

i

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources. The text document

uploaded to TUGRAZonline is identical to the present master’s thesis dissertation.

. .

date

. .

(signature)

ii

iii

Abstract

Knowledge work such as writing scientific papers typically requires the extraction of useful

information from scientific literature. Nowadays the primary information artifact used by

researchers are electronic documents available on the web, which can be found by general

and academic search engines such as Google Scholar or IEEE Xplore. But retrieving only

the most relevant results may prove to be hard due to the vast amount of web sites and

papers. As a consequence, researchers are often confronted with loads of low-quality or

irrelevant content. To address this issue, we introduce a novel system, which combines

a rich, interactive web-based user interface and different visualization approaches. This

system, named PaperViz, enables researchers to use their visual skills to quickly spot

potentially relevant literature within large document collections. The core component of

PaperViz is a graph-based visualization, which is using key phrase extraction algorithms to

map textual to graphic representations. This visualization approach relies on an interactive

user-driven model that allows researchers to shape the visualization by formulating a search

query consisting of a set of key phrases and their positions within a spatial layout. Based

on this search query, the graph-based visualization computes and presents information

about document collections using different visual features and mini visualizations enabling

researchers to gain rapid knowledge about the content and the relevance of the inspected

document repositories. In addition, it helps users to identify key phrases that best describe

the kind of papers they are looking for. These key phrases can be used to optimize the

search query, which usually results in a smaller but more relevant result list. Furthermore,

PaperViz provides additional features to support researchers during the whole process

of writing scientific papers, such as citation management, document metadata extraction

or a web based text editor. This paper introduces the design and components of this

system and describes several use scenarios, in which PaperViz supports rapid sensemaking

on document collections. Moreover, a case study, where experts and non-experts had to

accomplish different tasks using PaperViz, was conducted in order to examine its usability.

Keywords. search engines, key phrases, document collection exploration, graph-based

visualization approaches

iv

Kurzfassung

Wissensarbeit, wie beispielsweise das Verfassen von wissenschaftlichen Fachartikeln, er-

fordert zumeist eine umfangreiche Recherche bestehender Literatur um das Themenfeld

zu erschließen. Heutzutage nutzen Wissenschaftler primär elektronische Dokumente als

Informationsquelle, die im Web zum Download bereitgestellt werden und mittels akademis-

cher Suchmaschinen wie Google Scholar oder IEEE Xplore gefunden werden können. Es

hat sich allerdings herausgestellt, dass es aufgrund der riesigen Mengen an Webseiten

und elektronischen Artikeln oft schwierig ist eine Suchanfrage so zu formulieren, dass die

Suchmaschinen nur potentiell relevante Resultate liefern. Meist beinhalten die Ergeb-

nislisten eine Vielzahl von irrelevanten oder minderwertigen Artikeln. Das Identifizieren

von nützlichen Informationen in solch großen Dokumentensammlungen ist üblicherweise

mit viel Aufwand und Zeit verbunden. Aus diesem Grund haben wir ein innovatives, web-

basiertes System namens PaperViz entwickelt, welches es Wissenschaftlern ermöglicht, ihre

visuellen Fähigkeiten gezielt dazu einsetzen, um rasch potentiell relevante Informationen

in großen Dokumentensammlungen zu identifizieren. Die Hauptkomponente von PaperViz

ist eine graphen-basierte Visualisierung welche Textextrahierungsalgorithmen verwendet

um textuelle Information grafisch abzubilden. Dieser Visualisierungsansatz basiert auf

einem benutzergesteuerten Modell, welches Wissenschaftlern erlaubt die Visualisierung

aufgrund ihrer Interessen zu modellieren. Basierend auf der Definition einer Suchanfrage,

welche aus Schlüsselwörtern und deren Positionen innerhalb eines Koordinatensystems

besteht, berechnet das System verschiedene Eigenschaften der untersuchten Dokumenten-

sammlungen und stellt diese Anhand verschiedener visueller Merkmale (Farben, Posi-

tionen, Größen, etc.) und Minivisualisierungen dar. Dadurch erlangen Wissenschaftler

schnell Kenntnis über den Inhalt und der Relevanz von Dokumenten und Dokumenten-

sammlungen. Des Weiteren hilft dieses System den Benutzern bei der Definition von

Schlüsselwörtern, welche zur Optimierung einer Suchanfrage genützt werden können. Das

hat wiederum den Vorteil, dass die Ergebnislisten kürzer aber auch qualitativ hochwertiger

werden. Zusätzlich bietet PaperViz Funktionen an, welche den Wissenschaftler während

des gesamten Prozesses zur Erstellung des Fachartikels unterstützen, wie beispielsweise

eine Zitierfunktion, automatisches Extrahieren von Dokument-Metadaten oder einem web-

v

vi

basierten Texteditor. Die vorliegende Arbeit stellt das Design und die Komponenten dieses

Systems vor und beschreibt verschiedene Anwendungsszenarien von PaperViz. Zusätzlich

wurde eine Evaluierung durchgeführt mit dem Ziel, Stärken und Schwächen des Systems

zu identifizieren sowie dessen Benutzerfreundlichkeit zu messen.

Schlüsselwörter. Suchmaschinen, Schlüsselwörter, Dokumentensammlung, Graphen-

basierte Visualisierungsansätze

Acknowledgments

First, I would like to thank my thesis advisors Cecilia di Sciascio and Vedran Sabol for

their guidiance in creating this thesis.

I also want to thank my closest friends and colleagues for providing me with unfailing

support thoughout my years of study and through the process of researching and writing

this thesis.

Finally, I must express my very profound gratitude to my family, especially my parents,

for having enabled my studies, their confidence in me, and their interest in my work.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Structure . 4

2 Related Work 5

2.1 Approaches of document collection visualization 6

2.1.0.1 ThemeRiver and TIARA 6

2.1.0.2 ParallelTopics . 7

2.1.0.3 Tag cloud . 8

2.1.0.4 TopicNets . 9

2.1.0.5 FaceAtlas . 10

2.1.0.6 InfoSky . 11

2.1.0.7 ThemeScape . 12

2.1.0.8 VIBE . 13

2.1.0.9 Jigsaw . 14

2.1.0.10 Aduna Cluster Maps . 15

2.1.0.11 TopicViz . 17

2.1.0.12 Apolo . 18

2.1.0.13 TileBars . 19

2.1.0.14 WordTree . 20

2.1.0.15 PhraseNet . 21

2.1.0.16 Document Cards . 22

2.2 Document Collection Management Systems 23

2.3 Contributions . 24

3 Design 25

3.1 Requirements . 25

3.2 GUI components . 27

3.2.1 User management . 31

3.2.2 Navigation . 32

3.2.2.1 Tree view . 33

ix

CONTENTS x

3.2.2.2 Breadcrumbs . 33

3.2.2.3 Actions . 33

3.2.3 Metadata information area . 34

3.2.4 Bookmarks and annotations . 35

3.2.4.1 List of bookmarks . 35

3.2.4.2 Text editor . 36

3.2.5 Visualization . 36

3.2.5.1 Tag cloud . 37

3.2.5.2 Key phrase box . 38

3.3 Graph-based visualization . 39

3.3.1 Layout . 39

3.3.2 Visual encoding . 41

3.3.2.1 Shape . 42

3.3.2.2 Color . 42

3.3.2.3 Intensity . 42

3.3.2.4 Position . 43

3.3.2.5 Size . 48

3.3.3 Interactions and Details-on-demand 48

3.3.3.1 Bar chart . 49

3.3.3.2 Connecting lines . 51

3.3.3.3 TileBars . 52

3.3.4 Additional controls . 53

3.3.4.1 Gravity slider . 53

3.3.4.2 Buttons . 54

3.3.5 Usage scenarios . 54

3.3.5.1 Scenario 1 . 54

3.3.5.2 Scenario 2 . 59

3.3.5.3 Scenario 3 . 60

3.3.5.4 Conclusion . 62

3.4 Workflow . 63

3.5 Summary . 64

4 Implementation 66

4.1 Information flow . 67

4.2 Backend processing service . 68

4.2.1 Frameworks and libraries . 69

4.2.1.1 Web API 2 . 69

4.2.1.2 OAuth 2.0 . 70

4.2.1.3 Entity Framework . 70

4.2.1.4 RestSharp . 71

4.2.1.5 iTextSharp . 71

CONTENTS xi

4.2.2 Web APIs . 71

4.2.2.1 Connection to Mendeley . 71

4.2.2.2 Connection to Sensium . 74

4.2.2.3 Connection to the PaperViz front end 76

4.2.3 Data processing and preperation . 82

4.2.4 Data storing . 83

4.3 Web front end . 86

4.3.1 Frameworks, libraries and design patterns 87

4.3.1.1 jQuery . 87

4.3.1.2 Bootstrap . 87

4.3.1.3 Knockout . 88

4.3.1.4 JavaScript Module Pattern 89

4.3.1.5 D3.js . 90

4.3.2 Summary . 90

5 Evaluation 91

5.1 Methodology . 91

5.1.1 Evaluation preparation . 92

5.1.2 Tasks . 93

5.1.2.1 Training Task . 93

5.1.2.2 Task 1 . 93

5.1.2.3 Task 2 . 94

5.1.2.4 Task 3 . 94

5.1.2.5 Task 4 . 94

5.1.3 Questionnaires . 94

5.1.3.1 Questionnaire 1 . 95

5.1.3.2 Questionnaire 2 . 95

5.1.3.3 Questionnaire 3 . 95

5.1.4 Data sets . 95

5.2 Participants . 96

5.3 Procedure and Conditions . 96

5.3.1 Introduction . 96

5.3.2 Training . 96

5.3.3 Feedback . 97

5.4 Results . 97

5.5 Conclusion . 102

6 Conclusion & Future Work 103

A Questionnaires 106

B Acronyms 108

CONTENTS xii

Bibliography 112

List of Figures

1.1 A screenshot of PaperViz . 1

2.1 ThemeRiver Visualization . 6

2.2 ParallelTopics Visualization . 7

2.3 Tag cloud Visualization . 8

2.4 TopicNets Visualization . 9

2.5 FaceAtlas Visualization . 10

2.6 InfoSky Visualization . 11

2.7 ThemeScape Visualization . 12

2.8 VIBE Visualization . 13

2.9 JigSaw List View . 14

2.10 JigSaw Graph View . 15

2.11 Social Bookmarking Visualization . 15

2.12 TopicViz Visualization . 17

2.13 Apolo Visualization . 18

2.14 TileBar Visualization . 19

2.15 WordTree Visualization . 20

2.16 PhraseNet Visualization . 21

2.17 Document Cards Visualization . 22

3.1 First mockup of the GUI . 27

3.2 Details-on-demand mockup . 28

3.3 Final layout of PaperViz . 30

3.4 Login dialog of PaperViz . 31

3.5 The user ribbon of PaperViz . 31

3.6 The sync ribbon of PaperViz . 32

3.7 The tree view component of PaperViz . 33

3.8 The breadcrumbs component of PaperViz 33

3.9 The metadata information area of PaperViz 34

3.10 The list of bookmarks . 35

3.11 The text editor of PaperViz . 36

xiii

LIST OF FIGURES xiv

3.12 The tag cloud of PaperViz . 37

3.13 The key phrase box of PaperViz . 38

3.14 Dragging and dropping key phrases . 38

3.15 The graph-based visualization of PaperViz 39

3.16 Shapes: triangles and circles . 41

3.17 Relevance is visualized by intensity . 42

3.18 Key phrases —intensity changed . 43

3.19 Positioning interpreation . 44

3.20 Example: badly placed key phrases . 46

3.21 Example: overlapping visualization elements 46

3.22 Bar chart for collections . 49

3.23 Bar chart for key phrases . 50

3.24 Connecting Lines . 51

3.25 Connecting lines —overlaps are avoided . 51

3.26 TileBars . 52

3.27 PDF page parameter . 53

3.28 Gravity slider . 53

3.29 Scenario 1: PaperViz visualization . 55

3.30 Scenario 1: PaperViz visualization (2) . 56

3.31 Scenario 1: PaperViz visualization (3) . 57

3.32 Scenario 1: TileBar visualization . 57

3.33 Senario 1: identified document section . 58

3.34 Senario 1: metadata information area . 58

3.35 Senario 2: PaperViz visualization . 59

3.36 Senario 3: PaperViz visualization . 61

3.37 Senario 3: PaperViz visualization (2) . 62

3.38 Workflow . 63

4.1 The information flow between PaperViz and external systems 67

4.2 OAuth 2.0 login credential flow . 70

4.3 The settings dialog of PaperViz . 73

4.4 Sensium Workflow . 74

4.5 Synchronization options of PaperViz . 79

4.6 Loading animation of PaperViz . 79

4.7 Flow diagram of the loading process . 80

4.8 Class diagram of the document collection response object 81

4.9 Loading and saving the application state . 82

4.10 Database diagram . 84

4.11 Front end architecture . 86

4.12 Boostrap template ‘SB Admin 2’ . 88

LIST OF FIGURES xv

5.1 System Usability Scale Grading Graph . 97

5.2 Scores of the questions about the functions and features of PaperViz 98

5.3 The reuslts of the personal feelings about the success in accomplishing a task

(performance), the effort to accomplish their level of performance (effort)

and the difficulty-level of the task (frustration). 100

List of Tables

2.1 Comparison of document collection management systems used by researches 23

3.1 Confrontation of requirements and features 65

4.1 Consumed Mendeley web API functions . 74

4.2 Exposed web API functions of the PaperViz’ backend processing service . . 77

4.3 Description of the database tables . 85

5.1 PaperViz’ System Usability Scale scores . 97

5.2 Log statistics of user activities traced in the course of the evaluation 101

A.1 Questionnaire about workload and task difficulty for PaperViz 106

A.2 Questionnaire about the functions and components of PaperViz 107

A.3 The System Usability Scale questions adapted from [40] 107

xvi

Chapter 1

Introduction

Contents

1.1 Motivation . 2

1.2 Structure . 4

Figure 1.1: A screenshot of PaperViz

This thesis introduces a novel interactive tool called PaperViz, which is designed to

support researchers in writing scientific papers. PaperViz combines different visualization

techniques, which are based on key phrase extraction algorithms and are interactively

linked to each other. By using their visual skills, researchers are able to quickly examine

the content of large document collections. A short glance at the visualizations is usually

1

1.1. Motivation 2

sufficient to determine whether a document is likely to be relevant or not. Thus, the system

enables the user to quickly spot sections of documents that might be worth inspecting in

depth without reading a single paragraph. As a result, this reduces the amount of reading

and results in a faster process of finding relevant information. Furthermore, additional

issues are addressed that typically arise when writing scientific papers, such as managing

relevant references or finding additional key words for refining the search process. PaperViz

consists of two main components:

• The backend processing service is used for data storage, data preparation and

the user management. In addition, it implements the interfaces to two external

systems. The first system is a text mining engine designed to extract key phrases

from text blocks. The second one is a reference management system, which is used

as the document collection source for PaperViz.

• The Web front end is a single page application (SPA) that complies with MCV

principles and presents the data prepared by the backend processing service in un-

derstandable patterns. Moreover, it includes some features, which aim to speed up

the process of exploring, understanding and managing large collections of documents

(see figure 1.1).

1.1 Motivation

Nowadays the web contains a tremendous amount of digital data and its growth rate

increases rapidly. These characteristics hold great potential for different areas of life.

Researchers for instance profit from the vast scientific materials they have access to. Due to

the billions of digital scientific articles, papers, journals and other documents, it is usually

not hard to find literature related to a specific research field. Furthermore, numerous

search engines, such as Google Scholar, IEEE Xplore or Pubmed exist, which are especially

designed for the purpose of academic research. But despite these benefits, identifying

valuable scientific literature is still a very challenging task. To point out some common

issues researchers face nowadays, it is first of all important to take a look at the process

of finding and evaluating research materials. After defining a problem and selecting a

research field, the following steps have to be carried out (adapted from [3, 41]):

1. Define search expressions

2. Browse the web by using general or academic search engines

3. Review and evaluate the literature found by the search engines

1.1. Motivation 3

4. Derive new search expressions (key phrases, authors, journals, etc.) from these

documents

5. Start over at step 2 –try different combinations of search expressions

If researchers can instantly formulate a well-defined search query and only need a small

set of documents, not many iterations will be needed to perform this process. But in

practice this is rarely the case [36]. When starting knowledge work on an unfamiliar field,

researchers may not have a strategy of what to search for and what facets should be covered

in their papers. As a consequence they use search expressions that are too general which

results in a huge list of low-quality and irrelevant content. Spotting valuable material

within this list is usually a very time consuming task [3]. When using academic search

enginges the result of the search task is typically provided as a list of abstracts, which

researchers are required to read in order to determine the relevance of a document related

to their science project. Furthermore, they need to identify suitable key phrases that

best describe the kind of papers they are interested in. This step is crucial in order to

optimize the search results in further iterations. Thus, finding relevant information is not

only a simple lookup task. Researchers should also be able to learn from search results

and develop a search strategy which is different from trial-and-error tactics in order to

find the information they are looking for. In literature searching to learn or searching to

investigate is often referred as exploratory search. Exploratory search involves much more

tasks than simply formulating a search query. It typically requires the information seeker

to spend time viewing, comparing and making qualitative judgments about sets of objects

[28]. In addition, the management of found resources for later detailed exploration is also

a task researchers have to cope with. In short, researchers nowadays face the following

challenges:

• How to quickly identify relevant resources within a large collection of documents?

• How to find suitable keywords and search expressions related to the field of interest?

• How to find further interesting resources?

• How to organize the list of documents for a later exploration?

Currently no system addresses all these issues, and therefore PaperViz was designed. Thus,

the goal of the system can be defined as speeding up the process of finding, evaluating

and organizing scientific resources.

1.2. Structure 4

1.2 Structure

Since this master thesis introduces a system, which core component is the visualization

of document collections, chapter 2 describes some popular existing document collection

visualization systems and approaches. Moreover, this chapter compares some widely used

document collection management systems in order to evaluate, which of them is the most

suitable candidate to act as the document collection source system for PaperViz.

