
contact: Christoph Ebner c.ebner@student.tugraz.at

Computing and Visualizing Uncertainties

in Radiofrequency Ablation Treatment

Simulations

Christoph Ebner

Inst. of Computer Graphics and Vision

Graz University of Technology, Austria

Master’s Thesis
Advisor: Dipl.-Ing. Philip Voglreiter

Graz, November 27, 2017

mailto:c.ebner@student.tugraz.at

Abstract

In the past years, developments in the domain of cancer treatment have led
to the rise of minimally invasive techniques such as radiofrequency ablation
(RFA). To master the complexity of the RFA procedure and its dependency on
several treatment-specific parameters, RFA treatment simulations may help in-
terventional radiologists to predict the outcome and further improve the treat-
ment success rate. However, the parameterizations of such simulations are
often only estimates that may lead to considerable discrepancies with respect
to real treatment. This thesis introduces a plugin for an existing RFA software
called “RFA Guardian” that considers uncertainties in the parameter space
and visualizes the possible range of results. The “Parameter Uncertainty” plu-
gin consists of two distinct modules for parameter sampling and simulation
ensemble visualization. The visualization technique provides a concise repre-
sentation of simulation ensembles while laying focus on factors important for
RFA treatment planning such as blood vessels that penetrate the ablation zone.
Ensembles are visualized using the concept of contour boxplots, which is a gen-
eralization of boxplots for simulation ensembles. In this concept, a measure in
which each simulation outcome is ranked by its depth within the whole ensem-
ble is employed. This measure is known as “band depth”. In order to provide
real time rendering of a simulation ensemble in the Parameter Uncertainty
plugin, new approaches for fast band depth computation are introduced.

Keywords: Radiofrequency ablation, boxplots, band depth, uncertainty visu-
alization, ensemble visualization

Acknowledgements

First, I want to sincerely thank my advisor, Dipl.-Ing. Philip Voglreiter, for
his generous support and scientific advice throughout the past years. Fur-
ther, I owe a great thank to Prof. Dr. Dieter Schmalstieg for enabling my
work at the ICG which triggered my interest in the exciting field of computer
graphics.

Special thanks also go to my parents for their continuous support, without
which my studies at the Graz University of Technology would not have been
possible.

Lastly, but perhaps most importantly, I would particularly like to thank my
girlfriend for her day-to-day encouragement during writing this thesis.

i

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

. .
Ort und Datum

. .
Unterschrift

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

. .
Place and date

. .
Signature

iii

Contents

I Introduction 1

1 Motivation and related work 3
1.1 Motivation . 3
1.2 Radiofrequency ablation . 4

1.2.1 Radiofrequency ablation procedure 4
1.2.2 Difficulties and shortcomings 6
1.2.3 Radiofrequency ablation simulation 7
1.2.4 Factors influencing the treatment outcome 8
1.2.5 Visualizing simulated lesions 9

1.3 Concepts of Boxplots and the notion of data depth 11
1.3.1 Functional boxplots . 11
1.3.2 Contour boxplots . 15

2 Overview 16

II Fast functional band depth computation 18

3 Established methods for fast band depth computation 20
3.1 Acceleration through data resampling 20
3.2 Acceleration with an exact approach 21

4 New approaches 23
4.1 Modified band depth . 23
4.2 Band depth . 25

III The Parameter Uncertainty plugin 28

5 RFA Guardian 30
5.1 Workflow . 30
5.2 Frameworks and user interface 31

6 The Parameter Sampling module 33
6.1 User interface . 33
6.2 Workflow . 35
6.3 Sampling methods and properties 35
6.4 Parameter dependent sampling properties 39

v

6.5 Post processing . 40

7 The Ensemble Visualization module 41
7.1 The Graphics Processing Unit and OpenGL 41

7.1.1 The OpenGL rendering pipeline 41
7.1.2 Compute shaders . 43

7.2 Relevant computational geometry algorithms 45
7.2.1 Segments, rays, lines and their intersections 45
7.2.2 Polygons . 47

7.3 Overview and user interface 49
7.4 Generating the contour boxplot 52

7.4.1 Generating 2D data . 52
7.4.2 The lesion tree data structure 56
7.4.3 Contour sampling . 61
7.4.4 Band depth calculation 69
7.4.5 Visualization of the contour boxplot 75

7.5 Processing vessels . 77
7.6 Local grouping of contours . 80
7.7 Vessel filter and threshold filter 85

IV Results 86

8 Performance 88
8.1 Comparison of band depth algorithms 88

8.1.1 Modified band depth 89
8.1.2 Band depth . 89

8.2 Radiofrequency ablation simulation ensemble visualization . . 90
8.2.1 Contour boxplot . 91
8.2.2 Number of contour normals 93
8.2.3 Overlays . 96

9 Qualitative Results 97
9.1 Contour boxplot representation 97
9.2 Investigation of vessel ablation 100
9.3 Local characteristics . 101

V Conclusion and future work 103

10 New approaches to band depth computation 105

vi

11 Parameter sampling 105

12 Ensemble Visualization 106
12.1 Contour boxplot and lesion band depth measure 106
12.2 Overlays and filters . 107
12.3 Visualization comparison . 108

vii

List of Figures

1.1 Examples of probes used in radiofrequency ablation treatment 5
1.2 Schematic summary of the radiofrequency ablation procedure . 6
1.3 Visualization of a single simulation outcome and a simulation

ensemble in the RFA Guardian 10
1.4 Examples of an advanced technique for visualizing a single

RFA lesion . 10
1.5 Example of the notion of a functional band 12
1.6 Example of general band depth calculation 14
1.7 Example of a contour band . 16
3.1 Example of a function ensemble 22
3.2 Example of an existing band depth algorithm leading to wrong

result . 22
4.1 Illustration of the dependency of band depth on function ranks 24
4.2 Three bands of different functions 26
4.3 Illustration of a new band depth algorithm 27
5.1 Technical workflow of the RFA Guardian 31
5.2 Schematic drawing of the orthogonal anatomic planes 32
5.3 User interface of the RFA Guardian 33
6.1 User interface of the Parameter Sampling module 34
6.2 Flowchart depicting the procedure of generating a simulation

ensemble. 36
7.1 Schematic depiction of the OpenGL rendering pipeline 43
7.2 Illustration of work groups in a compute shader 44
7.3 Comparison between a non-convex polygon and its convex hull 47
7.4 Visualization of the point-in-polygon test 48
7.5 Workflow of the ensemble visualization module. 49
7.6 User interface of the visualization module 51
7.7 Schematic depiction of slicing a 3D lesion 52
7.8 Visualization of a 3D lesion and its projection onto 2D views . 55
7.9 Artificial example of a lesion ensemble 56
7.10 Example of the lesion tree data structure 57
7.11 Illustration of contour normals 62
7.12 Example of rendering a non-convex simple polygon 64
7.13 Example of an erosion operation 66
7.14 Example of a dilation operation 67
7.15 3x3 neighborhoods for generating contour normals 68
7.16 Five contours sampled by a single contour normal 71
7.17 Example of an ensemble of five contour sampled by seven con-

tour normals . 75

viii

7.18 Example of a contour ensemble visualized as a contour boxplot 77
7.19 Visualization of contour normal separation around a vessel . . 79
7.20 Example of vessel-specific overlays 80
7.21 Comparison of different kernel bandwidths in kernel density

estimation using a Gaussian kernel 82
7.22 Example of the visualization of locally grouped contours . . . 84
8.1 Example of a test ensemble consisting of sine waves 88
8.2 Comparison of overall frame times in single-threaded- and

multi-threaded-case . 92
8.3 Comparison of frame times growth with vertex count 93
8.4 Distribution of overall frame times in the single-threaded- and

the multi-threaded-case . 94
8.5 Frame times needed to complete various tasks in the single-

threaded- and in the multi-threaded-case 95
8.6 Frame times needed for processing different numbers of inter-

polated normals . 96
8.7 Frame times needed to render overlays 97
9.1 Example of contour boxplots in three orthogonal 2D views . . 98
9.2 Comparison of contour boxplot with two different parameter-

izations . 99
9.3 Example of the threshold filter 99
9.4 Example of a vessel penetrating the ablation zone 100
9.5 Local visualization features of the Parameter Uncertainty plugin102
12.1 Comparison of ensemble visualization techniques 109

ix

List of Abbreviations

BD Band depth

CCW Counter-clockwise

CW Clockwise

GPGPU General-purpose computing on graphics processing units

GPU Graphics processing unit

IQR Interquartile range

KDE Kernel density estimation

lBD Lesion band depth

LUT Lookup table

mBD Modified band depth

RFA Radiofrequency ablation

RNG Random number generator

sBD Set band depth

SIMD Single instruction, multiple data

SSBO Shader Storage Buffer Object

UI User interface

x

xi

Part I

Introduction

1

2

I Introduction

1 Motivation and related work

1.1 Motivation

From a global perspective, malignant neoplasms (commonly referred to as
“tumors” [1, p16]) are a major cause of death, leading to more fatalities than
tuberculosis, HIV/AIDS, diabetes mellitus and Alzheimer’s disease com-
bined. In 2015, an estimated 16% of all deaths were attributed to neoplasms,
making it the second-most cause of death of non-communicable diseases in
the world, only surpassed by cardiovascular diseases [2]. Due to the preva-
lence of tumor related deaths, several treatment methods, such as surgery,
chemotherapy, radiation therapy and others1, were established during the
20th century in order to conquer neoplasms. While those three methods still
remain the “three pillars” of tumor treatment, a wide range of minimally
invasive, image-guided techniques has become available in the last decades
[4].

Among those techniques, a procedure called radiofrequency ablation (RFA)
has been widely used to thermally ablate tumors in various organs of the
body. In this procedure, an AC current is applied locally at the tumor
through a needle electrode, causing resistive heating of the tumor and sur-
rounding tissue [5]. However, performing an RFA requires a significant degree
of clinical experience. Less experienced interventional radiologists may bene-
fit from an appropriate planning tool for the treatment [6]. One of these tools
is the “RFA Guardian”, which provides pre-interventional, interventional and
post-interventional assistance in RFA liver tumor treatment. The interven-
tional phase includes a sophisticated simulation algorithm of the treatment
outcome for heating protocols used during an RFA intervention [7]. However,
critical simulation parameters, such as the perfusion of the healthy tissue sur-
rounding the tumor and tumor perfusion itself, have a strong influence on
the simulation outcome, but - at the current stage - need to be estimated by
the user.

The goal of this thesis is to extend the RFA Guardian with a plugin
that allows for visualizing the uncertainty of the simulation results arising
from sampling the treatment parameter space in order for users to get a
non-cluttered view of different simulation outcomes depending on their re-

1Other treatment methods include adjuvant therapy, hormonal therapy or immunother-
apy. For further reading see Sudhakar [3].

3

spective parameterizations and to provide support in subsequent treatment
decisions. This thesis will first give a rough introduction to the medical back-
ground of RFA in general and elaborate on certain difficulties that need to be
addressed by the visualization technique. Subsequently, related work in the
field of boxplot visualization techniques is introduced. Part II introduces new
fast approaches to band depth computation, as these methods will be needed
for real-time visualization of the simulation ensembles. Part III will focus on
the main methods and algorithms used for generating the sampling space
and visualization of the simulation ensemble where the new approaches for
fast band depth computation are used to generate a contour boxplot of the
ensemble. The fourth part includes a performance analysis, as well as quali-
tative results and the last part contains concluding words and an outlook on
future work.

1.2 Radiofrequency ablation

Radiofrequency ablation is a minimally invasive medical procedure used for
the treatment of several types of diseases, including tumors in the breast
[8], liver [9, 10], lung [11, 12], kidney [13, 14] and bone [15, 16]. RFA is
widely used due to its safety, ablation efficiency, effectiveness and accept-
able complication profile [5, 17, 18]. A comparison of percutaneous ablation
technologies for malignant liver tumors concluded that RFA should be con-
sidered “the first-line treatment modality in the treatment of primary and
secondary liver malignancies”, though also noticing its limitations for large
hepatocellular carcinomas [19]. Due to its advantages and widespread ap-
plication area, Gillams [17] and Friedman et al. [20] referred to RFA as the
“frontrunner” of available image-guided minimally invasive ablation meth-
ods. However, other methods, such as cryotherapy ablation and microwave
ablation are on the rise, too, as the whole field of ablation techniques has seen
large improvements over the last years [17]. Especially microwave ablation
offers advantages over RFA when dealing with tumor masses larger than 3cm
in diameter [21]. However, in terms of clinical end-points of hepatocellular
carcinoma treatment, further studies have to be conducted in order to favor
one over the other [22].

1.2.1 Radiofrequency ablation procedure

In performing an RFA treatment, an electrode called “probe” is inserted into
the patients body to a target location (e.g., a tumor in the liver). For guiding
the probe through the human body, medical imaging techniques such as CT
or ultrasound can be used [23]. Several types of probes are available: orig-

4

inally, standard stock needles (Figure 1.1a) were used. However, the extent
of the thermal injury was relatively small compared to the lesion size achiev-
able by modern equipment. Nowadays, coaxial needles that house seven or
nine retractable electrodes are commonly used. During probe placement, the
electrode tips stay retracted and are not expanded until the target location
has been reached. Figures 1.1b and c show two modern probe designs [24].

Figure 1.1: Examples of probes used in RFA treatment. (A) Standard stock
needle insulated to distal tip. The arrow marks the edge of the insulation.
(B) Probe with “Christmas tree” configuration, manufactured by RITA Med-
ical Systems, Mountain View, CA. (C) Probe with “umbrella” configuration,
manufactured by Radiotherapeutics, Mountain View, CA. Figure taken from
McGahan and Dodd [24].

After successful probe placement, an AC current in the radio frequency
range (typically 450-500kHz) is applied between the electrodes and grounding
pads. This leads to the generation of resistive heat around the electrode
tips (as well as the grounding pads, although temperatures are lower on the
pads due to their larger surface area). The heat stems from an effect called
“ionic agitation”: Through application of an AC current, the ions and water
molecules in the body tissues begin to move. As a result, heat - directly
proportional to the applied current density - originates through friction. The
amount of time it takes for cells to undergo coagulation necrosis (damage
triggered cellular death) depends on the resulting temperature. Optimal
temperatures for ablation are in the range of 50°C to 100°C [23, 25].

In order to be sure to remove all tumor-related tissue, usually a surgical
(tumor-free) margin of about 1cm has to be ablated around the visible tumor
(however, there exists an exception when treating target volumes in kidneys
where a margin of 1cm may be too much). If this margin cannot be achieved,
several consecutive ablations have to be performed in order to ablate all
neoplasmic tissue [20]. Figure 1.2 provides a short summary of the whole
ablation process in four schematic depictions.

5

Figure 1.2: Schematic summary of the RFA procedure: First, the probe is
inserted into the target volume (A). Second, the retracted probe electrodes
are extended (B) and ablation of the tumor with a safety margin is carried
out (C). Finally, the tumor tissue is ablated and the probe is removed from
the body (D). Taken from Julianov [26].

1.2.2 Difficulties and shortcomings

A major difficulty arises when larger blood vessels are located near the tu-
mor, as increased blood flow shows a strong negative correlation with lesion
size through the resulting heat sink effect. Blood flow in large vessels acts as
a heat sink, exerting a cooling effect on the tissue. This leads to a smaller
lesion extent and may subsequently prevent the treatment to fully ablate the
tumor [27]. According to Lu et al. [28], this effect was consistently observ-
able beyond a vessel diameter of 2-4mm, and often tumor recurrence after
treatment is attributed to the heat sink effect [29]. Due to the significance
of the effect, it is reasonable to assume that the outcome of the ablation is
especially important in regions near vessels. Taking this fact into consid-
eration, the uncertainty visualization technique pays close attention to the
simulation outcome in these particular regions in the following way: For one,
the estimated probability of a blood vessel slice being ablated on a certain

6

2D view can be shown2. Furthermore, the user is able to only display simu-
lation results that fail to ablate a specific vessel, as well as results that fully
ablate the vessel in question. Finally, the user can define a threshold with
respect to the median outcome that leads to visualizing only the results that
lie within or outside of these results.

Apart from the heat sink problem, RFA suffers from additional disad-
vantages which will only be mentioned briefly, due to the fact that they are
not directly relevant for this thesis. One disadvantage that was already men-
tioned is the restriction to smaller target volumes. For example, Solbiati
et al. [30] reported a significant difference in recurrence rate between liver
metastases that were less than 3cm in diameter and metastases greater or
equal than 3cm, with a recurrence rate of 16.5% and 56.1% respectively. Yu
and Burke [19] also mentioned that for liver tumors that are larger than 5cm,
RFA is limited due to incomplete tumor ablation. Further disadvantages over
other ablation methods are listed in Maini [21] and include - among others -
preferential heating of fat tissue and dependency of the current flow to local
electrical tissue characteristics.

1.2.3 Radiofrequency ablation simulation

RFA treatment is a fairly complex procedure, considering the aforementioned
difficulty caused by the heat sink effect and the dependency of the resulting
lesion shape from several patient specific and non-patient specific parameters.
In order for the treatment to be successful, the interventional radiologist
has to ensure full ablation of the tumor including a safety margin, whilst
preserving as much healthy tissue as possible.

A study concerning the outcome of RFA treatments dependent on the
experience of the operators showed that RFA treatments bear a considerable
learning curve and, through the utilization of a specialized RFA team, simu-
lation outcomes could be improved significantly. The 2-year survival rate was
89%, when treatment was performed by an experienced clinician, and, 40%,
with a less experienced clinician [31]. This circumstances make adequate
treatment planning and simulation an important factor, and, according to
Mariappan et al. [6], especially operators with little experience could benefit
from software that visualizes simulation results based on planned treatment.

The interventional phase of the RFA Guardian contains a graphics pro-
cessing unit (GPU) simulation for predicting the resulting lesion shape and

2The RFA Guardian displays the 3D simulation results as projections on orthogonal
2D slices. For details, refer to Section 5.2.

7

size. For calculating the temperature distribution in the tissue, the algorithm
uses a finite element method to solve for a Pennes bioheat model [32]. The
used model incorporates tissue parameters as well as blood-related param-
eters, such as thermal conductivity of the tissue, tissue convection, specific
heat capacity and density of both blood and tissue, as well as perfusion.

According to a study in Mariappan et al. [6], comparison between real
and simulated lesions led to a maximum deviation of 3.5mm for nine cases.
Furthermore, it is proposed that with the availability of more patient-specific
data, the simulation could achieve even greater accuracy. Due to exploita-
tion of the parallel processing capabilities on the GPU, the algorithm per-
forms significantly faster than the real treatment protocol. For example, the
outcome in a patient undergoing 62 minutes of RFA treatment (with three
ablations), could be simulated in five to six minutes3. This allows for running
the simulation before treatment and giving interventional radiologists better
insight on whether to continue the planned treatment or switch to a different
treatment protocol [6].

1.2.4 Factors influencing the treatment outcome

The actual extent and shape of the resulting lesion depends on various pa-
rameters of the target tissue and the tissue surrounding the target volume
as variations of those parameters in RFA simulation algorithms have shown.
For example, Hall et al. [33] stated that main contributors of patient-specific
parameters to the outcome of hepatic RFA simulations (and consequently
treatments, provided that the simulations reflect in-vivo conditions) are blood
perfusion-parameters, electrical parameters of the tissue and cell death sever-
ity. Other influencing factors include probe placement - where placement
inaccuracies have been reported to may have severe effects on the outcome
of RFA treatments [34], as well as probe properties (cannula diameter and
tip lengths), temperature and treatment duration [35].

In order to carry out RFA simulations, the mentioned parameters have to
be provided to the simulation algorithm. However, the used parameters are
only estimates that may not reflect actual treatment conditions accurately.
Thus, the plugin introduced in this thesis aims to provide a mechanism for
sampling the parameter space and carrying out simulations for each sample in
order to get better insight on which lesion extents and shapes likely to expect
during treatment, as each simulation invocation potentially leads to different
results. Thus, the user is presented with a whole ensemble of simulation
results instead of only one. The uncertainty sampling technique introduced

3Using a Intel Core i7 CPU with 3.5GHz and 6 Cores and a NVIDIA GeForce Titan
Black GPU with 3.5 GHz. For details, refer to Mariappan et al. [6]

8

in this thesis includes the possibility to sample perfusion parameters of the
tumor and healthy tissue as well as the electrode tip placement. However, if
needed, additional parameters can easily be added to the plugin.

1.2.5 Visualizing simulated lesions

The RFA Guardian visualizes the resulting lesion as 2D projections of the
lesion outline on orthogonal anatomic planes, whereas a lesion outline repre-
sents an iso surface of the simulation mesh where the cell death probability
crosses 80%. A typical example of this representation in the axial plane is
given in Figure 1.3a. The depicted outline or “contour”, as it is referred
to subsequently in the thesis, is the result of a single simulation invocation
using a specific treatment parameterization.

An improved visualization technique of a single simulated lesion for the
RFA Guardian was established by Voglreiter et al. [36], who used a level
of detail approach to display the exact distance of the resulting lesion con-
tour to the tumor. Furthermore, their method enables the users to visualize
iso-values of several tissue parameters within the contour using a bivariate
approach. Examples of their rendering technique can be seen in Figure 1.4.

However, as noted above in Section 1.2.4, due to the uncertainty in the
simulation parameterization, the user is presented with a whole ensemble of
contours instead of a single one. Thus, the plugin needs to provide an appro-
priate visualization technique for contour ensembles, as the current method
is not capable of delivering a suitable way for the user to investigate such an
ensemble. Figure 1.3b shows a visualization of a simulation ensemble consist-
ing of 25 contours resulting from different parameterizations. As is visible in
the figure, the visualization is cluttered and provides no additional statistical
relevant information. Furthermore, no connection to the respective param-
eterization of each simulated contour is established. Both shortcomings are
addressed by the plugin which visualizes the ensemble using an adapted ver-
sion of a concept called “Contour Boxplots” [37] for visualizing the median
result, the 50% central region4 and simulation outliers. To get an overview of
this concept, the notion of contour boxplots as a generalization of functional
boxplots is further elaborated in Section 1.3.

4The 50% central region contains half of the simulation results which are considered
the most “central” within the whole ensemble.

9

(a) Single simulation outcome (b) Simulation ensemble

Figure 1.3: The RFA Guardian represents the resulting lesion as 2D projec-
tions of the lesion outline on orthogonal anatomic planes (a). These outlines
are referred to simply as “contours” in the thesis. Visualizing a whole en-
semble of simulation results leads to a cluttered representation (b).

(a) Zoomed out (b) Zoomed in (c) Iso-contours

Figure 1.4: Examples of the visualization technique of Voglreiter et al. [36].
The visualization employs a level detail approach. For one, the distance of
the tumor is color-coded for safety margin evaluations (refer to Section 1.2),
whereas different zoom levels yield different representations (the red contour
is the tumor outline) (a & b). Additionally, iso-contours of various tissue
parameters can be visualized using color coding (c).

10

1.3 Concepts of Boxplots and the notion of data depth

A large part of the visualization technique developed in this thesis is visual-
izing a certain simulation ensemble using a concept called contour boxplots
proposed by Whitaker et al. [37], which is a generalization of functional
boxplots. In order to generate a contour boxplot of a simulation ensemble,
each contour has to be ranked to create an ordered statistic. Using the or-
dered statistic, one can identify statistically significant contours representing
certain quartiles (or outliers) of the data set, analogous to a conventional
boxplot. In order to establish data ranking, both functional boxplots and
contour boxplots use a variant of a concept called band depth (BD), intro-
duced by López-Pintado and Romo [38].

