TU

Grazm

Stefan Simon

Generating Custom-Fit Polar Diagrams
From Performance Measurements
On Sailing Yachts

Master’s Thesis

Graz University of Technology

Institute of Engineering and Business Informatics
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Siegfried Vossner

Supervisor: Dipl.-Ing. Clemens Gutschi, BSc
and Dipl.-Ing. Birgit Mosl, BSc

Graz, November 2017

This document is set in Palatino, compiled with pdfI&IEX2e and Biber.

The IAIEX template from Karl Voit is based on KOMA script and can be found online:
https:/ /github.com/novoid /LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklarung!

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststdndig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wortlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

'Beschluss der Curricula-Kommission fiir Bachelor-, Master- und Diplomstudien vom 10.11.2008;

Genehmigung des Senates am 1.12.2008

Abstract

During a regatta all boats have the same wind conditions and the winning team is the
one most efficiently using power of the wind in order to reach the finish line. The ratio
of the wind that can be converted into motion power depends on wind speed and its
relative angle to the boat. This relationship can be illustrated using performance polar
diagrams. Each type of sail has its own characteristic. The variations range from sails
that are tailored for fast downwind but can hardly be used upwind until sails specific
for close-hauled sailing. Detailed knowledge of the behavior can increase the actual
performance of the crew on a boat.

The currently favored method to forecast boat speed based on wind conditions is the
use of so called velocity prediction programs. They rely on mathematical models which
are based on measurements of the boat and all its appendages.

This thesis develops an alternative, which allows the generation of polar diagrams on
sailing boats without additional effort besides normal sailing. The required measurement
devices are already installed on common sailing boats. Over the course of this thesis
a software was developed which can be linked to the recorded measurements. It uses
data analysis to find a model which best represents the underlying data. A regression
method is used which supports modeling with measurement errors of all features and
non-linear data. Additional models were implemented to add the possible influence of
past measurements within a time series by weighting each data point by an established
quality function. Out of all implemented models, techniques from machine learning
allow an automated selection.

For the examined data the resulting performance polar diagram has a similar shape
as the corresponding velocity prediction program. The software indicates slower boat
speeds, which result from the actual application of the boat’s potentiality by the crew.
So their room for improvement, especially on lower wind speeds, is revealed.

In further research a verification of the developed model with extensive measurement
data is planned.

Kurzfassung

Wiéhrend einer Regatta haben alle Boote die gleichen Windverhéltnisse, aber es gewinnt
nur jenes Boot, das es schafft die Kraft des Windes am effizientesten umzusetzen.
Der Anteil des Windes, der in Vortrieb umgesetzt werden kann, ist abhdngig von
der Windgeschwindigkeit und dem Windwinkel. Meist wird dieser Zusammenhang
in einem Polardiagramm dargestellt, welches je nach Segeltyp sehr unterschiedlich
aussehen kann. Es gibt Segel die dafiir zugeschnitten sind um sehr schnell vor dem
Wind zu laufen aber mit denen man kaum gegen den Wind aufkreuzen kann, bis zu
Segeln die dafiir gemacht sind hart am Wind zu segeln. Die genaue Kenntnis des
Verhaltens kann die Leistung der Crew erheblich verbessern.

Die derzeit verwendete Methode um die erwartete Bootsgeschwindigkeit fiir gewisse
Windbedingungen zu bestimmen sind so genannte Velocity Prediction Programs. Diese
basieren auf mathematischen Modellen, denen eine Vermessung des Bootes mit allen
Anbauten und Segeln vorausgeht.

Im Zuge dieser Masterarbeit wurde eine Alternative entwickelt, die eine Erstellung
von Polardiagrammen ohne Zusatzaufwand zum gewohnlichen Segeln ermoglicht. Die
dafiir notwendigen Messgerite sind tiblicherweise schon auf den Booten installiert.
Im Verlauf dieser Arbeit wurde eine Software entwickelt, die gespeicherte Messwerte
mittels Datenanalyse aufbereitet. Das Ziel ist es ein Modell zu finden, das die zu-
grundeliegenden Daten angemessen abbildet. Dafiir wurde eine Regressionsmethode
recherchiert, die eine Modellierung bei Messfehlern in allen Variablen und nichtlinearen
Daten unterstiitzt. Weitere Modelle wurden implementiert um den moglichen Einfluss
von vergangenen Messungen in der Zeitreihe zu untersuchen. Das passiert durch eine
Gewichtung jedes Datenpunktes mit einer dafiir eingefithrten Qualitdtsfunktion. Aus
allen implementierten Modellen kann durch Techniken aus Machine Learning das Beste
automatisiert ausgewdahlt werden.

Das resultierende Polardiagramm hat eine gleichartige Form wie die entsprechenden
Velocity Prediction Programs. Die Software zeigt im Allgemeinen niedrigere Boots-
geschwindigkeiten an, da die Anwendung des Leistungsvermogens aufgezeigt wird.

Hier lasst sich vor allem bei niedrigeren Bootsgeschwindigkeiten ein Verbesserungspo-
tential der Crew erkennen.

Weiterfiihrend ist eine Verifizierung der entwickelten Modellierung mit umfangreichen
Messdaten geplant.

Vi

Contents

Abstract
Kurzfassung
Abbreviations
1. Introduction

2. Fundamental Physics of Sailing

21. TheWind o o
21.1. WindAngle o o
2.1.2. Apparent Wind vs. TrueWind

2.2. ForcesonaSailingBoat,
2.2.1. Equilibrium of Forces

2.3. Use of Forces for Driving with Best Performance.
2.3.1. Performance Polar Diagram
2.3.2. Velocity Prediction Program
2.3.3. Top-Speed vs. Velocity Made Good
23.4. HullSpeed

. Data Analysis
3.1. Problem Definition
3.2. Data Collection and Organization
3.3. Data Exploration o ..
3.4. Identification of Methods, Hypothesis and Tests
3.4.1. Regression Analysis
3.4.2. Hypothesis Validation
3.4.3. Hypothesis Selection
3.5. Analysis and Interpretation
3.6. Iteration e

vii

Contents

4. Hardware and Software 40
4.1. Measurement Devices o oo, 40
41.1. WindGauge 40
4.1.2. SpeedLog 40
4.1.3. Global Positioning System (GPS) 42

4.2. Data Transmission on a Boat with NMEA 42
4.3. Receiving Boat Measurements on a Computer 44
4.4. Software 46
4.4.1. Software-Environment L Lo L 47
4.4.2. Implementation L Lo oo oL 47
4.4.3. Software Techniques 53
4.4.4. Third Party Dependencies 54

5. Use Case 56
5.1. Problem Definition o o oL 56
5.1.1. OVerview 56
5.1.2. Technology Screening 57
51.3. Proceeding. L o 59

5.2. Data Collection and Organization 59
5.2.1. Measurement Environment o0 000, 60
5.2.2. Normalization. 61
5.2.3. DataSelection 61

5.3. Correlation of Boat Speed and Wind Speed 63
53.1. Dataexploration, 64
5.3.2. Identification of methods, hypothesis and tests 66
5.3.3. Analysis and Interpretation 0L, 67
53.4. Result 70

5.4. Correlation of Boat Speed and Wind Angle 70
5.4.1. Dataexploration 71
5.4.2. Identification of methods, hypothesis and tests 71
5.4.3. Analysis and Interpretation 0., 71
54.4. Result 76

5.5. Correlation of Boat Speed, Wind Speed and Wind Angle 77
5.5.1. Dataexploration, 77
5.5.2. Identification of methods, hypothesis and tests 78
5.5.3. Analysis and Interpretation 0L, 80
554. Result 82

viii

Contents

5.6. Correlation of Boat Speed, Wind Speed and Wind Angle in respect to

Quality of Data Points 82

5.6.1. Dataexploration, 85

5.6.2. Identification of methods, hypothesis and tests 87

5.6.3. Analysis and Interpretation 88

56.4. Result 92

5.7. Evaluation 92

6. Summary 94
7. Outlook 97
A. Source Code 100
Bibliography 153

Abbreviations

ANN
API
AWA
AWS
BC
BSD
BSP
BTV
CLI
COM
CSv
DGPS
GPS
IMS
NMEA
MIT
ODR
OLS
ORC
RPC
TWA
TWS
USB
VMG
vPP

artificial neuronal network 94
application programming interface

apparentwind angle........ 61
apparent wind speed ... 61
before Christ

Berkeley Software Distribution............ 54
boat speed 97
boat velocity

command line interfaceo i 47

communication port
comma-separated values

Differential GPS 42
Global Positioning System i 42
International Measurement System..................... ... 1
National Marine Electronics Associationcooviiiiiiiin... 94
Massachusetts Institute of Technology, 55
orthogonal distance regression.....................ooiiiiiiii 95
ordinary least squares............... ... i 27
Offshore Racing CONgress.ot 94
Round Palagruza Cannonball i 60
truewind angle....... ... 59
truewind speed 59
Universal Serial Bus

velocity made good 97
velocity prediction program........ ... 94

List

2.1.
2.2.

2.3.
2.4.

2.5.
2.6.

2.7.
2.8.

2.9.
2.10.
2.11.

2.12.
2.13.

3-3
3.4.

3:5-

of Figures

A square sail (Klasing, 2016, p. 62). o oL 3
Fore-and-aft sails (Klasing, 2016, p. 62). 3
Definition of the main wind angles relative to the boat. (selfmade) 4
Connection between true wind, apparent wind and relative wind (Klas-

ing, 2016, p. 187, translated) Lo oo oo oL 5

Forces on a sailing boat during homogeneous sailing (Piischl, 2012, p. 16) 7
Sail polar diagram for an apparent wind speed (AWS) of about 9 knots

and a sail area of 8 m?. (Garrett, 1996, P. 62) 9
A hull polar diagram (Piischl, 2012, p. 154). oL, 10
A performance polar diagram (Garrett, 1996, p. 71). 12

Certified performance polar diagram by the Offshore Racing Congress
(ORC) for a true wind speed (TWS) of 12 knots and two different sails.

(ORC Club Certificate Bavaria CR 405 2012) 15
velocity made good (VMG) of a boat, sailing two different angles to the
wind (Garrett, 1996, p. 80).. Lo 16
VMG during upwind tacking (Piischl, 2012, p. 160). 17
VMG with multiple sails (Piischl, 2012, p. 161).. 18
Derive VMG in an ORC velocity prediction program (VPP) (adjusted
from ORC Club Certificate Bavaria CR 405 2012).. 18
. A state diagram of a typical data analysis according to Acevedo, 2012,
p-6(selfmade). 22
. Comparison of the result of some robust and non-robust regression
methods (Fernandes and Leblanc, 2005, p.310). 26
ordinary least squares (OLS): sample system of equations (Nealen, 2004,
Pr1) oo e e 27
Fitted line and residual plot of a linear model to nonlinear data (Frost,
20 T s 0 1 28
Fitted line and residual plot of a nonlinear model to nonlinear data (Frost,
20T1) + v e e e e e e e e e 29

. Comparison of linear and nonlinear models (Backhaus et al., 2016, p. 574). 29

Xi

3.7

3.8.

39
3.10.
3.11.

3.12.

4.1.
4.2.

4.3.

4.4.
4.5.
4.6.
4.7.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.

5.1.
5.2.

53
5.4.

55

List of Figures

Trust region: iteration step of 3 various step-sizes with different length

and direction (Nocedal, 2006, p.70). 31
Standard curve fit through some measured data at points in time ¢
(Nocedal, 2006, p. 248). 32
Curve fitted with orthogonal distance regression (ODR) through some
measured data (Nocedal, 2006, p. 266). 33
Comparison of ODR and regression with errors in Y only. (Kapteyn
Astronomical Institute, 2015) o o oo oo 34
A plot of residuals (b) of the scatter plot with a fitted straight line (a).
(Department of Statistics Online Programs, 2017) 37
Types of heteroscedasticity (Backhaus et al., 2016, p. 103). 37
B&G 608 Wind Sensor (Hodges Marine Electronics, 2017) 41
Furuno ST-02MSB Thru-Hull Speed and Temperature Sensor (S2ware,
2017). ¢ e e e e e e e 41
NMEA sentence for Recommended Minimum Navigation Information (Betke,
2001, P 14) « o v v e e e e e e e e e e 43
NMEA sentence for Water Speed and Heading (Betke, 2001, p. 17) 43
NMEA sentence for Wind Speed and Angle (Betke, 2001, p. 13) 44
Mounted computer to record data (selfmade). 44
Schema of an invalid NMEA 0183 wiring (NMEA 0183 and Multiplexers
2017) o o e e e e e e e e e e e e e e e e 45
Schema of a valid NMEA 0183 wiring with a multiplexer (NMEA 0183
and Multiplexers 2017) o e 45
3-tier architecture in software development (Microsoft Cooperation, 2009,
P-50) o o e 46
3-tier architecture applied in the developed software. 48
Command line interface of the developed software. 48
ExcerptofaNMEA-File., 49
Database schema with some sample values.. 50
Data flow of the polar diagram generator. 52
Data flow on current sailing boats in a 3-tier architecture (selfmade). . . . 57
Scheme of the extension to the existing system in a 3-tier architecture
(selfmade). 58
The procedure to develop a 3-dimensional model. 59
The circuit of the Round Palagruza Cannonball (Die Route des Round
Palagruza Cannonballs 2010). L o o 60
Trend of boat speed (BSP) and TWS during the testing period. 62

X

5.11.
5.12.

5.13.
5.14.

5.15.
5.16.

5.17.
5.18.

5.19.
5.20.
5.21.

5.22.

5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.29.
5.30.
5.31.

5.32.
5-33-

List of Figures

. Trend of TWS with identified ranges while sailing with ajib. 63
Trend of TWS with identified ranges during the change from a jib to a
spinnaker. e 63

. A detailed view of the trend of BSPand TWS. 64

Histogram of measured data points broken down by true wind angle (TWA). 65

. Histogram of measured data points broken down by TWA. The data were
limited to a Jib on the port-sidebow. 65
Scatter plot of BSP and TWS at an TWA of —80 £ 0.5 degrees 65
Scatter plot of BSP and TWS at an TWA of —35+0.5 degrees 66

Comparison of TWS vs. BSP at —35 £ 0.5 degrees with multiple models . 68

Comparison of TWS vs. BSP at —35 £ 0.5 degree with a fitted S-shaped

model with Saturation Limit and Downturn and its belonging residual plot. 68
Comparison of different regression methods. 70
Histogram of measured data points broken downby TWS. 71
Scatter plot of measured data points at a range from 7 to 9 knots TWS. . 72

Scatter plot of measured data points at a range from 12 to 16 knots TWS. 72
Comparison of TWA vs. BSP from 7 to 9 knots TWS with multiple models 73

Comparison of TWA vs. BSP around 14 knots TWS with multiple models 73
Comparison of TWA vs. BSP from 7 to 9 knots TWS with a fitted Gaussian
model and its belonging residual plot 75
Comparison of TWA vs. BSP from 12 to 16 knots TWS with a fitted
Gaussian model and its belonging residual plot 76
Frequency of measured dataina polarplot. 77
Scatter plot of the measured data with varying perspectives. 79
Scatter plot of the measured data including the fitted curves of the best
fitted model (Equation 5.12). L o oL 81
Polar plot of the best fitted model (Equation 5.12) with the fitted line at
10knots TWS. oo o 82
Polar plot of the best fitted model (Equation 5.12) with accuracy above
threshold. 83
Polar plot of the best fitted model (Equation 5.12) combined with a
suitable ratio of the corresponding VPP., 84
The process of boat speed and TWS (above) and TWA (below) during a
short time period of the Round Palagruza Cannonball (RPC). 85
Histograms of the difference of an element to the mean of the previous
13 seconds. The scale is logarithmic. 86
A process diagram with stable (green) and dynamic (red) highlighted areas. 87
The resulting weights of the BSP in a detailed view. 88
Histograms of the resulting regression weights for BSP, TWS and TWA. . 89

xiii

List of Figures

5.34. Polar plot of the best fitted model using weighted data points (Equa-
tion 5.12) with accuracy above threshold. 91

X1V

1. Introduction

The oldest evidence of sailing are paintings dated before 5,000 BC. Most parts of the
world were discovered with sailing boats and often trade was established. So the main
purpose since that time was transportation. These journeys took several weeks and it is
desired to abridge that time. In the nineteenth century, the domination of transportation
decreased resulting from the invention of the steam-engine. (Piischl, 2012, p. 1ff)

At the same time, sailing became popular as sport. Several famous sailing regattas were
held for the first time back then. Such as the “100 Guinea Cup” in 1851, which is the
predecessor of today’s “America’s Cup”. (Klasing, 2016, p. 410)

Regardless of for navigation or during racing, a sailor’s desire is to gain maximal
driving. This reduces the necessary amount of time for a route or gives a competitive
edge over an opponent. To reach that goal, there are many variables influencing a boat
speed that should be contemplated. Some are stable like the shape of the hull, payload
and available sails with different sizes and cuts. Others change frequently like heel,
setting of the sails or surrounding wind conditions.

The wind is the main force that drives a sailing boat and therefor focus of this thesis.
The tool sailors are using to master the problem of gaining the maximal performance
under current wind conditions, are polar diagrams. In that, the theoretical boat speed
given a wind speed and the angle to the wind is illustrated. They are valid for a given
boat with a specific set of sails. If a boat can be sailed with different combinations of
sails, a polar diagram for each combination has to be created.

The current state-of-the-art method for creating polar diagrams and velocity prediction
programs (VPPs) is the International Measurement System (IMS) defined by the Offshore
Racing Congress (ORC). To make these predictions it depends on mathematical models
of the forces, that arise when hull and sails are circulated by water or wind (ORC VPP
Documentation 2016 2016, p. 18). For its generation more than 130 measurements of
hull, appendages, propeller, stability, rig and sails (International Measurement System IMS
2016 2016, p.2 & 32f) are necessary. They can be bought but are rather expensive. ORC
Certificates are officially valid for one year only (ORC International Certificate 2017).

1. Introduction

There are situations where it is not reasonable to make all the required certified mea-
surements and spend this money, for instance if the boat is chartered or the crew is
non-professional. Also the model acts on the assumption that the underwater hull is
clean and sails are new which has a big impact on the boat performance. But, every
ambitious sailor wants to know these characteristic numbers of his boat. Thus, the goal
is to find another method for creating reliable polar diagrams that respects the current
conditions.

It turned out that the three components of a polar diagram, boat speed, wind speed
and wind angle, are measured continuously on most sailing boats. It is intended to
identify the boat’s performance by recording these values during sailing and predict
the characteristic curves out of the measured data. Using this technique sailors can have
a feedback how good the currently given wind force is used compared with all similar
previous situations.

In this master’s thesis, a regression analysis is applied to the problem. The focus lies
on the steps that are necessary to find a model of the real-world multivariate setting.
During the first steps of the data analysis, the problem is divided into simpler tasks.
After combining the smaller subtasks, the individual data points are weighted with
its estimated influencing quality to the main unit. In the end, techniques of machine
learning are used to select the best model out of a variety of generated models.

2. Fundamental Physics of Sailing

In the chapter that follows, the background how a
sailing boat is able to be steered through water is
presented. The engine of a sailing boat is the wind.
Without, it would be a cue ball of the tides. The
idea of using the wind for driving is older than
7000 years, as mentioned previously. Back then
square sails as illustrated in Figure 2.1 were used.
One could sail barely against the wind and the
boat had a great leeway.

Figure 2.1.: A square sail

Since the first sailing boats, the knowledge of the (Klasing, 2016, p. 62).

physical background increased and the structure

of a boat and its sails changed entirely. The result

are fore-and-aft sails which are available in various shapes. Compared to squared sails,
they are mounted longside ship.

4
/ﬁL

Figure 2.2.: Fore-and-aft sails (Klasing, 2016, p. 62).

2.1. The Wind

Klasing, 2016, p. 575f & p. 586ff describes wind as follows: It arises when the barometric
pressure is not balanced. As a compensation, the particles in the air stream from higher

2. Fundamental Physics of Sailing

e <«
-90°—— § — o

. —> g <90
270 i] -

Il

180°

Figure 2.3.: Definition of the main wind angles relative to the boat. (selfmade)

to lower pressure. In practice, this is always the case somewhere around the globe. The
most influencing factors are the sun that heats up the surroundings which in turn cause
a change of the air’s temperature, and secondly the rotation of the earth. The two main
components of wind are the speed, that is dictated by the relative difference of pressure,
and the angle.

2.1.1. Wind Angle

When viewed stationary or in weather forecast the angle of the wind is defined by the
cardinal direction where it originates.

However, during sailing on a boat, the more interesting information is the relative
direction to the wind. As shown in Figure 2.3 the direction is referenced to the heading
of the boat. If the wind comes directly to the fore it is called zero degree angle. Wind
from starboard is called 90 degrees. Wind from port is called —90 degrees or sometimes
270 degrees. The term “close-hauled” can be added after degrees to emphasize that the
angle is relative to the boat direction. Why it is always important to mention if apparent
or true wind is meant is described in the following subsection 2.1.2.

2. Fundamental Physics of Sailing

2.1.2. Apparent Wind vs. True Wind

On a sailing boat one has to distinguish between apparent and true wind conditions.
If the observer of the wind stands still at the coast, it senses true wind conditions. A
boatsman and also the wind gauge that is installed at top of the mast, are moving at
the same speed as the boat. That means every sense and measurement includes relative
wind due to the fact that the boat is moving. This combination of true wind and relative
wind is called apparent wind. The connection is illustrated in Figure 2.4 and Figure 2.5.

l

| true wind

true wind

v

Y AT
relative wind

Figure 2.4.: Connection between true wind, apparent wind and relative wind (Klasing, 2016, p. 187,
translated)

There are some applications, for instance navigation, which require to have a certain
level of wind angle and wind speed that is independent from the boat speed (BSP).
From Figure 2.4 follows that if two of the three values for relative wind, true wind
and apparent wind are known, the third can be calculated by vector addition. Piischl,
p. 155 defines the solution to this problem in the following two equations. The apparent
wind angle (AWA) < can be calculated from true wind speed (TWS) vy, true wind
angle (TWA) 7, and BSP vg as stated in Equation 2.1. BSP and relative wind have the
same size, but point in opposite directions. The apparent wind speed (AWS) v can

2. Fundamental Physics of Sailing

be recomposed from TWS, TWA and the previously determined AWA as defined in
Equation 2.2.

VWSINYy

t =)
oy UWC0SYw + Us 1)
v=" szr'sz (2.2)
sin’y

2.2. Forces on a Sailing Boat

When the wind is flowing around a sailing boat it produces several forces. They are
listed in Table 2.1. How they are connected during homogeneous sailing is briefly
illustrated in the following section.

Table 2.1.: Main forces on a sailing boat

vy | Speed of the true wind

Yw | Angle between true wind and course
v Speed of the apparent wind

v | Angle between apparent wind and course
vs | Boat speed

D, | Aerodynamic drag

Dy | Hydrodynamic drag

F5 | Aerodynamic propelling force

Ly | Aerodynamic lift

Ly | Hydrodynamic lift

Ry | Total aerodynamic force

Ry | Total hydrodynamic force

S4 | Aerodynamic lateral force

« | Angle of Attack of the sail

B Angle of drift

0 Setting angle of the sail

€4 | Aerodynamic glide angle

ey | Hydrodynamic glide angle

According to Piischl, p. 15f, a sailing boat is a coupled system of two hydrofoil-like
shapes, more precisely sails and hull.

2. Fundamental Physics of Sailing

Water flow direction

Air flow direction

Figure 2.5.: Forces on a sailing boat during homogeneous sailing (Ptischl, 2012, p. 16)

In Figure 2.5 the main forces can be seen. The relationship between true and apparent
wind (vy, Yw, v, Y, Us) is described in subsection 2.1.2.

The sail is exposed to apparent wind v with an angle of attack «. The total aerodynamic
force R 4 is split into an aerodynamic drag D4 and an aerodynamic lift L 4 normal to it.
The size of the total force is dependent on the type of sail and the angle a and can be
derived from so called sail polar diagrams which are explained in detail in the following
subsection 2.2.1.

The boat is moving through water with a velocity vs thus the hull is flowed against
with —vs and an angle of drift 8 of far less than 10 degrees (Piischl, 2012, p. 155f). The
profile of the hull produces a hydrodynamic drag (Dpg) in the direction of the flow and
a hydrodynamic lift (Lg) normal to it. Their sum is the total hydrodynamic force Ry.

2.2.1. Equilibrium of Forces

Between the foils the first Newton’s Axiom must hold which means the sum of all
forces must be zero. This applies also component-by-component. Piischl concludes this
requirement in the following Equations (p. 17, p. 155ff):

2. Fundamental Physics of Sailing

Equations 2.3 and 2.4 declare the same absolute value but opposite direction of the total
aerodynamic and total hydrodynamic force.

Ra=—Ruy (2.3)
Y=¢€atE€n (2.4)
Sa=—Lp (2.5)
Fy= —Dy (2.6)

The connection of the setting angle of the sail to angle of drift, angle of attack of the sail
and AWA is defined in Equation 2.7

Yy=a+p+ (2.7)

The following Equations 2.8, 2.9, 2.10 and 2.11 define which parameters influence the
total aerodynamic (R4) and hydrodynamic (Ry) force and its glide angles (€4, €p).

Ry = Ra(a,v) (2.8)
€s = €x(a,v) (2.9)
Ry = Ry(B,vs) (2.10)
ey = en(B,vs) (2.11)

This shows how strongly connected hull and sails are. The total aerodynamic force R 4
that is created by wind (Equation 2.8, Equation 2.9) produces the total hydrodynamic
force Ry. The latter can be separated into Ly and Dy which in turn are influencing the
propelling force F4. Maximum performance can be reached only, if both foils play well
together, which is explained in the following section.

2. Fundamental Physics of Sailing

p - 8
x - 28
A= 2
§ = 50°

apparent wind
V4

8‘0 00 120 160 160 180 200
drag (in newtons)

(b)

Figure 2.6.: Sail polar diagram for an AWS of about 9 knots and a sail area of 8 m?. (Garrett, 1996, p. 62)
2.3. Use of Forces for Driving with Best Performance

The type of hoisted sails are heavily influencing the characteristics of a sailing boat. The
drive a sail can create is dependent on many parameters including area and cut. As
defined in Equation 2.8 for one arbitrary sail the maximal total aerodynamic force it can
create is related to the angle of the wind. It is not possible to sail directly against the
wind and if the wind comes directly from stern there are a lot of turbulences that will
slow down the boat, so the maximum speed can be reached with lateral wind as Scheer
states. In this section it is shown that the concrete value can be derived by combining
sail polar diagrams with hull polar diagrams.

A sail polar diagram is a visualization of the forces of a sail depending on the wind
angle. In Figure 2.6 Garrett shows one for a wind speed of about 9 knots. The forces
were collected by performing measurements on a full scale boat. The oldest technique
is to tether a boat to the mole with a force meter, and set the sails. The measured
aerodynamic lift and drag can be added together to the fotal force and are recorded for
varying setting angles. The total force can also be split into the driving force in direction
of the boat and the heeling force normal to it. After creating a sail polar diagram it is
possible to find the optimal setting angle of the sail that maximizes the aerodynamic
driving force.

As mentioned previously, when the boat is moving through water, the total aerodynamic
force produces the total hydrodynamic force. The reason is that the hull is a foil under

2. Fundamental Physics of Sailing

Sail polar diagram

Ra
2000

La [N]

1000

Figure 2.7.: A hull polar diagram (Piischl, 2012, p. 154).

10

2. Fundamental Physics of Sailing

water and it is flowed by water at an angle . In homogeneous movements, both are
of same size as described in Equation 2.3. The total hydrodynamic force can also be
separated into two components which is illustrated in hull polar diagrams.

A sample polar diagram by Piischl can be found in Figure 2.7. The angles in an hull
polar diagram are the hydrodynamic angle of drift B. In this figure it has a range from
0 to 3 degrees. The distribution of the total hydrodynamic force Ry to lift Ly and drag
Dy in Newton can be derived.

Aside from that, the current heel influences the performance of a boat, but only in a
negative way as Garrett, p. 76 describes it:

“Whichever way one looks at it, there is a loss of performance due to heel
which arises solely from the geometry of the situation.”

Thus heeling can be omitted when analyzing additional forces that may increase the
overall performance.

Thus far all positive influences of the wind (speed of the wind v, angle of the apparent
wind) on the boat speed were discussed. In the following subsection, it is presented
how those influences can be combined.

2.3.1. Performance Polar Diagram

In a performance polar diagram the BSP under some given wind conditions can be
derived. When combining the information of sail polar diagram, hull polar diagram and
some other parameter it is possible to predict the performance of a boat for a planned
course under given wind conditions after following 7 calculation steps (Garrett, 1996,
p- 69f). These steps can be calculated for several wind angles and speeds to create a
performance polar diagram.

A line in a performance polar diagram is the BSP in ms~! for a fixed wind speed as
a function of wind angle. In Figure 2.8 such a line for a TWS of 3.5ms ™! is illustrated.
The continuous line illustrates the speed for sailing with the main sail only and dashed
line combines the main sail with a spinnaker sail. It can be seen for the main sail that
the boat will be about 1.5 times faster at an wind angle of 75 degrees compared to an
angle of 45 degrees. References to forces, like in sail- or hull polars, are not part of a
performance polar diagram.

Another representation of performance polar diagrams is illustrated in Figure 2.8. On
the left side the BSP for apparent wind is plotted and on the right side the relative wind

11

2. Fundamental Physics of Sailing

true wind V,=35ms™’

315 330 345 0 15 30 45

300 / 60
W Vg in m,s"—/ ==
270 Y ! ? ‘? %
\ ~/
956 — marnsail only-— . \,/ TN 105
NN/
X
240 / / / 120

225 210 195 180 165 135
with spinnaker

Figure 2.8.: A performance polar diagram (Garrett, 1996, p. 71).

12

2. Fundamental Physics of Sailing

is computationally eliminated which results in the BSP for true wind conditions. The
blue line shows the characteristic of a main sail with a Jib as foresail, whereas in green,
the larger, lightweight and bellied symmetric spinnaker as foresail is outlined. The latter
is more than one knot faster when sailing downwind.

With a performance polar diagram of all available sails of a boat, a sailor can determine
which sail to choose for desired courses and select its best angle for the highest velocity.
It also is one of the main inputs of weather routing (Stelzer and Proll, 2008). This
technique is used for longer distances. Its goal is to minimize journey time by analyzing
forecasts of wind and water streams.

Originally performance polar diagrams were created by tying a boat to a mole or
mooring, set a sail and measure the pull on the ropes. Nowadays, area and shape of
sails are measured and mathematical models give a good prediction on the possible
forces. More details about this technique are provided in the following subsection.

2.3.2. Velocity Prediction Program

The most popular model is developed by the Offshore Racing Congress (ORC) and is
also used to compare the performance of different ships at official regattas (International
Measurement System IMS 2016 2016). It combines mathematical models for

“the aerodynamic driving force, the heeling moment from the above water
part of the hull and rig, the drag of the hull keel and rudder and the righting
moment from the hull and crew” (ORC VPP Documentation 2016 2016)

to create a rating for each boat.

For its generation more than 130 measurements of hull, appendages, propeller, stability,
rig and sails (International Measurement System IMS 2016 2016) are necessary. The current
setting of waves is not part of the model. A new version, updated with the latest
scientific experiences, is published every year.

The model calculates interpolation points Table 2.2 for wind speed of 6, 8, 10, 12, 14, 16
and 20 knots at wind angles of 52, 60, 75, 90, 110, 120, 135, 150 and 180 degrees. With
these points a polar diagram like in Figure 2.9 can be interpolated. Each point on a line
has the same wind speed. If a point is farer away from the center a higher boat speed at
this angle is possible.

13

2. Fundamental Physics of Sailing

Table 2.2.: Theoretical BTV and VMG at 12 knots TWS of a Bavaria CR 40S. (ORC Club Certificate Bavaria
CR 40S 2012)

TWS =12 Kts
TWA BTV| VMG| AWS| AWA
42,1° (b) | 6,79 5,04 17,05 25,3°

52° 7,45| 4,59] 16,96| 30,5°
60° 7,67| 3,84| 16,56| 35,4°
70° 7,79| 2,66| 15,86 42,0°
75° 7,81 2,02| 15,45| 45,5°
80° 7,82| 1,36] 15,00| 49,0°
90° 7,76| 0,00| 13,98] 56,3°

110° 7,36| 2,52|11,50| 73,1°
120° 6,97| 3,491 10,21| 83,8°
135° 6,33| 4,48| 8,52|103,3°
150° 5,94 5,14 7,23|125,8°
165° 5,69 549| 6,41|151,7°
180° 5,57 5,57| 6,16|180,0°
177,5° (r) | 5,58 5,58 6,16(175,3°

14

2. Fundamental Physics of Sailing

9 B\‘ 6 5 4 3
IERUNRRTE FRRRY R RRART\URRENY FAVRA RNRNANRNRN RNRNARRRTR RN RTANRATY RRRRY NAN!

90°

True Wind

]
NN

rrr

Polar Plot for Boat
Name
Sail Number
Class Bavaria Cr40 S
Designer Farrdesign
Builder Bavaria
Issued On 08.03.2013 - VPP 2013 1.01

TWS: 12 kts
Jib
Symmetric Spinnaker

Figure 2.9.: Certified performance polar diagram by the ORC for a TWS of 12 knots and two different
sails. (ORC Club Certificate Bavaria CR 40S 2012)

15

2. Fundamental Physics of Sailing

wind direction

N

Figure 2.10.: VMG of a boat, sailing two different angles to the wind (Garrett, 1996, p. 80).

2.3.3. Top-Speed vs. Velocity Made Good

Most of the time during sailing, top-speed is not the preferred way to travel. Thats
because a sailor wants to reach a specific location and often the goal is set directly
against the wind, like in regattas. In Table 2.2 it can be seen that, given a true wind of 12
knots, the angle where the boat probably can cover the longest distance in an amount of
time is 8o degrees close-hauled. Sailing strictly with an angle of 8o degrees would lead
to a great detour. In this example, after an hour the boat would only be 1.36 nautical
miles nearer to the goal. This value is called velocity made good and a sailor pursue the
objective to maximize it.

Garrett depict this in Figure 2.10 where a good proportion of speed and direction
windwards will result to the temporally shortest route. The VMG in direction against
the wind is greater, even though the BSP of the dashed line is higher. This is traced back
to the larger wind angle 7.

16

2. Fundamental Physics of Sailing

. K
g X

O

Figure 2.11.: VMG during upwind tacking (Piischl, 2012, p. 160).

In practice, every point on the convex hull around of a symmetric performance polar
diagram can be reached with the shortest amount of time by adding vectors parallel
to points that are both on the polar diagram and the convex hull. This is used during
upwind tacking and the calculation of VMG.

In Figure 2.11 the directions with the highest VMG are (ﬁ and O? To reach point M,
the fastest routes are OC + CM or OD + DM.

The same techniques is used when the boat has multiple sails and the goal is between
the top-speed of two different sails. This is illustrated in Figure 2.12 in an performance
polar diagram that combines top speed of the boat regardless of the hoisted sail. The
vectors &i and O? represent the top-speed of the sails. It is possible to reach goals that
are farer away as the concave part in a combined polar diagram by changing the sail.
The fastest route to point M is OC with the gennaker and CM without. By just using a
gennaker, only point N would be reached.

The VMG is indicated in VPP with a small circle, but can derived by constructing a line
normal to the wind direction. This is illustrated in Figure 2.13.

17

2. Fundamental Physics of Sailing

\

2 4 6 8 10 12 16 18 vslkn]

L]

(AL RRA R LN R e R AN N

Ev DR LRI SRR R |'v‘uﬂm"‘
L | \
! e

i

Figure 2.13.: Derive VMG in an ORC VPP (adjusted from ORC Club Certificate Bavaria CR 40S 2012).

18

2. Fundamental Physics of Sailing

2.3.4. Hull Speed

According to Klasing, p. 194 every boat has a maximal hull speed it can reach in
displacement mode whereat the resistance of the hull gets nearly insuperable. This is
the speed at which the stern wave spreads out directly behind the stern. The hull speed
R can be expressed relative to the waterline length as defined in Equation 2.12.

Rlkn] =~ 2.43 x \/lengthwamline [m] (2.12)

Modern, light boats can overcome this limit by producing uplift and riding on the bow
wave.

19

3. Data Analysis

In this chapter the scientific method of data analysis that is used to examine the problem
of the thesis is explained. Data Analysis is the umbrella term for statistical and proba-
bilistical analysis of available or measured data with the goal to identify relationships
and gather information. It is a broad field of mathematics used for research in many
tields including geography, environmental science and engineering.

According to Acevedo, 2012, p. 6 data analysis should use the following general steps:

1"

1. Problem definition

a) Define the questions to be answered by the analysis

b) Define possible assumptions that could simplify the questions

c) Identify components and their relationships aided by graphical
block diagrams and concrete maps

d) Identify domains and scales in time and space

e) Identify data required and sources

f) Design experiments for data collection
(in this case would need to go to step 4 and return to step 2)

2. Data collection and organization
a) Measurements and experiments
b) Collecting available data
c) Organize data files and metadata
3. Data exploration
a) Variables, units
b) Independent and dependent variables
c) Exploratory data analysis
d) Data correlations
4. Identification of methods, hypotheses and tests
a) Identify hypothesis
b) Identify methods and their validity given the data

20

3. Data Analysis

5. Analysis and interpretation

a) Perform calculations

b) Answer to the question that motivated the analysis

c) Describe limits of these answers given the assumptions
d) Next steps and new hypothesis

6. Based on results, return to one of steps 1-4 as needed and repeat

7

The iterative procedure is illustrated in Figure 3.1 Each of the step can be made with
several different techniques. A variety of them are described in the following sections.
Step 6 points out, that data analysis is an iterative method. The result of the previous
iteration should be used to improve or extent the next hypothesis.

In the following sections, the steps of the data analysis are addressed in detail.

3.1. Problem Definition

In this step the goal of the analysis is set. A general definition of where the data comes
from and what the output might be. A 3-tier architecture diagram could help identify
the separate sources of data and the processing steps to the desired output. It should
especially contain the source of the data.

3.2. Data Collection and Organization

During data collection the data is aggregated. The sources are publicly available
databases or generation with previously defined special experiments. If the desired
measuring value can not be measured directly it is sometimes feasible to do indirectly
measurements. For instance it is not possible to meter true wind speed on a moving
object, but when doing two separate measurements of the apparent wind and the speed
the object is moving the true wind speed can be derived (subsection 2.1.2).

An relevant stage during organization of the data is its normalization. Different variable
ranges or measurement systems should be identified and resolved. Afterwards the data
should be well prepared and easy accessible for the following steps of data analysis.

21

3. Data Analysis

——————————————————————————————————

Data Collection
and Organization

|dentification of
‘Methods, Hypothesis €—
| and Tests 5

Analysis and
Interpretation

Figure 3.1.: A state diagram of a typical data analysis according to Acevedo, 2012, p. 6 (selfmade).

22

3. Data Analysis

3.3. Data Exploration

Step 3 mostly uses descriptive statistic to gain knowledge of the data. It characterizes
the data without making inferences or predictions. Some visual tools are for instance
histograms, boxplots or scatter plots. They are very helpful to get a first insight of the
data.

Basic outlier detection can be done using interquantile range. With knowledge about
the data one can ignore uninteresting samples and select a subset of the data. The
circumstance of missing values should be handled with either removal of the whole
entry or imputation. (Hastie, Tibshirani, and Friedman, 2009, p. 332)

3.4. ldentification of Methods, Hypothesis and Tests

With the information of the exploratory data analysis of the previous step one can make
a hypothesis how the available data behaves. An hypothesis is a specific question on
the data and can include one or more models. A model always is a simple mapping of
the reality.

When it comes to finding a solution to a hypothesis, the field of inferential statistics is
entered. A main difference to descriptive statistic is, that inferential statistic is used
under the assumption that the available data is a subset of much bigger population. The
hypothesis of how this population conducts is tested for accuracy on the available data
during the analysis.

There are always some influencing factors that lead to an outcome. In more technical
terms, a predictor of a dependent variable of one or more independent variables should
be found with this analysis and

“the mathematical nature or structure of the predictor determines the type
of method”. (Acevedo, 2012, p. 7)

Acevedo, 2012 also states that a frequent technique for finding a predictor is regression
which is described in the following subsection.

23

3. Data Analysis

Table 3.1.: Sample: Dependent and independent variables (Backhaus et al., 2016, p. 64)

Question Dependent variable Independent variable

Y X1, X2,.., X
Is the total revenue of a sales- | total revenue per sales- | amount of customer
man dependent on the amount | person calls per salesperson per
of customer calls? period
What is the influence of an in- | quantity of sales price, advertising, mer-
crease of the price on the quan- chandising

tity of sales, if the amount for
advertising is increased at the
same moment?

