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Abstract

Systems that extract information from natural language texts usually need
to consider language-dependent aspects like vocabulary and grammar.
Compared to the development of individual systems for different languages,
development of multilingual information extraction (IE) systems has the
potential to reduce cost and effort. One path towards IE from different
languages is to port an IE system from one language to another. PropsDE
is an open IE (OIE) system that has been ported from the English system
PropS to the German language. There are only few OIE methods for German
available. Our goal is to develop a neural network that mimics the rules of an
existing rule-based OIE system. For that, we need to learn about OIE from
German text. By performing an analysis and a comparison of the rule-based
systems PropS and PropsDE, we can observe a step towards multilinguality,
and we learn about German OIE. Then we present a deep-learning based
OIE system for German, which mimics the behaviour of PropsDE. The
precision in directly imitating PropsDE is 28.1%. Our model produces many
extractions that appear promising, but are not fully correct.
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1 Introduction

Structured information is information that is stored in a database and
ready for immediate computational processing. Semi-structured informa-
tion means that, as the name suggests, there is a partial structure to this
information, for example lists or HTML tags. Fully unstructured informa-
tion, on the other hand, is information without any structure. Unstructured
information can, for example, be in form of images, audio data, or natural
language text.

To a certain extent, information is available in structured form. For example
the World Factbook1, contains structured information. DBPedia2 is an effort
to present the contents of Wikipedia3 in a structured database. Wikipedia it-
self also contains some structured information within the information boxes.
A lot of information is, however, only available in semi-structured or un-
structured form. To gain structured information from semi- or unstructured
information, Information Extraction (IE) methods can be applied.

Information and results in publications from scientific research would be
one example of valuable information presented in natural language text.
As there are roughly 2.5 million scientific papers published each year4,
it is impossible for a human to read and apply all the potentially useful
information. With IE methods, we can feed the knowledge bases of expert
systems with the information from unstructured sources.

Expert systems might then be able to assist humans by finding appropriate
information and resources. An example for an early medical expert system
is MYCIN (Buchanan and Shortliffe, 1984). This system can assist doctors in

1https://www.cia.gov/library/publications/the-world-factbook/ (11.11.2017)
2http://wiki.dbpedia.org/ (11.11.2017)
3https://www.wikipedia.org (11.11.2017)
4http://www.stm-assoc.org/2015_02_20_STM_Report_2015.pdf (11.11.2017)

1
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1 Introduction

identifying bacteria that infect patients, and it can provide suggestions for
antibiotics to apply for treatment. In a similar way, expert systems can be
designed and established for different fields.

In order to automatically extract information from natural language text,
the language itself needs to be taken into account. Language features, such
as the vocabulary and various aspects of grammar, commonly are only
valid for a single language. Therefore, IE methods usually are developed
for specific languages.

1.1 Motivation

The fact that IE methods focus on specific languages is a sign of language
dependence. We want to learn about possibilities for language indepen-
dence in IE methods. With language independence, the results of further
development in IE tasks and methods within one language can be adopted
to other languages more easily than without language independence. This
is an important type of scalability (Bender, 2011).

Language independence can reduce cost and effort for the development
of IE methods for separate languages. With a certain level of language
independence, adapting an IE method to a new language is easier than
developing a new IE method from scratch. Technologies and products that
rely on IE also benefit from this advantage. The effort to port products to
new languages, for example with only few speakers, is lower, thus, it is
more likely that products are deployed in new languages.

We focus on Open Information Extraction (OIE). In contrast to fixed schema
IE, OIE extracts any piece of information available in natural language text.
With OIE, general and domain-independent IE can be performed. This is an
advantage in use cases which have no facts of interest specified.

One possible first step towards language independence is the translation
of a method from one language to another. PropsDE (Falke et al., 2016) is
a German port of the English OIE system PropS (Stanovsky et al., 2016).
Currently there are only a few OIE methods for the German language. We

2



1 Introduction

decided to develop a neural network for OIE from German text, that mimics
the ruleset of the existing OIE System PropsDE.

1.2 Goal

In this master’s thesis, we are interested in information extraction methods
for multiple languages. In this context, we look into language independence
and multilingual methods (see Section 2.1), and we focus on OIE (see
Section 2.3). Alongside multiple languages, we take a special interest in our
mother tongue, the German language.

As the two German OIE systems PropsDE and GerIE (Bassa, 2016) are
rule-based, we want to approach this task differently: We develop a learning
based method. For that, we first need to understand how PropsDE extracts
information from German text. We analyze the rules of PropS and PropsDE,
and their differences (see Chapter 3). This way, we can learn about OIE from
German text, and we can observe a step towards language independence.

Then we develop a neural network for OIE from German text (see Chapter 4),
which imitates the ruleset of the existing OIE System PropsDE. Thus, we
can apply PropsDE to generate a reasonable amount of training data. The
result of our development is a bidirectional sequence-to-sequence model
(see Section 4.3) with gated recurrent units (see Section 4.2). The code can
be found on GitHub1.

We evaluate the neural network in Chapter 5. The evaluation shows that our
neural network achieves a word precision of 28.1 % compared to PropsDE.
Then we discuss the analysis of PropS and PropsDE, and the results of the
evaluation of our neural network (Chapter 6).

1https://github.com/danielanthofer/nnoiegt (13.11.2017)
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2 Background

Before we can create an Information Extraction (IE) system for German text,
we need to gain a general understanding of IE and the methods involved.
In this chapter we learn about IE.

The investigations for this master’s thesis led us to the impression, that the
English language is the target of a large portion of IE systems. Since we
focus on the German language in our practical part, we are interested in how
different languages are represented in the field. In this context, we decided
to take special interest in IE systems which support multiple languages.
Thus, in Section 2.1, we cover language independence in IE. We look at the
general idea of language-independent IE and at different types.

As we want to focus on Open Information Extraction (OIE), we cover
OIE in more detail. From our perspective, we divide IE methods into two
major types: OIE and IE with predefined schemata. In Section 2.2, we get
to know different types of predefined schema IE. Finally, we learn about
OIE in Section 2.3. We dissect the general OIE process into two parts, the
preprocessing step (Section 2.3.1) and the extraction step (Section 2.3.2).
Within these steps, we consider available types and methods.

2.1 Language Agnostic Information Extraction

As already stated in the motivation of this master’s thesis (Section 1.1),
one goal of IE research is to become language agnostic. De Wilde, 2016,
categorizes language agnostic IE into three different degrees:

1. Multilingual IE is applicable to multiple languages. Multilingual IE
methods, such as the multilingual OIE method from Gamallo and

4



2 Background

Garcia, 2015, extract information from sources of a specific set of lan-
guages. The extraction is not translated and stays within its language
of origin.

2. Cross-lingual IE, on the other hand, does not only support the extraction
of information from sources of a set of languages, but it also supports
machine-translation into another supported language. Cross-lingual
IE methods, such as the ontology-based IE method from Falaise et al.,
2010, can resort to an interlingua.

3. Truly language agnostic IE methods ideally are not limited to a specific
set of languages. Instead, they support any human language, and they
perform equally well on any language.

2.1.1 Multilingual Information Extraction

Multilingual IE is the first step towards truly language agnostic IE, and
Multilingual IE publications contain an interesting subset: publications,
which port an existing method from its original language (usually English)
to a different language. This appears to be a down-to-earth, and therefore
promising, approach towards general multilinguality.

One example for this is PropsDE (Falke et al., 2016). It is a port of the OIE
method PropS (Stanovsky et al., 2016) from English to German. This method
is, however, not actually multilingual, as the ported variant, PropsDE, does
not support the original language, English, any more. These two methods
are subject to the analysis part of this thesis, and we describe them in more
detail in the analysis chapter (Chapter 3).

Another example is Verga et al., 2015. They do not port an OIE system, but
they propose a method which transfers an open information extractor to a
new language.

A different approach is taken by Faruqui and Kumar, 2015. The goal of
their method is to take a sentence from any language and return a relation
tuple in that language. To achieve that, their method uses Google Trans-
late1 to translate a sentence into English. Then the open IE system OLLIE

1https://cloud.google.com/translate/ (11.11.2017)
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2 Background

(Mausam et al., 2012) is applied on the English sentence to extract English
relation tuples. Each tuple is then translated into the source language using
cross-lingual projection (cross-lingual projection is a method for machine
translation and not to be mixed up with cross-lingual IE). Therefore, the
method supports any language that is supported by Google Translate.

2.1.2 Cross-lingual Information Extraction

Embley et al., 2014 (and Embley et al., 2011) propose a cross-language
IE method. Their method is not capable of OIE, but instead it is based on
predefined ontologies for specific domains. It supports different localizations
with, for example, different languages or different measuring units. An
existing setup of the system can be extended with additional languages.
It is not limited to a specific set or number of languages, but for each
language an extractor and a mapping is required. This mapping maps to
a language-agnostic ontology. The language-agnostic ontology is the basic
idea of this method. It describes the concepts and facts of the domain.
The extraction itself only populates the localized ontology. Afterwards,
queries are processed in a cross-lingual manner through the mapping to the
language-agnostic ontology.

A cross-lingual OIE system is proposed by Zhang, Duh, and Van Durme,
2017. Their neural-network-based method directly maps a sentence from
the source language into a predicate-argument structure in the target lan-
guage. During this process, the neural network implicitly learns translations.
Zhang, Duh, and Van Durme, 2017, ran experiments with their method on
Chinese as source language and English as target language. We take a more
detailed look at the method’s architecture in the section about training-based
extraction in OIE systems (Section 2.3.2).

2.1.3 Truly Language Agnostic Information Extraction

In order to be truly language agnostic, a method either has to consider
language features of every existing language, or not rely on language
features at all. This is not only valid for the source but also for the extraction.

6



2 Background

Truly language agnostic IE methods not only have to be able to extract from
any language, but they also must be able to present the extraction in any
language.

There are methods that do not rely on features of languages. Instead, they
take different aspects of texts into account.

The goal of Mirończuk et al., 2013, is to extract named entities of predefined
classes from semi-structured (XML or HTML) documents. In their method,
they use an initial seed of named entities of the desired class to find patterns
for additional entities. After applying these patterns, the new entities are
added to the seed, and again patterns are generated. This process is applied
iteratively. The patterns themselves are generated from characters that
surround seed words within the documents. If two seed words appear
in each other’s neighbourhood, then a regular expression is constructed
from the XML or HTML code in between. These regular expressions form
the patterns which are applied to find further named entities. Since these
patterns are constructed from XML or HTML code, this method relies on
the document structure, but it does not require language-specific features.

Heist and Paulheim, 2016, focus on Wikipedia1 abstracts in their publication.
They trained classifiers to extract a predefined piece of information from
Wikipedia abstracts of different languages. As exemplary information, they
extracted the genre of music bands. A Random Forest classifier yielded
the best results. They expect this information to be at similar locations
within abstracts of different bands in different languages. Therefore, in their
publication, instead of language features, the structure of the Wikipedia
abstracts is most relevant to the extraction.

Even though the two methods presented here perform equally well on any
language, they do not transfer this information between languages. Thus,
they do not include the cross-lingual property. Because we consider that
each degree of language agnostic IE includes its predecessor, the cross-
lingual property is a requirement for truly language agnostic IE. From
this perspective, the presented methods are not truly language agnostic.
Instead, they are similar to multilingual methods, but they are not limited

1https://www.wikipedia.org/ (11.11.2017)
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to a specific set of languages. They are language-independent and possibly
omnilingual, but not truly language agnostic.

A truly language agnostic IE method must be able to extract information
from any language, and it must be able to represent each extraction in any
language. Such a method does not exist.

2.2 Predefined Schema Extraction

In this thesis, we focus on OIE, but in this background chapter, we also con-
sider other types of IE for completeness. Extracting fixed schema relations is
especially interesting for data-rich and narrow-scope domains (Embley et al.,
2014). IE with predefined schemata can be split into four types (Piskorski
and Yangarber, 2013):

• Named entity recognition identifies and classifies named entities, such
as organizations, persons, locations, numerical expressions, etc.
• Co-reference resolution is the task of identifying multiple mentions of

the same entity in the text. It includes resolving whether an entity is
referred to by different names and abbreviations.
• Relationship extraction detects relationships between entities in the text,

with predefined entities and/or relations.
• Event extraction identifies events and information about them, like, for

example, when, where, why, and with whom an event takes place.

Facts retrieved by IE methods are presented in a structured form. How
each representation is organized largely depends on the method. In general,
these structured representations consist of entities and relationships. In
predefined schema extraction, several methods define the schema as an
ontology. An ontology is an abstract representation of a domain. It defines
relations between concepts, which are interesting for that specific domain.

In an early work, Andersen et al., 1992, propose a system called Jasper, which
extracts fixed schema relations from press releases of organizations. They use
a pattern matcher to populate predefined extraction frames with the specific
goal to collect financial news. A part of their extraction representation looks
like this:

8
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{{ EARNINGS

net-income-group: <net-income-group-object>

current-quarter-net: <net-income-object>

prior-quarter-net <net-income-object>

current-ytd-net: <net-income-object>

...

prior-ytd-net: <net-income-object>

...

