TU

Grazm

Milo$ Koji¢, BSc

Procedural Content Generation in a
Multidisciplinary Educational Maobile
Game

Master’s Thesis
to achieve the university degree of
Master of Science

Master's degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Assoc.Prof. Dipl.Ing. Dr.techn. Christian Gutl
Dipl.Ing. Dr.techn. Johanna Pirker

Institute for Information Systems and Data Science
Head: Univ.-Prof. Dipl-Ing. Dr. Stefanie Lindstaedt

Graz, December 2017

TU

Grazm

Milo$ Koji¢, BSc

Prozedurale Generierung von Inhalten in
einem Mobilen Multidisziplinaren
Padagogischen Spiels

Masterarbeit
zur Erlangung des akademischen Grades
Diplom-Ingenieur

Masterstudium: Informatik

eingereicht an der

Technischen Universitat Graz

Betreuer

Assoc.Prof. Dipl.Ing. Dr.techn. Christian Giitl
Dipl.Ing. Dr.techn. Johanna Pirker

Institut fur Interaktive Systeme und Datenwissenschaft
Head: Univ.-Prof. Dipl-Ing. Dr. Stefanie Lindstaedt

Graz, December 2017

Procedural Content Generation in a
Multidisciplinary Educational Mobile
Game

Milo$ Koji¢

UNIVERSITY OF
TU WESTMINSTER

Grazm

Advisers

Christian Gutl
Johanna Pirker
Graz University of Technology

Markos Mentzelopoulos
Daphne Economou
University of Westminster

Graz, December 2017

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TuGRAZONline is
identical to the present master’s thesis.

Date Signature

Vii

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststandig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wortlich und inhaltlich enthommenen Stellen
als solche kenntlich gemacht habe. Das in TuGrRAZonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

Acknowledgments

I wish to express my deep gratitude to my advisors Assoc. Prof. Dipl.-
Ing. Dr.techn. Christian Giitl and Dr. Johanna Pirker for providing me the
opportunity to work on my thesis in London, and for their constant support
throughout the entire project.

Many thanks to my twin brother for his support and advices which helped
me to successfully complete the project.

For guidance, continuous input and inspiring ideas I would like to thank
Markos Mentzelopoulos and Daphne Economou from the University of
Westminster in London. My stay at the University of Westminster was a
very valuable experience.

Finally, I want to thank my family and friends for their constant encourage-
ment, patience, and love throughout my studies.

Xi

Abstract

Procedural content generation (PCG) in video games is a technique used to
generate maps, assets, and sounds. This technique can provide players with
a non-repetitive experience by creating endless maps with a large number of
content variations. There is a number of different PCG algorithms and those
which are of interest for this thesis are the methods used for generating
dungeon-like map structures, terrains, trees, plants, and sounds. Cellular
automata is an algorithm used for construction of map structures. It is useful
for distinguishing between walkable and non-walkable map areas. Another
important algorithm for creation of natural-looking terrains is Perlin noise,
which is one of the most known noise functions.

A problem which educational games usually face is the complexity of level
creation. Instead of focusing on educational content creation, educators have
to invest a lot of effort in designing every single level. This thesis discusses
solutions for this problem and the implementation of a multidisciplinary
educational mobile game - “sCool”, which is based on PCG techniques. The
video game serves as a platform for conveying education in a way which is
different from traditional teaching approaches and more attractive to high
school students and first-year university students.

The thesis also discusses implementation details of a programming environ-
ment where players can learn programming principles, type and execute
code on mobile devices, practice their skills, and progress by solving chal-
lenges within the game.

The evaluations of the game showed that the participants find the game very
interesting and engaging, as well as that the game helped them to better
understand the educational content and inspired them to learn more about
STEM disciplines.

xiii

Kurzzusammenfassung

Prozedurale Inhaltsgenerierung (PCG) ist eine Technik, um Karten, Assets
und Sounds zu generieren. Diese Technik kann Spielern eine einzigartige
Erfahrung bieten, indem sie endlose Karten mit einer grofien Anzahl von In-
haltsvariationen erstellt. Es gibt eine Reihe verschiedener PCG-Algorithmen.
Fiir diese Arbeit sind jene Methoden interessant, mit denen , dungeon”-
artige Kartenstrukturen, Geldnde, Pflanzen und Kldnge erzeugt werden.
,Cellular Automata” wird verwendet um zwischen begehbaren und nicht
begehbaren Kartenbereichen zu unterscheiden. Mithilfe der Rauschfunktion
,Perlin Noise” werden moglichst natiirlich aussehende Geldnde erstellt.

Ein Problem, mit dem Lernspiele oft konfrontiert sind, ist die Komplexitat
der Level Erstellung. Die manuelle Erstellung von Levels ist ein sehr
zeitaufwendiger Prozess. Anstatt sich auf die Erstellung von Inhalten zu
konzentrieren, miissen Pddagogen viel Aufwand in die Gestaltung jeder
einzelnen Herausforderung investieren. Diese Arbeit diskutiert Lésungen
dafiir und die Implementierung des multidisziplindren mobilen Lernspiels -
,5Cool”, welches auf PCG-Techniken basiert. Das Spiel dient als innovative
Plattform fiir die Vermittlung von Lerninhalten, die fiir Gymnasiasten und
Studienanfanger attraktiv ist.

Die Arbeit behandelt die Implementierungsdetails einer Programmierumge-
bung fiir mobile Geréte innerhalb des Spiels. In dieser Umgebung kénnen
Spieler Programmierprinzipien erlernen, Code schreiben und ausfiihren
und dabei ihre Fertigkeiten trainieren. Fortschritte im Spiel werden durch
das Losen von Herausforderungen erzielt.

Die ersten Evaluierungen des Spiels zeigten, dass die Teilnehmer das Spiel
sehr interessant und ansprechend fanden. Das Spiel half ihnen, den Inhalt
besser zu verstehen und inspirierte sie dazu, mehr tiber die MINT zu
lernen.

XV

Contents

Abstract

Kurzzusammenfassung

1.

Introduction
1.1. Project Aims and Objectives

1.2,

Structure of the Thesis .

Background and Related Work
Video Games in Education.
Procedural Content Generation (PCG)

2.1.
2.2,

2.3.
2.4.
2.5.

2.6.
2.7.

History of PCG Games .
Procedural Generation of

Game Assets

Overview of PCG Algorithms

2.5.1. Cellular Automata

2.5.2. Agent-based Growing

2.5.3. Space Partitioning
2.5.4. Height Maps . .
2.5.5. L-System

Methods

2.5.6. Search-based Approach

2.5.7. Voronoi Diagram

Evaluation of Content Generators

Summary

Design and Conceptual Model

3.1.

Functional Requirements
3.1.1. Web Application

3.1.2. Theoretical Mode
3.1.3. Practical Mode .

XVil

xiii

XV

Contents

3.1.4. Procedural Sound and Content Generation 38

3.2. Non Functional Requirements. 38
3.3. Conceptual Architecture 40
3.4. Technology Decisions 42
3.4.1. GameEngines. 42
3.4.2. Procedural Content Generation. 43
3.4.3. Playgrounds L. 48
3.4.4. Other Decisions and Final Structure 53

3.5. SUMMATY v oo 56
. Implementation Details and Showcase Scenario 58
4.1. Procedural Content Generation 58
4.1.1. Cellular Automata 59
4.1.2. PerlinNoise, 63
4.13. PCGSound, 63
4.1.4. PCGContent 68
4.1.5. Region Detection 70
4.1.6. Gameplay and Elements 72

4.2. PracticalMode. L 75
421 UlSystem 76
4.2.2. The Environment 83

4.3. 3D models and Ul Imagery 85
4.4. Player Customization 88
4.5. FinalGameOutput 88
4.6, Summary 94
. Evaluation of the System 96
5.1. Evaluation of the Prototype 96
5.1.1. Study Setup and Methodology 96
5.1.2. Participants 97
513. Results o o 98

5.2. Final Evaluation, 101
5.2.1. Study Setup and Methodology 101
5.2.2. Participants 101
523. Results o o 102

5.3. Discussion and Limitations 105

XVilii

Contents

6. Lessons Learned
6.1. Literature.
6.2. Development,
6.3. Evaluation

7. Conclusion and Future Work
7.1. Conclusion
7.2. Future Work

References

A. Questionnaire
A, Part1
A2 Part2 .. . e
Az, Parts3

XIX

111
111
112
113

115
115
116

List of Figures

2.1.
2.2.
2.3.
2.4.

2.5.
2.6.

2.7.
2.8.

2.9.

2.10.
2.11.
2.12.

2.13.
2.14.

2.15.

2.16.

2.17.

3.1.
3.2.
3-3:

3.4.

Screenshot taken from GamaSutra website (Wen, 2017). 9
Screenshot from No Man’s Sky game (MathChief, 2017). . . . 10
Screenshot taken from Minecraft website (Mojang, 2017a). . . 11
Screenshot taken from Minecraft education version website

(Mojang, 2017b). oo 11
Screenshot taken from Terraria website (Relogic, 2017). 12
Screenshot taken from Spelunky website (Spelunky, 2017). . . 13
Yavalath game (Nestorgames, 2017). 14
An example of cellular automata algorithm 17
An example of agent-based map generation (Johnson, 2017). . 19
Binary space partitioning - quadtree (Shaffer, 2017). 20
The process of generating a dungeon using BSP (Eskerda, 2017). 21

An example of Perlin noise usage. Screenshot taken from
(RedBlobGames, 2017) website. 22

Trees generated with L-system (Prusinkiewicz & Hanan, 2013). 24
An example of Voronoi diagram. Screenshot taken from (Au-
renhammer, 1991). o oo 27
An example of Delaunay triangulation. Screenshot taken from
(Aurenhammer, 1991). 27
An example of map generation using Voronoi diagrams.
Screenshot taken from (Patel, 1991). 28
Voronoi texture generation. 30
Conceptual architecture of the project. 41
An output example of Cellular Automata.. 44
An output example of noise functions used to elevate specific
cells and create natural-looking terrains.. 45
The structure which shows how the theoretical game part
should look like.. L. 46

XXI

3:9-

3.10.

4.1.
4.2.
4.3.

4-4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.

4.12.
4.13.

4.14.

4.15.
4.16.
4.17.
4.18.

4.19.

List of Figures

Final output of combining Cellular Automata with Perlin noise. 47
Screenshot taken from the game after running the game on

Android. 49
Screenshot taken from the game which represents the early
prototype of code components. 50
Structure of the practical game part for the programming
COUISE. . . v vt vttt ittt e e 52

These are the examples of different art styles. Voxel (a) (Oré,
2017), Low poly (b) (DesignContest, 2017), Cartoon (c) (Pop-
CapGames, 2017) and Realistic (d) (EBGames, 2017). 54
Structure of the programming course. 55

A question which a player has to answer, when all the disks

are collected, in order tomoveon. 59
Screenshot from the game showing the Cellular Automata

implementation in the Unity3D engine. 61
Screenshot from the game showing the 3D transformation of

Cellular Automata with different elevation values. 62
Perlin noise variations. o000 64
Sound generation script. Lo L0 67
Music generation. 67
List of all instruments available in the game. 68
L-system tree structures. 69
L-system forest generation., 71
Region detection., 73
Screenshot from the game showing outputs of region detec-

tion algorithm. o 0L 74
New controls. oo oL 76
Screenshot from the game showing practical mode of the

Pprogramming COUISe. v v v v v v v vt 78
Early prototype of the practical mode with the delete zone

component. Lo 79
Errorreporting. L. 81
Screenshot from the game showing core Ul components. . . . 82
Screenshot from the game the different keyboard layout types. 84
The color palette used to create 3D models in the game. . . . 86
The UI color palette used to create the Ul system in the game. 8y

XXl

4.20.

4.21.
4.22.

4.23.
4.24.

5.1.

5.2.

5:3-

List of Figures

All models created for this project, using the color palette

from Figure 4.18. oo 87
Player customization scene. Sceenshot taken from the game. . 89
Map generation. L 91
Practical mode. oo oo 92
Menuscenes. e 93
The ratings for the controls and the UI in the prototype

evaluation. L Lo 100
The feedback provided by the participants on the code writing

PrOCESS. . . . v vt it 103

GEQ results for absorption, presence, flow and immersion. . 105

XXl

List of Tables

5.1. The summary of the initial evaluation results (1 - strongly

disagree, 5 - strongly agree). 99
5.2. The summary of the results on the system specific questions

(1 - strongly disagree, 5 - strongly agree). 106
5.3. The summary of the motivation related questions (1 - strongly

disagree, 7 - strongly agree). 107
5.4. The Game Engagement Questionnaire results (1 - strongly

disagree, 5 - strongly agree). 108
Ax. GEQ. e 127
A2 Motivation o 128

XXV

Abbreviations

ASP Answer Set Programming. 16

FPS Frames per second. 61
FPS First-person shooter. 7

IDE Integrated development environment. 33
PCG Procedural content generation. xiii, 1, 2, 6

UX User Experience. 31

XXVII

1. Introduction

In the past, people have been using different techniques for memorizing
content since they did not have access to technology we have today (Ralby,
Mentzelopoulos, & Cook, 2017). Nowadays, it is really hard to imagine
teaching and learning processes without technology involved. Technological
innovations allow quick access to different learning resources and have the
potential to transform education (Maksym, 2017). Scientists agree that video
games can be very useful for teaching as they can improve the motivation
of students (Squire, 2003).

One way to design an educational video game is to implement a course
curriculum into a commercial game design for entertainment, which could
help enhance the motivation and engagement of players Squire (2011). In
order to provide unique activities throughout the game levels, increase
attention and interest of players, it is necessary to constantly offer a new
content. That is the case where PCG plays a significant role. Procedural
generation is a process of creating content based on the set of parameters
provided by the programmer. This powerful approach allows programmers
to create a number of variations of a game object, map or sound. Another
important aspect of PCG is replayability, which basically means that every
time players run a game, they will get a different levels and content. There is
already a number of video games which are utilizing this concept, but these
techniques are becoming more and more popular among game programmers
(Smith, 2014, 2015). The main motivation is that it is possible to generate
infinite maps, open worlds, endless music, and unique elements with very
limited resources. In other words, it is not necessary to manually create
every single element, but rather use a very basic input (a texture, a model
or a sound) and generate a number of variations.

1. Introduction
1.1. Project Aims and Objectives

The main objectives of this work are the design, implementation and eval-
uation of an educational video game based on PCG techniques. There are
two main features which this educational game should support:

e Procedural content generation (PCG) to get educators focused on their
curriculums rather than on level creation, to enhance engagement of
players, and motivate players to improve their knowledge by playing
the game.

e A programming environment where players can learn programming
principles, type and execute code on mobile devices, practice their
skills, and progress by solving challenges within the game.

The most challenging part in this work is to make a game which is going to
be engaging and educational at the same time. The target audience are high
school students and first-year university students, that is, students of age 11
to 19. As it is already known, this target audience is very demanding which
makes it challenging to design an educational game that they will find
interesting. There should not be the parts where a play stops and education
comes in (Sisler & Brom, 2008). Education should blend in into a game
so that the players are not able to tell the difference (Amory & Seagram,
2003).

Based on already existing video games, there is certainly a potential in using
PCG for educational purposes, as it can motivate players to explore and
engage more with the provided content (Nebel, Schneider, & Rey, 2016).
Providing an exploration experience is a good approach for motivating
users to acquire knowledge and critically think about the information they
receive (Risi, Lehman, D’Ambrosio, Hall, & Stanley, 2016).

The name of this project is “sCool”, and it represents the combination of
words school and cool. The idea is to implement one course (programming)
which will serve as a proof of concept and must show that other subjects
like mathematics, physics, electrical engineering, etc. could be implemented
in the same way without collapsing the structure. The reason why program-
ming course is taken for the prototype, is mostly because the author of
this paper comes from computer science background. In the programming

1. Introduction

course, students can learn Python in an interesting way by programming
a robot to move around the map. According to Zelle (2004), Python is
near-ideal first language, and compared to other programming languages,
Python is more readable and takes fewer lines of code to write the equivalent
program. Building blocks concept allows players to use already predefined
code snippets and drag-and-drop them into the desired place in the code.
This helps players to write their code faster and reduces the number of
syntax errors in the code. Also, this could be very helpful for beginners as
they do not need to memorize code syntax in order to write their programs.
An important component of this project is a web application which is used
to help educators create their courses and invite students to join. The content
created by educators is loaded into the game and presented to players. The
web application, which works closely with the game, is implemented by
Koji¢ (2017), as well as, the functionalities for fetching the content from the
server and displaying it in the game. An educational content obtained from
the server is presented in the forms of missions and challenges within the
game.

1.2. Structure of the Thesis

This thesis consists of seven chapters, where every chapter discusses specific
parts of the game. Chapter 1 is an introduction and gives a brief overview
of the entire work. It also analyzes the motivation for this work and defines
the thesis structure. Chapter 2 provides a literature review about existing
educational video games and an overview of procedural content generation
algorithms. Chapter 3 discusses about design and introduces a conceptual
model. The basis for the educational video game is explained in this chapter
with other important features such as playgrounds and building blocks. It
shows what algorithms for procedural map and sound generation are going
to be used for. Chapter 4 consists of the most important sections of the
implementation and showcase scenario. It provides a detailed discussion
how Cellular automata and Perlin noise can be used for generation of maps.
There will be discussions about infinite maps, how to efficiently generate
endless words, and run all of these on different mobile platforms. Chapter 5
analyzes the prototype evaluation and the final evaluation. It discusses

1. Introduction

different setups and methodologies for evaluation and summarizes par-
ticipants” feedback. There will be more details about initial testing of Ul
and UX, and how the feedback received from players who have tested the
game helped to make important improvements and modifications. Also, the
chapter covers the final evaluation of the system and the general feedback
from the specific target audience. Chapter 6 discusses lessons learned while
working on this project and summarizes different challenges and issues
which appeared during the background and concept research, implementa-
tion, and evaluation. Chapter 7 provides ideas for future work and gives
suggestions about the steps which have to be taken in order to make this
game look and feel better. It also consists of a list of features which have
to be improved and proposes features and modification which could make
this game even better.

2. Background and Related Work

This chapter provides an explanation about procedural content generation
and analyzes the content which can be procedurally generated. It shows an
overview of most popular PCG algorithms, examines the way they work,
as well as, what they can be used for. Also, there is a discusses about
some of successful educational video games and more details about compo-
nents which make those games outstanding. This chapter also provides an
overview of PCG algorithms used by developers in those games. Minecraft®,
Spelunky?, No man’s sky3 are some of the games which are based on
PCG principles and are going to be explained in greater detail further on.
Minecraft is one of the game examples which widely used in education.

It is essential to reflect all the benefits and drawbacks of procedural gen-
eration, as well as, to explain which one is giving better results and when.
Finally, once the content is generated, it is important to perform an evalua-
tion of the created content, understand is the content satisfying proposed
criteria, and can it be more successful.

2.1. Video Games in Education

Video games may help players develop different skills and enhance edu-
cation, if they are designed in a manner which enforces the natural way
of acquiring knowledge (De Aguilera & Mendiz, 2003). The idea is that
one should be able to fail a number of times until understanding what
was wrong and what caused the failure (Pirker, Guetl, & Astatke, 2015).
The major benefit of video games in education is that they can capture the

Thttps:/ /minecraft.net
2http:/ /www.spelunkyworld.com
3https:/ /www.nomanssky.com

2. Background and Related Work

attention of students so that the students want to keep playing the game
and learn more through it (Gentile, Lynch, Linder, & Walsh, 2004).