Chapter 3 introduces the design of PaperViz. At the beginning the most important

requirements, which should be fulfilled by the system are listed, followed by a detailed

explanation of the graphical layout and the supported functions. In addition, a detailed

description of PaperViz’ graph-based visualization is given. Chapter 3 also includes a

section outlining three typical usage scenarios of how this visualization can be used to

examine document collections. The chapter closes with a confrontation of the requirements

and the implemented features.

Chapter 4 focuses on the architecture and the implementation of PaperViz. It de-

scribes the purposes and the used technologies of both PaperViz components, the backend

processing service and the web front end. Furthermore, it outlines the interfaces between

these components and the external systems, Mendeley and Sensium.

Chapter 5 contains the evaluation of PaperViz, and finally chapter 6 concludes the

thesis and looks out on future work.

Chapter 2

Related Work

Contents

2.1 Approaches of document collection visualization 6

2.2 Document Collection Management Systems 23

2.3 Contributions . 24

Since this thesis is about visualizing the content of document collections, it is first

of all necessary to take a closer look at existing document visualization approaches and

systems. Today numerous of these approaches and systems exists, but they vary regarding

type and granularity of information provided about collections. For instance, some tech-

niques focus on visualizing associations such as citations and other document references

between documents. Other approaches were designed to reveal patterns of themes and

topics within a document. Due to the wide range of possible applications of document

visualization techniques, it is quite difficult to categorize them. One popular way of clas-

sifying visualization approaches is by dividing them into three groups according to the

granularity of information they provide about the document repositories [12]:

1. Collection level: to provide an overview about the content of collections and sub

collections. The goal of collection level visualizations is to provide a general overview

of the collection content and characteristics like which topics, themes or keywords

does it cover.

2. Document level: to visualize similarities and differences between documents. Doc-

ument level visualizations are used to visualize attributes of documents, such as their

relations and linkage to other documents, topics or themes. These are mostly in-

teractive techniques providing a visual search interface that enables users to query

(query-focused) or explore (browsing-focused) their collections.

5

2.1. Approaches of document collection visualization 6

3. Intra-document level: to illustrate the internal structure of a document. Intra-

document level approaches visualize the internal structure of a document like the

frequency and distribution of key words.

Many of the visualization described in the following section cannot be strictly assigned to

one of this three categories as they provide visualizations for different granularity levels

(ParallelTopics, FaceAtlas) or can be applied on both, documents and document collections

(WordTree, PhraseNet).

Moreover, this chapter also includes a section about some widely used document col-

lection management systems. As most of these system are very mature and enjoy great

popularity, it is not necessary to integrate a document collection management functionality

into PaperViz. Instead, one of these systems should act as a source for PaperViz.

2.1 Approaches of document collection visualization

In the following section, some widley used document collection visualization approaches

and systems are described.

2.1.0.1 ThemeRiver and TIARA

Figure 2.1: ThemeRiver Visualization [19]

2.1. Approaches of document collection visualization 7

ThemeRiver is an approach that visualizes thematic changes over a serial dimension within

a collection of documents. It aims to identify novel and unexpected patters of themes and

topics. The serial dimension is often expressed as a time scale so that the “river” flows

through time. Topics or themes are visualized as colored currents and the widths of these

currents indicate the strength of a specific topic at a given time. Furthermore, the visu-

alization can be enriched with external events. Figure 2.1 illustrates such a ThemeRiver

visualization for news articles related to Fidel Castro from November 1959 to June 1961.

It shows that Castro started to talk about the Soviet Union in May 1960, where Cuba and

the Soviet Union resumed diplomatic relations [19].

A very similar but more sophisticated time-aware visualization technique is TIARA

(Text Insight via Automated Responsive Analytics), which uses Latent Dirichlet Alloca-

tion (LDA) to automatically extract time-sensitive keywords on collections of articles and

emails [1]. LDA is a generative probabilistic model for extracting latent themes within

a collection of documents. It is a quite simple and efficient topic model and therefore

perhaps the most common one currently in use [4]. Using this time-aware visualization

approaches an analyst can easily identify the major topics in the document collection and

how they evolved over time. But if they want to identify relationships between topics and

documents, other visualization techniques need to be used such as ParallelTopics.

2.1.0.2 ParallelTopics

Figure 2.2: ParallelTopics Visualization [11]

ParallelTopics is a visualization technique that uses the parallel coordinate metaphor to

present a document distribution across several topics. This enables an analyst to easily

identify the strength of the relationship between topics and documents. Furthermore, it

2.1. Approaches of document collection visualization 8

shows how major topics of a document collection evolve over time, just like ThemeRiver or

TIRA. Figure 2.2 shows an example of PrallelTopics including four different visualizations.

The top left visualization represents the document and topics characteristics using the

parallel coordinate metaphor. Lines correspond to documents and each axis represents

a topic. Similar topics are arranged next to each other, which makes it easy to identify

their relationships. The strength of a topic within a document is expressed by a value

between 0 and 1. Thus, a very strong relationship between a topic and a document is

indicated by a higher peak on the corresponding topic axis. The visualization at the

lower left represents a topic cloud. Each row corresponds to a certain topic consisting

of the words within this row. Like other approaches ParallelTopics uses LDA to extract

these topics. On the top right a ThemeRiver visualization is shown, which was already

described. The fourth visualization that is supported by ParallelTopics is a document

scatterplot, which illustrates the number of topics included in a document. Multi-topic

documents are plotted in the bottom right corner, whereas single-topic documents reside

in the top left corner [11].

2.1.0.3 Tag cloud

Figure 2.3: Tag cloud Visualization [2]

A tag cloud (see figure 2.3) is a method for visualizing tags or keywords from a text corpus,

such as a website or a document. It is a good example of a visualization approach that

can be used at all three levels of granularity. Tag clouds can be used to visualize tags

from collections, documents or single pages of a document. Properties like size, color,

position, orientation or background color can represent different features of the keywords.

For instance the importance, measured by the frequency of the keyword within the corpus,

is often expressed by its size. The color can be used to express similar types of keywords

and the position of the keywords in the tag cloud could be used to group terms of a

2.1. Approaches of document collection visualization 9

similar topic. Nowadays tag clouds are widely used on blogs and websites such as Flickr,

Technorati or Del.icio.us. In the World Wide Web they are also used for navigation

purposes and thus, also, play a role for search engine optimization. There are also a lot of

very similar techniques to tag clouds like tag graphs, spark clouds or data clouds [2, 23].

2.1.0.4 TopicNets

Figure 2.4: TopicNets Visualization [18]

TopicNets is another web-based topic visualization system for large sets of documents that

is based on LDA topic models. In contrast to the other systems described before it also

includes a visualization of topic similarity over different sections within a single document.

Figure 2.4 shows how a user can explore large document collections with TopicNets. The

2.1. Approaches of document collection visualization 10

first image (a) visualizes computer science articles from several Californian universities

along with their related topics. The yellow nodes represent the universities and based on

their position a user can easily identify which topics are popular for each campus. The

color of topic nodes, which are labeled with ‘T’ at the beginning, correspond to their con-

nected documents. As the universities UCSB and UCI are selected and highlighted in the

first image, (b) illustrates the filtered visualization, where articles not related to this two

universities are removed. The user can now select a certain document in this visualization

and gets an intra-document graph (c). The sections of the article are positioned in a circle

starting at the top left and the topics are arranged corresponding to their strength within

each section [18].

2.1.0.5 FaceAtlas

Figure 2.5: FaceAtlas Visualization [6]

Document collections often contain a wealth of multifaceted interconnected data. For

example a medical article could contain facets of diagnosis, symptoms, treatments and

preventions. The FaceAtlas project aims to visualize the relations of documents in a

multi-relational graph based on such facets. By combining a search interface and an

interactive visualization the researcher can easily identify relations of documents within a

rich text corpora. Figure 2.5 illustrates a FaceAtlas visualization generated by searching

for the word ‘diabetes’ in a collection of medical documents. It shows two clusters of

the disease, corresponding to type-1 and type-2 diabetes and the links between the facets

2.1. Approaches of document collection visualization 11

express their relations [6].

2.1.0.6 InfoSky

Figure 2.6: InfoSky Visualization [24]

Infosky is an interactive visualization technique that clusters documents of large hierarchi-

cally organized document collections and enables users to intuitively search and navigate

in deep, complex hierarchies. It uses a telescope metaphor, where documents are repre-

sented as stars, collection as constellations and the whole repository as the galaxy. The

hierarchy is shown as nested Voronoi areas and the distance represents the topical sim-

ilarity of documents. Furthermore, color-coding is used to express different document

properties. Figure 2.6 shows the InfoSky Visual Explorer, which galaxy is derived from

a collection of approximately 109.000 articles from the Sueddeutsche Zeitung. The left

side of the explorer window lists the hierarchically structured collections of these articles,

classified thematically by the editorial staff of the newspaper. Interactive functions such

as zooming and panning reveal details of clusters and stars [24].

2.1. Approaches of document collection visualization 12

2.1.0.7 ThemeScape

Figure 2.7: ThemeScape Visualization [44]

ThemeScape is another data visualization tool that is designed to handle very large docu-

ment collections. It uses so called “content maps” to create topographic map-style outputs.

The presence of themes in such document collections are visualized as mountains in a re-

lief map, whereas the height of a peak illustrates the relevance of theme and the distance

between two peaks on the map correspond to the strength of their relationship. Figure 2.7

shows an example of an output from ThemeScape. The small crosses in the visualization

represent the documents and the contour lines illustrate the relative document density

of a certain theme. Beside of a zooming functionality that shows details-on-demand, the

user can click on a cross to open the corresponding document. This functionality enables

researches to quickly find the most relevant themes and their related documents within a

large text corpus and then explore further areas of interests [8].

2.1. Approaches of document collection visualization 13

2.1.0.8 VIBE

Figure 2.8: VIBE Visualization [35]

The VIBE-System (Visualization By Example) is another approach for illustrating rela-

tions between objects like documents or other aspects (see Figure 2.8). In contrast to most

other techniques, where the data is positioned according to a set of predefined axes, VIBE

lets users span a coordinate system by defining some reference objects on the display.

These reference objects are called Point of Interests (POI), which are visually represented

by unique icons. The icons of related objects are placed in this information space based

on their influence regarding to the POIs. A short distance between a POI and an object

indicates a strong influence between them [8, 37]. Furthermore, the size of the icon corre-

sponds to the overall relevance of an objects related to the POIs. For visualizing document

collections POIs could be described by keywords and the influence of a specific document

for a POI could be calculated by the term frequency of this keyword within the document.

Another approach would be to describe the POIs by reference documents and score the

influence of related documents within a collection based on their cosine-similarity [35].

2.1. Approaches of document collection visualization 14

2.1.0.9 Jigsaw

Figure 2.9: JigSaw List View [17]

The Jigsaw system provides multiple visualization techniques for helping users to analyze

large document collections. It combines a search engine with a visual multi-view of results.

These views are linked so that actions like filtering, zooming, etc. in one view are applied

accordingly to other views as well. Figure 2.9 shows Jigsaw’s List View visualization that

illustrates connections of ‘Tim Belden’. The shaded of orange indicates the strength of

the connection, whereas the black bars display the frequency of the keyword within the

whole collection of documents. Another view of Jigsaw is the Graph View as illustrated

in Figure 2.10. Documents are represented by large white rectangles and colored circles

represent entities such as persons [17].

2.1. Approaches of document collection visualization 15

Figure 2.10: JigSaw Graph View [17]

2.1.0.10 Aduna Cluster Maps

Figure 2.11: Social Bookmarking Visualization using Aduna Cluster Maps [25]

In recent years social media revolutionized the way people share their personal data to the

public. Beside of sharing status updates, articles and photos, several platforms enable users

2.1. Approaches of document collection visualization 16

to share their bookmarks. The most popular social bookmarking site is Delicious.com,

which is designed to store tagged bookmarks of registered users on the web instead of

saving them locally in the browser. In addition, this platform provides a rich and easy

to use API, which makes it a suitable source for different visualization approaches [21].

For instance Klerkx and Duval [25] designed a system that combines tag structures and

community structures in one visualization using Delicious.com as its primary source. The

main idea behind this system is to offer users new ways of finding information that could

relevant for them by inspecting material that has been tagged by other users with similar

interests. Figure 2.11 illustrates this visualization which is called Aduna Cluster Map and

consists of the following three parts:

1. a filter pane

2. a selection widget

3. a cluster map visualization

The filter pane enables users to search for material that has been tagged by other users,

whereas the selection widget represents a lists of users and tags that can be checked or

unchecked by the user in order to refine the search. Besides of searching and filtering the

cluster map visualizations assists the user by intuitively exploring social bookmarks in a

playful manner. It visualizes bookmarks related to tags that other users have in common

and also those which are inspected, but not in the collection of the other user. For example

one can easily identify other users that have saved the same bookmarks or find web pages

that are tagged with the same keywords. Additionally, by clicking on bookmarks in the

visualization all metadata, associated with this bookmark, is shown to the user.

2.1. Approaches of document collection visualization 17

2.1.0.11 TopicViz

Figure 2.12: TopicViz Visualization [13]

TopicViz is an interactive system that combines a search engine with a force-directed

layout visualization of documents. Like TIARA and TopicNets it uses LDA for extracting

latent themes within document collections. TopicViz describes a document by a mixture

of these themes and provides a visualization that offers a range of interactive functions

such as zooming, refining and rearranging of topics and documents [13]. Figure 2.12

shows a TopicViz environment. The nodes represent documents and the boxes refer to

their topics. The two different colors of the dots should indicate that these documents

were selected by using two different queries. The distance between documents and topics

correspond to the strength of the topics within the document. Thus, documents with

similar topic profiles will be arranged closer to each other. Users can drag and drop topics

to an arbitrary position and the documents are automatically rearranged corresponding

to their relevance. Moreover the black box at the lower left shows a selected topic and

its related words. A very similar approach called topic maps was developed by Newman

et al. [34]. In contrast to TopicViz, which uses force directed layout (FDL) for arranging

the documents in the 2-D space, topic maps is also capable of using principal component

analysis (PCA) or local linear embedding (LLE) as projection technique. They state, that

each of these three projection approaches has their benefits and that it depends on the

scope of work which one produces the best and most useful results.

2.1. Approaches of document collection visualization 18

2.1.0.12 Apolo

Figure 2.13: Apolo Visualization [7]

Apolo is a system that provides users with a powerful tool to incrementally explore large

network data. Instead of using themes and topics, Apolo visualizes a citation network

around a specified reference article. An example of such a network is illustrated in figure

2.13, where the citation data is displayed around the article ‘The Cost Structure of Sense-

making’. Nodes represent articles and their size is proportional to their citation count. The

directed edges of the nodes illustrate their citation relationships. Typically a user starts

by selecting a reference article. The Apolo system then computes and shows the top 10

most relevant articles related to this article. Afterwards, the user starts to categorize these

articles into different groups he defined before. In figure 2.13 three groups ‘Information Vi-

sualization’, ‘Collaborative Search’ and ‘Personal Information Management’ were defined,

represented by the color blue, orange and green. These categorized or pinned articles are

marked with a white dot in the center of the node. Whenever the group of an article

changes, the Apolo system automatically computes the most likely group for all other un-

pinned articles using a special algorithm called Belief Propagation. The saturation of the

unpinned nodes indicates the likelihood of their belonging to a certain group. In addition,

the user is able to add more articles, create several subgroups and move articles between

them. At the end of this incremental process the visualization represents a landscape of

documents and their areas related to one single reference article [7].

2.1. Approaches of document collection visualization 19

2.1.0.13 TileBars

Figure 2.14: TileBar Visualization [20]

TileBars visualize distributions of specific terms within documents, helping an analyst

to quickly find relevant documents within a collection. Based on predefined terms or

keywords the system computes a rectangle for each document in the collection. Figure 2.14

illustrates how such a rectangle could look like. The rows within the rectangle represents

the predefined keywords and the columns refer to sections within the document. The

darkness of the cell indicates the frequency of the keyword within the section and the length

of the rectangle corresponds to the size of the document itself. With this visualization

approach analysts can quickly evaluate relevant documents and section of documents [20].

2.1. Approaches of document collection visualization 20

2.1.0.14 WordTree

Figure 2.15: WordTree Visualization [47]

WordTree is a visual search tool that depicts multiple parallel sequences of words. It

is used to show which words or phrases most likely follow a target word within a given

context. In consequence, the phrases are arranged in a tree-like branching structure very

similar to decision trees [16]. Figure 2.15 illustrates a WordTree build from Martin Luther

King’ s famous ‘I have a dream’ speech, using the search term ‘I’. The size of the words is

proportional to their usage. This technique is often used by search engines such as Google

to automatically complete a search term [47].

2.1. Approaches of document collection visualization 21

2.1.0.15 PhraseNet

Figure 2.16: PhraseNet Visualization [45]

PhraseNet is a directed link graph that illustrates connections between concepts within

a text corpus like papers, books or poems. Beside the direction of the connection, which

is expressed by arrows, the width of the links indicates the strength of connected words.

Moreover analysts can define a connection term such as ‘and’, ‘or’ or just a white space.

Figure 2.16 shows a Phrase Net visualization from an interview with homeless people using

the connection term ‘and’ [45].

2.1. Approaches of document collection visualization 22

2.1.0.16 Document Cards

Figure 2.17: Document Cards Visualization -xx needs citation-

Document Cards is a system that represents documents as a mixture of images and text in

a compressed way. It offers several interactive functions such as navigation and grouping

to help the user explore large documents. Figure 2.17 shows such a Document Card

that represents one single document. The marked sections of this card are clickable. For

example by clicking on the title a tooltip comes up showing the abstract of the paper. By

clicking a certain term on the card images related to this term are highlighted. The amount

of information that is displayed on the card can be controlled by a zooming functionality.

Zooming out removes less important elements from the visualization and, therefore, avoids

information overload. Additionally the user is able to switch to a group view of document

cards that represents a collection of documents [43].