}}

Embley et al., 2014, and Suchanek, Sozio, and Weikum, 2009, propose meth-
ods to populate predefined ontologies. These two publications focus on dif-
ferent aspects of IE: Embley et al., 2014, present a system for cross-language
IE, whereas Suchanek, Sozio, and Weikum, 2009, focus on checking the
plausibility of hypotheses and avoiding inconsistencies within the ontology.
Nevertheless, these two methods have in common that the user defines
an ontology, which can then be populated. Figure 2.1 shows how such an
ontology might look like.

9
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Figure 2.1: Example ontology with biographical information (Embley et al., 2014).

A subtype of relationship extraction is relation classification. The schema is
simpler than an ontology, and there are many publications that focus on
this task. The predefinition consists of a set of entities and a set of relations.
The goal of the classifier is to identify a predefined relation between pairs
of predefined entities from a given sentence. Example publications for this
type of IE are Zhang and Wang, 2015, Xu et al., 2015, Zeng et al., 2015,
Liu et al., 2015, and Xiao and Liu, 2016. All of these examples use neural
networks.

2.3 Open Information Extraction Methods

OIE aims to find structured information independent from domains or any
predefinitions. Instead of being predefined, relations and arguments are
extracted from the unstructured text.

10



2 Background

Many OIE methods, such as TextRunner (Banko et al., 2007) and PropS
(Stanovsky et al., 2016), extract relations tuples. That means, the extraction
is of the form relation(first entity, second entity) (Stanovsky et al., 2016), some-
times also displayed as information triple (argument1, relation, argument2)
(Zhila and Gelbukh, 2014).

Example 1. From the sentence Amazon, the retail giant, sells products, PropS ex-
tracts the facts sell(Amazon, products) and sell(retail giant, products) (Stanovsky
et al., 2016).

Additionally, some OIE methods, for example ArgOE (Gamallo and Garcia,
2015) and ClausIE (Del Corro and Gemulla, 2013), extract facts, which
consist of binary relations with additional information like time, location or
other circumstances.

Example 2. From the sentence In 1921, Albert Einstein has won the Nobel Prize,
ClausIE extracts the fact (Albert Einstein, has won, the Nobel Prize, in 1921)
(Del Corro and Gemulla, 2013).

In this section we want to learn, how OIE methods work. Therefore, we take
a look at the different steps that are necessary to get an extraction from an
input sentence. In this context we especially care about multilinguality and
how it is achieved.

Even though the different OIE methods differ in many details, there are
processing steps and general concepts, which OIE methods have in common.
As it is usually not possible to extract a fact directly from a sentence, OIE
methods employ some kind of preprocessing. In this section, we have
divided the process of OIE in two steps: the preprocessing step, and the
extraction step.

There are two widespread types of preprocessing for OIE: Part-of-speech
(POS) tagging and dependency parsing. Usually OIE methods use one of
these two. There are other means for preprocessing available, and we look
at a few other preprocessing methods briefly, but we focus on POS tagging
and dependency parsing. We cover preprocessing steps in Section 2.3.1.

In contrast to the preprocessing, which is usually performed by external
tools, the extraction step is the distinctive component of OIE systems. This

11



2 Background

Reference Name POS DP RB TB Language
Banko et al., 2007 TextRunner X – – X English
Akbik and Bross, 2009 Wanderlust – – – X English
Wu and Weld, 2010 WOEpos X – – X English
Wu and Weld, 2010 WOEparse – X – X English
Fader, Soderland, and Et-
zioni, 2011

ReVerb X – X – English

Mausam et al., 2012 OLLIE X X – X English
Bast and Haussmann, 2013 CSD-IE – – X – English
Del Corro and Gemulla,
2013

ClausIE – X X – English

Zhila and Gelbukh, 2014 ExtrHech X – X – Spanish
Wang, Li, and Huang, 2014 SCOERE X X – X Chinese
Faruqui and Kumar, 2015 – – X – X multilingual
Gamallo and Garcia, 2015 ArgOE – X X – multilingual
Verga et al., 2015 – – – – X multilingual
Stanovsky et al., 2016 PropS X X X – English
Falke et al., 2016 PropsDE X X X – German
Bassa, 2016 GerIE X X X – German
Zhang, Duh, and Van
Durme, 2017

– – X – X multilingual

Table 2.1: A selection of Open Information Extraction methods. The table shows for each
method whether it uses Part-of-speech (POS) tagging or dependency parsing
(DP) for preprocessing, and the type of extraction method: rule-based (RB) or
training-based (TB).

step can be categorized into two types: rule-based extraction and training-
based extraction. These extraction methods take the result from the pre-
processing, e.g. POS tags, as input, and deliver a fact. We continue with
extraction steps in detail in Section 2.3.2.

Table 2.1 shows a selection of OIE methods.

12



2 Background

2.3.1 Preprocessing

Part-of-speech Tagging

POS tagging is the process of assigning a tag to each word in a sentence. This
tag represents the grammatical function of that word within the sentence.

Each language has its own grammar and, therefore, its own POS tags. In
English, for example, the Penn Treebank POS tags1 are commonly used, and
for the German language there is the STTS tag set2. For simplicity reasons,
and because we are interested in IE from multiple languages, we look at
universal POS tags, which aim to cover multiple languages. Petrov, Das,
and McDonald, 2011, propose such a universal tag set for many languages,
and also a mapping from various languages towards this universal tag set.
The example in Table 2.2 shows how tags of a sentence can look like.

Sentence Universal Tag English Tag Description
The DET DT determiner
oboist NOUN NN noun, singular
Heinz NOUN NNP proper noun, singular
Holliger NOUN NNP
has VERB VBZ verb, present, 3rd person singular
taken VERB VBN verb, past participle
a DET DT
hard ADJ JJ adjective
line NOUN NN
about ADP IN preposition
the DET DT
problems NOUN NNS noun, plural

Table 2.2: An example for part-of-speech tags of the sentence The oboist Heinz Holliger has
taken a hard line about the problems (Petrov, Das, and McDonald, 2011).

1English POS tags: https://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html (11.11.2017)
2German POS tags: http://www.ims.uni-stuttgart.de/forschung/ressourcen/

lexika/TagSets/stts-table.html (11.11.2017)
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There are several tools available, which support POS tagging. Since we are
mainly interested in the multilingual use case, Table 2.3 shows a selection
of taggers which support multiple languages. Two of these taggers are espe-
cially interesting in the multilingual context: Morfette and the unsupervised
POS tagging with bilingual graph-based projection.

Name Languages Reference
Mate Tools English, German, Chinese,

French, Spanish
Bohnet and Nivre, 2012

Morfette Romanian, Spanish, Polish Chrupala, Dinu, and Gen-
abith, 2008

Stanford POS Tagger English, German, French,
Spanish, Chinese, Arabic

Toutanova et al., 2003

TreeTagger English, German, French,
Spanish, Chinese, Czech,
Polish, Romanian, and
many others

Schmid, 1995

Unsupervised POS Tagging
with Bilingual Graph-based
Projections

English, German, Spanish,
Swedish, and many others

Das and Petrov, 2011

DepPattern English, Spanish, Galician,
French, Portuguese

Gamallo and González,
2012

Table 2.3: Selection of Part-of-speech taggers which support multiple languages. The lan-
guages column contains a subset of the tested languages.

Morfette (Chrupala, Dinu, and Genabith, 2008) is able to do POS tagging
in any language after training with annotated datasets. Therefore, this
tool might be interesting for OIE methods which should support multiple
languages. If, however, there is no annotated dataset available yet for a
language of interest, then this dataset has to be created before Morfette can
be trained. This is usually done manually. Manually annotating sentences
with POS tags takes a large effort.

Das and Petrov, 2011, address this issue with unsupervised POS tagging
with bilingual graph-based projection. In their approach, text from a target
language is translated into a resource-rich language (like English). The
translation gets tagged, and then the POS tags of the translation are projected
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onto the original text in the target language. With these tags, a new POS
tagger for the target language is trained. In order to avoid being language
specific, Das and Petrov, 2011, use the universal POS tagset from Petrov,
Das, and McDonald, 2011.

OIE methods that use POS tags in their preprocessing step are displayed in
Table 2.1.

Dependency Parsing

Dependency parsing builds a dependency tree of a sentence. In contrast
to POS tags, which represent the grammatical role of a word within a
sentence, dependency parses display the relationships between words and
expressions.

There are several different formats for storing dependency parses. One
example is the CoNLL-X 2006 format (Buchholz and Marsi, 2006). In this
format, each token (usually a single word) has its own row within a table.
This row contains, among other data, the id of the token and the id of its
parent in the dependency tree. The dependency parser DepPattern (Gamallo
and González, 2012) uses this format, and the dependency parser from Mate
Tools (Bohnet and Nivre, 2012) supports a 2009 variant of the CoNLL format.
The Stanford dependency parser (Chen and Manning, 2014) has its own
format

The Stanford dependency parser also supports, apart from language specific
dependencies, Universal Dependencies (Nivre et al., 2016). Similar to POS
tags, the types of dependencies within sentences vary between different
languages. Therefore, Nivre et al., 2016, propose Universal Dependencies
(UD). The goal of UD is to facilitate consistent annotation of dependencies
across languages. Since this complies with our interest in multilingual IE,
we use UD as an example of how dependency parses may look like.

As already mentioned, the Stanford dependency parser is capable of issuing
UD. For an example of how a dependency parse can look like, we parse the
sentence Who’s the funky-looking donkey over there? (Lee et al., 2013) with the
Stanford dependency parser. Each word of the sentence becomes a node in
the dependency tree, and each node receives a node ID. Edges are displayed
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with an edge label, a start node, and an end node. The following listing
shows the direct the output of the parser:

root(ROOT-0, Who-1)

cop(Who-1, ’s-2)

det(donkey-5, the-3)

amod(donkey-5, funky-looking-4)

nsubj(Who-1, donkey-5)

case(there-7, over-6)

nmod(donkey-5, there-7)

punct(Who-1, ?-8)

Table 2.4 shows the meaning of these dependencies1.

amod adjectival phrase that modifies the meaning of the noun
case marker for the case of the clause or noun
cop copula in case of a nonverbal predicate
det determiner of an expression
nmod (nominal modifier) nominal attribute or genitive complement
nsubj (nominal subject) syntactic subject of a clause
punct punctuation
root root of the sentence

Table 2.4: Selection of Universal Dependencies (Nivre et al., 2016) with short descriptions.

In order to make the dependencies more obvious, we visualize the depen-
dency graph in Figure 2.2.

Just like for POS tagging, there are several tools for dependency parsing.
Since there are many parsers available, we focus on those which support
multiple languages:

• One that we already mentioned is the Stanford dependency parser (Chen
and Manning, 2014). It is part of the preprocessing step in many
OIE systems, for example in SCOERE (Wang, Li, and Huang, 2014),

1A detailed description of each type of dependency with examples can be found at
http://universaldependencies.org/u/dep/all.html (11.11.2017).
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Who ’s the funky-looking donkey over there ?

cop

det

amod

nsubj

case

nmod

punct

ROOT

Figure 2.2: Example dependency parse with universal dependencies (Nivre et al., 2016)
from the sentence Who’s the funky-looking donkey over there? (Lee et al., 2013).

ClausIE (Del Corro and Gemulla, 2013), and WOEparse (Wu and Weld,
2010). Similar to the Stanford POS tagger, the Stanford dependency
parser supports several languages, e.g. English, German, Spanish and
Chinese.
• Another set of tools, which is capable of POS tagging as well as

dependency parsing is Mate Tools (Bohnet and Nivre, 2012). Mate Tools
are used by the OIE system PropsDE (Falke et al., 2016), and they also
support multiple languages, namely English, German, Spanish, French
and Chinese.
• Furthermore, there is the MaltParser (Nivre et al., 2007), which is used

by OLLIE (Mausam et al., 2012). MaltParser is capable of parsing
English, French and Swedish texts.
• DepPattern (Gamallo and González, 2012) is a POS tagger and depen-

dency parser for English, Spanish, Galician, French, and Portuguese.
It is used in the preprocessing step of the multilingual OIE system
ArgOE (Gamallo and Garcia, 2015).

Chunking

An example for a different preprocessing step can be observed in ReVerb
(Fader, Soderland, and Etzioni, 2011), which is a OIE system for English.
It uses POS tagging combined with chunking for preprocessing. For that, it
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includes the Apache OpenNLP1 library. A chunker groups the words of a
sentence which syntactically belong together. Such a chunk can for example
be a group of nouns and a determiner. ”An information extraction system”
would be an example of a chunk within this sentence.

Similar to ReVerb, TextRunner (Banko et al., 2007), also uses a combination
of POS tags and chunking. TextRunner is another OIE system for English.
In contrast to many other OIE systems, TextRunner contains its own imple-
mentation of a POS tagger and chunker.

Link Grammar

A link grammar (Sleator and Temperley, 1995) defines how words in a
sentence are connected. The outcome is a graph that looks similar to a
dependency tree at a first glance, but it is not equal. In a link grammar,
links may not cross each other, any word of the sentence must be connected,
and the linking requirements have to be fulfilled. Linking requirements
are defined for a language. They express, which links between words in a
sentence are allowed, required, and optional. An OIE system that uses link
grammar is Wanderlust (Akbik and Bross, 2009).