New generations of students have different preferences when it comes to
learning, mostly due to technological innovations which have significantly
influenced learning and teaching strategies (Chang & Guetl, 2010). Video
games should be able to immediately provide feedback, and reward or
punish players based on what they are doing in the game is correct or
wrong (Hanus & Fox, 2015). Researchers have been using them in teaching
computer science, medicine, languages, and even criminal law, where video
games helped with motivating students and enhanced learning effectiveness
(Mentzelopoulos, Parrish, Kathrani, & Economou, 2016). Another great
benefit of video games is the use of repetition. Repetition is very important
in education as it probably the most intuitive principle of learning (Weibell,
2017). Video games are also based on repetition, as goals in a game are
usually repeating throughout the game. For example, if a game is a First-
person shooter (FPS), then one has to use guns and shoot at enemies. That
usually repeats as a player progress and the only difference is that enemies
are getting stronger and more advanced, but the player usually has better
weapons. Course curricula are mostly designed in a similar way, as initial
lectures are introductions to more advanced topics. One of the best ways to
learn something is by practicing it (Schank, Berman, & Macpherson, 1999).
When a content from a topic is explained with words using traditional (oral)
approach, sometimes it can be too abstract to understand, but when one
does something in practice, then student is not only understanding how
presented matter works, but mastering that and is able to apply acquired
skills in different settings. That is the main benefit of practical approach
over theoretical, but theoretical part cannot be neglected, as before doing
something one has to be able to understand how that works. It is important,
however, that theoretical and practical tasks are combined so that they act
together. (Dewey, 1904)

2. Background and Related Work

2.2. Procedural Content Generation (PCG)

Procedural Content Generation is a process of generating game content
using algorithms with little or no user input (Togelius, Kastbjerg, Schedl, &
Yannakakis, 2011). The content can be anything from maps and worlds, to
assets and music. It is important to note that a content is not considered to
be any game-specific functionality and behavior. One of the very important
components, which has to be taken into account when using PCG techniques,
is a set of constraints, which ensures that the generated output is valid.
The reason why PCG is so useful, is that it can replace humans in content
creation. Also, it can speed up that process and generate a number of
different outputs in a matter of seconds. Another benefit is that the gameplay
can be adapted to how a specific player is playing the game. This means the
new game rules and goals can be created based on the previous player’s
progress and the way that player was interacting with the game. In the early
8os, the limited capabilities of computers forced developers to look for other
methods for loading and storing the content. That inspired developers to
try to overcome those limitations by developing PCG methods. The most
challenging part is to generate the content which reaches the quality of
manually crafted one. It should be possible to control how the generated
content will look like and it is important to ensure that there is enough
diversity, so that the outputs do not look alike. Finally, the PCG generators
should be fast and reliable so they can generate the content according to
specified criteria (Shaker, Togelius, & Nelson, 2016).

2.3. History of PCG Games

A game category which has the longest tradition of using PCG techniques
are roguelike games (Hatfield, 2017). In the early 1980s, game developers
started using PCG to randomly define the maps with rooms and hallways,
as well as, to generate certain enemy units and collectibles.

An example of a game where pretty much everything is generated with
PCG algorithms is .kkrieger (first person shooter which size is only 96KB).
This means that every texture, mesh, and sound has been generated with

2. Background and Related Work

Figure 2.1.: Screenshot taken from GamaSutra website (Wen, 2017).

procedural methods. The game is considered to be one of the smallest PC
FPS games (Wen, 2017).

No Man’s Sky# is an action-adventure survival video game where the
geometry, textures, and animations were built by using procedural methods.
The game is based on the procedurally generated multi-planetary scale with
18 quintillions of planets, unique creatures, ships and other models which
are built by using PCG principles. Every planet features unique flora and
fauna. The game was marked as one of the most anticipated games in 2016
(Gamasutra, 2017). Figure 2.2 shows a screenshot from the game.

Minecraft> is one of the most known PCG games. Worlds in the game are
created by using Perlin noise (see Figure 2.3). The game is mostly about
building a world with textured blocks. Players can come up with their own
goals which might be the reason why Minecraft is so popular (Walton, 2012).
There are five different game modes: survival, creative, adventure, spectator,
and hardcore mode (Wikipedia, 2017a), where every mode offers different
gameplay and objectives. This means the game can attract different player

+https:/ /www.nomanssky.com
Shttps:/ /minecraft.net

2. Background and Related Work

ool

Clapoluw

Figure 2.2.: Screenshot from No Man’s Sky game (MathChief, 2017).

types and target groups. According to (Bartle, 1996), there are four different
gamer types, such as achievers, explorers, socializers and killers. This means
that every player can find their matching Minecraft mode. Figure 2.4 shows
a screenshot from Code builder - Minecraft education edition®. Students
can use Scratch?, Tynker® or MakeCode? to create their worlds in Minecraft
through the code. Coding is not the only thing one can learn, as there are
many other subjects like architecture, art, literacy, etc. One of the reasons
why Minecraft is so well accepted by students is because they play Minecraft
in their free time anyway, so if educators can adapt their curriculum and
integrate it into Minecraft, then that can really help with presenting the
curriculum in a way that is very interesting to students (Mojang, 2017a).

Another example is Terraria', which was characterized by many as a 2D
version of Minecraft. Terrains are procedurally generated by using the

6https: / /education.minecraft.net
7https:/ /scratch.mit.edu

8https:/ /www.tynker.com
https:/ /makecode.com
Thttps:/ /terraria.org

10

2. Background and Related Work

S s

Control

repeat @

agent destroy [FTTTN
ergent @ S i

e
repeat @

agent destroy

-m_ ESLET forvard |

Functions

sgenturn (TG0
agent destroy |
agent move
Py Yy sgencurn (TG0
repeat @) repeat @
agent destroy
agent move|

agent wurn [EET

agent destroy

agent move

if D then [l e @ ’”'g"‘m
repeat

LK false

sgent desro ETED
ick random to
P 0-® agent move [

agentturn
agent destroy|
ot
agentturn
repeat @)
agent destroy

[faise JUM

Figure 2.4.: Screenshot taken from Minecraft education version website (Mojang, 2017b).

11

2. Background and Related Work

Figure 2.5.: Screenshot taken from Terraria website (Relogic, 2017).

constructive methods, such as Cellular Automata and noise functions. The
game offers a rich gameplay as the core features are digging, gathering,
crafting, exploring, fighting and building. Once some materials or items
have been collected then one can combine them by crafting a new item,
which is usually a weapon or a tool that can be used later on in fighting
or building processes. This enhances the creativity of players as they often
have to come up with solutions with limited resources at their disposal.
There are many modes created by the community as everyone can create
their own maps and make it publicly available so that others can try them
as well (Relogic, 2017).

Spelunky'* is an example of how procedural generation can make a game
interesting if implemented in a way that follows all constraints defined
in the game design process. The caves are procedurally generated which
means that every time a level is repeated, the cave is going to be different
and all pickups will be placed in different positions. There are four different

Thttp:/ /www.spelunkyworld.com/

12

2. Background and Related Work

Figure 2.6.: Screenshot taken from Spelunky website (Spelunky, 2017).

cave types and every type features different enemy units. When players run
out of hearts, they have to start the game from the beginning and this time
the cave will look differently so the players will not be bored (Baghdadi et
al., 2015, Wikipedia, 2017b). Figure 2.6 shows a screenshot from the game.

There is a number of mobile games which generate levels by randomly in-
stantiating obstacles, power-ups, and pickups. Subway Surfers'? is a mobile
game with the most number of downloads on the mobile platforms and has
more monthly active players than League of Legends®3. It still generates 30
million new downloads per month and even though it has been released
5 years ago, the game is still at the top of the charts (Bogacheva, 2017).
This game uses random number generator for generating a sequence of
predefined map parts which are put together to form an endless map.

"http:/ /subwaysurfers.com
Bhttps:/ /eune.leagueoflegends.com/en

13

2. Background and Related Work

Figure 2.7.: Yavalath game (Nestorgames, 2017).

2.4. Procedural Generation of Game Assets

When using PCG for generating a content, it is important to understand
what one is actually expecting to have as an output. Procedural generation
can be used not only for generating maps, worlds, content, and sound but
for generating game rules as well. As an input, the algorithm can take
a set of constrains which are going to be used when deriving the rules.
The algorithm can determine whether the games should be turn-based or
real-time. One of the most known examples of PCG in generating rules is
Yavalath game, which has been invented by a computer program called
LUDI written and by Cameron Browne (Browne, 2017). The game can be
played by 2 or 3 players and the winner is a first player which manages
to place four stones in a row without placing tree stones in a row first. A
screenshot from Yavalath is shown in Figure 2.7. The game title was also
generated, this time using Markovian process.

Procedural generation is mostly used for generation of maps and worlds.

14

2. Background and Related Work

There are many algorithms and techniques to successfully generate a map.
Distribution methods are very useful for this purpose. Cellular automata is
one of the most popular PCG algorithms. It works in a way that it generates
zeros and ones at random positions. Then, it iterates a number of times until
elements are grouped together and form a structure. When it comes to game
content PCG techniques can generate different tree types, enemy types, rock
types, etc. In No Man’s sky, all species are procedurally generated, and
there are many parameters which determine what kind of spicy is going to
be generated, such as surrounding area, environment, location and player
interaction (Gamepedia, 2017). Trees can be generated by using L-system
algorithm or Fractals based on lines or squares (Pythagorean theorem).
In upcoming chapters, this will be explained in greater detail. Procedural
sound generation can help generate unique and endless music through
the code. The main benefit is that it is not necessary to store many sound
tiles which saves a lot of memory. Music can change based on the player’s
surrounding, health, and mood. It is important, in the end, to evaluate
the quality of what is generated to check if produced rules are interesting
enough to players.

2.5. Overview of PCG Algorithms

There is no standardized taxonomy of procedural content generation algo-
rithms, so there is a number of different classifications.

Based on user input, procedural generation algorithms can be separated
into two categories:

e Those who generate content based on input
e Those who try to create a structure out of a random noise

According to Shaker et al. (2016) all algorithm can be categorized as follow:

e Search-based approach

Constructive generation methods for dungeons and level
Fractals, noise and agents

Grammars and L-systems

Rules and mechanics

15

2. Background and Related Work

Stories and quests

Answer Set Programming (ASP)
Representation for search-based methods
Experience driven PCG

Mixed-initiative content creation

Another categorization presented by Hendrikx, Meijer, Van Der Velden, and
Iosup (2013), shows that taxonomy of common methods for the generation
of a game content is:

Pseudo-Random Number Generators
Generative Grammars

Image Filtering

Spatial Algorithms

Rules and mechanics

Modeling and Simulation of Complex Systems
Artificial Intelligence

There is a number of algorithms associated with every category in two
previously described taxonomies. The further text discusses the algorithms
which are related to this thesis and which can be used to generate a content
for the multidisciplinary educational game.

2.5.1. Cellular Automata

The first three algorithms, described in further text, belong to constructive
algorithms family (Shaker et al., 2016). The constructive generation methods
are particularly used for generating dungeons and labyrinth-like structures.
Their greatest advantage is that they are simple to understand and imple-
ment. Also, they are generally very quick and responsive. These methods,
however, provide very limited control over what is being generated. In other
words, they do not give programmers much freedom to control the final
outcome.

Cellular Automata consist of a grid of cells, where every cell can be in the
on-off or one-zero state. The algorithm defines how each cell changes based
on the states of adjacent cells (Berto & Tagliabue, 2017). The best-known

16

2. Background and Related Work

Figure 2.8.: An example of cellular automata which shows how 2D grid looks like when
values are randomly generated and the outcome of iterations with natural
cave-like shape (Kun, 2017).

example of Cellular automata is “The game of life” by John Horton Conway
(Wikidot, 2017). Conway’s Game of life has the following set of rules:

1. If a cell is alive (state 1) and has less than two live neighbors (with
state 1), then it dies (becomes o) - because of underpopulation

2. If a cell is alive and has three or more live neighbors, then it dies -
because of overcrowding

3. If a cell is alive and has two or three live neighbors, then it stays alive

4. If a cell is dead and has three live neighbors, then it becomes alive

Figure 2.8 shows an example generated by using Cellular automata.

Pros and Cons

Cellular Automata is very useful for generating cave-like shapes. It is very
often used for generating content in rouge like games, where it is necessary
to generate different dungeons. However, sometimes the algorithm can pro-
duce isolated cave sections, that is, the rooms which are not reachable. Also,

17

2. Background and Related Work

creating the large maps might require additional tuning of the generated
outputs as they sometimes might not have a natural look.

2.5.2. Agent-based Growing

The next method type, which can be used for generating maps, is agent-
based growing. An agent is dictating how the generated map will look like.
The agent’s movement is based on stochastic process, therefore the output
of this algorithm is unpredictable. It is very common to see that two or
more rooms are overlapping when a map is generated. In order to improve
results generated by this algorithm, one can use "loop-up” approach which
is basically checking if overlaps are going to occur and prevents them.
Figure 2.9) shows how a map generated by this algorithm looks like (Shaker
et al., 2016).

Pros and Cons

One of the benefits is that this algorithm is capable of creating organic
dungeons. Also, it is possible to modify the agents during simulations and
inform them about the environment, so they can avoid potential overlapping
of rooms and corridors. A drawback of this approach is that sometimes the
outputs can be chaotic and unpredictable.

2.5.3. Space Partitioning Methods

Space partitioning methods divide space into subsets. The most popular
method is binary space partitioning, where the surface is recursively divided
into two parts which repeats until stopping criteria is met. The space can
be represented as a binary tree. There are two types of trees which can be
formed: a Quadtree and an Octree. A Quadtree is used for a 2D space and it
splits the space into four quadrants. An Octree is useful for partitioning 3D
spaces into eight octants. An example of quadtree can be seen in Figure 2.10
(Naylor, 1998).

18

2. Background and Related Work

Figure 2.9.: An example of agent-based map generation (Johnson, 2017).

19

2. Background and Related Work

0 127
0 ®
C
A
® ° (40,45)
D
®
B
b |E (70, 10) (69,50)
E [J
(55,80)(80, 90)
127
(a) (b)

Figure 2.10.: Binary space partitioning - quadtree (Shaffer, 2017).

Figure 2.11 gives an example which can be used for generating dungeon-like
maps. In this example, the first two iterations have been used for space
partitioning. The next step is needed to draw a room in each cell. Finally, it
is necessary to connect the rooms so that every room is reachable. Instead
of a number of iterations, one can have some other stopping criteria. For
example, partitions can be further divided, until width or height reaches a
certain threshold.

Pros and Cons

Space partitioning method guarantees that there will be no overlapping and
is useful for creating organized structures of dungeons. A lack of organic
and more natural look of generated dungeons is the main disadvantage of
this method.

20

2. Background and Related Work

M
|]

Step 1: Divide space into partitions Step 2: Draw rooms

|
=l

Step 3: Draw paths Final result

Figure 2.11.: The process of generating a dungeon using BSP (Eskerda, 2017).

21

2. Background and Related Work

Figure 2.12.: An example of Perlin noise usage. Screenshot taken from (RedBlobGames,
2017) website.

2.5.4. Height Maps

Height maps are very useful for generating terrains and landscapes. There
are different types of noises which can be used for this purpose. Perlin noise
is the most used one, probably because it is not complex to understand how
this algorithm works and to implement it. In order to generate a map using
Perlin noise, it is needed to create a grid of random values between zero and
one. The simplest way to create a height map is to use previously generated
values for elevation. The terrain parts above specified thresholds can be
colored differently, which helps to create a more realistic landscape. There
are two important components: a frequency and an amplitude. Simple put,
a frequency defines change over the x-axis, while an amplitude determines
change over the y-axis. Octaves represent a set of frequencies, added as a
supplement to the main frequency, in order to get natural-looking mountain
shapes (RedBlobGames, 2017). Figure 2.12 shows an example of Perlin noise
in action and what kind of outputs this algorithm can generate (Perlin, 2017).

22

2. Background and Related Work

Pros and Cons

Perlin noise is capable of generating natural terrain-looking maps. It is also
used for increasing the appearance of realism in computer graphics. The
complexity of Perlin noise is O(N?) which is improved and reduced to O(N)
in Simplex noise.

2.5.5. L-System

L-system is a type of grammars which is mostly used for plants generation.
Grammars simply said, are used to recursively make or derive objects from
other objects. There is a number of examples of tree and weed generation,
as well as, road and city constructions. Grammars consist of a nonterminal
symbol set, terminal symbol set and a production rules set. The nontermi-
nal symbols represent symbols which can be further derived according to
production rules. The terminal symbols are finite results of the recursive
process. In other words, they can not be changed (further derived) anymore.
The production rules determine in what way nonterminal symbols will be
derived. Generating fractal trees is one of the easiest and most popular ex-
amples of L-system. Figure 2.13 illustrates examples of tree generation using
L-system (Marvie, Perret, & Bouatouch, 2005; Prusinkiewicz & Lindenmayer,
2012).

Pros and Cons

L-system is suitable for a tree, plant and city generation. It is also useful for
generation of forests and vegetation. The weakness is that it requires some
tunings for creation of desired forms and shapes.

2.5.6. Search-based Approach

An evolution computation is a basis for a search-based approach. It works
in a way that it keeps generated solutions which satisfy given criteria and

23

2. Background and Related Work

n=5 8=7257° b n=535=25° C n=65=257°
F X Y
F — F[+F]F[-FJF X — F[[X+X]+F[+FX]-X Y — YFX[+Y][-Y]

F —FF X— X[-FFF][+FFFJFX

€ n=75=20°

X
F w71
F — FF+[+F—F—F]-[-F+F+F] E:FFF[J'X]F[XX

Figure 2.13.: Trees generated with L-system (Prusinkiewicz & Hanan, 2013).

24

2. Background and Related Work

discard those which do not (Eiben, Smith, et al., 2003; McPhee, Poli, &
Langdon, 2008).

The main components of this approach are:

e Search algorithm — an evolutionary algorithm which generates candi-
date solutions using methods such as reproduction, mutation, recombi-
nation, and selection. There are other types of evolutionary algorithms
which can be used as a search algorithm, such as genetic algorithm and
stochastic optimization algorithms (J. Clune & Lipson, 2011; Goldberg,
1989).

e Content representation — necessary to determine what exactly is going
to be generated. Genotypes, which represent the solutions from gen-
eration phase, are converted to phenotypes which represent evolved
entities. The Content can be an element on a map, list of positions in-
dicating where enemy units are located, list of collectibles one is going
to have in a game, even some parameters like the distance between
collectibles or enemy units.

¢ Evaluation functions — defines the quality of solutions, and it is one of
the most important components as it can dramatically determine how
the final result is going to look like. An example is to measure a fairness
of parts of the map. Usually, only one evaluation function is not
enough to ensure high quality of results, so it is necessary to use multi-
objective evolutionary algorithms which will find elements with the
best matching weights. There are three types of evaluation functions:
direct, simulation-based, and interactive. The two major types of direct
evaluation functions are theory driven and data-driven functions. The
theory-driven functions take into account theoretical studies of fun
in games, while the data-driven functions take collected data from
the game and compare to player’s feedback. In the simulation-based
evaluation functions, Al agents are usually created to simulate player’s
behavior and test quality of generated maps, worlds or tracks. The
interactive evaluation functions are based on a data collection which
shows how a player is interacting with the game. An example of
that would be to generate specific weapon (vehicle, spell, etc.) of a
particular type if the data show that the player has been using a
specific weapon very often (Togelius, Yannakakis, Stanley, & Browne,
2011).

25

2. Background and Related Work

Pros and Cons

The search-based method has a broad range of capabilities as it is possible
to use this method for generation of different game elements, as well as,
parameters which can be used to, for example, determine the position of
enemies on the map and distances between them. If the search space is too
large, then the algorithm might take some time to produce the result.

2.5.7. Voronoi Diagram

Voronoi diagram is mostly used for partitioning a plane into cells, where ev-
ery cell has a set of points in the plane that are closer to each cell than to any
other adjacent cell. It can be very useful in a case where there is a number
of objects spread over a map and one wants to determine what is the closest
object to the specific point on the map. Voronoi diagram is something which
would really help with the previously explained problem. Every vertex in
Voronoi diagram is of degree 3, which can be seen in Figure 2.14. A set
of points of Voronoi diagram is dual to Delaunay triangulation. Delaunay
triangulation is a special form of triangulation where no further straight
line or edge can be added without crossing other edges (see Figure 2.15)
(Aurenhammer, 1991; De Berg, Cheong, Van Kreveld, & Overmars, 2008).
There is a number of applications of Voronoi diagram in video games devel-
opment. It is mostly used for generating maps and textures. An outcome of
using Voronoi diagram can be seen in Figure 2.16.