This section will first introduce functional boxplots and BD in order to
give the reader a suitable background of these concepts before addressing
their generalization with the notion of contour boxplots. Sometimes, com-
parisons to the original boxplot (introduced as a statistical concept by Tukey
[39]) are made. Whenever this is the case, they are referred to as “con-
ventional boxplots”. A conventional boxplot (also called “box-and-whisker
plot”) typically consists of the following features: the median, the “box”,
which is constrained by the upper and lower quartiles (containing 50% of the
data), the “whiskers” which comprise all data points not in the box, how-
ever, within 1.5 times the interquartile range (IQR) and, finally, outliers - all
remaining data points - often visualized as dots.

1.3.1 Functional boxplots

Background Functional boxplots, proposed by Sun and Genton [40], port
the concept of conventional boxplots to functional data. The functional box-
plot adopts the statistical descriptors used in conventional boxplots. How-
ever, the generation of the ordered statistic is quite different. While it is
easy to rank one-dimensional data (as is the case for conventional boxplots),
ranking of multivariate (functional) data is less trivial. To accomplish this
task, Sun and Genton [40] used the concept of BD. However; to make sense
of the notion of BD, the concept of functional bands is defined first. Both,
the definition of the functional band and the derivation of BD is taken from
López-Pintado and Romo [41].

Functional bands A functional band or simply “band” in R2, restricted
to an interval I and consisting of k functions fir : t 7→ R, t ∈ I with k ≥ 2

11

and r ∈ 1, ..., k is defined as:

Bk(fi1 , ..., fik) := {(t, y) : t ∈ I, min
r∈1,...,k

fir(t) ≤ y ≤ max
r∈1,...,k

fir(t)} (1)

Intuitively, a band is defined as the set enclosed by the envelope of the
functions that it is built upon. An example of a band consisting of three
functions is shown in Figure 1.5.

0 5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

Fig. 1. Band defined by three curves.

Among others, some definitions have been provided by Mahalanobis (1936),
Tukey (1975), Oja (1983), Liu (1990), Singh (1991), Vardi and Zhang (2001)
and Zuo (2003). These notions of depth allow to construct a robust nonpara-
metric inference for finite-dimensional observations (see Liu et al., 1999). In
this paper, we extend these ideas to a functional context.

We recall next the band depth definitions and properties that we need through-
out the paper. Let C (I) be the set of continuous functions defined on the
compact interval I in R. Let x1(t), ..., xn(t) be a collection of observations
belonging to C (I). The graph of a function x is the subset of R2 given by

G(x) = {(t, x(t)) : t 2 I} .

The band in R2 defined by the curves xi1 , ..., xik is

B(xi1 , xi2 , ..., xik) =
⇢
(t, y) : t 2 I, min

r=1,...,k
xir(t) y max

r=1,...,k
xir(t)

�

=
⇢
(t, y) : t 2 I, y = ↵t min

r=1,...,k
xir(t) + (1 � ↵t) max

r=1,...,k
xir(t),

for some ↵t 2 [0, 1]
�

.

Figure 1 shows the band defined by three curves that is the region in the plane
enclosed by all of them.

For any function x in C(I),

S(j
n (x) =

n

j

!�1 X

1i1<i2<...<ijn

I{G(x) ⇢ B(xi1 , xi2 , ..., xij)}, j � 2, (1)

expresses the proportion of bands B(xi1 , xi2 , ..., xij) given by j di↵erent curves
xi1 , xi2 , ..., xij containing the graph of x. (I{A} is one if A is true and zero

2

Figure 1.5: An example of a band consisting of three functions in the interval
t ∈ [1; 50]. The band is depicted as the green region enclosed by all three
functions. Picture taken from López-Pintado and Romo [38].

Band depth Considering a certain function fi taken out of an ensemble
of n total functions, the graph of this function is defined as the set of tuples
in the form of:

G(fi) := {t, fi(t) : t ∈ I} (2)

Hence, the graph of fi is said to be included in a certain band if:

12

G(fi) ⊂ Bk (3)

Defining the number of all bands consisting of k number of functions that
satisfy Condition 3 for a particular function fi as Bk

i (e.g., if G(fi) is the
subset of five bands, Bk

i = 5), the fraction of bands Bk that include the
graph of a certain function fi can be defined as:

Skn(fi) =

(
n

k

)−1
Bk
i (4)

with Skn(fi) ∈ [0; 1]. In order to calculate the BD for the function fi, one has
to consider Sjn(fi) for all j ∈ [2; k]. The BD for fi is calculated as:

BDn,k =
k∑

j=2

Sjn(fi) (5)

As can be seen in Equations 4 and 5, the BD is dependent on the free variable
k which can be chosen to suit the needs of a particular application. Moreover,
it should be noted that choosing high k values increases the computational
costs disproportionately. For example, if we assume an ensemble of 30 func-
tions and, for each of them, the BD is calculated, choosing k = 2 results in a
total of 435 bands to be computed, and, moreover, BD30,2 = S2

30. However,
choosing k = 3 results in 4060 bands to be computed, an increase of 833%.
However, k = 3 is recommended over k = 2 by López-Pintado and Romo [41]
due to the fact that when bands consisting of two functions cross, the band
is reduced to a single point. Consequently, no other function will entirely
be included in this band. A method for fast BD computation regardless of
which k parameter is used for constructing the bands, will be introduced in
Section 7.4.4. Subsequently in this thesis, the number of functions a band
consists of will be referred to as the “order” of the band.

Modified band depth The notion of BD discussed above is fairly re-
strictive when it comes to functions leaving a certain band only for a short
interval. The previously defined concept of BD does not distinguish whether
a certain function is mostly outside a certain band, or if it only leaves the
band for a negligible interval. If Equation 3 is not satisfied, Bk

i treats both
situations in the same manner. Furthermore, the previous BD concept may
lead to lots of ties in the computation of the functional depth.

Being aware of that, López-Pintado and Romo [41] introduced a slightly
modified version of their BD concept, termed modified band depth (mBD).

13

Both methods only differ in the calculation of Bk
i . While, in the original

evaluation of Bk
i , an all-or-nothing approach was taken (if a certain band

contained the function fi, then 1 was added, otherwise not). The mBD
approach, however, adds the normalized fraction for which the function fi
stays inside the test band to Bk

i , dismissing condition 3 and making it possible
(and likely) for Bk

i , and subsequently for Skn and BDn,k, to to have a fractional
value. In contrast to BD, which is more dependent on the shape of the
functions, the modified version depends more on the function’s magnitude.
Furthermore, mBD is said to be very stable in the band order [41]. However,
the computational costs increase rapidly for higher orders in the same manner
as for BD. An example of the calculation of mBD is presented in Figure 1.6.

FUNCTIONAL BOXPLOTS 319

Figure 1. An example of BD and MBD computation: the gray area is the band delimited by y1(t) and y3(t).
The curve y2(t) completely belongs to the band, but y4(t) only partly does.

A sample median function is a curve from the sample with largest depth value, defined
by arg maxy∈{y1,...,yn} BDn,J (y). If there are ties, the median will be the average of the
curves maximizing depth.

Although the number of curves determining a band, j , could be any integer between 2
and J , the order of curves induced by band depth is very stable in J . To avoid computa-
tional issues, we use J = 2, and for simplicity, we write BD(2)

n as BD and MBD(2)
n as MBD

in the sequel.
Figure 1 provides a simple example with n = 4 curves on how to compute BD and

MBD in practice. When J = 2, there are six possible bands delimited by two curves. For
instance, the gray area in Figure 1 is the band delimited by y1(t) and y3(t). We can see
that the curve y2(t) completely belongs to the band, but y4(t) only partly does. We define
that a curve is contained in a band even if this curve is on the border of the band. Then
BD(y2) = 5/6 = 0.83 since only the band delimited by y3(t) and y4(t) does not completely
contain the curve y2(t) and BD(y4) = 3/6 = 0.5 as it is only completely contained in the
bands delimited by itself and another curve. Similarly, we could compute BD(y1) = 0.5
and BD(y3) = 0.5. To compute MBD, note that the curve y2(t) is always contained in the
five bands, hence MBD(y2) = 0.83, the same value as BD. In contrast, the curve y4(t) only
belongs to the band in gray 40% of the time, thus MBD(y4) = (3 + 0.4 + 0.4)/6 = 0.63
by definition. For the other two curves, MBD(y1) = 0.5 and MBD(y3) = 0.7.

3. CONSTRUCTION OF FUNCTIONAL BOXPLOTS

In the classical boxplot, the box itself represents the middle 50% of the data. An interest-
ing idea that can be extended to functional data is the concept of central region introduced
by Liu, Parelius, and Singh (1999). The band delimited by the α proportion (0 < α < 1) of

Figure 1.6: An example of the calculation of mBD of four contours. k was
chosen to be 2, and the interval I is normalized. In the current step, y4 is
tested against the band formed by y1 and y3. Since y4 is only an amount of
0.4 in the test band, B2

4 is increased by 0.4 in this calculation step. Overall,
B2

4 takes the value 3.8. The final mBD values are: mBD1,2 = 0.5, mBD2,2 =
0.83, mBD3,2 = 0.7, mBD4,2 = 0.63. Picture taken from Sun and Genton
[40].

14

Construction of functional boxplots With the utilization of mBD, an
ordered statistic can be created to construct functional boxplots. The con-
struction of functional boxplots includes the following statistical parameters
[40]:

• The median, which is the function with the highest mBD value (which
makes intuitive sense, since a high mBD values describes functions that
are deep within an ensemble).

• 50% of the functions with highest mBD rank - forming a region that is
analogous to the IQR of convention boxplots.

• The “fence”, consisting of functions not included in the 50% region but
ranked higher than 1.5 ∗ IQR.

• The outliers: all remaining functions.

1.3.2 Contour boxplots

Contour boxplots can be viewed as generalized functional boxplots. Devel-
oped for uncertainty characterization of numerical simulation results, the
concept is well applicable to the uncertainty visualization technique of RFA
simulation ensembles presented in this thesis. In order to generalize the idea
of the functional boxplot, the definition of a band in Equation 1 has to be re-
vised. Every non-parametric contour that takes part in constructing a band
is viewed as a set Ci, containing all points that it encloses (as well as all
points on the contour itself). The band formed by k numbers of sets is the
set-theoretic difference of the union and intersection of the k sets:

Bk
c (C1, ..., Ck) :=

(k⋃

i=1

Ci

)
\
(k⋂

i=1

Ci

)
(6)

In general terms, the band can be viewed as consisting of all points, bounded
by the union and intersection of the k contours.

Similar to the graph of a function (refer to Equation 2), a contour is
tested against a band by checking if all points on the contour form a subset
of the band; refer to Figure 1.7a for an example. Thus, the calculation
of Bk

i and, subsequently, BDn,k remains unchanged. However, in order to
distinguish contour band depth from functional BD, this method is referred
to as “set band depth” (sBD). If all topologies can be mapped to the graph
of a function, sBD converges to BD, see Figure 1.7b. There exists also an
analogous concept to mBD, called “contour band depth”. However, since the
visualization technique presented in this thesis does not make use of contour
band depth, further explanation of the concept is omitted [37].

15

x

f(x)

x

f(x)

(a) (b)

x

f(x)

(c) (d)

Fig. 2. Examples of function band depth and function boxplots. (a) For
band depth, three different curves (in blue) form a band (in grey) against
which three other (red) curves are tested, with only the solid curve falling
in the band. (b) A set of 80 simulated, noisy curves with some outliers in
shape and position. (c) A version of the function boxplot, as proposed by
[35, 36]. (d) A conventional, pointwise, boxplot loses information about
shapes of curves in the ensemble.

In practice, with too few samples and too much variability in shape,
there are simply not enough subsets, and many samples can have a BD
that is very low or zero, which can interfere with the ability to dis-
criminate the depths of different samples, and therefore [17] propose
a modified band depth (MBD), which computes the expected value of
the amount of the domain D for which a function g(x) lies in the band.
This modification produces more reliable results in high variability sit-
uations, but significantly reduces the sensitivity of the method to the
shapes of functions, because irregularly shaped functions few bands
that contain them perfectly but many bands that contain them approx-
imately.

For the analysis of contours, we will generalize this definition of
band depth and propose an alternative modification for dealing with
scenarios with relatively small sample size and high variability. We
begin with a new definition of band depth, which operates on sets, and
show that this definition is equivalent to function band depth for the
special case of functions.

Consider an ensemble of sets E = {S1, . . . ,Sn}, where Si ⇢U , and
U is the universal set. We say that a set S 2 E is an element of the band
of a collection of j other sets S1, . . . ,S j 2 E if it is bounded by their
union and intersection. That is,

S 2 sB
�
S1, . . .S j

�
()

j\

k=1

Sk ⇢ S ⇢
j[

k=1

Sk. (4)

From this we can define the set band depth (sBD) as the probability
that a set lies in the band of a random selection of sets from the en-
semble:

sBDJ (S) =
J

Â
j=2

P
⇥
S 2 sB

�
S1, . . .S j

�⇤
. (5)

As with the function BD, sBDJ is computed by taking all appropriately
sized subsets of E.

To apply sBD to isocontours, we will consider the subsets in the
plane enclosed by those contours, as in Fig. 3a. Thus, given a set of
fields F1(x,y), . . . ,Fn(x,y) the algorithm for computing the sBD (for a
particular value of j) of isocontours with value q is as follows:

1. Compute the sets (represented as binary functions on a grid):
S j = {(x,y) |F(x,y) > q} for i = 1, . . .n.

2. For i = 1 to n

(a) Initialize Pi = 0
i. For each subset of {S1, . . . ,Sn} of size j and not con-

taining Si (call it Q)

(a) (b)

Fig. 3. (a) For three test contours (blue), a red contour lies in the
contour band if it encloses the intersections of the regions (grey) and
within the union of those regions (light grey). (b) For topologies in the
plane that map to the graph of a function, set band depth in the plane is
exactly equivalent to function band depth.

A. Compute SU =
S

Sk2Q Sk and SI =
T

Sk2Q Sk (us-
ing min and max operations on the grid)

B. If SI ⇢ Si ⇢ SU (testing using differences on the
grid), increment Pi

ii. Normalize Pi by dividing by the number of subsets
((n�1)-choose-r)

3. Sort the values of Pi.

Visualizations are constructed from the depth-sorted contours, as de-
scribed in the next section.

We call the application of set BD to isocontours contour band depth
(cBD). Of course, nothing in the formulation limits this method to 2D
domains. Indeed, in the results section we will show results for time
varying 2D fields, which will be treated as 3D fields, but we show them
as a 2D sequence in time. In this paper we consider the display of con-
tour boxplots only in 2D—the very challenging problem of visualizing
multiple, nested 3D surfaces is beyond the scope of this paper.

The proposed formulation of set band depth (sBD) and its appli-
cation to contours (cBD) exhibit a set of theoretical properties that
are important in understanding its behavior and potential applications.
These properties are described, with sketches of proofs, in the Ap-
pendix. First, the function BD method of [17] is a special case of
sBD, where the sets are given by regions in the plane. Thus, sBD is a
more general and broadly applicable version of band depth. Second,
while contour band depth (cBD) applies to contours or level sets gen-
erally, it is equivalent to function BD in the very special case where
the contours can be represented as functions. Thus, cBD is also a gen-
eralization of function BD. Therefore, one of the contributions of this
work is our introduction of more general definitions of band depth.

This raises important questions about cBD and what properties it
exhibits with respect to contours. Here we identify two properties of
interest, both of which are described more rigorously in the Appendix.
First, even though cBD operates with respect to the sets associated
with interiors (F(x,y) > q) of contours, it is invariant with respect to
the definition of interior/exterior. Thus, we can say that cBD analysis
is a property of the set of contours themselves rather than the functions
from which they are generated. Second, the band requirement given
by Eq. 4 is consistent with the conditions associated with level sets in
a contour tree [4]. This is important because it means that we can use
many of the results regarding the topological structure of contour trees
to better understand cBD. Also, this suggests that the proposed formu-
lation may open possibilities for nonparametric statistical analyses of
contour trees.

As with function BD, cBD will produce unsatisfactory results (e.g.,
many contours may have P = 0) if the ensemble is relatively small
and the contours vary significantly in shape. The modified band depth
approach [17] to alleviate this problem, which uses an integral of the
dependent variable for values within the band, is not immediately ap-
plicable to this context. The contour approach has no independent
variable, and thus integrals would need to be defined on contour length
in a way that accommodates different topologies. Instead, we take an
alternative approach that generalizes our set definition of band depth.

2716 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013

Figure 1.7: a) A band constructed by three blue contours. The band is
the region delimited by the intersection and union of the contours. The red
contour is entirely contained in the band, i.e. all points on the contour form
a subset of the band. b) An example of sBD converging to BD. Picture taken
from Whitaker et al. [37].

2 Overview

As we have seen in the introduction to RFA treatment in Section 1.2,
visualizing only a single RFA simulation result may give an inaccurate
representation of the actual case due to uncertainties in the simula-
tion parametrization. Thus, the first extension to the RFA Guardian
the Parameter Uncertainty plugin provides, is a module to generate
an ensemble of simulations by performing exhaustive parameter sampling.
The implementation of the Parameter Sampling module is given in Section 6.

Considering the cluttered visualization of a simulation ensemble pre-
sented in Figure 1.3b, the Parameter Uncertainty plugin aims to present the
ensemble using the contour boxplot technique, introduced in Section 1.3.2.
However, the boxplot is not generated with set/contour band depth measures
developed by Whitaker et al. [37], but by employing the mBD measure.
This is accomplished by sampling the whole ensemble with outward pointing
rays. To accelerate the band depth computation, new algorithms for fast BD
and mBD computation are introduced in Section 4. Using the introduced
algorithms, real time generation and rendering of the boxplot can be
achieved. The whole process to establish the contour boxplot is given in
detail in Section 7.4.

16

Due to the heat sink effect, the behavior of lesions around blood vessels
is of great importance. Thus, the Parameter Uncertainty plugin provides
several means to investigate the behavior around vessels: on top of the
contour boxplot, the estimated probability of a blood vessel slice being
ablated on a certain 2D view can be shown and the user is able to only
display simulation results that fail to ablate a specific vessel, as well as
results that fully ablate the vessel in question. Vessel related functionalities
of the Parameter Uncertainty plugin are described in Section 7.5.

The contour boxplot is a global visualization technique using the whole
simulation ensemble. While this gives a concise view of the whole ensemble,
local characteristics of single contours are lost. Hence, the visualization
technique provides automatic grouping of locally similarly behaving simu-
lation results, where the probability of a result being included in a certain
group can be displayed. This gives the user the possibility to investigate
the behavior of contours in a local area. Implementation details are given in
Section 7.6.

In summary, the main contributions of this thesis are:

• Developing an approach for fast BDn,2 and mBD computation for func-
tional bands which are used in the Parameter Uncertainty plugin for
contour boxplot generation. The algorithms are explained in Part II of
the thesis.

• Introducing the Parameter Uncertainty plugin for the RFA Guardian.
The plugin is capable of generating RFA simulation results using ex-
haustive parameter sampling of two parameters. Furthermore, the
Ensemble Visualization module of the plugin is able to visualize the
generated simulation ensemble using the concept of contour boxplots.
Contour ordering is established through the aforementioned fast mBD
algorithm. In addition, the visualization technique focuses on the be-
havior of contours around blood vessels and is capable of performing
local grouping of simulation results based on contour density. The im-
plementation of the Parameter Uncertainty plugin is given in Part III.

17

Part II

Fast functional band depth
computation

18

19

II Fast functional band depth computation

Due to the increasing computational demand for higher band orders, a few
methods for fast BD and mBD computation have emerged in the past years.
Kwon and Ouyang [42] list the steps required to obtain BD, mBD and their
computational complexities using a trivial, intuitive approach: calculating
all bands and testing each function on its containment. Sampling the n func-
tions with m steps, this takes O(mn3) and O(mn4) time for BDn,2/mBDn,2

and BDn,3/mBDn,3 respectively. As these time complexities are not suitable
for real time visualization of an contour ensemble of arbitrary size, the visu-
alization module of the plugin presented in this thesis uses an acceleration
technique for the BD and mBD computation. This section first gives insight
into two already established methods for fast BD and mBD computation
before new approaches are introduced in Section 4.

3 Established methods for fast band depth

computation

3.1 Acceleration through data resampling

López-Pintado and Jornsten [43] proposed a simple data resampling method
for fast computation of BD and mBD (as well as other depth measures). In
this method, the data (e.g. an ensemble of functions) X is divided randomly
into K roughly equal sized subsets Xk. For each subset, the desired band
depths of the included objects are computed independently. The resampling-
based depth of curve x is then defined as the average of the depths of x in
all subsets, where D(x|Kk) refers to the depth of curve x in subset Xk [43]:

Dr(x|X) =
1

K

K∑

k=1

D(x|Kk) (7)

While providing equivalent results for mBD computation, López-Pintado
and Jornsten [43] pointed out that deviations exist for BD computation,
where results for the deepest data sets were not accurate due to the
occurrence of many ties in subsets with smaller size.

The computational savings of this method depend on the subset size;
thus, on the selection of K. Smaller samples lead to a decrease in the num-
ber of bands to compute. This method may be used as an extension for

20

the fast mBD method introduced in this thesis, to accomplish even larger
computational gains. However, in most applications, is not necessary to use
the resampling algorithm as the approach introduced in this thesis is already
fast enough.

3.2 Acceleration with an exact approach

A fast technique for exact BDn,2 and mBDn,2 computation was proposed by
Sun et al. [44]. First, with the help of an n ·m rank matrix, where m is the
number of sampling points and n is the number of functions, all functions
are ordered from smallest to largest value for each sampling point. The BD
and mBD then calculate as follows:

For the BD computation, the maximum rank Rmax and minimum rank
Rmin for a given function f are extracted from the rank matrix. Furthermore,
the number of functions completely below and above f are denoted as nb =
Rmin − 1 and na = n − Rmax respectively. BDn,2 then calculates as stated
in Equation 8. For mBD computation, nb and na are evaluated for every
sample point and the proportion a function resides inside a band is taken
into account. Refer to Sun et al. [44] for pseudo code implementations of
both algorithms.

BDn,2 =

(
n

2

)−1
(nb · na + n− 1) (8)

This method reduces the time complexities of both BDn,2 and mBDn,2

to O(mn log n) [42]. However, the algorithms also have a downside:
Hong et al. [45] pointed out that the algorithms do not consider ranking ties
during sorting, making it unsuitable for binary indicator functions. Conse-
quently, Hong et al. [45] developed a fast algorithm for band depth calculation
of binary indicator functions that runs in O(mn) time.

Additionally, Kwon and Ouyang [42] stated that the method for com-
puting BD is wrong. Unfortunately, this observation is confirmed by tests
performed during developing the Parameter Uncertainty plugin. Consider
the function ensemble in Figure 3.1. The Ensemble consists of five continu-
ous functions sampled at three locations denoted by circles. All BD values
are 0.4, except for the orange function, which has a BD value of 0.5. The
computation with the algorithm according to Sun et al. [44] is depicted in
Figure 3.2. As visible in the figure, the algorithm produces wrong results for
the blue function and the orange function. The problem with the algorithm
in this particular example is that the number of functions completely above
the orange and blue curves are overestimated. Consequently, the number

21

of bands that include these two functions is too high. In light of this fact,
Section 4.2 introduces a different approach for BDn,2 computation that still
exhibits reasonable performance.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
t

0

0.5

1

1.5

2

2.5

3

3.5

4

y(
t)

Figure 3.1: Function ensemble consisting of five different continuous func-
tions. Sampling locations are marked by a circle. The band depths of the
functions are: BDpurple = 0.4, BDyellow = 0.4, BDorange = 0.5, BDblue = 0.4,
BDgreen = 0.4.