2.2. Document Collection Management Systems 23

2.2 Document Collection Management Systems

Collecting relevant information in form of papers, articles, books and web sites is typically

a necessary step when doing knowledge work. Over the past decades, the access to such

documents has grown tremendously and, in consequence, the need for organizing research

materials has risen. Today various systems address this problem and many of them provide

additional features to ease the life of researchers such as:

• citation plugins

• medata extraction from PDF files

• recommendation engines

• sharing and synchronization of libraries

• optical charater recognition (OCR)

• etc.

In the following the four most popular collection management systems used by researchers

are compared.

Feature Mendeley EndNote RefWorks Zotero

Basic software
package costs

Free $250 $100 Free

Organization of
PDFs and other
documents

Yes Yes Yes Yes

Web client Yes Yes Yes Yes

Desktop client Yes Yes No Yes

Extraction of em-
bedded metadata

Yes Yes No Yes

Open Web API Yes No No Yes

Social networks Yes No No Yes

Table 2.1: Comparison of document collection management systems used by re-
searches (adapted from [30])

According to a survey published by the Loughborough University, where more than

2000 academic staff and researches participated, Mendeley was the most widely used

system in 2014 followed by RefWorks, EndNote and Zotero. The participants claimed

that the main benefits of Mendeley are the rich feature set and its ease of use [14]. The

most important criterions in order to integrate such a system as the document collection

source for PaperViz are:

• It should be free to use (no costs).

2.3. Contributions 24

• It should have a web client.

• It should provide a rich Web API.

As illustrated in table 2.1 only Mendeley and Zotero fulfill these requirements. After

evaluating the web APIs of these two system, Mendeley was selected as the most suitable

candidate to be integrated to PaperViz.

2.3 Contributions

The approaches and system described in section 2.1 are all designed to reveal novel in-

formation within different granularity levels of document collections. In order to quickly

identify relevant pages or paragraphs within large collections of documents it is neces-

sary to combine approaches of different granularity levels. Moreover, combining several

approaches enables researchers to examine their repository from different perspectives.

Thus, PaperViz includes a set of visualization approaches, which are all interactively

connected to each other. The graph-based visualization of PaperViz, which illustrates

connections between documents, collections and key phrases is novel but strongly inspired

by TopicViz and the VIBE-System. Additionally, a TileBar visualization is integrated to

PaperViz enabling the researcher to quickly browse to relevant pages within a document.

In order to identify relevant key phrases within collections and documents a tag cloud

visualization is included into the PaperViz front end.

Chapter 3

Design

Contents

3.1 Requirements . 25

3.2 GUI components . 27

3.3 Graph-based visualization . 39

3.4 Workflow . 63

3.5 Summary . 64

The following chapter introduces the design of PaperViz. At the beginning the require-

ments and concept behind the system are described, followed by a detailed explanation of

the graphical layout. As the visualization is the core element of PaperViz, it is outlined

in an extra section. The chapter closes with a confrontation of the requirements and the

implemented features.

3.1 Requirements

As mentioned in 1.1 the main goal of PaperViz is to speed up the interactive process of

finding, evaluating and managing potential resources for scientific paper writing. Based

on this goal the requirements of the system were defined as follows:

1. Provide an intuitive way to quickly browse large document collections.

Large document collections are often structured hierarchically and consist of many

levels of sub collections. When exploring such collections using a common file system,

the researcher easily loses the overview of his scientific materials.

2. Provide high quality information at different levels of details (entire col-

lection, sub collections, documents, single pages).

25

3.1. Requirements 26

Usually researchers have to read at least one section or the abstract of a paper to

get an idea of its content. This is typically a very time consuming task, especially

if researchers have to deal with large amounts of documents. Therefore, PaperViz

should integrate a visualization allowing the researcher to filter out uninteresting or

irrelevant documents without reading them.

The visualization approaches and systems described in 2.1 were also designed to

address this issue, but most of them can only be applied at one level of granular-

ity. Some of them illustrate the inner structure of a document like TileBars and

Document Cards, others are considered to visualize relations between documents

like TopicViz or Apolo. But there is currently no system that delivers information

at each level of the collection —from the root collection down to single pages of

documents.

3. Provide a user-driven visualization model that can be refined and devel-

oped based on the researchers interests.

Most of the existing visualization approaches, like ThemeRiver or ParallelTopics,

are data-driven, meaning that the structure of the information presented to the user

is predefined by the underlying data. They do not provide functions to modify

and evolve the visualization based on the user’s interests. This forces the users to

organize their mental model according to the structure of the data, which is often

not ideal when exploring large collections of documents as it requires the researcher

to iteratively refine his or her search interests.

4. Assist the user in formulating a suitable search query.

As outlined in 1.1 the process of finding relevant literature is iterative and gets

refined at every step by deriving additional search expressions from documents that

were recognized as relevant by the researcher. But finding such search expressions

typically requires reading the document, which is usually a very time consuming

task (again).

5. Support researchers in organizing their useful resources.

After identifying relevant papers, it is desired to organize them in a way to quickly

retrieve them for a later detailed exploration.

6. PaperViz should be implemented as web-based system.

Existing document collection visualization systems such as Apolo, TopicViz, Vibe,

InfoSky, etc. are all desktop applications. Thus, users have to install additional

3.2. GUI components 27

software on their devices and, moreover, these desktop applications are mostly plat-

tform dependant. Due to these disadvantages, PaperViz should be implemented as

web-based system. This enables users to run PaperViz on every device that has a

web browser installed without the need of installing additional software.

7. Provide a graphical user interface (GUI) that is intuitive and user

friendly.

Navigating, exploring and managing large collections of documents usually results in

quite a number of open windows and tabs. A more suitable alternative is to provide

a centralized screen composed by multiple coordinated view (MCV).

3.2 GUI components

Figure 3.1: First mockup of the GUI

Based on the requirements listed in the previous section, a concept for the graphical

layout of PaperViz was created. First, some mockups were designed, which were

presented to a group of experts in the field of visualization and usability. The mockup,

illustrated in figure 3.1, already gives an idea about the key concept behind the system:

3.2. GUI components 28

All functions and features of PaperViz should be fit into one centralized

screen in order to provide a fluent user experience.

The different GUI components should thereby comply with MCV principles.

A MCV system is a system that uses two or more distinct views to support the

investigation of a single conceptual entity [46]. Thus, changing the state of one GUI

component should result in a subsequent change of the other component’s state.

Moreover, this layout enables researchers to use all functions of the system without

switching between windows or tabs such as:

• Browse their document collections (A in figure 3.1)

• Get some metadata-information about documents and collections (B in figure 3.1)

• Retrieve high-quality information about their documents and collections by inter-

acting with the visualization (C in figure 3.1)

• Read sections of documents (D in figure 3.1)

• Manage a list of resources and key phrases (E in figure 3.1)

• Write text and include references to the resource (F in figure 3.1)

Additionally, the visualization was conceived to provide a details-on-demand functionality.

By clicking on a rectangle, which represents a specific collection, a visualization of its

containing documents is shown (see figure 3.2). A detailed description of this visualization

approach is given in 3.3.

Figure 3.2: Details-on-demand mockup

3.2. GUI components 29

After several stimulating discussions and further analysis the graphical layout of Pa-

perViz was iteratively improved. The improvements were mainly related to the following

three aspects:

1. Structure of document collections

When creating the mockups the assumption was, that document collections are

organized in just two levels: the collection level and the document level. But in

reality such collections are structured hierarchically. Thus, a collection can contain

documents and sub collections.

2. Navigation

It is necessary to integrate some sophisticated navigation functions, especially when

the collection is structured in many hierarchies. Therefore, different navigation com-

ponents should be combined (e.g. tree view, breadcrumbs, graph-based visualization,

etc.), which have to be consistent with the navigation depth they illustrate.

3. Visualization

As the core component of PaperViz is the graph-based visualization, much effort has

been made to optimize this component. For instance, it needed many iterations to

find meaningful and consistent visual encodings, such as color, shape, position and

lie width, for the different visualization items (collections, documents, key phrases)

and their connecting lines. Moreover, additional features have been implemented to

improve the informative value of the visualization.

The final result of the graphical layout is slightly different from the first mockup and

illustrated in figure 3.3. It consists of the following elements:

• tree view (Figure 3.3 A)

• tag cloud (Figure 3.3 B)

• text editor (Figure 3.3 C)

• list of bookmarks (Figure 3.3 D)

• key phrase box (Figure 3.3 E)

• breadcrumbs (Figure 3.3 F)

• visualization area (Figure 3.3 G)

• metadata information area (Figure 3.3 H)

• ribbon bar (Figure 3.3 I)

3.2. GUI components 30

Figure 3.3: Final layout of PaperViz

3.2. GUI components 31

In the following these elements are described in detail, grouped by their purpose.

3.2.1 User management

Figure 3.4: Login dialog of PaperViz

PaperViz integrates a user management functionality. This enables the system to link

collections to users. Furthermore it allows users to save and load their research work. So

when browsing to the PaperViz web site, a login dialog is prompted, illustrated in figure

3.4. This dialog allows users to register a new account and to log into PaperViz with an

existing account. The ‘Forgot Password’ functionality is currently not implemented.

After a successful login, the user’s email address is shown at the top right corner of

the ribbon bar. Clicking on this email address opens up a sub menu, allowing the users

to provide some user specific settings (see figure 3.5).

Figure 3.5: The user ribbon of PaperViz

3.2. GUI components 32

The second ribbon (see figure 3.6), represented by a ’sync’ icon, provides functions to:

1. load the user’s document collection from external resources (three different options

are provided)

2. load and save the current state of PaperViz

Figure 3.6: The sync ribbon of PaperViz

Further description of these functions and the user specific configuration settings is

given in chapter 4.

3.2.2 Navigation

As already mentioned, many effort has been made to provide functions that allow users to

quickly navigate within their document collection. Thus, PaperViz provides three different

options for navigation:

1. tree view

2. breadcrumbs

3. visualization navigation (click events)

3.2. GUI components 33

3.2.2.1 Tree view

Figure 3.7: The tree view component of PaperViz

The tree view graphically presents the hierarchical structure of the document collection

and is primarily used as navigation control (see figure 3.7). It contains collections and

documents. Documents are marked with a text icon, whereas collections are labeled with

a sitemap icon. By clicking on the arrow icon, child nodes of collections can be expanded

and collapsed. Furthermore, each element has a checkbox assigned which can be used as

a filter for the visualization.

3.2.2.2 Breadcrumbs

Figure 3.8: The breadcrumbs component of PaperViz

The main purpose of the breadcrumb trails is to allow researchers to keep track of their

current location within the collection. It presents the hierarchical path of the selected

collection or document back to the root collection (see figure 3.8). In addition, the bread-

crumbs can be used to navigate to parent collections just by clicking on a specific element.

3.2.2.3 Actions

Beside the tree view control and the breadcrumbs, the visualization can also be used for

navigation purposes. In an MCV system, a change of state to one view must be consistent

3.2. GUI components 34

with all other views. Thus, all of these three options are strongly linked with each other.

So when clicking on a collection or document, regardless of which control is used, the

following actions take place:

• The corresponding tree view item is selected and marked with a dark-grey back-

ground.

• The breadcrumbs visualize the hierarchical path of the item.

• The collection of the selected item is presented in the visualization area.

• The tag cloud of the selected item is shown.

• Additional information of the selected item is diplayed in the metadata information

area.

3.2.3 Metadata information area

Figure 3.9: The metadata information area of PaperViz

3.2. GUI components 35

The information presented in the metadata information area varies depending on the type

of the selected item. By selecting a collection, only its title, the number of containing sub

collections and documents are displayed. For a document, the following information is

listed (see figure 3.9): (i) the title of the document, (ii) the source or the journal, (iii) the

year of publication, (iv) a list of authors, (v) keywords defined by the authors, (vi) the

abstract of the paper (if one is present).

Additionally, this area contains two buttons. By clicking the ‘open’ button, the

PDF–file of the document is loaded within the browser and the ‘Add to Bookmarks’

button is used to add the selected document to the list of bookmarks.

3.2.4 Bookmarks and annotations

To support researchers in organizing their documents for a later detailed exploration,

PaperViz provides two components.

3.2.4.1 List of bookmarks

Figure 3.10: The list of bookmarks

As described earlier, users can add documents to the list of bookmarks by clicking the

corresponding button in the metadata information area. This list contains five columns

(see figure 3.10):

1. Abbreviation: The abbreviation is computed by the first 4 characters of the first

author and the publication year. By clicking on this item, the corresponding docu-

ment is loaded in the browser.

3.2. GUI components 36

2. Title: When clicking on an item in the title column, the corresponding document

gets selected in PaperViz. That means, that all actions described in 3.2.2.3 are

performed.

3. Authors: This column displays the list of authors (no further action provided).

4. Add citation: By clicking on ‘add citation’ the abbreviation of the document is

included in the text editor at the current or last known position of the cursor.

5. Remove: By clicking the cross icon, the document gets removed from the list of

bookmarks.

3.2.4.2 Text editor

Figure 3.11: The text editor of PaperViz

When creating the concept of PaperViz, the text editor was designed for drafting sections of

a research paper. But it turned out, that this component is primarily used for annotating

bookmarked documents. The citation function, already explained before, supports this

purpose, as documents can be directly linked to notes written with the text editor.

3.2.5 Visualization

PaperViz includes three components related to the visualization aspect, the tag cloud,

the key phrase box and the graph-based visualization. As the graph-based visualization

is the core component of PaperViz it needs a far more detailed description than other

components and, therefore, it is outlined in a dedicated section.

3.2. GUI components 37

3.2.5.1 Tag cloud

Figure 3.12: The tag cloud of PaperViz

The tag cloud approach was already described in chapter 2. Its primary purpose is to

visualize the importance of tags or words within a text corpus. This allows researchers to

gain a rough idea about underlying topics.Additionally, in PaperViz, the tag cloud serves

to develop the visualization model. PaperViz precomputes the score of each key phrase

for every collection item. Thus, by selecting a document or a collection its tag cloud is

presented immediately. The system visualizes the 20 most relevant terms of a document in

which the size of a term expresses its importance (see figure 3.12). One typical approach

of measuring this importance is simply by counting the occurrences of a phrase within

a text corpus. Common words like articles (a, an, the), conjunctions (and, or, but) and

stop words (the, a) are thereby ignored. But in order to distinguish documents within a

collection, this term frequency is not a meaningful metric. Suppose a collection consists

of papers related to the term ‘visualization’. This term will usually occur very frequently

across all documents and other related words such as ‘data’, ‘information’ and ‘color’ will

do as well. A tag cloud, where the relevance is computed by the term frequency (TF),

would thereby look quite similar for all documents of this collection. Thus, PaperViz uses

another metric to score key phrases, called term frequency-inverse document frequency

(TF-IDF). TF-IDF is a commonly used term weighting method that assigns high weights

to terms that occur frequently in the document, but rarely in the entire document collection

[32]. So terms that are used very often across all documents of a collection have hardly

any discriminative power, hence they are given a low weight. The higher the score the

larger it is displayed in the tag cloud. Furthermore, it is important to point out, that

PaperViz computes the IDF for each sub collection separately. That is crucial, as terms

that are rare in one sub collection could frequently occur in another sub collection. When

computing just one IDF for the entire collection, this information is lost.

3.2. GUI components 38

3.2.5.2 Key phrase box

Figure 3.13: The key phrase box of PaperViz

Relevant key phrases are listed in the key phrase box (see figure 3.13). PaperViz provides

three ways to add items to this box, namely: (i) by clicking on a word of the tag cloud,

(ii) by clicking on an author defined keyword listed in the metadata-information area,

(iii) by adding it manually.

These key phrases can then be added to the visualization area via drag and drop (see

figure 3.14 –the word ‘similarity’ is currently dragged). When dropping the key phrase

into a supported area, visualized with a blue background, it is transformed into a triangle.

Furthermore, it is disabled in the key phrase box, ensuring that it can only be added to

the visualization area once. Additionally disabled key phrases cannot be removed from

the box. The key phrase is automatically enabled as soon as it is removed from the

visualization area.

Figure 3.14: Dragging and dropping key phrases

3.3. Graph-based visualization 39

3.3 Graph-based visualization

Figure 3.15: The graph-based visualization of PaperViz

The graph-based visualization component of PaperViz supports rapid sense making on

document collections. Thus, it is designed to provide a quick overview of the content of

collections, documents and single pages of documents by performing a mapping from a

textual to a graphic representation. The aim is to help users to quickly spot documents

and sections of documents that would likely be worth inspecting in depth prior to detailed

reading. In contrast to many other visualization approaches, where the structure of the

information is predefined by the data, PaperViz relies on a user-driven model. That means

researchers can model the visualization based on their interests.

3.3.1 Layout

PaperViz allows users to span their own information space by interactively formulating

a search query. In this context a search query consists of a set of key phrases and their

coordinates within a spatial layout. Thus, key phrases and their positions are defined by

the user. Documents and collections are then organized by PaperViz within this layout

basing on the search query. The position of a document should thereby reveal information

about its strength with respect to the query terms. So if a document strongly relates to a

key phrase, the distance between them will be relatively short compared to those with a

3.3. Graph-based visualization 40

weak relationship. This approach enables the researcher to associate the relative positions

of documents to their content. In addition to the position, other features like color and

size reveal potentially useful knowledge about an object. Furthermore, PaperViz provides

additional mini-visualizations depicting some extra information of inspected text blocks

such as the distribition of keywords. So by using their visual skills, researchers can quickly

examine their collections. But in order to present such information using this visualization

approach, PaperViz leverages a text mining engine provided by Sensium1 as Software as

a Service (SaaS) that scores key phrases based on their frequency count within a text

block. Thus, these scores indicate relationship strengths between key phrases and text

blocks. The text mining engine thereby assigns scores ranging from 0 to 1, where a score

of 0 indicates no relationship and 1 states a very strong relationship. So comparing key

phrases with documents and collections yields a matrix of scores. Each cell of this matrix

represents the relationship strength between a key phrase and a certain item of a collection

(document or sub collection).