3.4.1. Regression Analysis

Regression Analysis is one of the most common statistical methods. A reason for its
popularity among others is its flexibility. It is used for finding the relationship of a
dependent variable to one or more independent variables.

Some examples can be found in Table 3.1.

In an deterministic environment the relationship can be defined as in Equation 3.1. But
in the real world the relationships have unknown influences which can be described
as random noise. They are represented by the variable u in the stochastic model
Equation 3.2. This is the actual equation that is solved during regression analysis.
(Backhaus et al., 2016, p. 64ff)

Y = f(X) (3.1)
Y =f(X)+u (3-2)

Based on the data it can be chosen from a wide range of regression types amongst
others:

e Parametric vs. nonparametric regression

e Linear regression vs. nonlinear regression

e Simple regression vs. multiple regression

e Spatial autoregressive vs. autoregressive time series

24

3. Data Analysis

Objective Function equation that should be minimized by changing its parameters.
The unparameterized independent variable is the result of one or more dependent variables
which parameters are changed

Residual difference of one data point to the objective function

Simple regression or univariate regression describes that there is only a single variable
to solve the equation for. In multiple or multivariate regression an arbitrary number
of independent variables influencing a dependent variable. With a low number of
independent variables it is sometimes helpful to make hypotheses for a subset of
features and combine them afterwards. It is important to know that the resulting
multivariate model is not automatically valid even if all univariate cases are acceptable.
If the number of variables exceed a certain threshold techniques to reduce this number
like principal component analysis can be made to identify the important features.

Parametric Regression marks that the model that should be estimated is completely
described by a set of parameters. For instance a linear model as described in subsection
3.4.1. On the contrary, a nonparametric regression also has parameters, but they are
unknown and depend on the data. A member is for instance Gaussian process regression.
Compared to parametric regression, nonparametric regression is difficult to interpret.
(Susmel, 2014, p. 3)

Robust Regression Often a small amount of data points have a great disturbance
value and do not fit into the majority of values. The reasons for this observations can
be manifold and these sometimes real errors are affecting the result. There are several
methods that automatically identify such values and leave these out during calculation
of the optimum. They are called outlier.

Fernandes and Leblanc illustrate the range of the result of multiple non-robust methods
compared to robust methods in Figure 3.2. The four likely outliers pull the non-robust
models to the left. This difference can be best recognized when comparing the non-
robust Ordinary least square SR on LAI regression to the robust TheilSen regression (TS).
The characteristics of these methods will not covered here in detail.

25

3. Data Analysis

5
4
3 |
<
1
2 4
1 4
I
I
/
0 -
0
X Observations —_—TS ——OLS SR on LAI
------ OLS LAl on SR = = L1SQ Geometric Mean

Figure 3.2.: Comparison of the result of some robust and non-robust regression methods (Fernandes and
Leblanc, 2005, p. 310).

26

3. Data Analysis

Scaling Beside a model, which is the mathematical representation of a hypothesis,
regression analysis needs several complete sets of data as input. A strongness of
regression analysis is that they may also include contradictory values. There are several
regression methods that are sensitive to the scaling of the data. Thus the data that
is used for training the model should be centered to the mean and scaled to have a
variance of one. (scikit-learn-developers, 2016)

As output the analysis returns a model that was fitted to the loaded data and indicators
of the quality of that model. These indicators vary from the different regression types,
which are described in the following subsections.

Linear Regression

The most widespread method is the method of ordinary least squares (OLS). It is the
standard method in multiple fields of application for fitting a mathematical function to
a set of data points. The squared error should be minimized which means the function
will be as close as possible to the measured data. The objective function for this problem

has the form:

rjz(x) — min (3:3)

flx) =

N =
NE

Il
—_

]
were each rjis referred as residual and it can be assumed that m > n (Nocedal, 2006,
p- 245f). By minimizing the sum of residuals this function will be minimized and the
chosen values for the parameters of the model then will best represent the dataset. In
linear case the model is defined as linear combination of non-linear basis-functions.

£(x) = b(x)e = b(x) - ¢ (34

For instance to fit a quadratic, bivariate polynomial, d = 2, m = 2 and therefore b(x) =
[1,x,y, %%, xy,y?]T the resulting linear system of equations looks like Figure 3.3. The big

(1 x v 2 xy ¥ [e 1

xi o x 5y j x?yz, xi);iz ¢ X

Yi XYi Y Vi Xy Yi 3| _ Yi fi
);’ L AR); LA

XiYi XYi XY «\‘? yi xy;o oxyi| |65 xi%’i

|y oxy?r oyl oxbyE oxy? oyt] Les Vi

Figure 3.3.: OLS: sample system of equations (Nealen, 2004, p. 1)

advantage is, given these preconditions, there exists an analytical solution. An existing

27

3. Data Analysis

Fitted Line Plot Versus Fits
Mobility = 1243 + 412.3 Density Ln (response is Mobility)
-94.29 Density Ln**2 - 32.90 Density Ln™*3

1600

1400+

12004

1000

Mobility
@
8
Residual

T T T T T T T T T T T T T T T
3 2 =il 0 i 2 0 200 400 600 800 1000 1200 1400 1600
Density Ln Fitted Value

Figure 3.4.: Fitted line and residual plot of a linear model to nonlinear data (Frost, 2011).

minimum can be found in one step and it is not necessary to do an iterative linear
approximation.

The main weakness is, that this method is not robust against outlier. It also has some
limitations and preconditions the resulting model should be validated against. These
are described in subsection 3.4.2.

Nonlinear Regression

Sometimes linear Regression is not flexible enough to describe the world’s phenomenons.
Then, the more complex nonlinear models can increase the quality of the analysis.

As an example in Figure 3.4, a linear fit of a data set with relatively good R? is illustrated.
However the residual plot on the right shows a pattern which is an indicator for a bad
fit.

When fitting a nonlinear model to the same data set as in Figure 3.5, the residual plot

shows the wanted randomness.

Due to the lack of an analytical solution the optimum must be with iterative estimations.
There is no guarantee that this algorithm converges and the global minimum is found.
Furthermore, quality of the result is frequently influenced by the starting point.

Nonlinear models are nonlinear in its variables and parameters. This difference is
illustrated in Figure 3.6. The optimal value for parameter v is part of the analysis and
prevents a conversion into a linear model.

As mentioned previously the solution to nonlinear models has to be found in itera-
tions.

28

3. Data Analysis

Fitted Line Plot Versus Fits
Mobility = {1288, 1% + 1491.08 * ‘Density Ln' + 583,238 * Density Ln' =% 2 + ... (respanse is Mability)
16004 40
1400 30 *
12004 20
- .. -
10004 10 . . . %
- = - .
£ 2 < . °
5 800 £ 0 ¥ - 0 .
3 I . . .
6004 -10 . .
* L]
4004 204
200 _an .
.
0 T T T T T T 404 T T T T T T T T T
-3 -2 -1 o 1 2 0 200 400 600 800 1000 1200 1400 1600
Density Ln Fitted Value

Figure 3.5.: Fitted line and residual plot of a nonlinear model to nonlinear data (Frost, 2011)

v

a) Linear model b) Non-linear model

X X
(Y:(I+B‘X+u) (z.B.:Y:(X'FB'XY‘f'U)

Figure 3.6.: Comparison of linear and nonlinear models (Backhaus et al., 2016, p. 574).

29

3. Data Analysis

Gauss-Newton Method is the most simple algorithm and is an adaption of the Newton
Method followed by a line search. It is more efficient by replacing the computationally
expensive calculation of the Hessian matrix with an approximation. The standard
Newton equations are defined in 3.5.

V2 (xi)p = =V f(x) (3.5)

The gradient Vf(x;) and the Hessian matrix V2 can be transformed to include the
Jacobian matrix as explained in Equation 3.6 and Equation 3.7 (Nocedal, 2006, p. 246f).

Z ri(x)Vri(x) = J(x)Tr(x) (3.6)

V2f(x Z Vri(x)Vri(x)T + Z ri(x)V2rj(x)

(3.7)
) + Z 7 Vzr]

At the solution the term][J; is significantly bigger as the rest of Equation 3.7, thus
it is a good approximation for the individual residual Hessian matrix V2. Given the
resulting Equation 3.8 for Gauss-Newton, in one iteration the calculation of the Jacobian
matrix is the most expensive part to retrieve the next search direction py. It is a valid
descend direction for a line search under the condition that the Jacobian J; has full rank
and the gradient V fi is nonzero.

T peN = —Jfn (3.8)

A newton step is then made in this direction. This is repeated until the algorithm
converges (Nocedal, 2006, p. 254ff).

Levenberg-Marquardt Method uses the same approximation for the Hessian matrix
as Gauss-Newton but is calculating the following step with a trust-region strategy instead
of a line search. This brings major advantages if the Jacobian matrix is not full-rank.

The main difference to the line search method is that size and direction of the trust
region step are calculated at the same time. The new solution has to be within the trust
region defined (in 2 dimensions) by a circle with the radius A.

30

3. Data Analysis

contours of m

Figure 3.7.: Trust region: iteration step of 3 various step-sizes with different length and direction (Nocedal,
2006, p. 70).

For example: In Figure 3.7 the minimum of a quadratic function m is wanted. With
various step sizes A!, A% and A% the Newton step lead to solutions p*3, p*? and p*! with
diverging length and direction.

To find the solution of one iteration in three dimensions Equation 3.9 has to be solved,

according to Nocedal, 2006, p. 258.

.1 .
min o [|Jip + il with] pl < Ay (39)

For the next iteration the trust region radius is adjusted. If the solution lies outside the
trust region (p > A) the step is not made but the region is increased. The size remains
the same if the solution is at the border of the area (p = 1) and A is decreased if the
best solution is strictly inside the trust region.

The Levenberg-Marquardt algorithm terminates if the relative change in an iteration
becomes lower than a threshold e.

Weighted Regression

According to National Institute of Standards and Technology, 2013 standard linear and
nonlinear least squares regression require the precondition that

31

3. Data Analysis

Figure 3.8.: Standard curve fit through some measured data at points in time ¢ (Nocedal, 2006, p. 248).

“each data point provides equally precise information about the deterministic
part of the total process information”.

With prior knowledge about the data one can assume that some data points are more
reliable than others. That means that the information that some data points have an
higher error term than others can improve the quality and accuracy of the result. The
objective function 3.3 is extended with an additional parameter w; in Equation 3.10
(Shalizi, 2009, p. 1)

f(x) = % i wj X r]Z(x) — min (3.10)
j=1

Orthogonal Distance Regression

The classical types of regression all act on the assumption that the independent variable
has no or tiny measurement errors compared to the dependent variables. Pictured in
Figure 3.8 the distance from the final curve to the data points that is minimized is
indicated with dotted lines. In standard regression methods they are parallel to the
y-axis.

Given the example of Figure 3.8 it may be the case that the exact instant of time is
not exactly known. Then there are uncertainties in both axis and the additional errors
have to be taken in account. The distance to the curve should then be calculated with
geometric shortest distance, which is illustrated in Figure 3.9. This type of regression is
called orthogonal distance regression.

32

3. Data Analysis

Figure 3.9.: Curve fitted with ODR through some measured data (Nocedal, 2006, p. 266).

The deviation of the result of multiple calculation methods is illustrated in Figure 3.10.

3.4.2. Hypothesis Validation

When the optimal objective function was found one has to check if the outcome is valid.

There are two steps to analyze the result.

Validate Regression Function

In this subsection a definition of a number that can quantify the quality of the resulting

model is gathered.

Goodness of Fit The most interesting part is the goodness of fit. That means how
well does the model describe the depended variable. Backhaus et al., 2016 defines it
as follows (p. 82ff): The sum of squared residuals (SSR, Equation 3.11) can compare two
models on the same data set. A smaller SSR is a sign for a better fit, but it should be
investigated together with the coefficient of determination (Equation 3.15).

K K
SSR=Y (y—9)* =)_ et
] k=1
K
SSE=)Y (lx—7
=1

33

Figure 3.10.:

3. Data Analysis

4 ODR and kmpfit with weighted fit. Model: y=a +bz +cz?

T
ODR

- kmpfit effective variance

— kmpfit error in Y only

2H — True parameters =~ [-oceoiereeiieiiis s G —

Comparison of ODR and regression with errors in Y only. (Kapteyn Astronomical Institute,

A deviation can be separated into an explained part and a residuum. For linear models
the last term in Equation 3.13 is 0, thus the total sum of squares (SST) equals the explained
sum of squares (SSE) plus the SSR, compare Equation 3.14.

K K K

Y =9 = Y e — 9+ Y (v —)* +

k=1 = =)
SST SSE SSR

« (3-13)

+ Y 2% (9 — 7) (vk — D)

k=1
~

SST = SSE + SSR (3.14)

Coefficient of Determination - R squared Another key value is the coefficient of de-
termination or R squared. It is defined as explained error divided by the total error
(Equation 3.15) which has a range from 0 to 1. The closer R squared is to 1, the better the
measured data are described by the model.

SSE

R*=—~
SST

(3-15)

34

3. Data Analysis

As discussed previously the third term in Equation 3.13 is 0 only during linear regression.
When it comes to nonlinear regression the calculation of R?, that relies on Equation 3.13,
is not valid anymore and an alternative is demanded.

x? - chi-squared The x? goodness of fit test ought to be valid on nonlinear models. It

is like SST an quality parameter that indicates how well the fitted model describes the
measured data. The idea behind it is, that if the sample size is large, it should spread
around the fitted model with a y?-distribution.

Barron, 1997 defines it by the following Equation 3.16.

observed — expected)?
2=y pected) (3.16)

expected

The goodness of fit is better if x? is lower. Thus, it can be used as an objective function
of a regression analysis.

Similar to the R? there exist a so called reduced chi squared x> ;. It is defined by Andrae,
Schulze-Hartung, and Melchior, 2010, p. 1 in Equation 3.17.

2
Kot =% (3-17)
The optimal goodness of fit would be a x2,, of 1. A number below this indicates over-
fitting and a number above lead that the model cannot express the variety of the data.

If X2, is high above 1, the fit is poor.

In linear case, the degree of freedom K is often trivially specified as in Equation 3.18

K=N-P (3.18)

where N is the number of data points and P the number of parameters. He shows that

this an imprecise approximation and the true value is somewhere in the range between
K=N-Pand K=N —1.

However, when it comes to nonlinear models, Andrae, Schulze-Hartung, and Melchior,
2010, p. 1 proves K can not be approximated. That lead to the conclusion that x2,; must
not be used for nonlinear models. The author pointed out that there are no barriers to
do x?-regression on nonlinear data.

35

3. Data Analysis
Validate Preconditions

After successful validation of the regression function it is important to check the
preconditions of the regression techniques. According to Backhaus et al., 2016, p. g7ff it
is not allowed to perform linear regression without testing against the assumptions on
the model.

The most important are:

model is correctly specified

disturbance values have a constant variance (homoscedasticity)
disturbance values are uncorrelated (auto-correlation)
disturbance values are normal distributed

which are explained in this section.

Residual plot A residual is the difference of the observed data y to the fitted function
value i (Equation 3.19).

r=y-—79 (3-19)

A residual plot combines all residuals in a plot. It can be used to visually identify
invalid preconditions, which is described in the following chapters, or modelling errors.
If there is an visible pattern in the residuals it is a strong indication that the model does
not fit to the data. A residual plot should show randomness.

An example residual plot for an invalid model is illustrated in Figure 3.11. The total
sum of squares may be low but it is obvious that the residuals have the shape of an
parabola. This leads to the conclusion that the linear model does not represent the data
well.

Homoscedasticity The data should be homoscedastic which means that the variance
of the residuals should be constant. To identify heteroscedasticity one can make a plot
of residuals that will show a shape of a triangle like in Figure 3.12. A mathematical
approach would be the Goldfeld/Quandt-Test or the method of Glesjer.

36

3. Data Analysis

1]

& 1 N L I
2 | o %
T L N
L= 2 L)
- =
§ 1 F] & n"o
S 4 o b
o a
& | 254 ®
g
-
g | i
3 91
o qD
% T T T T T T T T T T
8] 10 12 14 =400 =300 =200 =100 L]
x Fitied y
(a) (b)

Figure 3.11.: A plot of residuals (b) of the scatter plot with a fitted straight line (a). (Department of
Statistics Online Programs, 2017)

e -
—_— o T ——
—_—— . . 5 . . -
oF=T T

. e e ——mT

-~
-~

a) Heteroscedasticity 1 b) Heteroscedasticity 2

Figure 3.12.: Types of heteroscedasticity (Backhaus et al., 2016, p. 103).

37

3. Data Analysis

Autocorrelation Another precondition is the nonexistence of autocorrelation. That
means the order of the observations affect the results and therefor the residuals. This
is often a phenomenon when analyzing time series. With the Durbin/Watson-Statistic
it is possible to test for such an existence. The resulting value is between 0 and 4.
0 means there is a positive autocorrelation and a value of 4 that there is a negative
autocorrelation. If the value is 2, there is no autocorrelation.

3.4.3. Hypothesis Selection

Guerzhoy, 2015, p. 4ff and Sarle, 2002 deal with the problem in supervised machine
learning to decide what is the best classifier of a data set. The solution is to separate the
data into distinct data sets called the training set and the test set.

The training set is used that the classifier learns from it, which means minimizes an
arbitrary error function. Afterwards the quality of a completely trained classifier is
calculated by determining the same error function with previously unknown data, the
test set. The test set must not be used to adjust any parameters of the classifier. A third
distinct validation set can be used for neuronal networks to tweak some parameters.

Because of the similarity between most neuronal networks and statistical inference, the
same concept can be applied in data analysis to select the best hypothesis (Sarle, 2002).
Feasible error function would be the sum of squared error or x? if they are applied on
the same data set.

As emphasized in (scikit-learn-developers, 2016), if the data is scaled prior to fitting,
the scaling factors should be determined from the training set only. The test set is then
scaled with the same scaling factors as the training set.

Over-fitting is the fact, that a model is overly complex and it just learned by heart. One
has to check every model that this is not the case, because it violates the precondition of
inferential statistics that the available data is a part of a larger data set. An indicator is a
small training error but an high test error.

Thus the preferred hypothesis is the one with the least test error, because it best predicts
new, unknown data.

38

3. Data Analysis

3.5. Analysis and Interpretation

In the fifth step the chosen method of the previous step is applied to the hypothesis.
The quality parameters should be analyzed and checked for validity. Then the result
should be applied to the original problem of the analysis. It maybe can be connected
with the previous iterations to a solution. In this case limitations of the result should be
discussed or otherwise the following steps and hypothesis should be declared.

3.6. lteration

After finishing an iteration, a review of the result of this and the previous iterations is
made. One can finish the analysis or decides to make another iteration starting at step 1
to 4.

39

4. Hardware and Software

The next chapter gives a practical view of the realization of this thesis. In the first part
the devices for the measurements and data collection is described. The second section
delivers an insight to the developed software and design principles.

4.1. Measurement Devices

In the following section the common measurement devices on a sailing boat are de-

scribed briefly.

4.1.1. Wind Gauge

Wind gauges can measure the force and direction of the wind. As explained in subsec-
tion 2.1.2 they are moving at the same speed as the boat thus are measuring apparent
wind speed and apparent wind angle. They are mounted on the top of the mast and
commonly consist of a wind vane and rotating wind cups.

When a boat breasts the waves, the wind gauge on the top of the mast is even more
exposed to the jerky movements. That is why most manufacturers include a method of
smoothing into the display unit.

Especially the wind angle has to be properly calibrated, otherwise the effect that a bow
is better than the other would occur.

4.1.2. Speed Log

Speed logs are mounted at a position in the hull that is always below the surface of
water. They are used to measure the speed of the boat relative to water. Since they tend
to get dirty, they should be cleaned regularly.

40

4. Hardware and Software

Figure 4.1.: B&G 608 Wind Sensor (Hodges Marine Electronics, 2017)

Figure 4.2.: Furuno ST-02MSB Thru-Hull Speed and Temperature Sensor (Saware, 2017).

41

4. Hardware and Software

The output of the impeller should be calibrated by sailing a short known distance
multiple times in different directions.

A speed log by the company Furuno is illustrated in Figure 4.2. It has a diameter of
about 5 centimeters.

4.1.3. Global Positioning System (GPS)

Global Positioning System (GPS) is used to determine the position on a boat and the
current time. A number of satellites send their position and a time-stamp to the earth.
The receiver can calculate its distance to the satellite by the transit time and combine the
distances to multiple satellites to a explicit position on the earth’s surface. The accuracy
normally is around 10 meters but can be improved with Differential GPS (DGPS) to 1-3
meters. By combining multiple positions one can also measure the absolute boat speed.
(Garmin, 2017)

4.2. Data Transmission on a Boat with NMEA

The most common standard on sailing boats is by the National Marine Electronics
Association. It is available in the two different types NMEA 0183 and NMEA 2000.

NMEA 0183 was, according to Betke, 2001, p. 1ff, released in 1983 and defines an
electrical interface using 2 wires between a single talker and several listeners. The talker
sends with a rate of 4800 baud. The specification defines a general format for the
communication which is called sentence. Its definition can be found in Table 4.1. The
talker identifier specifies the type of device like "Velocity Sensor, Speed Log, Water, Me-
chanical’ (VW) or 'Global Positioning System’ (GP) whereas the sentence identifier describes
the type of measurement. Thus the same measurement category can be delivered by
multiple devices.

Measuring instruments deliver their current gauging every second. In Figure 4.3, Fig-
ure 4.4 and Figure 4.5 some common sentence formats are specified.

NMEA 2000 is the successor of NMEA 0183 and brings big enhancements to the
transmission of NMEA sentences. The standard removes the central controller and
introduces a self-configuring network with multiple transmitters and receivers.

42

4. Hardware and Software

Table 4.1.: General format of a NMEA sentence (Betke, 2001, p. 2)

$ttsss,d1,d2,*xhh<CR><LF>
tt talker identifier
sss sentence identifier
d1,d2,.... | data fields; comma-separated
hh checksum
<CR><LF> termination (carriage return + line feed)
12
1 23 4 5 6 7 8 9 10 11|
| || || N -
$—-RMC,hhmmss.ss,A,1111.11,a,yyyyY.YY,&,X.X,X.X,XXXX,X.X,a*hh

1) Time (UTC)
2) Status, V = Navigation receiver warning
3) Latitude

4) N or S
5) Longitude
6) Eor w

7) Speed over ground, knots

8) Track made good, degrees true
9) Date, ddmmyy

10) Magnetic Variation, degrees
11) Eor w

12) Checksum

Figure 4.3.: NMEA sentence for Recommended Minimum Navigation Information
(Betke, 2001, p. 14)

1 2 3 4 9
. |
$—-VHW,x.X,T,X.X,M, *hh

N—

6 7
||
N, x

W — U

.X,N,x.x,
1) Degress True

2) T = True

3) Degrees Magnetic

4) M = Magnetic

5) Knots (speed of vessel relative to the water)

6) N = Knots

7) Kilometers (speed of vessel relative to the water)
8) K = Kilometres

9) Checksum

Figure 4.4.: NMEA sentence for Water Speed and Heading
(Betke, 2001, p. 17)

43

4. Hardware and Software

1) Wind Angle, 0 to 360 degrees

2) Reference, R = Relative, T = True
3) Wind Speed

4) Wind Speed Units, K/M/N

5) Status, A = Data Valid

6) Checksum

Figure 4.5.: NMEA sentence for Wind Speed and Angle
(Betke, 2001, p. 13)

Figure 4.6.: Mounted computer to record data (selfmade).
4.3. Receiving Boat Measurements on a Computer

To receive the data of NMEA on a computer it can be connected to the serial port (or
COM-port) of the computer. Due to the lack of this port on most of today’s computer a
virtual port over USB is used.

NMEA 0183 allows only one talker on a wire. Thus, a setup like the schema in Figure 4.7
is not possible. To receive data from more than one measurement device at the same
time, a multiplexer is necessary. It merges the sentences from multiple inputs to one or
more outputs. One output can then be connected with the computer, which is illustrated
in Figure 4.8.

A product that combines multiplexer and virtual COM-port is ShipModule MiniPlex-
2USB (ShipModule MiniPlex-2USB 2015).

Each of the measuring instruments deliver their current gauging every second as
NMEA-sentence. To read the data on the COM port a logging software is needed. This
is possible with the free configuration tool MPX-Configz for MiniPlex-2 2015 or more
advanced products like Expedition 10 2017. Those programs do have different output

44

4. Hardware and Software

WWIMD

FC

DEFTH

Figure 4.7.: Schema of an invalid NMEA 0183 wiring (NMEA 0183 and Multiplexers 2017).

Grs |—m
RE232
WIND |—m T - E el PO
i
—
i
g HMEA AUTO
=EFIR o ™ FiLoT
COM-
PASS ™

Figure 4.8.: Schema of a valid NMEA 0183 wiring with a multiplexer (NMEA 0183 and Multiplexers 2017)

45

4. Hardware and Software

4 N
EXTERMAL SYSTEMS
USERS
Service Consumers

A I J :
1
1
4 ™ !
PRESEMTATION LAYER :
1
A / !
4 ™ :
BUSINESS LAYER PR |

~ /

' ™

DATA LAYER
pN J

E

h
[Sguar?es O] [Services j

Figure 4.9.: 3-tier architecture in software development (Microsoft Cooperation, 2009, p. 56).

formats. MPXConfig2 was used for the measurements and from there it can be exported
to files as a list of NMEA-sentences.

4.4. Software

In this section the background on the software is discussed that was developed during
the thesis to accomplish the research question. It was taken care that the code takes
advantage of use of the 3-tier architecture. This principle is illustrated in Figure 4.9.

The data layer is responsible for the keeping of data and has a specified access protocol.
In the application layer, the business logic of the software is situated. It is responsible for
accessing the data layer, making the necessary calculations and preparing the content
for the presentation layer. This layer only visualizes the results for the user and delivers
inputs to the application layer. With well-defined interfaces between the layers it is
possible to develop them independently and that following make it easy to refactor
and change the components without influencing another. (Microsoft Cooperation, 2009,

p- 56f)

46

4. Hardware and Software
4.4.1. Software-Environment

For the analysis an implementation with Python 3 was chosen. Python is an

“interpreted, interactive, objective-oriented programming language” (General
Information 2017)

, currently available in version 3.6.1. Version 3.0 of Python was released in the year
2008 and should be preferred to version 2.x (Python 2 or Python 3 2017). The analysis
was performed on a MacBook Pro 2016, 15-inch running macOS Sierra. It has a built-in
76.0-watt-hour battery which lasts up to 10 hours (Inc., 2017). Python was used in
version 3.6.0.

Python’s advantage is the wide choice of open source libraries for data analysis. There
are many libraries covering the challenges of this analysis such as PyYNMEA, SciPy and
Matplotlib (subsection 4.4.4).

In the next sections the software and its usage is presented.

4.4.2. Implementation

In this subsection the particular features of the implementation are described. An
overview of how the 3-tier architecture was applied, is illustrated in Figure 4.10. They
can be triggered in user-defined order with a command line interface (CLI). A CLI as
illustrated in Figure 4.11 is a link to the running program to dictate its behavior by
entering statements. In comparison to a graphical user interface it requires less resources
and it is simple to execute as series of commands with it. This offers great flexibility
without high complexity in the creation of the software.

Data separation

During the analysis data from different boats were analyzed. This lead to a mechanism
to separate source datasets. All input files of one boat need to be together in a folder
which is called a workspace. This takes the advantage that all working files and outputs
are made to that workspace.

47

4. Hardware and Software

PRESENTATION i‘ Polar Diagram ;
A
APPLICATION Importer Data Analysis
oATA -
NMEA-Files Parameter-Files

CSV-Files

Figure 4.10.: 3-tier architecture applied in the developed software.

Enter command: open ../polardata/demo
perform command open...

Open workspace '../polardata/demo’...
Found files:

2016Apro8_0.csv

2016Apre9_0.csv

2016Aprl0_0.csv

2016Aprll_0.csv

2016Aprl2_0@.csv

2016Aprl3_0.csv

2016Aprild_0.csv

2016Aprl5_0.csv

Enter command: refresh

perform command refresh...

-— ../polardata/demo/2016Apr@8_o.csv
skipped_sentences: @
incomplete_sentences: @

stored_lines: @

unknown_sentences: @

stored_lines (CSV): 6169

-— ../polardata/demo/2016Apr@9_o.csv
skipped_sentences: @
incomplete_sentences: @

stored_lines: @

Figure 4.11.: Command line interface of the developed software.

48

4. Hardware and Software

$GPGLL, 4240.45,N,01/08.05,E,115/46.00,A%0C
'AIVDM,1,1,,A,13cqKt3wP4Q=IAjGtOtT?IKFO<0OM, 0*0E
$GPVTG,248.2,T,244.8,M,004.9,N,009.1,K%4D

GPRMC 115746} A,4240. 4528 N,01708.0502,E,4.84, 249 29

9071 3 36 E,Dx2F

$GPGSA A,3, 05 16,18, 20, 21 25,26,29, 31,,,,1 82 0 87 1 60*01
$SDDPT, 3. 80,,*6E

$SDMTW, 26.44,C*30

|$VWVHW,,T,,MJ4.9uil9.0,K*50

$SDVHW, , T, ,M,,N, ,Kx42
'AIVDM,1,1,,A,33eP4d002;1="Q Gln 5:4CLO1jA, 0%2C
$AINAK,SD,DPT, 203696200, 1,%*3C

$AINAK,SD,MTW, 203696200, 1,%32

$AINAK,SD,VHW, 203696200, 1, %35
IAIVDM,1,1,,B,13cjKq@02HQBN1PGAN9J: * CLOHKR, 0%20
'AIVDO 1 1,,,B32@ BOO<0CVtK66dK2kah5kP06 0*48

!E! '[!] Ax3D
' AIVDM, 1 1,,A E>]J8w2Rqrqt@7b7Uh9baPQP000@UgSs<>] H00@@80TDO, 4%68
IAIVDM,1,1,,B,Evj0 ' B02qItHh1Pb:7V4QPPO000OOM; mf<U68h10888N00O, 443
$GPGGA,115747.00,4240.45,N,01708.05,E,1,10,1.50, 47.8,M,,M,, %55
'AIVDM,1,1,,B,13S5L00P181>00RHcuoqlwwL2<1W, @%7C
$GPGLL,4240.45,N,01708.05,E,115747.00,A%0D
'!AIVDM,1,1,,A,342Ld8B0031I7UHFWO35AWMNO0G0Q, 0%12
'AIVDM,1,1,,B,Evj0'B02qItHh1Pb:7V4QPPO000OOM; mf<U68h10888N000, 4%43

$GPVTG,248.1,T,244.8,M,004.9,N,009.1,K*4E
9071 Sic 36 E,Dx2C

GPRMC 115747 A, 4240 4524 N, 01708 0487 EA 2, 246 49

$GPGSA A,3, 05 16, 18 20, 21 25,26,29, 31,,,,1 82 0. 87 1. 60*@1
$SDDPT, 3. 78,,*69
$SDMTW, 26.44,C*30

Figure 4.12.: Excerpt of a NMEA-File.

Read NMEA-Data

The data that was collected with MPXConfig2 is available in NMEA-Format spread
to several files. A lot of information were collected that is not useful for the research
problem. Each of the files was parsed using the library PyYNMEA (section 4.4.4). It
validates the checksum of the NMEA-sentences and splits it into the identifiers and
data fields as defined in section 4.2.

To link variables together that happened at the same time, a reference identifier has to
be selected. The identifier “"GPRMC” was chosen which stands for the “"Recommended
Minimum Navigation Information” the GPS sends out periodically. This has the advan-
tages that it is sent in a short time interval and the instant of time of the measurement
is known. Then, all required variables between two GPRMC sentences are collected and
marked with the same timestamp. In the excerpt in Figure 4.12 these used variables are
marked in red.

The method of storing is discussed in the following subsection.

49

4. Hardware and Software

mark ¢ timestamp + [latitude + [longitude ¢ B bsp ¢ awa ¢ [aws ¢ twa ¢ [tws

432 2016-07-24 06:27:57 43.14982 7 16.28 9.2 56.2 11.5 106.3 9.95880754709797

433 2016-07-24 06:27:58 43.149786666666664 16.288825 9.1 55.1 11.5 105 9.762677331954254
434 2016-07-24 06:27:59 43.149748333333335 16.288803333333334 9.2 56.5 11.5 106.6 10.005005442675605
435 2016-07-24 06:28:00 43.149715 16.288783333333335 9.1 55.8 11.5 105.5 9.869951824378326
436 2016-07-24 06:28:01 43.14968666666667 16.288775 9.2 55.4 11.6 105.3 9.899466200551728
437 2016-07-24 06:28:02 43.14965333333333 16.288753333333332 9.2 56 11.5 106.2 9.92797973535351

438 2016-07-24 06:28:03 43.149615 16.288731666666667 9.2 55.7 11.5 106 9.881694593783491
439 2016-07-24 06:28:04 43.149573333333336 16.288708333333332 9.3 55.5 11.4 106.8 9.815763929641871
440 2016-07-24 06:28:05 43.14953333333333 16.288685 9.4 55.2 10.3 112.6 9.16171516439944

441 2016-07-24 06:28:06 43.14949166666667 16.288663333333332 9.6 55.2 10.4 113.2 9.293003540555263
442 2016-07-24 06:28:07 43.149455 16.288638333333335 9.5 55.3 10.4 112.7 9.269323932739928
443 2016-07-24 06:28:08 43.14941833333334 16.288611666666668 9.5 54 10.4 111.9 9.069930217317403
444 2016-07-24 06:28:09 43.14937833333333 16.28859 9.2 54.9 10.4 110.7 9.097636779350902
445 2016-07-24 06:28:10 43.14934 16.288568333333334 8.9 54 10.5 107.8 8.922047766434382
446 2016-07-24 06:28:11 43.149301666666666 16.288548333333335 8.8 55.7 10.5 108.4 9.140590033271199
447 2016-07-24 06:28:12 43.149265 16.288528333333332 8.5 56.2 10.5 106.9 9.121470968719661
448 2016-07-24 06:28:13 43.149226666666664 16.288506666666667 8.7 55.3 10.5 107.5 9.05166454687671

449 2016-07-24 06:28:14 43.14919666666667 16.288491666666665 9 55 10.6 108.6 9.160874191048604
450 2016-07-24 06:28:15 43.149163333333334 16.288475 9.1 54.7 10.5 109.5 9.09018195529177

Figure 4.13.: Database schema with some sample values.

Persistence

For easier and faster access to the data, the content of the NMEA files is imported
into a database. A file-based SQLite database is chosen and its schema is illustrated in
Figure 4.13. It will be automatically created in the workspace. All measured data with the
same timestamp are stored in one database row. The columns for true wind speed (TWS)
and true wind angle (TWA) are calculated later on during the normalization described
on page 61.

If there are multiple values for a variable the mean is taken. If one of the required inputs
of a database entry is missing, it can be omitted due to the exceeding amount of data.

According to Hwaci, 2017 SQLite is the most widely used database engine. It has support
for the data types null, integer, real, text and blob and uses a single file for storage. The
advantage is that no server is needed and its support on mobile devices with iOS and
Android. It also deals as intermediate format. To support data of different kind, it just
need to be converted to SQLite, which is even in the public domain. As an example a
CSV-Importer was written to fill the database in addition to the NMEA-Parser.

Feature Overview
The developed software has an extensive feature set. All required modes of operation for

the analysis were implemented and are available via the CLI. The available commands
are described in Table 4.2.

50

4. Hardware and Software

Table 4.2.: Overview of the implemented commands.

open [path]

Set active workspace, create and load database. The
path should lead to the recorded NMEA-files and is
relative.

close Close the active workspace

refresh Load content from NMEA-files to the SQLite
database.

drop Clear the database of the active workspace.

help Prints the documentation.

quit Quit the program.

load_configuration [path]

Load a configuration file for the data analysis. Path is
relative

select_logbook

Select data from manually filled logbook parameters.
e.g. between two timestamps

select_sail finder [angle]

Select data of a specific sail from an algorithm. The
process is described in section 5.2.3.

select_all

Remove data limitations.

trend_speed

Generate trend diagram of boat speed (BSP) and TWS
combined.

trend_angle

Generate trend diagram of TWA.

trend Generate trend diagram of BSP, TWS and TWA
combined.

histogram Generate histograms of BSP, TWS and TWA.

boxplot Generate box plot of BSP, TWS and TWA.

occurrences Generate a heat map in a polar diagram of the

frequency of data points at narrow areas of wind
angle and wind speed.

fit 2D_speed

Perform model fitting of BSI> and TWS. The used
regression technique can be easily replaced.

fit 2D_angle

Perform model fitting of BSP> and TWA.

fit 3D

Perform model fitting of BSP, TWS and TWA, with
and without an established weight function.

51

4. Hardware and Software

PRESENTATION i‘ Polar Diagram ;
A
APPLICATION Importer Data Analysis

oo 2]

NMEA-Files Parameter-Files
CSV-Files

Figure 4.14.: Data flow of the polar diagram generator.

Sample Analysis

In this subsection an example of the usage of the program is given. It describes the
steps that are necessary to generate a polar diagram from raw data.

open ./folder/with/rawdata
refresh

select_sail finder 60

fit 3D

quit

R ol

The data flow of these commands 1 to 5 is illustrated with red arrows in Figure 4.14.
The modules Importer and Data Analysis are trigger by the CLI with all necessary
parameters.

open ./folder/with/rawdata This command is handled in the file workspace.py. It
creates the database, a sample configuration file and required output folders.

refresh This command drops old content from the database and imports all raw
data files from the workspace folder into the database. The classes CSVImporter and

52

4. Hardware and Software

NmeaImporter are responsible to extract the required information. After all data are
inserted into the database, the script import_postprocessor.py is called to fill columns
of the database that can be derived from the available information as described in
subsection 2.1.2.

sail finder 60 This command triggers the data selection algorithm described in
section 5.2.3. It is implemented in sail_finder.py and analyzes the database to find
ranges from that sail. The ranges that were found are used in all further commands.

fit 3D The modeling of the polar diagram is triggered with this command. In the file
fit_3D.py the data is fetched from the database. It is limited to the ranges defined in the
configuration file and a previously executed sail_finder command. Thus in this sample
the resulting polar diagram is generated for one sail only. It can be found in the output
folder of that run, similar to ./folder/with/rawdata/1970-01-01T0000/plots/.

This command can be configured with the parameter file. Beside the parameters
for limiting the range of the data, one useful parameter is show_plots. It allows to
view the generated plots to change zoom level and view angle. Another parameter
is perform_animation_plots which, if set to true, triggers the generation of a short
animation which visualizes the 3-dimensional fit.

quit When this command is entered, the program performs a clean exit.

4.4.3. Software Techniques

This subsection has the focus on main software design principles. These were applied
during the development of the software to perform the data analysis.

Testing

Testing can be made in varying types. Component tests verify a small part of the
software independent from the remaining parts whereas integration tests examine the
connected parts of a software. In Python the standard library unittest has a similar
interface to the well known testing libraries of other programming languages JUnit,
nUnit or CppUnit.

53

4. Hardware and Software

The term mocking in conjunction with testing is a technique to change the behavior of a
class during a test-run.

Strategy Design Pattern

Design patterns in software technology are best practices for common problems. A
definitive book is Design Patterns: Elements of Reusable Object-oriented Software by the
so-called Gang of Four.

The behavioral design pattern strategy is worth to mention because it is used at multiple
locations in code and contributes to the easy extensibility of the program. An interface
of an abstract function is designed. The concrete implementation of that function is
irrelevant.

In case of this project the implementation of the different models and the type of
regression was made interchangeable with this design pattern.

4.4.4. Third Party Dependencies

This subsection gives an overview of the main libraries that were used during this
project.

Cython

According to Behnel et al. with Cython it is possible to embed faster implementations
of algorithms written in C-Code into Python with marginal performance loss. The
extension is open source and freely available under Apache 2.0 (Cython License 2009).

SciPy

SciPy is a set of scientific computing tools for Python. It contains amongst others NumPy
for numerical computations, the SciPy Library for optimization or statistics and Matplotlib
for plotting (Jones, Oliphant, Peterson, et al., 2001-). Most of the bundled libraries are
licensed under Berkeley Software Distribution (BSD).

54

4. Hardware and Software

Scikit-Learn

A library for machine learning that is connected to SciPy section 4.4.4 is Scikit-learn
(Pedregosa et al., 2011). It was started as a Google Summer of Code project in the year
2007 and currently available in version 0.19.0. The license of this library is BSD.

Its distinctiveness is the clean API that allows varying regressors to be interchangeable
and serial executable in an easy way. The interface has the following signature (Buitinck
et al., 2013):

def fit(self, X, y)
def predict(self, X)

Custom implementations of regression techniques just need to inherit from BaseEstimator
and implement these two methods. This was made to add support for orthogonal
distance regression (ODR) with non-linear models to Scikit-learn.

