrupt or system call so that the kernel holds
an accurate execution state and priority for each thread [TenAsys, 2009].
An integer value from 0 (highest priority) to 255 is used as priority. For
interrupts that cannot wait, such as serial input, a higher-priority (numeri-
cally lower) level shall be assigned. Cached input, on the other side, can be
masked with a lower-priority (numerically higher) level.

Table 2.6: Priority range of INtime threads [TenAsys, 2009].
Range Usage
Used by the OS for servicing external interrupts. Creating a
0-127 thread that handles internal events here masks numerically
higher interrupt.
128-130 Used for some system threads.
131-252 Used for application threads.

The different priority classes of INtime threads can be seen in Table 2.6.
Notably, the priority levels 253-255 are reserved for a Windows-specific
services.

Due to the scheduling policy of the RT kernel, the highest priority ready
thread is always the running thread. If a thread is not in the running
execution state, it is either ready, asleep, suspended or asleep-suspended. The
transitions of a thread’s execution state can be seen in Figure 2.10.

39

2 Preliminaries

Ready

i

Running

Asleep |<4—| Asleep/ Suspended
—Tsuspended —>

Figure 2.10: State transitions of a INtime thread [TenAsys, 2009].

A thread which is in the running execution state stays in this state until:

e It removes itself from the ready state by making a blocking system
call,

e the round-robin time slice of the thread expires (in case of equal
priorities),

e it gets preempted3 by a high-priority thread which has become ready.

Threads are always created in the ready execution state. However, a thread
can either put itself to sleep, or suspend or might indirectly put to sleep
by the RT kernel due to a blocking call of the thread. An example for such
a blocking call is waiting at a mailbox until a message* arrives. Once the
message arrives, the kernel puts the thread into the ready state.

In case that threads have the same priority level, the round-robin scheduling
is applied. This scheduling method takes care that equal-priority threads
are run alternating. If a thread is still in the running execution state when

3Preemptive in the context of INtime threads, does not conflict with our non-preemptive
dynamic priority scheduling approach for messages.

4The term message in the context of INtime cannot be compared to CAN messages in
the context of scheduling.

40

2.6 INtime

its time slice expires, the thread is moved to the end of a circular queue for
that respective priority level. Then the thread waits until all threads ahead
of it use up their time slices so that its own time slice is next in line. This
procedure is illustrated in Figure 2.11. However, a thread with a higher
priority than the priority-level of the round-robin queue, still preempts any
running thread regardless of the amount of time left in its time slice.

Thread A
Thread B

Thread C

Figure 2.11: INtime round-robin thread execution [TenAsys, 2009].

2.6.5 Mailboxes

A mailbox is an RT kernel object, which enables inter-process commu-
nication as well as communication between threads of the same process.
Moreover, mailboxes can be used for synchronization, since threads may
have to wait for arrival of a message before executing. INtime provides two
types of mailboxes:

e Object Mailboxes: Object mailboxes are used to pass object handles to
another thread, which either runs in the same or in a different process.
The most common objects to send or to receive are RT handles for
other exchanges, such as semaphore handles or handles to a shared
memory section.

e Data Mailboxes: With the use of data mailboxes, messages with up to
128 bytes of data can be exchanged between threads within the same
process or a different process. Data mailboxes are simple to use and
consume less memory [TenAsys, 2009].

Whenever a mailbox is created, the INtime kernel allocates the required
resources from the process under which the thread is running. Every mailbox

41

2 Preliminaries

is in possession of two queues. While one queue is dedicated to hold
messages, the other queue holds threads. The message-queue holds messages
waiting for threads to receive them. The thread-queue holds threads waiting
for messages to arrive. The INtime kernel ensures that waiting threads
receive messages as soon as they arrive, so that at any given time, at least
one queue is empty. While the message-queue is always FIFO-based, the
thread-queue can either be FIFO- or priority-based. Object mailboxes and
data mailboxes handle queues differently. The default queue size of a data
mailbox is three messages, whereas each message can be up to 128 bytes
large. An object mailbox has a default queue size of eight messages, whereas
the size of one message depends on the object type. Whenever a queue
cannot accept incoming messages/objects anymore, because it holds already
too many items, the INtime kernel automatically handles the overflow. The
kernel creates a temporary overflow-queue that holds up to four objects, in
case of an object mailbox, and up to 400 bytes, in case of a data mailbox.
The overflow-queue is not deleted until each item is processed [TenAsys,
2009].

2.6.6 Semaphores

A semaphore is an RT kernel object, which can be used to synchronize
threads and therefore lock shared resources. The concrete implementation
of a semaphore is a counter that takes a positive integer value. By sending
units to and receiving units from the semaphore, threads can be synchro-
nised. However, semaphores do not enforce but enable synchronization. For
a functioning synchronization, threads have to request and obtain units
from the semaphore and return the units if no longer needed. Otherwise,
synchronization is not achieved properly or threads can be permanently
prevented from running. A semaphore with just one unit (single-unit) can
be used as a mutual exclusion, also known as mutex, for data or shared
resources. Semaphores make use of a queue, which holds threads waiting
for units. The queue can either be FIFO- or priority-based [TenAsys, 2009].

42

2.6 INtime

Priority Bottleneck and Blocking

However, the usage of binary semaphores for mutual exclusion of data or
shared resources may result in one of the following bottlenecks:

e The first bottleneck occurs when a low-priority running thread blocks
a high-priority ready thread. Regardless of priority, the running thread
controls the resource until it releases the units back to the semaphore.

e Another disadvantage that arises due to the usage of binary semaphores,
is priority inversion. Priority inversion occurs when a low-priority
thread obtains the required units to access a shared resource. Then this
thread is preempted by a medium-priority thread, which is in turn
preempted by a high-priority thread that needs to access the resource.
The high-priority thread cannot access the data while the low-priority
thread holds the units. Whereas the low-priority thread cannot com-
plete its operation and return the units, since it is preempted by the
medium-priority thread.

e The third bottleneck defines a blocking situation with regard to the
shared resource. If the thread, which holds the semaphore unit, is
suspended or deleted, no other thread can gain access to the shared
resource. In case of suspension, only after the suspended thread is re-
sumed and releases the semaphore unit, other threads can obtain a unit
of the binary semaphore. If the thread is deleted, the semaphore pre-
vents any other threads from ever using the shared resource [TenAsys,
2009].

43

3 Related Work

The underlying work of this thesis, is the heavily discussed topic of real-time
scheduling with focus on communication multiplexing. Although a vast
amount of related literature is available, only the most influential work can
be considered within this thesis.

Commonly, real-time systems are characterized by their need for functional
correctness and time-related operating principle. With reference to the
literature, real-time systems can be classified on the basis of various aspects,
as already outlined in Section 2.5 [Mohammadi and Akl, 2005], [Kopetz,
1997], [Audsley and Burns, 1990].

Most of the literature focuses either on real-time process® scheduling (an
extensive survey by Sha et al. [Sha et al., 2004] and also [Liu and Layland,
1973], [Saez et al., 1999], [Sprunt, 1990], [Audsley et al., 1993], [Lehoczky,
1990]) or on real-time message scheduling [Zuberi and Shin, 1995], [Natale
and Meschi, 2001], [Meschi et al., 1996b], [Tindell et al., 1995]. The scheduling
approach of our demonstrator, however, cannot be categorized either way.
Since our system schedules data streams, neither process nor message
scheduling completely applies.

In 1973, Liu C. and Layland J. [Liu and Layland, 1973] laid the foundation
for nowadays sophisticated scheduling algorithms. With their analysis on
periodic task scheduling on uniprocessor systems, the optimal fixed priority
and dynamic priority scheduling algorithms were determined. Moreover,
they showed that the rate monotonic priority ordering, where tasks are
assigned priorities in the order of their periods, is the optimal priority
assignment policy for such task sets [Davis, 2014]. While fixed /static (off-
line) priority scheduling algorithms rely on the premise that the behaviour

'In this context the terms process and task can be used interchangeably.

45

3 Related Work

of the task is known beforehand, dynamic priority (on-line) scheduling
algorithms have no a priori knowledge [Baruah et al., 2010]. However,
this puts on-line scheduling strategies in the advantageous position to
dynamically adapt to environment changes, as scheduling decisions are
made at each instant.

In this thesis, we focus solely on on-line scheduling performed by a single
processing unit. This central scheduling approach corresponds to our System
Model demands (S3).

A well-known dynamic scheduling algorithm is the Earliest Deadline First
(EDF) algorithm. In the EDF approach, tasks with the nearest deadline? will
be assigned the highest priority, and tasks with the furthest deadline will be
assigned the lowest priority [Liu and Layland, 1973], [Meschi et al., 1996b],
[Meschi et al., 1996a]. Which means that the priority of a task is assigned
inversely proportional to its deadline.

With the help of one of the major findings of [Liu and Layland, 1973], that
dynamic scheduling approaches are proved to be more efficient than their
static counterparts, Meschi et al. [Meschi et al., 1996a] investigated the
performance of EDF for message scheduling with limited priority. Meschi
et al. demonstrate that the schedulability test of Baker T. [Baker, 1990]
for a uniprocessor environment can be applied to the network scheduling
problem3, when the EDF algorithm is used to schedule messages on a single
shared channel.

Yet, unlike our approach, this work also considers the preemption of mes-
sages and thus respects priority inversion, which is both not intended by
our models (S52) and (R3).

Audsley et al. [Audsley et al., 1993] and Burns et al. [Burns et al., 1994]
show how the analysis of Joseph M. and Pandya P. [Joseph and Pandya,
1986] can be updated to include blocking factors introduced by periods of
non-pre-emption, release jitter, and accurately take account of a task being
non-pre-emptive for an interval before termination [Tindell et al., 1994].

?Deadline is the time-span or instant, depending whether relative or absolute deadline,
by which execution must be done.

3The problem that a network access protocol is required that allows all deadlines of all
periodic communications to be met.

46

Further research executed by Lehoczky J. and Sha L. [Lehoczky and Sha,
1986] outlines three important issues that distinguish the network scheduling
problem from the processor scheduling problem: task preemption, priority
level granularity, and buffering. The first issue, task preemption, conflicts with
our System Model (S2) and can therefore be neglected. Since the scheduler
is implemented within our system, and thus the priority levels as well as
the buffers can be defined appropriately, the two other issues do not find
application either.

A more similar approach was conducted by Zuberi K. and Shin K. [Zuberi
and Shin, 1995]. In their work they present an approach that is capable of
carrying periodic, sporadic, and non-real-time messages through a CAN
bus. This aim corresponds well with our Communications and System
Model, (C1), (C2), (S2)4, and (S3). One of their early findings is that the
non-preemptive EDF scheduling is impractical for CAN, for the simple
reason that the deadline encoding would consume too many bits of the
11-bit standard CAN ID field. With the use of the 29-bit extended CAN ID
format, the deadline encoding would be possible but would also results in
20-30% more bandwidth consumption compared to the standard format.

Irrespectively, this disclosure does not preclude the EDF for our demon-
strator concept, since the message header must not be modified in any
case.

The dilemma that the deadline monotonic> (DM) is easy to implement but
gives low utilization, and that the EDF admittedly improves utilization but
wastes an enormous amount of bandwidth because of the increased message
length, Zuberi K. and Shin K. developed a Mixed Traffic Scheduler (MTS).
The MTS uses EDF for high-speed messages and DM for low-speed mes-
sages, and hence improves CAN bus utilization compared to the sole DM
use. Notably, the EDF part of the MTS approach requires the modification
of CAN message IDs, which is obviously not reconcilable with Requirement
(R1) and makes this approach less relevant.

However, Baruah S. and Haritsa]. [Baruah and Haritsa, 1997] point out by
referring to Jensen et al. [Jensen et al., 1985], that the EDF algorithm is solely

+Message transmission is not preempted in order to avoid retransmits.
5DM is a static priority scheduling approach.

47

3 Related Work

optimal as long as normal (non-overloaded) conditions are present. When-
ever the system is overloaded, in the sense that deadlines cannot be met, the
performance of EDF decreases drastically. In fact, even random scheduling
has a better performance at this point, which makes the continuous use of
EDF in an emergency an fatal flaw.

With regard to Requirement (R2), to manage also scenarios in which the
system is in an overload condition, a more adaptive approach is required.

Best-Effort algorithms make use of a rejection policy for overloaded sys-
tems based on removing tasks. As long as the system is underloaded, this
algorithm behaves as EDF, and once the system is overloaded it chooses
the subset of tasks that maximize the value [Locke, 1986]. Similar to the
Best-Effort algorithm is the Robust Earliest Deadline (RED), proposed by
Buttazzo G. and Stankovic J. [Buttazzo and Stankovic, 1993].

The RED algorithm is highly sophisticated and rich in features. For instance,
RED is capable of detecting overloads, and consequently graceful degra-
dation by rejecting the least value task. Whereas there is also a recovery
routine implemented that tries to reaccept prior rejected tasks. The concept
of the RED algorithm is actually quite similar to our approach, although
instead of tasks, data streams are being rejected or degraded due to their
criticality.

48

4 Connectivity Manager (CM)

Historically, the communication among embedded systems and automotive
test systems was designed for single core architectures, with the consequence
that each task on the test system needs to run on a separate core. This
resulted in a 1:1 relationship between the ECU on the embedded system
and the test-task running on the automotive test system (V&V system).
To make use of multiple cores, which became available recently on both
the automotive ECU controller side as well as in industrial PC’s for the
test system side, we designed a Connectivity Manager (CM) for the V&V
system that is in charge of multiplexing several data streams across a shared
network.

In the following sections we give an evaluation of the status quo system
and thereof formulate the main goals for our target system. Furthermore,
we define a notation and outline communications model, system model as well
as requirements of our system. Moreover, we discuss our concept in detail
and explain the architecture as well as the design of our system. Equally
important for this research is the dynamic priority communication scheduling
mechanism that is implemented as part of the Connectivity Manager. At the
end of this chapter we reflect on the implementation of the demonstrator
and point out limitations of the implementation.

Notably, our concept and architectural design is held as generic as possible
to consider both, the ECU system and the V&V system. However, within
this thesis we mainly focused on the V&V system and decided to use CAN
as shared communication network. For this reason, some of the following
sections are influenced by these perimeters. Furthermore, in the upcoming
chapters and sections the terms task and application, as well as connection
and data stream can be used interchangeable.

49

4 Connectivity Manager (CM)

Since this thesis was conducted in cooperation with the AVL List GmbH,
the status quo system represents an AVL-specific automotive system that
relies on the PUMA /PUMA Open framework.

4.1 Status Quo System

These AVL-specific automotive systems were designed for a single core
architecture, which results in a 1:1 relationship between ECU system and
V&V system. Due to this inflexible relationship, the utilization of shared
resources, such as memory and network interfaces, is limited. To enhance
and improve the automotive test system, we started with an analysis of the
existing test system.

1
ECU System ' vav System

[]i[)

[oocco
[CAN] : [CAN]

(a) Relation of the two systems. (b) Communication stack between the two sys-
tems.

Figure 4.1: According to the status quo system design a 1:1 relationship between ECU
system and V&V system is prevalent.

In Figure 4.1 this 1:1 relationship is illustrated. While Figure 4.1a outlines
the simple relation between Taskz on the ECU system and Task1 on theV&V
system, 4.1b describes the whole communication stack between the afore-
mentioned tasks. Due to the inflexibility of the 1:1 relationship, the above
described architecture entails the following disadvantages:

e Limited Scalability: Since each operating task needs to be in pos-
session of a communications adapter, the number of simultaneously

50

4.1 Status Quo System

running tasks is limited by the number of available CAN interfaces.
Thus, no n:m relationship between tasks among the two systems can
be realized and highly limits the scalability of the design. A further
limitation emerges due to the fact, that one core can only host one ap-
plication. Meaning that every additional task on either side requires an
additional core at that respective system, which consequently results
in higher costs.

o Inefficient Resource Sharing: Furthermore, neither system is capable
of sharing operating system resources, such as memory with its ac-
companying memory management, CPU kernel time, communications
adapter, as well as a global wall-clock time. Especially the latter is of
high importance whenever tasks need to operate synchronously.

e Limited Communication Capability: Due to the “one task, one core”
premise, communication between cores of the same system, so called
inter-core communication (ICC), is not possible. This implies that
tasks within the same system but on different cores are not able to
communicate with each other.

e No Parallelism: With the 1:1 system design, equal procedures are
unnecessarily performed manifold. For example, the initialization of
the communications adapter is performed by each core, although the
network could efficiently be shared among all cores within the same
system. The same redundancy applies for memory management and
time synchronization.

Furthermore, in Figure 4.1b it can be seen which layers are involved in
the communication flow between the task on the automotive embedded
system (ECU system) and the task on the automotive test system (V&V
system). Starting on top of the V&V system, Taskz, which might in practice
be a PUMA Open' application, runs within a real-time operating system
(RTOS). In the past, AVL decided to use TenAsys INtime® as a real-time
operating system, due to its robustness and stability [TenAsys, 2007]. In
turther consequence, the RTOS runs on a computer that is in possession
of the physical communication hardware. At the V&V system side, the
computer is a regular workstation that runs INtime besides Windows®.
The software driver of the physical communication hardware is loaded into

TPUMA Open is a test bed software by AVL for testing engines, transmissions, and
powertrains. Furthermore, it is the platform for all automation tasks.

51

4 Connectivity Manager (CM)

the real-time operating system, with the result that real-time applications
can access the underlying communication network. At AVL, most test bed
systems rely on a controller area network (CAN) as communication network.
Therefore, also our implementation (see Section 4.6) is targeting CAN.
Following alongside the CAN bus to the ECU system, the next step in the
communication flow is the communications adapter of an ECU. As already
stated earlier in Section 2.1.1, an ECU is a control unit that usually contains
an embedded microcontroller (MCU). To be more precisely, among others,
AVL uses AURIX™ MCUs from Infineon. Powered by the microcontroller,
the ECU runs its own real-time operating system, for instance FreeRTOS™.
As a last step of the communication flow, Task1 of the ECU system is reached
and thus the data arrived at the receiver.

Concluding, each test bed is controlled by automotive test systems (V&V
systems), which are, amongst other things, responsible for providing the
embedded in-vehicle system (ECU system) with simulation data. Addition-
ally, the embedded in-vehicle system returns diagnosis as well as analysis
data with the result of a prevalent bidirectional communication.

4.2 Notation and Model

For a better understanding of the Connectivity Manager approach, a model
definition as well as a notation declaration is helpful. Furthermore, we
define requirements that our communications model as well as the system
model needs to fulfil.

Notably, the communication within our system works as follows. Tasks
want to transmit data in pre-defined time intervals, wherefore data streams
are established. The data, which is dedicated to be transmitted within one
period, is packed to a data package. However, a data package is too large to
fit into one network message. Hence, the data package is segmented into
smaller parts and then divided among multiple network messages. Meaning
that one data package usually consists of several network messages. All
network messages within the same data package have an equal deadline,
which is the end of the respective period.

52

4.2.1 Notation

4.2 Notation and Model

The most important and relevant notations that are defined below are
additionally illustrated by Figures 4.2 and 4.3.

BNET

n
Qn
Pl,n

TCREATEIn
M;
D In

TSTARTn

Message (M)

overall bandwidth of the communication
network;

overall bandwidth dedicated to the Connectivity
Manager of a V&V system;

the n-th data stream;

worst-case bandwidth estimation of S;;
criticality of Sy;

data volume of S,;

cycle-time of Sy;

send-queue of Sy;

the 1-th data package of S;
creation-time of P; of S;;;

the i-th message of P, of S;

the 1-th absolute deadline of M;) ,;
start-time of S;;;

@ D deadline

Data PaCkage (P) @ @ @ Tereate ... Creation-time

Send-Queue (Q)

Period; (A) Period, Period;

e e e e

V data volume

Figure 4.2: Visualization of relevant items.

As it can be seen in Figure 4.2 each message M holds a value that represents
the deadline of the message. In our approach, the deadline of a message is
an absolute value and represents the instant by which the processing of the
message must be done. Further, each message is part of a data package,
whereas the number of messages within a data package is defined by the

53

4 Connectivity Manager (CM)

data volume V;, of the data stream S,,. For simplicity reasons, in this figure,
the data volume is illustrated in the form of message icons, unlike as in
the implementation where the unit of the data volume is stated in byte.
Considering Figure 4.2, the data volume is simplified to three messages .
Moreover, each data package brings along a creation-time TcrpaTg Which
is an absolute value that represents the instant at which this data package
was created. This brings us to the first conclusion, that the data of each data
stream is fragmented into data packages that contain the actual data in the
form of network messages. The cycle-time A, of the data stream defines at
which intervals data packages are being sent. The number of intervals is
measured in periods. Each period is characterized by a start and an end,
whereas the end of a period is simultaneously the start of the following
period. While the cycle-time is stated in milliseconds (ms), the criticality is
indicated by a integer value ranging from 1 (low) to 99 (high).

Table 4.1: Units of the input parameters.