Sm,n =

s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

...
. . .

...

sm,1 sm,2 · · · sm,n

 (3.1)

Sm,n ... score matrix

m ... number of key phrases

n ... number of collection items

si,j ... relationship strenght (score) between the key phrase i and the collection item j

A row vector of this matrix represents the relationship strenghts between one key phrase

and all items of the currently selected collection.

SKPi =

sCI1

sCI2
...

sCIm

 (3.2)

SKPi ... score vector of key phrase i

Analogously a column vector expresses the relationship strengths between one document

or collection and all defined key phrases.

1https://www.sensium.io/

https://www.sensium.io/

3.3. Graph-based visualization 41

SCIj =

sKP1

sKP2

...

sKPn

 (3.3)

SCIj ... score vector of collection item j

While the elements of a score vector express relationship strengths, the l1 norm of this

vector measures the importance or relevance of the item.

RKP (i) =

j=n∑
j=0

∣∣sCIj

∣∣ (3.4)

RCI(j) =
i=m∑
i=0

|sKPi | (3.5)

RKPi ... relevance of key phrase i with respect to all collection items

RCIj ... relevance of collection item j with respect to all key phrases

While the relationship strength between a key phrase and a given collection item is ex-

pressed by the positions of these items, the relevance of an item is visualized by its color

intensity.

3.3.2 Visual encoding

Figure 3.16: Shapes: triangles and circles

3.3. Graph-based visualization 42

In the following the features, which are used for the visual encoding of key phrases and

collection items are, explained in detail.

3.3.2.1 Shape

The shape of an object is used to differentiate node types. Key phrases are visualized as

triangles, whereas collection items are represented by circles. To distinguish collections

from documents the same icons as for the tree view component are used. A sitemap icon

indicates a collection, while documents are labeled with a text icon (see figure3.16).

Key phrases can be added to the visualization by dragging them from the key phrase

box into an arbitrary position in the visualization area. Moving a triangle directly within

the visualization area is also supported. By clicking the nearby cross icon it is removed

from the visualization and enabled in the key phrase box. The set of key phrases currently

added to the visualization will be expressed as “search query” in the further course of this

thesis. By adding at least two key phrases to the visualization area, the collection items

of the currently selected collection are displayed.

3.3.2.2 Color

Each triangle has a unique border color assigned, which serves as an exclusive identifier.

The qualitative color palette used by PaperViz for this unique colors was generated by

ColorBrewer 2.

3.3.2.3 Intensity

Figure 3.17: Relevance is visualized by intensity

2http://colorbrewer2.org/

http://colorbrewer2.org/

3.3. Graph-based visualization 43

Both, key phrases and collection items have a color intensity assigned representing the

relevance of the object. The color intensity of a key phrase ranges from white to black and

expresses its relevance according to the selected collection. The darker it is, the higher the

relevance of the key phrase. In order to maximize the meaningfulness of this property, the

intensity scales is normalized to values between 0 and the score of the most relevant key

phrase of the search query. Thus, the key phrase gaining the highest relevance gets always

the highest possible intensity (black) assigned. For instance, figure 3.17 illustrates four

key phrases. It is easy to recognize ‘items’ as the most relevant key word in this query,

followed by ‘similarity’. In contrast to the unique color, the intensity of a triangle may

change. This occurs on following events:

1. An even more relevant key phrase is added to the visualization.

2. The currently most relevant key phrase is removed.

3. Another collection is selected by the user.

Figure 3.18 illustrates such an event, where the key phrase ‘user’ has been added.

Figure 3.18: Key phrases —intensity changed

Similar to the key phrases, the intensity of a circle expresses the relevance of a col-

lection item according to the search query. The intensity scale is normalized as well and

ranges from light blue to dark blue. By changing the search query, the intensity of the

circles change accordingly. Figure 3.17 illustrates three collections, whereby the collec-

tion ‘Recommender Systems’ reflects the search query the most, indicated by its higher

intensity (dark blue).

3.3.2.4 Position

In contrast to the intensity, expressing the relevance of an item, the position of a circle

visualizes the relationship between a collection item and the key phrases. Thus, the

location gives an indication about the contents of documents and collections. If a document

3.3. Graph-based visualization 44

only relates to one key phrase of the search query, it will be placed very close to it. If it

yields a 50% match for each of two key phrases, the corresponding circle will be located

halfway between them. Figure 3.19 illustrates an example of such a layout.

Figure 3.19: Positioning interpreation

Based on the positions of the circles and triangles, following statements can be made:

• All documents or collections, which are placed on the left side of the orange line, are

influenced by key phrase ‘1’.

• All documents or collections, which are placed on the right side of the green line,

are influenced by key phrase ‘3’.

• Document ‘A’ is influenced by the key phrases ‘1’ and ‘2’. The influence of key

phrase ‘1’ is stronger.

• Document ‘E’ is influenced by the key phrases ‘2’ and ‘3’. The influence of key

phrase ‘2’ is stronger.

• Document ‘C’ is equally influenced by the key phrases ‘5’ and ‘4’.

• Document ‘B’ is influenced by the key phrases ‘1’ and ‘5’. Furthermore, at least a

third key phrase relates to this document, probably key phrase ‘2’.

3.3. Graph-based visualization 45

• Document ‘D’ could be placed at this position for several reasons:

influenced by the key phrases ‘1’ and ‘3’

influenced by the key phrases ‘2’ and ‘4’

influenced by all four key phrases ‘1’, ‘2’, ‘3’, ‘4’

other possible combinations

Thus, it is not always easy to identify the key phrases that are decisive for the placement

of the document or collection circle within the layout. In addition, the statement that the

distance between a triangle and a circle expresses their relationship strength is not always

true. As figure 3.19. shows, document ‘D’ could be just influenced by the key phrases ‘1’

and ‘3’, but the nearest key phrase is ‘4’. To address these problems, PaperViz provides

some additional mini visualizations, which are described later in this section.

However, the position of a circle is computed by a combination of its score vector and

the current locations of the corresponding key phrases. In other words, it is defined by a

set of forces acting upon the circle. The magnitudes of these forces are represented by the

score vector, whereas the directions are defined by the coordinates of the key phrases.

POSCIj =

(
X

Y

)CIj

=

sKP1

sKP2

...

sKPn

÷
n∑

i=0

|sKPi | ·

(
XKP1 XKP2 · · · XKPn

YKP1 YKP2 · · · XKPn

)
(3.6)

So to compute the position of a circle, first the score vector is devided by its l1 norm.

The resulting vector represents the normalized magnitudes of the forces acting upon the

circle. By dividing the score vector by its l1 norm the sum of these magnitudes is always

1. The normalized vector is then multiplied with a matrix consisting of the X and Y

coordinates of the corresponding key phrases.

Figure 3.16 shows a simple example of a PaperViz visualization. Based on

the positions of the three circles representing collections, a researcher can easily derive

valuable information about their content. The ‘Visualization’ collection strongly relates

to the key phrase ‘information’, because of the short distance and is not influenced by

the key words ‘document clustering’ and ‘recommendation’. The circle representing the

‘Clustering’ collection is located exactly between two key phrases, which indicates a 50%

match for the key words ‘document clustering’ and ‘information’. Finally, the position of

the ‘Recommender Systems’ collection indicates that this collection is only influenced by

3.3. Graph-based visualization 46

‘recommendation’ and ‘information’ and does not relate on the key phrase ‘document

clustering’.

Figure 3.20: Example: badly placed key phrases

So by looking at the position of a circle, the researcher quickly gains knowledge about

the content of collections and documents. But in order to yield a valuable visualization the

placement of the key phrases is crucial. Figure 3.20 illustrates a visualization containing

the same items as figure 3.16, but with different key phrase positions. The information

that can be derived from this visualization decreased significantly in contrast to figure

3.16. It is now impossible to tell whether the collections ‘Clustering’ and ‘Recommender

Systems’ relate to ‘document clustering’, ‘recommendation’ or both of them.

Figure 3.21: Example: overlapping visualization elements

Another important point that has to be mentioned is that the positioning algorithm

is designed to avoid overlaps of visualization elements. Suppose two documents are only

related to one key phrase. Using formula 3.6 to compute the final position of documents

and collections, the key phrase and both documents would be placed at the exact same

position impairing the visualization’s legibility dramatically (see figure 3.21). Furthermore,

3.3. Graph-based visualization 47

the user can’t move the key phrase to a different position, as it is overlapped by two

documents. So to avoid this behavior, a second force was introduced, acting between all

elements of the visualization. This repelling force pushes elements apart from each other

if an overlap was identified. The simplified algorithm to avoid overlaps of two circles can

be formulated as followed:

1. The circles are defined by a position (X and Y) and a radius (r).

2. The alogirthm computes the Euclidean distance between the circles.

D =
√

(X1 −X2)2 + (Y1 − Y2)2 (3.7)

3. Then the sum of the radii of the two circles is calulated.

R = r1 + r2 (3.8)

4. If the sum of the radii is greater than the distance, an overlap was identified.

R > D =⇒ overlap! (3.9)

5. If an overlap was identified, new centers for the circles are computed.

L = R−D (3.10)

dx =

(
R− L

2L

)
· (X2 −X1) (3.11)

dy =

(
R− L

2L

)
· (Y2 − Y1) (3.12)

(
X1

Y1

)New

=

(
X1

Y1

)Old

−

(
dx

dy

)
(3.13)

(
X2

Y2

)New

=

(
X2

Y2

)Old

+

(
dx

dy

)
(3.14)

This alogirthm is applied to each pair of visualization objects until no overlap is identified.
3

3algorithm adapted from https://gist.github.com/dannyko/4618287

https://gist.github.com/dannyko/4618287

3.3. Graph-based visualization 48

3.3.2.5 Size

The diameter of a circle represents the number of documents contained in a collection or

the number of pages from a document. It is computed by following empirical formula:

rj = log(SizeCIj) · 7 + 5 (3.15)

rj ... radius of the circle in pixel representing the collection item j

A linear function would not yield meaningful results, as the size of documents and collec-

tions can differ significantly.

3.3.3 Interactions and Details-on-demand

The visualization supports two types of interactions allowing the researcher to inspect an

element of the visualization more detailed.

1. Mouseover

By placing the mouse over a circle additional information regarding this item is

displayed in form of a bar chart and connecting lines (see 3.3.3.1 and 3.3.3.2). Fur-

thermore, other circles become transparent (see figure 3.15). This mouse event also

works for triangles representing key phrases.

2. Click events

The subsequent action when clicking on a circle depends on its type. When click-

ing on a circle representing a collection, the user “navigates” into this collection.

Meaning the containing sub collections and documents are visualized. This enables

researchers to browse into deeper levels of their repository. By clicking on a docu-

ment, a TileBar visualization of the document gets displayed, revealing information

about single pages of the document (see section 3.3.3.3). As mentioned already in

section 3.2.2.3, by clicking on a circle, further actions related to other components

of PaperViz are performed as well.

3.3. Graph-based visualization 49

3.3.3.1 Bar chart

Figure 3.22: Bar chart for collections

As outlined in section 3.3.2.4, it is sometimes not possible to identify the responsible forces

which are decisive for the placement of documents and collections. In order to reveal this

information a bar chart was integrated to the visualization. It gets displayed at the top left

corner when hovering over a triangle or circle and shows the relationship strengths between

key phrases and documents or collections. To be more specific, the bar chart visualizes

the score vector of the hovered element on a normalized scale. Figure 3.22 shows a bar

chart of the ‘Recommender Systems’ collection. The colors of the bars are equal to the

unique color of the corresponding key phrase. By looking at the bar chart, one can easily

identify ‘tag’ as the key phrase with the strongest relationship, followed by ‘information’,

‘similarity’ and ‘recommendation’. The key phrase ‘document clustering’ is not relevant

to this collection and therefore no bar is displayed.

3.3. Graph-based visualization 50

Figure 3.23: Bar chart for key phrases

When hovering over a triangle, the scores of the most relevant sub collections or doc-

uments are visualized regarding the inspected key phrase. Figure 3.23 illustrates a bar

chart for the key phrase ‘similarity’. As collections and documents do not have a unique

color, the bars are colored according to the unique color of the hovered key phrase. The

icon next to the bar indicates whether the object is a collection or document.

3.3. Graph-based visualization 51

3.3.3.2 Connecting lines

Figure 3.24: Connecting Lines

Drawing connecting lines between elements of the visualization is just another way to

visualize the score vector of a hovered element (see figure 3.24). Thus, they illustrate the

same information as the bar chart, but in a different form. In contrast to the bar chart

visualization, these edges enable users to quickly spot the positions of related elements.

The width of an edge thereby indicates the strength of the relationship between two

objects. One could also state that these edges illustrate the forces acting upon the hovered

object. In order to avoid overlaps, the lines are not straight but curved. This characteristic

was implemented by introducing an additional intermediate point on the path of an edge

(figure 3.25).

Figure 3.25: Connecting lines —overlaps are avoided

3.3. Graph-based visualization 52

3.3.3.3 TileBars

Figure 3.26: TileBars

By clicking on a document circle, its TileBar visualization gets displayed, showing the

distribution of key phrases within the pages of the selected document. This allows the

researcher to quickly identify relevant pages of large documents. Figure 3.26 illustrates a

TileBar visualization of PaperViz for the article ‘Connecting users and items with weighted

tags for personalized item recommendations’. The columns represent the page numbers

of the article, whereas the rows are defined by the search query. The intensity of the

corresponding cell expresses the frequency of a key phrase for a specific page. So if the

researcher is interested in the term ‘similarity’ he can quickly identify page 6 and 7 as

potentially relevant. By clicking on the corresponding cell, the article is loaded in a

separate window and automatically scrolled to the desired page. This feature is realized

by adding the ‘page’ parameter to the URL of the PDF-file (see figure 3.27), which is

supported by almost every modern PDF-viewer. Unfortunately, an option of highlighting

a specific key phrase within the PDF-file is currently not provided.

3.3. Graph-based visualization 53

Figure 3.27: PDF page parameter

3.3.4 Additional controls

At three corners of the visualization area additional controls are placed, providing some

useful features.

3.3.4.1 Gravity slider

Figure 3.28: Gravity slider

By increasing the gravity index using the slider located at the bottom left, circles will float

to the direction of their strongest forces. In other words, they will move towards the key

phrase that best describes the corresponding document or collection. This can be useful to

gain a better separation of collection items and, thus, increase the meaningfulness of the

visualization (see figure 3.28). The gravity slider feature was implemented by performing

an exponentiation on the scores contained in the score matrix. The exponent is thereby

the gravity index.

3.3. Graph-based visualization 54

3.3.4.2 Buttons

Two additional buttons are integrated to the visualization area. The ‘reset visualization’

button is located at the top right corner of the visualization area. By clicking it, all key

phrases are removed from the visualization area. Before this button was implemented a

user had to remove each key phrase one by one when reformulating a search query using

completely different key phrases. The ‘info’ button is located at the bottom right corner

and opens up a new browser window containing useful information about the visualization

elements and properties.

3.3.5 Usage scenarios

In the following some usage scenarios are outlined of how researchers can utilize the Paper-

Viz visualization in order to gain useful knowledge about their collection. The examples

are based on a sample collection containing real publications related to the topics ‘visual-

ization approaches’, ‘clustering’ and ‘recommendation systems’.

3.3.5.1 Scenario 1

Suppose a researcher is interested in approaches that reveal novel information about users

of a certain platform. His goal is to identify relevant documents within the sample col-

lection. As he is not very familiar with this research field, he adds the terms ‘approach’,

‘information’ and ‘user’ to the key phrase box of PaperViz. Afterwards he drags these

terms from the key phrase box and drops them into the graph-based visualization area at

arbitrary positions, resulting in the following illustration (see figure 3.29).

3.3. Graph-based visualization 55

Figure 3.29: Scenario 1: PaperViz visualization

By looking at this visualization, the researcher can easily identify the ‘Recommender

System’ collection as the most relevant one due to its higher intensity. Furthermore its

position indicates that this collection relates on all three key phrases, whereby ‘user’ has

the strongest relationship to the collection followed by ‘information’ and ‘approach’. This

information is also visualized by the bar chart and the connecting lines when hovering

over the collection circle (see figure 3.30).

3.3. Graph-based visualization 56

Figure 3.30: Scenario 1: PaperViz visualization (2)

Next he clicks on the circle in order to navigate into the ‘Recommender Systems’

collection. By looking at the intensity of the circles corresponding to documents of this

collection, he can identify one document that reflects his search query the most, namely

‘Connecting users and items with weighted tags for personalized item recommendation’

(see figure 3.31).

3.3. Graph-based visualization 57

Figure 3.31: Scenario 1: PaperViz visualization (3)

Thus, this document is a good candidate for being inspected in depth. By clicking on

the circle of this document, a TileBar visualization shows up revealing the inner structure

of the documents regarding to the three key phrases defined by the researcher (see figure

3.32).

Figure 3.32: Scenario 1: TileBar visualization

As this visualization indicates that only page 2 of the document contains all three

key phrases, it might be worth reading this page. By clicking on a corresponding cell,

PaperViz loads the document within a separate browser window and automatically scrolls

to page 2. As figure 3.33 illustrates, this page contains the ‘Related work’ section of the

paper, which is typically a good starting point for researchers to get familiar with a certain

research field.

3.3. Graph-based visualization 58

Figure 3.33: Senario 1: identified document section

In addition, the researcher could look at the metadata information area of PaperViz

to get additional information about this publication (see figure 3.34).

Figure 3.34: Senario 1: metadata information area

For instance the author defined keywords are usually a good indication of how the

3.3. Graph-based visualization 59

search query can be optimized. Thus, the key phrases ‘personalization’ or ‘recommender

systems’ could be good candidates to be added to the visualization area. Another option

of identifying additional key phrases is by looking at the tag cloud visualization of the

document.

To summarize, it can be said that PaperViz enabled the researcher to quickly

spot a section of a document within a collection that is without doubt worth reading.

