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Marco Wallner, Clemens Mühlbacher, Gerald Steinbauer, Sarah Haas, Thomas Ulz
and Jakob Ludwiger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3D Vision Guided Robotic Charging Station for Electric and Plug-in Hybrid Vehicles
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Preface

The second OAGM and ARW Joint Workshop on “Vision, Automation and Robotics” held in Vienna,
at Palais Eschenbach, from May 10 to 12, 2017, provides a platform bringing together researchers,
students, professionals and practitioners from both research directions to discuss new and emerg-
ing technologies in the field of machine driven perception and automated manipulation/autonomous
movement. The OAGM and ARW workshops have a long tradition since 1980 and 2011, respectively,
also stimulated by the Austrian RoboCup workshops (since 2006). Due to the highly overlapping in-
terests of both communities the first joint event was organized in 2016. This second joint workshop
will further strengthen the interaction of scientists working in vision, automation and robotics.

Computer Vision tries to perceive the physical world from image or video data resulting in applica-
tions such as scene understanding, object detection and tracking and 3D reconstruction. Thus, the
main problems are to find suitable representations and to design and implement efficient (learning)
algorithms. In contrast, Robotics aims at dealing with moving arms, graspers, and eventually moving
vehicles. There are one or more actuators which have to be controlled accordingly in a planned matter
for fulfilling given jobs. Some of them consist of additional sensors, e.g., graspers get some feedback
for they can correctly catch and hold object without losing or destroying it; or the mobile device stops
in front of an obstacle. These examples clearly demonstrate the relations between both fields. The
outer world/the actual scenery is perceived by cameras; a consistent set of knowledge is modeled for
the actuator for operating successfully either in a planned or even in an unplanned – standalone –
strategy. Thus, there is a considerable interest in describing approaching features and possibilities
and how the combination of different technologies could be beneficial.

The aim of the joint workshop is to discuss latest academic and industrial approaches and to demon-
strate the recent progress. The call for papers resulted in 43 submissions, where finally according
to the reviews of an international programme committee 37 contributions (23 talks, 14 posters) have
been selected for presentation at the workshop. To highlight outstanding contributions, there prizes
will be awarded during the joint workshop: The OAGM Best Paper Award sponsored by the Austrian
Computer Society (OCG) and the IEEE RAS Austria Best Student Paper Award.

The goal of the workshop, bridging the gap between the Austrian Visual Computing and Robotics
communities, is also supported by inviting three internationally established researchers representing
both field:,Daniel Cremers (TU Munich, Germany), Pedro Sanz (Universitat Jaume I, Spain) and
Herold Artés (RobArt GmbH, Austria), representing both areas.

Markus Vincze (General chair of the workshop)
Wilfried Kubinger (Chairman ARW)

Peter M. Roth (Chairman OAGM)
Vienna, May 2017
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Recent Achievements in Underwater Intervention Systems the
Role of Perception & Robotic Manipulation

Pedro J. Sanz

 IRS-Lab, Universitat Jaume I, Spain

Abstract
From the UJI foundation (1991), one of the research fields more active has been robotics. So, a lot
of different  activities concerning this  exciting field have been developed during these years.  In
addition,  many projects,  some of them funded by European and Spanish institutions have been
successfully  carried  out.  There  are  other  robotic  labs  at  UJI,  but  only  one  working  in  the
underwater domain:  IRS-Lab. Thus,  after  more than twenty years  of  research in some specific
technologies (e.g. multisensory based manipulation, telerobotics, or human-robot interaction HRI),
always applied to real life scenarios, a few years ago we face the underwater intervention context.
In this new scenario the dream is named the underwater autonomous vehicle for intervention (I-
AUV).  However,  a  long  path  is  still  necessary  to  pave  the  way  to  underwater  intervention
applications performed in a complete autonomous way. This presentation reviews the difficults to
overcome, the solutions explored and the evolution timeline in the way towards I-AUVs, putting the
enphasis on the main contributions reached through those projects coordinated by the IRS-Lab, and
always considering the role played by perception and manipulation there.
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Dense & Direct Methods for 3D Reconstruction & Visual
SLAM

Daniel Cremers

 Computer Vision Group, Department of Computer Science, 
Technical University of Munich, Germany

Abstract
The reconstruction of the 3D world from images is among the central challenges in computer vision.
Starting in the 2000s, researchers have pioneered algorithms which can reconstruct camera
motion and sparse feature-points in real-time. In my talk, I will introduce spatially dense methods
for camera tracking and 3D reconstruction which do not require feature point estimation, which
exploit all available input data and which recover dense or semi-dense geometry rather than sparse
point clouds. Applications include 3D photography, 3D television, and autonomous vehicles.
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A framework for cellular robots with tetrahedral structure

Michael Pieber and Johannes Gerstmayr

Abstract— An adaptive tetrahedral element (ATE) has been
designed, which can attach to and detach from other ATEs
along their deformable faces. The goal is to obtain any
configuration or shape autonomously. The tetrahedrons edges
represents six actuators and each ATE has its own micro-
controller, battery and wireless transceiver module. Several
connected ATEs are forming an adaptive robot with tetrahedral
structure (ARTS) which is intended to represent any geometric
form with a piecewise flat surface. Contrary to existing cellular
and tetrahedral robots ARTS combines the advantages of self-
reconfigurable modular robots and tetrahedral robots which
have the ability to change their shape.

I. INTRODUCTION

Self-reconfigurable robots with the ability to represent
arbitrary shapes leads to an enormous number of real-world
applications. Such applications are feasible within the self-
assembly of large scaffolds, using ATEs with an overall
size of one meter. Adaptive structures are needed e.g. for
the growing complexity of current architectural design. In
the mid-range size of ATEs, using centimeters for each
actuator, the possibility to represent any 3D geometry could
be used for rapid-prototyping and for the visualization of 3D
structures in business and education.

II. RELATED WORK

Ahmadzadeh et al. [1] identified and cited 94 modular
robots. Most of these are arrays of kinematically-constrained
simple robots with few degrees of freedom [5], [3], [8], [2],
[7]. These robots can attach to and detach from each other
manually or automatically mostly with a mechanically [5] or
magnetic [8], [2] connection mechanism.

The combination of self-reconfiguration robots with the
ability to represent arbitrary shapes are presented recently in
[6]. The connection mechanism along the deformable faces
of the ATEs are patented [4] by the authors of the present
paper.

III. ARTS – A TETRAHEDRAL ROBOT

ARTS is a modular robotic system which is based on
adaptive tetrahedral elements (ATEs). The single ATEs can
be understood as cells of a larger structure, similar to cells
in biology. Each ATE can deform and has six degrees of
freedom resp. actuators. In a continuum mechanics interpre-
tation, an ATE can undergo any kind of stretch or shear
deformation. The deformation of the single ATEs gives the
robotic system are large amount of variability.

Michael Pieber and Johannes Gerstmayr are with
the Institute of Mechatronic, University of Inns-
bruck, 6020 Innsbruck, Austria {michael.pieber,
johannes.gerstmayr}@uibk.ac.at

Fig. 1. Three tetrahedral elements attach along their deformable faces to
an adaptive robot with tetrahedral structure. The elements standing in initial
position an a plate. First the element on the left side attach to the middle
ATE. In the next step both ATEs are connecting to the third ATE on the
right side.

Each ATE itself is a mechatronic system, which includes
the actuators, four double-spherical joints, 3 pairs of con-
nectors at each of the four faces, a control and power
unit, a wireless connection and a battery, see Fig. 2. In the
current design, most parts are manufactured using a high-
end 3D printer ’ProJet 3500 HD’ from 3D Systems, with the
material VisiJet M3-X. In comparison to conventional cubic
or spheric modular robots, the tetrahedral structure leads to
a light-weight design. Furthermore, the ATEs can connect
and change the overall shape of the structure, see Fig. 1,
and finally shall have the possibility to move ATEs along the
surface by deformation of surrounding ATEs. As a challenge
of the design, there are restrictions for the elongation of
each actuator, which leads to severe limitations of the motion
space of each cell. This also limits the angles of the edges
at the spherical joints, being boundaries to the geometrical
design.

The system of ATEs, from which we currently have built
four fully functional elements, is used in a way, that they are
always either positioned at a fixed space on a ground plate,
or they are connected to one or several other ATEs, compare
Fig. 1. The unique design is based on the connection at the
faces, rather than the nodes. This avoids any restrictions
within the connection of several tetrahedral elements, as
known from other tetrahedral robots, see the references
provided above. The advantage of tetrahedral robots is the
convenient computation of the movement of the structure,
which can be understood as a deformable mesh. The mesh
– similar to a finite element mesh – can be modeled to
be elastic with certain geometric limitations, which can be

5



implemented on a computer code similar to the computation
of a space truss. The single point-to-point motions of ARTS
are sent to each ATE via a wireless connection from a master,
which is connected to a conventional personal computer.

The main problem, which is currently investigated, is
based on the difference of the idealized tetrahedral mesh
and the constructed geometry of the ATEs, which brings in
restrictions in the motion space of the system. Promising
ways to overcome these limitations have been worked out
and will be presented.

Fig. 2. Topview of a single ATE a) mechanical design of an ATE shown
without cables and electronics: A-docking mechanism, B-male connector,
C-female connector, D-actuator, E-orientation element, F-spherical joint; b)
three connected ATEs forming an adaptive robot with tetrahedral structure

IV. RECONFIGURATION MECHANISM

Besides the mechatronic design, the control of the ATEs
can be challenging, as soon as many cells are connected
to each other, compare Fig. 3. In addition to the design of
ARTS, we are developing several computational schemes,
which define the motion of each ATE for reconfiguration
from one to another shape. In order to fulfill this challenging
task, the computation is split into three parts:

1) In the first part, the initial and the final mesh of
the structure is computed. It is necessary that both
configurations consist of a similar number of ATEs.
The simplest way is depicted in Fig. 3, where the initial
configuration consists of a rectangular block.

2) The rectangular block in Fig. 3a can be understood
as parking positions of the ATEs. The main task of
reconfiguration, is to find according parking positions
to each of the ATEs of the structure, which is a
hollow sphere in the present case. The shortest ways
for movement of ATEs along the surface are depicted
in Fig. 3a-e. This shows how a single ATE needs to be
moved. In fact, the movement strategy is done such,
that an ATE which has the longest distance to the base
is selected in the structure, see Fig. 3e. This ATE is
moved to an available parking space at the base block,
which is closest to the center. While the algorithm is
computing the destruction of the hollow sphere, the
steps are then applied in reversed order.

3) In the final step, the movement of the ATEs needs to
be performed by means of mesh deformation. This is
done such that the cells can move along the surface.

c) d) e)

a) b)

Fig. 3. Exemplary steps to reconfigure from one to another configuration.
a) parking position; a-e) the red colored surfaces mark the shortest path for
movement of ATEs along the surface.

Currently, this is done with manual inputs only, how-
ever, an algorithm which can automatically compute
this transformation is currently developed.

Converting a complex structure (A) into another complex
structure (B) can be performed such that between these
configurations, the ATEs are transformed into a rectangular
block. In this way, only the reconfiguration from a rectangu-
lar block to a complex structure must be computed.

V. CONCLUSIONS

The single adaptive tetrahedral elements (ATEs) follow
a light-weight design principle. ARTS leads to a highly
redundant superstructure and has the potential for a dis-
ruptive technology. Current limitations are within geometric
restrictions of the workspace and the differences between an
idealized geometric mesh and the real (constructed) geometry
of ATEs.
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Package Delivery Experiments with a Camera Drone

Jesús Pestana1 and Michael Maurer1 and Daniel Muschick2 and Devesh Adlakha1

and Horst Bischof1 and Friedrich Fraundorfer1

Abstract— The undergoing efforts for the integration of
robotics into logistics systems is affecting the production work-
flow at all stages, from the transportation and the handling of
parts inside storage and production facilities to the final product
distribution. In this paper we address the problem of delivering
a package by means of a multirotor drone. We describe a fully
autonomous package delivery flight demonstration prepared in
collaboration with an industrial partner. All computations are
performed in real-time on-board the drone. A gimbal camera
is utilized to realize the vision-based localization, by means
of fiducial markers, of the delivery position and the landing
platform on a pickup truck. The demonstration consists of
the fully autonomous execution of the following tasks: the
drone takes-off from the truck, looks for the delivery position,
proceeds to land and drop the package, flies back to the
distribution truck and follows it, and the flight is finished by
performing the landing on the static vehicle. The experiments
focus on the performance of the vision-based truck following.

I. INTRODUCTION

In this paper we present a fully autonomous drone that
using only on-board processing is able to perform coarse
navigation using GPS, vision-based precise vehicle following
and landing on static platforms (see Figs. 1 & 3). We used
our system to perform a fully autonomous package deliv-
ery flight demonstration in collaboration with an industrial
partner. The main technical challenges related to this work
are the navigation control, the real-time vision-based pose
estimation of the vehicle and the landing positions and their
integration with the navigation control. In order to obtain the
required localization precision for the vehicle following and
the landing tasks we use visual fiducial markers.

Drones are a hot topic and an ongoing research area.
These aerial platforms are suitable for being integrated in
logistics systems, for instance, for the transportation of
goods. Package delivery by means of an autonomous drone
can significantly reduce the costs of distribution. A succinct
feasibility analysis by D’Andrea [4] estimated its operating
cost at 10 cents for a 2 kg payload and a 10 km range.

The main challenges faced by real-world drone package
delivery are highlighted by the following selection of recent
research works: an obstacle mapping method that encodes at
cell-level the value of occupancy and its variance [1], testing
modern deep-learning based object detection algorithms on-
board drones [6], trajectory planning intended for navigation
in cluttered environments [3] and landing on vehicles that
are moving in straight roads at speeds of up to 40 km/h [2].

1Institute for Computer Graphics and Vision, ICG - TU Graz
{pestana,maurer,bischof,fraundorfer}@icg.tugraz.at

2Institute of Automation and Control, Graz University of Technology
daniel.muschick@bioenergy2020.eu

Fig. 1. Illustration of autonomous vision-based controlled drone landing
on a marked delivery position in order to deliver a package.

DJI M100 Autopilot Board

GPS Module

NVIDIA Jetson TK1
 - Quad-core ARM Processor
 - NVIDIA Kepler GPU 

Gimbal and Camera
DJI Zemuse X3 

Fig. 2. DJI M100 quadrotor equipped with a Nvidia Jetson TK1 on-board
computer (DJI Manifold), autopilot, GPS module, DJI Zenmuse X3 gimbal
camera (1280×720 px) and an electro-magnet to carry a package of 100 g.

II. SYSTEM OVERVIEW

a) Hardware Setup
Our drone is equipped as shown in Fig. 2. For the exper-
imental tests, the E-Mobility electric powered pickup truck
“ELI” from SFL Technologies [7] was used, see Fig. 3. The
delivery position and the landing platform are tagged using a
39×39 cm 36h11-family Apriltag fiducial marker [5]. Using
this approach the relative pose of the gimbal camera with
respect to the landing-platform at a distance of 3.5 m can be
estimated with an accuracy of around 3 cm.

b) Software Setup
The inter-module communication is achieved by means of
the Robot Operating System (ROS). Since our experimental
results focus on the car following performance, only the main
modules related to this task are explained, which are: the
gimbal camera landing-platform tracking, the vehicle speed
estimation and the control algorithm.
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Fig. 3. Drone vision-based vehicle following, marked with a 39×39 cm Apriltag. Experiment: 3 min, mean speed 7.91 km/h and top speed 13.35 km/h.

b.1) Gimbal Camera Landing Platform Tracking
The drone’s GPS measurements, the gimbal current orienta-
tion and the camera relative pose to the marker are combined
to estimate the position of the markers in world coordinates.
During specific tasks, these position estimates can be used to
command the gimbal to point at the marker that is positioned
on top of a landing platform. This approach is used during
the vehicle following, package delivery and landing tasks.

b.2) Vehicle Speed Estimation
The marker relative pose estimates are calculated at around
25 fps for a resolution of 1280× 720 px. These estimates
are stored in a queue with a length of 20 elements. The
vehicle speed is estimated for every linear coordinate using
linear regression on the elements of the queue, which does
not incur significant computation costs.

b.3) Navigation Control Algorithm
The flight behavior of our drone was characterized by per-
forming speed command step-response identification tests. A
rough controller parameter tunning was calculated based on
the resulting model and it was later experimentally improved.

We utilize a feedback loop controller based on the PID
controller architecture for the three linear coordinates and
the yaw heading. In order to improve its performance, the
controller utilizes both position and speed references. The
utilized measurement feedback are the position and velocity
provided by the autopilot telemetry, obtained through the
fusion of GPS data with the IMU and magnetometer data.

III. EXPERIMENTAL RESULTS
a) Package delivery mission

We succeed in performing a fully autonomous mission where
the drone takes-off from the truck, follows a GPS predefined
flight trajectory, looks for the delivery position, proceeds to
land and drop the package, takes-off again, flies back to the
distribution truck, follows it for a while and lands on the
static vehicle. This mission is summarized in our video1.

b) Vehicle following experiment
The task of the drone is to follow the vehicle that is marked
with a landing-platform at a constant distance of 2.5 m from
behind and above. The vehicle speed estimate, see Sec. b.2,
is used as speed reference for the controller.

The vehicle following experiment lasted 3 min during
which the drone performed the task successfully all the time.
Pictures of this experiment are shown in Fig. 3 and the
logged trajectories and speeds of the drone and the vehicle
are plotted in Fig. 4. Overall, during this experiment, the
mean and top vehicle speed were 7.91 km/h and 13.35 km/h,
and the root mean square error (RMSE) of the position and
speed control tracking error were 0.37 m and 1.34 km/h.

1Package delivery demo: https://youtu.be/bxM6dls2wuo
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Fig. 4. Vehicle following experiment of 3 min duration. The plot shows
the (red) drone and (blue) vehicle 3D positions and speeds over time.

IV. SUMMARY
In this paper we presented a fully autonomous drone that

using only on-board processing is able to perform coarse
navigation using GPS and vision-based precise vehicle fol-
lowing and landing (see Figs. 1 & 3). Our fully autonomous
package delivery flight demonstration, carried out in col-
laboration with SFL Technologies, was reported by local
newspapers2,3. In future work we plan to use this system
as a first step towards performing autonomous landing on a
moving vehicle.
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A Model-Based Fault Detection, Diagnosis and Repair for Autonomous
Robotics systems

Stefan Loigge1 and Clemens Mühlbacher1 and Gerald Steinbauer1 and Stefan Gspandl2 and Michael Reip2

Abstract— Autonomous robots comprise of several complex
software and hardware components which interact with the en-
vironment to fulfill a certain task. Due to the non-determinism,
inherent of the environment and complexity of the components
one cannot expect that the robot will never show a fault. Instead
one needs to deal with the occurrence of faults in the robotics
system. As we focus on autonomous robots the robot should
deal with faults in an automated fashion.

In this paper, we present a model-based fault detection and
diagnosis method with a simple but powerful method to repair
faults. Using this method, the robot can detect and react to
faults in a timely manner. Furthermore, no human intervention
is necessary thus allowing the robot to be autonomous. As not
every repair can be performed by the robot itself the system
allows the robot also to inform the maintenance staff which
repairs are necessary. Thus, this approach reduces the time for
fault localization of the maintenance staff.

I. INTRODUCTION

Autonomous robots perform tasks in (partly) open envi-
ronments. To perform such a task, the robot uses several
complex software and hardware components which interact
with each other. Due to the (partly) open environment and
the complex components, one cannot assume that no fault
will occur. Instead one needs to design the robotic system
with faults in mind. Thus, one either add fault handling in
each component or one uses a more general approach. One
such general approach is the use of a model-based approach
as outlined in [1]. The model is used to describe the system
behavior and to allow the system to detect a fault.

The use of a model-based approach allows the robot to
determine if a fault has occurred. Furthermore, the robot
can determine which component most likely caused this
fault. Using the information which component is faulty the
robot can determine which action to perform to react to this
fault. Besides the possibility that the robot detects and reacts
to a fault a model-based approach also allows to separate
the current system description from the fault detection and
localization components. As the model is used to describe
the system the fault detection and localization can be done
on the model only. Thus, one can use the software to
perform this reasoning for many different robots without
changes. The only thing which needs to be changed for a
robot is the model of the robot. As many robotic system

1Stefan Loigge, Clemens Mühlbacher and Gerald
Steinbauer are with the Institute for Software Tech-
nology, Graz University of Technology, Graz, Austria.
{sloigge,cmuehlba,steinbauer}@ist.tugraz.at
This work is partly supported by the Austrian Research Promotion Agency
(FFG) under grant 843468.

2Stephan Gspandl and Michael Reip are with incubedIT, Hart bei Graz,
Austria. {gspandl,reip}@incubedit.com

reuse components of other robots, or have similar robot
components one can often reuse parts of already existing
models. Thus, further decreasing the effort to perform fault
detection and localization.

In this paper, we present such a model-based diagnosis
approach. The method uses several different observers to ob-
serve properties of the system. These properties are observed
to detect a fault. With the help of the observed properties, the
system can derive a diagnosis which component caused the
fault. This allows pinpointing the fault without extra costs as
the only information necessary for the diagnosis is already
provided through the definition of the observations. To allow
the robot to react to a detected fault a simple rule engine can
be used. The rule engine allows the robot to react fast to a
fault and to trigger more complex repair actions. Through
this fast reaction, one can reduce the chance that a robot
will endanger itself or pose a threat to its surrounding.

The remainder of the paper is organized as follows. In the
next section, we will give an overview of the fault detection,
diagnosis, and repair system. The proceeding section dis-
cusses the different observers which check system properties
in more detail. Afterward, we discuss the diagnosis engine
which is used to identify the faulty component. In Section
V we discuss the rule engine and how it can be used to
react to faults. In Section VI, we show a use case where the
system was used on an industrial robotics system. Before
we conclude the paper, we discuss some related research.
Finally, we conclude the paper and point out some future
work.

II. SYSTEM OVERVIEW

To create a robotic system, the robot operating system
(ROS) [2] is often used as a framework. With the help of
ROS one can use several software components, which are
called nodes, and interact with each other. This interaction
can be performed with the help of publisher-subscriber
principle which allows exchanging message between each
ROS node. To define and identify for such communication
channel ROS uses so-called topics. These are strings defining
an n-to-n communication channel. Furthermore, one can use
service calls to provide a service from one component to
another. In the remainder of the paper, we will focus on
messages exchanged by topics as these are used more often
as services and allow an easy introspection.

Using ROS, a robotic system can be created which uses
several software components interacting with each other. As
we are interested in detecting and identifying faults and react
to these faults we use the system depicted in Figure 1. The

9



Fig. 1. Monitoring, diagnosis, and fault handling overview: observer
(yellow), diagnosis engine (blue), rule engine (green), [4]

system consists of three parts. A set of observers which is
used to detect a fault. A diagnosis engine which identifies the
component which caused the fault. The usage of observers
and a diagnosis engine for a ROS was already proposed in
[3] and was extended in this paper. Finally, a rule engine is
used to react to faults.

To allow the method to be applied for already existing
software, it is of interest that the used software components
are not needed to be altered. Thus, instead of detecting a
fault in the software components directly, we use information
provided by the interaction of the software components.
This allows that we can detect a fault without changing
existing software components. This can be simply achieved
in ROS by introspection on the topics which are used for
the communication. By observing properties of a topic, e.g.
frequency of communication on a topic, the system can be
checked if it conforms to the given model. This observation
is provided using different observers where each observer is
used to determine if a specific property hold. We will discuss
in the next section in more detail which observers exist.

With the observations, only the robot would only be able
to detect that a fault has occurred. But the robot needs
also to determine which component caused the fault. This
is of special interested if several malfunctions are detected
at the same time. With the help of the model of the system
and a reasoning process, the diagnosis engine determines
which components are faulty. The reasoning performed uses
a consistency-based diagnosis [5] approach which searches
for a minimal set of components which are blamed for being
faulty explain the observations. We discuss the diagnosis
engine in more detail in Section IV.

After the robot, has determined which components might
have caused the fault the robot needs to react to this fault.
This is achieved with the help of a rule engine which uses
the current diagnosis of the system together with the obser-
vations. By combining the diagnosis and the observations the
rule engine can determine which rule should be triggered to
execute a specific repair. This allows the robot to react in a
timely manner. If a planning system would be used as it was
described in [3] a possible high planning time may not allow
such a fast reaction. Due to this reaction, the robot can bring
itself into a safe state which can be used afterward to perform

a more complex repair. Let’s consider a simple example.
The robot detects that the laser scanner used for navigation
is malfunctioning. After determining this malfunction, the
robot can react and stop immediately. Thus, the robot will
not drive into an obstacle. After the robot, has stopped, the
robot can perform a more complex reasoning which repair
should be performed with another method [3]. Or it may
even try to reconfigure itself to deal with the fault [4]. In
this paper, we will focus only on a quick reaction to a fault
and not a complex repair or reconfiguration mechanism. We
will discuss the rule engine in more detail in Section V.

The complete system as it is described in this paper is
public available under http://git.ist.tugraz.at/
ais/model_based_diagnosis.

III. OBSERVERS

As outlined above we use several observers to check
if a certain property of the robotic system holds. These
observers are used to mediate between the concrete messages
send in the robotic system and the abstract model of the
system. This allows that the model of the system uses a
predicate based representation of the robotic system which
simplifies the diagnosis process. Furthermore, the observers
can use specifically design methods to observe a certain
property allowing a small computation overhead to provide
the observations.

To properly supervise the system different types of ob-
servers are used. Some observers observe the behavior of
a node directly where others observe the behavior or the
message exchanged. To observe the behavior of the node
directly two observers can be used.
• The activated observer checks if a node is present in the

robotic system. Thus, allowing to check if the system
is properly configured.

• the resource observer checks if a specific node in the
system uses a predefined amount of system resources,
e.g. CPU. This allows checking if the node neither con-
sumes too many resources, e.g. a memory leak causing
the accumulation of memory nor the consumption of
too fewer resources, e.g. no CPU usage as the node has
deadlocked itself.

To observe the behavior of the message exchange in the
system the following six observers can be used.
• The time-out observer checks if at least one message

was sent within a specified time interval. This allows
checking if a topic is used for communication and
performs a watchdog functionality for a topic. Thus,
allowing to revival problems which cause the commu-
nication to break down, e.g. the node which should send
an information can’t produce an output.

• The HZ observer checks on a topic if messages are
exchanged with a given frequency. This allows checking
if a communication is done on a regular basis. Thus,
allowing to check if the node which provides the
information is overloaded.

• The time-stamp observer checks if the timestamp of a
message send is not too old. This allows checking if
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old data are sent in the system thus reveal problems to
produce new data.

• The timing observer checks the time difference between
one message send on one topic and one message sends
on another topic. This can be used to check if a node
produces an expected output within the expected time
frame. Thus, one can detect if a processing step takes
too long.

• The score observer checks if the float value of a topic
is within a range. This allows checking the calculated
score, specifying the performance of an algorithm out-
come.

• The movement observer uses two topics which specify
the movement of the robot for correlation. This correla-
tion can be used to check if the expected movement
differs significantly, e.g. the movement measured by
the IMU is different to the movement measured by the
odometry.

Using the different observer types different properties of
the system can be checked. As the observations, may be
subject to noise one cannot simply use the raw values to
perform the check. Instead one can apply different filter
mechanism to process the raw values before performing a
check. Thus, the raw value to check, e.g. the frequency of a
topic is treated as a signal which needs to be filtered as it is
common in signal processing [6].

After filtering the raw values of the observation one needs
to perform a check to determine if the observed values
are acceptable. This can be done by simple checks which
determine the correctness using comparison with a fixed
value. But it is also possible to use a more complex test
which uses a statistical approach. This is done by performing
a student-t-test [7] on the filtered data. Through this test one
can check if the hypothesis that the observation is acceptable
needs to be withdrawn. Thus, allowing to perform a check
considering the statistical uncertainty.

All except one observer type check the raw value observed
with a nominal value of the mode, e.g. the frequency of
a topic with the expected value. The movement observer
is the exception, as it correlates two values with each
other. The idea is to use the redundant information in the
robotic system to check for consistency. This follows the
idea of residuals [8] which create an error term between
redundant information in the system. To do so, we first derive
from each movement measurement the resulting acceleration.
Thus, if the movement is given by the current velocity the
movement is differentiated to get the acceleration. Afterward,
the accelerations of one input are subtracted from the other
input. If no fault occurs this value is zero. Due to the noise
measurement, the value follows a Gauss distribution with
zero mean. With the help of the filter methods, one can
estimate the mean of the distribution and use this estimation
to perform a check if the value is close enough to zero.

IV. DIAGNOSIS ENGINE

Using the observers one can detect if one property of the
system behaves not as defined. This allows to detect a fault

but does not allow to isolate the faulty component directly.
Instead one needs to perform a reasoning. We use the idea
of consistency-based diagnosis [5] to perform this reasoning.
The reasoning uses the information about the observations
taken from the system as well as the topology of the system.
This allows handling fault propagation properly. To specify
the system, we define a system to consists of a set N
defining the nodes of the system. These are the software
components which are running and need to be diagnosed.
Additionally, the system consists of a set M defining the
topics which are used to exchange messages between the
software components. To represent the input topics to a node
we use the function input : N → 2M. The output which is
produced by a node is defined through output : N → 2M.
Using the set N , and the functions input and output one can
describe the information flow of the system. This information
flow is of interest as a fault can be propagated along this
information flow.

To define a software component n to be faulty we use
the predicate AB(n). Besides the software component also
a topic can be observed to be faulty thus we write AB(m)
that on observation indicate that the message exchange m
is not as expected. Please note that we are only interested
in the predicates AB(n) which are used to explain a faulty
behavior. Thus, we will search for a minimal set of AB(n)
predicates which explain the observations.

To specify the fault propagation, we use the following
logical formula which is defined for each n ∈ N .

∀mo ∈ output(n) :AB(mo)→
AB(n)

∨

mi∈input(n)
AB(mi)




The formula states that if the output of a software component
seems to be faulty either the component is faulty or one of
its inputs where faulty. Thus, one can propagate the fault
from input to output.

With the help of the above formula, we can define the fault
propagation in the system per the structure of the system.
Besides the structure of the system, we need also to define
how the observations made a link to the components in the
system. This link depends on the type of observation made.
We use the following formulas to link the observations and
the components of the system.

• If component n is observed with the help of an activated
observer (obsactivated(n)) we state the following logical
formula.

¬obsactivated(n)→ AB(n)

As we directly observe the component we can detect
that the component is faulty if the observation indicates
a fault.

• If component n is observed with the help of a resource
observer (obsresource(n)) we state the following logical
formula.

¬obsresource(n)→ AB(n)
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As we directly observe the component we can detect
that the component is faulty if the observation indicates
a fault.

• If a topic m is observed with the help of a time-out
observer (obstimeout(m)) we state the following logical
formula.

¬obstimeout(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If a topic m is observed with the help of an HZ observer
(obshz(m)) we state the following logical formula.

¬obshz(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If a topic m is observed with the help of a time-stamp
observer (obstimestamp(m)) we state the following log-
ical formula.

¬obstimestamp(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If two topics m1 and m2 are observed with the help
of a timing observer (obstiming(m1,m2)) we state the
following logical formula.

¬obstiming(m1,m2)→ (AB(m1) ∨AB(m2)).

If the timing of the two topics does report an error one
of the topics need to cause the fault. As we only observe
that at least one of the topics need to be abnormal we
need to use the structure to determine which component
caused this fault.

• If a topic m is observed with the help of a score observer
(obsscore(m)) we state the following logical formula.

¬obsscore(m)→ AB(m)

As we only observe a topic we can only state that the
topic is abnormal and use the structure to determine
which component caused this fault.

• If two topics m1 and m2 are observed with the help of
a movement observer (obsmovement(m1,m2)) we state
the following logical formula.

¬obsmovement(m1,m2)→ (AB(m1) ∨AB(m2)∨
AB(movement))

The formula states that if the movement is observed to
be faulty then either one of the topics is abnormal or the
movement relation is not valid. The movement relation
may not be valid as we may observe the difference
between the IMU and the odometry. If the robot now
slips the odometry and the IMU do no longer agree but
none of the components is faulty. Instead, the model

of the environment imposing that these two sources of
information are redundant does not longer hold.

With the logical formulas from above, the model of
the system is described. Furthermore, the link between the
observations and the model of the system is defined through
the logical formulas from above. With the help of this logical
formula, one can derive which set of AB(n) predicates
is consistent. This set represents the software components
which need to be faulty to explain the observed faults. As
we are interested in the most likely explanation we follow
the idea of Occams razor and search for a minimal set of
AB(n) predicates which are consistent.

To find this minimal set we use a minimal hitting set
algorithm. The algorithm uses a sat solver to derive if a set
of AB(n) predicates is consistent. If the set of predicates is
consistent the algorithm has found a diagnosis. Otherwise,
the algorithm uses the predicates AB(n) which are part
of the conflict in the checked set of AB(n) predicates to
choose the next AB(n) to add to the set to avoid this
conflict. Due to this conflict-driven search, the algorithm
can derive a minimal set in an efficient manner [5]. To
perform the necessary calculations of the algorithm we use
the implementation of [9].

V. RULE ENGINE

After detecting a fault and identifying the faulty compo-
nents the robot needs to react to this fault. To deal with faulty
components the robot needs either to perform a repair action
[3] or change the configuration of the robotic system [4] to
deal with this problem. In either case, it takes some time
to deal with the fault properly. This can cause the robot to
operate in an unknown state in an unsafe manner. Thus, the
robot needs first to react swiftly to bring the robotic system
in a known a safe state. This imposes that the robotic system
will not harm itself or its environment. Additionally, often
such a reaction is sufficient as some faults cannot be fixed
by the robot itself, e.g. a broken wheel.

To allow the robot to perform a fast reaction we propose
a simple but powerful rule engine. The simplicity of the rule
engine is not only due to the simple model how the robot
should react but also due to the limited reasoning which is
performed to choose the reaction. This restricts the possible
reactions of a robot but allows to perform the reactions fast
without a large computation overhead. The reaction triggered
by the rule engine is a kind of reflex of the robot. Thus, only
preventing it from further harm if possible.

To perform the reaction, the rule engine uses a set Obs of
the observations made so far. The set is updated with each
incoming observation to ensure that only one observation per
component/topic for a specific type is present. This update
also ensures that only the newest information is used. To
trigger the rules an additional set is used, the set PosAb
of components which are possibly faulty. The set defines
those components which are part of a minimal diagnosis.
Thus, if one has two diagnoses {{m1}, {m2}} the set of
possibly faulty components consist of the elements of both
diagnosis ({m1,m2}. This set simplifies reasoning as one
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does not reason over different diagnosis but only over the set
of components which may be faulty. The components which
may be the faulty need either to be observed more closely
or need to be repaired. Additionally, one cannot assume that
this component works properly with the information given
so far. Thus, this set is sufficient to decide which action to
execute.

The rule engine consists of a set of rules R where each
rule r is a tuple comprising the following elements.
• A set posObs defining observations which should have

been made
• A set negObs defining observations which should not

have been made
• A set posPosAb which is a set of components which

should have been diagnosed as possibly faulty
• A set negPosAb which is a set of components which

should not have been diagnosed as possibly faulty
• α an action to execute.
Due to the use of the sets, one can simply perform the

reasoning by intersecting the sets to determine if the rule
should be triggered. As some observations, may be missing
one may face the problem that neither obsresource ∈ Obs nor
¬obsresource ∈ Obs holds, thus one cannot take a decision
if the observation of the resource is true or false. If one
would strictly perform the reasoning a rule may not triggered
because obsresource 6∈ Obs holds although ¬obsresource 6∈
Obs holds. This is of special interest as not every observer
may state regularly which observations are true but only state
which observations are false. To deal with this problem we
trigger a rule if no contradicting information is observed.
This is achieved by the following simple procedure.

Trigger the rule if neither of the following holds.
• posObs ∩ Obs 6= ∅, where posObs = {¬po|po ∈

posObs}
• negObs ∩Obs 6= ∅
• posPosAb ∩ PosAb 6= ∅, where posPosAb =
{¬posAb|posAb ∈ posPosAb}

• negPosAb ∩ PosAb 6= ∅
As only set operations are performed one can perform
an efficient reasoning which allows a fast reaction. Espe-
cially as one can assume that the sets posObs , negObs ,
posPosAb and negPosAb are small. Thus, one can perform
this checks in O(|posObs|∗log(Obs)+|negObs|∗log(Obs)+
|posPosAb|∗log(PosAb)+ |negPosAb|∗log(PosAb)) which
allows a fast reaction even in case of many observations or
many possible faulty components.

As rules, should only be used to allow the robot to react
to faults, instead of continuously checking the rules, they
are only checked if the set of observations or possible faulty
components changes. This allows to save resources but also
prohibits to trigger a rule multiple times without any change
in the system.

After deciding that a rule should be triggered one needs
to execute the action α which is defined for this rule. The
actions range from printing a message to the console or to a
log file over changing parameters to triggering the execution

of an external script. Thus, one can trigger nearly arbitrary
behavior to react to a fault.

VI. USE CASE

Before we discuss related research, we will show a simple
use case of the system. The use case is the simplified
odometry calculation of a robot which delivery good in a
warehouse, see [10] for a detailed description of the robot.
The odometry is calculated using the wheel encoders and an
IMU is used to improve this odometry. The IMU is fused
with the calculation by using the rotation of the IMU instead
of the calculated rotation. Thus, if the IMU is fault free the
odometry is improved. To show the impact of the proposed
system three faults is simulated. The IMU can either be stuck
to zero after some time, it can overestimate the rotation by
20% or issue that there is no rotation after rotating a certain
amount of time.

To evaluate the impact of the system the robot was
commanded to move between six waypoints in the environ-
ment, for three minutes. During the movement, the wheel
encoder the IMU measurements and the real position of the
robot were determined. The real position of the robot was
determined with the help of an OptiTrack system. After the
movement of the robot was recorded the odometry is calcu-
lated using the wheel encoders and the IMU. Additionally,
one observer is used which checks if the calculated rotation
of the wheel encoder and the IMU correlate. This allows
detecting a fault of the IMU. Using this fault detection, the
diagnosis can calculate that the IMU is faulty. In such a case
the rule engine changes a parameter to ensure that the IMU
is no longer used for the odometry calculation.

The evaluation compares the error between the ground
truth and the calculated odometry which always uses the
IMU and the calculated odometry which only use the IMU
if it is not diagnosed to be faulty. In case the IMU was stuck
to zero after several seconds the mean error was reduced by
28.1% and the root mean squared error (RMS) was reduced
by 39.9%. In case the IMU was overestimating the rotation
by 20% the mean error was reduced by 25.6% and the root
mean squared error (RMS) was reduced by 35.6%. In case
the IMU was reporting zero rotation after one second of
rotation the mean error was reduced by 39.3% and the root
mean squared error (RMS) was reduced by 50.9%. Thus, the
use of the diagnosis system could react quickly enough to
improve the odometry calculation drastically. The evaluation
was performed on an intel i5-2430M with 8 GB of RAM
and took less than 2 % of the CPU.

VII. RELATED RESEARCH

We begin our discussion of related research with the
method proposed in [11]. The method adds to each software
module so-called software sensors. These sensors supervise
the execution of a software component which is treated as
a black box. Thus, the software component can be devel-
oped and tested independently from the sensors. During the
execution, the software sensor checks for faults and report
these faults on a diagnosis port. To ease the reuse of the
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sensors these sensors uses interfaces which are specific to
the type of information they are interested in, e.g. a state
change in the component. The information provided by these
sensors on the diagnosis port can afterward be used by
a monitor. The monitor allows to view the sensing result
and thus show which faults are present in the system. This
contrasts with the method we propose in this paper as we
use the information provided by the observer to calculate
a diagnosis. Additionally, our observers allow checking for
properties which need to hold between different components,
e.g. the movement measured by the wheel encoder and by
the IMU.

Another method to observe a robotic system was proposed
in [12]. Each module in the system is accompanied with
a detection module which checks if the module works as
expected. This check is performed with the help of a residual
calculation. If the residual is not zero a fault is detected. All
the detected faults are gathered in a fault signature and used
for fault identification. This identification is performed with
the help of an incidence matrix. The matrix describes in a
static manner which fault causes which observations. This
contrasts with our approach as we do not assume that we
can simply enumerate all possible observation and faults in
a matrix. To react to a fault, the method presented in [12]
reacts on the high-level which uses defined recovery actions,
which are chosen per the severity of the fault. This is like
our approach which use a simple rule engine to perform a
reaction but delegates the fault handling to more complex
reasoning whereas the rule engine allows a fast reaction.

A method which uses a rule system for observations was
presented in [13]. The system defines safety rules which
are checked during runtime. To define this rules a domain
specific languages is used which allows defining conditions
for the rules and which actions to trigger if a condition holds.
The rules use information which is provided on different
topics to define a safety rule. The actions are afterward
executed on the robotic hardware and can be defined in the
framework separately. The main difference to our system is
that we separate the detection and the reaction to a fault. This
allows us to use several observations to determine which
component is faulty and afterward react depending on the
faulty component.

As we have briefly outlined above our method is based
on the method presented in [3]. The method presented in [3]
also uses observers to detect a fault and a diagnosis engine to
identify the fault component. Additionally, a planning system
is used to repair if a fault is detected. Instead of using a
planning system to find a proper repair we use a simple rule
engine to allow the robot a fast reaction but also restricts
the possible repairs which can be performed. To allow a
fast reaction and a proper repair one can combine both
methods and first react with the rule engine and afterward
trigger a planning step for a proper repair. The other dif-
ference between the method presented in this paper and the
method presented in [3] is the underlying implementation.
The underlying implementation presented in this paper use
plugin-based observers which are more efficient than the

implementation of the observers used in [3].

VIII. CONCLUSION AND FUTURE WORK

Autonomous robots perform tasks in a (partly) unknown
environment. This is done by using several complex software
and hardware components. These components need to proper
function and properly interact with each other to allow
the robot to achieve its task. Due to the complexity of
the components and the (partly), unknown environment one
cannot expect that the robot will perform its task without
a fault. Instead one needs to address the problem of fault
occurrence in the robotic system.

In this paper, we presented a model based approach which
allows that the robot detects and identifies a fault. This
is achieved by observing the communication between the
components and checking this communication for specific
properties. These properties are derived from the system
and specify the proper function of the system. If a property
indicates a fault a diagnosis engine is used to determine the
minimal set of components which is faulty. Using the result
of this diagnosis engine a simple rule engine can be used
to allow the robot to react to a fault. This reaction can be
used to repair the fault or to bring the robot in a safe state
to perform a more complex repair action.

The current approach uses static properties of the system
to determine if a fault has occurred. It is left for future work
to extend this approach to also consider dynamic changes of
the properties. This would allow to detect a malfunction in
the dynamic behavior of the system as well as to determine
a malfunction of a component which changes its static
behavior per a defined system state.
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Visual Localization System for Agricultural Vehicles in GPS-Obstructed
Environments*

Stefan Gadringer1, Christoph Stöger1 and Florian Hammer2

Abstract— Accurate outdoor localization and orientation de-
termination using the Global Positioning System (GPS) usually
works well as long as the GPS antenna receives signals from a
sufficient number of satellites. Especially in agricultural appli-
cations, the respective lines of sight are frequently obstructed
due to the presence of trees. In this paper, we investigate
the applicability of an alternative method for position and
orientation estimation that is based on a stereo-camera system
and Visual Odometry (VO). We have experimentally validated
our approach in a logging road scenario. Based on the results
of the position and orientation estimation, we discuss challenges
of VO in such a non-trivial environment.

I. INTRODUCTION

Localization of a vehicle is a very important task and
hence a research topic for decades. In general, localization is
possible with sensors like GPS, rotary encoder, IMU (Inertial
Measurement Unit), laser scanner or a camera. Of course,
there exist even more sensors and each one has its own pros
and cons in terms of accuracy, drift, price, etc. The area of
application highly depends on these properties. In this paper,
we focus on outdoor localization in natural terrain. This is
an important topic for precision farming [4], for example.
Hereby, the question is always the same: Which sensors are
suitable for the application?

As discussed in [25], a GPS antenna always needs intervis-
ibility to several satellites to guarantee an accurate position
estimation. This is sometimes impossible in areas like in a
forest where trees occlude the satellites. The usage of wheel
odometry via rotary encoders is not suitable as well due
to problems with inaccuracies of the wheel geometry and
slipping situations. In comparison, an IMU allows a good
estimation of the orientation but not for the position because
the double integration of the acceleration results in a high
drift over time. A laser scanner has a very high position
accuracy on the one hand but it is very expensive and not so
well proofed for high vibrations on the other hand. Thus,
just the camera remains of the sensors mentioned above.
This sensor is relatively cheap but a position and orientation
estimation via VO is normally linked with high computing
demand and continuous growth of the drift per number of
used images. Furthermore, overexposed images and other
problems like branches that occlude cameras need a robust
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the Austrian federal government, and the federal state of Upper Austria.
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implementation of a VO to be able to get a valid pose
estimation. However, this paper shall show the applicability
of Visual Odometry to estimate position and orientation
in different wooden environments with ambiguous natural
structures.

This paper is structured as follows. Section II gives an
overview of related work. Visual Odometry and all its com-
ponents are explained in Section III. Finally, the experiments
are shown in Section IV. Last but not least, Section V
contains the conclusion as well as some remarks about future
work.

II. RELATED WORK

Visual Odometry (VO) is the incremental estimation of the
pose (position & orientation) via examination of the changes
on images due to motion induction [24]. The research
on VO already started in the early 1980s and one if its
advantage is that no prior knowledge about the environment
is necessary. A good example is the implementation of Cheng
et al. [6], [21], which was used in the rover of the NASA
Mars exploration program. Since then VO was continuously
under research, which means that the literature about Visual
Odometry is huge. Therefore, this section just contains an
overview about relevant literature of VO for the localization
of a vehicle in an outdoor environment.

Nister et al. [22] proposed one of the first real-time VO
which was capable of a robust pose estimation over a long
track. They use a stereo-camera system and detect Harris
corner features [15] in the images. 3D points are estimated
through triangulation of the corresponding features in a
stereo pair. In a next step Nister et al. use these 3D points
and the features of a following image to estimate the pose
via a 3D-to-2D algorithm as described in [24]. RANSAC
(Random Sample Consensus) [12] removes outliers in the
motion estimation step. Regarding to Scaramuzza et al. [24],
this VO procedure was a high improvement to previous
implementations and is still used by many researcher.

Comport et al. [7] use a similar procedure but estimate
the motion using 2D-to-2D instead of 3D-to-2D feature
correspondences. With reference to Scaramuzza et al. this
results in a more accurate pose because triangulation is not
needed.