In order to reconstruct what is shown in Figure 2.16 it is necessary to
pick random points on a grid and create Voronoi polygons. Once the map
is ready, one can use any algorithm explained in previous sections to
distinguish water polygons from grounds polygons. The next step is to
elevate the ground polygons. This is usually achieved by using height maps.
The elevation level can help to define different biome types. Moisture map
sections and rivers can be useful to add more dynamics to maps and provide
a more natural look and feel (Patel, 1991). Generating textures is another
example where Voronoi diagrams can be very successful. Figure 2.17 shows
how researchers have been using it for texture generation. It works in a
way that users provide an input image. After a specific feature from the

26

2. Background and Related Work

Figure 2.15.: An example of Delaunay triangulation. Screenshot taken from (Aurenhammer,
1991).

27

2. Background and Related Work

Figure 2.16.: An example of map generation using Voronoi diagrams. Screenshot taken
from (Patel, 1991).

28

2. Background and Related Work

input has been selected, the algorithm finds positions of other occurrences
of the selected feature and maps it into a Voronoi diagram (Sabha & Dutré,
2007).

Pros and Cons

Voronoi diagram principle is very effective in a map generation. By using
this method, it is simple to modify specific sections of the map. A diagram
can be easily calculated for small maps with a few points. However, in order
to generate larger maps in real-time, an improved computational approach
is required.

2.6. Evaluation of Content Generators

Sometimes PCG algorithms can produce pattern-like structures, and repe-
titions in the level design and map generation. Another problem could be
that items are not spread out uniformly, resulting in positioning all pickups
in one area only. It is very often that during map generation an algorithm
creates maps with unreachable zones. In order to improve the quality of
generated content, it is necessary to use evaluation functions. The evaluation
function is an algorithm which judges the quality of the generated content.
Some of the important things which the algorithm has to test in the map
generation are the connectivity of every sector of a map. Also, there should
be ranking and prioritization criteria. Results which do not satisfy these
standards, should be thrown away and the process of map generation must
be initialized again. The process repeats until one of the generated outputs
tulfills given criteria. However, one has to be very careful with setting up
constraints, as if constraints are too “tight” then it might take some time
until the algorithm produces the result which satisfies defined standards. It
can happen that quality functions never accept anything, which can cause
infinite loop, as the algorithm will try to generate new outputs over and
over (J. E. Clune, 2007; Federoff, 2002; Horn, Dahlskog, Shaker, Smith, &
Togelius, 2014).

29

2. Background and Related Work

(e)

Figure 2.17.: An input image is shown in (a), while a feature which the user has selected
is in (b). The algorithm detected positions of similar features (c) and their
Voronoi diagram is constructed (d). A similar distribution to the source (c) is
generated in (e). The distribution from (e) is used to generate Voronoi diagram
in (f), similar shape cells are copied and stitched to the resulting texture (g).
Screenshot taken from (Sabha & Dutré, 2007).

30

2. Background and Related Work
2.7. Summary

The first games based on PCG techniques have been created in the early
8os and since then developers have been using PCG to create games for
different gaming platforms. Some games like Minecraft and No Man’s
Sky have reached global success and publicity as their developers have
managed to get the most out of the PCG. Procedural generation can be
used for generating worlds, rules, sound, and assets. There are different
categorization for PCG algorithms, since there is a number of distinct
techniques and approaches for procedural generation. Cellular Automata
algorithm is widely used for generating map structures. It generates a grid
filled with zeros and ones, which are further modified based on values in
adjacent cells. Agent-based growing uses an agent which moves throughout
the map based on stochastic processes. Binary space partitioning is the
most popular technique of all space partitioning methods. It is based on
dividing the space into subsets of different sizes. Perlin noise is one of the
most used height maps methods. There are two components (frequency
and amplitude), which determine how generated terrain will look like.
When it comes to grammar methods, L-systems is one of the most popular
techniques. It is based on recursive function calls which generate plant
parts. Evolution computation uses genetic algorithm methods to create
potential candidates which are later rated by evaluation functions and used
for content generation. Voronoi diagrams are widely utilized for generating
maps and textures. It is very useful for determining distances between the
closest object to a specific point on the map. Evaluation of content generators
is very important as they ensure that generated result will satisfy minimum
requirements. If the generated result is not good enough then it is necessary
to discard that result and go through the process of generation again, until
a new result is fulfilling all required criteria. Given all pros and cons of
PCG, one can conclude that PCG can really improve User Experience (UX),
increase re-playability, if implemented in the right way, and can definitely
pay off in the long run.

31

3. Design and Conceptual Model

This chapter discusses core game components, functionalities, technology
requirements, and the conceptual architecture. After explaining why a web
application is necessary in the “sCool” project, the first section discusses
designs of both theoretical and practical aspects of different course curric-
ula in the game. There are more details about techniques, concepts and
requirements for procedural generation of maps, content and endless music.
Custom Integrated development environment (IDE) section covers how code
blocks work and why they are so useful. Also, it provides more details on
integrating different courses within the game and proposes the implementa-
tion of the programming course. Main non-functional requirements explain
core architecturally significant requirements like usability, modularity, con-
figurability and appealing visuals. Conceptual architecture section shows
the structure of the entire project. Also, it discusses the game concept and
the main objectives of players in the game, and analyzes the key features
which should be implemented in the game. Discussion points in technical
requirements is the analysis of PCG algorithms that are most suitable for the
given set of requirements, platform and technology selection, as well as de-
cisions necessary for implementation of playgrounds for teaching practical
aspects of different courses.

3.1. Functional Requirements

Educators usually teach curricula through two main educational compo-
nents. Those two components are theory and practice, and this is something
which is common for all courses (Banks, 1988). It is based on a model
which is already used in schools and which expects students to understand
both theoretical and practical usage of a teaching content. Exploration is

33

3. Design and Conceptual Model

something which plays an important role in education and procedural map
generation can enhance that experience (Roussou, 2004). This multidisci-
plinary educational video game is going to offer several different courses to
players. It is required to fully implement the programming course which
should serve as an example of how a course should be organized.

Most significant components which should be implemented in this project
are:

e Map generation (Theoretical mode) - necessary for teaching theoreti-
cal aspects of a course. That is a mode where players have to explore a
map and collect pickups which will reveal a pieces of information. Ter-
rain and map structures are created based on PCG algorithms which
ensure that on every run players will be faced with different worlds.

e Challenge production (Practical mode) - the mode where players
have to apply their theoretical knowledge in practice, that is, test their
knowledge against problems from the real environment. In the pro-
gramming course, they have to program a robot to avoid all obstacles
and collect the disk.

e User Interface - most significant components are: drag-and-drop
blocks, virtual keyboard and fields. These components can be used
in other courses, not only in the programming course. They serve as
input enhancement tools, which should simplify the interaction on a
mobile device.

e Procedural Sound and Content Generation - PCG sound provides
never-ending and patternless music sequence which can change and
adapt to players environment. Trees, plants, forests, and vegetation
can be generated using PCG algorithms for content creation.

¢ 3D model creation - Even though most of the content will be generated
using PCG techniques, it is still necessary to create some 3D models
manually like: a player, enemy units, obstacles, pickups, etc.

e Player customization - improves engagement of players by allowing
them to customize their characters. It is possible to change the skin
color, facial expression, and character’s gear. They can also buy some
items in the shop and improve the character’s abilities.

34

3. Design and Conceptual Model

3.1.1. Web Application

The idea of the project is to build a game which is not only supposed to
work with courses created by the author of this master’s thesis. It should
serve as an educational platform for teaching different topics, and should be
constructed in a way that educators can create their own courses and invite
students. In order to support that, it is necessary to create a web application
where educators can create knowledge trees out of their curricula. It is
important to note that the web application described in the further text is
implemented by Koji¢ (2017), as a part of his Master’s theses. Every course
module should consist of a number of fields which are called skills in the
game. Every skill has a set of tasks which are used to present educational
content and test players” knowledge. For every task, educators can specify
the question text, incorrect answers, and correct answer. This is all presented
in a form of radio buttons so players have to select one of many offered
answers. The functionalities for fetching the data from the server, tracking
players’ progress, showing the content to players and retrieving their input,
were some of the components implemented by Koji¢ (2017). The main benefit
for educators is that they can navigate to statistics section and see how the
students are performing. There should be an overview of how the entire
class and each individual are progressing. For every student the educators
can check the progress within every skill, and can get even more detailed
information such as a number of attempts needed to provide the correct
answer, session duration in minutes and average points per session. All
these details can be very useful for educators, as analyzing them they can
see the weak points of the students and spend more time covering those
topics during classes, on which students did not perform well.

3.1.2. Theoretical Mode

As already discussed, enforcing exploration when teaching theoretical as-
pects of a course is a good approach to motivate students. Since exploration
requires large terrains and maps, as well as, new contents to be explored, it
is required to utilize one of a number of PCG techniques for map generation.
Creating maps manually is definitely easier, but if one needs more than

35

3. Design and Conceptual Model

several maps, then that approach is not feasible. Procedural generation can
help with that issue as it is possible to generate an ”infinite”* number of
different maps. However, by using manual approach, one can easily create
corridors, walkable areas and places for pick ups, while doing that with
procedural generation might not be that easy. Another problem is that some
generated maps can be unplayable as it could contain some parts of the map
which are unreachable but must be visited by players. In order to fix that, it
is needed to have evaluation functions which are going to discard all maps
that do not fulfill the specified criteria. Procedural map generation is very
useful for enhancing replayability experience as players will get different
content when repeating the same level.

After understanding why procedural generation is important in the project,
it is necessary to discuss about functionalities of different algorithms which
could be used for map generation. The requirements for the map generation
are the outputs with the clear distinction between walkable areas from
non-walkable ares and natural-looking terrains. In other words, exploration
maps in this game should have walkable areas surrounded by walls, hills or
trees. In order to add more randomness to map generation, it is a good idea
to introduce features which are slightly going to change the environment.
One of the features could be a dynamic light which changes the lightings on
a map. That could be based on random events, so that players can sometimes
experience playing the game in dark environment (night) or bright environ-
ment (daylight). If the dark environment is generated, then there should be
a number of additional point lights included as well, which should be there
to enrich the experience and create more realistic surroundings.

3.1.3. Practical Mode

The exploration part of the game is to get players familiar with theoretical
aspects of a topic and give them the freedom to explore maps in any way
they want to, without forcing them to follow a specific path. The idea in
the practical mode is to have a playground where students can test their
practical skills. Every course should have different types of playgrounds, as

"Infinite, in this context, refers to a really large number, which will make players think
that there is indeed an infinite number of content variations.

36

3. Design and Conceptual Model

not every course can be based on the same set of features. The goal in this
part is to understand the practical aspects of a certain topic, therefore, the
player’s objective in the practical mode of the game for the programming
course is to program a virtual robot to avoid obstacles and collect a disk
which carries a piece of information. That information is a part of the task
which was designed previously through the web application. In other words,
it represents a task which the educator specified in the curriculum.

Once the players are familiar with a topic presented in the theoretical mode
they should test their knowledge in the practical mode. The process of
programming the robot should be simple, given that the target platform is
mobile, so there should be an Ul interface which will simplify the process
of writing the code. As a programming language, the best idea is to go with
script languages as they do not require compilers and can be executed on
mobile platforms. In order to create a rich user experience, players should
be able to write valid code, observe that code in action and get error reports
if their code contains any logical or syntax errors, just like in any IDE. To
reach that, it is necessary to process the code provided by players. This is
very important as the code provided by players has to be valid since it needs
to be executed on the virtual robot.

User Interface

A user interface is a very important component of every game, especially
in mobile games as space and input are very specific and different from
other platforms. One of the most challenging tasks is to come up with an
UI component which is going to simplify the process of coding, make it
engaging and helpful enough for beginners, and motivate them to continue
improving their coding skills. Users should be able to type the code, see
line numbers and errors and navigate between console, working area and
task description.

37

3. Design and Conceptual Model

3.1.4. Procedural Sound and Content Generation

Even though the main focus of this master’s thesis is to use the procedural
generation algorithms for generating the terrains and maps, it is also possible
to use PCG algorithms for generating objects which are not maps. Some
algorithms which are not specifically designed for sound generation can
be used for this purpose, but for better results it might be a good idea to
use sound generation algorithms which are generating sine tones at certain
frequencies. However, it is important to bare in mind the time and effort
necessary to invest in order to successfully generate sound. Since there are
no general algorithms for sound generation, the proposed solution should
not go out of scope of the project.

Procedural generation algorithms can be also used for generating the game
content like trees, roads, building, units, etc. Since the setting of this game
is in the space, generating roads and buildings might not fit in well. The
generation of friendly and enemy units usually requires massive worlds
and complex animation mechanics, which again do not fit well in a mobile
game. It is important to keep in mind that mobile devices have limited
processing power, therefore complex calculations can drop the FPS down.
The requirement for content generation in the project is fast production of
patter structures which can be used for tree, plant or forest generation.

3.2. Non Functional Requirements

One of the main concerns with educational games is to make a game which is
going to be interesting enough, so that it motivates players to keep playing
the game. Educational games should combine engaging elements with
aspects of instructional design in order to provide best possible experience
(Amory, Naicker, Vincent, & Adams, 1999). Visualization, manipulation of
objects, and competition are very important for education, as they enhance
problem-solving and help with better understanding certain topics. (Betz,
1995; Leutner, 1993; Neal, 1990). Therefore, it is necessary to ensure that all
these components are integrated in a way that they provide a rich learning

38

3. Design and Conceptual Model

experience. Most important non-functional requirements in this project
are:

e Usability - since the main platform for this project is mobile, it is
necessary to construct a system which is going to be effective and
easy to use. For the exploration part of the game, where a player
has to move around the map, it is important to ensure that controls
are adapted to mobile devices and that players can control the main
character and interact with enemies and other objects with ease. Since
there are many different mobile resolutions, the entire game should
be responsive and adapt to different screen sizes. In the programming
course, players have to type the code, thus it is needed to make that
process as simple as possible. Also, the UI should be designed in a
way that it supports most features of a regular IDE available on the
desktop platform, so that players can use the custom Ul just like if
they were using an IDE on a PC.

e Modularity and Scalability - for the purpose of this theses, the goal
is to create at least one course and design number of tasks for it.
Creating more courses at the moment would be out of the scope of
the project, however, the entire system should provide an interface for
creating additional courses and assigning a number of tasks to every
course. Core game features should work as modules and it should
be possible to easily integrate new modules which can be used for
different courses. Also, it should be possible to add new game types,
enemy units and gear items to the existing structure.

e Configurability - one of the greatest advantages of procedural genera-
tion is that the content can be highly configurable. That means, it is
possible to change parameters of the algorithm which is generating
maps and produce maps with different dimensions, a density of the
walkable and non-walkable area, different heights of mountains, etc.
When it comes to asset generation, it should be possible to specify
the kind of content which will be generated, quantity, shape and size.
Finally, in procedural sound generation, one should specify what kind
of music should be generated and when. Also, the content should be
fully configurable by educators, as they should be able to specify how

39

3. Design and Conceptual Model

the content should be presented, in which order, difficulty, and the
type of rewards players will get for every task.

e Appealing Visuals - this is a very important aspect of application

development, especially when it comes to making a first impression,
higher satisfaction and perception (Collinge, 2017; Laja, 2017). There
is a number of different art styles for video games and selection of
art style is very significant. At the very beginning, developers have to
choose whether their game is going to be 2D or 3D.
If there are no specific requirements, most developers make this de-
cision based on whether they have skilled graphic designers or 3d
modelers on their team. This is a very important decision which can
significantly determine further project flow. It does not only affect
the art, it also affects the programming and game design as well. 3D
for art mostly means that instead of using sprites, images and image
editors, one has to create 3d models by using 3d modeling tools.

3.3. Conceptual Architecture

In order to make the game as good as possible, it is necessary to take into
consideration existing solutions, methodologies, and approaches, so that
good decisions can be made. It is important to design a game and evaluate
it with the target audience so they confirm that the mechanics implemented
in the game are interesting to them. It is important that educational content
does not spoil the game and make it boring after it is integrated. The idea is
to design an educational game so that players can learning without being
aware of that. If education is too emphasized, then the players are more
likely to stop playing the game at some point, therefore everything has to
be balanced. The game has to be interesting and appealing, otherwise, the
target audience will not be interested in playing the game (Klopfer, 2008).

Figure 3.1 demonstrates how conceptual architecture should look like. It is
important to keep in mind that this is an educational video game designed
for high-school students and first-year university students. This target group
has very specific requirements as technology and how they interact with

40

A
.

3. Design and Conceptual Model

o=

L

Game

Theoretical part

el B—

PCG Maps [PCG Cnntent] [PCG Sound]
S, il
Practical part Player

—

Lser Interface

Game
Environment

//
- . _
Loading content Analytics
2 h 4
Web application FEEESSSS—S—_
Educatar

Figure 3.1.: Conceptual architecture of the project.

41

3. Design and Conceptual Model

it, has special meaning for them (Davies & Eynon, 2013). It is important
that every new course follows the same structure, that is, contains both
theoretical and practical educational content. PCG techniques and interactive
playground serve to enhance players” engagement and motivate them to
learn more about certain topics.

3.4. Technology Decisions

This section discusses technology decisions made based on previously
discussed approaches and methodologies which are important for design
and implementation of the game. Since one of the goals in the project is to
design a game for mobile devices it is important to understand limitations
and advantages of mobile platforms. All that influences design and concept
of the game. When it comes to selecting a proper technology, one needs to
identify what technology is the best match for the given set of limitations
and requirements.

3.4.1. Game Engines

When it comes to development of a game, it is possible to either build
a game from scratch or to use one of game engines which are available
on the market. Most popular game engines are Unity3d?, Unreal Engine3,
CryEngine#, Gamemaker5, and Construct®. Gamemaker and Construct do
not require strong programming background in order to make a game, as
they both provide powerful editors with a number of features, so that people
who are not technically skilled can still make games. However, working on
more advanced features is not supported in the editor and it is necessary
to write the code. Unity3d and Unreal are game engines which provide a
very powerful APIs. There is a number of features which help developers

*https:/ /unity3zd.com

3https:/ /www.unrealengine.com

4https:/ /www.cryengine.com

Shttps:/ /www.yoyogames.com/gamemaker
®https:/ /www.scirra.com/construct2

42

3. Design and Conceptual Model

to quickly build game prototypes in both engines. Both engines, provide
the one-click-deployment tool which means that it is easy to deploy a
game to any game platform, from mobile devices to desktops and consoles.
Unity3d has a large community and there are many tutorials, instructions
and documentation available online. Also, the authors of this Master’s thesis
has extensive experience in this engine, therefore, it is decided to build the
game with Unity3d.

3.4.2. Procedural Content Generation

This sections discusses different procedural generation decisions. It covers
the structure of the theoretical and practical modes and offers the imple-
mentation steps and strategy.

Procedural map generation

Cellular Automata is one of PCG algorithms which is a good candidate for
the previously explained set of requirements. The algorithm is mostly used
for creating cave-like structures. A result of Cellular Automata is a matrix
with zeros and ones, where zeros could represent walkable map cells, while
ones could depict non-walkable cells. In order to ensure that every sector
of the walkable area is reachable, it is necessary to create corridors. The
corridors keep all the map parts connected and allow the players to access
and explore every segment of it. Once walkable and non-walkable areas are
separated, it is important to add walls or obstacles over the non-walkable
areas to keep players away from stepping onto them. This can be achieved
by placing elements on non-walkable areas, however, that would result in
creating a number of objects, which is not a good idea, as more objects on a
scene mean more draw calls, which can cause FPS to drop down. In order
to create large and complex terrains and use them on the mobile platform
while also ensuring high FPS, it is mandatory to create a mesh. That is
something which has to be implemented no matter what algorithm is going
to be used. Figure 3.2 shows an output example of Cellular Automata.