Of course the researcher should also inspect other documents, which are “marked” as

potentially useful by PaperViz, in order to get a better understanding about his research

field. Moreover, the metadata information area proved to be valuable as it provided the

researcher with an abstract of the paper and suitable keywords that could be used for

further investigations.

3.3.5.2 Scenario 2

Suppose a researcher needs information on the relation of the three topics ‘social’, ‘similar-

ity’ and ‘learning’. He has already identified the collection that best suits these keywords

and is now confronted with the following visualization (see figure 3.35).

Figure 3.35: Senario 2: PaperViz visualization

The researcher can derive following information from this illustration:

3.3. Graph-based visualization 60

• The key phrase ‘social’ is the most important one, regarding to the visualized doc-

uments, followed by ‘similarity’ and ‘learning’, due to its intensity.

• Most of the documents relate to the words ‘social’ and ‘similarity’, as their corre-

sponding circles are placed on a virtual line between these key phrases.

• The document reflecting his search query the most is ‘Personalized Recommenda-

tion. . . ’ as it has the highest intensity assigned.

• The document ‘Attention Please! A Hybrid. . . ’ is influenced almost equally by the

key words ‘social’ and ‘learning’ as it falls on a line between them.

• ‘Effective Context-aware Rec. . . ’ is the only document that is placed between all

three key words. Thus, it is influenced by all key phrases equally. But as the

intensity of the circle is very low, this document has only a weak to no relationship

to the three key phrases. Inspecting this document using the bar chart visualization

indicates that it has definitely no relationship to either of the key phrases.

So this PaperViz visualization informed the user that his collection does not contain any

documents that relate on all three topics he is interested in. Thus, it might be advisable

to add additional documents to this collection. As the key phrase ‘learning’ only relates

to one document of his collection, the researcher should focus on retrieving documents

containing this key phrase.

3.3.5.3 Scenario 3

It is assumed that a researcher is interested in documents about clusters. In addition,

these documents should not, or only weakly, relate to the topics ‘algorithms’, ‘trees’ and

‘links’. In order to formulate such a query with PaperViz, the researcher could just place

the key phrase ‘clusters’ on one side of the visualization and the other three key phrases

on the other side. A PaperViz visualization of this query is illustrated in figure 3.36.

3.3. Graph-based visualization 61

Figure 3.36: Senario 3: PaperViz visualization

Thus, documents and sub collections that are placed on the bottom left corner of the

visualization are worth inspecting, whereas those which are placed at top right corner are

irrelevant regarding to the researcher’s interests. In order to gain a better separation, the

researcher could utilize the gravity slider as illustrated in figure 3.37.

3.3. Graph-based visualization 62

Figure 3.37: Senario 3: PaperViz visualization (2)

So PaperViz can also be used to formulate “negative” search queries. Defining such a

query using traditional search engines is almost impossible.

3.3.5.4 Conclusion

Within this section, three examples are provided of how the visualization of PaperViz

could be used to examine a user’s document collection. The purpose of the first scenario

is to illustrate the value of the color coding. The second one focuses on the positioning

aspect and the third one introduces a quite unusual way of formulating a query. The

PaperViz visualizations of these scenarios are fairly simple to understand and therefore,

the bar chart visualization and the connecting lines are not necessarily needed to retrieve

the required knowledge.

3.4. Workflow 63

3.4 Workflow

Figure 3.38: Workflow

3.5. Summary 64

The typicall workflow of finding and organizing relevant resources using PaperViz is illus-

trated in figure 3.38.

3.5 Summary

This chapter describes the graphical user interface and the main functions of PaperViz

from a user perspective. It is designed to fulfill all requirements outlined in section 3.1. One

key aspect of the system is that components were carefully designed to comply with MCV

principles and all of them are fit into one single web page. For instance when clicking on

a circle within the visualization area not only the visualization but also the tag cloud, the

tree view, the breadcrumbs and the metadata information area reflect on this event. This

enables the user to get a lot of information from different perspectives about documents

and collections with just one single click. In section 3.3 the graph-based visualization

of PaperViz is described in detail. It provides several additional features allowing the

user to quickly examine collections, documents and single pages. Furthermore, it contains

numerous animations and transitions which, unfortunately, cannot be illustrated within

this thesis in a meaningful way. 4 However, a lot of effort has been made to provide

smooth animations that enhance the expressiveness of the visualization and give valuable

feedback to the user. In order to prove that PaperViz fulfilled all defined requirements

the following table illustrates a confrontation of the requirements and the implemented

features.

Requirements Features, components or aspects

Provide an intuitive way to quickly browse

large document collections

Researchers can use the tree view control,

the breadcrumbs and the graph-based vi-

sualization to browse their collections.

Provide high quality information at differ-

ent levels of details (entire collection, sub

collections, documents, single pages)

The tag cloud and the graph-based visu-

alization provide information about sub

collections and documents. The TileBar

visualizes the frequency of key phrases

within single pages of a document.

Provide a user-driven visualization model

that can be refined and developed based

on the researchers interests

The information space of the visualization

is based on a search query defined by the

user. Users can always reformulate and

refine this query.

4watch the tutorial video https://www.youtube.com/watch?v=td9ENIIIZGI&feature=youtu.be for a
demonstration

https://www.youtube.com/watch?v=td9ENIIIZGI&feature=youtu.be

3.5. Summary 65

Assist the user in formulating a suitable

search query

The tag cloud visualizes potentially rele-

vant key phrases of documents and col-

lections that can be used to formulate a

query.

Support researchers in organizing their

document collections

The list of bookmarks and the text edi-

tor can be used to annotate and retrieve

documents.

PaperViz should be implemented as web-

based system

The front end of PaperViz is a modern

highly responsive web application. It pro-

vides saving and loading functions. The

researchers work is persisted in an online

database

Provide a graphical user interface (GUI)

that is intuitive and user friendly

The GUI was carefully designed to comply

with MCV principles.

Table 3.1: Confrontation of requirements and features

Chapter 4

Implementation

Contents

4.1 Information flow . 67

4.2 Backend processing service . 68

4.3 Web front end . 86

As briefly explained in the introduction, PaperViz consists of two main components.

The web front end, whose design was outlined in the previous chapter, and the backend

processing service. One purpose of this service is to integrate the interfaces to two exter-

nal systems, Mendeley and Sensium. Mendeley is used as the document collection source

system for PaperViz, whereas Sensium is employed for extracting and scoring key phrases

of text blocks. The following chapter introduces the information flow between these sys-

tems and PaperViz. Moreover the architecture and the implmentation of the two main

PaperViz components are described.

66

4.1. Information flow 67

4.1 Information flow

Figure 4.1: The information flow between PaperViz and external systems

Figure 4.1 illustrates the general information flow between the external systems and the

components of PaperViz.

1. First of all, researchers have to create their document collection. This is done via

Mendeley by creating an appropriate folder structure and adding potentially relevant

documents to these folders. Mendeley therefore provides both, a desktop client and

a web client. Users can add documents to their collection by searching Mendeley’s

public catalog or by simply adding documents from a file system.

2. Afterwards, the researcher logs in into PaperViz.

3. The web application then requests the data to be visualized from the backend service.

4. Thus, the backend service first fetches the researcher’s collection from Mendeley.

5. Next, the service employs Sensium to extract and score key phrases of this collection

and its containing documents.

4.2. Backend processing service 68

6. The data retrieved from Mendeley and Sensium is then processed by the backend

service and stored into a database. Finally this processed data is sent to the web

front end where it gets visualized for detailed analysis.

Downloading documents from external resources and applying text mining algorithms to

them is typically a very time consuming task. Therefore, PaperViz caches the information

gathered from Mendeley and Sensium in a database for a later faster retrieval. In order to

react to changes made to a collection, PaperViz provides functions to detect and process

these changes.

4.2 Backend processing service

The backend processing service acts as an intermediary between the web front end of

PaperViz and the external systems and serves following main purposes:

• Authentication server and user management

As already mentioned, researchers have to register a user to get access to PaperViz.

The users and the login credential flow are managed by the service.

• Connection to Mendeley

The service consumes the web services of Mendeley to fetch the user’s document

collection.

• Text extraction from PDF-files

Publications and research papers are typically stored in PDF-format. In order to

apply text mining algorithms, it is necessary to extract the plain text of such docu-

ments first.

• Connection to Sensium

Sensium’s web API is consumed by the backend service to extract and score key

phrases of text blocks extracted from PDF-files.

• Data preperation

The main purpose of the backend processing service is to process the data obtained

from the external systems. A set of functions are applied to this data in order to

transform it into a proper structure for further analysis.

4.2. Backend processing service 69

• Data storage

As already mentioned, the backend processing service is connected to a database for

caching the information retrieved from Mendeley and Sensium. Moreover, it allows

users to store and load their work.

• Connection to the PaperViz front end

The backend service exposes a web API that is consumed by the PaperViz front end.

In the following the most important frameworks and libraries, which were used for im-

plementing the backend service, are explained briefly. Moreover, an insight of how the

external systems and the front end are connected to the backend service is provided.

4.2.1 Frameworks and libraries

The back end processing service is developed in .NET with C# and hosted inside of an

Internet Information Services (IIS) application. Thus, all frameworks and libraries used

are built on top of the .NET framework.

4.2.1.1 Web API 2

The backend processing service is based on Microsoft’s Web API 2 framework. This frame-

work allows the implementation of RESTful services to expose data in different formats

to a large variety of clients including browsers, mobile phones or tablets. REST stands for

Representational State Transfer and could be defined as the software architectural style

of the World Wide Web. RESTful services typically use the Hypertext Transfer Protocol

(HTTP) in combination with the HTTP verbs (GET, POST, PUT, DELETE, etc.) to

provide access to resources [10]. A resource refers to an object as in object orientated

programming (OOP) and is exposed with an API endpoint using the Uniform Resource

Identifiers (URI). By calling this endpoint in combination with an HTTP verb, clients are

able to fetch or manipulate the resource. For instance, to load the user settings of the

currently logged in user of PaperViz, the following request has to be issued:

GET /api/AccountSettings

The data is exchanged using the JavaScript Object Notation (JSON) format, which is

a lightweight alternative to the Extensible Markup Language (XML) and can be easily

interpreted by web application via JavaScript.

4.2. Backend processing service 70

A detailed description of the endpoints exposed by the backend service is

given in a later section.

4.2.1.2 OAuth 2.0

As only authenticated users should have access to the resources of PaperViz the APIs

of the backend service are secured by utilizing the OAuth 2.0 authorization framework.

OAuth is a widely adopted, open protocol for users to delegate authorization in a secure

manner [29]. The simplified OAuth 2.0 login credential flow used by PaperViz of this

authentication standard is illustrated in figure 4.2.

Figure 4.2: OAuth 2.0 login credential flow

So first, the client sends a request containing the username and password to the autho-

rization endpoint. The server verifies the client’s credentials and returns an access token.

This token needs to be included in the Authorization header of each subsequent HTTP

request in order to access protected resources of the API. PaperViz uses the Bearer au-

thentication scheme to transmit these tokens. An example of a client-side AJAX request

using this authentication scheme is given in section 4.2.2.3.

4.2.1.3 Entity Framework

The Entity Framework (EF) is used as an object-rational (OR) mapper that allows de-

velopers to build data-oriented software applications without the need of writing complex

database queries [33]. The EF supports the so called Code First development approach

that was also used for implementing PaperViz. This approach enables researchers to define

the .NET classes first, which are then automatically mapped to a relational database by

the EF. The database structure of PaperViz is outlined later in this chapter.

4.2. Backend processing service 71

4.2.1.4 RestSharp

RestSharp is a .NET library that provides functions to call RESTful APIs. It supports

features such as automatic XML and JSON parsing, different authentications scenarios

such as OAuth and asynchronous requests [9]. PaperViz uses this library to consume the

web API of Mendeley and Sensium.

4.2.1.5 iTextSharp

iTextSharp is a .NET port of the Java iText library. It enables developers to create,

inspect, adapt and maintain PDF-files. This library is utilized by PaperViz to extract

plain text from PDF-files in order to apply text mining algorithms to it.

4.2.2 Web APIs

On the one hand, the backend service exposes web services, which are consumed by the

PaperViz front end. On the other hand, it consumes the web services of Mendeley and

Sensium. Thus it acts as a client and as a server regarding to web APIs.

4.2.2.1 Connection to Mendeley

As mentioned in 2.2 Mendeley is one of the most popular reference managers. It was

released in 2008 and purchased by the Elsevier publishing company in 2013. Beside the

reference management component, that enables researchers to read, organize and cite all

their research from one library, the platform includes additional components, which were

developed to support researchers, students, lecturers and librarians in their daily work.

For instance, the social component of Mendeley enables users to join groups dedicated

to specific topics where they can start discussions or find additional interesting literature.

Users can also follow inspirational researchers in order to get notifications when new papers

have been published by them. ‘Mendeley Careers’ is the latest component they introduced.

It is comparable to a job management platform for researchers where users can search for

science and technology jobs in institutions worldwide. Mendeley also offers a large variety

of clients, like a desktop client for Windows, Max and Linux, a web client and apps for

iPhone, iPad and android. However, PaperViz only leverages a very small feature set of

this social reference management application as it only acts a document source system for

PaperViz. Thus, this work will not examine all features of Mendeley an detail, but focuses

on its web services that are consumed by PaperViz. Detailed information about Mendeley

can be found at [31].

The standards and frameworks used by the Mendeley web services are quite similar

to those of PaperViz’ backend processing service. The authentication is managed by the

4.2. Backend processing service 72

OAuth 2.0 framework, resources can be accessed via a RESTful API and the data exchange

format is JSON. Mendeley provides three different authorization flows [29]:

1. Client Credentials

Tokens created by this option are only capable of accessing the public catalog of

Mendeley. Private document collections of users cannot be accessed and therefore

the Client Credentials grant type is not a suitable authorization flow for PaperViz.

2. Implicit

This grant type creates short-lived access tokens to access the entire Mendeley API

including user specific resources. The disadvantage of this option is, that such tokens

expire after an hour and the user must be prompted to authenticate again if that

happens.

3. Authorization Code

This authorization flow issues long-lived tokens and provides functions to refresh the

tokens if they expire. As such tokens are allowed to access user specific resources as

well, this option is the most suitable grant type for PaperViz.

There are several ways to integrate this Authorization Code grant type flow. One way

is that users obtain a token manually via the Mendeley web page. This token can then

immediately be used by the client application to access Mendeley’s catalog. If it expires,

the application utilizes the refresh token for obtaining a new valid token. So after the

user provided the access token and some other properties (refresh token, client id, client

secret), the authentication could be managed completely by the application without the

need of prompting a Mendeley login form. For that reason, this strategy is also used by

PaperViz. By clicking the settings button at the top right corner of the PaperViz screen,

a modal dialog shows up where users can manage their Mendeley settings (see figure 4.3).

Furthermore, this dialog contains a link to the Mendeley web page where users can create

their tokens.

4.2. Backend processing service 73

Figure 4.3: The settings dialog of PaperViz

Mendeley offers a large variety of web API methods for authorized clients such as:

• creating, fetching, deleting and updating document collections and their metadata

• creating, uploading, deleting, downloading and searching PDF-files

• documents metadata lookup

• semantic uplifting and document enrichments

• fetching user profiles and public groups

• social networking functions

PaperViz only consumes a small subset of these functions in order to fetch documents

from the Mendeley repository (see table 4.1).

4.2. Backend processing service 74

Endpoint HTTP Verb Purpose

/profiles/me GET To get the user profile of the

currently logged in user.

/folders GET To get the folder structure.

/folders/{folderId}/

documents

GET To get documents contained

in a folder. The response does

not include a file, but meta-

data information about the

document.

/files?document_id=

{documentId}

GET To get information about the

files which are assigned to a

document (size, name, fileId,

type, filehash, etc.). A doc-

ument can have multiple files

assigned.

/files/{fileId} GET To download a file.

Table 4.1: Consumed Mendeley web API functions

4.2.2.2 Connection to Sensium

Figure 4.4: Sensium Workflow

Sensium is a scalable data mining and analysis platform, developed by the Know-Center

GmbH. It provides a simple web API enabling developers to integrate the services provided

by Sensium into their applications. As illustrated in 4.4 it also provides SDKs for Java

and Wordpress. However, as the PaperViz’ backend processing service is written in .Net

4.2. Backend processing service 75

only the RESTful API is consumed by our system. This API offers a wide variety of text

analysis features such as [15]:

• language recognition

• tokenization

• stemming and normalization

• part-of-speech tagging

• sentence segmentation

• named entity recognition

• temporal event extraction

• key phrase extraction

• summarization

To call these methods, clients have to obtain a free API key from Sensium first. Providing

this key to the PaperViz system is done by using the settings dialog illustrated in figure

4.3. PaperViz only consumes the key phrase extraction feature of Sensium to extract

und score key phrases of text blocks. The corresponding POST request looks as follows:

POST https://api.sensium.io/v1/extract HTTP/1.1

Accept-Encoding: gzip,deflate

Accept: application/json

User-Agent: RestSharp/105.2.3.0

Content-Type: application/json

Host: api.sensium.io

Content-Length: 136

Connection: Keep-Alive

{"apiKey":"{the API key}","text":"{the text}":["Summary"]}

By specifying the ‘Summary’ extractor, the response will contain a list of key phrase

objects in JSON format containing following properties:

• Text: textual representation of the key phrase

• Score: relative score of the key phrase, specifying its’s importance relative to the

other key phrases

• Occurrences: list of occurrence objects, demarking the occurrences of the key

phrase in the main text

This information is used to compute the score matrix and the TF-IDF scores of documents

and collections, which are then visualized by the PaperViz front end.

4.2. Backend processing service 76

The algorithm used by Sensium to compute these measures is called TextSentenceRank

algorithm which is an extension of the TextRank algorithm. The TextRank algorithm is

a graph-based ranking algorithm, that was designed to either detect key sentences or key

phrases within a text corpus. It iteratively computes the relevance of a node (phrase

or sentence) within a graph by a voting mechanism, where all predecessor nodes vote

for specific node. In order to construct the graph, some other text-mining techniques

have to be applied to the text beforehand like tokenization and part-of speech tagging.