Figure 3.2: Steps of BDn,2 computation using the algorithm presented by
Sun et al. [44]. The m · n data matrix contains the sampled function values
of the ensemble in Figure 3.1. First, the function ranks are computed for
each time point. Second, the na and nb vectors are calculated. Each element
in the vectors should contain the number of functions completely above and
below the corresponding function respectively. However, this is not the case
for the blue function and the orange function in na as both values are too
high. This error propagates and leads to wrong BD values for the mentioned
functions.

22

4 New approaches

This section introduces two new approaches for fast mBD and BDn,2 com-
putation which will be used in the Parameter Uncertainty plugin in order to
achieve real-time visualization of a simulation ensemble. The evaluation of
the performance of the new algorithms is given in Section 8.1.

4.1 Modified band depth

The mBD of a function is computed by investigating the normalized fraction
in which the function resides in every band. The intuitive approach entails
calculating every possible band and testing each function for inclusion. The
problem with this approach is the computation of all possible bands which
has the complexity O(nk) for k < n − k. Because every function has to be
tested for inclusion and this test has to be carried out for every sampling
step, the total cost adds up to O(mnk+1).

The key to improving the performance of this process is to address the
elephant in the room: the computation of each individual band. A functions
mBD value does not imply in which bands the function resides, but is rather
a collective measure of the summed up fraction that a function is included
in all possible bands of the ensemble. In other words, the mBD measure
does not tell you about the fraction of inclusion of a function with respect
to a certain band, it only gives you the average fraction across all bands.
Thus, the information gain we get from computing all different bands has
no relevance for the result.

Consider a certain time point t and the sampled values of all functions
in the ensemble which consists of n total functions. Similar to the method
presented in Sun et al. [44], a rank matrix is populated with the ranks of
every function for each sample point. The rank of the i-th function in the
sample point t is denoted by ri,t. It is important to note that depending on
how many ties there are between functions, the maximum rank for a sample
point rmax,t is a number between [1;n]. This means that whenever two or
more functions values are equal, their ranks are equal as well.

Now, to calculate the mBD value for each function, the average fraction
of inclusion across all bands has to be computed. For a given band order k
and the number of functions n, the maximum number of bands a function is
included in is given by the binomial coefficient

(
n
k

)
. Since both n and k are

23

positive numbers, the binomial coefficient can be expressed as:

(
n

k

)
=

{
n!

k!·(n−k)! n ≥ k

0 otherwise
(9)

To obtain mBD for a given function, we need to calculate in how many
bands the function is included in each sample point and averaging the result
by the number of total possible bands and sample steps. The other way
to address the problem is to compute the number of bands that do not
include the function for each sample point and subtracting it from the total
number of bands possible before averaging the result. The bands a particular
function is not included in, are the ones formed by functions that either are
ranked higher or lower than the particular function. For a function with rank
ri,t, the number of functions with higher rank is ra,i,t = rmax,t − ri,t and the
number of functions with lower rank is rb,i,t = ri,t−1. Consequently, the total
number of bands that do not include the function equals the number of bands
formed by the ra,i,t functions and the rb,i,t functions. Figure 4.1 illustrates
this circumstance. Subtracting this number from the total number of bands
and averaging the result yields the mBD for this function:

mBDn,k,i =
1

m ·
(
n
k

)
m∑

t=1

((n
k

)
−
(
ra,i,t
k

)
−
(
rb,i,t
k

))
(10)

Figure 4.1: Illustration of three columns of the rank matrix corresponding to
three sampling points. When considering a particular function i, the number
of functions ranked above and below this function within the scope of a
sampling point have direct influence on the number of bands in which this
function is included.

24

Using this method to compute mBD reduces the computational complex-
ity from O(mnk+1) to O(mn log n). Note that the complexity does not
depend on the band order k any more. However, when considering all sub-
bands, i.e. for a given band order lower band orders are considered as well,
the complexity increases to O(kmn log n):

mBDn,k,i =
1

m

k∑

j=2

(
n

j

)−1 m∑

t=1

((n
j

)
−
(
ra,i,t
j

)
−
(
rb,i,t
j

))
(11)

Equation 11 can be viewed as a generalization of the mBDn,2 algorithm pro-
posed by Sun et al. [44], as it also employs a rank matrix and counts functions
ranked higher and lower as the function for which mBD is computed. An ad-
vantage of Equation 11 lies in the fact that the mBD using bands of any order
can be computed (without sacrificing computation time). Furthermore, ties
in function values are treated properly. However, with no ties present and
the band order k = 2, the approach by Sun et al. [44] and Equation 11 yield
the same results. The Application of this mBD algorithm in the Parameter
Uncertainty plugin is detailed in Section 7.4.4

4.2 Band depth

An algorithm for fast BDn,2 computation can be found using similar
considerations as in the previous section. As before, the number of bands
that contain the function needs to be calculated. Unlike computing the
mBD however, if a band contains the current function, but the function
escapes the band in any other sample point, the band does not contribute
to the functions BD. This makes knowledge about the behavior of each
function in the ensemble across all sampling points with regards to the
current function inevitable.

As in the case of mBD computation, bands formed by functions located
either above or below the current function do not contribute to the functions
BD. Additionally, functions crossing the current function do not contribute
either. That means that only bands made by a function fully below and a
function fully above the current function contribute to BD as illustrated in
Figure 4.2.

25

(a) Band of f2 and f4 (b) Band of f1 and f2 (c) Band of f1 and f4

Figure 4.2: Example of three bands in an ensemble of four functions. Assume
that BDn,2 of function f3 needs to be computed. Bands built with the
function f2 (which crosses f3) never fully contain f3 (a) & (b). Only the
band of f1 and f4 - built by functions fully above and fully below f3 contains
f3 (c).

Defining the number of functions that cross fi as ci and the number of
functions fully above and below fi as ai and bi respectively, the BDn,2 of fi
can be computed in the following way:

BDn,2,i =

(
n

2

)−1((n
2

)
−
(
ai + ci

2

)
−
(
bi + ci

2

)
+

(
ci
2

))
(12)

Note that in Equation 12 the term
(
ci
2

)
is added. Otherwise combinations of

crossing functions would have been subtracted twice in the equation. In the
implementation of this method, a rank matrix is utilized again. However, in
order to get ai, bi and ci, two additional matrices of size n · n are utilized.
These matrices, termed Fa and Fb record functions ranked higher and lower
than the current function. First, the matrices are populated with zeros.
Whenever a function fj has a higher rank than the current function fi, Fa(i, j)
is set to one. The same holds for functions with lower rank than fi and Fb.
Summation over all column entries for a particular row i gives the number of
functions that are below and/or above function fi. The number of functions
that cross fi can be computed by a logical AND operation of Fa and Fb and
a subsequent summation over the columns of the resulting matrix for row
i. Finally, ai and bi are computed by subtracting ci from the number of
functions that are either above or below fi. Summarized:

26

ci =

j∑

l=1

(Fa(i, l) ∧ Fb(i, l)) (13)

ai =

j∑

l=1

Fa(i, l)− ci (14)

bi =

j∑

l=1

Fb(i, l)− ci (15)

With Equation 12, the computation of BDn,2 takes O(mn2). Although this
is larger than the complexity of the algorithm proposed by Sun et al. [44], the
algorithm produces exact results for ties too, while still being faster than the
trivial approach, which has O(mn3) complexity. Furthermore, the algorithm
works with ensembles for which the algorithm of Sun et al. [44] produces
wrong results, refer to Section 3.2. Figure 4.3 demonstrates the algorithm
using the ensemble presented in Figure 3.2. For a performance comparison of
the BD and the mBD algorithm with the trivial approach, refer to Section 8.1.

Figure 4.3: Illustration of the BDn,2 computation using a new approach.
The data matrix corresponds to the example in Figure 3.1. The first step
is to generate a matrix of function ranks. Second, the matrices Fa, Fb and
Fa(i, l) ∧ Fb(i, l) are generated by recording functions with higher rank and
lower rank respectively. Subsequently, the vectors a, b and c can be computed
using equations 13-15. Finally, BDn,2 is obtained by using Equation 12.

27

Part III

The Parameter Uncertainty
plugin

28

29

III The Parameter Uncertainty plugin

The goal of the Parameter Uncertainty plugin is to extend the RFA Guardian
with the capability to visualize the uncertainty of the RFA simulation out-
comes resulting from different parameterizations. As described in Sec-
tion 1.2.4, the outcome of the treatment depends on several treatment-specific
parameters. Those parameters need to be provided to the simulation routine
of the RFA Guardian in order to perform the simulation. Changing parame-
ters leads to different outcomes, and the different shapes and extents of those
generated lesions need to be visualized in a non-cluttered manner in order to
get an insight in the statistic relevance of the entered parameters.

The Parameter Uncertainty plugin is separated into two independent
modules. One module for sampling the input parameter space of two simula-
tion parameters and another module designed for the actual visualization of
simulation ensembles. Most of the time, the user interacts with both parts
in a linear fashion: generating the sampling space first and then visualizing
it. However, this is not always the case. Sometimes previously sampled pa-
rameters are loaded and visualized without interacting with the parameter
sampling interface at all. At other times, after having seen the uncertainty
visualization, another sampling step is carried out to acquire additional data
for the visualization. Designing both modules of the plugin in an independent
manner enables this back-and-forth interaction.

Before the plugin itself is described in detail, the RFA Guardian is intro-
duced. Afterwards, following the structure of the plugin, this chapter will
describe several important aspects concerning the parameter sampling part
of the plugin. Secondly, the larger part of the chapter deals with produc-
ing the visualization for displaying the uncertainty in the simulation results
where the mBD algorithm introduced in Section 4 will be used to generate
a contour boxplot.

5 RFA Guardian

5.1 Workflow

The RFA Guardian is an RFA simulation tool for assisting interventional
radiologists in treatment of liver tumors. The tool provides assistance in
planning, guidance and validation of treatments. Treatment assistance is
divided into three distinct temporal phases: the goal of the pre-interventional
phase is to create a patient model: first, already available patient images are
loaded into the software and automatic segmentation of the liver, vessel tree

30

and semi-automatic tumor segmentation is carried out. Second, volumetric
meshing of the segmented data takes place. In the peri-interventional phase,
the tips of the probe electrode are defined and registered into the patient
model. When finished, simulation parameters are defined and the simulation
of the treatment can be performed. Finally, in the post-interventional phase
the treatment result is compared with the simulation result [7]. A flow chart
of the three phases is depicted in Figure 5.1.

Figure 5.1: Technical workflow of an RFA treatment in the RFA Guardian.
Pre-interventional (PrI), peri-interventional (PeI) and post-interventional
(PoI) phases are outlined in distinct colors [46].

5.2 Frameworks and user interface

The RFA Guardian is built upon the “Medical Imaging Interaction Toolkit”
(MITK) [47], an open source software framework that combines the “Insight
Segmentation and Registration Toolkit” (ITK) [48] with the “Visualization
Toolkit” (VTK) [49] and provides a platform for clinical applications and
research. The incorporation of ITK and VTK allows developers to access
a large number of algorithms and data structures potentially useful for
medical applications. As will be further elaborated in Section 7, several
VTK filters are utilized in the Uncertainty Visualization module as well.
Note that all referenced VTK filters and data structures in this thesis are
documented in the VTK API documentation at [50].

31

MITK based applications are often built on top of the MITK “work-
bench”, and the RFA Guardian is no exception. The workbench offers a
convenient, extendable user interface (UI) that, in its standard configura-
tion, contains three orthogonal5 windows for a 2D view in the axial, sagittal
and coronal anatomic plane, as well as a 3D window for volumetric represen-
tations. The cursors in the 2D views can be used to focus on a specific part
of the body. Each crosshair in a window represents the intersection of both
of the perpendicular planes. In order to select a different slice of the current
view, the user may scroll through the plane normal, and different slices of the
body will be displayed (Figure 5.2). The UI of the RFA Guardian consists of
three main parts: a database of all loaded and generated data, the window
view and controls for interaction with plugins. A screenshot of the UI is
shown in Figure 5.3.

Figure 5.2: Schematic drawing of the orthogonal anatomic planes. Visible
are the axial plane (A), the coronal plane (B) and the sagittal plane (C). In
the MITK workbench, the intersection of two planes represents the cursor
location in the third plane. The user may scroll through any of the views in
order to select different slices of the current plane, as depicted by the black
double arrow in the coronal plane. Adapted from Mrabet [51].

5The 2D windows are actually only orthogonal in the default view and can be adjusted
to represent arbitrary planes.

32

Figure 5.3: User interface of the RFA Guardian. The view is split up into
three main parts. First, the MITK data storage of all data sources (e.g.,
patient images or meshes among others) (a). Second, the visualization of
selected data in four views (b): axial view in upper-left corner; sagittal view
in upper-right corner; coronal view in lower-left corner and a 3D view in
lower-right corner, in which an RFA probe can be seen punctuating a liver
tumor. Third, a pane for plugin interaction (c) [52].

6 The Parameter Sampling module

6.1 User interface

The UI of the Parameter Sampling module allows the user to select two
parameters. For each parameter, a sampling method, the number of samples
and parameter specific options can be set. Additionally, the UI contains a log
window and a progress bar for providing feedback of the simulation progress
to the user. The UI is located at the right pane of the RFA Guardian (refer
to Figure 5.3). A depiction of the interface can be seen in Figure 6.1. The
individual parts of the UI are elaborated in more detail in the following
sections.

33

Figure 6.1: User interface of the Parameter Sampling module. Two param-
eters can be selected by the user. Sampling properties such as the number
of samples, the parameter distribution and sample bias correction, as well as
parameter specific options can be set independently for the first parameter
(a) and the second parameter (b). The UI additionally includes the post-
processing option to smooth the simulation results (c). Finally, a log window
and progress bar for the current sampling procedure is shown in (d).

34

6.2 Workflow

In order to perform the parameter sampling, the user may select two param-
eters, a sampling method and the number of samples for each parameter.
Specific settings may be available depending on the chosen parameter type.
In the default setting, three parameters are available: tissue perfusion, tu-
mor perfusion and the location of the electrode probe tips; however, it is
easy to extend the module with additional parameters to sample from. The
module performs exhaustive sampling and produces a simulation ensemble
of n ·m simulation results in total, where n is the number of samples in the
first parameter and m is the number of samples in the second parameter.
For each of the n ·m parameter combinations, the simulation routine of the
RFA Guardian is invoked and performs a single simulation. The simulation
result is read back to the parameter sampling module, and either the next
simulation iteration takes place, or the module halts. In either case, the
simulation results are saved to the MITK data storage together with the
parameter types and values of the sampled tuple that was injected into the
simulator to generate the particular prediction. This allows for saving the
data on the filesystem and loading it later without losing information about
the used parameters. Due to the fact that each additional parameter leads to
an exponential increase in simulation invocations, the module restricts sam-
pling to two parameters. The workflow of generating a simulation ensemble
is shown in Figure 6.2.

6.3 Sampling methods and properties

There are three available sampling methods the user might choose from. The
statistical methods include generating Gaussian distributions or uniform
distributions and the deterministic approach samples a parameter in fixed
intervals. Since both simulation parameters are sampled independently, the
user might choose to generate a Gaussian distribution of one parameter and
a uniform distribution of the other or even mix the deterministic approach
with a statistical one. Which sampling method one should use depends on
the knowledge about the specific parameter. If the user is fairly certain
about the value of a parameter, a Gaussian distribution might be the right
choice, since about 68.3% of the sampling values will lie within the region of
± one standard deviation around the mean [53, p.384]. Hence, the resulting
simulation ensemble will give a well resolved estimation about this region.
If, on the other side, the parameter value is relatively uncertain, a uniform
distribution or the deterministic approach might be more appropriate. Both
methods differ in the sense that the uniform distribution is generated by

35

Choose two
parameters to
sample

Choose number
of samples

Set sampling
properties

Generate n*m
combinations of
parameters

Pick i-th
parameter
combination

RFA-simulation

All combinations
processed?

End

Start

Per-parameter

Simulation outcome MITK
Datastorage

Non-sampled
simulation input

i-th parameter
combination

Post processing

Figure 6.2: Flowchart depicting the procedure of generating a simulation
ensemble.

using mean and variance values, whereas the deterministic method requires
the specification of a minimum and maximum value. Hence, if the user has
more knowledge about the range of the parameter than its variability, the
deterministic approach may be better suited to produce a sensible output.
The mathematical definitions of the probability density function of the
statistical sampling methods are listed in Equations 16 and 17 where µ
represents the mean and σ the standard deviation [53, p.331&371].

Gaussian distribution:

f(x) =
1√

2π · σ
· e− 1

2
(x−µ
σ

)2 (16)

36

Uniform distribution:

f(x) =

{
1

2
√
3σ

µ−
√

3σ ≤ x ≤ µ+
√

3σ

0 else
(17)

In order to produce distributions that correspond to those definitions for a
given µ and σ, the C++11 standard library header random was used. This
header contains several random number generators (RNGs), as well as map-
pings for common statistical distributions. Generally, most RNGs produce
uniformly distributed pseudo-random numbers in the unit interval (0; 1)
(however, RNGs usually produce integer values first and then scale them
back to the unit interval). Those numbers then need to be mapped onto the
specific distribution that needs to be realized. For the statistical sampling
method utilized in the Parameter Sampling module, the “Mersenne Twister”
(MT19937 to be precise) RNG is used. Although its initial release back in
1998 had some flaws, the MT19937 is a widely-used generator nowadays with
solid distributional properties [54, p.5&42]. For the sake of brevity, the ac-
tual algorithm of the MT19937 is not listed here, but the interested reader
may refer to the original publication of the algorithm [55] and a through-
out review of the MT19937 and variants for single instruction, multiple data
(SIMD) architecture [56].

For mapping the uniform distribution in the unit interval to the distribu-
tions defined in Equations 16 and 17, different approaches have to be taken.
The mapping for the user defined uniform distribution is simply achieved
with a scaling function: Let fa,b(x) be a specific realization of a random vari-
able, uniformly distributed in [a; b]. Furthermore, consider a transformation
Tc,d which scales and translates the realization to the interval [c; d], and let
fc,d(x) be the scaled version of fa,b(x). Thus, the relationship between fa,b
and fc,d can be expressed as:

fc,d(x) = Tc,d{fa,b(x)} =
d− c
b− a · (fa,b(x)− a) + c (18)

As a consequence, fc,d(x) can be viewed as a specific realization of a different
random variable, uniformly distributed in the interval [c; d] with mean: µ =
c+d
2

and variance: σ2 = 1
12

(d − c)2. Hence, in the module for transforming
the uniform distribution of the RNG R(0, 1) into the desired distribution
V (c, d) defined by the user, this simply means transforming R by Tc,d with
c = µV −

√
3σV and d = µV +

√
3σV .

For the Gaussian distribution, the mapping is not as trivial as it is in
the uniform distributed case, and several approaches exist. For example, the
Box-Muller transform (one of the “polar methods”) applies a polar transfor-
mation of two uniform, independently distributed random numbers R1(0, 1)

37

and R2(0, 1) in order to get two independently distributed random variables
in the standard normal distribution N1(0, 1) and N2(0, 1):

N1(0, 1) =
√
−2log(R1) · cos(2πR2) (19)

N2(0, 1) =
√
−2log(R1) · sin(2πR2) (20)

Since the Box-Muller method is fairly slow, an acceleration is provided
by other polar methods, for example the acceptance/rejection algorithm
[54, p.171-173]. However, the mappings of the Gaussian and uniform
distributions do not have to be implemented by hand, since the C++11
random header already includes convenient mapping functions for generating
the desired distributions.

Regardless of which statistical parameter distribution is generated, a sam-
ple bias correction can be performed in order to align the sample mean with
the mean provided by the statistical distribution. For many samples of a
parameter, the deviations of the sample mean and the mean of the gener-
ated distribution will vanish, as the sample mean is a consistent estimator.
This means that, with an increasing number of samples, the sample mean
converges to the provided mean, which makes it asymptotically unbiased.
Mathematically expressed, in a sample Sn := {X1, X2, ..., Xn} consisting of
n independently distributed random variables Xi, produced by an RNG and
mapped to a distribution with predefined mean µ, the sample expectation E
has the following asymptotic property:

E{ lim
n→∞

Sn} = µ (21)

However, this property is only approximated well, if n is a fairly large num-
ber, and, especially for a small sample size, the actual mean of the pro-
duced sample may diverge from the predefined mean in an undesirable man-
ner. The sample bias correction method simply re-aligns the sample mean
with the desired mean, in order to get a parameter distribution around
the specified mean. A pseudocode implementation is given in Listing 1.

38

Listing 1: Pseudocode of sample bias correction in the parameter sampling
module
function sampleBiasCorrect ion

set sample mean = 0

for each o f the va lue s in sample S :
add value to sample mean

end

d iv id e sample mean by sample s i z e
set c o r r e c t i o n f a c t o r = provided mean − sample mean

for each o f the va lue s in sample S :
add c o r r e c t i o n f a c t o r to value

end

end

6.4 Parameter dependent sampling properties

Depending on which parameters are to be sampled, different sampling options
are available. For sampling the tips of the probe electrode, the mean of each
tip is automatically obtained from the RFA Guardian and corresponds to the
current location of the registered tips. The user has to specify the variance
and how many needle tips are to be sampled - this can be a number from
zero to nine, which is the total number of tips available. The uncertainty
sampling module will then pick the specified number of tips randomly from
all nine available tips. Optionally, re-randomization of the tip selection can
be performed on every invocation. The location of each tip that is processed
in the current pass is varied along the x, y, and z coordinate, where each
component is treated as an independent random variable. Thus, samples of
tip locations are taken from a probability distribution in R3.

For tissue perfusion and tumor perfusion, the user may specify a mean
or take the mean from the simulation settings as well. The variance can
be selected relative to the mean or as an absolute value. Since perfusion is
a one-dimensional parameter, the probability distribution of the perfusion
parameters is in R1 as well.

After all options have been set, the parameters are gathered and injected
for simulation, and the simulation routine processes each of the n ·m param-
eter combinations iteratively. Feedback is provided to the user through the
log window and the progress bar (Figure 6.1d). Once the simulation routine
has finished, post processing takes place.

39

6.5 Post processing

Before a simulation result is saved in the MITK data storage, several post-
processing steps are performed. This ensures being able to save the data onto
the filesystem and loading it in another session without loss of information
about the parameterization of this specific lesion. Additionally, the sampling
module provides the possibility to smooth the resulting lesion, in order to
enhance the visualization of the simulation ensemble in the visualization
module. The data type of a simulation outcome is vtkPolyData, a universal
geometry data type of VTK, able to hold 3D vertices, lines, polygons, and/or
triangle strips. This data is wrapped in an MITK container called DataNode,
which has the advantage of assigning names to the underlying data and
enabling it to add customizable properties to the stored data. Properties
can be basic data types like strings, integers, floating point numbers, and
others. The MITK DataNode can be directly saved on the filesystem through
the MITK workbench. Utilizing these functionalities, the sequence of post-
processing steps is as follows:

• Giving the data a unique name, in order to recognize it later as a data
structure that was produced by the parameter sampling module,

• saving the values and types of the parameters that were used to gen-
erate the simulation result,

• (optional) smoothing the VTK data with the vtkSmoothPolyDataFilter,

• saving the whole data node to the MITK data storage.

Smoothing of the VTK data is done using a filter called the
vtkSmoothPolyDataFilter. This algorithm uses Laplacian filtering in order
to generate a mesh with evenly distributed vertices. Basically, the filter
gathers directly connected vertices of each vertex in the first step. Then, for
each vertex, the average position of its neighborhood is calculated, and the
vertex is moved to the resulting location. This procedure is repeated several
times until the mesh is sufficiently smooth.

40

7 The Ensemble Visualization module

Before the actual module is described, Section 7.1 will give relevant introduc-
tory information about the OpenGL rendering pipeline. Subsequently, com-
putational geometry algorithms used throughout the module are described
in Section 7.2.