43

3. Design and Conceptual Model

Figure 3.2.: An output example of Cellular Automata.

The best solution for non-walkable areas is to use height maps to elevate all
map cells which have the value of one. If those map cells are elevated for a
constant value, then that can create a strange effect as the generated map
would look like a maze. In order to solve that issue a noise function will be
used. Perlin noise is one of the most popular noise functions, and is very
useful for generating terrain-like structures with hills and mountains. With
Pelin noise, it is assured that non-walkable area will now have more realistic
topology. Figure 3.3 shows an example of using noise to elevate specific
parts of the map, in this case only non-walkable tiles. After all these steps,
the result is a map with both walkable and non-walkable areas, where the
non-walkable area has a natural-looking terrain structure. The next step is
to do something with the walkable area. In order to utilize the generated
map, it is necessary to add a player, pickups, enemies and other elements
defined in the game design. In order to accomplish that, it is needed to
detect walkable regions of a specific size so that items and units can be
positioned. For that, it is necessary to implement an algorithm for detecting
regions. Figure 3.4 shows the proposed structure of the theoretical game

44

3. Design and Conceptual Model

Figure 3.3.: An output example of noise functions used to elevate specific cells and create
natural-looking terrains.

part, while Figure 3.5 shows how everything is supposed to look like at the
end when Cellular Automata is combined with Perlin noise.

Sound Generation

The method for generating music which will be used in this project is based
on producing compositions made out of basic tones. It takes a set of tones
(C, D, E FE G, A, B), as an input and generate endless music. There will
be tones for several instruments provided (piano, violin and drums) but
this principle can easily support more instruments. In order to provide
infinite loops, it is required to call the same function again at the end of the
sequence. First, it is necessary to create a matrix with certain dimensions
(width and height). The next parameter could be fill percentage, which
determines the “density” of sounds. And finally, for every generated matrix,
a seed could be generated as well, just like in the map generation so that
those particular sequences could be reproduced. Failing to do so could lead
to very strange results. For example, it is not a good idea to have tense music

45

3. Design and Conceptual Model

Theory structure

Theory

Exploration

)t

)

FPerlin
noise

()

Cellular
Automata

Map
generation

1k

[

Reqgion
detection

Elements
Instantiation

Figure 3.4.: The structure which shows how the theoretical game part should look like.

46

3. Design and Conceptual Model

Figure 3.5.: Final output of combining Cellular Automata with Perlin noise.

when a player is not in a combat, has to solve a puzzle, or is performing
something in the game which requires a lot of concentration.

Procedural Generation of Assets

Assets which have to be generated and placed in different levels are trees
and forests. Procedural tree generation can be performed by using L-system
algorithm. The algorithm will be implemented in a way that it supports
two stopping criteria. It will either use number of iterations or length of
branches. The number of iterations specifies the number of levels the tree is
going to have. If the length of branches is used as the stopping criteria, then
it requires that every time a new tree level is created, the length of branches
for the next level reduces by specified value. The number of iterations in
this case depends on the initial length of branches, as well as, the reduction
parameter. If the reduction parameter has greater value, it will result in
creating a tree with less levels, which also means it will take less iterations.
In most cases this is acceptable, but if it is necessary to have really complex
trees with many branch levels, it is a good idea to keep values of reduction
parameter very small.

47

3. Design and Conceptual Model

3.4.3. Playgrounds

The practical mode of every course has a playground where players can
practice what they have previously learned. This section discusses decisions
made for the custom Ul and the environment for the programming course.
As previously discussed, the game engine which is going to be used to create
the game with is Unity3D. Unity3D” has Ul functionalities which allow
developers to easily create any kind of form and collect the user’s input. One
can add input fields, text, images, buttons, scrollbars, and panels, without
any programming involved, however, Unity3d Ul system behaves differently
on other platforms, and if something works well on the desktop platform
does not mean it will work in the same way on the mobile platforms. One of
the issues on the mobile platform is that the input fields behave strangely on
Android as the entire content is copied into an improvised input field and
virtual keyboard blocks the entire screen after popping up. The problem
is demonstrated in Figure 3.6. The same behavior occurs on iOS devices,
however after ticking “Hide mobile input” box in input field settings, the
problem disappears on iOS, but that still does not affect Android. Another
problem is that virtual keyboard is still covering a large portion of the screen
so it is necessary to come up with an effective solution.

This was one of the reasons for creating the custom UI system. The more
important reason was providing rich programming experience on a mobile
device. This means that it will be needed to create fully functional virtual
keyboard and input fields, therefore the UI should consist of the following
components:

Virtual Keyboard

Drag and drop code blocks
Code elements - input fields
Tabs and panels

The virtual keyboard needs to have all buttons which default mobile key-
board provides and support default functionalities for alphanumeric char-
acters, symbols and special commands like enter, space, caps lock and

7https:/ /unity3d.com

48

3. Design and Conceptual Model

str2l = 'Hello world!'
DONE

Figure 3.6.: Screenshot taken from the game after running the game on Android.

backspace. In order to include all the keys, it is needed to add the function-
ality for switching from letters to numeric characters and symbols. Since
the target platform is mobile, it is also necessary to add the functionalities
which will allow players to position a pointer between the characters in
text.

That is why it is necessary to create code blocks, which are used as shortcuts
for writing if statements, for loops, variable declaration, print outputs, etc.
This is something which is very helpful for beginners as it will reduce the
time necessary for writing the code and avoid potential syntax mistakes.
In order to make this working, drag-and-drop functionalities have to be
implemented. Another thing which has to be taken into consideration
is nesting. That slightly complicates the structure, as it is important to
specify which code blocks can contain more elements and which can not.
Some components like if statement and for loop need to have nesting
functionalities, as usually, there is more code inside these code elements,
while declaring variables or function calls can not nest more elements.

Sorting of elements is something which also has to be taken into account.

49

3. Design and Conceptual Model

IF RUN bot.Rig ~emp

VAR

Ponit f 2§ xfchviblnimpa it

Figure 3.7.: Screenshot taken from the game which represents the early prototype of code
components.

Once a component is dropped, it does not mean that it will remain where it
is, as it should be possible to rearrange code elements and change their order.
Therefore, sorting functionality is very important as it can allow sorting
of elements inside an element, which supports nesting (like for loop), as
well as, all the other elements (at the top of the hierarchy) which are not
contained inside any other element. There is one more important feature
which is based on sorting, and that is moving elements from one nested
element to another, and to the root. Even though it looks like something
which is very confusing, there is an example presented in Figure 3.7 which
serves to describe the structure and relations between elements.

As could be seen from Figure 3.7, elements on the left-hand side are code
blocks, which one can drag and drop on the main content area, which
is located on the right side. Blocks on the left side should be fixed and
dragging any of them will produce a copy which can be dropped onto any
drop zone. This allows players to create as many elements of one “type” as
they like. Once that is done, it is possible to drag and drop code elements

50

3. Design and Conceptual Model

generated from code blocks and rearrange them in the desired order. As
already mentioned, it should be possible to drag an element to and from
any element which can nest other elements. Those areas must be visually
emphasized, that is, painted in a different color so that players can easily
notice them. The red line represents where the pointer is currently located
and if any key on the virtual keyboard is pressed, it should make an effect
on the current position of pointer whether it is adding a new character
or removing existing ones. There are two arrow buttons on the virtual
keyboard which have the ability to move the pointer to the left or right of
the current position. When pointer moved all the way to the left until the
last character, clicking on the left arrow button should keep the point in
same position. The same should happen when the pointer is at the far right
character. This can be further improved by moving pointer to one code block
before or after the current code element, but that would require additional
checking (it is mandatory to check if there are some elements around the
current one, otherwise this action can cause errors), so due to simplicity, the
boundaries of pointer can be kept within a code element.

Finally, once new code components are added, it is useful to have code line
numbers left to the code, just like in any IDE. The code lines should be
updated every time new code blocks are added or some code elements are
removed. All previously described components form the custom mobile IDE
for writing then code. The UI work along with the environment, as these
two components form a playground. The environment consists of a virtual
robot, a disk and obstacles, where the goal is to program the robot to reach
the disk by avoid the obstacles. The Ul system is used to enhance the process
of programming the robot, that is why both components are important for
the practical mode. Figure 3.8 shows how the structure of the practical
mode for the programming course will look like. This is where custom UI -
IDE system is utilized. Instead of writing the code, the players can use the
specified code blocks, where every code block contains a code snippet with
predefined functionality. For example, instead of typing a for-loop, one can
just drag and drop the for-loop code block and the for-loop code will be
automatically generated. Then, it is easy to modify a number of iterations
and nest more code inside the loop. However, it should be possible to type
the code as well, so using code blocks is not mandatory, but can speed up
the process of development and avoid potential typing mistakes.

51

3. Design and Conceptual Model

Practical
mode
h 4 h 4
Ll system Environment
h 4 h 4 h 4 $ l
Code blocks Keyboard Fields Robot Boxes
h 4
Interpreter
validation i
reporting

Figure 3.8.: Structure of the practical game part for the programming course.

52

3. Design and Conceptual Model

It is decided that the programming language which will be used for teaching
is Python. Many schools teach Python as a first language since it is a
programming language with a very simple structure and syntax. It is easier
for students to start with Python than, for example, with C or C++ mostly
because students do not have to worry about more advanced concepts like
the memory allocation and pointers (Elkner, 2000; Grandell, Peltomaki,
Back, & Salakoski, 2006). That is why many schools teach Python as the
first programming language. Python is used in many areas, from web
development to building desktop applications (Hauser, 2017). IronPython®
is a .NET implementation of Python programming language. It allows any
NET language to use Python code and it can help with interpreting and
checking the validity of the code in this project. IronPython is not only
providing validity of the code, it also gives error messages with more details
about the problem. This is very useful for players as they are able to see the
line number and the command which caused the error (Foord & Muirhead,
2009; Mueller, 2010). With all that, one can easily fix all the errors just like if
he or she was using any IDE on a desktop computer. Technical aspects of
Python interpreter and how it works will be explained in greater detail in
Chapter 4.

3.4.4. Other Decisions and Final Structure

Visuals are very important for attracting attention of players. Some popular
3D art styles for video games are Voxel, Low poly, Cartoon and Realistic.
Figure 3.9 shows how different 3D art styles look like (Kerlow, 2004). Low
poly art style is the best match for this project, as it is not too complicated
and time-consuming to create, and it fits well with the gameplay and the
game idea. Another reason are performances, as fewer vertices and triangles
there are, the better performance will be.

Figure 3.10 shows implementation structure for the programming course.

8http:/ /ironpython.net/

53

3. Design and Conceptual Model

Figure 3.9.: These are the examples of different art styles. Voxel (a) (Oré, 2017), Low poly
(b) (DesignContest, 2017), Cartoon (c) (PopCapGames, 2017) and Realistic (d)
(EBGames, 2017). 54

3. Design and Conceptual Model

Theoretical mode

! !

s ™ I ™
FCG Maps PCG Content PCG Sound
\, J \, J
l B A4 .) L 4 .
Cellular Automata L-System Custom algorithm
b ey ., _.
'
Perlin noise

!

Region detecton

[Practical mode]

—— —=

User Interface [Game environment

!

Drag-and-drop
blocks

Code fields Wirtual keyboard

Figure 3.10.: Structure of the programming course.

55

3. Design and Conceptual Model

3.5. Summary

Educational content in the “sCool” is separated into two components: the-
ory and practice. The web application provides educators an interface for
creating lessons and tasks which are later obtained from the server and
shown in the game. In the theoretical mode, players have to explore the map,
defeat enemies and collect disks. This part is based on exploration where
PCG algorithms for map generation can enhance exploration experience.
The playground is a place where players have to apply the knowledge they
previously acquired in the theoretical mode. In the programming course, the
goal is to program the robot to avoid obstacles and reach the disk. Custom
IDE, needed for the practical mode of programming course, is another
functional requirement necessary to support interaction and speed up the
process of forming the result. Non-functional requirements in the project are
usability, modularity and scalability, configurability and appealing visuals.
There are different game engines which can be used to create the game, but
the Unity3D is the most popular game engine and simple to start working
with.

56

4. Implementation Details and
Showcase Scenario

This chapter covers different implementation aspects of the project. The
tirst discussion point is the implementation flow and the analyses of issues
which were faced in the early development stage. The implementation of
exploration and coding game parts is based on the concepts presented in
Chapter 3. PCG section analyzes implementation of procedural generation of
maps, sounds and content, as well as, how PCG algorithms such as Cellular
Automata and Perlin noise help making a natural-looking terrains and
maps. The last discussion point in PCG implementation is the procedural
asset generation and the use of the L-system algorithm for generation of
trees. The drag-and-drop blocks and custom Ul interface are the two main
components of the playground mode in the programming course. The final
section of this chapter presents an overview of the entire game, and shows
how all parts of the game are put together.

4.1. Procedural Content Generation

The theoretical mode of the game is based on exploration and collection
of artifacts which when collected reveal valuable information for players.
The players have to explore the entire map, collect pickups, defeat enemies,
read a provided lesson, and answer a quiz-based questions. Based on all
of that, they will get a number of energy points which are very valuable
at the end of a level. If the wrong answer is provided in the quiz, then the
players might get more attempts if they performed well in the game. If that
is not the case, they will have to repeat the level from the beginning. In
this way, they should try to perform as good as possible in the exploration

58

4. Implementation Details and Showcase Scenario

Repair the disks

Python is a high-level programming language. with

applications in numerous areas, including web

pro?lrammlng scripting, scientific computing, and artificial
igence

Itis uer'f Mar and used hhorgam:atlons such as

the CIA and Disney

What is Python?
B Type of snake
- Programming language

B Fditine tanl

Figure 4.1.: A question which a player has to answer, when all the disks are collected, in
order to move on.

part before they finish everything and get to the part where they are faced
with questions. The theoretical content consists of a description of a specific
educational matter with one theoretical question. That theoretical question
has a number of offered answers, where only one is correct. Figure 4.1
illustrates an example of a question which players get once all the disks are
collected in the theoretical mode.

The map generation is important for the exploration part as it provides
exploration experience. The two essential procedural generation algorithms
used for map generation are Cellular Automata and Perlin noise.

4.1.1. Cellular Automata

The Cellular Automata algorithm was used for generating cave-like struc-
tures and distinguishing walkable from non-walkable areas. Figure 4.2
shows the implementation of Cellular automata in this project. Red cells
represent walls and gray cells are the walkable areas. The following rules

59

4. Implementation Details and Showcase Scenario

were used for determining whether a cell should be a wall or an open
space:

1. If a cell was a wall (value of 1) and 4 or more of its neighbors were
walls, then it remained unchanged.

2. If a cell was not a wall (value of 0) and 5 or more of its neighbors were
walls, then it became a wall.

In order to create a “noiseless” map with a natural cave-like shape, it was
necessary to repeat the entire process 5 times. It was concluded that the best
results were obtained if the percentage of walls is in the range of 45% - 49%.
Second, it was needed to create a two-dimensional array which is going
to represent a map. There are two variables, the width and height which
are created and used along with an array to specify the dimensions of the
map. If random values are passed as the parameters, then the generated
maps will have different sizes. Next, it was necessary to generate a seed
value so that the same map can be regenerated again if needed. Also, on
each run, a different seed was generated and passed to the map generation
algorithm which gives a different map as the output. One of the parameters
that was passed along the seed is a fill percentage, which determines the
ratio of zeros and ones. Reachability of the every part of the map is ensured
with the solution by Lague (2017), which is based on creating the corridors
between the sectors on a map.

Since this is a 3D game, the map structure from Figure 4.2 was changed and
adapted to the 3D environment. The simplest way to achieve that was to
elevate wall areas for a specific value. In other words, the z values of wall
cells were set to any scalar value, which determined the height of walls.
However, changing the z value was not enough, as it was also necessary to
rotate the entire map for 9o degrees over the x-axis. It is possible to rotate
in both directions, however, that could lead to different orientation as in
order to elevate wall areas it is needed to set the negative value for height.
The environment was rotate clockwise so that positive values for elevation
could be used. Figure 4.3 shows how 3D map looks like for different height
values. In order to draw a map on a screen it was necessary to create a mesh.
There were two requirements for mesh generation. First, it was necessary
to position vertices on corresponding places and then, apply triangulation.
There are two ways of forming triangles, discrete and continuous. Both of

60

4. Implementation Details and Showcase Scenario

Figure 4.2.: Screenshot from the game showing the Cellular Automata implementation in
the Unity3D engine.

them were implemented in order to conclude which approach is giving
better results. In continuous triangulation adjacent faces shared the same
vertices while in discrete triangulation every face had its own set of vertices.
An advantage of the continuous triangulation was that there were fewer
vertices in total, but one of disadvantages was that it was not possible
to have steep transitions between adjacent faces. Also, this affected the
coloring of faces, as there were some blurry transitions if two adjacent faces
are colored in two very different colors. However, since performance was
very important as the game is designed for mobile devices, then it was
definitely a good idea to go with this approach. Event though the discrete
triangulation provided a higher level of detail, the main drawback was that
there were twice as many vertices as in the continuous triangulation. On
the other hand, discrete triangulation provided a high level of detail and
flexibility with creating different shapes of meshes. Maintaining high Frames
per second (FPS) rate was more important than the level of detail, therefore,
the discrete triangulation was discarded and continuous triangulation was
used for building different meshes.

61

4. Implementation Details and Showcase Scenario

Scale: 4.5

Figure 4.3.: Screenshot from the game showing the 3D transformation of Cellular Automata
with different elevation values.

62

4. Implementation Details and Showcase Scenario

4.1.2. Perlin Noise

The generated map from Figure 4.3 already satisfies the criteria, as a 2D
structure is converted into 3D and players can move around the walkable
areas only. However, in order to make the walls look more realistic, that is, to
have a terrain-like shape, it is needed to use height maps. For that purpose
it was decided to use Perlin noise. There were three main parameters in
implementation of Perlin noise and those parameters are octaves, lacunarity,
and persistence. With these parameters, it was possible to modify the ampli-
tude and frequency, which basically determine the height and distribution
of terrain components. The lacunarity parameter was very important for
determining the frequency for every octave. Octaves represented terrain
components (base frequencies) which were put together to form the final
terrain shape. A frequency for every octave was calculated as lacunarity to
the power of i, where i started at o and was incremented before calculating
the frequency of every octave. It is important to note that the lacunarity
value is a scalar which can be modified to generate different outputs. The
process of calculating the amplitudes was the same, and it was only nec-
essary to replace the lacunarity with persistence. This provided natural
looking shapes of terrains. Figure 4.4 shows how different octave, lacunarity,
persistence values affected the map generation.

4.1.3. PCG Sound

Some of already existing sound generation methods are based on the sound
processing and changing the source files of music sequences or creating
files from scratch by generating frequencies. The implementation of the
procedural sound generation in this project is different from all standard
approaches. The solution implemented in the game is based on instantiating
tones of different instruments and changing their parameters like pitch and
volume levels, in order to create endless and unique musical compositions.

The core components in the map generation with Cellular Automata were
walkable cells and wall cells. In the sound generation, the core components
are music notes of instruments and instruments themselves. First, the al-
gorithm generated a matrix with specific width and height and randomly

63

4. Implementation Details and Showcase Scenario

Octaves: 4, Lacunarity: 0.5, Persistence: 2

Octaves: 8, Lacunarity: 2.5, Persistence: 10

Octaves: 10, Lacunarity: 6.5, Persistence: 0.1

Figure 4.4.: Screenshot from the game showing how different parameter valued affected
map generation. It is important to note that all three variations used the same
height scale. 64

4. Implementation Details and Showcase Scenario

positioned notes. In the map generation, zeros and ones were used to make
a difference between walkable cells and wall cells. In the sound generation,
there was the same intuition, ones represent note cells, which is the moment
when a note of an instrument is played, while zeros, in this case, represent
pauses. One of core components is a set of note with different pitch levels
distributed along rows, that is, the x-axis of the sound map. A different
position in columns (the y-axis) determines volume level, so volume changes
based on where exactly a note is placed. If it is located below middle row,
then the note volumes down, otherwise it volumes up.