Input Parameter | Symbol Type/Unit
cycle-time A ms
data volume %4 byte (messages)/period
criticality C uint [1..99]
deadline D absolute time value
creation-time TCREATE absolute time value
start-time TSTART absolute time value
bandwidth B bit/s

Considering Figure 4.3, a more concrete example can be seen. Here we
have a similar scenario with just one send-queue, but already with given
values. For readability reasons, the cycle-time is set to 1 second and the
data volume to 3 messages. Furthermore, the criticality is defined with the
integer value 7 and all data packages are labelled accordingly. The messages
are also denoted with the corresponding index. Special attention should be
paid to the creation-times (Tcrpatg,) of the data packages (P;). As it can be
seen, the creation-time is neither synchronized to the start of the period nor
is there a constant interval to the following creation-time. This behaviour
should illustrate, that the data package creation may drift within its period.
This is attributable to the operating task which might use a clock with a

54

4.2 Notation and Model

Send-Queue 1

}\1)\2 }\3
A=1s
c=7
V=3
P, v 1" Mof Py . 1*Mof P, |:3:l
Tereare1=1 z Tereate3=3,2
2" Mof Py Tereare,2=2,4

Figure 4.3: Concrete example of a send-queue.

poor resolution. Further details concerning this topic are outlined in 4.6.6.

4.2.2 Communications Model

Our communications model consists of independent connections S, which
represent data streams® initiated by multiple applications. As already
outlined in Figure 4.2, every S, is characterized by three attributes: V,
data volume, A, cycle-time, and C, criticality. Those three attributes are
parametrized upfront and remain constant as long as the data stream is
active.

As mentioned above, the criticality is an input parameter and can therefore
be seen as a static attribute of a data stream. Furthermore, the following
chapters and sections make use of the term priority. Whereas priority in
the context of our system always indicates the importance of a message
that was issued by a data stream. Hence, a high-priority message is more
important to the system and therefore processed earlier. Consequently, we
use the term priority to refer to the importance of a message, whereas the
importance is evaluated by our system.

The difference between criticality and priority is, that the criticality is a
static attribute of a data stream and the priority is an evaluated importance
of a message, that is solely used within our system. However, the criticality

2Within this thesis, the terms data stream and connection can be used interchangeably.

55

4 Connectivity Manager (CM)

can influence the priority of a message, since the priority of a message is
either based on the deadline or on the criticality. This is further outlined by
(S3) and also Section 4.5. Notably, the term priority should not mistakenly
be considered to be the priority of an INtime process nor of a CAN message
outside our system, unless stated elsewise. Priority is a factor of importance
which we use to order messages within our system.

The following enumeration describes aspects of the communication model
our system has to deal with.

(C1)

(C2)

(C3)

(Cq)

(Cs)

56

Periodic: Applications attempt to read or write data at intervals de-
pending on their prior parametrization. The time between the read
and write intervals is defined by the cycle-time of the data stream. For
this reason, concrete periods, starting with the very first attempt, can
be determined. However, due to clock inaccuracies the read or write
attempt of the task might drift, with the result that the cycle-time is
not strictly adhered.

Sporadic: However, in addition to (C1), tasks might also act non-
deterministic. Meaning that a task might skip a period or attempts to
send a different amount of messages than defined by the data volume.
Consequently, to make the system more robust, our approach does not
take it for granted that applications fully adhere to the cycle-time and
therefore also sporadic read and write attempts are being considered.
Hard Real-Time: Most automotive applications can be seen as real-
time applications with a hard deadline. The deadline of such applica-
tions must not be violated since its timeliness might be necessary for
a proper functioning of the system.

Soft Real-Time: Additionally to (C3), real-time applications might
not be able to meet their hard deadlines due to external changes,
such as network faults. Since such unpredictable faults cannot be
precluded, hard real-time applications are being degraded to soft real-
time applications. This degradation allows applications to violate their
deadlines without compromising the system.

Mixed-Criticality Data: Each application is defined by a criticality
attribute C, which represents the importance of the application. Ap-
plications with a high criticality value will be prioritized higher while
low-critical applications are proportionally lower prioritized. There-

4.2 Notation and Model

fore, within our system both, higher and lower criticality data streams,
are involved wherefore our system must be capable of dealing with
mixed-criticality data. The criticality is taken into account when de-
ciding which data stream is being degraded first. Further details
concerning mixed-criticality data can be found in Section 4.3.2.

4.2.3 System Model

Since a scheduler component is an important part of the Connectivity
Manager system, the following scheduling as well as design characteristics
are being considered for our system model:

(S1)

(52)

(S3)

Multi-Core: Mostly for economic reasons3 automotive (test) systems
are being redesigned to be multi-core capable. In other words, running
applications can be spread across multiple cores.

Non-Preemptive Scheduling: In the literature, preemptive scheduling
is described as an approach in which the scheduler is allowed to
interrupt the processing of the scheduled item. In case of network
scheduling, the data transmission of a node might be interrupted
by a concurring node. In terms of process scheduling the execution
of a process might be suspended due to a higher critical process
demanding the CPU. Since our scheduler is neither directly attached
to the network, and therefore not affected by network contention, nor
in charge of scheduling concurrent processes, our system is considered
a non-preemptive system. According to Section 2.5 and Figure 2.6,
our scheduling approach can be characterized as non-preemptive
scheduling.

Dynamic Priority Communication Scheduling: The priority of a mes-
sage is either based on D; ,, or C;;, whereas the relevance of this priority
basis might change during run-time. Therefore, a dynamic priority
communication scheduling approach is necessary. Further information
about dynamic priority scheduling can be found in Section 4.5.

3https://wuw.artemis-emc2.eu/project_overview/

57

 https://www.artemis-emc2.eu/project_overview/

4 Connectivity Manager (CM)

4.2.4 Requirements

The Connectivity Manager system was designed in consideration of the
following requirements:

(R1)

(R2)

(R3)

Data Integrity: Due to compatibility reasons, the data, which goes
through our system, has to remain consistent and must not be altered.
Meaning that message headers, for instance the CAN ID, must not be
modified.

Overload Adaptive: The system must be capable of managing situ-
ations in which it is overloaded, caused by external changes such
as network bottlenecks, simultaneous arrival of events, or faults of
peripheral devices. This requirement is in close contact with (Cyg),
which characterizes the communication model to be allowed to violate
deadlines in case of an overloaded system state. In such an event, the
criticality is of highest relevance for the prioritization. Further details
regarding overload system states can be found in Section 4.5.1.
Limited Priority Inversion: Since our system follows a dynamic prior-
ity scheduling approach, there is a legit chance that priority inversion
might occur. Therefore, the target system shall limit any occurrence of
priority inversion. With regard to (S2), priority inversion is largely lim-
ited as messages are transmitted one after another. So the picking and
forwarding of a message is an atomic process, due to mutual exclusion.
The only occurrence of priority inversion might happen in the stack
of the network driver, which is beyond the area of responsibility of
the Connectivity Manager. In Section 4.6.6 more details about priority
inversion can be found.

4.3 Concept

In consideration of the above described models as well as requirements,
we came up with a concept that extends the status quo system towards an
improved Target System. In the next section, our idea of the target system as
well as our goals are described.

58

4.3 Concept

4.3.1 Target System

Our aim is to upgrade the old system to a multi-core architecture while
keeping it as compatible as possible, in terms of application programming
interfaces (API). Figure 4.4 illustrates the rough idea of our concept and
pictures the target system we strive for. This, however, should not be seen
as a final architecture, that one will be discussed later in Section 4.4.1.

The three major goals of our concept as well as of this whole thesis are as
follows:

1. Shared communication link: The underlying communication network
should be shareable among all tasks. Meaning that only one physical
link as well as one communication adapter per system is required to
enable data exchange. A shared communication link aims for the large
advantage of lowering costs due to wiring and interface reduction.
However, this goal is accompanied with the drawback that not only the
communication link is shared among all tasks, but also the bandwidth
of the communication link. Hence, a central scheduler is necessary to
take over the multiplexing of the data.

2. Shared resources among multiple cores: The second major goal of
our concept is to upgrade the system from a single core architecture
to a multi-core architecture. The impact of this goal is twofold. On
the one hand side multiple cores should be running within the same
system and on the other hand side multiple tasks should be hosted
by one core. Furthermore, with this core alighment, several resources
such as memory management, CPU kernel time, or a global wall-clock
time can be shared.

3. Handle mixed-criticality data: Due to major goal 1 and 2, the con-
sideration of mixed-criticality data becomes a necessity. Since the
communication link is shared among multiple cores and tasks, a
flexible scheduling approach that bundles and multiplexes all data
streams is required. Further on, the data streams may vary in terms of
criticality, which is why our scheduler must be capable of handling
mixed-criticality data.

59

4 Connectivity Manager (CM)

4.3.2 Data Distinction

Additionally to major goal 3, the target system will further be in charge of
dealing with data that varies in periodicity. Meaning that within our system
data streams exist, that differ not only in terms of criticality but also vary
in terms of cycle-time. An example of this data distinction can be found in
Table 4.2 and Table 4.3.

Table 4.2: Data streams varying in periodicity (cycle-time) and criticality.

purpose f [Hz] | A[ms] | criticality
real-time control | 200 5 8o
diagnostic 100 10 30
housekeeping 10 100 50

Table 4.3: Data streams varying in criticality.

purpose f [Hz] | A[ms] | criticality
wheel speed front | 200 5 8o
wheel speed back | 200 5 70

Considering Table 4.2, an example for different types of data can be seen.
Some data streams might operate on a real-time level with short cycle-times
while other data streams might be in charge of diagnostics with a less
frequent periodicity. Furthermore, a distinction in terms of criticality is
observable. For example, diagnostic data streams might require a smaller
cycle-time due to data accurateness, however housekeeping data streams
might be more critical to the functioning of the system.

With reference to Table 4.3, we can see an example in which the data streams
are both operating on the same frequency but with different criticalities.
Wheel speed front and wheel speed back are quite crucial for ABS or power
steering, wherefore both data streams operate on a real-time level. However,
the data of wheel speed front might be of higher criticality because of its
importance for transmission and gearbox, assuming a front-wheel drive
configuration. Comparing our new concept to the old system, Figure 4.1,
it obviously increased in the number of utilized cores. With the number of
cores (layer 2) also the number of independent real-time operating systems

60

4.3 Concept

ECU System V&V System

rRtos | Rtos |

CAN, CAN-FD, etc. CAN, CAN-FD, etc.
u
[

Figure 4.4: Basic concept of the target system.

s Y |)
s) |

—
N

RTOS || RTOS

i | |
I'—

o000

(layer 3) increased. This new design enables multiple cores to share the same
communication network which is labelled with layer 1 in Figure 4.4. As for
the concept, the communication network is assumed to be as generic as
possible to support various transport technologies such as CAN, CAN-FD
or any future technology.

4.3.3 Characteristics of Target System

In consideration of the System Model in Section 4.2.3 and the goals of
the target system, we decided to introduce a new layer that includes a
central component called Connectivity Manager. The Connectivity Manger
represents the main processing component that can be reached from all
cores and tasks. Still, the Connectivity Manger exists only once per system
and is responsible for the following functionality:

Sessions management (establish, open, reject, close)

Perform read /write operations to the communication network
Manage shared memory area

Network overload behaviour management

Message prioritization

61

4 Connectivity Manager (CM)

In the following section, the design as well as the architecture of our target
system, especially of the Connectivity Manager, is outlined.

4.4 Architecture and Design

Although our design is valid for the whole automotive communication
system, our main focus lies on the automotive test system, which is also
called validation and verification (V&V) system.

4.4.1 Architecture

As it can be seen in Figure 4.5, the V&V system is based on a x86 processor
architecture, while the automotive (ECU) system relies on embedded mi-
crocontrollers, in our approach for example Infineon AURIX™ multi-core
microcontrollers. The dotted circle indicates the area of responsibility within
this thesis as well as for the demonstrator.

AN
\

ECU System

>—E ,—_-

e D RTOS RTOS][RTOS]O
0 CAN CAN Secondary Cores

f

1 Primary Core

RTOS

—/

=
—

A

A

Figure 4.5: Architecture of the demonstrator.

62

4.4 Architecture and Design

(1): This layer employs the network protocol that is used to enable a bidirec-
tional communication between the ECU system and the V&V system.
Since CAN is still the most common communication standard in the
automotive industry, also our design and demonstrator is dedicated
to CAN. However, we designed our system as generic as possible so
that other communication standards, such as CAN-FD or automotive
Ethernet, are not precluded.

(2): The second layer represents the processor architectures and also illus-
trates the multi-core design. Both systems are considered to provide
multiple cores, whereas only one core is in possession of the physical
communication network interface. In our approach, this core takes the
role of the primary core whereas all other cores are secondary cores.

(3): Based on the processor architecture, an instance of the respective real-
time operating system is deployed on each core. In case of our V&V
system, INtime®+4 is being used. The ECU system runs FreeRTOS
instances.

(4): One of our major changes to pursue the Connectivity Manager ap-
proach, was the interposition of the fourth layer. By inserting a new
layer we were able to detach the application (fifth) layer from the net-
work driver that is running on the real-time operating system (third)
layer. The decoupling of the two layers increases the flexibility as well
as the scalability of the whole system, in the sense that applications
no longer communicate directly with the underlying network driver.
Instead, the Connectivity Manager takes over this communication and
acts as a multiplexer. This, however, raises the problem of a more
complex information exchange among the cores. Therefore, an addi-
tional component, namely the Connectivity Interface (CI), is necessary
to enable inter-core communication in our multi-core environment
(further details in Section 4.4.3). From the application perspective, the
communication network interface seems to be directly attached. In
fact, this is achieved through the Connectivity Manager by a kind of
virtualization of the underlying communication network.

(5): The fifth layer represents the application layer, which is now detached
from the network driver. Due to the network virtualization by the

4As already outlined in Section 2.6, INtime® is a real-time operating system by TenAsys
Corporation.

63

4 Connectivity Manager (CM)

Connectivity Manager, one or more automotive applications can be
executed on each core while sharing the same physical network. In
other words, each core can host multiple applications, while each
application can again conduct multiple V&V tasks. Moreover, the
network virtualization enables the exchange of messages between
cores within the same V&V system.

In the redesign of the V&V system, we introduced a new layer, called
Connectivity Manager/Connectivity Interface, to decouple the application
layer from the network driver. The effect of this decoupling is twofold.
On the one hand, the system becomes multi-core capable and provides a
virtualization of the underlying communication network. On the other hand,
an additional Connectivity Interface is required to manage communications
across multiple cores.

4.4.2 Design

The Connectivity Manager becomes the main, central processing component
and exists only once per system, necessarily running on the primary core.
As it can further be seen in Figure 4.6, the Connectivity Interface (CI), on
the contrary, exists on each core and is responsible for redirecting data from
applications to the sole Connectivity Manager instance and vice versa. Since
the Connectivity Manager has exclusive access to the physical communi-
cation network interface, it acts as a multiplexer by bundling all incoming
data streams. A built-in scheduler takes care of prioritizing the data with
respect to deadline or criticality (further discussion in Section 4.5).

The main design principle is, that exactly one Connectivity Manager is
responsible for multiple Connectivity Interfaces. Whereas one Connectivity
Interface is responsible for multiple tasks on the same core. In turn, one task
is allowed to request multiple connections to the communication network.
The very first initialization of each interface is conducted via a configuration
request initiated by the task. The actual data exchange is then performed via
shared memory, which is discussed in more detail in the following Section

4.4.3.

64

4.4 Architecture and Design

Task 1 Task 2 Task 3
Cl
Cl
Y Ve
Config Data

Connectivity Manager

Interface 0 H Interface 1 H Interface 2 H Interface n

Figure 4.6: Design of Connectivity Manager. Multiple configuration and data channels.

From the design perspective, the Connectivity Manager is conceived to
manage multiple interfaces, so that each connection is coupled with the
optimal interface, such as CAN, CAN-FD or Ethernet respectively with
varying bit rates. However, for our practical demonstrator we focused on
only one interface, in particular a CAN interface.

Concluding, the following design considerations influenced the design of
our system:

e Generic design

e Support various communication technologies
e Compatible with the old system

e Extensible and scalable

65

4 Connectivity Manager (CM)

e Adaptable for ECU system

4.4.3 Inter-Core Communication

One of the most challenging tasks when creating our design, was the
realization of the inter-core communication (ICC) on data stream level. Since
most applications operate in real-time, a fast and reliable communication
among cores is required. Further, Synchronization has to be considered, as
threads are simultaneously accessing data. Nevertheless, to retain a lean
and quick-response system, the synchronization (locking) overhead must
be held at a minimum. In Figure 4.7, the inter-core communication scheme,
including the most relevant objects, is illustrated.

RTOS/
Secondary
Core
RTOS/
Connectivity Secondary
Manager Core

Communication Communications

Scheduler Adapter
Shared T
Communication Bus RTOS/ Primary Core

Figure 4.7: Inter-core communication scheme.

(1) Application: As Figure 4.7 emphasises, on one core several V&V ap-
plications can be executed simultaneously. Two or more applications
can coexist in the V&V system while being hosted on different cores.
Whenever an application wishes to conduct a test task, a new data

66

4.4 Architecture and Design

stream must be established first. This is initiated by approaching the
Connectivity Interface and disclosing information (C,, V};, A) about the
desired connection. A so called Connection Descriptor object holds
values for cycle-time, data volume and criticality of the task. In case
of a successful registration of the connection, a valid handle for this
specific connection is returned. Every further action of the task, such
as reading or writing data, requires the declaration of a valid handle.
In the event of reading or writing data, the pointer to a buffer has to
be provided as well.

(2) Connectivity Interface: On each core, an independent instance of the
Cl is required to forward the data from applications to the CM. One CI
instance can be responsible for multiple applications, whereas each ap-
plication can again demand several connections to the communication
network.

Connections are precisely distinguishable by their system-wide unique
connection id, which is simultaneously used as a handle. Whenever a
new connection needs to be established, the CI signals the CM with
a mailbox message, that includes the connection information as well
as a worst case bandwidth estimation based on cycle-time and data
volume. On the basis of the provided information, the CM performs
a bandwidth-check whether the shared communication network can
still be utilized with an additional connection (see Section 4.5.2). Once
a connection successfully registered at the Connectivity Manager, a
FIFO send-queue on which all outgoing messages are being queued is
created in the Connectivity Manager.

To receive return values and acknowledgements, the Cl is in possession
of a mailbox. In case of a reading or writing task, a previously attached
shared memory is used to accomplish the data handover between
application and CM.

(3) Mailbox: A mailbox is a real-time (RT) object provided by INtime (see
Section 2.6.5) which can be used to receive mailbox messages with a
size of maximum 128 Bytes. With this mailbox principle, components,
such as CI and CM, can signal each other and exchange small amounts
of data. The CM holds a thread that is in charge of constantly listening
for new mailbox messages and performing the according action.

(4) Shared Memory: INtime also provides a RT object to share large-scale
memory among cores. A shared memory (see Section 2.6.3) can be

67

4 Connectivity Manager (CM)

mapped into the address space of multiple RT processes.

(5) Mailbox Thread: RT threads (see Section 2.6.4) can be assigned to wait
until a certain event, such as the arrival of a mailbox message, occurs.
The Mailbox Thread listens for incoming messages at the CM mailbox
and performs the according actions before it starts listening again.

(6) Processing Thread: The Processing Thread is suspended as long as
the message> FIFO send-queue is empty. Whenever a new message
is copied onto the message send-queue, the Processing Thread is
resumed and is suspended again once all messages were processed.

(7) Semaphore: As soon as data can possibly be accessed by two or more
concurrent threads, synchronization becomes an issue. In our imple-
mentation, a semaphore is used to enable synchronization between
the Mailbox Thread and the Processing Thread. With the help of a
semaphore with the permission count of 1, mutual exclusion can be
achieved.

(8) Connectivity Manager: As already mentioned, the Connectivity Man-
ager is the central, main processing component. System-wide, only one
CM instance is admitted, necessarily running on the primary core. The
system-wide sole CM instance is responsible for multiple CI instances
and is in charge of multiplexing the forwarded messages onto a shared
communication bus. As part of the CM component, a scheduler is
implemented that takes care of prioritizing and ordering messages for
transmission (in Section 4.5, the prioritization is discussed in more
detail). Furthermore, the Connectivity Manager holds two threads,
Mailbox and Processing Thread . While the Processing Thread is con-
stantly scheduling and transferring messages from the FIFO message
send-queues to the communication network, the Mailbox Thread is
listening for further instructions in form of mailbox messages. For
the actual data exchange, we used a shared memory that is mapped
into the process address space of the CM and each CI. Whereas every
connection is associated with a unique offset within the shared memory.
A semaphore provides the necessary locking functionality.

In Figure 4.7 the dotted line represents the communications paths of the
mailboxes. Notably, each Connectivity Interface as well as the sole Connec-

5In this context a message is a CAN frame intended for the communication network,
and not a mailbox message.

68

4.4 Architecture and Design

tivity Manager is in possession of a Mailbox (3). Since all mailboxes are
global RT objects, each mailbox can contact any other mailbox via mailbox
message among multiple cores. However, it is not designated that Con-
nectivity Interfaces (2) communicate among themselves. Furthermore, the
blue straight line illustrates the data flow beginning at the Application (1)
and ending at the Shared Memory (4) of the Connectivity Manager (8). In
contrast to the mailboxes, the shared memory exists only once and is cre-
ated as well as managed by the Connectivity Manager. Every Connectivity
Interfaces maps this shared memory to its own address space so that a rapid
data exchange among cores is given.