7.1 The Graphics Processing Unit and OpenGL

Serving as massively parallel processors in many consumer devices, such as
desktop computers or mobile devices, GPUs have seen vast improvements in
terms of performance and capabilities over the last decades. While initially
being restricted to a fixed function, single purpose pipeline, modern-day
GPUs offer a flexible, programmable rendering pipeline and general-purpose
computation abilities [57]. Aside from their graphics rendering capabili-
ties, the advantages of general purpose computation on GPUs (GPGPU)
are utilized in many different fields that can benefit from their massive
parallel functionalities, e.g., medical physics [58] or machine learning [59, 60].

In the uncertainty visualization technique presented in this thesis, the
Open Graphics Library (OpenGL) is used to make use of hardware-
accelerated rendering and GPGPU. OpenGL is a platform independent, open
source API for interacting and controlling the graphics subsystem on various
devices. Using a standardized interface for interacting with the GPU has the
advantage of adding an abstraction layer to the specific requirements of the
underlying platform [61, p.45].

7.1.1 The OpenGL rendering pipeline

In order to render a scene, OpenGL provides a rendering pipeline that con-
sists of both fixed-function stages, as well as programmable stages. For pro-
grammable stages, the developer might provide code written in the OpenGL
Shading Language, a high-level, C-style programming language for executing
shader programs on GPUs. When issuing a drawing command, vertices pass
the following stages of the pipeline on their way to a framebuffer: first, the
vertices are fetched automatically to the input of the vertex shader, the first
programmable part of the pipeline. This shader is necessary to perform per-
vertex processing tasks, such as applying transformations (rotations, scaling,
etc...) to each input vertex. After the vertex processing stage is finished,
tessellation takes place - the task of splitting primitives into smaller pieces:
first, the programmable tessellation control shader is invoked for defining the

41

tessellation-level of a particular patch (a collection of a variable number of
vertices, by default three). The output of this shader stage goes directly into
the fixed-function tessellator, which processes the receiving patches accord-
ing to properties defined in the tessellation control shader and passes the
resulting primitives into the tessellation evaluation shader, which is invoked
once for each produced vertex and used to manipulate the tessellation re-
sult. After the tessellation phase, the geometry shader is invoked for each
produced primitive. The main purpose of this programmable shader lies in
generating, removing and manipulating passed primitives.

Before the last programmable part, the fragment shader is invoked, a
number of fixed-function routines process the primitives. First, primitive
assembly takes place, in which vertices are grouped to lines and triangles.
Second, the result is clipped against the viewport (the area in which the
scene is drawn). Any triangle (partly) visible in the viewport is transformed
to normalized device coordinates, a coordinate system ranging from −1 to 1
in the x and y axis and from 0 to 1 in the z-axis. An optional last stage, be-
fore rasterization takes place is culling - the rejection of triangles depending
on vertex ordering for dismissing triangles that face away from the viewer.
Rasterization is the step in which it is tested which fragments belong to a
triangle. All triangles that pass this test are sent to the fragment shader. Fi-
nally, in the fragment shader, individual colors of fragments are manipulated
and the fragment is sent to the framebuffer [61, ch.3]. A simplified concept
of the pipeline can be viewed in Figure 7.1.

The stencil buffer There are several per-fragment tests that can be used
to prevent writing certain fragments to the framebuffer. Those tests are
the scissor test, the stencil test and the depth test. Because stencil test-
ing is used extensively throughout the visualization of simulation ensembles,
this section focuses on briefly explaining the basic concepts of the stencil
buffer. A great analogy of what stencil testing does is given in Sellers et
al. [61, p.416]: basically, it can be thought of as cutting out a shape in a
cardboard and spray-painting the shape on a wall. Thus, stencil testing is
used to “cut out” a certain portion of the framebuffer and prevent fragments
to be drawn outside of that portion. A stencil buffer that specifies the region
to be written to has to be attached to a framebuffer in order to work. Once
attached, the stencil filters write operations to the framebuffer as specified
by the developer. In order to configure the behavior of a stencil buffer, three
functions are frequently used in the visualization technique presented in this
thesis. First, glStencilMask, which specifies which bit planes of the stencil
buffer are modifiable. The stencil buffers that are created in the Uncertainty

42

Figure 7.1: Simplified version of the OpenGL implementation of the render-
ing pipeline concept. Non-programmable shaders have rounded corners and
programmable shaders have squared corners [61, p.47].

Plugin all have a bit depth of eight bits per fragment, thus enabling the devel-
oper to use up to one byte of independent tests per fragment. The function
glStencilFunc is used to set on which conditions the stencil test passes. The
function takes a comparison operator c (e.g. ≤, 6=, etc.), a reference value r
and a bit mask m as parameters. For a certain value v in the stencil buffer,
the test passes if: (r ∧ m) c (v ∧ m). If this test passes, the fragment
is written to the stencil buffer - otherwise not. Finally, the third function,
glStencilOp, specifies what happens to the values in the stencil buffer when
the stencil test passes or fails.

7.1.2 Compute shaders

Introduced in OpenGL 4.3, compute shaders provide access to the GPGPU
capabilities of modern GPUs. Being standalone shaders, they do not fit any-
where in the rendering pipeline described in Section 7.1.1. In some aspects,
compute shaders act like other shaders (access to uniform variables and buffer
objects for example), however, because they are isolated from other shaders,
they do not have any output types. Providing data to the compute shader
and reading data back is implemented using a special buffer called the Shader

43

Storage Buffer Object (SSBO). SSBOs may hold arbitrary data and have de-
cent mapping capabilities to access the buffer the same way in CPU-related
code and shader code [62].

In order to dispatch a task to a compute shader and to take advantage of
the parallel capabilities of GPUs, it should be possible to split the task into
so called workgroups - parallel entities that concurrently work on the task.
A workgroup consists of a grid of work items in which each item performs a
single invocation of the shader code. The whole dispatch consists of a grid of
work groups in which each work group gets assigned a unique id [61, ch.10].
Additionally, each work item can be identified with a global invocation id and
an id that is relative to its work group, Figure 7.2. Those ids are accessible
in the shader and can be used to determine the current invocation.

Because several invocations are executed at the same time, and an SSBO
is shared among the invocations, necessary precautions have to be taken
when writing to an SSBO in order to avoid race conditions. This can be
achieved by using atomic counters: an atomic counter buffer is provided to
the dispatch and invocations may increment the counter via a built-in shader
function. The function returns the value of the counter before the increment
took place, giving the invocation a unique value that can be used as an index
for the SSBO.

Figure 7.2: Illustration of work groups in a compute shader. Note: this pic-
ture only shows work groups aligned in a two-dimensional grid while in real-
ity, a third dimension exists. Each blue spring represents a work item. Work
items are grouped into work groups. The whole dispatch consists of several
work groups aligned in a grid. Each work group and invocation is identified
with a unique three-dimensional id. The id count starts at the lower-left
corner; thus, the highlighted invocation has the global id: (11, 13, z), and
the local id: (2, 3, z). The workgroup id of the workgroup containing the
highlighted invocation is: (3, 2, z). Picture taken from Hafner [63].

44

7.2 Relevant computational geometry algorithms

Working with 2D contours, which are projections of the resulting 3D lesion
iso-surfaces into planes, is an integral part of the visualization technique
presented in this thesis. Those contours are defined by their ordered vertices
and may be treated as polygons. This brief section will introduce some of
the algorithms used for computing several polygon-related tasks that keep
recurring throughout the thesis. For convenience, all calculations in this
section are restricted to R2.

7.2.1 Segments, rays, lines and their intersections

It is important to properly define and distinguish the notion of segments,
rays and lines and their associated properties when dealing with intersections
among them for subsequent sections of this thesis.

Terminology The general equation that can be used to describe all of the
three concepts is as follows:

x(s) = x0 + sd (22)

This linear equation can be used as a parameterized representation of a
segment, ray or line, where x(s) represents a point in R2, defined by an
origin x0, a direction vector d and a scalar s.

Segments are constrained on both ends and often described by two ver-
tices. Thus, s is bound by two finite scalars: 0 ≤ s ≤ l, where x0 represents
one of the constraining vertices and, if the direction vector d is normalized,
l is the length of the segment.

Rays are often defined by an origin and a direction. The notion of length
does not make sense for rays, since they extend to infinity. Consequently, s
is only bound by a single scalar, namely zero: s ∈ [0;∞); hence, it does not
matter whether d is normalized or not.

Lines have neither an origin nor an end. They extend in both directions
to infinity, and any point on the line may be used to define x0. The scalar s
is not constrained at all: s ∈ (−∞;∞).

Intersections Despite the different constraints imposed on s, intersection
calculation of segments, rays and lines share a similar mathematical founda-
tion. Somehow counter-intuitively, line-line intersection calculation has the
fewest computations of all the concepts, although lines (as well as rays) have
infinite length. This is based on the fact that parameterized intersection

45

calculation implicitly treats the linear transformation in Equation 22 as be-
ing a line. Further constraints on the parameter s need to be implemented
separately, making segment-segment intersection the most demanding com-
putation. Consider two intersecting lines in parameter form:

u(s) = u0 + sud (23)

v(t) = v0 + tvd (24)

The intersection point of the lines is obtained by equating u(s) and
v(t), solving for either s or t and putting the calculated scalar back
into the line equation [64, p.115-116]. An example implementation of
an algorithm that computes segment intersection is given in Listing 2.

Listing 2: Pseudocode example for computing the intersection of two seg-
ments. Returns true if segments intersect.
function s egment In t e r s e c t i on

//The two segments are de f ined by four v e r t i c e s in t o t a l :
// b e g i n f i r s t , e n d f i r s t , beg in second , end second

// d i r e c t i o n o f f i r s t segment :
set d i r f i r s t = e n d f i r s t − b e g i n f i r s t

// d i r e c t i o n o f second segment :
set d i r s e cond = end second − beg in second

//tmp vecto r f o r c a l c u l a t i n g numerator :
set tmp = beg in second − b e g i n f i r s t

// c a l c u l a t e denominator :
set denom = d i r s e cond . x ∗ d i r f i r s t . y − d i r f i r s t . x ∗ d i r s e cond . y ;
i f denom < EPS

return f a l s e // segments are c o l i n e a r
end

set denom i s po s i t i v e = denom > 0 ;

//both numerators :
set f i r s t numer = d i r s e cond . x ∗ tmp . y + d i r s e cond . y ∗ tmp . x ;
set second numer = d i r f i r s t . x ∗ tmp . y + d i r f i r s . y ∗ tmp . x ;

// per forming t e s t s f o r parameters :
i f (f i r s t numer < 0) equals denom i s po s i t i v e or

(f i r s t numer > denom) equals denom i s po s i t i v e or
(second numer < 0) equals denom i s po s i t i v e or
(second numer > denom) equals denom i s po s i t i v e

return f a l s e ; // segments do not i n t e r s e c t
end

// segments i n t e r s e c t . Ca l cu l a t ing parameter o f f i r s t segment :
set param = f i r s t numer / denom ;

//Actual i n t e r s e c t i o n :
set i n t e r s e c t i o n = b e g i n f i r s t + param ∗ d i r f i r s t ;

return t rue

46

7.2.2 Polygons

As noted before, a large part of the visualization algorithm deals with polygon
operations. All processed polygons do not self-intersect; i.e., the plugin only
processes “simple” polygons. Narrowing the type of polygons down to this
benign subclass is important, since many algorithms are only applicable to
simple polygons.

Convex hull of simple polygons The convex hull of a polygon is
the smallest convex subset of vertices that still contains the original poly-
gon [65, ch.3]. The reason to approximate a polygon with its convex hull is
mainly the simplification (and therefore acceleration) of several algorithms,
like the “point-in-polygon test”. In a convex polygon, each point within the
polygon lies on the same side of all segments and one can draw a straight line
between two arbitrary polygon vertices, and the line will never be outside
the polygon. Furthermore, the interior angle of two consecutive segments of
a convex polygon is always ≤ 180°. A comparison of a non-convex polygon
and its convex hull is given in Figure 7.3.

Figure 7.3: Comparison between a non-convex polygon (left) and its con-
vex hull (right). It can be seen that the non-convex polygon violates some
conditions of convex polygons, as not all interior angles between segments
are ≤ 180°, and connecting certain vertices results in intersections between
polygon segments and the line.

Several algorithms have been proposed in an attempt to compute the
convex hull of a simple polygon in O(n) time. However, many of them have
been proven to be wrong later on and some of them are difficult to implement
(for an overview, refer to e.g. [66]). In this thesis, Melkman’s algorithm [67]
has been used to compute the convex hull of simple polygons, because it both
has O(n) complexity and is easy to implement. Furthermore, it is an on-
line algorithm which distinguishes it from other convex hull algorithms. The

47

algorithm uses a double-ended queue (deque) to calculate the hull. The deque
contains the current convex hull at any point in the algorithm. New vertices
are added and already included vertices are removed depending on where new
vertices lie with respect to the current convex hull. For a thorough description
of the algorithm and a pseudocode implementation, refer to Melkman [67].

Point-in-polygon test On several occasions in the uncertainty visualiza-
tion it is necessary to examine whether a point lies within a polygon. For
convex polygons, this task is fairly simple, because one only needs to check
if the point lies on the right-hand side of each segment of a polygon with
clockwise (CW) orientation in order to be inside the polygon (in case of
counter-clockwise (CCW) orientation, the point has to lie on the left side
of each segment). Therefore, the complexity of the algorithm is linear with
respect to the number of vertices.

For non-convex polygons, Jordan’s point-in-polygon test is used to deter-
mine if a certain point is inside a polygon. In this algorithm, a ray is shot
from the test point in an arbitrary direction, and the number of intersections
with the polygon is counted. If the resulting number is even, the point is
outside the polygon; if it is odd, the point is inside. This algorithm also runs
in O(n), however, it may be a bit slower in practice due to the potential need
for calculating several intersections. A visual representation of the algorithm
is shown in Figure 7.4.

Figure 7.4: Visualization of the point-in-polygon test. Left: a point that
lies outside the polygon. Regardless in which direction the ray is shot, the
intersection count with the polygon is always an even number. Right: a
point that lies inside the polygon. In this case, an arbitrary ray shot from
this point will always result in an odd intersection count with the polygon.

48

7.3 Overview and user interface

The core of the Parameter Uncertainty plugin is the ensemble visualization
module, which gives the user a non-cluttered method to concurrently visu-
alize and investigate the entire ensemble of simulation results. In order to
visualize a particular ensemble of simulated lesions, the user has to first load
the data and select the lesions that are to be visualized. For convenience, the
UI of the ensemble visualization module contains two lists, each representing
the range of values for one of the specific parameters. Each item in these
lists is directly connected to the corresponding simulation parameterizations
and allows toggling the specific value on or off for the upcoming analysis
tasks. The user may select a single sample value of one parameter, while
including the whole sample range of the other parameter. If the selection
changes later on, the visualization adapts to the changes and visualizes the
current selection accordingly.

In addition to specifying the lesions to be visualized, the UI contains
options to adjust several aspects of the ensemble visualization as well as
control panes for the “vessel filter” and the “threshold filter”, which are
described in Section 7.7. The basic workflow is shown in Figure 7.5 and the
UI is shown in Figure 7.6.

Select lesions
to include in
visualization

Start
Data already in

data
storage?

Load data
generated by
the Parameter
Sampling
module

N

Set
visualization
options

Visualize
ensemble

Additional
information
needed?

Define filters

End

Optional

Figure 7.5: Workflow of the ensemble visualization module.

The following sections will sequentially describe the steps taken during
the visualization process, i.e., the techniques within the “Visualize ensemble”
box in Figure 7.5. Each of these steps are performed whenever the main view

49

of the RFA Guardian needs an update, i.e., whenever the user interacts in
any way with the axial, sagittal, and coronal windows. Thus, the ensemble
is rendered in real time. Interactions with a specific window may trigger the
need for other windows to be updated, too, because moving the cursor to a
specific position in one view leads to the need for an update of the rendered
data layers in the other views as well in order to stay consistent (recall
Section 5.2). Hence, most of the time all three views are simultaneously
updated, which requires high performance in order to stay interactive. For
accomplishing this task, several performance related optimizations, such as
multithreading and GPU rendering and computing, are employed throughout
the rendering process.

50

Figure 7.6: The UI contains a list of sampled values of the first parameter
(a) and the second parameter (b). In this particular example, the tips of
the electrode probe and the tissue perfusion have been sampled. In the case
of electrode tips, locations of all tips are displayed. Sample values can be
selected by ticking the boxes on the left of the values. The UI also includes the
option to set the vessel filter (c) and the threshold filter (d) (see Section 7.7).
Finally, the visualization can be adjusted through several options (e).

51

7.4 Generating the contour boxplot

The section gives detailed information about how the contour boxplot of
an simulation ensemble is generated. An example of an ensemble visualized
using the contour boxplot can be seen in Figure 7.18 at the end of this section.

7.4.1 Generating 2D data

The first step of rendering in the 2D windows (axial, sagittal, and coronal
views) of the RFA Guardian is to actually slice out the correctly aligned 2D
view of the lesion data for each view. As stated in Section 6.5, the simulation
output is a 3D mesh of the resulting lesion. In detail, the simulation mesh
consists of an iso-surface where the cell death probability of the tissue crosses
80%. This iso-surface is stored in a vtkPolyData data set. Therefore, it seems
natural to use VTK filters for slicing the data. The filter that comes into
question is the vtkCutter, which can be used to slice through a VTK data set
and consequently reduce the n-dimensional data set to (n−1) dimensions. For
the specific application of slicing the 3D lesion meshes, an implicitly defined
plane is needed in order to get the correct window-aligned views. The result
will consequently be a projection of the 3D mesh onto the provided plane,
Figure 7.7.

Figure 7.7: Schematic depiction of slicing a 3D lesion (rendered in gray as
solid mesh) onto a plane (red). The slice contour of the lesion and the normal
of the plane are visible.

52

The plane itself is defined by a (unit length) normal n, orthogonal to the
plane and an origin p that lies on the plane. This is sufficient to define an
implicit equation of the plane, since the orientation of the plane is defined by
the normal and the position of the plane is given by the origin. Consequently,
every point xi that satisfies the following equation lies on the plane, because
the dot product of orthogonal vectors is zero:

(xi − p) · n = 0 (25)

It is important to consider that the plane normal and origin must be given in
world coordinates, since the lesion is defined in world coordinates, too. This,
however, is trivial, since MITK already provides the relevant algorithms to
transform from display to world coordinates. The actual intersection algo-
rithm is not listed in the vtkCutter reference, but essentially all segments of
the mesh are tested on whether they intersect with the given plane or not.
This can simply be calculated using the parametric linear equation for lines
(Equation 22), putting x(s) into the plane equation and solving for s:

(x(s)− p) · n = 0

(x0 + sd− p) · n = 0

⇒ s =
(p− x0) · n

d · n (26)

If s meets the requirements for segments, i.e., if s ∈ [0; l], where l is the
segment length (refer to Section 7.2.1), the segment and the plane intersect
and the vertices of the intersecting segment are projected onto the plane.
However, the special case where the segment lies in the plane, i.e., both
vertices of the segment satisfy Equation 25, needs to be handled distinctively.
In this case, d · n will be zero and s is undefined. Thus, both vertices are
included in the 2D slice of the mesh without the need to project them onto
the plane. If the plane normal n corresponds to a coordinate vector of the
given coordinate system, the whole process is accelerated by testing if the
two vertices of each segment lie on the opposite side of the plane. This can
be accomplished easily by examining the vector component that corresponds
to the plane normal of both vertices and the plane origin p. If one vertex
component is smaller and the other vertex component is greater than the
respective component of the plane origin, an intersection occurs.

In order to project a vertex xv onto the plane, the distance vd of the vertex
to the plane has to be computed first. This is accomplished by computing
the dot product of the direction vector v from the plane origin to the vertex
with the plane normal n (the dot product will first project v onto n and

53

additionally calculate the resulting length of the projected vector):

v = xv − p

vd = v · n (27)

Furthermore, the projected point xp is simply obtained by plugging in vd as
parameter in Equation 22 and using n as negative direction and xv as origin:

xp = xv − vd · n (28)

This procedure requires testing all segments in the mesh and is therefore a
fairly expensive operation6. The user may select several lesions to be pro-
cessed, and the complexity of this algorithm is O(n), where n is the total
number of segments of all lesions. The whole procedure has to be executed
three times (once for each plane); therefore, this can be a major bottleneck
for the visualization of the ensembles right at the beginning. In order to
get a reasonable performance, the whole process is multithreaded. Portions
of lesions are assigned to specific threads (lesion slicing can be performed
independently), which reduces the cost to O(n

m
), where m is the number of

threads that can run concurrently on the CPU.
After the lesion is sliced, the resulting data structure is again a

vtkPolyData that contains the projected vertex tuples (each tuple corre-
sponds to a segment in the lesion). However, since each segment is defined
separately, each vertex is contained twice in the data struct, and the ver-
tices are unordered on top. Therefore, a filter called vtkStripper is used to
transform the unstructured vtkPolyData into a polyline. The stripper simply
checks for duplicate vertices, removes them and arranges the corresponding
segments in a sequential order. The resulting polyline, having CW orien-
tation, is then transferred into the C++ container std::vector for later use
without depending on the VTK framework.

In some cases, vessels may appear as separate polygons within outer con-
tours of a projected lesion, since they penetrate the surface of the lesion
and can appear as ’tunnels’ or similar structures (bottom-left in Figure 7.8).
Such vessels have - in contrast to the lesion outline - CCW orientation (as
a consequence, their right-hand side normals face in the opposite direction
of the right-hand side normals of lesions). Those contours are immediately
classified as vessels, before the lesion tree generation (see Section 7.4.2) takes
place. The classification is performed as follows: If a plane intersects vessels,
the output of the vtkStripper consists of separate contours for the lesion out-
line and the vessels. In order to determine which contour represents a vessel,

6Equations 25 to 28 are acquired from [64, p.122-127]

54

Jordan’s point-in-polygon test (refer to Section 7.2.2) is used to assign the
vessel contours to the correct lesion outline contour, where a vertex in the
contour serves as the test point.

If vessels penetrate the lesion, it may as well be the case that vessels lie
in the projection plane and split the projected contour into separate closed
polygons. Furthermore, vessels may appear within separated closed polygons
as well, making proper assignment to the appropriate outline contour even
more important. Figure 7.8 shows the result of a lesion being sliced in all
three 2D views.

Figure 7.8: Visualization of a single 3D lesion (lower-right window) and its
projection onto the 2D view planes. 3D representation of the 2D planes
are rendered as well in their respective colors. The hole in the coronal 2D
view (lower-left window) represents a vessel. As visible in the axial 2D view
(upper-left window), the lesion projection may be split into separate contours,
if large vessels penetrate the lesion.

55

7.4.2 The lesion tree data structure

As already mentioned in Section 7.4.1, a projected lesion may be split into
several contours, as vessels penetrate the projected plane of the lesion. In
order to visualize the whole ensemble of projected lesions, it is important
to build a (semi) hierarchical structure of the contours and group similarly
behaving contours of different lesion projections together, as it may be the
case that not all contours are split in the same manner. Furthermore, it
is important to classify the contours appropriately and to identify which
contours ablate particular vessels and which contours fail to ablate them.

Components of the lesion tree There are three distinguished classes of
contours: vessels, single-component contours and multi-component contours.
Vessels are already described in Section 7.4.1. They occur within another
contour and are classified as early as possible. For the other two classes of
contours, however, another classifier relates contours to specific vessels: vessel
ablating contours and vessel non-ablating contours. The contour in which a
vessel is identified is immediately classified as vessel ablating with respect to
the found vessel, because the lesion extends beyond the vessel geometry. An
example of such a case is shown in the coronal (lower-left) view in Figure 7.8.