Example 3. This example (generated with MorphAdorner1) illustrates, how
a sentence parsed with link grammar looks like. The expressions in the edge
labels are the rules of the link grammar, that match for the respective link.
We do not explain these rules, as they are complicated and not important
for our work.

LEFT-WALL Who ’s the funky-looking donkey over there ?

Ws

Xp

Ss*w

MVp

Ost

Ds

Ah J

1https://opennlp.apache.org/ (11.11.2017)
1http://morphadorner.northwestern.edu/morphadorner/parser/example/

(11.11.2017)

18

https://opennlp.apache.org/
http://morphadorner.northwestern.edu/morphadorner/parser/example/


2 Background

Constituency Parsing

A constituency tree (Frege, 1879) displays the constituency relations of an
expression. In general, constituency trees can be any kind of parse tree,
including that of mathematical formulas or program code. In case of natural
languages, a constituency tree displays the grammatical hierarchy of tokens.
Constituency relations are used by the OIE systems CSD-IE (Bast and
Haussmann, 2013) and SCOERE (Wang, Li, and Huang, 2014, in addition to
POS tags and dependency trees).

Example 4. Here is a constituency tree as it is produced by the Stanford
Parser (Chen and Manning, 2014).

ROOT

SBARQ

WHNP

WP

Who

SQ

VBZ

’s

NP

NP

DT

the

JJ

funky-looking

NN

donkey

PP

IN

over

NP

RB

there

.

?

These constituents are labeled with Penn Treebank tags1. The tags of our
example are in the following table:

1http://web.mit.edu/6.863/www/PennTreebankTags.html (11.11.2017)
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SBARQ direct question introduced by wh-word
WHNP wh-noun phrase
WP wh-pronoun
SQ main clause of wh-question
. punctuation
VBZ verb singular present 3rd person
NP noun phrase
PP prepositional phrase
DT determiner
JJ adjective
NN noun singular
IN preposition
RB adverb

2.3.2 Extraction

As already mentioned, the preprocessing in OIE systems is usually per-
formed by external tools. The extractor, on the other hand, is the distinctive
element of an OIE system. This extractor can either be a set of rules or a
learned model, e.g. a neural network or Naive Bayes.

Rule-based Extraction

GerIE (Bassa, 2016) is a rule-based OIE system for German. It expects a
dependency parsed and POS tagged sentence as input. The ruleset consists
of four layers:

1. The first layer contains rules for filtering ”bad” sentences, tagging
negation words (necessary due to the large variety of negation words in
German), tagging quotes, and tagging nouns with a specific meaning,
e.g. a number or a measurement unit.

2. The rules of the second layer already identify facts by extracting
subtrees from the dependency parse graph for the relation and for the
arguments.

3. The postprocessing layer applies some specific rules for processing
conjunctions and relative pronouns.

4. Finally, the bottom layer of rules generates the actual output.

Another rule-based OIE system for German is PropsDE (Falke et al., 2016).
Similar to GerIE, it applies rules on dependency parses. It takes German
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sentences as input and returns relation tuples. Mate Tools (Bohnet and
Nivre, 2012), in combination with JoBimText (Biemann and Riedl, 2013),
is used for dependency parsing. PropsDE is a port from the English OIE
system PropS (Stanovsky et al., 2016). Therefore, the main effort was to port
the rules for the German language. Due to our interest in multilingual OIE,
we are especially interested in the porting-process that Falke et al., 2016,
performed, and we look at that in more detail in Chapter 3.

Whereas GerIE and PropsDE are monolingual, ArgOE (Gamallo and Garcia,
2015) is a multilingual rule-based OIE system. It supports English, Spanish,
Portuguese, French, and Galician. ArgOE takes dependency parses from
DepPattern (Gamallo and González, 2012), and it performs the extraction
in two steps: first it detects argument structures, and then it generates
information triples.

1. To detect the argument structure, the verbs for each sentence are iden-
tified from the dependency parse. Then, for each verb, all dependents,
which can be part of the verb’s argument structure, are selected. These
argument structures can contain subject, direct object, attribute, and
complements. Five types of argument structures were defined, and
within a sentence it is possible to find several different argument
structures.

2. After the detection of the argument structure, a set of rules is applied
on it. These rules transform each argument structure into triples.

The language specific elements of ArgOE are located within the dependency
parser DepPattern. The rules themselves are language-independent. They
do, however, not extract facts from certain dependency parse structures
which produce correct facts in one language and invalid facts in one of the
other languages. Thus, some facts are knowingly omitted.

The rule-based OIE systems we looked at until now in this section all apply
dependency parsing for preprocessing. In contrast to that, ExtrHech (Zhila
and Gelbukh, 2014) uses POS tags. ExtrHech is an OIE system for the
Spanish language. The rule-based extraction consists of three steps, which
are applied to single sentences:

1. Find a relation phrase within the sentence which contains a verb.
2. Find a noun phrase in front of the relation phrase.
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3. Find a noun phrase behind the relation phrase.

ReVerb (Fader, Soderland, and Etzioni, 2011) is another rule-based OIE
system which does not use dependency parses. Instead, ReVerb uses a com-
bination of POS tagging and chunking (see Section 2.3.1). Fader, Soderland,
and Etzioni, 2011, focus on a specific problem that can occur in OIE systems:
they want their system to explicitly not extract incoherent and uninforma-
tive facts. In order to achieve that, they introduce constraining rules for POS
tag patterns, which prevent certain extractions.

Training-based Extraction

One possibility for training-based extraction is the use of a Naive Bayes
classifier. A Naive Bayes classifier is part of the first OIE system. In their
publication, Banko et al., 2007, introduce the concept of OIE by proposing
the OIE system TextRunner. TextRunner uses POS tagging and chunking
for preprocessing (see Section 2.3.1). In the extraction step, it generates
extraction candidates for each sentence. These extraction candidates consist
of chunks as arguments and parts of the text between chunks as relations.
TextRunner’s Naive Bayes classifier is trained to identify correct extractions
from these candidates. This classifier takes a feature vector as input, which
contains POS tags and some other features, like the number of words in the
relation. WOEpos and WOEparse (Wu and Weld, 2010) also employ a Naive
Bayes classifier. They inherited the classifier from TextRunner and use it in
the same manner.

Another possibility for a training-based extraction is the use of neural net-
works. Zhang, Duh, and Van Durme, 2017, propose an interesting cross-
lingual OIE system that uses neural networks (see Section 2.1). Their OIE
system extracts and implicitly translates facts from Chinese sentences to
English extractions. In this case, the extractions look different compared
to other OIE systems: they extract PredPatt (White et al., 2016) predicate-
argument structures. Those structures are trees, similar to universal de-
pendencies (Section 2.3.1), but they only distinguish between predicates
and arguments. The architecture of this neural network is a Sequence-to-
sequence (Seq2Seq) model (see Section 4.3) with long short-term memory
units (see Section 4.2). In order to train the network, Zhang, Duh, and
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Van Durme, 2017, generate predicate-argument structures with PredPatt
for English sentences, for which direct Chinese translations are available. A
training sample consists of the Chinese sentence as input and the predicate-
argument structure as output. This publication inspired us to implement a
similar architecture in the practical part of this thesis (see Chapter 4).

A different approach on training-based extraction is taken by OLLIE (Mausam
et al., 2012). OLLIE is an English OIE system that uses the Stanford depen-
dency parser (Chen and Manning, 2014) to retrieve the dependency parse
of a sentence. For the extraction, it holds a list of open pattern templates. An
open pattern template is a mapping between a dependency parse tree and
an extraction, and it consists of dependency parse pattern templates with
corresponding extraction templates. These templates have been learned
from training data. A training sample consists of a sentence and a (correct)
extraction. In order to get a parse pattern template and the extraction tem-
plate from a training sample, the words in the extraction were correlated
with the dependency parse of the sentence. The parse pattern template is
the dependency parse tree structure without the end nodes (words), and the
extraction template contains the roles that the relation and the arguments
have within the tree structure. Since this does not always yield correct re-
sults, additional constraints and refinements were necessary (which we do
not cover here). For the extraction, OLLIE matches the dependency parse
with the parse pattern template and fills the extraction template.

The training-based methods we looked at until now all use supervised learn-
ing. In their publication, Wang, Li, and Huang, 2014, show an approach with
semi-supervised learning. They propose SCOERE, an approach for OIE in the
Chinese language. Similar to OLLIE, SCOERE holds a list of learned open
pattern templates to extract facts from sentences. For preprocessing, SCO-
ERE uses the Stanford dependency parser (Chen and Manning, 2014) to get
the dependency tree and the constituency tree, and POS tags are extracted
from the sentence with FudanNLP1. In the supervised part of their method,
they employ another type of machine learning method, a conditional ran-
dom field (CRF). They train the CRF with manually annotated corpora.
Afterwards, in the unsupervised part, they generate annotations for new
sentences with this CRF. These new annotated sentences are then used as

1https://github.com/FudanNLP/fnlp (11.11.2017)
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training data to learn the open pattern templates. With this semi-supervised
approach, the amount of training data for the open pattern templates can
be increased significantly.
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PropsDE (Falke et al., 2016, see Section 2.3.2) is a rule-based Open Informa-
tion Extraction (OIE) (see Section 2.3) system for the German language, that
applies its rules on dependency parses. It has been developed by porting
the English OIE system PropS (Stanovsky et al., 2016) to German. In the
practical part of this thesis, we want to extract facts from German text by
imitating PropsDE. Therefore, we want to know how PropsDE works. By
analyzing and comparing PropS and PropsDE, we can learn about OIE
from German text, and we can observe the translation of a system from one
language to another.

In this chapter, we look in detail at the rules of PropS and PropsDE, and at
the differences. We start this chapter by learning about the rules in general in
Section 3.1. In this section, we are not interested in the rules from a linguistic
point of view. Instead, we want to know about the layout of the rules and
how they are applied, and we want to know about hierarchies, groups and
types within the ruleset. Since PropS and PropsDE are structured similarly,
we only look at PropS here. A high-level perspective over the rules is already
given in the publication of Stanovsky et al., 2016. In this chapter, we want
to learn about the rules from a low-level point of view. Therefore, we learn
about the rules directly from the program code and we describe them
the way they are implemented. Since we focus on the code structure, we
explicitly mark actual variables with this typewriter font.

In Section 3.2, we inspect the differences in the rulesets of PropS and
PropsDE. We reflect upon the analysis of the ruleset and the differences
between the two systems in the discussion in Section 6.3
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3.1 The Rules of PropS

From our point of view, we divide the general process of PropS into four
major steps:

1. Parsing dependencies and loading the dependency graph (including
Part-of-speech (POS) tags) into a graph data structure

2. Finding certain linguistic features at graph nodes, e.g. lemma and
tense

3. Converting the graph structure so that the nodes and edges represent
the final extractions

4. Generating final extractions from the converted graph

Whereas the first step is actually performed by an external tool, the other
steps form the ruleset of PropS. We look at the rules in detail as far as
necessary in order to understand how PropS works, thus, we omit some of
the details that we do not consider important for a general understanding.

Each step makes use of the results of the previous steps. After POS tagging
and dependency parsing, the second step finds linguistic features by con-
sidering specific aspects of the dependency parse and the POS tags. In the
third step, the graph structure of the dependency parse is converted to a
different structure using some of the previously found linguistic features.
From the converted graph, the fourth step extracts the final facts. This step
relies on the conversions from the third step.

As we have seen in Section 2.3 of the previous chapter, extractions from OIE
systems are often represented as n-ary relations. This is also the case for
PropS, and they are extracted in the final step. In order to do that, a dis-
tinction between relation and argument is required within the graph. PropS
achieves this by marking the relation node as top node in the conversion
step.

In this section, dependencies and POS tags (see Section 2.3.1) tags oc-
cur rather frequently. In order to make it more understandable for the
reader, there are listings of dependencies and POS tags together with a
brief description of their meaning.The reference for these descriptions can
be found at https://nlp.stanford.edu/software/dependencies_manual.
pdf (11.11.2017) for dependencies and https://www.ling.upenn.edu/courses/
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Fall_2003/ling001/penn_treebank_pos.html (11.11.2017) for POS tags. These
listings look like this example: advcl adverbial clause modifier

mark marker word introducing advcl

Within these listings, dependencies are written in small letters, and POS
tags are written in capital letters.

3.1.1 Dependencies

PropS uses the Stanford dependencies, which are similar to Universal De-
pendencies (Nivre et al., 2016, see Section 2.3.1) but not the same. The
Stanford dependencies are described in detail in the Stanford dependencies
manual 1. PropS includes the Berkeley Parser (Petrov and Klein, 2007) for
POS tagging, and the Stanford Dependency Parser (Chen and Manning,
2014) for dependency parsing. If we parse the example sentence from the
previous chapter with Stanford dependencies, we receive the dependency
parse graph in Figure 3.1. The POS tags are in accordance with the Penn
Treebank Project’s POS tags2.

3.1.2 Linguistic Features

In order to find linguistic features, such as passive voice, a set of rules is
applied on each node of the dependency graph. In this step, the graph is
not altered, and the features are stored in a member variable of the node.