However, based on the idea, that key phrases occur more often in key sentences the

TextSentenceRank algorithm combines the key phrase and key sentence approaches of

the TextRank algorithm, resulting in a more accurate computation of key phrase ranks.

Further information on these two text mining algorithms can be found in [42].

4.2.2.3 Connection to the PaperViz front end

The backend processing service exposes a list of web API methods that are consumed by

the PaperViz front. To access these resources, clients need to be authenticated according

to the OAuth 2 standard explained in 4.2.1.2. Like the web APIs of Mendeley and Sensium,

PaperViz uses the JSON format for exchanging data objects. The list of the REST

endpoints implemented by the backend processing service is illustrated in table 4.2.

4.2. Backend processing service 77

Endpoint HTTP Verb Purpose

/api/Account/Register POST to register a new PaperViz

user

/Token POST to obtain an access token (to

login)

/api/Account/Logout POST to logout

/api/AccountSettings GET to load the user settings

/api/AccountSettings POST to set the user settings

/api/ApplicationStates GET to load the user defined key

phrases, the list of bookmarks

and the content of the text ed-

itor previously saved by the

user

/api/ApplicationStates POST to save the user defined key

phrases, the list of bookmarks

and the content of the text ed-

itor

/api/DocumentCollection GET to load the document collec-

tion of the user including the

score matrix and the TF-IDF

scores

/api/UserTracings GET to save user interactions for

evaluation purposes

Table 4.2: Exposed web API functions of the PaperViz’ backend processing ser-
vice

The PaperViz front end issues AJAX requests to consume these endpoints. Requests

to secured resources have to contain the bearer access token in the HTTP header. The

following code snippet illustrates the typical structure of such a client-side AJAX request:

4.2. Backend processing service 78

1 var requestData = function (postParams , successFunction) {

2 var uri = baseUri + "/api/resource";

3 $.ajax({

4 type: "POST",

5 data: postParams

6 url : uri ,

7 crossDomain: true ,

8 beforeSend: function (xhr , settings) {

9 xhr.setRequestHeader("Authorization", "Bearer " + accessToken)

10 },

11 success : function (data) {

12 successFunction(data);

13 },

14 });

15 }

Listing 4.1: AJAX POST Request

Requesting the document collection object

As listed in table 4.2 the web front end issues a GET request to the

/api/DocumentCollection/ endpoint in order to retrieve the information needed for the

visualization. This endpoint supports the parameter ‘SyncType’ that accepts following

three values:

1. complete

As already mentioned, the backend processing service caches the user’s document

collection as well as the extracted key phrases and scores in a database for a later

faster retrieval. By specifying the synchronization type ‘complete’, this data gets

discarded. In addition, the complete process of fetching the user’s Mendeley catalog,

extracting key phrases, data processing and data storing is triggered.

2. differential

This synchronization type detects differences between the cached version of the user’s

document collection and the current version of the user’s Mendeley repository. Thus,

only documents and sub collections that were added since the last synchronization

are loaded and processed by the backend service. Removed documents and sub col-

lections are discarded. This option is extremely useful, as a complete synchronization

could be very time consuming, especially for large document collections.

4.2. Backend processing service 79

3. none

By specifying the synchronization type ‘none’ the backend processing service returns

only the cached version the user’s document collection.

Users can trigger the request to fetch the document collection from the backend service by

clicking the ‘sync’ ribbon at the top left corner of the PaperViz front end and selecting the

desired option (see figure 4.5). Moreover a request with the synchronization type ‘none’

is issued automatically after the user logs in.

Figure 4.5: Synchronization options of PaperViz

During this synchronization process, a dialog is shown, informing the user about the

status of the loading process (see figure 4.6).

Figure 4.6: Loading animation of PaperViz

The waiting time primarily depends on the size of the user’s collections, respectively

the number of changes made to the collection since the last synchronization. The initial

loading process could last several minutes, as all documents of the user’s collection have

to be downloaded from Mendeley. Furthermore, the backend processing service has to

extract the plain text of this documents before employing Sensium to extract and score

key phrases. Figure 4.7 illustrates the workflow of this loading process.

4.2. Backend processing service 80

Figure 4.7: Flow diagram of the loading process

After the backend service has processed the request from the front end, it returns a

collection objection in JSON format containing all information about the user’s collection.

The class diagram of the collection object is illustrated in figure 4.8.

4.2. Backend processing service 81

Figure 4.8: Class diagram of the document collection response object

As shown in this figure, the reponse object contains following information:

• the structure of collection (sub collections and documents)

• key phrase information for sub collections, documents and pages of documents (text,

score, occurrences)

• TF-IDF scores for sub collections and documents

• metadata information about documents (name, journal, abstract, authors, etc.)

So this object contains all information about the user’s document collection that is re-

quired by the PaperViz front end. As a result, no further requests have to be issued by

the front end to browse and analyze the collection. The big advantage of this approach

is, that the UI can immediately respond to user actions without the need of requesting

additional information from the backend service. Another approach would be, to load

detailed information about sub collections, documents and pages of documents only on

demand. This would result in a faster initial load, but also in a significant decrease of the

UI’s responsiveness.

Loading and saving the application state

The /api/ApplicationStates/ endpoint is used to save and load the current status of

PaperViz. The corresponding requests can be issued by clicking the ‘sync’ ribbon and

selecting the desired option (see figure 4.9).

4.2. Backend processing service 82

Figure 4.9: Loading and saving the application state

In addition, a request to load the previously saved state is issued automatically after

the user logs in into PaperViz. The following information thereby loaded from the database

of the backend processing service:

• the list of bookmarked documents

• the content of the text editor

• the key phrases defined in the key phrase box

4.2.3 Data processing and preperation

One requirement of PaperViz is to provide information on different granularity levels of

document collections. The most detailed level is thereby a single page of a document. In

order to retrieve such information, following steps have to be performed by the backend

processing service:

1. download the PDF-files from Mendeley

2. extract the plain text of these files, page by page

3. remove control characters

4. employ Sensium to extract and score key phrases of each page

5. store the results in a database

This page specific information is illustrated by the TileBar visualization of the PaperViz

front end. Moreover, it is used by the backend processing service to compute the key phrase

scores of documents and collections. This is done by simply calculating the arithmetic

average key phrase scores of the single pages for each level of the document collection

and normalizing the resulting values on a scale between 0 and 1. In order to prove the

correctness of this computation, several tests with documents have been made. The scores

returned by Sensium for a document were equal to the aggregated scores computed by the

4.2. Backend processing service 83

backend processing service. Thus, there is no need to send the entire text of a document

or collection within a single request to Sensium, which accelerates the process of gathering

the score matrix significantely. Another advantage of this approach is, that key phrase

specific information needs to be stored only for single pages as storing this information for

documents and collections would be redundant. In short, Sensium is just used to score

key phrases of single pages and all other measures are computed by PaperViz based on

these scores. The backend processing service is thereby responsible for calculating the

score matrix, the TF-IDF measures and for constructing the collection response object.

The front end, on the other hand, computes the query specific properties for the main

visualization (see section 3.3).

4.2.4 Data storing

The backend processing service utilizes the EF for loading and saving data to a relational

database. As the EF works best with Microsoft based technologies, the Microsoft SQL

Server was chosen as database management system. Figure 4.10 illustrates the tables and

their relationships of the PaperViz database.

4.2. Backend processing service 84

Figure 4.10: Database diagram

The tables beginning with the prefix ‘AspNet’ are responsible for the user management

and are not explained more detailed in this theses. The others are described in table 4.3.

4.2. Backend processing service 85

Table name Content

AccountSettings Contains the user specific settings to access the

web APIs of Sensium and Mendeley.

MendelyProfile Contains the user profiles of Mendeley.

MendeleyFolders Represents the collection structure of a user’s

Mendeley catalog.

MendeleyDocuments Contains metadata information about the doc-

uments contained in a folder.

MendeleyAuthors Contains the list of authors related to a docu-

ment.

MendeleyFiles Contains the files which are assigned to a doc-

ument of Mendeley. Moreover, additional infor-

mation such as type, size, name or filehash are

stored in this table.

Pages Contains the page number and the plain text for

each page of a file.

SensiumKeyPhrases Contains the key phrases, their scores and oc-

currences of every page.

ApplicationStates Contains the content of the text editor, the de-

fined key phrases and the list of referenced doc-

uments of a specific user.

DocumentReferences Contains information about the referenced doc-

uments, which is shown in the ‘list of book-

marks’ panel.

UserTracings For evaluation purposes (see chapter 5).

Table 4.3: Description of the database tables

4.3. Web front end 86

4.3 Web front end

Figure 4.11: Front end architecture

The web front end of PaperViz was implemented as SPA to provide a fluid user experience.

It is a pure client-side web page, where the layout and the entire application logic is loaded

in the initial page load (see figure 4.11). Furthermore, the collection information, which

is visualized by the front end, is fetched from the backend processing service with a single

AJAX request. As already mentioned, this request is automatically issued by the front

end after the user logs in. Thus, users usually have to wait a couple of seconds until the

application and the data is loaded. This waiting time mostly depends on the size of the

user’s collection and the amount of changes they have made to their Mendeley collection

since the last login. Large collections with over 200 documents can result in a waiting

time of over one minute. So the initial load of PaperViz is a quite time-consuming process.

But this approach enables the web page to respond immediately to user interactions and

prevents constant round-trips to the server. In addition users can run the front end

locally, using the file URI scheme, as no particular hosting runtime is required. However,

the biggest challenge when implementing the front end was to speed up the computation

time for the main visualization of PaperViz. As this visualization is based on a user

defined query, no precalculation is possible. Thus, all properties of this visualization

such as the positions and the intensity of objects have to be computed immediately after

the query was reformulated by the user. At an early stage of the implementation the

JavaScript engine seemed overtaxed with this task, causing the visualization to appear

choppy. Complex search queries in combination with a large document collection even

caused the browser to become unresponsive (to freeze). For that reason, two improvements

were made to speed up the computation time. First, the collection object returned by

the backend service is transformed into a structure that allows a faster computation of

4.3. Web front end 87

the visualization properties. Second, a HTML5 web worker is employed to perform this

computation. A web worker is a JavaScript script that is executed on a dedicated thread

in the background, independently of other user-interface scripts. By combining these two

aspects, the computation time for the visualization decreased dramatically, resulting in a

highly responsive visualization. Due to the fact, that the PaperViz front end is a SPA and,

thus, contains the entire application logic in form of JavaScript code, another challenge was

to organize this code in a meaningful way. For that reason, the web application utilizes a

client-side Model-View-ViewModel (MVVM) framework in combination with the module

design pattern, which are described later in this section. Interactions with the backend

processing service component are implemented with AJAX calls. Thus, blocking of the UI

is avoided when loading huge data sets such as document collections. The API methods

consumed by the front end where already outlined in section 4.2.2.3.

4.3.1 Frameworks, libraries and design patterns

The application logic of PaperViz was implemented with JavaScript and references a num-

ber of JavaScript libraries and frameworks. The most important ones and their purpose

regarding to PaperViz are explained briefly in the following.

4.3.1.1 jQuery

JQuery is a feature-rich JavaScript library that aims to simplify the client-side scripting

of HTML. 65% of the top 10 million highest-trafficked web application use of this library

and many other JavaScript libraries are based on jQuery [22]. It makes things like HTML

document traversal and manipulation, animation, event handling and AJAX integration

much simpler. Moreover, it is open-source software and therefore free to use.

4.3.1.2 Bootstrap

Bootstrap is a widely used web front end framework, which is designed to ease the de-

velopment of dynamics websites. Beside a number of jQuery plugins it contains HTML-

and CSS-based design templates for buttons, tables, navigation and other interface com-

ponents [5]. In addition a lot of Bootstrap themes and templates are available on the

web that can be used as the basic layout for a web application. For instance, PaperViz is

based on the ‘SB Admin 2’ template, which is free to download and contains a variety of

powerful jQuery plugins (see figure 4.12).

4.3. Web front end 88

Figure 4.12: Boostrap template ‘SB Admin 2’

4.3.1.3 Knockout

Knockout is a client-side JavaScript MVVM-framework that helps separating the concerns

of domain data, view components and UI logic. In addition, it allows automatic synchro-

nization between the view component (HTML) and the domain data (model) through a

2-way data binding by leveraging the native event management features of the JavaScript

engine. The MVVM components regarding to Knockout can be defined as follows [26]:

• Model (data): the raw JSON data coming from the backend service

• View (HTML and CSS): the user interface

• ViewModel (JavaScript): responsible for the UI logic and acts as an intermediary

between the view and the model

This approach is quite powerful when dealing with forms, tables or data grids. It al-

lows developers to quickly create web based CRUD operations including validation and

computed properties. But on the other hand several UI controls, such as the tree view

control or the text editor used by PaperViz, cannot be combined with this framework in

a meaningful way. Moreover, Knockout does not come with a built in way to modularize

the code of the web application. It is possible to put the entire code of the application

logic into a single file. Thus, for providing a solid system architecture, PaperViz utilizes

the JavaScript Module Pattern.

4.3. Web front end 89

4.3.1.4 JavaScript Module Pattern

The Module Pattern is a commonly used JavaScript design pattern that assigns modules

to components of a web application. It could be defined as simple structural foundation,

which aims to keep the code both cleanly separated and organized. This pattern thereby

mimics the concept of classes, enabling developers to implement private and public vari-

ables and methods. Private methods and variables are shielded from the global scope and

can only be accessed from the module itself. This hides complexity and keeps the global

namespace of JavaScript clean [38]. Following code snippet illustrates a simple example of

a module. It can be compared to a static class of object orientated programming languages.

1 var exampleModule = (function () {

2

3 var myPrivateVar , myPrivateMethod;

4 // A private counter variable

5 myPrivateVar = 0;

6 // A private function which logs any arguments

7 myPrivateMethod = function(foo) {

8 console.log(foo);

9 };

10

11 return {

12 // A public variable

13 myPublicVar: "foo",

14 // A public function utilizing privates

15 myPublicFunction: function(bar) {

16 // Increment our private counter

17 myPrivateVar ++;

18 // Call our private method using bar

19 myPrivateMethod(bar);

20 }

21 };

22 })();

23

24 // Usage:

25 // Call the public function

26 exampleModule.myPublicFunction("test");

27 // Get the public variable

28 var foo = exampleModule.myPublicVar;

Listing 4.2: JavaScript Module Pattern

PaperViz implements such modules for almost every front end component. For instance

the AJAX requests that consume the RESTful API of the backend service are packed

4.3. Web front end 90

within a module. Other examples are the tree view control, the text editor or the graph-

based visualization. The code of each module thereby resides in a dedicated file named

after the module. As this pattern enables developers to only expose a public API to other

components of the application, it is quite easy to exchange specific modules. Moreover

the components of PaperViz are developed in a way that they can easily be integrated to

other web applications.

4.3.1.5 D3.js

D3.js (Data-Driven Documents) is a library designed to create rich and interactive visu-

alization in web browsers using HTML, SVG and CSS. It is used to bind arbitrary data

to SVG objects which are then added to the Document Object Model (DOM). Moreover

it provides a large set of functions to style and manipulate these objects. Implementing

transitions and animations to visualize data changes can be accomplished very easily. Al-

though the learning curve of D3.js is quite steep, it is a very powerful library to visualize

large data sets in web browsers. Hence, this library was used to implement the graph-based

visualization of PaperViz.

4.3.2 Summary

This chapter describes the technical implementation of the two main components of the

PaperViz system. The backend processing service is based on Microsoft’s Web API 2

framework and acts as an intermediary between the PaperViz front end and the external

systems Mendeley and Sensium. Beside consuming and exposing RESTful web services,

it is in charge of data processing, data caching and user management. The data processed

by the backend processing service is visualized by the PaperViz web front end, which is

implemented as SPA in order to provide a smooth user experience. By combining several

well-known client side libraries, frameworks and pattern it offers PaperViz users a large

variety of functions and features allowing them to quickly examine document collections.

The core component of the web front end is the graph-based visualization, which was

implemented using D3.js.

Chapter 5

Evaluation

Contents

5.1 Methodology . 91

5.2 Participants . 96

5.3 Procedure and Conditions . 96

5.4 Results . 97

5.5 Conclusion . 102

As previously mentioned, PaperViz is the first system that combines different visual-

ization techniques and other features to support researchers in writing scientific papers.

In order to ascertain, whether these features are well implemented and easy to use, an

evaluation was carried out. The goal of this evaluation was to measure the usability and

usefulness of the system. Moreover, the feedback of the participants was used to iden-

tify functions and features, that are worth implementing or need improvement. Another

interesting aspect of this evaluation was to recognize how the tool was used by the par-

ticipants. For instance, which of the three possible ways of navigating within a collection

is primarily used or how the key phrases are placed within the visualization area. As the

target audience of PaperViz consists of expert users and non-expert users, the PaperViz

web front end was evaluated with a formal user study involving both of these user groups.

5.1 Methodology

In this study, participants had to accomplish five tasks with PaperViz. Each task had

a different scope, but all of them were based on the same collection, which was created

prior to the evaluation in Mendeley. After finishing a task, the participants had to answer

several questions assessing the workload and the difficulty level of the task. After working

off all five tasks, they were asked to do three questionnaires to provide feedback about

91

5.1. Methodology 92

the features, the usability and the personal opinion of PaperViz. In addition, every action

performed by the evaluators was recorded and saved within the database of the backend

processing service in order to retrieve additional knowledge about how the system is used.

The whole evaluation process was designed in a way, that it could be accomplished unat-

tended. But it was soon realized, that especially non expert-users needed some support

in order to quickly get used to the system and to understand the different visualization

features. Thus, a project member supervised the evaluation and helped the participants

in case they had any problems in accomplishing a task. Moreover, the supervisor analyzed

how the evaluators used PaperViz and took some additional notes regarding potential

relevant observations.