The lesion tree data structure is best introduced using an artificial exam-
ple, as shown in Figure 7.9. In this case, an ensemble consisting of several
projected lesions is processed. The associated lesion tree can be viewed in
Figure 7.10.

Figure 7.9: Artificial example of a lesion ensemble consisting of three dis-
tinct components. Only one contour belongs to two lesion components. The
rightmost lesion component contains a vessel. Without proper vessel classi-
fication, it is hard to distinguish small lesion contours from vessels as is the
case in the middle component.

56

Lesion

Lesion
component 1

Lesion
component 2

Multi component
contour 1

Lesion
component 3

Single component
contour 1

Single component
contour 2

Single component
contour 3

Single component
contour 4

Single component
contour 5

Single component
contour 6

Single component
contour 7

Single component
contour 8

Single component
contour 9

Single component
contour 10

Single component
contour 11

Single component
contour 12

Single component
contour 13

Vessel 1

Ablating contours Non-ablating
contour

Figure 7.10: Lesion tree data structure that belongs to the lesion ensemble
in Figure 7.9. There are three distinct classes in the tree: Lesion, the top
node, Lesion components which are collections of several contours based on
spatial criteria, and Contours, which are classified accordingly. The blue
fields denote actual contours, and the white fields denote containers. Arrows
represent pointers.

The top element of every lesion tree is the lesion ensemble itself. This node
corresponds to the all projected lesions in a single 2D view and contains all
processed contours. Each lesion ensemble is structured by one or more lesion
components. In Figure 7.9, the ensemble is split up into three components
due to penetrating vessels. However, it is important to note that not every
projected lesion splits in the same manner. Some parameterizations may
ablate a certain vessel, and, while other lesions split into components, those
lesions may not. This leads to the notion of multi-component contours. A
multi-component contour belongs to more than one lesion component. In
the example in Figure 7.9, this is the case for exactly one contour. In the
lesion tree, this contour belongs to the lesion components 1 and 2, which
both include a pointer to the multi-component contour 1. All other contours,
except for the vessel in lesion component 3, are classified as single-component

57

contours, because they belong to only a single lesion component. As shown
in the data tree in Figure 7.10, each lesion component includes pointers to
all contours that belong to that component, even if those contours belong to
other components as well. As stated above, for each vessel, every non-vessel
contour in the same component is tested on whether the contour ablates the
vessel or not. Consequently, a vessel has knowledge about how other contours
of the same lesion component behave with respect to the vessel.

Building the lesion tree The lesion tree is built from top to bottom in a
two-step manner. First, the lesion components are generated by identifying
multi-component and single-component contours with subsequent grouping.
Secondly, vessels are assigned to the appropriate lesion component and ablat-
ing and non-ablating contours of this component are assigned to vessels. In
order to generate the lesion tree, a set of definitions and criteria is formulated
for all included tree nodes. Contours are then classified programmatically by
referring to those definitions and criteria. For the sake of brevity, the term
“contour” is used for non-vessel contours throughout the remaining text.

Lesion components consist of contours and vessels. In order to add a
contour to an existing lesion component, the following criterion has to be
fulfilled: A contour Ci is part of a lesion component if the center of the
set-theoretic union of all contours already included in the lesion component
lies within the convex hull of Ci. The center of the set-theoretic union of
all contours of a lesion component is subsequently referred to as simply the
center of the lesion component. In practice, the lesion components are built
as follows: all contours are sequentially processed and tested according to the
given criterion above. This simply entails checking if the center point of the
lesion component lies within the convex hull as described in Section 7.2.2.
If the test succeeds, the contour is added to the lesion component. A new
lesion component is created whenever a contour does not belong to any of
the already existing components with respect to the criterion. Since this test
creates lesion components on the fly, the whole procedure is executed twice in
order to take components into account that were just created. This usually
leads to redundant lesion components that need to be merged later. Conse-
quently, contours might be added to several components, even if they classify
as single-component contours. A lesion component is merged, if the center of
a lesion component lies within the convex hull of any of the contours in the
other component that is associated with only this lesion component. Merg-
ing entails removing one of the two merged lesion components and trans-
ferring all associated contours to the other lesion component. Furthermore,
the number of associated lesion components is decreased for each contour.

58

Through merging, the surplus of created lesion components is reduced to the
actual number of existing components, and contours can be finally classified.
If a contour still belongs to two or more lesion components, it is classified
as multi-component contour. Otherwise, the contour is a single-component
contour. The whole procedure is shown in pseudocode in Listing 3.

Listing 3: Pseudocode of the procedure to build lesion components.
function buildLesionComponents

//Create l e s i o n components and a s s i gn contours :
for i in 1 ,2 // execute two times

for each contour :
set convex hu l l = convex hu l l o f contour

for each l e s i o n component :
set c en te r = cente r o f l e s i o n component
i f c en te r l i e s in convex hu l l

add contour to l e s i o n component
i n c r e a s e l e s i o n component counter o f contour

end

i f l e s i o n component counter o f contour equals 0
c r e a t e new l e s i o n component and inc lude contour
i n c r e a s e l e s i o n component counter o f contour

end
end

end

//Check whether some l e s i o n components can be merged :
for each l e s i o n component :

set c en te r = cente r o f l e s i o n component
for each other l e s i o n component :

for each contour in the other l e s i o n component :
i f l e s i o n component counter o f contour equals 1

set convex hu l l = convex hu l l o f contour

i f c en te r l i e s in convex hu l l
merge components
goto contour c l a s s i f i c a t i o n

end

end
end

end
end

// contour c l a s s i f i c a t i o n :
for each contour :

i f l e s i o n component counter o f contour > 1
c l a s s i f y contour as multi−component contour

else
c l a s s i f y contour as s i n g l e−component contour

end
end

end

59

The second and final step is taking care of the vessels. One part of this
procedure is to categorize the contours of the lesion component to which
a vessel belongs into two groups: ablating contours and non-ablating con-
tours. As described earlier in this section, whenever a vessel is identified, a
contour of the same lesion can be immediately categorized as ablating said
vessel. Thus, at this point, each vessel has knowledge of exactly one sin-
gle contour that ablates the vessel. Depending on whether this contour is a
multi-component contour or a single-component contour, the assignment of
a vessel to a lesion component is more or less computationally demanding.
In the case of a multi-component contour, the following criterion is used to
determine if a vessel belongs to a lesion component or not: If the center of
the vessel lies within the convex hull of any contour belonging to lesion com-
ponent Si, the vessel itself belongs to Si, too. In case of a single-component
contour, the vessel can be immediately assigned to the same lesion compo-
nent as the contour itself, because the criterion above is always trivially true.
After assigning a vessel to a component, the last step consists of identifying
which contours ablate the vessel and which do not. The definition of a non-
ablating contour is: If at least a single vertex of the vessel Vi is outside a
particular contour, the contour is classified as “non-ablating” with respect to
Vi. Note that the convex hull is not used in this definition, since it is often
the case that the vessel is completely inside the convex hull of a contour, but
outside of the actual contour. This would lead to many false negatives when
testing whether a contour is non-ablating. Thus, Jordan’s point-in-polygon
test is used to determine if a single vertex of the vessel is outside a contour.
All contours that do not fall into the category of being non-ablating are au-
tomatically classified as ablating with respect to the vessel in question. The
pseudocode of this procedure is shown in Listing 4.

Once the lesion tree is built, the contours within the tree are ready for
further processing. In general, each lesion component is visualized sep-
arately. However, multi-component contours and single-component con-
tours are not visualized together due to their differing behavior. Either
the single-component contours are visualized, or the multi-component con-
tours. In general, three contours are required in order to create the con-
tour boxplot (technically only two contours are required, but creating a
contour boxplot of only two contours would not make much sense). Hence
the module automatically switches to the visualization that includes more
than three contours. E.g., in the tree in Figure 7.9, there is only a
single multi-component contour for the lesion components 1 and 2, and,
therefore, their single component contours are visualized separately. In
such a case, the visualization module has the option to show the ac-
tual lesions too, which is crucial for a thorough investigation of the data.

60

If, however, the number of both multi-component and single-component
contours exceed three, the user can decide what should be visualized.

Listing 4: Pseudocode of processing vessels.
function p ro c e s sVe s s e l s

// a s s i gn v e s s e l s to l e s i o n components
for each v e s s e l

i f ab l a t i ng contour o f v e s s e l i s s i n g l e−component
add v e s s e l to same component as contour

else
set c en te r = cente r o f v e s s e l
for each l e s i o n component :

for each contour o f the l e s i o n component :
set convex hu l l = convex hu l l o f contour
i f c en te r l i e s in convex hu l l

add v e s s e l to l e s i o n component
p roce s s next v e s s e l

end
end

end
end

end

// c l a s s i f y contours :
for each l e s i o n component :

for each v e s s e l o f the l e s i o n component :
for each contour o f the l e s i o n component :

for each ver tex o f the v e s s e l :
i f ver tex i s ou t s id e contour

a s s i gn contour to non−ab l a t i ng contours o f v e s s e l
end

end

i f contour i s not non−ab l a t i ng contour o f v e s s e l
a s s i gn contour to ab l a t i ng contours o f v e s s e l

end

end
end

end
end

7.4.3 Contour sampling

By building the lesion tree, contours with similar spatial behavior are grouped
together and ready for further processing. In order to generate the contour
boxplot, the BD of each contour has to be calculated (refer to Section 1.3.2).
However, constructing bands and calculating the exact BD for each contour
is computationally demanding. Exact computation of the BD is certainly
important in cases where contours behave radically different. In the case of
this application, however, the lesion contours of a lesion component behave
in a very similar manner. Thus, the visualization module makes use of this
fact and samples the contours with rays shot from the inside of a contour

61

ensemble to the outside. The direction of these rays resembles the approxi-
mate direction of normals to the contour segments. Thus, they are referred
to as “contour normals”, Figure 7.11. This approach has two major advan-
tages: first, the set-theoretic intersection of all contours has to be calculated
only once - in contrast to calculating each band by its own (for details, see
Section 7.4.4). Second, the direction of the contour normals provides a con-
venient way for grouping the contours locally (refer to Section 7.6).

Figure 7.11: Illustration of contour normals (red) that are used to sample
the contours (white). In the actual application, a higher number of normals
is used to sample the ensemble. The number of normals has been reduced
for illustrative purposes.

In order to compute the origin and direction of the contour normals, the
innermost contour has to be identified. It is important to note that this
contour is not necessarily an actual contour in the lesion tree. Instead, it
may consists of vertices of several existing contours in the tree due to the
fact that contours may intersect. In other terms, the band of all contours
has to be calculated. The normal origins correspond to vertices on the inner
edge of the band, and the normal directions point outside towards the outer
edge of the band. The band, as defined in Equation 6, is computed by
calculating the set-theoretic difference of the union and intersection of the
contours. However, for computing the normal, only the inner edge of the
band is needed, and, since the inner edge of the band corresponds to the

62

outer edge of the intersection, it is sufficient to compute the intersection
only. This is done facilitating the GPU using multi-pass rendering and a
compute shader. First, the intersection is rendered to a texture using stencil
buffer techniques, and, subsequently, the edge of the intersection is extracted
with a compute shader. It is important to note that, by using this technique,
only an approximation of the actual intersection edge is computed, because
rendering to a texture inherently discretizes the data. However, this does
not pose a problem for computing the contour normals as is shown later in
this section.

Computing the contour intersection Contour intersections are com-
puted by rendering the contours sequentially to a texture, while making use
of a stencil buffer in a multi-pass approach. First, the stencil buffer has to be
configured in a way that allows for rendering non-convex polygons in general.
There is no mode in OpenGL for drawing filled, non-convex polygons. Thus,
if a filled polygon needs to be rendered in OpenGL, the polygon is triangu-
lated first and subsequently drawn. We use a different approach for drawing
filled non-convex polygons using a stencil buffer [68, ch.14], since the stencil
buffer is needed for rendering the intersection of the polygon, (saving the
computational cost for triangulating the polygon). Consider the non-convex
polygon in Figure 7.12. Let us assume several triangles consisting of the ver-
tices of this polygon are rendered in the following way: 123, 134, 145, 156,
167; where each digit corresponds to the vertex number in Figure 7.12.

Now, recalling Jordan’s point-in-polygon test in Section 7.2.2, every ray
for which the origin lies inside the polygon crosses the polygon an odd number
of times. The same is true for the areas covered by the aforementioned
triangles. Areas that are rendered an odd amount of time are inside the
polygon, while areas that are rendered an even amount of time are outside
the polygon. In order to draw the polygon, only the areas that are rendered
an odd amount of time need to be written to the framebuffer. This can
be realized utilizing a stencil buffer. As mentioned in Section 7.1.1, the
stencil buffer used in this application is allocated with eight bit planes. For
rendering a non-convex polygon, a single bit in the stencil buffer is used for
each fragment. This bit is inverted each time the fragment is rendered. Thus,
if it is initially set to 0, only those fragments rendered an odd number of times
will end up with this bit being 1 in the end. In practice, the procedure works
as follows: firstly, set all stencil bits to zero and disable writing to the color
buffer. Secondly, specify the stencil parameters: use the stencil mask: 0x01

for manipulating only the first bit. The stencil operation should invert the
bit only if the stencil test is passed and the stencil test function should be

63

configured to allow rendering of all triangles. Thirdly, render triangles of the
polygon in the way presented above (i.e., the triangles, 123, 134, ...). This can
easily be achieved in OpenGL using the “triangle fan” rendering mode. Now,
the final polygon can be rendered to the texture by enabling the color buffer
again, specifying the test function (r ∧ m) c (v ∧ m) to only allow rendering
when the first bit is 1 (i.e., r =0xFF, m =0x01 and c = “equal-operator”) and
drawing a full screen quad over the stencil. However, since the intersection
of all polygons should be rendered, and not each polygon on its own, the last
step has to be adapted.

Figure 7.12: An example of a simple polygon with vertices 1-7. The triangles
123, 134, 145, 156 and 167 cover the areas A-I. When drawing the aforemen-
tioned triangles, those areas are covered an even or odd number of times,
where areas that are covered an odd amount of times are inside the polygon.
The table on the right side lists all areas and the triangle coverage. Areas
inside the polygon are marked with a star [68, ch.14].

The contour intersection can be drawn using another bit (the “intersection
bit”) which is initially set to 1 and, instead of enabling the color buffer in
the last step, another stencil test is executed. The test function is set to the
same values as if the polygon would have been written to the color buffer,
however this time, the intersection bit of the stencil buffer itself is modified:
whenever the stencil test fails, the bit is set to zero. Hence, if all polygons
are rendered sequentially, only the area of the polygon intersection will have

64

the intersection bit set to 1. The whole procedure can be summarized as
follows:

• Initialize the bits of the stencil buffer and disable the color buffer. The
first bit is used for rendering the polygons, and the second one is used
as intersection bit. Thus, set 00000010 for the whole stencil buffer. Set
the stencil function to always pass.

• Render each polygon in sequential order: set the stencil mask to only
manipulate the first bit (0x01), and render the triangle fan. In case the
stencil test passes, the first bit is inverted for each fragment, so in areas
covered by the polygon, the first bit is 1, otherwise it is 0. Now draw
a full screen quad and set the stencil test to only pass if the first bit
is 1, and ignore the value of the intersection bit. This time the stencil
mask is set to 0x02 in order to only manipulate the second bit in the
stencil buffer. The intersection bit should be set to zero if the stencil
test fails. Reset the first bit and draw the next polygon.

• After all polygons have been rendered, draw a full screen quad and set
the stencil test to only pass if the intersection bit is 1. Ignore the other
bits and do not manipulate the stencil buffer itself. Enable the color
buffer again and draw the polygon intersection to a texture.

This procedure leads to a binary texture where the inside of the polygon
intersection is 1 and the outside area is 0. The texture has a grid of 256 · 256
pixels. The bounding box of the whole processed ensemble is calculated,
and, during rendering, the whole bounding box is mapped onto the grid for
maximum resolution.

Before the edge of the intersection is extracted with a compute shader, a
morphological opening operation is applied using OpenGL fragment shaders.
This operation consists of an erosion operation followed by a dilation oper-
ation. First, the erosion filter is applied to slightly shrink the intersection
and to structurally smooth the edge. An erosion filter is a morphological
filter that uses a structuring element to “thin out” objects in an image. The
structuring element defines the manner in which the object is thinned out.
Erosion as set operation can be defined as follows:

A	B = {z|Bz ⊆ A} (29)

Here, z denotes coordinates, and Bz are translations of the structuring el-
ement B by z. This equation can be interpreted as “erosion of A by the

65

structuring element B”. In a nutshell, the resulting set consists of all coordi-
nates z by which the translation of B by z (Bz) is a subset of A. To interpret
the resulting set in terms of a binary image, all coordinates z which satisfy
Equation 29 represent 1s in the final image. The structuring element used
for eroding the contour intersection is a 3x3 neighborhood. An example of
an erosion operation with this structuring element is given in Figure 7.13.

Figure 7.13: Example of an erosion operation of a binary image expressed as
set A using a 3x3 neighborhood as structuring element B. The resulting set
consists of the coordinates z where Bz ⊆ A.

The erosion operation is easily implemented in OpenGL by fetching a
3x3 neighborhood of the input texture for the current texel in the fragment
shader and checking whether a single texel value in the neighborhood is 0.
If so, draw 0, otherwise draw 1.

After the erosion operation has finished, the dilation filter is applied,
where the same symmetric structuring element as in the erosion filter is
used. Thus, the operation itself is defined as:

A⊕B = {z|B̂z ∩ A 6= ∅} (30)

where B̂z refers to all translated-by-z versions of B. The dilation filter can
be viewed as the counterpart to the erosion filter. The result of the dilation
operation consists of all coordinates where the intersection of B̂z and A is a
non-empty set. The dilated image of the result in Figure 7.13 is shown in
Figure 7.14. [69, ch.9]

Once the image is dilated, the edge of the contour intersection can finally
be extracted with a compute shader. For this operation, a 3x3 neighborhood
is utilized as well. If the center pixel of the neighborhood is 1 (i.e. the pixel
is inside the dilated area) and any other pixel in the neighborhood is 0 (i.e.
outside the area), the compute shader tries to extract two neighboring pixels

66

Figure 7.14: Dilation of the resulting image in Figure 7.13. The same struc-
turing element as in the erosion operation was used.

of the center pixel that lie on the edge contour. Since this is done for the whole
image, the final contour can be extracted by following the extracted neighbors
until the start has been reached again. Due to the opening operation, each
center has only two neighboring pixels, and each neighbor that lies on the
edge contour can be extracted in a deterministic way. Furthermore, the
neighbors can be determined in a way to ensure CW contour orientation, see
Figure 7.15. There exist several possible neighborhoods that may arise during
processing. In practice, a lookup texture is used for determining where the
contour neighbors of a pixel are located. If an eligible neighborhood is found
by the compute shader, the morphology of the neighborhood is first encoded
in a single byte, where each bit represents a pixel in the neighborhood (with
exception of the center). The upper-left pixel of a neighborhood corresponds
to the first bit (0x01), and the bottom-right pixel to the last bit (0x80). E.g.,
the first neighborhood in Figure 7.15 corresponds to the code 11110100. This
makes it possible to encode up to 256 different neighborhoods, although only
36 are needed. Each code corresponds to a texture cell in the lookup texture,
which has the dimension: 1x1x256. In each of the 36 texture locations, the
offsets of the CW neighbor (viewed from the center) are stored. Getting back
to the previous example: The code 11110100 corresponds to the lookup
texture location 1x1x244. In this location, the texture returns the tuple
(1,1), which represent the offsets in x- and y-direction from the center to
the neighbor. Now the compute shader has knowledge about the relative
coordinates of the CW neighbor. In order to obtain the absolute coordinates
of the neighbor (i.e., the coordinates of the edge contour in texels), the tuple
has to be added as offset to the global invocation id (refer to Section 7.1.2).

The next step is to transfer the coordinates of the center and the neighbor

67

Figure 7.15: Examples of 3x3 neighborhoods in which the center pixel is
inside the dilated area and at least one pixel is not. Due to the morphological
opening operation, every center has only two neighbors that also lie on the
contour edge (a)-(c). Situations that would lead to more than two neighbors
of a center are not possible (d). When viewed from the center pixel, the
neighbor denoted by a 1 lies on the CW direction of the edge and the neighbor
denoted by 2 lies on the CCW direction.

back to the CPU. This is done using an SSBO and an atomic counter, as
described in Section 7.1.2. As stated earlier, the texture dimensions of the
dilated image are 256x256. This means that two bytes are needed to store
every possible absolute coordinate, and 4 bytes are needed in total, in order
to store the center and one neighbor. Thus, one unsigned integer (32 bit)
sufficiently meets the storage requirements of both coordinates. They are
stored in the following way in an unsigned integer in the compute shader and
written to the SSBO:

u = (((xc << 8) | yc) << 16)
∣∣∣ ((xn << 8) | yn) (31)

where (xc, yc) are the center coordinates and (xn, yn) are the coordinates of
the neighbor in CW direction. On the C++ side, first an array containing
16bit integers is allocated that is capable of representing every possible center
coordinate. Thus, the array needs to be able to store 256x256 values. After-
wards, the SSBO is read out, and the unsigned integer values are decoded
into two 16bit values in the following manner:

c = u & 0xFFFF0000 >> 16 (32)

n = u & 0xFFFF (33)

where c is the center coordinate and n is the neighbor coordinate. The cen-
ter is used as the position in the array in which the neighbor is to be saved.

68

Once the whole SSBO is read out and the neighbor for each center coordinate
has been saved in the array, the array is processed. Each neighbor coordi-
nate is used to locate the next center, until the start coordinate has been
reached again and the contour is closed. During this procedure, every fourth
center coordinate is transformed back into world space using the following
transform:

xworld =
xub − xlb

256
· x+ xlb (34)

yworld =
yub − ylb

256
· y + ylb (35)

where xworld, yworld represent the world coordinates, and xub, yub, the upper
bounding box coordinates, and xlb, ylb, the lower bounding box coordinates
of the contour ensemble, respectively. These transformed coordinates are the
final origins of the contour normals. The directions of the contour normals
are simply obtained by calculating the outward pointing normal of the direc-
tion of the two adjacent origins. A higher number of normals can easily be
achieved with linear interpolation between existing normals.

Intersecting the normals and contour segments Once the contour
normals are computed, the intersection of each normal with the contour
segments need to be obtained in order to sample the contours. For each
contour, this process looks as follows: First, the algorithm looks for the
segment that intersects the first normal. Since both the contour and the set-
theoretic contour intersection (and consequently, the sequence of normals)
have CW direction, intersections of following normals are either located on
the current segment or the next segment of the contour. Despite the fact
that n · m intersections need to be calculated (n = number of contours,
m = number of normals), the algorithm exhibits a reasonable performance
by exploiting the equal directions of contours and sequence of normals. The
most demanding step is finding the segment on each contour that intersects
the first normal. The whole algorithm, however, can easily be multithreaded
by splitting the processed contours into different threads. Furthermore, the
actual intersections of the normals do not have to be calculated - only the
parameter s of the ray (refer to Equation 22) needs to be computed, due
to the fact that, for calculating the BD, only the position of the contours
relative to the normal origin is important.

7.4.4 Band depth calculation

The BD measure used in this thesis is based on the concepts of mBD, as
introduced in Section 1.3.1. Hence, the technique merges the concept of con-

69

tour boxplots with a band depth measure used in functional boxplots. This
is possible, because the hull of contour normal origins resembles the shape of
the processed contour ensemble. While the mBD in functional boxplots is ob-
tained by measuring the amount by which a certain function stays within all
bands with respect to the abscissa using the Lebesgue measure, the method
employed in the visualization module actually measures the amount that a
contour stays within a contour band with respect to the overall shape of the
contour ensemble itself. In order to distinguish this measure from mBD, it
is subsequently referred to as “lesion band depth” (lBD).