Pandas

Pandas is a Python library for handling labeled data structures. It was developed to
perform data analysis and its features support during the preparation, modeling and
visualization of data. It is open source and licensed under BSD.

PyNMEA

It was mentioned in section 4.2 that the data is available as consecutive NMEA sentences.
To verify the sentences and extract the necessary information the library PyNMEA
was created. It was originally developed by Becky Lewis but has several forks in the
meantime. The library is open source and distributed under Massachusetts Institute of
Technology (MIT) license.

GPSBabel

GPSBabel is a software to convert and transform GPS-tracks from several GP’S receivers.
They often use a format that is slightly different according to ordering and delimiters.
Robert Lipe started this tool in the year 2002 to make the output of these receivers
interchangeable. It is available under the GNU Public License.

55

5. Use Case

This chapter describes the application of the previously presented methods to address
the research question of the thesis. It is structured similar to the steps of data analysis in
chapter 3.

5.1. Problem Definition

Starting with the first step of data analysis is the definition of the problem that should be
solved: A polar diagram of a sailing boat should be generated. As described in chapter 2
the wind is driving the sailing boat. That means that the boat speed is influenced by
wind speed and wind angle which can be seen as a function in Equation 5.1.

BSP = f(TWS, TWA) (5.1)

To permeate deeper into the matter an outline of the current situation on sailing boats
is described in the following subsection.

5.1.1. Overview

Nowadays on most sailing boats there are several measurement devices. The normal
data flow is diagrammed in Figure 5.1 where most boat instruments are used for
display the current measured value only. The most common devices are wind gauge
(subsection 4.1.1), speed log (subsection 4.1.2) and GPS (subsection 4.1.3).

The goal is to generate a polar diagram (subsection 2.3.1) in a less intricate way. Basis is
the general assumption that performance that was reached under certain conditions can
be reached again under the same conditions at an later date. This leads to the approach
to record the performance over a time range, process the data, fit a model to the data
and generate polar diagrams.

56

5. Use Case

DATA APPLICATION PRESENTATION

-1 : NMEA Boat
.
g > Measurement <
I . . Instruments

Measurement
Devices

Figure 5.1.: Data flow on current sailing boats in a 3-tier architecture (selfmade).

During the test run sensors, as described in section 4.1, are logging the value of wind
speed, wind angle and boat speed. For this analysis other factors like the current sea are
not explicit measured. A reason for this decision is that suitable measurement devices
are rarely installed on sailing boats. Furthermore the concrete values of forces that are
generated by the wind are not determined and it is assumed that the crew always tries
to reach the best performance under the given conditions.

With the scheme sketched in Figure 5.2 the extension module that generates polar
diagrams out of a set of measured data is easy connect-able to the existing system on
common boats.

For the visualization of the performance polar diagram, the accuracy of the stated value
is needful. Areas with a high amount of data points with low variance lead to very high
confidence. On the contrary, on ranges with only a few data points no statement should
be made at first but it should be investigated if the boat performance of such a range
can be interpolated from areas with high confidence.

5.1.2. Technology Screening

When handling with measured data two main techniques can be made. One is to
visualize the data without making any assumptions on the data. A standard way to
perform this is interpolation with lines, polynomials or splines. Methods with good
performance exist and lead to fast results.

The other method is to make assumptions on the data from physical background and
observation. This is called data analysis (chapter 3) and consists of a multitude of different
kinds. Some of them are: linear regression, spatial regression, stochastic processes and
time series.

57

5. Use Case

DATA APPLICATION PRESENTATION

. .
U EE N I EE I B EE BN EE EE S O EE O O I D e O O O e e e .y
. .

EXISTING
1 . |
. . . Boat
| = Measurement |
L : Instruments
1 Measurement . |
l Devices
- - -_— - - -_— - :- -_— - - -_— - - - - - ‘. - - - - - - I
-_— -_— - -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— . -_— -_— -_— -_— -_— -_— 1
| . NMEA . EXTENSION
1
! 0
[A : .
— | - Logging i
1 —_ .
1
| NMEA-Files I
1
|
' I
1
—~ I
| -: > Data Analysis I
e
1
‘ -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— _— -_— -_— -_— -_— -_— -_— -_—

Figure 5.2.: Scheme of the extension to the existing system in a 3-tier architecture (selfmade).

58

5. Use Case

BSP = f(TWS) BSP

f(TWA)

BSP = f(TWS,TWA)

Figure 5.3.: The procedure to develop a 3-dimensional model.

For this problem regression analysis (subsection 3.4.1) was chosen. The advantage over
interpolation is that the result consists of a model which can be used to extrapolate data.
That means that areas with a low number of data points can be derived from other
areas.

A disadvantage is the complex development of models that have the right amount of
flexibility to represent the data. The detailed account of the approach of generating
models for polar diagrams is given in the following section.

5.1.3. Proceeding

This section has stated that a 3-dimensional model should represent the influence of the
wind to the boat speed. It is now necessary to explain the course of developing such a
complex model. The process is split into three steps. Each of the steps embrace a data
analysis of a subset of the data and feature space, which simplifies the analysis. At the
beginning, a correlation of boat speed (BSP) and true wind speed (TWS) is inquired. In
a second step, the relationship of the true wind angle (TWA) to the BSP is analyzed. If
successful, both steps will return 2-dimensional models as output.

The most promising models are used to develop models for polar diagrams that take the
3 features BSP, TWS and TWA into account. This procedure is illustrated in Figure 5.3.

5.2. Data Collection and Organization

After the problem is well defined, the following step is to identify how the data is
collected that should be analyzed. For the problem of generating polar diagrams,
suitable data of performance measurements on sailing boats are not publicly available,
thus some experiments to generate such data are required. This section examines the
necessary preparation of the data to have an organized access to them during the data

59

5. Use Case

SHSY Irneste oVelika Gorica K
9 & o> ; E65) - Osijek
'enice E70 o
(e]

Opatijas oRijeka

Novi Sad V4
Hosy Caa °3

Pore¢
Rgvin‘ S Slayonskl
o Croatia Brod
Pula & Belgr
o Sabac E8or
e Llla6auy ®
e Bijeljinao o
Bosnia'and _ ~
'enna Herzegovina 5
o
Zegica
30 Rimini
(o}
an Marino Saregevo Y
Sibenik Cacal
An%ona Yaua
Split
o
Makarska Moostar
R Medugorje ,
San Benedetto 2 Novi Pazar
t a I y del Tgonto Mosy MNasap
Montenegro)
Ao ! P?Ja’
3 Ascoli Piceno Pejo
erni 9 X o
5 Dubroviiky~ Kotor ‘Podgorica
Pesgara Korop I'Ionrgpmua
o
Chieti &
Budva
Vaé;to B
©Rome
(e}
icino EHOFrosinone ' g
Lagna Foggia A
i Tirana
Andria o ®
PEear] [e] Bari Map data ©2017 Google

Figure 5.4.: The circuit of the Round Palagruza Cannonball (Die Route des Round Palagruza Cannonballs
2010).

analysis. Details about the realization of the proceedings in software are described in
section 4.4.

5.2.1. Measurement Environment

To meet the demand that the crew sails the ship with the highest possible performance
the data were measured during a regatta. The Round Palagruza Cannonball (RPC) in
April 2016 was chosen. The regatta takes place in Croatia and has its start in Biograd.
The course is shown on a map in Figure 5.4 and has the required waypoints Dugi Otok,
Gate Vis/Bisevo, Palagruza, Mljet, Hvar, Mulo and finishes in Biograd again. This are
about 360 nautical miles on map which are sailed non stop.

The data were taken on a Bavaria 40S and the ship was called “Jasmin”. The boat has a
hull length of 12.426 meters (ORC Club Certificate Bavaria CR 40S 2012) and a waterline

60

5. Use Case

length of 10.75 meters (Bavaria Cruiser 40S 2016). Given the equation of subsection 2.3.4
the maximum hull speed is about 8 knots.

The wind gauge to measure wind speed and direction and the common log to measure
boat speed were manufactured by B&G. The measurements were transmitted with the
older NMEA-0183 bus to a Miniplex2 and over a virtual COM port to the software MPX-
Contig (MPX-Configz for MiniPlex-2 2015). The exported NMEA-Files were examined
with a custom-made software for analyzing data from sailing boats, which is described
in section 4.4.

5.2.2. Normalization

After Importing the data and persisting it in the database, the data is automatically
normalized. This ensures a homogeneous basis for all future calculations. The measured
wind angle is delivered in two different ranges, dependent on the measurement device.
One reaches from —180 to +180 degrees relative to the bow and the other from 0 to
360 degrees clockwise starting at the bow. When dealing with real-life data, such issues
should be resolved. In this case the data was normalized by using the range from —180
to +180.

The wind gauge is installed at the top of the mast of the boat so it measures apparent
wind speed (AWS) and apparent wind angle (AWA) dependent on the BSP. When using
regression it is important that the independent variables are uncorrelated. With the
method described in subsection 2.1.2, the true wind conditions were derived from the
measured apparent wind and boat speed. Afterwards, all calculations were made using
true wind conditions.

5.2.3. Data Selection

Data were measured continuously including areas that are not interesting during an
analysis. In this subsection the mechanism how data was left out is discussed.

Expected High Performance
The analysis after the sailing turn shows that data consists of over 400,000 data rows.

Only the part during the regatta is taken for the following analysis to exclude points
that may not be representable for full performance of the crew. That results in a data

61

5. Use Case

« Boat Speed
o True Wind Speed

40

. . m

m | l
TR
LA Aol o)),

0 50000 100000 150000 200000 250000 300000 350000 400000
Time [s]

Speed [knots]

Figure 5.5.: Trend of BSP and TWS during the testing period.

set of 295,597 entries beginning with May 11, 2016 12:00 nonstop to May 14, 2016 23:51
when the boat crossed the finish line. This timespan is marked in Figure 5.5.

In this figure it is illustrated that during the regatta there was barely no wind sometimes.
Offshore Racing Congress (ORC) performance diagrams start at 6 knots. For further
calculations values with a boat speed or wind speed smaller than 2 knots were omitted
because there are a lot of turbulences and results in that speed-range are not interesting
at all.

Sail Selection

It was mentioned in section 2.3 that there is a separate polar diagram for every sail.
Thus the data has to be assigned to the belonging sail and the analysis has to made
for each sail separately. During the regatta a standard logbook was written which is
not accurate enough. Therefor an algorithm was developed to identify all values of a
particular sail. It uses the fact that sails are operated at a narrow range of wind angle.

It works as follows: at the beginning a common true wind angle of a sail is estimated.
For a jib this could be 60 degrees. The algorithm chronological calculates the mean of
the sailed wind angle from an interval of 20 seconds. If the mean is within a range
around the defined angle of the sail, it is considered that the data point was recorded
with that sail. If a sail is active, the mean of the following interval is compared not
with the defined angle but with its preceding interval. Thus smooth adjustments of
the course can be considered as the same sail even if the sail is operated far outside
its estimated optimal angle. A range from about 40 to 120 degrees can be correctly
identified as a jib which is illustrated in Figure 5.6.

62

180 +

1351

90 1

45 4

45 44

True Wind Angle [degree]
o

290 4

-135 4

-180

180 A

135 A

90

45 1

45

True Wind Angle [degree]
o

90 4

-135 4

The

5. Use Case

e True Wind Angle

250000 260000 270000 280000 290000 300000
Time [seconds]

Figure 5.6.: Trend of TWS with identified ranges while sailing with a jib.

mw e True Wind Angle
Fall
' o]
-_-.'Md. .\'.'_MINU' ! i B
RIR 1
: Ei F!'ﬁ mp A .alill

oo e MR

294000 296000 298000 300000 302000 304000 306000 308000 310000
Time [seconds]

Figure 5.7.: Trend of TWS with identified ranges during the change from a jib to a spinnaker.

algorithm only selects one bow to take care of a common misconfiguration (cf.

subsection 4.1.1) of the wind gauge, later on. If this is not desired the areas for 460
degrees and —60 degrees can simply be added. In Figure 5.7 the algorithm correctly
identifies the change to a different sail.

5.3. Correlation of Boat Speed and Wind Speed

As mentioned previously, the concept of dividing a complex problem into smaller
problems is used for the analysis. In the first step the relationships of only two variables
is analyzed and the result is used to gather a model that solves the problem of generating
a polar diagram. At the start of the analysis the correlation of both values that represent
speed is sought-after. Given the physical background in chapter 2, this will show the

63

5. Use Case

concrete influence of wind speed to the boat speed. This is defined with the following
Equation 5.2.

BSP = f(TWS) (5.2)

It was already discussed in chapter 2 that the boat speeds depends on wind speed and
wind angle. Thus the influence of the wind angle should be diminished by choosing
data points from an appropriate fixed wind angle.

5.3.1. Data exploration

In this subsection a general conspectus of the data to compare the both speed variables
is shown. In Figure 5.5 the overall trend of boat speed and wind speed is illustrated.
When taking a closer look at the trend in Figure 5.8 a direct proportional connection is
revealed.

- i ad das

A PMITRA WY w | AN N N
AW Lamae ™ AL AN MW"\.\. A U
h‘l TTTTNABA 1 AR '\\\ .'l,” b i, Indii

Speed [knots]

W o B TV TN R i
N Y TW Y | LA

110000 120000 130000 140000 150000 160000 170000
Time [s]

Figure 5.8.: A detailed view of the trend of BSP and TWS.

In Figure 5.9 a higher frequency of occurrences of close-hauled angles is evident. This
matches with the field report of Round Palagruza Cannonball, Medien-Info 3 2016.

When applying the sail selection algorithm from section 5.2.3 to identify the operating
angles of a specific sail the resulting histogram is illustrated in Figure 5.10.

There are two normal distributions around the center of —80 and —35 degrees. The area
around those angles seem to be interesting and hence are examined in the following
subsection. In Figure 5.11 and Figure 5.12 the measured data points at these angles are
illustrated.

64

5. Use Case

14000

12000

10000

8000 -

Frequency

6000

4000

2000

0
True Wind Angle [degree]

Figure 5.9.: Histogram of measured data points broken down by TWA.

14000

12000

10000

8000

Frequency

6000

4000

2000

-180 -135

0 45 920 135 180
True Wind Angle [degree]

Figure 5.10.: Histogram of measured data points broken down by TWA. The data were limited to a Jib on
the port-side bow.

10
+
+ % et
o+ Tyt A *%ﬁ +
gt FE Bt
¥ #»f'* "‘*;1¢ + +
8
¥
+ +
<6 + o+
3 +
b
=3 +
o +
g +
] 4 ¥
o +
+ .+
M ++++
o+
2 . 5
¥
4 +
0
0 5 10 15 20 25 30

True Wind Speed [kn]

Figure 5.11.: Scatter plot of BSP and TWS at an TWA of —80 £ 0.5 degrees

65

5. Use Case

+
i +
T+ +
L AT L e + +
+ - + e 1.5 +
L Aot 4 Fafy e d

S AR
-h* + +¢¢ A E

+
+ +
b+ 4o

c
<
-
b + ‘*‘_@_ + + + +
o *he & + +
&a B
= + Y *4.%#1* +
] 4 wr] h
W e
+ T 4
#F e
+
+ t#%
2 - ¥
+*§‘»
P +

0 5 10 15 20 25 30
True Wind Speed [kn]

Figure 5.12.: Scatter plot of BSP and TWS at an TWA of —35 + 0.5 degrees

5.3.2. Identification of methods, hypothesis and tests

Turning now to the inferential statistic to find a connection in the explored data. There is
the intention to fit a line into the data points that represents the correlation of BSP and
TWS.

The recorded data of the previously mentioned angles have a similar shape and seems
to follow the same model. Thus this subsection focuses on the data of Figure 5.12 with
an angle of —35 £ 0.5 degrees, because it contains a multiple amount of data points.

A common method is regression analysis (cf. subsection 3.4.1). In this case both variables
have uncertainties that can’t be neglected. Consequential the residuals have to be
calculated using orthogonal distance regression (ODR) as mentioned in section 3.4.1.

In the Python code, to be expandable to future estimators, each estimator has to
implement a pre-defined interface. The interface defined by Scikit-learn (section 4.4.4)
was used. For nonlinear regression and orthogonal distance regression estimators of
SciPy were used. They have a different API, thus a wrapper was created.

To find the best hypothesis, multiple models are trained simultaneously and compared.
The tested models are defined in Table 5.1. Amongst others, Backhaus et al., 2016, p. 577
defines a nonlinear model called Concave with Downturn which is equal to a 2-degree
polynomial with negative leading sign at the quadratic term.

All trained models have to be tested for validity in regard of under-fitting, over-fitting,
homoscedasticity and non-autocorrelation. This is done with a scatter plot, a residual
plot and the Durbin/Watson statistic as described in section 3.4.2.

66

5. Use Case

Table 5.1.: Hypothesizes for the correlation of BSP and TWS. Most of the models are defined by Backhaus
et al.,, 2016, p. 577.

2-degree polynomial

3-degree polynomial "

4-degree polynomial f¥) = Lizo e ¥

6-degree polynomial

Inverted Parabola f(x) =b+cx(x—a)?

Concave with Downturn f(x) =a+b*x—cxx?

Concave with Saturation Limit flx) =c—axe

Concave with Saturation Limit and Downturn | f(x) = c —a* e "% — d % x?
. . .. c

S-shaped with Saturation Limit f(x) = e)

S-shaped with Saturation Limit and Downturn | f(x) = T eca—b*x —d *x x?

Gompertz-Model f(x) =cxe b

Finally the best hypothesis of the measured data is chosen as proposed in subsec-
tion 3.4.3: The measured data were split into training and test set. The model with the
smallest x> on the test set can be considered as the best model.

5.3.3. Analysis and Interpretation

The plotted result of the tested models are illustrated in Figure 5.13.
The computed quality parameter of the individual model can be found in Table 5.2.

A more detailed plot of the S-shaped model with Saturation Limit and Downturn
including a residual plot can be found in Figure 5.14. Its model with fitted parameters
is defined in Equation 5.3

1.1298

_ 2
flx) = 11 1599 63780x 0.5701x (53)

Interpretation Fitting about 6.000 data points with nonlinear orthogonal distance
regression in 2 dimensions takes under 200 ms. Thus, using this method for a real-time
feedback would be possible.

When it comes to visual model selection, the 6-degree polynomial obviously shows
the phenomenon of over-fitting and therefor is too complex. The visual criterion for

67

5. Use Case

10 - -
.
8
N
_ 6
<
B
B
F]
g
4
a y
P p2
33 L
4 H £ o
+ 4 4 —— Nonlinear ODR - 2 degree Polynomial
¥ —— Nonlinear ODR - 3 degree Polynomial
—— Nonlinear ODR - 4 degree Polynomial
—— Nonlinear ODR - 6 degree Polynomial
—— Nonlinear ODR - Inverted Parabola
2 —— Nonlinear ODR - Concave with Downturn
/ Nonlinear ODR - Concave with Saturation Limit
—— Nonlinear ODR - Concave with Saturation Limit and Downturn
Nonlinear ODR - S-shaped with Saturation Limit
~—— Nonlinear ODR - S-shaped with Saturation Limit and Downturn
—— Nonlinear ODR - Gompertz Model
o /
0 5 10 15 20 25 30

True Wind Speed [kn]

Figure 5.13.: Comparison of TWS vs. BSP at —35 4 0.5 degrees with multiple models

Boat Speed [kn]

0 5 10 15 20 25 30
True Wind Speed [kn]

Boat Speed Residuals [kn]

0 5 10 15 20 25 30
True Wind Speed [kn]

Figure 5.14.: Comparison of TWS vs. BSP at —35 £ 0.5 degree with a fitted S-shaped model with Saturation
Limit and Downturn and its belonging residual plot.

68

5. Use Case

Table 5.2.: Quality values of Orthogonal Distance Regression with varying models

Model Runtime | Durbin/Watson X%r ain X2
2 degree Polynomial 0.05s 1.9827 | 108.05 | 68.39
3 degree Polynomial 0.09 s 1.9815 | 108.06 | 69.15
4 degree Polynomial 0.62s 2.0103 | 109.06 | 67.01
6 degree Polynomial 8.34 s 2.0052 | 104.67 | 168.57
Inverted Parabola 0.11s 1.9827 | 108.05 | 68.39
Concave with Downturn 0.03 s 1.9827 | 108.05 | 68.51
Concave with Saturation Limit 0.11s 1.9824 | 140.01 | 129.28
Concave with Saturation Limit 327 s 1.9828 | 108.08 | 68.54
and Downturn

S-shaped with Saturation 0.11s 2.0184 | 135.50 | 70.38
Limit

S-shaped with Saturation 0.15s 1.9984 | 108.93 | 66.65
Limit

and Downturn

Gompertz Model 0.28 s 2.0116 | 137.52 | 78.81

exclusion of the remaining models are depleted, thus the x? should be compared to
choose the best model. The model with the lowest x? on the test data is the S-shaped
model with Saturation Limit and Downturn which will be examined in detail.

When taking a look at the residuals plot in Figure 5.14 it does not have the shape
of a triangle hence the precondition of homoscedasticity holds. The result of the
Durbin/Watson-Test (section 3.4.2) is 1.9984 which is close to 2 and means there is no
autocorrelation. Therefore the fitted model can be treated as valid.

In Figure 5.14 the fitted line shows a decrease of the boat speed if the wind is stronger
than 18 knots. That means there is not only a maximum speed but also a decrease of
boat speed with increasing wind speed. The reasons could be a combination of larger
waves and a modified lateral plan due to a different heeling.

Note: With reference to section 3.4.1, the result of regression methods can be quite different.
Ordinary least squared (solution in one step) and nonlinear regression (iterative solution finding)
lead to the same result but when using the correct orthogonal distance regression the result can
deviate about 0.3 knots (Figure 5.15).

69

5. Use Case

10
—— OLS 2-degree polynomial

—— Nonlinear - Concave with Downturn
—— Nonlinear ODR - Concave with Downturn

Boat Speed [kn]

0 5 10 15 20 25 30
True Wind Speed [kn]

Figure 5.15.: Comparison of different regression methods.

5.3.4. Result

The resulting models of this regression seems to represent the data well. No further
separated exploration of BSP and TWS should be necessary. However the x? of several
models is at close quarters so that no model can be identified as exclusive best model.
Thus for the creation of a 3-dimensional model the following models were taken into
account beside the model with the lowest x:

Concave with Downturn

S-shaped with Saturation Limit

Concave with Saturation Limit and Downturn
S-shaped with Saturation Limit and Downturn

5.4. Correlation of Boat Speed and Wind Angle

In this section the influence of the wind angle to the boat speed is focused. The
mathematical representation is stated in Equation 5.4.

BSP = f(TWA) (5.4

Similar to the previous section the focus is on the Jib and the influence of the wind
speed has to be minimized. Therefor data from a narrow wind range are used for the

70

5. Use Case

2500
2000
>
2 1500
5
]
i
1000

500

25 30

True Wind Speed [kn]

Figure 5.16.: Histogram of measured data points broken down by TWS.

analysis at this stage. The process of data analysis starts again with exploratory data
analysis.

5.4.1. Data exploration

In Figure 5.16 a histogram of the data points that occurred at the various wind speeds
is illustrated. It is observable that the rate of occurrences of the wind speed from 7 to 9
and 12 to 16 knots are higher. Around 8 knots are 11,129 and around 14 knots TWS are
31, 848 data points. That are good amounts of data points to analyze.

In Figure 5.17 and Figure 5.18 the data points in that ranges are illustrated in a scatter
plot.

5.4.2. ldentification of methods, hypothesis and tests

For the combination of BSP and TWA the same preconditions like in the previous
comparison of BSP and TWS hold. Thus a bivariate regression with orthogonal distance
calculation should be applied on the data in slices of all available data. There is a greater
difference in the shape illustrated in Figure 5.17 and Figure 5.18. So both slices are
tested against the same hypotheses which is illustrated in Table 5.1.

5.4.3. Analysis and Interpretation

The plot of the fitted models around 8 and 14 knots TWS is illustrated in Figure 5.19
and Figure 5.20.

71

5. Use Case

10

Boat Speed [kn]

0 45 90 135 180
True Wind Angle [degree]

Figure 5.17.: Scatter plot of measured data points at a range from 7 to 9 knots TWS.

10

Boat Speed [kn]

% 135 180
True Wind Angle [degree]

Figure 5.18.: Scatter plot of measured data points at a range from 12 to 16 knots TWS.

72

5. Use Case

10
—— Nonlinear ODR - 2 degree Polynomial
—— Nonlinear ODR - 3 degree Polynomial
—— Nonlinear ODR - 4 degree Polynomial
—— Nonlinear ODR - 6 degree Polynomial
—— Nonlinear ODR - Inverted Parabola
8 —— Nonlinear ODR - Concave with Downturn
Nonlinear ODR - Concave with Saturationf Limit
Nonlinear ODR - Concave with Saturation Limit and Downturn
Nonlinear ODR - $-shaped with Saturatjon Limit
Nonlinear ODR - $-shaped with Saturafion Limit and Downturn
Nonlinear ODR - Gompertz Modet— B
. 6 enligear ODR -,Gaussian Model
£
=
2
4 4
&
K
3
@
4
+ o+
+
-
2
0
0 45 92 135 180

True Wind Angle [degree]

Figure 5.19.: Comparison of TWA vs. BSP from 7 to 9 knots TWS with multiple models

10
8
6
= ++
=
3
3
g
2
&
g
2 4 Nonlinear ODR - 2 degree Polynomial
Nonlinear ODR - 3 degree Polynomial
Nonlinear ODR - 4 degree Polynomial
Nonlinear ODR - 6 degree Polynomial
Nonlinear ODR - |nverted Parabola
A Nonlinear ODR - Concave with Downturn
2 Nonlinear ODR - Concave with Saturation Limit
Nonlinear ODR - Concave with Saturation Limit and Downturn
Nonlinear ODR - §-shaped with Saturation Limit
Nonlinear ODR - §-shaped with Saturation Limit and Downturn
Nonlinear ODR - Gompertz Model
0 Nonlinear ODR - Gaussian Model
0 45 90 135 180

True Wind Angle [degree]

Figure 5.20.: Comparison of TWA vs. BSP around 14 knots TWS with multiple models

73

5. Use Case

Table 5.3.: Quality values of ODR with varying models from 7 to 9 knots TWS

Model Runtime | Durbin/Watson)(%r ain X2

2 degree Polynomial 0.50 s 1.9590 | 332.40 | 11345.56
3 degree Polynomial 0.50 s 2.0099 | 206.90 | 937.76
4 degree Polynomial 0.70 s 1.9790 | 165.97 | 1274.64
6 degree Polynomial 1.57 s 1.9423 | 131.04 | 492.77
Inverted Parabola 0.63 s 1.9592 | 332.10 | 11454.64
Concave with Downturn 0.37 s 1.9591 | 332.30 | 11368.54
Concave with Saturation Limit 041s 2.0479 | 590.62 | 280.45
Concave with Saturation Limit 344 s 1.9594 | 332.01 | 11754.61
and Downturn

S-shaped with Saturation 1.05 s 1.9764 | 415.75 | 816.57
Limit

S-shaped with Saturation 1.54 s 1.9378 | 278.79 | 542.20
Limit

and Downturn

Gompertz Model 1.08 s 2.0242 | 440.67 | 379.59
Gaussian Model 6.96 s 2.0503 | 595.92 | 286.97

(x —0.6010)?

f(x) =08746-¢ 2-0.0729

(x — 0.6496)?

f(x) =08978-¢ 2-0.1101

74

The computed quality parameter of the individual models can be found in Table 5.3
and Table 5.4.

The parameters for the fitted Gaussian model are defined in Equation 5.5 for around
8 knots and Equation 5.6 for around 14 knots. A detailed plot of both fitted models is
illustrated in Figure 5.21 and Figure 5.22.

The result for the model Concave with Saturation Limit has infeasible high values for x2
that probably originate from an value overflow. In Figure 5.22 this model obviously
does not follow the same distribution as the data, thus it was omitted from the table.

(5.5)

(5-6)

Interpretation Compared to the model fitting of BSP and TWS it takes a lot longer to
fit the models for this problem which traces back to the larger data set. The calculation

5. Use Case

Table 5.4.: Quality values of ODR with varying models near 14 knots TWS

Model Runtime | Durbin/Watson | x? .. Xt

2 degree Polynomial 0.54 s 1.9782 | 345.33 | 2177.69
3 degree Polynomial 0.79 s 1.9928 | 190.88 | 725.35
4 degree Polynomial 0.34s 1.9896 | 183.17 | 1038.06
6 degree Polynomial 3.11s 2.0244 | 164.57 | 450.52
Inverted Parabola 141s 1.9782 | 345.33 | 2177.90
Concave with Downturn 0.49 s 1.9782 | 345.33 | 2177.79
Concave with Saturation Limit 13.01 s 1.9782 | 345.38 | 2185.34
and Downturn

S-shaped with Saturation 0.58 s 2.0135 | 377.75 | 530.23
Limit

S-shaped with Saturation 711s 1.9544 | 274.56 | 27050.64
Limit

and Downturn

Gompertz Model 3.53 s 2.0151 | 393.95 | 568.76
Gaussian Model 25.65s 2.0119 | 648.17 | 520.07

Boat Speed [kn]

[45 20 135 180
True Wind Angle [degree]

Boat Speed Residuals [kn]

0 45 20 135 180
True Wind Angle [degree]

Figure 5.21.: Comparison of TWA vs. BSP from 7 to 9 knots TWS with a fitted Gaussian model and its
belonging residual plot

75

5. Use Case

Boat Speed [kn]

0 45 90 135 180
True Wind Angle [degree]

Boat Speed Residuals [kn]

0 45 90 135 180
True Wind Angle [degree]

Figure 5.22.: Comparison of TWA vs. BSP from 12 to 16 knots TWS with a fitted Gaussian model and its
belonging residual plot

times are about one second which is still acceptable as live-feedback.

For choosing the best model the x? on the test data can be compared. In both true wind
ranges the model with the lowest x? on the test data is the Gaussian model. It is obvious
that the best model only has one extreme value. That indicates that the sail has one
optimal point and the power strictly falls off when moving away from that point. The
Durbin/Watson-Test (section 3.4.2) delivers a value of 2.0269 and 1.9592 which is close
to 2 and means there is no autocorrelation in this two ranges.

Both residual plots indicate that there is still a noticeable shape which means that the
model does not fully represents the data. It has been found that this problem exists for
all tested models (Table 5.1). It is recommended to perform further analysis to find a
better model.

5.4.4. Result

The development of a higher sophisticated model of the relationship of BSP> and TWA
was postponed in favor of the generation of a 3-dimensional model.

76

5. Use Case

Figure 5.23.: Frequency of measured data in a polar plot.

5.5. Correlation of Boat Speed, Wind Speed and Wind
Angle

Having discussed the correlation of the individual components, the following section
addresses the original question of the thesis to find the influence of both components of
the wind conditions on the boat speed. This is summarized in the Equation 5.7.

BSP = f(TWS, TWA) (5.7)

5.5.1. Data exploration

The combination of TWS and TWA exert force on the boat that it will drive (chapter 2).
Therefore these variables are independent and BSP is the dependent variable in this
analysis.

Similar to the previous iterations there is a overview in which areas measured data
points are available. This is illustrated in the polar diagram in Figure 5.23. TWS goes
from the center outwards.

5. Use Case

In Figure 5.24 a scatter plot of the measured data is illustrated. It is limited to the Jib on
starboard bow.

5.5.2. Identification of methods, hypothesis and tests

For the extension to the third dimensions the same preconditions exist. The distance
from each point to the fitted curve is calculated with the smallest geometric distance to
overcome the error in all dimensions.

Two hypothesis were raised independently during the analysis. They are defined in
Equation 5.8 and Equation 5.9

f(tws, twa) = a+b-tws — ¢ - tws? +d - twa — f (—e + twa)* + g - twa - tws ~ (5.8)

[

f(tws, twa) = e

—d~twsz+e " —p~twa2+t-twa-tws (5.9)

n—o-twa + 1

Additionally, the two best models from the previous iterations were chosen and com-
bined which results in the hypothesis in Equation 5.10.

c 2 o (7n+t;ua)2
m —d - tws +m-e 20 (5.10)

f(tws, twa) =

This hypothesis does not take any combined criteria into account which will be tested
with an additional linear term in Equation 5.11.

(7n+twa)2

c _
—d-tws®> +m-e 22 +t-twa-tws (5.11)

1+ ea—b~tws

f (tws, twa) =

A model selection like in the previous iterations of the data analysis has to be made.
For this multivariate nonlinear regression the best suitable quality parameter is the
chi-squared (x?) as reasoned on section 3.4.2.

It is not practical to always plot the result of this fit in three dimensions including a
scatter plot. Only then, the amount of data points that influence a curve at a specific
position can be assumed. This is an important value of significance. Thus, in the two
dimensional representation, areas with a number of data points below a certain threshold

78

-90

poeds 1e0g

5. Use Case

90
True Wind Angle

90
45 True Wind Angle

-45

Figure 5.24.: Scatter plot of the measured data with varying perspectives.

79

Boat Speed

5. Use Case

Table 5.5.: Quality values of orthogonal distance regression of four multivariate models

Model Runtime X%r nining Xoos
Concave with Downturn 0.18 s | 47242.47 | 20499.41

for Wind Speed and Angle (5.8)

S-shaped with Saturation Limit and Downturn 1.00 s | 92678.30 | 39549.94
for Wind Speed and Angle (5.9)

S-shaped with Sat. Limit and Downturn for 1.20 s | 38483.22 | 16639.00
Wind Speed;
Gaussian model for Wind Angle (5.10)

S-shaped with Sat. Limit and Downturn for 1.78 s | 36598.24 | 15974.74
Wind Speed;

Gaussian model for Wind Angle + Combination
(5.11)

should be flagged or even hidden. In Figure 5.23 the areas and the corresponding
histogram are illustrated. Effective frequencies below 40 contain too many insecurity
for a good representation.

The official velocity prediction program, generated by the ORC, are available for this
boat. A comparison of the fit to these should give another input to the validity of the
hypothesis. It is not feasible that the values can be reached because the ORC calculations
ignore some environmental influences (subsection 2.3.2) but the overall shape should be
similar.

5.5.3. Analysis and Interpretation

With regard to the model selection the quality parameter can be found in Table 5.5. The
number of data points taken into account was 91,576.

In addition to the runtime of around 2 seconds for the fit alone another 8 seconds
are necessary for pre- and post-processing, thus without optimizations a soft real-time
teedback is not feasible. It is conceivable that a continuous feedback directly on the boat
every few minutes or after each lay is provided.

The models with the lowest x? . . g and X2, are the ones that were generated with the
information of the previous iterations of this data analysis. The best fit is defined in

80

5. Use Case

Polar diagram fit

posds 1208

Figure 5.25.: Scatter plot of the measured data including the fitted curves of the best fitted model
(Equation 5.12).

Equation 5.12. In Figure 5.25 a three dimensional plot of the fitted curves at 6, 8, 10, 12,
14, 16 and 20 knots TWS are illustrated. The areas around the fit are the indicator of the
certainty of the fit at this position. It is clearly visible that with a decrease of measured
data the possible result range increases.

9.8649

_ 2
f (tws, twa) = 1 o628 0276 s 0.00014 - tws

(5.12)

(—21.1886+twa)?

—3.6461 -¢ 2263322 — (0.000572 - twa - tws

When delivering a 2-dimensional representation a polar plot is the preferred type. In
Figure 5.26 the fit at the wind speed of 10 knots are illustrated. As reference points the
values of the velocity prediction program (VPP) of this boat are added to the plot.

The fitted model defines the areas accurate where enough measurements were taken.
The areas at the sides show very misleading results. Therefore in Figure 5.277 they are
cut when they get inaccurate.

A split polar diagram is not useful in practice. That is the reason that another polar plot
was created that combines the generated polar diagram with the VPP in continuous
lines. The missing areas of the polar diagram are completed with a ratio of the VPP’ that
is adapted from the parts of the polar diagram that contain enough measured data.

81

5. Use Case

Polar Diagram - ODR S-shaped with downturn, Gaussian and combination
o

True Wind Speed:
—— Fitat10 kn
Pl

VPP at 6 kn
VPP at 8 kn
VPP at 10 kn
VPP at 12 kn
VPP at 14 kn
VPP at 16 kn
VPP at 20 kn

180°
True Wind Angle

Figure 5.26.: Polar plot of the best fitted model (Equation 5.12) with the fitted line at 10 knots TWS.

5.5.4. Result

At areas with enough data points the fit seems to represent the data quite good. Better
measurements with a wider range of wind angles are necessary to validate the model on
the whole range of the sail. It was shown that splitting the problem into 2-dimensional
subproblems assisted to find a good solution.

5.6. Correlation of Boat Speed, Wind Speed and Wind
Angle in respect to Quality of Data Points

It is illustrated in Figure 5.12 and Figure 5.18 that the variance of data points is wider
in some areas. That lead to the assumption that the variance of the error of the data
points is not equal. In such cases, weighted regression, as described in section 3.4.1, can
improve the results of the fit. For this iteration the fact that the data points are a time
series is used.

82

5. Use Case

— ‘}0 BoatSpeed [kn]

-90°

180°
True Wind Angle

a5°

135°

True Wind Speed:

I T

e® s 0000

Fitat 6 kn

Fit at 8 kn

Fit at 10 kn
Fit at 12 kn
Fit at 14 kn
Fit at 16 kn
Fit at 20 kn

VPP at 6 kn

VPP at 8 kn

VPP at 10 kn
VPP at 12 kn
VPP at 14 kn
VPP at 16 kn
VPP at 20 kn

Figure 5.27.: Polar plot of the best fitted model (Equation 5.12) with accuracy above threshold.

83

5. Use Case

0°

True Wind Speed:
— 6 kn
— 8kn
— 10kn
—— 12 kn

14 kn
—— 16 kn
— 20kn

eed [kn]

Qe 90°

180°
True Wind Angle

Figure 5.28.: Polar plot of the best fitted model (Equation 5.12) combined with a suitable ratio of the
corresponding VPP.

84

5. Use Case

20.0 A
« Boat Speed

True Wind Speed

17.54

15.0 9

12.54

knots
=
o
o

. & o
7.5 B T S C S S S N2 W) NN S L LN NP el P e
PRI u’\-’ - o D v-..“ o % WV e -, 7 - ¢ l...:sw “ e~ IS
iy by
5.0 q
2.51
0.0 T T T T T T T T T
201200 201250 201300 201350 201400 201450 201500 201550 201600
time
901 e True Wind Angle
o A
L4 .
-~ L &, N N Saa mWS
. D S W, V) I e .
,,.-,-*\AW-,."NI',. N L 3 LSl ") V‘u.\ww%ﬂ\ o

angle
IS
G

04
201200 201250 201300 201350 201400 201450 201500 201550 201600
time

Figure 5.29.: The process of boat speed and TWS (above) and TWA (below) during a short time period of
the RPC.

5.6.1. Data exploration

A closer look at the process of BSI” and TWS is illustrated in Figure 5.29. Some areas
are smooth, whereas some show sudden changes. A conclusion is discussed in the
following subsection.

In Figure 5.30 the smoothness of the measured data is illustrated. Separated for each
variable, it shows the deviation of the datapoints to its predecessors observed over 13
seconds.

The BSP deviates to the mean of the previous 13 seconds by up to 4 knots. When
defining 5 percent of these deviations as outliers, these range drops to about 0.65 knots.
This shows that an high amount of values in the time series have smooth transitions.

85

5. Use Case

Moving Average Deviation Histogram of Boat Speed

105 4

95% confidence interval
7 -0.614230769231 to 0.647746153846

104 4
3 |
- 10
w
c
]
3
g
T 107 4
101 4
107 4
8
difference of an element to the mean of the previous 13 elements [kn]
Moving Average Deviation Histogram of True Wind Speed
95% confidence interval
T -1.03528547485 to 0.966923076923
10 4 i 1
N}
PR
¥ I
1 1
1 1
J 1 | 1
103 0
>
w
=
]
&0
E 10 4
10! 4
10" 4
-15 —10 -5 0 5 10 15
difference of an element to the mean of the previous 13 elements [kn]
Moving Average Deviation Histogram of True Wind Angle
95% confidence interval
~77 -10.5307692308 to 10.3923076923
104 § i
[N W
N W
1l
1 1
1 1
[} | ¥
10% 4 I I
1| 1
z
=
]
& 10
S_j 107 4
10! 4
10° 4

—150 —100 —=50 0 50 100 150
difference of an element to the mean of the previous 13 elements [degree]

Figure 5.30.: Histograms of the difference of an element to the mean of the previous 13 seconds. The
scale is logarithmic.

86

5. Use Case

« Boat Speed
True Wind Speed

knots
=
o
o

. & >
754 N PSP P PRI B Dl NN T S LL ST E_ NP N -~ e e
NERY R AN gL s
3
.