Any operation of an application results in a chain of actions, beginning at
the Connectivity Interface then to the Connectivity Manager next to the
communications adapter and alongside the chain back to the application.
The initiation of any operation, whether registering a new connection,
closing an existing connection, reading or writing data, is propagated via
mailboxes. While the actual data exchange is performed via shared memory,
the data location is provided via a mailbox message. This communication
flow, concerning the operations open, write, read and close, is further
discussed in the following Section 4.4.4.

Moreover, in Figure 4.7 it is observable that the aforementioned communi-
cation scheduler is an important part of the Connectivity Manager. With the
help of the Processing Thread (6), the scheduler prioritizes and processes
the outgoing messages of all FIFO send-queues and forwards messages after
message onto the shared network via the communications adapter. As this
figure further illustrates, the communications adapter is directly attached to
the Connectivity Manager, whereas it is originally hosted by the RTOS and
also connected to the shared communication bus.

4.4.4 Communication Flow

In this section we outline the particular communication steps that are
necessary to achieve opening and closing connections as well as reading and
writing data. Since some operations are very complex and involve many
communication steps, only the most important activities are illustrated in

69

4 Connectivity Manager (CM)

the following sub-sections. A more detailed illustration can be found in
Appendix 6.

Open

In the status quo system, a task was directly attached to the communications
adapter (see Section 4.1). To stay compatible with the given interfaces, the
Connectivity Interface required only a minor change in the call function
for opening a new connection. We extended the parameter list with an
additional connection descriptor, that holds values for cycle-time, data
volume and criticality of the attempting connection.

Task Communications Adapter

[
|
define device name |
|
define connection flags |
|
|

open({devname flags))‘
1

initialize network interface with given flags H
| |
| |
< return{connection handle) |

Figure 4.8: Communication flow of the old open sequence.

In Figure 4.8 the opening sequence of the status quo system can be seen. As
already mentioned, the fask communicates directly with the communications
adapter and receives a connection handle in case of successful connection
registration.

Since our approach relies on a pre-registration bandwidth-check, we in-
troduced the extended function call openExtended(devname,flags,descriptor)
for establishing a new connection. With the first two parameters (devname

70

4.4 Architecture and Design

Connectivity Interface Connectivity Manager Communications Adapter

|

|

‘ N
| listen on mailbox

|

I

define device name

define connection flags

create Connection Descriptor

1: openExtended(devname flags descriptor)
check if valid network handle exists?

no: notify Manager to initialize network
r - - {ves: continue

2: mailbox messagelnit(flags)

initialize network
listen on mailbox 5 according to flags

3. init network(flags) g

perform network ifitialization &
according to flags

4: return(networkHandle)

5. return(networkHandle)

6. mailbox messageRegister(descriptor)

perform bandwidth-check according to descriptor?

listen on mailbox 5 no: return invalid connection id

|
|
|
|
|
|
|
|
|
'yes: return valid connection id, reduce remaining |
bandwidth counter |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

7: return(id)

listen on mailbox 5

add connection to activeCennections list

I
|
|
I
|
|
I
|
|
I
I
|
|
I
|
|
| L notify Manager about registering
| 777~ |new connection listen on mailbox 5
|
I
|
|
I
|
|
I
I
|
|
I
|
|
I
|

convertid to connection handle T

I 8 return(connHandle)

Figure 4.9: Communication flow of the extended open sequence.

and flags), which are used to initialize the CAN bus, we remain compati-
ble to the old interface, while the descriptor parameter is used to provide
additional information about the connection. As it can be seen in Figure
4.9, the Task performs the opening function call, including the required
parameters, on the Connectivity Interface. Then, the Connectivity Interface
checks if there is a valid network handle already present. If no valid net-
work handle exists, the Connectivity Interface forwards the initialization
configuration information (devname, flags) to the Connectivity Manager
via mailbox message. With the help of these parameter, the Connectivity

71

4 Connectivity Manager (CM)

Manager initializes the network through the communications adapter. After
successful initialization, a valid network handle is fed back to the Connec-
tivity Interface. After receiving a valid network handle, the Connectivity
Interface contacts the Connectivity Manager again to register a new connec-
tion. With the aid of the supplied descriptor, the Connectivity Manager is
able to perform a pre-registration bandwidth-check. A detailed discussion
concerning the bandwidth-check can be found in Section 4.5.2. Basically, this
pre-registration bandwidth-check examines if the attempting connection
can be utilized by the shared network in terms of bandwidth demand. If
there is not enough bandwidth available, the registration of the attempting
connection is rejected and a invalid (negative) connection ID is returned to
the Connectivity Interface. In case of a successful registration, the next free
valid connection ID is returned. This ID is then converted to a connection
handle (connHandle) that is necessary to perform any other operation, such
as reading or writing data, or closing the connection. Notably, it can be
seen that the Connectivity Manager as well as the Connectivity Interface
are listening on their mailbox whenever a request or response is awaiting.
Moreover, filled arrows represent synchronous function calls, while unfilled
arrows indicate asynchronous communication via mailbox messages.

Write

In Figure 4.10, a simplified communication flow of the write operation can
be seen. Once again, the Task initiates the data transmission by calling the
tunction write(connHandle, data) of the Connectivity Interface. The Connec-
tivity Interface copies the data buffer into the shared memory at an index i,
that indicates the area within the shared memory dedicated to that task. Af-
terwards, the Connectivity Interface contacts the Connectivity Manager via
mailbox message that includes the index i. Then, the Connectivity Manager
takes this data, that is stored in the shared memory at index i, and segments
it to network messages, in particular to CAN messages. The CAN messages
are then copied onto a FIFO send-queue that was specifically created for
that connection.

An additional thread picks message after message from this send-queue and
forwards them one by one to the communications adapter. The communica-

72

4.4 Architecture and Design

Connectivity Interface Connectivity Manager Communications Adapter

| I |
I
write(connHandle, data) L‘

prepare data A listen on mailbox L

copy data to shared memeary at index i

notify Manager about write operation

|
|
|
create mailbox message including index i |
|
|
|

mailbox messageWrite(i) ~

lsegment data from shared-memory at index i to network
messages

listen on mailbox 5 copy messages onto send-queue

I

I

I

I

I

I

[

I

I

[

I

I

I

I

I

I

forward messages from send-queue to communications |
adapter |
I

»

put messages onto network 5

return(number of sent messages)

write(msgs)

return{number of sent messages)

return(number of sent messages)

listan on mailbox 5

Figure 4.10: Communication flow of the write sequence.

tions adapter puts the messages onto the shared network and returns the
number of messages that were transmitted. This number of sent messages
is then returned alongside the communication chain to the task. As already
mentioned before, this figure illustrates the simplified communication se-
quence for writing data. A more detailed illustration with all intermediate
steps and involved threads can be found in Appendix 6.

Read

The communication flow of the read operation is similar to the write opera-
tion. The Task initiates the reading by calling the function read(connHandle,buf,
number), whereas this time an empty buffer as well as a pre-defined number
of messages to be read is provided. The Connectivity Interface notifies the

73

4 Connectivity Manager (CM)

Connectivity Interface Connectivity Manager Communications Adapter

prepare data buffer T listen on mailbox D

define number of messages to read
I

I
I
I
I
I
| read(connHandle, data buffer, number) J

notify Manager to read messages from netwark ﬁ

mailbox messageRead()

listen on mailbox 5

read messages from network ﬁ

read() |

read messages from network ﬁ

return(read msgs)

and store them in ring-buffer H

acknowledge read()

copy messages from ring-buffer inte data buffer 'ﬁ listen on mailbox 5

I
I
I
I
I
return(data buffer) |
I
I
I
I
I

Figure 4.11: Communication flow of the read sequence.

Connectivity Manager, that further prompts the communications adapter to
read all messages from the CAN bus that arrived in the meantime. After the
new messages were returned to the Connectivity Manager, they are stored
in a ring-buffer, as it is outlined in Figure 4.11. According to the respective
read pointer of the task, relevant messages are copied from the ring-buffer
into the data buffer provided by the task.

74

4.4 Architecture and Design

Close

In Figure 4.12, a simplified communication flow of the close operation can be
seen. The task initiates the closing by calling the function close(connHandle)
of the Connectivity Interface. The Connectivity Interface notifies the Con-
nectivity Manager by sending a de-registration mailbox message including
the connection handle. The Connectivity Manager invalidates the connec-
tion ID corresponding to this connection handle and deletes the respective
send-queue.

Connectivity Interface Connectivity Manager Communications Adapter

\
listen on mailbox D

close(connHandle)

L ¥ _

‘HOUN Manager about connection deregistration ﬁ

\
I
I
\
V]

listen on mailbox 5 invalidate connection id and delete send-queue

mailbox messageDeregister(connHandle)

check if any active connection is left?

no: close network connection and invalidate networkHandle
r - -yes: continue

I
[
I
I
[
I
I
[
I
I
I
I
I
I
I
I
close network{networkHandle) n

"

close network connection
according to netwerkHandle

acknowledge close()

[#ncrease remaining bandwidth counter %

acknowledge close(networkHandle)

delete connection from activeConnections list listen on mailbox 5

invalidate connHandle

update networkHandle

acknowledge close(invalid connHandle)

Figure 4.12: Communication flow of the close sequence.

Furthermore, it checks if there are any active connections left. In case of no
remaining connections, the Connectivity Manager tells the communications

75

4 Connectivity Manager (CM)

adapter to close the connection to the communication network. Thus, also
the network handle of the Connectivity Manager becomes invalid. After-
wards, the counter for the remaining bandwidth is updated. As a next step,
the Connectivity Manager acknowledges the Connectivity Interface. The
Connectivity Interface removes the respective connection from the active
connections list and invalidates the connection handle which is then re-
turned to the calling task. Moreover, the Connectivity Interface updates the
network handle accordingly.

76

4.5 Dynamic Priority Scheduling

4.5 Dynamic Priority Scheduling

In this section we describe our communication scheduling approach and
emphasise the innovative contribution. In consideration of the model defi-
nition in Section 4.2, we decided to follow a dynamic priority scheduling
approach. Our algorithm functions as a EDF scheduler while the system is in
a non-overloaded condition, and switches to best-effort principle whenever
the system becomes overloaded. Detailed information regarding the system
states can be found in the following Section 4.5.1. One scenario in which
the system can possibly become overloaded is, when a bottleneck on the
shared communication network emerges. Meaning that the traffic on the
shared communication network increased so that the dedicated bandwidth,
available to the CM system, decreased. This reduced bandwidth is probably
not enough to fulfil the bandwidth demands of all connections. At this point,
the algorithm switches to the best-effort policy and our novel prioritization
approach comes in.

4.5.1 System States

Basically, at a time, our system can only be in one out of two system
states, namely overloaded and non-overloaded system state. The purpose
of the following sub-sections is to provide a clear distinction between non-
overloaded and overloaded system state.

Non-overloaded

The non-overloaded system state is the regular operating mode of our
system. This state is the default system state and is prevalent from system
start-up. Moreover, this system state is mainly characterized by the fact that
it is not overloaded, meaning that the dedicated bandwidth is sufficient
and messages are being processed before their respective deadlines. The
scheduling of the messages is based on their deadline, also called earliest
deadline first (EDF) scheduling. Therefore, as long as the system is in the

7

4 Connectivity Manager (CM)

non-overloaded state, it is guaranteed that messages are being processed on
time and their hard deadlines are not being violated.

Concluding, this system state is characterized by:

EDF scheduling,

Message order (prioritization) is based on their deadline D,
Dedicated bandwidth is sufficient (Assumption 1 (Section 4.5.2) is
true),

Punctual transmission is guaranteed,

Hard deadline of messages.

Overloaded

However, at every time the system might become overloaded due to network
errors that reduce the actual bandwidth of the network. Consequently,
the bandwidth of the network might become smaller than the bandwidth
demand of the Connectivity Manager system, which is the accumulated
bandwidth demand of all active connections.

The system might become overloaded due to errors on the network, or
additional traffic caused by a concurrent network node. However, not only
network bottlenecks but also the processing time of the Connectivity Man-
ager can cause overload scenarios. In consequence of short cycle-times and
timing drifts, the system can become overloaded as well.

Concluding, this system state is characterized by:

Best effort scheduling,

Message order (prioritization) is based on the criticality,

Dedicated bandwidth is insufficient (Assumption 1 (Section 4.5.2) is
false),

Best effort transmission is performed - punctual transmission is no
longer guaranteed,

Hard deadline of messages might be degraded to soft deadlines.

78

4.5 Dynamic Priority Scheduling

4.5.2 Schedulability Test

In the literature, a schedulability test commonly refers to task scheduling
on processors. In our approach, however, we seek to schedule data streams
on communication networks. The Connectivity Manager holds a value that
represents the total amount of bandwidth available to the CM system. This
brings us to the first assumption:

Assumption 1 The available bandwidth dedicated to the CM By must be smaller
than or equal to the overall remaining bandwidth of the communication network
BnET

Bem < BNer (4.1)

Assumption 1 ensures that all data streams registered at the Connectivity
Manager, can make use of the underlying network.

Whenever an application attempts to register a new connection, a worst case
bandwidth estimation, based on the provided cycle-time A,, and data volume
Vi, is calculated. With the help of this worst-case bandwidth-estimation
and the available bandwidth of the Connectivity Manager, the second
assumption can be defined.

Assumption 2 Connection Sypw with bandwidth Bygy is accepted, if:

n
Bnew +) Bi < Bem (4.2)
=1

Assumption 2 shows the previously mentioned bandwidth-check performed
by the Connectivity Manager. Before a new connection is accepted, the Con-
nectivity Manager checks the utilized bandwidth, by summing up the worst-
case bandwidth-estimations of all registered connections. If the bandwidth
of the attempting connection plus the utilized bandwidth is smaller than or
equal to the dedicated available bandwidth of the Connectivity Manager,
the attempting connection is accepted. This bandwidth-check assures that
the specified data volume of a data stream can be transferred within the
respective cycle-time. In other words, the bandwidth-check guarantees that

79

4 Connectivity Manager (CM)

even peak load scenarios, where connections attempt to send data at the
same time, can be scheduled and handled by the underlying communication
network. As long as all connections adhere to their periodical data volume,
the maximum utilized bandwidth at a given moment follows Assumption
2. However, due to our dynamic approach, unexpected sporadic bursts
are being handled as additional connections and have no major impact on
the system, assuming that the underlying communication network retains
enough capacity.

Additionally to the bandwidth-check, also the processing time of a message
needs to be considered to ensure the schedulability of a message. Within
this thesis, this message processing time is defined as worst-case execution
time (WCET). The WCET consists of the time that is necessary to copy all
messages of the data package onto the respective send-queue, and the time
that is needed to pick one message from the send-queue and forward it
to the communications adapter. Although these proceedings are constant
in time, the executing thread might get interrupted. Thus, we are talking
about a worst-case execution time instead of a processing time. Moreover,
the WCET of the first message of the data package is shorter than of the
last message of the data package, since the last message has to wait longer
for transmission. Furthermore, also the number of concurrent connections
influences the WCET of a message. For example, the message of Connection A
might be favoured over the message of Connection B due to higher criticality
or smaller deadline (in terms of closer).

For simplicity reasons, in the following Assumption 3 we consider only
one connection and only the first message of a period. Meaning that thread
interruptions are not possible and thus a seamless processing is enabled.

Assumption 3 Let n’ be the number of messages in a period. Thus, the worst-case
execution time of the first message consists of the copy-time of all messages plus
the picking-time and transmission-time of the respective message. To guarantee
punctual transmission of the messages, the cycle-time of the data stream must be
larger than the WCET.

/

n
WCET = (Z copyTime) + pickingTime + transmissionTime
i=1

80

4.5 Dynamic Priority Scheduling

WCET < A (4.3)

The formula to calculate the WCET for a connection that sends more than
one message in each cycle, is as follows:

1’1/

WCET = (2 copyTime> + ((pickingTime + transmissionTime) * n')
=1
(4-4)

So if there are 3 outgoing messages in a period, the WCET is composed of
the copy-time of 3 messages plus the picking-time and transmission-time of
a message times 3. Whenever the WCET of all outgoing messages is smaller
or equal than the cycle-time, then it is guaranteed that all messages are
schedulable within a period.

Since connections usually send more than one message per period, Formula
4.4 can be considered as the generally valid WCET calculation formula.
Further information concerning WCET can be found in the analysis Section

5.4.1.

4.5.3 Deadline Calculation

Each message, regardless from which data stream, holds a value that rep-
resents the deadline. Messages within the same data package hold the very
same deadline. As already mentioned above, each data package is marked
with a value that represents the creation-time of this data package, and its
included messages. This creation-time is essential for the deadline calcu-
lation of the messages. Considering the creation-time more precisely, the
corresponding period in relation to the start-time can be determined. Being
aware of the corresponding period, the deadline of the messages on herein
before mentioned data package is exactly the end of this corresponding
period. While the cycle-time A is a constant time value, the deadline, start-
time Tstart and the creation-time TcrpaTg are absolute timestamps with
the accuracy of 100 nanoseconds.

81

4 Connectivity Manager (CM)

Formula 1 With the use of the start-time Tstart, the creation-time Tcrparr, and
the cycle-time A (assuming A > 0), the corresponding period can be determined
with the following formula:

period — |7TCREATE)L_ TSTART“ (4.5)

Formula 2 The actual deadline D can then be calculated by the following formula
while respecting the result of Formula 1:

D— TstarT + A, if period = 0
| (period x A) + Tstagr, if period > 0

(4.6)

Whereas the case “if period = 0” in Formula 2, is for the special use case,
in which the connection sends data for the very first time. Consequently,
the creation-time is equal to the start-time (Tcreate = TstarT), SO that the
result of the period is 0.

Example 1 In this example the cycle-time is defined to be 10 milliseconds. Since all
other time indications are in the order of 100 nanoseconds, the 10 ms are multiplied
by 10000 to be compatible.

| [636187083825556071 — 636187083825283603
period = 10 + 10000

period = {2.72468—‘

period =3
D = (3 %10 % 10000) + 636187083825283603
D = 636187083825583603

82

4.5 Dynamic Priority Scheduling

The digits that are underlined in Example 1, represent the significance
ranging from 10 milliseconds to 100 nanoseconds. The digits that are bold
represent the significance of 10 and 1 millisecond, which is of most relevance.
Notably, only the bold digits change in this calculation due to the cycle-
time of 10 milliseconds. Thus, everything behind the bold digits remains
unchanged. As it can further be seen in this example, the creation-time falls
into period 3, indicated by the value 2.72. Consequently, the deadline is
determined to be the end of period 3. In the following Table 4.4, the start
and end times are outlined, whereas we assume that the start-time TgparT
is also the beginning of the first period.

Table 4.4: Detailed information concerning periods.

Period Start End
1 ...5283603 | ...5383603
2 ...5383603 | ...5483603
3 ...5483603 | ...5583603

In Table 4.4 it can be clearly seen, that the deadline (D) of Example 1
corresponds to the end of period 3. For readability reasons, the unchanged
digits in front of the 100 milliseconds significance are being replaced by
dots.

4.5.4 Functioning of the Scheduler

In this section we want to illustrate the functioning of the scheduler by
going through a simple scenario. In Figure 4.13a we outline a scenario with
the same preconditions as already used in Section 4.2. This scenario consists
of only one data stream (S;) and therefore also only one send-queue (Q1).
Whereas, for simplicity, the unit of the data volume is defined as messages
per period instead of byte per period. Since only one data stream is being
considered, the criticality can be neglected.

In Figure 4.13b the functioning of the scheduler is illustrated. The processing
of the scheduler can be imagined as an abstract timeline on which all
upcoming events are scheduled. Thus, events, such as instant of start, instant

83

4 Connectivity Manager (CM)

Send-Queue 1

1 3 4
}\1 }\2 }\3
A=1s
Cc=7
V=3
\ v ¢ l
P.: 1M of Py 1 Mof P, P
Tereare, =1 v Pa: Tcreate,3 =3,2

2" M of Py Tereate 2 =2,4

(a) Parameter visualization of the data stream.

Dy Tcreare,2 Dy,

A l EREATE,S

3Dad| Dad D] time

TCREATE,l

}\1=1

TSTART

(b) Timeline that illustrates the scheduling of the simple send example.

Figure 4.13: A simplified example of a data stream sending messages.

84

4.5 Dynamic Priority Scheduling

of creation, period beginning and ending as well as the number of messages
within a period, can be observed. The numbers in red indicate the respective
deadline of the message which is the end of the period. Furthermore, the
cycle-time of the data stream is set to 1 second. Notably, data packages are
not created in constant intervals due to poor clock resolution and drifts of
the task. That effect is indicated by the different creation-times in Figure

4.13a.

The functioning of the scheduler can further be outlined with the help of a
flow diagram, that can be seen in Figure 4.14 and Figure 4.15.

In Figure 4.14, the main contributing classes and how they are related and
cascaded are observable. Moreover, the interaction of the two major threads,
namely mailbox thread and processing thread, can be seen. The mailbox thread
is constantly listening for new instructions in the form of mailbox messages.
Whenever data is intended to be written, the mailbox thread copies the new
data onto the send-queue before it wakes up the processing thread, that is
awaiting data to be processed.