In order to calculate the lBD of each contour, bands of second and third
order may be used. As stated in Section 1.3.1, using more than two contours
to construct a band increases the computational costs of computing the
bands in a superlinear fashion. However, due to contour sampling and a
lookup table (LUT), the Parameter Uncertainty plugin is able to keep the
computational costs for computing bands of second and third order the
same. What makes this possible is the fact that actual bands do not need
to be computed. The lBD value for a particular contour is calculated by
taking the location of the contour intersection relative to the intersecting
contour normal origin into account and averaging this measure across all
contour normals as described by the new approach to compute the mBD in
Section 4.1.

First, consider an example of a single contour normal and its intersection
with five contours. Furthermore, assume that a band consists of three con-
tours. In total, there are ten distinct combinations of bands that need to be
taken into account. Within that scope of this contour normal, the sampled
contours exhibit different probabilities of being included in a band, depend-
ing on the distance to the normal origin, i.e., the location of the contour
on the normal, analogous to the rank matrix in Section 4.1. This probabil-
ity is mirrored at the “innermost” contour, Figure 7.16. By collecting these
probabilities for different numbers of sampled contours, a probability table
can be generated. This table contains the likelihood that a certain contour
is enclosed in a band dependent on the location of the contour on the nor-
mal. Due to the aforementioned symmetry of the probabilities, about half of
the values in the table can be omitted, see Table 1. In order to implement
this table in the plugin for lookups, Equation 11 is utilized to calculate the
probability for a certain location of a contour on a contour normal and a
given number of sampled contours. In the Parameter Uncertainty plugin,
only bands of second and third order are used to compute the lBD. There-
fore, a closed formula (the “lookup equation”) is derived from Equation 11
for computing the lBD using bands of third and second order only.

70

Figure 7.16: An example of a single contour normal (red), that samples five
contours (horizontal black lines). Intersections of contours with the contour
normal are marked by a circle. Each instance shows a different band being
formed by three contours, which are shaded in blue. The probability of a
contour being included in a band depends on the location of the contour
with respect to the origin of the contour normal. There are six instances
in which contours on location #1 and #5 are inside a band, nine instances
where contours on the location #2 and #4 are inside a band and contours
on location #3 are always encased by a band - regardless of which band is
currently processed.

Derivation of the lookup equation In order to derive the formula,
certain properties of the probability table are exploited. For the sake of
brevity, the number of sampled contours is subsequently referred to as i,
and the location on the normals is referred to as j. First, consider the
number sequence of the elements where j = i. The first five elements are
1, 3, 6, 10 and 15. This sequence can be viewed as a function in one variable
y = f(x), where x = j = i. By looking at the rate of increase of the number
sequence and the rate change itself, one can infer the derivative of the func-
tion, which is x− 1.5. Thus, integrating the rate change and specifying the
correct offset yields the first term of the lookup equation:

df(x)

dx
= x− 3

2
⇒
∫
f ′(x)dx =

1

2
x2 − 3

2
x+ c

∣∣∣
c=1

=
1

2
x2 − 3

2
x+ 1 (36)

With this term, the first probability value in each row can be calculated.
For example, for x = j = i = 5, the formula yields the value 6, which
corresponds to the first column entry in the fifth row in Table 1. Note
that the term probability is used vaguely here, as Table 1 does not contain

71

Table 1: Number of instances that contours are included in bands of third
order depending on the location of the contour on a contour normal. The
rows represent the location of the contour intersection on the contour normals
- analogously to Figure 7.16 -, and the columns show the number of sampled
contours. The values in red are actually redundant and are omitted in a
software implementation in order to save memory.

relative probabilities in the interval [0;1), but rather the absolute number of
occurrences of the contours in the possible bands. The next step is to obtain
the difference between the first column entry in a particular row and the
second one. With five contours sampled and the location value being four,
the difference between the first and second probability would be six (refer to
Table 1). Those differences are again viewed as a number sequence, which is
a shifted version of Equation 36, where x = j. Hence, the second term is:

1

2
(j + 1)2 − 3

2
(j + 1) + 1 (37)

For a particular tuple (i, j), this term is added (i − j) times to the first
term to get to the second entry in the corresponding row. Thus, with this
knowledge, every tuple (i, j), where j = i + t, t ∈ {0, 1}, can be computed.
However, in order to calculate any value in the table, a third term is needed
that takes the increase of differences in the columns into account.

For instance, for the third row (normal location = 3), the difference be-
tween the cells increases by three when read from left to right. Furthermore,
the increase in difference in the fourth row is four and so on. As a general-
ization, this circumstance can be expressed by the following term:

j

2
(i− j)2 − (i− j)) (38)

72

With all terms summarized and simplified, the whole formula looks like:

1

2
(3j2 − ij2) +

j

2
(i2 − 2i− 3) + 1 (39)

This, however, is not the final equation, since bands formed by two contours
have to be taken into account too (because all possible sub-bands have to be
considered too, see Section 1.3.1). In cases where bands are formed by two
contours, Formula 39 can be simplified a bit. The derivation is not explicitly
stated here, because it can be performed in the same manner as above. The
formula for bands of two contours is:

(j − 1) + j(i− j) (40)

The last step is to find the equation that is valid for both the cases where
bands consist of two and three contours. Consequently, this equation has to
depend on the band order. The chosen approach incorporates the band order
k into the exponents and the number “3” of Equation 39:

j2 → jk−1

3→ k

Thus, the equation that combines both the Formulas 39 and 40 is dependent
on the number of contours that form a band (k) and the tuple (i, j). For
k ∈ {2, 3}, this equation is as follows:

Pabs(i, j, k) =

k∑

m=2

(
(
1

2
(mj2 − ijm−1) +

j

2
(im−1 − 2i−m) + 1)(−1)m−1

)
(41)

The sum is needed due to the fact that, for a given band order k, the lower
orders are now considered as well. Finally, the lookup equation is obtained
by normalizing the absolute number of inclusions of a particular contour by
the number of possible bands (refer to Equation 4):

Prel(i, j, k) =

k∑

m=2

(
i

m

)−1(
(
1

2
(mj2 − ijm−1) +

j

2
(im−1 − 2i−m) + 1)(−1)m−1

)
(42)

Using this equation, the LUT can be generated programmatically. As stated
before, only half of the actual table needs to be generated due to the un-
derlying symmetry of the probabilities. Thus, the range of the location
values can be restricted to: j ∈ [1; d i

2
e]. Consequently, when using the

73

LUT, the location values that are greater than d i
2
e need to be remapped

back: jremapped = i − j + 1. In this way, the location values get ef-
fectively mirrored around the center. In most applications, the number
of sampled contours is consistent throughout the visualization; thus, the
LUT is reduced to a one-dimensional array. Listing 5 shows the compu-
tation of the LUT for a given number of sampled contours in pseudocode.

Listing 5: Pseudocode of computing the LUT for lBD calculation. The
variable i corresponds to the number of sampled normals and k corresponds
to the band order.
function computeLUT(i , k)

i f k < 2 or k > 3
error //k has to be in [2 ; 3]

end

set t a b l e s i z e = c e i l (i /2) // c e i l (x) r e tu rn s x rounded up to next i n t e g e r
allocate l u t o f s i z e t a b l e s i z e and f i l l with z e r o s

for m in [2 ; k]
for j in (0 ; t a b l e s i z e)

//Note : binom(i ,m) r e tu rn s the binomial c o e f f i c i e n t
l u t [j] = lu t [j] + binom(i ,m)ˆ(−1) ∗ ((0 . 5 ∗ (m∗ j ˆ2 − i ∗ j ˆ(m−1)) +

j /2∗(i ˆ(m−1)−2∗ i−m)+1)∗(−1)ˆ(m−1))
end

end
return l u t

end

Lesion band depth calculation Now the LUT can be generated before
the visualization actually starts. The lBD values for each of the contours
is then obtained as follows: The probabilities in the LUT are recorded for
each contour normal, added together, and divided by the number of contour
normals that were used. To be precise, if all contours are sampled with
the same number of normals, the division is not really necessary, since the
number of normals would be an invariant across all contours. However, when
the division is not omitted, the lBD measure actually corresponds to the
mBD measure used for functions. In this case, Equation 42 and Equation 11
yield the same results. An example of a contour ensemble sampled by seven
contour normals and the contours respective lBDs is shown in Figure 7.17.
Due to the use of the LUT, the computational cost for calculating the lBD
values is comparatively low. In total, there are n additions and lookups
and a single division for a particular contour when sampled with n normals.
However due to the independency of the lBD measure for individual contours,
the whole process can easily be multithreaded, where the calculation for
individual contours is split up among different threads.

74

Figure 7.17: Top: example of an ensemble of five contours (drawn in different
colors) sampled by seven contour normals. The contours are displayed dena-
tured. In reality, the end of each contour connects to the start. The normals
themselves are not shown; however, the intersections of the normals with
the contours are depicted by a circle. Furthermore, the mirrored location
values are shown on the left of the ensemble. Bottom: the corresponding
probability values of each contour taken out of the LUT, added together for
each normal and divided by the number of normals, give the lBD value for
each contour. A band is formed by three contours. The contours can also be
viewed as discrete functions, in which case their lBD equals the mBD.

7.4.5 Visualization of the contour boxplot

Before the boxplot can be visualized, the contours have to be ranked by
their lBD values, as described in Section 1.3.1. There are four statistic pa-
rameters to be visualized: the median, the 50% region, the fence and the
outliers. Visualization of the outliers and the median is trivial, since those
parameters are contours. The 50% region and the fence, however, are bands
themselves; thus, a stencil buffer is used to achieve the desired visualiza-
tion. First, recall the definition of a contour band in Equation 6. A band
is the set-theoretic difference of the union and the intersection of the con-
tours that form the band. A stencil buffer was already used for rendering the
set-theoretic intersection of all contours in Section 7.4.3. When rendering a
band, an additional stencil bit for calculating the contour union needs to be
used. Briefly recalling the method for rendering the contour intersection in
Section 7.4.3, two stencil buffer bits were used to draw the intersection. The
first one was needed for rendering the actual non-convex polygons and the
second one (the “intersection bit”) was initially set to 1, and set to 0 outside

75

of each polygon. Consequently, the intersection bit remained 1 only in re-
gions where all polygons shared a common area (i.e., in the area of contour
intersection). The third bit that needs to be occupied in the stencil buffer
when rendering a band is the “union bit”. This bit is initially set to 0 and
each time a polygon is drawn, it is set to 1 in areas where the polygon is
drawn. Consequently, there are three distinct bit combinations with respect
to the intersection bit and the union bit (the second bit in the buffer is used
as intersection bit, and the third one, as union bit) that may occur:

• The area outside of all polygons: 00000000

• The area within the polygon intersection: 00000110

• The area inside the polygon union, but outside of the polygon intersec-
tion: 00000100

The third area is the one that needs to be rendered, i.e., when enabling the
color buffer again, the test function (r ∧ m) c (v ∧ m) has to be set with
r =00000100, m =0xFF and c = “equal-operator”.

For the whole boxplot to be complete, both the 50% region and the fence
need to be rendered. Because the fence covers a larger area than the 50%
region, it would be a waste of resources to render both bands on top of each
other. Instead, the 50% region is rendered first, and the stencil buffer is
used again for rendering the fence. For this to work, a fourth bit is used
in the stencil buffer that marks the region where the 50% band has been
rendered. Before the fence is rendered, the stencil buffer has to be initialized
with 00001000, where, previously, it was 00000100. This basically means
transferring the third bit to the fourth by setting the stencil buffer function
(r ∧ m) c (v ∧ m) to r =00001100, m =00000110 and c = “equal-operator”
and using the “replace” operation to replace the third bit with the union bit.
The stencil mask has to bet set to 00001000 to only change the fourth bit.
In order to apply the transformation, a full screen quad can be drawn with
deactivated color buffer. Now there are four distinct areas with different
combinations of stencil buffer bits:

• The area outside of all polygons: 00000000

• The area within the fence intersection : 00000110

• The area where the 50% region was rendered: 00001000

• The area inside the fence union but outside of the fence intersection
and outside the 50% region: 00000100

76

Since the fourth area is the one that needs to be drawn, the sten-
cil test function can again be specified as r =00000100, m =0xFF and
c = “equal-operator” Figure 7.18 gives an example of a boxplot where each
component and the values of the stencil buffer in different areas are delin-
eated.

Figure 7.18: Example of a contour ensemble visualized as a contour boxplot.
A CT scan of liver tissue is used as background. The components of the
boxplot are labeled accordingly. Furthermore, the values of the stencil buffer
in different regions are shown, after the 50% region and the fence have been
rendered.

7.5 Processing vessels

Special attention needs to be drawn to situations where vessels are present.
As explained in Section 7.4.2, some contours may ablate a vessel and others
may not (in the same slice). This leads to diverging spatial behavior of the
contours, and using the same contour normals for all contours to compute

77

the lBD would potentially lead to non-ideal results. Consequently, in areas
where the vessel is located and contours exhibit a different spatial behav-
ior, contours that do, and do not, ablate vessels, need to be sampled with
separate contour normals. Contours that fail to ablate a vessel completely
surround the vessel in a pronounced non-convex way. The first step is to
identify which contour normal origins follow the spatial characteristics of
those non-ablating contours. These normals can be identified by a convexity
analysis of the contour normal origins. First, all non-convexities of the con-
tour normal origins are identified. Subsequently, the bounding boxes of the
non-convex areas are computed. The box that includes the center of a vessel
corresponds to the non-convex area that embraces the vessel. Due to the fact
that the ablating contours exhibit fairly convex behavior, it is most of the
time sufficient to just connect the first and the last vertex of the non-convex
area and interpolate contour normals across that line, see Figure 7.19. When
this approach leads to degenerate contour normals, i.e., normals that do not
intersect with all of the vessel-ablating contours, the whole contour inter-
section has to be recomputed using only the ablating contours for a certain
vessel. The relevant portion of normals can be extracted by searching for the
closest normal origins to the first and last vertex of the non-convex region.
Though this approach may be more accurate in some situations, it is also
slower than just connecting the first and last vertex by a line.

Since the contour boxplot is a global representation of the underlying
contours and some of the contours are now sampled with different normals,
measures have to be taken in order for the probabilities to be correctly
fetched from the LUT, when processing non-vessel-ablating contours or
vessel-ablating contours only. For looking up the probabilities, the number
of sampled contours has to resemble the number of contours in the whole
ensemble, regardless of how many contours were sampled with a contour
normal. In order for the probabilities to be correct, however, the location
values of the contours need to be adjusted accordingly. Ablating-contours
are always on the outside of non-ablating contours; thus, the number of
non-ablating contours has to be added to the location values of vessel-
ablating-contours. For non-ablating contours, the location values do not
have to be adjusted, because they lie on the inside of the ablating-contours.
Using these correction methods, the global lBD for each contour can be
computed.

When a vessel is present in the contour ensemble, it may be of great
interest for the user to know how likely it is for the vessel to be ablated,
given the underlying dataset. The likelihood of ablation for the given dataset
is calculated by the number of contours that ablate the vessel, divided by

78

Figure 7.19: When a vessel is present in the slice, contours that ablate the
vessel behave in a different way than contours that do not fully ablate the
vessel. Consequently, both types of contours need separate contour normals
in this region. The normals in red originate from the actual contour inter-
section of the whole ensemble and are used for sampling the non-ablating
contours. The relevant portion around the vessel of all origins is extracted
by a convexity-analysis. The green normals are used for sampling the vessel-
ablating contours. They are created by connecting the first and last origin
of the red normals and interpolating normals across the resulting line.

the number of all contours in the ensemble. The resulting percentage is a
per-slice measure; i.e., slices other than the current one are not taken into
account in this measure, because the visualization module does not include
a segmentation algorithm. Therefore, vessels on different slices cannot be
associated to one another. The likelihood is displayed when the user hovers
the mouse over a certain vessel. After 500ms of resting on the vessel, the
label appears.

Furthermore, it may also be of interest for the user to get a sense of what
the medians around a vessel of only ablating contours and only non-ablating
contours are. The median contour of ablating contours and non-ablating
contours is easily obtained by using their respective normals. This time,

79

location correction and adjustment of the number of contours do not have to
be performed. The median is visualized as an overlay to the global contour
boxplot when the user zooms into a vessel. Both concepts, the likelihood of
ablation and the median of ablating and non-ablating contours, are shown
in Figure 7.20.

Figure 7.20: Medians of ablating- and non-ablating-contours of a specific
vessel are visualized as an overlay on top of the contour box plot (green). The
vessel itself and the likelihood of ablation for the given dataset is visualized
in red.

7.6 Local grouping of contours

In addition to the global contour boxplot, the Uncertainty Visualization mod-
ule also displays a local overlay of groups of contours when the user zooms
into a window. Contours that lie close together belong to the same group,
where grouping is performed along the contour normals with which the en-
semble is sampled using kernel density estimation (KDE).

80

Kernel density estimation As the name suggests, KDE performs an
estimation of the underlying density of data points. In statistics, this is often
used to estimate the probability density function of a random variable. In
the visualization plugin, contours that lie closely together should be assigned
to the same group. The notion of lying close together along a contour normal
can also be viewed in terms of how dense the intersections of the contours
with a contour normal are. The more intersections are included in a certain
area along a contour normal, the closer together the contours lie and the
denser the intersection distribution. Thus, KDE is used as a univariate group
classification algorithm of the contours based on their densities. All KDE
related equations and definitions are taken from Silverman [70, ch.13]. First
of all, the univariate KDE is defined as:

f̂(x) =
1

nh

n∑

i=1

K
(x−Xi

h

)
(43)

where f̂(x) is the estimated probability density function, K(x) is a kernel,
h is the kernel bandwidth and Xi, i ∈ [1;n] are the data points. As can be
seen in Equation 43, both the kernel and its bandwidth have to be chosen
manually in order to calculate the estimated probability density. In general,
every possible kernel K(x) that satisfies the following condition can be used:

∫ ∞

−∞
K(x)dx = 1 (44)

In practice, however, few kernels have emerged that are regularly used, such
as the Cauchy kernel, the Gaussian kernel and others. The resulting shape of
the estimated probability density depends on which kernel was used for the
KDE. For the particular application of grouping the contours, the Gaussian
function appears most suitable. However, other kernel types could be used
as well, because the actual shape of the probability density is irrelevant in
this context. When choosing a symmetric kernel, such as the Gaussian one,
Equation 43 can also be viewed as the convolution of the data points with
the kernel itself, where the data points are viewed as shifted unit pulses.
Choosing an appropriate kernel bandwidth is a crucial task when perform-
ing a KDE. Depending on the bandwidth, the resulting distribution may be
under-smoothed or over-smoothed, see Figure 7.21. To address this problem,
several methods have been developed to select the bandwidth automatically,
and there is still an ongoing discussion in literature on which method to use
under which circumstances [71]. For grouping contours in the visualization
module, however, what needs to be estimated is not the underlying proba-
bility density function of the contour intersections along a contour normal.

81

Rather, groups based on the density of those intersections are of interest.
Thus, the user should actually be able to specify which density measure ac-
counts for building separate groups. Depending on whether the user wants
a more fine-grained view, i.e., many different groups, or if they want a rough
overview, e.g. a classification into only two groups, the kernel bandwidth
has to be adjusted accordingly. Hence, the kernel bandwidth remains an
adjustable parameter in the visualization module.

Figure 7.21: A comparison of different kernel bandwidths of a KDE using
a Gaussian kernel. The gray curve is the original reference. Other curves
are generated using the respective kernel bandwidth in the plot legend. The
black strokes on the bottom represent the data points. As can be seen in
the figure, the red and green curves exhibit a pronounced under-smoothing
of the original probability density. The blue function is closer to the original,
but still introduces erroneously an additional local minimum. Figure taken
from Toews [72].

In order to perform the classification, contours are split into different
groups where f̂(x) contains local minima. Each local minimum corresponds
to a group border which separates two groups from one another. Due to the
fact that, with this approach, only the local minima need to be computed,
Equation 43 can be simplified. The final equation for extracting the local

82

minima out of the density distribution of f̂(x) is as follows:

min
x

{ 1

nh

n∑

i=1

K
(x−Xi

h

)}
= min

x

{ n∑

i=1

K
(x−Xi

h

)}
(45)

Adjusting the contour normals The contour normals, generated as ex-
plained in Section 7.4.3, do not necessarily have the optimal direction for
applying the KDE. The direction of the normals depends on the overall set-
theoretic contour intersection of the ensemble. Consequently, the approxi-
mation of the actual segment normals with the computed contour normals
is usually better in segments near the ensemble center. For contours that
are further away, however, the contour normal does not approximate the re-
spective segment normal well. For the computation of the contour boxplot,
this circumstance does not influence the outcome in a significant way, since
only the locations of the contour intersections relative to each other are im-
portant. For estimating the density of the contours, the absolute distances
of the intersections are important in order to get reasonable results. Thus, a
correction of each contour normal is performed by minimizing the deviation
from π

2
of the angles between the contour normal and the segments it inter-

sects. This is analogous to minimizing the deviation of the dot product of
the contour normal and the segments it intersects from zero:

min
φ∈[−π

2
;π
2
]

{ k∑

i=0

(nd(φ) · sdi)2
}

(46)

where sdi are the directions of the segments that the contour normal inter-
sects with, and nd(φ) is the direction of the normal to correct. The normal
itself is defined as:

n(φ) = p + s · nd(φ) = p + s

[
cos(φ)
sin(φ)

]
(47)

where p is the origin of the normal, s ∈ [0;∞) is the parameter of the ray
(refer to Section 7.2.1) and φ is the angle of the normal with respect to the
abscissa. Once the ideal direction has been found, the intersections with the
segments are re-calculated. Due to the fact that the KDE along a contour
normal is a local measure, intersections of the contour normals can be tested
if they are inside the viewing bounding box. If at least one intersection
is inside the bounding box, the correction has to be performed - otherwise
not. Because the local group overlay is only active in a deep zoom level,
the amount of normals to correct is reduced to a small portion of the total
number of contour normals.

83

Visualizing the contour groups The groups are visualized by connect-
ing the group borders of adjacent contour normals, if the border is located
between intersections of the same two contours, and those contours did not
cross between the normals. If a border connection contains only a small
amount of contour normals, its opacity is reduced to signify that the group
extent is comparatively small.

When the user hovers over a group, the probability that a contour falls
into that group in the given dataset is displayed in a similar manner to
the label that displays the probability of ablating a vessel (Section 7.5).
The probability is calculated by dividing the number of the contours in the
group by the number of contours in all groups. In addition to the label, an
interpolated contour normal is shown beneath the mouse cursor to indicate
where the probabilities are obtained. An example of the visualization can be
seen in Figure 7.22.

Figure 7.22: Example of the visualization of locally grouped contours. Con-
nected group borders are rendered as dashed yellow lines. An interpolated
contour normal is displayed when the mouse hovers above a certain group.
The arrows on the normal denote the group border. The label displays the
probability that a contour falls into that group.

84

7.7 Vessel filter and threshold filter

The last functionality of the visualization module is the ability to specify
filters for certain criteria. There are two filters available: the “vessel filter”
and the “threshold filter”.

The vessel filter allows the user to filter contours based on whether they
ablate a certain vessel or not. There are two options available: either all
vessel-ablating contours are displayed, or all contours that fail to ablate said
vessel. Once the filter is applied, the contours that are filtered out are des-
elected in the parameter list of the UI (refer to Figure 7.6). This provides a
convenient way for the user to check which parameters lead to an ablation of
a vessel and which do not. Furthermore, the filter gives indication of how the
ensemble looks if a certain vessel is ablated or non-ablated. The filter can
be activated by right-clicking on a vessel. The visualization module analyzes
which contours ablate the vessel and which contours do not ablate the vessel
and apply the parameter selection accordingly. The filter can be disabled
again through the vessel filter preference pane of the UI, see Figure 7.6.