5.1.1 Evaluation preparation

In order to facilitate the evaluation process, several tasks had been carried out prior to

the evaluation, which are listed in the following:

• Create a sample collection in Mendeley

To keep the study in a manageable timeframe, a hierarchically structured sample

collection was created for the evaluation in Mendeley. Thus, participants didn’t have

to create their own collection, which also ensured that everyone was confronted with

the same baseline condition. The sample collection consists of three main collections

‘Visualization’, ‘Clustering’ and ‘Recommender Systems’. Each of these collections

contains real publications structured in a certain number of sub collections. All in

all, the repository consists of 51 documents and 14 sub collections.

• Create evaluation users for PaperViz

Registering a PaperViz user and configuring the system was not part of the eval-

uation process. But to allow more reasonable analysis of the tracked user actions,

it was necessary, that every participant used a dedicated PaperViz user. Thus, 30

evaluation users were created and all of them were linked to the sample collection

mentioned before. Moreover, a web page was created, allowing participants to pick

one of these 30 evaluation users.

• Create an evaluation version of PaperViz

Some features and functions of PaperViz were not part of the evaluation process and

therefore, an evaluation version of the system was created. Features like synchroniz-

ing the document collection or the configuration panel were disabled. In addition,

a JavaScript code was implemented tracking all user interactions and sends the in-

5.1. Methodology 93

formation to the backend processing service where it gets stored in the database for

later detailed analysis.

• Create a video explaining the components and features of PaperViz

In order to quickly introduce PaperViz to the evaluators, a video was created, show-

ing all features of the system that can be used during the evaluation. This video

was uploaded to youtube and has a length of 4 minutes and 34 seconds.

• Create the guideline and the questionnaire

A google form was created that guides the participant through the evaluation pro-

cess. This form contains all the information (introduction, web links, tasks, ques-

tionnaires) that is necessary to conduct the evaluation.

5.1.2 Tasks

As already mentioned, each participant had to perform five tasks with different scopes

and an increasing level of difficulty. Each task contains:

1. an introduction, explaining the goal of the task

2. a step by step guide describing the steps, which have to be performed to fulfill the

task

3. questions that should be answered by using the features of the PaperViz system

4. some useful hints

5.1.2.1 Training Task

The main goal of the training task was to make the participants familiar with PaperViz.

They were guided through a typical use scenario, where they had to use every function

and feature of the system, which is needed to accomplish the subsequent tasks.

5.1.2.2 Task 1

In Task 1 participants had to interpret the intensity coding of the visualization in order

to identify the relevance of collections and documents. In addition, they had to determine

relationship strengths between key phrases and collections using the bar chart and the con-

necting lines. Thus, the goal of this task was to evaluate if the relevance and relationship

strengths are visualized in an understandable way.

5.1. Methodology 94

5.1.2.3 Task 2

Task 2 focused on the positioning mechanism of the graph-based visualization. Thus, the

participants had to interpret the positions of circles within the visualization area in order

to identify potentially relevant and irrelevant documents. In addition, this task contains

some sub tasks where the navigation and filtering functions had to be used.

5.1.2.4 Task 3

Task 3 focused on the TileBar- and the tag cloud visualization of PaperViz. In order to

accomplish this task, participants had to identify a certain page within a document that

reflects a certain keyword the most. Moreover, they had to refine their search query by

identifying an additional key phrase using the tag cloud visualization or the metadata

information area.

5.1.2.5 Task 4

In task 4 participants had to formulate a “negative” search query. Thus, the goal was

to identify documents and collections that contain the keyword ‘clusters’ but are not,

or only weakly related to the keyword ‘tree’. In order to visually separate potentially

relevant from non-relevant documents, they were asked to use the gravity slider to

accomplish this task. In addition, they had to bookmark and annotate a document that

had been identified as relevant.

After accomplishing a taskm the participants had to answer the following

three questions (multiple choice, 7-point-likert-scale):

1. Performance: How successful were you in accomplishing what you were asked to

do (perfect, failure)?

2. Effort: How hard did you have to work to accomplish your level of performance

(very low, very high)?

3. Frustration: Overall, this task was (very easy, very difficult).

5.1.3 Questionnaires

After completing all tasks, the participants were asked to provide feedback on PaperViz

in the form of three questionnaires (see appendix A).

5.1. Methodology 95

5.1.3.1 Questionnaire 1

The first questionnaire consisted of 16 7-point-likert scale questions that examined the

different functions and features of PaperViz. The goal of this questionnaire was to identify

components of the system that need to be improved.

5.1.3.2 Questionnaire 2

The second questionnaire consisted of 11 7-point-likert scale questions and aimed to mea-

sure the usability of PaperViz based on the System Usability Scale (SUS). It contained

questions like if the participants would use PaperViz frequently or if they felt confident in

using the system.

5.1.3.3 Questionnaire 3

In contrast to the other two questionnaires, the third one contained some open questions

asking the evaluators about their personal opinion about PaperViz. Thus, they could point

out some features that would be worth implementing in order to increase the usability of

the system.

5.1.4 Data sets

During the evaluation process, following data was collected:

• The answers to the task based questions.

• The answers regarding the three questionnaires.

• The performed user actions to accomplish the tasks. Thereby following information

was recorded:

current user ID

used component (e.g. tag cloud, tree view, graph-based visualization, etc.)

X and Y location of the mouse event

ID of the clicked, hovered or dragged element

text of the clicked, hovered or dragged element

parent HTML element of the clicked, hovered or dragged element

CSS class name of the clicked, hovered or dragged element

date and time of the action

type of the action (click, drag, drop, hover)

5.2. Participants 96

• Notes taken by the supervisor regarding potential relevant observations and a per-

sonal interview at the end of the evaluation consisting of three questions:

What were the main challenges while accomplishing the tasks?

Do you have any ideas on how to improve the usuability of PaperViz?

Are there any features, functions or components that you are missing?

5.2 Participants

5.3 Procedure and Conditions

As already mentioned, the evaluation process was supervised by a project member. There-

fore, it was first of all necessary to schedule an appointment with the participants. Exactly

50% of these appointments were done personally, the other half was conducted via web

conference. Thus, the supervisor could always observe how the participants were using

PaperViz. 12 out of 16 participants used their own devices for the evaluation and they

were able to choose between Mozilla Firefox (19%) and Google Chrome as web browser

(81%). The procedure of this evaluation was divided into three phases: Introduction,

Training and Feedback.

5.3.1 Introduction

At the beginning of the evaluation process, the supervisor provided the participants with

a short overview on what awaits them within the next 30 to 60 minutes. Moreover he

explained the purpose of PaperViz and the idea behind creating this system. Afterwards,

the participants opened the google form in a web browser. This form contains three web

links. The first link points to the video, which the participants were asked to watch in

order to get an idea of the functions and features provided by PaperViz. The second one

links to the web page, where the participants had to pick a “free” PaperViz user and mark

it as “taken”. By clicking the third link, the participants browsed to the web front end of

Paperviz. After logging in with an evaluation user, the session moved on to the training

phase.

5.3.2 Training

In order to get familiar with the PaperViz system, the participants needed to accomplish

the training task. The steps to accomplish this task were explained very detailed in

the google form. In addition the supervisor supported the participants and provided

useful information and tips regarding the interpretation of the visualizations and the other

5.4. Results 97

functions of PaperViz. After finishing the training tasks, the participants should have been

able to perform the other four tasks autonomously.

5.3.3 Feedback

At the beginning of the feedback phase, the participants had to accomplish the other four

tasks. During this phase, the supervisor acted primarily as observer and only intervened

in cases where the participants had problems in understanding or completing a task. As

already mentioned, the evaluators had to answer the three questions listed in 5.1.2. for

each task. After completing these tasks, the participants were asked to answer the three

questionnaires listed in 5.1.3. The feedback phase closes with a short interview where the

participants were asked for comments about PaperViz.

5.4 Results

The SUS score of PaperViz was calculated based on the responses to questionnaire 2. As

table 5.1 illustrates, the system received an aggregated score of 89.38.

scale µ σ

SUS 89.38 7.38

SUS Usable 88.02 8.59

SUS Learnable 94.79 5.99

Table 5.1: PaperViz’ System Usability Scale scores

In order to interpret this result, [39] published a graph showing how the

percentile ranks associate with SUS scores and US letter grades (see figure 5.1).

Figure 5.1: System Usability Scale Grading Graph

5.4. Results 98

This graph indicates, that the mean SUS score is 68, which can be interpreted as a

grade of a C. The 89.38 of PaperViz converts to a percentile rank of 98%, meaning that it

would receive an A and has a higher perceived usability than 98% of all products tested.

Figure 5.2: Scores of the questions about the functions and features of PaperViz
(-3 = strongly disagree, 3 = strongly agree)

Figure 5.2 visualizes the scores of the questions about the functions and features (ques-

tionnaire 1). Some questions are inverted, marked with a “(-)” after the question. Based

on these boxplots two main weaknesses of the system can be identified:

5.4. Results 99

1. Graph-based visualization (question 13): If a collection, which is currently

visualized by the graph-based visualization, contains a lot of documents or sub col-

lections, the usability and readability of this visualization is strongly reduced. In

addition such a scenario could cause a circle to be placed at a complete different

position than originally calculated, leading to a misinterpretation of the graph. This

happens if many documents or sub collections have nearly identical relative relation-

ship strengths to the defined keywords. Placing their corresponding circle at the

same position is not possible, as overlaps are avoided by visualization.

2. Metadata Information Area (question 15): The Metadata Information Area

of PaperViz was not recognized as a valuable feature by the participants. This

could have several reasons. First and foremost, it was not necessary to read the

information shown within this panel to complete the tasks. For instance, in order to

find additional keywords related to a collection, most participants preferred to use

the tag cloud instead of looking at the author keywords. Another reason is, that

this panel is placed at the lower right corner of the screen. According to Peep Laja

[27] this position gets the least attention from users. Furthermore, when working

with low resolution screens (1366 x 768 pixels and less), users have to scroll down in

order to view this area.

In addition, two other features were identified that need improvement:

1. Filtering (question 4): Filtering out irrelevant documents and sub collections can

only be accomplished by using the tree view component. But in order to identify such

literature, the graph-based visualization has to be analyzed. Thus, after identifying

documents that a user wants to be removed from the visualization, he is forced to

search for this documents within the tree view component. This is not user friendly,

as it requires unnecessary effort and time.

2. Bookmarking (question 16): In order to link a text within the text editor to

a document, users can use the bookmarking and annotation functions of PaperViz.

But to accomplish this task, three actions are required. First, the document has to

be selected. Next the “add to bookmarks” button has to be clicked and finally the

user has to click the “add citation” button within the list of bookmarks.

Despite these weaknesses, the boxplots also illustrate that most of the implemented

functions received a positive feedback. As the graph-based visualization is the core

component of PaperViz, it should be noted, that the participants had no problems in

understanding and interpreting it (question 7 and 8).

5.4. Results 100

The results regarding the workload and the task difficulty are illustrated in

figure 5.3. Lower scores thereby indicate a better result. The boxplots for the training

task look as expected. The participants were guided through the steps by the supervisor

and, therefore, they had no problems in accomplishing the task (‘Performance’).

However, as they have never worked with PaperViz before, they had to learn how the

different functions and features are used and how to interpret the graph-based visualized.

Thus, ‘Effort’ and ’Frustration’ received higher scores. Task 1 was the first task they had

to accomplish on their own and as the figure indicates, the participants still faced some

uncertainties in using PaperViz. The decreasing scores for task 2 and 3 indicate, that

participants learned very quickly how to use PaperViz. Almost everyone accomplished

task 3 without any problems and they stated that this task did not cost much effort.

They had the feeling of being successful and felt very confident using the tool. Because of

this reason, it is interesting that task 4 turned out to be the most difficult task. In order

to accomplish this task, the participants had to formulate a partly ”negative” search

query. To be more specific, they had to identify documents that are strongly related to

one key phrase, but weakly related to another key phrase. This is a quite uncommon

scenario, as classic search engines do not support such search queries. Therefore, some

participants had problems in finding the correct strategy to solve this task. Thus, the

higher scores are mainly based on the fact, that this kind of search query cannot be

formulated using classic search engines.

Figure 5.3: The reuslts of the personal feelings about the success in accomplishing
a task (performance), the effort to accomplish their level of perfor-
mance (effort) and the difficulty-level of the task (frustration). (lower
scores are better)

5.4. Results 101

Table 5.2 illustrates the log statistics of user activities traced in the course of the

evaluation. The figures look as expected and thus, no additional knowledge can be derived

from this numbers. The only interesting fact is that only 8 out of 16 participants used

the breadcrumbs component for navigating to the parent collection. The others preferred

using the tree view component, which usually takes more time and effort. A reason for

this could be that they were not aware of the breadcrumbs navigation feature. If this is

the case, underlining the elements of the breadcrumb trail to emphasize that these items

are hyperlinks, could improve this component.

Type Action µ (σ) Users

control key phrases added (manually) 11.6 (6.4) 16

(exploration) key phrase added (tag cloud) 10.3 (4.9) 16

key phrase added (metadata

information area)

1.2 (0.4) 6

key phrase removed 8.3 (7.6) 11

navigation (tree view) 11.9 (7.9) 13

navigation (visualization) 72.6 (64.2) 16

navigation (breadcrumbs) 2.5 (1.7) 8

reset 18.1 (11.5) 16

prediction key phrase dropped 16.4 (9.9) 16

(awareness) key phrase moved 17.3 (12.5) 16

key phrase hovered 125.6 (101.9) 16

document hovered 114 (88.2) 16

collection hovered 89.8 (66.6) 16

gravity slider changed 80.1 (53.9) 14

drill-down document clicked 9.7 (4.2) 16

(explanation) document opened (TileBars) 5.4 (3.7) 16

document opened (metadata

information area)

1 (0) 4

document bookmarked 5.8 (4.7) 16

document cited 2.8 (1.7) 16

document unbookmarked 1 (0) 1

text editor used 5.6 (5) 16

Table 5.2: Log statistics of user activities traced in the course of the evaluation

At the end of the evaluation, participants were asked about their personal

opinion of PaperViz (questionnaire 3) followed by a short interview with the supervisor.

The most interesting findings are listed in the following:

5.5. Conclusion 102

• Learning by Doing: At the beginning, the graph-based visualization and their

properties were hard to understand. But when working with the component, users

get familiar with it very quickly.

• Layout improvements: The usability of PaperViz decreases significantly when

working with low resolution screens. It requires the user to use the scroll function

of the web browser very often. In addition, the visualization area is quite small

compared to high resolution screens. Because of these reasons, PaperViz should

support a flexible layout, meaning the users can adjust the layout of the components

based on their needs to avoid scrolling. Furthermore, a function that undocks the

visualization component from the main window would circumvent this problem. The

resulting floating window can then be scaled by the user.

• More drag and drop: It was observed that many participants tried to use drag

and drop for actions like adding a key phrase from the tag cloud to the visualization

or adding a document to the list of bookmarks. This is currently not supported by

PaperViz, but would increase the usability of the tool tremendously as it saves time

and unnecessary clicks.

• LaTeX integration: When using the text editor for drafting sections of a paper,

it would be nice to have a feature that converts the content into LaTeX markup. In

addition, it should be possible to export the list of bookmarks into a BibTeX file.

5.5 Conclusion

According to the SUS, the perceived usability of PaperViz is better than 98% of all prod-

ucts tested. The participants had almost no problems in accomplishing the tasks and

they stated that the graph-based visualization is easy to understand and very valuable.

Despite this very positive result, some weaknesses of the tool were identified based on the

evaluation results. The most important finding was that the graph-based visualization of

PaperViz gets difficult to interpret if lots of circles have to be visualized. This is definitely

an aspect where the system needs improvement. Some other minor features could be im-

proved as well. For instance it would be possible to provide more drag and drop support

in order to reduce the number of clicks to perform actions like bookmarking a document or

adding key phrases from the tag cloud to the visualization. In addition, some participants

suggested other features on how to enhance the systems value, like a BibTeX extraction

function or a flexible layout where users can adjust the components positions based on

their needs.

Chapter 6

Conclusion & Future Work

Spotting high quality and relevant information within a large collection of documents is

one of the main challenges researchers face nowadays when they perform investigative or

learning tasks. Because of this reason, this thesis presents an innovative Web-based sys-

tem called PaperViz, which is designed to support researchers with this task. The core

component of PaperViz is an interactive graph-based visualization, designed to reduce

the time of examining large document collections. This user-driven visualization, which

is based on a key phrase extraction and weighting algorithm, allows the user to interac-

tively inspect collections of documents at different levels of details. Moreover, the system

provides other features that help researchers during the whole process of writing scientific

literature, such as a Web-based text editor, a document metadata extraction function and

a bookmarking and annotation function. These components enable users to quickly get an

overview about the contents of document collections and their semantic structures. This

in turn allows them to quickly spot relevant documents and pages of documents within

such collections. Also PaperViz supports users in identifying additional key phrases that

can be used to refine the graph-based visualization in order to retrieve more specific results

and to find further interesting resources. By using PaperViz’ bookmarking and annotation

function, users can easily create and manage a list of relevant resources for a later detailed

exploration. Generally speaking PaperViz helps researchers to significantly speed up the

process of finding, evaluating and organizing scientific literature. Besides explaining all

features of PaperViz in chapter 3, this thesis provides detailed insights on the architecture

and technical implementation of the system in chapter 4. In order to identify the strengths

and weaknesses of the system, a formative user study was conducted which is documented

and discussed in chapter 5. The results of this evaluation indicate, that PaperViz is an

suitable tool for supporting researchers in writing scientific papers. Despite the fact that

the system receives an SUS score of 89, meaning that it has a higher perceived suability

than 98% of all other products tested using SUS, some weaknesses were identified during

103

104

the evaluation. Furthermore some additional features would increase the value PaperViz:

1. Usability improvements:

• PaperViz should support a flexible layout, allowing the users to adjust the

layout of the different components based on their needs.