5.0 1

2.5

0.0 1

201‘200 201‘250 201300 201350 201400 201450 201500 201550 201600
time

Figure 5.31.: A process diagram with stable (green) and dynamic (red) highlighted areas.

For the TWS the average deviation in the same range is around 1.0 knot and for the
TWA the deviation is about 10.5 degrees.

5.6.2. Identification of methods, hypothesis and tests

Sailing is a very dynamic system. All boats react with inertia to changes of applied
force. The hypothesis is that the result gets better if the stability of system during
measurements is incorporated. That means that with weighted regression the measured
data points during heavy changes of the system have less influence on the result.

For this calculation the data points in a time span of 13 seconds are analyzed. This value
was chosen by reason of the behavior of waves in the sea.

In Figure 5.31 two of those time spans are illustrated. The green one shows smooth
characteristics of the measured data. These should lead to results with low variance.

Around the time mark of 201350 seconds a change of the boat speed of over 2 knots
took place. Due to the inertia of the boat the measured data in this time range probably
has a bigger variance. These data points should have lesser influence on the result.

Weight calculation works as follows: For every data point the standard deviation of
the previous 13 seconds is calculated. Separately for BSP, TWS and TWA. Subsequently
the occurring standard deviations are analyzed for outliers. The outermost 5 percent

87

5. Use Case

Boat speed trend with belonging weights

« Boat Speed
Boat Speed weights

o PR R~) Fo P g

. - o N et s o C N T A |y o st A el Y
-~ T it s WY (¥l * WV, g, & s caTo St Tep oW, o

L o s 8 i . s - 2% - Sl (= i ’”

o b

Speed [knots]

Weights

201250 201300 201350 201400 201450 201500 201550 201600
Time [s]

Figure 5.32.: The resulting weights of the BSP in a detailed view.

are dealt as outliers and are not included in the calculations. The weight of the others
are calculated with Equation 5.13.

1
ghts; = :
weights: standard_deviation(x;, ..., xj_13)> (5.13)
Finally the weights are normalized using Equation 5.14.
normalized_weights; = weights; (5.14)

% Y.L weights;

The comparison of the calculation including weights to the previous method without
weights can be made by comparing the x? of the test set. As discussed in section 3.4.2,
this is only valid on the same training and test set and if uniform weighting is used on
the test set.

5.6.3. Analysis and Interpretation

As an example, a detailed result of the weight calculation is illustrated in Figure 5.32. It
is clearly visible how the weight drops when the values of the BSP change vehemently.

The histograms of all the resulting weights that are used for the regression are illustrated
in Figure 5.33. The most-left column of the histogram shows the number of outliers that
are omitted for the training phase.

In Table 5.6 the fitted model including weighting of the data points is compared to the
same results without weighting. It shows that the x2, . . o which is minimized during
the regression, reaches lower values with weighted orthogonal distance regression.

88

5. Use Case

Histogram of scaled Bsp weights

8000

6000

4000

2000

0.0 0.5 10 15 2.0 25 3.0 3.5 4.0

Histogram of scaled Tws weights

6000

5000

4000

2000

1000

Histogram of scaled Twa weights

12000

10000

8000

6000

4000

2000

Figure 5.33.: Histograms of the resulting regression weights for BSP, TWS and TWA.

89

5. Use Case

fit with weighted data

Table 5.6.: Quality values of orthogonal distance regression of four multivariate models compared to its

Model Runtime X%mining Xest
Concave with Downturn 0.18 s | 47242.47 | 20499.41
for Wind Speed and Angle (5.8)

with weighted data points 0.15s | 46080.42 | 21519.31
S-shaped with Saturation Limit and Downturn 1.00 s | 92678.30 | 39549.94
for Wind Speed and Angle (5.9)

with weighted data points 3.37 s | 95739.00 | 61394.43
S-shaped with Sat. Limit and Downturn for 1.20 s | 38483.22 | 16639.00
Wind Speed;

Gaussian model for Wind Angle (5.10)

with weighted data points 1.50 s | 36679.52 | 17850.34
S-shaped with Sat. Limit and Downturn for 1.78 s | 36598.24 | 15974.74
Wind Speed;

Gaussian model for Wind Angle + Combination

(5.11)

with weighted data points 1.55 s | 36474.75 | 17538.09

But as described in subsection 3.4.3, the column of interest is the x2,, which shows
the quality of the fit with previously unseen data. These values are higher than the
corresponding fitted model without weighting. Thus the weight calculation in this way
is accurate, but lead to worse results when used for prediction.

The best fitted model including weighting of the data is defined in Equation 5.15.

1.7035

2
1+ ¢02633-10.108-Fws 0.00023 - tws

f (tws, twa) =

(5.15)

(—29.678+twa)?

—1.897 -¢ 2-176112 —(.00035 - twa - tws

Similar to Figure 5.26 the fit of the weighted regression is plotted with the velocity
prediction programs of the ORC as reference points in Figure 5.34.

Therefore the best model remains the S-shaped with Saturation Limit and Downturn
for Wind Speed and a Gaussian model for Wind Angle plus a linear combination which is
highlighted in Table 5.6.

90

5. Use Case

0°

-45°
p
y /7
/ g /
/
/ /
/ /
/
/ /
| | f
[([
| |
-90°
| | |
| |
| \ \
\ \
\
\
\
\ A
\
\ \
AN
\
-135°

Figure 5.34.: Polar plot of the best fitted model using weighted data points (Equation 5.12) with accuracy

above threshold.

180°

True Wind Angle

91

45°

135°

True Wind Speed:

== e = - e = B = e«

90°

C N N)

Fit at 6 kn

Fit at 8 kn

Fit at 10 kn
Fitat 12 kn
Fit at 14 kn
Fit at 16 kn
Fit at 20 kn

VPP at 6 kn

VPP at 8 kn

VPP at 10 kn
VPP at 12 kn
VPP at 14 kn
VPP at 16 kn
VPP at 20 kn

5. Use Case

5.6.4. Result

It had been shown that the weight calculation in this simple way does not lead to
an improvement in the result. Maybe an approach of grading the data lead to better
results.

5.7. Evaluation

Programming language The decision to use Python as a development platform was
proper. In the last decade it got more and more popular in the field of data science and
has a extensive documentation. No particular troubles arose and the implementation
was fast.

Validity The available data do not contain information on the full range of the sails.
Hence to generate a complete polar diagram is not possible. This is certainly a problem
of real-world appliances, which is why a limitation of the output of the polar curves
was implemented when there are not enough data available. Out of that range, the data
would not be valid.

Applicability To ensure validity, the polar plot is divided in sectors. Each sector has a
range of 2 knots true wind speed and 7.5 degrees true wind angle. For an sector to be
valid about 100 data points in and near around the sector are necessary. That can be
measured in less than two minutes sailing. A sailing boat can not sail directly against
the wind, thus a feasible line in the polar diagram goes over 20 sectors. Consequently
measurements for one complete line of the polar diagram take about 35 minutes. That
is a feasible amount of time to invest to obtain a polar diagram.

Data selection The algorithm for the automatic selection of the test data of a specific
sail works reliable. This saves a lot of time during the preparation of the data. It also
lead to more accurate results than the selection of the test data from manual logbook
entries. There could problems arise when handling data of a sail with different level of
reef.

92

5. Use Case

Modeling The correlation of TWS and BSP is good representable with the tested
nonlinear models. For the connection of TWA and BSP the result is not entirely satisfying
yet. Further investigation with more complex models is required. The implementation
allows an extension of the analysis to any number of models with automatic comparison
among each other.

Regarding the three dimensional regression, the combination of the solution of both
two dimensional subtasks lead to an acceptable result. Thus the decision to divide the
problem into smaller tasks is recommended. The extension of the model with a linear
combination of TWS and TWA decreased the error on the fitted model of new data by 4
percent. This shows, that the best solution requires more effort than a sole composition
of the subproblems.

Quality Unfortunately due to the use of nonlinear regression there is no independent
calculable parameter that shows the quality of the fit (section 3.4.2). So a comparison to
the VPP by the ORC can give an indicator of the quality of the fit.

It is illustrated in Figure 5.26 that for the valid areas, the shapes of the curves are quite
similar. However the uniform weighted model is generally up to 1.5 knots below the
velocity prediction program of that boat. The reason might be that the VPP is calculated
without some influencing environmental conditions like sea or conditions of the boat
and sails. This gap gets narrower to less than a half knot at higher wind speeds because
the ship converges to the hull speed defined in subsection 2.3.4. The provided force by
the wind increases enormous so that the environmental factors that slowdown the boat
lose down.

When comparing the polar plot of the best model of weighted regression Figure 5.34
to the official velocity prediction programs like the one in Figure 2.9, it behaves rather
poorly at around 40 degrees. It seems that the curve decreases not fast enough. Among
the higher error on the test data, this is another sign that, given these measured data,
the hypothesis without weighting of the data yield to better results.

Runtime As Table 5.5 indicates, the runtime of a fit takes only a few seconds. In
addition to that there is database querying, weight calculation, determining of the fit
parameters and the generation of several plots. It takes about five minutes to compare
eight models at once with around 100,000 data points and all output plots. There should
be room for optimization but a soft real-time feedback is not feasible.

93

6. Summary

The origin of this master’s thesis was the master’s thesis of Clemens Gutschi about
weather routing (Gutschi, 2015). One of his results was, that the routing is inaccurate if
the target speed was not met or over-matched. This was often the case when relying on
velocity prediction program (VPP) by the Offshore Racing Congress (ORC) during his
test runs. One of his outlooks was the enhancement of this input vector to the weather
routing algorithm.

It was discussed that an accurate polar diagram is backing not only for weather routing
but for all kinds of navigation on a sailing boat. The goal of the thesis was generating
a polar diagram not from measurement of the stable parts of a boat like the VPP, but
from measurements during sailing. This should lead to results that can be reproduced
by the sailing crew. The research of the physical background of sailing yields that the
measurement devices that are necessary for the generation are very common on sailing
boats. A concept was developed that the result of this master’s thesis can be applied
to most of these boats. It is interconnected by the proprietary standard of the National
Marine Electronics Association (NMEA). The NMEA defines a protocol to transmit data
between measurement devices and displays on a boat. These transmissions are recorded
and stored for the following analysis.

The analysis started with the visualization of surface splines in Matlab. This delivers
visually impressive results without much effort.

To generate a complete polar diagram, data have to be recorded under varying wind
conditions. Of course, those cannot be established during one measurement turn which
lead to holes in the data set. It was requested to show certain results in areas that have
a low number of data points. However, splines have no information of the underlying
data and can show misleading values because of some dominant outliers in that area.

This circumstance lead to the domain of data analysis. Shortly at the beginning an
approach with artificial neuronal networks (ANNs) was chosen. With an ANN a fit
through the 3-dimensional data set should be found. The result was not satisfying and
the problem was divided into smaller pieces. The 3-dimensional problem was divided
into two 2-dimensional problems which were solved with regression analysis instead of

94

6. Summary

an ANN. The tool for that analysis was changed to Python which has some outstanding
libraries for this purpose.

Resulting from the reason that all measured values can have measurement errors,
orthogonal distance regression (ODR) had to be used. During the process of model-
finding, it emerged that a limitation to linear models is not accurate so that non-linear
regression techniques that allow ODR were applied. That raised questions in validating
the results of the fitted models. Necessary preconditions for well-known R? or reduced
X2 does not generally hold in non-linear regression. Thus, for the validation a technique
from machine learning was applied. The deviation of completely fitted models to some
retained data from the same measurement is calculated. The smallest error to that
previously unseen data set indicates the model that best represents the original data.

With the gained information from the lower-dimensional regressions, the bigger problem
was tackled. This approach helped to preserve a feasible result. After that, a procedure
was developed to improve the result by penalizing data points that might not follow
the original distribution. This calculation included the fact, that the measured data are
a time series and favors time ranges with stable measurements.

Detailed results can be found in section 5.7. In summary, the already mounted mea-
surement devices deliver adequate output and the data analysis is performed in an
acceptable runtime, it provides valid outcomes and requires no further knowledge
of data science by the user. However, the quality of resulting polar diagrams is not
quantifiable which means that the best of those generated polar diagrams is chosen but
the results could still be inaccurate.

The generated polar diagram is only contingently a universally valid characteristic of
the boat. If the predominant amount of the measured data is taken during unhurried
sailing, the maximal performance of the boat drops. The same applies if the boat is
sailed by amateur sailors.

In fact, the result polar diagram shows the performance of a particular crew on a specific
boat. Thus the results can be varying, but offering new ways of applicability:

e crew compares its performance with previous accomplishments (compare Clemens
Gutschi’s GAP-Visualization)

e after an one-design regatta the polar diagrams of all boats can be compared and
reveal at which wind condition the winner extended his lead

e as input to a weather routing program

95

6. Summary

The calculation of VPPs has some advantages that are unattainable with the generation of
polar diagrams by measurements, but the tailored performance analysis can complement
one another.

96

7. Outlook

Having discussed how to generate polar diagrams out of measurements, the final
section of this thesis addresses a prospect of the next steps. A future work could be an
optimization of the result by analyzing the data as time series. In the current phase, it
was paid heed to not change any value of the measurements because that may affect
the results negatively. Smoothing of all signals alone and to each other can be applied
to the sequential data. There also might be a lag of the boat speed (BSP) when the
wind conditions change resulting from an inertia effect. Techniques for the appropriate
analysis of time series should be formulated and applied to this topic. The gathered
results can be compared with the current hypotheses with the introduced procedures.

The resulting polar diagram currently does not spread across the whole feasible area
of the sail. The reason for that issue is that the focus during the measurements was
on the best velocity made good (VMG) and therefore the slower areas were avoided.
Measurement data on the whole feasible area should be generated. That requires
particular measurement turns to generate data of a wider range of wind conditions.

There also exists a plurality of sails that where not addressed during the analysis.
These should be inspected whether the existing models are good representations. Not
examined was the effect of reefing of the sails that do lead to new characteristics. A
further development of models which consider this topic should be performed.

A further step is the combination of all analyzed sails of a boat into a performance
polar diagram. This will show only the fastest sail for a given wind condition more
conveniently. This can be used on the boat to know when to change or reef a sail.

Moreover, polar diagrams of two different time intervals should be comparable auto-
matically. The result would express during which interval the crew accomplished a
better performance. Aside from the currently averaged performance polar the imple-
mentation should be expanded to generate maximal performance polars. Besides that,
when comparing both bows, an erroneous deviation of the wind angle can be identified
automatically, which is a very common misconfiguration of the wind gauge.

97

7. Outlook

Furthermore, in practice, it is not convenient to use a laptop to generate all this data. It
needs many precious power and space on the map table. All implemented algorithms,
plots and characteristic values could be ported to a handy, power-efficient device.
Today’s smart-phones probably have enough computing-power for such tasks. An
implementation of the algorithms on mobile phones or smart-watches would enable
an easy access to the generated results. In cooperation with hardware manufacturers,
the generation of performance polar diagrams could also be built-in directly into the
on-board devices. With either solution, the custom-fit performance polar diagrams
could be delivered to the crew during sailing. This feedback can be used to adjust the
trim of the sails to increase the performance.

98

Appendix

99

Appendix A.

Source Code

Listing A.1: cli.py

Polar diagram generator.

Command line interface to access a collection of resources for the generation of polar diagrams.

Author: Stefan Simon
License: CC BY-NCND 4.0

import os
import logging

from datetime import datetime
import sys

from polar.diagram.generator.data-analysis import *

from polar.diagram._generator.data-selection import *

from polar.diagram._generator.exploratory.-data.analysis import =
from polar.diagram._generator.workspace.workspace import Workspace

CHOOSECOMMAND. = \
”\nWORKSPACE\n" '\
”open.[path].—.set_active_workspace_and.load .db\n\tpath.is.relative\n” \
“refresh_(r).—.refresh.database.of.active_workspace_from.files\n” \
”drop.(d)_—.drop.database_of_active _.workspace\n” \
”close.(c)-——close._workspace\n” \
“\n”
”\nCONFIGURATION\n" '\
”load_configuration.[path] —_set_.the_.configuration.file_.for_the_data_analysis\n\tpath_is_.relative\n” \
”select_logbook.[id] —~.limit_data_for_.the_data_analysis\n” \
”\tranges._were.configured .manually._and_.are_available_.via.an_.[id]\n” \
”\tused_frequently._in_the_tests” \
”select_sail_finder.[angle] —_limit.data_.for_the_data_analysis\n” \
”\tanalyzes._the_.data_and_selects.ranges.of_a_defined.sail _with_given_.[angle]” \
”select_all —_removes.data_limitations\n” \
“\n"
”\nDATA_ANALYSIS\n” \
“trend —_plot_a_trend.of _boat._speed, .true _wind_speed.and._true _wind_angle\n” \
”trend.speed.—.plot.a~trend ~of _true._wind.speed_and-boat.speed\n” \
“trend-wind.—_plot.a_trend-of _true._.wind.angle\n” \
“histogram .—_plot.a-histogram._which.shows_the_distribution.of_the_data.in_their _feasible.ranges\n” \
"boxplot.—_illustrate.the_distribution.of_.sailed_boat.speeds_for _common.ranges.of_true.wind.speed.in_narrow.ranges.of._wind.

angle\n” \

“occurrences.—.plot.a.polar_heat.map.of.the_frequency.of.data_points.at.narrow.areas._of.wind.angle_and_wind.speed\n” \
"fit.[type]——fit.and.plot_data.to.models\n\t*.2D_speed.[angle]\n\t*.2D_angle.[speed]\n\t*.3D\n"” \
“\n” \
“\nOTHER\n" \
“help.(h) —_prints_this_text\n” \
”quit.(q)-—-quit.program\n”

logger = logging.getLogger(’polar.cli’)

100

Appendix A. Source Code

def start-.command_line_interface():
configure_logging ()
db_handler = None
workspace = Workspace ()

configuration = None

logger . debug (CHOOSECOMMAND.)
number_of_.commands = o
while True:
number_of_commands += 1
input_string = input(
”Enter .command: .”

)

input.array = input-string.split()
if len(input.array) < 1:
continue
command = input.array[o]
parameters = input.array[1:len(input_array)]

logger .debug(”\nperform_command.%s ...” % command)
if command == ”open” or command == "0” or command == "w”:
if len(parameters) is 1:
db_handler, configuration = workspace.open_workspace(parameters[o])

else:
logger .debug(”Usage: .open.[path]”)

for file in os.listdir(”.”):
if os.path.isdir(”./” + file) and not file.startswith(”.”):
logger.debug(”....” + file)
continue
elif command == “close” or command == "c”:
configuration = workspace.close.workspace(configuration)
db_handler = None
elif command == “help” or command == "h”:
logger.debug(”\n” + CHOOSECOMMAND.)
elif command == ”quit” or command == "q”:
if workspace is not None:
configuration = workspace.close-workspace (configuration)
break

if workspace is loaded
elif db-handler is None:
logger .debug(”“no_workspace.loaded”)

continue

elif command == “refresh” or command == "r”:
workspace. refresh_files ()

elif command == "drop” or command == "d”:

workspace . clear_database ()

limits data to logbook entry
elif command == ”load_configuration”:
if len(parameters) is 1:
configuration = workspace.configuration_from_file.override_with_config_from_file (configuration, parameters[o])
else:
logger.debug(”Usage:.load_configuration.[path]\n")
continue

limits data to logbook entry
elif command == ”select_.logbook” or command ==
configuration = logbook.perform (parameters, db_handler, configuration)

.

plot the True Wind Angle and True Wind Speed distributions
elif command == "histogram” or command == ”distribution”:
distribution . perform (db-handler, configuration)

plot the occurrences of data points
elif command == “occurrences”:
occurrence_plot.perform(db_handler, configuration)

plot the True Wind Speed and Boat Speed trend
elif command == ”trend.speed”:
cursor = db-handler.connection.cursor ()
speed.trend . perform (cursor, configuration)

101

Appendix A. Source Code

cursor . close ()

plot the True Wind Angle trend

elif command == “trend_wind”:
cursor = db_handler.connection. cursor ()
wind._angle_trend . perform (cursor, configuration)
cursor.close ()

plot the True Wind Angle trend
elif command == “trend”:

trend . perform (db_handler, configuration)

set active data range to a specific sail

elif command == ”select_sail_finder”:
select.sail_usage_string = “Usage:.select_sail_finder_[angle]\n\t[angle]_has_to.be_between_—180.and._+180\n"
if len(parameters) is 1:
try:
angle = float(parameters[o])

if —180 <= angle <= 180:
sail_finder .perform(angle, db_handler, configuration)

except ValueError:

logger.debug(select-sail_usage_string)

continue

else:

logger .debug(select_sail_usage_string)
continue

elif command == "select_all”:
workspace. configuration_from_file.reset_selection_limitations (configuration)

plot the Boat Speed, True Wind Angle and True Wind Speed row difference and apply noise filtering
elif command == “noise”:
noise_filtering .perform(db_handler, configuration)

plot the Boat Speed ranges for different True Wind Angle as boxplot
elif command == "boxplot”:

cursor = db_handler.connection. cursor ()

boxplot.perform(cursor, configuration)

cursor . close ()

elif command == ”fit”:

if parameters[o] == ”"2D_speed” and len(parameters) is 2: # train a 2d function in a specific True Wind Angle range
cursor = db_handler.connection.cursor ()
fitaD_speed . perform (cursor, configuration, true-wind.angle=int(parameters[1]))
cursor.close ()

elif parameters[o] == ”“2D.angle” and len(parameters) is 2: # train a 2d function in a specific True Wind Speed

range

cursor = db_handler.connection.cursor ()
fit2D_angle . perform (cursor, configuration, true.wind.speed=int(parameters[1]))
cursor . close ()

elif parameters[o] == ”3D” and len(parameters) is 1: # train a 3d function
cursor = db_handler.connection.cursor ()
fit3D . perform (cursor, configuration)
cursor.close ()

else:

logger .debug(”Usage:..fit.[type]\nChoose_for.[type]_one_of\n\t*_.2D_speed_[angle]\n\tx_2D_angle.[speed]\n\t*_3D\n
\n”)
continue
else:

logger . debug (”unknown._command”)
return number_of_commands

def configure_logging():

script_start_time = datetime.now().isoformat(timespec="minutes”)
file_name = script_start_time.replace(”:”, ””)
base_dir = ”../logs/”

if not os.path.isdir(base_dir):
os.makedirs(base-dir)

logging .basicConfig (level=logging .DEBUG,
format="%(asctime)s.%(name) —12s.%(levelname) —8s..%(message)s ',
datefmt="%m%d YH:%M" ,
filename=base_dir + file_name + ’.log’,
filemode="w")

console_info = logging.StreamHandler (stream=sys.stdout)

console_info.setLevel (logging .DEBUG)

console_info.addFilter (LogFilter (logging .DEBUG))

logging . getLogger(’’).addHandler(console_info)

formatter = logging.Formatter(’%(levelname)—8s_—_%(message)s’)

102

Appendix A. Source Code

console_info = logging.StreamHandler (stream=sys.stdout)
console_info.setLevel (logging .INFO)
console_info.addFilter (LogFilter (logging .INFO))
console.info.setFormatter (formatter)

logging . getLogger(’’).addHandler(console_info)

console.warn = logging.StreamHandler (stream=sys.stderr)
console_warn.setLevel (logging .WARNING)
console_warn.setFormatter (formatter)

logging . getLogger(’’).addHandler(console_warn)

class LogFilter (object):
def __init__(self, level):
self.__level = level

def filter(self, log-record):
return log.-record.levelno <= self.__level

if __name.. == u’__main__":
start_.command_.line.interface ()

Listing A.2: workspace/workspace.py

import logging
import os
from datetime import datetime

from polar.diagram._generator.importer.csvimporter import CSVImporter
from polar_diagram_generator.importer.nmeaimporter import Nmealmporter

from polar.diagram_generator.importer import import_postprocessor
from polar.diagram_generator.workspace.configuration import Configuration
from polar.diagram_generator.workspace.databasehandler import DatabaseHandler

logger = logging.getLogger(’polar.workspace’)

class Workspace:

path = None
db_handler = None
configuration_from_file = None

def __init-_(self):
pass

def open_workspace(self , path):
logger .debug(”\nOpen_.workspace.'%s ’"...” % path)

if not os.path.isdir(path) or not os.access(path, 0s.ROK):
logger.error (”Either_path.is.not.a_folder.or.not.readable: %s\n” % os.path.dirname(os.path.abspath(path)))

return None, None
files_txt = self.__list_.nmea_files_in_directory (path)

if len(files_txt) == o:
logger . warning (”No.. txt.or..csv.files _found!\n")
for f in os.listdir (path):
if os.path.isdir(path + ”/” + f) and not f.startswith(”.”):
logger.debug(”—...” + f)

return None, None
else:
self.path = path

logger .debug(”Found._files:")
for f in files_txt:
logger .debug(f)

self .db_handler = DatabaseHandler(path, DatabaseHandler . DEFAULT_DATABASE FILENAME)
connection = self.db_handler.open.or_create-db ()

self . configuration_-from_file = Configuration(path)
self . configuration_from_file.write_default-config(override=False)

configuration = self.configuration_from_file.get_default_config_from_file ()
configuration['workspace_path’] = path + "/’

103

Appendix A. Source Code

script_start_time = datetime.now().isoformat(timespec="minutes”)

output_folder.name = script_start_time.replace(”:”, ””)

self . __create_subfolder (output_folder_name)

self . __create_subfolder (output_folder_name + ’/plots”)

self . __create_subfolder (output_folder_name + ’/models”)

self . __create_subfolder (output_folder_name + ’/animation’)

configuration[’output_path’] = configuration[workspace_path’] + output_folder_name + '/’

logger .debug(”\n"”)
return self.db_handler, configuration

def close_workspace(self, configuration):
if self.db-handler is not None:
self .path = None
self .db-handler.close-db ()

if configuration is not None:
configuration[’workspace_path’]
configuration["output_path’] =
return configuration

de

-

refresh_files (self):
self.clear-database ()

e.g. './polardata/RPC_Jasmin/2016 Apri2_0.csv’
files_txt = self.__list_nmea_files_.in_directory (self.path)

csvimporter = CSVImporter ()
nmealmporter = Nmealmporter ()
for f in files_txt:
nmealmporter.import_file_to_db (self.db_handler, self.path + ”/” + f)
csvimporter.load_csv_file_to_db (self.db_handler, self.path + ”/” + f)
import_postprocessor.process(self.db_handler)

def clear_database(self):
self.db_handler.drop_logger_table ()

def __list.nmea_files_in_directory (self, path):
files = os.listdir (path)
files_txt = [f for f in files if f.endswith(’.txt’) or f.endswith(”.csv”)]
return files_txt

def __create-subfolder(self, folder):
if self.path is None:
logger.error (“no.workspace.loaded”)
return
directory_to_create = self.path + os.sep + folder + os.sep
if not os.path.isdir(directory-to.create):
os.makedirs(directory_to_create)

Listing A.3: workspace/databasehandler.py

import sqlites

class DatabaseHandler:
DEFAULT_DATABASE FILENAME = ’default.db’

path = None
db_name = None
connection = None

def __init__(self, path, db.name=DEFAULT DATABASE FILENAME) :
self .path = path
self .db.name = db_name
pass

def open_or_create_db(self):
self.connection = sqlite3.connect(self.path + ”/” + self.db_name)
self.connection.row_factory = sqlite3.Row
self.__create_-default-tables ()
return self.connection

def __create_default_tables(self):

self. __create_logger_table_if _not_exists ()
self.__create_sails_tables_if_-not_exists ()

104

Appendix A. Source Code

self.__create_logbook_table_if _not_exists ()

def close_db(self):
self.connection.close ()

def commit_transaction(self):
self.connection.commit()

def __create_logger_table_if_not_exists(self):
self.connection. cursor () . execute (" 'CREATE TABLE IF NOT EXISTS logger
(mark INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp DATETIME UNIQUE,
latitude REAL,
longitude REAL,
bsp REAL,
awa REAL,
aws REAL,
twa REAL,
tws REAL,
outlier INTEGER DEFAULT o)
)

def __create_sails_tables_if_-not_-exists(self):
connection_cursor = self.connection.cursor ()
connection_cursor.execute (' ' 'CREATE TABLE IF NOT EXISTS fore_sails
(id INTEGER PRIMARY KEY AUTOINCREMENT,
key TEXT UNIQUE,
name TEXT)
)
connection_cursor . execute ("' 'CREATE TABLE IF NOT EXISTS main_sails
(id INTEGER PRIMARY KEY AUTOINCREMENT,
key TEXT UNIQUE,
name TEXT)
)

def __create_logbook_table_if_not_exists(self):
self.connection.cursor () .execute ("' 'CREATE TABLE IF NOT EXISTS logbook
(id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp DATETIME,
latitude REAL,
longitude REAL,
kak INTEGER,
log REAL,
note TEXT,
main_sail INTEGER,
fore_sail INTEGER,
FOREIGN KEY(main_-sail) REFERENCES main_sails(id),
FOREIGN KEY(fore-sail) REFERENCES fore-sails (id))
)

def drop-logger.-table(self):

self.connection.cursor () .execute("' 'DROP TABLE IF EXISTS logger ' '")
self.__create_default_tables ()

Listing A.4: workspace/configuration.py
import configparser
import os
class Configuration:
def __init__(self, workspace_path):
self .workspace_path = workspace_path
self.config_file_.name = ’config.cfg”’

def write_default_config(self, override=False):

if override is False and os.path.isfile (self.__config_file_path()):
return

config = configparser.ConfigParser ()

config.add-section ("Output”)

config.set(’Output’, 'show_title_in_plot’, ’"false”’)
config.set(’Output’, ’show._plots’, ’false’)
config.set(’Output’, 'plot-weight_histograms’, ’'false’)

config.set(’Output’, 'show_weight_histograms’, ’false’)

105

def

def

def

def

def

Appendix A. Source Code

config.set(’Output’, 'perform_animation_plots’, “true’)

config.add_section(’SailFinder ")
config.set(’SailFinder’, ’deviation’, ‘20")
config.set(’SailFinder’, ’deviation_to_previous_mean’, '20")

config.add_section (’DataRange ")

config.set(’DataRange’, ’from_timestamp’, ’'1970—01—01.00:00:00")
config.set(’DataRange’, ’to_timestamp’, ’'2100—01—01.00:00:00")
config.set(’DataRange’, ’'from_wind_angle’, "—180")
config.set(’DataRange’, "to.wind.angle’, "360")
config.set(’DataRange’, ’'from_wind_speed’, "2")
config.set(’DataRange’, ’"to_wind_speed’, '25")
config.set(’DataRange’, ’'from_boat.speed’, "2")
config.set(’DataRange’, ’"to-boat.-speed’, "20’)
config.set(’DataRange’, ’'from-mark’, ‘o’)

config.set(’DataRange’, “to-mark’, 99999999999 ")

config.add-section (’Models3d ")

config.set(’Models3d’, "use.model_3d_-tws_twa.concave’, ’false’)
config.set(’Models3d’, "use.model_3d_-tws_twa_concave.weighted’, ’false’)
config.set(’Models3d’, "use.model_3d_tws_twa.s_shaped’, ’false’)
config.set(’Models3d’, "use.model_3d_tws_twa_s_shaped.weighted’, ’false’)
config.set(’Models3d’, 'use.model_tws_3d_saturation_limit_-twa_gauss’, ’false’)

config.set(’Models3d’, "use.model_-tws_3d._saturation_limit_.twa_gauss.weighted’, ’false’)
config.set(’Models3d’, 'use_model_tws_3d_saturation_limit.downturn_twa_gauss’, 'true’)
config.set(’Modelszd’, ’use.model_tws_3d_saturation_limit.downturn_twa_gauss_weighted’, ’false’)

with open(self.__config_file_path (), ‘w’) as configfile:

config . write (

configfile)

reset_selection_limitations (self , configuration):
configuration [’from_mark’] = o
configuration[’to-mark’] = 99999999999
configuration[“mark_tuples’] = []

return configuration

get_default_config_from_file(self):
return self.__get_config_from_file(self.__config_file_path())

override_with_config_from_file (self , configuration, path):
config = self.__get_config_from_file(path)
for key in config.keys():

configuration

[key] = config[key]

return configuration

--config_file_path (self):
return self.workspace_path + os.sep + self.config_file_.name

_.get_config_from_file (self , path):
config = configparser.RawConfigParser ()

config.read (path)

configuration = {’show_title.in_plot’: config.getboolean(’Output’, "show_title_.in_plot”),

"show_plots ": config.getboolean(’Output’, 'show._plots’, fallback=False),

"plot_weight_histograms’: config.getboolean(’Output’, ’'plot-weight_histograms’, fallback=False),
"show_weight_histograms ’: config.getboolean(’Output’, ’‘show_weight_histograms’, fallback=False),

‘perform_animation_plots’: config.getboolean(’Output’, ’perform_animation_plots’),

"sail_finder_deviation’: config.get(’SailFinder’, ’"deviation’),
‘sail_finder_deviation_to_previous_.mean’: config.get(’SailFinder’, ’'deviation_to_previous_mean’),
‘from_timestamp ": config.get(’DataRange’, ’from_timestamp’),

“to_timestamp ": config.get(’DataRange’, ’to_timestamp’),
‘from_wind_angle’: config.getint(’DataRange’, ’'from_wind_angle’),

“to_wind_angle ": config.getint(’DataRange’, 'to.wind._angle’),
‘from_wind_speed ": config.getint(’DataRange’, ’from_wind_speed’),
‘to_wind_speed ": config.getint(’DataRange’, 'to.wind_speed’),
‘from_boat_speed’: config.getint(’DataRange’, ’'from_boat_speed’),
"to_boat_speed ’: config.getint(’DataRange’, ’to_boat_speed’),

‘from_mark’: config.getint(’DataRange’, ’from_mark’),
“to.mark’: config.getint(’DataRange’, ’'to_mark’),

"use.model-3d.-tws_-twa_concave ': config.getboolean('Models3d’, ’use.model-3d-tws_-twa.concave’, fallback

=False),
"use.model-3d-tws_-twa.concave-weighted ": config.getboolean (’Models3d”,
use.model-3d.-tws_-twa.concave.weighted ’, fallback=False),

’

"use.model_3d_tws_twa_s_shaped’: config.getboolean(’Models3d’, ’"use_model.3d_-tws_twa.s_shaped’,

fallback=False),
‘use.model_3d_tws_twa_s_shaped.weighted ": config.getboolean (’Models3d’,
use.model_3d._tws_twa.s_shaped.weighted ', fallback=False),
"use.model_tws_3d_saturation_limit_twa.gauss’: config.getboolean(’Models3d”’,
use_model_tws_3d_saturation_limit_twa_gauss’, fallback=False),
"use_-model_tws_3d_saturation_limit_twa_gauss_weighted ": config.getboolean (’Models3d’,

106

Appendix A. Source Code

use_model_tws_3d_saturation_limit_twa_gauss_weighted ’, fallback=False),
"use_model_tws_3d_saturation_limit_downturn_twa_gauss’: config.getboolean(’Modelszd’,
use_-model_tws_3d_saturation_limit_downturn_twa_gauss’, fallback=False),
‘use_model_tws_3d_saturation_limit_.downturn_twa_gauss_weighted ": config.getboolean (’Models3zd’, ’
use.model_tws_3d_saturation_limit_.downturn_twa_gauss_weighted ', fallback=False)}
return configuration

Listing A.5: importer/csvimporter.py

Imports data from CSV into the SQL database.

Intelligent detection of used separator.
Loads complete data into the database.

Author: Stefan Simon
License: CC BY-NCND 4.0

import csv
import logging
import os
import sqlites

from polar.diagram._generator.workspace.databasehandler import DatabaseHandler

ALLOWED.DUPLICATE.TIMESTAMPS PERCENTAGE = 0.005
logger = logging.getLogger(’polar.importer.csv’)

class CSVImporter:

def load._csv_file_to_db(self, db_handler: DatabaseHandler, path):
Imports data from CSV into the SQL database.
:param db_handler: reference to the database
:param path: relative path of the file that should be imported into the database
:return: None
if not os.path.isfile (path) or not os.access(path, o0s.ROK):
logger.error (”Either_file._.is.missing._or_is.not.readable”)
return

delimiter = CSVImporter. ._guess_-delimiter (path)

with open(path) as csvfile:
log-file.reader = csv.DictReader(csvfile, delimiter=delimiter, quotechar=""")
cursor = db-handler.connection.cursor ()
line = o
imported_lines = o
duplicate_timestamps = o
for row in log._file.reader:

line += 1
if 'Utc’ in row and 'Bsp’ in row and 'Awa’ in row and 'Aws’ in row and 'Twa’ in row and 'Tws’ in row:
parameters = (
row['Utc’],

self. __convert_to_float_or_null (row['Bsp’]),
self.__convert_to_-float_or_null (row['Awa’]) ,
self.__convert_to_-float_or_null (row['Aws’]) ,
self.__convert_to_float_or_null (row['Twa’]) ,
self.__convert_to_float_or_null (row['Tws’])

try:
cursor . execute ("INSERT_INTO_logger.(timestamp , _bsp , .awa, aws, _twa, .tws) .VALUES_(? ,?,?,?,?,?)",
parameters)
imported_lines += 1
except sqlite3.IntegrityError:
duplicate_timestamps += 1
logger.warning ("%s:%s . —-Entry._.with_duplicate -timestamp.found-(%s)” % (path, line, row|['Utc’]))
db_handler.commit-transaction ()
cursor . close ()
logger .debug(”——-CSV-Importer .—")
logger .debug(”duplicate-timestamps:.._.” + str(duplicate-timestamps))
logger .debug(”stored_lines : cacaaaaaoooo ” + str(imported.-lines))
if (imported.lines > o and duplicate_timestamps / imported.-lines > ALLOWED.DUPLICATE.TIMESTAMPS PERCENTAGE) or (

107

Appendix A. Source Code

imported_lines == o and duplicate_timestamps > 0):
raise RuntimeWarning(”There_.are_a_lot_of_duplicate_timestamps.in._the_imported._data”)
return
@staticmethod
def __convert_to_-float_or_null(value):
try:

return float(value.replace(”,”, ”.”))
except:
return None

@staticmethod
def __guess_delimiter (path):
file_to_guess = open(path, "r”)
line = file_-to-guess.readline ()
comma-count = line.count(’,”)
semicolon_-count = line.count(’;")
file_to_guess.close ()
if comma.count > semicolon_count:
return ' ,’
else:
return ;'

Listing A.6: importer / nmeaimporter.py

Imports data from NMEA files into the SQL database.

Intelligent detection if files have a timestamp at the beginning of each line.
Identifies parallel event from the sequential format and loads complete data into the database.