There were two essential scripts for the implementation, InstrumentManager
and MatrixGeneration. InstrumentManager is a script which has a list of all
instruments and is in charge of turning on and off certain instruments. In
other words, this script is the one which is deciding what kind of music will
be generated, so that it can be changed based on the environment and the
activities in a game. In this project, there is one music type when players are
exploring, the second type when players are in the combat, and the third
when they are solving puzzles. Procedural sound generation is implemented
in the way that the music adapts to player’s behavior in the game.

The initial approach to the sound generation was to create some prefabs
for different music moods, so that it is possible to activate a specific music
theme which fits the game in that moment. This approach required to come
up with several music sets of different instruments and activate them when
it was needed. The second approach was to avoid using prefabs and to
manually specify which instruments should be active. This approach was
more flexible as any instruments could be combined and activated based
on the player’s action. However, this approach required more complex
logic in the background, as it was not enough to simply replace one prefab
(set of instruments) with another (like in the first approach). With this
approach, it was necessary to turn on and off every instrument individually,
otherwise, there could be overlapping between the sounds. Still, the second
approach provided more variations and it was decided to use it in further
implementation. Once the process of switching between instruments was
ready, the next step was to implement a musical instrument itself, that is,
matrix generation and distribution of notes for every instrument. Just like in
the map generation, it was needed to generate a seed for creating a sound
map with provided distribution.

65

4. Implementation Details and Showcase Scenario

Figure 4.5 shows how procedural sound generation script looks like and
what parameters it takes. It can be noticed that a very similar intuition was
used like in the map generation script and that the greatest difference is a
list of notes. A number of elements in the list can be manually defined, but
after many trials and experiments it was decided to go with seven elements,
based on the note chromatic scale’. The rows of the matrix determine what
note is going to be used, which basically defines the pitch level, while the
position of that note in a column gives different volume value. All sound
files used in the sound generation where obtained from Orchestra (2017).
The sound generation process in the Unity3d engine is shown in Figure 4.6.
For debugging purposes and in order to better understand how music is
generated, every instrument was assigned with different color, where colors
show which notes belong to which instruments. The idea was to play all the
notes from one column at the time. Then the algorithm takes the notes from
the next column and so on until the end of the matrix is reached. There is a
pause of 0,5 seconds before moving on to the next column. When the end
of the matrix is reached then the new matrix is generated using a different
seed value, which means that on the next matrix iteration the music is going
to be different. It is important to note that there is a shuffling process of
notes prior to matrix generation, which is necessary to ensure randomness
every time a new matrix is generated. In this way, it is ensured that the
generated music is totally different and endless. Figure 4.7 shows a list of
all instruments currently available to be used in the game.

An important aspect of the used method is that it was possible to generate
different music for the main menu, the theoretical mode, and the practical
mode. The instruments used in the sound generation, for all menu and level
selection scenes, are cymbals and bells. With these two instruments, it was
possible to create a music which is mysterious, fantasy and dramatic. The
idea was to create a heroic emotion at the very beginning, as an introduction
to the game, something which is going to motivate players to engage with
the game.

In the theoretical mode, the music changes and different music is generated
using tempo drums, bells, and shakers. This shows the full potential of the
algorithm as it is very simple to generate different music with changing a

Thttps:/ /en.wikipedia.org/wiki/Chromatic_scale

66

4. Implementation Details and Showcase Scenario

Figure 4.5.: Screenshot from the game showing the procedural sound generation script and
parameters it takes.

Figure 4.6.: Screenshot from the game showing the process of music generation, where one
color represents one instrument.

67

4. Implementation Details and Showcase Scenario

Figure 4.7.: List of all instruments available in the game.

few parameters only. For the theoretical mode, there is a lot of exploration
and combats with monsters who protect disks, so the music is adapted
to that environment. Finally, the instruments used in the practical mode
are piano, guitar, and mandolin. The reason why these instruments were
used is simply because with them it is not difficult to create an ambient, a
relaxing and peaceful music, as this is the part where the players have to
focus in order to complete the challenge. Important properties of the used
method are that it is possible to set constraints. For example, there could be
at least two out of three instruments activated, but it is also possible that the
algorithm activates all three at the same time, based on a random process.
Another property, is randomly distribution of notes, which means that in
one moment a piano could have the highest distribution value and be the
leading instrument, but in the next matrix generation process, a guitar or a
mandolin can take that role. All this shows how adaptive this method is, as
it generates completely unique music sequence in real-time and with only a
few megabytes it creates endless music.

4.1.4. PCG Content

So far, it was shown how PCG techniques were used in this project for
the map and sound generation. In this game, the L-system algorithm was
used for generation of trees and forests. The algorithm is based on recursive

68

4. Implementation Details and Showcase Scenario

Figure 4.8.: Screenshot from the Unity project showing different tree structures generated
with the core tree components, where (a) represents a tree trunk, (b) tree top
and (c)a branch.

function calls for generating branches and forming trees. There are tree
main components, which were used in the tree generation process, a tree
trunk, branches, and a treetop. The algorithm starts with a tree trunk and
then iteratively adds branches until stopping criteria are met. After that, it
puts some leaves at the top of the branches and with that, the process of
generating a tree is completed. Figure 4.8 shows different tree structures
formed with these components. The created script can be applied to creating
a forest, as random values for angles, branch sizes, and degree of branches
will ensure that every time a different tree is generated which, is quite useful
for providing natural forest structure, as trees in a forest are similar but still
different.

The further text discusses the implementation of tree generation in the
Unity3d engine. In order to implement the tree generation in Unity3d, it is
important to start with instantiating a tree trunk, as that is going to be a
basis for expanding the tree and creating branches. One important thing to
note is that Unity3d draws objects from their center point. For obtaining the
top point of the tree trunk, it is needed to add a half of the height to the y
position value. That point will be denoted as the pivot point in the further

69

4. Implementation Details and Showcase Scenario

text. Once that is completed, the next step is creating branches.

Creating branches is the most complex part of the tree generation and it is
necessary to create the left and right side branches in each iteration. The
easiest way to do that, is to define static angle value (for example 45 degrees)
and simply decrease the angle of the left side by that value, and do the
opposite on the right side. In order to instantiate branches, it is necessary
to use linear algebra and calculate the center of the hypotenuses for both
branches, as those two points will show where exactly branches have to be
positioned. After they are placed in the right spots, they will form ”V” shape
which is exactly what is needed. It is not necessary to use the static values
for angles, as it is possible to introduce some randomness and generate the
branches with different angles, for example, one branch can be instantiated
with 30 degrees and the other with 65 degrees.

Once the process of creating a pair of branches is completed, the next step
is to check for the stopping criteria. If the stopping criteria are not fulfilled,
then it is possible to continue with further tree expansion. It is needed to
recursively call function two times (for each branch) and pass the new pivot
points. Once the stopping criteria are reached it is important to make the
final touch in the tree generation, which is adding leaves or in this case
treetops to the top branches, that is, branches from the last iteration. With
that, the process of the tree generation is completed and the final output
is shown in Figure 4.9. The trees in Figure 4.9 form a forest which was
generated by instantiating a number of game objects (trees) and shifting
them for an offset. As can be noticed, every single tree is different and all
trees together form a natural-looking forest. This can be used throughout a
game, both as a group (forest) or individually (single tree). In the practical
mode, it is possible to a number of trees spread out the map.

4.1.5. Region Detection

With the implementation of Perlin noise, the map generation process is
completed. However, with Cellular automata and Perlin noise, it is ensured
that on every run the generated map will be completely different, but there
is no actual gameplay in the game. This indicates that it is necessary to

70

4. Implementation Details and Showcase Scenario

Figure 4.9.: Screenshot from the Unity project showing a forest generation, that is, a number
of trees generated using the L-system algorithm.

71

4. Implementation Details and Showcase Scenario

have an algorithm which is going to detect regions or spots on the map
where the elements like a player, enemies and pickups can be added. The
first step in implementation was to determine the size of a region and pass
it as a parameter along with a map. The algorithm searches through the
map and looks for the regions of the specified size. Figure 4.10 shows the
initial implementation of the region detection algorithm. The red squares
represented areas where items could be placed. The region detection process
was not completed with this as all the elements could be instantiated
in one part of the map. Therefore, it was necessary to further improve
the algorithm. The improved version introduced zones, where each zone
contained a number regions. The algorithm worked in a way that it assigns
elements to regions from different zones. In that way, it was ensured that the
regions from different zones are selected. The examples of using different
zones is shown in Figure 4.11. Regions from those zones were colored
differently so that it was possible to say which one comes from which
zone. The approach used for defining zones is straightforward. Basically,
the entire map was divided into 6 parts (zones) where every zone had a list
of regions. During region detection, zones’ lists were populated so it was
easy to color differently regions which belonged to different zones, as it was
demonstrated in Figure 4.11. There are some more advanced approaches
which could give even better results like binary space partitioning, which
brakes up the map into zones of non-equal sizes. That can introduce even
more randomness in the process of detecting the regions and positioning
the elements, but that was left for future plants due to time constrains.

4.1.6. Gameplay and Elements

Once the process of determining which region belongs to which zone was
completed, the next step was to place the elements in those zones. In order
to do that it was necessary to pick regions from different zones, but not any
regions, a region per zone which had the longest distance from the origin,
that is, the center of the map. In that way, it was ensured that elements were
not positioned in one zones only and very close to each other. If there are
more elements which have to be instantiated than zones, then it is needed to
place two or more elements in the same zone. Criteria to determine which

72

4. Implementation Details and Showcase Scenario

Figure 4.10.: Screenshot from the game showing regions from different zones. There are
two map examples, 2D and 3D, generated with two different seeds.

73

4. Implementation Details and Showcase Scenario

Figure 4.11.: Screenshot from the game showing outputs of region detection algorithm.

74

4. Implementation Details and Showcase Scenario

two should be put together depends on what kind of experience one wants
the players to have. For example, there could be zones where there are only
enemies who are surrounding an item which has to be collected. A map
with zones like that would be very challenging and hard to complete, so
placing many enemy units in one zone is probably not a good idea.

Therefore, there should be some checks of what elements are already po-
sitioned in the zone before new elements are added. One of the specified
criteria for this game was that there could not be more than two groups of
enemy units in one zone. In this way, it was guaranteed that there were no
zones which players could find overwhelming or impossible to complete.
It can happen that the player is in the same zone with an enemy group
but only if all zones are populated with enemy groups. This is a very rare
case but since the number of enemy groups is randomly defined, there is
a probability for the already described scenario, however, that probability
is very low. All of this, explains how important and hard it is to come up
with the right ratio of enemy units and pickups, as well as to position all
the elements.

In order to control the character, the players have to use a joystick which
allows the character to move around, and a button which is used for shooting
at enemies. Figure 4.12 shows how controls look like, along with all the
elements positioned on the map.

4.2. Practical Mode

The practical mode of the game is where students can apply their knowledge
which they have previously acquired in the theoretical mode. This part is
going to be different for every course but the learning process is still the
same. Two most important components implemented in practical mode for
the programming course were the Ul system and the environment. The Ul
system provides controls (serves to enhance input) which the players can
utilize to structure their answers. The playground contains an educational
environment which the players can use to experiment and improve their
knowledge. Drag-and-drop blocks are predefined controls (code snippets
in the programming course) which were implemented to speed up the

75

4. Implementation Details and Showcase Scenario

Figure 4.12.: Screenshot from the game showing controls along with other gameplay
elements.

process of coding. In other courses, those components can be designed to
serve a different purpose. The idea is to drag-and-drop those block onto the
content area in order to solve the given challenge. After that, the players
can use the virtual keyboard to modify the content generated by drag-and-
drop components, as most of the time those components hold a piece of
information, which represents the structure and saves time in producing the
correct answer, formula, equation, etc. In the practical mode, just like in the
theoretical mode, the tasks are collected from the server, as an educator has
to define a set of tasks and correct answers for every course, before inviting
students to join the courses.

4.2.1. Ul System

One of the most attractive features of this project is the custom Ul system.
There are some complex activities in the practical mode of the game, such
as drag and drop blocks, nesting and sorting, which in programming course

76

4. Implementation Details and Showcase Scenario

allow players to write programs faster and more easily. In other courses
that can serve a different purpose. Default Ul provided by the Unity3d
did not work the same on all mobile platforms. Also, relying only on the
default Ul is simply not enough to fulfill all requirements. Therefore, it was
necessary to implement the custom UI system which forms a mobile IDE,
that along with the rest of the game, provides rich programming experience
on a mobile device.

In order to classify the content and make it more accessible, it was necessary
to implement a tab system. Figure 4.13 shows three different tabs in the
practical game part of the programming course. The first tab is an objective
or a task introduction tab, which provides information on what players have
to do in order to complete the task. The task description is pulled from
the server, that is, from the task database of the course which an educator
filled in previously. The goal in the programming course, is to program
the robot so that it avoids all the obstacles (yellow boxes) and reaches the
disk. The next tab is called the action tab or code tab. In this tab, players
have to drag-and-drop the predefined components from the left-hand side
onto the scene in order to provide the correct answer. In the programming
course, there are eight code blocks predefined. Four of them are logic and
four are action blocks. The logic blocks are code programming commands
which can be used to program the behavior of the robot. Using those four
blocks one can easily declare new variables and assign them values, use if
statements and for loops. Finally, there is a print command which is useful
for debugging and analyzing if the code is behaving as expected. Once the
logic is prepared, it is necessary to add the robot movement commands. The
robot can move in all directions except diagonals and in order to make it
move, it is important to put logic and action commands together.

There is one very important feature which is hard to notice in Figure 4.13.
That feature is code manipulation, which was basically constructed out of
nesting and sorting. This feature allows players to easily modify the order
of the code by tapping onto the desired code block and moving it to any
position in the program they like. Another useful functionality is that they
can nest the code as well. There are two code elements which can nest more
core (or more code elements), and they are the if statement and for loop. As
could be noticed, in Figure 4.14, there is a rounded box around for loop,
which indicates that the block can nest more elements, while “robot.Up()”

14

4. Implementation Details and Showcase Scenario

OBJECTIVE

Reach the disk and create a short
program that displays “Hello world [*

In Python, we us< the print statement 1 T
=>> printi Hello world 1
Hello world | ;

Objective tab

robot .Lefe()

for x in ronge(3):
robot. Up()

print{x)

Code tab

OUTPUT PANEL
FLAY

No errors, r-zn:r.'_\'-'cu play!

ouTPUT: 5]

]

Output tab

Figure 4.13.: Screenshot from the game showing the practical mode of the programming
course.

78

4. Implementation Details and Showcase Scenario

IF RUN
Fo p

Var

Left 1‘ Shift z X c v b n m

Figure 4.14.: Screenshot taken from the game which shows the early prototype of the
practical mode with the delete zone component.

command does not have the same component, as that element is a function
call and can not nest more elements. For example, the players can put a
print function call inside of a for-loop element, which is parented by a
for-loop, in other words, they can nest elements in any way or order they
like. Technically, there is no depth limit for nesting, but too much nesting
can result in a lot of scrolling, but this scenario is very rare and usually not
necessary.

One useful component which helps with the faster code writing is a delete
zone (recycle bin). The delete zone removes components so that players do
not have to use the backspace key to get rid of a piece of code. They can
simply drop a code element they want to remove onto the delete zone which
is going to destroy that object. Figure 4.14 shows how the drop functionality
looks like, but it also shows the how early-stage version of UI looked like.
It is important to note, that the delete zone pops up only when dragging
of code element is in the progress, because it is only needed then, while
during the writing the code or editing, it disappears.

79

4. Implementation Details and Showcase Scenario

The third tab in Ul system is the output, which can be activated either by
tapping on the third icon tab or by tapping on the run button, which is
going to activate the interpreter and show the the output in the output tab.
If there are no errors, then the “Play” button will show up, and the player
can execute the code on the robot. An important thing to note is that every
time a player taps on the “Play” button, the number of attempts decreases.
In case of errors, the interpreter will not be able to process the code and will
display the error which caused the program to collapse, as well as, the line
number where the error occurred. An example of error reporting is shown
in Figure 4.15. When there are no errors, the player is able to see the output
which is acquired from the print function calls.

All core UI components are presented and denoted in Figure 4.16. There
are two modes, the edit (a) and preview (b). Other components are, a left
sidebar containing all the code blocks (1), the introduction, code, output tabs
(2). The run button (3) used for processing the Python code and checking for
the syntax and interpreter errors. A number of attempts counter (4), which
decreases every time the code is run. Finally, the toggle button (5) switches
from the edit to preview mode, tapping on the same button in the preview
mode (6) will do the reverse action.

The implementation of the virtual keyboard was a very time-consuming
process as it was necessary to create a fully functional keyboard, which can
work well on mobile devices. First, all buttons had to be responsive, which
means that their size and position adapts to any resolution and aspect ratio
of the screen. Since there is an implementation of the custom UI system for
moving, sorting and nesting code blocks, the default OS’s functionality for
positioning cursor in the text could not work here. Therefore, it was needed
to implement this functionality as well, and that is why the pair of arrows
in the keyboard was needed.

The way the cursor positioning was implement is simple, as every time a
new component is added, the pointer moves at the end of that code block.
If one wants to change the code at other lines, then it is necessary to tap
anywhere on that code block to position cursor at the end of it, so that
arrows can be used to place the cursor between desired characters. After
that, one can add more characters which will be added to the left side of the
cursor or use the backspace button to remove a character which will move

80

4. Implementation Details and Showcase Scenario

T
RUN 1 for x in range(5):

2 printix)

! F | robot , Right(

OUTPUT PANEL
OUTPUT:

)

Figure 4.15.: Screenshot taken from the game which demonstrates how error reporting
looks like for the syntax and interpreter errors.

81

4. Implementation Details and Showcase Scenario

RUN OBJECTIVE

fr o ErErs rrTTTTETTIT T T———— - awmrw=s

Iteach the disk and create s short
program that displays “Hello world

In Python, we use the print-statement to_
output text)~
=== print{ Hello world ')

Hello world | —

Figure 4.16.: Screenshot from the game showing core Ul components.

82

4. Implementation Details and Showcase Scenario

the cursor to the left. Figure 4.17 shows the different keyboard layout panels.
First, there is the default layout with lowercase letters only (a). Tapping on
the ”Shift” button, all letters are converted to uppercase (b) and now when
a player is typing, he or she will see the uppercase letters. In order to type a
number or symbols, it is necessary to tap on the button in the top left corner
of the keyboard (marked in light blue) which will switch from the letter
layout to numerical (c). Finally, since not all symbols can fit in the layout
from (c) there is the button in (d), located in the bottom left corner of the
keyboard (again marked in light blue) which replaces the third row of the
layout with the new set of symbols.

4.2.2. The Environment

The environment is the second core component of the practical game mode.
It works closely with the UI system, as in the programming course, they
depend on each other. The environment represents the scene, that is, every-
thing else which is left when the Ul system is removed. Every course should
have a different playground system, which is designed and adapted specifi-
cally to that course. In the programming course, players have to program a
robot and make it move around the world and collect the disk. However,
there are some obstacles on the way to the disk (yellow boxes), which have
to be avoided, otherwise, a player will lose one attempt when running into
one of the boxes. The same happens when the robot touches any of the
world boundaries. When a collision with an obstacle occurs, then there is a
screen shake animation, which is based on random values acquired from
Random.insideUnitSphere() function which gives a point inside a sphere with
the radius of one. That point is a vector value and was later multiplied
by a float value, which determines the amount of shake. This animation
emphasizes that the player did something wrong and since he or she is
going to lose an attempt which basically represents the robot’s health, it is
important to bring the player’s attention to that.