In [26], [17] or [27] bundle adjustment is applied to further
reduce the drift of the Visual Odometry. Bundle adjustment
optimizes the latest estimated poses using features over more
than just two stereo pairs. Konolige et al. [17] show that this
step reduces the final position error about a factor of two to
five.
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Fig. 1: Illustrated VO problem of a stereo system
(relative transformations TC,m−1C,2, TC,mC,m−1 /

absolute transformations TC,2C,1, TC,m−1C,1, TC,mC,1)

Furthermore, the usage of additional sensors like GPS,
laser scanner or IMU can improve the pose estimation. For
example, in [1], [23], [17] or in [27] the integration of an
IMU reduces the error in orientation. In [17] Konolige et al.
achieve with their implemented real-time VO a maximum
relative position error of just 0.1 % over a 9 km long track.
Another good result is shown by Tardif et al. [27] over a
5.6 km long track. This dataset was acquired by a tractor
driving next to an orange grove and on a street for the return
to the garage.

III. VISUAL ODOMETRY

As discussed in Section II, Visual Odometry incrementally
estimates the pose. Figure 1 shows this for a typical case
using a stereo-camera system. The calculation of a relative
homogeneous transformation TC,mC,m−1 ∈ SE(3) of an image
pair {m− 1,m} with camera centers / camera coordinate
systems Cm−1 and Cm is done via features in the images. As
shown in the figure, the coordinate system of the left camera
is the reference point of a transformation TC,mC,m−1, which
transforms from Cm−1 to Cm. The rigid body transformation
is given by

TC,mC,m−1 =

[
RC,mC,m−1 C,mtC,mC,m−1

0 1

]
(1)

where RC,mC,m−1 ∈ SO(3) is the orthogonal rotation matrix
and C,mtC,mC,m−1 ∈ R3 the translation vector, represented in
the coordinate system Cm. The concatenation of all rela-
tive transformations results in the absolute transformation
TC,mC,1 = TC,mC,m−1TC,m−1C,1 from C1 to Cm.

Therefore, the main task of a VO is to calculate the relative
transformations TC,mC,m−1 and finally to concatenate them to
get the full camera trajectory TC,m:C,1 = {TC,2C,1, . . . ,TC,mC,1}
between the camera centers C1 and Cm.

The structure of our VO approach is similar to the one of
Nister et al. [22] and it starts with the feature detection and
description but it uses the more distinct features A-KAZE [2]
instead of Harris [15]. The next step is to match features
between a stereo pair and one consecutive image, either left
or right. Then, the triangulated stereo correspondences and
the matched 2D features are used for the pose estimation.

At the end, key frames are selected and windowed bundle
adjustment [28] is applied to further optimize the previous
calculated poses [27].

A. Feature Detection and Description

Feature detection is one of the most important steps
in a feature-based Visual Odometry system. Regarding to
Fraundorfer [13], important properties of features are detec-
tion repeatability, localization accuracy, robustness against
noise as well as computation efficiency. In [8], Cordes et
al. compare many different detection algorithms and the
detector A-KAZE [2] proofs to be the best candidate in terms
of localization accuracy and suitable number of detected
features. This detector is implemented in OpenCV [5] and
is an extension of the algorithm KAZE [3] to detect blobs.
In general, these features are image patterns with different
intensity, color and texture compared to its adjacent pixels
and they are more distinctive than corners [13]. This is
especially important in natural environment with ambiguous
structures like branches or leaves. In our case, A-KAZE
detects blobs in a nonlinear scale space with four octaves
and the same amount of sub-levels.

In addition to the detection algorithm, A-KAZE also
provides one for the description of a feature, which is
implemented in OpenCV as well. It converts the area around
a feature into a binary descriptor which has a length of
486 bit. Every comparison between two areas results in
three bit. The description algorithm of A-KAZE is called
M-LDB (Modified-Local Difference Binary) and is rotation
and scale invariant. According to Alcantarilla et al., A-KAZE
allows efficient and successful feature matching, which are
mandatory properties of a good descriptor.

B. Feature Matching

The task of this step is to find feature correspondences
among images. The easiest way to achieve matching between
two images is to compare all feature descriptors of the first
image with every other descriptor of the second one. This
search is quadratic in the number of features. Fortunately,
the usage of epipolar or motion constraints simplifies this
task and reduces the computation time drastically. This is
necessary to facilitate an online VO system, which could be
used on a vehicle like a tractor during its operation in a field
or forest.

Our stereo VO relies on rectified images, which are
remapped image pairs with horizontal and aligned epipolar
lines to each other (see [13]). Thus, epipolar matching just
allows a match between features which lie on the same
horizontal epipolar line or rather image row.

Descriptors of two consecutive left or right images can
be matched via a motion constraint. As proposed in [10],
we assume a constant velocity model between two frames.
Using the known motion, we can project the 3D point of a
already matched stereo correspondence into the other image.
A constant window of 2 ·35×2 ·35 pixel around the projected
position defines the allowed area of possible features and
therefore reduces the computing time.
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The comparison between two binary descriptors itself is
done via calculating the Hamming distance [14], which is the
number of different bits and a very efficient operation. Nor-
mally, the descriptor with the minimum Hamming distance
is chosen as the best match. To improve the robustness of
the matching, we additionally apply the distance-ratio-test as
proposed in [20]. It just accepts a match if the ratio between
the two closest neighbors is below a threshold rmax ∈R with
0 < rmax < 1. Using binary descriptors, the ratio rH ∈ R
between two descriptors is defined as

rH =
dH,1

dH,2
< rmax, (2)

where dH,1 ∈N and dH,2 ∈N are the Hamming distances of
the two closest neighbors, respectively. In our case, we use
an empirical threshold of rmax = 0.71 which helps to remove
ambiguous matches that can occur at repeatable structures
like branches.

C. Motion Estimation and Key Frame Selection

In this step, the calculation of the relative camera motion,
i.e. the relative transformation TC,mC,m−1 between an image
pair {m− 1,m}, takes place. Therefore, we use calibrated
stereo-cameras and two sets of corresponding features Fm−1
and Fm of the images m−1 and m, respectively.

For the 3D-to-2D algorithm, the features of Fm−1 are
defined by 3D points in Cm−1 and the one of Fm by 2D
image points [24]. Normally, we use 2D features of the left
image with coordinate system vm. Alternatively, if the motion
estimation fails due to less feature matches, features of the
right image with coordinate system v′m can also be used
to prevent a failure of the VO. The estimation of the 3D
points is done via the linear triangulation method of Hartley
and Zissermann [16], which is implemented in OpenCV
[5]. Using a function dE to calculate the Euclidean distance
[11], the transformation TC,mC,m−1 can be found through
minimizing the image reprojection error of all features

min
TC,mC,m−1

n

∑
i=1

dE
(

v,mtv,mx,i, v,m t̂v,mx,i(TC,mC,m−1)
)2
. (3)

Thereby, v,mtv,mx,i is the 2D coordinate vector of the image
point xi and v,m t̂v,mx,i the image coordinate vector of the 3D
point Xi, which is observed in Cm−1 and projected through
TC,mC,m−1 and the corresponding camera projection matrix
[16] into image m. Equation (3) can be solved using at least
three 3D-to-2D correspondences, is known as P3P (Perspec-
tive from three Points) and returns four solutions. Therefore,
at least one another point is necessary to get a single and
distinct solution. PnP-algorithms (Perspective from n Points)
like EPnP (Efficient PnP) [18] use n ≥ 3 correspondences
to solve the problem. Normally, these methods just calculate
accurate results if the used correspondences are correct. If
this is not guaranteed, the well known procedure RANSAC
(Random Sample Consensus) [12] should be used to remove
wrong correspondences, so called outliers. In [13], such
a robust motion estimation using RANSAC is explained
more in detail. Our VO uses EPnP for the pose estimation

and a preliminary non-minimal RANSAC with five points
to acquire trustworthy results of the outlier removal as
suggested by Fraundorfer et al. [13].

If the first motion estimation with the left image fails due
to less feature matches, or the motion is implausible (position
or orientation is unrealistic), then the estimation is retried
with 2D features of another image as a backup. The order
of these images is the following. Firstly, the right image
of the actual stereo frame is used. If the motion estimation
with the features of this image is also unsuccessful, then a
consecutive still unused left or right image is used until the
motion estimation step is successful. This procedure avoids
a failure of the VO with high probability.

The selection of key frames is another important compo-
nent of our VO. In general, the drift of a VO increases with
every frame, i.e. every relative motion, which is used for the
update of the absolute motion. Therefore, the concatenation
of small motions should be avoided to keep the drift as low as
possible. This means that the transformation TC,mC,m−1 should
not be used to update the absolute transformation TC,mC,1 if
the motion between the image pair {m− 1,m} is small or
even zero. Instead, we should stay with TC,m−1C,1.

We define a stereo frame m as a key frame m if its relative
transformation is used for the absolute motion update. Our
defined requirement is that the relative change in position is
bigger than 2 m or the relative angle of rotation [9] is bigger
than 20◦.

D. Bundle Adjustment

Windowed bundle adjustment [28] is the last important
step in our feature-based VO system. It is used to optimize
the relative transformations of the most recent M key frames.
For simplicity, we assume n 3D-points i ∈ {1, . . . ,n}, which
are seen in a window of M ≤ m key frames j ∈ {m, . . . ,m}.
Hereby, the index of the oldest stereo frame in the window
is defined as m = (m−M + 1). To reduce the computation
demand, our VO just uses a window with the most recent
M = 2 key frames, i.e. in total the features of four images
are used for the optimization.

Bundle Adjustment is, like in (3), again the minimization
of the image reprojection error and is given by

min
TC, j C,1,C,1tC,1X,i

n

∑
i=1

m

∑
j=m

dE
(

v, jtv, j x,i, v, j t̂v, j x,i(TC, j C,1, C,1tC,1X,i)
)2
.

(4)

Thereby, v, jtv, j x,i and v, j t̂v, j x,i are, respectively, the vectors of
the observed and estimated 2D coordinates of point i in
key frame j. Due to the projection of the point Xi into the
image plane, the estimated coordinates are dependent on the
absolute transformations TC, j C,1, the 3D coordinate vector
C,1tC,1X,i and the corresponding camera projection matrices.
The camera parameters are assumed as constant and known
via a prior calibration. The minimization of (4) is done using
the sparse bundle adjustment library of Lourakis et al. [19].
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Fig. 2: Vehicle with measurement setup and DGPS-receiver

IV. EXPERIMENTAL VALIDATION

Our realistic dataset shows the performance of our VO on a
track through a forest. It contains GPS data as well as images
during a drive of a truck on a logging road. The vehicle used
for the measurement is further discussed in Section IV-A and
sample images of the road can be seen in Section IV-B.

A. Setup

A small truck, equipped with a stereo-camera system, was
used for the measurement. The cameras are mounted on the
back of the driver‘s cab via aluminum profiles and magnets.
This mounting position guarantees a good viewpoint back-
ward without having unwanted objects within the field of
view. In addition to the cameras, a DGPS-unit (Differential
Global Positioning System) is used for ground truth although
the signal strength lacks inside the dense forest.

The vehicle and its measurement setup is shown in Fig. 2.
The cameras are mounted parallel on an aluminum profile at
a distance of approximately one meter. The 12 V battery of
the truck powers both cameras inside the wired box. Two
Gigabit Ethernet cables facilitate the data transfer of the
stereo-camera system, which operates at 10 Hz. A higher
sample rate of the cameras is unsuitable due to the high
computing time of the VO. We used the following sensors
and devices:
• 2× JAI GO monochrome-cameras (JAI GO-5000M-

PGE) with a maximal sampling rate of 22Hz with the
full resolution of 2560×2048 pixel

• 1× DGPS-system with open sky localization error of
ca. 2cm/0.1◦

• 1× Xsens MTi-30 IMU with 400 Hz sampling rate
(additional sensor for further experiments)

• Lenovo Thinkpad S540 with Intel Core i7-4510U CPU
@ 2.00 GHz and 16 GB RAM
Windows 7 Professional SP1 - 64 Bit

The JAI GO cameras allow a maximum resolution of
2560×2048 pixel. Due to lots of bumps on the logging road,
the long exposure time of the cameras might blur images
at darker areas of the forest. Therefore, we use 2× 2 pixel

(a) (b)

(c) (d)

Fig. 3: Sample images of the driven logging rode

(a) Left stereo image (b) Right stereo image

Fig. 4: Stereo image pair with branch occlusion

binning and a resulting resolution of 1280× 1024 pixel to
decrease the exposure time. The resolution of the images is
further decreased to 640×512 pixel by software to reduce the
computing time of feature detection and description. After
the decrease of the resolution, a rectification of these images
is also done.

B. Experiments

Our dataset contains two different drives of the presented
vehicle on a logging rode and illustrates a realistic perfor-
mance of our VO system. Figure 3 shows some road sections
of our scenarios. Widespread areas and overexposed images
may result in an inhomogeneous distribution of features,
which is a big challenge for the VO.

The first scenario of our dataset is a 3× 75m long test
drive on the part of the logging road, which is shown in Fig.
3a. In this dense forest area, our proposed VO demonstrates
its robustness against overexposed images and occluded
cameras like shown in Fig. 4, where a branch occludes the
left camera entirely. The implementation is robust enough
to handle such situations and still estimates a valid pose.
The results of our test drive are presented in Fig. 5. The
starting point is marked with a circle. Due to the low signal
quality of the GPS, the reference position exhibits some
inconsistencies. The plotted coordinate system is the one of
the GPS with X pointing to East, Y to North and Z upwards.
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Fig. 5: Scenario 1 – Comparison of the estimated trajectory with GPS

As shown in Fig. 5, the estimated pose of the first 75 m
fits very well with ground truth. The estimated trajectory
of the return slightly deviates from the GPS reference.
The inaccurate estimation of the orientation happens due
to occlusions of the left camera like it is shown in Fig. 4.
However, our robust VO prevents a total failure and still
allows a valid but slightly inaccurate pose estimation via
using images of the right camera instead. The third track of
the logging road is estimated well as a straight line again.

Using the mentioned laptop, the computation time of our
off-line VO of this scenario is about 0.529 s per stereo pair.
This time duration is increased due to the occlusion of the left
camera, which acquires the additional processing of the right
image instead of just the left one. This problem especially
happens at the return of the vehicle because the cameras are
mounted on the back of the driver‘s cab.

The second scenario of our dataset is a 3× 2169m long
drive of the presented vehicle on a logging road. This
scenario should deliver an answer about the drift behavior of
our implemented VO. Figure 3b represents the first image of
this sequence. The results are shown in Fig. 6. The estimated
trajectory is inconsistent with the ground truth and just the
first 2169 m long loop can be identified somehow. Then, the
trajectory continuously deviates from the driven track. If we
look closely at the start of Fig. 6, it shows that distances are
estimated too large in general. The whole trajectory seems
to be scaled compared to the original track.

For a better understanding of the results, it is helpful
to further investigate the 3D-trajectory illustrated in Fig. 7.
Referring to the estimated VO path of this figure, from the
beginning the truck starts to move downwards and also to
twist sideways. This results in a distorted trajectory instead
of a more or less planar movement of the truck.

The explanation of the occurrent problem can be found
with a closer look at the features, which are used for the pose
estimation. Figure 8 shows the detected A-KAZE features
of Fig. 3b, and the sweeping area only contains a few key
points. Most of them are found at the treetops in the upper
half of the image. In the worst-case scenario, for example if
all trees have the same height, all features are just on one line
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Fig. 6: Scenario 2 – Comparison of the estimated trajectory with GPS
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Fig. 7: Scenario 2 – Comparison of the estimated 3D-trajectory with GPS

instead of being well distributed in the image. The outcome
of this is an ill-conditioned pose estimation and hence an
inaccurately estimated distance and pitch-angle. The problem
of this scenario is that image positions hardly change by a
further increase of the distance.

However, as shown in Fig. 9, the yaw angle can be
estimated well because a planar rotation definitely changes
the image positions of these features. The figure clearly
illustrates every turn of the track and the good consensus
of the yaw angle for each loop. Just some minor deviations
due to different drive behavior and drift can be seen. This
means that Fig. 9 shows the potential of our implemented
VO for applications which mainly rely on a good estimation

Fig. 8: Features of two left images used for pose estimation
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of the yaw angle like it‘s necessary for agricultural vehicles.
Using the given laptop, in average the computing time of

the pose estimation takes 0.349 s per stereo pair. This equates
to approximately three pose estimations per second.

V. CONCLUSION AND FUTURE WORK

We developed a Visual Odometry system that is based on
a stereo-camera pair and capable of estimating the position
and orientation of an agricultural vehicle in GPS-obstructed
environments. We deployed our system on a small truck
and carried out measurements for two different logging road
scenarios. The results show that an insufficient distribution of
features can lead to an ill-conditioned pose estimation, and
hence to an inaccurately estimated distance and pitch angle.
Due to the incremental concatenation of relative motions,
this results in an increased error in position. However, our
robust VO system is highly capable of estimating the orien-
tation (yaw angle) with acceptable accuracy in unstructured
environment. This is especially shown in the first scenario in
the dense forest where the signal quality of GPS lacks.

Future work includes the improvement of the distribu-
tion of features and hence the pose estimation. Uniformly
distributed features could be achieved via using different
detector parameters for the upper and lower half of the
image.

Another goal is to reduce the computing time of the VO
to facilitate an online system. This can mainly be done via
the parallelization of repeatable tasks like feature detection
and description.

Furthermore, the next steps include the incorporation of
the data of an IMU that were recorded simultaneously during
our measurements. We plan to use a data fusion algorithm
such as a Kalman Filter to improve the overall accuracy by
combining the VO with the IMU data.
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Development of a fully Automated tuning system for organ pipes*

Clemens Sulz1 and Markus Trenker2

Abstract— Many pipe organs consist of thousands of pipes,
divided basically into two different types: flue pipes and reed
pipes. Because of the fact, that the principle of sound generation
differs, reed pipes must be tuned by hand periodically, which is
a time-consuming and thus expensive process. The aim of this
project was to do a feasibility study, to determine if this tuning
process can be automated and to build up several prototypes for
extensive testing. Thereby different actuator technologies were
examined and evaluated. Finally a very cheap and compact
actuator solution was developed. Appropriate software for
controlling the system was programmed and the required drive
electronics were developed. Tests with the prototypes have
shown that the system is able to perform the tuning process
in much shorter time than a human being with satisfying
precision.

I. INTRODUCTION

The pipe organ, called the king of instruments, has fasci-
nated people for hundreds of years. It is the only instrument,
which is played by feet and hands simultaneously, produces
a huge range of tone colors and covers the whole frequency
spectrum of the human hearing. Pressing a key causes air to
stream into specific pipes, whereby each pipe produces one
tone with a determined tone pitch and timbre. There can be
thousands of pipes in a single pipe organ, with each pipe
producing a unique sound.

Basically, two types of pipes are used in pipe organs: flue
pipes and reed pipes (left side of Fig. 1). The sound of the
flue pipes is generated in the same way as in a real flute.
The air stream strikes against the lip and begins oscillating
with a specific frequency. The result is a standing wave or
vibrating column of air inside the pipe body. These are the
facade pipes a beholder can generally see in a church and
which represent the majority of the pipe stock.

The pipes of the other type, reed pipes, work in a
completely different way and are hidden inside the organ.
Within the pipe foot there is a metal tongue, which begins
to oscillate, if air flows through the pipe (right side of Fig.
1). The so-called tuning spring is used to adjust the pitch
of the reed pipe, because it defines the oscillatory length of
the tongue. The tone color of reed pipes allows imitating
trumpets, clarinets, oboes or other wind instruments.

*This work was supported by Rieger Orgelbau GmbH, Schwarzach
1Clemens Sulz, MSc wrote his Master Thesis about this topic and got

his degree as MSc in Engineering at University of Applied Sciences, FH
Technikum Wien, Vienna in 2016 clemenssulz@yahoo.de

2DI Dr. Markus Trenker supervised this Master Thesis and
lectures at the Institute for Advanced Engineering at University
of Applied Sciences, FH Technikum Wien, 1200 Vienna
markus.trenker@technikum-wien.at

Fig. 1. Left picture: both types of organ pipes (reed pipe and flue pipe);
Right picture: inner parts of reed pipe (tuning spring is moved to tune the
pipe)

II. PROBLEM DESCRIPTION

The pitch of flue pipes depends directly on the velocity
of sound, which in turn depends on air temperature. So the
pitch is lowered, if the temperature is decreased and vice
versa. Because of the fact, that in reed pipes the tongue
oscillates and not the air, the pitch of these pipes stays
almost constant. A temperature change of just 1-2°C causes
an audible detuning of the organ. Not least because of the
lower number of reed pipes and their easier tunability, the
pitch of the reeds is tuned to the pitch of the flue pipes.
To tune the pipes the tuning spring has to be moved up
or down for each single pipe. Generally this tuning process
requires two people (one sitting at the keyboard pressing
down the keys and one tuning the pipes) and takes between
a few hours and several days for big organs. Because of
the associated expense, the reed pipes often are not in
tune and are not used by the organist. The aim of this
project was to develop a system, which can tune reed pipes
automatically. Refined, the aim was to determine whether
a technical system is basically able to tune the reed pipes
with satisfying precision in an acceptable amount of time.
Furthermore, because of the number of reed pipes (usually
a few hundred) the solution should be very cost-effective.
Especially the little reed pipes were a challenging object
of research due to the high sensibility of the tuning spring.
Thereby movements of less than a micrometre are required
to adjust the pitch exactly enough. The final stage of the
project was to build a few prototypes to test and demonstrate
the abilities of the system.
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III. STATE OF THE ART

At the beginning of this project an extensive market and
patent review was done to find out, if any similar applica-
tions are already on the market. Thereby a few patents for
automated organ tuning were found belonging to the German
organ builder Voigt ([5], [7] and [6]). Furthermore, a project
within the framework of a bachelor thesis by Fachhochschule
Kiel [2] was found. But in contrast to the idea of automating
the tuning process for reed pipes all these applications are
developed to modify the pitch of flue pipes, whereby these
projects are primarily concerned with conceptual studies.
The company Rieger Orgelbau [1], which was the main
cooperation partner for this project, has developed a system,
which allows the tuning person to control the organ with a
smartphone app. Specifically it is possible to play the keys
of the organ via the smartphone, so the second person is no
longer needed. This system represented the newest state of
technology at the beginning of this project. If an actuator,
which should be developed in the course of this project,
would be combined with this system, a fully automated
tuning application would be established.

IV. ACTUATOR RESEARCH

Following the analysis of the mentioned system a research
on actuators was performed. Thereby the most important
criteria were cost efficiency and space requirements. Fur-
thermore the components and structure of reed pipes should
not be modified, or if it is unavoidable, as little as possible.
This would make it feasible to upgrade already existing
organs with the tuning system. Before the research took
place, force investigations on various tuning springs on three
different pipes of different size were conducted to determine,
how much force an actuator should be able to apply. The
highest value which was measured was 6,0N. Including an
appropriate safety surcharge for the following research a
minimum guide value of 10N was defined.

A. Piezoelectric drives

Because of the required precision, piezoelectric drives
were examined as a first step. One possible new type of
piezo drive is the motor X15G (Fig. 2) from Elliptec [3]. If
the piezo crystal inside this actuator is driven by the natural
resonant frequency of the whole actuator, the rotor begins to
move forward. With a second specific frequency the motor
could also be moved backwards. According to the datasheet

Fig. 2. Piezo motor X15G; 1...wires, 2...piezo ceramic, 3...resonator,
4...spring, 5...rotor [3]

Fig. 3. Piezomike [4]

Fig. 4. Piezomike implemented on reed pipe

the drive can also be used as a linear actuator, whereby the
drive could be attached directly to the tuning spring to move
it up or down. Unfortunately, it became apparent that this
drive can only raise 1.2N, which is much too little for this
application.

A second piezoelectric drive, which was investigated, is
the Piezomike (Fig. 3) from PI GmbH [4]. With 20N thrust,
it would be strong enough for the tuning application. The
piezo crystal inside the actuator is expanded slowly because
of the controlled increase of voltage, whereby the gripper
starts rotating the screw. If the final position is reached,
the voltage is switched off and the gripper goes back to
the starting position jerkily without moving the screw. Right
side of Fig. 4 shows a schematic diagram for a possible
implementation on a reed pipe with a spring, whereby the
tuning spring is pulled against the Piezomike. A resulting
advantage with this kind of drive would be the possibility to
tune the pipe manually through rotation of the screw shaft
without disassembling the tuning system. Unfortunately the
high price of 500$/pcs. inhibits the application in this project.

B. Stepper motors

Because of the possibility of fine positioning of stepper
motors, these drives were investigated following the piezo
drives. Stepper motors with premounted threaded-spindle
shafts were examined in detail. A possible application is
illustrated in Fig. 5. The spindle nut in combination with
a connected adapter part transforms the rotation into transla-
tional movements for the tuning spring. This solution could
bring up the required forces, but because of the centric motor
shaft and the frame size of a stepper motor this motor type
would not fit between the pipes.
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Fig. 5. Stepper motor with threaded shaft as tuning device

C. DC gearbox drives

As a smaller and cheaper alternative to stepper motors DC
gearbox motors were explored. Thereby the structure with
a threaded shaft, as in the last section on stepper motors,
should be used. Due to the gear reduction such a motor could
be significantly smaller. Also the drive electronics would be
simpler to implement.

V. PRACTICAL REALIZATION

In the following section the implemented solution is
described in detail.

A. Implemented drive technology

Owing to the fact, that the last described drive technology
with a gearbox motor seems to be the best one, it was
chosen to build a prototype and for further evaluation. An
appropriate gearbox motor was available, wherefore this
drive was used for a first prototype (Fig. 6). For testing the
prototype, software, which will be described in section V-
C, was developed in parallel. With the experimental setup,
first successes in tuning the pipe were achieved. Nonethe-
less searching for alternative gearbox drives was continued,
whereby a very compact and cheap gearbox motor was
found, which is perfectly suited to the tuning application.
This drive already has a threaded metric output flange.
Furthermore, there is an alternative ”‘Flip-Type”’ of this

Fig. 6. First prototype with gearbox motor

Fig. 7. Prototypes with compact gearbox motors

motor available. Thereby the input and output shaft are on
the same side of the gearbox. This allows a more compact
design and the reduction of the distance between the tuning
spring and the threaded shaft. In Fig. 7 prototypes with both
kinds of motors are pictured. Note that the left prototype
contains the same pipe as in Fig. 6 to enable one to see the
difference in size. To transform the rotating movement of
the spindle into translation for the tuning spring, an adapter
component of high-strength plastic was manufactured. In this
component the tuning spring is fixed with a grub screw. If
this single screw is loosened, the pipe can be tuned manually
without disassembling the automatic tuning system. Thus
an excellent, mechanical solution for the tuning system
was found. Because of the low thread pitch, high precision
positioning in micrometre range creates no problems for this
actuator system. Additionally, the high gear reduction results
in a very low drive torque needed for the motor. Performed
force measurements showed, that the solution can generate
about 60N, which is 10-times more than required.

To move the tuning spring and correct the pitch of the
pipes, a control loop is necessary. This loop must contain
the final control element or actuator, which executes the
calculated move, frequency detection and a logic unit or
software, which processes the frequency measurements. In
Figure 8 such a control loop is depicted.

Fig. 8. Control circuit for automated pipe tuning
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B. Frequency detection

At the beginning of this project the bought-in tuning
device TLA CTS-32-C [8] was used for pitch detection. It
communicates with the software part over an USB-Interface
and was especially developed for organ builders and their
needs. Because of the high price of the tuning device, an own
solution for detecting the frequency was developed. Using a
variable bandpass filter, it is possible to extract a sinusoidal
wave with the fundamental frequency of the pipe from a
complex audio signal, which is recorded by a microphone.
Through detecting the zero-crossing-rate of this sinus the
pitch of the pipe can be calculated directly, using an Arduino
platform for this purpose in prototype stage.

C. Software

For calculating the required movements of the motors
from the frequency measurement, appropriate software was
developed in C#. For controlling the tuning system in the pro-
totyping phase a graphical user interface (GUI) was designed.
The tuning device and the electronics (described in the
following section) are connected via USB to the computer,
on which the software is executed. On the GUI the current
divergence to nominal frequency is charted in real-time.
The motors are not driven continuously, but stepwise. The
length of the switched-on pulses depends on the divergence
to nominal frequency of the pipe, followed by a stop until
the next pulse length is calculated. This stepwise mode is
needed because of the very high sensibility of the reed. At
the smallest pipes a one micrometer motion of the tuning
spring results in 0.5 cents deviation of pitch.

D. Electronics

To transform the calculated pulses from the software into
voltage for the motors, drive electronics and an appropriate
logic unit are needed. Therefore, an Arduino board with three
motor shields (extension boards) was used. Each board can
drive two motors, so six pipes can be connected simultane-
ously for prototyping. Furthermore, the motor shields support
motor current measurement, so it can be detected without
additional sensors, if the motor is stalling, e.g. if the tuning
spring has reached its end position.

VI. RESULTS

After finishing the constructing phase, the prototyping
setup was tested extensively. An endurance test was per-
formed with one pipe to verify fatigue strength of the system.
Thereby the motor moved the tuning spring for about 20
hours continuously (3715 tuning cycles), until one gear wheel
was abraded. This number of tuning cycles would never be
reached in a real organ, so the drive is applicable from this
point of view.

The precision and the speed of the automated tuning
process meet the requirements set for this project. A pipe can
be tuned in less than ten seconds with satisfying precision
(±0.5 cents), whereby the manual process takes about 30
seconds for each pipe. The system can perform tuning even
more accurately, whereby the tuning time increases.

Fig. 9. Resulting tuning process of reed pipe (green...nominal value,
red...actual value)

VII. CONCLUSION AND OUTLOOK

Overall, the main aim of this project, to evaluate the
possibility of automated reed pipe tuning, was reached at
an early stage and extensive additional developmental work
was done. Because of the low price and the small size
of the implemented actuator the results actually exceeded
the author’s own expectations by far. In future work the
software should be transformed from PC to an embedded
system and should be integrated into the real organ control
system. Thereby the organ could be programmed to tune
itself at specific dates or tuned by starting the process from
a smartphone from anywhere. Using more than one bandpass
filter would enable tuning several pipes simultaneously. That
would be a significant advantage over to manual pipe tuning.
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RobWood - Smart Robotics for Wood Industry
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Abstract— Many branches of the manufacturing industry in
general, and smaller wood processing companies in particular,
are facing challenges related to producing ever smaller lot sizes
under increasing time pressure. The RobWood project aims
to increase the flexibility of such companies by providing a
tool-chain to easily program robots for wood processing. In
this paper we present an overview on our approach to robot
programming by using models of the finished product.

I. INTRODUCTION

Austrias wood processing industry accounts for 10 billion
Euro, and ranks with a 3.9% trade balance surplus on second
place just behind the tourism industry (4.2%). Each year,
about 18,000 building construction permissions are issued,
where prefabricated houses have a share of approx. 30-
35%, with an upward tendency over the last years [2]. Ever
higher demands regarding quality standards and individuality
pose serious challenges to companies in the wood processing
industry.

The goal of the RobWood project is to enable strong
individualization of products at an equal or higher level of
production efficiency through new technological approaches.
The integration of robotics, sensor technology, and knowl-
edge transfer with appropriate human-computer interfaces,
applied in production, helps to optimize operating procedures
in the wood industry. The use cases on which we work
on in this project come specifically from the manufacturing
of wooden prefabricated houses. Here, every house can be
individualized but the parts are prefabricated in a factory
instead of building them on site. In order to do this, many
different steps have to be performed at each part like cutting,
milling and clamping and the joining of different parts like
steam brakes with the wooden elements.

Model-based programming is a powerful concept, which
can lead to more natural interaction and easier programming
of industry robots. Employees in smaller wood processing
companies without in-depth knowledge regarding traditional
robot programming will so be able to program robots them-
selves.
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Research into intelligent technologies for accessing the
data and knowledge created thereby has a strong leverage
effect on its usage, already within single production enter-
prises and additionally across company boundaries.

The robot based production optimization pursued by the
project has enormous potential regarding the creation of new
jobs also in more rural areas, the efficient use of resources,
and the transfer of insights to other sectors.

The rest of this paper is structured as follows: In section
II we present related work, in section III we describe the
challenges of automated wood processing, in sections IV and
V we present the concept and tool chain of our solution and
finally we conclude in section VI.

II. RELATED WORK

The trend towards computer based planning and process-
ing methods has been finding its way into the wood manufac-
turing industry since a few years. In some sectors of the man-
ufacturing industry, automated CAD/CAM (computer aided
design/manufacturing) systems that generate machining data
for use in lot size one manufacturing out of geometrical CAD
data already exist - such as in the prefabricated concrete parts
industry, and of course metal cutting on CNC machines as
well as additive printing for prototype construction.

A. Model-based industrial Robot Programming

New research work is investigating new programming
methods for making complex tasks easier to program for
standard industrial robots [9]. Common approaches include
offline programming methods with a complete 3D model [7].
The second common procedure called teach-in, or online
programming, is very time consuming for complex task
processing. Other approaches such as intuitive robot pro-
gramming for SMEs (small and medium-sized enterprises)
are described e.g. in [3], [13]. This approach is based on new
types of e.g. gesture-based definition of poses, trajectories,
and tasks. It is based on a visual programming concept that
allows non-skilled programmer operators to create programs.
For complex manipulation processes with a huge amount of
CAD models, this approach does not significantly reduce the
effort for the programming task.

B. Model-based Approaches

In short, model-driven engineering (MDE) [12], [14] is
summarized as follows: model once, generate anywhere. This
principle is particularly relevant when it comes to the build-
ing of robot applications. The modeling is done on different
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abstraction levels and the (mostly) automated translation
of models to machine readable codes increases efficiency
for creation and maintenance of applications. Combined
with the improved quality of implementation and reduced
fault susceptibility, flexibility in production can be increased
significantly. Another approach is the use of domain specific
languages (DSL) [4]. These have been drawing attention
especially in the area of service robotics during the last few
years.

C. Complex Wood Manufacturing Processes for Robots

Typically a user of such a robot based environment has to
perform different subtasks along a given manufacturing wood
processing chain [6]. A technician may look at technical
features, the customer indeed is mainly interested in how
satisfactory they are solved. Automatically the user is scoring
his satisfaction within the process execution, either in terms
of time to perform, the process stability or comparing out-
come quantity, efficiency and limitations. Complexity may be
defined as the necessity to involve more than pure kinematic
robotic control to perform a task, therefore going beyond the
well-known operations.

III. PROBLEM STATEMENT

The main focus of innovative and new type of model based
robot programming for wood manufacturing industries lies
on the ease of use for non-experts in robotics coming from
this specific domain. No knowledge about traditional off-
line-programming or specifics of robot programming should
be required. This requires the selection and implementation
of an applicable method for creating the necessary data
about manufacturing steps for the machining of solid wood
elements with an articulated robot using different kinds of
tools. As human labour is an integral part of manufacturing
however, to make such a system available on the market
today, interactive methods for the collaboration between
human workers and a robotic system have to be examined
and established.

Production steps where human interaction with the work
piece is necessary should be kept at a minimum, where the
machine operator can decide between using human labour
where it might save time or material, while keeping the robot
as fully engaged as possible. To ensure this, the commands
for the robots need to be generated directly from the CAD
plans, which have been enhanced with semantic information.
Interfaces between CAD systems and robot installations need
to use standardized formats as often as possible. In CAD
there are various specific formats available, which need to
be analysed, evaluated and may be adapted or enhanced for
the intended use. The evaluation of existing open standards
is also an important task in the RobWood project. However,
future industrial use and uptake of the proposed technologies
are subject to support by the CAD system providers. There
are standardized interfaces in existence for use in CNC
(computerized numerical control) production environments
(DIN 66025/ISO 6983). These are mainly used for portal

systems and toolsets and might need adaptation for usage
with buckling arm robots.

Starting from a desired pose of an robots attached tool,
one has to solve the so called inverse kinematics prob-
lem for a robot to obtain the corresponding robot axes
configuration [5], [10]. This problem is difficult to solve
mathematically, and typically has several solutions as shown
in Figure 1 for an elbow up and elbow down configura-
tion. A model-based approach, however, would offer this
functionality for a broader spectrum of robot types and in
particular, as accessible component earlier within the model-
based software tool chain.

For the intended use case the number of produced unique
pieces is one, although the reuse of parts of the models
has to be considered. This also affects the specifications for
creating enhanced user- and programming interfaces. Apart
from specific variables such as technical interfaces, drivers,
catalogues and configurations, the resulting user interface
should strive to be as independent from the robot system as
possible. System configuration should be kept to a minimum
and is done with simple configuration procedures and minor
manual settings. The process should not require an expert in
robot programming or setup.

Special care is to be taken to ensure that the person
resetting the system is not able to bypass security measures
built into the system and that access to the robot for
configuration is only available during idle times. Especially
the manual steps required during a reset are to be built
with simple visually enhanced instructions so that the wood
manufacturing personnel can safely perform the necessary
procedures without the help of experts in robotics.

The particular requirements of the wood manufacturing
industry imply the necessity of a tool catalogue, which holds
all required and possible tools as well as their corresponding
procedure parameters such as speed of operation and logistics
of operation. These catalogues can differ between system
configurations, for example for the same procedure but
requiring different tools. Bringing the various configurations
into a form that is both readily comprehensible as well
as comprehensive will be one of the challenges of the
proposed project. To provide this system also for timber
frame construction the various steps related to treatment,
positioning and assembly need to be considered as part of the
overall procedure, even though these tasks are not be fulfilled
by the same robot system but with an assisting system, yet
at the same time keeping the transparency for the user.

Special focus is granted to the usage of the envisioned
systems in time sharing and collaborative environments,
where different companies share one robot system or a
specialised provider offers the robot system as a service. This
increases the importance of using standardized interfaces to
offer the simple exchange of treatment models and object
data while at the same time ensuring IPR (intellectual
property). The vision for the final system is to integrate the
whole class of production control systems and production
planning systems. As various robot systems could be part of
the same production not only the machine-to-human but also
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the machine-to-machine communication has to be taken into
account.

IV. THE ROBWOOD CONCEPT

The main task of the RobWood project is the development
of several tools, which allow to combine each other in a very
flexible and fast modifiable way.

A. A Model driven Approach

First of all, an overall controlling software, which is
able to process and forward CAD-data, is needed. Within
the RobWood project this software implementation has been
named Manufacturing Execution System (MES). A data sink
from this MES has to be a robot cell controller, which
takes care of all the robot related information such as the
actual position or the life cycle status of particular tools.
The cell controller should actually serve as abstraction layer
between the MES and the robot platform. As many different
robots can be applied, every robot would need a customized
cell controller in order to meet the interface requirements
of the MES. Additionally, a Quality Inspection Unit (QIU)
has been developed. This is a vision based unit and is
responsible for controlling and ensuring the lasting quality of
the workpieces. In order to achieve a high grade of flexibility
and reusability of data, a cloud service for exchanging CAD-
data with other companies and users is implemented. This
unit is called Cloud Exchange Service (CES).

B. The Production Workflow

The combination and way of interaction of all parts
involved in the RobWood project is visualized in figure 1,
where all the gray shaded blocks indicate tools, which have
been developed within the project.

Fig. 1. Relations between the participating Units.

At the beginning, the designer designs, layouts and an-
alyzes the house. During his/her work in the CAD-system
this design is broken down into automatically producible
elements. After handing over the elements to the MES,
they are nested with other elements if possible and handed
over to the production process. The production process

is a quite broad term, starting from laser applications to
plot the elements, augmented reality applications, printing
plans or barcodes over to the actual manufacturing of the
product. In this phase it is possible to interact with other
plants or the cloud services to optimize production (e.g.
by producing similar elements with specific characteristic in
a plant dedicated to these). When the elements are taken
over to the production process they are forwarded to certain
cell controllers specified to interact with an unique robot or
machine. These cell controllers are placed on site and give
detailed insights in the actual work in progress of the robot.
The main purpose of these controllers is to abstract the robots
interface to the MES and give a more detailed insight for the
user. The robot itself controls mechanical units needed to
manufacture the product or to grant safety to the users.

C. Domain Specific Language

A Domain Specific Language (DSL) is a useful concept,
which basically depicts a programming language that is
created for a specific purpose. In other words, a DSL is a tool
with limited focus, which we found to be an ideal opportunity
for the RobWood project. Domain specific modeling is often
used to describe concerns in robotics with concepts and
notations to get closer to the respective problem domain and
to raise the level of abstraction [8].

For the project we chose to implement a textual DSL
instead of a graphical one as many frameworks are only
available for the Java language runtime stack. A textual
DSL also provides better integration to apply it in the future
system which is based on the .NET language stack.

The most relevant issue in our selection process is the
integration of the DSL in the .NET language stack. Another
point that we have considered is the integration in a future
platform. For these reasons we have decided to choose an
internal DSL because we are able to implement our approach
in a more affordable way. This kind of language fits very well
for reactive systems, which are the systems that respond to
external events, similar to robots. For all these aspects, the
F# programming language was chosen to build our domain
language.

Fig. 2. Diagram of the Production.

In figure 2 the whole production process is visualized as
a sequence of several tasks described by the DSL. These
particular tasks can again be described as a composition of
more fine-grained tasks. Such an example of the pick up
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Fig. 3. Diagram of the ”pick up panel” process as stated in figure 2.

panel task is shown in figure 3. Our DSL has three main
commands to build each process. A process is used when a
process starts. The name of the process is set as an attribute
in the syntax. A task describes an automatized operation.
The use command is used when the process is supposed to
use a specific tool. Parameters can also be used to configure
the behavior of the tool. So, the pick up panel process as in
figure 3 can with the help of the DSL finally be written as
follows.
p r o c e s s ” p i c k u p p a n e l ”
t a s k ” check s e c u r i t y ”
use ” arm ” p a r a m e t e r s v ” 5 . 5 , 6 . 0 , 8 . 0 ”
use ” v a c u u m g r i p e r ” p a r a m e t e r s ” ho ld ”
use ” arm ” p a r a m e t e r s ” 3 . 5 , 3 . 0 , 8 . 0 ”
use ” v a c u u m g r i p e r ” p a r a m e t e r s ” drop ”
use ” l a s e r ” p a r a m e t e r s ” 0 . 0 , 0 . 0 , 0 . 0 , 1 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , 0 . 0 ”

V. TOOL CHAIN

A. Manufacturing Execution System

The Manufacturing Execution System (MES) is responsible
for preparing the CAD data for production and for performing
and tracking the transformation of raw materials into finished
goods.

As depicted in figure 4 the product is handed over by the
CAD system. First, the MES checks, if the delivered data
is correct regarding syntactic and semantic concerns such
as closed contours or the considerations of the maximum
producible dimensions. If these checks fail and an automated
manufacturing process cannot be guaranteed, a meaningful
report will be presented to the user, so that he can take further
corrections.

After validating the CAD data, the system forwards the
data to the CAD reader, which transforms it into an internal
representation. Therefore, the beams of timber and panels
of timber or gypsum are merged into elements according
to their identifiers. Then, the surrounding contour of the
elements is calculated. After that the beams of timber can be
stored in the database. Since the beams are not part of the
automatic manufacturing process, this information is only
used for displaying them within the production units plan
as well as to calculate the positions where the gypsum and
timber panels have to be connected to the beams. The next
step is to store the panels and the position (layer) of the
steam brake in the database. Finally, all mounting parts for
the particular processing steps are determined and written to

the CAD file. This parts could be e.g. drillings for power
outlets or heating systems.

Fig. 4. Scheme of the Manufacturing Execution System.

The next unit within the MES is the CAD generator. In
this step the positions for clamping are generated. There-
fore, positions alongside the beams are calculated within a
given distance. The dimensions of the steam brake is also
calculated in this step. Since the steam brake is considered
to be cut orthogonally only, and to be at least as broad as the
element, this step can be reduced to calculating the length
according to the elements contours surrounding rectangle
plus some extra overhang.

The fourth part of the MES is called Nesting and enables
the user to produce multiple elements to be processed on a
single carrier. Elements are placed next to each other within
certain constraints, which include dimensional restrictions,
maximum number of mount parts per carrier or the minimum
distance between elements. The latter is important to prevent
an overlapping of the steam brake.

After the elements are nested on carriers the whole
production process can be observed and planned in the
production unit list. This list shows the current state of the
production unit and it is also possible to view or print the
plans of these production units, showing all the details of the
elements contours according to their position on the carrier.
Similar to this plans the carrier can be augmented by further
information from a laser system.

The last unit of the MES, before the product is handed
over to the production, is the NC Data Export. When the cell
controller requests a new production unit, the MES prepares
the next production unit in the production unit list to be
produced.

Throughout the whole manufacturing process, the produc-
tion unit can be tracked and its current status can be ob-
served. Further, it is possible to analyze production, failures
and throughput through a reporting service provided.

B. Cloud Exchange Service

The Cloud Exchange Service (CES) offers the opportunity
for several companies to exchange different CAD modules,
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the corresponding metadata and tool catalogues. The purpose
of the CES is to lower the integration barrier of cloud
services for SMEs. Its key functions are the management
of CAD data. The CAD-files are of particular interest within
RobWood, but also within non-spatial information such as
processing sequences, which should be made more accessible
and easily available through the cloud-exchange services.
Cloud services may also be used to evaluate this data.

Fig. 5. Scheme of the Cloud Exchange Service Unit.

A general structure of the system is shown in figure
5. The system is developed on the basis of microservices
architecture explained in [15], which provides more flexibil-
ity, resilience and scalability than a monolithic architecture.
These microservices are small services that are in charge of
small tasks. So, it is possible to build the whole system by
the combination of them. The microservices are independent
and connected through a RESTful API [11]. If needed, there
can be added more microservices with few changes in the
system architecture.

C. Cell Controller

The cell controllers main purpose is to request new data
from the MES, optimize it for the specific robot platform and
forward the prepared data to the robot. Besides that, it also
serves as a human device interface, visualizing the status of
the robot on a detailed level, giving the user more insight into
the tasks performed by the robot. The information received
from the MES contains all necessary data to automatically
produce the elements on the carrier which is currently at the
robots station. This includes all panels to be cut and placed,
the steam brake and the drillings and clamping positions.
Depending on the layer of the data blocks, their complexity
and their position (e.g. path planning) a rearrangement of
those can be done by the cell controller to increase cycle
time and decrease waste. Each of these data blocks represent
a single task to be performed at the robot.

Furthermore, the cell controller monitors the stock of
raw materials and alerts the user if the cell runs out of

timber or gypsum panels. Errors detected during production
and the progress of the production unit are reported to the
MES as well, depending on their severity and the kind of
repair actions to be taken. Finally, after all tasks have been
committed by the robot, the cell controller notifies the MES
and requests the next production unit.

D. Robot

The robot is the last instance in the production line of the
manufacturing process. It consists of a control unit able to
receive new tasks from the cell controller. Each task consists
of a single work package, e.g. contour and position of a
panel. This package is handled by the robots control unit and
split into single mechanical movements. The most important
abilities of the robot are cutting, positioning, clamping and
stapling the panels as well as placing the steam brake and
drilling holes (e.g. for power outlets).