Author: Stefan Simon

License: CC BY-NCND 4.0
import logging

import os.path

import sqlites

import pynmea2

from polar_diagram_generator.importer.extended_nmea_file import ExtendedNMEAFile
from polar_diagram_generator.workspace.databasehandler import DatabaseHandler

ALLOWED_DUPLICATE.TIMESTAMPS PERCENTAGE = o0.005

logger = logging.getLogger(’polar.importer.nmea”)

class Nmealmporter:
def __init-_(self):
pass

def import_file_to_db(self , db_handler: DatabaseHandler, file_path):

Imports data from NMEA files into the SQL database.

cparam db_handler: reference to the database

cparam path: relative path of the file that should be imported into the database

:return: None

if not os.path.isfile (file_path) or not os.access(file.path, os.ROK):
logger.error (”Either_file._is_.missing_or_is.not.readable”)
return

with open(file_path) as file:

with ExtendedNMEAFile(file) as _f:
line = o
skipped_sentences = o
incomplete_sentences = o
stored_lines = o
unknown_sentences = o
duplicate-timestamps = o
current_datetime = None
current_-bsp = None
current.awa = None
current_.aws = None
current_latitude = o.0

108

Appendix A. Source Code

current_longitude = 0.0

cursor = db_handler.connection. cursor ()
while True:
try:
sentence = _f.readline ()
line += 1
if not hasattr(sentence, ’'sentence_type’):
unknown_sentences += 1
continue

if sentence.sentence_type == 'RMC’ and not sentence.is_valid:
reset current values
current_bsp = None
current_.awa = None
current.aws = None
current_datetime = None
continue

if sentence.sentence_-type == 'RMC’ and current.datetime != sentence.datetime:
store current values in db
if current_datetime is not None:
if current_bsp is None or current.awa is None or current.aws is None:
logger .debug("%s:%s.—.One_or_more_required.fields _are.missing.at. %s.(bsp:.%s, .awa: %s , .aws:
%s)” % (file_path , str(line), current.datetime, str(current_bsp), str(current.awa),
str(current.aws)))
incomplete_sentences += 1
else:
parameters = (
current.datetime ,
current_latitude ,
current_longitude ,
float(current_bsp),
float(current.awa),
float (current.aws)
)
try:
self.__add_to_database(cursor, parameters)
stored_lines += 1
except sqlite3.IntegrityError:
duplicate_timestamps += 1
logger . warning ("%s:%s.—_Entry_with_duplicate RMC_timestamp .found %s” % (file_path , str(
line), current.datetime))

reset current values
current_-bsp = None
current_awa = None
current.aws = None

current_datetime = sentence.datetime
current_latitude = sentence.latitude
current_longitude = sentence.longitude

if current_datetime is None:
logger.info ("%s:%s._.—_.Sentence %s.ignored._(at.begin_.of_file _or_.after .GPS_errors)” % (file_path , str(
line), sentence.sentence_type))
skipped_sentences += 1
continue

save current values

elif sentence.sentence_type == 'VHW’ and sentence.water_speed_knots is not None:
current_bsp = sentence.water_speed_knots

elif sentence.sentence_type MW’
current.awa = sentence.wind_angle
current.aws = sentence.wind_speed

logger.debug(sentence)
except pynmeaz.SentenceTypeError:
logger.info ("%s:%s.—.Sentence._.with _unknown_type._found.at.%s” % (file_path , str(line), current_datetime)
)
unknown_sentences += 1
except TypeError:
logger.info ("%s:%s.—~.TypeError.occurred.after %s.(e.g..missing GPS_datetime)” % (file-path , str(line),
current-datetime))
unknown_sentences += 1
except pynmeaz.ParseError:
break # eof?

db_handler.commit_transaction ()
cursor . close ()

109

Appendix A. Source Code

logger .debug(”——_." + file .name)
logger .debug ("—— NMEA-Importer —")

logger.debug(”skipped_sentences: ... ” + str(skipped_sentences))

logger.debug(”duplicate_timestamps:_.._.” + str(duplicate_timestamps))

logger.debug(”incomplete_sentences:....” + str(incomplete_sentences))

logger .debug(”stored_lines :oococaoooooo ” + str(stored.lines))

logger .debug(”unknown_sentences: ” + str(unknown_sentences))

if (stored_lines > o and duplicate_timestamps / stored._lines > ALLOWED_DUPLICATE.TIMESTAMPS PERCENTAGE) or (
stored_lines == o and duplicate_timestamps > o):

raise RuntimeWarning(”There_are_a_lot.of.duplicate_timestamps.in._the_imported.data”)
return skipped_sentences, incomplete_sentences, stored_lines, unknown_sentences

def __add_to_database(self, cursor, parameters):
cursor . execute ("INSERT-INTO.logger . (timestamp , ~latitude , .longitude , -bsp, .awa, ~aws) .VALUES.(? ,?,? ,? ,? ,?)",
parameters)

Listing A.7: importer/import postprocessor.py

Normalize and complete database after an import.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

from polar.diagram._generator.converter import wind.converter
from polar.diagram._generator.workspace.databasehandler import DatabaseHandler

logger = logging.getLogger('polar.importer.postprocessing’)

def process(db_handler: DatabaseHandler):
Normalize and complete database after an import:
* removes rows with negative BSP
* calculates apparent wind conditions
* calculates true wind conditions
* converts wind angle
:param db_handler: reference to the database
--remove.rows.-with_negative_bsp (db=db-handler)
--calculate.and.-set-apparent-wind.values (db=db_handler)
--calculate_and_-set_-true-wind-values (db=db_handler)
--convert-wind.angle-to-180-to-180 (db=db-handler)

def __remove.rows.with_negative_bsp (db):
cursor = db.connection.cursor ()
data = cursor.execute ('DELETE_LFROM.logger WHERE_bsp.<.0 ")
logger.info ("rows.with.invalid_bsp.deleted:.” + str(data.rowcount))
db.commit-transaction ()
cursor.close ()
return

def __load_all_wind_angle_values (cursor):
cursor . execute ('SELECT.mark, _awa, .twa.FROM_logger ’
’ WHERE._awa 1S .NOT.NULL"
" LAND.twa.IS NOT.NULL")
return cursor. fetchall ()

def __convert_wind_angle_to_.180_to_180(db):
cursor = db.connection.cursor ()
wind_angle_values = __load_all_wind_angle_values (cursor=cursor)
adjusted_lines = o
skipped_lines = o
faulty_lines = o
for wind.angle_value in wind.angle_values:
mark = wind-angle_value|[o]
awa = wind.angle_value[1]
twa = wind.angle.value[2]

try:
new.awa = wind_converter.wind.angle_convert.-to_-range-180-to-180 (angle=awa)

110

Appendix A. Source Code

new_twa = wind_converter. wind_angle_convert_to_range_180_to_-180 (angle=twa)
if awa == new.awa and twa == new_twa:

skipped.lines += 1

continue

parameters = (new.awa, new._twa, mark)
cursor . execute ("UPDATE_logger .SET_awa_=_(?) ,.twa_.=.(?) WHERE_mark_IS.?"”, parameters)
adjusted_lines += 1
except:
faulty_lines += 1

logger.debug(”converted _wind_angle_range._for _#rows:.” + str(adjusted_lines) + “_(” + str(skipped_lines) + ”_skipped,.” +
str(faulty_lines) + ”“_faulty)”)

db.commit_transaction ()

cursor . close ()

--load-unset.apparent-wind.-values (cursor):

cursor . execute ("SELECT.mark, _bsp , .twa , .tws FROM._logger ’
" WHERE_awa.IS _.NULL’
" .AND_aws._IS _NULL")

return cursor. fetchall ()

_-calculate._and_set.apparent.wind_values(db):
cursor = db.connection.cursor ()
entries.with_missing_apparent-wind = __load_unset_apparent.wind_values (cursor=cursor)
adjusted_lines = o
faulty_lines = o
for entry_with_missing_apparent_wind in entries_.with_missing_apparent_wind :
mark = entry_with_missing_apparent.wind [o]
bsp = entry_with_missing_apparent.wind[1]
twa = entry_with_missing_apparent.wind[2]
tws = entry_with_missing_apparent.wind [3]

try:
awa, aws = wind_converter.true_to_apparent_wind (twa, tws, bsp)

parameters = (awa, aws, mark)
cursor . execute ("UPDATE_logger .SET_awa_=_(?) ,.aws.=.(?) WHERE_mark_IS.?"”, parameters)
adjusted_lines += 1
except:
faulty-lines += 1

logger.debug(”calculated .apparent.wind.for _#rows:.” + str(adjusted-lines) + “_.(” + str(faulty.-lines) + “.skipped)”)
db.commit-transaction ()
cursor . close ()

--load-unset-true-wind-values (cursor):

cursor . execute ("SELECT.mark, _bsp , .awa, .aws FROM_logger ’
" WHERE._twa 1S _.NULL"
" LAND_tws IS _NULL")

return cursor. fetchall ()

_-calculate_and_set_-true.wind_values (db):
cursor = db.connection.cursor ()
entries_with_missing_true_wind = __load_unset_true_wind_values (cursor=cursor)
adjusted_lines = o
faulty_lines = o
for entry_with_missing_true.wind in entries_with_missing_true_wind:
mark = entry_with_missing_true_wind [o]
bsp = entry_with_missing_true_wind[1]
awa = entry_with_missing_true_wind [2]
aws = entry_with_missing_true_wind[3]

try:
twa, tws = wind_converter.apparent_to_true_wind (awa, aws, bsp)

parameters = (twa, tws, mark)
cursor . execute ("UPDATE-logger .SET-twa_=_(?) ,~tws.=.(?) WHERE.mark..IS..?”, parameters)
adjusted-lines += 1
except:
faulty_-lines += 1

logger.debug(”calculated true_wind.for.#rows:.” + str(adjusted_lines) + “.(” + str(faulty_lines) + ”_skipped)”)
db.commit-transaction ()
cursor . close ()

111

Appendix A. Source Code

Listing A.8: converter/wind converter.py

""" This file contains converters of wind types

Author: Stefan Simon
License: CC BY-NCND 4.0

from math import radians, degrees, isnan

import numpy
from numpy.ma import arccos, cos, sqrt

def apparent_to_true_wind (awa, aws, bsp):
Converts apparent wind conditions to true wind conditions
:param awa: apparent wind angle
:param aws: apparent wind speed
:param bsp: boat speed
creturn: true wind angle, true wind speed
if isnan(awa) or isnan(aws) or isnan(bsp):
raise ValueError(’parameters_have.to._be_numbers’)
if bsp < o:
raise ValueError(’Boat_Speed_has.to_be_greater.o”)

awa_is_negative = awa < o
awa.is.above.180 = awa > 180

awa.rad = radians(awa)
tws = sqrt(pow(aws, 2) + pow(bsp, 2) — 2 * aws * bsp * cos(awa-rad))
twa = arccos((aws * cos(awa.rad) — bsp) / tws)

if awa.is_negative:

result_.twa = o — degrees(twa)
elif awa_is_.above_180:

result_twa = 360 — degrees(twa)
else:

result_twa = degrees(twa)
return round(result-twa, 1), tws

def true_to_apparent.wind (twa, tws, bsp):
Converts true wind conditions to apparent wind conditions
cparam twa: true wind angle
cparam tws: true wind speed
:param bsp: boat speed
creturn: apparent wind angle, apparent wind speed
if isnan(twa) or isnan(tws) or isnan(bsp):
raise ValueError(’parameters_have.to._be_numbers’)
if bsp < o:
raise ValueError(’Boat_Speed_has.to_be_greater.o”)

twa.is_negative = twa < o
twa_is_above_180 = twa > 180

twa.rad = radians(twa)
aws = sqrt(pow(tws, 2) + pow(bsp, 2) + 2 * tws * bsp * cos(twa.rad))
awa = arccos ((tws x cos(twa.rad) + bsp) / aws)

if twa.is_negative:

result.awa = o — degrees(awa)
elif twa_is_above_180:

result.awa = 360 — degrees(awa)
else:

result.awa = degrees(awa)

return round(result_awa, 1), aws

def wind.angle_cart_2_pol(angle):

Converts cartesian coordinates to polar coordinates
cparam angle: angle in cartesian coordinates
creturn: polar coordinates

angle %= 360

112

Appendix A. Source Code

return ((2 * numpy.pi) / 360) * angle

def wind_angle_pol_2_cart(angle):
Converts polar coordinates to cartesian coordinates
:param angle: angle in polar coordinates
creturn: cartesian coordinates
angle %= 2 * numpy. pi
return (360 / (2 * numpy.pi)) * angle

def wind._angle_convert_to.range_o_to_360(angle):
Converts wind angle from range —180 to +180 degrees to range o to 360 degrees
:param angle: wind angle from —180 to +180 degrees
creturn: wind angle from o to 360 degrees
if isnan(angle):
raise ValueError(’parameters.have.to.be_numbers’)
angle %= 360
angle_is_negative = angle < o

if angle_is_negative:
result = 360 — angle
else:
result = angle

return result

def wind_angle_convert_to_range_180_-to_180_list(angles, tuple_index=0):
Converts a list of wind angles from range o to 360 degrees to range —180 to +180 degrees
cparam angles: list of wind angles from o to 360 degrees
cparam tuple_index: if angles contains tuples, selects the correct index
creturn: wind angle from —180 to +180 degrees
converted_angles = []
for angle in angles:
angle. = angle[tuple_index]
if None == angle. or isnan(angle.):
converted.-angles.append ((None))
else:
converted.angles.append(wind.-angle_convert-to.range-180-to-180 (angle.))
return converted.angles

def wind.angle_convert_to.range_180_-to-180(angle):
Converts wind angle from range o to 360 degrees to range —180 to +180 degrees
cparam angle: wind angle from o to 360 degrees
creturn: wind angle from —180 to +180 degrees
if isnan(angle):
raise ValueError(’parameters_have.to._be_numbers’)
angle %= 360
angle_is_above_180 = angle > 180

if angle_is_above_180:
result = —360 + angle
else:
result = angle

return result

Listing A.9: data’selection/logbook.py

Adjust the configuration to use subsets of the data.
These values were manually analyzed and are only for the following data—sets:

— Round Palagruza Cannonball 2016
— Austria One 2016

113

Appendix A.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

logger =

def

def

logging . getLogger('polar.data_selection.logbook”)

perform (parameters, db_handler, configuration):
Adjust
cparam
:param
cparam
creturn: an updated configuration array

the configuration to use subsets of the data.

db_handler: database handler with a valid table

if parameters is None or len(parameters) != 1:
logger . debug(”Usage: ~logbook.<id>")
return configuration

first_parameter = parameters[o]

if first_parameter == “rpc.all”:
configuration['from-mark’] = 98513 # manually analyzed
configuration['to_mark’] = 394110 # manually analyzed
configuration[’from_timestamp '] = ’2016—04—11.12:00:00"
configuration[to_timestamp '] = ’2016—04—14.23:51:49 "
configuration["to_wind_speed '] = 30
configuration[’to_boat_speed’] = 10

elif first_parameter == “rpc.1”: # manually analyzed; only
configuration [’from_mark’] = 249739
configuration["to.mark’] = 282131
configuration[’to_wind_speed’] = 30
configuration[’to_boat_speed’] = 10

elif first_parameter == "rpc.2”: # manually analyzed; only
configuration[’from_mark’] = 98513
configuration["to.mark’] = 303900
configuration["to_wind_speed '] = 30
configuration[’to_boat_speed’] = 10

elif first_parameter “rpc.spi”:
configuration[’from_mark’] = 303900
configuration['to.mark’] = 339200
configuration[’to_wind_speed’] = 30
configuration[’to_boat_speed’] = 10

elif first.parameter == "a1.1":
configuration[’from_timestamp '] = ’2016—07—27.06:35:00"
configuration[’to-timestamp '] = ’2016—0y—27.08:30:00"

parameters: additional parameters from the command line.

"logger’
configuration: configuration array to control data range and outputs

Source Code

First parameter should be an [id] e.g.

the start of RPC at 12:00

one

one sail

configuration[’from-mark’], configuration[’to.mark’] = __mark_from_start-end_date(

db_handler. get_-cursor () ,
configuration[’from_timestamp '],
configuration[’to_timestamp ’])

elif first_parameter == "a1.2”:
configuration[’from_timestamp '] = ’2016—07—25.16:49:02 "
configuration[’to_timestamp '] = ’2016—07—26.05:18:13 "

configuration[’from_mark’], configuration[’to.mark’] =
db_handler. get_cursor (),
configuration[’from_timestamp '],
configuration [’to_timestamp '])
elif first_parameter == "a1.3":
configuration[’from_timestamp '] = '2016—07—24.05:45:00 "
configuration[’to_timestamp '] = '2016—07—24.06:45:00"

_.mark_from_start_-end_date (

configuration[’'from_mark’], configuration[’to.mark’] = __mark_from_start_end_date(

db_handler. get_cursor (),
configuration[’from_timestamp '],
configuration [’to_timestamp '])
elif first_parameter == "a1.4”:
configuration[’from_timestamp '] = ’2016—07—28.02:04:32"
configuration[’to_timestamp '] = ’2016—07—28_08:38:51"

configuration[’from_mark’], configuration[’to.mark’] = __mark_from_start_end_date(

db_handler. get_cursor (),

configuration[’from-timestamp '],

configuration[’to-timestamp '])
else:

logger.error (”logbook._entry.with.id.'%s’_not_found!\n” % first_.parameter)

return configuration

--mark_from_start.end._date (cursor, from_timestamp, to-timestamp):

parameters = (from._timestamp, to_timestamp)
cursor . execute ('SELECT.mark FROM.logger ’

114

rpc_all

Appendix A. Source Code

' WHERE.. ((timestamp .>.? /AND_timestamp .<=.?))’
, parameters)

marks_in_range = cursor. fetchall ()

from_mark = marks_in_range[o][o0]

to.mark = marks_in_range[len(marks_in_range) —1][o]

return from_mark, to_mark

Listing A.10: data'selection/sail finder.py

Identifies all data points of a sail without prior labelling.

Relies on the common way of sailing of using a stable wind angle.
Returns all ranges where a sail with a defined wind angle was hoisted .

Author: Stefan Simon
License: CC BY-NCND 4.0

import matplotlib.pyplot as plt
import numpy

import polar.diagram._generator.converter.wind.converter as wind.converter
from polar.diagram._generator.exploratory_-data_analysis import wind.angle_trend
from polar.diagram._generator.workspace.databasehandler import DatabaseHandler

def __load._values(cursor, configuration):
parameters = (configuration[’from_mark’], configuration|[’to_mark’])
cursor . execute ("SELECT.mark, _bsp , .twa, .tws FROM_logger ’
" WHERE._bsp -1S .NOT.NULL"
" AAND_twa IS NOT_NULL"
" LAND.tws IS NOT.NULL"
" CAND. ((mark_>_? AND_mark.<=_?) -OR_mark._.IS _NULL) ’
, parameters)
val = cursor. fetchall ()
return val

de

=N

plot(differences_array , upper, lower, title, unit, kernel_size, file_path, show_title=True):
plt.figure ()
if show_title:

plt. title ("Moving..Average.Deviation..Histogram.of..” + title)
bins = numpy.linspace(—1, 1, 0.1)
plt.hist(differences_array , bins=1000, log=True)
plt.xlabel (”difference.of_.an_element.to.the_mean_of_the_previous.
plt.ylabel ("Frequency”)

”

+ str(kernel_size) + ”_elements_[” + unit + ”]”)

label = ”"99%.confidence.interval\n” + str(lower) + “.to.” + str(upper)
lower.line = plt.axvline(lower, label=label, color="r", ls="—"
plt.axvline (upper, color="r", ls="—")

plt.legend (handles=[lower_line])
plt.grid (True)

plt.draw ()
plt.savefig(file_path)

def perform(angle, db_handler: DatabaseHandler, configuration):
Identifies all data points of a sail without prior labelling .
:param angle: True wind angle with the estimated best VMG of the sail
cparam db_handler: database handler with a valid table 'logger’
cparam configuration: configuration array to control data range and outputs

_.print_twa (angle, db_handler, configuration)

def __print_twa(angle, db_handler: DatabaseHandler, configuration):
target_angle = float(angle) # range —180 to +180
deviation = float(configuration[’sail_finder_deviation’])
deviation_to_previous_mean = float(configuration|[’sail_finder_deviation_to_previous_mean’])

start-end-tuples = []
cursor = db_handler.connection.cursor ()

count.result = __.load-values(cursor, configuration)

window.size = 20
range.active = False

115

Appendix A. Source Code

start-mark = o
previous_mean = float(99999)

for index in range(window_size, len(count.result), window_size):
if index >= window_size:
sum_twa_o-to_360 = o
sum_twa_180.to_180 = o
for i in range(—window_size+1, 1):
sum_twa_180_to_180 += wind_converter.wind_angle_convert_to_range_180_to_180(count_result[index + i][2])

mean_of_.window = sum_twa_180.to-180 / window_size

is_in_range_of_previous_mean = previous_.mean — deviation_to_previous_mean < mean_of_window < previous_mean +
deviation_to_previous_mean

previous-mean = mean-of-window

index-of-window._start = index — window.size + 1

mark_-of_window_start = count-result[index-of_-window_start][o]

mark-of_-window_end = count-result[index][o]

if mark_of_window.end — mark_of_-window_start > 2 * window_size:
range.active = False
end-mark = mark_of_-window_start
start_end_tuples.append ((start_mark , end_mark))
continue

if target-angle — deviation < mean.of-window < target-angle + deviation or (range.active and
is_in_range_of_previous_mean):
if range_active:
continue
else:
range.active = True
start_mark = count.result[index_of_-window_start][o]
else:
if range_active:
range_active = False
end_mark = mark_of_window_end
start_end_tuples.append ((start_mark , end_mark))

mark, twa = wind.angle_trend.wind.angle_values(cursor, configuration)
twa_180 = wind_converter.wind_angle_convert_to_range_180_to_180_list(twa)
if configuration[’show_title_in_plot’]:
title = ”"Scatter._Diagram_of._.True_.Wind_Angle”
else:
title = None
wind._angle_trend . plot (mark, twa-180, title , configuration[’output-path’] + ”“plots/sail_selection_-angle-trend .png”)

for start, end in start.end-tuples:
wind.-angle_-trend .add.active_-logbook_indicator (start , end)

outliers = []

cursor.execute ("UPDATE logger SET outlier = o WHERE outlier IS 17)

for difference in differences:

if not (lower_bsp < differencel1] < upper_bsp and lower_twa < differencel[2] < upper_twa and lower_tws < differencel[4]
< upper_tws):

cursor.execute ("UPDATE logger SET outlier = 1 WHERE mark IS ?’, (difference[o],))

outliers .append(differencelol)

#

db_handler.commit_transaction ()

if configuration[’show_plots’] is True:
plt.show ()

else:
plt.draw ()

if len(start_end_tuples) > o:
plt.savefig(configuration[’output_path’] + ”“plots/sail_selection_angle_trend_with_selected_sail.png”)

configuration[”mark_tuples”] = start_end_tuples
cursor.close ()

Listing A.11: exploratory data’analysis/boxplot.py

Illustrates multiple boxplots which boat speeds are common for some true wind speeds and angles.
Performs exploratory data analysis of the data.

Loads data from the database as defined and generates several plots.
All of them contain multiple boxplots for narrow wind angles

116

Appendix A. Source Code

which illustrate the distribution of sailed boat speeds for common ranges of true wind speed in that ranges.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

import matplotlib.pylab as plt
import numpy

logger = logging.getLogger(’polar.exploratory_data_analysis.boxplot”)

def perform(cursor, configuration):

Illustrates multiple boxplots which boat speeds are common for some true wind speeds and angles.
:param cursor: database cursor with a valid table ’"logger’
:param configuration: configuration array to control data range and outputs
for ws in range(configuration[’from_wind_speed’], configuration[’to.wind.speed’] + 1, 2):
split_bsp = __load_bsp_histogram_values(cursor, 5, ws)
--extract_std (split-bsp)
--plot(split_bsp , ws, configuration)
_-plot_polar(split.bsp , ws, configuration)
plt.show ()

def __load_bsp_histogram_values(cursor, step.size, tws_area):

bsp = []
for i in range(o, 180, step.size):
parameters = (i, i + step_size, tws_area, tws_area)

cursor . execute ('SELECT_bsp FROM._logger’
" WHERE_bsp 1S .NOT_NULL’
" /AND_twa IS _NOT_.NULL’
’ LAND_tws IS NOT_NULL’
' _AND_abs (twa) .>=.7 "
' _AND_abs (twa) .<.?’
' AND_tws _>=.2—1"
" AND_tws <.?+1”
, parameters)

val = cursor. fetchall ()

bsp.append (val)

return bsp

def __plot(bsp, wind.speed, configuration):
plt.figure ()
plt. title ("Boat.Speed.Boxplot.” + str(wind.speed) + “kn”)
plt.ylim(configuration[’from_boat.speed’], configuration[’to_-boat_speed’])
plt.boxplot(bsp, 1, ‘gD’)
plt.xlabel ("True_.Wind.Angle_[/20]")
plt.ylabel ("Boat.Speed”)
plt.grid (True)
plt.draw ()
plt.savefig(configuration[output_path’] +

"plots/boxplot_bsp_twa.” + str(wind._speed) +

".png”)

def __plot_polar(bsp, wind_speed, configuration):
plt.figure ()
ax = plt.subplot(111, projection="polar”)
ax.set_title ("Boat.Speed_Boxplot.” + str(wind_speed) + "kn”)
ax.boxplot(bsp, 1, ‘gD’)
plt.draw ()
plt.savefig(configuration[output_path’] + ”plots/boxplot_polar_bsp_twa_

” ”

+ str(wind_speed) + ”.png”)

def __extract.std (list):
for element in list:
logger.debug(len (element), end="\t")
logger . debug (numpy. std (numpy . asarray (element)), end="\t")
logger .debug (numpy. std (numpy. asarray (element)) / len(element))
logger .debug(””)

Listing A.12: exploratory'data’analysis/distribution.py

Illustrates separate histograms of true wind speed , true wind angle and boat speed.

117

Appendix A. Source Code

Performs exploratory data analysis of the data.
Loads data from the database as requested and generates mnormal and polar plots.
This shows the distribution of the data in their feasible ranges.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

import matplotlib.pylab as plt
import numpy

from polar.diagram.generator.converter import wind.-converter

from polar.diagram._generator.data-analysis import fit3D

from polar.diagram._generator. util.strings import TWA_TICK.LABELS

from polar.diagram.generator.workspace.databasehandler import DatabaseHandler

logger = logging.getLogger(’polar.exploratory-data.analysis.distribution”)

def perform(db_handler: DatabaseHandler, configuration):
Illustrates separate histograms of true wind speed , true wind angle and boat speed.
:param db_handler: database handler with a valid table ’'logger’
cparam configuration: configuration array to control data range and outputs
cursor = db_handler.connection.cursor ()
_-print_twa (cursor, configuration)
_-print_twa_polar (cursor, configuration)
_-print_twa_one_sail (cursor, configuration)
_-print_tws (cursor, configuration)
_-print_tws_one_sail (cursor, configuration)
cursor.close ()

def __load._twa_histogram_values_count(cursor, twa.area, configuration):
parameters = (twa_area, twa_area, configuration[’from_timestamp’], configuration[’to_timestamp’])
cursor . execute ("SELECT._.count (twa) FROM_logger ’
" WHERE_bsp 1S .NOT_.NULL"
' LAAND_twa _IS NOT_NULL"
' /AND-tws IS _NOT.NULL"
' .AND_abs (twa) -BETWEEN..? . AND_?+1
" AND. ((timestamp >.? AND_timestamp .<=.?) .OR_timestamp IS .NULL)
, parameters)
val = cursor. fetchall ()
return val

def __load.-twa_histogram_values(cursor, configuration):
parameters = (configuration[’from_timestamp '], configuration[’to_-timestamp ’])
cursor . execute ("SELECT.twa FROM.logger "
" WHERE.bsp 1S .NOT.NULL"
" .AND._twa IS NOT.NULL’
" LAND._tws IS NOT.NULL’
" LAND. ((timestamp .>.? AND_timestamp .<=.?) .OR_timestamp IS .NULL) ’
, parameters)
val = cursor. fetchall ()
return val

def __load_tws_histogram_values(cursor, tws_area, configuration):
parameters = (tws_area, tws_area, configuration[’from_timestamp’], configuration[’to_timestamp’])
cursor . execute ("SELECT.count (tws) FROM_logger ’
" WHERE_bsp 1S NOT_NULL"
" _AND._tws _IS _NOT_NULL"
" _LAND._tws_IS _NOT_NULL"
" _AND_abs (tws) >=.?"
" _AND.abs (tws) <_?+1’
" AND.. ((timestamp.>..? ,AND_timestamp ..<=.?) .OR_timestamp..IS .NULL) ’
, parameters)
val = cursor. fetchall ()
return val

def __polar.plot(count.array, title, file_path, show_title, logarithmic=True):
title_string = ’‘Rate.of_.occurrences.of.data_points;.’ + title
plt.figure ()
ax = plt.subplot(111, projection="polar’)

118

def

def

def

def

def

Appendix A. Source Code

width = 2 % numpy.pi / len(count_array)
theta = numpy.arange(o, 2 * numpy.pi, width)

if logarithmic:
for i, count in enumerate(count._array):
if count is o:

count_array[i] = 1
radii = numpy.log(count_array)
else:
radii = count.array

title_string += ’,_.logarithmic’
bars = plt.bar(theta, radii, width=width, bottom=1)

for r, bar in zip(radii, bars):
bar.set-facecolor (plt.cm.jet (numpy.log(r) / 10.))
bar.set-alpha (o.5)

if show_title:
ax.set-title (title.string , va="bottom”)
ax.set-theta_direction(—1)
ax.set_-theta_offset (numpy.pi / 2.0)
ax.set_xticklabels (TWA_TICK_LABELS) # True Wind Angle

ax.set_rscale(’log’, nonposr="clip’)
ax.set-rlim (1, max(radii))
ax.grid (True)

plt.draw ()
plt.savefig(file_path)

_-plot(count_array, title, file_path, show_title=True, show_wind_ticks=False):
plt.figure ()
if show_title:
plt. title ("Histogram_of_data.points;.” + title)
plt.hist(count_array, bins=180)
plt.xlabel(title)
if show_wind_ticks:
ticks = range(—180, 181, 45)
plt.xticks (ticks , ticks)
plt.ylabel (”Frequency”)
plt.grid (True)
plt.draw ()
plt.savefig(file_path)

_-print_twa_.one_sail (cursor, configuration):

histogram_values = fit3D.load-3d_values_.with_tuples(cursor, configuration)

histogram_values.180o_unpacked = wind_converter.wind._angle_convert_to.range_180_to_180_list(histogram_values, tuple_.index=1)

logger .debug(”count.True_.Wind_Angle:.” + str(len(histogram_values_18o_unpacked)))

title = ”"True_.Wind.Angle_.[degree]”

--plot (histogram_values_18o_unpacked , title , configuration[’output_path’] + ”plots/distribution_twa.png”, configuration|[’
show _title_in_plot’], show_wind_ticks=True)

plt.show ()

_-get_values_of_tuple(tuple_list , tuple_index):

unpacked_tuple_values = []

for tuple in tuple_list:
unpacked_tuple_values.append (tuple[tuple_index])

return unpacked_tuple_values

_-print_tws_one_sail (cursor, configuration):
histogram_values = fit3D.load_.3d_values_with_tuples(cursor, configuration)
histogram_values_unpacked = __get_values_of_tuple (histogram_values, tuple_index=0)

”

logger .debug(”count.True_Wind._Speed: .

title = ”"True_-Wind.Speed._[kn]”

--plot (histogram.values_.unpacked , title , configuration[’output-path’] + ”“plots/distribution-tws.png”, configuration[’
show_title.in_plot’], show.wind.-ticks=False)

plt.show ()

+ str(len(histogram_values_unpacked)))

-print-twa (cursor, configuration):

histogram_values = __load-twa_histogram_values(cursor, configuration)

histogram_values.18o_unpacked = wind_converter.wind.angle_convert_to.range_180_to-180_list(histogram_values)
logger .debug(”count.True_.Wind_Angle:.” + str(len(histogram.values_18o_unpacked)))

title = "True_Wind.Angle_.[degree]”

119

Appendix A. Source Code

_-plot (histogram_values_18o_unpacked , title , configuration[output_path’] + ”plots/distribution_twa.png”, configuration|[’
show _title_in_plot '], show_wind_ticks=True)

plt.show ()

def __print_twa_polar(cursor, configuration):

sum = o

values_twa = []

for twa in range(configuration[’from_wind_angle’], configuration[’to.wind.angle’], 1):
count_result = __load_twa_histogram_values_count(cursor, twa, configuration)

count = count_result[o][o]
sum += count
values_twa .append (count)
logger.debug(”count.True_Wind_Angle:.” + str(sum))
title = ”"True_Wind.Angle_[degree]”
--polar_plot(values_-twa, title, configuration[’output-path’] + ”“plots/distribution_-twa-polar.png”, False, configuration]|
show_title.in_plot’])
plt.show ()

def __print_tws(cursor, configuration):

sum = o

values_-tws = []

for tws in range(configuration[’from_wind_speed’], configuration[’to.wind.speed’], 1):
count._result = __load_tws_histogram_values(cursor, tws, configuration)

count = count_result[o][o]
sum += count
values_tws .append (count)
logger .debug (”count_.True_Wind_Speed:.” + str(sum))
_-plot(values_tws , ”“True_.Wind_Speed.[kn]”, configuration[output_path’] +
show _title_in_plot’], show_wind_ticks=False)
plt.show ()

plots/distribution_tws.png”, configuration[”’

Listing A.13: exploratory 'data‘analysis/occurrence plot.py

Illustrates the frequency of data points in a polar diagram.

Performs exploratory data analysis of the data.
Loads data from the database as requested and generates a polar plot.
It shows a heat map of the frequency of data points at narrow areas of wind angle and wind speed .

Author: Stefan Simon
License: CC BY-NCND 4.0

import numpy
from matplotlib import pyplot as plt
from matplotlib.collections import PolyCollection

from polar.diagram._generator.converter import wind.converter
from polar.diagram._generator. util.strings import TWA_TICK.LABELS

from polar.diagram._generator.workspace.databasehandler import DatabaseHandler

SPEED.DIFF = 1

ANGLEDIFF = 3.5

SHOW.WHOLELINES = False
MAXERROR = 10
PREDICTION_PROBABILITY = o.10

def perform(db_handler: DatabaseHandler, configuration):
Illustrates the frequency of data points in a polar diagram.
:param db_handler: database handler with a valid table ’'logger’
cparam configuration: configuration array to control data range and outputs

cursor = db_handler.connection.cursor ()

fig = plt.figure ()

ax = plt.subplot(111, projection="polar”)
ax.set-title ('Frequency.of_data’, va="bottom”)
ax.set-theta_-direction(—1)
ax.set_-theta_offset (numpy.pi / 2.0)
ax.set-xticklabels (TWA.TICK.LABELS) # Twa

120

def

def

def

Appendix A. Source Code

ax.set_yticks ([2., 4., 6., 8., 10., 12., 14., 16., 18., 20.])
totalcount = __count-values_limited_-to_sail(25 — ANGLE.DIFF, 180 + ANGLEDIFF, 6 — SPEED.DIFF, 20 + SPEED.DIFF, cursor,
configuration)

for index, speed in enumerate([6., 8., 10., 12., 14., 16., 18., 20.]):
for angle in range(24, 337, 8):
count = __count.values_limited_to_sail (angle — ANGLE.DIFF, angle + ANGLEDIFF, speed — SPEED_DIFF, speed +
SPEED_DIFF, cursor, configuration)

--plot_poly (ax, angle —3.4, angle+3.4, speed —0.9, speed+0.9, __get_color(count, totalcount))
ax.axis ([o, 2*snumpy.pi, o, 22])

plt.draw ()
plt.savefig(configuration[output-path’] + ’“plots/occurrences_-polar.png’)
plt.show ()

cursor . close ()

_-count._values (from_twa, to.twa, from_tws, to_tws, cursor, configuration):
parameters = (from_twa, to.-twa, from_tws, to_tws,
configuration[’from_timestamp '],
configuration[’to_timestamp '],
configuration[’from_mark’],
configuration[’to.mark’])
cursor . execute ("SELECT.count (*) FROM_.logger ’
" WHERE_bsp 1S NOT_NULL"
' LAND_twa IS NOT_NULL"
' LAND_tws IS NOT_NULL"
" AND_twa._>=.?"
" AND_twa.<=.?"
" AND_tws >=_?"
" AND_tws <=_7 "
" _AND.outlier .IS_.NOT.1"
" AND. ((timestamp .>.? _AND._timestamp .<=.?) .OR_timestamp .IS _NULL)
' LAND. ((mark >_? _AND_mark.<=_?) -OR_mark._IS _NULL)
' ORDER BY RANDOM() ’
' LIMIT 15000"
, parameters)
features = cursor. fetchall ()
return features[o][o]

--count.values._limited_to-sail (fromTwa, toTwa, fromTws, toTws, cursor, configuration):
if configuration[mark-tuples’] is None or len(configuration[mark.-tuples’]) <= o:
raise RuntimeError(”mark-tuples.not.initialized .or.empty”)

parameters = (fromTwa, toTwa, fromTws, toTws,
configuration[’from_boat_speed’])
query = ’'SELECT.count(x*)_FROM.logger’ \
" WHERE_bsp IS NOT_NULL" \
" AND_twa.IS NOT.NULL" \
" AND_tws IS NOT_NULL" \
" AND_twa.>=.?" \
" AND_twa.<.? " \
" AND_tws.>=.2" '\
" AND_tws.<.? "\
" AND_bsp.>=.7" \
" AND_outlier .IS_ NOT_1" \
" ANDL(’
first = True
for start, end in configuration[mark_tuples’]:
if not first:
query += “_OR.’
first = False
query += ’_mark.BETWEEN.’ + str(start) + "_AND.’ + str(end) + '.’

query += ‘)’
cursor . execute (query, parameters)
features = cursor. fetchall ()

return features[o][o]

--plot_poly (axes, from_twa, to-twa, from_tws, to_tws, linecolor):

from_twa_polar = wind._converter.wind.angle_cart-2_pol (from_twa)
to_twa_polar = wind_converter.wind.angle_cart_2_pol(to-twa)

verts_pred = [(from_twa_polar, from_tws), (from_twa_polar, to.tws), (to_-twa_polar, to_-tws), (to-twa.polar, from_tws)]

121

Appendix A. Source Code

poly = PolyCollection ([verts_pred], closed=True,
label="PI.(%g)” % from_tws)

poly.set_facecolor (linecolor)

axes.add_collection (poly)

def __get_color(count, totalcount):
if count > 600:
return [0.0, 1.0, 0.0, 1.0]
if count > 500:
return [0.0, 1.0, 0.0, 0.8]
if count > 4oo0:
return [0.0, 1.0, 0.0, 0.6]
if count > 300:
return [0.0, 1.0, 0.0, 0.4]
if count > 150:
return [0.0, 0.6, 0.0, 0.4]
if count > 100:
return [0.0, 0.3, 0.0, 0.4]
if count > 8o:
return [0.3, 0.0, 0.0, 0.4]
if count > jo:
return [0.6, 0.0, 0.0, 0.4]
if count > 20:
return [1.0, 0.0, 0.0, 0.4]
if count > 10:
return [1.0, 0.0, 0.0, 0.6]
return [1.0, 0.0, 0.0, 0.8]

Listing A.14: exploratory data‘analysis/speedtrend.py

Illustrates the trend of true wind speed and boat speed.

Performs exploratory data analysis of the data.

Loads data from the database as requested and generates a plot.

It shows the process of both speed values to analyze abnormalities .
Can also highlight the areas of the selected sail.

Author: Stefan Simon
License: CC BY-NCND 4.0

import matplotlib.pylab as plt

def perform(cursor, configuration):
Illustrates the trend of true wind speed and boat speed.
:param cursor: database cursor with a valid table ’"logger’
:param configuration: configuration array to control data range and outputs

_-print_tws (cursor, configuration)

def plot(mark, bsp, tws, title, file_path=None, x_label="Time.[s]”, y-label="Speed.[knots]”,
legend=["Boat.Speed”, “True.Wind.Speed”]) :
Plots a scatter plot with the requested wvalues.
:param mark: list of points on the timeline
:param bsp: values of the BSP. Same length as mark
:param tws: values of the TWS. Same length as mark
cparam title: title of the plot
cparam file_path: path where the plot should be saved
cparam x_label: name of the time axis
cparam y_label: name of the y axis
:param legend: array with size 2; name of the features
plt.figure ()
plt. title (title)
plt.scatter (mark, bsp, marker=".")
plt.scatter (mark, tws, marker=".")
plt.xlabel(x-label)
plt.ylabel(y-label)
plt.legend (legend)
plt.grid (True)
plt.draw ()

122

Appendix A. Source Code

if file_path is not None:
plt.savefig(file_path)

def __load._speed_values(cursor, configuration):

parameters = ()

cursor . execute ('SELECT.mark FROM._logger ’
, parameters)

mark = cursor. fetchall ()

cursor . execute ('SELECT_bsp FROM._logger ’
, parameters)

bsp = cursor. fetchall ()

cursor . execute ("SELECT._tws _FROM._logger ’
, parameters)

tws = cursor. fetchall ()

return mark, bsp, tws

def load.speed.values.-of-range(cursor, configuration):
parameters = (configuration[’from_mark’], configuration[’to-mark’], configuration[’from_timestamp’],
configuration[’to_timestamp "])

cursor . execute ('SELECT.bsp FROM.logger ’
" ZWHERE. ((mark_>.? _AND_mark._<=_?) .OR_mark.IS _NULL) *
" AND. ((timestamp .>.? AND-timestamp .<=.?) -OR_timestamp IS .NULL) ’
, parameters)

bsp = cursor. fetchall ()

cursor . execute ('SELECT.tws FROM.logger ’
' WHERE.. ((mark.>.? .AAND_mark._<=_?) _OR.mark.IS _NULL) ’
" AND. ((timestamp .>.? ,AND_timestamp .<=.?) .OR_timestamp IS .NULL) ’
, parameters)

tws = cursor. fetchall ()

cursor . execute ('SELECT.mark FROM.logger ’
" JWHEREL ((mark.>.? _AND_mark_<=_?) _.OR_mark.IS _NULL) ’
" AND. ((timestamp .>.? _AND_timestamp .<=.?) _OR_timestamp.IS _NULL)
, parameters)

mark = cursor. fetchall ()

return mark, bsp, tws

def __print_tws(cursor, configuration):

mark, bsp, tws = __load_speed_values(cursor, configuration)
if configuration[’show_title_in_plot’]:

plot_title = ”“Speed._trend”
else:

plot_-title =
plot(mark, bsp, tws, plot-title, configuration[output-path’] + “plots/speed-trend.png”)
_.add.active_logbook.indicator (configuration)
plt.show ()

def __add-_active_logbook_indicator(configuration):
from_mark = configuration[’from_mark’]

to.mark. = configuration[’to.mark’]

if from_mark == o and to.mark. == 99999999999:
return

active.width = to.mark. — from_mark

currentAxis = plt.gca()
currentAxis .add_patch (
plt.Rectangle ((from_mark, o), active.width, max(configuration[’to.wind_speed’], configuration|’to_boat_speed’]),
facecolor="grey”, fill="grey”, alpha=o0.4))

Listing A.15: exploratory'data‘analysis/wind angle trend.py

Illustrates the trend of true wind angle.
Performs exploratory data analysis of the data.
Loads data from the database as requested and generates a plot.