Most of these rules appear quite similar to each other. Since the rules do not
depend on each other, the order of the rules is not important. The common
ground is that most of them apply string-matching on the nodes, neighbours
and edges. In order to do that, many rules employ the generalized pattern

1https://nlp.stanford.edu/software/dependencies_manual.pdf (11.11.2017)
2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.

html (11.11.2017)
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Who ’s the funky-looking donkey over there ?
WP VBZ DT JJ NN IN RB

dobj

det

amod

nsubj

prep pobj

punct

ROOT

amod adjectival modifier
det determiner
dobj direct object
nsubj nominal subject
pobj object of a preposition
prep prepositional modifier
punct punctuation

DT determiner
IN preposition
JJ adjective
NN noun, singular
RB adverb
VBZ verb, 3rd person singular present
WP wh-pronoun

Figure 3.1: Example dependency parse with Stanford dependencies from the sentence
Who’s the funky-looking donkey over there? (Lee et al., 2013), including POS tags.

node child
POS POS

label

and test whether the POS tags, label, and the word of node and child node
match a certain string or are within a certain list of strings. The rules for
the linguistic feature extraction are listed in Table 3.1. The code for these
extractions is located in dependency tree/tree.py.

As we can see in Table 3.1, there is another set of rules for finding the tense
feature. We do not look into these rules, because Falke et al., 2016, did not
port them. Instead, they include an external library in order to determine
the tense.
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Feature Pattern Feature Value Note

Determiner
node child

determiner dependencies words of
determiner
child nodes

determiner dependencies=
{”det”}

Definite

determiner ∈
definite determiners

or POS ∈
determined labels

definite label

or
indefinite label

definite determiners=
{”the”, ”this”, ”that”, ”these”,
”those”, ”another”}
determined labels=
{”NNP”}
definite label=”definite”
indefinite label=”indefinite”
executes the determiner-rule to
get the determiner

Lemma – lemma

uses WordNet lemmatizer of
Python nltk
(http://www.nltk.org/
11.11.2017)

Modal
node modal list

aux dependencies
list of modal

auxiliary verbs

aux dependencies= {”aux”,
”auxpass”}
modal list= {”may”, ”might”,
”must”, ”shall”, ”should”}

Negation

node negating words

negation dependencies true (if there is
a negation) or

false

negation dependencies=
{”neg”}
negating words= {”not”,
”no”}

Passive
Voice node child

passive dependencies

true or false passive dependencies=
{”auxpass”}

Tense –

TENSE PAST,
TENSE PRESENT,

or
TENSE FUTURE

TENSE PAST= ”past”
TENSE PRESENT= ”present”
TENSE FUTURE= ”future”
applies set of tense rules

Predicate

parent node

/∈ aux cop dependencies

and
( node’s POS tag ∈

VERB POS

or

node child
VBG

arguments dependencies

)

node object (or
nothing)

aux cop dependencies=
{”aux”, ”auxpass”, ”cop”}
VERB POS= {”VB”, ”VBD”,
”VBP”, ”VBZ”, ”VBN”}
arguments dependencies=
{”arg”, ”agent”}

VB verb base form
VBD verb past tense
VBG verb gerund/present participle
VBN verb past participle
VBP verb singular present non 3rd person
VBZ verb singular present 3rd person

aux auxiliary
auxpass passive auxiliary
cop copula
arg argument
agent complement of passive verb
neg negation modifier
det determiner

Table 3.1: The rules for linguistic feature extraction in PropS.
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3.1.3 Graph Conversions

After features are extracted and added to the respective nodes in a member
variable, another set of rules is applied on the graph structure. These rules
modify the graph, i.e. they delete edges and nodes and introduce new edges
and nodes. After these rules have been applied, the graph represents the
final extractions.

Whereas the feature extraction rules are rather similar to each other, the rules
for graph conversions are more distinct. The rules rely on the dependency
graph and on the extracted features. Also, some of the rules only work due
to prior modifications. Thus, the order of the rules is important.

The rules are called in function convert in the file graph representation/convert.py,
and they are implemented in graph representation/graph wrapper.py.

At the beginning, the rules modify the graph so that unnecessary informa-
tion is removed. That means that certain edges and nodes are deleted, and
some nodes are merged together into a single node. Then the dependency
graph is fixed in case the preprocessing did not provide the dependency
graph completely the way PropS’ rules expect it. After that, different aspects
of the sentences are tackled, namely passives, existensials, conditionals,
properties, adjectival complements, possessives, relative clauses, verbal
modifiers, and conjunctions. Finally, certain edge labels are normalized.

Remove Auxiliary Words

At this point, the information that auxiliary words contain, has already
been stored as linguistic features in the previous set of rules. Therefore,
these parts of the graph became unnecessary. Function remove aux deletes
all edges and end nodes, where the edge label ∈ ignore labels = {”det”,
”neg”, ”aux”, ”auxpass”, ”punct”}.

det determiner
neg negation modifier
aux auxiliary
auxpass passive auxiliary
punct punctuation
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Example 5. In this example, we parse the sentence The watch on my arm has
not been made very durable with the dependency parser. This results in the
following graph:

The watch my arm has not been made very durable .

det

nsubjpass

poss
prep on

aux
neg

auxpass advmod
xcomp

punct

After applying the rule for removing auxiliary words, the graph looks like
this:

watch my arm made very durable

nsubjpass

poss

prep on
advmod

xcomp

Merge Nodes

In order to further process entities which consist of several words, function
merge iteratively combines two nodes to a single node, where the label of
the connecting edge ∈ join labels = {”mwe”, ”nn”, ”num”, ”number”,
”possessive”, ”prt”, ”predet”, ”npadvmod”}, or where there is a conjunction
with the symbol ’&’.

mwe multi-word expression
nn noun compound modifier
npadvmod noun phrase as adverbial modifier
num numeric modifier
possessive possessive modifier
predet predeterminer
prt phrasal verb particle
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Example 6. When we parse the sentence Several million people in the United
States have seen Thelma & Louise and apply the rule to remove auxiliary words
on the dependency graph, we get the following graph:

Several million people United States seen Thelma Louise

number num

nsubj

nn

prep in

xcomp conj and

After applying the current rule to merge nodes, the graph looks like this:

Several million people United States seen Thelma & Louise

nsubj

prep in
xcomp

Fix Graph

There seem to be some issues where under certain circumstances the depen-
dency graph does not have the structure which PropS expects. Function fix
addresses these issues and removes certain nodes and edges and adds some
edges. For example, this rule renames all edge labels ”agent” to ”prep by”.

Passives

One explicit goal of PropS is to represent extractions in a uniform manner
(Stanovsky et al., 2016). That includes that equal facts are represented in an
equal way, independently from whether they are expressed in active voice
or passive voice. This rule processes the passive voice feature, which has
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been extracted in the first set of rules for linguistic feature extraction. It is
implemented in function do passives. For each node, where passive voice is
set as a feature, all outgoing edges with edge label ∈ subject dependencies

= {”subj”, ”nsubj”, ”nsubjpass”, ”csubj”, ”csubjpass”, ”xsubj”} are changed
to edge label ”obj”. All outgoing edges with edge label ”prep by” are
changed to edge label ”subj”.

nsubj nominal subject
nsubjpass passive nominal subject
csubj clausal subject
csubjpass passive clausal subject
xsubj controlling subject

Example 7. For this rule, we look at the example sentence The watch was
made by a Swiss company. After applying the preceding rules, we get this
graph:

watch made Swiss company
Passive Voice

nsubjpass amod

prep by

Then we apply the current rule which results in this graph:

watch made Swiss company
Passive Voice

obj amod

subj

Existensials

When a text states the existence of an entity, then the extracted fact should
do so as well. The rule to process existensials is implemented in function
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do existensials. In this rule, the source node of each edge with edge label
”expl” is renamed to EXISTENSIAL = ”Exists”. The target node of this edge,
which always contains an existential ”there”, and the edge, is deleted.

expl expletive

Example 8. The example sentence There is a spider results, after applying the
prior rules, in the graph

There is spider

expl nsubj

, which becomes Exists spider

nsubj

with the current rule.

Conditionals

Another rule of PropS processes the parts of a sentence, where conditions
are expressed. This rule is implemented in function do conditionals. In this
rule, the pattern

advclNode markNode markParent

mark

advcl

or

advclNode markNode markParent

mark

advcl
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is matched, where the text of markNode ∈ {”if”, ”while”, ”because”, ”al-
though”, ”as”, ”once”}. (The order of the nodes within the sentence is not
important.) These two edges are then deleted and replaced by two other
edges:

advclNode markNode markParent
top Predicate top

CONDITION LABELOUTCOME LABEL

where CONDITION LABEL = ”condition” and OUTCOME LABEL = ”outcome”.
This rule also sets the markNode as a predicate, which is important for later
rules.

advcl adverbial clause modifier
mark marker word introducing advcl

Example 9. Just like in the examples of the other rules, we look at a sentence
which has been processed by the preceding rules. The sentence I will go
outside if it is warm results in the graph

I go outside if it is warm
nsubj

advmod mark
nsubj

advcl

acomp

The current rule converts this graph to

I go outside if it is warm
top Predicate top

nsubj
advmod nsubj acomp

condition
outcome
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Properties

When a sentence expresses a property of an entity, the extraction should
represent this property as well. PropS distinguishes between two types of
properties: the ”prop of” property, which states an attribute of an entity,
and the ”SameAs” property, which states the equality of entities. This rule
processes these properties. It is more complex compared to the preceding
rules. It consists of three parts. The first part handles adjectives, the second
part handles copula verbs, and the third part processes appositions. It is
implemented in function do prop.

The first part of this rule, which processes adjectives, identifies the follow-
ing pattern with POS ∈ determine labels = {”NNP”}. The edge is then
replaced with a different edge, so that

domain adjective
POS

amod

becomes
domain adjective

POS Predicate

top

prop of

amod adjectival modifier
NNP proper noun, singular

and the adjective node is marked as a predicate in the graph data structure,
which is important for later rules.

Example 10. Let us take the sentence The main role is played by muscular
Arnold Schwarzenegger as an example. The preceding rules produce the
graph

main role played muscular Arnold Schwarzenegger
NN Passive Voice NNP

amod obj

subj

amod

The current rule modifies this graph:

36



3 Analysis of PropS and PropsDE

main role played muscular Arnold Schwarzenegger
NN Passive Voice Predicate NNP

top

amod obj

subj

prop of

The second part of the properties rule processes copula verbs. In this
part, we can distinguish four different cases. The following enumera-
tion shows these cases and their results. The variables in these cases
are copular verbs = {”be”, ”am”, ”is”, ”are”, ”being”, ”was”, ”were”,
”been”, ”’s”, ”’re”, ”become”, ”became”, ”becomes”}, which is matched
with text of nodes, subject dependencies = {”subj”, ”nsubj”, ”nsubjpass”,
”csubj”, ”csubjpass”, ”xsubj”}, which is matched with edge labels, and
clausal complements = {”acomp”, ”xcomp”, ”comp”, ”ccomp”}, which is
also matched with edge labels.

The patterns in the enumeration are ordered, and the order is important. The
first pattern that matches is applied, even if another pattern would match
as well. A dashed line means that the respective elements are optional.

nsubj nominal subject
nsubjpass passive nominal subject
csubj clausal subject
csubjpass passive clausal subject

xsubj controlling subject
acomp adjectival complement
xcomp open clausal complement
ccomp clausal complement

1. In this pattern, the copula node is simply removed:

subj copular verbs obj
Predicate

subject dependencies
clausal complements

label

is modified to subj obj
label

The obj node receives features of the copula node, e.g. tense, but it
does not become predicate if it has not been predicate before.

2. The pattern
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father subj copular verbs obj other
Predicate not definite

subject dependencies clausal complements

otherlabelfatherlabel

is modified to

father subj obj other
Predicate

not definite

otherlabel
fatherlabel

prop of

Example 11. From the sentence Graz is beautiful, we get the dependency
graph

Graz is beautiful
Predicate not definite

nsubj acomp

, which becomes
Graz beautiful

Predicate

not definite

prop of

with the application of the current rule.

3. The pattern

father subj copular verbs obj other
Predicate

subject dependencies
acomp

otherlabelfatherlabel

is modified to
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father subj obj other
Predicate

otherlabel
fatherlabel

prop of

4. The pattern

father subj copular verbs obj other
Predicate

subject dependencies
clausal complements

otherlabelfatherlabel

is modified to

father subj COPULA obj other
Predicate

FIRST ENTITY LABEL SECOND ENTITY LABEL

otherlabelfatherlabel

with COPULA = ”SameAs”, FIRST ENTITY LABEL = ”sameAs arg”, and
SECOND ENTITY LABEL = ”sameAs arg”. The COPULA node receives all
the features of the previous copular verbs node, e.g. tense.

Example 12. Let us apply the preceding rules on the sentence Graz is
the best city. After that, we apply the current rule. Thus,

Graz is best city
Predicate Predicate definite

nsubj

xcomp
prop of

becomes Graz SameAs best city
Predicate Predicate definite

sameAs arg

sameAs arg
prop of
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The third part of this rule handles appositions. In this part, the feature
dups is set. It means that from a contextual point of view, the nodes stored
within this feature have equal meaning and are duplicates. This feature
is important for the final extraction. Similar to the second part, it can be
described with pattern matching and modification of three patterns.