After the robot gets the task assigned to place a panel,
it has to lift the panels out of the store. While doing so,
it has to check if enough panels are on stock for future
proceedings. If this is not the case it has to indicate the
cell controller to notify the user. Since the refilling of the
panel storage is not automated, the user has to fill these
by hand. After lifting the panels, the robot places them on
a dedicated work bench, the carrier, where the cutting is
performed. The cutting is executed according to the contour
information handed over by the cell controller. Depending
on the material to be cut (e.g. timber, gypsum) the robot
will change its tools automatically. Since the work bench is
sloped down, the waste and dust emerging during cutting
slips off the panel and has not to be removed explicitly.
This allows that further layers can be positioned without
an additional cleaning step. When all parts of a layer are
positioned, the robot gets the instructions to nail the panels.
Again, the tools are changed and staples or nails are driven
through the panels into the beams to tighten them. Depending
on the layering of the element the steam brake is applied
after this step. To do so, the roll containing the steam brake is
released and the robot pulls off the steam brake from the roll.
After reaching the desired length, an orthogonal cut is made
and the roll is locked again. After applying the steam brake,
additional layers of panels can follow where the previous
described steps have to be repeated. When all layers of the
element are produced, the robot starts to drill holes through
the panels and the steam brake before the production unit is
released and handed over to the next production station of
the plant.

E. Quality Inspection Unit

The Quality Inspection Unit (QIU) is used for supervising
the clamping process required to combine different wooden
elements. It consists of a number of components, which are
shown in figure 6. Again, the units main parts are marked in
gray.

A visual inspection sensor is mounted in or on the physical
set-up in the production cell or even on the robot arm itself.
This sensor data is processed by the Sensor Control and
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Fig. 6. Scheme of the Quality Inspection Unit

Data Readout unit that takes synchronization and calibration
information from the control system to generate inspection
sensor data aligned in 3D to the specimen to be produced.

The main part of the QIU is the Inspection Software that
is fed with inspection criteria and quality thresholds and
a defect catalog. The software decides upon defects and
failures and reports those back to the production process.
For fulfilling all these tasks the QIU provides a set of
functionalities.

First of all, it captures the clamps once clamped, using
a dedicated visual 2D/3D sensor. Afterwards, it generates a
3D representation, a so called Digital Terrain Model (DTM),
of the specimen surface. This DTM is then be analyzed with
respect to segments that significantly exceed the ordinary
surface plane of the specimen. Optionally a-priori informa-
tion about the position of applied clamps can be used, to
minimize the search space. In any case, the segments that
indicate defects, are detected in this step. For such segments
the responsible MES is beeing notified about the erroneous
clamp, its position and optionally the amount and/or type of
defect.

Fig. 7. Sample Images of not fully applied Clamps.

In figure 7 a sample of not fully applied clamps as detected
by the QIU is shown. In the color coded image (right) the

red segments represent undefined areas, which can be caused
by an occlusion from a staple fully applied to generate
a small ditch, or from an occlusion caused by a staple
not fully applied. Dark blue areas are portions with higher
elevation, hence not fully applied staples being detected as
production errors . Light green means measured ditches. The
measurement direction is from above.

VI. CONCLUSIONS
This paper contains an outline of the RobWood approach.

We have described how we could design components which
could be used for the company to program the robot with
less effort. This is an important issue for workers without
profound programming skills. A first, a series of tests of
the particular components of the tool chain took place in
a gradual manner at the Holzinnovationszentrum [1]. At
the end, an integration test with all the components passed
successfully. To sum up, we believe that our approach can
be integrated in the production for the wood industry in the
next three to five years.
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Task-Dependent Configuration of Robotics Systems

Alexander Pagonis1 and Clemens Mühlbacher1 and Gerald Steinbauer1 and Stefan Gspandl2 and Micheal Reip2

Abstract— To solve a task, a robotics system uses several
different hardware and software components. Each of these
components solves a specific subtask to allow the overall task
to be solved. Thus, the proper selection of the set of components
is crucial for the success of performing a task. This selection
can become complex if one needs to consider that each of these
components has its own dependencies which need to be fulfilled
to work properly. Due to this complexity, the proper selection of
components is time-consuming and error prone. Additionally,
domain knowledge is necessary to consider all dependencies
correctly.

To proper choose the components without the need of a
domain expert one can follow a model based approach. In this
paper, we show how such a model-based approach can be used.
We present a tool that, based on a domain model, automatizes
the selection of the necessary components to implement a set
of given tasks. Due to this automatic selection mechanism, one
can either simply check if a robotic system can perform a task
or which components need to be added to allow the robot to
perform the given task.

I. INTRODUCTION

A robotics system consists of several hardware and soft-
ware components which interact with each other to achieve
a given task. The selection of the hardware and software
components is often done by a domain expert, ensuring
that the task can be fulfilled with the given selection. This
is a time-consuming task, as one needs to know which
dependency each component has, e.g. a computer vision
algorithm depends on a camera but does not specify which
camera exactly. Additionally, one possible needs to consider
many possibilities how a dependency can be met to find
an optimal selection. Following simple scenario is used to
highlight these difficulties: The task the robot must fulfill is
to localize itself. One could now use a localization which
is based on a laser or a localization which is based on
the camera. In case there is a Kinect camera [1] available
but no laser, a camera-based localization approach would
probably be preferred. But one could use the depth image
to simulate a laser scanner and thus use also the localization
based on a laser scanner. This simple example already shows
that one needs to consider several possibilities and necessary
dependencies to allow a robot to solve a task.
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Instead of choosing the hardware and software compo-
nents manually, one can follow a model-based approach for
the robotic system as it was outlined in [2]. The idea is to
use a model that describes the task as well as the available
hardware and software components, their capabilities and
dependencies. By using this model one can automatically
generate a list of components that are necessary to fulfill a
task. The model does not only allow to generate a list of
components to fulfill a task but it also allows the robot to
check if a task can be executed with the given hardware
and software. Furthermore, the robot can use the model to
decide which alternative software and hardware modules to
use if one part of the system does not work correctly. Such a
reconfiguration is of special interest if one considers complex
tasks which can be achieved through several means.

In this paper, we present a tool which allows perform-
ing such a model-based configuration of a robotic system
automatically. The tool can be used to derive which set of
components needs to be present to allow fulfilling a task.
Furthermore, the tool allows checking if a given robotic
configuration can fulfill a task. Additionally, all possible
component compositions that allow solving the given task
can be viewed. This allows checking which alternatives
are possible and which components are redundant in the
system. To allow an easy configuration the tool does not
only suggests possible configurations but also allows to
interactively vary the given configuration. This makes the
configuration process easy and allows for a quick decision
on the best fitting set of components.

The remainder of the paper is organized as follows. In the
next section, we discuss the design of the configuration tool.
This description comprises the used knowledge base, the
method which is used to derive a correct configuration, and
the description of the user interface. The proceeding section
discusses a simple example scenario and presents how the
tool can be used. This is followed by a section discussing
the limitations of the approach. Afterward, we will discuss
some related research. Finally, we conclude the paper and
point out some future work.

II. THE CONFIGURATION TOOL

As we motivate above using a model one can automate the
generation of a configuration for a given task. This generation
uses the model to determine the dependencies between
software component and hardware component. Furthermore,
the model describes the different possibilities to resolve a
dependency. To ensure that the model can answer a query in
a timely manner and to allow still the model to be expressive
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we use an Ontology for the model. With the help of the
model, the tool can derive the dependencies which need to
be met to fulfill a task.

To derive which configuration fulfills the dependencies
a separate reasoning process is performed. This separate
reasoning process uses the data contained in the model to
yield a minimal configuration. Through this separation, the
model can be capped simply by avoiding the ”complex“
reasoning for a minimal configuration.

Using the information from the ontology and the reasoning
to derive a minimal configuration the tool can present a
possible configuration to the user through a graphical user
interface. The interface allows selecting tasks to perform,
which components are used as well as which configuration
would be minimal. In the remainder of the section, we will
discuss each part in more detail.

A. Ontology

To model the relationships between tasks and necessary
components, an ontology describing this relationship is
needed. The ontology we use for the implementation is an
open-source knowledge base and can be found at [3]. In this
ontology, tasks are referred as capabilities. Each capability
can be comprised of other basic capabilities. The ontology
also describes the relationship of capabilities to hard- and
software components that are needed for their implementa-
tion. Some of these components may be compulsory and do
not include alternatives while others may be chosen from a
pool of similar components that may all be used to fulfill the
same task.

The information, stored in the ontology can be loaded
and queried with an appropriate tool. We use the framework
Jena [4] to load the ontology into a model. The model can
be queried using the SPARQL query language. The Jena
framework allows multiple ontologies to be loaded into a
single model. The base ontology we use already contains
references to the sub-ontologies, including descriptions of
robot components. Therefore, it is enough to load the base
ontology as all sub-ontologies will be loaded into the model
automatically by the framework.

B. Calculation of Configuration

With the help of the ontology mentioned above, we can
define the dependencies which need to be met to perform
a task. The above calculate gives as a set of capabilities
Cap, which can be requested to be fulfilled directly or
indirectly. We use the variables X and Y in the remaining
subsections for variables with the domain of capabilities
dom(X) = dom(Y ) = Cap. Besides the capabilities, we
have additionally the set of components Comp. These com-
ponents describe a software component, e.g. a laser-based
localization or a hardware component, e.g. a laser scanner.
We use the variable Z in the remainder of the subsection for
variables with the domain of components dom(Z) = Comp.
As the description of the components is rather abstract
one needs a concrete implementation/realization of such a
component, e.g. a Sick LMS100 for a laser scanner. To

describe this implementation/realization of components the
ontology above yields the set ImplComp. In the remainder of
the subsection, we use the variable W for variables with the
domain of the implementations of components dom(W ) =
ImplComp.

Beside the sets of possible capabilities, components and
their implementation we additionally have four different
functions describing the dependencies which need to be
fulfilled for a capability, component and its implemen-
tation. The function capReqCap : Cap → 2Cap de-
scribes which set of capabilities needs to be fulfilled by
the robot to implement a certain capability. For example,
the capability liftObject depends on two other capabili-
ties moveArm, graspObject which is described as follows
capReqCap(liftObject) → {moveArm, graspObject}. To
describe the dependencies between capabilities and com-
ponents the function capReqComp : Cap → 2Comp is
used. For example, the capability liftObject depends on
two components arm, gripper which is described as fol-
lows capReqComp(liftObject) → {arm, gripper}. Each
requested component can be implemented differently to link
a component and an implementation we use the predicate
implComp : Comp × ImplComp → {>,⊥}. Like a
capability a component can depend on capabilities, we use
the function compReqCap : Comp → 2Cap to describe this
dependency. Additionally, a component can depend on other
components which define through the following function
compReqComp : Comp → 2Comp . Using this functions
and the predicate we can define the dependencies which need
to be met to implement a certain capability.

As we are interested in a configuration of the system
which is minimal we need a specific reasoning to derive
such a configuration. This is done by first extracting all
dependencies of a task together with every possibility to meet
this dependency. The model does not store all dependencies
in a single level. Instead, some dependencies may result
from other dependencies. Therefore, a recursive extraction
of dependencies must be performed.

Once all these dependencies are extracted, a constraint
problem can be defined to find (all) minimal configurations
which fulfill the dependencies. This is done as follows. For
each capability Y which is required the predicate reqCap(Y )
is used to describe the capabilities and components which are
needed by the robot.

reqCap(Y )→
∧

X∈capReqCap(Y )

reqCap(X)∧
∧

Z∈capReqComp(Y )

reqComp(Z)

Through this equation, one can simply resolve the recursive
dependencies on the capabilities. Some of these capabili-
ties might need components. As several hard- or software
instances can implement a specific component we use an
equation for the required capabilities to resolve components.
If a component W implements a required component Z we
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define the following constraint.

reqComp(Z)→ implComp(Z,W ) ∧ comp(W )

Like capabilities, components can have dependencies. Thus,
to model these dependencies we use another constraint.

comp(W )→
∧

X∈compReqCap(W )

reqCap(X)∧
∧

z∈compReqComp(W )

reqComp(z)

Using the ontology, we can instantiate the constraints
automatically. The instantiated constraints are gathered in the
set C. As we want to derive a minimal configuration for a
given task X we first need to add reqCap(X) to the set C.
Afterward, we need to find a minimal set of components W
to fulfill this requirement. This is achieved by the following
minimization problem.

argmin
W

(|{W |comp(W ) ∧W ∈ W}|) s.t.C

The solution to this minimization problem is a minimal set
of components to use to guaranty that all dependencies are
met.

With the above-defined constraint problem, the minimal
configuration can be generated. To realize these constraints
in an efficient manner the constraint solving is split into two
parts. The first part is the parsing of the ontology to extract
the minimal dependency for one component. The second part
uses this extracted data to find a minimal configuration in a
very efficient way through a constraint solver.

The first part is done by extracting the minimal set of
necessary capabilities, for a chosen task, by recursively
traversing the referenced capabilities of the chosen tasks.
Using the resulting set of capabilities all mandatory com-
ponents are extracted. Additionally, during the recursion one
creates a separate set of mandatory components for each al-
ternative realization. After this extraction, the minimal set of
necessary capabilities, as well as the mandatory components,
are already determined. Therefore, only the extraction of the
various combinations of alternative components, such that
the required tasks still can be fulfilled, must be done. We
solved this problem by using the constraint solver choco
[5]. To represent the constraints, we generated a matrix H.
Each row in the matrix represents one abstract component
descriptions. Each row vector V describes a component that
can implement these abstract component descriptions. With
the help of this representation the data can be modeled as
follows:

• For all entries i of all vectors V in the matrix H, a
variable E(i) is generated

• The domains of these Variables E(i) are restricted,
based on the component they implement. It is limited to
the domain {0,B(V)K(H)+1}, where B(V) denotes the
maximum number of entries of all vectors V and K(H)
is the index of the vector V within the matrix H.

With this model all combinations of alternative components
that are necessary to fulfill the given task can be determined
using the following constraint:

N (H)−1∑

i=0

E(i) !
=

M(H)∑

i=1

B(V)i

Here, N (H) denotes the total number of entries of all vectors
V within H whileM(H) denotes the number of rows within
the matrix H. This ensures that all values of E(i) are zero,
except for a single entry between all entries E(i) that share
the same domain. This single non-zero entry is equal to
the chosen component among all component alternatives
that implement the same main component. To retrieve the
components represented by the values E(i) the index i is used
as an index in an array containing the component names.

C. User Interface

In this section, the relevant components of our graphical
user interface are described. The GUI itself is structured into
separate tabs which all fulfill different tasks.

1) Defining Source Ontologies: The GUI features a tab
that empowers the user to load any desired ontology (Figure
1). The definition of more than one ontology will result in a
single model that contains all relationships. For this, the user
is provided with a list that contains all ontologies added so
far at the top of the tab. At the bottom, there are two buttons,
one to add another ontology and another button to load the
defined ontology files. Upon a click on the Load button,
the ontologies will be loaded and scanned for capabilities,
components and other important information. For this, the
user may define keywords that identify components and
capabilities, within the ontology, in the Settings tab. This
generic approach should guarantee that the software can also
incorporate different ontology sets.

Fig. 1. The Sources tab of the GUI. Here the user may define the paths
to the ontologies which are to be loaded into the model.

2) Defining Capabilities: After having loaded the desired
ontologies, the user may define the desired tasks. There may
be multiple of them or just one. This can be configured in
the Capabilities tab as depicted in Figure 2. In this tab,
desired tasks may be added using the Add button at the
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bottom. This will add a combo box with all the previously
extracted capabilities, of which the desired one may be
chosen. Additionally, the list of chosen capabilities may be
saved to disk.

Fig. 2. The Capabilities tab of the GUI. Here the user may define tasks
the robot should be capable of.

3) Defining Available Components: This tab is structured
exactly like the capabilities tab. Here the available compo-
nents (hardware as well as software) may be defined.

4) Feedback: Our program automatically analyses the
situation anytime the user makes a change to the task require-
ments or available components. The result of this analysis is
depicted in the Overview tab (Figure 3). It is divided into
two sections including tree views. The left tree depicts the
relationships between the chosen tasks and any subtask that
describes parts of it. Also, it shows which components are
necessary to implement these subtasks. On the right side,
the user is provided with an overview of all components that
need to be available to implement the desired tasks. In case
the program could find several components that can be used
to implement the same task, the component may be expanded
and checked for the available options. In this view, missing
components are depicted in red while available components
(as defined within the Components tab) appear in green color
(Figure 4).

Fig. 3. The Overview tab of the GUI. Here the user gets a feedback about
the given situation.

5) Configuration Proposals: As the desired tasks, may be
implemented with a wide variety of different constellations

Fig. 4. Adding available components from within the Overview tab, using
a pop-up menu.

of components, the GUI also features a tab that suggests
possible component setups that fulfill the desired tasks. This
is depicted in Figure 5.

Fig. 5. The Compositions tab of the GUI. Here the user is provided with
a list of all configuration that can solve the desired task.

6) Manually Query Data: To manually query the loaded
data, the GUI also features a Query tab (Figure 6). In this
tab, the user may define custom queries on the loaded model.
For convenience, the program extracts all available prefixes
that can be added with just a few buttons clicks. The result
of the query will be displayed in a separate pop-up window
as depicted in Figure 7. 5.

Fig. 6. The Query tab of the GUI. The user may query the data manually
using this tab and the SPARQL query language.
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Fig. 7. The result of a user defined query is depicted in this pop-up window.

III. EXAMPLE SCENARIO

Before we discuss the related research, we will discuss
a simple running example, showing the different steps of
a configuration. If one wants to know the minimal set of
required components, necessary to implement a robot that
can open a door one can use our program through performing
the following steps:

• In order to identify the necessary components (hard-
ware as well as software) using our program, first the
ontology stated in section II-A, using the Source tab
as depicted in Figure 1 must be loaded. After the
loading process is done, the program has identified
the capabilities and components, defined in the given
ontologies. For the example, we use the ontology of [6]
which contains all necessary capabilities.

• Now the capability ”Open a door“ should be available
for selection in the Capabilities tab. It can be selected,
by using the Add button at the bottom of the tab and
selecting it in the newly created combo box as depicted
in Figure 2.

• The program analyses the given situation online. There-
fore, now, the user can already check for the necessary
components to achieve the task in the Overview tab. If
one has already components in mind which should be
used, one may define them in the Available Components
Tab. Assumed there is a ”Pr2Arm“ component that
should be used. One can add these components before
or after checking the necessary components.

• Now the user may want to check the necessary com-
ponents to implement this task. If the ”Pr2Arm“ was
added in advance the output of the Overview tab will
be as depicted in Figure 3. There is also a possibility
to add available components directly from within this
overview. For this one may simply right-click the de-
sired component and click the pop-up menu (Figure 4)

• Alternatively one may also check all possible con-
stellations to implement this task by looking at the
Compositions tab as depicted in Figure 5.

Optionally, custom SPARQL queries on the loaded model
may be performed using the query tab. An example query
to retrieve all available capabilities of the loaded model is
depicted in figure 6. The result (all available capabilities) is
shown in a pop-up as shown in Figure 7.

IV. LIMITATIONS OF THE APPROACH

The approach presented allows an easy specification of
the robotics requirements and its resulting configuration.
Additionally, one can generate a minimal configuration for
the robot. These calculations are based on an ontology which
describes the necessary dependencies to perform a task. Due
to this specification, one may encounter several problems.

First, the ontology used in the example specifies the
requirement for a home like an environment. The require-
ments may differ in a factory environment or on a planetary
mission. To cope with this problem one could argument
the requirements with a specification which environment the
robot is operating in. Thus, one could add the information
of the environment to the ontology to derive the proper set
of requirements.

Another important limitation is the abstraction of the
ontology. Let’s consider the example which specifies that one
needs a robotic arm to fulfill the task. Thus, one can choose
an arbitrary arm which may not be possible in practice as
the arm does not allow to create enough force to perform the
task or is too heavy to be placed on the robot. To tackle this
problem one need to add additional constraints which need
to be considered like the force which needs to be applied,
maximum weight, . . . . Such constraints may not be simply
integrated into the ontology reasoning. Instead one may add
an additional layer of reasoning to check these constraints.
Thus, one could find a configuration per the ontology and
afterward check the additional constraints to rule out not
applicable configurations.

V. RELATED RESEARCH

We start our discussion of related research with the seman-
tic robot description language (SRDL) published in [7]. The
description language allows describing the capabilities of the
robot as well as the hardware and software components.
Furthermore, dependencies of the capabilities and the com-
ponents can be described. This description allows the robot
to check if the dependencies are met for a specific capability.
Additionally, the robot can enumerate all components which
are missing for a specific capability. Thus, the first step for an
automatic configuration of the robot is possible. To use this
description in a robotic system SRDL was integrated into a
general knowledge base for a robot through KnowRob [8].
This integration was used in the RoboEarth language [6] to
allow an easy transfer of action recipes to perform a task.
With the help of the SRDL, the robot could check if a certain
action recipe to perform a task can be used. In this paper,
we used SRDL as a basis for our tool to allow the derivation
of a minimal configuration. Thus, instead of just checking if
a robot can perform a capability our tool also allows getting
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a minimal configuration such that the robot can perform a
capability.

Another method which uses an ontology to describe the
environment was presented in [9]. The method uses a de-
scription of the environment which is based on an ontology
together with a description of skills the robot can perform.
Using this description, the robot can plan a sequence of skills
which need to be executed to perform a certain task. Such
a task was presented in [10] where the robot had to place
parts of an industrial kitting operation.

To plan which robot can perform which task in a het-
erogeneous group of robots the method outlined in [11]
can be used. The method defines capabilities which have
preconditions which need to be met to allow the execution
as well as information which need to be provided by the
robotic system to allow the capability to be executed. Thus,
the robot can plan which capabilities need to be executed to
perform a task. Furthermore, the robot can use the hardware
description to check if such an execution is possible. As
many capabilities, e.g. grasp an object, may only work under
certain restrictions, e.g. size of the object, one can add an
approximation description to each capability which defines
which conditions need to hold approximately to allow the
execution of the capability. This allows to define capabilities
in more detail and thus allow a better distribution of tasks
among the robotic group. The method outlined in [11] focus
on distributing tasks in a group of robots whereas the tool
we present in this paper focuses on the configuration of
the robotic system during the design phase. Thus, instead
of planning which capabilities to use to fulfill a task, we
show which different minimal configurations of the robotic
system allow the robot to execute the capability. This allows
the developer of the robotic system to choose the best fitting
set of capabilities.

The method presented in [12] extends AutomationML [13]
to allow the modeling of a robotic system. This is done by
extending the given concepts with robotic specific concepts
such as actuators or sensors. Furthermore, the method allows
an automatic conversion of AutomationML specifications
into an ontology which can be used to check for consistency.
This can be used to model a robotic system with Automa-
tionML and afterward check through the transformation to
an ontology if every dependency is met or if a component
is used which does not solve any given task. Beside these
checks, further checks can be applied to verify that this
system can be realized with the help of ROS [14]. This
allows the developer to ensure that the modeled robot can
be realized. After these checks are performed one can apply
a model-to-text transformation to generate code stubs which
ensure proper communication and operation per the modeled
system. This allows a faster creation of a robotic system
following a model-based approach like the method outlined
in [2]. In contrast to our approach, the method does not offer
the possibility to check which components are necessary to
perform a capability. Thus, the method presented in [12] is
also not able to specify a minimal configuration which fulfills
the need for a specific capability as our tool can.

Besides the description of tasks for configuration, such a
description is also often used to assign a task, e.g. in a multi-
robot system. One such example is which uses an ontology
to assign tasks is presented in [15]. The method uses an
ontology per robot to describe which roles can be performed
and how these roles are performed. Additionally, tasks are
described in the ontology and how they can be executed
through a role which is assigned to a robot. The system uses
this ontology to find a matching robot and assigns different
roles for different robots to fulfill the specified task.

VI. CONCLUSION AND FUTURE WORK

The proper configuration of a robotic system for a given
task is a time consuming and tedious task. Especially one
needs an expert to perform this task to consider all possibil-
ities as well as all dependencies. To address this problem, in
this paper we presented a tool for the automatic configuration
of a robotic system for a given task. The tool uses an
ontology-based knowledge base, allowing to reuse publicly
available knowledge bases, to describe which dependencies,
exist between a task and software and hardware components.
Furthermore, we have presented a method to derive a min-
imal set of software and hardware components to fulfill a
certain task. This allows the user to simply find a possible
configuration of the robotic system, that allows the robot to
fulfill its task. To allow an easy interaction the tool has a
graphical user interface which allows the user to select tasks
as well as used components. Thus, the user can specify the
currently used components on the robot to check if a new
task can be achieved by the robot, or which components need
to be added to allow the robot to achieve a given task.

Currently, the tool can only be used by a human to decide
which components to use to allow the execution of a specific
task. It is left for future work to allow the robot itself
to use the tool. This would open the possibility that the
robot finds alternative solutions to a task during runtime.
Thus, the robot could reconfigure itself to react to a fault or
changes in its task. Furthermore, currently only a minimal
number of components is searched for the configuration,
neither computation costs nor investment or development
costs are considered in the configuration. It is left for future
work to integrate these costs to allow to find a configuration
which minimizes the computation effort or to minimize the
investment costs.
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V. Krüger, “Accurate and versatile automation of industrial kitting
operations with skiros,” in Conference Towards Autonomous Robotic
Systems. Springer, 2016, pp. 255–268.

[11] J. E. Buehler, “Capabilities in heterogeneous multi robot systems.”
in Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI)
Doctoral Consoritum. AAAI, 2012, pp. 2380–2381.

[12] Y. Hua, S. Zander, M. Bordignon, and B. Hein, “From automationml
to ros: A model-driven approach for software engineering of industrial
robotics using ontological reasoning,” in Emerging Technologies and
Factory Automation (ETFA), 2016 IEEE 21st International Conference
on. IEEE, 2016, pp. 1–8.

[13] R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the glue
for seamless automation engineering,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, 2008, pp. 616–623.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[15] F. Amigoni and M. A. Neri, “An application of ontology technologies
to robotic agents,” in Intelligent Agent Technology, IEEE/WIC/ACM
International Conference on. IEEE, 2005, pp. 751–754.

38



An Autonomous Transportation Robot for Urban Environments

Konstantin Lassnig1 and Clemens Mühlbacher2 and Gerald Steinbauer2 and Stefan Gspandl3 and Michael Reip3

Abstract— The transportation of goods is a central task of
today’s economy. The cheap transportation of goods allows
the wide spread of today’s internet based sales. To perform
such transportation tasks one currently relies on humans. This
imposes constraints when the transportation can be performed
and imposes constraints on the costs. To address this time
and cost constraints an automatic transportation of goods is
preferred.

Such an automatic transportation can be performed by an
autonomous robot, as the ones used in warehouse environments.
Although such environments are diverse and undergo a certain
amount of change they are still rather static environments.
To allow robots to perform the transportation in outdoor
environments several problems need to be tackled. One needs to
deal with large operation areas, uneven ground, and dynamic
objects. In this paper, we present a robot system which can
cope with these problems and allows to perform transportation
tasks in outdoor environments. The focus of this paper will be
on the localization and navigation of the robotic in the outdoor
environment allowing the robot to perform outdoor deliveries.

I. INTRODUCTION

The cheap transportation of goods is a central part of
today’s economy. Reasonable prices of goods which are sold
over the internet, heavily depend on transportation costs.
Today’s supply chain requires a very dense distribution
network and relies on the fact that sending a lot of packages
on the same route is cheap. The larger number of goods
for one route the cheaper it becomes. This is in contrast
with the need for transporting goods to a single customer.
Such a transportation is characterized by a few goods for one
transportation route. To address this, robots offer a possible
solution. Using a robot, the transportation can be performed
in a flexible manner. Additionally, if multiple robots are used
one can simply balance the load of transportation tasks on
several robots.

The use of a robot fleet for transportation tasks is getting
adopted for warehouse environments nowadays [1], [2], [3].
These robot systems allow transporting goods in the ware-
house without the need of an adaption of the warehouse. This
is achieved by using algorithms allowing a localization and
navigation in an indoor environment [4]. These algorithms
use a 2D map of the environment. Such a map can be stored
easily in the robots memory for a warehouse but not for

1Konstantin Lassnig is with ARTI, Graz Austria. This author was with
the Institute for Software Technology when contributing, Graz University
of Technology, Graz, Austria. klassnig@arti-robots.com
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3Stephan Gspandl and Michael Reip are with incubedIT, Hart bei Graz,
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large outdoor environments such as a city. Furthermore, the
2D map can be easily used in a warehouse for navigation as
one can assume a reasonable flat ground. Such an assumption
cannot be made for an outdoor environment where the robot
needs to ensure that it is not falling over road curbs.

To allow a robot system to be used for transportation
tasks in a large scale outdoor environment, one needs to
address the problems which are imposed by the scale of the
environment as well as the uneven ground. In this paper,
we show a robot system which addresses these problems.
The size of the environment is addressed by splitting the
environment into smaller areas allowing the robot to keep
only a small map in its memory. To allow the robot to
be globally localized one additionally stores how the small
pieces are related to each other. To tackle the uneven ground
only the area close to the robot needs to be considered. This
space is represented as a 2.5D surface and interpreted to find
possible holes.

The remainder of the paper is organized as follows. In
the next section, we will discuss the software system used
by the robot to perform transportation tasks in an outdoor
environment. The proceeding section discusses how the robot
localizes itself despite the size of the environment. In Section
IV we discuss how the robot navigates in the environment.
This section also comprises a description how the robot deals
with the uneven ground. Afterward, we discuss some related
research. Finally, we conclude the paper and point out some
future work.

II. SYSTEM OVERVIEW

Fig. 1. The transport robot [5].

In this paper, we discuss a robot which can perform a
transportation task on a university campus autonomously.
The robot can navigate indoor as well as outdoor. Further-
more, the robot considers the uneven ground outdoors to
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Fig. 2. System overview of the transport robot [5].

safely navigate between buildings. The robot is depicted in
Figure 1 and is based on a pioneer 3-AT platform which
allows the robot to navigate indoors as well as outdoor.
Additionally, the robot has three laser scanners to detect
obstacles. Two laser scanner are mounted horizontally to
detect obstacles, like cars or people. Furthermore, these
two lasers are used to localize the robot. The third laser
is mounted tilted down to scan the ground in front of the
robot. This laser is used to build a map of the local terrain.
Besides the laser scanners, the robot has a GPS sensor for
the localization and mapping. To improve the accuracy of the
odometer of the robot an inertial measurement unit (IMU)
is used which is mounted on the robot. To perform the
transportation task, the robot uses the system architecture
depicted in Figure 2.

The robot uses its sensors to estimate the current location.
This is done using the robots odometer, the IMU, GPS and
the horizontal laser scanners. Due to this redundancy, the
estimation of the current location is stable in areas where one
sensor may yield wrong results, e.g. the GPS sensor near tall
buildings. To perform the estimation, the robot matches the
sensor readings with the information of a topological map.
The topological map consists of several small maps which
are linked to each other to allow the robot to only keep small
maps to be localized.

Using the estimation of the current location together with
a road map, the robot plans a high-level path for naviga-
tion. The roadmap describes possible traversal routes in the
environment on a higher level. Due to this abstraction, the
planning can be done very efficiently even in the case of
large environments. After generating a high-level plan, the
plan is passed to the lower-level planner which tries to find
a valid path in the environment for each path segment in
the high-level plan. This is done by considering the current
small local map of the environment as well as the sensor data
which are used to build a cost map. If a valid path is found
the robot tries to follow this path as accurate as possible.

To incorporate the information of the terrain the robot uses
the tilted laser to perform a terrain analysis. Afterward, the
results of this terrain analysis are used to update the cost map.

Thus, holes, as well as small objects which are below the
horizontal laser scans but bigger than the robots clearance,
are added to the cost map as obstacles. This allows the robot
to consider the terrain in the low-level planning.

In the following two sections, we will discuss the local-
ization as well as the navigation in more detail.

III. LOCALIZATION

Starting from an initial known position the robot needs
to know its location during the entire delivery. This is done
through one part of the robot system which is used to localize
the robot. This localization should ensure that the robot has
an estimation of its global position. First, the robot corrects
its odometer to get a good estimation of its 2D position using
dead reckoning. Afterward, it uses the created topological
map to localize itself.

To correct the odometer of the robot we use an unscented
Kalman filter (UKF) [6]. The Kalman filter uses the raw
odometer of the robot to perform a prediction of the robot
pose. This prediction is formed in a probabilistic manner with
a position and a covariance matrix specifying the uncertainty.
The covariance matrix is defined in such a way that the linear
speed has a higher accuracy as the rotational speed, as the
rotation is badly estimated through the raw odometry due
to the slippage of the wheels during rotation. To correct the
prediction the IMU data are used. The IMU data is used to
provide an additional estimation of the robots velocity in all
three axes as well as the global orientation the robot has in
space. As in the case of the raw odometry, the IMU data
update the estimate in a probabilistic manner with the help
of a covariance matrix. The covariance matrix for the IMU
data is formed in such a manner that the rotational speed is
estimated more accurately than with the raw odometry. Due
to the use of the Kalman filter, we have a better estimation
of the robot pose instead of the very noisy raw odometer of
the robot.

After the odometer is corrected the robot can perform its
estimation on the topological map. The topological map is
a graph with vertices which represent positions in the world
and edges which represent connections between those posi-
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Fig. 3. Grid selection for the localization, together with the topological
map [5].

tions. Each vertex is specified as a full 2D pose in the global
reference frame allowing to specify the difference from the
robots location to any frame in the graph. Furthermore, each
vertex contains a grid map representing the local environment
at this position. It is ensured that every position within the
grid map can reach the center. To ensure proper connections
of vertices a connection is only made if the combination of
both grid maps allow the robot to reach one vertex from the
other. Let’s consider the simple example of a topological map
as it is depicted in Figure 3. Grid 11 is close to grid 3, but due
to the wall between these two grids, no connection between
grid 11 and grid 3 is made. Thus, the robot knows which
traversals are possible in the environment with the help of
the grid map. We will exploit this knowledge to select the
right grid for localization if the robot moves beyond the area
of one grid.

Initially, the robot knows its starting location, this is done
through the input of the user. After the robot has selected
the initial position the vertex which is the closest to the
current initial location is chosen. Additionally, the robot
should check if it can move between the initial pose to the
grid map vertex. Using this vertex, the robot can use the grid
map of the vertex to localize itself. This is done with the help
of a particle filter [7]. The particle filter uses the grid map to
align the current laser measurements with the occupied cells
in the grid map. Additionally, the robot uses the GPS signal
to localize itself. This is done by anchoring each vertex with
a GPS position. Thus, by using the current GPS signal the
robot can estimate its position relative to the currently used
vertex in the topological map. Using the grid map and the
GPS the robot derives an estimation of its current location.
If the robot is moving in the grid map the localization can be
done with the current grid map. But as we assume a large
space of the outdoor environment the robot will at some
point reach the border of the grid map. In such a case the
robot needs to decide which vertex in the topological map is
the next one to localize itself. This is done by checking the
distance to each vertex in the topological map which has a
connection to the currently used vertex. The vertex with the
smallest distance to the current robot pose is used for future

localization. Thus, the robot will switch the vertex and the
occupancy grid only if it is closer to that vertex than any
other vertex which could be reached from the robot.

Let’s consider the situation in Figure 3. If the robot is
moving from grid 3 to grid 4. It checks the distance from
the vertex of grid 3 and the distance of vertex of grid 4. But
the robot does not check the distance to the vertex of grid 11
as the robot already knows that there is no possibility that it
has traveled from grid 3 to grid 11. If the distance of grid 4
is larger than the distance to grid 3 the robot will use grid
3 for future localization.

Due to the use of the connections within the topological
map one saves the effort to check all nearby vertexes if they
should be used for localization. Furthermore, more important
is that the robot will not select a vertex which cannot be
reached. Let’s consider the map in Figure 3. Grid 3 and 4
can be on the outside of the building whereas grid 11 is the
inside of the building. Thus, if the robot is localized outside
of the building it does not make sense that the robot jumps
suddenly through the wall inside the building. As we don’t
consider grid 11 as an alternative such a jump is not possible.
This also allows the robot to move close to the wall of the
building without being incorrect localized.

IV. NAVIGATION

With the help of the topological map, the robot can localize
itself. Using this localization, the robot can plan its path
to the destination. To do so, the robot uses a hierarchical
planning approach. As we consider a large-scale environment
the robot is not able to use a grid map of the complete
environment. Thus, the robot uses a road map to plan the
overall navigation. This allows the robot to plan for the large
environment in a fast manner. After a plan is found using the
road map the robot use the current grid to search for a mid-
level plan within this map to move between different nodes
in the roadmap. Finally, the robot uses a local planner to
move along the mid-level plan and avoid obstacles which
are not present in the grid map.

The road map which is used by the robot to generate a
high-level plan consists of a graph of nodes which specify
locations and edges which describe possible traversals be-
tween these nodes. A roadmap together with the high-level
plan is depicted in Figure 4. The road map is constructed by
considering the distance between the nodes and if the node
is collision free. To check if a node is collision free the
footprint of the robot and the local grid map of the position
to check is used. As the robot, has not specified a complete
description of the environment traversability, one uses the
positions used during mapping as a seed for the road map
calculation. This allows that the robot uses the positions and
traversals which were created during mapping.

To plan a path within the road map the robot first deter-
mines the closest node of the road map to its current location.
Afterward, the closest node to the destination is determined.
The node close to the current position is the start node of
the search and the node close to the destination is the goal
node of the search. After determining these two nodes the
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robot performs a graph search for the shortest path through
the A∗ algorithm [8].

Fig. 4. Road map (green) together with the high-level plan (red) and the
low-level plan (blue) [5].

After the robot has generated a high-level plan it generates
a mid-level plan on the current grid map to plan to the next
node in the road map which is part of the high-level plan. The
node which is the next one to pass through is determined by
the current location of the robot. The robot considers every
node as reached which is in a certain range. To determine
this node, the robot uses a queue of nodes within the high-
level plan. After the head of the queue is in range the robot
pops the head from the queue and uses the new head of the
queue as the next goal to plan to. Additionally, if the node is
the last node in the queue the robot plans to the destination
as the high-level plan only ensure that the robot moves near
the destination.

For the mid-level plan on the current grid map, the robot
uses the information of the current grid map to determine if
it can traverse a grid cell or not. Using this information, the
robot uses its current location together with the next node
to find a plan. This plan consists of a sequence of grid map
cells to traverse. The sequence is found by using the A∗

algorithm [8]. As the grid map only specifies a limited area
of the world the algorithm can determine the path very fast.
Additionally, the path which needs to be planned is most of
the time short compared to the high-level plan.

Using the mid-level plan on the current grid map the robot
has derived a path which should lead to the current node of
the high-level plan considering the known static objects. As
we consider a dynamic environment the robot needs to deal
with these obstacles as well. This is done by creating a local
plan with the help of the dynamic window approach [9]. The
local plan is generated several times per second to allow to
react to changes. To plan locally the robot uses a cost map
which contains the static obstacles, the information from the
horizontal laser scan, the information from the elevation map
and information about the grass around the robot.

As we argued above one cannot assume that the robot
moves on a flat surface. Thus, the robot needs to deal with
the uneven ground. Through the construction of an elevation
map in a local area, the robot can detect holes and barriers.
The elevation map is constructed with the help of the sensor
data of the tilted laser. Each of the laser measurements
is transformed to specify a position in the world frame.
Afterward, the measurement is projected on a grid which
defines the height information of the environment. To in
cooperate the sensor measurement into the grid a Bayes

update per grid cell is used [10]. This allows the robot to deal
with the noise of the sensor measurements. After generating
the height information one detects holes and barriers by
deriving the gradient for each grid cell. Using this gradient
one can define a threshold which determines if this hole or
barrier is traversable by the robot. If the gradient exceeds
a certain limit the robot cannot traverse this grid cell and
it is assumed to be a lethal obstacle for the local planner.
An example of grid cells which are marked due to a large
gradient is depicted in Figure 5. As the elevation map is
projected through the gradient into the cost map one can use
a standard 2D-planning algorithm to find a local plan.

Fig. 5. Detection of edges with the help of the elevation map [5].

Besides the uneven ground, the robot needs also to con-
sider the grass to proper navigate in an outdoor environment.
During outdoor navigation, the robot should preferably stick
to roads and sidewalks. Thus, the robot needs to detect the
grass surrounding the robot. To perform this detection, the
robot uses the tilted laser scanner. The tilted laser scanner
does not only provide the information about the distance
from obstacles but it also contains the information about
the intensity of the reflection. Using the intensity and the
distance one can identify grass in the environment. A simple
linear separator is sufficient to detect grass properly. This
relation between distance and reflection intensity with the
linear separator is depicted in Figure 6. With the help of
this classifier, the robot can detect grass in its vicinity. An
example of this detection is depicted in Figure 7. Using this
information, the robot adds increased costs in the cost map
for the local planner on those positions which indicate grass.
Thus, the robot avoids the grass if possible but will also
traverse it if necessary.

By combining the grass, the information of the elevation
maps, the laser scan measurements of the horizontal laser
as well as the static objects in the map the robot can safely
navigate locally. Thus, the robot neither hits an object nor
falls down a step. We consider these data only for a local area
around the robot. This has the benefit of a smaller memory
footprint for each local cost map but also the drawback that
this information cannot be used for localization or high-level
navigation.

V. RELATED RESEARCH

Before we conclude the paper, we discuss some related
research.
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Fig. 6. Separator to detect grass with the help of the laser scanner [5].

Fig. 7. Detection of the grass though the laser scanner [5].

We start our discussion of related research with the robot
presented in [11]. The robot could take a long tour through
Munich without a prior created map or GPS information.
Instead, the robot was using its sensors to react locally in
a safe manner and asked humans for information about the
direction. This was done by approaching humans and the
recognition of basic commands to derive the direction of the
desired destination. In contrast, our robot has a prior created
map which allows it to move autonomously without asking
for directions. This is also desirable in the case of a transport
robot which should transport goods to a customer.

In [12] the method to deal with large maps was described.
The authors use a topological map to allow an efficient
representation of large areas. The vertices in the topological
map are spots of interests such as a square or a crossing.
The edges represent paths between these places. For each
edge, a traversal behavior is defined. Thus, one can use
different behaviors to perform the traversal. With the help of
this method, the robot could drive autonomously in a park.
Our robot uses, in contrast, a topological map which contains
enough information to allow the robot to be always localized
not only in interesting places. Furthermore, the robot uses a
denser road map allowing it to plan its route more accurate.

A very close related work to ours was presented in [13].
The robot navigated more than 3km in the city Freiburg in
an autonomous fashion. To localize itself, the robot used a
topological map where each vertex in the graph contains
a map of one part of the environment. In contrast, our
approach additionally used the GPS signal for estimating
the robot pose within the particle filter. To navigate the

robot, the method presented in [13] created a high-level
plan using the graph of the topological map. Each vertex is
connected to those vertices in the graph which allow moving
between these two locations. Thus, using this graph the
robot can derive a simple high-level plan for the navigation.
Whereas the robot uses a planner on grid map basis to
navigate between different vertices of the topological map.
This contrasts with our approach as we use a finer grained
road map for the high-level planning which allows us to
choose the path more precisely.

VI. CONCLUSION AND FUTURE WORK

The transportation of goods is an essential part of our
today’s economy. The transportation often takes place in
outdoor environments by delivering goods to costumers. To
provide cost-efficient and flexible deliveries, robots are a
promising solution.

In this paper, we presented an autonomous transport robot
which is capable of navigating in large scale outdoor envi-
ronments. To perform this transportation, the robot addresses
the problem of a large-scale environment, uneven ground,
and grass which should only be traversed if necessary. To
deal with the large scale of the environment the robot uses a
topological map. This map stores areas of the environment
which are loaded on demand. This allows that the robot
only needs to keep a small part of the environment in its
memory and perform the localization on it. We furthermore
showed how the robot can exploit the topological map to
switch between the different parts to allow the robot to be
localized during the complete delivery. To deal with the
uneven ground, the robot builds an elevation map for its
local environment. Afterward, the robot determines within
the elevation map dangerous terrain and avoids it. To deal
with the grass we have shown a simple solution with a linear
classification for laser scan measurements. This detection
allows the robot to detect grass precisely enough to avoid
the grass if possible.

The robot presented in this paper mainly used several laser
scanners to localize itself and it is left for future work to add
more sensors to perform localization as well as navigation.
Especially cameras would be of interest as they allow a
detailed localization in many areas which don’t offer features
for a laser scanner. The additional use of a camera would
increase the quality of the terrain classification.
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Abstract—In this paper we present results of the AssistMe 

project which aims at enabling close human-robot cooperation 

in production processes. AssistMe develops and evaluates 

different means of interaction for programming and using a 

robot-based assistive system through a multistage user-centered 

design process. Together with two industrial companies human-

robot cooperation scenarios are evaluated in two entirely 

different application areas. One field of application is the 

assembly of automotive combustion engines while the other one 

treats the machining (polishing) of casting moulds. In this paper 

we describe the overall project methodology, followed by a 

description of the selected use case and a detailed outline of the 

first two expansion stages. The paper closes with an overview on 

the results of the first two rounds of user trials and gives an 

outlook on the next expansion stage of the human-robot 

cooperation scenario.  

I. INTRODUCTION 

Traditional robot systems are programmed mostly offline 

with text based programming languages or by complex 

CAD/CAM based simulation tools. That is suitable for 

traditional robot systems used in specialized situations such 

as optimized and fenced working environments, only 

applicable for high production volumes. Robots for smaller 

production volumes (applicable for SMEs) would require two 

main success factors. That’s on the one hand safe applicability 

without expensive safety hardware like dedicated workspace 

or fences. On the other hand systems would benefit from 

applicability for smaller production volumes and lot sizes 

which requires frequent reprogramming – ideally without 

expensive software tools or robot and computer vision 

specialists. Robot manufacturers address both safety and ease 

of use and reprogramming with contemporary products. 

Limitation of system power and implementation of safety 

relevant control system structures as well as safety relevant 

functionality like safely limited speed or workspace are used 

to make systems safe enough for even collaboration, as it is 

defined in the DIN ISO 10218 standard. Improved user 

interfaces should make systems useable without special 

training. Main modalities implemented by the system used (a 

Universal Robot UR10 system) are touch based programming 

with graphical elements as well as manual interaction by 

hand-guidance during parameterization of the programs.  
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Human workers and the robots could work as a team through 

more flexible human-robot interaction [1]. But how to 

develop a robot system that meets the needs of its users in an 

industry 4.0 environment? An answer has to take User 

Experience (UX) into account, which – according to Alben 

[2] – comes everywhere into play were humans interact with 

a system. This includes cooperation and usability but also 

factors such as perceived safety, stress, or emotions [3]. The 

work presented in this paper illustrates how a UX study 

helped improving a standard-software to a physical 

interaction interface for real-world usage. A multistage user-

centric design approach was performed, involving 

representative factory works performing user studies in their 

actual working environment. Finally we want to introduce a 

proposal of the improved interface to be evaluated at the very 

end of the AssistMe project. 