As a first action, the processing thread checks if the send-queue at the first
position of the processing list is empty. Due to our sorting algorithm, an
empty send-queue at the first position of the processing list implies that all
following send-queues are also empty. In the case that the first send-queue
is empty, the processing thread knows that there are no messages of neither
send-queue to process and puts itself to sleep again. If the first send-queue
is not empty, the thread starts processing the messages by initially locking
the processing list and the send-queues by acquiring a semaphore unit.

After that, the scheduler class is invoked by the function call pickMessage().
The communication scheduler stores the current delay state of the system
to the variable old delay, that will be used later on in the clean up procedure.
Then the send-queue at the first position is called, since this queue contains
the message that will be sent next. For plausibility reasons, it is checked that
this send-queue contains at least one message, if not, an invalid message
(error message) is returned. Otherwise, the first message is popped from its
queue and is set to be the return message m. Moreover, the message count
is decreased due to the removal of the first message. Next, it is checked,
whether the system-time is greater than the respective deadline of the
message, which would mean that the message is being processed after

85

4 Connectivity Manager (CM)

Connectivity Manager
copy thread

7\
copy new messages H wake up processing thread { listen to mailbox |
_)

~ ~
S

RN

resume

Connectivity Manager o * .
processing thread

N_send-queue that s~
not empty?

>,
NY
lock semaphore

vy

pickNh ()

Scheduler

get first message from

first send-queue

Send-Queue

delay counter ++
delay = true

mark queue empty

L return m

R Am—

returnm

forward m to CAN
driver

unlock semaphore

first send-queue

empty? /

Figure 4.14: Flow diagram of the message picking procedure.

86

4.5 Dynamic Priority Scheduling

its deadline. In that case the deadline was violated and a delay occurred.
Therefore, the delay counter is increased and also the delay state of the
system is set to true.

As a last step of the send-queue class, it marks itself as empty in the case
that no further messages exist. Otherwise, the next message is set to be
the first message of the queue. Eventually, the return message m is returned
through the scheduler class back to the Connectivity Manager. There, the
message is checked for validity and if valid it is forwarded to the CAN
driver. Afterwards a clean up procedure is performed before the semaphore is
released again. This whole routine is performed as long as the send-queue
at the first position contains messages and is therefore not marked as empty.
Otherwise, the processing thread puts itself to sleep again.

In the following Figure 4.15, the aforementioned clean up procedure, which
is no less important, is explained.

P
(forward m to CAN driver

Connectivity Manager \
N /

processing thread i

cleanUp()
Scheduler

tmp delay = false

N first send-queue Y
delay = true?

Y
first send-queue
empty?

N
tmp delay != old Y
delay
N
/#\

C unlock semaphore)

break
tmp delay = true

set next queue to
first send-queue

sort function = with delay ‘

push first send-queue back ‘

|

sort processing list ‘

sort function = no delay

Figure 4.15: Flow diagram of the clean up procedure.

While the initiation of the clean up is done by the Connectivity Manager
class, the conduction of the procedure is handled by the scheduler class. As

87

4 Connectivity Manager (CM)

a first step a temporary delay variable, that is later taken for comparison, is
set to false. Afterwards, a foreach loop iterates through all send-queues and
checks whether the queue is marked as delayed. If so, the temporary delay
variable is set to true and the loop is cancelled.

Next, the sort function is assigned according to the value of the temporary
delay variable. With the help of a function pointer the sort function is set
to either sort with regard to delay or without any delay considerations.
Sorting with regard to delay means that the criticality is of highest priority,
while not considering delays means that the deadline is the most important
sorting criteria. Furthermore, the send-queue at the first position is checked
whether it is empty, and if so it is pushed back to the last position.

Additionally, the value of the temporary delay variable is compared to
the value of the old delay variable, that was set in the previous picking
procedure. Especially the last two activities of the scheduler are responsible
that it is guaranteed that if the send-queue at the first position is marked
as empty all other send-queues are empty as well. Finally the clean up is
tinished and the thread returns from the scheduler class to the Connectivity
Manager.

To explain the functioning of the scheduler by a more complex example, we
consider the following Figures 4.16 and 4.17.

The preconditions of the following explanatory example are as outlined in
the following Table 4.5:

Table 4.5: Preconditions of the send example.

S1 | S2 | S3
data volume V [msgs] | 3 2 1
cycle-time A [sec] 1 |07|07

start-time TgragrT [time] | 1 2 1
send-queue (Q) Q1] Q2|Q3

As it can be seen, the example consists of three data streams (S1, S2, and
S3) and therefore three send-queues (Q1, Q2, and Q3). For a better under-
standing of the visualization of the example, the data volume was again
simplified to messages (instead of byte) and the cycle-time is defined in the

88

4.5 Dynamic Priority Scheduling

order of seconds. The start-time is also declared in the order of seconds,
however it refers to a point in time on the visualized timeline of Figure 4.16
and 4.17. In the first step (1.) of the complex sending example, it can be seen
that each send-queue consists of three data packages, donated by P. The
creation-time indicates at which moment of time the respective data package
was created. The processing list shows the sorting of the send-queues by
deadline ascendantly, with the consequence that the send-queue with the
closest deadline is on top of this list and will be processed next. In the
timeline visualization on the right side, all events, such as the deadline (D)
of a message, the cycle-time (A) of a data stream, the start-time (Tstarr) of
each data stream as well as the processing of the messages is illustrated. On
the very right side, the message that is sent within this processing step is
shown. The blue dotted line represents the system-time with respect to the
timeline. In the first processing step (1.) the single message of data package
1 of send-queue (Q3) is sent, since Q3 with its closest deadline (1.7) is listed
on top of the processing list.

Notably, in the second processing step (2.) it can be seen that the processing
list changed and also the system-time on the timeline advanced. The labels
of send-queue 3 (Q3) were also updated. However the creation-time (1.9) of
Q3 is not yet reached, that is why the deadline of Q3 is o in the processing
list. Due to this work around the send-queue is marked as empty and no
longer considered for processing (but also not deleted for performance
reasons). Furthermore, the envelope icon is displayed only after the data
package was created. Consequently, Q1 is the only send-queue that is being
processed in the steps 2.-4.

In the fifth processing step (5.), the second data package (P2) of Q3 was
created, hence send-queue 3 is listed in the processing list again. Since its
deadline (D2) is the closest, the message of data package 2 of send-queue 3
is sent in this processing step.

In the next processing step (6.), also send-queue 2 (Q2) becomes involved
due to the creation of its first data package. Since Q2 is sorted to the top of
the processing list, the first message of data package 1 (P1) of send-queue 2
(Q2) is sent in this processing step.

In the last processing step (7.) the circumstances are very similar to the
previous processing step, hence the second message of data package 1

89

4 Connectivity Manager (CM)

1.

Send Queue 1
Py

o

===

Send Queue 2
Py

[e e

Send Queue 3

== = -

@Ml (P1Qs)

Processing List Daan)
Q3 D=7
Aa
a1 D=2 1
EEE] \I
u
R
Tsrartian) 2
Tsrartias) : Aas
.

Send Queue 1

Processing List

RN R)| DR e

Q1 D=2

Q3 D=°9

(i

!

]
'
'
Ao

]
L}
Py =]
) I ERE) e o] | i) TR
Send Queue 2 {FD?]|) | fardware
== =) = e AHERE l
Send Queue 3 : T Aas T
Py 4
. =N == ' Ove Due
Send Queue 1 Processing List Dy @ M2 (P,Q1)

4.

Send Queue 3

=0 =N =

|_2_/
w

]
Qi) Dus

Send Queue 2 | jardware
] |) e B >
CREATE=: 1 [] 4
Send Queue 3 : T Aas
. 0
. = == -
Send Queue 1 Processing List : Daay) @ M3 (P,Q1)
P Q1 D=2]
R R e [o—re ' B
Send Queue 2 I' :: \l) | :lardware
P, T y »
D e e vl !

Figure 4.16: A more complex example of the send procedure.

(P1) of send-queue 2 (Q2) is sent. Notably, send-queue 1 is listed in the

processing list again since the second data package was created.

4.5.5 EDF Scheduling (non-overloaded)

As mentioned before, for each registered connection the Connectivity Man-
ager creates a FIFO message send-queue. By the time a connection attempts

90

4.5 Dynamic Priority Scheduling

Send Queue 1 Processing List ["\l(m) Dxz(a1) M M1 (P,Q3)
H Py Q3 D24 o P — =
[P0 A A DA DA | DRI s 2.3 [o0 .
Send Queue 2 |) :l , | | :!ardware
I [s I I R Tt
e e e e e ., & .
Send Queue 3 :)\m
. '
(== =)
[] Tereate=1,9
Send Queue 1 Processing List DM(E,,, D) @ M1 (P,Q2)
. A
Pyt o) D=2,7]
) R o (2] o,
Send Queue 2 Q3 Dp=>° |) ['[_1 L | Hardware
RN ====]) P
Tereare=2 . ot A g .
'
Send Queue 3 ' DM(:‘?T
. '
l & U‘ E I] g o 0@ Disiay)
L] Tereate=2,8
Send Queue 1 Processing List Dmm: Dio(ay) M M2 (P;Q2)
P: Q2 Dp=27 o
R) [R) RO -2 [Ry TG
Send Queue 2 Q3 D=2 | Iﬁj‘r L L | jardware
oo e n =< N I I N
Tereate=2 s 5 o T ; 4
Send Queue 3 1 DM(;‘Z;T
. ’
=ND=a =S o
[] Tereate=2,8

Figure 4.17: A more complex example of the send procedure (cont.).

to write, the according data is split into CAN messages which in turn are
copied onto the send-queue. The number of resulting frames depends on
their data volume, for example:

Example 2

Vi [Byte] 100
= =5 CAN M
msgSize [Byte] 20 5 cosages

Whereas 20 bytes indicate the worst-case estimation for the size of a CAN
message. To follow up Example 2, in each period 5 CAN messages are
copied onto the send-queue. Every copy process includes a creation-time
which is a timestamp denoting when the data package P; was created. At
the very first write attempt, this creation-time is also used to define the
beginning of the first period. The creation-time in combination with the

91

4 Connectivity Manager (CM)

cycle-time A, is taken to determine the deadline of each message. Whereas
messages which fall into the same period have an equal D; ,, in fact the end
of the period.

The main advantage of a creation-time is twofold. On the one side, period
as well as message counters, that could be used to determine the respective
period as well as the corresponding deadline, become unnecessary what
furthermore limits the occurrence of overflow errors. On the other side,
not relying on counters makes the system more flexible in the sense that
connections can send a varying amount of data without confusing the
scheduler. Thus, connections can skip periods or send more data than
specified by the data volume, which enables us to consider sporadic tasks
as well. Thus, due to a creation-time the system is independent of internal
counters and thus makes it more flexible.

The scheduler is active as long as there is a message that has not yet been
picked from its send-queue. Hence, in EDF mode the scheduler processes
messages as fast as possible in the order that the message with the earliest
deadline is picked next. This behaviour has the advantage, that data can
even be processed in advance.

In a non-overloaded system, every single deadline is met and no delays
occur. Whenever a delay occurs, which means that a message is processed
only after its respective deadline, the scheduler switches to best-effort mode
(see Figure 4.18).

4.5.6 Best Effort Scheduling (overloaded)

In the event of a deadline violation, the whole send-queue gets marked as
delayed and the best-effort scheduling mode is applied. Whilst at least one
send-queue is marked as delayed the whole system remains in the best-effort
scheduling mode. Since the initial bandwidth is not fully available anymore,
the bandwidth demand of all connections can no longer be fulfilled. One
of the main characteristics of the best-effort approach is, that it performs
a degradation of less important connections/data streams. Concretely, the
scheduler resorts the message order in a way that connections with a high
criticality have the highest priority. As a result, connections that registered

92

4.5 Dynamic Priority Scheduling

T -------oooooe- '
E D F . D g System time E
(] AL(S1) teEeeeeeeeeeieeenld
(non-overloaded) : Dm(Sz) D)\l (S3)
0
0
Sz D2:0,7 C2:6 0
0
Sl D1=1 C1=7
: 07 | 1,5 t
53 D3=1,5 C3:9 0
0O 1 2
0
0

Best Effort by () delr

(overloaded) -DA_]__{Si} D)\l (S3)

53 D3=1,5 C3=9

Sl D1=1 C1=7

S, D,=0,7 C,=6 L t

o
- —
N

Figure 4.18: Reordering of the processing queue in the event of a deadline violation, oc-
curring whenever the system-time overtakes a valid deadline. The processing
queue is then sorted by criticality C;,, descendingly, so that the connection with
the highest criticality is on top and will be processed next.

93

4 Connectivity Manager (CM)

with a high criticality are favoured in the case of an overloaded system. With
this approach we achieve that highly critical applications can continue to
function in a real-time manner, while less critical applications are degraded
in the sense of timeliness. Hence, degraded messages might get queued
onto their respective send-queue. However, messages are only queued as
long as a certain memory threshold is not reached. Further information
about this threshold, known as watermark, can be found in Section 4.6.3.

As soon as the bottleneck on the network disappears, our system is capable
of catching up on the delayed connections. Since our approach processes
messages as fast as possible, the demonstrator is able to consume the
available bandwidth of the whole network. This effect is discussed in Section
5.3.2. The scheduler switches back to EDF mode when all queued messages
have been processed and every send-queue is marked as not delayed.

Concluding, our algorithm performs according to the earliest deadline
tirst (EDF) principle and switches to best-effort approach once the system
becomes overloaded. In the best-effort approach, low critical data streams
are degraded to assure real-time processing of high critical data streams.
Meaning that deadlines of low critical messages might get violated to adhere
the deadline of high critical messages.

4.6 Implementation

In this section we want to outline further information regarding imple-
mentation details. The implementation of the demonstrator was done in
the programming language C++ in the version Cgg. Due to the real-time
requirement we used the real-time operating system RTOS INtime 4.20 in
the 32-bit version. With regard to real-time capability, we made use of the
real-time third-party library Boost®, which we used as a basis for some
few components such as the ring-buffer (further details in Section 4.6.5).
Since this demonstrator was mainly developed for the AVL List GmbH,
it was a primary requirement to integrate and utilize their self-developed
real-time framework called ARTE (AVL real-time environment). As for the

®http://www.boost .org/

94

http://www.boost.org/

4.6 Implementation

communication network, we decided to use the Controller Area Network
CAN, since it is the most common and utmost widespread in-vehicle com-
munication bus. However, as already mentioned earlier, neither our design
nor the implementation precludes a future adoption to additional commu-
nication technologies, such as CAN-FD or Automotive Ethernet. Yet, our
implementation was optimized to CAN which is discussed in more detail in
Section 2.3. This section is also dedicated to present the concrete structure
of the Connectivity Interface and Connectivity Manager class. Eventually,
we also address the limitations of our demonstrator.

4.6.1 Connectivity Manager

In Figure 4.19, a class diagram illustrates the structure of the Connectivity
Manager class. Notably, the Connectivity Manager class holds several de-
pendencies to other classes and structures (C++ structs). The classes Mailbox
and SharedMemory are reference classes from the ARTE framework, which
extends the functionality of the actual INtime RT objects. Except for the
RThandle which is an INtime real-time object, all other classes and structs
were designed specifically for our needs. As it can be seen, the Connectivity
Manger is in possession of an scheduler object which in turn is in possession
of all send-queues’. As outlined in Figure 4.19, a send-queue has a start-time,
a deadline (which is the deadline of the first message in the queue), and also
a flag that indicates if the queue is delayed. Furthermore, the Connectivity
Manager is in possession of a BusHandle, which is specified by the according
BusType such as CAN. At this point, we tried to keep the design and also
the implementation as generic as possible to potentially support multiple
network technologies. Additional attributes of the Connectivity Manager
are total size of the shared memory (shdMemorySize), the next free shared
memory offset (shdMemoryOffset), as well as the next free ID (nextFreeld).
Since every connection obtains a unique identifier (connectionld), a spe-
cific mapping between connection and its reserved data slot in the shared
memory(shdMemorylndex) can be accomplished. The unique connectionld is
also used to track active connection (activeConnections) with reference to the
respective connectionDescriptor.

7In the program code theses send-queues are being named “ConnectionSendLists”.

95

4 Connectivity Manager (CM)

pkg
DateTime_t
——
- deadine
CANmsg_t
— startTime
- delay
Scheduler | N| " et] delay [Bool_t
| L ! =
s - scheduler <<struct>> BusType
e BusHandle —
RingBufferElement —
+flag: int ConnectivityManager
- shdMemoryindex : map<unsignedint unsignedint less<key> allocator<pair<key, T>>> e
 activeComnection ConnectionDescriptor less<key> allocator<pair<key T>>> ——
- shdMemonyOffset - int busHand
- shdMemorySize * int ustandle
- availabledBandwidth : float
" - remainingBandwidth - float
RingBuffer - deadlineThreadActive : bool
= fingBufter -virtualSegmentSize : int
- nextFreeld: int
- mailboxReadThread : RTHANDLE deadineProcessingThread
- deadlineProcessingThread : RTHANDLE
- mbx : Mailbox - mailboxReadThread
- shdMemory : SharedMemory
Sharedemory) - scheduler - Scheduler
—
I - ringBuffer - RingBuffer b [Fmawec]
~busHandle : BusHandle o Mallbox
- shaMemory

Figure 4.19: Connectivity Manager - class diagram.

Moreover, attributes regarding the bandwidth and the virtual segment
size are available to the Connectivity Manager. The oft-quoted processing
thread (deadlineProcessingThread) and mailbox thread (mailboxReadThread)
can also be seen in this class diagram. An equal important attribute of
the Connectivity Manger is the ringBuffer object that is derived from the
RingBuffer class which in turn is based on the CircularBuffer class of the
real-time third party library Boost. Notably, the ring-buffer is being filled by
objects of the RingBufferElement struct. Furthermore, at this point we tried
to keep the design as well as the implementation generic so that multiple
message formats are potentially supported.

A more detailed version of this class diagram including additional attributes
and methods can be found in the Appendix 6.

4.6.2 Connectivity Interface

In Figure 4.20, the structure of the Connectivity Interface class is outlined
in the form of a class diagram. As it can be seen, the Connectivity In-

96

4.6 Implementation

terface holds several dependencies to other classes such as Mailbox and
SharedMemory, which are both classes provided by the ARTE framework.
Moreover, the Connectivity Interface holds a handle to the process of the
Connectivity Manager as well as to its mailbox. Additional member at-
tributes are a busHandle, a map of active connections (activeConnections)
as well as a mapping of connections to their slot in the shared memory
(slotIndex). As already mentioned at the Connectivity Manager class, the con-
nectionld is unique so that a distinguishable mapping can be accomplished.
Furthermore, the attribute nodeld represents the ID of the INtime node
on which this particular Connectivity Interface is running. Since multiple
instances of the Connectivity Interface are permitted, the nodeld is used
as an naming extension to uniquely distinguish between instances of the
Connectivity Interface.

- connectivityMgrProcess RTHANDLEl

- connectivityMgriviailbox

Connectivitylnterface pE—
W - nodeld : short - busHandle BusHandle
= - mbx - slotindex . map<unsignedint,unsignedint less<key> allocator<pair<key T>>>
- activeConnections : map<unsignedint,ConnectionDescriptor less<key> allocator<pair<key T>>> +handle :int
- mbx : Mailbox
- shdMem : Sharediviemory
-nameCfProcess : sting
1 - busHandle : BusHandle) Tochar |
[] -shdMem | connectivityMgrProcess : RTHANDLE - nameOfProcess str’ih’gﬁl‘
- connectivityMagrMailbox - RTHANDLE

Figure 4.20: Connectivity Interface - class diagram.

The attribute nameOfProcess indicates the name of this Connectivity Inter-
face process that follows the naming convention of the string “"Connlnf”
concatenated with the aforementioned nodeld. Due to this unique process
name, this instance of the Connectivity Interface can be looked up across
nodes/ cores.

A more detailed version of this class diagram including additional attributes
and methods can be found in the Appendix 6.

97

4 Connectivity Manager (CM)

4.6.3 Inter-Core Communication

Since the concept of the inter-core communication was extensively discussed
in the prior Section 4.4.3, we only emphasise on the implementation details
in this section. For the implementation of the mailboxes as well as the
shared memory we used the service of the ARTE framework that extends
the functionality of basic RT objects of the INtime RTOS. As previously
mentioned, any communication between Connectivity Interface and Con-
nectivity Manager is propagated via mailboxes, whereas the data exchange,
regardless of reading or writing data, is performed with the help of the
shared memory. This procedure is illustrated in Figure 4.21.

pkg
Mailtbox
- mbx - mbx
- connectivityMgrProcess - deadlineProcessingThread
Connectivitylnterface RTHANDLE ConnectivityManager
- connectivityMarMailbox - mailboxReadThread
- shdMem - shdMlem
SharedMemory

Figure 4.21: Communication between Connectivity Manager class and Connectivity Inter-
face class.