1. The pattern

father subj obj

appos

acomp

fatherlabel

is modified to
father subj obj

dups={subj, obj} Predicate

top

fatherlabel
fatherlabel prop of

acomp adjectival complement
appos appositional modifier

2. The pattern

father subj obj
not definite not definite

apposfatherlabel

is modified to
father subj obj

dups= not definite not definite

{subj, obj} Predicate

top

fatherlabel
fatherlabel prop of

Example 13. The sentence Astrophysicists, educated people, research the
cosmos results, after application of the preceding rules, in the graph

Astrophysicists educated people research cosmos
not definite Predicate not definite Predicate definite

appos

nsubj

dobjprop of

When we apply the current rule, we get
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Astrophysicists educated people research cosmos
not definite Predicate not definite Predicate definite

top dups=

{Astrophysicists,

people}

prop of

nsubj

dobjprop of nsubj

3. The pattern

father subj obj

apposfatherlabel

is modified to

father subj COPULA obj
dups={subj, obj} Predicate

fatherlabel

fatherlabel
FIRST ENTITY LABEL SECOND ENTITY LABEL

with COPULA = ”SameAs”, FIRST ENTITY LABEL = ”sameAs arg”, and
SECOND ENTITY LABEL = ”sameAs arg”.

Example 14. Let us look at the sentence Arnold Schwarzenegger, an actor,
is muscular. The preceding rules leave us with the graph
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Arnold Schwarzenegger actor muscular
Predicate

prop of

appos

The current rule modifies this graph to

Arnold Schwarzenegger SameAs actor muscular
definite Predicate not definite Predicate

dups=

{Arnold Schwarzenegger,

actor}

prop of

prop of
sameAs arg

sameAs arg

Adjectival Complements

While the previous rule handles adjectival complements together with
copular verbs, this rule covers general occurrences of adjectival complements.
The rule is implemented in function do acomp. It matches the pattern

subj predNode acompNode
Predicate

subject dependencies
acomp

acomp adjectival complement
nsubj nominal subject
nsubjpass passive nominal subject
csubj clausal subject
csubjpass passive clausal subject
xsubj controlling subject

with subject dependencies = {”subj”, ”nsubj”, ”nsubjpass”, ”csubj”, ”csub-
jpass”, ”xsubj”}.
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There are two cases:

1. The text in predNode ∈ modalVerbs = {”look”, ”appear”, ”begin”,
”come”, ”fail”, ”happen”, ”include”, ”prove”, ”remains”, ”said”, ”seem”,
”stand”, ”tend”, ”turn out”}. Then the graph is modified to

subj predNode acompNode
Predicate Predicate

domain label

SOURCE LABEL

with domain label = ”prop of” and SOURCE LABEL = ”source”. All
incoming edges to predNode become incoming edges to acompNode.

Example 15. In the example sentence He said that she looks beautiful, the
graph

He said she looks beautiful
Predicate Predicate

acompnsubj nsubj

ccomp

becomes

He said she looks beautiful
Predicate Predicate Predicate

sourcensubj

prop of

ccomp

2. The text in predNode /∈ modalVerbs. Then the predNode and the
acompNode are treated like a multi-word expression. They are pro-
cessed the same way as explicit multi-word expressions in the merge
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rule. Both nodes are combined to a single predicate node with the
incoming and outgoing edges of both nodes as well as the features of
both nodes.

Possessives

The rule that processes possessives is short and simple as dependencies
already represent possession relationships. It is implemented in function
do poss.

possessed possessor

poss

poss possession modifier

is modified to

possessed POSSESSIVE possessor
Predicate

poss

POSSESSED LABEL POSSESSOR LABEL

with POSSESSIVE = ”have”, POSSESSED LABEL = ”possessed”, and POSSESSOR LABEL

= ”possessor”.

Example 16. In the example sentence Here is my office

Here my office
Predicate

prop of
poss

becomes Here my have office
Predicate Predicate

possessedpossessor

prop of
poss
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Relative Clauses and Verbal Modifiers

This rule is another short and simple one. It is implemented in function
do vmod relclause. In this rule, each edge with edge label ”rcmod” or ”vmod”,
where the start node’s POS tag ∈ determined labels = {”NNP”}, is re-
moved. If there is not already an edge in the opposite direction, then such
an edge is added, with edge label ARG LABEL = ”arg”. In case of ”rcmod”,
the end node of the ”rcmod” edge is marked as top.

rcmod relative clause modifier
vmod reduced non-finite verbal modifier
NNP proper noun, singular

Conjunctions

The conjunction rule is another complex rule. It handles conjunctions like
”and” and ”but”. We again look at this rule from a perspective of pat-
tern matching. This way, we can distinguish three patterns, and the first
pattern that matches is applied. The common element of the patterns are
dependencies with ”conj ” edge labels. These can for example be ”conj and”
and ”conj but”, depending on the conjunction word. Within the following
patterns, we simply use an X instead of conjunction words. A dashed line
means that the respective elements in the pattern are optional. Each pattern
has two distinct characteristics.

1. In the first pattern, the two distinct characteristics are: The element
that is connected with a conjunction to others is a predicate, and
there is a father node with an edge to the predicate with edge label ∈
argument dependencies ∪ clausal complements.
argument dependencies is a union of subject dependencies (see ear-
lier rules) and several other variables.
argument dependencies = {”arg”, ”agent”, ”obj”, ”dobj”, ”iobj”, ”pobj”,
”subj”, ”nsubj”, ”nsubjpass”, ”csubj”, ”csubjpass”, ”xsubj”, ”prop of”,
”sameAs arg”, ”possessed”, ”possessor”, ”outcome”, ”reason”, ”con-
dition”, ”event”}
clausal complements = {”acomp”, ”xcomp”, ”comp”, ”ccomp”}
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arg argument
agent complement of passive verb
dobj direct object
iobj indirect object
pobj object of a preposition
nsubj nominal subject
nsubjpass passive nominal subject

csubj clausal subject
csubjpass passive clausal subject
xsubj controlling subject
acomp adjectival complement
xcomp open clausal complement
ccomp clausal complement
conj conjunct

The pattern itself looks like this

fatherN father conj1 conjN neighbourN
Predicate

modlabel

fatherNlabel neighbourNlabel

conj X

with modlabel ∈ argument dependencies ∪ clausal complements.
In this pattern, there can be an arbitrary number of additional father
nodes and neighbour nodes, shown with fatherN and neighbourN. In
a similar manner, there has to be at least one conjN node with a conj X
edge, and there can be arbitrary many additional ones, for which the
same pattern applies.
The graph is then modified to

fatherN father conj1 X conjN neighbourN
Predicate Predicate Predicate

modlabel

modlabel

modlabel

fatherNlabel

fatherNlabel

fatherNlabel
neighbourNlabel

conj X conj X

Example 17. For the sentence If you slow down, you can walk and talk,
we receive the following graph from the preceding rules:
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If you slow down you walk talk
Predicate Predicate Predicate

condition

outcome

nsubj nsubj conj and

This matches the current pattern and is therefore transformed to

If you slow down you walk and talk
Predicate Predicate Predicate Predicate Predicate

condition

outcome

outcome

outcome

nsubj nsubj conj andconj and

2. In the second pattern, the two distinct characteristics are: The edge la-
bels of edges from father nodes to the node of interest /∈ argument dependencies

∪ clausal complements, and the node of interest is again a predicate.
The pattern is

fatherN conj1 conjN neighbourN
Predicate

fatherNlabel

neighbourNlabel

conj X

with fatherNlabel /∈ argument dependencies ∪ clausal complements.
This pattern is modified to
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fatherN conj1 X conjN neighbourN
Predicate Predicate Predicate

fatherNlabel

fatherNlabel

fatherNlabel

conj X conj X

neighbourNlabel

neighbourNlabel

Only in this pattern, edges to neighbours are copied to conjN nodes.

Example 18. Preceding rules produce the following graph from the
example sentence Plants are nice and green:

Plants nice green
Predicate

prop of conj and

The current rule transforms this graph to

Plants nice and green
Predicate Predicate Predicate

prop of

prop of

conj and conj and

3. In the third pattern, the two distinct characteristics are: The node
of interest is not a predicate, and the edge labels of edges from
father nodes to the node of interest /∈ argument dependencies ∪
clausal complements.
The pattern is
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fatherN conj1 conjN neighbourN
not Predicate

fatherNlabel

neighbourNlabel

conj X

with fatherNlabel /∈ argument dependencies ∪ clausal complements.
This pattern is modified to

fatherN conj1 X conjN neighbourN
not Predicate Predicate

fatherNlabel

fatherNlabel

fatherNlabel

conj X conj X

neighbourNlabel

Example 19. From the sentence Beautiful flowers and trees are plants we
receive from the preceding rules the graph

beautiful flowers trees plants
not Predicate Predicate

prop of

conj andamod

which is then modified by the current rule to
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beautiful flowers and trees plants
not Predicate Predicate Predicate

prop of

prop of

prop of

conj and conj and
amod

Normalize Labels of Remaining Edges

When the program flow arrives at this rule, most of the edges that come
from the dependency parser have been processed. For the remaining edges
from the dependency graph, the edge labels are normalized. The following
table shows how function normalize labels does that: (The table is implemented
in a Python dictionary, and we have noticed that ”acomp” occurs twice. Since
the content of Python dictionaries is in arbitrary order, we do not know whether
”acomp” is normalized to ”source” or to ”comp”. It is possible that this case never
occurs, since ”acomp” is processed in multiple preceding rules.)

Normalized Original
subj xsubj, nsubj, nsubjpass, csubj, csubjpass, possessor
comp xcomp, ccomp, acomp
source acomp
mod amod, advcl, rcmod, advmod, quantmod, vmod
dobj possessed

Example 20. For this example, we continue with the sentence from the
previous example, Beautiful flowers and trees are plants.

With the application of the current rule,
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beautiful flowers and trees plants
not Predicate Predicate Predicate

prop of

prop of

prop of

conj and conj and
amod

is modified to

beautiful flowers and trees plants
not Predicate Predicate Predicate

prop of

prop of

prop of

conj and conj and
mod

Set Top Nodes

In function calcTopNodes, some additional nodes are set as top. This feature
is used in the extraction part of PropS. top marks nodes, which become
relations in contrast to arguments.

There are two cases, where nodes become top nodes:

• Nodes which do not have parent nodes
• Nodes, which have an outgoing edge with edge label SOURCE LABEL =

”source” to a top node
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3.1.4 Extractions

Finally, the actual facts are generated in function getPropositions in file
graph representation/graph wrapper.py. This function builds extractions by
identifying the relations and the arguments in the converted graph. The
nodes which represent the relations have already been marked in the pre-
vious step. They are marked with the feature top. The rules, which set this
feature are the rules for Conditionals, Relative Clauses, Properties, and Set Top
Nodes.

A relation and its arguments are strings. Each argument is built from the
subgraph of a child of the relation. In order to build the argument, the
surface forms of the respective nodes are concatenated. The relation also is
the surface form of the node.

Apart from top, there is another feature that is important for the extractions.
The feature dups is set in the Properties rule in case an apposition occurs. It
means that two subtrees are semantically equivalent.

If a top node has dups nodes, then the extraction is generated multiple times,
with one of the dups nodes as argument at each instance.

Example 21. In this example, we process the sentence Arnold Schwarzenegger,
a Hollywood actor, comes from Austria. POS tagging and dependency parsing
generates the following graph as input for the ruleset:

Arnold Schwarzenegger , a Hollywood actor , comes from Austria .
NNP NNP , DT NNP NN , VBZ IN NNP .

nn

nsubj

punct

det

nn

appos

punct

prep from

punct
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After extracting lexical features, applying the graph conversion rules results
in the graph

Arnold Schwarzenegger SameAs Hollywood actor comes Austria
top determiner=a top

dups=

{Arnold Schwarzenegger,

Hollywood actor}

prep from
subj

subj

sameAs arg
sameAs arg

The final extractions from this sentence are

• comes:(subj:Arnold Schwarzenegger , prep from:Austria )
• comes:(subj:a Hollywood actor , prep from:Austria )
• SameAs:(sameAs arg:Arnold Schwarzenegger , sameAs arg:a Hollywood

actor )

3.2 Differences between PropS and PropsDE

In this section, we look at the differences between PropS (Stanovsky et al.,
2016) and PropsDE (Falke et al., 2016). We are only interested in differences
that concern the parsed language and the ruleset. Apart from that, Falke
et al., 2016, also made a few other changes to the system, which we do not
look into.

As with the previous section about the ruleset of PropS (Section 3.1), we
mainly look at the layout of the rules and the structural differences instead
of the linguistic implications. We classify these differences in small and large
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differences. This classification is performed subjectively from our own point
of view.

Within the differences between PropS and PropsDE, we can observe two
general types.

• One general type of difference is at the edge labels and POS tags.
Whereas PropS uses Penn Treebank style POS tags and Stanford de-
pendencies for English, PropsDE uses Tiger Treebank style1 POS tags
and dependencies. These POS tags and dependencies are specified
for the German language. This difference appears in every rule, and
especially in the variables that we saw in the previous section.
• The other general type of difference is that the structure of the depen-

dency tree is different. Therefore, the elements within the graph that
are identified in order to extract linguistic features, and the elements
that are identified and then modified, are also different.