II. RELATED WORK 

The Industry 4.0 paradigm of close human-robot 

cooperation makes fundamental research necessary, not only 

in robotics, but also in user-centered HRI. Little research has 

been performed so far concerning industrial robotics, 

associated UX, and how HRI impacts production 

performance. Existing research already showed potential 

application scenarios of physical HRI [4] and that the UX of 

robots changes over time [5]. A methodological approach 

how to evaluate the usability of teach pendants for teaching a 

robotic arm was demonstrated by [6]. Current research for 

example is the learning of motor skills by pHRI [7] and the 

industry-oriented application [8]. The focus of our research 

follows a similar interest as [6] especially on how to use UX 

to improve a newly introduced robotic arm without a safety 

fence in a factory environment.  

III. ASSISTME SYSTEMS 

In the AssistMe project two usecases in three expansion 

stages are evaluated. One of the usecases is the assembly of a 

combustion engine. That includes the installation of a cylinder 

head cover. The installation is carried out manually by 

stacking the cover with pre-inserted screws onto the motor 

block and tightening the screws with a manual power tool. 
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The electronic screwdriver of the manual workplace is fitted 

with a push start mechanism, electronic control unit and a 

shut-off clutch and therefore starts rotating when pushed onto 

the screw and stops motion when retracted respectively when 

a predefined torque is reached. The working instruction of the 

workstation includes several additional process steps. An 

automatic screw tightening system is expected to provide 

assistance and to reduce the workload at the workstation for 

the human worker. A state-of-the-art collaborative robot 

system is equipped with the power tool (Fig. 1) and 

programmed to perform screw tightening operations in the 

required order and accuracy to meet a defined process quality 

(screw-in depth, torque,…). 

 

 
Fig. 1 - Usecase Combustion Engine Assembly – screw positions to be 

parameterized by the user. 

 

A. Robot A 

Robot A is a standard Universal Robot UR10 system with 

its teach pendant and the integrated programming and 

parameterization infrastructure. A basic script for the 

movement contains the pre-screwing process and can be 

called by the teach pendant program. The teach pendant 

program manages position variables (that have to be 

parameterized by the worker) and the execution of the global 

program to process the screws in the correct order.  

 

 
Fig. 2 - www.zacobria.com - UR10 programming 

 

B. Robot B 

To be able to provide smooth and precise one hand- 

guidability a FT-sensor was integrated in robot B. Shortkey 

buttons trigger alignment shortcuts (Fig. 3). Preconfigured 

TCP alignments can be triggered and cause the tool to rotate 

around the TCP to move the tool intuitively to an (e.g. 

perpendicular) orientation to maximize process stability and 

robustness towards inaccurate teach-in of process points.  

 

 
Fig. 3 - FT-sensor, shortcuts and DOF locks 

 

The GUI of the robot controller interface was replaced by 

XROB, a PC-based robot programming system, that covers 

both robotics and sensors and algorithms to assess sensor 

data. Benefits are on the one hand simplification of the 

interplay between robotics and machine vision and on the 

other hand simplification of the programming experience for 

the robot (that was perceived as confusing with robot A).  
 

XROB (Fig. 4) is capable to manage several sensors and 

evaluation algorithms. Program templates can be used to 

compose basic functionality to advanced and reusable 

subprograms. Prior to evaluation of robot B templates for a 

combined rough 3D position deviation compensation and a 

2D  position fine compensation were prepared for reuse by the 

workers.  

 

 
Fig. 4 - XROB framework 
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IV. USER EVALUATION 

 

The goal was to explore if there is a difference in the UX 

between a robot with remote-HRI (robot A) and a technical 

revised version of this robot with physical-HRI (robot B). 

Both robots offered two control modes: remote control via 

touch-panel and direct-manual control via physical guidance. 

The touch-panel for remote control featured a graphical user 

interface consists of buttons to steer the robot and to save the 

taught movement trajectories. The physical-HRI mode 

enabled the operators to control the robotic arm directly, 

manually and without an additional intermediate layer. Robot 

A was optimized for remote control, whereas the 

improvement of robot B consisted of an extended physical 

HRI. Five participant were recruited to participate in the two 

studies. This small participant number can be sufficient to 

identify the most severe usability problems and was already 

discussed by [9].  

 

The current study was conducted one year after the 

previous one. Within this time, robot A was upgraded to robot 

B, so robot B could only be examined after robot A. However, 

both studies had the same structure: (1) Introduction of the 

robot: Each participant was introduced to the robot and its 

control mechanisms. The participants were assigned the task 

to parameterize the process points in a predefined robot 

program. That means they had to bring the robot’s tool to a 

precise position above the screw and that they had to adopt 

the position parameters to a program in the UR-teach pendant 

(for robot A) or to the XROB-user interface.  Fig. 1 shows the 

screw positions as process points. For process quality 

precision of the parameterization is crucial. As Fig. 5 points 

out especially lateral or orientation deviances are critical for 

process effectivity while vertical positioning could be 

effectively observed visually during teach in process. 

 

 
Fig. 5 - screwing process - error sources & real view 

 

In order to relief stress and increase compliance, the 

participants were assured that the focus of investigation was 

only the robot’s performance and there were no negative 

implications for them. (2) Conducting the user study: Each 

participant was audio- and videotaped with two cameras in 

order to generate a holistic perspective. This included a head 

mounted camera (first-person view - Fig. 6) and a hand 

camera (context oriented view). (3) Post-study 

questionnaires, including NASATLX, SUS, and self-

developed items. The aim of the analysis was to compare the 

temporal demand, and the UX (including usability and 

performance expectancy) of the first and second version of 

the robot prototype. The findings are used for a the third (and 

last last) technical revision (design of the user interfaces of 

robot C, D and E) before the robot is deployed in the normal 

factory environment. The analysis of the video data 

(comments, reactions and feedbacks) consisted of (1) a rough 

clustering of all relevant issues, (2) a detailed description of 

their key features, and (3) overlapping topics were merged to 

categories or differentiated from each other. 

 

 
Fig. 6 – Head Mounted Device for gaze tracking - gaze tracking results 

 

V. RESULTS 

A total of five male assembly workers were recruited to 

participate in both studies (a representative sample for the 

factory with which we collaborated). The sample might be 

rather small but even for companies with several 1000+ 

employees it was difficult to find workers who work at a 

special part of the assembly line, predictively for the whole 

project duration (2 years+) who fulfill requirements (left- / 

right-handedness, age, robot training,…). Each participant 

was interviewed for 30 minutes and filled in demographic 

questionnaires afterwards. The mean age of the study 

participants was 45.4 (SD=5.7) and they had no prior 

experience with robotic systems. Four out of five participants 

had experience with computers and automated systems 

previous to the studies.  

 

The teaching using robot A yielded requirements regarding 

robot hand guidance. Gear friction yields stacking and 

imprecise movement. Locking of certain degrees of freedom 

(e.g. rotation or translation,…) is asked for by the users as 

well as semiautomatic tool alignment and expected to 

improve both programming time and process quality.  

 

A state of the art force torque sensor was integrated (in 

robot B) as well as buttons to call perpendicular realignment 

or locking of rotational or translational degrees of freedom. 

That should make the robots more effective. Additionally a 

RGB-D sensor as well as a 2D sensor for position deviation 

correction were added (see Fig. 7).  Robot B was evaluated 

with exactly the same assignment of parameterization of the 

process points. The teaching duration using remote (robot A) 

and physical (robot B) control mode was extracted from the 

video recordings. Table I shows a decrease in average 

duration by 23.11%, and a strong shift from software- to 
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manually controlled usage. This shift towards the direct 

manual guidance of the robot was also measurable in two 

dimensions of UX: Usability and Performance Expectancy. 

The first was investigated using the System Usability Scale 

(SUS). The second describes one’s belief that using the 

system will help him or her to attain gains in job performance, 

and was measured using two items which were derived from 

[4]. Table II shows the increase in the dimensions Usability, 

Learnability and Performance Expectancy.  

 

 

 
 

 
Fig. 7 - Robot B - Tool 

 

During expansion stage 1 experiments (with robot A) the 

user had to use the Touch Panel 95.4% of the time while 

manual guidance mode was used only 4.6% of the time. This 

was due to cumbersome navigation in menus and submenus 

on the robot teach pendant during the parameterization 

process. As a consequence a more linear programming 

approach is proposed for expansion stage 2 which led to the 

integration of the XROB programming system.  

 
Fig. 8 - programming activities 

 

 

 

 
Fig. 9 - programming time with / without additional programming effort for 

parameterization of machine vision algorithms 

 

Fig. 9 shows the programming time for robot A (T1) and robot 

B (T2). Total programming time including machine vision 

increased while training effect and additional input modalities 

(FT-sensor powered hand guidance,…) yield a net decrease 

of programming time. 

 

Fig. 10 shows that the small acceptance of the manual guidance 

input modality in robot A can be increased dramatically if the 

implementation addresses user requirements and wishes.  

  
Fig. 10 - preferred input modalities for robot A and B 

 

During the video analysis of robot B the expressed 

emotions and thoughts of the participants were clustered into 

several main categories. Qualitative feedback mainly focused 

on ergonomic details, such as the shape of the handholds on 

the robot, the positions and drag of the buttons/switches, and 

the fluency of the manual robot guidance. All of the 

volunteers pointed out that the robot should actively support 

them during the teaching process. Main feedback clusters 

TABLE I 

AVERAGE DURATIONS OF THE TEACHING PROCESS IN STUDY I 

AND II INCLUDING THE PERCENTAGE OF BOTH CONTROL MODES  

Duration (m:s) Robot A Robot B 

Average Total [SD] 6:25 [2:27] 3:36 [1:03] 
Remote Control [%] 6:25 [100.00] 1:01 [28.43] 

Physical [%] 0:00 [0.00] 2:35 [71.57] 
   

 
TABLE III 

USER EXPERIENCE IN STUDY I AND II INCLUDING 
PERFORMANCE EXPECTANCY (PE), SYSTEM USABILITY SCALE (SUS), 

AND ITS SUBSCALES USABILITY (SUS-U) AND LEARNABILITY (SUS-L)  

Duration (m:s) Robot A Robot B Diff. [%] 

PE [0-5] 2.40 [1.08] 3.40 [0.89] 1.0 [20.0] 
SUS-U [0-4] 2.00 [0.73] 2.53 [0.27] 0.5 [12.5] 
SUS-L [0-4] 1.70 [0.76] 2.60 [0.65] 0.9 [22.5] 
SUS [0-100] 48.50 [13.99] 63.50 [3.79] 15.0 [15.0] 
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were interpreted and conclusions drawn. Visual feedback 

during teach in was requested. If possible, information should 

be projected to the work piece surface. This would require 

additional projection technology as proposed by AssistMe.  

VI.  PROPOSAL FOR FINAL EVALUATION 

An additional projection technology would enable spatial 

augmented reality methods.  

A. Robot C 

Spatial augmented reality interfaces are proposed and 

implemented as tangible user interface. Physical interaction 

with the product to process only might further minimize 

programming effort and be an easy to perceive means of 

interaction. A tangible marble is used for teach in of process 

points and the sequence of their processing. Therefore a 3D 

camera is integrated with a projector to detect marbles [21] 

positioned on top of screws to acquire spatial process points 

as 

 

 
Fig. 11 - Tangible User Interface 

 

well as taps onto projected buttons to confirm their order or 

other interactions with the programming system. 

 

B. Robot D 

Robot D is controlled via a 2D interface as depicted in Fig. 

13. Process points are entered by tapping onto a 2D 

representation of the processed object. A machine vision 

algorithm determines the spatial region of the tapped point 

and therefore determines both 3D process points and the 

sequence of the process points from the tapping order. Fig. 14 

shows the technology applied to a bin-picking process where 

one of several objects in the 3D sensors field of view can be 

selected in a 2D representation of that data. The same 

technology is applied to the selection of regions and process-

points on a single object in the sensor’s field of view. 

Implicitly also the order of the process points can be entered.  

 

 
Fig. 12 - Tangible User interface system setup 

 

 

 
Fig. 13 – Define process points in 2D 

 

 

C. Robot E 

Robot E is programmed by positioning an externally tracked 

device (Fig. 15) or an extension like a stick to the process point. 

Once calibrated a precise position of a stick’s tip mounted on 

an externally position tracked device can be calculated in real-

time. Process points and their order are programmed by 

ordered tipping onto screws in question.  

 

 
Fig. 14 - 2D tap based process point selection 

(https://www.youtube.com/watch?v=nrhXEqG014o) 

VII. CONCLUSION 

The presented study demonstrated that the not-

intermediated (direct manual) interaction with the robot can 

increase the experience of the robot's capabilities (usability, 

Select position by click in 2D view

Position 2Position 1

Live View of 2D Camera

Camera Position
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performance expectancy). 

 

 
Fig. 15 – pointer with external tracking 

 

The outcomes of a previous user study [22] led to a 

technical revision of the HRI mechanisms of the first robot 

prototype by incorporating the worker’s feedback. In the 

current study the same workers tested the HRI mechanisms of 

the revised robot and the findings were compared with the 

previous version. Furthermore, it seems unlikely that the 

results can be explained by practice effects, due to the period 

of one year between the studies and the completely different 

interaction methods. However, the findings of the current 

study drove the last technical revision of the system (robot C, 

D, E) which will feature improvements in ergonomics and be 

evaluated in a final evaluation in 05/06 2017.  

Collaboration can be improved by adding visual feedback 

on the robot and the work piece during the teaching (to reduce 

the burden of switching attention between the robot and touch 

panel). [15] [16] introduce the notion Spatial Augmented 

Reality (SAR) and describe it as enhancement or aggregation 

of several Augmented Reality (AR) technologies. One 

formulation [17] might be a depth camera projector based 

system to project (correctly distorted) information on three 

dimensional objects instead of flat screens (Figure 3) and may 

be used for projection of buttons. (Applied) robotics does not 

make use of SAR methods extensively. [18] introduces a 

projection based safeguard system for robotic workspaces 

especially for collaboratively used workspace. [19] gives an 

overview on Tangible User Interfaces (TUI) which denote 

interfaces that can be manipulated physically, and which have 

an equivalent in the digital world and represent a mean for 

interactive control. The project proposes a combination of 

TUI and SAR methods. Hand-guided positioning of the robot 

might be uncomfortable or time consuming due to 

inappropriate input modalities (friction afflicted robot drives, 

unintuitive touch screens,…). These were motivations for the 

implementations of technologies integrated in robot C,D and 

E and will be evaluated in the final evaluation in AssistMe. 

The new HRI mechanisms of robot C, D and E will be 

based on the paradigm of joint/shared attention, which 

describes the shared focus of two individuals on an object. 

Joint/shared attention is realized when one individual alerts 

another to an object by verbal or non-verbal means such as 

eye-gazing or pointing (gestures). The application of this 

paradigm will result in gesture-based HRI mechanisms for 

robot C. This design decision will shift human-robot 

interaction towards the dynamics during human-human or 

human-animal interactions. Therefore, we expect that this 

approach will help to increase perceived safety, overall 

acceptance and to ease the transition of working with newly 

introduced robots.   
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Design of an Autonomous Race Car for the
Formula Student Driverless (FSD)

Marcel Zeilinger1, Raphael Hauk1, Markus Bader2 and Alexander Hofmann3

Abstract— Formula Student Germany is a race car com-
petition for student teams competing with self-designed, self-
developed and self-built vehicles. These cars have been com-
peting to win in various disciplines every year since 2006 at
the Hockenheimring in Germany. In 2016, a new discipline,
Formula Student Driverless, was announced for the following
year, targeting autonomous race cars that complete tracks of
5 km over 10 laps as fast as possible without the help of human
racer pilots or remote control systems. This paper will cover
the framework, the sensor setup and the approaches used by
the Viennese racing team TUW Racing.

I. INTRODUCTION

Formula Student Germany (FSG) is an international con-
struction competition for students with the aim of promoting
research in multiple disciplines on a concrete application.

The competition is divided into three classes: electric,
combustion and driverless vehicle. The last classification,
which has existed since 2017, is called Formula Student
Driverless (FSD), where either combustion or electric cars
are permitted. Contrary to the other two classes, the driverless
class rules permit the use of a team’s existing race car
which has already attended previous FSG race(s). Therefore,
formerly manually-driven race cars equipped with appropri-
ate sensors, actors and computing hardware can be adapted
to driverless cars. Nevertheless, vehicles have to comply
with the restrictions of their appropriate class; in particular,
manual operation must still be possible.

Regardless of the class in which a team participates, the
event itself is divided into static and dynamic disciplines, and
points can be scored in each discipline. In the static disci-
pline, a cost report and a business plan must be presented by
each team. Before a car is allowed to participate in a dynamic
event, a technical inspection must be passed to ensure the
car is mechanically and electrically safe, in accordance with
the rules [3]. Since a car’s total score is comprised of both
disciplines, the fastest car need not necessarily win.

In the following sections TUW Racing will describe its
concept for participation in the FSD 2017. First, an overview
is provided of the solutions and academic approaches avail-
able in the area of autonomous driving, with regard to similar

1Marcel Zeilinger and Raphael Hauk are with TUW-
Racing, Adolf-Blamauergasse 1-3, 1030 Wien, Austria
firstname.lastname@racing.tuwien.ac.at

2Markus Bader is with the Automation Systems Group at Institute of
Computer Aided Automation, TU Wien, Karlsplatz 13, 1040 Vienna, Austria
firstname.lastname@tuwien.ac.at

3Alexander Hofmann is with the Institute of Com-
puter Science at the University of Applied Sciences FH
Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
firstname.lastname@technikum-wien.at

Fig. 1. Racecar Edge8 from the previous season (2016) which has been
redesigned to drive autonomously

solutions in general mobile robotics. Then an overview of the
vehicle and the sensors, actuators, as well as the software
components used is provided. Furthermore, we will describe
our approach to the problems posed by the competition and
reflect upon its effectiveness up to this point.

II. RELATED WORK

In order to describe related work, time was invested in
studying competitions with a similar focus. In addition, stud-
ies were conducted on commercially available solutions to
autonomous driving such as the NVIDIA DRIVE1 products.

The Carolo Cup2 is a competition where student teams
build autonomous 1:10 sized cars, which have to cope with
reality-inspired driving situations faced by passenger cars
[12]. While there is a static competition in the form of a
concept presentation as well, the dynamic events consist of
parking and driving a free drive with and without obstacles.
During the free drive, the model car needs to master chal-
lenges like intersections, speed limits or dynamic obstacles
such as other vehicles or passengers crossing the track, which
is marked with white lines on a dark ground similar to real
road surface markings. In the paper [12], Technical Evalua-
tion of the Carolo-Cup 2014, the authors state under Lessons
Learned the importance of high quality hardware products
and the need for a robust computer vision algorithm in
detecting road markings. Similar to this competition are the
NXP Cup student competition, also known as the Freescale

1NVIDIA DRIVE http://www.nvidia.com/object/drive-px.html
2Carolo Cup: https://wiki.ifr.ing.tu-bs.de/carolocup/
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Cup3, and the Crazy Car4 race, which has been hosted by
FH Joanneum in Austria since 2008, where students from
schools and universities are eligible for participation.

Other relevant competitions comparable to the FSD are
the DARPA Challanges of 2004 to 2007. The car Stanley
[9] won this competition in 2005, but since that time many
products in the field of autonomous driving have entered the
market.

Autonomous control is an important new subfield in
the automotive sector as commercial autopilots and driver
assistance systems become more and more popular.

To classify the different levels of system functionality and
compare actual driverless cars, the Society of Automotive
Engineers has introduced a classification scheme5.

Many commercially available software products fall into
classes 0-2, thus only observing driver environment and
taking on only limited driving tasks. The rare cases of actual
automated driving systems in classes 3-5 can be found in
Google Autonomous Cars or Tesla Autopilots. Google makes
heavy use of a multi-beam 3D-laser scanner to understand
the entire environment. It also solves problems related to
the traffic behaviour of human drivers and it is integrated
into external maps and weather services. Tesla uses radar
and sonar, in some cases mounted behind the vehicle’s outer
structure, to detect individual classes of obstacles, e.g. with
radar: moving obstacles; or, with ultrasonic sensors: other
cars beside the vehicle. [1] [5]

Nvidia presented an autonomous control solution where
the system was taught to drive exclusively by RGB camera
input [2]. Machine Learning was used to match steering input
with camera images, so the vehicle steers based on scenes
recognised in the camera view. Nevertheless, the driver has
to control the throttle.

An example of a framework for autonomous driving is pro-
vided by Nvidia DriveWorks. It provides interface layers that
allow easy incorporation of new sensors, execute machine
vision algorithms and even perform trajectory planning. Ad-
vantages are its range of out-of-the-box detection algorithms
and the heavy use of graphics-accelerating hardware with
perception computation times of within a few milliseconds.
An apparent disadvantage is that only Nvidia hardware can
be used. Another drawback is that the architecture lacks an
actuator control component.

The approaches and frameworks in Google’s, Tesla’s and
Nvidia’s applications solve a variety of problems associated
with driverless cars in traffic that are not relevant to the FSD
competition. Accidents, recognising people, lane markings,
sidewalks or traffic signs do not have to be handled at all in
the FSD. There are no intersections where maneuvers have to
be negotiated with other cars; for that fact, there no other cars
on the track at all. This year, TUW Racing’s main goal is to
design a solid base system as an ideal start for improvements
and qualitative increments in upcoming years.

3Freescale Cup: https://community.nxp.com/docs/DOC-1011
4Crazy Car: https://fh-joanneum.at/projekt/crazycar/
5 SAEReport:https://www.sae.org/misc/pdfs/automated driving.pdf

Therefore our solution is based on open-source compo-
nents. Due to the fact that TUW Racing initiated the project
with experts in mobile robotics, the commonly used Robot
Operating System ROS[7] is used for modularisation and
communication.

ROS enables TUW Racing to interface the required com-
ponents of the system, from camera to motor control. There-
fore, for speedy development, the team selected hardware
devices with drivers already available.

In the next section, the hardware and the software frame-
works used will be described.

III. THE RACE CAR

In this section, the competition, the race car’s hardware,
as well as the software implemented are described in detail.

A. Competition

The dynamic component of the race has three challenges:
an acceleration race, a skid pad and a track drive. The
acceleration race is a 75m-long straight track followed by
a 100m straight exit lane. The skid pad track consists of
two congruent circles, touching externally, with a diameter
of 18.25m. The vehicle enters on the tangent of the circles
at their contact point, drives the right circle twice followed
by the left twice before leaving via the tangent again. The
track drive is a closed loop circuit with an unknown layout
consisting of up to 80 m straights, up to 50 m diameter
constant turns, and hairpin turns with a 9 m diameter, among
other miscellaneous features such as chicanes, or multiple
turns. The vehicle must recognise and drive exactly ten laps
with a maximum distance of 500 m each. The track is marked
by blue and white striped traffic cones on the car’s left edge
and yellow and black striped cones on its right edge. The
cones are connected via a high-contrast colored line sprayed
onto the road; however, the line may extend out to the side.
Additionally, the stop zones on the acceleration and skid
pads are marked using orange and white striped cones. The
distance from one cone to another along either edge of the
track is up to 5 m, and the minimum track width is 5 m,
except on the skid pad, where the width is 3 m. The traffic
cone layout is predefined in the rules.

B. Hardware

The total power allowed for formula student cars with any
kind of powertrain is 80kW, and for electric powertrains a
maximum voltage of 600V at any time is allowed. The other
major limitation is the wheelbase of at least 1525mm. Aside
from those stipulations, students are free to design their cars’
characteristics as they wish.

Both rear wheel hub motors of the TUW Racing car have
a maximum torque of 30 Nm at a weight of 3.6kg and
a gear transmission ratio of 12:1. The total weight of the
car is 160.5kg with a top speed of 30.5m/s, accelerating in
3.1 seconds to 27.8m/s. Fig. 2 shows a rough sketch of the
vehicle with sensors.
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Fig. 2. Sensor placement on the vehicle: 1 stereo camera, 2 laser scanner,
3 IMU, 4 steering angle encoder, 5 wheel speed encoder, 6 rotor position
encoder, 7 GPS

1) Actuators: TUW Racing had to adapt its vehicle with
actuators that still allow for human operation of the vehicle.
The brake pedal may not be blocked and the steering must
be easily steerable by hand despite the gearboxes and motors
that are to be added.

• Brake System: Due to the already-optimised brake
balance, the brake system is mechanically operated via
the pedal. Details in the mounting allow the driver to
still press the pedal. An alternative way to decelerate is
through reverse operation of the motors, although brake
response is faster and conserves energy.
The brake system must always be able to stop the car
within a maximum of 10 m, even in the face of a
single failure in the system, including power loss or
any mechanical failure.

• Steering: The additional steering motor is mounted to
the existing steering strut at the top of the monocoque.
With an average-size driver in the vehicle, the car
weighs about 240 kg and requires 25 Nm to steer while
the car is not moving. This is the force TUW Racing
designed for, since it would enable testing with a driver.

The competition requires students to design emergency
systems in a detailed Failure Mode and Effects Analysis
(FMEA). For instance, power or mechanical failure to the
brakes or steering must be accounted for with fallback
systems. When emergency braking is initiated by remote
or failure detection in another subsystem, the vehicle must
enter a safe state that simultaneously relies on the actuator’s
operation. For instance, a vehicle steering 60 degrees to the
left while a full brake is initiated should first steer to the
center position to optimise friction on the wheels.

2) Sensors: Sensor placement on the vehicle is shown in
Fig. 2.

• Camera: TUW Racing selected a ZED6 stereo camera
for its visual sensors. It features an opening angle of
90deg and a base line of 120mm, connected via USB3,
which enables generation of depth images at a range of
20m. The camera is mounted on the topmost point of the
roll bar (1). In order to automate the calibration process
and to estimate the extrinsic camera matrix, the team
used visual markers attached to the vehicle’s chassis on

6ZED Stereo Camera: https://www.stereolabs.com/

Fig. 3. Image of left camera with visual markers attached to vehicle to
estimate extrinsic camera matrix

specific locations, as shown in Fig. 3
• Laser Scanner: A laser scanner was placed inside the

front wing, at the lowest point, as it is a planar scanner
and the cones are relatively short. It is tilted downwards,
so that it points at the bottom of a cone from the
maximum distance. This counteracts damping influence,
which could lead to the rising of laser orientation during
accelerations, and the lowering thereof during braking.
With the use of (2) a Hokuyo 20LX planar laser scanner,
the autonomous system is able to detect cones within
the field of view using circle detection and heuristics to
filter non-cone circular obstacles, e.g. wall detection.

• GPS: For accurate absolute position measurement, a
dGPS, provided by a Piksi Multi GNSS module (7),
is used along with two beacons placed outside the race-
track. The beacons allow for more precise positioning
than a common GPS system does.

• IMU: The relative movement of the vehicle is measured
by a motorsport-grade IMU (3), which measures rota-
tion in the yaw axis as well as acceleration in the x and
y directions.

• Odometry: To accurately determine the front wheels’
speed and distance travelled, TUW Racing uses an
inductive wheel spin sensor (5) at each front wheel, and
for the rear wheels a rotor position encoder is used for
the car’s TUW-Racing-developed motors(6).
The steering angle is measured by a rotary position
encoder (4) connected to the steering shaft. All measure-
ments acquired from these devices are used within the
software framework which is described in the following
section.

C. Software

In order to integrate and process sensor measurements,
ROS is used as the base framework and nodes were imple-
mented for the following tasks.

• SLAM (Simulations Localization and Mapping): The
vehicle’s pose must be estimated and the race track must
be reconstructed while driving[8].

• Machine vision: The traffic cones, their positions, and
colors, must be detected using multiple cameras and a
laser range sensor.
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• Path extraction: A path must be computed which
guides the vehicle between the traffic cones to the
destination and marks the drivable area.

• Motion control: The motion controller uses the drivable
area detected between the cones, computes an optimal
trajectory, and dispatches the actual motion commands
for steering and accelerating the car.

In Fig. 4 one can see an overview of the messaging system
among the ROS components. It shows the connection of
the actuators to the sensors, as well as the processing steps
needed to achieve desired control sequences. Some of them
are implemented as nodelets to minimise messaging delays.

In the following section techniques used are described in
more detail.

IV. APPROACH

The EKF-SLAM implementation used is based on Mac-
sek’s [6] Master’s thesis. The filter uses perception of cone
measurements with uncertainties and generates a map of
the cones in 2D. It also determines the car’s own position
on the map, computes its position relative to previous laps,
and performs motion control. It is necessary to predict the
vehicle’s pose ahead of time in order to send proper motion
commands, since actuators have a considerable reaction
delay.

For sensing, it is vital to detect traffic cones in the environ-
ment and estimate their location relative to the sensors. The
known location of the sensors on the vehicle enables one to
create a global map of landmarks for the trajectory-planning
algorithm.

In the first development phase, TUW Racing used Pio-
neer 3AT in a simulated and real world scenario in order to
generate measurements, try out sensors and plan algorithms,
as shown in Fig. 5.

A. Traffic cone detection

Because of the variety of sensors used (lasers and cameras)
various techniques have to be implemented accordingly. Two
approaches are used to perform cone detection and position
estimation on the stereo camera images. In the first approach,
a depth image based on a block-matching algorithm is used.
This allows for extraction and removal of planes in a 3D
data set. The track floor that is geometrically known can
be pre-segmented, and cone candidates appear as isolated
objects. These candidates are then further evaluated using
classical image processing steps on the estimated location
in the image plane, similar to the approach of Yong and
Jianru [11]. However, a block matching algorithm cannot be
easily adapted to use the known structure of the environment
for improved perception of target objects. Moreover, the
computation effort and thus hardware requirements would
be unnecessarily high, since one would have to operate on
an entire image.

In the second approach, cones can be detected in both
images separately. The algorithm computes the disparity, the
z-depth and consecutively the 3D position of the cone, based

only on the UV center points of the same object determined
in the left and right images.

In both approaches, the program determines the colors
heuristically with RGB color thresholds. If the estimated
center point is within a white or a black stripe, the color
sample point is moved downwards until another color match
is determined.

In addition, the planar laser scan is searched for point
clusters of distances that match the radius of the cone at
the height scanned. If the total distance spanned by coherent
scan points is above this radius but below the total radius
of the cone base, the algorithm considers the center point
between the cluster to be the center point of a cone. In order
to avoid detection of obstacles other than cones, the detector
filters long connected components such as walls.

The detection results of both algorithms are then fused
with a feature-based EKF-SLAM [6]. Thus the team benefits
from the advantages of both of the detection approaches,
because the fusion algorithm respects the reliability of each
detection result and takes the more reliable detection result
into greater account. For example, distance estimation at high
distances is less accurate at image-based detection, due to the
fact that pixel disparity is smaller. On the other hand, laser-
based detection cannot reliably detect cones that are behind
other cones.

B. Mapping

For TUW Racing, it is essential that the mapping com-
ponents be able handle failures in the detection component.
The camera or the laser could have short periods of blindness
due to sunlight or uneven road conditions. In these cases a
cone might be missed. Since cones are guaranteed to be at
most 5 m apart, missing ones can be filled in. Because all
cones on the left side have a different color than those on
the right, heuristics can fill in cones missing from one side
based on the cones observed on the other side.

Since the traffic cones themselves are the best reference for
position and orientation on the track, the team uses an EKF-
SLAM that maps them and corrects the vehicle’s position
based on their perceived change of position. An additional
challenge here is that the same track sections are driven ten
times throughout the competition. Thus, the mapper must
recognize previously mapped cones by ID, even though they
are of the same color and shape. An index counter from the
starting line is insufficient due to potential perception failure.
Nor does the vehicle have a full 360deg line of sight. In a
narrow left turn, due to the vehicle’s pose in an optimal
trajectory, it is possible that only the outer cones might
be seen. If the mapping algorithm performs corrections to
positions on the map on those right lane cones, the left lane
cones must also be updated automatically.

C. Trajectory Planning

From the mapping one can derive a path which lies in the
center of the travel area; path-planning is therefore obsolete.
To start, a normal vector is projected from the center point
between the first left and right cones forward. The first cones

54



Fig. 4. ROS nodes and message subscriptions in rqt graph

Fig. 5. Edge8 in a simulated environment using GazeboSim.

to the left and right of this vector are identified, then the
center point identified, and a vector projected forward again.
Since the left and right sides can be distinguished, a situation
where the cut to the left of the vector which contains a right-
side cone, or vice-versa, is manageable. The vector is then
rotated accordingly so that the sides are split correctly.

But following the center path would not be very efficient,
so the model predictive [4] motion controller computes its
own optimal local trajectory. The MPC [10] used optimises
the trajectory using the latest perception state and incor-
porates the mechanical constraints of the vehicle’s motion
model, such as maximum linear acceleration and decelera-
tion, actuator delays and disturbances resulting from vehicle
dynamics, e. g . sideslip angle.

V. RESULTS

In order to build a foundation for simulation of the race
car in software that integrates well into ROS, TUW Racing
extended its approach to the Pioneer 3AT and used gazebo
simulations to test marker mapping, odometry corrections
based on simulated IMU data, trajectory planning, as well
as a basic self-developed motion controller. Fig. 5 shows
the robot following a narrow turn in the simulation, with
obstacles of width and height comparable to those of cones
on the track. It successfully navigates a 180deg turn, detects
shapes based on simulated laser scans and determines the
center path accurately.

In Fig. 6 results with a cone detection algorithm on a
still from a video of last year’s autocross race at the FSG

Fig. 6. Cone detection on still of last year’s race recorded using a GoPro
camera

are shown. The cones detected in the image are enclosed
by yellow rectangles. The algorithm is based on a trained
cascade classifier using a histogram by an oriented gradients
feature descriptor. Photos of the specific cones seen in the
image, from angles of 0deg horizontal to about 40deg turned
downwards, served as training data. The algorithm turned out
to be computationally expensive and susceptible to variations
in lighting and weather conditions. With the trained algo-
rithm on last year’s video we achieved an unstable detection
rate of 30% to 90% depending on the track section. The
algorithms explained above, evaluated on recordings with
the stereo camera, detected 75% of the traffic cones in
the image regardless of lighting. Most of the missed cones
were affected by very strong shadows cast by large nearby
obstacles, wear of the cone itself or cones that partially
covered each other. The location, color and shape of the
cones, the point of view, background, the vehicle itself and
lighting are very similar to the scene in the image.

Evaluation of detection on a recording of last year’s race
has shown that different light conditions can be a problem for
the car’s visual sensor. Extreme light exposure to the camera
or even driving from shade into sunlight can be disturbing,
as the camera needs some time to adjust to the brightness.
Similar issues emerged in evaluation of the stereo camera
mounted on the car driving a short sample track. In Fig. 7,
the camera adjusts to increasing brightness using integrated
exposure control when the car enters a sunlight-drenched part
of the track. As the more distant cones become visible by
the aperture’s adjustment, the cone marked with the orange
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Fig. 7. Images of the ZED stereo camera showing how light conditions
affect the visual cone appearance.

circle gets darker and less visible.
The Lidar suffers from similar issues, as can be seen in

Fig. 8. The cone detection algorithm was tested in an outdoor
environment during rain. Since dealing with environmental
conditions is part of the challenge of Formula Student, the
vehicle will have to run regardless of the current weather.
The small axis markers show laser scan points that hit
a cone in the vicinity of the robot. The small red dots
represent points relative to the robot where an obstacle was
detected. The white visual markers on the field show the
cones the robot itself is currently detecting; the numbered
axis markers show the cones mapped. Usually the field
would be empty at the sensor’s maximum range, but during
rain, reflections are measured at some point, resulting in a
noisy outer cloud structure. Near the robot some of the rays
are instantly reflected and reduce the amount of rays that
hit a cone, thus making accurate detection more difficult.
Fig. 8 shows that the algorithm used is able to map cones
with decreasing accuracy but at higher distances. Since scan
data has to be compared over time until a cone can be
classified correctly, the speed of the detection algorithm is
also adversely affected.

One can expect the effect of small rocks on the track to
have similar effects on detection, as at high speeds they are
usually sprayed across the track by the vehicle.

VI. CONCLUSION

In this paper the TUW Racing team’s approach to the FSD
2017 competition was presented. Details were provided on
its hardware and the approach to its control software.

The team will begin testing within the next month on a
test site with road conditions that resemble the event location
and a setup with obstacles corresponding to those detailed
in the rules. Initially the team will validate the accuracy
of the motion model and perception system in separate
road sections. Then it will complete entire tracks at low
speeds before gradually increasing speeds while improving
controller parameters.

While TUW Racing’s main goal this year was successful
participation in the first Formula Student Driverless event,
its goal for further seasons will extend to improving the
efficiency of the vision algorithms and accuracy of the un-
derlying motion model. The choice of the sensors, actuators

vehicle mapped cones

detected cones

measurment noise, raindrops

new mapped cone

Fig. 8. ROS Rviz view of an outdoor test with the pioneer during rain.
The laser scan (red) is disturbed by the raindrops.

and computers as well as the software framework will be
influenced by performance in this year’s competition.
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Concept and Implementation of a Tele-operated Robot
for ELROB 2016*

Florian Fuchslocher1,2, Martin Rambausek1, Wilfried Kubinger1 and Bernhard Peschak2

Abstract— The current use of mobile robots in search and
rescue scenarios like natural or man-made disasters is often re-
quired to protect emergency response personnel from dangerous
situations and support them in their work. At the same time
the localisation and rescue of victims has to be achieved fast
and reliable. However, a fully autonomously controlled robot is
highly sophisticated and needs many sensor components whose
data has to be combined. Due to this fact, mostly a combination
of a tele-operating system and a fully autonomous system is
implemented.

This paper focuses on developing a concept for a taurob
robot for participating in the European Land Robot Trials 2016
(ELROB). The aim is to integrate suitable sensors into the robot
system and to implement a tele-operating mode. The selection of
the sensors is based on criteria’s of the competition’s scenarios.
For the implementation of the tele-operating mode, the Robot
Operating System (ROS) is used. Two variants, a keyboard and
an Xbox Controller, are tested to steer the robot.

The obtained results show that operating the robot by
the Xbox controller is easier and more precise than by the
keyboard. Combined with the sensors, the system shows an
overall solid performance and provides a good basis for further
development.

I. INTRODUCTION

Disaster control and its dangers are a big topic, that can be
covered by robots to protect rescuers from hazardous envi-
ronments [5]. The European Land Robot Trial is a convention
for showing the abilities of different unmanned systems
in realistic scenarios [2]. The aims are headed towards
the greatest possible autonomy and strong performance. To
participate at ELROB 2016 the servicerobot Robbie was
designed to fulfill the requirements of three different scenar-
ios [3]. This robotic system is based on an Austrian robot
platform from the company taurob [1] and was developed to
compete in the challenges of three scenarios. Reconnoitring
of structures (e.g., mapping), search and rescue (find and
drag a dummy body) and Reconnaissance and disposal of
bombs and explosive devices (EOD/IED). To achieve results
in these challenges, several sensors and a controlling system
were integrated to the robot. In the following, these systems
are specified and their performance is discussed.

*This project has been partly funded by MA23 - City of Vienna within
the Project Call 16-02 ”Photonics: Foundations and industrial applications”.

1Florian Fuchslocher, Martin Rambausek and Wilfried
Kubinger are with University of Applied Sciences Technikum
Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria, email:
wilfried.kubinger@technikum-wien.at

2Florian Fuchslocher and Bernhard Peschak are with the Austrian
Armed Forces, Rossauer Laende 1, 1090 Vienna, Austria, email:
bernhard.peschak@bmlvs.gv.at

II. SYSTEM OVERVIEW
The system consists of the robot vehicle and its selected

sensor components.

A. Robot Vehicle

The basis of this project is a Taurob robot [1]. It is a rugged
mobile service robot, which is driven differentially and has
capabilities to handle rough terrain. The robot structures
itself into the base, the wheels and the wheeled driven rubber
tracks. For a better climbing performance, it is also possible
to adjust the latter ones in height by the robot’s driving
motors. This function makes it able to climb slopes and stairs
up to 45 degrees and obstacles up to 35cm in height. The
robot is waterproof and designed for harsh environments, too.
Interaction with its environment is achieved by the robot arm,
which has the strength to pull a body with 20kg in weight.
Additionally, the robot is equipped with Ethernet ports to
allow easy integration of various hardware components like
the robot arm and sensors.

Moreover, the upper side of the robot base includes a
voltage supply socket. It provides two voltage levels, one
stabilized 12V (max. 4A) and a 24V (max. 5A) battery
voltage. These two voltage levels make it possible to power
all used hardware components. The robot’s integrated WLAN
router achieves a wireless communication between the robot
and a laptop. Fig. 1 shows an example of the Taurob robot
with all integrated sensor components.

Fig. 1. Sensor setup of Robbie

B. Robot Periphery

For participating in all ELROB scenarios, a stereo vision
system, several Cameras, two laser scanners, a robot arm
including a nuclear sensor and a hook, a GPS module and an
embedded computer are integrated to the robot’s periphery.
All hardware components are essential for the tele-operator

57



Fig. 2. Connections between robot and hardware components

to operate the robot through rough terrain, detect objects of
interests and interact with them. The following block diagram
(Fig. 2) shows connections between sensor components and
the robot.

The single cameras of the Robot are located on different
points, giving the operator the possibility to obtain a broad
view around the robot. Two cameras on the front and rear
are placed in the body between the tracks, each giving a
view in the needed driving direction. Another camera is
positioned either on the left or right side of the front, giving
the possibility to reconfigure and choose the needed side
view before operating manually. A last camera is mounted
to the last joint of the robot’s arm providing a view from the
hooks position (e.g. view top-bottom, to see the tracks and
the driveway in overview).

Two laser scanners placed in the front are needed for
generating maps and position in the operation via SLAM-
algorithms. The nuclear sensor and the GPS module are
applied for positioning and obtaining radiation heat maps.

The stereo vision system is installed on the front of the
robot. Its purpose is dedicated to future development of 3D
map generation and autonomous operation.

III. TELE-OPERATING MODE

To control the robot manually, a tele-operating mode is
implemented using ROS. One criteria is to provide two
variants for the operator, which can be chosen later. These
two steering variants are:

• Keyboard controlled steering
• Steering by Xbox controller

For realisation of both steering variants various ROS
packages were integrated in the software environment.

TABLE I
KEYBOARD BUTTON CONFIGURATION

Button Function
u Left rubber track forwards (right turn)
i Go forward
o Right rubber track forward (left turn)
j Left rotation
k Current command stop
l Right rotation

m Left rubber track backwards (right turn)
, Go backward
. Right rubber track backwards (left turn)

A. Keyboard control

First approach is to control the robot by a keyboard. To
realise this variant, the teleop twist keyboard package [4]
was integrated into the ROS environment. This allows the
operator to control the vehicle with the input buttons shown
in Table I.

To quit operating the robot by the keyboard, CTRL-
C has to be entered. After that the robot stays in safety
state and cannot be controlled by keyboard as long as the
teleop twist keyboard package is restarted.

B. Xbox controller

Alternatively, ROS also provides controlling the robot by
Xbox controller [7]. Therefore, the joy package [6] is used
for implementing the controller into the ROS environment.
After implementation, every steering command of the robot
can be used to configure it to one of the Xbox controllers
or joysticks buttons. In Fig. 4 the wired Xbox controller and
its buttons are demonstrated.

Since there are only a few of control commands, not all
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Fig. 3. Mapping results a) small indoor rooms b) disrupted map in a big open area at ELROB 2016

Fig. 4. Xbox Controller for operating the robot

buttons are used for steering the robot. The following table II
shows which of them are implemented for which function.

TABLE II
XBOX BUTTON CONFIGURATION

Button Function
Left joystick (up/down) Drive (forward/backward)
Left joystick (left/right) Rotate (left/right)

Right joystick (up/down) Height-adjustment rubber tracks (up/down)
Right bumper Release button
Left bumper Turbo button

Due to safety reasons the enable button have to be pressed
all time for steering the robot by the joystick. Speed can be
controlled depending on how strong the stick gets pushed.
That means if the joystick gets only half pushed, the robot
will also drive with half the speed. Alternatively, the left
bumper can be used for enable the robot’s full speed mode.
In this mode, Robbie drives with around 5km/h full speed.
As mentioned before, it is possible to overcome obstacles by

adjusting the robot’s rubber tracks up or down. This is done
by moving the right joystick up or down respectively. Safety
state is achieved when all buttons are not pressed.

IV. RESULTS AND DISCUSSION

Compared to the keyboard variant, the Xbox controller
is the better decision for operating the robot in all ELROB
challenges. The results of both variants compared are shown
in Table III. While the Xbox controller obtains mostly
excellent results, the keyboard is improvable in most criteria.
Since all buttons of the keyboard are closely packed together,
steering the robot becomes more complex. Moreover delay
times of the sent commands were detected during tests with
the keyboard, which also effects sensitivity and accuracy
of steering the robot. Additionally, increasing speed by the
keyboard needs to push and hold one ”drive-button” and
push the ”speed-up-button” at the same time. In contrast,
the Xbox controller varies speed by inclining the joystick,
which results to more sensitivity and accuracy.

TABLE III
EVALUATION OF BOTH STEERING VARIANTS (+ ... EXCELLENT, ∼ ...

AVERAGE, • ... BAD)

Evaluation Criteria Keyboard Xbox Controller
Handling ∼ +
Accuracy • +
Sensitivity • +
Flexibility ∼ ∼
Feasability + +

Safety functions + +

Mainly, there are several aspects coming out of this
development. The tele-operated operation was a great success
at the ELROB event. While the video stream is slightly
delayed due to transfer limitation, the analogue joysticks are
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able to compensate that with nearly stepless motion, giving
the option not to lose time by having to stop and wait for
movement transmission on the screen. The map presented
in Fig. 3 was generated in two different areas. The left part
(a) shows a testrun inside a building with small rooms. The
right part of the picture (b) shows the generated map of the
reconnoitring of building structures challenge in big rooms
during the ELROB competition. In (b) it can be seen that
the system tends to lose orientation and fails by generating
a solid map of the area.

V. SUMMARY AND OUTLOOK

The aim of this paper was to develop a concept for the
taurob robot to participate at the ELROB 2016. One part
was to integrate two Pointgrey cameras for a stereo vision
system, two Sick 2D laser scanners, one Garmin GPS module
and one embedded computer into the robot system. The
selection of these sensors was based on the criteria of the
ELROB scenarios. Additionally, a tele-operating mode was
implemented by the open source program ROS for steering
the robot by a keyboard or an Xbox controller. To check
reliability of the robot system for the ELROB, trials in
specific test scenarios were carried out. The obtained results
of the test scenarios show that operating the robot by the
Xbox controller is easier and more precise than by the
keyboard. Furthermore, it is possible to build a 2D map of
indoor areas by the 2D laser scanner. Moreover, a dummy
body with a length of 1,80m and a weight of 20kg can be
dragged by the robot’s arm. Although there is still some
potential for improvement in different fields, the system
achieved a 3rd rank in the Reconnoitring of structures part
of competition.