The threshold filter allows the user to specify a certain margin around
the median contour. Contours outside this margin are disregarded during
visualization. Hence, the margin is used as a threshold to select relevant
contours. More precisely, in order for a contour to be displayed, the distance
of every contour vertex to the median has to be smaller than the specified
threshold. The same way as in the vessel filter, the parameter lists are ad-
justed where only those parameters are selected that lead to contours that
are located within the specified threshold. Thus, the filter provides a conve-
nient way for the user to sort out parameterizations that do not fall within
a certain desired range.

In order to compute the distances of all contours to the median, a dis-
tance field is generated using a VTK filter called vtkDistancePolyDataFilter.
This filter is used to generate an image consisting of the absolute distances
from each pixel to the median. After the image is generated, each vertex of
every contour is transformed into the image space, and the resulting coor-
dinate is used to look up the distance from the vertex to the median in the
distance field. If just one distance is larger than the specified threshold, the
contour is filtered out, and the corresponding parameters are deselected in
the parameter list in the visualization UI.

85

Part IV

Results

86

87

IV Results

8 Performance

This section deals with analyzing the performance of the functional band
algorithms, as well as the Parameter Uncertainty visualization technique as
a whole and particular steps of the visualization process that were expounded
in the previous sections.

8.1 Comparison of band depth algorithms

Methods In this section, the performance of the mBD and BDn,2 algo-
rithms introduced in Section 4 are compared with trivial approaches for mBD
and BDn,2 computation. The reference system is a personal computer run-
ning macOS 10.12 with 32GB of RAM and an Intel-Core i7-7700 CPU with
4.2Ghz. All algorithms are implemented in MATLAB R2015b. The test
ensemble consists of sine waves with added amplitude and frequency noise.
The whole ensemble is sampled with 200 steps between t ∈ [1; 10]. For the
individual tests, several different ensemble sizes are compared. An example
of a test ensemble with n = 200 functions can be viewed in Figure 8.1.

1 2 3 4 5 6 7 8 9 10
t

-1

-0.5

0

0.5

1

1.5

y(
t)

Figure 8.1: Example of a test ensemble consisting of n = 200 sine waves with
added frequency noise and amplitude noise.

88

8.1.1 Modified band depth

In order to compare the new mBD algorithm with the trivial approach,
mBDn,2 and mBDn,3 values are computed. Table 2 gives the mean±std.dev.
times needed for computing the mBD values for every function in the ensem-
ble. For each ensemble, the sample size was 100. Due to the fact that the
computational complexity of the new approach does not depend on k, the
times for k = 2 and k = 3 are comparable. However, it is important to note
that subbands of second order are not considered in the evaluation in the
case of k = 3. Otherwise, the times for k = 2 have to be added in order to
get a sense of how long the computation takes in both cases for individual
ensemble sizes. Note: due to the extensive computation time needed in the
trivial approach, mBD600,3 was not computed.

Table 2: Comparison of the mean±std.dev times for computing mBD with
k = 2 and k = 3 using the new approach and a trivial approach. Times are
given in seconds.

k = 2 k = 3

mean±std.dev. times in s mean±std.dev. times in s

n new approach trivial approach new approach trivial approach

50 0.09±0.00 0.24±0.01 0.08±0.00 0.51±0.02

100 0.18±0.00 1.92±0.01 0.17±0.00 8.52±0.22

200 0.37±0.00 15.89±0.07 0.35±0.01 140.65±2.66

300 0.58±0.01 22.12±0.70 0.58±0.04 735.91±18.11

400 0.8±0.00 133.93±0.43 0.72±0.02 2273.5±11.57

500 1.03±0.01 261.73±3.50 0.95±0.01 5605.4±81.51

600 1.28±0.03 461.52±16.46 1.20±0.01 -

8.1.2 Band depth

The comparison between times needed to compute the BDn,2 for every func-
tion in the ensemble with the new approach and the trivial approach is listed
in Table 3. Again, mean and std.dev are recorded with a sample size of 100.
As can be seen in the table, with the new approach, computation times stay
under a second in almost all cases, whereas BDn,2 computation using the
trivial approach takes over a minute in ensembles with n > 600.

89

Table 3: Comparison of the mean±std.dev times for comput-
ing BDn,2 using the new approach and a trivial approach.
Times are given in seconds.

BDn,2

mean±std.dev. times in s

n new approach trivial approach

50 0.01±0.00 0.03±0.00

100 0.03±0.00 0.26±0.02

200 0.08±0.00 1.95±0.03

300 0.16±0.00 6.71±0.15

400 0.30±0.02 16.01±0.32

500 0.47±0.03 31.32±0.54

600 0.67±0.03 53.96±0.68

700 0.88±0.23 85.06±1.14

800 1.14±0.05 141.48± 2.39

8.2 Radiofrequency ablation simulation ensemble vi-
sualization

Methods The reference system is a personal computer running Windows
8.1 64 bit with 16GB of RAM, an Intel-Core i7-4771 CPU with 3.5Ghz and
the NVIDIA GeForce 770GTX GPU. All tests are performed on a simulation
ensemble comprising 25 simulated lesions. The parameter space consists of
the tissue perfusion and tumor perfusion parameter, both sampled in equal-
sized steps from 26ml/100/min to 46ml/100/min, where 5 samples are taken
per parameter. The whole ensemble consists of 23 slices in the axial direction,
26 slices in the coronal direction and 33 slices in the sagittal direction, leading
to a total of 19,734 distinct combinations of the slices.

All bands are rendered with full opacity. The median is rendered as a
solid line and outliers are dashed. Unless otherwise specified, the zoom level
remains at default value, and no overlays are rendered on top of the contour
boxplot.

90

8.2.1 Contour boxplot

Performance of rendering the data set In order to get an overview of
the performance of rendering the contour boxplot, Figure 8.2 shows the frame
times for rendering all possible slices of the simulation ensemble in single-
threaded and multi-threaded mode. The shape of the figures reflects the
selection of the rendered slices: First, the axial slice is set, and for each of the
axial slices, all coronal slices are stepped through. For each coronal slice, all of
the sagittal slices are selected, thus resulting in all possible slice combinations
for the viewing directions. Each combination is rendered consecutively in all
three views. Due to the fact that the simulated lesions have a larger extent
in central slices, the frame time pattern has a wave-like shape.

The mean/standard deviation of the frame times are 49.4ms/11.2ms
(mean frames per second: 20.2) in the single-threaded case and
38.6ms/12.2ms (mean frames per second: 25.9) in the multi-threaded
case respectively, which is a reasonable performance for real time rendering
the data set in 2D.

The frame time dependency on the vertex count is further elaborated in
Figure 8.3, where the “plateauish” behavior of the frame times in the multi-
threaded case becomes more apparent. While in the single-threaded case,
the frame time to render the ensemble increases steadily with the number of
vertices. Only the maximum frame times in the multi-threaded case seem to
increase. This implies that the performance in the multi-threaded case is not
as much affected by the number of vertices to process as it is in the single-
threaded case; instead, other factors (e.g., vessels, overall shape) are likely
to have a significant influence on the rendering performance as the relevance
of the vertex count is decreased. In order to get the complete picture, the
histograms of the frame times are shown in Figure 8.4. As can be seen in
the figure, the frame time distribution of the multi-threaded case is more
narrowed with high frequencies around the central frame times. In contrast,
the single-threaded case shows more evenly distribution frame times, while
still having its maximum at the distribution center.

Performance of particular processing steps Visualizing the contour
boxplot requires several distinct steps. Concluding with this section, the per-
formance of executing these steps is analyzed - again in the single-threaded
and multi-threaded case. The analyzed steps are described in detail in sec-
tions 7.4.1-7.4.5. The single-threaded case is shown in Figure 8.5a), and the
multi-threaded case is depicted in Figure 8.5b).

As expected, the multi-threaded version shows lower (or equal) median

91

0 1 2 3 4 5 6
Iteration ×104

0

10

20

30

40

50

60

70

80

90

Fr
am

e
tim

e
in

 m
s

(a) Single-threaded case

0 1 2 3 4 5 6
Iteration ×104

0

10

20

30

40

50

60

70

80

90

Fr
am

e
tim

e
in

 m
s

(b) Multi-threaded case

Figure 8.2: Comparison of the frame times in the single-threaded case (a)
and the multi-threaded case (b) that are needed for rendering the whole
simulation ensemble in all possible slice combinations. The wave-like nature
of both figures resembles the method of slice selection for rendering. Due to
the fact that contours in central slices contain more vertices to be processed,
the propensity towards higher frame times increases globally as well as locally
in central regions. While the frame times in the single-threaded case show a
continuous approach towards the high peaks, the frame times in the multi-
threaded case show the tendency to remain at certain plateaus.

92

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of vertices

0

10

20

30

40

50

60

70

80

90

Fr
am

e
tim

es
 in

 m
s

Multi-threaded
Single-threaded

Figure 8.3: Comparison of frame times growth with vertex count. In the
single-threaded case, the frame times for each vertex count seems to steadily
increase. In the multi-threaded case on the other side, the minima of the
frame times largely remain at a certain plateau while only the maxima in-
crease with increasing vertex count, thus leading to an enhanced influence of
other factors.

frame times in almost all tasks. The only exception is “band depth calcula-
tion”, where the multi-threaded version is actually slower, but both in the
single-threaded version and in the multi-threaded version, the time needed to
complete the operation is negligible. Nevertheless, since the single-threaded
case is about three times faster than the multi-threaded case, the task of
calculating the BD is executed in a single thread by default. The biggest
difference in performance is observable in generating the 2D data, where the
median time to complete the task is about three times lower in the multi-
threaded case than in the single-threaded case. This difference also explains
the overall median frame time difference of about 10ms in the single-threaded
and multi-threaded case for rendering the boxplot, refer to Figure 8.2.

8.2.2 Number of contour normals

Increasing the number of contour normals effectively decreases the sampling
interval and yields a better overall sampling rate of the contours. Especially
in cases where the overall shape of the simulation ensemble is convex, the
sampling rate decreases towards the outside of the ensemble due to the nature

93

0 10 20 30 40 50 60 70 80 90
Frame time in ms

0

0.5

1

1.5

2

2.5

3

Fr
eq

ue
nc

y

×104

(a) Single-threaded case

0 10 20 30 40 50 60 70 80 90
Frame time in ms

0

0.5

1

1.5

2

2.5

3

Fr
eq

ue
nc

y

×104

(b) Multi-threaded case

Figure 8.4: Distribution of the frame times in the single-threaded case (a)
and the multi-threaded case (b). Both distributions have their maximum
frequency located around their center which is in the 40-50ms region in the
single-threaded case and the 30-40ms region in the multi-threaded case. The
shape of both distributions differs further in the sense that in the multi-
threaded case, frequencies are more narrowed down to the center.

of the contour normals. The opposite is true for non-convex regions, where
the sampling rate is lower at the inside of the ensemble. Thus, computing a
large number of contour normals seems to intuitively yield a more accurate
lBD result. However, a larger number of normals means a larger number of
intersections to compute, which consequently may have a performance im-
pact. Figure 8.6 shows the decrease in performance dependent on the number
of interpolated normals, as well as the change in lBD values between different
interpolation iterations for all of the simulated lesions. The interpolation is
done in an exponential manner, where, in the n-th interpolation iteration,
2n− 1 normals are generated between two base normals. As in Section 8.2.1,
the frame times and lBD values of all possible slices of the test data were
taken into account. Multi-threading was enabled.

94

Generating 2D data Building lesion tree Contour sampling Band depth calculation Visualization
0

5

10

15

20

25

30

Ti
m

e
in

 m
s

Generating 2D data: 14.8ms
Building lesion tree: 0.01ms
Contour sampling: 6.12ms
Band depth calculation: 0.31ms
Visualization: 0.7ms

(a) Single-threaded case

Generating 2D data Building lesion tree Contour sampling Band depth calculation Visualization
0

5

10

15

20

25

30

Ti
m

e
in

 m
s

Generating 2D data: 5.5ms
Building lesion tree: 0.01ms
Contour sampling: 5.82ms
Band depth calculation: 0.97ms
Visualization: 0.7ms

(b) Multi-threaded case

Figure 8.5: Times needed to complete various tasks for rendering the contour
boxplot in the single-threaded case (a) and in the multi-threaded case (b).
The legend on the top-right shows the median times of the tasks. The task
“generating 2D data” constitutes the biggest difference in time between the
single-threaded and the multi-threaded case. Interestingly, the BD calcula-
tion is actually about three times slower in the multi-threaded case.

95

Base 1N 3N 7N 15N 31N

0

500

1000

1500

2000

Fr
am

e
tim

es
 in

 m
s

Base: 39.14ms
1N: 39.43ms
3N: 40.13ms
7N: 41.05ms
15N: 42.59ms
31N: 148.94ms

1N-Base: 8.3%
3N-1N: 7.8%
7N-5N: 4.2%
15N-7N: 2.7%
31N-15N: 1.6%

Figure 8.6: Frame times for different numbers of interpolated normals. The
abscissa shows the number of interpolated normals, where 3N means three in-
terpolated normals between two base normals. “Base” refers to the standard
configuration with no interpolated normals. The median values are shown
in the left legend on the upper-left corner. The percentual changes in lBD
values is shown in the right legend. As is evident in the plot, interpolating
up to 15 normals yields more or less the same frame times. A large increase
in frame time is observable when interpolating 31 normals between two base
normals. However, going from 15N to 31N only yields a 1.6% change in lBD
values.

8.2.3 Overlays

In order to conclude the performance analysis, the time for computing and
visualizing the overlays is shown in Figure 9.1. The analysis comprises the
processing times of several different vessels and various local contour groups.
Processing vessels includes the rendering of the vessel itself, highlighting
the median contour of ablating and non-ablating contours and showing the
probability of a vessel being ablated. Local contour grouping comprises of
computing the groups with the uni-dimensional KDE, visualizing them and
displaying the likelihood that a group appears. As can be seen in the fig-
ure, the median times for both overlays are 1.7ms, which does not have a
great performance impact on the overall rendering times. However, vessel
processing yields a higher variability and, consequently, more outliers than
local contour grouping, and the maxima for both overlays are in the region

96

of 3ms. Note that, in this analysis, the comparison between single-threaded
and multi-threaded versions is omitted, because both overlays are processed
in a single thread only.

Local contour grouping Vessel processing
0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e
in

 m
s

Local contour grouping: 1.7ms
Vessel processing: 1.7ms

Figure 8.7: Boxplots of the times needed to process both overlays of the
Parameter Uncertainty plugin. The legend in the upper-right corner shows
the median times for both operations. Coincidently, both medians are equal.

9 Qualitative Results

This section will give a summary of the main features of the Ensemble Vi-
sualization module of the Parameter Uncertainty plugin by presenting the
concepts in Section 7.

9.1 Contour boxplot representation

When visualizing a simulation ensemble, the users are presented with the
boxplot of the ensemble in the three orthogonal 2D views. Using the box-
plot, the users can easily locate the median contour and infer the probable
extent and shape of the resulting lesion. Moreover, outliers can easily be
distinguished. Thus, the boxplot provides a global view of what results to
likely expect from treatment. An example of boxplots in the three orthogo-
nal views of the RFA Guardian can be viewed in Figure 9.1. Furthermore,
the parameterization can be adjusted dynamically and the visualization will

97

adapt to the changes. This is especially useful when more knowledge about a
certain parameter arises, as variations typically get smaller and the boxplot
narrows down. For instance, the users may want to fix the first parameter,
and investigate the outcomes using only variations of the second parameter.
An example of this case is depicted in Figure 9.2.

Additionally, the users may investigate which parameterizations lead to
an ablated area within a certain margin around the median. This can be
investigated using the threshold filter. The user may enter a specific mar-
gin in mm, and the plugin only visualizes the outcomes that are located
within the given margin. The parameter list in the user interface (refer to
Section 7.3) changes accordingly, where only parameterizations that lead to
contours within the given margin are enabled, Figure 9.3.

Figure 9.1: The simulation ensemble is visualized using contour boxplots.
The median, 50%-region and fence are depicted in shades of blue. Outliers
are dashed red. Furthermore, blood vessels are colored in red too.

98

(a) Initial boxplot (b) Boxplot using only a subset of the initial
parametrization

Figure 9.2: Typically, a boxplot narrows down if a subset of its parameteri-
zation is selected due to a decrease of uncertainty. In this example, a single
parameter is fixed. Consequently, the initial boxplot in (a) does not contain
outliers any more and its 50%-region is significantly less pronounced (b).

(a) Applying threshold filter (b) Boxplot using filtered parameterization

Figure 9.3: By applying the threshold filter (a), a margin around the median
can be specified in which simulation outcomes have to be located in order
to get visualized. The parameter lists adapt to the changes where only pa-
rameters that lead to visualized results are enabled. The filtered results are
depicted in (b).

99

9.2 Investigation of vessel ablation

In some situations, it may occur that a large vessel is located near the esti-
mated ablation zone and it is not clear if this vessel will be ablated in the
treatment or not. Thus, the radiologist may invoke the Parameter Uncer-
tainty plugin to evaluate whether the vessel will be ablated or not. In the
example presented in Figure 9.4a, the investigation of the vessel in the coro-
nal view of the contour boxplot already reveals that the vessel is only ablated
by an outlier of the ensemble. For further investigation, the probability that
the vessel is ablated, can be displayed, Figure 9.4b. Applying the vessel filter
reveals the specific parameterizations that lead to the ablation of this vessel,
which, in the the example of Figure 9.4, needs a very low tumor perfusion
to be ablated. Hence, by using the additional information gained by the
Parameter Uncertainty plugin, the interventional radiologist is able to make
inferences about vessel ablation, and to consequently adapt the treatment
plan to the newly gained knowledge.

(a) Vessel penetrating the ablation zone (b) Probability of vessel ablation

Figure 9.4: Example of a vessel penetrating the ablation zone. As visible,
only an outlier (dashed red contour) ablates the vessel. The fence of the
contour boxplot is visualized in light blue and the median is the dark blue
contour (a). To get a sense about how likely it is that the vessel will be ab-
lated, the probability of ablation can be displayed for each vessel individually
(b).

100

9.3 Local characteristics

The contour boxplot provides a concise global representation of the simula-
tion ensemble. However, in some cases, knowledge about the local behavior
of lesions is required. For instance, the users may want to know how likely
it is that a certain local tissue region is ablated. By utilizing the local
grouping functionality of the plugin, users are given the ability to investigate
how many parameterizations fall within a certain group of simulation
outcomes. The granularity of these groups is adjustable; i.e., depending on
the extent of the local region of interest, users may fine-tune the kernel width
of the KDE to produce group extents based on their preference, Figure 9.5a-c.

Other times, it may be of importance to know the local behavior of con-
tours that ablate a vessel and contours that do not ablate a vessel. In addition
to the vessel-related functionalities regarding vessel ablation (Section 9.2)
the local median around a certain vessel can be displayed as an overlay upon
zooming into the vessel. This local overlay provides a rough overview of how
the ensemble median would change, given the vessel is ablated or not, with-
out having to apply the vessel filter. An example is given in Figure 9.5d.
In this instance it is obvious that the global median would correspond to a
more inlying contour, with respect to the ensemble center.

101

(a) Rough group granularity (b) Medium group granularity

(c) Fine group granularity (d) Local medians around vessel

Figure 9.5: Local visualization features of the Parameter Uncertainty plugin.
To investigate how many simulation results fall within a certain local region
of the ensemble, the contours can be grouped based on local density with
adjustable granularity (a-c). Furthermore, to get a sense of how the ensemble
median changes given a vessel is ablated or not, the median of vessel-ablating
and non-vessel-ablating contours is shown upon zooming into a vessel (d).

102

Part V

Conclusion and future work

103

104

V Conclusion and future work

10 New approaches to band depth computa-

tion

As visible in the performance comparison of the trivial approaches to compute
mBD and BD with the approaches introduced in this thesis in Section 8.1, a
significant performance gain for ensembles consisting of hundreds of functions
can be achieved. The new approaches can be viewed as a generalization and
extension of the algorithms developed by Sun et al. [44]. However, as elabo-
rated in the example in Section 3.2, their BD algorithm yields wrong results
for certain ensembles, as already pointed out by Kwon and Ouyang [42].
Furthermore, ranking ties are not considered as well, [45]. Both of these
disadvantages are circumvented by the approaches introduced in this thesis
while still providing reasonable computational performance.

López-Pintado and Romo [41] recommended using second band order
for mBD, as results are very stable in k. Another reason they gave was
fast computation for second order bands. By using Equation 11, bands of
any orders can now be computed with the same computational complexity.
Thus, possible advantages by using higher band orders may be investigated
in further studies. For the BD measure on the other side, López-Pintado and
Romo [41] recommended using bands of third order. To our knowledge, no
fast algorithm for fast BDn,3 computation or any higher band order exists
to date. However, rudiments of Equation 12 may be used in future work to
establish a fast algorithm for BDn,3.

11 Parameter sampling

The Parameter Sampling module provides the option to sample parameters
in three different fashions, two statistical ones and one deterministic one,
as described in Section 6.3. While those methods provide a sophisticated
sampling scheme dependent on the prior knowledge about the parameters,
the actual selection of parameters is limited. At the current stage, the user is
able to select from the tissue perfusion and tumor perfusion and the position
of the probe tips. Those parameters play an important role in the outcome of
a simulation. However, there are other factors to be considered as well, e.g.,
cell death severity or electrical tissue parameters (refer to Section 1.2.4).
Hence, the sampling module would benefit from adding those parameters
to the list of parameters to sample from in future iterations of the plugin

105

giving the user more options to choose from, thus providing an even more
sophisticated way of generating the sampling space.

12 Ensemble Visualization

12.1 Contour boxplot and lesion band depth measure

The technique for visualizing a simulated lesion ensemble introduced in this
thesis combines the notion of the contour boxplot with a modified version
of the mBD method for generating an ordered statistic used in functional
boxplots. While, in the classical functional boxplot, the amount for which a
contour remains inside a particular band is computed with respect to the ab-
scissa, the “lBD” method samples the overall ensemble with a finite number
of so-called contour normals, which embrace the overall shape of the ensem-
ble. Thus, the amount for which a contour stays within a particular band is
not measured against an axis but rather the shape of the band itself.

The performance of this method allows for real-time visualization of the
simulation ensemble represented as a contour boxplot in three 2D windows
with orthogonal directions. This can be achieved through the utilization of
the parallel processing capabilities of the GPU and a pre-generated LUT. In
the classic case, calculating the contour band depth for each contour entails
the computation of a considerable number of bands. E.g., for 30 contours and
bands consisting of three contours, 4060 different bands have to be computed.
The method for computing the lBD presented in this thesis circumvents this
potential bottle neck by reducing the computation to the overall set-theoretic
contour intersection for generating the contour normals and their respective
intersections with the contours. Once the intersections are obtained, calcu-
lating the lBD values only requires performing a lookup to the pre-generated
table. The LUT itself is generated using a new approach to compute mBD
values using Equation 11. This equation plays an important role in reducing
the frame times needed for generating the overall contour boxplot, as the
lookup itself is an operation that can be performed in constant time.

Despite the fact that the bands are not computed using exact contour
intersections, but rather with the contour normal sampling method, the re-
sulting lBD values converge fast when increasing the number of normals, refer
to Figure 8.6. In the performance analysis of the test data set, the difference
of the median frame times between no interpolated normals and 15 interpo-
lated normals is only 3.45ms. However, interpolating 31 normals between
two base normals would increase the overall frame time by 106.35ms. Due to
the fact that the lBD values only change about 1.6% by going from 15 to 31

106

interpolated normals, the Parameter Uncertainty plugin uses 15 interpolated
normals by default.