It is important to note that boxes are randomly positioned every time
the practical mode is started. In this way, it was ensured that even when
repeating the same level the players will not be faced with the same obstacle
layout over and over. Also, the number of boxes is very important, as more

83

4. Implementation Details and Showcase Scenario

Figure 4.17.: Screenshot from the game the different keyboard layout types.

84

4. Implementation Details and Showcase Scenario

boxes mean it is harder to reach the disk, which leads to more complex code
and more effort from the players. Therefore, the number of boxes depends
on the player’s behavior which is constantly tracked, so the new value is
calculated based on previous attempts and results. The position of the robot
stays intact and every time the game starts, the robot is positioned at the
same place. However, the disk is also randomly positioned and it will be
instantiated on different parts of the map on each run, but compared to
the boxes which can be randomly distributed throughout the entire world,
the disk is placed to a distance from the robot, which is calculated based
on data collected from the server. Every time the code is executed on the
robot, the number of attempts decreases and if the player did not manage
to collect the disk within the defined number of moves, then the game is
over and the player has to repeat that task from the beginning. This time all
obstacles and the disk are positioned differently.

4.3. 3D models and Ul Imagery

Visuals can help developers convey their story in the desired way, so the
selection of the art style mostly depends on the gameplay and game story.
Since the decision to go with 3D has been made, the next step is to pick
one 3D art style of many. There is no official game art taxonomy to refer
to, mainly because of the rapid change of art in video games. Every game
has some unique characteristics which depend on the artist’s vision and
creativity.

In terms of software, instead of using Photoshop?, Illustrator3, or GIMP4,
it was necessary to use Blender>, Maya6, 3Ds Max7, etc. However, there
were some aspects in 3D which still required the usage of image editors.
It was needed to use the image editors to create textures for 3D models.
Another need for image editors was in the process of creating color schemes

*http:/ /www.adobe.com/products/photoshop.html
3http:/ /www.adobe.com/products/illustrator.html
4https:/ /www.gimp.org

Shttps:/ /www.blender.org

bhttps:/ /www.autodesk.eu/products/maya

https:/ /www.autodesk.eu/products/3ds-max

85

4. Implementation Details and Showcase Scenario

Figure 4.18.: The color palette used to create 3D models in the game.

or palettes for UV unwrapping of 3D models. So even though one is not
creating 2D game art, he or she will definitely have to use an image editor,
if not in the 3D modeling process, then surely for UI elements. For this
project, it was decided to make a 3D game, mostly because the majority of
the game which the target audience plays are 3D.

All 3d modeling tools are very similar and picking one is usually a matter
of preference. It was decided to use Blender, as it is a free open source
software which has a big community, therefore, there were many tutorials
and instructions available. All 3D models in the game were created using
Blender 3D modeling software.

The color palette for 3D models is shown in Figure 4.18 and the list of all
models created with that color palette is shown in Figure 4.20. Figure 4.19
shows color palette used for UL. All models and art components were

86

4. Implementation Details and Showcase Scenario

Figure 4.19.: The UI color palette used to create the Ul system in the game.

Figure 4.20.: All models created for this project, using the color palette from Figure 4.18.

87

4. Implementation Details and Showcase Scenario

made by the author of this project, including UlI, characters, maps, etc. In
other words, nothing has been used from other developers and artists.

4.4. Player Customization

The player customization feature was implemented to improve the engage-
ment of players by allowing them to modify their characters in the game.
It is possible to change the character’s look by buying a gear which also
increases the character’s abilities. Figure 4.21 shows how player customiza-
tion scene looks like. The players can customize the character’s skin color,
facial expression and change their name. The health, damage, and speed
are parameters which improve the character’s abilities. The base values of
these parameters change as the player progresses and levels up. The gear
items like a hat, gun and cloth can improve the characteristics of the main
character. Those items can be obtained from the shop, but for buying an
item it is necessary to use gold which players can collect by playing both
the theoretical and practical modes. When a new item is obtained, then it
shows up in the inventory so a player can drag-and-drop it onto one of the
gear slots and see how that item affects a specific characteristic.

4.5. Final Game Output

This section is the final part of implementation chapter, which summarizes
the entire implementation process. The idea of the project was to build an
educational video game which will help students to improve their knowl-
edge in different subjects. In order to prove the concept, there is only one
subject available at the moment (programming), used as a prototype. The
entire game is built around this subject. The course curriculum is defined
by the developer of the project and converted into the skill tree. There is
a web application which allows educators to create their own skill trees
for their courses and invite students to play the game. That component
is implemented by (Koji¢, 2017), but it works very closely with the game.
The educators are able to track the progress of their students and better

88

4. Implementation Details and Showcase Scenario

Skin Faces Email

B IR e
L

& T ErET

=0
= | O

Figure 4.21.: Player customization scene. Sceenshot taken from the game.

understand which topics the students are good at and which of them they
have to improve. A topic in the game is denoted as a skill, which can have a
number of questions associated with. Since the game is based on procedural
generation there are only six scenes, where 4 of them are different menu
and level selection scenes, which means that there are only two game scenes,
theoretical and practical modes.

In classrooms, educators usually explain theoretical aspects of a topic first
and then they move on to the practical aspects. The same approach is used
in this project. Exploration is a very important part of learning and students
can learn a lot if they explore a topic on their own. That is why in the
theoretical mode of the game the players have to explore a map and collect
items. At the end of that process, they will get a short description and a
question, on which they have to answer correctly in order to move on to
the next skill. In the programming course, they will get more information
on how the core programming components, like variable declaration, if
statements, for loops, and other, work.

Once the students are familiar with the theoretical aspects of a specific topic

89

4. Implementation Details and Showcase Scenario

they should apply their knowledge in practice. This is where the practical
mode comes in. In this part, the players have to solve puzzles, which are
designed in a way that they have to use the knowledge from the theoretical
mode in order to successfully complete it. Again, in the programming
course, the goal is to program the robot which is going to avoid all the
obstacles and collect the missing disk.

Since students have to go through, both theoretical and practical aspects
of every single topic (skill in the game) within every course, it is necessary
to introduce some randomness so that they do not repeat the same action
in the game over and over. A proposed solution to that is the usage of
procedural content generation. Using PCG algorithms, every time players
run the theoretical mode in the game, they will have a completely different
map, an environment, a music, enemies, pickups, obstacles. In this way, it is
ensured that the game will be totally different on each run and that students
will not be bored. Figure 4.22 shows several different game outputs for the
theoretical mode.

There are some very similar mechanics in the practical mode as well. It
consists of drag-and-drop components, where every component carries a
piece of code and an environment. Those components are only one part of
the custom UI, as other important parts are the virtual keyboard, tabs, and
panels. The code which players have to write is Python code, which once
players are done with programming, has to be interpreted and execute on
the virtual robot. IronPython is an interpreter for Python code which helps
with code execution and error reporting. Finally, just like in the theoretical
mode it is important to give players different challenges all the time, so
the obstacles, as well as, the disk, are randomly positioned on every play.
Figure 4.23 shows several different game outputs for the practical mode.

Figure 4.24 shows different menu scenes, from main menu to course and
skill selection scene.

90

4. Implementation Details and Showcase Scenario

I

Figure 4.22.: Screenshot from Unity project showing that on every run different map will
be generated using PCG algorithms.

91

4. Implementation Details and Showcase Scenario

Figure 4.23.: Screenshot from the Unity project showing that on every run of the practical
mode the obstacles will be placed at different positions.

92

4. Implementation Details and Showcase Scenario

Programming Mathematics MMTG Intro

Programming

Basics
|
—

Basics (Programming)

Figure 4.24.: Screenshots from the Unity project showing different menu scenes. It starts

with main menu scene and then it shows how scenes for the course and skill
selection look like. 93

4. Implementation Details and Showcase Scenario
4.6. Summary

The theoretical mode is based on exploration and it utilizes PCG algorithms
for the maps generation. Cellular automata and Perlin noise are in charge
of generating structures and natural looking terrains. The practical mode is
designed to serve as a playground where students can acquire the practical
knowledge by solving problems from the real environment. The custom IDE
is an important feature in the programming course which allows players
to program using the code blocks that produce code when dragged and
dropped onto predefined drop zones. Another way of producing the code
is by using the virtual keyboard. It is important to note that the entire
educational content is pulled from the server and loaded into the game. The
web application allows educators to create courses and populate them with
lessons. The procedural sound generation creates different music based on
which scene is loaded. The music in the exploration mode is fast-paced
and bit intense as players have to constantly fight enemies, while in the
playground part the music is calm and relaxing since players have to be
focused. The core game features are designed as modules, so it is easy to
add new modules and extend the game’s capabilities. All visual assets are
created in low poly style using Blender 3D modeling tool, while the entire
game is developed with Unity3D engine.

94

5. Evaluation of the System

The objective of this section is to explain different setups and methodologies
which are going to be used in order to measure users’ engagement and
motivation, as well as, to obtain their general opinion of the game. Also, it
provides an overview of all the answers provided by users and the general
conclusions acquired from the results.

5.1. Evaluation of the Prototype

The evaluation is performed through two phases, the prototype evaluation
and the final evaluation. The first evaluation was scheduled right after the
prototype was ready, so that the feedback from users could be taken into
account and further improvements made.

5.1.1. Study Setup and Methodology

In order to be sure that the game is engaging, it is important to evaluate the
game with users and get their feedback. The feedback should tell if the game
is fun, easy to use and helpful. In order to evaluate the gameplay, playability,
and flow it is necessary to create a usability assessment questionnaire with
system specific questions.

The evaluation consists of:

1. Introduction before using the game (3 minutes)
2. Interaction with the game (10 - 15 minutes)
3. Filling in the questionnaire. (10 minutes)

96

5. Evaluation of the System

The User interface with placeholder graphics, basic game mechanics, ele-
mentary functionalities and layout were the core characteristics of the initial
version of the game. However, even though the game had a number of
limitations it was necessary to perform the testing with users so that the
feedback can be taken into account and those core characteristics modified
and improved while there were still in the early stage. Making changes in
further development phases can require a lot of time and effort, therefore,
in order to prevent costly modifications, it is a good idea to apply changes
as early as possible (Paetsch, Eberlein, & Maurer, 2003).

The idea is to ask questions about the controls, gameplay, intractable and
perception, in oder to understand what the users think about it and how
those characteristics can be improved.

There are several methods which can be used to convey the evaluation, and
collect the feedback and results from questionnaires. Polleverywhere' is an
online tool which allows users to create polls and distribute them to their
target audience. One of the greatest benefits of this tool is that it collects,
groups, and structures the results in a way which helps to understand the
data and derive conclusions.

5.1.2. Participants

Ten participants took part in the prototype evaluation. The participants
were from 19 to 24 year olds and all the them were bachelor computer
science students. Two out of 10 were female participants. The average age
of the participants was 21.7 years with the standard deviation of 1.49. The
native language for the majority of participants is English, as 6 out of 10
participants were from London (UK), while 4 participants were from Graz
(Austria) and their native language is German.

Thttps:/ /www.polleverywhere.com

97

5. Evaluation of the System

5.1.3. Results

Before the participants started filling in the questionnaire they had to
provide their age, gender, country and study programme. There were 17
questions in total, 14 questions were based on the rating from 1 (strongly
disagree) to 5 (strongly agree) and 3 were free answer questions. At the very
beginning of the questionnaire, the participants were asked what they liked
and disliked about the game. One participant stated “I liked that there are two
different sections, one for learning and a second to test you. I like the robot level
also, it a good idea to have a simple drag and drop to get people started in coding”.
Concerning, the elements they did not like, one participant wrote “The shots
of the enemies are too hard to avoid, because the delay for moving is really high”.
That was approved by the majority of participants as 5 out of 10 (M = 2.5,
SD = 0.97) disagreed that the controls in the exploration part were easy to
use. The vast majority (M = 2.4, SD = 0.0.97) also disagreed that the controls
were comfy and made sense. Six of 10 participants (M = 2.5, SD = 0.97)
disagreed that they would imagine that most people would learn to use the
controls very quickly. Almost everyone agreed that the gameplay was easy
to understand as 7 of 10 (M = 4.5, SD = 0.97) participants strongly agreed
with this statement, 2 agreed and 1 neither agreed nor disagreed. A half of
the participants strongly agreed that the enemy Al was not too difficult (M
= 4.1, SD = 1.29) and 6 of 10 agreed that the Al worked correctly while the
rest of them strongly agreed with that (M = 4.4, SD = 0.52). Four participants
agreed that the gameplay mechanics worked correctly, 3 strongly agreed, 1
was undecided and 1 disagreed (M = 3.9, SD = 0.99). Everyone agreed that
the game was simple and friendly enough to be played by 12+ year olds, as
8 of 10 participants strongly agreed (M = 4.8, SD = 0.42). When it comes to
virtual keyboard, the participants provided different answers. Three of 10
strongly agreed, 2 agreed and 3 participants disagreed (M = 3.5, SD = 1.27).
The UI for writing the code was intuitive is something which 4 participants
confirmed, 3 strongly agreed while 3 neither agreed nor disagreed (M = 4,
SD = 0.82). Finally, the participants suggested the improvements of different
game aspects. The majority of the participants want to see better controls
and graphics, a tutorial and more features on the UI system. Figure 5.1
shows how the participants rated the controls and the Ul for writing the
code, while Table 5.1 summarizes the entire feedback from the participants.

98

5. Evaluation of the System

zgo Vv € ¥ € o o "9ATINJUT Sem dPp0d Y3 SUNTIM I0J [YL,
e € € T oz € o0 "3sn 0} ASed pue IATIINJUT SeM PIL0qAd [enarA 3y,
‘+21 Aq pakerd
o g §@ T 0o o o 9aq 03 ySnous Afpusny pue ordwirs st swred Sy} 3[oJ |
3103
0 € O0I 0O O O O IO POO[q PaUTLIU0D IO JUI[OIA 00} JOU seM dwed SIy) 39 |
zéo ¥ ¥ 9 o o o ‘A[3091100 Pas{IoM [y Awaus oy,
olo S¥ 9 € 1 0 O *dn yo1d 03 Asea azom sjoejryre AT,
zgo ¢¥ ¢ € T o0 o "SUSISIP [9AI] JUDISJIP S} P |
6o ¢v ¥ v T o o IOOWS pUe 3DTU dI9M SuorewIue sy,
660 6¢€ € ¥ z 1 O ‘A[3091100 pasjiom sorueydawr Aejdowred ayy
6z v & € 1 0 1 "JNOTJIP JOU Sem [y Awdua ay) 39 |
6o &Y L T 1 0 O ‘puejsiopun 0} Asea Aejdowred sy} punoy |
Appmb £19A sjo1uod
6o ST o T T S 1 oy asn o) ured] pinom a[doad jsowr jey surdewrr pnom |
6o vtz o T 1 9 I ‘AJUIOD 9I9M PUE JSUDS P S[OIFUOD 3} 397 |
6o ST 0 T T S 1 "9SN 03 ASELa 3I9M S[OIFU0D d} Y3INoy} |
aa mw S ¥ ¢ ¢ 1

Table 5.1.: The summary of the initial evaluation results (1 - strongly disagree, 5 - strongly

agree).

99

5. Evaluation of the System

| thought the controls were easy to use

5
a
2 2
1
u .
1]

5-5Strongly Agree 3 - Neither agree 4 -Agree 2-Diagree 1 - Strongly Disagree
nor disagree

[¥]

3

[

| felt the controls made sense and were comfy

7
[
[
5
4
3
2
2
1 1
1
°]]
o
5 -Strongly Agree 4 - Agree 3 - Neither agree 2 -Disagree 1 -5Strongly Disagree
nor disagree
The Ul for writing the code was intuitive

45

4
35

3
25

2
15

1
05

0 0
1]
5-Strongly Agree 4 -Agree 3 - Neither agree 2 -Disagree 1-5trongly
nar disagree Disagree

Figure 5.1.: The ratings for the controls and the Ul in the prototype evaluation.

100

5. Evaluation of the System
5.2. Final Evaluation

Once the project is completed it is necessary to test the system with users
and see how they react and whether the game is helping them with improv-
ing their knowledge. One of the goals is to test whether all implemented
features are working as expected. Also, the final evaluation should justify
the modifications made after the prototype evaluation.

5.2.1. Study Setup and Methodology

There are four parts of the questionnaire Pre-Questionnaire, System specific
questions, Motivation and Game Engagement Questionnaire (Brockmyer
et al., 2009). The pre-questionnaire is used to collect the personal infor-
mation about users. System specific questions are the second part of the
questionnaire and are shown to users as soon as they are done with playing
the game. First, it is important to check what players liked and disliked
in the game. After that, they have to provide a feedback on the gameplay
and usability. The third part is about motivation where users have to rate
educational features of the game on the scale from 1 to 7. Finally, Game
Engagement Questionnaire (GEQ) serves to test psychological engagement
of users playing the game. GEQ measures presence, flow, absorption, and
dissociation (Brockmyer et al., 2009). For the purpose of the final testing, it
was decided to use LimeSurvey? - an open source online survey application,
mostly because it offers the statistical and graphical analysis of results,
which means that it is not necessary to perform the additional calculations
in order to obtain the results.

5.2.2. Participants

Originally, 15 participants took part in the final evaluation, however, 3 of
them did not complete the questionnaire, so the results of 12 (80%) of 15
participants were taken into account. All participants were from 12 to 20

https:/ /www.limesurvey.org

101

5. Evaluation of the System

years old. Four participants are high school students while 8 (67%) out
of 12 were first-year university students. Only 2 (16%) out of 12 students
were females, while 10 (84%) of them were males. The average age of the
participants was 18.5 years (SD = 1,24). The youngest participant was 16,
while the oldest was 20 years old. The majority of participants, 9 (75%) out
of 12, were from Graz, Austria, while 3 of them were from London, UK. The
native language for the majority of participants is German, while only 3
participants speak English as their first language.

5.2.3. Results

The first part of the final questionnaire obtains users’ specific details like age,
gender, the amount of time they are spending using their mobile phones, as
well as, the average time they spend using their mobile phones for education
and their programming proficiency.

When it comes to system-specific questions, the participants stated that
they liked the gameplay and that they could learn by playing the game.
Seven (58%) out of 12 said they strongly agreed that the gameplay was
easy to understand, 3 said they agreed while 2 were undecided. Regarding
the controls, 6 participants agreed that the controls are straightforward,
3 strongly agreed and only 1 disagreed, while 2 are undecided. Seven
participants (58%) agreed that the gameplay mechanics worked correctly,
4 totally agreed, while only 1 is undecided. Concerning Al, 4 participants
disagreed that the Al was not difficult, 3 agreed and 2 totally agreed. Many
positive comments were given in regards to different level designs, as
none of the participants disliked it. Generally, the participants stated that
animations were nice and smooth, as well as that pickups were easy to find
and collect. One participant wrote “I am amazed by animations and the overall
design. It's easily understandable and appropriate for the audience. By completing a
level you're falling deeper and deeper into the world of programming, 5/5 star ratio
for this art work.” Also, 9 (75%) participants said that the game is not too
violent while 2 participants agreed with that, and 1 is undecided. Figure 5.2
shows how the participants rated the virtual keyboard and the code writing
process.

102

5. Evaluation of the System

The virtual keyboard was intuitive and easy to use

m Totally agree (5) ™ Agree(4) ® Undecided (3)

The drag-and-drop components helped me to write
the code faster and easier

m Totally agree (5) m Agree(4) = Undecided (3) = Disagree (2)

Sorting and nesting of the code is very simple

m Totally agree (5) = Agree(4) = Undecided(3) = Disagree (2)
Figure 5.2.: The feedback provided by the participants on the code writing process.