• Providing more drag and drop support would save a lot of time and clicks

and enhance the usability of features like the bookmarking and annotation

function significantly.

• If the graph-based visualization contains an unmanageable amount of circles,

PaperViz should aggregate clusters of circles in order to increase the usability

of the visualization.

• Filtering out specific collection items should also be possible using the

graph-based visualization component. Currently only the tree view component

provides this feature.

• The initial loading time of the collection data should be reduced by implement-

ing an intelligent incremental loading process.

2. Valuable extensions:

• Participants of the evaluation claimed that they would like to have a feature

that exports a list of bookmarks into a BibTeX file.

• Especially when creating search queries consisting of a large number of key

phrases (>5), it is sometimes difficult to place these key phrases in a way

that maximizes the meaningfulness of the visualization. Therefore an auto-

matic layout function for the key phrase placement would be a valuable feature.

• It would be possible to integrate other document collection visualization ap-

proaches into PaperViz. Such as Parallel Topics or ThemeScape (see section

2.1). This would enable researchers to analyze their collections from different

perspectives.

3. Integrating other existing systems:

105

One of the big goals for the future is to combine PaperViz with other

systems of similar scopes. uRank for instance is another user-driven ranking-based

visualization tool designed to assist exploration and navigation of document

collections. As the visualization of this tool does not support interactive features

like drilling down or analyzing items in depth, it would be desirable to integrate

at least the graph-based visualization model of PaperViz into uRank. Another

project called EEXCESS (Enhancing Europe’s eXchange in Cultural Educational

and Scientific reSources) provides recommendation tools, delivering personalized

recommendations from cultural and scientific repositories without having to

explicitly search for this content. By implementing the API of EEXCESS,

PaperViz would be capable of listing recommended documents, based on the list of

bookmarks or the defined search query. This would definitely increase the value of

PaperViz greatly.

To the best of our knowledge, PaperViz is the first Web-based tool that provides a

variety of functions and features to support both, exploration of document collections and

scientific paper writing (see chapter 2). Although the evaluation results indicate that it is

an excellent tool, some features and functions need further improvement. To go one step

further, PaperViz could be extended with additional valuable features and combined with

other existing systems in order to gain more trust and acceptance.

Appendix A

Questionnaires

Abbr. Questions Likert-scale labels

Q1 How successful were you in accomplishing what
you were asked to do?

one (Failure) to seven
(Perfect)

Q2 How hard did you have to work to accomplish
your level of performance?

one (Very High) to
seven (Very Low)

Q3 Overall, this task was: one (Very difficult) to
seven (Very easy)

Table A.1: Questionnaire about workload and task difficulty for the evaluation
of PaperViz

Abbr. Questions

Q1 I found the graphical layout and the placement of the different elements

of PaperViz well structured.

Q2 The different ways of navigating within the document collections are

intuitive and easy to use.

Q3 I easily get lost when browsing deeper into a collection.

Q4 The filtering option of the Tree View navigation is a useful function.

Q5 The tag cloud is very helpful for finding relevant keywords of collections

and documents.

Q6 The Drag and Drop function of the keywords is easy to use.

Q7 The graph-based visualization of PaperViz is easy to understand.

Q8 The positions, colors and sizes of the different elements of the visualiza-

tion are easy to interpret –the meaning of these properties are clear to

me.

106

107

Q9 I would like to know more about how these properties (positions, colors,

sizes, etc.) are computed.

Q10 I often used the bar chart to identify relevant documents for keywords

respectively relevant keywords for documents.

Q11 The colored edges between keywords and collection items are more con-

fusing then helpful.

Q12 The gravity slider is very helpful feature for increasing the visual sepa-

ration of similar collection elements.

Q13 Large numbers of documents and sub collections within a collection

strongly reduces the usability of the visualization.

Q14 The tile bar visualization is useful for finding relevant pages within a

document.

Q15 I often read the information shown in the “Metadata information Area”

to get more information about the document.

Q16 The bookmarking function of PaperViz is a useful and easy to use fea-

ture.

Table A.2: Questionnaire about the functions and components of PaperViz

Abbr. Questions

Q1 I think that I would like to use PaperViz frequently.

Q2 I found PaperViz to be simple.

Q3 I thought PaperViz was easy to use.

Q4 I think I could use PaperViz without the support of a technical person.

Q5 I found the various functions in PaperViz were well integrated.

Q6 I thought there was a lot of consistency in PaperViz .

Q7 I would imagine that most people would learn to use PaperViz very

quickly.

Q8 I found PaperViz very intuitive.

Q9 I felt very confident using PaperViz.

Q10 I could use PaperViz without having to learn anything new.

Table A.3: The System Usability Scale questions adapted from [40]

Appendix B

Acronyms

List of Acronyms

SPA Single Page Application

TIARA Text Insight via Automated Responsive Analytics

LDA Latent Dirichlet Allocation

VIBE Visualization By Example

POI Point of Interests

FDL Force Directed Layout

PCA Principal Component Analysis

LLE Local Linear Embedding

OCR Optical Charater Recognition

MCV Multiple Coordinated View

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

SaaS Software as a Service

IIS Internet Information Services

OOP Object Orientated Programming

JSON JavaScript Object Notation

EF Entity Framework

OR object-rational

MVVM Model-View-ViewModel

DOM Document Object Model

SUS System Usability Scale

REST Representational State Transfer

108

BIBLIOGRAPHY 109

Bibliography

[1] Alencar, A. B., Börner, K., Paulovich, F. V., and de Oliveira, M. C. F. (2012). Time-

aware visualization of document collections. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, pages 997–1004. ACM.

[2] Basole, R. C. (2015). Text and document visualization. https://cs4460.files.

wordpress.com/2014/01/cs4460-spr15-08-textdocuments.pdf/. [Online; accessed

17-March-2016].

[3] Blankenship, D. (2010). Applied research and evaluation methods in recreation. Human

Kinetics.

[4] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. the

Journal of machine Learning research, 3:993–1022.

[5] Bootstrap (2015). Bootstrap. http://getbootstrap.com/. [Online; accessed 13-

April-2016].

[6] Cao, N., Sun, J., Lin, Y. R., Gotz, D., Liu, S., and Qu, H. (2010). Facetatlas: Mul-

tifaceted visualization for rich text corpora. IEEE Transactions on Visualization and

Computer Graphics, 16(6):1172–1181.

[7] Chau, D. H., Kittur, A., Hong, J. I., and Faloutsos, C. (2011). Apolo: making sense

of large network data by combining rich user interaction and machine learning. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

167–176. ACM.

[8] Chen, C. (2006). Information Visualization: Beyond the Horizon. Springer-Verlag New

York, Inc., Secaucus, NJ, USA.

[9] Community, G. (2015a). Restsharp. http://restsharp.org//. [Online; accessed

13-April-2016].

[10] Community, W. (2015b). Representational state transfer. https://en.wikipedia.

org/wiki/Representational_state_transfer/. [Online; accessed 13-April-2016].

[11] Dou, W., Wang, X., Chang, R., and Ribarsky, W. (2011). Paralleltopics: A prob-

abilistic approach to exploring document collections. In Visual Analytics Science and

Technology (VAST), 2011 IEEE Conference on, pages 231–240. IEEE.

[12] Drahomira, Herrmannova, P., and Knoth (2012). Visual search for supporting content

exploration in large document collections. D-Lib Magazine, 8(7).

https://cs4460.files.wordpress.com/2014/01/cs4460-spr15-08-textdocuments.pdf/
https://cs4460.files.wordpress.com/2014/01/cs4460-spr15-08-textdocuments.pdf/
http://getbootstrap.com/
http://restsharp.org//
https://en.wikipedia.org/wiki/Representational_state_transfer/
https://en.wikipedia.org/wiki/Representational_state_transfer/

BIBLIOGRAPHY 110

[13] Eisenstein, J., Chau, D. H., Kittur, A., and Xing, E. (2012). Topicviz: Interactive

topic exploration in document collections. In CHI ’12 Extended Abstracts on Human

Factors in Computing Systems, CHI EA ’12, pages 2177–2182, New York, NY, USA.

ACM.

[14] Frank, Parry, E., and Walton (2014). Results of a bibliographic software sur-

vey. http://www.lboro.ac.uk/media/wwwlboroacuk/content/library/downloads/

surveyresults/RefWorks_EndNote_Mendeley_Survey_Report_2014.pdf/. [Online;

accessed 18-March-2016].

[15] für wissensbasierte Anwendungen und Systeme Forschungs-und Entwicklungs GmbH,

K. (2015). Sensium. https://www.sensium.io/index.html. [Online; accessed 21-May-

2015].

[16] Google (2015). Word trees. https://developers.google.com/chart/

interactive/docs/gallery/wordtree#overview/. [Online; accessed 17-March-2016].

[17] Görg, C. and Stasko, J. (2008). Jigsaw: investigative analysis on text document

collections through visualization. In Second International Workshop on Supporting

Search and Sensemaking for Electronically Stored Information in Discovery Proceedings.

[18] Gretarsson, B., Odonovan, J., Bostandjiev, S., Höllerer, T., Asuncion, A., Newman,

D., and Smyth, P. (2012). Topicnets: Visual analysis of large text corpora with topic

modeling. ACM Transactions on Intelligent Systems and Technology (TIST), 3(2):23.

[19] Havre, S., Hetzler, B., and Nowell, L. (2002). Themerivertm: In search of trends, pat-

terns, and relationships. IEEE Transactions on Visualization and Computer Graphics,

8(1):9–20.

[20] Hearst, M. A. (1995). Tilebars: Visualization of term distribution information in full

text information access. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’95, pages 59–66, New York, NY, USA. ACM Press/Addison-

Wesley Publishing Co.

[21] Hwang, J. Y., Lee, J. S., and Lee, H. (2010). Designing a visual analytic system to

represent bookmark sharing data.

[22] jquery Foundation, T. (2015). jquery. https://en.wikipedia.org/wiki/JQuery/.

[Online; accessed 13-April-2016].

[23] Kaser, O. and Lemire, D. (2007). Tag-cloud drawing: Algorithms for cloud visualiza-

tion. CoRR, abs/cs/0703109.

http://www.lboro.ac.uk/media/wwwlboroacuk/content/library/downloads/surveyresults/RefWorks_EndNote_Mendeley_Survey_Report_2014.pdf/
http://www.lboro.ac.uk/media/wwwlboroacuk/content/library/downloads/surveyresults/RefWorks_EndNote_Mendeley_Survey_Report_2014.pdf/
https://www.sensium.io/index.html
https://developers.google.com/chart/interactive/docs/gallery/wordtree#overview/
https://developers.google.com/chart/interactive/docs/gallery/wordtree#overview/
https://en.wikipedia.org/wiki/JQuery/

BIBLIOGRAPHY 111

[24] Kienreich, W., Sabol, V., and et al. (2003). Infosky: A system for visual explo-

ration of very large, hierarchically structured knowledge spaces. In IN PROCEEDINGS

DER GI WORKSHOPWOCHE LLWA - WORKSHOP DER FACHGRUPPE FGWM

(FACHGRUPPE WISSENSMANAGEMENT.

[25] Klerkx, J. and Duval, E. (2009). Visualising social bookmarks.

[26] Knockout (2015). Knockout. http://knockoutjs.com/. [Online; accessed 13-April-

2016].

[27] Laja, P. (2012). 10 useful ffinding about how people view websites. http:

//conversionxl.com/10-useful-findings-about-how-people-view-websites/.

[Online; accessed 08-August-2016].

[28] Marchionini, G. (2006). Exploratory search: From finding to understanding. Com-

mun. ACM, 49(4):41–46.

[29] Mendeley (2015). Mendeley authorization - oauth 2.0. http://dev.mendeley.

com/reference/topics/authorization_overview.html/. [Online; accessed 13-April-

2016].

[30] Mendeley (2016). Compare reference manamgent systems. https://www.mendeley.

com/compare-mendeley/. [Online; accessed 18-March-2016].

[31] Mendeley (2017). Mendeley website. https://www.mendeley.com/. [Online; accessed

19-March-2017].

[32] Michael and Dittenbach (2010). Scoring and ranking techniques - tf-idf term weighting

and cosine similarity. Information Retrieval Facility.

[33] Microsoft (2015). Entity framework. https://msdn.microsoft.com/en-us/data/

ef.aspx/. [Online; accessed 13-April-2016].

[34] Newman, D., Baldwin, T., Cavedon, L., Huang, E., Karimi, S., Martinez, D., Scholer,

F., and Zobel, J. (2010). Visualizing search results and document collections using topic

maps. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2):169–

175.

[35] Olsen, K. (1991). Ideation Through Visualization: The VIBE System. Research

reports. School of Library and Information Science, University of Pittsburgh.

[36] Olsen, K. A., Korfhage, R. R., Sochats, K. M., Spring, M. B., and Williams, J. G.

(1993a). Visualization of a document collection: The vibe system. Information Pro-

cessing & Management, 29(1):69 – 81.

http://knockoutjs.com/
http://conversionxl.com/10-useful-findings-about-how-people-view-websites/
http://conversionxl.com/10-useful-findings-about-how-people-view-websites/
http://dev.mendeley.com/reference/topics/authorization_overview.html/
http://dev.mendeley.com/reference/topics/authorization_overview.html/
https://www.mendeley.com/compare-mendeley/
https://www.mendeley.com/compare-mendeley/
https://www.mendeley.com/
https://msdn.microsoft.com/en-us/data/ef.aspx/
https://msdn.microsoft.com/en-us/data/ef.aspx/

BIBLIOGRAPHY 112

[37] Olsen, K. A., Korfhage, R. R., Sochats, K. M., Spring, M. B., and Williams, J. G.

(1993b). Visualization of a document collection: the vibe system. Inf. Process. Manage.,

29(1):69–81.

[38] Osmani (2012). Learning JavaScript Design Patterns. O’Reilly Media.

[39] Sauro, J. (2011). Measuring usability with the system usability scale (sus). http:

//www.measuringu.com/sus.php/. [Online; accessed 08-August-2016].

[40] Sauro, J. and Lewis, J. R. (2012). Quantifying the user experience: Practical statistics

for user research. Elsevier.

[41] Sciencebuddies (2016). Resources for finding and accessing scientific papers.

http://www.sciencebuddies.org/science-fair-projects/top_science-fair_

finding_scientific_papers.shtml/. [Online; accessed 18-March-2016].

[42] Seifert, C., Ulbrich, E., Kern, R., and Granitzer, M. (2013). Text representation for

efficient document annotation. 19(3):383–405.

[43] Strobelt, H., Oelke, D., Rohrdantz, C., Stoffel, A., Keim, D. A., and Deussen, O.

(2009). Document cards: A top trumps visualization for documents. IEEE Transactions

on Visualization and Computer Graphics, 15(6):1145–1152.

[44] Thomson (2011). Themescape. http://www.intellogist.com/wiki/Report:

Thomson_Innovation/Viewing_Results/Analyzing_Results/ThemeScape/. [Online;

accessed 17-March-2016].

[45] van Ham, F., Wattenberg, M., and Viegas, F. B. (2009). Mapping text with phrase

nets. IEEE Transactions on Visualization and Computer Graphics, 15(6):1169–1176.

[46] Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines for

using multiple views in information visualization. In Proceedings of the Working Con-

ference on Advanced Visual Interfaces, AVI ’00, pages 110–119, New York, NY, USA.

ACM.

[47] Wattenberg, M. (2011). Word tree. http://fernandaviegas.com/wordtree.html/.

[Online; accessed 17-March-2016].

http://www.measuringu.com/sus.php/
http://www.measuringu.com/sus.php/
http://www.sciencebuddies.org/science-fair-projects/top_science-fair_finding_scientific_papers.shtml/
http://www.sciencebuddies.org/science-fair-projects/top_science-fair_finding_scientific_papers.shtml/
http://www.intellogist.com/wiki/Report:Thomson_Innovation/Viewing_Results/Analyzing_Results/ThemeScape/
http://www.intellogist.com/wiki/Report:Thomson_Innovation/Viewing_Results/Analyzing_Results/ThemeScape/
http://fernandaviegas.com/wordtree.html/

	Introduction
	Motivation
	Structure

	Related Work
	Approaches of document collection visualization
	ThemeRiver and TIARA
	ParallelTopics
	Tag cloud
	TopicNets
	FaceAtlas
	InfoSky
	ThemeScape
	VIBE
	Jigsaw
	Aduna Cluster Maps
	TopicViz
	Apolo
	TileBars
	WordTree
	PhraseNet
	Document Cards

	Document Collection Management Systems
	Contributions

	Design
	Requirements
	GUI components
	User management
	Navigation
	Tree view
	Breadcrumbs
	Actions

	Metadata information area
	Bookmarks and annotations
	List of bookmarks
	Text editor

	Visualization
	Tag cloud
	Key phrase box

	Graph-based visualization
	Layout
	Visual encoding
	Shape
	Color
	Intensity
	Position
	Size

	Interactions and Details-on-demand
	Bar chart
	Connecting lines
	TileBars

	Additional controls
	Gravity slider
	Buttons

	Usage scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Conclusion

	Workflow
	Summary

	Implementation
	Information flow
	Backend processing service
	Frameworks and libraries
	Web API 2
	OAuth 2.0
	Entity Framework
	RestSharp
	iTextSharp

	Web APIs
	Connection to Mendeley
	Connection to Sensium
	Connection to the PaperViz front end

	Data processing and preperation
	Data storing

	Web front end
	Frameworks, libraries and design patterns
	jQuery
	Bootstrap
	Knockout
	JavaScript Module Pattern
	D3.js

	Summary

	Evaluation
	Methodology
	Evaluation preparation
	Tasks
	Training Task
	Task 1
	Task 2
	Task 3
	Task 4

	Questionnaires
	Questionnaire 1
	Questionnaire 2
	Questionnaire 3

	Data sets

	Participants
	Procedure and Conditions
	Introduction
	Training
	Feedback

	Results
	Conclusion

	Conclusion & Future Work
	Questionnaires
	Acronyms
	Bibliography