12.2 Overlays and filters

Vessels Due to the heat sink effect, an important part of the Parameter
Uncertainty plugin lies in visualizing the behavior of the simulation ensemble
around vessels (Section 7.5). When a vessel is present in the simulation en-
semble, the percentage of the lesions that ablate the vessel on the current slice
is displayed on mouse-over. While this can be useful for getting an overview
of how likely it is for a particular vessel to be ablated on a certain slice, the
actual likelihood of the whole vessel being ablated would be additional use-
ful information. However, the Parameter Uncertainty plugin processes the
lesions on a per-slice basis, thus the likelihood for other slices being ablated
is not known, because vessels on different slices cannot be assigned to one
another. In order to address this shortcoming, a segmentation algorithm for
the vessel tree could be incorporated into the Parameter Uncertainty plugin.
This would make it possible to label vessels on different slices accordingly
and to calculate the overall probability of a vessel to be ablated.

Another important aspect of vessel processing is highlighting the median
of ablating contour and non-ablating contour with respect to a particular
vessel. This allows the interventional radiologist to further assess the sta-
tistical properties of the whole ensemble and to form an opinion in terms of
“what is likely going to happen if a certain vessel is ablated/non-ablated”.
With the help of the vessel filter (Section 7.7), the user may deepen their
knowledge about which parameters lead to lesions that fully ablate a vessel
and which parameter prevent a vessel ablation. Additionally, the filter helps
to get better insight in the shape of the ensemble, provided that a vessel is
ablated or not.

Contour grouping The Parameter Uncertainty plugin provides the possi-
bility to perform a local grouping of contours based on their relative density,
see Section 7.6. This is realized in a levels-of-detail approach, i.e., groups
are only built if the user zooms into the ensemble sufficiently. The action of
zooming is interpreted by the Uncertainty Sampling plugin as the user’s in-
terest in this local region. By providing the option to specify on how groups
should be built, the users can adjust the granularity to their liking. The ben-
efit of the grouping method lies in its locality. While the contour boxplot is a
global measure that provides valuable information of the simulation ensemble
as a whole, contour grouping gives information about contour properties in
the region that is currently viewed. E.g., contours with low lBD value might

107

actually be included in a central group in the viewed region. The probability
of a contour to fall into a specific group is shown as an overlay on mouse-over
in a similar manner as the ablation probability is displayed for a vessel.

12.3 Visualization comparison

In conclusion, a comparison of a standard contour visualization technique and
the contour boxplots in two 2D views is shown in Figure 12.1. The Param-
eter Uncertainty plugin improves the visual representation of the ensemble
by not only showing statistical properties through the contour boxplot, but
by establishing the connection to the underlying parameterizations as well.
While the standard method only visualizes the shape of each contour, the Pa-
rameter Uncertainty plugin captures the behavior of contours around vessels
and visualizes vessels themselves as well. E.g., when looking on the bottom-
right view of the example in Figure 12.1, the user immediately recognizes
that the left vessel is likely not to be fully ablated, since the only contour
that ablates the vessel is an outlier. In contrast, in the standard technique
the same vessel is not even recognizable at first glance, due to the cluttered
view. If more information regarding the vessel or contours is needed, the user
can make use of the vessel processing techniques, filters, or contour grouping
techniques that the plugin offers. Considering these improvements over the
standard method, the Parameter Uncertainty plugin may serve as a valu-
able extension of the RFA Guardian in assisting interventional radiologists
in RFA treatment.

108

(a) Standard visualization

(b) Visualization with the Parameter Uncertainty plugin

Figure 12.1: Comparison of an example ensemble visualized by a standard
technique (a) and with the Parameter Uncertainty plugin (b) in two orthog-
onal 2D views.

109

References

[1] G. M. Cooper, Elements of Human Cancer. Sudbury, Massachuetts:
Jones & Bartlett Learning, 1992. Cited on page 3.

[2] W. H. O. Geneva, “Global health estimates 2015: Deaths by cause, age,
sex, by country and by region, 2000-2015.” 2016. Cited on page 3.

[3] A. Sudhakar, “History of cancer, ancient and modern treatment meth-
ods,” J. Cancer Sci. Ther., vol. 01, pp. 1–4, dec 2009. Cited on page 3.

[4] A. H. Mahnken, P. Bruners, and R. W. Günther, “Techniques of inter-
ventional tumor therapy,” Dtsch. Arztebl. Int., vol. 105, pp. 646–653,
Sep 2008. Cited on page 3.

[5] A. R. Gillams, “The use of radiofrequency in cancer,” Br. J. Cancer,
vol. 92, pp. 1825–1829, may 2005. Cited on pages 3 and 4.

[6] P. Mariappan, P. Weir, R. Flanagan, P. Voglreiter, T. Alhonnoro,
M. Pollari, M. Moche, H. Busse, J. Futterer, H. R. Portugaller, R. B.
Sequeiros, and M. Kolesnik, “GPU-based RFA simulation for minimally
invasive cancer treatment of liver tumours,” Int. J. Comput. Assist. Ra-
diol. Surg., vol. 12, pp. 59–68, jan 2017. Cited on pages 3, 7, and 8.

[7] P. Voglreiter, P. Mariappan, A. Tuomas, H. Busse, P. Weir, M. Pol-
lari, R. Flanagan, H. , D. Seider, P. Brandmaier, M. Van Amerongen,
R. Rautio, S. Jenniskens, R. Blanco Sequeiros, R. Portugaller, P. Stei-
gler, J. Futterer, D. Schmalstieg, M. Kolesnik, and M. Moche, “Rfa
guardian: Comprehensive simulation of the clinical workflow for patient
specific planning, guidance and validation of rfa treatment of liver tu-
mors,” Int. J. Comput. Assist. Radiol. Surg., vol. 11, p. 187, jun 2016.
Cited on pages 3 and 31.

[8] T. Nguyen, E. Hattery, and V. P. Khatri, “Radiofrequency ablation and
breast cancer: a review,” Gland surg., vol. 3, pp. 128–135, may 2014.
Cited on page 4.

[9] R. J. Bleicher, D. P. Allegra, D. T. Nora, T. F. Wood, L. J. Foshag, and
A. J. Bilchik, “Radiofrequency ablation in 447 complex unresectable
liver tumors: lessons learned,” Ann. Surg. Oncol., vol. 10, pp. 52–58,
jan-feb 2003. Cited on page 4.

[10] T. Livraghi, L. Solbiati, M. F. Meloni, G. S. Gazelle, E. F. Halpern, and
S. N. Goldberg, “Treatment of focal liver tumors with percutaneous

110

radio-frequency ablation: Complications encountered in a multicenter
study,” Radiology, vol. 226, pp. 441–451, feb 2003. Cited on page 4.

[11] D. E. Dupuy, R. J. Zagoria, W. Akerley, W. W. Mayo-Smith, P. V. Ka-
vanagh, and H. Safran, “Percutaneous radiofrequency ablation of ma-
lignancies in the lung,” AJR Am J Roentgenol., vol. 174, pp. 57–59, jan
2000. Cited on page 4.

[12] M. Akeboshi, K. Yamakado, A. Nakatsuka, O. Hataji, O. Taguchi,
M. Takao, and K. Takeda, “Percutaneous radiofrequency ablation of
lung neoplasms: initial therapeutic response,” J. Vasc. Interv. Radiol.,
vol. 15, pp. 463–470, may 2004. Cited on page 4.

[13] R. J. Zagoria, J. A. Pettus, M. Rogers, D. M. Werle, D. Childs, and J. R.
Leyendecker, “Long-term outcomes after percutaneous radiofrequency
ablation for renal cell carcinoma,” Urology, vol. 77, no. 6, pp. 1393–
1397, 2011. Cited on page 4.

[14] D. A. Gervais, F. J. McGovern, R. S. Arellano, W. S. McDougal, and
P. R. Mueller, “Renal cell carcinoma: Clinical experience and technical
success with radio-frequency ablation of 42 tumors,” Radiology, vol. 226,
pp. 417–424, feb 2003. Cited on page 4.

[15] L. Thanos, S. Mylona, P. Galani, D. Tzavoulis, V. Kalioras, S. Tanteles,
and M. Pomoni, “Radiofrequency ablation of osseous metastases for the
palliation of pain,” Skeletal Radiol., vol. 37, pp. 189–194, nov 2008.
Cited on page 4.

[16] D. E. Dupuy, D. Liu, D. Hartfeil, L. Hanna, J. D. Blume, K. Ahrar,
R. Lopez, H. Safran, and T. DiPetrillo, “Percutaneous radiofrequency
ablation of painful osseous metastases,” Cancer, vol. 116, pp. 989–997,
feb 2010. Cited on page 4.

[17] A. Gillams, “Tumour ablation: current role in the kidney, lung and
bone,” Cancer Imaging, vol. 9, no. Special Issue A, pp. 68–70, 2009.
Cited on page 4.

[18] S. Tatli, U. Tapan, P. R. Morrison, and S. G. Silverman, “Radiofre-
quency ablation: technique and clinical applications,” Diagn. Interv.
Radiol., vol. 18, no. 5, pp. 508–516, 2012. Cited on page 4.

[19] H. Yu and C. T. Burke, “Comparison of percutaneous ablation tech-
nologies in the treatment of malignant liver tumors,” Semin. Intervent.
Radiol., vol. 31, pp. 129–137, jun 2014. Cited on pages 4 and 7.

111

[20] M. Friedman, I. Mikityansky, A. Kam, S. K. Libutti, M. M. Walther,
Z. Neeman, J. K. Locklin, and B. J. Wood, “Radiofrequency ablation of
cancer,” Cardiovasc. Intervent. Radiol., vol. 27, pp. 427–434, jun 2004.
Cited on pages 4 and 5.

[21] S. Maini, “Comparison between thermal ablation techniques for treat-
ment of cancer,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, sep
2016. Cited on pages 4 and 7.

[22] L. S. Poulou, E. Botsa, I. Thanou, P. D. Ziakas, and L. Thanos, “Percu-
taneous microwave ablation vs radiofrequency ablation in the treatment
of hepatocellular carcinoma,” World J. Hepatol., vol. 7, pp. 1054–1063,
may 2015. Cited on page 4.

[23] D. Haemmerich, “Biophysics of radiofrequency ablation,” Crit. Rev.
Biomed. Eng., vol. 38, no. 1, pp. 53–63, 2010. Cited on pages 4 and 5.

[24] J. P. McGahan and G. D. Dodd, “Radiofrequency ablation of the liver:
current status,” Am. J. Roentgenol., vol. 176, no. 1, pp. 3–16, 2001.
Cited on page 5.

[25] M. Ahmed and S. N. Goldberg, Radiofrequency Tissue Ablation: Prin-
ciples and Techniques, pp. 3–28. New York, NY: Springer, 2004. Cited
on page 5.

[26] A. Julianov, “Expanding local control rate in liver cancer surgery – the
value of radiofrequency ablation,” in Liver Tumors, ch. 10, InTech, feb
2012. Cited on page 6.

[27] E. J. Patterson, C. H. Scudamore, D. A. Owen, A. G. Nagy, and A. K.
Buczkowski, “Radiofrequency ablation of porcine liver in vivo: effects
of blood flow and treatment time on lesion size.,” Ann. Surg., vol. 227,
pp. 559–565, apr 1998. Cited on page 6.

[28] D. S. K. Lu, S. S. Raman, D. J. Vodopich, M. Wang, J. Sayre, and
C. Lassman, “Effect of vessel size on creation of hepatic radiofrequency
lesions in pigs: assessment of the “heat sink” effect,” Am. J. Roentgenol.,
vol. 178, pp. 47–51, jan 2002. Cited on page 6.

[29] K. Pillai, J. Akhter, T. C. Chua, M. Shehata, N. Alzahrani, I. Al-Alem,
and D. L. Morris, “Heat sink effect on tumor ablation characteristics
as observed in monopolar radiofrequency, bipolar radiofrequency, and
microwave, using ex vivo calf liver model,” Medicine, vol. 94, p. e580,
mar 2015. Cited on page 6.

112

[30] L. Solbiati, T. Ierace, M. Tonolini, V. Osti, and L. Cova, “Radiofre-
quency thermal ablation of hepatic metastases,” Eur. J. Ultrasound.,
vol. 13, pp. 149–158, jun 2001. Cited on page 7.

[31] P. Hildebrand, T. Leibecke, M. Kleemann, L. Mirow, M. Birth, H. Bruch,
and C. Bürk, “Influence of operator experience in radiofrequency abla-
tion of malignant liver tumours on treatment outcome,” Eur. J. Surg.
Oncol., vol. 32, pp. 430–434, may 2006. Cited on page 7.

[32] H. H. Pennes, “Analysis of tissue and arterial blood temperatures in
the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122,
1948. Cited on page 8.

[33] S. K. Hall, E. H. Ooi, and S. J. Payne, “Cell death, perfusion and
electrical parameters are critical in models of hepatic radiofrequency
ablation,” Int. J. Hyperthermia., vol. 31, pp. 538–550, may 2015. Cited
on page 8.

[34] R. Khlebnikov and J. Muehl, “Effects of needle placement inaccuracies
in hepatic radiofrequency tumor ablation,” in Engineering in Medicine
and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, pp. 716–721, IEEE, 2010. Cited on page 8.

[35] E. R. Cosman, J. R. Dolensky, and R. A. Hoffman, “Factors that affect
radiofrequency heat lesion size,” Pain Med., vol. 15, pp. 2020–2036, dec
2014. Cited on page 8.

[36] P. Voglreiter, M. Hofmann, C. Ebner, R. B. Sequeiros, H. R. Por-
tugaller, J. Ftterer, M. Moche, M. Steinberger, and D. Schmalstieg,
“Visualization-Guided Evaluation of Simulated Minimally Invasive Can-
cer Treatment,” in Eurographics Workshop on Visual Computing for
Biology and Medicine, The Eurographics Association, 2016. Cited on
pages 9 and 10.

[37] R. T. Whitaker, M. Mirzargar, and R. M. Kirby, “Contour boxplots:
A method for characterizing uncertainty in feature sets from simulation
ensembles,” IEEE Trans. Vis. Comput. Graph., vol. 19, pp. 2713–2722,
dec 2013. Cited on pages 9, 11, 15, and 16.

[38] S. López-Pintado and J. Romo, “Depth-based inference for functional
data,” Comput. Stat. Data Anal., vol. 51, pp. 4957–4968, jun 2007.
Cited on pages 11 and 12.

113

[39] J. W. Tukey, Exploratory Data Analysis. Reading: Addison-Wesley,
1977. Cited on page 11.

[40] Y. Sun and M. G. Genton, “Functional boxplots,” J. Comp. Graph.
Stat., vol. 20, pp. 316–334, jan 2011. Cited on pages 11, 14, and 15.

[41] S. López-Pintado and J. Romo, “On the concept of depth for functional
data,” J. Am. Stat. Assoc., vol. 104, pp. 718–734, jun 2009. Cited on
pages 11, 13, 14, and 105.

[42] A. Kwon and M. Ouyang, “Clustering of functional data by band depth,”
in Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies, BICT’15, pp. 510–515,
ICST, 2016. Cited on pages 20, 21, and 105.

[43] S. López-Pintado and R. Jornsten, “Functional analysis via extensions
of the band depth,” Inst. Math. Stat., vol. 54, pp. 103–120, 2007. Cited
on page 20.

[44] Y. Sun, M. G. Genton, and D. W. Nychka, “Exact fast computation of
band depth for large functional datasets: How quickly can one million
curves be ranked?,” Stat, vol. 1, no. 1, pp. 68–74, 2012. Cited on pages
21, 22, 23, 25, 27, and 105.

[45] Y. Hong, Y. Gao, M. Niethammer, and S. Bouix, “Shape analysis based
on depth-ordering,” Med Image Anal, vol. 25, pp. 2–10, oct 2015. Cited
on pages 21 and 105.

[46] “RFA Guardian - technical workflow.” http://www.clinicimppact.

eu/rfa-technicalworkflow.html. Accessed: 2017-08-20. Cited on
page 31.

[47] “MITK Toolkit.” http://mitk.org/wiki/The_Medical_Imaging_

Interaction_Toolkit_(MITK). Accessed: 2017-08-20. Cited on
page 31.

[48] “ITK Toolkit.” https://itk.org. Accessed: 2017-08-20. Cited on
page 31.

[49] “VTK Toolkit.” http://www.vtk.org. Accessed: 2017-08-20. Cited
on page 31.

[50] “VTK 6.1.0 API reference.” http://www.vtk.org/doc/release/6.1/

html/. Accessed: 2017-08-20. Cited on page 31.

114

http://www.clinicimppact.eu/rfa-technicalworkflow.html
http://www.clinicimppact.eu/rfa-technicalworkflow.html
http://mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK)
http://mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK)
https://itk.org
http://www.vtk.org
http://www.vtk.org/doc/release/6.1/html/
http://www.vtk.org/doc/release/6.1/html/

[51] Y. Mrabet, “Planes of human anatomy.” https://commons.

wikimedia.org/wiki/File:Human_anatomy_planes_signatures.

svg, sep 2010. Accessed: 2017-08-20. Cited on page 32.

[52] “RFA Guardian - user interface.” http://www.clinicimppact.eu/

rfa-guardian.html. Accessed: 2017-08-20. Cited on page 33.

[53] L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band
3. Vieweg + Teubner, sixth ed., 2011. Cited on pages 35 and 36.

[54] J. E. Gentle, Random Number Generation and Monte Carlo Methods.
Springer New York, second ed., 2003. Cited on pages 37 and 38.

[55] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, pp. 3–30, Jan. 1998.
Cited on page 37.

[56] A. Jagannatam, “Mersenne twister - a pseudo random number generator
and its variants,” tech. rep., George Mason University, dec 2010. Cited
on page 37.

[57] C. McClanahan, “History and evolution of gpu architecture.”
http://disi.unal.edu.co/~gjhernandezp/HeterParallComp/

GPU/gpu-hist-paper.pdf, 2010. Accessed: 2017-08-20. Cited on
page 41.

[58] G. Pratx and L. Xing, “GPU computing in medical physics: A review,”
Med. Phys., vol. 38, pp. 2685–2697, may 2011. Cited on page 41.

[59] S. Hasan, S. M. Shamsuddin, and N. Lopes, “Machine learning big data
framework and analytics for big data problems,” Int. J. Advance Soft
Compu. Appl., vol. 6, 08 2014. Cited on page 41.

[60] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of
gpu-based convolutional neural networks,” in 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Processing, pp. 317–
324, Feb 2010. Cited on page 41.

[61] G. Sellers, R. Wright, and N. Haemel, OpenGL Superbible: Comprehen-
sive Tutorial and Reference. OpenGL, Pearson Education, seventh ed.,
2015. Cited on pages 41, 42, 43, and 44.

115

https://commons.wikimedia.org/wiki/File:Human_anatomy_planes_signatures.svg
https://commons.wikimedia.org/wiki/File:Human_anatomy_planes_signatures.svg
https://commons.wikimedia.org/wiki/File:Human_anatomy_planes_signatures.svg
http://www.clinicimppact.eu/rfa-guardian.html
http://www.clinicimppact.eu/rfa-guardian.html
http://disi.unal.edu.co/~gjhernandezp/HeterParallComp/GPU/gpu-hist-paper.pdf
http://disi.unal.edu.co/~gjhernandezp/HeterParallComp/GPU/gpu-hist-paper.pdf

[62] M. Bailey, “How to use and teach opengl compute shaders.”
https://www.khronos.org/assets/uploads/developers/library/

2014-siggraph-bof/KITE-BOF_Aug14.pdf, aug 2014. Accessed:
2017-08-20. Cited on page 44.

[63] C. Hafner, “Compute shaders.” https://www.cg.tuwien.ac.at/

courses/Realtime/repetitorium/rtr_rep_2016_ComputeShader,
2016. Accessed: 2017-08-20. Cited on page 44.

[64] L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band
1. Vieweg + Teubner, twelfth ed., 2011. Cited on pages 46 and 54.

[65] F. Preparata and M. Shamos, Computational Geometry: An Introduc-
tion. Monographs in Computer Science, Springer New York, 2012. Cited
on page 47.

[66] “A history of linear-time convex hull algorithms for simple polygons.”
http://cgm.cs.mcgill.ca/~athens/cs601/. Accessed: 2017-08-21.
Cited on page 47.

[67] A. Melkman, “On-line construction of the convex hull of a simple poly-
line,” Inf. Process. Lett., vol. 25, pp. 11–12, apr 1987. Cited on pages
47 and 48.

[68] M. Woo, J. Neider, T. Davis, and O. A. R. Board, Opengl Programming
Guide: The Official Guide to Learning Opengl, Version 1.1. Addison
Wesley, second ed., 1997. Cited on pages 63 and 64.

[69] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice
Hall, second ed., 2002. Cited on page 66.

[70] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC Monographs on Statistics & Applied Probability,
CRC press, first ed., 1986. Cited on page 81.

[71] B. Turlach, “Bandwidth selection in kernel density estimation: A re-
view,” tech. rep., CORE and Institut de Statistique, 1993. Cited on
page 81.

[72] M. W. Toews, “Kernel density.” https://commons.wikimedia.org/

wiki/File:Kernel_density.svg, jul 2007. Accessed: 2017-08-20.
Cited on page 82.

116

https://www.khronos.org/assets/uploads/developers/library/2014-siggraph-bof/KITE-BOF_Aug14.pdf
https://www.khronos.org/assets/uploads/developers/library/2014-siggraph-bof/KITE-BOF_Aug14.pdf
https://www.cg.tuwien.ac.at/courses/Realtime/repetitorium/rtr_rep_2016_ComputeShader
https://www.cg.tuwien.ac.at/courses/Realtime/repetitorium/rtr_rep_2016_ComputeShader
http://cgm.cs.mcgill.ca/~athens/cs601/
https://commons.wikimedia.org/wiki/File:Kernel_density.svg
https://commons.wikimedia.org/wiki/File:Kernel_density.svg

	I Introduction
	Motivation and related work
	Motivation
	Radiofrequency ablation
	Radiofrequency ablation procedure
	Difficulties and shortcomings
	Radiofrequency ablation simulation
	Factors influencing the treatment outcome
	Visualizing simulated lesions

	Concepts of Boxplots and the notion of data depth
	Functional boxplots
	Contour boxplots

	Overview

	II Fast functional band depth computation
	Established methods for fast band depth computation
	Acceleration through data resampling
	Acceleration with an exact approach

	New approaches
	Modified band depth
	Band depth

	III The Parameter Uncertainty plugin
	RFA Guardian
	Workflow
	Frameworks and user interface

	The Parameter Sampling module
	User interface
	Workflow
	Sampling methods and properties
	Parameter dependent sampling properties
	Post processing

	The Ensemble Visualization module
	The Graphics Processing Unit and OpenGL
	The OpenGL rendering pipeline
	Compute shaders

	Relevant computational geometry algorithms
	Segments, rays, lines and their intersections
	Polygons

	Overview and user interface
	Generating the contour boxplot
	Generating 2D data
	The lesion tree data structure
	Contour sampling
	Band depth calculation
	Visualization of the contour boxplot

	Processing vessels
	Local grouping of contours
	Vessel filter and threshold filter

	IV Results
	Performance
	Comparison of band depth algorithms
	Modified band depth
	Band depth

	Radiofrequency ablation simulation ensemble visualization
	Contour boxplot
	Number of contour normals
	Overlays

	Qualitative Results
	Contour boxplot representation
	Investigation of vessel ablation
	Local characteristics

	V Conclusion and future work
	New approaches to band depth computation
	Parameter sampling
	Ensemble Visualization
	Contour boxplot and lesion band depth measure
	Overlays and filters
	Visualization comparison