103

5. Evaluation of the System

When asked ”"What subjects would you like to learn using this game?” majority of
the participants, 10 (83%) out of 12, stated STEM courses like programming,
maths, and physics. Only 1 participant did not provide an answer, while
1 participant would like to learn languages using the game. The question
"Who do you think would be a good target group for the game?” brought pretty
much the same answers, as everyone thinks that the most suitable target
audience is high school students and first-year university students.

The second part of the questionnaire is designed for evaluating the mo-
tivation of participants. The questions are rated on the scale from 1 to 7
(7-point Likert scale), where 7 represents fully agree and 1 fully disagree.
The participants confirmed that "sCool” is a good supplement to regular
learning (M = 6, SD= 1.13). Also, they verified that they learned something
using the game (M = 5.5, SD = 1.38). The vast majority stated that it is a
good idea to use "sCool” for learning (M = 6.25, SD = 0.75). When it comes
to how ”sCool” transforms and presents certain content, the participants
agree that it makes content more interesting (M = 6, SD = 1.28) and easier
to understand (M = 5.75, SD = 0.87). They also certified that “sCool” makes
learning process more engaging (M = 5.58, SD = 1.24) and interesting (M
= 5.75, SD = 1.14). Regarding how the game affected their programming
skills, the participants confirmed that the game inspired them to learn more
about programming (M = 5.58, SD = 0.90) and that learning about program-
ming by playing a video game was entertaining (M = 6.25, SD = 0.86). The
questionnaire showed that the participants are undecided when asked if
they find regular programming classes interesting (M = 4.17, SD = 1.03) and
more prefer to play a game like this on a PC (M = 4.92, SD = 1.44). Finally,
they specified that they would like to learn with “sCool” at home (M = 5 75,
SD = 0.87) and in classroom (M = 5.84, SD = 1.03).

The final part of the questionnaire is Game Engagement Questionnaire
(Brockmyer et al., 2009), which measures the engagement of the participants.
There are four main parameters absorption, flow, presence, and immersion.
Figure 5.3 shows results for different parameters of GEQ. The absorption (M
= 1.87, SD = 0.84) and the flow (M = 2.38, SD = 0.98) are two deepest levels
and most difficult to agree with. An average group of participants would
most likely provide the undecided answer to presence related questions.
In this questionnaire, the values are slightly above the expectations (M =
3.25, SD = 1.22), which means the engagement is high. The immersion is

104

5. Evaluation of the System

Game Engagement Questionnaire (GEQ)

Immersion

35 Presence
2
25 Flow
3 Absortion
15
1
a5
0
1 2 3 a

Figure 5.3.: GEQ results for absorption, presence, flow and immersion.

the easiest item to agree with, therefore deviation is usually small, which
is confirmed by the results of the questionnaire, as the standard deviation
is the smallest of all parameters (M = 3.58, SD = 0.79). Figure 5.2 shows
the participants’ feedback on the code writing process obtained in the final
evaluation. The summary of the system specific questions is shown in Table
5.2. The table 5.3 depicts the participants” opinions of the motivation, while
Table 5.4 displays the answers of the GEQ part.

5.3. Discussion and Limitations

The results of the prototype evaluation showed that the participants did
not like the controls. The early version of the game had the implementation
of A* algorithm which was used for pathfinding. It was concluded that
the players have difficulties with interacting with the game in such a way,
as in order to move around they had to tap on the desired location, but

105

5. Evaluation of the System

go SL¢ T 9 € 1 O -a1duuts £1a4 st 9pod jo 3unsau pue 3unpIog
“I9ISEd pue I19)sej
tor ¥ & € € 1 0 opoday aum 0} dwr padpy sjusuodwod dorp-pue-3ei
60 gotv ¥ & ¢ o o "9SN 0} ASELa pue dATIINIUI SEM PILOGAY [eNnIIA YL,
90 ZL9g¥ 6 T 1 0 O "JUS[OIA 00} JOU Sem dwred ay} 395 |
6o v ¥ S z 1 O *}03[[0d pue puyy 03 Asea a1am sdn yord oy,
¢o STt¥ 9 S T 0 O "SUSTSOP [IA] JUDIDJJTP Y3} P [
1 gfv & ¥ 2 1 o "JJOOWS PUe ITU 3I9M SUOTJRWIUR Y],
z9o Sev v L 1 0 o ‘A[3991100 pasyIom sdrueydawr Aejdowred ayy,
vrrr Gze€ ¢ € € Vv o "}[NOYJIP J0U SI [y AWUS 9y} 397 |
6o T6t € 9 T 1 O *9SN 0} ASEL3 3IdM S[OIFU0D) Y3Noy) |
6Lo0 ¥ L € T o o "pueisiopun o3 Ases Aejdowred a3 punoj |
go SL¢ T 9 € 1 O “U9}JO 3IOW SSE[D Ul dwred STy} asn 0} I P[NOM |
Vw1 Lot T 9 1 € ¢ (Surururer3oxd yyim noA are paoustradxe MOE]
960 Lo€ o 9 S € 1 (3urureay 105 suoydjrewss oA asn noA op uslyo MO
960 €6z I T g € 1 isoured afrqowr Aefd noA op us330 MOK]
a W S ¥ ¢ z 1

Table 5.2.: The summary of the results on the system specific questions (1 - strongly
disagree, 5 - strongly agree).

106

5. Evaluation of the System

€o0r €S € 9 1T T 0 O O "WOO0ISSE[D Y} Ul ,JO0D)S,, YIIM WIed] 0} I P[NOM |
g0 GLS T 9 € 1 0 O O w0y je ,,[00D)S,, YIIM UIed] 03 I P[NOM |
Q1 Tt ¢ Tz € ¥ o 1 O ‘D Aw uo ,,J00Ds,, 3y} asn Iayjer p[nom |
‘Kem
remn3ar e ur urwrerdord Sururesy uey) 3urdedus arowr
I€T g4 € S 1 2 1 0 0 sem awed oopria e Jurdeld Aq Surwrwrerdord Surures
‘gunysaroyur
Lgo ST9 9 € € o o o o sem owed oapia e 3urkeid Aq Surwrurerdoird Jurures
€or T¥ o 1 € 9 1T 1 O ‘3urioq sassep Suruwerdord rem3ar pury |
‘'Spoyjow JeuonIpel} Ypm uetpy
¢ €66 v 1 € € 1 0o o ,00Ds, yim Surwuwerdord ures] 03 oI I9Yjel p[nom |
vZo 9 € 9 € 0o 0 0 0 ‘mMoge ured] 0} 3UnsIIAIUI SIOW JUSJUOD ISINOD SN LU }]
"S9SIDIOXD Areu
61't €95 v ¥ € o 1T 0 o0 -TpI10 UeY) 3unjEATIOW SI0W SeM ,[00D)S, UM JuTurea|
‘Surwrwrerdoxd noqe
060 @S 1 L T T 0O O O 910w uIed[0} dw paiidsur ,[00DS,, UM dusLIadxa Y],
brr G4S € & € o 1 o0 o ‘3urysarojur azow Jururesy sayew ,[00)S,,
tzr g¢¢ € ¥ € 1 1 0 O ‘3urdedus axow 3urures] sexew ,,[00DsS,,
/g0 SLS T 9 £ 1T 0 0 O "‘pUBISISPUN 0] IITSE JUSJUO0D 3} S9xew ,[00))S,,
I 9 9 T £ 0 I 0 O *3UT)S2I9IUT SIOW JUSJUOD S} SAYew ,,[00D)S,,
g¢'r ¢4 Vv T € T 1 0 O *,JOODS,, Yim Suryjowios pauredy |
¢rt 9 S ¥ 1 Tz 0o o0 O ‘Bururesy ren3ar 03 yuswarddns pooS e st ,J00Ds,,
¢/o ST9 & G T 0 O O O ‘3ururesy 105 ,,[00DS,, IsN 0} LIPT PoO3 € SI]
as W 4 9 & v € T 1

Table 5.3.: The summary of the motivation related questions (1 - strongly disagree, 7 -

strongly agree).

107

5. Evaluation of the System

1 2 3 4 5 M SD
I feel scared. 10 2 0 0 O 1.17 0.39
I lose track of where I am. 6 4 1 1 0 175 0.97
I feel different. 2 4 2 4 o0 267 1.15
Time seems to stand still or stop. 3 4 4 1 0 225 097
I feel spaced out. 6 3 3 o o 175 0.87
I don’t answer when someone talks. 9 3 0 0 0 1.25 045
I can’t tell when I'm getting tired. 4 4 0 3 1 242 1.44
If someone talks to me I don’t hear. 5 2 4 1 o 208 1.08
I feel like I can’t stop playing. 2 7 1 1 1 233 1.15
The game feels real. 1 4 7 0O 0 25 0.67
I get wound up. 5 5 2 0 0 175 0.5
Playing seems automatic. 2 2 4 3 1 292 1.24
I play without thinking how to play. 1 3 3 4 1 308 1.16
Playing makes me feel calm. 1 1 5 4 O 3.09 0.94
Things seem to happen automatically. 1 2 3 4 2 333 1.23
My thoughts go fast. 1 2 3 5 1 3.25 1.14
I play longer than I meant to. 2 3 2 3 2 3 142
I lose track of time. 1 1 3 6 1 3.42 1.08
I really get into the game. o 1 4 6 1 358 079

Table 5.4.: The Game Engagement Questionnaire results (1 - strongly disagree, 5 - strongly
agree).

108

5. Evaluation of the System

that was inconvenient in combat situations as in order to attack an enemy
unit it is necessary to tap on it. Sometimes in a situation like that, some
players would accidentally tap next to the enemy and instead of attacking,
the player would move right next to the enemy, which would result in losing
all health points. Thus it was necessary to change the controls and come
up with something different. The only logical solution for that was to use
controls which will not require to tap on a location in order to move around
and evaluate the new controls in the final evaluation.

None of high school students took part in the prototype evaluation, which
is an important part of the target audience. Also, all students were master’s
computer science students, which means that they have been already fa-
miliar with programming. The perfect target audience is high school and
first-year university students who are getting started with programming,
unfortunately, it was not possible to include any high school students in
the initial evaluation. A few participants encountered several bugs related
to the gameplay, map generation and playground part. Some participants
could not reach all the disks on a map as some disks were located in the
isolated areas. In the playground part, two participant complained that
drag-and-drop blocks did not produce the code.

In the final evaluation the participants did not experience any technical
difficulties. In general, they showed interest for the game and they think it
helps them to learn more about programming. Regarding the exploration
part, they would like the gameplay to be more course specific. In other
words, the gameplay should help them better understand theoretical aspects
of the course. Also, they showed an interest to see how the playgrounds will
be implemented in different courses.

109

6. Lessons Learned

This chapter discusses different challenges and issues occurred during the
literature review, design and implementation of the project, as well as, the
evaluation and collecting results. It summarizes critical points of different
project phases and lessons learned while working on this thesis.

6.1. Literature

Since one of the most important objectives of this study was to use PCG
techniques for generation of maps, assets, and sound, as well as to be
able to do all of that on the mobile platform, it was necessary to convey
a deep research on which algorithms can be used to fulfill all specified
requirements. There is no official taxonomy of PCG methods and other
researchers offer different categorization of PCG algorithms. Since there is
a number of PCG algorithms, only those which can be used for creating
structures of maps and natural-looking terrains, as well as game assets, have
been considered in this thesis. Also, PCG methods are not only used for
map and asset generation, they are also used for sound production. It was
concluded through the literature research, that the vast majority of high
school students and first-year university students possess mobile phones
and spend a lot of time using them. Another point which contributes to the
motivation for building an educational mobile game based on PCG methods,
is that these aspects are not common practice but can be very useful for
educators, as they do not have to invest their time in creating levels. This
approach allows educators to focus on creating educational content only,
while PCG techniques create levels and other game content.

111

6. Lessons Learned
6.2. Development

The development process of PCG methods introduced a number of issues
which have to be fixed in order to have the effective results. The cellular
Automata algorithm which was used for procedural map generation did not
provide outputs which could be immediately used in the game. Sometimes
the algorithm would generate a map with many isolated sections, that is, the
parts of the map which were not reachable. Another issue was that larger
maps lose natural-looking cave-like shape. It was necessary to tune up the
results a bit in order to create maps which are satisfying the requirements.
The map generation process is needed to provide the random maps, however,
those maps are only assets and it is still needed to make a playable game
based on those maps. For that purpose, it was necessary to come up with the
region detection algorithm which will be used to identify potential regions
where the game elements can be instantiated. Building a custom UI was
very hard and time-consuming process, however, it brought a number of
benefits. There are several reasons why it was needed to build a custom
UI and one of the most important was to improve the user experience and
provide the the rich usability experience. Another reason was that Unity3d
default UI did not work as expected on Android devices as it was really
hard to type the code. That is why it was necessary to come up with a
solution which will simplify that process. One more benefit of the custom
Ul is that it looks just like an IDE on a desktop platform as it provides
all core functionalities which can be found in any desktop IDE. Definitely,
the most complex component in the programming playground part was
the virtual keyboard, as it was needed to support all core functionalities
like typing of letters, number, symbols, as well as switching between lower
and upper case letters. Also, it was necessary to add support for special
commands like space, enter, backspace, and most importantly, commands
for positioning the text cursor.

112

6. Lessons Learned
6.3. Evaluation

The evaluation and testing consisted of two separate questionnaires, con-
veyed at different stages of the project. The initial testing was performed
in the early stage of development, that is, once the prototype was ready.
It helped to better understand how players are interacting with the game
and improve the controls and gameplay. That improvement reflected in the
final testing as the majority of the participants stated that the gameplay was
easy to understand and the controls were straightforward. The participants
confirmed that they find the game very interesting and engaging. It is a
good idea to always have a working prototype so that the game can be
constantly tested with users and their feedback applied. Another benefit
is that users can easily detect potential issues and bugs, so all of that can
be fixed in the early stage of development, which will take much less time
and effort then to make those corrections when the game is completed.
When organizing an evaluation, it is very useful to use online tools for
conveying surveys. In the initial testing Polleverywhere' was used to create
a questionnaire and collect users” feedback. However, to draw conclusions
it was necessary to manually calculate mean, standard deviation, min and
max values, percentiles of every group, etc. That process takes some time
and is prone to errors, therefore, for final testing, it was decided to use
LimeSurvey? as that tool is capable of calculating all of that, which saves a
lot of time and effort, so that one can only focus on understanding obtained
results and feedback.

Thttps:/ /www.polleverywhere.com/
https:/ /www.limesurvey.org/

113

7. Conclusion and Future Work

This chapter presents the overview of the entire project and gives ideas for
future work. Research questions of the thesis are summarized and outlook
to future research is presented.

7.1. Conclusion

The primary goal of the project is to use procedural generation to enhance
engagement of players and motivate them to improve their knowledge by
playing an educational game. Another goal is to examine whether it is
possible to create an educational game based on PCG and run it on mobile
devices, given that they have very limited processing power, screen size, and
input. This work presented the design, implementation, and evaluation of an
educational multidisciplinary video game using PCG techniques. Educators
usually teach both theoretical and practical aspects of the certain topics. In
order to acquire theoretical knowledge of a course, players have to explore
maps, defeat enemies and collect all the disks which are spread out the
map, and which will reveal a piece of information once they are all collected.
Players have to read that information before taking a question which will
test how good they understood what they have read previously. If they do
not provide the correct answer, they have to read the description again and
retake the test before they can proceed to the next task. With procedural
map generation, it is ensured that the players will get different maps on
each run. Cellular Automata and Perlin noise are two PCG methods which
are combined to create natural-looking terrains and separate walkable from
the non-walkable area. Custom Ul and drag-and-drop blocks are two main
components of the playground part which is designed to convey the practical
knowledge of a course. The playground in the programming course, helps

115

7. Conclusion and Future Work

players to understand the basic concepts of programming and write their
tirst programs using Python code. The final testing showed that players find
the game very interesting and motivating. The majority of the participants
(10 out of 12) stated that it is a good idea to use “sCool” as a supplement to
learning, as well as, that it is most suitable for teaching STEM courses like
programming, math, electrical engineering, and physics.

7.2. Future Work

All core functionalities implemented in the game are working fine, however,
the future work can be based on a number of improvements of different
aspects of the game. One of the ideas in the exploration part could be to
infinitely extend the map size, which can be based on generating maps of
tixed size when a player approaches an edge of the screen. This will create
a feeling that the environment is endless. Another feature in exploration
part which can be improved is the region detection algorithm. Currently, the
algorithm works in a way that it splits a map into a number of regions of
equal size. The region detection process could be based in future on binary
space partitioning in order to generate regions of different sizes.

Playground part of the programming course can be further improved by
coloring Python specific keywords like for, if, new, etc. This will create a
richer programming experience as it will help distinguish between keywords
and other commands. Also, it would be nice to replace the red cursor
functionalities with native Android or iOS virtual cursor. It is not possible
to use default one at the moment, as it only works with the text fields,
therefore, it would be necessary to create a component which works with
the code blocks. Currently, there is only one fully implemented course which
is programming, however, for some other courses, it will be necessary to
come up with different playgrounds and challenges. Also, there is only
one game type in exploration part (Shoot ‘em up), but it would be nice
to have different game types so that educators can specify which type of
game their students should play. If the majority of a class are girls, then
it would be a good idea to choose a match-three as a game type. This can
be further improved by allowing educators to specify different groups and

116

7. Conclusion and Future Work

assign different game types to those groups. In that way, girls could play
a match-three game while boys play shoot ‘'em up. It is important that
even though different groups play different genre, they still have the same
curriculum and experience the same level of difficulty. It would be nice
to have different enemy types as well, which could improve the gameplay
and enhance engagement. For example, enemy units could have different
abilities and attack styles (melee, rage, AOE - Area of Effect) so that players
have to think about different strategies when fighting different enemies.

Finally, the best way to motivate students to learn more about programming
and improve their programming skills is to show them how programming
in the game could affect the real world. For that purpose, it would be a good
idea to build a physical robot and deploy the code which players type in
the game to the robot, so they can see their code in action. That would show
them that the code they type in the game is working in a real environment
and additionally improve their motivation.

117

Appendix

119

References

Amory, A., Naicker, K., Vincent, J., & Adams, C. (1999). The use of computer
games as an educational tool: identification of appropriate game types
and game elements. British Journal of Educational Technology, 30(4),
311-321.

Amory, A., & Seagram, R. (2003). Educational game models: conceptual-
ization and evaluation: the practice of higher education. South African
Journal of Higher Education, 17(2), 206—217.

Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Computing Surveys (CSUR), 23(3), 345—
405.

Baghdadi, W., Eddin, F. S., Al-Omari, R., Alhalawani, Z., Shaker, M., &
Shaker, N. (2015). A procedural method for automatic generation of
spelunky levels. In European conference on the applications of evolutionary
computation (pp. 305-317).

Banks, J. A. (1988). Multiethnic education: Theory and practice. ERIC.

Bartle, R. (1996). Hearts, clubs, diamonds, spades: Players who suit muds.
Journal of MUD research, 1(1), 19.

Berto, F,, & Tagliabue, J. (2017). Cellular automata. In E. N. Zalta (Ed.), The
stanford encyclopedia of philosophy (Fall 2017 ed.). Metaphysics Research
Lab, Stanford University. https://plato.stanford.edu/archives/
fall2017/entries/cellular-automata/.

Betz,]. A. (1995). Computer games: Increase learning in an interactive mul-
tidisciplinary environment. Journal of Educational Technology Systems,
24(2), 195-205.

Bogacheva, A. (2017). Subway surfers continued success. Retrieved
from http://www.pocketgamer.biz/news/64936/subway-surfers
-continued-success-jan-2017/

Brockmyer, J. H., Fox, C. M., Curtiss, K. A., McBroom, E., Burkhart, K. M., &
Pidruzny, J. N. (2009). The development of the game engagement ques-

120

https://plato.stanford.edu/archives/fall2017/entries/cellular-automata/
https://plato.stanford.edu/archives/fall2017/entries/cellular-automata/
http://www.pocketgamer.biz/news/64936/subway-surfers-continued-success-jan-2017/
http://www.pocketgamer.biz/news/64936/subway-surfers-continued-success-jan-2017/

References

tionnaire: A measure of engagement in video game-playing. Journal of
Experimental Social Psychology, 45(4), 624—634.