As it can be seen in Figure 4.22, both the Connectivity Manager and the
Connectivity Interface hold a reference to the shared memory that was

98

4.6 Implementation

initially created by the Connectivity Manager and afterwards mapped by
the Connectivity Interface. Likewise, both classes create their own mailbox
to enable communication among cores. However, the Connectivity Interface
has also a RT handle that references to the mailbox of the Connectivity
Manager. At the Connectivity Interface there is also a RT handle referencing
to the process of the Connectivity Manager.

The Connectivity Manager on the other side holds RT handles to its process-
ing thread and mailbox thread. The dotted line in this figure symbolises the
separation line between those two components.

In the upper area of Figure 4.22, the enumeration MessageType can be seen
with all different types of use cases a mailbox message can be used for. For
example to tell the Connectivity Manager to initialize the bus, the Connec-
tivity Interface sends the mailbox message MailboxMessagelnitializeBus
that is marked with the MessageType Bus_init. All message types on the
left hand side of the dotted line are used by the Connectivity Interface
to initiated the according action. Remarkably, the Nodeld is part of every
initiation message so that the Connectivity Manager can respond to the
right Connectivity Interface. The Connectivity Manager responds with the
respective acknowledgement, that is illustrated on the right hand side of the
dotted line. With varying combinations of positive and negative values for
connectionld and value the Connectivity Manager informs whether the action
was successful or not. Notably, the MessageType is simply an indication
within the mailbox message and is not a mailbox message type distinction
as between Object Mailbox and Data Mailbox (outlined in Section 2.6.5).

Watermark

As mentioned earlier in the Best Effort Scheduling section 4.5.6, messages
are queued onto the send-queue once the system is in a overloaded state.
However, the queuing is only performed until a certain threshold is reached.
This threshold is called watermark and is implemented to avoid errors
such as buffer overflows and out-of-memory exceptions. In particular, the
watermark is a value that is calculated for every send-queue. Since, the
Connectivity Manager knows about the total amount of memory (virtual
segment - VSEG) dedicated to itself, a memory distribution among the

99

4 Connectivity Manager (CM)

Pkg
- ype
<<enum>> <<struct>>
MessageType MailboxMessageClose Acknowledgement
+Bus_init - int +type - MessageType +type : MessageType
+Conn_register - int -bipe + connectiond - int + connectionld ” int
+ Conn_registerExtended : int + Nodeld : RTHANDLE +value - int
+ Conn_write - int
+Conn_read : int ST
+Conn_close : int .
+ connecting_ack : int e
+write_ack : int + type : MessageType
+read_ack int + connectionid : int
+init_ack: int + Nodeld : RTHANDLE
_type +close_ack int + creationTime : DateTime._t
- type et
“type type | ssstnuct>
MailboxMessageRead
<<struct>> <<struct>> <<struct> +bype: MessageType
- " N . N + connectionid : int
e + byteCount : unsigned int
+type : MessageType +type : MessageType +type : MessageType + Nodeld : RTHANDLE
+busFlags : int +Nodeld : RTHANDLE + Nodeld | RTHANDLE + filter : MessageFilter
+ deviName : char® + connection : ConnectionDescriptor
+Nodeld : RTHANDLE
- connection
N Mailbox k
| ~ - mbx
ConnectionDescriptor
eonnectioniagint - connectivityMarProcess - deadineProcessingThread
- datavolumen : int
~ cycleTime : int
_ criticality : int
- bandwidth : float
Connectivityinterface | RTHANDLEl ConnectivityManager
- connectivityMgriviailbox - mailbexReadThread
- shdMem I__| - shdMem
AR

Figure 4.22: Communication between Connectivity Manager class and Connectivity Inter-
face class including message types.

connections can be achieved. However, only 80% of the total amount of
memory (VSEG size) is taken for queuing messages onto send-queues. Thus,
20% of the VSEG size remains as a buffer for the Connectivity Manager
process, for its threads, as well as for heaps and stacks. Meaning that the
sum of all watermarks of all connections is maximally 80% of the VSEG size.
The watermark of a connection is proportionally to the bandwidth demand
of the respective connection. Consequently, if a connection demands 15% of
the available bandwidth, the watermark limits the memory consumption
of the respective connection to 15% of the memory dedicated for queuing
messages, which is 80% of the total amount of memory (VSEG size).

100

4.6 Implementation

4.6.4 Scheduler

For the implementation of the scheduler, we decided to use a list, called
processing list, that contains entries of send-queues. Since send-queues
are implemented as FIFO lists, the processing list can be seen as a list of
lists/queues. Due to this approach, the length of the processing list is of
size n, whereas n devotes the number of registered connections. Hence,
the sorting of the processing list can be accomplished in O(nlogn) time 8,
instead of O(m logm) time, whereas m indicates the number of all messages
which is mostly greater than n. A function pointer is used to enable two
different sorting approaches. One for sorting when the system is in the non-
overloaded state sortFunctionNoDelay() and one for sorting as long as the
system is overloaded sortFunctionWithDelay(). Thus, the criteria in relation to
their importance with regard to the respective system state is as follows:

non — overloaded : deadline > criticality > 1D
overloaded : criticality > deadline > 1D

The reordering of the processing list is performed in two cases:

e after new messages were copied onto a send-queue
e after a message was picked from a send-queue

However, in the second case a reordering of the list is only applied if the
state of the system changed, such as from delayed to not delayed or vice versa
(see Figure 4.15).

4.6.5 Ring-Buffer

Since send-queues are solely used for storing outgoing messages, we in-
troduced a second storage area for both, incoming as well as outgoing
messages. This second storage area is a ring-buffer that is based on the
circular-buffer component of the Boost third party real-time library. When-
ever messages are read from the CAN bus, they are stored in the ring-buffer.
Outgoing messages that were forwarded to the CAN bus are also copied

8http://www.cplusplus.com/reference/list/list/sort/

101

http://www.cplusplus.com/reference/list/list/sort/

4 Connectivity Manager (CM)

onto the ring-buffer. From a connection’s perspective, there is no difference
to the status quo system, it still thinks that it is directly attached to the CAN
bus. However, due to our approach it is a kind of virtualization of the CAN
bus, which brings the advantage that connections on the same V&V system
can also exchange messages.

begin()

rP Conn 1

rP Conn 2,
rP Conn 3

free space

end()

rP Connn

Figure 4.23: Ring-buffer that is based on the Boost circular-buffer. For each connection
a read pointer (rP) indicates the last slot that was read by the respective
connection. The single write pointer (wP) indicates the last slot that was
written to.

One single write pointer (wP) is used to indicate the last slot of the ring-
buffer that was written to, which is illustrated in Figure 4.23. Furthermore,

102

4.6 Implementation

for each connection a read pointer (rP) indicate the slot that was last read
by the respective connection. Hence, whenever a connection performs the
read operation, firstly new messages from the CAN bus are stored in the
ring-buffer, and secondly all messages, beginning from the read pointer of
the connection to the sole writer pointer of the ring-buffer, are returned
to the connection. As an additional feature, we implemented a message
filter that filters out messages that are relevant for this connections. This
filtering is based on the CAN ID and can be defined for a single ID or
for range of IDs. The main advantage of this storage concept is, that it
can not overflow since it is a closed circle. However, this also entails the
disadvantage that when no free slots are available anymore, this storage
design begins to overwrite itself, beginning with the very first slot. This
means that a data loss is possible if the size of the ring-buffer is small or
connections do not read their messages regularly. Nevertheless, since our
demonstrator is designed to run on the V&V system, which is based on a
regular x86 architecture, memory space is not really an issues so that the
size of the ring-buffer can be defined generously.

In theory, the ring-buffer is also placed in the shared memory so that not
only the Connectivity Manager, but also the Connectivity Interface can
access the messages and copy them directly into the passed buffer of the
application. However, in practice the ring-buffer needs a custom allocator
to be created within the shared memory, which was out of scope of this
thesis.

4.6.6 Further Implementation Challenges

In this section we want to outline further challenges we faced during the
implementation of our demonstrator.

Poor Clock Resolution (Drifts)

In Figure 4.24, the problematic of poor clock resolution is illustrated. The
black lines on the timeline represent the boundaries of the periods. The
red lines indicate a theoretical write initiation by the application, that can

103

4 Connectivity Manager (CM)

Figure 4.24: Initiation (creation-time) falls into the wrong period due to drifts caused by
poor clock resolution. Red lines indicate the optimal initiation instant, while
blue lines denote the actual initiation instant.

be considered as optimal since it occurs on a regular basis. However, in
practice, due to the resolution of the clock our system makes use of, the
initiation of the write operation occurs irregularly. As it can be seen when
focusing on the blue line, that represents the actual instants of the write
initiation, that the intervals between the specific blue lines is not consistent.
Considering Figure 4.24, in period 1 the actual write attempt (blue line)
is initiated close to the optimal write instant (red line), however it can be
seen as a bit delayed since it is not exactly at the same instant. The same
situation appears in period 2, where the actual write operation is a bit
delayed in comparison to the optimal instant. Due to this delay the system
tries to compensate this lateness by initiating the write operation earlier as
previously. Hence, the write operation which is dedicated to be in period
3, is already initiated in period 2. Consequently, the system assumes that
this write operation belongs to period 2. However, the processing time for
these messages is not sufficient enough since the deadline (end of period 2)
is very close. Thus, the system recognises delays, although the bandwidth
capacity was not modified.

Although we tried different time and sleep functions from several libraries,
including Boost, ARTE and native C++, the result remained the same. Due to
a poor clock resolution, the system was inaccurate from a timing perspective,
with the consequence that delays were detected which were not caused
by a network bottleneck. For this reason, we applied a work-around that

104

4.7 Limitations

artificially pushes the initiation of the write operation to the middle of the
period, so that minor irregularities of the intervals are balanced and the
initiation occurs in the correct period. However, this work-around is only
sufficient for connections with a cycle-time greater than 3 ms. For shorter
cycle-times the drifts are too great so that initiations might fall into the
wrong periods again.

Priority Inversion and Data Race

Whenever multiple data streams are being multiplexed, priority inversion
might occur. However, in our implementation the priority inversion of
messages is limited since its only occurrence might happen in the memory
stack of the CAN driver, which is out of scope for this thesis and thus for
this implementation. Since the procedure of picking and forwarding one
message after another is synchronized with the help of a semaphore, it can
be seen as an atomic process. Hence, this guarantees, that the message with
the highest priority at this moment, is forwarded to the CAN driver and no
message priority shifting can occur once a message was picked.

4.7 Limitations

Due to the limited amount of time to deliver a functioning demonstrator,
we focused on the most important functionality and accepted disadvantages
in terms of limitations and optimizations.

e In the final release of the demonstrator the ring-buffer was not in-
cluded in the shared memory since this would have required a custom
allocator. The implementation of the custom allocator was not a trivial
task and was therefore neglected due to time issues. However, the
read functionally was completely implemented and tested, since in
scenarios with only one node, the ring-buffer does not necessarily be
allocated in the shared memory.

e A minor limitation of our implementation is, that the Connectivity
Manager process (ConnMgr.rta) must run within the same INtime

105

4 Connectivity Manager (CM)

106

instance, and therefore on the same node, as the A2te.CoreSvr.rta,
which is the process of the AVL ARTE framework.

The final release of our demonstrator used the CAN driver in blocking
mode, which means that the whole processing thread of the Con-
nectivity Manager is blocked until the driver returns. This becomes
an issues when the driver does not accept messages anymore due
to a network bottleneck. Due to the blocking of the driver, also the
processing thread stands still and outgoing messages must be queued.

5 Evaluation and Analysis

This section is dedicated to the evaluation as well as the analysis of the
demonstrator. Moreover, we outline the hardware and software specification
of our test environment and expose the conducted test cases. Consequently,
we discuss the impact of the demonstrator with regard to memory and CPU
consumption. Finally, a comparison to other approaches is made and the real-
world applicability of our demonstrator is shortly reviewed. Since the major
research contribution of this thesis is the dynamic priority communication
scheduling, also the evaluation and analysis section focuses mainly on the
demonstrator sending messages rather than reading messages.

5.1 Hardware and Software Specification

For reasons of transparency and reconstructability of the following evalua-
tion and analysis, we want to outline the hardware and software specification
of the test environment of our V&V system first.

5.1.1 Hardware

As a hardware platform, we used a regular Windows workstation and
installed INtime 4.20 (32-bit) alongside Windows 7 (64-bit). Due to INtime
software licence limitations, our demonstrator system consisted of two cores
only. Consequently, two cores were occupied by the two independent INtime
instances A and B, while all remaining cores were left to Windows. Each
INtime node owns the following hardware:

e CPU: Intel(R) Xeon(R) CPU Es607 @ 2.27 GHz

107

5 Evaluation and Analysis

INtime Kernel Memory: 320 MB

Process Memory Pool: 48 MB

Memory Allocation: Non-paged Windows Pool
Kernel Clock Rate: 50 us

Additionally, the primary core has also access to a Janz-Tec CAN-PCI board*
with two isolated, non-intelligent, low cost CAN controller. The two CAN
2.0 b interfaces with SJA1000 CAN controllers are compatible to ISO/DIS
11898-2. Furthermore, the CAN controllers operate at a maximum bus
clock frequency of 33 MHz. In favour of testing our demonstrator in an
isolated manner, we attached an additional external device to the very
same communications network. This additional device is a Windows 7
(64-bit) Notebook that was connected to the CAN bus via a PEAK-System
PCAN-USB adapter.

5.1.2 Software

On the Notebook, the software PCAN-View was installed for performing
both, listening passively on the CAN bus while capturing the whole traffic,
and also for transmitting self-defined CAN messages onto the CAN bus.

Further software, that we used to analyse the traffic on the CAN bus and
hence verify the performance of our demonstrator, was the open source
application Busmaster developed by a collaboration between Robert Bosch
Engineering and Business Solutions Private Limited and ETAS. Moreover,
we used the software CANalyser by Vector to obtain the highest possible
accurate results.

To analyse the RT kernel CPU utilization of our demonstrator, we used the
Windows-specific Performance Monitor that can be attached to the INtime
kernels. For memory observations the INtime-specific resource monitoring
tool was used.

A custom script came handy when observing the behaviour of our sys-
tem over a long period of time and even over night. The custom script

Thttps://www.janztec.com/produkte/embedded-computing/cancanopen/
can-pcil/

108

https://www.janztec.com/produkte/embedded-computing/cancanopen/can-pcil/
https://www.janztec.com/produkte/embedded-computing/cancanopen/can-pcil/

5.2 Usage of the Demonstrator

took screenshots at pre-defined intervals, so that no manual interaction
was required. Those screenshots were used to trace the operating of the
demonstrator. Moreover, the custom script gave an indication of the number
of sent messages between screen-shots.

The implementation of the rather small-scale scenario is sufficient to demon-
strate the multi-core ability, regardless of how many cores? are available in
total.

5.2 Usage of the Demonstrator

Basically, the demonstrator software consists of two INtime applications,
the ConnectivityManager.rta and the ConnectivityInterface.rta. RTA stands
for Real-Time Application and is the file extension for real-time processes
within the INtime RTOS. The Connectivity Manager application is started
first, since it is responsible for creating and initializing memory and locking
resources. After a successful start-up, the INtime process ConnectivityMan-
ager.rta is listed as running within the process directory of the INtime-
Explorer of the respective INtime node. Additionally, the INtime process
maps itself to a Windows console dialogue to enable keyboard input. In Ta-
ble 5.1 the input parameters, that are gathered by the Connectivity Manager,
can be seen.

After defining the initial parameters, the Connectivity Manager is ready to
be contacted by the Connectivity Interfaces. As already mentioned earlier,
the ID, the Connectivity Manager tracks, is an internal ID and not the CAN
message ID3. Continuing, a Connectivity Interface application is ready to be
lunched either on the same node or on a different one. Regardless on which
node the ConnectivityInterface.rta process is started, a second Windows
console dialogue is opened and the process is listed as running within the
INtime-Explorer of the respective node. Furthermore, also the Connectiv-
ity Interface performs a start-up routine, in which among other things it
searches for a ConnectivityManager.rta process throughout all nodes. In case

?In the following sections the terms core and node can be used interchangeably.
3The CAN message ID is specified in advance outside of our system.

109

5 Evaluation and Analysis

Table 5.1: Input parameters for the Connectivity Manager.

Input Description Type/Unit
First ID Defines the first internal ID that | uint [1..99]
is available to a connection.
VSEG handle Specifies the handle to acquire | RThandle
the total size of the virtual
segment of the INtime node. If
the entered RThandle turns out
to be invalid, the VSEG size can
be specified manually (see next

row).
VSEG size Manual definition of the total MByte
size of the virtual segment.
Shared memory size | Defines the total size of the KByte
shared memory:.
Ring-buffer size | Defines the maximum number uint

of elements (CAN-messages)
the ring-buffer can hold before
overwriting.

of a successful retrieval, the Connectivity Interface is ready for keyboard
input. The input, the Connectivity Interface asks for, can be seen in Table
5.2. In Figure 5.1 the RT I/O Console can be seen with the aforementioned
keyboard inputs. It is also observable that the Connectivity Manager was
started on Node B, since it is listed in the process directory. With focus on
the lower part of the illustration, it can further be seen that the CAN bus
was successfully initialized with 500 kbit/s and that the first connection
was correctly established with ID=1 and memory offset=10, which was both
assigned by the Connectivity Manager. Any further proceeding is done via
keyboard input, for example to start a connection the ID of the connection
needs to be entered. It is also possible to start all connections simultaneously.
The test-run ends automatically, after the specified test duration. Once the
test-run ended, important information, such as possible deadline violations,
delays, remaining messages and if any messages were queued, is displayed
in the console window of the Connectivity Manager.

110

Table 5.2: Input parameters for Connectivity Interface.

5.3 Results

Input

Purpose

Unit

Test duration

Defines the duration of the test
run.

seconds

Bit rate

Specifies the bit rate that should
be used to initialize the CAN
bus).

kbit/s

Additional Time

Defines how much time should
be added to the start of each
period to avoid drifting. This
parameter was mainly used for
debugging.

microseconds

Number of connections

Specifies how many data
streams/connections are being
created within this test run.

uint

Criticality

Defines the criticality of this
data stream.

uint

Data volume

Defines the data volume of this
data stream.

Byte

Cycle-time

Defines the cycle-time of this
data stream.

milliseconds

In Figure 5.2 these important information can be seen. Since no delays
occurred, no further information about deadline violations or message
queuing is shown. It is also noticeable, that the Connectivity Manager was
started on Node A, as it can be seen in the top section of this figure. That
implies, that the communication in this scenario was performed among

multiple cores.

5.3 Results

Based on our major goals, stated in Section 4.3.1, and with reference to
our model definition and requirements 4.2.1, we focused on proofing the
proper functioning of our concept. In this Results section we outline the

111

5 Evaluation and Analysis

[™] NodeB =@ |
=42 0258 Root process RT Object informatioc:
42 0ed0 " Paging Subsystem Job" Object type = 1: Pro

m| »

+-42 0f30 " Shared C Library Job" Current Threads
142 0fa8 RTDSM " DSM Subsystem Process” gDnia“}er proc Ugg.
oo nin g

142 1028 R?GOBSSMGR "Global Objects Manager" Ueed ce
¥ @ 1db8 "C:\Program Files (x86)\INtime\bin\SpinDoctor.rta" Largest free 0
+-42 150 IWIN32 "C:\Program Files (x86)\INtime\bin\iwin32.rta" Exception mode
¥ @ 2090 RTintex "C:\Program Files (x86)\INtime\bin\rtintex.rta" Object directory has
- 42 8ced Connlnf6 "M:\Debug\10-01-2017_clean\Connectivitylnte ConReq

& ConResp

&2 0268 GDT
¢ anan InT

& | RT1/O Console Ox8CEO - NodeB = | &

test duration [s] (Smin -> 388s, 1h -> 3600s):
:Egndwidth [Kbhit/s1:
additional Time [usl:
number of Connections:

criticality @ [1-991:
B?olume B [Byte; 20.40.680 .. 50001:
2:ycletime B [msl:

criticality 1 [1-991:

volume 1 [Byte; 20.40.60 .. 560001:
gycletime 1 [ms]:
:eady=

Test Start: 2017-01-11T14:20:04.2262329
sleepUntilSeconds : 636197415042262329

——— Trying to initialize Bus with CANJ@ and 5008 kbit/s——
Bus CANJ® successfully initialized with handle: @ and bhandwidth 508

ESTABLISHING CONNECTION
Connection sucessfully established (offset: 18, id: 1 cycletime [msl: 4 daf]
ume [Bytel: 20 criticality [1-921: 8 bandwidth [Byte/s1: 3968.75)

——— connection: 1 go?

Figure 5.1: Connectivity Interface on Node B - input parameters and connection establish-
ing.

findings of our demonstrator after being tested on our defined test cases
(see Section 5.3.1) and asserted on maximum CAN utilization, long term
capability, minimum cycle-time, and dynamic priority schedulability.