Section 3.1 shows how facts are extracted in PropS. There, we already
gained a general understanding of how the rules work. Therefore, a detailed
comparison between each single element of the rules of PropS and PropsDE
does not help to improve our general understanding. Instead, we want
to have an overview over the position, the extent, and the manner of the
difference.

In the following, we take a look at the differences in the dependency graph
(Section 3.2.1). Then we continue with the differences in the extraction of
linguistic features (Section 3.2.2). After looking at the differences in the
graph conversions (Section 3.2.3), we also want to know how Falke et al.,
2016, changed the final fact extraction.

3.2.1 Dependencies

PropsDE uses different POS tags and dependencies, namely Tiger Treebank
style POS tags and dependencies, instead of Stanford dependencies and
Penn Treebank style POS tags. Mate parser (Bohnet and Nivre, 2012) is used

1http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/

TIGERCorpus/annotation/tiger_introduction.pdf (11.11.2017)
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to find those POS tags and dependencies, and JoBimText (Biemann and
Riedl, 2013) is used for collapsing dependencies (dependency collapsing
is an additional step of dependency parsing, and other parsers do that
implicitly).

The dependency parsing in PropsDE, as well as in PropS, results in a tree
structure which contains the dependencies between words of a sentence.
The difference between PropS and PropsDE is the structure itself, as it is
based on a different language, and the edge labels.

Example 22. These are the dependency trees of the same sentence in English
and in German. The example illustrates the different POS tags, dependency
labels, and a slightly different tree structure.

We now parse a sentence
PRP RB VBP DT NN

nsubj
advmod det

dobj

Wir parsen jetzt einen Satz
PPER VVFIN ADV ART NN

SB MO NK

OA

3.2.2 Linguistic Features

As immediate part of the ruleset, the extraction of linguistic features exhibits
interesting differences between PropS and PropsDE. Table 3.2, displays an
overview over the differences with the most important aspects. The rules
for extraction of linguistic features in PropS are shown in Table 3.1 in the
previous section.
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Feature L/S Feature Value Difference in PropsDE

Determiner S
words of

determiner child
nodes

additional test for POS tag ∈
determiner pos

Definite S
definite label

or
indefinite label

additional case where node has
child with specific edge label

Lemma L lemma lemma found by Mate parser

Modal L list of modal
auxiliary verbs

single modal verb in parent
node instead of multiple modal
verbs in child nodes

Negation S true (if negation)
or false

no difference except in
negation dependencies

Passive
Voice S true or false different pattern

Tense L ”past”, ”present”,
or ”future”

external Python module
pattern.de (www.clips.ua.ac.
be/pages/pattern-de

11.11.2017)

Predicate S node object (or
nothing) different pattern

Subjunctive L subjunctive label

(or nothing)
only in PropsDE

Table 3.2: Differences between PropS and PropsDE during linguistic feature extraction.
Column L/S shows, whether there is a large (L) or a small (S) difference.

3.2.3 Graph Conversions

After linguistic features have been extracted, PropsDE, as well as PropS,
converts the dependency graph to a graph with semantic connections be-
tween nodes. In this section, we look at the differences between the graph
conversions of PropS and PropsDE.

PropsDE has four additional rule functions, that do not have immedi-
ate counterparts in PropS. These four functions are implemented in the
same file as the other rules (dependency tree/graph wrapper.py). They are
remove aux mod de, do conj propagation, do relc de, and do comp de.

In principle, the graph conversions of PropS and PropsDE are similar. In
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each rule, elements within the graph are identified and modified. The
structure of the final graph is also similar between PropS and PropsDE.
The differences within a single rule mainly concern the elements which are
identified in order to modify the graph. Table 3.3 shows the main differences
in graph conversions between PropS and PropsDE.

Rule L/S Function Difference in PropsDE

Remove Auxiliary Words L remove aux
remove aux mod de

pattern in remove aux completely different
remove aux mod de only in PropsDE
nodes to remove may have children to keep

Merge Nodes L merge
do comp de

accept indefinitely long chains of nodes
different pattern in merge
do comp de only in PropsDE
do comp de merges indirectly connected nodes

Fix Graph L fix relabel collapses from JoBimText
additional collapses

Passives L do passives different pattern for subj
node text manipulation in subj

Existensials L do existensials different pattern
additional existensial from grammatical object

Conditionals L do conditionals
different pattern
accept indefinitely long chain of nodes
no top node

Properties S do prop slightly different patterns
Adjectival Complements S do acomp slightly different pattern
Possessives S do poss slightly different pattern

Relative Clauses L do vmod relclause
do relc de

do vmod relclause only in PropS
do relc de only in PropsDE
completely different
consider German relative pronoun
set top node in do relc de

Conjunctions L do conj
do conj propagation

do conj propagation only in PropsDE
modify edges to Stanford dependencies style
do conj almost identical

Normalize Labels of Edges S normalize labels different labels to normalize
rename unhandled labels to generic ”dep”

Set Top Nodes - calcTopNodes identical

Table 3.3: Main differences between PropS and PropsDE during graph conversions. Column
L/S shows, whether there is a large(L) or a small(S) difference.

3.2.4 Extractions

After the graph has been converted so that it contains semantic connections
between the nodes, the final facts are extracted. We have seen how the
extraction works in PropS in Section 3.1.4. In general, the extraction in
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PropsDE works the same way. Whereas the dups feature is set the same
way in both OIE systems, the top nodes, which become relations in the
extractions, are set at slightly different locations. The top nodes are set at
the following locations:

Rule PropS PropsDE
Conditionals do conditionals –
Relative Clauses do vmod relclause do relc de
Properties do prop do prop
Set Top Nodes calcTopNodes calcTopNodes

The final extractions are set in function getProposition. In this function, there
are some minor differences compared to PropS. Two examples are, that
argument subtrees, which start with an edge labeled ”dep”, are omitted,
and if a relation is negated, the word ”nicht” is added in front of the relation
text. Apart from small differences, the final extractions are assembled the
same way in PropsDE as in PropS.
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In the practical part of this thesis, we construct and train a neural network for
Open Information Extraction (OIE) (see Section 2.3). For the implementation,
we use the machine-learning framework TensorFlow1 in version 1.3.

We perform these major steps:

1. Experiments: We train and test several models to compare a few
configurations.

2. Design: With knowledge gained from the experiments, we design our
model.

3. Training: We train the selected model with a large dataset.
4. Evaluation: Finally, we evaluate the model.

In this chapter we cover the methods that we apply in these steps. Since
the focus of this thesis is Information Extraction (IE), we only apply the
methods in this chapter as means to do IE. (We do not extensively study
these methods.) Therefore, we only go into detail as far as it is required to
build our open information extractor.

In order to feed words and sentences into a neural network, we encode
them into word embeddings, which we describe in Section 4.1. We take a
look at types of neurons in Section 4.2, and at neural network architectures
in Section 4.3. We train the model with training data that we automatically
generated with PropsDE (see Section 2.3.2). In Section 4.4, we explain how
we train the model. After training the model, we evaluate our information
extractor. Section 4.5 contains our plans for the evaluation. We reveal the
detailed results of the training and evaluation of the model in the next
chapter (Chapter 5).

1https://www.tensorflow.org/ (11.11.2017)
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4.1 Word Embeddings

To extract facts from sentences, a neural network first needs to receive those
sentences in a way that it can process them. A way for that is to replace
words with word embeddings (Bengio et al., 2006). Embeddings are vector
representations of words, and we can set these vectors as input to our neural
network. They are stored as a lookup table and trained together with the
neural network.

In order to speed up training and get better results, we initialize the embed-
dings with GloVe (Pennington, Socher, and Manning, 2014) embeddings.
GloVe is a tool that learns embeddings from a dataset from word-word
co-occurrence statistics. To generate initialization values for the embeddings
of regular German words, we use GloVe on 300k German sentences (Remus,
Quasthoff, and Heyer, 2010).

We feed the sentences into the neural network in a format similar to CoNLL-
X (Buchholz and Marsi, 2006). In this format, the dependency graph is
displayed in a table, where each word is given together with its Part-of-
speech (POS) tag and dependency to its parent in the graph. Therefore,
in addition to embeddings for regular German words, we generated joint
GloVe embeddings for POS tags and dependency labels (see Section 2.3.1)
from our training data.

For the embeddings of regular words, we have a few practical issues to
address:

1. If a certain word appears only once within the whole training dataset,
it is possible, that the neural network does not fully learn how to
process this word. Therefore, we want the neural network to see each
word multiple times. We limit the vocabulary to the most common
words. This is not required for POS tags and dependency labels, since
there is only a small and specific number of them.

2. This measure leads us to the problem that there appear words in
the training dataset (as well as in other sentences) which the neural
network cannot learn as it has no vector representation of them. To
cope with this problem, we introduce 15 placeholders. These replace
the unknown word with a placeholder-word, and the embedding of
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that placeholder-word is fed into the neural network instead. If the
number of available placeholders is exceeded, we replace any other
unknown word with an unknown token. The embedding vectors of the
placeholders and the unknown token are initialized randomly with a
low standard deviation around the average embedding.

3. Apart from that, there is a set of special tokens that appear only at
the output. These tokens are argument types, that PropsDE emits, a
special relation (”SameAs”, see also Section 3.1.3), separators for the
extraction structures, an empty token, and an end-of-sentence token. We
also initialize the embeddings for these tokens (except for empty and
end-of-sentence) randomly, although we expect to never see them in the
input.

4. Finally, we also have cases, where there are embeddings for all the
words at the input, but not for the relation word at the output. This
case occurs due to a specific part of the German language. It is possible,
that the unknown word at the output is a compound word of two
words that appear at the input. One solution to that problem would be
to add this word to the embeddings, but we have already mentioned
the reason for limiting the embeddings to a certain set of words. Since
this word only appears at the output, it also does not make much
sense to use a placeholder-word here. Instead, we decided that the
two words have to appear separately at the output. This is not correct,
but the meaning of the relation should be undeniably clear.

Setup

For regular words, we have embedding vectors with 128 dimensions, and
the vocabulary consists of 11399 words. For POS tags and dependency
labels, the embedding vectors consist of 64 dimensions, and the vocabulary
contains 256 words. We decided to use medium sized vectors, because from
the extractor’s perspective, the actual meaning of the words is not important.
The main task, the extractor has to learn, is to correctly assign words from
the input to specific locations at the output. Except for specific ones, all
the output words are also in the set of input words. Therefore, we expect
there to be enough information in vectors of this size plus the POS tags to
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perform the task successfully.

4.2 Artificial Neurons

Feedforward Neural Network

Our model includes a feedforward neural network. In a feedforward neural
network (Rosenblatt, 1958), information flows only in one direction, from
one layer to the next. A single neuron in this network is defined by its
weights. An incoming vector ~x is multiplied by the weight vector of the
neuron ~wlayeri,neuronj and a bias blayeri,neuronj may be added. Before the result
is passed on to the next layer (or the output), an activation function f is
applied. A complete layer within a neural network therefore calculates

f (~xWlayeri +
~blayeri)

In our model, we actually do not use an activation function, because our
feedforward layer produces the output for a multiclass classification (each
class represents a word index). Instead, we simply select the class with the
highest value, and we can skip the additional computation.

Long Short-term Memory

Long short-term memory units (LSTM, Hochreiter and Schmidhuber, 1997)
are a type of recurrent units. Recurrent neurons are a class of artificial
neurons, that are capable of memory. Compared to feedforward neurons,
the structure of LSTMs is rather complex. Since we use TensorFlow’s LSTM
implementation, we do not need to consider its details. Thus, we describe
the LSTM only briefly.

LSTMs consist of an input gate, a forget gate, an output gate, 8 weight
matrices, 4 bias vectors, and an internal state vector. Each gate represents an
activation function. Multiple operations are performed on the input and the
internal state in order to determine the output and the next internal state.
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We decided to try LSTMs because they have proven themselves useful in
natural language processing applications, e.g. for summarizing text (Lopy-
rev, 2015). We set tanh as activation function for the LSTMs in our model.
During training experiments (see Section 5.1), we discovered that gated
recurrent units outperform LSTMs for our purpose.

Gated Recurrent Units

Similar to LSTMs, gated recurrent units (GRU) are a type of recurrent
neurons. They were proposed by Cho, Merrienboer, Bahdanau, et al., 2014,
for neural machine translation. Since their initial proposal is in the field of
natural language processing, we want to see how well they perform for our
task. Our experiments (see Section 5.1) show, that GRUs yield better results
than LSTMs. Therefore, they are a central element of our final model.

GRUs are related to LSTMs, as they have a comparable structure. They
consist of an internal state vector, weight matrices, and gates. But in contrast
to LSTMs, GRUs only have two gates, 6 weight matrices and 3 bias vectors.
For the same vector size, a GRU requires less memory and a smaller amount
of operations than an LSTM.

We use TensorFlow’s implementation of GRUs. In our model, we use the
rectifier (ReLU, Hahnloser et al., 2000) as activation function:

f (x) = max(0, x)

4.3 Architecture

Input and Output

We already mentioned, that we use embedding vectors to feed words into
the neural network. Since we want to imitate PropsDE, we want to feed
complete dependency graphs into the neural network. In order to achieve
that, we use a graph format that is inspired by the CoNLL format (Buchholz
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and Marsi, 2006). We represent each node with a 400-dimensional node
vector that contains

1. embedded node ID (8d)
2. embedded head node ID (8d)
3. embedded surface form (128d)
4. embedded lemma (128d)
5. embedded POS tag (64d)
6. embedded dependency label (64d)

The node ID and the head node ID are replaced with a position embedding
vector of size 8. The embeddings of node ID and head node ID come from
two separate embedding matrices, which were randomly initialized.