It shows the process of the true wind angle to analyze abnormalities.
Can also highlight the areas of the selected sail.

Author: Stefan Simon
License: CC BY-NCND 4.0

import matplotlib.pylab as plt

123

Appendix A. Source Code

def perform(cursor, configuration):
Illustrates the trend of true wind angle.
cparam cursor: database cursor with a valid table ’"logger’
cparam configuration: configuration array to control data range and outputs

_-print_twa (cursor, configuration)

def wind_angle_values(cursor, configuration):
Loads data from the database without limitations.
cparam cursor: database cursor with a valid table "logger’
cparam configuration: Not used
creturn: a tuple with two arrays mark and TWA
parameters = ()
cursor . execute ('SELECT.mark FROM.logger’
, parameters)
mark = cursor. fetchall ()
cursor . execute ('SELECT.twa FROM.logger ’
, parameters)
twa = cursor. fetchall ()
return mark, twa

def wind_angle_values_of_range(cursor, configuration):

Loads data from the database with limitations .

cparam cursor: database cursor with a wvalid table ’'logger’

:param configuration: configuration array to control data range and outputs

creturn: a tuple with two arrays mark and TWA

parameters = (configuration[’from_mark’], configuration[to.mark’], configuration[’from_timestamp’],

configuration[’to_timestamp "])

cursor . execute ("SELECT_mark FROM._logger’
" WHERE. ((mark.>_? AND_mark_<=_?) _OR_mark.IS _NULL) ’
" AND. ((timestamp .>.? _AND_timestamp .<=.?) .OR_timestamp .IS _NULL) ’
, parameters)

mark = cursor. fetchall ()

cursor . execute ("SELECT_twa _FROM._logger ’
" .WHERE.. ((mark.>..? _.AND_mark.<=_?) _OR.mark..IS _NULL) ’
" AND.. ((timestamp .>..? /AND_timestamp ..<=.?) -OR_timestamp..IS .NULL) ’
, parameters)

twa = cursor. fetchall ()

return mark, twa

de

S

plot(mark, twa, title , file_path):
plt.figure(figsize=(15, 6))
if title is not None:

plt. title (title)
plt.scatter (mark, twa, marker=".")
plt.xlabel ("Time.[seconds]”)
plt.ylabel ("True.Wind_.Angle_[degree]”)
plt.legend ([“True_.Wind_.Angle”])
ticks = range(—180, 181, 45)
plt.yticks (ticks , ticks)
plt.grid (True)
plt.draw ()
plt.savefig(file_path)

def __print_twa(cursor, configuration):
mark, twa = wind.angle_values(cursor, configuration)
if configuration[’show_title_in_plot’]:
title = ”Scatter._Diagram_of._.True_.Wind_Angle”
else:
title = None
plot(mark, twa, title, configuration[’output-path’] + ”plots/wind.angle_trend.png”)
add.active_-logbook-indicator (configuration['from-mark’], configuration|[’to-mark’])
plt.show ()

de

S

add.active_logbook.indicator (from_mark, to.mark.):

Highlights an area in the plot that indicates that this area is included in the data analysis.
cparam from_mark: begin of the selected range
cparam to_mark_: end of the selected range

124

Appendix A. Source Code

:return: None

if from_mark == o and to.mark. == 99999999999:
return
active.width = to.mark. — from_mark

current_axis = plt.gca()
current_axis.add_patch(plt.Rectangle ((from_mark, —180), active_width, 360, facecolor="grey”, fill="grey”, alpha=o0.4))

Listing A.16: data’analysis/fitz2D’angle.py

Performs data analysis of true wind angle and boat speed.

Uses the extendable interface of scikit—learn to fit 2—dimensional models to the data.
Loads data from the database and performs pre—processing on the data.

Supports various types of estimators for the optimization problem.

Generates plots from the result.

Author: Stefan Simon

License: CC BY-NCND 4.0
import logging

import timeit

from random import randrange

import numpy as np

from matplotlib import pyplot as plt

from sklearn import metrics

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MaxAbsScaler

from statsmodels.stats.stattools import durbin_watson

from polar.diagram_generator.converter import wind.converter

from polar_diagram_generator.data_analysis import fit3D

from polar.diagram_generator.data_analysis.estimator.odr_estimator.2d import ODREstimatorad
from polar_diagram_generator.data_analysis.models import models2d

logger = logging.getLogger(’polar.data_analysis. fit’)

def perform(cursor, configuration, true_wind._speed, true.wind_speed._range = 1):
Performs data analysis of true wind angle and boat speed.
cparam cursor: database cursor with a wvalid table "logger’
:param configuration: configuration array to control data range and outputs
cparam true_wind_speed : TWS around which the data should be trained
:param true_wind_speed_range: optional , TWS deviation around which the data should be trained
sreturn: None
tws_from = true.wind.speed—true_wind._speed._range
tws_to = true.wind._speed+true_wind._speed._range

X_list , y.list = __load_2d.values(cursor, tws_from, tws_to, configuration)
--fit_and_plot(X_list, y-list, true.wind.speed, configuration, x_axis_label="True.Wind.Angle.[degree]”)
plt.show ()

def __load_2d.values(cursor, tws_from, tws_to, configuration):
previous_from_wind_speed = configuration[”from_wind_speed”]
previous_to_wind_speed = configuration[”to_wind_speed”]
configuration[”from_wind_speed”] = tws_from
configuration[”to.wind_speed”] = tws_to

tuples = fit3D.load_3d_values_with_tuples(cursor, configuration)
configuration[”from_wind_speed”] = previous_from_wind._speed

configuration[”to.wind_speed”] = previous_to_wind_speed

bsp_values = __get_values_of_tuple (tuples, tuple.index=3)

twa_values = wind_converter.wind_angle_convert_to.range_180_to_180_list(tuples, tuple_.index=2)
return twa_values, bsp_values

def __fit.and.-plot(X-list, y-list, speed, configuration, x-.axis-label):
logger .debug(”\n\nFitting_data_for _%d.knots ...” % speed)
X = np.asarray (X-list)
y = np.asarray(y-list)

random_state = randrange(1000)

125

Appendix A. Source Code

logger .debug(”“random.state : %d” % random_state)

X_train, X_test, y-train,

random_state)

if len(X_.train) == o:
logger.warning (”"No.values._for_.this.range!”)
return

logger.debug (”#.training._set: %d\n..._#_test_set: %d” % (len(X_train), len(X_test)))

X_scale

T

= MaxAbsScaler ()

X_scaler. fit (X_train)
= X_scaler.transform (X_train)

X_train
X_test

X_.scaler .transform (X_test)

y-scaler = MaxAbsScaler ()
y-scaler. fit (y-train)

y-train = y.scaler.transform(y-train)
y-test = y.scaler.transform (y-test)
estimators = [

(’Nonlinear .ODR.—.2_degree_Polynomial*, ODREstimator2d (models2d. polynomial_2_degrees, [1.0, 1.0,

models2d . polynomial_2_degrees),

(’Nonlinear .ODR.—.3_.degree_Polynomial ",

ODREstimator2d (models2d . polynomial_3.degrees, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.polynomial_3_degrees),
(’Nonlinear .ODR.—.4_.degree_Polynomial ",

ODREstimator2d (models2d . polynomial_4.degrees, [1.0, 1.0, 1.0,
(’Nonlinear .ODR.—.6_degree_Polynomial ",

ODREstimator2d (models2d . polynomial_6_degrees, [1.0, 1.0, 1.0,

polynomial_6_degrees),

1.0, 1.0]

1.0, 1.0,

, 1.0

1.0,

, 1.0), models2d.pol

y-test = train_test_split(X.reshape(—1, 1), y.reshape(—1, 1), test.size=0.3, random_state=

1.0], 1.0, 1.0),

ynomial_4_degrees),

1.0], 1.0, 1.0), models2ad.

(’Nonlinear ODR.—.Inverted _Parabola’, ODREstimator2d(models2d.inverted_parabola, [1.0, 1.0, 1.0],

inverted_parabola),

(’Nonlinear .ODR.—.Concave_with_.Downturn’, ODREstimator2d(models2d.concave_with.downturn, [1.0, 1.

models2d . concave_with_downturn) ,

(’Nonlinear .ODR.—.Concave_with._.Saturation_Limit’,

ODREstimator2ad (models2d . concave_with_saturation_limit, [1.0, 1.0,

concave._with_saturation_limit),

(’Nonlinear .ODR.—_Concave_with_Saturation_Limit_and_Downturn’,

ODREstimator2d (models2d . concave_with_saturation_limit_.and_downturn ,

concave_with_saturation_limit_and_downturn),

(’Nonlinear .ODR.—._S—shaped_with_Saturation_Limit ",
ODREstimatorad (models2d . s_shaped _with_saturation_limit , [1.0,

s-shaped.-with_saturation_limit),

(’Nonlinear.ODR—..S—shaped._with..Saturation-Limit.and.Downturn”’,

ODREstimatorad (models2d . s_.shaped.-with_saturation_limit-and-downturn,
(’Nonlinear .ODR.—.Gompertz_Model ", ODREstimator2d (models2d . gompertz-model, [1.

(’Nonlinear .ODR.—_Gaussian.Model’, ODREstimatorzd (models2d . gaussian.model, [5.

s-shaped_-with_saturation_limit.and-downturn),
gompertz_model) ,

gaussian_model) ,

(’Nonlinear .ODR.—_Gaussian_Model_with_Offset ",
ODREstimator2d (models2d . gaussian.model_with_offset, [5.0, 1.0,

gaussian.model_with_offset),

(’Nonlinear \ODR.—._Gaussian_Mixture._.Model ",

ODREstimator2d (models2d . gmm_model, [5.0, 1.0, 1.0, 5.0, 1.0, 1.0,

I
x-plot

np.linspace (X_train.min() , X_train.max())

result_output_list = []
for title , this_ X, this_y, this_X_test, this_y_test in [
(’Compare_Boat.Speed_and _True_.Wind_Angle_at.’ + str(speed) + ’_degree.True_.Wind_Speed’, X_train, y_train, X_test,

y-test)

1.0,

1.0, 1.0,

1.

1.0],

1.0]

[1.0, 1.

o, 1.0], 1.

1.0],

1.0,

1.0, 1.0), models2d

, 1.0, 1.0), models2

o, 1.0, 1.0], 1.0,
o, 1.0, 1.0], 1.0,

o, 1.0, 1.0], 1.0,

o, 1.0), models2d.

1.0) , models2d.gmm.

fig , ticks = __prepare_plot(X_scaler, configuration, estimators, this_X_test, this_y_test, title,

y-scaler)

for name, estimator, model in estimators:

logger.debug('\r
start = timeit.default_timer ()

estimator. fit (this-X , this_y)

stop = timeit.default-timer ()

runtime_seconds = stop — start
logger.debug('\n%s:_time.=.%.5f" % (name, runtime_seconds))
estimator-train_prediction = estimator.predict(this_X)

1.0, 1.0), models2d.

o, 1.0], 1.0, 1.0),

[t.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.

d.

1.0), models2d.
1.0), models2d.

1.0), models2d.

_model) ,

x-axis_label ,

mean_squared.error-train.scaled = metrics. mean.squared.-error(y-train, estimator-train_-prediction)
mean_squared_error_train = y_scaler.inverse_transform (np.array ([mean_.squared.error_train_scaled]).reshape(—1, 1))
logger.debug('%s:.mean_squared_error_train.=.%.3f’ % (name, mean.squared.error_train))

estimator_test_prediction = estimator.predict(this_X_test)

mean_squared_error_test_scaled = metrics.mean_squared_error(y-test, estimator_test_prediction)
mean_squared_error_test = y._scaler.inverse_transform (np.array ([mean_squared_error_test_scaled]).reshape(—1, 1))

126

def

def

def

def

Appendix A. Source Code

logger.debug('%s:.mean_squared_error_test.=.%.3f’ % (name, mean_squared_error_test))
chi_squared_train_value = y_scaler.inverse_transform ([estimator.output.res_var x len(X_train)])[o]

r2 = metrics.r2_score(y-test, estimator_test_prediction)

logger .debug('%s:_r2_score.=.%.3f" % (name, r2))

mean_absolute_error = metrics.mean_absolute_error(y_test, estimator_test_prediction)

mean = np.mean(y-_test)

logger .debug('%s:_mean_absolute_error._=.%.3f, .mean.=_%.3f , _%.3{%%" % (name, y_scaler.inverse_transform (np.array ([
mean_absolute_error]) .reshape(—1, 1)), y-scaler.inverse_transform (np.array ([mean]).reshape(—1, 1)), 100/meanx
mean_absolute_error))

median_absolute_error_test = metrics. median_absolute_error(y_-test, estimator_test_prediction)

median = np.median(y_test)

logger .debug('%s:_median_absolute_error_test.=.%.3f, _median_.=_%.3f, .%.3{%%" % (name, y_scaler.inverse_transform (np.
array ([median_absolute_error-test]).reshape(—1, 1)), y-scaler.inverse-transform (np.array ([median]) .reshape(—1,
1)), 100/median*median-absolute_error_test))

y-plot = estimator.predict(x-plot[:, np.newaxis])
label = "%s’ % (name)
--add-to-plot(X_scaler, label, x_plot, y-plot, y-scaler)

differences = y_test — estimator.predict(X_.test).reshape(—1, 1) #reshape to get [nx1] instead of [nxn]
durbin_watson_-value = durbin.watson(differences)
logger .debug(”Durbin/Watson:.” + str(durbin_watson_value))

uniform_weight_test = np.ones(len(y_test))

logger .debug(”\n\n\n\n\n———— TEST_.DATA_LUNFORM.————")

odr_estimator_test_.data = ODREstimator2d (model, estimator.popt, uniform_weight_test, uniform_weight_test,
max.iterations=0)

odr_estimator_test_data.fit(X_test, y_test)

chi_squared_test_value = y_scaler.inverse_transform ([odr_estimator_test_data.output.res_var * len(X_test)])[o]
sum_square_test_uniform = odr_estimator_test_data.output.sum_square
logger .debug (™ ")

if len(estimators) == 1:
_-add_labels_and_residual_plot(X_scaler , X_test, configuration, differences, fig, name, ticks,6 title,
x_axis_label , y_scaler)

result_output_list.append((name, runtime_seconds, mean_squared_error_train, mean_squared._error_test,
durbin_watson.value , chi-squared-train_value, chi.squared-test_-value))

--configure_legend ()
_-save._plot(configuration , speed)

\nNumber_of._estimators_in_this.run: _%d” % len(estimators))

logger .debug (”\n\n\n:
for name, estimator, model in estimators:
logger .debug(”"—-%s” % name)

logger .debug (”\n—-_LaTeX_Result.Table.—\n")
logger . debug ("%s & %s & Y05 & Y%s & Jos” % (”Name”, ”“Runtime.[s]”, “Durbin/Watson”, ”\chi"2_{train}”, ”\chi"2_{test}”))
for (name, runtime_seconds, mse_train, mse_test, durbin.watson_value, chi_squared_train_value, chi_squared_test_value) in
result_output_list:
logger .debug ("%s &-$%.2f"s$ &.$%.4f$ &_-$%.2f$ &.$%.2f$ \\\\" % (name.replace(”Nonlinear .ODR—.", ””), runtime_seconds,
durbin_watson_value , chi_squared_train_value, chi_squared_test_value))

_-get_values_of_tuple(tuple_list , tuple_index):

unpacked_tuple_values = []

for tuple in tuple_list:
unpacked_tuple_values.append (tuple[tuple_index])

return unpacked_tuple_values

_-save_plot(configuration , speed):
plt.savefig(configuration[output_path’] + ”plots/fit_2d_angle_

”

+ str(speed) + ”.png”)

--configure_legend () :
plt.legend(loc="best’, frameon=False)

_.add_labels_and.residual_plot(X.scaler, X_test, configuration, differences, fig, name, ticks, title , x_axis_label,
y-scaler):
if configuration[’ show_title_in_plot’]:
plt. title (name + ”.—.” + title)
frame._residual = fig.add.axes((.1, .o7, .8, .2))

127

Appendix A. Source Code

plt.xticks (ticks , ticks)

plt.xlim (o, 180)

plt.xlabel(x_-axis_label)

plt.ylabel (”Boat.Speed_.Residuals.[kn]"”)

frame_residual . plot(X_scaler.inverse_transform (X_test), y.scaler.inverse_transform (differences), 'rx’)

plt.grid ()

def __add_to_plot(X_scaler, label, x_plot, y_plot, y_scaler):
plt.plot(X_scaler.inverse_transform (x_plot), y_scaler.inverse_transform (y_plot), label=label)

def __prepare_plot(X_scaler, configuration, estimators, this_X_test, this_y_test, title, x_axis_label, y_scaler):
fig = plt.figure(figsize=(10, 8))
if len(estimators) == 1:
fig.add-axes ((.1, .35, .8, .55))
plt.xlabel(x-axis-label)
ticks = range(—180, 181, 45)
plt.xticks (ticks , ticks)
plt.ylim(o, configuration[’to-boat.speed’])
plt.ylabel ("Boat.Speed.[kn]")
if configuration[’show_title_in_plot’]:
plt. title(title)
plt.plot(X_scaler.inverse_transform (this_X_test), y_scaler.inverse_transform (this_y_test), 'k+’) # test set
plt.xlim(o, 180)
plt.grid ()
return fig, ticks

Listing A.17: data’analysis/fit2D’speed.py

Performs data analysis of true wind speed and boat speed.

Uses the extendable interface of scikit—learn to fit 2—dimensional models to the data.
Loads data from the database and performs pre—processing on the data.

Supports various types of estimators for the optimization problem.

Generates plots from the result.

Author: Stefan Simon

License: CC BY-NCND 4.0
import logging

import timeit

import numpy as np

from matplotlib import pyplot as plt

from sklearn import metrics

from sklearn.model.selection import train_test_split
from sklearn.preprocessing import MaxAbsScaler

from statsmodels.stats.stattools import durbin_watson

from polar.diagram._generator.data_analysis.estimator.odr_estimator.2d import ODREstimator2d
from polar.diagram._generator.data_analysis.models import models2d

logger = logging.getLogger(’polar.data_analysis. fit"’)

def __load_2d.values(cursor, twa, true_wind.angle.range, configuration):
parameters = (float(twa)—true.wind._angle_range,
float (twa)+true_wind._angle_range,
configuration[’from_boat_speed’],
configuration[’to_boat_speed '],
configuration[’from_wind_speed '],
configuration["to.wind_speed '],
configuration[’from_timestamp '],
configuration["to_timestamp '],
configuration[’from_mark’],
configuration[’to.mark’])
cursor . execute ("SELECT_bsp FROM.logger ’

" WHERE._twa _>=_?"

" AND_.twa.<_.?"

".AND.outlier .IS.NOT.42"

" “AND.twa IS NOT.NULL’

" “AND_bsp IS NOT.NULL.AND..(bsp ->.? /AND_bsp .<=.7)

" LAND.tws IS NOT.NULL.AND.. (tws >.? .AND.tws .<=.7)

" AND. ((timestamp >.? AND.timestamp .<=.?) .OR_timestamp .IS .NULL) "

" LAND.. ((mark >._? _AND_mark.<=_?) .OR.mark.IS .NULL) "

128

de

S

def

Appendix A. Source Code

' AND (mark % 10 IS o)’
, parameters)

bsp = cursor. fetchall ()

cursor . execute ('SELECT.tws FROM.logger ’
' WHERE._twa _>=_?"
" AND_twa.<.?"’
"_AND_outlier .IS.NOT.42"
' LAND_twa IS NOT_NULL"
" AAND_bsp 1S NOT_.NULL_AND.. (bsp >.? _AND_bsp .<=.7)
" LAND_tws 1S -NOT_NULL_AND.. (tws >.? AAND_tws .<=.7?) ’
" ANDL ((timestamp .>.? _AND_timestamp .<=.?) .OR_timestamp .IS _NULL) ’
' LAND. ((mark >_? _AND_mark.<=_?) -OR_mark.IS _NULL)
' AND (mark % 10 IS o)’
, parameters)

tws-values = cursor. fetchall ()

return tws.values, bsp

perform (cursor, configuration, true.wind.angle, true.wind.angle.range=o0.5):
Performs data analysis of true wind speed and boat speed.
:param cursor: database cursor with a valid table ’"logger’
cparam configuration: configuration array to control data range and outputs
cparam true_wind_angle: TWA around which the data should be trained
cparam true_wind_angle_range: optional , TWA deviation around which the data should be trained
for angle in range(true_wind.angle, true_wind._angle+1, 5):
X_list, y.list = __load.-2d_values(cursor, angle, true.wind.angle_range, configuration)
_fit_and_plot(X_list , y_list, angle, configuration, x.axis_-label="True_.Wind_Speed.[kn]")
plt.show ()

_-fit_and_plot(X_list , y_list, angle, configuration, x.axis_label):
logger.debug(”\n\nFitting _data_around.%d._degree...” % angle)

X = np.asarray (X_list)

y = np.asarray(y-list)

X_train , X_test, y_train, y_test = train_test_split(X, y, test._size=0.3, random_state=456)

if len(X_train) == o:
logger .warning (”No.values._for._this._range!”)
return

logger.debug (”#~training._set: %d\n....#_test_set: %d” % (len(X_-train), len(X_test)))

X_scaler = MaxAbsScaler ()
X_scaler. fit (X_train)

X_train = X_.scaler.transform (X_train)
X_test = X_scaler.transform(X_test)

y-scaler = MaxAbsScaler ()
y-scaler. fit(y-train)

y-train = y_scaler.transform(y_train)
y-test = y_scaler.transform(y_-test)
estimators = [

(’Nonlinear .ODR.—.2_degree_Polynomial”, ODREstimator2d (models2d.polynomial_2_degrees, [1.0, 1.0, 1.0], 1.0, 1.0),
models2d . polynomial_2_degrees) ,
(’Nonlinear .ODR.—.3_.degree_Polynomial ",
ODREstimator2d (models2d . polynomial_3_degrees, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2ad.polynomial_3_degrees),
(’Nonlinear .ODR.—.4._.degree_Polynomial ",
ODREstimatorad (models2d . polynomial_4_degrees, [1.0, 1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2ad.polynomial_4_degrees),
(’Nonlinear .ODR.—.6_degree_Polynomial ",
ODREstimator2d (models2d . polynomial_6_degrees, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.
polynomial_6_degrees),
(’Nonlinear ODR.—._Inverted _Parabola’, ODREstimator2d (models2d.inverted_parabola, [1.0, 1.0, 1.0], 1.0, 1.0), models2d.
inverted_parabola),
(’Nonlinear .ODR.—.Concave_with_.Downturn’, ODREstimator2zd(models2d.concave_with.downturn, [1.0, 1.0, 1.0], 1.0, 1.0),
models2d . concave_with_.downturn) ,
(’Nonlinear.ODR-—.Concave.-with..Saturation_-Limit ",
ODREstimator2zd (models2d . concave-with_saturation_-limit, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.
concave.-with_saturation_limit),
(’Nonlinear .ODR.—.Concave_with.Saturation_Limit.and.Downturn’,
ODREstimator2d (models2d . concave_with_saturation-limit-and-downturn, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.
concave-with_saturation_-limit_and-downturn),
(’Nonlinear .ODR.—.S—shaped._with_Saturation_Limit ",
ODREstimator2d (models2d . s_.shaped_with_saturation_limit, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.
s-shaped._with_saturation_limit),
(’Nonlinear .ODR.—.S—shaped.with_Saturation_Limit.and.Downturn”’,
ODREstimator2d (models2d . s_shaped._with_saturation_limit_.and_.downturn, [1.0, 1.0, 1.0, 1.0], 1.0, 1.0), models2d.

129

Appendix A. Source Code

s_.shaped_with_saturation_limit_.and_downturn),

(’Nonlinear .ODR.—._Gompertz_Model ", ODREstimator2d (models2d . gompertz_model, [1.0, 1.0, 1.0], 1.0, 1.0), models2d.

gompertz_model) ,

np.linspace (X_train .min() , X_train.max())

result_output_list = []
for title , this_ X, this_y, this_X_test, this_y_test in [
(’Compare_Boat.Speed_and _True_.Wind_.Speed_at.’ + str(angle) + ’_degree.True_.Wind_Angle’, X_train, y_train, X_test,

y-test)

= __prepare_plot(X_scaler, configuration, estimators, this_X_test, this_y_test, title, x_axis_label,
y-scaler)

for name, estimator, model in estimators:

logger.debug(’\r \n")

start = timeit.default-timer ()

estimator. fit (this-X, this_y)

stop = timeit.default_timer ()

runtime_seconds = stop — start

logger.debug('\n%s:_time.=.%.5f" % (name, runtime_seconds))

estimator-train_prediction = estimator.predict(this_X)

mean_squared_error.train_scaled = metrics.mean._squared_error(y-train, estimator.train_prediction)
mean_squared_error_train = y_scaler.inverse_transform (np.array ([mean_squared.error_train_scaled]).reshape(—1, 1))
logger.debug('%s:.mean_squared_error_train.=.%.3f’ % (name, mean._squared.error_train))
estimator_test_prediction = estimator.predict(this_X_test)

mean_squared_error_test_scaled = metrics. mean_squared_error(y-test, estimator_test_prediction)
mean_squared._error_test = y_scaler.inverse_transform (np.array ([mean_squared._error_test_scaled]) .reshape(—1, 1))
logger.debug('%s:.mean_squared_error_test.=.%.3f’ % (name, mean_squared_error_test))

chi_squared_train_value = y_scaler.inverse_transform ([estimator.output.res_var x len(X_train)])[o]

r2 = metrics.r2_score(y-test, estimator_-test_prediction)

logger .debug('%s:_r2_score.=.%.3f" % (name, r2))

mean_absolute_error = metrics.mean_absolute_error(y_test, estimator_test_prediction)

mean = np.mean(y-test)

logger .debug('%s:_mean_absolute_error._=_%.3f, .mean.=_%.3f , _%.3{%%" % (name, y_scaler.inverse_transform (np.array ([
mean_absolute_error]) .reshape(—1, 1)), y-scaler.inverse_transform (np.array ([mean]).reshape(—1, 1)), 100/meanx*
mean_absolute_error))

median_absolute_error_test = metrics. median_absolute_error(y_-test, estimator_test_prediction)

median = np.median(y_test)

logger .debug('%s:_median_absolute_error_test.=.%.3f, _median.=_%.3f, .%.3{%%" % (name, y_scaler.inverse_transform (np.
array ([median_absolute_error-test]).reshape(—1, 1)), y-scaler.inverse.-transform (np.array ([median]) .reshape(—1,
1)), 100/median*median-absolute_error_test))

y-plot = estimator.predict(x-plot[:, np.newaxis])
label = "%s’ % (name)
--add-to-plot(X_scaler, label, x_plot, y-plot, y-scaler)

differences = y_test — estimator.predict(X.test).reshape(—1, 1)
durbin_watson_-value = durbin.watson(differences)
logger .debug(”Durbin/Watson:.” + str(durbin_watson_value))

uniform_weight_test = np.ones(len(y_test))

logger .debug (”\n\n\n\n\n——— _TEST.DATA.UNFORM.——M")

odr_estimator_test_.data = ODREstimator2ad (model, estimator.popt, uniform_weight_test, uniform_weight_test,
max.iterations=o0)

odr_estimator_test_data.fit(X_test, y_test)

chi_squared_test_value = y_scaler.inverse_transform ([odr_estimator_test_data.output.res_var * len(X_test)])[o]
sum_square_test_uniform = odr_estimator_test_data.output.sum_square
logger .debug(” @

if len(estimators) == 1:
--add_labels_and_residual_plot(X_scaler , X_test, configuration, differences, fig, name, title,
x_axis_label , y_scaler)

result.output_list.append((name, runtime.seconds, mean.squared.error-train, mean.squared.error-test,
durbin.watson.value, chi_squared-train_-value, chi_.squared-test-value))

--configure_legend ()

_-save._plot(angle, configuration)

logger .debug(”\n\n\n=

~Summary . =\nNumber_of_estimators_in_this.run: . %d” % len(estimators))

for name, estimator, model in estimators:
logger .debug(”"—-%s” % name)

130

def

def

def

def

def

Appendix A. Source Code

logger .debug(”\n——-_LaTeX_Result_Table.—\n")
logger . debug ("%s & %s & Y05 & Y%s & Jos” % (”Name”, ”“Runtime.[s]”, “Durbin/Watson”, ”\chi"2 _{train}”, ”\chi"2_{test}”))
for (name, runtime_seconds, mse_train, mse_test, durbin.watson_value, chi_squared_train_value, chi_squared_test_value) in
result_output_list:
logger .debug ("%s &-$%.2f " s$ & .$%.4f$ & -$%.2f$ & $%.2f$ \\\\” % (name.replace(”Nonlinear .ODR—_", ””), runtime_seconds,
durbin_watson_value , chi_squared_train_value, chi_squared_test_value))

_-save_plot(angle, configuration):
plt.savefig(configuration[output_path’] + ”plots/fit_.2d_.” + str(angle) +

”

-png”)

_-configure_legend () :
plt.legend(loc="best’, frameon=False)

--add-labels_and.residual-plot(X.scaler, X_-test, configuration, differences, fig, name, title , x.axis-label,
y-scaler):
if configuration[’show_title.in_plot’]:
plt. title (name + ”.—." + title)
frame.residual = fig.add.axes((.1, .o7, .8, .2))
plt.xlim(o, configuration[’to.wind_speed’])
plt.xlabel (x-axis_label)
plt.ylabel ("Boat.Speed.Residuals.[kn]")
frame_residual . plot(X_scaler.inverse_transform (X_.test[:, o].reshape(—1, 1)),
y-scaler.inverse_transform (differences), 'rx’)
plt.grid ()

_.add_to_plot(X_.scaler, label, x_plot, y.plot, y_scaler):
plt.plot(X_scaler.inverse_transform (x_plot.reshape(—1, 1)), y-scaler.inverse_transform (y_plot.reshape(—1, 1)),
label=label)

_.prepare_plot(X_scaler, configuration, estimators, this_X_test, this_y_test, title, x_axis_label, y_scaler):
fig = plt.figure(figsize=(10, 8))
if len(estimators) == 1:
fig.add_axes ((.1, .35, .8, .55))
plt.xlim (o, configuration[’to_.wind_speed’])
plt.xlabel(x_axis_label)
plt.ylim (o, configuration[’to_boat_speed’])
plt.ylabel (”Boat.Speed.[kn]")
if configuration[’show_title.in_plot’]:
plt. title (title)
plt.plot(X.scaler.inverse_-transform (this_X_test[:, o].reshape(—1, 1)), y-scaler.inverse_transform(this_y_test),
‘k+") # test set
plt.grid ()
return fig

Listing A.18: data’analysis/fit3D.py

Performs data analysis of true wind speed , true wind angle and boat speed.

Uses
Load

the extendable interface of scikit—learn to fit 3—dimensional models to the data.
s data from the database and performs pre—processing on the data.

Calculates weights of the data to consider influence on the result according to the quality of single data points.
Supports various types of estimators for the optimization problem.
Generates plots from the result.

Author: Stefan Simon

Li

cense: CC BY-NCND 4.0

import logging
import timeit

from
from

math import sqrt
random import randrange

import numpy
import scipy

from
from
from
from
from
from
from

matplotlib import animation

matplotlib import colors

matplotlib import pyplot as plt, rc.context
matplotlib. collections import PolyCollection
mpl_toolkits . mplot3d import Axes3D
mpl_-toolkits.mplot3d.art3d import Poly3DCollection
sklearn.cross_validation import train_test.split

131

Appendix A. Source Code

from sklearn.externals import joblib

from polar.diagram_generator.converter import wind.converter

from polar_diagram_generator.data_analysis import weight_calculation, polar_diagram_plotter
from polar.diagram_generator.data_analysis.estimator.odr_estimator import ODREstimator
from polar_diagram_generator.data_analysis.models import models2d

from polar_diagram_generator.data_analysis.models import models3d

from polar_diagram_generator.data_analysis.models.models3d import DynamicCallableModel
from polar_diagram_generator.exploratory.data_analysis import speed_trend

from polar_diagram_generator.util.strings import TWA_TICK LABELS WITH NAME

logger = logging.getLogger(’polar.data_analysis. fit")

RC_DEFINITION = {}

LINE.COLORS = [colors.rgb2hex([o.0, 0.0, 0.5]),
colors.rgbz2hex([o.0, 0.0, 1]),
colors.rgbz2hex([o.0, 0.38, 1]),
colors.rgb2hex([o.0, 0.83, 1]),
colors.rgb2hex([0.3, 1.0, 0.67]),
colors.rgbz2hex([1.0, 0.48, o]),
colors.rgb2hex([1.0, 0.07, o]),
colors.rgb2hex([o.5, 0.0, o])

1

PLOT_3D_SPLINE_GRID = False
PLOT3D_SURFACE = False
PLOT_3D_FIT = True

PLOT_POLAR_FIT = True
SHOWHISTOGRAMS = False
SHOW.WHOLELINES = False
SHOW_BOTTOM_RIGHTINFO_TEXT = False
PLOT_WEIGHT.TREND = True

MAXERROR = 1
PREDICTION_PROBABILITY = o.10

def __load_3d._values(cursor, configuration):
parameters = (configuration[’from_wind_angle’],
configuration[’to_wind_angle’],
configuration[’from_timestamp '],
configuration[’to_timestamp '],
configuration[’from-mark’],
configuration[’to.mark’])
cursor . execute ("SELECT.mark, -tws , .twa , .bsp FROM._logger ’
" WHERE._bsp 1S .NOT.NULL"
' LAND_twa IS NOT.NULL"
' LAND_tws IS NOT.NULL"
" AND_twa _>=.7"
" AND_twa <=.7"
".AND.outlier .IS.NOT.42"
" AND. ((timestamp .>.? AND-timestamp .<=.?) -OR_timestamp IS .NULL) ’
" LAND.. ((mark >.? AND_mark.<=_?) _-OR.mark.IS .NULL) ’
, parameters)
features = cursor. fetchall ()
return features

def load_3d.values_with_tuples(cursor, configuration):
Loads data from the database.
cparam cursor: database cursor with a valid table "logger’
cparam configuration: configuration array to control data range and outputs
creturn: measured data as list of tuples
if configuration[’mark_tuples’] == None or len(configuration['mark_tuples’]) <= o:
raise RuntimeError (”mark_tuples_not.initialized .or_empty”)

parameters = (configuration[’from_wind_angle’],
configuration[’to-wind.-angle’],
configuration[’from-wind_speed’],
configuration[’to-wind.speed’],
configuration[’from_boat-speed’])
query = ’'SELECT.mark, .tws, _twa, .bsp.FROM.logger’ \
' WHERE.bsp .IS .NOT_NULL" \
' AND-twa IS .NOT_NULL" \
' AND-tws IS .NOT_NULL" \
" AND_twa.>=.?" \
" AND_twa.<.? "’ \
" AND_tws. >=.2" |\

132

-

Appendix A. Source Code

" AND_tws.<o?”\
" AND_bsp.>=.?" \
" AND_outlier .IS_ NOT_42" \
" ANDL(’
first = True
for start, end in configuration[mark_tuples’]:
if not first:
query += “_OR.’
first = False
query += ’_mark.BETWEEN.’ + str(start) + "_AND.’ + str(end) + '.’

query += ‘)’
cursor . execute (query, parameters)
features = cursor. fetchall ()

return features

perform (cursor, configuration):

Performs data analysis of true wind speed , true wind angle and boat speed.
:param cursor: database cursor with a valid table ’"logger’
:param configuration: configuration array to control data range and outputs
if len(configuration[mark_tuples’]) > o:

features = numpy.asarray(load-3d.values_with_tuples(cursor, configuration))
else:

features = numpy.asarray(--load-3d_values(cursor, configuration))

configuration[’from_wind_angle’] = o
configuration[’to_wind_angle’] = 180
configuration[’from_boat_speed’] = o
configuration[’to_boat_speed’] = 10

mark_list = features[:, o]
X_list = features[:, 1:3]
y-list = features[:, 3]

mark = numpy.asarray (mark_list)
X = numpy. asarray (X_list)
y = numpy.asarray (y-list)

random_state = randrange(1000)
logger.debug(”random.state: %d” % random_state)

weights_bsp , weights_tws, weights_twa = weight_calculation.calculate-weights (X, y, configuration=configuration)

if PLOT-WEIGHT-TREND:
speed.-trend . plot(mark, y.list, weights_tws, “Boat.speed.trend.with_.belonging_weights”,
file_path=configuration["output.path’] + ”“plots/weights_trend_bsp.png”,
y-label="Weights oo ... Speed.[knots]”, legend=["Boat.Speed”, “Boat.Speed._weights”])

X_train, X_test, y_train, y-_test, weights_bsp_train, weights_bsp_test, weights_tws_train, weights_tws_test,
weights_twa_train, weights_twa_test = train_test_split(
X, y, weights_.bsp, weights_tws, weights_twa, test_size=0.3, random_state=random_state)

__fit_model (X_train, X_test, y_train, y-test, weights_bsp_train, weights_bsp_test, weights_tws_train,
weights_tws_test, weights_twa_train, weights_twa_test, configuration=configuration)

_-fit_model (X_.train, X_test, y_train, y._test, weights_bsp_train, weights_bsp_test, weights_tws_train,
weights_tws_test, weights_twa_train, weights_twa_test, configuration):

joblib .dump(X_train , configuration[output_path’] + ’“models/data_X_train.np”)

joblib .dump(X_test , configuration[’output_path’] + ’‘models/data_X_test.np”)

joblib .dump(y_train, configuration[output_path’] + ’‘models/data.y_train.np”)

joblib .dump(y_test , configuration[’output_path’] + ’‘models/data.y_test.np’)

latex_output = ””

weights_bsp , weights_tws, weights_twa = weights_bsp_train, weights_tws_train, weights_twa_train
uniform_weight = numpy.ones(len(weights_bsp_train))

weight_tuples = [
(”uniform”, uniform-weight, uniform_-weight, uniform_weight),
("weighted”, weights_-bsp, weights_tws, weights_twa)

1

model_definitions = []
if configuration[use.model_3d_tws_twa_.concave’] is True:

model_definitions .append (('ODR.Concave._with_Downturn.for __Wind_.Speed.and.Angle’, ’Concave.with_Downturn.\\newline_for.
Wind._Speed._and.Angle_(\\ ref{eq:3d-hypothesis—concave—with—downturn})’, ODREstimator(models3d.