112

5.3 Results

RTI/O Console 0x4A18 - Node;
- —

-

ESTABLISHING CONNECTION
Bandwidth—check: 3968.75 Byte/s (acceppted) | 58531.3 Byte/s <(remaining)
wvatermark: 1.27e+86

Connection 1 (cycletime [msl: 4, datavolume [Bytel: 28, criticality [1-91: 8> s
uccessfully established with offset 180

ACK sent successful

ESTABLISHING CONNECTION
Bandwidth—check: 3968.75 Byte/s (acceppted) | 54562.5 Byte/s (remaining)
watermark: 1.27e+86

Connection 2 {(cycletime I[msl: 4, datavolume [Bytel: 20, criticality [1-921: 6> s
uccessfully established with offset 30

ACK sent successful

pexx listOf ConnectionSendLists: 2 e
id: 1 delays: @ cyc: 4 volume: 20 criticality: 8 remaining msgs: @
id: 2 delays: @ cyc: 4 volume: 20 criticality: 6 remaining msgs: @

[a— I e - __

Figure 5.2: Connectivity Manager on Node A - important information of test-run.

5.3.1 Test Cases

We defined the following test cases, that each release of our demonstrator
had to pass successfully. To assure the validity of our results we rerun most
of our test cases with varying bit rates, such as 50, 100, 250 and 500 kbit/s.

e The number of sent messages per minute must correspond to our
Excel formula (Section 5.3.1) and CANalyser measurements.

e The total number of sent messages must correspond to our Excel
formula.

e The total number of sent messages of two independent data streams
on the same node must be equal.

e The total number of sent messages of two independent data streams
on different nodes must be equal.

e Up to 12 connections can be processed simultaneously.

e The minimum cycle-time of 4 ms can be assured without causing
delays.

e A Bandwidth utilization of 98% can be reached without causing delays.

e Proper functioning of the dynamic priority scheduling, regardless to
which bit rate the CAN bus was initialized.

e The system is capable of persisting in long term test-runs.

113

5 Evaluation and Analysis

e Connections are allowed to differ in terms of data volume without
compromising the system.

The most influential test cases are outlined and discussed in the upcoming
sections.

Test Duration

With respect to the duration of our test-runs, it is important to note, that
the actual duration is always longer than its pre-defined duration. Even
with different approaches and programmatic functions, the deviation could
not be eliminated. This effect is caused by clock inaccuracies which was
already discussed in Section 4.6.6. At a duration of 300 seconds the deviation
is approximately 1 second. Furthermore, also the CAN bus initialization,
which is initiated by the very first connection, consumes approximately 2
seconds of the test-run duration. Since connections might send up to 2000
messages per second, every additional second might bias the results. Thus,
we considered all that aspects in the upcoming evaluation and analysis of
our demonstrator.

Excel Formula

To verify the results, we compare the values that were measured in practice
to the pre-calculated values. With the help of the software MS Excel we
created formulas to calculate the following:

Accurate bandwidth demand of multiple connections.
Accurate bandwidth demand of additional traffic.
Messages per second.

Nominal count of sent messages.

Formula 3 In consideration of the input parameters cycle-time Ay, data volume V,,,
and an estimation of the size of a CAN message (msgSize), an accurate bandwidth
demand (B) can be determined with the following formula:

111 + stuf f Bits

g (5.1)

msgSize[byte| =

114

5.3 Results

_ Vulbyte] , 1000
Blbyte/s] = —50 * msgSize[byte| * s (5.2)

Formula 5.1 is used to calculate the size of a CAN message, whereas 111
bit4 are assumed as basis of a 8 data byte message with standard ID format.
Since we are certain about the used CAN ID as well as the data being sent,
we can accurately determine the number of stuff bits. According to the
calculation in Section 2.3.4, we estimated 2 stuff bits for all of our test cases.
To receive the message size in byte, the total number of bits is divided by 8§,
with the result of 14.125 byte per message.

The message size (msgSize) is then used in Formula 5.2, to calculate the
accurate bandwidth demand (B). Noteworthy, this calculation is different
from the worst-case bandwidth estimation in Section 4.5.2, since the accurate
message length is used rather than worst-case values. At the first fraction,
the data volume is divided by 20, because the software treats messages as
20 bytes large objects. Meaning that the software splits up the outgoing data
into 20-byte objects, regardless of the actual size or content. Notably, the data
that the connection wants to transfer consists already of completed messages,
including all header information. Therefore, it is necessary that the defined
data volume is a multiple of 20, since any remainder is cropped. After
determination of how many messages the data volume yields, we multiply
that number with the pre-calculated size of a CAN message (14.125 byte).
The second fraction considers the cycle-time, which is always in milliseconds,
and converts the result to a more readable unit of byte per second. To
determine the bandwidth utilization, the bandwidth is put in relation to the
bit rate of the CAN bus. The value of the data volume is naturally capped
by the bit rate of the network and the performed bandwidth-check. This is
further explained by Example 3.

Example 3 In this example the bandwidth utilization of a 250 kbit/s CAN bus is
calculated with the help of Formula 5.2.

22 1
Blbyte/s| = 2—(? * 14.125 x* $= 31075 [bytels]
+According to http://www.esacademy.com/en/library/calculators/

can-best-and-worst-case-calculator.html, a 8 data byte standard CAN message
consists of 111 bit, stuff bits not included.

115

http://www.esacademy.com/en/library/calculators/can-best-and-worst-case-calculator.html
http://www.esacademy.com/en/library/calculators/can-best-and-worst-case-calculator.html

5 Evaluation and Analysis

utilization[%) = Blbyte/s] 100 _ 31075 % 100
7 "Berlbyte/s] 31250

=99.44 [%]

As it can be seen in Example 3, the data volume of a connection with a
cycle-time of 5 milliseconds, is naturally limited to 220 bytes, assuming that
the CAN bus is operating at 250 kbit/s. The value of 31250 bytes per second
is the converted bit rate of 250 kbit/s.

Formula 4 and 5 outline how we calculate the number of messages per second
and the nominal count of sent messages.

Formula 4 In consideration of the input parameters cycle-time Ay, data volume
Vi, and an estimation of the size of a CAN message (msgSize), the number of
messages per second (mps) can be determined with the following formula:

_ Vy[byte] 1000
mPE= T An|ms] (5:3)

Formula 5 To determine the nominal count of sent messages (nc) the number of
messages per second (mps) is multiplied by the number of seconds the test-run lasts
(duration).

nc = mps * duration (5.4)

5.3.2 Dynamic Priority Communication Scheduling

One of the main criteria of our demonstrator was the proper functioning of
the dynamic priority scheduling of data streams. To prove this requirement,
we defined the following test scenario as outlined in Table 5.3. The test
scenario consists of 6 connections (data streams) that are evenly distributed
between the two INtime nodes to simulate a real world test environment.
Each connection has the same data volume> V;, as well as the same cycle-
time A, which leads to the same amount of messages per second and an
accumulated bandwidth load of 84.75% of the CAN bus, assuming that
Bem = Bner = 500 kbit/s. These 6 data streams solely differ in terms of

5The standard 11-bit CAN ID format is used.

116

5.3 Results

Table 5.3: Test Scenario - 6 connections.

ENEAESENEE

INtime Node | A| B|A|B|A | B
Vi [Bytel 500
Ay [ms] 40
Culal6]8]2]7]5
Messages/s 625
Bandwidth [Byte/s] 8828.12
Bandwidth usage [%] 14.12

criticality C,;, which is arbitrarily assigned. A high criticality value represents
a greater importance, such as Connection 3. While the first four rows of
Table 5.3 represent pre-defined settings, the values of the other three rows
can be calculated. Since we precisely know about the data being sent, we
are able to calculate the accurate bandwidth, including protocol overhead
and stuff bits. The overall duration of this test-run was 31 minutes, while
every 60 seconds the number of successfully transmitted CAN messages
was captured by our custom script. For the capturing we used the additional
external CAN hardware® which was attached to the same CAN bus via USB
adapter. The emulation of an additional node on the shared bus was also
achieved by the use of this PCAN-USB hardware. Moreover, with the help of
the CAN bus monitoring tool, PCAN-View, we were able to independently
analyse the CAN traffic via an external device.

In this scenario all connections were started at the same time. For a better
understanding, Figure 5.3 can be divided into seven stages.

Table 5.4: Additional load.

Bandwidth [byte/s] | Bandwidth [%]
single 9500 15.20
double 19000 30.40
triple 28500 45.60

®PCAN-USB by PEAK System.

117

5 Evaluation and Analysis

—&—Connectionl s (onnection? s— Comnection3

- Connectiond —&- (onnection5 ~&- Connectiond

-

i

o

J\T
10 11 12 B %

single

o

triple

double

©

double

6]

-

Connectionb

Sent Messages

L4 & L

Connectiond

¥

Figure

(1) o

(2)

118

18 L]

time

5.3: Graph of the prioritization example. 6 equal connections demand the CAN bus
in the same volume. However, the three least-critical connections are degraded
once the CAN bus is demanded by single, double, and triple additional load.

'-11": Until minute 11, the Connectivity Manager was the only node
using the CAN bus by sending data of the 6 connections. Meaning
that the system was neither overloaded nor delays occurred and thus
a normal operation, in the sense of EDF scheduling, was given.

1-15": At 11’ we started to simulate a bottleneck by generating addi-
tional load on the shared bus via the external PCAN-View monitoring
tool. Consequently, from 11’ until 15" one additional data stream, with
the characteristic of 1 CAN message in the extended 29-bit CAN ID
format every 2 milliseconds, is also using the shared bus. As it can be
seen in Table 5.4 the single additional load demands as much band-
width that the CAN bus utilization rises up to 99.95% (84.75% of
CM + 15.20% of single additional load). This high utilization already
causes delays within our system. Notably, the single additional load
consumes more bandwidth than one of the registered CM connections
(15.20% > 14.12%). As a result, exactly one CM connection, precisely
the connection with the lowest criticality value (Connection 4), is de-

5.3 Results

graded and gets delayed. At the very moment when any connection
violates a deadline for the first time, the scheduler switches from EDF
to best-effort principle as a delay occurred. Consequently, messages of
Connection 4 are not being processed as regularly as those of higher
critical connections, which can be seen in Figure 5.3, where the graph
of Connection 4 is slightly decreasing its slope in comparison to the
other graphs. Therefore, transmission is delayed and messages of
Connection 4 are being queued constantly. However, each connection
queue can only store messages until a certain threshold (see Section
4.6.3) is reached. In such an event, messages are no longer accepted
from this specific connection, leading to data loss.

(3) 15’-18': In this stage, the double amount of additional load was generated,
resulting in a bandwidth demand of 30.40%. Altogether a theoretical
bandwidth utilization of 115.15% is demanded. The consequences
are twofold, on the one side the additional bandwidth demand is
large enough that messages of Connection 4 are not longer sent but
only queued. This queue, however, reaches its threshold at 16’, which
means that new messages from Connection 4 are no longer accepted
and therefore lost. A4 denotes the difference between nominal and
actual count sent messages of Connection 4. On the other side, also
Connection 1, the second lowest critical connection, is being delayed
due to the overloaded system condition.

(4) 18'-20': Stage 4 causes the same effects as stage 3. Tripling the additional
load puts the CM system in such an overloaded condition that three
connections get delayed. Since the triple additional load affects three
CM connections, also Connection 6, in addition to Connection 4 and
Connection 1, is delayed. Moreover, messages of Connection 1 are also
neither sent nor accepted anymore, which leads to further message
loss indicated by A;.

(5) 20'-23": In this stage, the additional load is reduced back to double, so
that only two CM connections are affected. For this reason, Connection
6 recovers from its bandwidth violation, and can catch up on the non-
delayed connections due to the best-effort approach. Afterwards, also
messages of Connection 1 get processed again and new messages are
accepted. Furthermore, it tries to catch up, which can be observed by
the steeper slope. However, the additional load is still too demanding
so that the original slope cannot be restored yet.

119

5 Evaluation and Analysis

(6) 23'-26': Stage 6 aims to reduce the additional load back to single and
enables Connection 1 to catch up with the non-delayed connections.
Since messages of Connection 1 were rejected in stage 4, the gap A
remains. The slope of the graph of Connection 1 can be restored and
also messages of Connection 4 are accepted and processed again.

(7) 26’-31": In this stage, all additional load is removed from the bus and
the CM system is again the only active node. Thus, the entire CAN bus
bandwidth can be used so that the least critical and longest delayed
Connection 4 can catch up. At 29" the delay has been made up and the
scheduler switches from best-effort back to EDF principle. However,
also on this connection, rejected messages cannot be made up so that
A4 and also A remain.

Table 5.5: Test results.
| St [S S| Ssa [S5] Se |

Col 4 [6 8] 2 [7] 5
nominal Loa1
count (nc) 74175
total msg
loss A | 45444 | 0 | 0 1326775 | 0 0
actual 1028731 | nc | nc 00 | nc| nc
count 73 7474
delayed
msgs | 301069 | 381 | 0 1359494 | 0 | 93443
% | 36.96 |003| o | 63.88 | o | 8.69

Considering the values in Table 5.5, it can be clearly seen, that higher critical
data streams are favoured over less critical data streams in the event of
changing bandwidths on the shared communication network. Moreover,
this test scenario demonstrates how our scheduling approach adapts to
overload conditions and seeks for a maximum network utilization to catch
up on delays. It should be noted at this point, that % in Table 5.5 represents
the percentage of messages that were either lost or delayed in respect to the
nominal count.

120

5.3 Results

5.3.3 Maximum CAN Utilization

Another test scenario aimed to find the maximal bandwidth utilization
without overloading the system nor causing delays. A bandwidth utilization
of 98% was reached before any message of the 4 concurrent data streams
was delayed. The accurate value of 98.39% was determined by slightly
increasing the external additional load. The test scenario was as follows:

Table 5.6: Maximum CAN utilization - data stream definition.

ID length | A, Vi o

[bit] [ms] | [byte] mps | byte/s Yo
51
S
si 11 4 60 750 | 10593.75 | 16.95
S4

sum S, 3000 | 42375 67.8
S, 29 1 20 1000 18750 30
total - - - 4000 | 61125 97.8

As it can be seen in Table 5.6, the maximum utilization scenario consists
of 4 connections from the CM system, and one additional data stream (S;)
from the external device. The 4 CM connections (S1 — S4) use the standard
CAN ID format of 11-bit and come with an equal cycle-time (A,) and data
volume (V};). Due to this connection parameters, the values for messages per
second (mps), bandwidth demand (byte/s), and percentage of bandwidth
demand (%) can be calculated. For the bandwidth calculation we used our
customized Excel formula which was already discussed in Section 5.3.1.
This brings us to an intermediate amount of 3000 messages per second and
a bandwidth demand of 67.8%, given that the CAN bus was initialized to a
bit rate of 500 kbit/s. Furthermore, we used additional load (S,) from an
external device to push the CAN bus utilization as high as possible without
overloading the system. The additional data stream uses the extended
CAN ID format of 29-bit and comes with a data volume of 20 byte every
millisecond. This results in 1000 messages per second and a bandwidth
demand of 30%. According to our calculation, a total of 4000 messages per

121

5 Evaluation and Analysis

second and a bandwidth utilization of 97.8% could be reached before any
delays occurred.

CAN Channel: CAN2 ~|BE |2 YE 8 mn

Statistic Cument / Last Min Max Avg

+- Busload [%] 98.39 67.93 98.46 69.90
Min. Send Dist. [ms] 0.000 n/a n/a n/a
Burst Time [ms] 0.754 0.528 2.352 0.7
Bursts ftotal] 174147 n/a n/a n/a
Frames per Burst 3 2 9 3
Std. Data ffr/s] 2999 434 3009 2976
Std. Data ftotal] 9612424 n/a n/a n/a
Bx. Data ffr/s] 1000 0 1001 56
BExt. Data [total] 181551 n/a n/a n/a

Figure 5.4: Maximum CAN utilization.

Our results are quite congruent in comparison to the live measurement that
was captured with the CANalyser software and is outlined in Figure 5.4. The
CANalyser detected a maximum bandwidth utilization (busload) of 98.46%,
which is close to our calculation of 97.8%. Moreover, it measured 3000
messages per second (fr/s) of standard CAN messages and 1000 messages
per second (fr/s) of extended CAN messages. Notably, even the calculated
bandwidth utilization of 67.8% without the additional load corresponds to
the measured minimum busload of the CANalyser (67.93%). This is possible,
due to the fact, that the additional load was engaged when the measurement
was already in progress.

The results of this test case prove the correct timeliness as well as the
proper functioning of our demonstrator. Since the additional load demands
almost the whole bandwidth and the remaining bandwidth capacity is
approximately 1.5%, any skip of a period or lateness of the demonstrator
would result in delays. This test case proves further, that the theoretical
prediction can be assured by the practical measurement.

122

5.3 Results

5.3.4 Long Term

In a different test scenario the long-term stability of the demonstrator was
verified. This long-term test-run consisted of 12 equal connections that con-
stantly used up 67.80% of the 500 kbit/s CAN bus. To simulate also other
nodes on the bus, a minor additional traffic was applied as well. At an
overall bus utilization of 77.08% more than 952 million CAN messages were
successfully transmitted within 88 hours. For the whole time the system
persisted stable without any noteworthy delays. Only two CAN messages
were delayed due to other reasons. This test-run demonstrates the real
world applicability of our system, as in live systems the CAN bus is usually
limited to a utilization of 40% to avoid bottlenecks [Davis et al., 2007].

The resulting output of this test-run can be seen in Figure 5.5a. Particularly,
the two delayed messages, which did not originate from the least critical
connection but from a random one, can be observed. The three top lines
of Figure 5.5a indicate a warning that a delay might occur. This warning is
issued whenever the copying of the new messages onto the send-queue just
finished to close to the respective deadline of this period. In particular, when
the remaining time to the deadline is smaller than 1% of the cycle-time.

ID: 2 X y z
creation-time C: 63618838947 740 634 9
deadline D: 63618838947 740 752 4
ID: 8 X y z
creation-time C: 63618838947 740 635 6
deadline D: 63618838947 740 698 4

In the paragraph above, z indicates the 100 nano seconds significance, vy
labels microseconds, and x represents milliseconds. As it can be seen, the
creation-time of connection ID=2 is very close to its deadline, only 117500
nano seconds away. The same applies to connection ID=8, however the
remaining time is even less. Notably, the creation-time of ID=2 is fairly close
to ID=8, and also the deadline is not far apart. That let us conclude that the

123

5 Evaluation and Analysis

id: 10 close deadline: 1477 D: 636187083824922612 C: 636187083824921135
id: 2 close deadline: 1175 D: 636188389477407524 C: 636188389477406349

id: 8 close deadline: 628 D: 636188389477486984 C: 636188389477406356
id: 1 delays: @ criticality: 9 remaining msgs: @
id: 2 delays: @ criticality: 97 remaining msgs: @
id: 3 delays: @ criticality: 83 remaining msgs: @
id: 4 delays: 2 criticality: 38 remaining msgs: @
id: 5 delays: B criticality: 57 remaining msgs: @
id: 6 delays: @ criticality: ?5 remaining msgs: @
id: 7 delays: @ criticality: 23 remaining msgs: @
id: delays: B criticality: 65 remaining msgs: 0@

8
id: 10 delays: criticality: 34 remaining msgs: @
id: 11 delays: criticality: 83 remaining msgs:
id: 12 delays: criticality: 30 remaining msgs: @
id: 9 delays: criticality: 69 remaining msgs: @

(a) Summary of the test-run.

=X PCAN-View o | =T el

File CAN Edit Transmit View Trace Help

MHSRee ¥ 01l 1O

ISR VYA Ul @@ Trace % PCAN-USB

O CAN.. Type Length Data Cycle Time Count

1 8 090 090 090 090 090 090 090 090 0.2 79385200

2 8 090 090 090 090 090 090 090 090 0.2 79384845

3 8 090 090 090 090 090 090 090 090 0.2 79384475

4 8 090 090 090 090 090 090 090 090 0.2 79383675
o’ 8 090 090 090 090 090 090 090 090 0.2 79383395
=26 8 090 090 090 090 090 090 090 090 0.2 79383065
8 7 8 090 090 090 090 090 090 090 090 01 79583710
Q38 8 090 090 090 090 090 090 090 090 03 79578700
e« 9 8 090 090 090 090 090 090 090 090 03 79577930

10 8 090 090 090 090 090 090 090 090 0.2 79577170

1 8 090 090 090 090 090 090 090 090 0.2 79576290

12 8 090 090 090 090 090 090 090 090 0.2 79575575
O CAN-ID Type Length Data Cycle T... Count Trigger Comment
:E 17x 8 000 000 000 000 000 [(V¥]7 45545884 Time

000 000 000

g 16x 8 000 000 000 000 000 6 53127494 Time
© 000 000 000
I=
& Connected to hardware PCAN-USB OQO Bit rate: 500 kBit/s Status: Ok Overruns: 0 | QXmtFull: 0 i

(b) CAN messages captured by PCAN-View.

Figure 5.5: Results of the long term test-run over 88 hours. 952 million CAN messages were
successfully transmitted.

124

5.3 Results

2 delayed messages are caused by this poorly timed copy process and the
following warning in the I/O console, that also slows down our system.

In the Receive section of Figure 5.5b the 12 connections of the demonstrator
can be seen. Each connection operating at a cycle-time of 20 ms and a data
volume of 100 byte. The number of messages in the Count column is slightly
different due to the fact, that the connections were started sequentially. In
the Transmit section the additional connections with the cycle-time 6 and 7
can be noticed. Notably, the data section is filled with 0’s, resulting in the
maximum amount of stuff bits. Moreover, it can be seen that the CAN bus
was initialized to 500 kbit/s.