For the output, we expect one-hot encoded token indices. To achieve that,
we add a single feedforward layer at the output. From this layer’s result
vector, the index with the largest value becomes the output token index.

Sequence-To-Sequence Model

The publication of Zhang, Duh, and Van Durme, 2017, inspired us to use a
Sequence-to-sequence (Seq2Seq) model in the practical part of this master’s
thesis. Seq2Seq models (Cho, Merrienboer, Gulcehre, et al., 2014) implement
the general idea that the neural network first receives a sequence of inputs,
and then emits a sequence of results. Due to this nature, Seq2Seq models
consist of recurrent neural networks. In our case, we used LSTMs and GRUs
for our Seq2Seq implementation.

Seq2Seq models consist of two neural networks, an encoder and a decoder,
with the same size. The encoder receives a sequence of inputs, and during
training it learns to keep important information within the internal states.
Therefore, after the encoder has seen the whole input sequence, the final
internal state is a representation of the whole input sequence. After the
encoder has finished, the internal state of the decoder is initialized with the
final state of the encoder. In the simple case of Seq2Seq, which we use for
our model, the encoder’s outputs are discarded. The decoder’s outputs, on
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the other hand, are fed back into the decoder’s input as embeddings, which
improves the decoder’s performance compared to zero input.

To our encoder, we feed a sequence of single node vectors, and we expect a
sequence of single tokens from the decoder.

Bidirectional Recurrent Neural Network

Bidirectional recurrent neural networks have been introduced by Schuster
and Paliwal, 1997. They support the neural network in finding links between
pieces of information at different locations in an input sequence. This way,
they can improve the neural network’s result.

In bidirectional recurrent neural networks, the input sequence is provided
in two directions, forward and backward. The two passes, forward pass and
backward pass, can be performed with the same neurons (same weights and
activation). The outputs and the states of the two passes are not connected,
and the internal states are set to an initial state for each pass. After the two
passes, the internal states and/or the output states of the two passes can be
concatenated and fed into an output layer.

We use the bidirectional architecture in our model. The encoder of our
Seq2Seq model becomes a bidirectional recurrent neural network (with
GRUs). It receives the node vectors forward and backward. After the two
passes, the encoder’s internal states are concatenated and set as the initial
internal state of the decoder. A few test runs showed us that distinct forward
and backward networks performed slightly better compared to a single
network for both passes. Thus, in our model there are two distinct recurrent
neural networks for the forward pass and the backward pass. Our encoder
neural networks consist of 3 layers with 512 GRUs. The decoder is a single
neural network of 3 layers with 1024 GRUs.
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4.4 Training

In order to train our model, we need data. We apply Mate Tools (Bohnet
and Nivre, 2012) and JobImText (Biemann and Riedl, 2013) to generate the
dependency graphs for the input part, and PropsDE to generate the output
part of our dataset. The sentences come from Remus, Quasthoff, and Heyer,
2010. For experiments, we use ∼10k sentences, and for the final training,
we use ∼54k sentences. We divide the dataset into training data, validation
data for the stopping criterion, and test data for the evaluation.

We apply a few modifications on the dataset (see Sections 4.1 and 4.3).
These modifications address embedding issues and the way we feed the
dependency graph into our models. Apart from that, we also modify the
separators and other tokens in the extractions in order to simplify the
distinction between special symbols for the extraction format and regular
punctuation.

Our loss function is cross entropy. For discrete values, cross entropy is

H(p, q) = −∑
x

p(x) log q(x)

We minimize that with the Adam optimizer (Kingma and Ba, 2014) with a
minibatch size of 64. In order to speed up the final training, we use sampled
softmax loss (Jean et al., 2014) for that.

To prevent the neural network from overfitting, we apply two regularization
techniques, dropout (Hinton et al., 2012) and simple validation-based early
stopping. During the initial experiments we set the dropout rate to 0.5. For
the final training, we start with dropout rate 0.5 in the first epoch, and lower
it towards zero over a few epochs. For the validation-based early stopping,
we randomly select 640 data samples as validation set from the generated
dataset. In order to find a good validation minimum and not stop too early
in a local minimum, we allow the validation error to be higher than the
minimum for 5 consecutive epochs. When these epochs are overstepped, we
stop and accept the weights at the validation minimum.

We set the target result from the training data as the decoder’s input for
training. For the final training, we additionally train with a random mix of
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the decoder’s output and the ground truth as the decoder’s input in order
to increase robustness (Bengio et al., 2015).

4.5 Evaluation

For the evaluation, we use two datasets: a test dataset with 640 samples
with a ground truth produced by PropsDE, and an evaluation set of 300

sentences, which has been used to evaluate PropsDE (Falke et al., 2016). The
test dataset is a random mix of sentences from Wikipedia and news texts.
It is randomly selected out of the training dataset and removed from the
training data, thus, the model has never seen it before. The 300 sentences
from the evaluation set are in equal partitions from the web, Wikipedia, and
from the news.

From the extractions of the test dataset, we calculate the word precision,
which is

number of correct words
total number of words .

This gives us an idea of how well the model is able to directly imitate
PropsDE.

From the test dataset, we also calculate a soft precision. We view the outputs
of our neural network and of PropsDE as bags of words, and we count how
many words from the neural network’s prediction output also appear in the
target output from PropsDE. To get the soft precision value, we calculate

number of positives
total number of words .

This precision value gives us a hint about the portion of information that
our neural network is able to remember from the input.

With the evaluation set, we let the model produce extractions, and we
manually label those extractions as correct and incorrect. We also take a
look at how well the model performs at predicate extraction. To do that,
we calculate the precision of the relations without their arguments from
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the evaluation set. In the same manner, we evaluate the different types of
arguments, such as subject and object, and the syntax. The syntax precision
shows how well the neural network is able to produce correct relation-
argument structures, independently from the actual content.

Since a sentence can result in multiple extractions, an issue during this
evaluation is to correctly separate different extractions in a single sequence.
We simply split the sequence at the symbol that represents the end of an
extraction ”);”. This also means, that, if the model fails to correctly set
this symbol either by not setting it, or by setting it within an extraction, it
influences the total number of extractions, and therefore the precision value.
Nevertheless, we split the sequences in order to properly represent multiple
extractions. In some cases, the neural network might produce a sequence
of separator symbols without words, e.g. ”:: :: ); ); );”. After the end of an
extraction, we consider these sequences to be random output and discard
them.
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5.1 Experiments

Fix-Input-Sequence-Output Architecture

We experimented with several variants, where we set the whole dependency
graph as fixed input to the neural network. A few LSTM layers should
then read from the fixed input and yield extractions in an output sequence.
Variants considered different numbers of layers and different layer sizes. In
all of the variants we tried with this architecture, the loss function did not
converge to an acceptable level. Therefore, we discarded these models.

Sequence-to-sequence Models

In order to design a promising model, we further tested several config-
urations with Sequence-to-sequence (Seq2Seq) models. Here, we did not
yet employ bidirectional recurrent neural networks. The results of these
experiments can be seen in Table 5.1.

Upon these results, we decided to use three layers of GRUs for our model,
with 512 units as bidirectional encoder, and 1024 units as decoder. We
initially trained it with ∼18k training samples. With the test dataset of 640

sentences, this model produces an output word precision of 24.4 %. The
manual evaluation with 300 sentences shows, that the model achieves a
predicate precision of 20.0%. From those 300 sentences, only one extraction
is completely correct. In the final training, we train the model with ∼54k
training samples.
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Model Validation Loss Test Loss Training Time
GRU, 2 x 512 0.933 1.097 28 h
GRU, 3 x 512 0.913 1.074 32 h

GRU, 3 x 1024 0.873 1.038 73 h
LSTM, 2 x 512 0.982 1.154 35 h
LSTM, 3 x 512 1.001 1.175 80 h
LSTM, 3 x 1024 1.013 1.186 70 h (manual stop)

Table 5.1: Training experiments with Sequence-to-sequence models. Each configuration
employs either GRU or LSTM cells, and consists of two or three layers with
512 or 1024 units. The same validation and test dataset have been applied to
each configuration. Stopping criterion: validation error remains higher than its
minimum for 5 consecutive epochs. Loss function: cross entropy. During these
experiments, the decoder exclusively received ground truth values as input.

5.2 Evaluation

In this section, we evaluate our final model (see Section 4.5).

We directly compare our model with PropsDE extractions with a test dataset.
This results in a per-word precision of 28.1% (26.5% with the validation set).
The soft precision is 51.5%. That means that 51.5% of the output words from
our model are also found in the output words of PropsDE, independently
from their location in the sequence.

We also manually evaluate the extractions with a new set of sentences. It is
the same set of sentences, that has been used to evaluate PropsDE. From the
evaluation set, 4 completely correct extractions are generated by our model.
From 300 sentences, three are too long for our model. In total, the model
generates 327 extractions from the 297 sentences, which means an average
of 1.1 extractions per sentence.

The vocabulary for our neural network contains ∼11k words. In order to
cope with the fact, that many words do not appear in this vocabulary, we
replace them with placeholder words. 27.1% of the input words (surface
form and lemma) are replaced with placeholders.

For a more detailed impression of the model’s performance, we evaluate the
precision of multiple aspects of the output. Predicates are correctly identified
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Argument Occurrences Precision
subj 219 25.6%
mod 74 20.3%
sameAs arg 5 20.0%
obj 24 16.7%
iobj 6 16.7%
dobj 151 13.9%
prop of 29 10.3%
prep 105 8.6%
conj 4 0.0%
poss 1 0.0%
condition 3 0.0%
outcome 7 0.0%

Table 5.2: Detailed arguments evaluation. Number of occurrences and precision values of
different types of arguments.

in 38.8% of the extractions, and 34.6% of the extractions have correct syntax
(i.e. correct relation-argument structure). Apart from that, we also evaluate
the various types of arguments. The evaluation of the arguments shows,
that their performance is unevenly distributed. The results are displayed in
Table 5.2. In the next chapter we discuss possible reasons for these results
(see Section 6.3).
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During the analysis of PropS (Stanovsky et al., 2016) and PropsDE (Falke
et al., 2016) (see Chapter 3), we learned how a rule-based Open Information
Extraction (OIE) system can be ported from English to German. Then we
developed a neural network, that mimics the OIE ruleset from PropsDE.
This neural network consists of a bidirectional sequence-to-sequence model,
which receives nodes from a dependency graph as input, and produces
PropsDE extractions (see Chapter 4).

In this chapter, we reflect over the analysis, the implementation, and the
results of this thesis. At first, we look at the immediate limitations of the
design in our practical part (Section 6.1). Then we describe a few problems
that we encountered during the implementation phase (Section 6.2). In
Section 6.3, we discuss what we ultimately learned with this master’s thesis,
from the analysis as well as from the practical part. Finally, in Section 6.4,
we give some ideas for possible future work based on this thesis.

6.1 Limitations

Due to the fact that generating training data is slow, we limit the training
data to ∼54k samples. Because of this limitation, we have to limit certain
aspects of our design.

• Sentence length: The amount of training data requires us to limit
the sentence length. This is necessary because we input each word
together with a position embedding. The model learns the embedding
of each position. For rarely occurring (i.e. high) word positions, there
are only few training samples. Thus, the learned embeddings for these
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word positions might not be optimal. In order to reduce badly trained
position embeddings, we limit the input sequence length to 50 words.
• Vocabulary size: Similar to the sentence length, the size of the training

dataset also requires us to limit the number of known words (∼11k
words). Since the neural network has to learn an embedding for each
word, we decided to only include the most frequent words. Other
words are replaced by placeholder words, because, similar to position
embeddings, we expect the performance for rarely occurring word
embeddings to be low. As a result of this limitation, 27.1% of input
words are replaced with placeholder words (see Section 5.2).
• Placeholder words: The number of placeholder words is limited to 15.
• Compound words: The relation word can be a compound word of

two words from the input (see Section 4.1). In this case, we split the
concatenation into two separate words. This is not correct, but we
decided to do that anyways to facilitate the learning task. If we would
keep the original variant of the relation word, the neural network
needs to learn which concatenations of words lead to which results.
This requires learning capacities from the neural network, which we
prefer to keep for our main task.

6.2 Problems and Mistakes

During the implementation and training of the neural network, we made
mistakes and encountered issues that we had to find and solve. We describe
two problems that we found educational as they had a large impact on the
model.