133

Appendix A. Source Code

model_tws_concave_with.downturn_and_twa, [1.0, 1.0, 1.0, 90.0, 20.0, 0.0, 0.0], (uniform_weight, uniform_weight),
uniform_weight) , models3d.model_tws_concave.with_.downturn_and_twa, models3d.
derivatives.model_-tws_concave.with_.downturn_and_twa))

if configuration[use.model_3d_tws_twa_concave.weighted’] is True:
model_definitions .append (('ODR.Concave._with_Downturn.for _Wind_Speed.and.Angle_weighted ", 'weighted_Concave._with_
Downturn.\ \newline.for _Wind_Speed.and_Angle_(\\ ref{eq:3d-hypothesis—concave—with—downturn})’, ODREstimator (
models3d. model_tws_concave_with_.downturn_and_twa, [1.0, 1.0, 1.0, 90.0, 20.0, 0.0, 0.0], (weights_tws, weights_twa
), weights_bsp), models3d.model_tws_concave_with_.downturn_and_twa, models3d.
derivatives.model_tws_concave_.with_downturn_and_twa))
if configuration[use_.model_3d_tws_twa_s_shaped’] is True:
model_definitions .append (('ODR.S—shaped._with_Saturation_Limit_and.Downturn_for _Wind.Speed.and_Angle’, ’S—shaped_with._
Saturation.Limit.and_Downturn.\\newline_for_Wind.Speed._.and_Angle_(\\ref{eq:3d-hypothesis—both—s—shaped })’,
ODREstimator (models3d . model_tws_and_twa_s_shaped_with_downturn, [5.0, 8.0, 10.0, 1.0, 4.0, 15.0, 1.0, 1.0, 1.0], (
uniform_weight, uniform_weight), uniform_weight), models3d.model_tws_and_twa_s_shaped_with_downturn, models3d.
derivatives_.model-tws_and-twa.s_.shaped-with_.downturn))
if configuration[use-model-3d-tws_-twa.s_shaped_weighted '] is True:
model.definitions .append ((‘'ODR.S—shaped -with._Saturation .Limit.and..Downturn._for -Wind..Speed.and-Angle_weighted ", ’
weighted .S—shaped._with_Saturation.Limit_and_-Downturn.\\newline._for._.Wind.Speed.and.Angle.(\\ ref{eq:3d—hypothesis—
both—s—shaped })’, ODREstimator(models3d.model_tws_and.twa.s_shaped.-with.downturn, [5.0, 8.0, 10.0, 1.0, 4.0, 15.0,
1.0, 1.0, 1.0], (weights_tws, weights_.twa), weights_bsp), models3d.model.-tws.and_-twa.s_shaped.-with_downturn,
models3d. derivatives.model_tws_and-twa_s_shaped.-with_.downturn))
if configuration|[use.model_tws_3d_saturation_limit_twa_gauss’] is True:
model_definitions .append (("'ODR.S—shaped._.with_Sat._.Limit_and _Downturn.for .Wind_Speed ; .Gaussian_model.for .Wind_Angle’, 'S
—shaped._with.Sat._.Limit.and_Downturn.for _Wind_Speed ;.\ \newline_Gaussian.model_.for.Wind_.Angle_.(\\ ref{eq:3d—
hypothesis })’, ODREstimator(models3d.model_tws_s_shaped_with_.downturn_and_twa._gaussian, [1.0, 1.0, 1.0, 90.0, 4.0,
15.0, 1.0], (uniform_weight, uniform_weight), uniform_weight), models3d.
model_tws_s_shaped_with_downturn_and_twa_gaussian , models3d.
derivatives_model_tws_s_shaped_with_.downturn_and_twa_gaussian))
if configuration[use_model_tws_3d_saturation_limit_twa_gauss_weighted’] is True:
model_definitions .append (('ODR.S—shaped._with_Sat._Limit_and _Downturn.for _.Wind_Speed ; .Gaussian_model.for .Wind_Angle._
weighted’, ’'weighted .S—shaped._with.Sat._Limit_and_.Downturn_for_Wind.Speed ;.\ \newline_Gaussian_model.for .Wind._Angle
~(\\ref{eq:3d-hypothesis})’, ODREstimator(models3d.model_tws_s_shaped_with.downturn_and_twa_gaussian, [1.0, 1.0,
1.0, 90.0, 4.0, 15.0, 1.0], (weights_tws, weights_twa), weights_bsp), models3d.
model_tws_s_shaped_with_.downturn_and_twa_gaussian, models3d.
derivatives_.model_tws_s_shaped_with_.downturn_and_twa_gaussian))
if configuration[use.model_tws_3d_saturation_limit_.downturn_twa_gauss’] is True:
model_definitions .append (('ODR.S—shaped._with_Sat._.Limit_and __Downturn.for .Wind_Speed ; .Gaussian_model.for .Wind_Angle _+.
Combination’, ’S—shaped_with.Sat._Limit_.and_Downturn.for_Wind_Speed;.\\newline_Gaussian_.model_for_Wind_Angle._+._
Combination.(\\ref{eq:3d-hypothesis—extended })’, ODREstimator(models3d.
model_tws_s_shaped_with_downturn_and_twa_gaussian_plus_combination, [1.0, 1.0, 1.0, 4.0, 15.0, 1.0, 1.0, 1.0], (
uniform_weight, uniform_weight), uniform_weight), models3d.
model_tws_s_shaped_with_downturn_and_twa_gaussian_plus_combination , models3d.
derivatives-model-tws_.s_shaped.-with.downturn-and-twa.gaussian-plus_-combination))
if configuration[use-model-tws.3d_saturation-limit-downturn_twa.gauss-weighted’] is True:
model_definitions .append (("'ODR.S—shaped._with_Sat._.Limit.and -Downturn.for .Wind_Speed ; .Gaussian_-model.for .Wind_-Angle .+.
Combination.weighted’, 'weighted.S—shaped._with.Sat..Limit_and_-Downturn.for_.Wind_Speed;.\\newline_Gaussian.model.
for .Wind_Angle_.+.Combination.(\\ ref{eq:3d-hypothesis—extended })’, ODREstimator(models3d.
model_tws_s_shaped_with_.downturn_and_twa_gaussian_plus_.combination, [1.0, 1.0, 1.0, 4.0, 15.0, 1.0, 1.0, 1.0], (
weights_tws , weights_twa), weights_bsp), models3d.
model_tws_s_shaped_with_downturn_and_twa_gaussian_plus_.combination , models3d.
derivatives_model_tws_s_shaped.with_.downturn_and_twa.gaussian_plus_combination))
if len(model_definitions) == o:
--add.all_combinations_to.model_definitions (model_definitions , weight_tuples)
is_scatter_plot_without_fit = len(model_definitions) == o

for title , this_X, this_y, this_X_test, this_y_test in [(’Polar_diagram.fit’, X_train, y_train, X_test, y_test)]:

for name, latex_.name, estimator, model, model_partial_derivatives in model.definitions:
logger .debug(”\n\n\n \nEstimator: _%s” % name)

if PLOT_3D_FIT:
ax, fig = __plot_3d_fit(configuration, is_scatter_plot_.without_fit, this_X_test, this_y_test)

start = timeit.default_timer ()
estimator. fit (this_ X, this_y)

stop = timeit.default_timer ()
runtime_seconds = (stop — start)
logger .debug('Runtime:." + str(runtime.-seconds))

if '‘ODR’ not in name:
joblib .dump(estimator , configuration[’output-path’] + ’"models/model.” + name + ’".pkl”)

sum.square = estimator.sum-_square
text = "’

uniform_weight_test = numpy.ones(len(this_y_test))

logger .debug(”\n\n\n\n\n——— TEST_.DATA_LUNFORM.——M")
odr._estimator_test_.data = ODREstimator (

134

Appendix A. Source Code

model, estimator.popt,
(uniform_weight_test, uniform_weight_test), uniform_weight_test, max_.iterations=o0)
odr_estimator_test_data.fit (this_X_test, this_y_test)

sum_square_test_uniform = odr_estimator_test_data.output.sum_square
logger .debug(” ")
logger.debug(”\n\n\n\n\n—— TEST._DATA_.WEIGHTED.———")
odr_estimator_test.data = ODREstimator (

model, estimator.popt,

(weights_tws_test, weights_twa_test), weights_bsp_test, max_iterations=o0)
odr_estimator_test_data.fit (this_X_test, this_y_test)

sum_square_test_.weighted = odr_estimator_test_data.output.sum_square
logger .debug(” “)

if PLOT-3D-SPLINE-GRID:
--plot-3d_spline_grid (ax, X-train, y-train)

if PLOT_3D_SURFACE:
tws_axis = numpy.arange(4, 22, 1)
twa_axis = numpy.arange(25, 181, 3)
X.-mesh_test = numpy.asarray ((numpy.ravel (tws.-axis), numpy.ravel(twa.axis))).T
filename = configuration[output_path’] + ’models/errors_.mesh_’ + name + ’.pkl’
errors = numpy.asarray (--calculate_errors(X_mesh_test, X_train, None, None))
joblib .dump(errors, filename)

prediction = estimator.predict(X_mesh_test)
_-plot_3d_surface(ax, prediction, errors, tws_axis, twa_axis)

if PLOT_3D_FIT:
--plot_3d_fit_and_animations (X_train, ax, configuration, estimator, fig, name, text, title)

if PLOT_POLAR_FIT:
ax, fig, title , start_end_tuples = __plot_polar_fit(X_train, ax, configuration, estimator, fig, name, title)
polar_fit = polar.diagram_plotter.PolarFit(vpp=None, estimator=estimator, start_end_tuples=start_end_tuples)
polar_diagram_plotter. plot_polar_fit(data=polar_fit , configuration=configuration, name=name)

latex_output += ("%s &-%.2f" s &.%.2f & %.2f &.%.2f \\\\\n" % (
latex_.name , runtime._seconds, sum._square, sum._square_test_uniform , sum_square_test.weighted))

if PLOT_3D_FIT and is_scatter_plot_-without_fit:
_-add_ticks_to_plot ()
if configuration[’show.plots’] is True:
plt.show ()

logger .debug(”\n\n\n== =_Summary .= =\nNumber_of_estimators_in_this.run:.%d” % len(model.definitions))
for name, latex-name, estimator, model, model_partial_derivatives in model.definitions:
logger .debug(”—-%s"” % name)

header = "%s & %s & %s & %s & %s” % (
“Name” , ”"Runtime.[s]”, ”\chi"2 _{train}”, ”\chi"2_{test.uniform}”, ”\chi"2_{test_weighted}”)
logger .debug (”\n—-_LaTeX_Result.Table .——\n%s\n%s” % (header, latex.output))

def __add_all.combinations_to.model._definitions(model_definitions, weight_tuples):
for (name_tws, model_tws) in models2d. all_-models () :
for (name_twa, model-twa) in models2d.all_-models () :
for (name.combination, model_-combination) in models2d.all_.combination_-models () :
for (name_weighting, this_weights_bsp , this_weights_tws, this_.weights_twa) in weight_tuples:

dynamic_callable_model = DynamicCallableModel (model_tws, model_twa, model_combination)

model_name = 'ODR.—._%s.—.%s .~ %s.—.%s % (name_tws, name_twa, name._combination, name_weighting)

model_latex_output = "%s & %s & %s & %s ' % (name_tws, name_twa, name.combination, name_weighting)

odr_estimator = ODREstimator(dynamic_callable_model, dynamic_callable_model.initial_parameters(),

(this_weights_tws , this_weights_twa), this_.weights_bsp)

model_definitions .append ((model.name, model_latex_output, odr_estimator, dynamic_callable_model,

models3d. derivatives_model_tws_s_shaped_with_downturn_and_twa_gaussian))

def __add-ticks_to-plot():
ticks = range(—180, 181, 45)
plt.yticks(ticks , ticks)

def __plot_polar_fit(X_train, ax, configuration, estimator, fig, name, title):
with rc_context (RC_DEFINITION) :
start_end_tuples = []

fig = plt.figure(figsize=(15, 10))

135

Appendix A. Source Code

ax = plt.subplot(111, projection="polar”)

title = ‘Polar.Diagram..—_%s’ % name

ax.set_title('%s’ % title , va="bottom’)
ax.set_theta_direction(—1)

ax.set_-theta_offset (numpy.pi / 2.0)
ax.set_xticklabels (TWA.TICK LABELSWITHNAME) # Twa
ax.set_yticklabels ([2, 4, 6, 8, "10.Boat_Speed.[kn]’]) # Bsp
ax.set_ylim (o, 10)

for index, speed in enumerate([6., 8., 10., 12., 14., 16., 20.]):
x_plot = None
for angle in range(25, 180, 7):
if x_plot is None:
x_plot = [[speed, angle]]
else:
x-plot = numpy.concatenate ((x-plot, [[speed, angle]]), axis=o0)

err = numpy.asarray (--calculate_-errors(x-plot, X-train, None, None))

start, end = __calculate_start.and-end (err)
if SHOWWHOLELINES: # DEBUG show whole line
start = o

end = len(err)
start_end_tuples.append ((speed, x-_plot[start][1], x_plot[end][1]))

err = err[start:end]
x-plot = x_plot[start:end]
if len(x_plot) == o:

logger .debug(”Skipped._polar.line_for._speed.
continue

+ str(speed))

__polar_plot(ax, x_plot, estimator.predict(x_plot), err, ’Fit_at.%d.kn’ % (speed), LINE.COLORS[index])
_.add_orc_data_to_plot(ax, line_colors=LINE.COLORS)
ax.axis ([o, 2 * numpy.pi, o, 11])

plt.legend (loc=2, frameon=False, bbox_to_anchor=(1.05, 1),
title="True_Wind.Speed: ")
plt.draw ()
plt.savefig(configuration[’output-path’] + "plots/fit-3d-polar-’ + name + ’.png’)
if configuration[’show._plots’] is True:
plt.show ()
return ax, fig, title, start-end-tuples

def __plot.3d._fit.and.-animations(X.train, ax, configuration, estimator, fig, name, text, title):
for index, speed in enumerate([6., 8., 10., 12., 14., 16., 20.]):
x-plot = None
for angle in range(25, 180, 7):
if x_plot is None:
x_-plot = [[speed, angle]]
else:
x_plot = numpy.concatenate ((x-plot, [[speed, angle]]), axis=o0)

err = numpy.asarray(--calculate_errors(x_plot, X_train, None, None))

start , end = __calculate_start_and_end (err)
if SHOWWHOLELINES: # DEBUG show whole line
start = o

end = len(err)
err = err[start:end]

x_plot = x_plot[start:end]

if len(x_plot) == o:
logger .debug(”Skipped._line._for.speed.” + str(speed))
continue

y-plot = estimator.predict(x-plot)
ax.plot(x-plot[:, o], x-plot[:, 1], zs=y-plot, label="%s %dkn’ % (name, speed), color=LINE.COLORS[index])

upperband = y._plot + err

if PLOT_3D-SURFACE:
lowerband = y_plot

else:
lowerband = y_plot — err

136

Appendix A. Source Code

verts_pred = list(zip(x-plot[:, o], x_plot[:, 1], lowerband)) + list(
zip (x_plot[:, o][:: —1], x_plot[:, 1][::—1], upperband[::—1]))
poly = Poly3zDCollection ([verts_pred], closed=True, alpha=o0.3,
label="PI.(%g)"” % PREDICTION_PROBABILITY)
poly.set_facecolor (LINE.COLORS[index])
if SHOW_BOTTOM_RIGHTINFO_TEXT :
fig.text(0.95, 0.02, text, color="k’, fontsize=7, ha='right’, transform=ax.transAxes)
plt. title (title)

ax.view_init(25, 195)

”

plt.savefig(configuration[' output_path’] + ”plots/fit_.3d_” + name + ”.png”)
if configuration[’perform_animation_-plots’]:
ani = animation.FuncAnimation(fig, --animate, 360, interval=100, blit=False,
fargs=(ax,)) # 360 is the number of frames
ani.save (configuration[’output-path’] + ’‘animation/3d—fit.mps’, fps=15)

if configuration[’show_plots’] is True:
plt.show ()

_-plot_3d._surface(ax, prediction, errors, tws_axis, twa.axis):
tws_axis , twa.axis = numpy.meshgrid (tws_axis, twa_axis)
shape = tws_axis.shape
for index, error in enumerate(errors):
if error >= MAXERROR:

prediction[index] = numpy.nan

surface_fit = ax.plot_surface(tws.axis, twa.axis, prediction.reshape(shape), cmap=plt.cm.plasma, vmin=o0.0,
vmax=10.0, alpha=o0.9)

--plot_3d_spline_grid (ax, X_train, y_train):
X = X_train[:, o]
Y = X_train[:, 1]
Z = y_train
xi = numpy.linspace(5, 21, 15)
yi = numpy.linspace (30, 121, 10)
zi = scipy.interpolate.griddata ((X, Y), Z, (xi[None, :], yi[:, None]), method="cubic”)
xig, yig = numpy.meshgrid(xi, yi)
surface_spline = ax.plot_surface(xig, yig, zi,
linewidth=o0, cmap=plt.cm.YIOrBr, vmin=0.0, vmax=10.0, alpha=1.0)

--plot-3d_fit(configuration, is_scatter_-plot-without_fit, this_X_test, this_y_test):

fig = plt.figure(figsize=(20, 10))

ax = Axes3D(fig)

ax.set_xlim3d (configuration[’from_wind_speed '], configuration|[’to.wind._speed’])

ax.set_xlabel (" True.Wind_Speed”)

ax.set.ylim3d (configuration[’from_wind.angle’], configuration[’to.wind.angle’])

ax.set_ylabel ("True.Wind_Angle”)

ax.set.zlim3d (configuration[’from_boat.speed’], configuration[’to.boat_speed’])

ax.set_zlabel ("Boat.Speed”)

if is_scatter_plot.without_fit:

ax.view_init(15, 170)

ax.scatter (this_X_test[:, o], this_X_test[:, 1], this_y_test, marker="+’, c=this_y_test, cmap=plt.cm.coolwarm,
alpha=1.0) # test set

return ax, fig

_-animate (i, axis):

logger .debug(”animate %f” % i)
axis.azim = i

axis.elev = —52 — (—abs(i — 180) / 2)
plt.draw ()

return axis

--polar_plot(axes, x-plot, z, weights, label, linecolor):
rho = wind.converter. wind-angle_cart-2_pol(x-plot[:, 1])
phi = z

axes.plot(rho, phi, label=label, color=linecolor)
upperband = z + weights
lowerband = z — weights
for index, value in enumerate(upperband):
if value < o:
upperband[index] = o
for index, value in enumerate(lowerband):

137

Appendix A. Source Code

if value < o:
lowerband [index] = o

verts_pred = list(zip(rho, lowerband)) + list(
zip (rho[:: —1], upperband[:: —1]))
poly = PolyCollection ([verts_pred], closed=True, alpha=o0.3,
label="PI")
poly.set_facecolor (linecolor)
axes.add_collection (poly)

def __add_orc_data_to_plot(ax, line_colors):
other_angles = [52, 60, 70, 75, 80, 90, 110, 120, 135, 150, 165, 180]

velocities = [(6, 44.2, [4.61, 5.1, 5.42, 5.64, 5.69, 5.71, 5.62, 4.96, 4.42, 3.65, 3.25, 3.04, 2.95]),
(8, 42.7, [5.45, 6.09, 6.43, 6.67, 6.72, 6.73, 6.64, 5.93, 5.43, 4.70, 4.26, 4.01, 3.91]),
(10, 42.3, [6.17, 6.91, 7.22, 7.40, 7.43, 7.44, 7.37, 6.74, 6.25, 5.57, 5.16, 4.90, 4.79]),
(12, 42.1, [6.79, 7.45, 7.67, 7.79, 7.81, 7.82, 7.76, 7.36, 6.97, 6.33, 5.94, 5.69, 5.57]),
(14, 40.7, [6.98, 7.69, 7.91, 8.05, 8.08, 8.08, 8.03, 7.73, 7.48, 7.01, 6.65, 6.40, 6.28]),
(16, 39.6, [7.06, 7.79, 8.01, 8.23, 8.29, 8.32, 8.28, 7.99, 7.81, 7.51, 7.26, 7.05, 6.94]),
(20, 39.6, [7.20, 7.87, 8.1, 8.38, 8.52, 8.66, 8.78, 8.49, 8.31, 8.11, 7.98, 7.88, 7.82])]

other_angles_polar = wind.converter. wind.angle_cart-2_pol (numpy. asarray (other_angles))

for index, velocity in enumerate(velocities):
speed, best.angle, boat.speeds = velocity
best_angle_polar = wind.converter.wind_angle_cart_2_pol(best_angle)
ax.scatter (numpy.append ([best_angle_polar], other_angles_polar, axis=o0), boat.speeds, color=line_colors[index],
label="VPP_at %d.kn” % speed)

def __calculate_start_and_end (err):
start = o
end = o
for index, error in enumerate(err):
if not (error == 0.0 or error >= MAXERROR) :
start = index
break
for index, error in reversed(list(enumerate(err))):
if not (error == 0.0 or error >= MAXERROR) :
end = index
break
return start, end

def __calculate_errors(x-plot, X_train, predictions, model):

weights = []
for index, x in enumerate(x-plot):
trainingElementsInRange = [i for i in X_train if
i[o] >= (x[o] — 3) and i[o] < (x[o] + 3) and i[1] >= (x[1] — 1.5) and i[1] < (
x[1] + 1.5)]
if len(trainingElementsInRange) == o:
weights .append (0)
else:

weights.append(10 / sqrt(len(trainingElementsInRange)))
for index, weight in enumerate(weights):
if weight == o or weight > MAXERROR:
weights[index] = MAXERROR

return weights

Listing A.19: data’analysis/noise filtering.py

Performs calculation of the smoothness of true wind speed , true wind angle and boat speed.
Plots the differences in the consecutive values of each feature and calculates a confidence interval.

Author: Stefan Simon
License: CC BY-NCND 4.0

import matplotlib.pyplot as plt
import numpy

import polar.diagram.generator.converter.wind.converter as wind.converter

CONFIDENCEINTERVALINT = 99

138

Appendix A. Source Code

def __load._values(cursor, configuration):
parameters = (configuration[’from_timestamp '], configuration[’to_timestamp ’])
cursor . execute ('SELECT.mark, _bsp , .twa , .tws FROM_logger ’
" WHERE._bsp 1S .NOT.NULL"
" AAND_twa IS NOT_NULL"
" AAND_tws 1S "NOT_NULL"
" ANDL ((timestamp .>.? _AND._timestamp .<=.?) .OR_timestamp .IS _NULL)
, parameters)
val = cursor. fetchall ()
return val

def __plot(differences-array , upper, lower, title, unit, kernel.size, file_path, show_title=True):
plt.figure ()
if show._title:
plt. title ("Moving_.Average_Deviation_.Histogram.of.” + title)
bins = numpy.linspace(—1, 1, 0.1)
plt.hist(differences_array , bins=1000, log=True)
plt.xlabel ("difference.of_an_element.to.the_mean_of.the_.previous.”
plt.ylabel ("Frequency”)
label = str (CONFIDENCEINTERVALINT) + "%.confidence.interval\n” + str(lower) + “_to.” + str(upper)
lower_line = plt.axvline(lower, label=label, color="r", ls="—")
plt.axvline (upper, color="r", ls="—")
plt.legend (handles=[lower_line])
plt.grid (True)
plt.draw ()
plt.savefig(file_path)

+ str(kernel_size) + ”_elements_[” + unit + ”]”)

=N

def perform(db_handler, configuration):

Performs calculation of the smoothness of true wind speed , true wind angle and boat speed.
:param db_handler: database handle with a valid table 'logger’
cparam configuration: configuration array to control data range and outputs

_-print_twa (db_handler, configuration)

def __print_twa(db_handler, configuration):
differences_bsp = []

differences_twa = []

differences_tws = []

differences = []

count.result = __.load-values(db-handler.get.cursor (), configuration)

window._size = 5
for index, entry in enumerate(count-result):
if index >= window_size:
sum._bsp = o
sum-twa-o-to-360 = 0
sum_twa_180.-to_180 =
sum-tws = o
for i in range(—window._size+1, 1):
sum_bsp += count.result[index + i][1]
sum_twa_o_to_360 += wind_converter.wind_angle_convert_to_range_.o-to_-360(count_result[index + i][2])
sum_twa_180_-to_180 += wind_converter.wind_angle_convert_to_range_180_-to.180(count_result[index + i][2])
sum-tws += count.result[index + i][3]
differences_bsp .append (sum.bsp / window_size — entry[1])
diff_o_to_360 = wind_converter.wind_angle_convert_to_range_180_to_180(sum_twa_o_-to_360 / window_size —
wind_converter. wind_angle_convert_to_range_o_to_360 (entry[2]))
diff_180_to_.180 = wind.converter.wind._angle_convert_to.range_180_to_180(sum_twa_180_to.180 / window_size —
wind_converter.wind_angle_convert_to_range_180_to_180 (entry[2]))
if abs(diff_o_to_360) < abs(diff_180_to_180):
diff _twa = diff_o_to_360
else:
diff_twa = diff_180_-to_-180
differences_twa .append (diff_twa)
differences-tws .append (sum-tws / window.size — entry[3])
differences.append ((entry[o], sum.-bsp / window.size — entry[1], diff-twa, diff-o-to-360, sum_tws / window.size —
entry [3]))

o

quantiles = __calculate_quantiles ()
lower_bsp, upper.bsp = numpy. percentile (differences_bsp, quantiles)
--plot(differences_bsp , upper.bsp, lower.bsp, “Boat.Speed”, ”“kn”, window_size,
configuration['output_path’] + ”plots/moving.average_deviation_bsp.png”, show_title=configuration[’
show_title_in_plot’])

lower_twa, upper_twa = numpy.percentile (differences_twa, quantiles)

139

Appendix A. Source Code

_-plot(differences_twa , upper-twa, lower_twa, ”"True_.Wind_Angle”, ”“degree”, window._size,
configuration[’output_path’] + ”plots/moving_average_deviation_twa.png”, show_title=configuration|[”’
show_title_in_plot’])

lower_tws, upper_tws = numpy.percentile(differences_tws, quantiles)
--plot(differences_tws , upper_tws, lower_tws, ”"True.Wind.Speed”, “kn”, window_size,
configuration[’output_path’] + ”plots/moving_average_deviation_tws.png”, show_title=configuration[’
show_title_in_plot’])

outliers = []
db_handler. get_cursor () . execute ('UPDATE_logger .SET_outlier .=_o _.WHERE.outlier.IS_1")
for difference in differences:
if not (lower_bsp < difference[1] < upper_bsp and lower_twa < difference[2] < upper_-twa and lower_tws < difference[4] <
upper_tws) :
db-handler. get-cursor () . execute ('UPDATE_logger..SET.outlier .=.1.WHERE_.mark_1S..? ", (difference[o],))
outliers.append(difference[o])

db_handler.commit-transaction ()

plt.show ()

def __calculate_quantiles():
diff = (100.0 — float(CONFIDENCEINTERVALINT)) / 2.0
quantiles = [0.0 + diff , 100 — diff]
return quantiles

Listing A.20: data’analysis/weight calculation.py

Performs weight calculation of true wind speed , true wind angle and boat speed.

Assumes that values that follow an homogeneous sequence contribute more to the best fitted model.

Author: Stefan Simon
License: CC BY-NCND 4.0

import numpy
from matplotlib import pyplot as plt

def calculate.weights(X_-train, y-train, configuration):
Performs weight calculation of true wind speed , true wind angle and boat speed.
:param X_train: list with the training data set’s independent values. Tuple with TWS at index o and TWA at index 1
sparam y_train: list with the training data set’s dependent value. Represents the BSP.
:param configuration: specifies if histograms should be made (plot-weight_histograms) and the output path for plots (
output_path)
creturn: Tuple with standard deviation for BSP, TWS and TWA with the same length as input list

return __calculate_weights_continuously (X_train, y-_train, configuration)

def __calculate.weights_binary (X_train, y_train, configuration):

weights_bsp , weights_tws, weights_twa = __calculate_standard_deviations(X_train, y_train)
lower_bsp , upper_bsp = numpy.percentile (weights_bsp, [0.0, 95.0])

lower_tws , upper_tws = numpy.percentile (weights_tws, [0.0, 95.0])

lower_twa, upper_twa = numpy.percentile (weights_twa, [0.0, 95.0])
_.calculate_binary_weight(weights_bsp, lower_limit=lower_.bsp, upper_limit=upper_bsp)
_-calculate_binary_weight (weights_tws, lower_limit=lower_tws, upper_limit=upper_tws)
_-calculate_binary_weight(weights_twa, lower_limit=lower_twa, upper_limit=upper_twa)

if configuration[’plot_-weight_histograms’] is True:
_-plot_histogram (weights_bsp , 'Histogram_of_normalized.boat_speed_weights’, filepath=configuration[output_path’] +
plots/weights_for_fit_3d_bsp .png”, show_plot=configuration[’show_weight_histograms’] is True)
_-plot_histogram (weights_tws , 'Histogram_of_normalized.true_wind.speed._weights’, filepath=configuration[output_path’]
+ “plots/weights_for_fit_3d_tws.png”, show_plot=configuration[’show_weight_histograms’] is True)
_-plot_histogram (weights_twa, "Histogram_of_normalized.true_wind.angle_weights’, filepath=configuration[output_path’]
+ “plots/weights_for_fit_3d_twa .png”, show_plot=configuration[’show_weight_histograms’] is True)

”

return weights_bsp, weights_tws, weights_twa

def __calculate.weights_continuously (X.train, y._train, configuration):
weights_bsp , weights_tws, weights_twa = __calculate.standard-deviations(X_train, y-train)
lower_bsp, upper.bsp = numpy. percentile (weights_bsp, [0.1, 95.0])

140

def

def

def

def

Appendix A. Source Code

lower_tws , upper_tws = numpy.percentile (weights_tws, [0.1, 95.0])
lower_twa, upper_twa = numpy.percentile (weights_twa, [0.1, 95.0])

if configuration[’plot-weight_histograms’] is True:
_-plot_histogram (weights_bsp , 'Histogram_of_boat.speed.standard.deviations’, filepath=configuration[output_path’] +
plots/standard_deviations_for_fit_.3d_bsp.png”, show_plot=configuration[’show_weight_histograms’] is True)
--plot_histogram (weights_tws , 'Histogram_of_true.wind.speed_standard.deviations’, filepath=configuration[output_path’]
+ "plots/standard._deviations_for_fit_3d_tws.png”, show_plot=configuration[’show_weight_histograms’] is True)
--plot_histogram (weights_twa, ’Histogram._of_true.wind.angle_standard.deviations’, filepath=configuration[output_path’]
+ "plots/standard._deviations_for_fit_3d_twa.png”, show_plot=configuration[’show_weight_histograms’] is True)

_-invert_and_limit (weights_bsp , lower_limit=lower_bsp, upper_limit=upper_bsp)
_-invert_and_limit (weights_tws, lower_limit=lower_tws, upper_limit=upper_tws)
_-invert_and_limit (weights_twa, lower_limit=lower_twa, upper_limit=upper_twa)

weights_bsp.scaled = weights_bsp / numpy.mean(weights_bsp)
weights_tws_scaled = weights_tws / numpy.mean(weights_tws)
weights_twa.scaled = weights_.twa / numpy.mean(weights_twa)

if configuration[’plot-weight_histograms’] is True:
_-plot_histogram (weights_bsp_scaled , 'Histogram.of.normalized_boat.speed.weights’, filepath=configuration[output_path’
] + "plots/weights_for_fit-3d-bsp .png”)
--plot_histogram (weights_tws_scaled , 'Histogram.of._normalized_true.wind.speed_weights’, filepath=configuration[’
output_path’] + ”plots/weights_for_fit_.3d_tws.png”)
--plot_histogram (weights_twa_scaled , 'Histogram.of._normalized_true.wind.angle_weights’, filepath=configuration[’
output_path’] + ”plots/weights_for_fit_3d_twa.png”)

weights_bsp_scaled.and_limited = __limit(weights_bsp_scaled, lower_limit=0.0, upper._limit=5.0)
weights_tws_scaled_and_limited = __limit(weights_tws_scaled , lower_limit=0.0, upper._limit=5.0)
weights_twa_scaled_and_limited = __limit(weights_twa_scaled, lower_limit=0.0, upper._limit=5.0)

if configuration[’plot-weight_histograms’] is True:
_-plot_histogram (weights_bsp_scaled_and_limited , ’'Histogram_of_normalized._boat_speed.weights’, filepath=configuration[’
output_path’] + ”plots/weights_for_fit.3d_bsp.png”)
--plot_histogram (weights_tws_scaled_and_limited , ’'Histogram_of_.normalized._true_wind.speed.weights’, filepath=
configuration["output_path’] + ”plots/weights_for_fit_3d_tws.png”)
--plot_histogram (weights_twa_scaled_and_limited , ’'Histogram_of_normalized._true_wind.angle_.weights’, filepath=
configuration["output_path’] + ”plots/weights_for_fit_3d_twa.png”)

return weights_bsp_scaled_and_limited , weights_tws_scaled_and_limited , weights_twa_scaled_and_limited

--invert.and.limit (weights, lower_limit, upper.limit):
for index, weight in enumerate(weights):
if weight <= lower_limit or weight > upper.-limit or weight == o.0:
weights[index] = o.0
else:
weights[index] = 1 / (weight=*x2)

_.calculate_binary.weight(weights, lower_limit, upper_limit):
for index, weight in enumerate(weights):
if weight <= lower_limit or weight > upper.limit or weight == o.0:
weights[index] = o.0
else:
weights[index] = 1.0

_-limit (weights, lower_limit, upper_limit):
weights = weights.copy ()
for index, weight in enumerate(weights):
if weight < lower_limit:
weights[index] = lower_limit
elif weight > upper_limit:
weights[index] = upper_limit
else:
weights[index] = weight
return weights

--plot_histogram (x, title , filepath=None, show.plot=False):
plt.figure(figsize=(20, 10))

n, bins, patches = plt.hist(x, 50, facecolor="green’, alpha=o0.75)
plt. title (title)

plt.grid (True)

plt.draw ()

if filepath is not None:
plt.savefig(filepath)

141

Appendix A. Source Code

if show_plot:
plt.show ()

def __calculate_standard._deviations (X_train, y_train):
if len(X_train) != len(y_train):
raise ValueError(”Arrays_should_have_equal_length”)

weights_bsp [1
weights_tws = []
weights_twa = []

window_size = 13
for index, entry in enumerate(X_train):
if index + 2 >= window_size and index + 2 < len(X-train):
X-window = X_train[index + 2 — window.size:index + 2]
bsp-window = y.train[index + 2 — window.size:index + 2]
tws_-window = X.window[:, o]

twa-window = X.window[:, 1]

bsp-weight = __calculate_std (bsp-window)

tws_weight = __calculate_std (tws-window)

twa.weight = __calculate_std (twa_window)
else:

bsp.-weight = 0.0
tws_weight = 0.0
twa_weight = 0.0

weights_bsp .append (bsp-weight)
weights_tws.append (tws_weight)
weights_twa.append (twa_weight)

return weights_bsp, weights_tws, weights_twa

def __calculate_std (array):
std = numpy.std (array)
return std

Listing A.21: data’analysis/polar’diagram plotter.py

import numpy

import pandas

from matplotlib import rc_context, colors
import matplotlib.pyplot as plt

from scipy.interpolate import interpid
from scipy import mean

from polar.diagram._generator.converter import wind.converter
from polar.diagram._generator. util.strings import TWA TICK.LABELS.WITH.NAME

RC_DEFINITION = {}

LINE.COLORS = [colors.rgb2hex([o.0, 0.0, 0.5]),
colors.rgb2hex([o.0, 0.0, 1]),
colors.rgb2hex([o.0, 0.38, 1]),
colors.rgb2hex([o.0, 0.83, 1]),
colors.rgb2hex([0.3, 1.0, 0.67]),
colors.rgb2hex([1.0, 0.48, o]),
colors.rgb2hex([1.0, o0.07, o]),
colors.rgb2hex([o.5, 0.0, o])

1

class PolarFit(object):
other_angles = [52, 60, 70, 75, 80, 90, 110, 120, 135, 150, 165, 180]

velocities = [(6, 44.2, [4.61, 5.1, 5.42, 5.64, 5.69, 5.71, 5.62, 4.96, 4.42, 3.65, 3.25, 3.04, 2.95]),
(8, 42.7, [5.45, 6.09, 6.43, 6.67, 6.72, 6.73, 6.64, 5.93, 5.43, 4.70, 4.26, 4.01, 3.91]),
(10, 42.3, [6.17, 6.91, 7.22, 7.40, 7.43, 7-44, 7.37, 6.74, 6.25, 5.57, 5.16, 4.90, 4.79]),
(12, 42.1, [6.79, 7.45, 7.67, 7.79, 7.81, 7.82, 7.76, 7.36, 6.97, 6.33, 5.94, 5.69, 5.57]),
(14, 40.7, [6.98, 7.69, 7.91, 8.05, 8.08, 8.08, 8.03, 7.73, 7.48, 7.01, 6.65, 6.40, 6.28]),
(16, 39.6, [7.06, 7.79, 8.01, 8.23, 8.29, 8.32, 8.28, 7.99, 7.81, 7.51, 7.26, 7.05, 6.94]),
(20, 39.6, [7.20, 7.87, 8.1, 8.38, 8.52, 8.66, 8.78, 8.49, 8.31, 8.11, 7.98, 7.88, 7.82])]

def __init__(self, vpp, estimator, start.end_tuples):
self .start_end_tuples = start_end._tuples

142

Appendix A. Source Code

self.wind_speeds = [6., 8., 10., 12., 14., 16., 20.]
self .model = estimator
if vpp is not None:
self . velocities = vpp
self.data = pandas.DataFrame ()
possible_angles = sorted([39.0])
self.data[(’index’, o)] = pandas.Series (numpy.ones(len(possible_angles) + len(self.other_angles)), index=numpy.append (
possible_angles , self.other_angles, axis=o0))

for this_tws, best_.twa, bsp in self.velocities:
vpp-series = pandas.Series(bsp, index=numpy.append([best_-twa], self.other_angles, axis=o))
fit_series = pandas.Series (index=numpy.append ([best_-twa], self.other_angles, axis=o0))
for this_twa in self.__x_data_for_spline_interpolation (this_tws):
if self.start_of_fitted_spline (this_tws) <= this_twa <= self.end_of_fitted_spline (this_tws):
fit_series[this_-twa] = self.model.predict ([this-tws , this_twa]) [o]
self.data[(’fit’, this-tws)] = fit_series
self .data[('vpp’, this_-tws)] = vpp-series
print(self.data)

def __x_data_for_spline_interpolation (self, tws):
for this_tws, best.twa, bsp in self.velocities:
if this_tws == tws:
start_for_spline = self.start_of_fitted_spline (tws)
if start_for_spline < best_twa:
return numpy.append ([start_for_spline , best.twa], self.other.angles, axis=o0)
else:
return numpy.append ([best_twa], self.other_angles, axis=o)
return []

def x_data_for_spline_interpolation (self, tws):
return self.data[’fit’, tws].index

def y_data_for_spline_interpolation (self , tws):
bsp.array = []
percent = min(1.0, mean(1.0 / self.data[’vpp’, tws] * self.data[’fit’, tws]))

for key in self.data[’fit’, tws].index:
fitted_value = self.data[’fit’, tws][key]
vpp-value = self.data['vpp’, tws][key]
if fitted_value is not None and not numpy.math.isnan(fitted_value):
if key + 15 >= self.end_of_fitted_spline (tws):
bsp_array .append(fitted_value — 0.33 * (fitted_value — vpp_value * percent))
elif key + 5 >= self.end-of_fitted-spline (tws):
bsp-array.append(fitted_-value — 0.66 x (fitted-value — vpp-value * percent))
else:
bsp-array .append(fitted_-value)
elif vpp-value is not None and not numpy.math.isnan(vpp-value):
bsp.array.append(vpp-value * percent)
elif len(bsp.array) > o:
bsp.array .append(bsp.array[—1])
else:
bsp.array .append (0.0)
return bsp.array

def __minimal_bsp (self , tws, twa_list, bsp_orc):
min_bsp = []
for index, twa in enumerate(twa_list):
if self.start_of_fitted_spline (tws) <= twa <= self.end.of_fitted_spline (tws):
min_bsp .append (min(self .model. predict ([tws, twa]), bsp_orc[index]))
else:
min_bsp .append (bsp_orc[index])
return min_bsp

def start_of_fitted_spline(self, tws):
for this_tws, start, end in self.start_end_tuples:
if this_tws == tws:
return max(start, 39.0)
return o

def end.of_fitted-spline(self, tws):
for this_tws, start, end in self.start-end_-tuples:
if this_tws == tws:
return end
return 180

def plot._polar_fit(data: PolarFit, configuration, name="fit"):
with rc_context (RC_DEFINITION) :
fig = plt.figure(figsize=(15, 10))
ax = plt.subplot(111, projection="polar’)

143

Appendix A. Source Code

title = ‘Polar.Diagram.._—_%s’ % name

ax.set_title('%s’ % title , va="bottom’)
ax.set_theta_direction(—1)

ax.set-theta_offset (numpy.pi / 2.0)
ax.set_xticklabels (TWA.TICK LABELSWITHNAME) # Twa
ax.set_yticklabels ([2, 4, 6, 8, "10.Boat_Speed.[kn]’]) # Bsp
ax.set_ylim (o, 10)

for index, speed in enumerate(data.wind_speeds):

spline_.x = data.x_data_for_spline_interpolation (speed)

spline_x_polar = wind_converter.wind_angle_cart_2_pol(spline_x)

spline_y = data.y.data_for_spline_interpolation (speed)
interpolated_function = interpid(spline_x_polar, spline_y, kind=’cubic’)

poli = wind_converter.wind.angle.cart-2_pol(data.start-of_fitted-spline (speed))
pol2 = wind_converter.wind.-angle.cart-2_pol(data.end-of_fitted_spline (speed))

if min(spline-x-polar) < pol1:
spline_parti = numpy.linspace (min(spline_x-polar), poli, num=41, endpoint=True)
plt.plot(spline_parti, interpolated._function(spline_parti), "—’, color=LINE.COLORS[index], alpha=o0.9)

spline_part2 = numpy.linspace(pol1, pol2, num=41, endpoint=True)
plt.plot(spline_part2, interpolated_function(spline_part2), '—’, color=LINE.COLORS[index], alpha=1.0, label="%d_kn”
% speed)

if pol2 < max(spline_x_polar):
spline_part3 = numpy.linspace(pol2, max(spline_x_polar), num=41, endpoint=True)
plt.plot(spline_part3, interpolated_function(spline_part3), —’, color=LINE.COLORS[index], alpha=o0.9)

ax.axis ([o, 2 * numpy.pi, o, 11])

plt.legend (loc=2, frameon=False, bbox_to_anchor=(1.05, 1),
title="True_Wind.Speed: ")
plt.draw ()
plt.savefig(configuration[output_path’] + “plots/fit_.3d_polar_pretty.
if configuration[’show_plots’] is True:
plt.show ()
return len(data.wind_speeds)

’ ’

+ name + ’.png’)

Listing A.22: data’analysis/estimator/nonlinear’estimator.py
Custom estimator for non—linear regression.