5.3.5 Minimum Cycle-Time

With reference to Section 4.3.2, real-time data, such as wheel speed, needs
to be exchanged in very short cycles. Therefore, the minimum cycle-time
of the demonstrator, that does not cause delays, should also be as short
as possible. Through simulations we reached a minimum cycle-time of 4
milliseconds, whereas it depends on the data volume if a delay occurs. If
the amount of data is rather little, such as 20 byte, the Connectivity Manager
is fast enough to process the data before its deadline. However, with a larger
data volume the system consumes more time for copying and converting
the data into messages, so that deadlines might get violated. Further, every
cycle-time smaller than 4 milliseconds is too short, so that the processing
time is greater than the cycle-time. This is not an issue of schedulability but
of worst-case execution time (WCET), which we focus on in the upcoming
Section 5.4.1.

ESTABLISHING CONNECTION
Bandwidth—check: 3968.75 Byte/s (acceppted) | 38758 Byte/s (remaining>
watermark: 3.19686e+086
Connection 2 {(cycletime [msl: 4, datavolume [Bytel: 28, criticality [1-91: 7> s

uccessfully established with offset 150
ACK sent succdssful

pexx 1istOf ConnectionSendLists: 2 e
id: 1 delays: 35 cyc: 4 volume: 1408 criticality: 6 remaining msgs: @
id: 2 delays: @ cyc: 4 volume: 208 criticality: 7 remaining msgs: @

—

Figure 5.6: Two connections with same cycle-time but different data volume.

125

5 Evaluation and Analysis

Figure 5.6 shows the resulting output of the Connectivity Manager after two
connections with the same cycle-time of 4 milliseconds were run successively
for approximately 5 minutes”. Meaning that the second connection with
ID=2, was only started after the first connection with ID=1 ended. Thus, we
assured that the two connections were not influencing each other. Conse-
quently, the criticality of the connections was irrelevant, since there was no
other active connection, that could have been degraded by the scheduler,
anyway. However, the size of the data volume made the difference if the
connection got delayed or not. In this scenario the connection with a data
volume of 140 byte got delayed while the connection with just 20 byte of data
volume remained without any delay. The value 35 indicates the number of
messages that were delayed, meaning that the processing of those messages
did not complete before their deadline. The CAN bus was set to 500 kbit/s
in this scenario.

At a cycle-time of 5 milliseconds we could not find any occurrence of delays
regardless of which data volume was used. We even tested our assumption
with different bit rate configurations of the network. For example with a
set-up of two parallel connections with 5 milliseconds cycle-time and a data
volume of 200 byte, we were not able to detect any delayed message on
the CAN bus, that was initialized to 250 kbit/s. Notably, a connection with
200 Byte every 5 millisecond generates a bandwidth demand of 90.4% of
the prior mentioned bus. Consequently, we are confident to say, that with a
cycle-time of 5 milliseconds, every amount of data can be processed without
delays. Noteworthy, a further raise of the data volume would have been
senseless, since the maximum amount of data is limited by the bit rate of the
bus (see Section 5.3.1). Meaning that a connection with a huge bandwidth
demand would anyway be rejected by the Connectivity Manager due to the
worst case bandwidth estimation.

Furthermore, our demonstrator can also handle connections with a cycle-
time smaller than 4 milliseconds, however it cannot be guaranteed that
messages will not get delayed. For example in Figure 5.7, connections with
1 millisecond cycle-time originating from different nodes were tested.

7The runtime was not exactly 5 minutes long since the connections were started
manually via keyboard input and the first connection additionally had to initialize the bus
(see Section 5.3.1)

126

5.3 Results

id: 2 close deadline: 17 D: 636197391363323776 C: 636197391363323759
id: 2 close deadline: 14 D: 636197391363323776 C: 636197391363323762
id: 2 close deadline: 17 D: 636197391364573824 C: 636197391364573807
id: 2 close deadline: 14 D: 636197391364573824 C: 636197391364573810
id: 2 close deadline: 78 D: 636197391366663808 C: 636197391366663730
id: 2 close deadline: 75 D: 636197391366663888 C: 636197391366663733
id: 2 close deadline: 78 D: 636197391367913856 C: 636197391367913778
id: 2 close deadline: 75 D: 636197391367913856 C: 636197391367913781

peex listOf ConnectionSendLists: 2 seex
id: 1 delays: 4927 cyc: 1 volume: 208 criticality: 6 remaining msgs: @
‘id: 2 delays: 4871 cyc: 1 volume: 20 criticality: 8 remaining msgs: @

Figure 5.7: Two connections with the same cycle-time of 1 millisecond got delayed to the
same extent.

As it can be seen, the connections were run successively, so that the criticality
was again irrelevant for this test scenario. Both connections were delayed
to the same extent, numerically an average of 1.8% of all sent messages
got delayed. In consideration of Table 5.7, the concrete values of the prior

Table 5.7: Comparison of connections from different nodes with a cycle-time of 1 millisec-

ond.
. sent delayed | delayed | nominal | runtime
connection o
messages | messages Yo count [sec]
1 262521 4927 1.87 294000 294
270130 4871 1.80 299000 299

mentioned test scenario can be seen. With special focus to the column
“nominal count”, it is notably that the connections were not able to sent as
many messages as they theoretically should. We calculated the nominal
count with our Excel formula with respect to the runtime of the respective
connection. The slightly different runtime values can be explained so that
Connection 1 was in charge of initializing the CAN bus before any message
could be transmitted. For both test-runs the duration was set to 5 minutes
(300 seconds). Due to the very short cycle-time, the connections were not
able to transmit as many messages as expected within the given time.
However, the rather small average value of 1.8% of delayed messages let us
come to the conclusion, that the connections simply skipped a period when
they were highly delayed. This would also explain the difference, which is
denoted by Ay, between sent messages and nominal count. For Connection 1
the percentage of Ay is 10.71% and for Connection 2 it is 9.66%.

The values outlined above indicate, that the performance of both connections

127

5 Evaluation and Analysis

is alike, regardless on which node the connection was started. Furthermore,
this implies that the inter-core communication was implemented efficiently,
since the Connectivity Manager is always hosted on the other node for one
of the two connections. Obviously this longer communication flow does
not influence the processing of the connections. Further test cases with
cycle-times of 2 and 3 milliseconds show similar results, whereas the A,
decreased the higher the cycle-time was defined.

Concluding, the minimum cycle-time, that does not necessarily cause delays,
is 4 milliseconds. Smaller cycle-times can also be handled, since only a minor
percentage of sent messages is delayed. However, the data loss Aj,ss must
not be neglected.

5.4 Analysis

In the upcoming sections a discussion concerning the herein before men-
tioned worst-case execution time is conducted, followed by an analysis
with regard to CPU and memory usage. Concluding, our demonstrator is
compared to other approaches as well as assessed in terms of real-world
applicability.

5.4.1 Worst-Case Execution Time

Our understanding of the term worst-case execution time (WCET) within this
thesis is, the time between the instant, in which the connection hands over
the message to the Connectivity Interface, and the instant in which the
message is picked from the send-queue of the Connectivity Manager and
forwarded to the CAN driver. Due to thread scheduling of the INtime RT
kerneland mutual exclusion, this time is not solely constant but can result
in a varying execution time. An illustration of this definition is given by
Figure 5.8.

In other words, the WCET is the maximal time a message requires to enter
our system and to end up on the network. For simplification we assume that
only one message is intended to be sent. In Figure 5.8, it can be seen how

128

5.4 Analysis

Driver
| copy InoEifyI copy pick | transmit]|] t>
WCET

Figure 5.8: Composition of the worst-case execution time.

this maximal time is composed. First, the Task initiates the message transfer
by contacting the Connectivity Interface. The Connectivity Interface copies
the message from the buffer of the Task to the shared memory. Afterwards,
the Connectivity Manager is notified and takes over the message by copying
it from the shared memory to the corresponding send-queue. Once the
message approached the send-queue, the processing thread, that has just
been woken up, picks the message from the queue and forwards it to
the driver of the network. Those five activities, which are illustrated as
grey boxes in Figure 5.8, are the main components of the WCET. Each of
these activities can be interrupted due to thread scheduling or locking. As
mentioned above, this scenario considered only one message. However, the
WCET strongly depends on the data volume, since the copy-time increases
with the number of messages that shall be sent.

In the analysis of our demonstrator, we figured out that the worst-case
execution time of our system is approximately 3 milliseconds. Therefore,
as discussed previously, the minimal cycle-time must not be smaller than
4 milliseconds, whereas it also depends on the data volume. Any lower
deviation of the minimal cycle-time implies message delays, because the
copying of the messages takes to long that the adherence of deadlines
cannot be guaranteed. In Figure 5.9 we tested exactly this assumption.
Figure 5.9a pictures the same scenario as already discussed in Section 5.3.5.
Two connections with equal cycle-time but with different data volume.
Both connections have a cycle-time greater than the WCET, however the
data volume of the first connection is too large so that the copying of the
messages takes too long and messages are being delayed. Nevertheless, 35

129

5 Evaluation and Analysis

ESTABLISHING CONNECTION
Bandwidth—check: 3968.75 Byte/s (acceppted) | 38750 Byte/s (remaining>
watermark: 3.196086e+86

Connection 2 (cycletime [msl: 4, datavolume [Bytel: 2@, criticality [1-921: 7> s
uccessfully established with offset 150

ACK sent succédssful

peex listOfConnectionSendLists: 2 »oex
| id: 1 delays: 35 cyc: 4 volume: 140 criticality: 6 remaining msgs: @
id: 2 delays: @ cyc: 4 volume: 208 criticality: ? remaining msgs: @

(a) Two connections with same cycle-time but different data volume.

File CAN Edit Transmit View Trace Help

REE R« XD 01l N O

IEREOTWYRAIEUEOTE 0 Trace % PCAN-USB

O cah.. Type Length Data Cycle Time Count
1 8 090 090 090 090 090 090 090 090 0.2 517608
2 8 076 090 090 090 090 090 090 090 22 74855

(b) Message count via PCAN-View of scenario (a)

ESTABLISHING CONNECTION
Bandwidth—check: 3968.75 Byte/s (acceppted) | 54562.5 Byte/s (remaining)
watermark: 1.27e+06

Connection 2 {cycletime [msl: 4, datavolume [Bytel: 2@, criticality [1-921: 6> s
uccessfully established with offset 30

ACK sent successful

wxx% listOfConnectionSendLists: 2 e
id: 1 delays: @ cyc: 4 volume: 2@ criticality: 8 remaining msgs: @
id: 2 delays: @ cyc: 4 volume: 208 criticality: 6 remaining msgs: @

£

(c) Two connections with same cycle-time and equal data volume.

Figure 5.9: Example of worst-case execution time (WCET).

delayed messages out of 517608 sent messages is still a presentable result
that can be seen in Figure 5.9b. Notably, the ratio between data volume of
Connection 1 and Connection 2 is approximately the same, in particular 7

times, as between sent messages of Connection 1 and Connection 2.

Additionally, the WCET is also in dependency on the effects of drifts and a
poor clock resolution, which is both discussed in 4.6.6. The appearance of

drifts might shorten the actual available time within a period.

130

5.4 Analysis

5.4.2 CPU Usage

While our system was tested on the aforementioned test cases, we focused,
among other things, on the RT kernel CPU usage. With the help of the
Windows specific Performance Monitor, that can be attached to the INtime
RTOS to monitor the RT kernel CPU performance, we were able to record
the CPU utilization in the following situations:

Initialization phase: Creation and initialization of various resources.
Regular operating: Reading and writing messages while the system
is in an non-overloaded state.

Message queuing: Queuing of outgoing messages onto send-queue
due to overloaded system state.

Deinitialization phase: Shut-down of resources.

The initialization phase includes the following activities:

1. Initialization of the AVL ARTE core framework.

2. The CAN driver CANj.rsl is loaded into the address space of the
process.

. The third party real-time library BOOST is loaded.

Own process is registered in the process directory.

5. Ring-bulffer, that is based on the BOOST circular-buffer, is created and

initialized.

6. Creation and initialization of shared memory, semaphore and mailbox.

7. The time server of the ARTE core framework is initialized and tested.

8. Creation of mailbox and processing thread.

+ W

At this point it is important to mention, that the initialization phase as it
is described above, only applies for the Connectivity Manager application,
since it is the main processing component. The Connectivity Interface simply
functions as an interface and is started after the Connectivity Manager.
Thus, all required resources have already been created and initialized, so
that the Connectivity Interface only needs to refer to them. Solely its own
mailbox is created and initialized. Consequently, the initialization phase
of the Connectivity Manager is much more CPU consuming than of the
Connectivity Interface. This effect can be seen in Figure 5.10, that illustrates
a scenario in which both INtime cores were used. The Connectivity Manager

131

5 Evaluation and Analysis

was hosted on node A (blue line), while the Connectivity Interface was started
on node B (red line). The first peak of node A indicates the initialization of the
AVL ARTE core framework. The second peak is caused by the initialization
of the time server and the third peak can be ascribed to the initialization
of the CAN bus via can_j driver. Furthermore, it can be seen that the
initialization phase of the Connectivity Interface on node B (red line) is not
as CPU consuming as the initialization phase of the Connectivity Manager.
This scenario solely focuses on the start-up of the applications, no data
streams were being processed.

0 T T ! T 1 !
10:50:1210:50:55 AM 10:51:05 AM 10:51:15 AM 10:51:25 AM 10:51:35 AM 10:51:... 10:51:52 AM

Color Scale Counter Instance Parent Object
10 RT Kernel CPU usage (%) NodeA === INtime RT Kernel
10 RT Kernel CPU usage (%) NodeB --- INtime RT Kernel

Figure 5.10: Difference of CPU usage of Connectivity Manager on node A (blue line) and
Connectivity Interface on node B (red line) while initialization phase.

Furthermore, in terms of CPU usage the message queuing situation is not
applicable to the Connectivity Interface, since the communication between
Connectivity Interface and Connectivity Manager is asynchronous (see Sec-
tion 4.6.3). Meaning that the Connectivity Interface is unaffected of the
overload-state of the Connectivity Manager. In Figure 5.11 all aforemen-
tioned phases can be observed, except for the initialization phase that was

132

5.4 Analysis

(2]
b @
©
AT ©

L

HHHH‘\HHHHHHHHHHH\HHHHHHHH\ [[T
0!
21008PM 21050PM 21130PM 21210PM 21250PM 21330PM 21410PM 21450PM 21530PM 21610PM 21650PM 217:30PM 21827 PM

Figure 5.11: Different CPU load phases of the Connectivity Manager (blue line) in compari-
son to the Connectivity Interface (red line).

discussed previously. This test-run consisted of 6 equal connections that
were distinguishable only by their criticality. Moreover, these connections
were evenly distributed among two cores. As it can be seen by the steady
CPU consumption, (1) indicates a regular operating phase at a time where
both Connectivity Interfaces, with three actives connections each, were op-
erating. Since node A (blue line) hosted not only the Connectivity Manager
application but also one of the two Connectivity Interface applications, the
RT kernel CPU utilization was at 3% in comparison to 1% of node B (red line)
that only hosted the second Connectivity Interface application. Due to the
generation of additional traffic, the Connectivity Manager was put into an
overload-state with the result that the CPU usage rose to 4%, indicated by
(2). The raise of the CPU utilization can be affiliated to the additional CPU
load that was required to queue all outgoing messages. After approximately
one minute, the test-run of the Connectivity Interface application on node
A (blue line) ended. Therefore, the Connectivity Manager was able to reach
a non-overloaded state again because the queuing of messages was not nec-
essary anymore. Thus, the CPU usage of node A (blue line) decreased and
settled down at 2%, since the Connectivity Interface application on the same
not node was no longer active but the test-run of the second Connectivity
Interface application was still ongoing. This behaviour is indicated by (3)
in Figure 5.11. Finally, also the Connectivity Interface application on node
B ended its test-run, so that the Connectivity Manager had no more con-
nections to process. Consequently, the Connectivity Manager de-initialized
itself and the RT kernel CPU utilization decreased to 1%, which is indicated

133

5 Evaluation and Analysis

by (4). Notably, the RT kernel CPU usage of node B (red line) was once
again not affected by the state changes of node A (blue line).

Concluding, we observed that the RT kernel CPU usage directly depends
on the number of operating connections. The more active connections, the
higher is the regular level of the CPU utilization. Additionally, also the
state of the Connectivity Manager application is crucial to the CPU load.
Meaning that whenever the system is overloaded, more processor resources
are required for queuing outgoing messages, which increases the overall
CPU utilization of the node. In comparison to a plain INtime node, the RT
kernel CPU usage increased from 1% to 8% on the node that hosted the
Connectivity Manager, a Connectivity Interface with 12 connections, the
CAN driver, and a helper process. Especially, at the initialization phase and
in stress-phases where many messages were queued, the CPU usage rose to
8%. However, this minor increase of RT kernel CPU usage can still be seen
as an acceptable result.

5.4.3 Memory Usage

While the demonstrator was conducting various test-runs, we observed the
memory consumption of both, the Connectivity Manager application and
the Connectivity Interface application. With regard to memory consumption,
the virtual segment size (VSEG) is of highest relevance. In the settings of the
INtime RTOS the virtual segment size for user applications can be defined.
For a detailed analysis of the demonstrator while being in the overload-state,
we assigned a large VSEG size of 32 MB. This amount of memory is enough
to queue outgoing messages for several minutes which in return gives us
enough time to observe the behaviour of the demonstrator.

In Figure 5.12, the memory consumption of the Connectivity Manager pro-
cess as well as of the Connectivity Interface process can be seen. At that
moment, the system was in a regular operating state without additional mes-
sage queuing of any of the 5 active connections. In a regular operating mode
(non-overloaded) the Connectivity Manager process consumes 4 MB of the
total virtual segment size of 32 MB. In comparison to that, the Connectivity
Interface process uses only 2620 KB while operating. This supports our

134

5.4 Analysis

Type Name PhysMem VirtTotal VirtUsed VirtLargest
Process Root process 318M 256 M 56 M 194M
Process " Paging Subsystem Job”™ 32K
Process * Shared C Library Job™ 32K
Process RTDSM ™ DSM Subsystem Process”™ 263K
Process R?GOBSSMGR “Global Objects Manager™ 527K 4M 260K 3832K
Process "C:\Program Files (x86)\INtime\Bin\SpinDoctor.rta” 56 K
Process IWIN32 "C:\Program Files (x86)\INtime\bin\jwin3... 192K 4M 4K 4092K
Process RTintex "C:\Program Files (x86)\INtime\pin\rtinte... 301K
Process A2te.CoreSvr "C:\Program Files (x86)\AVL\Cobra... 768 K 32M 2144K 26M
Process ConnMgr "M:\Debug\ConnectivityManager.rta” 1485K 32M 4M 27M
Process ConnInf7 "M:\Debug\ConnectivityInterface.rta” 457K 32M 2620K 27M

Figure 5.12: Detailed memory list of INtime real-time processes running on that node.

claim, stated in 5.4.2, that the Connectivity Interface simply acts as an inter-
face and that most resources are being mapped instead of specially created.
The number of 4 MB of the Connectivity Manager process is appropriate
in consideration that this includes shared memory, ring-buffer, semaphore,
mailbox, threads and also send-queues along with outgoing messages. Once
the system becomes overloaded, the virtual segment size of the Connectivity
Manager process increases drastically since the send-queues are getting
more and more filled with outgoing messages. However, to avoid reaching
the maximum of 32 MB of total VSEG size and a resulting programmatic
stack-overflow, a threshold, called watermark, with a value of 80 % of the
total VSEG size is being used. In Section 4.6.3, the watermark concept was
already discussed in detail. As long as the threshold is exceeded, no new
outgoing messages are being accepted from the Connectivity Manager. Thus,
the total VSEG size cannot be reached in practice, which was also verified
in long-term test-runs.

5.4.4 Comparison to Other Approaches

To the best of our knowledge, no comparable approaches were proven in
practice, so that the performance of our demonstrator cannot be matched.
Unfortunately, the remarkable comparison to the status quo cannot be drawn
since the prior system cannot be easily adapted to our test environment and
results of a live system are not yet available.

135

6 Outlook and Conclusion

Due to upcoming features, such as automatic parking, traffic sign recognition
or advanced driver assistance systems (ADAS), vehicles are becoming in-
creasingly sophisticated. However, with greater sophistication comes greater
complexity of those in-vehicle systems, networks, but also automotive test
systems. To keep up with the complexity of in-vehicle systems, automotive
test systems (V&V systems) need to be enhanced as well.

With our work, a V&V system of AVL was upgraded to a multi-core ar-
chitecture while supporting mixed-criticality data. Due to the increased
complexity of our system, a more flexible approach was required. Our solu-
tion to this problem is a central managing component, called Connectivity
Manager, that is responsible for providing shared resources as well as man-
aging communications among multiple cores of the test system. To handle
mixed-criticality data streams, we designed a dynamic priority scheduler
that was implemented as part of the Connectivity Manager.