The next step will be the upgrade to a more autonomous
state of operation including navigation and full support of
visual data processing as well as 3D Mapping including
radiation and visual integration of Points of interests (POIs).
Also, an advanced controlling system for the arm is planned.
The project is in further development and will be featured on
schedule for EnRicH 2017 in Austria and the next ELROB
2018 in Riga.
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A Robust and Flexible Software Architecture
for Autonomous Robots in the Context of Industrie 4.0

Marco Wallner1, Clemens Mühlbacher1, Gerald Steinbauer1, Sarah Haas2, Thomas Ulz2 and
Jakob Chrysant Ludwiger3

Abstract— The next industrial revolution should allow the
production of individually configured items at the cost of a
currently mass-produced commodity. To make this possible,
autonomous robots play an essential role. These robots use
their knowledge about the world and the task as well as sensor
information to derive the next action to achieve a common goal.
To give research in this area the possibility to test novel methods
and algorithms for the next industrial revolution, the RoboCup
Logistic League was established. The league uses a small shop
floor environment wherein a group of robots has to produce
customized goods within a given time-frame.

In this paper, we present a software framework for a group
of autonomous robots which deal with the problems of the
RoboCup Logistic League. The software is separated into three
distinct layers allowing modularity as well as maintainability.
The framework provides all the needed functionality starting
from creating plans for a fleet of robots, to the hardware skills
to detect machines, to move between locations and interact with
the physical world. To show the use of the software framework
a use-case is presented. This use-case is the exploration of an
unknown factory hall with a fleet of autonomous robots. All the
presented solutions in this paper were tested in the RoboCup
world championship 2016 in Leipzig. There the system showed
its robustness and its capability to solve issues arising with the
next industrial revolution.

I. INTRODUCTION

To increase customer satisfaction and sales, the industry
tries to fulfill the desire of the customer for an individual
product to the price of a product created by mass-production.
As current methods in industrial production cannot pro-
vide these low costs for highly customized products, new
approaches need to be developed. This is done through
an ongoing automation in the industry which leads to the
so-called Industrie 4.0 [1]. This term, originated by the
German government, describes the abstract shape of the next
generation in industry. One of the manifestations of this
vision is the idea of a fully autonomous fabrication with
smart machines.

To create such a smart factory two parts are essential.
On the one hand, there are configurable smart machines
necessary which are capable of performing the manufactur-
ing steps. On the other hand, an intelligent delivery system
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Steinbauer are with the Institute for Software Tech-
nology, Graz University of Technology, Graz, Austria.
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between these devices is needed to allow the transportation
of intermediate products to produce compound goods. As
the usage of the machines and the scheduling can no longer
be statically determined for a production line but need to
adapt to the current requests, new algorithms need to be
developed. To test these algorithms, the RoboCup Logistic
League [2] was initiated as part of the annual RoboCup world
championship [3]. The idea is to create a simplified version
of a smart factory which serves as a testbed and a standard-
ized benchmark for novel algorithms and approaches. With
this, different aspects can be tested and evaluated regarding
distinct components as well as the complete framework.

In this paper, we present a software framework to solve the
challenges of the RoboCup Logistic League. The framework
allows to schedule the entire fleet of robots and to react to
changes in the environment in a reactive manner. Further-
more, the system is capable of reacting to faults during the
execution of a task assigned to a robot or even a full drop-
out of a robot in the fleet. To allow an efficient, modular and
maintainable implementation, the framework uses a layered
architecture. This approach allows to schedule the fleet on
the highest level while considering the reactive interaction
between the robot and its environment on the lowest level.
To show how this software framework is used we present
in this paper how the robotic fleet can explore an unknown
shop floor. With the help of this example, we will show
how the fleet is scheduled to cover the shop floor efficiently.
Additionally, we will demonstrate how the machines are
detected and identified.

The remainder of the paper is organized as follows. In
the next section, we will discuss the RoboCup Logistic
League in more detail. The proceeding section discusses the
layered architecture. Afterward, we will discuss the software
components which are used for the exploration of the shop
floor environment. Before we conclude the paper we will
discuss some related research. Finally, we conclude the paper
and point out some future work.

II. ROBOCUP LOGISTIC LEAGUE

RoboCup, proposed and founded in 1997, is an annual
international robotics competition. There, teams from all over
the world compete in different disciplines, such as humanoid
robots, soccer robots, rescue robots and the mentioned logis-
tics competition.

The logistics league simulates the problems arising in a
smart factory. Primarily it provides a standardized testbed
for test new algorithms and approaches for smart factories.
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Fig. 1. RoboCup Logistics game-field in the simulator. Two attending
teams with 3 robots and 6 machines each.

This is achieved by a controlled environment which contains
a modular production system and a fleet of robots which need
to be controlled. To allow fair conditions, a standardized
robot platform (Robotino by Festo [4], three per team) is
used for the mobile robots as well as standardized modular
production systems (MPS by Festo, six per side) for the
fabrication steps.

To emphasize the idea of a smart factory, the rules require
that the fleet performs its task completely autonomously.
Thus no intervention from humans is allowed. The idea is to
put a robot in a workshop and let it explore the environment
on its own, find machines to work with and produce products
according to arriving orders. For this, the whole scenario is
split into two phases, the exploration, and the production
phase.

A. Exploration Phase

In this first phase, the robots have no knowledge about
their environment. They have to explore the game-field (see
Figure 1, a screenshot of the RoboCup Logistic League
simulation [5]) and find the machines located there. To award
points for the detection of such a machine, the robots have
to report their observations to a central referee box. Each
report contains the type of the machine, the shown status
light as well as it is position in the field. If all the machines
have been found, or after some deadline has passed, the next
phase is invoked.

B. Production Phase

In this phase the actual production takes place. Random
orders are placed by the central referee box, and both teams
try to produce these as fast as possible.

1) Products: The products are mocked up as cups (base)
with a defined number of rings pressed on it and a cap. The
color of each part of the product is defined in the order.

2) Order: An order consists of the demanded product
(e.g. a red base cup with two rings, the first ring blue, the
second one yellow and a black cap) and its earliest delivery
time as well as the deadline for the delivery of this product.

3) Modular Production System: To produce the ordered
product, the mobile robots can use the six production systems
of their team. There are four types of these workstations:

• 1x Base Station: Providing bases in the demanded color.
• 2x Ring Station: Mounting a ring in requested color on

the provided base.
• 2x Cap Station: Mounting a cap in required color on

the provided base.
• 1x Delivery Station: Point to deliver a product in the

given time window.
As the mounting of a ring represents the addition of some
feature to a product, some ring colors require additional bases
as ”raw“ material. Thus also the need of deliveries for supply
material is modeled in this scenario.

III. SOFTWARE ARCHITECTURE

To solve the tasks of the Logistics League, we propose
the following software architecture. The software is split into
three distinct layers, namely high-level, mid-level and low-
level. Each layer is independent of the other layers within this
concept. The lower layers provide functionality to the upper
one [6]. Furthermore, higher layers command the actions of
the lower layers.

The highest level of our software architecture is respon-
sible for the connection of the different parts. It connects
to the central referee box as well as an arbitrary number of
connected robots as it can be seen in Figure 2.

To allow independent development and testing of each
layer defined interfaces are necessary. Additionally, to feature
different programming languages for each layer, Google’s
protocol buffers are used for these interfaces. This inde-
pendence is used as the high-level is written in Java, the
mid-level using a belief-desire-intention [7] engine (openPRS
[8], C) and the low-level is written in C++ using the ROS
(Robot Operating System [9]) framework. The communica-
tion scheme for one robot can be seen in Figure 3.

For each interface dedicated protocol buffer (protobuf)
messages are defined. With this structure, an increasing
abstraction of the physical world can be achieved from the
bottom up to the top. The message used between the high-
level to the midlevel can be seen as an example in Listing 1.

Listing 1. Protobuf message to communicate between the layers.
1 message Pr sTask {
2 r e q u i r e d Team teamColor = 1 ;
3 r e q u i r e d u i n t 3 2 t a s k I d = 2 ;
4 r e q u i r e d u i n t 3 2 r o b o t I d = 3 ;
5

6 o p t i o n a l E x e c u t i o n R e s u l t r e s u l t = 4 ;
7

8 o p t i o n a l Repor tMach inesTask r e p o r t T a s k = 5 ;
9 o p t i o n a l ExploreMachineTask e x p l T a s k = 6 ;

10 o p t i o n a l GetWorkPieceTask getWPTask = 7 ;
11 o p t i o n a l P repa reCapTask prepCapTask = 8 ;
12 o p t i o n a l Di sposeProdTask d i s p P r o d T a s k = 9 ;
13 o p t i o n a l D e l i v e r P r o d T a s k d e l i P r o d T a s k = 1 0 ;
14 }

The lowest layer is responsible for small tasks close to
the hardware, e.g. to move to a waypoint, grab an object,
detect an AR-tag or analyze the status light of a machine (see
Section IV-A.2 and Section IV-A.1 for further details). We
call the execution of these small tasks skills in the remainder
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Fig. 2. Overall software architecture with links to the central refbox, the
team server and the connected n robots.

of the paper. These skills are provided to the next higher
layer, the mid-layer, via defined messages.

The mid-layer, therefore, can use these skills to perform
more complex tasks such as exploring a zone of the game-
field, get a base from the base station or deliver the product
holding in its gripper. Additionally, a first error detection
and recovery behavior are implemented here, e.g. the system
checks if there is a product in the gripper after the low-level
has successfully grabbed something. These complex tasks are
again provided via defined protobuf messages to our highest
layer, the team server.

Here a central knowledge-base is held and a game strategy
is derived (see Section IV-B for further details). This central
point enables the system to conclude a global optimal game
strategy for the complete robotic fleet. The global strategy
is derived using a simple planning system which uses a hi-
erarchical task network [10] to properly create the products.
Due to the centralized knowledge base one does not need to
deal with synchronization of knowledge bases of the robot
or distributed planning. Instead a “simpler” approach for
planning can be applied.

Fig. 3. Communication between the different layers for one robot using
Google’s protocol buffers.

IV. SELECTED SOFTWARE COMPONENTS

To get an idea of the functional interaction of our robot
system some selected components are presented. First of
all, two low-level modules necessary to detect and identify
a machine are presented in SectionIV-A. Additionally, the
scheduling algorithm (located at the high-level component of
our system) which manages the discovery of the unknown
game-field is presented in Section IV-B.

A. Machine Detection and Identification

To be able to gather information about the unknown envi-
ronment it is necessary for the robot to recognize elements
surrounding it. One important type of these elements is a
modular production system, i.e. the machines capable of
producing the ordered products. To identify the machines
AR-tags are used which are placed at two sides of these
machines.
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Fig. 4. View of the robot in front of machine through the light detection
camera at the RoboCup 2016 in Leipzig, Germany.

1) AR Detection: To localize objects in a defined frame
of reference, it is first necessary to localize the robot itself.
For this, a laser scanner and the knowledge of the fixed outer
boundaries of the factory are used to infer the position of the
robot using an adaptive Monte Carlo localization approach
[11]. Using the particle filter also the confidence of the
current location can be inferred.

With the known location of the robot and the known
position of a camera mounted on the robot, it is possible
to infer the position and orientation of seen augmented
reality (AR) tags. For this, the open source AR-Tag tracking
library Alvar is used. These tags are of defined size (allows
derivation of distance to the tag) and are mounted at the
input and the output of each machine. Each machine has a
defined tag id for the input as well as the output. Using this
knowledge, the position of the machine can be calculated
having at least one of the tags seen. The accuracy and
reliability of this measurements are further improved using
a moving average filter. The filter is used to correct the
estimate of the machine position with the help of several
measurements. This raw data of the location of the machines
is used by the higher layers as described in Section IV-B to
determine which zone the machine is in. The information
about the occupied zone is then reported to the referee box
to earn points during the exploration.

2) Light Detection: To fully identify a machine, addi-
tionally to the AR-tag, the position and orientation of it,
as well as the shown light pattern, needs to be reported. The
light pattern is used to uniquely identify the machine. For
this, the robot moves to a point in front of the machine.
Afterwards, the robot captures an image of the machine.
The captured image can be seen in Figure 4. These views
have random backgrounds with arbitrary components, colors,
and structures in it. Therefore, a detection of the light with
the help of a blob detection is difficult to configure and is
unreliable. Instead, one can exploit the fixed structure of the
traffic lights. All of them have the same geometry regardless

Fig. 5. Cropped traffic light by the histogram of oriented gradients detector.

of the shown light pattern. They have a defined ratio between
length and height, are sectored in three parts and are always
upright.

This knowledge could be exploited by applying different
manually generated and adjusted rules to determine the
position of the traffic light in the image. Instead of these
manually created rules, our approach uses a machine learning
approach allowing the method to be more reliable, easy to
configure and adapt to new environments with no effort. We
use the static feature of the structure to train a histogram of
oriented gradients (HOG) detector as described by [12]. This
detector exploits that the mentioned static features manifest
in a static gradient pattern.

Using the results of the HOG detector, a region of interest
(ROI) can be extracted. The result of this cropping can be
seen in Figure 5. Here the cropped traffic light is shown for
all possible light combinations. The HOG detector has the
advantage of almost no false-positive detections, i.e. if a ROI
is found, there is a traffic light in it with a high probability.

To report the type of shown light pattern, a mapping from
the traffic light image (which light is on and which is off)
to a representing number is needed. For this, the lighting
condition is encoded in a binary fashion, i.e. the representing
state is calculated as:

state = s(green)0 + s(yellow)1 + s(red)2 (1)

with

s(x) =

{
2, if x is on
0, else.

(2)

With this mapping, a feed forward artificial neural network
can be trained. We used the scaled conjugate gradient descent
algorithm described in [13] to train the network. With this
trained network, it is possible to map a newly seen image
to a vector of probabilities describing the likelihood of each
class as described in [14].

This gathered information can then be used by the higher
layers to build up a knowledge base about the environment
as described in Section IV-B.

The chain of a HOG-detector and a neural network was
chosen as none of these approaches need a lot of computing
power during the execution (only once at training time)
to avoid the tuning of several parameters. The used neural
network further increases the reliability as it can be trained
to be resilient to different lighting situations.

B. Scheduling Algorithm

The robots have no information about their environment
at the start of the game. Therefore, they have to use sensors
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to observe the environment and to gather information. This
is achieved by using a laser scanner for localization and
cameras for machine detection.

To explore the game-field in an efficient manner with mul-
tiple robots, a scheduling algorithm has to be implemented.
For this, our software architecture described in SectionIII
comes into play. With the centralized team server, it is
possible to generate a global exploration strategy and to
combine the information delivered by all the robots into one
reliable and consistent database.

During the exploration phase, all robots have the non-
blocking task to report all seen machines, i.e. the zone,
orientation (in discrete steps) and light pattern as well as
the corresponding confidence. These updates are sent to
the team server if parts of the information changes (e.g.
orientation is corrected), new information is added (e.g. a
light pattern is detected) or the confidence of a property rises.
This information is then collected at the team server as an
observations database.

To start the exploration with no observed date (i.e. at the
beginning of the exploration phase) the default task for the
first robot is to explore the top most left zone of the game
field if the team starts at the right start box or the top right
zone of the game field if the team starts at the left start box
(see Figure 1). Using this simple strategy, the probability
is very high that on the way to the destination zone the
robot observed other machines and reported them to the team
server. As soon as another robot is ready for a task or the
first robot has finished its navigation, the robot gets the task
assigned to visited a zone. During the visiting of a zone, the
robot detects if a machine is within the zone. If a machine is
present, the robot performs a light detection of the machine.
If no machine position is reported so far, the robot gets a
backup task to visit a randomly chosen zone which was not
visited before. Otherwise, the robot is sent to a zone with
a high probability that a machine is in this zone (one robot
has reported that there should be a machine) but was not
visited before. If all zones are visited, the zone with the
lowest confidence is chosen as the next task. This allows
maximizing the confidence of the machine information. The
simplified algorithm can be seen in Algorithm 1.

With the start position in the team boxes (as it can be seen
in Figure 1) it is very likely that at least one machine is seen
already in the start position. Thus the usual procedure is that
the first robot directly reports at least one machine at start-
up. The team server creates a task for this robot and sends
it to discover the light state and the correct orientation. On
its way, the robot reports other machines, and so the other
robots can be sent to zones with machines too. Thus the
backup solution to drive to some randomly chosen zone is
rarely used.

This dynamic scheduling allows a very efficient and fast
exploration of the whole game field. This is necessary as the
game field is rather large (12m×6m) for the low speed these
robots are able to move.

Another advantage of the global view of the team server
can be used here too. The machines are distributed at the

Algorithm 1: Exploration Algorithm
Input: observations, notVisitedZones, #MPS, thresh
Output: task

1: if observations = ∅ then
2: if oppositeZone ∈ notVisitedZones then
3: return exploreZone(oppositeZone)
4: else
5: zone = chooseRandom(notVisitedZones)
6: return exploreZone(zone)
7: end if
8: else
9: if numZonesNotVisited(observations) > 0 then

10: zones = zonesNotVisited(observations)
11: zone = getZoneWithLowestConfidence(zones)
12: return exploreZone(zone)
13: end if
14: if mFound(observations, thresh) < #MPS then
15: zone = chooseRandom(notVisitedZones)
16: return exploreZone(zone)
17: else
18: zones = zonesNotVisited(observations)
19: zone = getZoneWithLowestConfidence(zones)
20: return exploreZone(zone)
21: end if
22: end if

game-field in a symmetric fashion to allow fair conditions
for both teams. This constraint can be used for a sanity check
of the reports, i.e. before the final result is sent to the referee
box, it is checked if it makes sense and the most probable
consistent set of observations is reported.

After the exploration phase, the set of reliable machine po-
sitions and orientations is then broadcasted to the connected
robots to allow them to work during the production phase
with the gathered information. Also if one robot has to be
restarted during the production phase, the information about
the position of the machines is provided as a new (or in this
case restarted) robot connects to the team server.

V. RELATED RESEARCH

In the previous section we have discussed our software
architecture how to solve the challenges in the RoboCup
logistic league. Within this section we will discuss another
approach to solve the problems in RoboCup Logistic League.
We will compare our approach to the Carologistics Team
which won the world championships several times. As the
Carologistics Team describes in its team description paper
[15], they also use a three-layer architecture.

A. Carologistics

The main difference is that no central coordinator is used.
Instead a distributed, local-scope and incremental reasoning
approach [16] is chosen. This has the advantage of no single
point of failure but also the disadvantage that no optimal
global strategy can be derived. To keep a consistent view of
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the physical world, a permanent synchronization of the robots
is needed. For this purpose, one of the agents is chosen to
act as a leader responsible for collecting and distributing a
view of the world and manages reservation of resources.

1) Software Architecture: The function of each robot
is separated into the three distinct layers responsible for
deliberation (high level), i.e. decision making and planning,
a reactive skill engine (mid-level) and low-level components
for e.g. motion and vision.

The reasoning and planning component is implemented
using a CLIPS rule engine [17]. This allows an incremental
reasoning to derive at any time-point for each of robot a local
optimal decision. The mid-level is designed as a Lua-based
behavior engine [18]. With this, simple and complex skills
can be modeled as a hybrid state machine. This modularity
allows tuning and optimization of skills for specific tasks.
The underlying robot framework used is Fawkes [19]. This
framework is an alternative to ROS and provides several low-
level functionalities as e.g. AMCL, hardware interfaces to the
Robotino base and navigation plugins.

2) Light Detection: The light pattern detection (described
in Section IV-A.2) is solved by the Carologistics Team using
a more complex and more configuration-intense way. The
region of interest (ROI) is cropped using the fusion of the
camera and the laser scanner. The robot is aligned with the
use of the mounted AR-tag. As this tag can be mounted
arbitrarily on the machine, this only allows a course align-
ment. With the use of the laser scanner and the knowledge of
the type of machine (via the AR-tag), the relative position of
the mounted traffic light can be calculated. For this, the exact
location of the light for each side of the machine is necessary
with respect to the machine base. After this, the region of
interest can be restricted a first time. With the knowledge of
the position of the laser scanner as well as the camera, it is
possible to calculate the position of this ROI in the image
frame. Here several heuristics are used to find the shown
traffic light, e.g. the fixed width to height ratio, that there
have to be three distinct lights stacked in a vertical manner
and much more. Having this, the state of the traffic light is
determined using the color of the ROIs for the red, orange
and green image section. This is done using a defined space
for off and on in the YUV color space.

Our approach avoids the need for all the configuration
by using the HOG-detector and the neural network. The
detector eliminates the need for geometric heuristics and
knowledge about the machine, and the neural network gen-
eralizes enough (trained with several lighting conditions) to
detect the state of the traffic light without the need of a tuned
color model. This allows more robustness as e.g. different
lighting, or a displacement of the mounted camera or the
laser scanner would lead to wrong classifications with the
solution presented by the Carologistics team.

VI. CONCLUSION AND FUTURE WORK

With the help of the next industrial revolution, it should
be possible to produce individual configured products to the
price of current mass-production. This ambitious scheme

requires smart factories with modular machinery and an
intelligent and flexible transportation system. Such transport
can be provided by a fleet of autonomous robots. To offer
a standardized testbed for different aspects of such smart
factories the RoboCup Logistic League was established.

In this paper, we presented a software architecture which
can be used to solve various problems appearing in the
context of the RoboCup Logistic League. The software ar-
chitecture consists of three layers which interact with clearly
defined interfaces. The top layer manages the entire robotic
fleet, generates an optimal global schedule, and is responsible
for error detection and correction. For this, it uses the mid-
layer which provides complex tasks (e.g. explore a zone,
deliver a product). Here these skills are decomposed, and
the mid-layer commands simple skills (move to a waypoint,
open the gripper) to the lowest layer.

The software was successfully tested at the RoboCup
world championship 2016 and allowed us to rank among
the top three teams [20].

Besides the general software architecture, we described in
this paper several components in more detail. These com-
ponents allow the robot to explore an unknown factory. The
presented components range from a scheduling mechanism to
distribute the work onto the entire fleet down to mechanisms
to detect the type of the machine defined by a signal light
pattern.

The system is designed in such a way that faults are
detected. Thus the system can react to faults properly. This
allows the system to reliably to execute its task. To improve
the reliability of our system even further the next step is
to implement an online diagnosis system as described in
[21]. This system can use different measures (e.g. publishing
frequency of particular topics, time to respond to actions) to
detect abnormal system behavior and furthermore calculate
a diagnosis.
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3D Vision Guided Robotic Charging Station for Electric and
Plug-in Hybrid Vehicles

Justinas Mišeikis1, Matthias Rüther2, Bernhard Walzel3, Mario Hirz3 and Helmut Brunner3

Abstract— Electric vehicles (EVs) and plug-in hybrid
vehicles (PHEVs) are rapidly gaining popularity on our
roads. Besides a comparatively high purchasing price,
the main two problems limiting their use are the short
driving range and inconvenient charging process. In this
paper we address the latter by presenting an automatic
robot-based charging station with 3D vision guidance for
plugging and unplugging the charger. First of all, the
whole system concept consisting of a 3D vision system,
an UR10 robot and a charging station is presented.
Then we show the shape-based matching methods used
to successfully identify and get the exact pose of the
charging port. The same approach is used to calibrate
the camera-robot system by using just known structure
of the connector plug and no additional markers. Finally,
a three-step robot motion planning procedure for plug-
in is presented and functionality is demonstrated in a
series of successful experiments.

I. INTRODUCTION

Nowadays it is common to see electric vehicles
and plug-in hybrids on our roads. Worldwide plug-
in vehicle sales in 2016 were 773600 units, 42%
higher compared to 2015 [1]. For example Norway
plans to rule out sales of any combustion engine cars
by 2025 [4]. However, a new problem being faced
by EV and PHEV drivers is having an accessible,
fast and convenient battery charging, especially when
traveling longer distances. It is a common problem of
fast chargers being idly occupied after the car is fully
charged if the owner does not return to the vehicle.
For example, Tesla has added an additional idle fee
to discourage drivers leaving their cars at the chargers
for longer than necessary [7]. A solution to avoid this
problem and to enable a comfortable fast charging
would be an automated robot-based charging system
combined with automated car parking.

A. Charging Ports and Cables

Worldwide, there are many types of EV and PHEV
charging ports, as well as different charging port
placement locations on the vehicle. Each one of them
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2Matthias Rüther is with Graz University of Technology,
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has benefits and detriments, and car manufacturers
have not decided on a common standard yet. This
introduces an additional inconvenience of finding the
correct type of charger, or having to carry a number
of bulky adapters. As long as there is no standard, it
would be more convenient to let the charging station
detect the correct port type and adapt accordingly.

Another issue is the current weight and stiffness of
a quick charging cable. For example, the weight of
a CCS-Type 2 charging cable rated for the power up
to 200 kW is 2.26 kg/m and outer diameter of 32
mm. With longer cable lengths, this becomes difficult
for people to handle, but would not be an issue for
a robot [6]. Cooled charging cables can help to solve
this problem without increasing the cable diameter, but
these are not yet standard [17].

B. Existing Automated EV Charging Methods

Automatic charging solutions have been researched
both in academic and industrial environments. Volks-
wagen has presented an e-smartConnect system, where
a Kuka LBR-iiwa robot automatically plugs in the
vehicle after it autonomously parks in a specific target
area (allowing for less than 20 cm by 20 cm error). It
is also limited to one charging port type [8].

Tesla has demonstrated a concept of a snake-like
robot automatically plugging in their EV, however, no
technical details on the charging port localisation or
robot operation were revealed [9].

The Dortmund Technical University has presented
a prototype of the automatic charging system called
ALanE. It is based on a robot arm capable of auto-
matically plugging and unplugging a standard energy
supply to an electric vehicle. The system is controlled
via smartphone. However, full capabilities and flexi-
bility of this concept system are not clear [3].

The NRG-X concept presents itself as a fully auto-
matic charging solution. It can be adapted to any EV
or PHEV and is capable of fast charging. Furthermore,
it has a tolerance for inaccurate parking positions. The
NRG-X system is based on combination of conductive
and inductive charging on the under-body of the
vehicle, thus an adapter for the vehicle is necessary.
Furthermore, in the current concept configuration the
charging power is limited to 22 kW [5], which re-
sults in over 7 times longer charging compared to
170 kW charging [22] and perspective 350kW [11].
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Comparisons of the time taken to charge a vehicle
using different charging systems is shown in Figure 1.

Fig. 1. Driving distance and charging time comparison of different
charging systems [22].

C. Related Research

Automated charging has been well researched, es-
pecially for mobile robots. Typically, there is a custom
made charging station, which is localized by the
robot either using a direct communication or using
computer vision based methods. These methods are
normally based on having special markers on the
charging station, which are localised in order for
the robot to correctly align itself and approach the
station. Removing markers would impede the opera-
tion [12] [19] [18] [14].

Another concept developed specifically for the de-
tection of charging ports on EVs was based on adding
an array of RFID tags on the car. Reading RFID
signals allows to find the exact position and orientation
of the charging port and plug it in automatically [16].
However, this still requires modification to the vehicle
and would not support non-adapted cars.

Fig. 2. CAD model of the robotic charging station concept.

D. Method Presented in This Work

We present a conductive robot-based automated
charging method for EVs and PHEVs, which does
not require any modifications to existing vehicles.
First of all, we present a quick eye-to-hand calibration
procedure to calibrate the vision sensor and the robot
to work in the same coordinate system. It estimates
both, the placement of the vision sensor in relation

to the robot base as well as between the end-effector
and the plug. Then we use shape-based matching and
triangulation to locate and identify the charging port of
the car and guide the robot, holding a charging cable,
to precisely plug in the charger. Once the car is fully
charged, the robot will automatically unplug from the
vehicle, which will be ready to be driven away. The
visualisation of the concept robotic charging station is
shown in Figure 2.

This paper is organized as follows. We explain the
proposed method in Section II. Then we provide our
test setup, experiments and results in Section III, fol-
lowed by conclusions and future work in Section IV.

II. METHOD
A. Detection of the Charging Port

A majority of the car charging ports are manufac-
tured from texture-less black plastic material, making
it difficult to obtain good features in the camera image.
Similarly, the measurements made using time-of-flight
cameras, which use the projection of infrared (IR)
light, are noisy and inaccurate due to IR absorption
by the material. As an alternative solution, a stereo-
camera setup was used as the vision sensor.

Fig. 3. Input images, simplified template models and automatically
created shape-based templates for matching. Type 2 socket is shown
in column a), type 1 socket in b) and type 2 connector plug is shown
in c). Green circles define the area of interest for the model creation
and the red outline line defines the created shape model.

The first step in the detection procedure is to find
the location of the charging port in stereo images
using shape-based template matching. Models were
created for two types of the charging ports as well
as the power plug connector, later to be used for
eye-to-hand calibration. Figure 3 shows the camera
images and simplified model images, which are used
to automatically generate shape-based templates later
to be used for matching. Template matching was
performed using a Halcon Machine Vision software,
which has proven to perform well in given conditions
of low-contrast input images [2]. Matching results in a
2D Affine transformation matrix defining the template
location in the image.

By taking x and y coordinates of the correspond-
ing object points in images from each of the stereo
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cameras, the depth information defined by z-axis can
be calculated. The vision sensor in our setup has both
stereo cameras fixed in relation to each other looking
slightly inwards, with rotation around Y (vertical) axis.
Solving Eq. 1 provides the real-world coordinates X ,
Y and Z of a point seen by the stereo cameras. Inputs
(x1, y1) and (x2, y2) are the point coordinates in camera
1 and camera 2 respectively. Variable f is the focal
length of the camera and b defines a baseline (dis-
tance) between the stereo cameras. Rotation between
the cameras around Y -axis is defined by θ .

Z0 =
b

tan(θ)

Z =
b∗ f

x1 − x2 +
f∗b
Z0

X =
x1 ∗Z

f

Y =
y1 ∗Z

f

(1)

After the charging port is found in the input im-
ages, stereo triangulation is used to obtain 3D real-
world coordinates of the port position, providing 5
to 7 reference points depending on the charging port
type. Using the points, a perspective transformation is
calculated using the least squares fit method to obtain
the exact position and orientation of the charging port
in relation to the vision sensor. Least squares fit for
finding the orientation optimises for 3 unknowns (A, B
and C), which later are mapped to roll, pitch and yaw
angles. The least square error function is defined in
Eq. 2, where x, y and z are coordinates of the reference
points.

e(A,B,C) = ∑(Ax+By+C− z)2 (2)

Then, the error function is differentiated and set to
zero, as shown in Eq. 3.

∂e
∂A

= ∑2(Ax+By+C− z)x = 0

∂e
∂B

= ∑2(Ax+By+C− z)y = 0

∂e
∂C

= ∑2(Ax+By+C− z) = 0

(3)

The resulting linear equations with 3 unknowns are
solved to get the orientation of the object. This can
also be seen as 3D plane fitting to the given points.

B. Marker-less Eye-to-Hand Calibration

In order to operate the vision sensor and the robot
in the same coordinate system, eye-to-hand calibration
is necessary. The eye-to-hand calibration estimates
the transformation between the vision sensor and the
robot base. Using this transformation, the position

of any object detected by the vision sensor can be
recalculated into the coordinate system of the robot,
allowing the robot to move to, or avoid that location.

Normally, a well structured object, like a checker-
board of known size and structure is used in the
calibration process. However, it requires mounting it
on the end-effector of the robot and can still result
in additional offsets. We use the known structure of
the connector plug and previously presented shape-
based template matching with orientation estimation
to obtain the precise pose. Eye-to-hand calibration
is based on an automatic calibration procedure for
3D camera-robot systems, which uses the calibration
method proposed by Tsai et al [15] [21].

The result of the eye-to-hand calibration are two
transformation matrices. The first one defines the
position of the vision sensor in relation to the robot
base and the second one defines the position of the
end point of the connector plug in relation to the end-
effector of the robot.

The marker-less eye-to-hand calibration can be ben-
eficial if the robot is placed on a moving platform,
so the relative position between the vision sensor and
the robot can change. Furthermore, it would benefit in
cases when the robot has interchangeable end-effector
attachments with different connector plugs. In both
of these cases, recalibration procedure could be done
automatically without any reconfiguration.

C. Robot Motion Planning

Given the limited workspace and all the movements
being defined by camera measurements, robot control
in Cartesian coordinates was used. The MoveIt! frame-
work, containing multiple motion planning algorithms,
was used for the initial testing [20]. The best perfor-
mance in the defined case was demonstrated by the
RRT-connect algorithm, which is based on the rapidly
exploring random trees [13].

In order to get smoother motion execution and more
human-like motions, a velocity based controller was
used instead of the standard one provided in ROS.
Better performance is achieved by calculating and
directly sending speed commands to each of the robot
joints, thus reducing the execution start time to 50−70
ms compared to around 170 ms using the official ROS
UR10 drivers [10].

D. Plugging-In Procedure

After the pose of the charging port is calculated, the
coordinate system is assigned with the origin placed
at the center of the plug and Z-axis looking outwards.
Similarly, the coordinate system is assigned to the
connector plug, which is held by the robot. The goal
of the plug-in procedure is to perfectly align connector
plug with the charging port, so the last movement
is simply along one axis. In order to achieve that, a
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three-step procedure was used, visualised in Figure 4.
Firstly, the robot moves the plug at high velocity to the
approach position, which is within a 0.1 meter radius
from the charging port. The second step is to reduce
the velocity to 10% of the maximum robot joint speed
and move to the final alignment position. In this pose,
the connector plug and the charging port are fully
aligned by their Z-axis and just a few millimeters away
from the contact point. The last step is to move at just
2% of the maximum speed along Z-axis and perform
the plug-in motion. During this move, the forces and
torques exerted on the end effector of the robot are
monitored. In case the forces exceed a given threshold,
the system is halted to prevent any damage.

Fig. 4. Three step plug-in procedure plan. Firstly, the robot
moves the connector plug to the Approach Position, which lies
approximately 0.1 meter away from the charging port. The second
move aligns the Z-axes of the charging port and the plug, and gets
the plug just a few millimeters away from the port. The final plug-in
movement performs the plugging in motion along Z-axis.

E. Unplugging

After the vehicle is charged fully or to the desired
battery level, the robot has to disconnect the charger.
Under the assumption that there were no position
changes during the charging process, the unplugging
procedure was simplified to follow the recorded way-
points of the plug-in procedure in the inverse order.
First, the robot gets back to the approach position
and then returns to the stand-by position, where it is
docked while waiting for the next task. The stand-by
position ensures an unobstructed view of the parked
vehicle for the vision sensor.

III. EXPERIMENTS AND RESULTS

A. Experiment Setup

At the current stage, the testing was limited to
the lab environment. The experimental setup consists
of an UR10 robot arm, a vision sensor containing
stereo cameras and a charging port holder with inter-
changeable charging ports. The charging port holder
has variable height, position and angle to simulate
various imperfect parking positions and differences in
charging port locations on the vehicle. Two types of
the charging ports, Type 1 and 2, have been used, as
previously seen in Figure 3.

The connector plug is attached to the end-effector
of the robot using a custom 3D printed attachment,
shown in Figure 5. The charging cable is also attached

Fig. 5. Custom 3D printed connector plug holder attached to the
end-effector of the UR10 robot.

to simulate realistic weight exerted on the robot during
the operation. The whole experimental setup is shown
in Figure 6.

The final goal was to locate the charging port using
the vision sensor and estimate its pose. Then, the pose
is transformed into the coordinate system of the robot
and the end point of the connector plug is aligned
and plugged in to the charging port. After a brief
pause to simulate the charging process, the unplugging
movement is performed and the robot moves back to
the stand-by position.

Results of each part of the process are discussed
separately and followed by the final evaluation of the
whole system.

Fig. 6. The whole experiment setup. On the left the charging port
holder can be seen. The robot is holding the connector plug, and
the vision sensor made up of two stereo cameras is seen on the
right hand side.

B. Template Matching

Template matching for Type 1 and Type 2 charging
ports as well as the connector plug (Type 2) has
worked well for various illumination and angles up
to 45◦ relative to the viewing angle of the camera.
The matching confidence score for good alignment
was over 95%. The recognition speed on the full
camera image was varying between 300ms and 800ms.
By narrowing down the search area, for example by
identifying the darker than average regions in the
image, the recognition speed can be reduced to under
150ms. The results can be seen in Figure 7.

The limit for the successful recognition under low
illumination or overexposure was when the edges of
the socket or plug structure are still visible. The
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connector plug was made out of more reflective plas-
tic, resulting in a few cases when reflections caused
the accuracy issues regarding the rotation. However,
these issues were observed very rarely under specific
viewing angles, and matching accuracy dropped below
90%, so these cases could be easily identified.

Fig. 7. Results of the template matching. A high variety of
angles and lighting conditions were tested. Viewing angles up to
45◦ resulted in successful detection with accuracy dropping beyond
that. Row 1: Type 2 connector plug. Row 2: Type 1 socket. Row
3: Type 2 socket.

C. Eye-to-Hand Calibration

In the given configuration, the structure of the
connector plug was used as a marker for eye-to-
hand calibration. During the calibration process it
was turned to face the vision sensor, while during
the normal operation it faces away from the camera.
Furthermore, the outer ring of the plug is angled, so
the pins of the plug had to be used as reference points
to get the accurate calibration.

The end point of the connector plug was rotated
around each of the axis as well as moved to different
locations within the field-of-view of the vision sensor.
In total, 26 poses were recorded and used until the
calibration converged. Additionally, 3 instances were
discarded because of the incorrect template matching
result. The average translation error within the work-
ing space was reduced to 1.5mm, which was sufficient
for our application at this stage. Possibly, having
more poses would reduce the positional error even
further. With the eye-to-hand calibration completed,
coordinate frames for the camera position and the end
point of the connector plug can be added to the model,
as shown in Figure 8.

D. Finding Charging Port Pose and Robot Movements

As the final evaluation, we used the whole process
pipeline and analysed whether the plug-in motion was
successful or not.

There were 10 runs executed in total using Type 2
connectors. For the first 5 runs the charging port was

Fig. 8. Eye-to-hand calibration results. Visualisation of the
assigned coordinate frames to the vision sensor, the end-effector
of the robot and the end point of the connector plug. Resulting
point cloud is overlayed onto the visualisation of the robot model.

angled at 10◦ in relation to the vision sensor, and for
the remaining 5 runs, the angle was increased to 30◦.

The robot successfully connected the plug 8 out
of 10 times. Both failures occurred by missing the
rotation of the plug, which were determined by the
misalignment of the guidance slot on the charging
port. However, the safety stop automatically initialised
in both of the cases ensuring that the robot stopped
before causing any damage.

TABLE I
SUMMARY OF THE PLUG-IN MOTION EXPERIMENTS WITH

CHARGING PORT PLACED AT TWO DIFFERENT ANGLES

Exp Charging Port Angle 10◦ Charging Port Angle 30◦

1 Success Success: Misalignment
2 Success: Misalignment Failed: Missed rotation
3 Success Success
4 Failed: Missed rotation Success: Misalignment
5 Success: Misalignment Success: Misalignment

However, even when the plug was successfully in-
serted in the charging port, there were some alignment
issues. In 5 out of 8 successful runs, the plug was not
fully inserted into the charging port. It was caused by
a small angular offset varying between 2◦ and 5◦. The
contact was still made, so the charging process would
be successful, however, there was additional strain due
to imperfect alignment. The misalignment occurred
more frequently during the experiments, where the
charging port was placed at 30◦ angle. The results
are summarised in Table I.

As expected, the unplugging process was successful
during all the runs. It simply follows already executed
trajectory in the inverse order, meaning that as long
as the position of the charging port did not change
during the time it was plugged in, there should be no
issues with the unplugging process.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a vision-guided and robot-based
automatic EV and PHEV charging station. The goal is
to allow automated conductive fast charging of electric
and hybrid vehicles and avoid the issue of a charged
car taking up the space when it is not necessary.
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The presented approach is a combination of mul-
tiple methods. First of all, the shape-based template
matching is used to identify the charging port type and
use the information from stereo cameras to precisely
estimate its position and orientation. The same method
is used in the marker-less eye-to-hand calibration,
which results in the transformation matrices to be used
to convert the position of the charging port from the
coordinate system of the vision sensor to the robot.
Then, the robot, holding a connector plug, is used
to approach and finally plug in the charger cable
into the EV or PHEV. Having a precisely estimated
orientation is a big challenge and observation of the
forces exerted on the end-effector of the robot are
necessary to identify any possible misalignment, and
stop or readjust if needed. Our approach has proven to
work in the lab conditions under indoor illumination
and using a custom made charging port holder.

Adding a force sensor to the robot would allow the
robot to operate using the impedance controller based
on force measurements and adjust it during the plug-
in procedure according to the strains observed on the
end effector. This would likely to be a solution for the
observed cases with misalignment issues.

The project will be continued by improving the
connector plug detection accuracy and automating the
marker-less calibration procedure, where the robot
would perform calibration movements automatically.

Furthermore, current tests were performed under
the assumption that the charging port lid or cap was
already opened. A linear actuator is already included
in the setup, however, it was not used in current
experiments. Future work includes finding the charger
lid, identifying it’s opening mechanism and using the
robot to open and close it for the charging process.
This would also require identification of the vehicle
model to indicate the correct parking position and
localise the approximate position of the charging port.

With the test electric vehicle to be delivered in the
near future for testing purposes, the system will be
evaluated on the real EV in the garage setup and
outdoor tests. Communication between the vehicle and
the charging station is also under development and
this will enable the combination of the robot-based
charging system with autonomous parking functions.
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A Visual Servoing Approach for a Six Degrees-of-Freedom Industrial
Robot by RGB-D Sensing

Thomas Varhegyi, Martin Melik-Merkumians, Michael Steinegger, Georg Halmetschlager-Funek,
and Georg Schitter

Abstract— A visual servoing approach is presented that uses
depth images for robot-pose estimation utilizing a marker-
less solution. By matching a predefined robot model to a
captured depth image for each robot link, utilizing an appro-
priate approximation method like the Iterative Closest Point
(ICP) algorithm, the robot’s joint pose can be estimated.
The a-priori knowledge of the robot configuration, alignment,
and its environment enables a joint pose manipulation by
a visual servoed system with potential to collision detection
and avoidance. By the use of two RGB-D cameras a more
accurate matching of the robot’s links is feasible while avoiding
occlusions. The modeled links are coupled as a kinematic chain
by the Denavit-Hartenberg convention, and are prevented from
divergence during the matching phase by the implementation
of an algorithm for joint pose dependency. The required joint
orientation of the robot is calculated by the ICP algorithm
to perform a pose correction until its point cloud align with
the model again. First tests with two structured light cameras
indicated that the recognition of the robot’s joint positions
brings good results but currently only for slow motion tasks.

I. INTRODUCTION

The fourth industrial revolution involves the use of new
robotic technologies for smart and efficient work-flows in
an innovative way. Humans will work together with robots
side-by-side and integrate them in their every day work life
as a collaborative device. Therefore, a collision detection
with humans and the environment has to be established, for
instance, with pressure sensitive skins [1, 2] or abnormal
force recognition [3, 4] which are two approaches for a
collaborative aspect. Another idea is the integration of visual
perception [5, 6]. Robots should see where they are, know
and see the environment they move in and know how they
can grab and move without disturbing the work-flow. The
focus of this paper lies on the application of computer/-
machine vision methods for image processing and robot
actuation. Vision-based motion control of robots is called
visual servoing, where the robot manipulator is operated
by the evaluation of visual information from an eye-to-
hand (camera fix to workspace position) or an eye-in-hand
(camera attached to robot) composition [7]. Figure 1 shows
the recording of a robot in an eye-to-hand composition, that
is used for the visual servoing approach in this paper. The
advantage of visual servoing is that the teach-in procedure of
a robot can be omitted since tool-tip-pose errors caused by
low accuracy between the tool-tip-pose and the joint angle

All authors are with the Automation and Control Institute (ACIN),
Vienna University of Technology, A-1040 Vienna, Austria. Con-
tact: melik-merkumians@acin.tuwien.ac.at (correspond-
ing author)
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Fig. 1: ABB IRB 120 point cloud model overlaid by the
captured point cloud from the Intel R© RealSense R200.

can be corrected in addition. These visual information can
be exploited as position- or image-based information [8–10].
Position-based detection uses interest-points in the image to
detect the object position, while image-based detection uses
a template image of the designed object to predict how the
camera should be aligned to the object.

So far, mainly 2D cameras have been applied for visual
servoing applications [11–13]. The accuracy of the interest
point estimation in the image as edges or corners determines
how precisely the robot can be positioned by 2D cameras. For
objects without distinctive characteristics as curved shapes
without edges, these kinds of camera systems do not suite
perfectly. In this case depth sensing cameras is the better
choice.

RGB-D imaging systems can be separated into three
main groups. First, stereo vision systems [14] which are
based on two cameras and feature disparity where the
depth information is obtained by the use of triangulation.
Second, structured light cameras [15, 16] with the same
basic principles as stereo vision cameras but instead of the
second camera a projector is used. It emits a patterned light
(usually infra-red light) and measures the disparity of the
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Fig. 2: (a) ABB IRB 120 point cloud model - the (joint) frames are set-up by DH convention. Each link is implemented
as an independent model but coupled to its neighbor over the respective DH transformation; (b) ABB IRB 120 kinematic
structure; (c) Robot depth image captured by two Intel R© RealSense R200 in a distance of 1.5 m.

captured pattern in comparison to the original one to get
the depth information by triangulation. Third, Time-of-Flight
(ToF) cameras [17] where the depth information is measured
over the elapsed time of pixel-wise emitted modulated light
signals reflected by the detectable object.

RGB-D cameras provide point clouds (with position in-
formation in R3) generated from depth data. Thus, it is
not necessary to seek for interest points for orientation
estimation since the detected objects are already available
as 2.5D objects in the workspace. Similar to an image-based
approach a 3D model of an object can be matched to the
point cloud via the Iterative Closest Point (ICP) algorithm
[18–20] to find its alignment. It minimizes the distance
between two point clouds with the requirement that the two
point clouds are roughly close to each other (the initial
guess), until they are aligned. The ICP algorithm consists
of the following phases:

• Selection of point pairs,

• Matching of these point pairs,

• Rejection of point pairs due to individual consideration,

• Error metric assignment,

• Minimizing the error metric.

With the ICP algorithm, an alignment can be achieved within
a few iterations.

Now, the idea is, instead of matching the whole robot
as a rigid body, to split the robot into its links and match
them separately (cf. Figure 1) in an eye-to-hand composition,
such that the orientation of its joints can be estimated. In
this case the use of markers can be omitted since the joint
orientation can be calculated from the alignment of the
links to each other, which makes this approach a versatile
applicable method for industrial applications. The knowledge
of the robot’s kinematic chain gives the possibility of robot
pose variation by well-defined joint orientations as well as

the variation of the joint orientation during motion to correct
the trajectory in case of work-flow disturbance. The goal of
this approach is a visual servoing concept by depth sensing
with a potential to collision protection and avoidance in a
collaborative applicable manner.

This paper is organized as follows. In Section II, the
applied method is described. The implementation of the
robot’s link point cloud models is described in Section III.
The description of the setup and the camera alignment is
described in Section IV. In Section V, the presented work is
summarized and Section VI concludes the paper.