Allows fits with 2 dimensions.
Does not support errors in multiple variables.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

import numpy as np

from scipy.optimize import curve_fit

from sklearn.base import BaseEstimator

from sklearn.utils.validation import check_X_y, check._array, check_is_fitted

logger = logging.getLogger('polar.data_analysis.estimator’)

class NonlinearEstimator (BaseEstimator):

popt = None
pcov = None

def __init__(self, objective_func):
self.objective_func = objective_func
self .X_ = None
self.y_ = None

de

-

fit(self, X, y):

X, y = check X_y (X, y)
X = np.ravel(X).T

y = np.ravel(y).T

self .popt, self.pcov = curve_fit(self.objective_-func, X, y, method='Im’, maxfev=800000)
logger.debug(”Nonlinear_Fit_.Result:.”)

144

Appendix A. Source Code

logger .debug(self.popt)

self.__calculate_and_print_chi_squared (X, y, self.objective_-func, self.popt, 0.3)

self . X_ = X
self.y. =y
return self

=N

def predict(self, X):

check_is_fitted (self , ['X_", "y_."])
X = check_array (X)
X = np.ravel(X).T

func.argument_count = self.objective_func._.code.-.co-argcount

if func.argument.count == 1:
return self.objective_func (X)
elif func.argument.count == 2:

return self.objective_func (X, self.popt[o])
elif func.argument_count == 3:

return self.objective_func (X, self.popt[o], self.popt[1])
elif func.argument_count == 4:

return self.objective_func (X, self.popt[o], self.popt[1], self.popt[2])

elif func.argument_count == 5:

return self.objective_func(X, self.popt[o], self.popt[1], self.popt[2],

elif func.argument_count ==

return self.objective_func (X, self.popt[o], self.popt[1], self.popt[2],

elif func.argument_count == 7:

return self.objective_func (X, self.popt[o], self.popt[1], self.popt[2],

elif func.argument_count ==

return self.objective_func (X, self.popt[o], self.popt[1], self.popt[2],

self .popt[6])
else:
raise TypeError(”Only_functions._up.to_.6_arguments._are_allowed”)

def __calculate_and_print_chi_squared (self , xdata, ydata, func, popt, xerror):

chi_squared = np.sum(((func(xdata, *popt) — ydata) / xerror) sx 2)
reduced_chi_squared = (chi_squared) / (len(xdata) — len(popt))

self .popt[3])
self .popt[3], self.popt[4])
self .popt[3], self.popt[4], self.popt[5])

self .popt[3], self.popt[4], self.popt[s5],

logger .debug(’The_.degrees_of_freedom._for_this_test_.is’, len(xdata) — len(popt))

logger.debug(’The.chi_squared.value_is:.", (”%.2f” % chi_squared))

logger .debug(’The_.reduced._chi_.squared_value_is:.’, (”%.2f” % reduced_chi_squared))

Listing A.23: data'analysis/estimator/odr estimator'2d.py

Custom estimator for non—linear regression.
Allows fits with 2 dimensions and supports errors in multiple variables.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

import numpy as numpy

import scipy.odr.odrpack as odrpack

from sklearn.base import BaseEstimator

from sklearn.utils.validation import check_X_y, check_array, check_is_fitted

logger = logging.getLogger('polar.data_analysis.estimator’)

class ODREstimator2d (BaseEstimator) :
popt = None
pcov = None
output = None
beta_cor = None
sum_square = None
sum_square_delta = None
sum_square_eps = None
inv_condnum = None
rel_error = None

def __init..(self, objective_-func, initial-values , standard.deviations.x, standard.deviations.y,

max-iterations=1000):
self . max.iterations = max-iterations
self .objective_func = objective_func

145

=N

-

Appendix A. Source Code

def helper_function (parameters, x):
return self.objective_func(x, xparameters)

self.callable_objective_func = helper_function

self .model = odrpack.Model(self.callable_objective_func)
self.initial_values = initial_values

self .sx = numpy.add(standard._deviations_x, 0.0000000000001)
self .sy = numpy.add(standard.deviations_.y , 0.0000000000001)

fit(self, X, y):
X, y = check X_y (X, y)

tws = X[:, o]

mydata = self.__create._data(tws, y, self.sx, self.sy)
myodr = odrpack.ODR(mydata, self.model, betao=self.initial-values , maxit=self.max_.iterations)

myoutput = myodr.run ()

self .popt = myoutput.beta

self .pcov = myoutput.cov_beta

self.sum_square = myoutput.sum.square

self .sum_square._delta = myoutput.sum_square_delta
self.sum._square_eps = myoutput.sum.-square-eps
self .inv.condnum = myoutput.inv_condnum

self .rel_error = myoutput.rel_error

self .output = myoutput

data_set_length = len(y)
self. __print_output(myoutput, data_set_length)

logger .debug(”\nCorrelation_Matrix.:")

cov = myoutput.cov_beta

cor = numpy.copy (cov)

for i, row in enumerate(cov):

for j in range(len(myoutput.beta)):

cor_i_j = cov[i, j] / numpy.sqrt(cov[i, i] * cov[j, j])
cor[i, j] = cor_i_j
print(”{0:<.8.3g}”.format(cor_i_j),

end="")
print ()

self .beta_cor = cor

self . X. = X

self.y. =y

return self

predict(self, X):
check_is_fitted (self , ['X.", "y-"])
X = check.array (X)

tws = X[:, o]
return self.model. fcn(self . popt, (tws))

__print_output(self, myoutput, data_set_length):

logger .debug(”ODR.Fit_Result:.")

myoutput. pprint ()

logger .debug (" ")

logger .debug(”Sum.of _squared.errors ... %s” , myoutput.sum_square)

logger .debug(”Sum.of_squared.error.delta _%s”, myoutput.sum_square_delta)
logger.debug(”Sum.of_squared.error.eps..._%s”, myoutput.sum_square_eps)

logger .debug(”Quasi_Chi"2 oo %s” , myoutput.res_var)

logger .debug(” “)

weight_matrix = numpy.vstack((1 / self.sy, 1 / self.sx))

rchiz_min_weighted = numpy.sum(myoutput.eps.T * weight_matrix * myoutput.eps)

dof = data_set_length — len(self.initial_values)

logger .debug(”Chi"2_min_self oo %s” , numpy .sum (numpy . power (myoutput.eps, 2)))
logger .debug(”Reduced-Chi"2.self . %s” , numpy .sum (numpy . power (myoutput.eps, 2)) / dof)
logger.debug(”Chi"2._min_self._weighted.._._%s”, rchiz_.min_-weighted)

logger .debug(”Reduced.-Chi"2.min.weighted %s”, rchi2z_min_-weighted / dof)

logger .debug(” “)

-create.weighted_data(self, twa, tws, y, sx, sy):
return odrpack.RealData ((tws, twa), y, sx=sx, sy=sy)

_-create_data(self, tws, y, sx, sy):
return odrpack.Data((tws), y)

146

Appendix A. Source Code

Listing A.24: data’analysis/estimator/odr estimator.py

Custom estimator for non—linear regression.
Allows fits with 3 dimensions and supports errors in multiple variables.

Author: Stefan Simon
License: CC BY-NCND 4.0
import logging

import numpy as numpy

import scipy.odr.odrpack as odrpack

from sklearn.base import BaseEstimator

from sklearn.utils.validation import check_X_y, check_array, check_is_fitted

logger = logging.getLogger('polar.data_analysis.estimator’)

class ODREstimator (BaseEstimator):
popt = None
pcov = None
output = None
beta_cor = None
sum_square = None
sum_square_delta = None
sum_square_eps = None
inv_condnum = None
rel_error = None

def __init..(self, objective_-func, initial-values , weights_X=None, weights_.y=None, max_.iterations=1000):

self .objective_func = objective_func
self .model = odrpack.Model(objective_func)
self .initial_.values = initial_values

self . weights_ X = weights_X

self .weights.y = weights_y

self . max_iterations = max_iterations
self.X_. = None

self.y. = None

self.dof = None

de

-

fit(self, X, y):
X, y = check X_y (X, y)

tws = X[:, o]
twa = X[:, 1]

mydata = odrpack.Data((tws, twa), y, wd=self.weights.X, we=self.weights_y)
myodr = odrpack.ODR(mydata, self.model, betao=self.initial_values , maxit=self.max_iterations)
myodr. set_job (fit_type=2)

myoutput = myodr.run ()

self.popt = myoutput.beta

self.pcov = myoutput.cov_beta

self.sum_square = myoutput.sum.square
self.sum._square.delta = myoutput.sum._square_delta
self.sum.square_eps = myoutput.sum-square-eps
self .inv_.condnum = myoutput.inv_condnum
self.rel_error = myoutput.rel_error

self .output = myoutput

data.set.length = len(y)
self . __print_output(myoutput, data.set_length)

logger.debug(”\nCorrelation._.Matrix.:")
cov = myoutput.cov_beta
cor = numpy.copy (cov)
for i, row in enumerate(cov):
for j in range(len(myoutput.beta)):

cor_i_j = cov[i, j] / numpy.sqrt(cov[i, i] * cov[j, j])
cor[i, j] = cor.i_j
print(”{0:<.8.3g}".format(cor_i_j),
end="")
print ()

self.beta_cor = cor

self . X_ = X

self.y. =y

147

Appendix A. Source Code

return self

de

-

predict(self, X):
check_is_fitted (self , ['X.", "y-"])
X = check_array (X)

tws = X[:, o]
twa = X[:, 1]

return self.objective_func(self.popt, (tws, twa))
def __print_output(self, myoutput, data_set_length):

logger .debug(”ODR.Fit _Result:.")
myoutput. pprint ()

logger .debug(”)
logger .debug(”Sum.of_squared..errors.(chi"2). %s”, myoutput.sum._square)
logger .debug(”Sum.of .squared..error.delta_.__.%s”, myoutput.sum-square.-delta)
logger .debug(”Sum.of_squared._error.eps......%s”, myoutput.sum.square-eps)
logger .debug(”reduced.chi®2cacoaaoaaaao ool %s” , myoutput.res_var)
logger .debug(” “)
self .dof = data_set_length — len(self.initial_values)
logger .debug(”#data %s”, data_set_length)
logger.debug(”variables %s”, len(self.initial-values))
logger . debug ("DOF. %s”, self.dof)
logger.debug(”Chi"2.min_self ool %s” , numpy .sum (numpy . power (myoutput.eps, 2)))
logger .debug(”Reduced .Chi"2.self oo %s” , numpy .sum (numpy . power (myoutput.eps, 2)) / self.dof)
logger .debug (™)
logger.debug(”Chi"2.min_self NEW. oo Y%s”,
numpy . sum (numpy . power (myoutput.eps, 2)) + numpy.sum(numpy.power(myoutput.delta, 2)))
logger .debug(”Reduced .Chi"2._self NEW....___. Y%os”,

(numpy . sum (numpy . power (myoutput.eps, 2)) + numpy.sum(numpy.power(myoutput.delta, 2))) / self.dof)
logger .debug (" i

Listing A.25: data’analysis/models/models2d.py

import numpy

def all_combination_models () :
return [
("no_combination”, None),
(”linear._combination”, polynomial_i_degree)

de

-

all_models () :
return [
(”2-degree_polynomial”, polynomial_2_degrees),
(”3-degree_polynomial”, polynomial_-3.degrees),
(”4-degree_polynomial”, polynomial_4.degrees),
(”6-degree_polynomial”, polynomial_-6.degrees),
("Inverted.parabola”, inverted_parabola),
(”Concave_with_downturn”, concave_with_.downturn),
(”Concave_with_saturation_limit”, concave.-with_saturation._limit),
(”Concave_with_saturation_.limit.and_.downturn”, concave_with_saturation_limit_and-downturn),
(”S—shaped._with_saturation_limit”, s_shaped_-with_saturation_limit),
(”S—shaped.with_saturation_limit.and_.downturn”, s_shaped.with_saturation_limit_and_-downturn),
(”Gompertz_model”, gompertz_model),
(”Gaussian_model”, gaussian_model),
(”Gaussian_.model_with_offset”, gaussian.model_with_offset),
(”Gaussian_.mixture.model”, gmm_model) ,

def polynomial_1_degree(x, a, b):
return a + b * x

def polynomial_2_degrees(x, a, b, c):
return a + b * x + ¢ * pow(x, 2)

def polynomial_3.degrees(x, a, b, ¢, d):
return a + b * x + ¢ * pow(x, 2) + d * pow(x, 3)

def polynomial_4.degrees(x, a, b, c, d, e):
return a + b * x + ¢ * pow(x, 2) + d x pow(x, 3) + e x pow(x, 4)

148

Appendix A. Source Code

def polynomial_6.degrees(x, a, b, ¢, d, e, f, g):
return a + b * x + ¢ * pow(x, 2) + d x pow(x, 3) + e x pow(x, 4) + f * pow(x, 5) + g * pow(x, 6)

de

=N

inverted_parabola(x, a, b, ¢): return b + ¢ * pow(x — a, 2)

def concave_with_.downturn(x, a, b, c): return a + b * x — ¢ * pow(x, 2)

def concave_with_saturation_limit(x, a, b, ¢, d): return ¢ — a * numpy.exp(—b * x)

def concave.with_saturation_limit.and-downturn(x, a, b, ¢, d): return ¢ — a * numpy.exp(—b * x) — d * pow(x, 2)

def s_shaped-with_saturation_limit(x, a, b, ¢, d): return ¢ / (1 + numpy.exp(a — b * x))

def s_shaped.with_saturation_limit_and_downturn(x, a, b, ¢, d): return ¢ / (1 + numpy.exp(a — b * x)) — d * pow(x, 2)

def gompertz.model(x, a, b, c): return c * numpy.exp(— a * pow(b, x)) # nach BACKHAUS

def gompertz_model(x, a, b, c): return c % numpy.exp(— a = numpy.exp(—b = x)) # nach Wikipedia
def gaussian.model(x, a, b, c¢): return a * numpy.exp(—o0.5 * pow((x-b), 2) / c)
def gaussian_model_with_offset(x, a, b, ¢, z): return a * numpy.exp(—o0.5 * pow((x-b), 2) / c) + z

def gmmmodel(x, a, b, ¢, d, e, f, z): return a * numpy.exp(—o0.5 * pow((x=b), 2) / (c)) + d * numpy.exp(—o0.5 * pow((x—e), 2) /
f) + z

Listing A.26: data’analysis/models/models3d.py

import numpy

from numpy.ma import exp
from scipy.odr import odrpack

class DynamicModel (odrpack.Model) :

def __init-_(self, model-tws, model-twa, model-tws_times_-twa=None) :
self.model-tws = model-tws
self.model_-twa = model_twa
self . model_tws_times_twa = model_tws_times_twa

def helper_function (parameters, x):
return o

super (). __init__(helper_function)

class DynamicCallableModel :

def __init_-_(self, model-tws, model.twa, model_tws_times_-twa=None) :
self . model_-tws = model_-tws
model_tws_function_length = self.model_tws.__code...co.argcount—1
self .model_-twa = model_twa
model_twa_function_length = self.model_twa.__code...co.argcount—1
self . model_tws_times_-twa = model_tws_times_twa
if self.model_tws_times_twa is not None:

model_tws_times_twa_function_length = self.model_tws_times_twa.__code__.co_argcount—1
else:
model_tws_times_twa_function_length = o
self.first_.end = model-tws_function-length
self.second.end = self.first_.end + model-twa_function_length
self.third.end = self.second-end + model-tws_times_twa_function_-length

def __call._(self, parameters, x):
try:
tws, twa = x

149

Appendix A. Source Code

except:
tws = x[:, o]
twa = x[:, 1]
tws_value = self.model_tws(tws, xparameters[o:self.first_end])
twa_value = self.model_twa(twa, xparameters[self.first_end:self.second_end])
if self.model_tws_times_twa is not None:
tws_times_twa_value = self.model_tws_times_twa (tws * twa, xparameters[self.second_end:self.third_end])
else:
tws_times_twa_value = o
return tws_value + twa_value + tws_times_twa_value

def initial_parameters(self):
return numpy.ones(self.third_end). tolist ()
return numpy.ndarray ((self.third_end ,) , float)+1

def model-tws_concave-with_.downturn_and.-twa(parameters, x):
a, b, ¢, d, e, f, g = parameters

try:
tws, twa = x
except:
tws = x[:, o]
twa = x[:, 1]

return a + b * tws — ¢ * pow(tws, 2) + d * twa — pow(twa — e, 2) * f + g * tws * twa

def derivatives_model_tws_concave_with_.downturn_and_twa (parameters, data, dflags):

x, y, err, weights_bsp, weights_tws, weights_twa = data # Data arrays is a tuple given by programmer
tws = x[:, o]

twa = x[:, 1]

a, b, ¢, d, e, f, g = parameters # Parameters which are adjusted by kmpfit

pderiv = numpy. zeros ([len(parameters), len(x)])
for i, flag in enumerate(dflags):

if flag:
if i == o: #a
pderiv[o] = 1.0 # copy from derive_model
elif i == 1: # b
pderiv[1] = tws
elif i == 2: # ¢
pderiv[2] = — pow(tws, 2)
elif i == 3: #d
pderiv[3] = twa
elif i == 4: # e
pderiv[g] = 2 * f x (= e x twa)
elif i == 5: # f
pderiv[5] = — pow(—e + twa, 2)
elif i == 6: # g
pderiv[6] = tws * twa

return pderiv/—err

HAHHHHH AR

def model_tws_times_twa._s_shaped_with_.downturn (parameters, x):
a, b, ¢, d, m, n, o, p, t = parameters
try:
tws, twa = x
except:
tws = x[:, o]
twa = x[:, 1]
return ¢ / (1 + exp(a — b = tws)) — d * twsx*2 + m / (1 + exp(n — 0 * twa)) — p * twa*=x2 + t * tws x twa

def derivatives_.model_tws_times_twa_s_shaped_with_.downturn (parameters, data, dflags):
x, y, err, weights_bsp, weights_tws, weights_twa = data # Data arrays is a tuple given by programmer
tws = x[:, o]
twa = x[:, 1]
a, b, ¢, d, m n, o, p, t = parameters # Parameters which are adjusted by kmpfit
pderiv = numpy.zeros ([len(parameters), len(x)])
for i, flag in enumerate(dflags):

if flag:
if i == o: #a
pderiv[o] = —cxexp(a — bxtws)/(exp(a — bxtws) + 1)*%2 # copy from derive_model
elif i == 1: # b
pderiv[1] = cxtwskexp(a — bxtws)/(exp(a — bxtws) + 1)x*x2
elif i == 2: # ¢
pderiv[2] = 1/(exp(a — bxtws) + 1)
elif i == 3: #d
pderiv[3] = —tws*x2
elif i == 4: #m

150

Appendix A. Source Code

pderiv[4] = 1/(exp(n — oxtwa) + 1)
elif i == 5: #n

pderiv[5] = —-mxexp(n — oxtwa)/(exp(n — oxtwa) + 1)s%%2
elif i == 6: # o

pderiv[6] = mxtwaxexp(n — oxtwa) /(exp(n — oxtwa) + 1)%x2
elif i == 7: #p

pderiv[7] = —twa*x2
elif i == 8: # ¢

pderiv[8] = tws x twa

return pderiv/—err

def model-tws.s_shaped-with.downturn.and-twa-gaussian (parameters, x):
a, b, ¢, d, m, n, o = parameters

try:
tws, twa = X
except:
tws = x[:, o]
twa = x[:, 1]

return ¢ / (1 + exp(a — b x tws)) — d * twsx*2 + m x exp(—0.5 * pow((twa—n) / o, 2))

def derivatives.model_tws_s_shaped_with_.downturn_and_twa._gaussian(parameters, data, dflags):

x, y, err, weights_bsp, weights_tws, weights_twa = data # Data arrays is a tuple given by programmer
tws = x[:, o]

twa = x[:, 1]

a, b, ¢, d, m, n, o = parameters # Parameters which are adjusted by kmpfit

pderiv = numpy. zeros ([len(parameters), len(x)])
for i, flag in enumerate(dflags):

if flag:
if i == o0: #a
pderiv[o] = —cxexp(a — bxtws)/(exp(a — bxtws) + 1)x%2 # copy from derive_model
elif i == 1: # b
pderiv[1] = cxtwsxexp(a — bxtws) /(exp(a — bxtws) + 1)xx2
elif i == 2: # ¢
pderiv[2] = 1/(exp(a — bxtws) + 1)
elif i == 3: #d
pderiv[3] = —twsxx2
elif i == 4: #m
pderiv[4] = exp(—o0.5%(—n + twa)**2/0%*2)
elif i == 5: #n
pderiv[5] = —o.5smk(2*%n — 2xtwa)*xexp(—0.5%(—n + twa)**2/0%%2)/0%*2
elif i == 6: # o
pderiv[6] = 1.0%mx(—n + twa)s**2xexp(—o0.5%(—n + twa)**2/0%%2)/0%*3

return pderiv/—err

HAHHHHH R

def model_tws_s_shaped_with_.downturn_and_twa_gaussian_plus_combination (parameters, x):
a, b, ¢, d, m, n, o, t = parameters
try:
tws, twa = x
except:
tws = x[:, o]
twa = x[:, 1]
return ¢ / (1 + exp(a — b = tws)) — d * tws*x*2 + m * exp(—o0.5 * pow((twa—n) / o, 2)) + t * tws * twa

def derivatives_.model_tws_s_shaped_with_.downturn_and_twa_gaussian_plus_combination (parameters, data, dflags):
x, y, err, weights_bsp, weights_tws, weights_twa = data # Data arrays is a tuple given by programmer
tws = x[:, o]
twa = x[:, 1]
a, b, ¢, d, m, n, o, t = parameters # Parameters which are adjusted by kmpfit
pderiv = numpy.zeros ([len(parameters), len(x)])
for i, flag in enumerate(dflags):

if flag:
if i == o: #a
pderiv[o] = —cxexp(a — bxtws)/(exp(a — bxtws) + 1)*%x2 # copy from derive_model
elif i == 1: # Db
pderiv[1] = cxtwsxexp(a — bxtws)/(exp(a — bxtws) + 1)xx2
elif i == 2: # ¢
pderiv[2] = 1/(exp(a — bxtws) + 1)
elif i == 3: #d
pderiv[3] = —tws*x2
elif i == 4: #m
pderiv[4] = exp(—o0.5%(—n + twa)**2/0%%2)
elif i == 5: #n

151

Appendix A. Source Code

pderiv[5] = —o.5smk(2%n — 2xtwa)xexp(—0.5%(—n + twa)skk2/0%%2)/0%%2
elif i == 6: # o

pderiv[6] = 1.0xmx(—n + twa)s**2xexp(—0.5%(—n + twa)x*2/0%x*2)/0*%3
elif i == y7: # t

pderiv[7] = tws x twa

return pderiv/—err

def model_tws_s_shaped_with_saturation_and_twa_gaussian (parameters, x):
a, b, ¢, m, n, o = parameters

try:
tws, twa = x
except:
tws = x[:, o]
twa = x[:, 1]

return ¢ / (1 + exp(a — b x tws)) + m * exp(—o0.5 * pow((twa—n) / o, 2))

def derivatives.model_tws_s_shaped._with_saturation_and_-twa_gaussian(parameters, data, dflags):
x, y, err, weights_bsp, weights_tws, weights_twa = data # Data arrays is a tuple given by programmer
tws = x[:, o]
twa = x[:, 1]
a, b, ¢, m, n, o = parameters # Parameters which are adjusted by kmpfit

pderiv = numpy.zeros ([len(parameters), len(x)])
for i, flag in enumerate(dflags):

if flag:
if i == o: #a
pderiv[o] = —cxexp(a — bxtws)/(exp(a — bxtws) + 1)x%2 # copy from derive_model
elif i == 1: # b
pderiv[1] = cxtwsxexp(a — bxtws) /(exp(a — bxtws) + 1)%x2
elif i == 2: # ¢
pderiv[2] = 1/(exp(a — bxtws) + 1)
elif i == 3: #m
pderiv[3] = exp(—o0.5%(—n + twa)s*%2/0%%2)
elif i == 4: #n
pderiv[4] = —o.5smxk(2%n — 2xtwa)xexp(—0.5%(—n + twa)*%2/0%%2)/0%*2
elif i == 5: # o
pderiv[5] = 1.0%mk(—n + twa)s*2xexp(—0.5%(—n + twa)**2/0%%2)/0%*3

return pderiv/—err

HAHHHHHEHHEEEHHEEHEHHHEHEE R

152

Bibliography

Acevedo, Miguel F. (2012). Data Analysis and Statistics for Geography, Environmental Science,
and Engineering. English. CRC Press. 557 pp. ISBN: 978-1-4398-8501-7 (cit. on pp. 20,
22, 23).

Andrae, R., T. Schulze-Hartung, and P. Melchior (2010). “Dos and don’ts of reduced
chi-squared.” In: ArXiv e-prints. arXiv: 1012.3754 [astro-ph.IM] (cit. on p. 35).
Backhaus, Klaus et al. (2016). Multivariate Analysemethoden. Eine anwendungsorientierte
Einfithrung. German. 14th ed. Gabler Verlag. Chap. XII. 647 pp. ISBN: 978-3-662-
46076-4. DOI: 10 .1007/978-3-662-46076-4 (cit. on pp. 24, 29, 33, 36, 37, 66,

67).

Barron, A. (1997). Statistics 101-103, Introduction to Statistics - Chi-Square Goodness of Fit
Test. URL: http://www.stat.yale.edu/Courses/1997-98/101/chigf . htm (visited
on 08/25/2017) (cit. on p. 35).

Bavaria Cruiser 40S (2016). URL: http : //www . roundpalagruza . at / 20x - bavaria -
cruiser-40s/ (visited on 03/11/2017) (cit. on p. 61).

Behnel, S. et al. (2011). “Cython: The Best of Both Worlds.” In: Computing in Science
Engineering 13.2, pp. 31—-39. ISSN: 1521-9615. DOI: 10.1109/MCSE.2010. 118 (cit. on
pP- 54)-

Betke, Klaus (2001). The NMEA 0183 Protocol. URL: http://www.tronico.fi/0H6NT/
docs/NMEA0183. pdf (visited on 08/04/2016) (cit. on pp. 42—44).

Buitinck, Lars et al. (2013). “API design for machine learning software: experiences from
the scikit-learn project.” In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108-122 (cit. on p. 55).

Cython License (2009). URL: https : //github . com/ cython/cython/blob/master /
LICENSE. txt (visited on 11/17/2017) (cit. on p. 54).

Department of Statistics Online Programs (2017). Polynomial Regression. Department
of Statistics Online Programs, The Pennsylvania State University. URL: https://
onlinecourses.science.psu.edu/stat501/node/324 (visited on 07/10/2017) (cit.
on p. 37).

Die Route des Round PalagruZa Cannonballs (2010). URL: http://wuw.roundpalagruza.at/
die-route-des-rpc/ (visited on 07/28/2017) (cit. on p. 60).

153

http://arxiv.org/abs/1012.3754
http://dx.doi.org/10.1007/978-3-662-46076-4
http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm
http://www.roundpalagruza.at/20x-bavaria-cruiser-40s/
http://www.roundpalagruza.at/20x-bavaria-cruiser-40s/
http://dx.doi.org/10.1109/MCSE.2010.118
http://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
http://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
https://github.com/cython/cython/blob/master/LICENSE.txt
https://github.com/cython/cython/blob/master/LICENSE.txt
https://onlinecourses.science.psu.edu/stat501/node/324
https://onlinecourses.science.psu.edu/stat501/node/324
http://www.roundpalagruza.at/die-route-des-rpc/
http://www.roundpalagruza.at/die-route-des-rpc/

Bibliography

Expedition 10 (2017). URL: http://www.expeditionmarine.com/ (visited on 07/14/2017)
(cit. on p. 44).

Fernandes, Richard and Sylvain G. Leblanc (2005). “Parametric (modified least squares)
and non-parametric (Theil-Sen) linear regressions for predicting biophysical pa-
rameters in the presence of measurement errors.” In: Remote Sensing of Environment
95.3, pPp- 303—316. ISSN: 0034-4257. DOI: http://dx.doi.org/10.1016/j .rse.
2005 . 01 .005. URL: http://www . sciencedirect . com/science/article/pii/
S0034425705000404 (cit. on pp. 25, 26).

Frost, Jim (2011). Linear or Nonlinear Regression? That Is the Question. URL: http: //
blog.minitab.com/blog/adventures-in-statistics-2/linear-or-nonlinear-
regression-that-is-the-question (visited on 05/11/2017) (cit. on pp. 28, 29).

Gamma, Erich et al. (1995). Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. 1SBN: 0-201-63361-
2 (cit. on p. 54).

Garmin (2017). Garmin - What is GPS? URL: http://wwu8 . garmin . com/aboutGPS/
(visited on 09/19/2017) (cit. on p. 42).

Garrett, R. (1996). The Symmetry of Sailing: The Physics of Sailing for Yachtsmen. Sheri-
dan House. 1SBN: 9781574090000. URL: https : //books . google . at /books 7 id=
OVLXORumEF4C (cit. on pp. 9, 11, 12, 16).

General Information (2017). URL: https : //docs . python . org/3/faq/general . html
(visited on 04/26/2017) (cit. on p. 47).

Guerzhoy, Michael (2015). Training, test, and validation sets. CSC320: Introduction to Visual
Computing. URL: http://www.cs.toronto.edu/~guerzhoy/320/lec/training. pdf
(visited on 08/26/2017) (cit. on p. 38).

Gutschi, Clemens (2015). “Course Optimization for Sailing Yachts. Weather Routing and
Real Time Performance Visualization.” master’s thesis. Institute of Engineering and
Business Informatics (cit. on p. 94).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical
Learning. Data Mining, Inference, and Prediction, Second Edition. 2nd ed. Springer Series
in Statistics. Springer New York Inc. 745 pp. 1sBN: 9780387848587. por: 10.1007/978~
0-387-84858-7 (cit. on p. 23).

Hodges Marine Electronics (2017). B&G 608 Wind Sensor. URL: https://www.hodgesmarine.
com/B-G-608-Wind-Sensor-W-0-Cable-p/bag000-13714-001 . htm (visited on
07/10/2017) (cit. on p. 41).

Hwaci (2017). Most Widely Deployed and Used Database Engine. URL: https://www.sqlite.
org/mostdeployed.html (visited on 08/18/2017) (cit. on p. 50).

Inc., Apple (2017). MacBook Pro Tech Specs. URL: https://www.apple.com/macbook-
pro/specs/ (visited on 10/08/2017) (cit. on p. 47).

154

http://www.expeditionmarine.com/
http://dx.doi.org/http://dx.doi.org/10.1016/j.rse.2005.01.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.rse.2005.01.005
http://www.sciencedirect.com/science/article/pii/S0034425705000404
http://www.sciencedirect.com/science/article/pii/S0034425705000404
http://blog.minitab.com/blog/adventures-in-statistics-2/linear-or-nonlinear-regression-that-is-the-question
http://blog.minitab.com/blog/adventures-in-statistics-2/linear-or-nonlinear-regression-that-is-the-question
http://blog.minitab.com/blog/adventures-in-statistics-2/linear-or-nonlinear-regression-that-is-the-question
http://www8.garmin.com/aboutGPS/
https://books.google.at/books?id=0VLXORumEF4C
https://books.google.at/books?id=0VLXORumEF4C
https://docs.python.org/3/faq/general.html
http://www.cs.toronto.edu/~guerzhoy/320/lec/training.pdf
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7
https://www.hodgesmarine.com/B-G-608-Wind-Sensor-W-O-Cable-p/bag000-13714-001.htm
https://www.hodgesmarine.com/B-G-608-Wind-Sensor-W-O-Cable-p/bag000-13714-001.htm
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.apple.com/macbook-pro/specs/
https://www.apple.com/macbook-pro/specs/

Bibliography

International Measurement System IMS 2016 (2016). URL: http://www.orc.org/rules/
IMS%202016 . pdf (visited on 01/02/2017) (cit. on pp. 1, 13).

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001-). SciPy: Open source scientific
tools for Python. [Online; accessed jtoday;]. URL: http://www.scipy.org/ (cit. on
p- 54)-

Kapteyn Astronomical Institute (2015). ODR and kmpfit with weighted fit. URL: https:
//www . astro . rug.nl/software/kapteyn/kmpfittutorial . html #orthogonal -
distance-regression-odr (visited on 0y7/07/2017) (cit. on p. 34).

Klasing, Delius, ed. (2016). Seemannschaft. Handbuch fiir den Yachtsport. German. 31st ed.
Bielefeld. 816 pp. 1sBN: 978-3-7688-3248-9 (cit. on pp. 1, 3, 5, 19).

Microsoft Cooperation (2009). Microsoft Application Architecture Guide (Patterns & Prac-
tices). Microsoft Press; Second Edition edition. Chap. Chapter 5: Layered Application
Guidelines. 560 pp. 1SBN: 978-0735627109. URL: https://msdn.microsoft.com/en-
us/library/ee658109.aspx (cit. on p. 46).

MPX-Config2 for MiniPlex-2 (2015). URL: http://www.shipmodul .com/en/downloads .
html (visited on 03/14/2017) (cit. on pp. 44, 61).

National Institute of Standards and Technology (2013). Weighted Least Squares Regression.
English. URL: http://www.itl.nist.gov/div898/handbook/pmd/sectionl/pmd143.
htm (visited on 08/18/2017) (cit. on p. 31).

Nealen, Andrew (2004). An as-short-as-possible introduction to the least squares, weighted
least squares and moving least squares methods for scattered data approximation and
interpolation. English. URL: http://www.nealen.com/projects/mls/asapmls.pdf
(visited on 02/11/2017) (cit. on p. 27).

NMEA 0183 and Multiplexers (2017). URL: http://www.shipmodul.com/en/multiplexer.
html (visited on 03/14/2017) (cit. on p. 45).

Nocedal, Jorge (2006). Numerical Optimization. English. Springer-Verlag New York.
Chap. XXIIL. 664 pp. 1SBN: 978-0-387-30303-1. DOIL: 10.1007/978-0-387-40065-5
(cit. on pp. 27, 30-33).

ORC Club Certificate Bavaria CR 40S (2012). URL: http://www.roundpalagruza.org/wp-
content/uploads/cro1845_capivari-120517.pdf (visited on 03/11/2017) (cit. on
pp- 14, 15, 18, 60).

ORC International Certificate (2017). URL: http://orc.org/index.asp?id=23 (visited on
10/11/2017) (cit. on p. 1).

ORC VPP Documentation 2016 (2016). URL: http://www.orc.org/rules/0RCY,20VPPY,
20Documentation?202016.pdf (visited on 01/02/2017) (cit. on pp. 1, 13).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python.” In: Journal of
Machine Learning Research 12, pp. 2825-2830 (cit. on p. 55).

Piischl, Wolfgang (2012). Physik des Segelns. Wie Segeln wirklich funktioniert. German.
Ed. by Wiley-VCH Verlag GmbH & Co. KGaA. Wiley-VCH Verlag GmbH & Co.

155

http://www.orc.org/rules/IMS%202016.pdf
http://www.orc.org/rules/IMS%202016.pdf
http://www.scipy.org/
https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#orthogonal-distance-regression-odr
https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#orthogonal-distance-regression-odr
https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#orthogonal-distance-regression-odr
https://msdn.microsoft.com/en-us/library/ee658109.aspx
https://msdn.microsoft.com/en-us/library/ee658109.aspx
http://www.shipmodul.com/en/downloads.html
http://www.shipmodul.com/en/downloads.html
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd143.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd143.htm
http://www.nealen.com/projects/mls/asapmls.pdf
http://www.shipmodul.com/en/multiplexer.html
http://www.shipmodul.com/en/multiplexer.html
http://dx.doi.org/10.1007/978-0-387-40065-5
http://www.roundpalagruza.org/wp-content/uploads/cro1845_capivari-120517.pdf
http://www.roundpalagruza.org/wp-content/uploads/cro1845_capivari-120517.pdf
http://orc.org/index.asp?id=23
http://www.orc.org/rules/ORC%20VPP%20Documentation%202016.pdf
http://www.orc.org/rules/ORC%20VPP%20Documentation%202016.pdf

Bibliography

KGaA. 265 pp. 1SBN: 9783527411061. DOI: 10.1002/9783527648481 (cit. on pp. 1, 57,
10, 11, 17, 18).

Python 2 or Python 3 (2017). URL: https://wiki.python.org/moin/Python20rPython3
(visited on 08/17/2017) (cit. on p. 47).

Round Palagruza Cannonball, Medien-Info 3 (2016). Drei Klassen — drei Sieger: Fuczik, Lagger,
Briickner. URL: http://www.roundpalagruza.at/wp-content/uploads/2016/04/
2006-04-15_MEDIENINFO_No . 3 _Round-Palagruza-Cannonball . pdf (visited on
07/28/2017) (cit. on p. 64).

Saware, LLC (2017). Furuno ST-02MSB Bronze Thru-Hull Speed and Temp Sensor. URL:
http://www.yachtsofstuff.com/yosproduct.asp?ypid=8794&level=46 (visited
on 07/10/2017) (cit. on p. 41).

Sarle, Warren S. (2002). Al: Frequently Asked Questions - Neuronal Networks. What are
the population, sample, training set, design set, validation set, and test set? URL: ftp:
//ftp.sas.com/pub/neural /FAQ.html#A_data (visited on 08/24/2017) (cit. on
p- 38).

Scheer, Elke (2010). “Auftrieb durch Wasser und Wind. Physik des Segelns.” In: Physik
in unserer Zeit 41.4, pp. 184—190. ISSN: 1521-3943. DOIL: 10.1002/piuz.201001237.
URL: http://dx.doi.org/10.1002/piuz.201001237 (cit. on p. 9).

scikit-learn-developers (2016). An introduction to machine learning with scikit-learn. URL:
http://scikit-learn.org/stable/tutorial/basic/tutorial.html (visited on
03/22/2017) (cit. on pp. 27, 38).

Shalizi, Cosma (2009). Extending Linear Regression: Weighted Least Squares, Heteroskedastic-
ity, Local Polynomial Regression. Statistics Department, Carnegie Mellon University.
URL: http://www.stat.cmu.edu/~cshalizi/350/1lectures/18/lecture-18.pdf
(visited on 05/12/2017) (cit. on p. 32).

ShipModule MiniPlex-2USB (2015). URL: http://www.shipmodul .de/produkte/miniplex-
2usb.html (visited on 03/14/2017) (cit. on p. 44).

Stelzer, Roland and Tobias Proll (2008). “Autonomous sailboat navigation for short
course racing.” In: Robotics and Autonomous Systems 56.7, pp. 604—614. ISSN: 0921-
8890. pOI: http://dx.doi.org/10.1016/j.robot.2007.10.004. URL: //www .
sciencedirect.com/science/article/pii/S0921889007001480 (cit. on p. 13).

Susmel, Rauli (2014). Econometrics II: Quantitative Methods in Finance Il (FINA 8397)
- Lecture 12 - Nonparametric Regression. Bauer College of Business, University of
Houston. URL: http://www.bauer.uh.edu/rsusmel/phd/ec1-27.pdf (cit. on p. 25).

156

http://dx.doi.org/10.1002/9783527648481
https://wiki.python.org/moin/Python2orPython3
http://www.roundpalagruza.at/wp-content/uploads/2016/04/2006-04-15_MEDIENINFO_No.3_Round-Palagruza-Cannonball.pdf
http://www.roundpalagruza.at/wp-content/uploads/2016/04/2006-04-15_MEDIENINFO_No.3_Round-Palagruza-Cannonball.pdf
http://www.yachtsofstuff.com/yosproduct.asp?ypid=8794&level=46
ftp://ftp.sas.com/pub/neural/FAQ.html#A_data
ftp://ftp.sas.com/pub/neural/FAQ.html#A_data
http://dx.doi.org/10.1002/piuz.201001237
http://dx.doi.org/10.1002/piuz.201001237
http://scikit-learn.org/stable/tutorial/basic/tutorial.html
http://www.stat.cmu.edu/~cshalizi/350/lectures/18/lecture-18.pdf
http://www.shipmodul.de/produkte/miniplex-2usb.html
http://www.shipmodul.de/produkte/miniplex-2usb.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.robot.2007.10.004
//www.sciencedirect.com/science/article/pii/S0921889007001480
//www.sciencedirect.com/science/article/pii/S0921889007001480
http://www.bauer.uh.edu/rsusmel/phd/ec1-27.pdf