In this thesis we presented a dynamic priority communication scheduling
approach that is capable of adapting to bandwidth changes on the shared
CAN bus. Through simulations, we proved the proper functioning of our
algorithm in close to real world scenarios with the result that higher critical
data streams are favoured over less critical data streams. A further scenario
focused on finding the maximum CAN bus utilization without causing
failures. The maximum network utilization of 98.39% could be reached
before any message of the four concurrent data streams was delayed.

Furthermore, we investigated on memory consumption as well as on CPU
usage of our enhanced V&V system. During stress phases, in which mes-
sages of several data streams were queued, the RT kernel CPU usage in-
creased from 1% to 8% in comparison to a plain core. The memory con-

137

6 Outlook and Conclusion

sumption of our Connectivity Manager process was at the peak of 4 MB
during regular operating.

An additional test case yielded for the minimum cycle-time that can be
successfully handled by our system. Through simulations we reached a
minimum cycle-time of 4 milliseconds without violating deadlines. In a long
term test-run we prove the stability of our demonstrator, since our system
persisted functioning throughout 88 hours with a CAN bus utilization
of 67.80%. Via an external device we also applied additional load to the
network, to simulate also other nodes on the bus. As a result, we were able
to demonstrate the real world applicability of our system, as in live systems
the CAN bus is usually limited to a utilization of 40% [Davis et al., 2007].

Eventually, we demonstrated how our system manages overload situations
and seeks for maximum bandwidth utilization of the underlying CAN bus
to catch up on delays. As a principal achievement, our system can be used
to extend the utilization limit of the CAN bus.

One of our major goals for further improvements of the demonstrator is
the support of multiple communication technologies, such as CAN-FD or
Automotive Ethernet. Although the final release of the demonstrator is
designed for the CAN bus and thus for the CAN message format, crucial
design definitions were held as generic as possible. For example the entries
of the ring-buffer can easily be adapted to any other message format. Fur-
thermore, read and write operations are designed to hand over data buffers
that are in the size of byte instead of specific messages. Hence, data blocks
can be converted to any message type. A next demonstrator might be in
possession of multiple network interfaces varying in bit rate and message
type. With respect to bandwidth demands, the Connectivity Manager could
independently decide during runtime which interface to use for which
application.

A turther design consideration that would enhance the demonstrator, is the
distribution of tasks between multiple Connectivity Manager instances. This
concept is called load balancing and is mainly used to uniformly distribute
the load between multiple components so that a single component is never
confronted with a peak load scenario. Moreover, each Connectivity Manager
instance could be in possession of a different set of interfaces, with the result
that each connection could be multiplexed in the best way. However, an

138

additional component would be necessary that takes over the coordination
of the load balancing and the task distribution among the multiple Connec-
tivity Manager instances. Consequently, an additional third component in
the communication flow would also mean that the administrative expenses
increase. On the other side, tasks could be dynamically swapped between
Connectivity Managers.

As a last improvement of our demonstrator, we suggest to file the timestamp
at which the last message of each connection was sent. With the help of this
timestamp, the waiting-time of a connection, in case of a network bottleneck,
could be determined and thus it would be possible to find a fair bus load
distribution among all active connections. This approach would not only
consider the deadline and the criticality of data streams, but also the amount
of time data streams are delayed.

139

Appendix

141

const char *devname,
int flags,
(ConnectionDescriptor cd

Connectivity Interface

I 1: JCAN_OpenExtended %

MailboxMessagelnitializeBus miB; N

mIB type=Bus_init;
mIB.busFlags=flags;
mIB.Nodeld=(short)gethNodeld();
mIB.devName=devname;

2! initializeCANBus

3. SendRtData()

Connectivity Manager
listen on mailbox 0

>

ReceiveRtData(receiveBuffer);
s_buslnit=(MailboxMessagelnitializeBus*receiveBuffer;

listen on mai

4 initializeBus

Helper

Communications Adapter

»

return handle

Acknowledgement sA;
sAtype=init_ack;

SA connectionld=cm-
>getAvailabledBandwidth();

sA value=cm->getBusHandle() handle;
findConnectivityinterface(Nodeld);

7 SendRiData() |

sA=(Acknowledgement*)receiveBuffer,if
(sA->type==init_ack && sA->value >=0)
MailboxMessageRegisterExtended sd;
sd connection=cd;
sd type=Conn_registerExtended;
sd.Modeld=(short)gethodeld();

listen on mailbox

& SendRtData(sd)

listen on mailbox 5

9: SendRtData(sA)

ReceiveRtData(receiveBuffer);
s_connReg=(MailboxMessageRegisterExtended®)
receiveBuffer;

if(BandwidthCheck())

registerConnection()
setConnectionld(cm->getNextFreeld())
Acknowledgement sA;

sA type=connecting_ack;

SA.value=offset,

findConnectivityinterface(Nodeld);

sA=(Acknowledgement*receiveBuffer,
registerSlot(offset)
addActiveConnections

K fetumbandle

switch (type)

case BusType_CAN.

5. JCAN_Open(deviName)

N

if(handle:

return handle

& JCAN_locti()

Perform Initialization B

Figure A.1: Complex sequence diagram of the extended open operation.

143

| Task

| | Connectivityinterface I

fite() |

ConnectivityManager
read

listen on Mailbox D

insigned intfd,
Ivoid *buf,

U,
unsigned int byteCount

Offs

144

ImmWw. i=fd;
ImmW Nodeld=(short)getNodeld();

ImmW creationTime=Arte: TimeLibAP!:Access() GetTime();

|
|
|
|
1) buf tmpSize); |
|
|
|
|

2: SendRtDataf)

s_conn Jrec:

iveBuffer

data=(char*)cm->getSharedMemory() Pointer(offset);
copyConnectionDataToList(id,data,vol,cyc.crit creationTime)

listen on Mailbox 5

<<create>>

3 copyData(

msgsCopied

resumeProcessingThread() 5

|copyBuffer();

[checkWatermark()

[setDeadline;

ConnectionSendList

umeThread()

ConnectivityManager
rocess

[Acknowledgement wh:
[WA flag=wiite_ack;

pickMessage())

<<create>>

WA =s_connectionWite->
[WA value=msgCount

Scheduler

Sipick) _|

[findConnectivityinterface(Nodeld)

6: SendRtData(wA)

ReceiveRtData(receiveBuffer);

return msgCount

listen on Mailbox 5

|

|

|
41651

|

|

|

|

|

B

10: cleanUp()
move msg to RingBuffer 5

<<create>>

Helper

| Communications Adapter

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[switch (busHandle type) {
lcase BusType_CAN:

Figure A.2: Complex sequence diagram of the write operation.

SharedMemory

- mbx

- shdMem

- connectivityMgrProcess RTHANDLE

- connectivityMariMailbox

Connectivitylnterface

- nodeld : short

- slotindex - map<unsignedint,unsignedint less<key=> allocator<pair<key T=>>

- activeConnections : map<unsignedint,ConnectionDescriptor less<key> allocator<pair<key, T>>>
- mbx : Mailbox

- shdMem : SharedMemary

- nameCfProcess : string

- busHandle : BusHandle

- connectivityMarProcess : RTHANDLE

- connectivityMarMailbox : RTHANDLE

<<struct>>
BusHandle

- busHandle

+handle : int

- nameOfProcess I
string

+ Connectivityinterface()

+~Connectivitylnterface()

+cleanp() : void

+ JCAN_Write(fd : unsigned int, data : void*, byteCount : unsigned int) : int

+JCAN_Read(fd : unsigned int, buf : void*, byteCount : unsigned int) : int

+ JCAN_Read(fd : unsigned int, buf : void*, byteCount : unsigned int, filter : MessageFilter) : int
+ JCAN_OpenExtended(devname : char*, flags : int, cd : ConnectionDescriptor) - int

+ JCAN_Open(devname : char*, flags : int) : int

+ JCAN_Close(fd : unsigned int) : int

- getNodeld() : short

- findConnectivityManager() : RTHANDLE

- deregisterProcessinRoot(processname : LPSTR) : BOOL

- registerProcessinRoot(processname | LPSTR) : BOOL

- initializeCANBus(devname : char* flags : int): int

- openCANBus(devname : char*, flags : int, cd : ConnectionDescriptor, extended : signed short) : int
- registerSlot(connid : unsigned int, offset - unsigned int) : void

- concatenateMNodeld(procName : char*): LPSTR

- init{) : void

Figure A.3: Connectivity Interface - detailed class diagram.

145

pkg

- deadine

strtTime
- delay
Scheduler | [i ist | elay Bool t <sstruct>>
I L | — BusHandle
- schedler
<<struct>
RingBufferElement
+fiag int ~busHendie
, <key> allocatorspair<key,T>>>
activeConnections : map omnectiond <key pair<keyT>>>
- shaemoryOffset it
~shdviemorySize - it
~avallabledBandwidth - foat
- ingBufrer remainingBandwicth: foat
RingBuffer | ool

- vinualSegmentSize :int
-nextFreeld: int

- mailoorReadThread : RTHANDLE

- deadineProcessingThread - RTHANDLE
- mbx : Mailbox

- shlViemory - Sharediemory

- scheduler : Scheduler

- ringBuffer - RingBuffer

- busHandle - BusHandle

- deadiineProcessingTfread

- mailbogReadThread

+ ConnectivityManager()

+~ComectivityManager()

+ sellniialValues() - void

+INtARTEResources() void

+testARTETimeSenver() void

+ cleanUp(): void

+ selBandwidth{bandwidth float) void

+ setBusHandle(busHandie : BusHandie) : void

+ recreateMailbox() void

+ getRemainingBandwicth() - float

+ gethvailabledBandwidth() - foat

+ getBusHandle() - BusHandle

+ getRingBufer(): RingBuffer

+ gethbx(): Mailoox

+ getSharedMemry(): SharedMemory

+ getScheduer(): Scheduler

+ getActiveConnections() : map

+ getActiveComnectionsElement(connid unsigned int) : ConnectionDescriptor
+ getiextFreeld() - int

+ getBandwicthinByteS() - float

+ createDeadineProcessingThread() : void

+ createReadMaiboxThread() void

+ resumeDeadineProcessingThread) - void
+processDeadineList() - void

+bandwidthCheck(bandnidth - float) Bool_t

+ findSlotinShdMemory(byteCount - unsigned int) - int

+ findConnectiviyiterface(nodeld ; RTHANDLE) - RTHANDLE
+ registerComnection{connection : ConnectionDescriptor) : int
+ deregisterConnection(connectionid - unsigned in) it

+ getConnectionOffset{comnectionld - unsigned int) - int

+ copyConnectionDataToL ist{connectionld : unsigned int, buf - void", count: unsigned int, cycleTime « int, critcaify: it, creationTime : DateTime_t): int
+writeMisgsToBus(data - void, countBytes : unsigned i) - int
+ moveSentCANmsgToRingBufer(CANmsg : CANMsg_): void
+ readVigsFromBusPuSHToRINgBuffer(size - unsigned nt) - int
+pushCANmsgsOnRingdata - CANmsg_t' count - int) - void

+ pushDataOntoRing(msalD : it lags : int, datalen int, data - void, countBytes - i) it
+printList) void

+printListDelay() : void

146

Figure A.4: Connectivity Manager - detailed class diagram.

Bibliography

[Albert, 2004] Albert, A. (2004). Comparison of event-triggered and time-
triggered concepts with regard to distributed control systems. Embedded
World, pages 235—252.

[Audsley and Burns, 1990] Audsley, N. and Burns, A. (1990). Real-Time
System Scheduling. 2(3092).

[Audsley et al., 1993] Audsley, N., Burns, A., Richardson, M., Tindell, K.,
and Wellings, A. J. (1993). Applying New Scheduling Theory To
Static Priority Preemptive Scheduling. Software Engineering Journal,
(September):284—292.

[Baker, 1990] Baker, T. P. (1990). A Stack-Based Resourse Allocation Policy
for Realtime Process. Real-Time Systems Symposium, pages 191—200.

[Baruah et al., 2010] Baruah, S., Li, H., and Stougie, L. (2010). Towards the
design of certifiable mixed-criticality systems. Real-Time Technology and
Applications - Proceedings, pages 13—22.

[Baruah and Haritsa, 1997] Baruah, S. K. and Haritsa, J. R. (1997). Schedul-
ing for overload in real-time systems. IEEE Transactions on Computers,

46(9):1034-1039.
[Bosch, 1991] Bosch (1991). CAN Specification Version 2.0. page 72.

[Burns et al., 1994] Burns, A., Nicholson, M., Tindell, K., and Zhang, N.
(1994). Allocating And Scheduling Hard Real-Time Tasks On A Point-To-
Point Distributed System. (March).

[Buttazzo and Stankovic, 1993] Buttazzo, G. C. and Stankovig, J. A. (1993).
RED: Robust Earliest Deadline Scheduling. pages 2—7.

[Charette, 2009] Charette, R. N. (2009). This Car Runs on Code.

147

Bibliography

[Davis, 2014] Davis, R. I. (2014). A review of fixed priority and EDF schedul-
ing for hard real-time uniprocessor systems. ACM SIGBED Review, 11(1):8—

19.

[Davis et al., 2007] Davis, R. 1., Burns, A., Bril, R. J., and Lukkien, J. J. (2007).
Controller Area Network (CAN) schedulability analysis: Refuted, revis-
ited and revised. Real-Time Systems, 35(3):239—272.

[Di Natale et al., 2012] Di Natale, M., Zeng, H., Giusto, P., and Ghosal,
A. (2012). Understanding and Using the Controller Area Network
Communication Protocol: Theory and Practice. inst. eecs. berkeley. edu/~
ee249/fao8/Lectures/

[Grujon, 2011] Grujon, C. (2011). Flexible Embedded Systems Architectures
for a Future of Change. pages 12-13.

[Jensen et al., 1985] Jensen, E. D., Locke, C. D., and Tokuda, H. (1985). A
Time-Driven Scheduling Model for Real-Time Operating Systems. 6th
IEEE Real-Time Systems Symposium RTSS" 85, pages 112—122.

[Johansson and Martin, 2005] Johansson, K. H. and Martin, T. (2005). Vehi-
cle Applications of Controller Area Network. Sensors Peterborough NH,

VI:741-765.

[Joseph and Pandya, 1986] Joseph, M. and Pandya, P. (1986). Finding Re-
sponse Times in a Real-Time System.

[Kopetz, 1997] Kopetz, H. (1997). REAL-TIME SYSTEMS, Design Principles
P 997 p 8 p
for Distributed Embedded Applications.

[Koscher, 2014] Koscher, K. (2014). Securing Embedded Systems: Analyses
of Modern Automotive Systems and Enabling Near-Real Time Dynamic
Analysis. Ph.D Dissertation.

[Kraus et al., 2016] Kraus, D., Leitgeb, E., Plank, T., and Loschnigg, M.
(2016). Replacement of the Controller Area Network (CAN) Proto-
col for Future Automotive Bus System Solutions by Substitution via
Optical Networks. pages 1-8.

[Lawrenz, 2013] Lawrenz, W. (2013). CAN System Engineering, volume 53.
Springer-Verlag London.

148

Bibliography

[Leen and Heffernan, 2002] Leen, G. and Heffernan, D. (2002). Expanding
automotive electronic systems. Computer, 35(1):88-93.

[Leen et al., 1999] Leen, G., Heffernan, D., and Dunne, A. (1999). Digital
networks in the automotive vehicle. Growth (Lakeland), 10(6):257 — 266.

[Lehoczky, 1990] Lehoczky, J. P. (1990). Fixed priority scheduling of periodic
task sets with arbitrary deadlines.

[Lehoczky and Sha, 1986] Lehoczky, J. P. and Sha, L. (1986). Performance
of Real-time Bus Scheduling Algorithms.

[Li and Yao, 2003] Li, Q. and Yao, C. (2003). Real-Time Concepts for Embedded
Systems.

[Liu and Layland, 1973] Liu, C. L. and Layland,]J. W. (1973). Scheduling
Algorithms for Multiprogramming in a Hard-Real-Time Environment.

[Locke, 1986] Locke, D. (1986). Best-Effort in Decision Making For Real-
Time Scheduling.

[Main, 2010] Main, C. (2010). Virtualization on multicore for industrial
real-time operating systems. IEEE Industrial Electronics Magazine, 4(3):4—6.

[Mayer, 2006] Mayer, E. (2006). Serial Bus Systems in the Automobile. Vector
Informatik GmbH, pages 1-6.

[Meschi et al., 1996a] Meschi, A., Di Natale, M., and Spuri, M. (1996a). Ear-
liest Deadline Message Scheduling with Limited Priority Inversion 1
Introduction Earliest Deadline Approach in Network Scheduling. pages

87-94.
[Meschi et al., 1996b] Meschi, A., Di Natale, M., and Spuri, M. (1996b).
Priority inversion at the network adapter when scheduling messages

with earliest deadline techniques. Proceedings - Euromicro Conference on
Real-Time Systems, pages 243—248.

[Mischo et al., 2015] Mischo, S., Jorn Stuphorn, Rainer Constapel, P. H.,
Alexander Leonhardi, Heiko Holtkamp, N. L., and Ochel, S. P. (2015).
Bus systems.

149

Bibliography

[Mishra and Gurumurthy, 2014] Mishra, G. and Gurumurthy, K. (2014). Dy-
namic Task Scheduling on Multicore Automotive ECUs. International
Journal of VLSI design & Communication Systems (VLSICS), 5(6):2—9.

[Mohammadi and AKkl, 2005] Mohammadi, A. and Akl, S. G. (2005).
Scheduling Algorithms for Real-Time Systems.

[Nager et al., 2017] Nager, M., Baunach, M., Priller, P, and Wurzinger, J.
(2017). Real-Time Multiplexing of Mixed-Criticality Data Streams for
Automotive Multi-Core Test Systems. Number Icc, pages 220—227.

[Natale and Meschi, 2001] Natale, M. D. I. and Meschi, A. (2001). Schedul-
ing Messages with Earliest Deadline Techniques. (1993):255-285.

[Navet and Simonot-Lion, 2008] Navet, N. and Simonot-Lion, F. (2008). A
Review of Embedded Automotive Protocols. Automotive Embedded Systems
Handbook, Industrial Information Technology Series, pages 1—42.

[Navet and Simonot-Lion, 2013] Navet, N. and Simonot-Lion, F. (2013). In-
vehicle communication networks-a historical perspective and review.
Industrial Communication Technology Handbook, Second Edition, 96(June
2005):1204-1223.

[Navet et al., 2005] Navet, N., Song, Y., Simonot-Lion, F., and Wilwert, C.
(2005). Trends in automotive communication systems. Proceedings of the
IEEE, 93(6):1204—1222.

[Risat, 2010] Risat, M. P. (2010). Scheduling Algorithms For Fault-Tolerant
Real-Time Systems. Online, 6(3):93—100.

[Saez et al., 1999] Saez, S., Vila, J., and Crespo, A. (1999). Soft aperiodic task
scheduling on hard real-time multiprocessor systems. Proceedings Sixth
International Conference on Real-Time Computing Systems and Applications.
RTCSA’99 (Cat. No.PRoo306), pages 424—427.

[Sha et al., 2004] Sha, L., Abdelzaher, T., Arzén, K. E., Cervin, A., Baker, T.,
Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., and Mok, A. K. (2004).
Real time scheduling theory: A historical perspective. Real-Time Systems,
28(2-3 SPEC. ISS.):101-155.

150

Bibliography

[Shin and Ramanathan, 1994] Shin, K. G. and Ramanathan, P. (1994). Real-
Time Computing: A New Discipline of Computer Science and Engineer-
ing. Proceedings of the IEEE, 82(1):6—24.

[Sprunt, 1990] Sprunt, B. (1990). Aperiodic Task Scheduling for Real-Time
Systems. Department of Electrical and Computer Engineering, Doctor in:210.

[Spuri and Buttazzo, 1994] Spuri, M. and Buttazzo, G. C. (1994). Efficient
aperiodic service under earliest deadline scheduling. Proceedings - Real-
Time Systems Symposium, pages 2—11.

[TenAsys, 2007] TenAsys (2007). INtime Real-Time Operating System
Helps.

[TenAsys, 2009] TenAsys (2009). INtime ®) 4.0 Software 31001-6.

[Tindell et al., 1995] Tindell, K., Burns, A., and Wellings, A. (1995). Analysis
of Hard Real-Time Communications. pages 1—26.

[Tindell and Hansson, 1994] Tindell, K. W. and Hansson, H. (1994).
Analysing Real-Time Communications : Controller Area Network (CAN
) *. (06).

[Tindell et al., 1994] Tindell, K. W., Hansson, H., and Wellings, A. J. (1994).
Analysing real-time communications: Controller area network (CAN).
Proceedings - Real-Time Systems Symposium, (06):259—263.

[Tuohy et al., 2015] Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi,
M., and Kilmartin, L. (2015). Intra-Vehicle Networks: A Review. [EEE
Transactions on Intelligent Transportation Systems, 16(2):534-545.

[Zuberi and Shin, 1995] Zuberi, K. and Shin, K. (1995). Non-preemptive
scheduling of messages on controller area network for real-time control
applications. Real-Time Technology and Applications, pages 240—249.

151