Browne, C. (2017). Yavalath. Retrieved from http://www.cameronius.com/
games/yavalath/

Chang, V., & Guetl, C. (2010). Generation y learning in the 21st century:
integration of virtual worlds and cloud computing services. In Global
learn (pp. 1888-1897).

Clune, J., & Lipson, H. (2011). Evolving three-dimensional objects with a
generative encoding inspired by developmental biology. In Ecal (pp.
141-148).

Clune, J. E. (2007). Heuristic evaluation functions for general game playing.
In Aaai (Vol. 7, pp. 1134-1139).

Collinge, R. (2017). The importance of visual appeal in web design. Retrieved
from http://blog.usabilla.com/visual-appeal-web-design/

Davies, C., & Eynon, R. (2013). Teenagers and technology. Routledge.

De Aguilera, M., & Mendiz, A. (2003). Video games and educa-
tion:(education in the face of a “parallel school”). Computers in Enter-
tainment (CIE), 1(1), 1.

De Berg, M., Cheong, O., Van Kreveld, M., & Overmars, M. (2008). Compu-
tational geometry: Introduction. Springer.

DesignContest. (2017). Inspiration gallery: Low poly art. Retrieved
from https://www.designcontest.com/blog/inspiration-gallery
-low-poly-art

Dewey, J. (1904). The relation of theory to practice in education.

EBGames. (2017). Tom clancy’s the division. Retrieved from https://ebgames
.com.au/xbox-one-162912-Tom-Clancys-The-Division-Xbox-0One

Eiben, A. E., Smith, J. E,, et al. (2003). Introduction to evolutionary computing
(Vol. 53). Springer.

Elkner, J. (2000). Using python in a high school computer science program.
In Proceedings of the 8th international python conference (pp. 2000—-01).

Eskerda. (2017). Dungeon generation using bsp trees. Retrieved from https://
eskerda.com/bsp-dungeon-generation/

Federoff, M. A. (2002). Heuristics and usability guidelines for the creation and
evaluation of fun in video games (Unpublished doctoral dissertation).
Indiana University Bloomington.

Foord, M., & Muirhead, C. (2009). Ironpython in action. Manning Publications
Co.

121

http://www.cameronius.com/games/yavalath/
http://www.cameronius.com/games/yavalath/
http://blog.usabilla.com/visual-appeal-web-design/
https://www.designcontest.com/blog/inspiration-gallery-low-poly-art
https://www.designcontest.com/blog/inspiration-gallery-low-poly-art
https://ebgames.com.au/xbox-one-162912-Tom-Clancys-The-Division-Xbox-One
https://ebgames.com.au/xbox-one-162912-Tom-Clancys-The-Division-Xbox-One
https://eskerda.com/bsp-dungeon-generation/
https://eskerda.com/bsp-dungeon-generation/

References

Gamasutra. (2017). What game developers are saying about no man’s
sky. Retrieved from http://www.gamasutra.com/view/news/279284/
What_game_developers_are_saying_about_No_Mans_Sky.php

Gamepedia, N. M. S. (2017). Species. Retrieved from https://nomanssky
.gamepedia.com/Species

Gentile, D. A., Lynch, P. J., Linder, J. R., & Walsh, D. A. (2004). The effects of
violent video game habits on adolescent hostility, aggressive behaviors,
and school performance. Journal of adolescence, 27(1), 5—22.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and
machine learning, 1989. Reading: Addison-Wesley.

Grandell, L., Peltomdki, M., Back, R.-J., & Salakoski, T. (2006). Why compli-
cate things?: introducing programming in high school using python.
In Proceedings of the 8th australasian conference on computing education-
volume 52 (pp. 71-80).

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in
the classroom: A longitudinal study on intrinsic motivation, social
comparison, satisfaction, effort, and academic performance. Computers
& Education, 8o, 152-161.

Hatfield, T. (2017). Rise of the roguelikes: A genre evolves. Re-
trieved from http://pc.gamespy.com/pc/ftl-faster-than-light/
1227287pl.html

Hauser, E. (2017). Why python is a great first language. Retrieved from
http://blog.trinket.io/why-python/

Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013). Proce-
dural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 9(1),
1.

Horn, B., Dahlskog, S., Shaker, N., Smith, G., & Togelius, J. (2014). A
comparative evaluation of procedural level generators in the mario ai
framework.

Johnson, C. (2017). Lessons learned: Optimizing a procedural dungeon gener-
ator in xna. Retrieved from http://chrisejohnson.com/wp/lessons
-learned-optimizing-a-procedural-dungeon-generator-in-xna/

Kerlow, I. V. (2004). The art of 3d: computer animation and effects. John Wiley
& Sons.

Klopfer, E. (2008). Augmented learning: Research and design of mobile educational
games. MIT press.

122

http://www.gamasutra.com/view/news/279284/What_game_developers_are_saying_about_No_Mans_Sky.php
http://www.gamasutra.com/view/news/279284/What_game_developers_are_saying_about_No_Mans_Sky.php
https://nomanssky.gamepedia.com/Species
https://nomanssky.gamepedia.com/Species
http://pc.gamespy.com/pc/ftl-faster-than-light/1227287p1.html
http://pc.gamespy.com/pc/ftl-faster-than-light/1227287p1.html
http://blog.trinket.io/why-python/
http://chrisejohnson.com/wp/lessons-learned-optimizing-a-procedural-dungeon-generator-in-xna/
http://chrisejohnson.com/wp/lessons-learned-optimizing-a-procedural-dungeon-generator-in-xna/

References

Koji¢, A. (2017). Design and Implementation of an Adaptive Multidisciplinary
Educational Mobile Game (Unpublished master’s thesis). Graz University
of Technology, Austria.

Kun, J. (2017). The cellular automaton method for cave generation. Retrieved
from https://jeremykun.com/2012/07/29/the-cellular-automaton
-method-for-cave-generation/

Lague, S. (2017). Procedural cave generation. Retrieved from https://
github.com/SebLague/Procedural-Cave-Generation

Laja, P. (2017). First impressions matter: The importance of great visual design. Re-
trieved from https://conversionxl.com/blog/first-impressions
-matter-the-importance-of-great-visual-design/

Leutner, D. (1993). Guided discovery learning with computer-based simula-
tion games: Effects of adaptive and non-adaptive instructional support.
Learning and Instruction, 3(2), 113-132.

Maksym, L. (2017). Technology as a medium for learning. Re-
trieved from http://serendip.brynmawr.edu/exchange/alesnick/
technology-medium-learning

Marvie, J.-E., Perret,]J., & Bouatouch, K. (2005). The fl-system: a functional
l-system for procedural geometric modeling. The Visual Computer,
21(5), 329-339.

MathChief. (2017). No man’s sky - the pathfinder update gameplay. Retrieved
from https://www.youtube.com/watch?v=AYgnMmTNXqs

McPhee, N. F, Poli, R., & Langdon, W. B. (2008). Field guide to genetic
programming.

Mentzelopoulos, M., Parrish, J., Kathrani, P., & Economou, D. (2016). Revr-
law: An immersive way for teaching criminal law using virtual reality.
In International conference on immersive learning (pp. 73-84).

Mojang. (2017a). Minecraft. Retrieved from https://minecraft.net

Mojang. (2017b). Minecraft. Retrieved from https://education.minecraft
.net/

Mueller, J. P. (2010). Professional ironpython. John Wiley & Sons.

Naylor, B. F. (1998). A tutorial on binary space partitioning trees. In
Computer games developer conference proceedings (pp. 433—457).

Neal, L. (1990). Implications of computer games for system design. In
Proceedings of the ifip tc13 third interational conference on human-computer

interaction (pp. 93—99).
Nebel, S., Schneider, S., & Rey, G. D. (2016). Mining learning and crafting

123

https://jeremykun.com/2012/07/29/the-cellular-automaton-method-for-cave-generation/
https://jeremykun.com/2012/07/29/the-cellular-automaton-method-for-cave-generation/
https://github.com/SebLague/Procedural-Cave-Generation
https://github.com/SebLague/Procedural-Cave-Generation
https://conversionxl.com/blog/first-impressions-matter-the-importance-of-great-visual-design/
https://conversionxl.com/blog/first-impressions-matter-the-importance-of-great-visual-design/
http://serendip.brynmawr.edu/exchange/alesnick/technology-medium-learning
http://serendip.brynmawr.edu/exchange/alesnick/technology-medium-learning
https://www.youtube.com/watch?v=AYgnMmTNXqs
https://minecraft.net
https://education.minecraft.net/
https://education.minecraft.net/

References

scientific experiments: a literature review on the use of minecraft in
education and research. Journal of Educational Technology & Society,
19(2), 355.

Nestorgames. (2017). Yavalath. Retrieved from http://www.nestorgames
.com/#yavalath detail

Orchestra, P. (2017). Sound samples. Retrieved from http://www
.philharmonia.co.uk/explore/sound _samples

Oré, J. J. (2017). Voxel art - variados. Retrieved from https://www.domestika
.org/en/projects/248754-voxel-art-variados

Paetsch, E, Eberlein, A., & Maurer, F. (2003). Requirements engineering
and agile software development. In Enabling technologies: Infrastructure
for collaborative enterprises, 2003. wet ice 2003. proceedings. twelfth ieee
international workshops on (pp. 308-313).

Patel, A. (1991). Polygonal map generation for games.

Perlin, K. (2017). Making noise. Retrieved from https://web.archive.org/
web/20160308022101/http://noisemachine.com:80/talkl/
index.html

Pirker, J., Guetl, C., & Astatke, Y. (2015). Enhancing online and mobile exper-
imentations using gamification strategies. In Experiment@ international
conference (exp. at'15), 2015 3rd (pp. 224—229).

PopCapGames. (2017). Plants vs. zombies. Retrieved from https://www
.playstation.com/fi-fi/games/plants-vs-zombies-ps3

Prusinkiewicz, P., & Hanan, J. (2013). Lindenmayer systems, fractals, and plants
(Vol. 79). Springer Science & Business Media.

Prusinkiewicz, P, & Lindenmayer, A. (2012). The algorithmic beauty of plants.
Springer Science & Business Media.

Ralby, A., Mentzelopoulos, M., & Cook, H. (2017). Learning languages and
complex subjects with memory palaces. In International conference on
immersive learning (pp. 217—228).

RedBlobGames. (2017). Making maps with noise functions.

Relogic. (2017). Terraria. Retrieved from https://terraria.org/

Risi, S., Lehman, J., D’Ambrosio, D. B., Hall, R., & Stanley, K. O. (2016).
Petalz: Search-based procedural content generation for the casual
gamer. [EEE Transactions on Computational Intelligence and Al in Games,
8(3), 244-255.

Roussou, M. (2004). Learning by doing and learning through play: an explo-
ration of interactivity in virtual environments for children. Computers

124

http://www.nestorgames.com/#yavalath_detail
http://www.nestorgames.com/#yavalath_detail
http://www.philharmonia.co.uk/explore/sound_samples
http://www.philharmonia.co.uk/explore/sound_samples
https://www.domestika.org/en/projects/248754-voxel-art-variados
https://www.domestika.org/en/projects/248754-voxel-art-variados
https://web.archive.org/web/20160308022101/http://noisemachine.com:80/talk1/index.html
https://web.archive.org/web/20160308022101/http://noisemachine.com:80/talk1/index.html
https://web.archive.org/web/20160308022101/http://noisemachine.com:80/talk1/index.html
https://www.playstation.com/fi-fi/games/plants-vs-zombies-ps3
https://www.playstation.com/fi-fi/games/plants-vs-zombies-ps3
https://terraria.org/

References

in Entertainment (CIE), 2(1), 10-10.

Sabha, M., & Dutré, P. (2007). Feature-based texture synthesis using voronoi dia-
grams (Tech. Rep.). Technical Report CW 492, Department of Computer
Science, KU Leuven.

Schank, R. C., Berman, T. R., & Macpherson, K. A. (1999). Learning by doing.
Instructional-design theories and models: A new paradigm of instructional
theory, 2, 161-181.

Shaffer, C. (2017). The pr quadtree. Retrieved from http://1ti.cs.vt.edu/
Books/Everything/html/PRquadtree.html

Shaker, N., Togelius, J., & Nelson, M.]J. (2016). Procedural content generation
in games: A textbook and an overview of current research. Springer.

Sisler, V., & Brom, C. (2008). Designing an educational game: Case study
of’europe 2045’. Transactions on edutainment I, 1-16.

Smith, G. (2014). The future of procedural content generation in games. In
Proceedings of the experimental ai in games workshop.

Smith, G. (2015). An analog history of procedural content generation. In
Fdg.

Spelunky. (2017). Spelunky. Retrieved from http://www.spelunkyworld
.Ccom

Squire, K. (2003). Video games in education. In International journal of
intelligent simulations and gaming.

Squire, K. (2011). Video games and learning: Teaching and participatory culture
in the digital age. technology, education—connections (the tec series). ERIC.

Togelius, J., Kastbjerg, E., Sched]l, D., & Yannakakis, G. N. (2011). What is
procedural content generation?: Mario on the borderline. In Proceedings
of the 2nd international workshop on procedural content generation in games
(p- 3)-

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-
based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and Al in Games, 3(3), 172-186.

Walton, M. (2012). Minecraft in education: how video games are teaching
kids. GameSpot. CBS Interactive. Retrieved December, 15.

Weibell, C.]. (2017). Principles of learning: 7 principles to
guide personalized, student-centered learning in the technology-
enhanced, blended learning environment. Retrieved from
https://principlesoflearning.wordpress.com/dissertation/
chapter-4-results/themes-identified/repetition/

125

http://lti.cs.vt.edu/Books/Everything/html/PRquadtree.html
http://lti.cs.vt.edu/Books/Everything/html/PRquadtree.html
http://www.spelunkyworld.com
http://www.spelunkyworld.com
https://principlesoflearning.wordpress.com/dissertation/chapter-4-results/themes-identified/repetition/
https://principlesoflearning.wordpress.com/dissertation/chapter-4-results/themes-identified/repetition/

References

Wen, H. (2017). Interview: Frugal fragging with .kkrieger. Re-
trieved from http://www.gamasutra.com/view/feature/2277/
interview_frugal fragging with_.php

Wikidot, P. (2017). Conway’s game of life. Retrieved from http://pcg.wikidot
.com/pcg-games : conway-s-game-of-life

Wikipedia. (2017a). Minecraft. Retrieved from https://en.wikipedia.org/
wiki/Minecraft

Wikipedia. (2017b). Spelunky. Retrieved from https://en.wikipedia.org/
wiki/Spelunky

Zelle, J. M. (2004). Python programming: an introduction to computer science.
Franklin, Beedle & Associates, Inc.

126

http://www.gamasutra.com/view/feature/2277/interview_frugal_fragging_with_.php
http://www.gamasutra.com/view/feature/2277/interview_frugal_fragging_with_.php
http://pcg.wikidot.com/pcg-games:conway-s-game-of-life
http://pcg.wikidot.com/pcg-games:conway-s-game-of-life
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/Spelunky
https://en.wikipedia.org/wiki/Spelunky

Appendix A.
Questionnaire

A.l. Part 1

Game Engagement Questionnaire (Brockmyer et al., 2009):

Strongly disagree Disagree Undecided Agree Strongly agree

I'loose track of time. o o o o o
Things seem to happen automatically. o o o o o
I feel different. o o o o o
I feel scared. o o o o o
The game feels real. o o o o o
If someone talks to me, I don’t hear them. o o o o o
I get wound up. o o o o o
Time seems to kind of stand still or stop. o o o o o
I feel spaced out. o 0 o o o
I can’t tell when I'm getting tired. o o o o o
Playing feels automatic. o o o o o
My thoughts go fast. o o o o o
I'loose track of where I am. o o o o o
I play without thinking about how to play. o o o o o
Playing makes me feel calm. o o o o o
I play longer than I mean to. o 0 o o o
I really get into the game. o o o o o
I feel like i just can’t stop playing. o o o o o
I don’t answer when someone talks to me. o o o o o

Table A.1.: GEQ

127

Appendix A. Questionnaire

A.2. Part 2

Motivation - Please rate between 1 (fully disagree) and 7 (fully agree):

“WOOISSe[d Y} Ul [00D)S YIIM UIed] 0} I p[NOMm |

"dWIOY JE [00DS YIIM UIed] 03 1] P[NOM |

"Dd Auwr uo [00D)S dY3 Isn IYjel PNOM |

‘Kem
remn3ar e ur urwwrerdord Sururesy uey) urdedus arowr
sem awred oapia e Jurkerd Aq Surwwrerdord Sururea

‘gunysaroyur
sem awred ooapria e Jurderd £q Surwrwrerdoxd 3ururea|

‘3urroq sassep Jurwrwerdoxd rendar puy |

"SPOYIdW [EUOHIPEL} YFIM UeL)
[00Ds ynm Jurwurer3oxd ures] 03 oI I9Yjel PNOM |

"JNOge uIes] 0} SUIISAIOJUI dIOW JUIJUOD ISINO0D SIYeU J]

"S9SIDIIXD
Areurpio ueyj 3U}EATIOW SI0W Sem [00D)S YIIM Jurured|

‘Surwrwrerdoxd noqe
dI0W UIEd] 0} dw paxrdsur [00Ds Ypm douatadxa ayf,

‘3urysarojur a1ow JuTUILS[SAYEW [00)S

‘3urdedus arowr urures] seyew [00)S]

"puelSIopUN 03 IJISEd JUSJUO0D Y} S eW [00D)S

*3UTIS9I9JUT SIOW JUSJUOD dJ} SILW [00D)S

"TOODS YIM SUI}OWOS pauIesy |

‘Sururesy ren3az 03 yuswayddns poog e st [00Ds

*3uruIea] 10§ [00D)S SN 0} LIPI poo3 e SI 3|

NO|O|O|OC|O|0QO|0QO]|O

O o|o0|C|lOC OO 0O]|O

Ial el el ol NoN ol NoN ol o)

<t|o|C|C|OC|QO|QO|0OQO|O

no|oC|C|OC|O|QO|0O]|O

N|O|O|OC|OQO|OQO|0Q|0QO|O

H|OoO|O|OC|O|OQO|QO|0QO|O

Table A.2.: Motivation

128

Appendix A. Questionnaire

A.3. Part 3

Previous experience and system specific questions:

e How often do you play mobile games? [1- never, 5 very often]

How often do you use your smartphone for learning? [1 never, 5 very
often]

How experienced are you with programming? [1 not at all, 5 Expert]
What did you like about sCool?

What did you NOT like about sCool?

I would like to use this game in class more often. [1 totally disagree, 5
totally agree]

I found the gameplay easy to understand. [1 totally disagree, 5 totally
agree]

I though the controls were easy to use. [1 totally disagree, 5 totally
agree]

o [felt the enemy Al is not difficult. [1 totally disagree, 5 totally agree]
e The gameplay mechanics worked correctly. [1 totally disagree, 5 totally

agree]
The animations were nice and smooth. [1 totally disagree, 5 totally
agree]

o I liked the different level designs. [1 totally disagree, 5 totally agree]
e The pick ups were easy to find and collect. [1 totally disagree, 5 totally

agree]

o | felt the game was not too violent. [1 totally disagree, 5 totally agree]
e The virtual keyboard was intuitive and easy to use. [1 totally disagree,

5 totally agree]

Drag-and-drop components helped me to write the code faster and
easier. [1 totally disagree, 5 totally agree]

Sorting and nesting of code is very simple. [1 totally disagree, 5 totally
agree]

e What subjects would you like to learn using this game?
e Who do you think would be a good target group for the game?

129