II. METHODS & APPROACH

The goal of the presented approach is to track a manip-
ulator with six Degrees-of-Freedom (DoF) by two RGB-
D imaging systems for joint position perception and visual
servoing. For the measurement of the robot’s joint alignment,
the cameras are placed in an eye-to-hand composition. This
allows to capture the whole manipulator from a wider view
and avoid occlusions. The depth sensing technology with
the highest accuracy for positioning and object matching
is derived by comparing two different camera technologies.
Therefore, a structured light camera and a ToF camera
is applied and tested. Before the pose of the robot can
be estimated, the position of both cameras have to be
extrinsically calibrated, to get a perfect aligned point cloud
from both cameras. The camera calibration is carried out
as a transformation of the camera coordinate system by
its physical position relative to the robot’s base coordinate
system.

For a matching process of point clouds by an appropriate
approximation method like ICP to receive the robot’s joint
positions as mentioned in Section I, the models of its links,
generated from Computer-Aided Design (CAD) files, have to
be prepared. This is done by aligning the link models in the
CAD files in their initial position as shown in Figure 2a and
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TABLE I: Denavit-Hartenberg parameter

Name Symbol Description

joint angle θi angle between xi−1 and xi about zi−1

link offset di
distance between the origin of frame Fi−1 and
Fi along zi−1

link length ai offset between frame Fi−1 and Fi along xi

link twist αi angle between zi−1 and zi about xi

subsequently the generation of point cloud representation.
The dependence of each links pose to each other in the
model will be set-up by applying the Denavit-Hartenberg
(DH) convention to achieve the kinematic chain as shown in
Figure 2b. The DH convention describes the transformation
between two frames of a manipulator by a homogeneous
transformation matrix i−1TTT i ∈ R4×4 with four parameters
by placing the joint coordinate frames in a predefined way.
These transformations are represented by four basic transfor-
mations between the joints as a chain of two rotations and
two translations

i−1TTT i = Rotzi−1,θiTranszi−1,diTransxi,aiRotxi,αi , (1)

with the DH parameters listed in Table I.
This convention will simplify the calculation effort for
matching via the ICP algorithm to only one DoF per joint
and keep the links dependent from each other. The deviation
from the robot’s point cloud to the model is used for the
calculation of the joint velocities to align both point clouds
again. The whole implementation is realized with the free
Point Cloud Library (PCL) [21], which includes numerous
algorithms for handling of n-dimensional point clouds and
three-dimensional geometries, in the framework of the Robot
Operating System (ROS) [22]. ROS is a collection of li-
braries, tools and conventions for writing robot operating
software.

III. MODEL IMPLEMENTATION

In an initial step point clouds from the CAD models of
the robot’s links have to be generated. It is important that,
before the point clouds can be generated, the alignment of
the CAD modeled links are prepared correctly as mentioned
in Section II. First, they have to be aligned in their initial
direction (cf. Figure 2b), second, their coordinate system
must be set to the center of their rotation axis, and third,
the link coordinate systems have to be translated such that
they match with the DH convention as it is done for link four
and six (translation in x direction) as shown in Figure 2b.
The point clouds are generated by the tool pcl_mesh2pcd
(based on take views and fuse them together) from the PCL
to achieve an envelope point cloud of the CAD models.

Every link is implemented as an own object with the prop-
erties summarized in Table II, with the first four parameters
as constants and the transformation matrix and joint angle as
variables. The robot’s links will not separate from each other
during the ICP algorithm performs the matching, since they

TABLE II: Robot link properties

Parameter Class

Name std::string

Point cloud pcl::PointCloud<PointXYZRGBA>*

Color pcl::visualization::PointCloudColor-
HandlerCustom<PointXYZRGBA>*

DH-parameter std::vector<double>

DH-transformation matrix Eigen::Matrix4f

Joint angle std::double

are coupled by the transformation of DH with the parameters
of Table III and the dependencies given by

0TTT n =
n

∏
i=1

i−1TTT i , (2)

TTT n,α = 0TTT n TTT α
nTTT 0 , (3)

n−1TTT n =
n−1TTT 0 TTT α

0TTT n . (4)

In Equation (2), 0TTT n ∈ R4×4 is the transformation of joint
n between the base coordinate system and the coordinate
system of joint n as the product of the DH transformations.
By the use of the short notation c(·) = cos(·) and s(·) =
sin(·), the DH transformation matrix i−1TTT i from Equation (1)
can be written as

i−1TTT i =

[ i−1RRRi
i−1pppi

000T 1

]

=




cθi −sθicαi sθisαi aicθi

sθi cθi cαi −cθisαi aisθi

0 sαi cαi di
0 0 0 1




, (5)

with i−1RRRi ∈R3×3 the rotation between the frame Fi−1 and
Fi, the translation i−1pppi ∈ R3×1 from the origin Oi−1 to Oi
and the vector of zeros 000∈R3×1. TTT n,α ∈R4×4 in Equation (3)
is the transformation of joint n in the base coordinate system
by the transformation matrix

TTT α =

[
RRRz(α) 000

000T 1

]
∈ R4×4 , (6)

with the rotation matrix RRRz(α)∈R3×3 along the joint rotation
axis which is obtained from the Euler angles by the ICP

TABLE III: Denavit-Hartenberg parameters of the industrial
robot ABB IRB 120

JointNr. θi [◦] di [mm] ai [mm] αi [◦]

1 q1 165 0 0

2 q2 125 0 −π/2

3 q3 −π/2 0 270 0

4 q4 0 70 −π/2

5 q5 302 0 π/2

6 q6 0 0 −π/2
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CAMERA 1 CAMERA 2

RealSense R200

XY

Z

Fig. 3: Experimental setup with two Intel R© RealSense R200 structured light cameras in 90◦ alignment to an ABB IRB 120.

algorithm. RRRz(α) performs a roll, pitch, or yaw rotation about
the angle α according to the joint rotation axis. The new DH-
transformation matrix n−1TTT n ∈R4×4 of Equation (4) will be
saved after the rotations have been performed. By iteration
of these equations every rotation RRRz(α) of a joint n will be
passed to the following joints. This guarantees that every
joint keeps coupled to each other.

IV. SETUP & CAMERA ALIGNMENT
Two identical structured light cameras (Intel R© RealSense

R200) are used in the setup (cf. Figure 3) to avoid occlusions
and to get a denser point cloud representation of the robot
as shown in Figure 2c. The cameras are positioned in 90◦ to
each other. This angle has been chosen since the influence
of the illumination disturbance by the projected structured
lights is minimized. Each camera is placed 65 cm above the
robot with a pitch angle of 30◦ down to have a wider view.
The extrinsic camera calibration will be performed through
a plane calibration. Therefore, the table where the robot is
placed on has been detected by the outliers’ detection method
Random Sample Consensus (RANSAC) to receive the model
coefficients of the plane Axy. With the model coefficients, the
dihedral angle between the plane normal and camera image
normal can be derived by the equation

cos(ϕ) =
~n1 · ~n2

|~n1| · |~n2|
(7)

where ~n1 = (a1,b1,c1) is the normal vector of the plane Axy
in z direction and ~n2 = (a2,b2,c2), the normal vector of the
camera image plane Ayz along the x direction with the plane
coefficients ai, bi, ci for i = 1,2. The cameras are aligned by
the rotation with ϕ from Equation (7) (plus the camera pitch
angle) and the known translation from the robot’s base.

V. EVALUATION & RESULTS
The test system, which is used to evaluate the proposed

approach, consists of a personal computer with an Intel R©

TABLE IV: The parameters used for the Iterative-Closest-
Point algorithm

Max. Corre-
spondence
Distance

Max. Iterations Transformation
Epsilon

Euclidean
Fitness Epsilon

0.003 m 100 1e-8 m 5e-4 m

Core
TM

i5-3470 @ 3.20 GHz, 4096 MB RAM, and a GeForce
GT 630 with the operation system Linux Ubuntu 16.04 @
64 bit.

So far, the structured light cameras and the robot motion
communication are implemented successfully in ROS. The
cameras and the robot are launched as ROS nodes such
that they can communicate with each other. The Point cloud
models of the robot’s links are generated from CAD files
and coupled together via the DH convention such that they
depend on each other and that a rotation of joint one, for
instance, has an effect to the other joints (cf. Equations (2)
to (4)). A visualization is implemented to visualize the
model together with the captured depth image as shown
in Figure 1. The joint positions and alignments from the
implemented model are observable and controllable. Since
the ICP algorithm needs an initial guess where it should
start the matching, an initial robot position for program
start has been chosen as shown in Figure 2a, otherwise a
correct estimation of the position would be hardly possible.
In the first experiment the built-in ICP algorithm from the
PCL has been tested with the parameters from Table IV and
structured light cameras with moderate results. While for the
initial pose (start pose) reasonably accurate joint angles with
±0.5◦ have been measured, the deviation increased up to
±5◦ during motion. These evaluation results were obtained
for slow motion tasks (≤1 ◦/s). For faster movements the
ICP algorithm is not able to finish the required number of
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iterations on the test system and the point cloud model can
not be matched. The low accuracy of the ICP algorithm in
the experiments for low speeds may occur to the very bumpy
surface images from the cameras (Figure 1), which makes it
difficult to calculate an accurate match. A smoothing of the
robot’s point cloud by the moving least squares method from
the PCL also does not significantly improve the results, since
the outliers’ in the robot’s point cloud surface are too large
(cf. Figure 2c) to achieve good results.

VI. CONCLUSION & OUTLOOK
A robot point cloud model generated from CAD data

for each robot link have been adopted and linked via the
DH convention. A linked motion algorithm is integrated
so that each link depends from each other. The first tests
with structured light cameras and the ICP algorithm from
the PCL showed moderate results. For the next tests with
structured light cameras, the results should be improved
by the implementation of a Levenberg-Marquardt Optimizer
[23, 24] for an optimized registration. The change of the
camera system to ToF cameras will also bring better results
with the general ICP algorithm. So far the operation area is
limited by only two cameras, because the robot’s tool center
point is not detectable overall by reason of occlusions in
negative y-direction. A remedy would be to place a third
camera right from the robot. This is feasible with a ToF
camera but challenging with a structured light camera due to
illumination disturbance from the counterpart. An alignment
of 60 degrees for three structured light cameras would be
better, since all the three cameras would receive the same
disturbance which is less than if two of three fully receive
it. A faster and more general model implementation would
bring the implementation of an automatic model generation
from COLLAborative Design Activity (COLLADA) [25]
data which can be generated easily by CAD programs. With
the COLLADA data (version 1.5.0) not only the geometry
parameter would be loaded, the mechanical parameter as
mass, inertia and center of mass could be loaded too, which
is interesting for the robot dynamic. This would remove the
model preparation as mentioned in Section III for a more
user-friendly application.
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Toward Safe Perception in Human-Robot Interaction

Inka Brijacak, Saeed Yahyanejad, Bernhard Reiterer and Michael Hofbaur1

Abstract— Perception is a major component of a system when
it comes to the concept of safety in human-robot interaction.
Although designing a mechanically safe robot may reduce lots of
potential hazards, it is still beneficiary or even required to have
detailed knowledge of the current status of the robot, human,
and other environmental entities. We refer to this knowledge as
perceptional awareness, or simply perception, that subsumes: (i)
what our system perceives from robot state and its environment,
(ii) what our system perceives from human state, and (iii) what
a human perceives from the robot state. In this paper we
provide requirements for a holistic architecture to construct
safe perception using multiple heterogeneous and independent
sensors and processing units in any environment that includes
both robots and humans. We also illustrate our concepts on
the basis of particular instances of this scheme realized in the
robotic lab.

I. INTRODUCTION

Nowadays, robots are being used widely in different
fields due to their precision, accuracy, reliability, and easy
deployment. In many initial applications of robots, they are
functioning separated from humans in isolated areas. With
advances of technology and the necessity for coexistence of
robots and humans (e.g., medical application, service robots,
collaborative production lines), the new era of human-robot
interaction (HRI) has emerged. HRI studies and describes
the types and characteristics of the possible interactions that
can exist between a robot and a human.

When a human is working in a close distance with robots,
the safety of the human becomes an important issue. Initially,
safety requirements for many industrial robotic applications
were achieved just by a physical separation of humans from
any robot (e.g., using barriers or fences). This simple and
effective way to impose safety, however, prevents direct
interaction between humans and robots to work collabo-
ratively. The relevant international standard for safety in
industrial robots [10], [11], which specifies accepted means
to impose safety, however, allows also human-robot collab-
oration in four clearly defined scenarios. The new technical
specification ISO TS 15066 “Robots and robotic devices
– Collaborative robots” [12] provides even more details
on these operational settings and specifies comprehensive
force, pressure, and speed limits for unintended human-robot
interactions (collisions).

Risk reduction during human-robot interaction has three
main approaches: (i) redesigning the system and the task
realization, (ii) using functional or physical safeguards, and
(iii) raising the awareness of the operator/user, either using

1 All authors are with JOANNEUM RESEARCH ROBOTICS - Insti-
tute for Robotics and Mechatronics - Cognitive Robotics Group, Austria
<firstname.lastname>@joanneum.at

active warnings during operation and/or by specific training.
Taken into account the industrial experience, redesigning
the system is the most effective risk reduction strategy and
should always be applied first. However, when operating
adaptively in less structured environments, redesign alone is
often insufficient, and additional functional safety measures
are mandatory [13].

It is possible to combine these three approaches to achieve
higher levels of safety. In spite of that, no matter how
accurate a system is designed, the continuous monitoring (the
second approach mentioned above) is an important factor for
a safe system. To be able to understand the status of the
environment or a system, the concept of perception plays an
important role. Similar to human perception, the concept of
the perception for a system can be twofold:

• External: What a system sees, perceives, or understands
from the environment, i.e., what types of object are
around me? What are their positions, speed, shape, size?
What are the states of other systems around me?

• Internal: What a system sees, perceives, or understands
about itself, i.e., where should I be? Where am I? What
is my current state?

For both of these perception types, we need dedicated
sensors to obtain relevant data upon for perception. This
demanding task requires to deal with the following issues:

• sensory data acquisition and storing the data
• data mining, enhancement, and filtering
• sensor fusion
• time synchronization
• dependable, safety-enabled operation.

The complexity highly increases with the larger number of
heterogeneous sensors such as, safety-enabled laser scanners
(LIDARs), RGB cameras, thermal cameras, time-of-flight
(ToF) cameras, haptic sensors, proximity sensors, ultrasonic
sensors, robot internal sensors (e.g., torque sensors), pressure
sensors, etc. Redundancy achieved by using diverse sensor
types highly improves the reliability of the overall perception
unit. Dealing with diverse sensors requires one to carefully
consider the different interfaces, data types, sampling rates
and, of course, a potentially large amount of data. In order
to deploy such an inclusive perception scheme in real-world
robotic systems, however, it is also important to consider
the requirements set by the relevant standards that include
the entire life cycle of the system starting with the devel-
opment process itself, hard- and software-requirements and
functional issues for all forms of the system’s operation.
This goes far beyond the requirements necessary to realize
a laboratory demonstrator. As a consequence, it is helpful to
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consider these aspects early in the R&D efforts in order to
qualify for real-world applications.

II. RELATED WORK

With the growing applications of robotics in human life
and considering the high importance of human safety in
HRI, more and more research is being dedicated to assure a
safe perception in collaborative environments. Kulić [13] was
one of the first who has provided an extended and detailed
overview regarding the safety in HRI. She managed to define
many important terms in this scope and formulate a metric
for danger measurement. [20] also provides a quick overview
of safety issues in HRI. The work done in [16] categorizes
the safety strategies in three categories: I) crash safety (e.g.,
limiting the power/force), II) active safety (e.g., by using
proximity sensors, vision systems and force/contact sensors),
and III) adaptive safety for intervening in the robot opera-
tion and applying corrective actions that lead to collision
avoidance without stopping the robot operation. In their work
and also the work from [6] the focus is more on the design
principles. The latter also considers robustness, fast reaction
time, and context awareness as the main parameters of a safe
design. One interesting and genuine idea mentioned there and
originally in [7] is the recommendation to design the robots
such that they are predictable for a human. For instance, by
using special sounds or human-like movements for a robot,
the human can expect and foresee the robot’s moves and
accordingly avoid unintended collisions with the robot.

Some other researchers just focus on detecting and lo-
calizing the human and accordingly prevent the robot from
colliding with it. Depending on the type of the detecting
sensor, their performance is evaluated. Active or marker-
based sensors may be more challenging to implement and
less convenient to apply in real scenarios, but they can
provide a quite accurate and reliable collision avoidance.
Their proximity distances can reach up to a few centimeters
between human and robot [14]. On the other hand, other
types of sensors such as cameras and laser scanners may
have higher error ranges, but by combining multiple sensors
together we can minimize the risk. In this direction, [18]
fuses data from multiple heterogeneous 3D sensors to detect
any moving object approaching the robot. Similar work has
been done by [19], which constructs point clouds and 3D
models of the moving objects and the robots in order to
avoid collisions.

Safety of a human is not always achieved by immediate
protection from danger or collision. Sometimes hazards can
be results of long-term inappropriate actions in HRI. For
instance, [4] looks at the human safety from an ergonomic as-
pect, which is a complementary point of view. They consider
a work environment which ensures the occupational safety
and describe the requirements for a workplace where human
and robot can jointly perform an assembly process without
separation between their workspaces. They also consider
some human factors such as the age of the working person.

In our work we are going to look at the safe perception
in HRI with a holistic approach. We are going to explain

what kinds of criteria are necessary to be obeyed in order to
have a safe perception architecture and why a single safety
precaution will fail.

III. RISK ANALYSIS IN SAFE PERCEPTION

In the design of a robot system, risk assessment is a main
measure for achieving standards-compliant safety. The gen-
eral process, consisting of risk analysis and risk evaluation,
is described in [9], with extensions specific to robots given
in [11] and [12]. First, the potential hazards of the robot
system during all phases of its life cycle are to be identified.
The hazards given in the annex of [11] may be seen as
a list of examples, which must always be considered and
carefully examined with the specific robot system and its
application/task in mind. All identified hazards are then to be
evaluated in terms of their risks. From the obtained results
it may become clear that the risks have to be reduced by
certain measures, leading also to updates in the results of
risk analysis and evaluation, and thus a new iteration of the
process steps. Eventually the residual risks of any remaining
hazards are sufficiently low to allow for the designed robot
system to be realized and considered safe.

Risk assessment and safe perception influence each other
in several ways. Already during the risk analysis, the capa-
bilities gained from the perception infrastructure can serve as
measures that counter certain hazards and reduce risks. But
the risk analysis must also consider any potential hazards
arising from system components, including also those that
are specifically employed for safety reasons. If the used
components do not provide a sufficiently high integrity
/ performance level or they are placed or configured in
suboptimal ways, their total effect may be deteriorating.
However, such choices will typically be identified and miti-
gated in the further course of the iterative risk assessment
and risk reduction, so that the final solution is able to
achieve the required safety properties. When modifying the
system design to achieve risk reduction, the integration of
the safety perception infrastructure or the modification of
its integration can be a central measure. Thus, as one of
its results, the iterative process of risk assessment and risk
reduction gives constraints on effective sensor placement that
enables comprehensive sensor fusion later on. An example
of such an improvement can be seen in the step from the
arrangement depicted in Fig. 3 to the one in Fig. 5. In the
running system, any residual risks are permanently relevant.
The setup of the safe perception must be designed in a way
that potential hazards that could not be eliminated by system
design can be prevented or dealt with accordingly based upon
perception.

Finally, the operation of the system continuously gives
opportunities to gather new knowledge that can be used in
a refined risk assessment to further improve the system’s
safety. This could be done any time, but is necessary in
particular when the system is going to be modified. Possible
inputs may come from user feedback, other persons observ-
ing the operation, or also the system itself. For the latter,
we envision a component that is able to identify events that
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may need further offline analysis later using different kinds
of potentially related data available to the system.

IV. SAFE PERCEPTION ARCHITECTURE REQUIREMENTS

An architecture for a safe perception system typically
includes components of the types machine, sensor, human,
and processing unit. To construct a suitable architecture, we
need a good understanding of these components in terms of
their functionality and reliability as well as their relations
and interfaces. Here we are going to propose a generic
architecture by pointing out the requirements which enable
the realization of a safe perception system for a typical
collaborative robot system. This architecture should be in-
dependent from the robot type, size of the workspace, and
environmental factors as much as possible and also easy to
deploy. In order to achieve such a goal, we have to consider
the possibilities of failure of individual components in a
system as discussed in Section III. Accordingly, an ideal safe
architecture considers/includes the following requirements:

• Embed safety inside different building blocks: consider
safety not just as an add-on but embed it in each
system component, robot, planning, and programming
decisions. However, always keep the distinction be-
tween operational functionality and safety functionality
in mind.

• A modular architecture: makes it easy to add/remove
various hardware and software components. For in-
stance, Robot Operating System (ROS) [17] has been
used for our modular software architecture to provide a
simple message passing and hardware abstraction.

• Adding parallel redundancy: use multiple sensors in
parallel over independent platforms to make sure that
the failure of one is not causing the whole system to
fail.

• Heterogeneous system: using different types of sensors
(e.g., laser scanner, time-of-flight camera, thermal cam-
era, speech recognition, light curtain, etc.) to make sure
that the system is robust against changing environmen-
tal variables. For example, if there are poor visibility
conditions at the workplace, conventional cameras may
fail to obtain a picture but a thermal or time-of-flight
(ToF) camera can help and even provide images through
fog or smoke.

• Reproducibility: which makes it easy to re-implement
in different scenarios and setup the perception system
in other new workspaces.

• Mapping the Environment: modeling the 3D environ-
ment in order to further simulate, localize and position
the sensors and objects in the environment. This helps to
decide how and where to mount the sensors to achieve
the maximum coverage (high spatial distribution helps
the robustness in case of local failures).

• Context aware: takes the context of the ongoing scenario
into account either by receiving it from operator or
by analyzing the scene. Accordingly the system adapts
the parameters and decision-making to that specific
scenario.

• Intelligent: learn from the previous situations (from both
false-positives and false-negatives) and hence provide
feedback data and parameter correction for future im-
provement. Using machine learning in robot perception
is an example to achieve this goal.

• Exploiting human perception: warn the human about
the potential hazards. Unlike the conventional sensory
perception, we do not only inform the human in close-
to-danger scenarios. Instead, we additionally count on
human perception by constantly giving a feedback re-
garding the state of the robot to the human, for example
by producing a sound according to the movements of
the robot. This way the human herself/himself can make
a decision if she/he feels something is out of the order.

As mentioned above, redundancy is a major design
paradigm to realize safety through perception. Relevant
standards such as the previously mentioned ISO 10218 and
ISO 13849 enforce redundancy throughout the system for
achieving a required performance level for a safety function,
i.e. redundancy in sensors, computational units and actuators
as indicated in Figure 1.
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Fig. 1. Redundant Safety Architecture (cat. 3, ISO 13849-1 cl. 6.2.6)

This classic layout for achieving a high integrity / perfor-
mance level has to be incorporated carefully as not to tamper
with the safety of the overall system. This is important
in particular as our complex robot system will involve
both safety functionality at high integrity level as well as
functional components with lower integrity level that should
also contribute valuable information to improve the overall
safety. In industry, one typically talks about yellow and gray
components, referring to high integrity safety and general
functional components, respectively. A clear structure, both
in terms of hardware and software, is required in order to
obtain the safety functionality at the desired performance
levels.

V. ARCHITECTURE REALIZATION

In our lab we have various types of serial robotic manip-
ulators in workspaces where safe human-robot interaction or
collaboration is compulsory. Therefore, we utilize sensors for
highly dependable perception using safety LIDARS (yellow
hardware – OMRON OS32c) at performance level D (PLd)
[8]. On the other hand, we intend to use functionally power-
ful time-of-flight (ToF) cameras (gray hardware - PMD Pico
Flexx) for environmental perception. Similarly, the control
of the robots involve the low-level safety-enabled robot
controllers (yellow hardware/software) in combination with
a high-level control system that is implemented in ROS (gray
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hardware/software). The overall system should not just act
as a ROS system with add-on safety, but integrate safety
inclusively.

We propose a safety-enabled system architecture that
solves the safe robot perception and control task through
3 levels of hardware abstraction. Basis for this architecture
that is given in Figure 2 is a safety-rated robot controller (in
our case the KUKA Sunrise controller for the sensitive iiwa
robot). High level control is implemented in ROS running
on separate (Linux-based) controllers. In between those two
control layers, we introduce a safety-rated controller (e.g.
a safety PLC) that connects to both, safety-rated sensors
(safety LIDARS in our case) and the safety-rated input
of the low-level controller. This allows us to implement
dependable safety functionality that goes beyond the simple
safety-logic of the low-level controller. However, it might
also be implemented directly on the low level controller if
the device offers to implement high integrity safety functions.
This layered model clearly defines a priority structure where
the safety-enabled control system takes control whenever
a critical safety issue is detected. Thus, there is no direct
connection that allows the ROS System to issue control
actions for the low level controller except the authorized
connection through this safety control layer.

Robot-Controller

(e.g. KUKA Sunrise for KUKA iiwa)

Safety-enabled

Control System

High-level Control System

(ROS System)

Sensors

Safety

Sensors

ROS Safety Socket

Fig. 2. Safety-enabled Architecture

Up to now, this structure resembles the classic add-on
safety architecture. However, we intend to go beyond this
architecture that will enable more inclusive perception and
control schemes. As a consequence, we propose to provide
a highly dependable ROS safety socket that connects the
safety-controller to the ROS environment. Furthermore safety
sensors could be connected to the ROS environment as
well. For example our safety LIDARs provide safety-enabled
outputs that define region interceptions through (safe) binary
signals, whereas the more informative LIDAR scan is pro-
vided through standard interfaces to the ROS system. With
our safety socket, we intend to enable ROS functionality not
just at different levels of priority, but also at different levels
of dependability. This safety-socket is only one pre-requisite.
We also have to provide dependable and in particular trust-
worthy ROS nodes and communication between them and
the socket. The standard ROS system does not address IT
security adequately [15]. To compensate for this security
flaw, our institute colleagues recently proposed a scheme
for application-level security and safe communication [3],
[1] for ROS that is now under consideration by the Open

Source Robotics Foundation (OSRF) to be included in the
SROS project for future public release.

Alongside of this implementation effort that will provide
the necessary building blocks for a safety-rated perception
and control functionality, we evaluated possibilities for func-
tionally rich and safe multi-sensory perception using the
standard ROS environment as an experimental testbed. We
have set up a heterogeneous perception system comprising
of two safety-rated OMRON OS32C laser scanners with data
fusion running on two different computers and one or two
ToF cameras for acquiring 3D data from the environment
(the aforementioned PMD Pico Flexx camera and the single-
beam ToF sensors Terraranger). We consider the proper com-
bination of different technologies of parallel and independent
sensors and the resulting high redundancy as a prerequisite
for fulfilling safety requirements. Additionally, to achieve
robustness in case of local failures, it is necessary to mount
the sensors in a distributed way. As a basis for making safety-
related decisions in the running system, we are going to
define a distinction of three danger zones that are reported by
our sensor fusion: Danger, Warning, and Safe. Their origin
is in the origin of a robot, and they are surrounding the robot
in a circular way. The border between danger and warning
zones is defined using safety separation distance defined in
ISO/TS 15066 [12]. Using distance of a moving object from
a depth sensor, it will be decided in which danger zone the
movement is detected.

The example setup of sensors which is shown in Figure
3 results the sensor fusion shown in Figure 4. Sensors are
mounted close to each other, which leads to a higher chance
for all sensors to fail together when a local hazard happens
(e.g. physical damages). Knowing that, and also for a specific
collaborative use case, sensors are mounted as shown in
Figure 5. Regarding modular architecture and reproducibility,
it is also very easy to change the mounting for other use-
cases and workspaces. However, more automatized setup of
sensors for maximum coverage of the workspace and their
calibration is planned for the future work.

Fig. 3. Example of a prob-
lematic setup where 3 different
types of sensors are mounted
just next to each other. This
setup increases the chance of
perception failure due shadow-
ing effects and local hazards
such as physical damages.

Fig. 4. Visualization of the 3D position
data in RViz obtained from Teraranger
Tower (8 pink points), Pico Flexx Cam-
board ToF camera (colored points), and
laser scanner (white points).
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Fig. 5. Distributed setup of sensors including 2 laser scanners and one
Pico Flexx ToF camera around the workplace.

The sensors we have chosen are not supposed to be
used for object/human detection and localization per se, but
mainly for distance measurement. Therefore, with both types
of sensors, we need to perform some post-processing in order
to be able to detect and perceive an approaching object. In
order to have a safety-eligible sensory data analysis and
decision making, we need to reduce the chance of false
positive and false negative in our perception system. Safety-
wise, perception scenarios with false negative (i.e., a human
approaching the robot is not detected) are far more dangerous
compared to scenarios with false positive. In case of false
positive, on the other hand, we may observe instances of
unwanted robot speed reduction or even a complete stop,
which is affecting the system performance but not the safety
property. For instance, in case of ToF camera the following
steps are being performed to robustly detect a moving object:

• Filtering the depth image: it is performed by using
various filtering method (e.g., median filter in both
spatial and temporal domain) which mitigates the false
detection. Filtering steps are shown in Figures 6 and 7,
and resulting filtered depth image is shown in Figure 8.

• Background image: recording filtered depth image at
startup. The background image is refreshed if there is no
movement detected for a specific period of time (Figure
8).

• Difference image: subtraction of background and cur-
rent depth image (Figure 8 – Figure 10 = Figure 12).

• Blob Detection in binary difference image (Figure 13).
To avoid detecting changes produced by noise and also
using the prior-knowledge of the size of an approaching
object (e.g., human) we adjust the parameters of our
blob detector (such as expected shape and size) in a way
to detect only the intended moving targets. When at least
one blob is detected, it means that there is a movement
in the workspace, and therefore we can proceed with
the next two steps.

• Masking the original depth image: binary difference
image is used as a mask in order to have real depth
data of each pixel of the blob that is assumed to be a
moving object (Figure 11).

• Final depth information of detected moving object:
is a result of using median value of depth info from
the masked image. Higher importance is given to closer
distances that still have a smaller covering area in the
depth image, such as an intruding arm of a human.

Fig. 6. Original
depth images

Fig. 7. Filtered
depth images

Fig. 8. Final background
image

Fig. 9. Original
images with hu-
man

Fig. 10. Final fil-
tered depth image

Fig. 11. Masked
original depth image

Fig. 12. Difference
image

Fig. 13. Blob de-
tection in BW diff.
image

For the laser scanners, which provide 2D data (scan a
plane or a cross-section out of the 3D space), the process of
extracting distance of a detected object and its coordinates
is aligned with the one of the ToF camera:

• Background data: resulting background data is median
filter applied on temporal domain of data collected in
initialization step.

• Difference data is calculated as subtraction of back-
ground data and current data every time stamp.

• Movement in the workspace is detected if the percent-
age of not moving points is less than 98.5%.

• Transformation of depth data from the laser coordinate
system to the robot’s coordinate system is done using
Euclidean distance, taken into account the fixed position
of the laser scanner relative to the robot.

Every time stamp we have the result of our sensor fu-
sion as the final danger zone. From each sensor, regarding
distance of a human, or any other moving object in robot’s
workspace, it is decided in which danger zone the detection
happened, and the final danger zone is the worst case of
all three. Measuring the separation distance between the ob-
ject/human and the robot, in constant speed setting situations
with worst-case value taken into account, it is ensured that
the robot system never gets closer to the operator than the
protective separation distance [12].
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While it is essential to have a direct link from the safety-
oriented sensor fusion to the robot control for adapting speed
limitations or triggering an emergency stop, the combined
information from the sensors also serves as a valuable input
for generating task-level plans for the robot system. We use
ROSPlan [2] as our infrastructure for task planning, which
allows us to formulate the planning domain in the quasi-
standard Planning Domain Definition Language (PDDL) [5].
The planner, given abstract logical models of the system and
relevant entities in its surroundings on the one hand and
goals to be achieved on the other, would typically generate
sequences of actions such as picking up a certain object,
placing it in a certain pose into the product that is being built,
and fixing it there in a certain manner, using a certain path of
motion trajectories from a set of possible ones. There could
also be actions representing interaction with humans via
user interface components or invoking arbitrary meaningful
functionalities of connected devices.

The currently obtained safety zone information and other
results of sensor fusion can be mapped to logical facts in
the planning domain, and they in turn can be used in the
conditions of PDDL actions in order to tie their applicability
to the current safety situation. Examples for such conditional
safety limitations include forbidding certain actions as a
whole, forbidding trajectories in which parts of the robot
would intrude certain zones or exceed a certain speed limit,
forbidding interacting with potentially hazardous objects, or
forcing the robot to assume a predefined home pose between
any two other poses. The planning system takes care that
such restrictions are not only considered when a new plan is
generated but also that the current plan’s execution is halted
when an assumed precondition, safety-related or other, for
a robot action is found to be not actually fulfilled, or when
an action’s execution was not successful. Then, starting from
the updated current state, a new plan is generated and goes
into effect.

VI. CONCLUSION

In this paper, we have emphasized the importance of a
safe perception system in HRI scenarios where both human
and robot coexist in a shared environment and collaborate
toward their goals. We have taken into account a holistic
approach toward safe perception and managed to introduce
the requirements for a general architecture that integrates
safety in any robotic environment independent of scenario,
scale, shape, and the number of robots and humans. This ar-
chitecture is modular, reproducible, context aware, intelligent
and also has parallel redundancy, heterogeneous sensors, and
embedded safety.

Furthermore we have presented how our safe perception is
set up for a collaboration scenario in our lab to demonstrate
the simplicity and reusability of our approach in real-world
applications. In this demonstration multiple safety standards
have been considered and included in order to have a correct
risk analysis and safety-zone calculation.
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Pose Estimation of Similar Shape Objects using Convolutional Neural
Network trained by Synthetic data

Kiru Park, Johann Prankl, Michael Zillich and Markus Vincze

Abstract— The objective of this paper is accurate 6D pose
estimation from 2.5D point clouds for object classes with a
high shape variation, such as vegetables and fruit. General
pose estimation methods usually focus on calculating rigid
transformations between known models and the target scene,
and do not explicitly consider shape variations. We employ
deep convolutional neural networks (CNN), which show robust
and state of the art performance for the 2D image domain.
In contrast, normally the performance of pose estimation from
point clouds is weak, because it is hard to prepare large enough
annotated training data. To overcome this issue, we propose an
autonomous generation process of synthetic 2.5D point clouds
covering different shape variations of the objects. The synthetic
data is used to train the deep CNN model in order to estimate
the object poses. We propose a novel loss function to guide
the estimator to have larger feature distances for different
poses, and to directly estimate the correct object pose. We
performed an evaluation using real objects, where the training
was conducted with artificial CAD models downloaded from a
public web resource. The results indicate that our approach is
suitable for real world robotic applications.

I. INTRODUCTION

Pose estimation of objects in color and depth images is es-
sential for bin-picking tasks to determine grasping points for
robotic grippers. Man-made objects are usually manufactured
using 3D CAD models having exactly the same shapes with
negligible errors. The well-constrained environment enables
the robot to identify each pose by comparing features of the
pre-created template and an input image [14]. However, it is
not possible to provide 3D CAD models for natural objects,
such as vegetables or fish, where each object has a slightly
different shape. Object pose estimation with template based
approaches would need a huge number of templates in order
to cover each individual pose and the different shape variants.
Hence, these approaches would lead to large databases and
a high processing time for matching of the templates.

Recently, CNN based approaches provide reasonable re-
sults for most computer vision tasks including image clas-
sification and object detection in 2D images [13] [15]. This
achievement is accomplished with a large number of training
examples, e.g., [4] [7]. The 2D image datasets are usually
collected from web resource and annotated by non-expert
persons with tools using a user-friendly interface. For RGB-
D images or 2.5D point clouds it is difficult to collect a
large number of examples from public web services and
it is also hard to annotate the exact poses by non-expert
persons. This results in a lack of training data and causes

All authors are with the Vision4Robotics group, Automation and Control
Institute, Vienna University of Technology, Austria {park, prankl,
zillich, vincze}@acin.tuwien.ac.at

Fig. 1: Overview of the proposed framework. An artificial
3D CAD model is used to generate synthetic scenes with
varied shapes and poses in order to train the deep CNN. The
trained network can compute poses of each of segmented
clusters.

an additional complexity to train a CNN for estimating 6D
poses in the 3D space. Therefore, pre-trained CNNs are
used for extracting features from color or depth images, and
the extracted features are used to train linear regressors to
estimate the poses [16]. Although there are several datasets
which have 6D pose information for more than 15K images
[9], [10], it is still not enough to train a deep CNN and none
of them consider object classes with large shape variations.

In this paper, we propose a simple pose estimator that can
be used to estimate poses of objects with shape variations,
such as vegetables or fruit, using a CNN and a single depth
image as input. Synthetic depth images containing various
poses and shapes of a CAD model are generated to train the
proposed CNN. No more template information is required
after training. This simplicity is one of the advantages of
the proposed model for the robust estimation of object poses
with different shape variants. The experiments show that our
concept is suitable for real world robotic applications.

As a summary, our paper provides the following contribu-
tions:

• We propose a framework that is able to generate syn-
thetic training images and consists of a deep CNN pose
estimator for the estimation of poses of natural object
classes such as vegetables and fruit.

• Pairwise training is applied to train the deep CNN with
a loss function that minimizes the errors between the
estimated poses and exact ground truth poses and low-
level feature distances between similar poses.

• We show that our estimator successfully estimates poses
of real fruit using more than two hundred test images,
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which are collected with a stereo camera widely used
in industrial applications.

The remainder of the paper is organized as follows. In
Section II we provide an overview of related work. Our
proposed approach for Deep CNN based pose estimation
is introduced in Section III. In Section IV, we present
experiments with our trained pose estimator with test images
containing real bananas. We conclude the paper with final
remarks and plans for further work in Section V.

II. RELATED WORKS

Object detection and its pose estimation is an essential
task for robots and industrial applications, especially for
picking and placing tasks. The exact 6D pose information
of an object is required to decide about grasp points for
picking and to define proper locations for placing. Therefore,
pose estimation in 3D space has received a lot of attention
with various approaches which dominantly include feature
matching based methods and recently convolutional neural
network based methods. State of the art methods are able to
perform classification of objects and pose estimation at the
same time [1], [18]. In the brief review below we focus on
feature based approaches with a local or global descriptor
and CNN based approaches.

A. Feature based approaches

Extracting features from training and test data, matching
correspondence and calculating single transformation from
a trained model to target scenes are typical processes of
feature based approaches. Features for the 3D domain are
designed to provide a generalized representation of the object
shape using local attributes. One popular example is SHOT
developed by Tombari et al. [17]. In [1] Aldoma et al. de-
veloped an approach which uses various features to generate
possible hypotheses and select hypotheses which minimizes
a cost function in order to remove false-positives. These
feature based pose estimation approaches generally compute
rigid transformations, which implicitly assumes that training
models and target objects have the same shape. Wohlkinger
et al. [19] uses CAD model to train global features to
recognize real objects. This method shows robustness to
shape variations, but it needs a large number of template
images.

B. CNN based approaches

To employ recent convolutional neural networks, success-
fully used in the 2D image domain, to the 3D domain,
which does not have enough training data, researchers tried
to use pre-trained CNNs as a feature descriptor and trained
additional classifiers for recognition and linear regression
for pose estimation [16]. But [16] constrains object poses
to in-plane rotation on the table, with one single degree
of freedom. Generation of synthetic data is an option for
training a CNN with depth images as input. [3] uses a 3D
CAD models in order to train the typical CNN structure and
finally gains a descriptor for a single channel depth images.
This model was used for object classification tasks. Also,

[3] considers object classification tasks, but this approach
generates depth images from CAD models containing both,
varied view points and randomly morphed shapes. CNN
based 6D pose estimation is also described in [18], [5]. Both
use pair-wise training to guide intermediate features to have
larger distances for larger pose deviations. They design a
small CNN network, which has only two convolution layers
in order to train the CNN using a small number of training
examples. In contrast to these approaches, we use a deep
CNN which has five convolutional layers and pre-trained
weights computed by a large number of 2D images. However,
we refer to their pairwise training approaches to get a robust
pose estimation performance.

III. METHOD

In the following paragraph we provide a detailed de-
scription of the proposed pose estimation approach, which
consists of a deep CNN, generation of synthetic images and
a pose refinement step for the final result, shown in Fig.1.

To be able to exploit the structure and pre-trained weights
of well-established and tested CNNs taking three channels
of a 2D color image as input, we transform single-channel
depth images to three-channel color images. Finally, the pose
estimation procedure at test time is described, including the
refinement step to minimize the translational error.

A. Deep CNN for pose estimation with depth images

We employ Alexnet, which has proven results for 2D
image classification tasks. The only different part is the last
fully connected layer, which in our case has only four out-
put channels for estimating the rotational transformation in
quaternions, instead of a thousand channels for classification.
Also, the final output is filtered by tanh function to provide
normalized results between -1 and 1. The reason why we
use a quaternion representation instead of Euler angles with
three parameter is, the non-linearity and periodicity of Euler
angles. For example, the numerical difference between 0 and
359 degrees is large, although the difference of the angles
is small. However, the quaternion representation allows to
calculate the pose difference as distance of each component
of the quaternion values [12]. Most of the state of the art
CNN models including Alexnet uses a 2D color image as
input. State of the art for CNNs applied to depth images is to
convert the depth image in the one channel to a color coded
image in the three channels [6]. Among the possible color
coding methods, directly matching each axis component of
a surface normal to separate image channels has shown a
superior performance [6]. Optionally, we use the depth value
to scale the values of each pixel as described in (1) and (2).

ID = 1.0− Pz−minz +δ
maxz−minz +2δ

(1)

Pdata = ID[Nx Ny Nz] (2)

where Pdata describes a single data point represented in the
three channels. ID is the scaled depth value and the remaining
three values Nx, Ny and Nz are the individual axis of the
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surface normal. The depth value ID is normalized using the
maximum and the minimum value of the point cloud with a
margin δ to avoid zero values. Furthermore, the normalized
depth value is subtracted from one to get higher values for
closer points. Finally, every point is projected to a pixel in
the 2D image.

B. Generation of synthetic training data

To train a CNN a large number of training examples
is required, which cover each possible viewpoint of the
object. We developed a fully autonomous data generation
framework, which is able to cover all possible poses and
shape variations. A 3D CAD model, e.g. from a public web
resource or a reconstructed 3D scanned model, can be used
as a reference model for this framework. The first step is
to convert the CAD model to a point cloud format and to
transform the reference coordinate system to the centroid of
the model. After that, rotations for each axis are defined with
5 degree increments, which results in about 373K possible
poses. In addition to the pose transformation, the shape
transformation, i.e., scaling and shear is also defined for
each pose. Scale and shear factors for each axis is randomly
selected between a specified range in order to cover possible
variations of the object. The reference model is transformed
with the defined transformation matrix. Then it is placed to
a location with a proper distance – usually found in the pose
estimation scenario – to the camera. Self-occluded points
are removed using a standard ray tracing of a camera view.
Additionally, a randomly placed 2D rectangle is used to
remove small parts of the object, in order to simulate partial
occlusions and segmentation errors. Finally, the remaining
points are used to render a depth image and non-object
points or background points are filled with mean values
(e.g. Pdata = [0.5 0.5 0.5] in case the normalized values are
within [0..1]). The finally generated image is stored including
the pose transformation using quaternions, i.e. in the same
format the deep CNN provides.

C. Pairwise training for robust pose estimation

As proposed in [18], [5] our network is trained with
input pairs to minimize feature distances of similar poses
and maximize feature distances of different poses. The pose
difference of a training pair is defined as the Euclidean
distance between each quaternion component. Hence, a pair
of training examples with a pose distance less than ρs is
regarded as as positive pair and if the distance is larger than
ρd it is regarded as a negative example (cf. 3).

ω =

{
1, if ||qanchor−qpair||2 < ρs ,

0, if ||qanchor−qpair||2 > ρd .
(3)

ω is given to the loss function to determine whether the
current pair of images is positive or not, as described in (6).
qanchor,qpair denote four-dimensional vectors of each pose
transformation serialized from quaternion representation.

The whole input batch for each iteration is filled with
positive and negative pairs. As described in Fig. 2, a data

Fig. 2: Streamlines for pairwise training using shared weights
for the CNNs. Output from both streamlines, i.e. the 7th
layers and the last layers are used to compute the loss for
the annotated training pairs.

pair is fed into the CNNs with the same weights and
computed separately. To calculate the loss in each iteration,
we use the output of the seventh fully connected layer with
4096 dimensions and the last fully connected layer with 4
dimensions, which is furthermore used to predict the rotation
information in quaternion.

The loss function L for training can be separated into two
part as described in (4).

L = lr + l f (4)

For N batch images per each iteration, lr represents a re-
gression error between the annotated pose and the estimated
pose which is defined as Euclidean distance (cf. 5), while l f
of 6 represents contrastive loss to guide features to have a
smaller distance for similar poses and a larger distance for
different poses.

lr =
1

2N

N

∑
n=1
||qest −qexact ||22 (5)

l f =
1

2N

N

∑
n=1

(ω)d2 +2(1−ω)max(1−d,0)2 (6)

d = || fachor− fpair||2 denotes the Euclidean distance between
features computed from the seventh fully connected layer.
ω , the parameter to classify training pairs as positive or
negative examples, with similar or different poses is set in the
data generation process. This contrastive loss has generally
been used to train Siamese networks, which compare pairs
of images [8]. In each iteration weights of the CNNs are
updated to minimize the loss function using a stochastic
gradient descent (SGD) solver. For this lr is used to update
all weights of the CNN, while l f effects all weights except
those of the last fully connected layer.

D. Estimation procedure

In contrast to the training, for pose estimation only a
single stream line with one deep CNN is used. The last
fully connected layer directly predicts the pose represented in
quaternion. Given a depth image or a point cloud we classify
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TABLE I: Pose estimation results with the proposed CNN

Proposed CNN Proposed CNN ICP from
with ICP without ICP Random Pose

Precision 0.956 0.822 0.265
Time (ms) 140±32 129±32 155±33

segmented objects. For the sake of simplicity in this paper
we use a simple dominant plane segmentation and a nearest
neighbour clustering of 3D points. The pre-processing to
provide the input to the CNN is identical as for training (cf.
III-B). The trained CNN directly estimates the rotation for
the input segment. The corresponding tentative translation
is computed from the centroid of the reference model and
the segmented point cloud. Finally, a pose refinement step
is performed. Basically, the translational error is dominantly
caused by the difference between centroids of the reference
model and the test image. This is because the centroid of the
reference model is derived by the whole object shape, while
the test image lack of occluded parts. To minimize this error,
self-occluded parts of the reference model are removed after
initial alignment, and the centroid of the reference model is
recalculated. As a final step, we apply an iterative closest
point (ICP) algorithm.