• Output sequences often have different lengths. Therefore, each batch
is made as long as the longest output sequence of this batch, and
shorter sentences are padded with an empty token. Our mistake here
was that we included the padding in the calculation of the word
precision without realizing that this would distort the result. We
thought that it was necessary for the neural network to learn that
when the output sequence is done, it should not emit any more words,
and we also wanted to reflect that in the evaluation. It turned out that
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the neural network quickly learns to emit padding values after an end-
of-sentence symbol, but it is much more difficult for it to learn to emit
the correct words in front of the end-of-sentence. If we include padding
into the calculation, the value looks much better than it would without
padding, but it does not accurately represent the actual performance.
We address this issue by excluding the emitted values, that should be
padding, from this calculation.
• We also had a seemingly small programming mistake. The result of it

was, that the frequently occurring German word ”der” was not part of
the embedding vocabulary. Therefore, ”der” was always replaced with
a placeholder word. Placeholder words should only replace words that
rarely appear in text, and ”der” was strongly overrepresented within
replaced words. In this situation, the neural network learned to output
placeholder words too often and incorrectly.

6.3 Lessons Learned

Analysis of PropS and PropsDE

Falke et al., 2016, show us how to port an English OIE system to German. In
our analysis (Chapter 3) we see that it is necessary to attend to the details of
the languages in order to correctly adapt Part-of-speech tags, dependency
labels, and dependency tree structures for the new language. Even though
the two languages English and German are similar to a certain extent, a
direct port with simply replacing tags, labels and structures is not possible.
In the analysis, we see that in multiple cases, the rules for the two languages
need to be completely different. We can assume that this would also be
valid when porting PropS to another language.

The ruleset of the two OIE systems consists of three parts, that build upon
each other:

1. Extraction of linguistic features
2. Conversion from the dependency tree to a graph that represents se-

mantic aspects
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3. Generation of the final extractions

In the first two parts of the ruleset, there is a mix of large and small
differences, and in the third part, there are only a few small differences. The
differences in the ruleset represent the differences in the languages. In most
of the cases, small differences in the ruleset originate from the different Part-
of-speech (POS) tags, dependency labels, and dependency tree structures,
and therefore from the small differences in grammar. Due to the fact that
German and English are languages with many similarities, these small
differences are numerous. Large differences in the ruleset originate from
large differences in the languages. These large differences in the languages
are concepts and lingual constructs that only exist in one language, but not
in the other. One example for this is the possibility of indefinitely long chains
of nodes in PropsDE: In the Merge Nodes rule, it represents the German
Funktionsverbgefüge (e.g. ”Platz nehmen”). This is a construction, that does
not exist in English.

For the development of our neural network, the most important observation
is that the rules completely rely on the dependency tree and the POS tags.
From this observation, we conclude that the dependency tree and the POS
tags carry all the syntactic information that is required to retrieve semantic
aspects. Our neural network has to learn to retrieve semantic aspects in
order to extract facts. If our neural network also had to identify the syntactic
elements, then it would explicitly require a partition of its capacity for this
task. Therefore, we expect that feeding the dependency tree with POS tags
to the neural network simplifies the learning task.

Neural Network for OIE from German Text

Zhang, Duh, and Van Durme, 2017, who use a bidirectional Sequence-to-
sequence (Seq2Seq) model for OIE and implicit machine translation, achieve
a BLEU (bilingual evaluation understudy, Papineni et al., 2002) of 18.94 %
for extractions. BLEU is a score related to precision but modified for the
use in bilingual settings. We can compare their performance with ours, but
we have to keep the similarities and differences of their task and ours in
mind. They use a similar architecture, and they train their model to do
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OIE by imitating an existing system. In contrast to our task, they include
the implicit translation from Chinese sentences to English extractions. We
expect the machine translation to increase the difficulty, and therefore
decrease the performance of their task in comparison to ours. Taking that
into consideration, we expect their result of 18.94% to be a lower bound for
our result.

Our model achieves a word precision of 28.1% (see Section 5.2). This preci-
sion is in relation to PropsDE extractions. That means, our model is able to
directly mimic PropsDE’s output to 28.1%.

Apart from that, our model achieves a soft word precision of 51.5%. It is the
portion of tokens that is shared between our model’s output and PropsDE’s
output, without considering the location of the words. This is an interesting
value, as it gives us an idea of our model’s apprehension. We can interpret
this value as the amount of information, the Seq2Seq model holds, after
receiving the full input sequence. Following this interpretation, our model
is just large enough to grasp half of the information that it receives at the
input.

Our model produces less extractions than PropsDE. From the 300 sentences
of the evaluation dataset, our model generated 327 extractions, whereas
PropsDE generated 487 extractions from the same dataset. With an average
of 1.1 extractions per sentence, our model is below PropsDE’s 1.6 extractions
per sentence.

From the manual evaluation with the evaluation dataset, we get a glimpse
at how real-world application of our model would perform. Our model was
able to generate 4 extractions, that we consider correct:
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1974, nach dem ersten verlorenen Duell um das
Ministerpräsidentenamt, holte ihn der Sieger Rabin als

Verteidigungsminister in sein Kabinett.
haben :( subj :: er , dobj :: Ministerpräsidentenamt );

Jean-Jacques Rousseau hieß der Mann.
heißen :( subj :: der Mann , mod :: <unknown> Rousseau );

Erst rund vier Stunden nach der Festnahme durfte die BI-Vorsitzende
telefonisch die Betreuung ihrer Kinder organisieren und über das

”Legal Team” der Demo-Organisatoren eine Rechtsanwältin
verständigen.

haben :( subj :: sie , dobj :: BI-Vorsitzende );

Traditionelle Lernmedien stoßen hier schnell auf ihre Grenzen.
haben :( subj :: sie , dobj :: Lernmedien );

The fact that our model only produces a few correct extractions in our
evaluation leads us to the conclusion, that it is not yet suitable for application
environments.

In the following table, we can observe how our model attempts and fails to
assemble three example extractions:
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Wegen dieses ehrenamtlichen Engagements wurde er 2006 von
Kinderlachen mit dem Kind-Award ausgezeichnet.

Our model
Kind-Award :( subj :: von Kinderlachen , obj :: er er prep
prep :: dieser <unknown> , , prep mit dem dem
Kinderlachen , , mod :: :: );

PropsDE
auszeichnen:(subj:von Kinderlachen , obj:er ,
prep wegen:dieses ehrenamtlichen Engagements ,
prep mit:dem Kind-Award , mod:2006 )

So stiegen die Fahrgastzahlen drastisch an.

Our model steigen :( subj :: die Fahrgastzahlen , dobj :: Fahrgastzahl
an. , mod :: So , mod :: :: );

PropsDE ansteigen:(subj:die Fahrgastzahlen , mod:So ,
mod:drastisch )

GASAG ist seit 1995 Hauptsponsor des Eishockey-Clubs Eisbären
Berlin im Profi- und Juniorenbereich.

Our model

SameAs :( prep seit :: 1996 , sameAs arg :: <unknown> ,
sameAs arg :: Vorsitzender des Eishockey-Clubs
Eishockey-Club seit Eisbären und und und im im im
<placeholder7> );

PropsDE
SameAs:(prep seit:1995 , sameAs arg:GASAG ,
sameAs arg:Hauptsponsor des Eishockey-Clubs Eisbaeren
Berlin im Profi- und Juniorenbereich )

Within these extractions, the extractor has difficulties with the correct order
of words as well as with the full extent of information contained in the
sentence. The model needs to at least partially learn to apply German
grammar, and fully remember the information contained within a sentence.
These results show us that this task is too difficult to learn for our model.

We also made an interesting observation: After the initial training with ∼18k
training samples, our neural network was only able to produce a single
correct extraction (see Section 5.1). The final model is, however, not able to
produce this extraction any more:
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Aber während seines letzten Berliner Studienjahres ging eine
grundlegende Veränderung mit ihm vor.

Old model haben :( subj :: er , dobj :: <unknown> Studienjahr );

Final
model

gehen :( subj :: eine Studienjahres Mannschaft mit fünf
grundlegende vor. , prep während :: seiner <unknown>
<unknown> , , prep :: :: :: );

It is especially notable that the simple structure of the correct extraction
resembles the structure of those extractions, that our final model is able to
build correctly. From this observation, we suspect that our neural network
has already reached the limit of its capacities. The larger amount of training
data might have changed the learning focus towards different lingual con-
cepts. The limit of this neural network forces it to forget previously learned
concepts in order to learn the concepts which are stronger represented in
the larger dataset.

The unevenly distributed precision values of the different types of arguments
(see Table 5.2 in Section 5.2) might fit this interpretation. The precision order
displays the learning focus, but we do not know the reason for this result.
We consider two possibilities:

• A larger amount of training data, e.g. 1 million training samples,
would lead to a more even distribution of the precision values.
• A larger neural network is required in order to provide the learning

capabilities for all types of arguments.

The second possibility would fit the interpretation of the forgotten lingual
concept due to limited learning capacities.

For predicate extraction as well as for the extraction of full relation-argument
tuples, there is a lot of room for improvement. Future work can be based
upon our design. In the following section (Section 6.4), we contemplate
about ways for improvement.
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6.4 Future Work

PropS and PropsDE

The effort to port PropS to another language similar to English, like Dutch
or Danish, might be similar to the effort for developing PropsDE. In contrast
to that, porting it to a completely different language, e.g. an Asian lan-
guage, might be more difficult. In order to possibly facilitate future porting
processes, it would be interesting to develop an abstraction of the ruleset.
This abstraction could consist of easy-to-use building blocks for rules with
the goal to provide a programming library or framework for developing a
rule-based OIE system for a new language.

Neural Network for OIE from German Text

In order to improve the neural network that we developed in our practical
part, we have to consider the neural network itself as well as its training
environment.

A first approach for improvements to the model could be to increase the
amount of training data. We trained our model with a dataset with ∼54k
samples. A larger amount of data could allow for a larger vocabulary
and better performance with rare word embeddings and rare position
embeddings.

The training data has been generated by a large and complex set of rules.
During training, we expect the neural network to learn to accurately imitate
the application of these rules. That includes a partial understanding of
German grammar, and fully remembering the contents of the sentence. This
might be beyond its capacity. A way to address this issue would be to train
a much larger network with, for example, 6 layers of 2048 bidirectional
encoder units and the respective 6 layers of 4096 decoder units. The task to
imitate PropsDE could be kept, and, therefore, training data can easily be
generated with PropsDE. A drawback to this approach is, however, that it
would require a large amount of computational resources.

80



6 Discussion

Another approach would be to tweak the target task to not directly imitate
PropsDE. PropsDE (and other OIE systems) do not emit absolutely correct
extractions, and this approach could reduce learned errors. In order to
compensate for incorrect extractions from individual OIE systems, it might
be possible to include multiple OIE systems that support German, e.g.
PropsDE and GerIE (Bassa, 2016). After their extractions are converted to a
compatible form, a classifier could be trained (with manually annotated data)
to distinguish between extractions with errors and extractions that humans
consider correct. A pipeline of multiple OIE systems, converting tools, and
the classifier could then be used to generate training data. With this training
data, a training experiment could show, whether the bidirectional Seq2Seq
architecture can learn to build correct extractions. The neural network would
not have to learn to imitate PropsDE’s ruleset, and it might be able to gain
a more general understanding of the OIE problem.
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7 Conclusion

Information Extraction (IE) is the task to extract structured information
from semi- or unstructured information. Unstructured information includes
natural language text, on which we focus in this master’s thesis. IE from
natural language text usually relies on language features, thus, IE methods
usually are designed for specific languages.

We consider three degrees of language independence in IE: multilingual IE,
cross-lingual IE, and truly language agnostic IE. Multilingual IE methods
extract information from texts from a specific set of languages. Cross-lingual
IE methods additionally deliver the extractions in languages different from
the source language. The ideal in language independence is truly language
agnostic IE, which supports and performs equally well on any human
language. Truly language agnostic IE methods do not exist.

IE methods implement either fixed schema IE or Open Information Ex-
traction (OIE). In fixed schema IE, domains, relations, and entities are at
least partially predefined. In contrast to that, OIE extracts any relation and
entity that is given by the text. OIE systems usually consist of two steps: a
preprocessing step and an extraction step. Part-of-speech (POS) tagging and
dependency parsing are the most common preprocessing methods among
several possibilities. The extraction step is either rule-based or training
based.

There are only a few OIE systems for German text available. Two rule-based
OIE systems for German are PropsDE and GerIE. PropsDE is a German
port of the English OIE system PropS. We introduce a neural network that
mimics PropsDE.

In order to understand how the rule-based system PropsDE performs OIE
from German text, we have analyzed PropS and PropsDE. Apart from

82



7 Conclusion

learning about OIE from German text, this analysis shows us how a system
can be translated from one language to another. The translation of an IE
system into a new language is a possible step towards multilinguality.

The ruleset consists of three major partitions: extraction of linguistic features,
modifying the dependency graph, and building the final extractions. When
we look at their differences, we find that there are many small, but also a
few large differences. The majority of the small differences are in POS tags,
dependency labels, and dependency graph structures. The large differences
address lingual concepts that are only available in one of the languages.

After we analyzed PropS and PropsDE, we built a neural network that
mimics PropsDE’s behaviour. The bidirectional sequence-to-sequence model
consists of gated recurrent units. Its encoder receives a sequence of nodes
from the dependency graph, encoded in embeddings. The decoder’s target
output is a set of PropsDE extractions as a sequence of one-hot encoded
word indices. We trained the model with training data that we generated
with PropsDE.

In the evaluation, we showed that our model is able to directly mimic
PropsDE to 28.1%. Our model produces many extractions that appear
promising, but are not completely correct. In future work based on our
design, it should be possible to increase the performance.
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