IV. EXPERIMENTS

We perform experiments to prove our concept with real
bananas. An artificial 3D CAD model of a banana is selected
and converted into a point cloud, further used to generate
training images and store the ground truth pose. Scaling
and shear transformations are randomly varied from 0.8 to
1.2 for each of three directions of views generated every 5
degree along each axis. The margin δ to calculate the depth
to color conversion is set to 0.5. The CNN is implemented
with the Caffe framework [11]. We set the initial weights
using the pre-trained network, trained with Imagenet data
[4]. To decide about positive and negative examples for
pairs training examples, we set the threshold ρs = 0.2 for
positive and to ρd = 1.0 for negative examples. Positive
and negative pairs are randomly selected during the first
epoch of cycles. The set of pairs is then fixed for further
iterations to reduce training time. Every input image is
re-sized to 64x64 pixel, while keeping the ratio between
heights and widths of the rendered view. Test images are
captured with an Ensenso N35, an industrial stereo sensor
that provides only depth information with a resolution of
640x512. We assume robust segmentation results for the test
scenes. Therefore, we placed the bananas on the table with
enough distance to each other, in order to robustly extract
segments, after detecting the dominant plane. We prepare five
test scenes consisting of multiple bananas and approximately
278 scenes containing single banana per image using four
different bananas. Estimated poses are evaluated manually.
The criterion for the evaluation is based on the graspablity
of the detected object, i.e. if the estimated pose is accurate
enough to successfully grasp the object it is counted as

Fig. 3: Visualization of the estimated poses of multiple ba-
nanas. Red: real bananas in the test scene, yellow: estimation
results

Fig. 4: Example of a bad alignment after ICP. This example
is converged to match with an edge part of the banana

positive. All experiments are performed with an Intel i7-
6700K and a NVIDIA GTX1080 train the CNN.

A. Results for bananas

Fig. 3 briefly shows the results for the test scenes con-
taining multiple bananas. As shown in Table 1, the overall
accuracy after pose refinement is about 95.6% and the
computational time for each segment is about 0.14 second
for each object, which is highly acceptable for robot grasping
tasks.

B. Side effect of refinement steps using ICP

ICP generally improves the results. However, it sometimes
causes worse alignment as shown in Fig. 4. This is because
of the shape difference between the reference model and
target scenes. The general ICP, which we use assumes
a rigid transformation between the reference model and
target model. Hence, depending on the inlier threshold ICP
converges to partially fit to the scene, while the remaining
point cloud does not contribute.

V. CONCLUSIONS

In this paper, we proved the concept of estimating poses
of objects with a high shape variance using a deep CNN
estimator. Furthermore, the proposed framework is able to
use any kind of artificial or real scanned 3D model in order
to generate enough data for training the deep CNN. This on
going research will further be improved with the following
ideas:
• The general rigid transformation ICP is not enough to

refine the pose because the shape difference between the
reference model and the individual objects. We refer to
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non-rigid ICP [2] as an option to further improve the
pose estimation.

• The preparation of an extensive annotated dataset will
lead to an objective evaluation of our approach with
various parameters and settings and a comparison to
state of the art methods.

• Here, we assumed a correct segmentation result. In
future we need to investigate optimal segmentation
methods for real world experiments.
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Confusing Similarity between Visual Trademarks
A Dataset Based on USTTAB Examinations*

Lukas Knoch1 and Mathias Lux2

Abstract— Trademarks are an important visual clue for
customers to identify brands, products and companies, and can
influence the buying decision significantly. One major problem
with visual trademarks is, that newly registered trademarks
are required by law not to be visually similar to existing ones.
Therefore, automatic detection of visually similar trademarks
is an important use case for content based image retrieval.
Confusing similarity between trademarks is defined by law, and
numerous cases of the United States Trademark Trial and Appeal
Board (USTTAB) handling trademark similarity are available.
In this paper we present a novel and freely available data set
for evaluation of trademark similarity algorithms based on real
life data, ie. all registered trademarks in the USA as well as
USTTAB decisions and expert opinions. The data set should
serve as a basis for further investigations, ie. extension of the
data set by crowd sourcing and consideration of the intuitive
concept of visually confusing similarity.

I. INTRODUCTION

Visual trademarks, or logos, often influence our buying
decisions and are therefore valuable goods for the companies
owning the visual trademark. A common and well known
example is the Apple company logo (compare Figure I)
present on iPhones, iPads and Apple computers. Apple
Computers invests time and money to find out if other
companies worldwide use similar logos on similar products.
The same approach is also taken by many companies who
define themselves through their brands, like Nike, Adidas, or
Red Bull.

Fig. 1. Examples of well known logos and protected trademarks in many
countries including the Apple logo, the Github logo and the Nike swoosh.

To avoid confusion between different trademarks, they
must be dissimilar enough to each other. Some companies
even try to trick customers by deliberately using trademarks

* This article is based on the master’s thesis of Lukas Knoch and has
been done with the support of the World Intellectual Property Organization,
WIPO, partially as the result of an internship at the UN Headquarters in
Geneva, CH

1 Lukas Knoch was student at Alpen-Adria Universität Klagenfurt,
Austria lukas.knoch@aau.at

2 Mathias Lux is Associate Professor at the Institute for
Information Technology at Alpen-Adria Universität Klagenfurt
mathias.lux@aau.at

that are similar to well known signs. To avoid fraud, trade-
marks can be protected by law. There are several offices
in charge of managing trademark registrations for different
regions including the European Union Intellectual Property
Office (formerly Office for Harmonization in the Internal
Market, short OHIM) or the United States Patent and Trade-
mark Office (short USPTO). If a new trademark is registered,
it has to be ensured that there is no confusing similarity to
any other previously registered marks. This difficult job is
executed by professional trademark examiners who compare
the different trademarks to each other and decide about the
similarity. While there are systems in place like the textual
Vienna Classification [21], taxonomies which are intended to
help the examiner, these systems are tedious and error prone
as they rely on manual annotation.

Another way of assisting the examiners are visual trade-
mark retrieval systems. These systems can take a specific
trademark as an input and deliver a set of trademarks ranked
by similarity to the query image, which is commonly referred
to as query by example in content based image retrieval.
While several systems have been proposed [28], [9], [15],
their retrieval performance leaves a lot of room for improve-
ment [25]. There are several papers suggesting new algo-
rithms for visual trademark retrieval, but their evaluations are
based on trademark datasets downloaded from the internet
[22], [23], pure shape datasets like MPEG-7 [13], [1] or
hand picked ground truth [27], [20], [5], [26]. Unfortunately,
objective evaluation of these systems is currently hardly
possible as there are no datasets available that (i) represent
real world data, ie. the actual visual trademarks registered
at the trademark offices, and (ii) that are based on expert
opinions and court decisions.

To aid with the development of content based visual trade-
mark retrieval systems, this paper introduces a realistic novel
dataset based on real world trademark trials. Our dataset
can provide the base for research on content based visual
information retrieval systems. The dataset contains 1,859,218
visual trademarks registered at the United States Patent
Office (USPTO) as well as three different sets of ground
truths based on trials at the United States Trademark Trial
and Appeal Board (USTTAB). The raw visual trademarks
and trial data is provided by Google12, the extracted meta
data is available at a public website3.

1https://www.google.com/googlebooks/
uspto-trademarks-usamark.html, last visited 2016-01-19

2https://www.google.com/googlebooks/
uspto-trademarks-ttab.html, last visited 2016-01-19

3www.rumpelcoders.at/usttabdataset
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Fig. 2. The view on a pair of logos in the visual similarity evaluation
application.

II. DATASET

As already mentioned Google offers several trademark col-
lections as free download4 in cooperation with the USPTO.
Note at this point that these downloads offer the actual
USPTO data, ie. the actual image files filed for registration
as well as the resulting metadata. On the Google site, daily
trademark applications, images and the USTTAB trials data
from 1955 until today are available. All of these can be
downloaded in chronologically ordered ZIP-archives contain-
ing an XML file with describing all trials in the specific
period of time.

A. Selection Criteria

For the creation of our new ground truth, the trials from
1955 until end of August 2015 were chosen, being all trials
available at the time of extraction. Each trial entry in the
retrieved data contains the party-information, a section that
includes information about all parties involved in the trial.
Each party has zero or more properties, which correspond
to the trademarks associated with it. The properties are
identified by a unique identification and a serial number.

A first filtering step was taken by selecting only those
trials that do regard an opposition. For the dataset only op-
positions are interesting, as those contain cases of confusing
similarities, in contrast to obvious ones. In the next step, all
entries with exactly two parties and exactly one associated
property per party were selected. In all other cases it is not
possible to distinguish the trademarks relevant for this claim.
By joining this data with all available US trademark images,
trials regarding non-visual trademarks could be removed.

As the presence of trademark images does not guarantee
that the trial was filed because of visual similarity, the next

4https://www.google.com/googlebooks/
uspto-trademarks.html, last visited 2016-01-19

0 1

Fig. 3. One of the logo pairs in the USTTAB strict ground truth

step was to detect the type of similarity. Unfortunately, there
is no formal classification contained in the data. To overcome
this problem, a web-based application was developed, which
allows experts to decide whether the trial was based on
visual similarity or not. The experts were chosen from three
different areas of expertise: One from the field of visual
information retrieval at the University of Klagenfurt, one
from the field of trademark retrieval at the World Intellectual
Property Organisation and one with appropriate knowledge
in both fields. To be able to create a sufficiently big ground
truth in reasonable time, 1000 trials were randomly chosen
from the previously selected. The application showed two
trademark images next to each other and asked the expert to
decide whether the claim was due to visual similarity or not.
To assist the experts in their decision, the trademark name
was presented beyond the image if one was present (compare
Fig. I).

For the 1000 logo pairs, all experts agreed on visual
similarity in 160 cases. At least two of the three experts
agreed on visual similarity in 384 cases while there are 451
trials in which only one expert judged that the trial was due to
visual similarity. The 1000 pairs included nine control pairs
of obvious visual similarity, which were correctly answered
by all experts.

B. Properties

The resulting dataset consists of 1.8 million visual trade-
marks. Those trademarks are either registered, pending or
canceled in the USPTO registration data base. The set is
composed by 1,587,248 verbal signs, 533,910 non-verbal
signs and 4,867,626 combined trademarks. The signs are of
varying image quality with different resolution, in color, gray
scale or binary black & white format. As this data is directly
form the USPTO’s registration data base, its composition is
realistic and, therefore, well suited for objective evaluations.

From the USTTAB trials and the expert’s decisions, three
blends of the data set were created. The first blend includes
only logos on which all experts agreed. It is therefore referred
to as strict ground truth. An example for this set can be
seen in Fig. 3. The second blend consists of the logo pairs
a majority of experts agreed on, the majority ground truth
(cp. Fig. 4). Finally, the minority ground truth consists of all
pairs with at least one expert voting for visual similarity (cp.
Fig. 5).
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0 1

Fig. 4. One of the logo pairs in the USTTAB majority ground truth not
being part of the strict set.

0 1

Fig. 5. One of the logo pairs in the USTTAB minority ground truth not
being part of the strict set or the majority set.

C. Data Format

The dataset is defined in multiple text files. The first
file, data full.txt, contains the registration number of all
trademarks used as diversifiers as well as all trademarks from
the ground truth. Each line contains one number. The files
data 10.txt and data 1.txt contains a 10% and the 1% random
sample in the same format for test on smaller data sets, while
still providing comparability. The ground truth is available
in the folder groundtruth. This folder contains the files
gt strict.txt, gt majority.txt and gt minority.txt, which hold
a comma separated list of trademark registration numbers
identifying the visually similar logo pairs.

III. RETRIEVAL BASELINE

To provide a baseline for comparison, several state of the
art algorithms were tested on the new dataset. The tests were
executed with a benchmark software based on LIRE [19],
which was presented in [16]. Note at this point that all
descriptors used in the test as well as the benchmarking suite
have been contributed to the LIRE open source project5.

A. Tested Features

The following features were chosen to be tested on the
new dataset because they not only cover a wide diversity of
features types like color, shape, texture and combinations of
them, but also because some of them were proposed as well
suited in the trademark retrieval domain [2]. Local Binary
Patterns (LBP) [11] represent the local texture of an image
by encoding the threshold of each pixel’s neighborhood
in a binary number. A rotation invariant version can be
achieved by restricting the observed patterns the so-called
uniform patterns. For Binary Patterns Pyramid (BPP) a

5http://www.lire-project.net/, last visited 2016-01-19

spatial pyramid was applied on the LBP. The Shapeme
Histogram Descriptor (Shapeme) captures the global shape
of an image by extracting the shape context and clustering
with K-nearest neighbors. In this experiment, the shape
contexts were calculated for 256 points chosen by Jitandta’s
algorithm with three time oversampling and 512 bins for
the descriptor [3]. Centrist is a feature similar to LBP and
also captures local texture. Joint Composite Descriptor (JCD)
[29] combines the two fuzzy histogram features Color and
Edge Directivity Descriptor [8] and Fuzzy Color and Texture
Histogram [6]. Adaptive Contours and Color Integration
Descriptor (ACCID) [12] captures visually salient shapes
and combines them with a fuzzy color histogram. Pyramid
Histogram of Oriented Gradients (PHOG) [4] extracts in-
formation about the local shape and the layout of the shape
with a with a Spatial Pyramid Kernel. In this experiment, 15
orientation bins were used as that has been found effective
in the context of trademark retrieval (PHOG15, cp. [16]).

For the evaluation, the logos were resized to a maximum
width and height of 512 pixel retaining aspect ratio. In an
additional preprocessing step, a despeckle filter was applied
and the white pixels were trimmed. Table III-A shows the
result of the outlined features on the full USTTAB dataset
utilizing the strict ground truth. As can be seen easily
from Table III-A, PHOG15 outperforms the other descriptors
regarding recall and mean average precision. In terms of
average and normalized rank, the Shapeme feature performs
better than PHOG.

Fig. 6 shows the comparison of the mean average precision
(MAP) for PHOG15, Shapeme, ACCID, JCD, BBP, and
Centrist on the three different ground truths. For Shapeme
and PHOG15, the MAP correlates to the agreement of the
experts. The less agreement in the ground truth, the lower
the MAP.

IV. CONCLUSION AND CHALLENGES

The data set as presented provides a hard challenge to
researchers in visual information retrieval. While the data
from the USTAB trials provides pairs of trademarks with
confusing similarity, for both of the pairs it is very likely to
find numerous visually similar other logos, which were not
part of a trial. Moreover, companies often file trademarks
in different version, re-register them or have multiple data
records in the USTAB registration data base. Fig. 7 shows
an example result list from searching for a visual trademark
from the ground truth. At position 0 the query is shown
and only on position 49 of the list the offending trademark
is found. However, it can be easily seen that the logos in
between are visually similar to the trial’s logo pair.

While this is definitely a problem for a common use case
like digital photo retrieval, in the visual trademark domain
the experts doing inquiries certainly go beyond the first few
results and finding the offending logo in the first 100 or
even 500 results helps them with their work. Note also at this
point that the data set is especially about confusing similarity,
not near duplicate search, as the latter one has been subject
to a lot of research already. Therefore, for future work we
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Feature Rank R̃ank Recall@100 Recall@500 MAP
LBP 230,784.8 0.124 0.267 0.323 0.178
LBP (RotInv) 250,123.1 0.135 0.305 0.389 0.164
Shapeme 201,853.2 0.10856828071845802 0.488 0.513 0.378
Centrist 307,558.3 0.165 0.500 0.502 0.496
BPP 327,727.0 0.176 0.500 0.503 0.496
JCD 267,515.1 0.144 0.503 0.512 0.492
ACCID 227,305.3 0.122 0.505 0.510 0.499
PHOG15 220,036.4 0.122 0.5248344370860927 0.5364238410596026 0.5157031013278772

TABLE I
THE RESULTS OF THE STRICT GROUND TRUTH (302 QUERIES) EVALUATED ON THE FULL USTTAB COLLECTION IN TERMS OF AVERAGE RANK,

NORMALIZED RANK, RECALL AT 100, RECALL AT 500, AND MEAN AVERAGE PRECISION.
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Fig. 6. Comparison of MAP results of different algorithms on the three USTTAB ground truths strict, majority and minority for the full collection. The
x axis is scaled to represent the number of queries in each ground truth (302 for strict, 750 for majority and 882 for minority). While BPP, ACCID, JCD
and CENTRIST hardly show any change in value, PHOG and Shapeme seem to mirror the human perception.
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Fig. 7. Examples of retrieval results for a logo pair from the ground truth.
At rank 0 the image shows the query, then the first eight results and only
at rank 49 the logo from the corresponding USTAB trial.

aim to take a close look at the evaluation procedure, ie. by
investigating the possibility of taking into account similar
images that have not been in trials, as has been done for the
pooling method in text information retrieval [18].

The data set has already been employed for testing dif-
ferent parameters of the PHOG and Shapeme features as
well as extensive evaluations using other local and global
features alike. The findings have already been integrated
in the trademark search engine of the World Intellectual
Property Organization (WIPO) of the United Nations6.

However, there is a long way to go and there are several
tasks, for which we propose crowd workers to be employed:

Identification of multiple instances. As noted before

6http://www.wipo.int/branddb, last visited 2016-08-30

logos are submitted and re-submitted by the same company
all around the world. These duplicate entries, which are often
near duplicates in the visual domain, are visually similar,
but should be considered separately. Crowd workers could
identify and label the (near) duplicate entries.

Offending logos not investigated by the appeal board.
As it is a lengthy and complicated process to file an appeal,
there are a lot of visually confusing similarities that have no
been investigated by the appeal board. In the current version
of the data set these offending logos might show up as false
positives in benchmarking. Crowd workers could label the
offending logos to be treated separately.

Judging visually confusing similarity. While we had
experts judge the offending logos upon visual vs. conceptual
confusion, we think that the intuitive concept of visually
confusing logos in the head of actual consumers is different
to the concept adopted by legal experts. With the help of
crowd workers we could paint a picture of how consumers
see visual trademarks as well as the relevance and impact of
offending logos and provide feedback to the legal experts.
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Feedback Loop and Accurate Training Data for 3D Hand Pose
Estimation†

Markus Oberweger1, Gernot Riegler1, Paul Wohlhart1 and Vincent Lepetit1,2

Abstract— In this work, we present an entirely data-driven
approach to estimating the 3D pose of a hand given a depth
image. We show that we can correct the mistakes made by
a Convolutional Neural Network (CNN) trained to predict an
estimate of the 3D pose by using a feedback loop of Deep
Networks, also utilizing a CNN architecture.

Since this approach critically relies on a training set of
labeled frames, we further present a method for creating the
required training data. We propose a semi-automated method
for efficiently and accurately labeling each frame of a depth
video of a hand with the 3D locations of the joints.

I. INTRODUCTION

Accurate hand pose estimation is an important requirement
for many Human Computer Interaction or Augmented Real-
ity tasks. Due to the emergence of 3D sensors, there has been
an increased research interest in hand pose estimation in the
past few years [3], [6], [7]. Despite the additionally available
information from 3D sensors, it is still a very challenging
problem, because of the large number of degrees of freedom,
and because images of hands exhibit self-similarity and self-
occlusions.

A popular approach to predict the position of the joints
is to use a discriminative method [3], [7], which are now
robust and fast. To further refine the pose, such methods are
often used to initialize a complex optimization where a 3D
model of the hand is fit to the input depth data [5].

In this paper, we build upon recent work that learns to
generate images from training data [1] in order to remove the
requirement of a 3D hand model. We introduce a method that
learns to provide updates for improving the current estimate
of the pose, given the input image and the image generated
for this pose estimate. Running these steps iteratively, we
can correct the mistakes of an initial estimate provided by a
simple discriminative method.

However, this approach, amongst other recent work
(e.g. [6], [7]), has shown that a large amount of accurate
training data is required for reliable and precise pose estima-
tion. Although having accurate training data is very impor-
tant, there was only limited scientific interest in the creation
of such, and authors have had to rely on ad hoc ways that
are prone to errors [6]. These errors result in noisy training
and test data, and make training and evaluating uncertain.
Therefore, we developed a semi-automated approach that

†This work is based on published work in ICCV’15 [4] and CVPR’16 [2].
1The authors are with the Institute for Computer Graphics

and Vision, Graz University of Technology, Graz, Austria
{oberweger,riegler,wohlhart,lepetit}@icg.tugraz.at

2The author is with the Laboratoire Bordelais de Recherche en Informa-
tique, Université de Bordeaux, Bordeaux, France

makes it easy to annotate sequences of articulated poses in
3D from a single depth sensor only.

In the next two sections, we first describe our proposed
feedback loop, and then we present our method for efficiently
creating training data.

II. TRAINING A FEEDBACK LOOP

We aim at estimating the pose of a hand in the form of
the 3D locations of its joints from a single depth image. We
assume that a training set of depth images labeled with the
corresponding 3D joint locations is available. An overview
of our method is shown in Fig. 1.

Synthesizer 
CNN

Synthesized Image

Input Image

Pose

Pose Update

Predictor
CNN

Updater 
CNN

Initialize

Add update

1

2 3

Fig. 1. Overview of our method: We use a CNN (1) to predict an initial
estimate of the 3D pose given an input depth image of the hand. The pose
is then used to synthesize an image (2), which is used together with the
input depth image to derive a pose update (3). The update is applied to the
pose and the process is iterated.

We first train a predictor to predict an initial pose estimate
in a discriminative manner given an input depth image.
We use a Convolutional Neural Network to implement this
predictor with a very simple architecture [3].

In practice, the initial pose is never perfect, and following
the motivation provided in the introduction, we introduce
a hand model learned from the training data. This CNN-
based model, referred to as synthesizer, can synthesize the
depth image corresponding to a given pose. The network
architecture is strongly inspired by [1]. It predicts an initial
latent representation of feature maps, followed by subsequent
unpooling and convolution layers to generate a depth image.

Further, we introduce a third function that we call the
updater. It learns to predict updates to improve the pose
estimate, given the input image and the image produced
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by the synthesizer. We iterate this update several times to
improve the initial pose estimate. Again, the updater function
is implemented as a CNN. The architecture is inspired by a
Siamese network with two identical paths. One path is fed
with the observed depth image and the second path is fed
with the image from the synthesizer.

Ideally, the output of the updater should bring the pose
estimate to the correct pose in a single step, which is a very
difficult problem in practice. However, our only requirement
from the updater is to predict an update resulting in a pose
closer to the ground truth. The introduction of the synthesizer
allows us to virtually augment the training data and to add
arbitrary poses to the set of poses, which the updater might
perceive during testing and be asked to correct. We refer to
our paper [4] for more details.

III. CREATING TRAINING DATA EFFICIENTLY

Since the presented hand pose estimation method critically
relies on labeled training frames, we present a method for
the creation of such frames. Given a sequence of depth maps
capturing a hand in motion, we want to estimate the 3D joint
locations for each depth map with minimal effort.

We start by automatically selecting a subset of depth
frames, we will refer to as reference frames, for which a
user is asked to provide annotations. Our method selects
these reference frames based on the appearances of the
frames over the whole sequence. For this, we train an
autoencoder that learns an unsupervised representation that
is sensitive to image nuances due to hand articulation. We
use this representation to formalize the frame selection as a
submodular optimization. A user is then asked to provide the
2D reprojections of the joints with visibility information in
these reference frames, and whether these joints are closer
or farther from the camera than the parent joint in the hand
skeleton tree. We use this information to automatically re-
cover the 3D locations of the joints by solving a least-squares
problem. Next, we iteratively propagate these 3D locations
from the reference frames to the remaining frames. We
initialize the pose of the frame with the pose of the visually
closest reference frame and optimize the local appearance
together with spatial constraints. This gives us an initial-
ization for the joint locations in all the frames. However,
each frame is processed independently. We can improve the
estimates further by introducing temporal constraints on the
3D locations and perform a global optimization, enforcing
appearance, temporal, and spatial constraints over all 3D
locations for all frames. If this inference fails for some
frames, the user can still provide additional 2D reprojections;
by running the global inference again, a single additional
annotation typically fixes many frames. See our paper [2]
for more details.

IV. EVALUATION

We evaluate our hand pose estimation method on the NYU
Hand Pose Dataset [7], a challenging real-world benchmark
for hand pose estimation. This dataset is publicly available,

is backed up by a huge quantity of annotated samples, and
also shows a high variability of poses.

We show the benefit of using our proposed feedback loop
to increase the accuracy of the 3D joint localization in Fig. 2.
While [7] and [3] have an average 3D joint error of 21 mm
and 20 mm respectively, our proposed method reaches an
error reduction to 16.5 mm. The initialization with the simple
and efficient proposed predictor has an error of 27 mm. When
we use a more complex initialization [3] with an error of
23 mm, we can decrease the average error to 16 mm.
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Fig. 2. Quantitative evaluation of hand pose estimation. The figure shows
the fraction of frames where all joints are within a maximum distance. A
higher area under the curve denotes better results. We compare our method
to the baseline of Tompson et al. [7] and Oberweger et al. [3]. Although
our initialization is worse than both baselines, we can boost the accuracy
of the joint locations using our proposed feedback loop.

To demonstrate our training data creation approach, we
evaluate it on a synthetic dataset, which is the only way to
have depth maps with ground truth 3D locations of the joints.
On this dataset we evaluate the accuracy of the automatically
inferred 3D locations for the reference frames. We obtain an
average 3D joint error of 3.6 mm only from 2D reprojections
with visibility and depth order. Our method is also robust to
annotation noise. We can propagate the 3D joint locations to
the remaining frames, for which we achieve an average 3D
joint error of 5.5 mm over the full sequence by only requiring
manual 2D annotations for 10% of all frames.
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Active contour models for individual keratin filament tracking

Dmytro Kotsur1, Rudolf E. Leube2, Reinhard Windoffer2 and Julian Mattes3

Abstract— As a major component of the cytoskeleton, keratin
filaments form a branched network, which plays a significant
role in the mechanical response, motion and dynamics of the
cell. They undergo a complex dynamic lifecycle, which we aim
to investigate by tracking individual filaments. In this paper
we introduce an active contour-based tracking algorithm to
analyze the motion of individual keratin filaments in sequences
of confocal images. The algorithm combines parametric active
contours (snakes) with Lukas-Kanade’s algorithm for optical
flow calculation. We define an image preprocessing workflow
to compute robustly the external energy of the snake and we
impose an additional structural constraint for controlling the
length of the contour.

I. INTRODUCTION

The cytoskeleton plays a main role in cellular motility
and dynamics, which in turn is of high relevance for vital
and also for pathological processes, such as wound healing
and tumor metastasis [5]. As a major component of the
cytoskeleton, keratin filaments form a branched network
and are essential for the mechanical response to external
forces. Biophysical investigation and analysis of different
types of keratin filaments requires their localization and
the extraction of their motion in the time-sequences of
consecutive confocal images. As it was shown previously
[7], [3], [4], this problem can be successfully approached for
separated individual actin filaments. However, applying this
approach to tracking of keratin filaments within a branched
network may lead to additional complications and errors, as
for example, uncontrolled growth of the snake. In this paper
we introduce a tracking algorithm based on stretching open
active contours [3] to analyze the global motion features of
individual keratin filaments within their network. We define
an image preprocessing workflow to calculate robustly the
“external energy” of the snake and impose an additional
structural constraint for controlling the length of the contour.

II. TRACKING ALGORITHM

In this section, we first define our active contour model
as a minimization problem. Then, we introduce an “external
energy” based on the image and impose a contour length
constraint to control snake growth. Finally, we combine all
steps together and present an overall tracking procedure.

1Dmytro Kotsur is with Software Competence Center Hagenberg GmbH
(SCCH), Austria, Dmytro.Kotsur@scch.at

2Rudolf E. Leube and Reinhard Windoffer are with MOCA, Institute
of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen,
Germany, {rleube, rwindoffer}@ukaachen.de

3Julian Mattes is with MATTES Medical Imaging GmbH, Hagenberg,
Austria, Julian.Mattes@mattesmedical.at

A. Parametric snakes: active contour models

We define a filament as a parametric curve x(s) =
[x(s),y(s)],s ∈ [0,1]. According to [2], the position of the
filament within a frame in a time-sequence is obtained by
minimizing the following so-called “energy” functional:

E =
∫ 1

0

1
2
(
α|x′(s)|2 +β |x′′(s)|2

)
+Eext

(
x(s)

)
ds (1)

where α and β are parameters which control the stretching
and bending resistance of the curve, correspondingly. This
problem is solved by reducing (1) to a differential equation
and applying an iterative scheme with an artificial time
variable t:

xt(s, t) = αxss(s, t)+βxssss(s, t)−∇Eext(x(s, t)) (2)

The impact of the “external energy” Eext or the gradient of
“external energy” ∇Eext is crucial in this problem, because
the convergence of a snake considerably depends on this
term.

B. External energy and structural constraints

In Xu et al. [6] the gradient of the “external energy” ∇Eext
is replaced by the vector field v(x,y)= [u(x,y),v(x,y)], which
minimizes the functional:

E =
∫ ∫

µ
(
u2

x +u2
y + v2

x + v2
y
)
+ |∇ f |2|v−∇ f |2dxdy (3)

where f (x,y) is the intensity of the pixel at the position
(x,y), | • | is the Euclidean norm and µ is the regularization
(smoothness) parameter. The vector field v(x,y) is called
gradient vector flow (GVF). In this case the evolution of
the snake on a single frame is defined as follows:

xt(s, t) = αxss(s, t)+βxssss(s, t)−v(x(s, t)) (4)

It is shown in [6] that GVF has a larger capture range,
compared to the vector field given by ∇Eext defined in [2].
It also improves the snake convergence in case of high
concavities. However, the intensity variation along a filament
may be high, which leads to additional errors during snake
convergence. Therefore, we preprocess images applying the
following pipeline of filters: Gaussian smoothing; Hessian
ridge enhancement; gamma contrast correction.

The drawback of the snake algorithm itself as defined in
[2] is that the open-ended contour (Fig. 1C) tends to shrink
over time (Fig. 1D). To overcome this, we use a stretching
term for open ends as defined in [7]. However, it may lead to
overgrowth of the contour (Fig. 1E). We it this by processing
endpoints separately. We define an additional distance-based
“energy” potential for the branching and end points of the
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Fig. 1. Life cell imaging of SW13 cells expressing fluorescent HK8-CFP and HK18-YFP proteins (frames were recorded every 30 sec). (A) Snake evolution
on a single frame; (B) Tracking result for an individual filament on a time-sequence of 40 frames; (C) Initial position of the snake on the first frame
and (D-F) after 15 frames: (D) without stretching term and length constraint; (E) with stretching term only; (F) with stretching term and distance-based
potential;

network and allow snake endpoints to be captured by the
force field induced by the potential (Fig. 1F).

C. Overall tracking procedure
In our setting, the tracking of individual filaments consists

of two main routines: refinement of the position of the
filament on the current frame and transition of the filament
from the current to the next frame in the sequence. For
the second step, we apply pyramidal Lucas-Kanade optical
flow computation [1]. It allows to obtain a reasonable fit
in case of large deformations of the filament. Incorrect
mappings obtained by the optical flow algorithm require the
repetition of the refinement step using active contours. Thus,
we propose the following tracking procedure (see Fig. 2):

Fig. 2. Block-diagram of the overall tracking algorithm

(A) Initialization: The filament is initialized on the first
analyzed frame. This can be done manually by user or
additional (semi-)automatic segmentation procedures.

(B) Image preprocessing: Gaussian smoothing; Hessian
ridge detector; gamma contrast correction.

(C) Calculate the GVF on the preprocessed image.
(D) Optimize the position of the snake on the current image

based on the GVF obtained in (C) and take into account
a stretching term for open ends [3] and potential for the
endpoints.

(E) If the current image isn’t the last one in the analyzed
sequence, go to the next step. Otherwise, exit the
procedure here.

(F) Calculate the pyramidal optical flow of the current
image with respect to the next image in the time-
sequence as described in [1].

(G) Transfer the snake to the next image in the sequence
based on the calculated optical flow field.

(H) Select the next image and repeat starting from step (B).
A result obtained by this procedure is depicted in Fig 1.

Fig. 1A shows the convergence of the snake on a single frame
with an “external energy” as defined above. Fig. 1B shows
a filament being tracked in an image sequence of 40 frames.
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Reading of an Analog Liquid Level Gauge on an Oil Platform with a
Mobile Robot using 2-D Images

Peter Henöckl1

Abstract— An approach to automatically read oil platforms’
liquid level gauges, originally designed to be read by human
operators is presented in this paper. Grayscale image data
is acquired from different heights to enhance reliability and
minimize deviations due to outdoor influences like reflections
and translucence. The position of the level gauge in the scene
image is determined, the liquid column is extracted and the
level of the liquid is returned using image processing methods.

I. INTRODUCTION

Measuring the level of a liquid in a container is seen as
a solved task. However, as the gauge may not be altered in
any way, conventional methods of detection using ultrasonic,
magnetic, mechanical, pneumatic, conductive, microwave or
capacitive sensors cannot be applied. New optical methods
as reciprocally placed photo-LEDs and transistors described
in [1] look promising, but as there is no possibility to reliably
get behind the gauge, the sensor chosen here is a 2-D camera.
To acquire the liquid level of the level gauge a mobile robot
(fig. 1) approaches the level and captures the gauge taking
images. Although camera based level detection is already
greatly described e.g. in [2], not having a closed environment
with a correctly positioned bottle on a conveyor belt, brings
a big increase in complexity similarly found in [3], [4] and
[5]. Coping with different lighting, reflections, backgrounds,
objects shining through or alternating weather conditions
and locating the level gauge in the scene image brings new
additional challenges.

The acquisition of the level is done in three consecutive
steps. First the position of the level gauge in the image is
determined. To improve the reliability of the following level
reading and reduce influences as reflections or translucence
of objects in the background, that can be seen in fig. 2, this
step is performed repeatedly using different images.

Compared to tests with polarized filters and usage of
a flash combined with a very short aperture time of the
camera’s shutter, using multiple scene images makes the
biggest enhancement in readability and reproducibility of
the same quality. Images of the same level gauge are taken
from different angles. As the level is a horizontal feature,
horizontal disturbances have a much higher influence than
vertical ones and are to be compensated. To achieve this the
height of the camera is altered. Secondly warped images of
the liquid column are created giving optimal conditions for
level detection. Based on these images an estimation of the

1Peter Henöckl is with Faculty of Electrical Engineering, Au-
tomation and Control Institute, TU Vienna, 1040 Vienna, Austria
peter.henoeckl@gmx.at

Fig. 1. Mobile robot approaching the liquid level gauge and positioning
its arm to take a picture for level detection using image processing.

Fig. 2. Reflections (left) and translucence of a pipe behind the liquid level
gauge (right) are examples for challenges for a correct reading.

level follows accepting multiple level hypotheses for each
column.

II. METHODS

Fig. 3 shows the structure of the proposed method. Due
to preprocessing steps in other parts of the overall code,
grayscale images are the basis for the detection. Changing
colors of the liquid in the gauge make RGB images of minor
importance. The position of the level gauge in the 3D space
is known and the pose of the mobile robot and its arm can be
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Fig. 3. Structure of level detection

approximated quite well using sensor data. Therefore the size
of the box can be estimated and used for further processing.

A. Box Detection

As the outer box of the level gauge has hardly any unique
features, tests applying feature-based algorithms like SIFT
did not bring the results intended. To robustly find the correct
location of the box a combination of five approaches is
used. For implementation on the robot all five are combined
comparing their returned edge points of the box as well as
their confidence values. Thereby maximum knowledge of the
accuracy of the detected box position in the image can be
achieved, that is crucial for further processing and for a final
output of a confidence value of the reading.

The straight forward approach is template matching, using
an image of the whole outer box as a template. The box
template is resized using the height of the box in the scene
image. Fig. 4 shows, that this works nicely for scenes,
where the expected height has just minor deviations from the
real one and the image is taken frontal or is made looking
like a frontal image by warping in detection preprocessing.
This keeps the influences of distortion and rotation low.
Furthermore lighting conditions should be similar.

The second approach focuses on detecting the outer lines
of the box based on Canny edge detection [6] and Hough
line detection [7]. Varying the parameters of edge detection
and just taking the hough lines that are roughly vertical,

Fig. 4. Detecting the outer box with basic template matching works for
ideal conditions.

i.e. within a certain angle threshold, gives possible lines for
the left and right border of the outer box. Using further
knowledge about the structure of the level gauge the final
vertical border lines are found. The upper and lower line
of the box are not as present in the image. The horizontal
lines containing the most points in the Canny image rarely
concur with those vertical box borders. To overcome this, the
scene image is cropped on the left and right side using the
found vertical borders. As the grayscale image recieved from
prepocessing steps is often warped, there sometimes occurs
a black part at the top and bottom of the scene image. If that
is the case, the horizontal lines standing out most are the
transitions between the real image and the black parts. To
solve this, the black parts at the top are filled with the same
intensity as the uppermost pixels of the real scene, that can
be seen in fig. 6. The black parts at the bottom are filled with
the same intensity as the pixels at the bottom of the real scene
image. In the new image the protruding horizontal lines are
the upper and lower box borders. To make sure to correctly
distinguish the horizontal borderlines from other remaining
horizontal lines within the cropped image, again knowledge
about the structure of the liquid level gauge is used. The
four intersections of the vertical and horizontal border lines
are returned as box edge points. If the box dimensions are
given, they provide a further constraint to reliably detect the
vertical as well as the horizontal lines and find the correct
borders.

Fig. 5. Attain vertical borders of the box
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Fig. 6. Attain horizontal borders of the box

In the third approach that can be seen in fig. 7 advantage
is taken of the texture of the level gauge. Besides the metal
box and the liquid column in the middle it consists of ten big
screws arranged in two vertical lines. A set of screw images
is used for template matching and detecting possible screws
in the scene. The concept is to deliberately look for more
than ten screws and then classify them into so called good
screws, that do belong to the gauge, and bad screws, that do
not. This is done by creating a new black image, where the
center of every found screw is marked as a white pixel. If a
pixel is already white, the one below is made white instead to
make it count. Afterwards Hough line detection is applied in
this binary image to find lines of screws. The two lines with
most participating pixels are used to finally determine the
position of the box. Knowledge about the maximum amount
of screws or about their similar vertical distance can be used
to optimize the result.

Fig. 7. Attain the position of the outer box by using template matching to
find screws of the box. More than the existing 10 screws are to be found
to then form lines of screws.

If the height of the box is given, the fourth approach can be
applied. Similar to the third approach white dots are created
in a black image for found screw templates. However, the
white dots for found screws are made bigger and compared
to an image created in the algorithm, consisting out of ten
big white filled dots. Those are placed exactly on the spots,
where a level gauge of the given size has located its screws.
The comparison is done by sliding the artificial ten dot

image over the scene image and adding one to the correlation
variable for each pixel that is white in both images. The point
with the highest correlation marks the estimated position of
the level gauge’s outer box.

To combine the strengths of the algorithms mentioned
above, the fifth option is based on line detection of box bor-
ders and template matching with screws. Instead of getting
just the two best vertical lines, more of them are to be found
implementing a Canny edge detector and Hough transform.
Next screw templates are found in the scene. Lines, as well
as screws are then graded identifying their relative horizontal
distances. There have to be a certain number of screws in
the vicinity of a line, to mark both of them as good. Fig.
7 shows, how finally good screws and lines are marked in
green, other discarded ones in blue and bad ones in red.

Fig. 8. Combine the use of template screws and line detection to optimize
the result.

B. Cut-out of Liquid Column

The combination of the box detection methods above lays
the foundation for localizing the inner liquid column and
cutting it out. As the result image of the box detection
contains just the box, the position of the inner liquid column
is acquired using height and width of the column in respect
to the box size. As the appearance of the box is known, the
outer edges of the column are searched for in a specific area,
to get detailed borders.

C. Level Detection

Having acquired and cut out the liquid column, the level
is obtained. Allthough there are many different kinds of
disturbances when detecting the liquid level, reflections and
translucence are the ones affecting the reading the most, as
described in fig. 2. Horizontal reflections of the sun or nearby
objects create horizontal lines, that often are even more
prominent than the real water level. Pipes or other objects
behind the liquid level gauge also create horizontal gradients
in the intensity image of the liquid column that is used to
obtain the correct level. To overcome these disturbances,
images of the gauge are taken from different heights.

As the mobile robot’s arm is restricted to five degrees of
freedom, the normal pose of the camera mounted on the arm
has to be altered. To achieve readings from different heights,
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the camera has to turn around its lateral axis. Beside this
pitching movement it needs to move along the vertical axis as
illustrated in fig. 9. These movements result in images taken
from different heights, where the reflections and objects
behind the liquid level gauge move vertically in respect to the
liquid column itself. However, the level of the liquid remains
at the same height within the column (see fig. 10).

Fig. 9. Robot pose to achieve readings of the liquid level gauge from
different heights (Camera has to turn around the lateral axis, i.e. pitch and
has to move along the vertical axis.)

Fig. 10. Taking images from different heights to make reflections and
translucence of objects behind the gauge move vertically while the actual
liquid level remains at the same vertical position

As for box detection, reliability of the reading is of higher
importance than speed. Hence three algorithms for level
detection are performed and combined resulting in a final
value and confidence.

The obvious method is the detection of the most outstand-
ing horizontal line. Canny edge detection is used, Hough
transform is applied and only lines within a certain angle
threshold are considered. However, this first part of level
detection is not restricted to find just one line, but multiple
ones. The reason for accepting multiple level hypotheses for
one column is that there can be found horizontal lines within
the column that have nothing to do with the real liquid level.

The y-positions of the detected level hypotheses are then
normalized between 0 and 100 and subtracted from 100 to
get the liquid levels in percent. The whole range from zero to
a hundred percent is divided in equally sized intervals and a
histogram is created. Each level hypothesis in the histogram
is then convoluted with a Gauss function. This takes into
accout that there might be slight deviations of the real level
position in the liquid column images that are cut out in the
box image, that is detected and cut out of the original scene
image. Fig. 11 shows that the histograms with Gauss filtering

are created out of every column image and summed up. To
optain the real liquid level, the position of the maximum of
the resulting function is found.

Fig. 11. Liquid columns with reflections at different heights. The strongest
gradients are represented with Gauss functions and added. The final level
is obtained by finding the maximum of the sum of the functions describing
the columns.

The second option gets the average intensity for every
horizontal row of pixels in the column image. This array of
intensity values having the size of the number of rows in the
column image is smoothed with a filter and the following
level detection algorithm is performed. All intensity values
are normalized to have a maximum value of 1. Starting from
the top, a separator divides the intensity values in two parts.
Then two integrals are obtained. On one side the integral
above the curve is used, on the other side of the separator
the integral below is used. As the lower part of the liquid
column contains the liquid, it is expected to have the higher
intensity. Nevertheless, it is also done the other way round to
achieve safe results. The sum of the two integrals is stored in
a new array for each position of the separator. The position,
where the sum becomes a maximum is selected as the result
for the level detection.

III. EXPERIMENTS

A. Box Detection

Images are taken by the robot outdoors under very dif-
ferent weather conditions. Evaluating the template matching
approach, it can be shown, that the more the illumination
and weather resemble the conditions on the template image,
the better it works.

When performing approaches three to five, it becomes
obvious, that according to different sized boxes in the images,
the template screws have to be adapted, thus resized to
perfectly fit the screws in the scene image. To cover not
just frontal images of the level gauge but also those taken
from slightly above and slightly below the height of the box
center, also screw templates have to be chosen accordingly.
The set of templates has to contain screws photographed
from different angles.

When running the different algorithms for box detection,
it showed that every single one of them has its strengths and
weaknesses. Different approaches perform best depending on
illumination, weather condition, distance of the camera to the
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level gauge or resolution of the image. As the correctness
of the reading and the declaration of the confidence of the
final value are of particular importance, performing different
approaches and a subsequent comparison are worth the
additional time needed.

Running tests of the algorithm on the real robot on
an oil platform training site it became apparent, that the
underlaying algorithm that takes images of the level gauge
returns images with low deviations of the box position from
the image center. On average the probability of the box being
close to the center of the scene image is much higher than
it being close to the edge of the image. Taking this into
account, the confidence of the detected box being correct is
multiplied with an additional function

1− c
100

√
(w/2− x)2 +(h/2− y)2)

(w/2)2 +(h/2)2

where w is the width and h is the height of the scene. x
and y define the center-point of the found box. c is a constant
giving the percentage of how much the confidence is lowered
if the box center is in one of the corners of the image, i.e.
the box center-point with the biggest distance to the scene
center that is still in the image.

Using screw templates worked best for high resolution
images and only slight differences in size and illumination.
The approach for box detection based on finding the correct
border lines outperformed this method when the image had
a low resolution. Fig. 12 shows the results of box detection
for six different images, that are used to get the correct
waterlevel. Fig. 13 shows the cropped and warped boxes,
for later getting the column images.

B. Cut-out of Liquid Column

Tests have shown that the precision and correctness of
cutting out the liquid column of the level gauge highly
depends on the preceding box detection. Having detected the
outer box with an error less than ten percent of its width,
ensures a high probability of getting a correctly cut out liquid
column as a basis for the following level detection.

C. Level Detection

After testing with a halogen work light serving as an
artificial sun and a model of the level gauge, images taken in
the real environment with sunlight show the same results. As
images of the level gauge have been taken from five or six
different heights, they now have to be arranged in a way they
can be compared to each other. Using one column image as
reference the other column images are fitted by subtracting
intensities while slightly shifting the column image to fit.
Multiple checks with small changes in size improve the
result.

Applying the Histogram-Gauss-Adding method on images
that are taken from different heights delivers good results. To
verify the algorithm also sets of images with many scenes
with high intensity gradients at the same height are tested.
Fig. 14 shows the liquid columns cut out of the boxes in

Fig. 12. Box detection in multiple images of the scene that are used to
obtain the liquid level

Fig. 13. Resulting box images for liquid column extraction

Fig. 14. Extracted liquid columns with multiple level hypotheses (Despite
the fact that four out of six images have similar positions of the reflections
the correct level is still found.)
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fig. 13, that originally belong to the scenes in fig. 12. It can
be seen that there are a lot of wrong level hypotheses at
approximately the same height. However, as more column
images contain correct level hypotheses, the correct ones
predominate and the real level is returned.

Test have shown that the Histogram-Gauss-Adding method
described above mostly outperforms approaches like creating
an average image as in fig. 15 using

ix =
1
n
(ix1 + ix2 + ...+ ixn).

On the right side of the original image, images show
the same situation photographed from different heights with
the column already identified and cropped. In the following
images the original columns are added equally weighted with
linear blending. First the first two columns are added, then
the first three, then the first four and in finally all five of them
are put into one single image. The found level is marked in
red. This clearly shows, that reflections can be suppressed
using multiple images taken from different heights. Further
improvements are reached using a guided filter. The middle
one of the column images is used as a guidance image for
this edge preserving filtering method. However, this approach
only works for perfectly alligned images. Therefore it is just
used to raise the confidence of the reading, if it delivers
similar results as the method using Gauss functions.

Fig. 15. Scene image with reflections in the liquid column, extracted liquid
columns from images taken from different heights and addition of 2,3,4 and
5 column images

Doing tests to compare the different level detection algo-
rithms it can be seen that everyone of them has its advantages
that make it reasonably useful for a reliable detection.
Line detecting algorithms have their strengths in transparent
liquids similar to water. The integral over the intensity array
performs best for liquids that give a big intensity difference
compared to the empty part of the liquid column.

IV. CONCLUSIONS

The initial task of detecting the liquid level of an analog
gauge was reached using an algorithm for locating the outer
box in the image, based on canny edge detection, hough line
detection and template matching. The level was then obtained
identifying the horizontal gradients standing out most. The
crucial enhancement of the reliability of the process was
achieved using multiple images and creating a sum of
Gauss functions, each at the position of a level hypothesis.
Disruptive effects of sunlight, rain and even objects like
pipes shining through can be handled. Despite being cheaper

and easier to implement than solutions with flashlight, polar
filters or spectral filters, the reached confidence value of the
reading can be increased drastically by a small additional
arm movement of the robot, taking multiple images. Future
detection algorithms may base on this approach to detect
other kinds of reflective objects in outdoor conditions.
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Novel Human Machine Interaction with Sticky Notes for Industrial
Production

Gernot Stuebl, Thomas Poenitz, Harald Bauer, and Andreas Pichler1

Abstract— In this paper we present a 3D documentation
system which utilizes new human machine interaction concepts
on the example of virtual sticky notes. Using different tracking
techniques the virtual notes can be attached to a physical
object and are displayed on a tablet in an Augmented Reality
way. The main intention is to strengthen the interplay between
construction and production of industrial machines as the
virtual notes are synchronized with a production lifecycle
management system.

I. PROBLEM DESCRIPTION

An essential part of machine manufacturing is the in-
terplay between construction and production. Often this
connection leaks information in both ways: the construction
team changes details in the last minute, while in production
things are mounted in a different order or way as it was
intended. Since in the end both sides have to synchronize
their knowledge this results mainly in a mass of notes
often stuck on the machine or even worse written on the
machine itself. This industrial spotlight paper presents a
novel development integrating latest technologies to manage
position based notes digitally in an Augmented Reality based
way.

II. STATE-OF-THE-ART

Although in media one can see photos of tablets showing
Augmented Reality (AR) overlays of shop floors, industrial
grade AR documentation systems are rare. To our knowledge
the most similar system available to our proposition is
Docufy [1]. It is an AR interface to a dedicated content
management system and used to display technical content
like manuals in a read-only way. The mapping of the data
to 3D is managed via a manual registration step of interest
points originating from a priori known CAD data. When the
tablet is moving, the interest points are tracked and the 3D
data adapts to the new viewpoint.

III. PROPOSED SYSTEM

In this paper we propose a system which enables a user to
view, edit and add virtual sticky notes to a machine during
assembling by using Augmented Reality techniques. The
notes are position dependent and synchronized with the 3D
database of a production lifecycle management (PLM) sys-
tem. Since the construction team mainly works with the PLM
system, they immediately have access to the information and
may modify existing or add new notes directly.

1PROFACTOR GmbH, 4407 Steyr-Gleink, Im Stadtgut A2, Austria
{Forename.Surname}@profactor.at

A. Tracking System

For the tracking we pursue a multi-modality strategy,
which utilizes a combination of

• a commercially available infrastructure-based tracking
system,

• fiducial Augmented Reality markers,
• and a visual real-time tracking system.

The infrastructure-based tracking system is the main source
of 6 degree-of-freedom (DOF) data for the system. See
Figure 1 for a tablet enhanced with a tracking system
receiver. The two major extensions to the state-of-the-art

Fig. 1. Tablet with attached tracking system receiver on the left side. This
enables a 6 degree-of-freedom positioning in space.

concern the tracking part as well as the way a user can
interact with the system.

The initial registration is done with an AR marker system
based on the work of Garrido-Jurado et al. [2]. Fiducial
markers are preferred to feature based approaches as the
presence of stable features on industrial objects cannot be
guaranteed. After that the tracking data is transformed to the
coordinate system of the machine’s CAD model which is
provided by the PLM software. This allows the attachment
of notes to positions in the CAD data.

A special approach is required for movable parts of the
machine, like panels. When mounted to the machine, their
relative positions to the base CAD data can be determined
using attached AR markers.

An additional feature was built in to handle unmounted
sub-assemblies. They can be annotated like any other ma-
chine parts, however they have to be pre-identified in a
manual step. This is the input of a real-time tracker which
is an extension of Akkaladevi et al. [3].

When a user likes to add a new note to the machine he/she
has two possibilities to define the position: either the desired
position is touched with the measuring tip mounted on the
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backside of the tablet or an additional AR marker is put on
the desired position, see Figure 2. The additional marker

Fig. 2. Screenshot of position input via an additional marker in the image.
The position of the marker defines the position of the new sticky note. The
pane on the right shows pre-defined tags connected with the marker.

can be removed after the system took over its position.
While the measuring tip might be the more intuitive way
to define a position, AR markers have an advantage: they
can be combined with note-templates, e.g. different markers
for different users or different types of notes.

Fig. 3. Screenshot with two sticky notes in the image (flash icons on the
left). The top left note is selected and the pane on the right displays the
according information.

B. Human Machine Interaction

The base of the human machine interaction is a live view
of the tablet’s camera in which the sticky notes are overlaid
in an Augmented Reality fashion. When touching a note,
a form with additional information pops up, see Figure 3.
From a technologically viewpoint this is a HTML overlay,
reflecting the client-server based architecture of the software.

Beside the standard information for a sticky note like
name, type, and description an additional tagging system has
been implemented for a flat hierarchy of the notes. To each
note one ore more pre-defined tags can be assigned, which
allow an easy to use filtering, e.g.: showing only electronic
related notes in the view. Examples of the tags can also be
seen in Figure 2 and 3 on the bottom right.

Furthermore the system supports different user roles,
which differ in the amount of information they can edit
and/or which sticky notes they can see.

IV. TECHNICAL EVALUATION
The system is currently in an evaluation phase. Tests

regarding positioning showed up accuracies of ±0.5cm in
a volume of 5m×5m×5m.

The used hardware is a standard Microsoft surface tablet
with the internal camera set to a resolution of 1280×720px
and a maximum achievable frame rate of 25fps of the overlay.
However the limiting factor for the frame rate is the tablet
camera itself. With an external industrial camera frame rates
up to 100fps have been achieved.

For the registration step and the moveable parts also the
marker size and camera-marker-distance have been evalu-
ated: for a reasonable marker size of 7cm the largest distance
to the marker is 2m. With higher distances the detection and
therefore the visualization becomes in-stable.

V. CONCLUSION AND FUTURE WORK
In this paper we presented an industrial grade AR based

documentation system which extends the current state-of-
the-art by integrating additional tracking modalities and
furthermore allows the user to edit the information in an
intuitive way. The proposed system is currently on a tech-
nology readiness level of 7. The next steps are extensive
field tests. Although the system can be used stand-alone,
the ideal synergy is together with a PLM system. Currently
the import/export functions support only one such system,
however this will be extended in future.

Furthermore of vital interest is the evaluation of time
savings gained by using our system. For this a detailed study
will be set up together with industrial partners.

From an application point of view a possible extension
could be the replacement of the PLM input with a Virtual
Reality (VR) system. This would allow one user to add
information on a model in VR which is then immediately
shown to a different user on the real object. This could be
the base for numerous multi-user scenarios e.g. the usage as
remote maintenance system. The advantage over a traditional
2D camera assisted remote maintenance system would be
the exact 3D positioning of the information on the object of
interest.
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[2] S. Garrido-Jurado, R. Muñoz Salinas, F.J. Madrid-Cuevas, and M.J.
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Image Registration and Object Detection for Assessing Unexploded
Ordnance Risks - A Status Report of the DeVisOR Project*

Simon Brenner1, Sebastian Zambanini1 and Robert Sablatnig1

I. INTRODUCTION

Although the last acts of war in Central Europe date back
to the times of World War II, Unexploded Ordnance (UXO)
from that period still poses a serious hazard for population
and construction projects [3]. For a preliminary estimation
of UXO risks, specialized companies retrieve and interpret
aerial images from WWII surveillance flights over the area
of interest. This process includes the registration of historic
aerial images to modern satellite images, and the detection
and mapping of certain objects that indicate increased combat
activity in the surveyed area. Currently, these tasks are
performed in time-consuming manual work. The DeVisOR
project, which was started in 2016 as a cooperation between
the Computer Vision Lab and the Information Engineering
Group (TU Wien), as well as the Luftbilddatenbank Dr. Carls
GmbH as an industrial project partner, aims at supporting the
above named tasks with computer vision and visualization
techniques. This paper gives a half-time status update of the
project achievements as well as an outlook for the final year.

II. IMAGE REGISTRATION

The registration of WWII aerial images to modern satellite
images is particularly challenging because the landscape
has changed drastically in the course of seventy years. Not
only buildings and roads, but also vegetation, agricultural
use and the courses of rivers may have changed, so that it
becomes difficult to find reliable common features [4], [5].
Additionally, the available images are partly in suboptimal
condition. We therefore propose a semi-automatic framework
for the registration process, in which first the easier task
of registering the historical images among each other is
performed automatically. Due to the varying conditions even
among the historical images (seasonal changes, weather,
destruction, image noise) and the absence of a priori in-
formation about their relative rotation and translation, only
feature-based registration methods, such as SIFT [2], are
applicable. We found that automatic scale space feature
detection is too unstable for the given image data; however,
for each image the approximate aircraft altitude and the
focal length of the camera is known. We can therefore
normalize the scales of the images and perform a dense

*This work is supported by Austrian Research Promotion Agency (FFG)
under project grant 850695

1Simon Brenner, Sebastian Zambanini and Robert Sablat-
nig are with Faculty of Informatics, Institute of Computer
Aided Automation, Computer Vision Lab, TU Wien, 1040
Vienna, Austria sbrenner@caa.tuwien.ac.at,
zamba@caa.tuwien.ac.at, sab@caa.tuwien.ac.at

(a) Scale space extrema

(b) Densely sampled features

Fig. 1: Comparison of feature matching stability

sampling of features at a fixed scale, which significantly
improves the matching stability. Figure 1 shows an example.
To refine the resulting registration and account for parallax
effects resulting from uneven terrain and different capturing
angles, we successfully applied a deformable fine registration
approach, that was originally designed for the registration of
multi-modal medical data [1].

Guided by an interactive visualization of the registration
results, the user can then select the most suitable historical
image and manually georeference it; all the other images are
then registered transitively.

We are also working on a novel registration algorithm that
is currently able to register about a third of the WWII images
in our test data set directly to modern satellite images and
thus supplement the above named framework.
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III. OBJECT DETECTION

An UXO risk for a region of interest is derived from
various indicators of combat activities on historical aerial
images. These could be destroyed buildings, anti-aircraft
artillery positions, trenches or bomb craters; the latter ones
are by far the most numerous and simultaneously the most
difficult to reliably identify on aerial images, as they can
easily be confused with other small round objects such as
trees [3].

The development of strategies for automatic detection of
such combat indicators is scheduled for the current year.
We are planning to adapt state of the art machine learning
approaches to the problem; we hope to be able to exploit the
fact that typically a time series of registered aerial images
is available for the region of interest. As the task at hand
is a critical one, a human expert will always be required
to validate and refine the results. We will thus, just as for
the registration problem, aid the user with an interactive
visualization component for parameter exploration.

IV. IMPLEMENTATION

In order to maximize both the benefit to our industrial
project partner and the usage and testing of our methods,
we have been developing software tools that blend in to
their daily workflow, namely in the form of plug-ins for
their preferred GIS software. The first working prototype
of the registration component was delivered in February
2017 and tested in both the German and Austrian branch
of the Luftbilddatenbank GmbH. Apart from minor bugs
and usability issues, the overall feedback was positive and
encouraging.
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FORMS – Forensic Marks Search∗

Manuel Keglevic and Robert Sablatnig1

Abstract— The goal of the project FORMS is to support
the search and comparison of toolmarks by forensic experts
with a semi-automatic system in order to identify and solve
connected criminal cases. The proposed methodology uses a
neural network with triplet architecture to compute similari-
ties between toolmark images. Further, to allow an accurate
evaluation under real-world conditions a dataset consisting of
more than 3000 images of cylinder locks with toolmarks from
real criminal cases is created as part of the project.

I. INTRODUCTION

Lock snapping is a common way for forced entry in
Europe. The unique imprints of the pliers used for these
break-ins significantly support the investigation of such of-
fenses and are crucial as evidence in the following court
cases. However, manual examination of these toolmarks in
order to find multiple uses of the same tool is a time
consuming task due to the amount of samples. Therefore,
the goal of the project FORMS (Forensic Marks Search) is
a two-fold solution for this problem: firstly, an application
which allows for search and comparison of toolmark images
stored in a centralized database. Secondly, a methodology
based on state-of-the-art machine learning techniques for an
automatic by similarity in order to reduce the amount of
images requiring manual examination.

The project started in Fall 2015 and is funded by the
Austrian Security Research Programme KIRAS. The project
partners are the Computer Vision Lab of the TU Wien, the
Bundeskriminalamt (Criminal Intelligence Service Austria),
the CogVis GmbH, and VICESSE.

II. TOOLMARK DATASET

Since the validity of comparative forensic examination of
toolmarks has been challenged in court, various papers have
been published on the comparison of toolmark images [5].
This lead to the development of methodologies for the
automatic comparison of striated toolmarks and datasets like
the NFI Toolmark Dataset published by Baiker et al. [1].

However, in contrast to forensic images of toolmarks from
real criminal cases, these toolmarks were created in constrai-
ned environments. Therefore, to allow an evaluation of the
real-world performance of toolmark comparison methods,
a new dataset was created as part of the FORMS project.
This dataset, created by photographing cylinder locks seized
during criminal investigations using a microscope, consists of
approximately 3000 toolmark images from about 50 different

*This work has been funded by the Austrian security research programme
KIRAS of the Federal Ministry for Transport, Innovation and Technology
(bmvit) under Grant 850193.

1Manuel Keglevic and Robert Sablatnig are with the Computer Vision
Lab, TU Wien, mkeglevic@caa.tuwien.ac.at

Fig. 1: Image of a broken lock cylinder with toolmarks
created by a locking-plier (left). Matching toolmarks on two
lock cylinders photographed using a comparison microscope
with a magnification factor of 20 (right).

crime series. In order to investigate the influence of lighting
each of the 154 cylinder was photographed on both sides
under 11 different lighting conditions. In Figure 1 a broken
lock cylinder with toolmarks is shown on the left side.
The appearance of the toolmarks can vary heavily due to
material differences in the material, the force applied or the
lighting conditions. For example in Figure 1 on the right the
appearance difference due to varying depth of the toolmarks
is illustrated.

III. METHODOLOGY

As shown in Figure 1 on the right side, extracting fo-
reground (the toolmark) from background (lock cylinder) is
challenging due to varying background structure depth of the
toolmark. Therefore, the region of interest is marked by the
forensic expert by hand in a first step. Local image patches
extracted in these regions of interests are then compared
using a neural network. The network architecture used is
based on triplet learning which has for instance been applied
to face detection [4] and local image patches [2]. Further,
Keglevic and Sablatnig showed [3] that it can be used
to compute similarity measures for striated toolmarks. To
capture the unique properties of this problem like varying
lighting conditions and background the neural network is
trained from scratch. In order to create the necessary training
data a ground-truth tool was created as a plugin for the image
viewer nomacs2. This tool allows the definition and pixel
perfect alignment of matching polygons in toolmark images.
Using these annotations matching patches for the training
and evaluation process can be created along these matching
polygons. First results show promising result, however for
an in-depth assessment of the performance an evaluation has
to be performed as soon as the whole dataset is annotated.

2https://github.com/nomacs/nomacs-plugins
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Riemannian Manifold Approach to Scheimpflug Camera Calibration for
Embedded Laser-Camera Application

Xiaoying Tan1, Volkmar Wieser1, Stefan Lustig2 and Bernhard A. Moser1

Abstract— This industrial spotlight paper outlines a Rie-
mannian geometry inspired approach to measure geometric
quantities in the plane of focus of a Scheimpflug camera in the
presence of nonlinear distortions caused by the Scheimpflug
model and non-linear lens distortion.

I. INTRODUCTION

For the standard pinhole camera model, the image sensor
is parallel to the lens plane and perpendicular to the optical
axis. For this type of camera, the points on a plane surface
parallel to the lens can be focused sharply on the sensor
plane. However, for some specific application scenarios, the
surface of interest is oblique to the lens plane. For example,
to capture most parts of a tall building facade into the camera
view, the camera needs to be tilted upwards with respect to
the building facade. In this case, the standard camera is only
able to project a narrow line region of the building facade
on sharp focus.

It is interesting that the Gaussian focus equation remains
valid under the condition that the sensor plane, the lens plane
and the object plane intersect in a common line [5].

The Scheimpflug model is encountered in various fields
of applications, e.g., architectural photography [6] or in
ophthalmology for measuring the thickness of the cornea [3].

In this industrial spotlight paper we address the prob-
lem of accurately measuring geometric quantities in the
Scheimpflug plane in the presence of non-linear lens dis-
tortion effects by following a Riemannian geometry ap-
proach [1]. In contrast to state-of-the-art approaches the
outlined approach is feasible on embedded platforms and gets
along without guessing initial values and iterative optimiza-
tion steps. Rather, it models the image formation mapping
from the Scheimpflug plane to the image plane directly by
exploiting point-to-point correspondences and interpolation.

In section II we recall the Scheimpflug model and cali-
bration approaches from literature. Section III-A outlines our
parameter-free approach together with experimental results.

II. SCHEIMPFLUG CAMERA

In contrast to the standard pinhole camera, in the
Scheimpflug camera model the sensor plane and the lens
plane are no longer parallel. See Fig. 1 of a schematic view
of the Scheimpflug model. The mathematical model of its
image formation mapping can be derived from decomposing
the mapping from world coordinates (X ,Y,Z) to image pixel
coordinates (x̃t , z̃t) into a concatenation of mappings as

1 X. Tan, V. Wieser and B. Moser are with the Software Competence
Center Hagenberg (SCCH), xiaoying.tan@scch.at

2S. Lustig is associated with SCCH stefan.lustig@scch.at

Fig. 1. Scheimpflug camera model: the sensor plane Ptilt and lens plane
Plens are no longer parallel. The image formation mapping is modeled by
means of the virtual parallel plane Pperp.

Fig. 2. The process of image formation of the Scheimpflug model according
to (1), (2) and (3)

indicated in Fig. 2. First of all, the mapping from (X ,Y,Z)
to a virtual parallel sensor plane (x′,z′) models the familiar
pinhole camera. By taking non-linear radial and tangential
lens distortion effects into account, due to suboptimal shape
and mounting of lens, and modeling these effects by means
of polynomial functions we obtain

(
x̃′

z̃′

)
:=
(

x′

z′

)
+

(
∆x(k1 r2 + k2 r4 + k3 r6)
∆z(k1 r2 + k2 r4 + k3 r6)

)

+

(
2t1 x′ z′+ t2 (r2 +2x′2)
2t2 x′ z′+ t1 (r2 +2z′2)

)
,

(1)

where r2 :=∆x2+∆z2, ∆x := x′−x0, ∆z := z′−z0, (x0,z0) are
the coordinates of the optical axis on Pperp, k1,k2,k3 are radial
and t1, t2 are tangential distortion parameters. The mapping
from (x̃′, z̃′) to (xt ,zt) models the proper Scheimpflug effect
by taking the tilt of the sensor plane into account. Let us
denote by α the angle between z̃′ and zt and by β the angle
between x̃′ and xt , then due to [4] we obtain

(
xt
zt

)
:= λ ·

(
x̃′/cosβ + z̃′ tanα tanβ

z̃′/cosα

)
(2)

where λ := f/( f− x̃′ tanβ− z̃′ tanα
cosβ ) and f is the focal length.

Finally, we obtain the image pixel coordinates
(

x̃t
z̃t

)
:=
(

Sx −Sz cotθ
0 Sz/sinθ

)
·
(

xt
zt

)
+

(
v0
w0

)
(3)
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where (w,h) denotes the image size in number of pixels,
(Sw,Sh) the sensor size in millimeter, (v0,w0) the coordinates
of the principle point, θ the shearing angle in the sensor
coordinate system and Sx := w/Sw, Sz := h/Sh. To this end
we obtain a mapping

Θ : (X ,Y,Z) 7→ (x̃t , z̃t) (4)

which depends in total on 17 parameters (6 extrinsic, 2
Scheimpflug angles, 4 intrinsic, 5 distortions coefficients).

III. SCHEIMPFLUG CAMERA CALIBRATION

A standard way for camera calibration in computer vision
is the approach of minimizing a functional that measures to
which extent the model (4) fits a given set of point-to-point
correspondences resulting from a marker positions of a cali-
bration plate. A familiar choice for the functional is the sum
of squared projection errors. In particular, the estimate of the
extrinsic parameters is not that easily performed. Therefore,
usually simplified approximations are used as initial guess.
For example, [2] starts from a distortion-free model and
derives a first guess of the pinhole camera parameters as
an approximation. It is then used as an initialization of a
nonlinear bundle adjustment optimization that accounts for
distortion and the 2-tilt Scheimpflug angels. In a similar
way [4] starts with Zhang’s method [7] for estimating the
Scheimpflug angels α , β . In a further step, α and β are
kept fix and the remaining parameters are estimated, again
by using Zhang’s method. This procedure is iterated until
convergence.

A. Approach for Embedded Laser-Camera Application

The application scenario is about real-time affine recon-
struction of geometric quantities by means of an embedded
laser-camera system based on a DSP (TMS320DM6435,
700 MHz, 5600MIPS) and a hard-real time requirement of
processing a measurement below 10ms. On such a platform
the computational effort of trigonometric functions is about
20–40 times higher than standard vector operations. In our
approach we exploit the fact that the laser projection plane
and the plane of focus of the Scheimpflug camera are
congruent. This setting allows a simplification of the general
calibration procedure and gets along without the use of
computational expensive functions.

Since the mapping (4) reduces to Θ̃ : (X ,Z) 7→ (x̃t , z̃t).
Instead of solving the inverse problem of identifying the
17 parameters of the Scheimpflug camera model and tack-
ling the problem from a global perspective, we consider
the resulting geometric deformation as representation of a
Riemannian manifold and exploit its local notions of angle
and length of curves for accomplishing measurement tasks.
In this view the measurement problem is solved by the
following steps: (a) register point-to-point correspondences
by means of a sufficiently dense grid of point markers on
the plane of focus resulting from straight lines (geodesics
in Euclidean geometry) and extraction of the point loca-
tions in the image by image processing; (b) determine the
neighboring deformed grid points to the sample point; (c)

Fig. 3. Left: deformed regular grid of points by Scheimpflug camera and
radial and tangential lens distortion: α = β = 5◦, k1 =−4.5e−3mm−2; right:
angle reconstruction errors with 249 pairs orthogonal calibration lines and
286 pairs test lines with different inclined angles (left box: original lines
with the same distortion as the grid, mean = 0.397◦, std = 0.431◦; right
box: distortion rectified lines, mean = 0.082◦, std = 0.084◦.)

apply 3-spline interpolation for approximate recovery of
the corresponding geodesics in the resulting Riemannian
manifold; (d) determine the Riemannian coordinates in the
local coordinate system given by the geodesics; (e) compute
the local inverse in order to obtain the Euclidean coordinates.
In contrast to computing the full camera model which
involves trigonometric functions and fractions, the outlined
approach is also feasible on an embedded system as only
polynomials of maximal degree 3 have to be evaluated. Fig. 3
shows an example of a deformed regular grid of calibration
points by a Scheimpflug camera and the result of angle
measurement based on this approach. The result shows that
the systematic angle reconstruction error resulting from non-
linear Scheimpflug and lens distortion effects can be reduced
substantially which meets the industrial requirements of the
specific application.
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On Quality Assurance of 3D Bust Reconstructions

Gernot Stuebl, Christoph Heindl, Harald Bauer, and Andreas Pichler1

Abstract— In this paper a non-reference method for quality
assurance in 3D bust reconstruction is presented. The proposed
approach is part of an automatic parametrization concept
for 3D reconstruction applications with no ground-truth data
available. It is based on a novel concept of pair-wise view
comparisons, which is new in this field. Evaluation on a dataset
of human bust scans shows perfect prediction of human votes.

I. INTRODUCTION

Exact reconstruction of the human body especially the
bust is an application field which got boosted by the raise
of low-cost 3D printers and online 3D printing services.
Nevertheless creating a high fidelity 3D reconstruction often
involves manual post processing.

Recent publications present systems which are able to
do reconstructions on a quality level which makes post
processing unnecessary, see Heindl et al. [1]. However for
these the quality strongly relies on a correct parametrization
of the system. Unfortunately parametrization is dependent on
the scan data. So no golden standard for a parameter setting
exists and the parameter values have to be adopted for each
reconstruction individually. In principle human interaction
has been shifted from direct manipulation/correction of 3D
data to the selection of correct parameter values. Having this
in mind, an (semi-)automatic configuration of the parameter
values is desirable.

The paper is outlined as followed: first Section II gives
an overview of traditional quality assurance methods for 2D
and follows with related work in the field of 3D quality
assurance. The main approach is described in Section III,
whereas Section IV presents the results on a dataset of 3D
bust reconstructions. This is followed by a discussion on
the applicability of the approach in Section V as well as a
conclusion and outlook to future research in the last section.

II. RELATED WORK

A vital part of an automatic parametrization system is
a component for assessing the reconstruction quality. The
following subsections covers related work in this domain
with an introduction of traditional 2D measures and the main
emphasis on 3D quality assurance.

A. 2D Quality Assurance

In 2D there are traditional (dis-)similarity measures which
are used for quality assurance. Some of these can also be

1PROFACTOR GmbH, 4407 Steyr-Gleink, Im Stadtgut A2, Austria
{Forename.Surname}@profactor.at

adopted to 3D. A simple one is the Root-Mean-Squared Error
(RMSE) [5] of two images I,K which is defined as

RMSE(I,K) :=

√√√√ 1
mn

m−1

∑
p=0

n−1

∑
q=0

(I(p,q)−K(p,q))2 (1)

and measures the deviation in each pixel. Based on this the
Peak Signal to Noise Ratio (PSNR) [5] is defined as

PSNR(I,K) := 20 · log
Imax

RMSE(I,K)
(2)

with Imax the maximum possible value in the image (e.g. 255
for monochromatic 8 bit images). PSNR measures the signal
fidelity between an original and a disturbed image. A more
complex measure is Structural Similarity index (SSIM) [2]
which is designed to judge signal fidelity in the way the
human vision system does. It is sensitive to structural distor-
tions such as noise contamination, blurring, and insensitive
to non-structural distortions such as luminance and contrast
change. The mathematical definition is

SSIM(~x,~y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(3)

with c1 = (k1L)2, c2 = (k2L)2 as stabilization constants for
the division with weak denominators, where L = 2b − 1
denotes the dynamic range of pixel-values with b as the
number of bits per pixel and k1 = 0.01 and k2 = 0.03.

B. 3D Quality Assurance

Generally, quality assurance algorithms are divided into
full-reference (FR), reduced-reference (RR) and no-reference
(NR) algorithms. This distinction is based on the amount of
information that is available.

Full-reference algorithms rely on a ground-truth data, e.g.
early attempts to judge quality through texture and geometric
resolutions belong to this category, see Pan et al.[3]. Also
a broad range of algorithms which measure the quality of
3D codecs or stereoscopic 3D are full-reference based, see
Mekuria et al. [4]. You et al. [5] give a good overview on
how traditional 2D measures can be used for FR 3D quality
assurance.

For reduced-reference algorithms the ground-truth is not
fully available. Instead of this, selected features are cal-
culated from the ground-truth and used as input of the
quality assurance system, see Wang et al. [6] or Rehman
and Wang [7].

A recent example for a no-reference algorithm is presented
by Alexiadis et al. [8]. In this work the 2D key frames which
are needed to build the 3D reconstruction are compared to
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synthesized versions of it. The authors utilize a SSIM based
measure to adjust the reconstruction settings. This is close
to the proposed approach in this paper. The main difference
is that we do not need to process the available key frames
but instead work only on synthetic views.

III. AUTOMATIC PARAMETRIZATION

The aim of automatic parametrization is to determine
optimal values for different reconstruction parameter-types.
In this case optimality means that the parameter value is near
or equal the value a human operator would have chosen for
the given data. Figure 1 depicts examples for the influences
of different parameter-types.

(a) ColourCorrection
value 0.

(b) ColourCorrection
value 7.

(c) Difference image.

(d) PoseEstimation
value 0.

(e) PoseEstimation
value 7.

(f) Difference image.

(g) SmoothnessTerm
value 0.

(h) SmoothnessTerm
value 4.

(i) Difference image.

(j) MaxIterations value
0.

(k) MaxIterations
value 7.

(l) Difference image.

Fig. 1. Reconstruction effects of different parameter-types shown on
Model 0001 in Subfigures (a) to (c), Model 0019 in Subfigures (d) to (f),
Model 0010 in Subfigures (g) to (i), and Model 0033 in Subfigures (j) to
(l). The images in the last column highlight the differences. The parameter
values are set to the extremes, to better demonstrate the effects.

The following procedure illustrates how a non-professional
human operator could select a good parameter setting:

1) The operator sets or alters a parameter value.

2) The operator lets the reconstruction run.
3) The operator inspects the result from different views

if it is better or worse than before.
4) The operator repeats the steps until some level of

reconstruction quality is reached.
Based on this we propose an approach using pair-

wise view comparison of different reconstructions. For a
parameter-type α the accumulator matrix Mα is a symmetric
matrix defined as

Mα(k, l) :=
n

∑
i:=0

SIM(Vi(Rα,k),Vi(Rα,l)) (4)

where k, l are elements of the ordered parameter value set
Pα and Rα,k is the reconstruction. Elements in Pα are chosen
such there is an increasing influence of the parameter to the
observed visual effect. n is the number of equally spaced
views around Rα,k, whereas each view Vi is a 2D projection
of the 3D object. For comparison of two images as similarity
SIM the Peak Signal to Noise Ratio (PSNR) is used.

We assume that for humans the skin area is very important
for quality judgement. Therefore the images are converted
into the Hue, Saturation, Value (HSV) colour space before
comparison. This should make the comparison more sensitive
to skin parts, see Sedlacek [9]. A detailed evaluation and
discussion of this step follows in Subsection IV-C and
Section V.

Pixel-wise comparison is performed only on the bust itself,
since the background is masked out during comparison.
Given this framework we propose the optimal parameter
value oα ∈ Pα to be defined as

oα := argmax
k∈Pα

∑
l∈Pα

Mα(k, l). (5)

Literally speaking the parameter value oα creates 2D
views which are most similar to the views created with
all other values. The hypothesis is that this is also a good
parameter value which a human would choose.

IV. EVALUATION

Due to the lack of free datasets for bust reconstruction,
an own dataset has been built up during an open house
presentation in the company.

A. Dataset

The dataset contains 32 3D human bust scans showing
different people, further called models. The data is acquired
with a turntable and an off-the-shelf RGB-D sensor. Each
individual is scanned in eight key poses. For the detailed
set-up of the scan process see Heindl et al. [1].

For the reconstruction four different parameter-types are
inspected: colourcorrection level, number of steps for pose
estimation, surface smoothness term and maximal iteration of
the bundle adjustment. These types form the parameter set
S = { ColourCorrection, PoseEstimation, SmoothnessTerm,
MaxIterations }. For a detailed explanation of the reconstruc-
tion software and the parameter semantics see again Heindl et
al. [1].
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Eight models are assigned to each parameter-type α ∈ S.
A model is reconstructed with the full range of parameter
values, which are 8 values for ColourCorrection, PoseEs-
timation, MaxIterations, and 5 values for SmoothnessTerm.
The parameter space is discrete and the values form the
individual parameter value sets Pα .

In a questionnaire 32 people (16 male, 16 female) between
19 and 55 years old, were asked to choose the most aesthetic
reconstruction for each model. Since every reconstruction
is mapped to a parameter value, they implicitly chose the
parameter value which led to the best reconstruction quality.

The best parameter choices according to the human votes
have been counter-checked to produce reasonable reconstruc-
tions. During this result preparation, one model which was
assigned to SmoothnessTerm, had to be omitted because of
inconsistencies in the data. In detail the parameter value
with the most human votes for this model leads to a failed
reconstruction similar to the bottom right picture of Figure 4.
Therefore the final dataset consists of 31 human judged
model reconstructions.1

B. Evaluation Criteria

Figure 2(a) and Figure 2(b) show example distributions
of human decisions for specific models. One can see the
variances in the votes. To cover these variances we define
the following correctness criterion:

Definition 1. A parameter value estimation is correct if it is
inside µ±σ of the human decisions.

To test this criterion, human judgements have been simu-
lated with random values. In detail for each decision distri-
bution (e.g. Subfigure 2(b)) a uniformly distributed random
value in the same discrete parameter range was generated.
If the random value fulfilled the correctness criterion for the
decision distribution, it was counted as correct, otherwise as
incorrect. With 1000 trials this lead to a mean accuracy of
0.5095 and σ = 0.0841 which can be seen as baseline for
the following tests.

C. Results

In an evaluation which is run on each decision distribution
in the dataset, the best parameter value for the reconstruction
of a model is estimated using Equation 5 with PSNR as
similarity measure. After that the parameter value is checked
against the decision distribution with Definition 1. Therefore
if the parameter value is inside µ±σ of the human decisions,
the parameter value estimation is counted as correct and false
otherwise. This procedure lead to an estimation accuracy of
1 on the dataset of 31 judged reconstructions.

The evaluation has also been run with two other (dis-)
similarity measures: Root-Mean-Squared Error (RMSE) and
Structural Similarity index (SSIM), see Table I.

The first is a standard measure for deviations. Applying
it the accuracy drops to 0.9032. This is further interesting
since the RMSE is also the denominator in Equation 2. One

1The full dataset can be requested by emailing the main author.
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(a) Parametertype ColourCorrection on Model 0001.
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(b) Parametertype SmoothnessTerm on Model 0093.

Fig. 2. Examples of human decision distributions for parameter-types
ColourCorrection on Model 0001 in Subfigure (a) and SmoothnessTerm on
Model 0093 in Subfigure (b). One can see the variance in the data.

(Dis-)similarity Accuracy
PSNR 1
RMSE 0.9032
SSIM 0.9032

TABLE I
ACCURACY ON THE DATASET EVALUATED WITH DIFFERENT IMAGE

(DIS-)SIMILARITIES FOR FORMULA 4. EVALUATED MEASURES ARE

PEAK SIGNAL TO NOISE RATIO (PSNR), STRUCTURAL SIMILARITY

INDEX (SSIM) AND ROOT-MEAN-SQUARED ERROR (RMSE). PSNR
PERFORMS BEST.

can see that the logarithm in the equation is important in this
context.

When applying SSIM, which should reflect human per-
ception, the accuracy drops to 0.9032. A detailed look on
the results reveals that RMSE as well as SSIM fail on the
models assigned to ColourCorrection.

A similar comparison has been performed with different
colour spaces, see Table II. Beside the HSV colour space
Red, Green, Blue (RGB), YCbCr, Grayscale and CIE-Lab
colour spaces have been evaluated. RGB is a standard in
image representation. When using it the accuracy drops
to 0.7742. Recent publications indicate that YCbCr colour
space shows advantages in skin detection, see Shaik et
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Colour space Accuracy
HSV 1
RGB 0.7742
YCbCr 0.7419
Grayscale 0.7419
CIE-Lab 0.7188

TABLE II
ACCURACY ON THE DATASET EVALUATED USING DIFFERENT IMAGE

COLOUR SPACES. PEAK SIGNAL TO NOISE RATIO (PSNR) IS USED AS

SIMILARITY MEASURE. EVALUATED COLOUR SPACES ARE HUE,
SATURATION, VALUE (HSV), RED, GREEN, BLUE (RGB), YCBCR,

GRAYSCALE AND CIE-LAB. USING HSV SHOWS THE HIGHEST

ACCURACY.

al. [10]. Nevertheless by using this colourspace the accu-
racy drops to 0.7419. On the other hand with Grayscale
colourspace the accuracy drops also to 0.7419. This is
of further interest since the applied grayscale conversion
algorithm simply takes the Y component of YCbCr and omits
the colour channels. This procedure is common usage in
photo editing software like Photoshop 2 or GIMP 3. A further
look on the results uncovers that YCbCr and Grayscale have
their wrong estimations on the same models. Therefore CbCr
colour encoding adds no benefit to using the Y channel alone
in this application. CIE-Lab colour space was also evaluated
since it approximates human vision, unfortunately in this
application the accuracy dropped to 0.7188.

D. Comparison with state-of-the-art

A comparison with state-of-the-art is difficult, since the
algorithms are usually embedded into a certain application
scenario which is not always exchangeable.

Nevertheless the Evaluation of the appearance quality part
in the publication of Alexiadis et al. [8] has been adopted to
our set-up: The parameter value of which the reconstructed
views are most similar to the ground-truth key-frames is
chosen as best value. Like in Alexiadis et al. the similarity
measure is SSIM and the colour space HSV.

When run on the dataset the accuracy is at 0.4062. This
is not a fair comparison since the appearance evaluation is
only a part of the whole framework of Alexiadis et al. and
only confirms that the set-ups of both approaches cannot be
intermixed.

V. DISCUSSION

This section contains a discussion about the applicability
of the approach as well as considerations on the runtime.

A. Applicability

The proposed approach relies on an interesting property of
the reconstruction principle: changes in the parameter value
lead to mainly distinct local deviations in the model.

PSNR as the chosen similarity measure has to be sensitive
to this deviations. To visualize this a metric Multi Dimen-
sional Scaling (MDS) [11] algorithm is utilized. An MDS

2http://www.adobe.com/at/products/photoshop.html
3https://www.gimp.org

algorithm tries to position each object in multi-dimensional
space such that the between-object distances are kept as
well as possible. This gives more insight into the working
principle of the proposed approach since it illustrates which
images are similar from the view of PSNR.
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Fig. 3. Multidimensional scaling layout of all frontal views for parameter-
type ColourCorrection on Model 0093 using Peak Signal to Noise Ratio
(PSNR) as similarity measure and Hue, Saturation, Value colour space. Top
right is the best choice, bottom left and right show deviations on the pine,
top left on the right cheek. The farther the images are away from each
other the more they are different in the meaning of PSNR. The images
form clusters according to local deviations in the reconstruction.

In Figure 3 all frontal view reconstructions in the whole
parameter value range for ColourCorrection of a specific
model (0093 in the dataset) are laid out with an MDS
algorithm. To create the necessary distance matrix for the
algorithm, the similarities in Mα were converted to distances.
On the top right is the optimal reconstruction. Bottom left
and bottom right show deviations on the pine, whereas top
left deviates on the left cheek. It can be seen that images
with similar deviations are clustered together.

However the increasing visual effect of the parameter
values, mentioned in Section III, is not visible in the layout,
on the one side because MDS is a form of non-linear
dimensionality reduction and on the other side PSNR as
underlying measure does not fully reflect the human visual
perception.

Figure 4 depicts also a MDS layout for a whole pa-
rameter value range (parameter-type SmoothnessTerm on
Model 0098 in the dataset). On bottom right is the rare case
of a complete failed reconstruction, which has a high distance
to the other images. One can see that the case of a global
deviation is treated well, as long as it is not in the majority
of the images.

The dependency on distinct local deviations can be a loss
of generality of the approach. However especially in the area
of human 3D reconstruction there should be a wide range
of possible applications. Furthermore our approach is not
dependent on a certain reconstruction principle.
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Fig. 4. Multidimensional scaling layout of all frontal views for parameter-
type SmoothnessTerm on Model 0098 using Peak Signal to Noise Ratio
(PSNR) as similarity measure and Hue, Saturation, Value colour space. The
farther the images are away from each other the more they are different in
the meaning of PSNR. Therefore the failed reconstruction on bottom right
has a high distance to the other images.

A further eventual loss of generality is the coupling to a
specific colour space (HSV) together with the assumption
that human decisions are dependent on skin deviations. All
models in the dataset are Central Europeans with white
skincolour. It is not sure that the proposed approach in
this configuration works also with models having other
skincolours. Nevertheless the approach is a good starting
point for future work, see Section VI.

A final point regarding applicability is that the proposed
approach inspects all parameter-types isolated, see Sec-
tion VI on future work to this issue.

B. Runtime Considerations

The proposed method utilizes a brute force evaluation of
all parameter values. While the final comparison of the views
is computationally cheap, the reconstruction itself is time
consuming: On an Intel Core i5-200 CPU with a NVIDIA
Geforece GTX 560 and 16GB RAM it takes in the mean
145 s to do a reconstruction. To overcome this issue, the
reconstruction has been implemented as web service in the
Amazon Cloud.

Since the reconstructions are independent of each other,
they could be run fully in parallel, benefiting from the
virtually infinite computational power in the cloud. However
in practice we run the parallelization in a way such that one
parameter-type can be fully evaluated at once.

VI. CONCLUSION AND FUTURE WORK

In this work an approach utilizing pairwise comparison of
2D views from different 3D model reconstructions has been
demonstrated, which simulates human quality choices. The
approach shows perfect prediction on the given dataset.

The essential part of the approach is to select the recon-
struction which is most similar to all others. The effect is that

reconstructions with local deviations are sorted out. This idea
is new and might inspire other scientific work.

From the technical side there are two main possibilities
of improvement, which are caused by the nature of the used
dataset. First the dataset only covers white-skinned Central
Europeans and the approach is coupled to a specific colour
space. So there could be a loss in generality when inspecting
models with other skincolours. To overcome this a future
work could use a face detector as pre-step and parametrize
the comparison to the actual skincolour. For this new models
have to be added to the dataset.

Another future work may approach the issue of isolated
parameter-type evaluation. Unfortunately with the available
questionnaire, combinations of parameters cannot be evalu-
ated since they are not in the data. However for future work
this would be very interesting, since it could provide further
insights to the generality of the approach. In case that there
will be significant dependencies between parameter-types a
future version may include some kind of genetic algorithm
to find the best combination.
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REFERENCES

[1] C. Heindl, S.C. Akkaladevi, and H. Bauer. Capturing Photorealistic
and Printable 3D Models Using Low-Cost Hardware, pages 507–518.
Springer International Publishing, Cham, 2016.

[2] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. Image
Processing, IEEE Transactions on, 13(4):600–612, April 2004.

[3] Y. Pan, I. Cheng, and A. Basu. Quality metric for approximating
subjective evaluation of 3D objects. IEEE Transactions on Multimedia,
7(2):269–279, April 2005.

[4] R. Mekuria, P. Cesar, I. Doumanis, and A. Frisiello. Objective and sub-
jective quality assessment of geometry compression of reconstructed
3D humans in a 3D virtual room, 2015.

[5] J. You, G. Jiang, L. Xing, and A. Perkis. Quality of Visual Experience
for 3D Presentation - Stereoscopic Image, pages 51–77. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[6] X. Wang, Q. Liu, R. Wang, and Z. Chen. Natural image statistics
based 3D reduced reference image quality assessment in contourlet
domain. Neurocomputing, 151, Part 2:683 – 691, 2015.

[7] A. Rehman and Z. Wang. Reduced-reference image quality assessment
by structural similarity estimation. IEEE Transactions on Image
Processing, 21(8):3378–3389, Aug 2012.

[8] D.S. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis,
D. Zarpalas, and P. Daras. An integrated platform for live 3D human
reconstruction and motion capturing. IEEE Transactions on Circuits
and Systems for Video Technology, PP(99):1–1, 2016.

[9] M. Sedlacek. Evaluation of RGB and HSV models in human faces de-
tection. Central European seminar on computer graphics, Budmerice.
In IIIA.1-5 - Conference on Computer Systems and Technologies -
CompSysTech2004, page 125131, 2004.

[10] K.B. Shaik, P. Ganesan, V. Kalist, B.S. Sathish, and J.M.M. Jenitha.
Comparative study of skin color detection and segmentation in HSV
and YCbCr color space. Procedia Computer Science, 57:41 – 48,
2015. 3rd International Conference on Recent Trends in Computing
2015 (ICRTC-2015).

[11] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: Theory
and Applications (Springer Series in Statistics). Springer, 2nd edition,
August 2005.

119



An Image Analysis System for Selective Recovery of Non-ferrous Metal

Malte Jaschik1, Alfred Rinnhofer2, Martina Uray3 and Gerhard Jakob4

Abstract— To increase the recycling rate for non-ferrous
metal, a high speed sorting line with a high throughput rate
of up to 1ton per hour was built. The system comprises
an Image Analysis System to detect shredder particles and
calculate their position on the belt as well as several 2D
and 3D shape features. ElectroMagnetic Tensor Spectroscopy
(EMTS) or Laser-Induced Breakdown Spectroscopy (LIBS)
characterize each particle based on its metal components.
Tests were conducted under hard conditions in an industrial
environment. For a full covered 400mm x 100mm belt area
the Image Analysis System needs less than 24.5ms at a feature
calculation accuracy up to 95%. The developed system can
easily be adapted to other scenarios.

I. INTRODUCTION

The requirements of the sorting line described in this
work are to detect and classify non-ferrous metal particles.
The load speed of the sorting line is given by 1ton/hour. A
vibrating feeding system is used to load the belt (width of
400mm) and for fragment separation. Due to the limitation
of the vibrating feeding system, about 28g/s of particles can
be loaded with a belt speed of 2m/s. The subsystems need
an accuracy of 0.5mm/px in length and width. Therefore, a
line rate of 4kHz is required. Fig. 1 shows a schematic of the
components and Fig. 2 a sample image of such a particle.
The system is developed to work even under heavy industrial
conditions (like dust, vibrations of machines, etc.).

Fig. 1. Schematic of the developed sorting line.

The developed sorting line consists of two independent
subsystems (detector and classifier). An Image Analysis
System identifies every single particle on the conveyor and
calculates its exact position on the belt as well as 2D and

Joanneum Research Forschungsgesellschaft mbH
DIGITAL - Institute for Information and Communication Technologies
1malte.jaschik@joanneum.at
2alfred.rinnhofer@joanneum.at
3martina.uray@joanneum.at
4gerhard.jakob@joanneum.at

3D shape features. The analysis and classification of the
material of the particles is provided by EMTS or LIBS. The
EMTS measures the electrical conductivity while the LIBS
characterizes the chemical composition. To achieve optimum
results of the classification systems, it is essential that the
position and specified shape features of every single particle
is derived to utmost precision by the Image Analysis System.
Therefore, all subsystems are synchronised by an incremental
encoder.

II. DISCRIPTION OF SUB SYSTEMS

A. Image Analysis System for position and shape calculation

The Image Analysis System is based on laser triangulation
and comprises a line laser, an Automation Technology C4-
1280-GigE 3D camera and a computer for calculation. Using
subpixel algorithms a height resolution, defined by the opti-
cal resolution and the angle between laser plane and camera,
of 0.15mm can be achieved. Due to the belt movement the
laser line migrates along the surface of the fragments. The
camera acquires a 2D image of each laser line and calculates
a 3D profile that is sent to the computer via GigE. The
analysis algorithm stores the 3D profile and builds an image,
called subframe (currently consisting of 200 3D profiles), a
small part is illustrated in Fig. 3. The camera can acquire
a grayscale image (Fig. 2) as well, but it is not used in the
current application.

Fig. 2. Grey-value image of one
metal particle

Fig. 3. 3D image of one metal
particle (same as Fig. 2)

To remove noise due to non-flatness of the conveyor a
background model is calculated and subtracted from the
image (for each 3D profile). By binarizing the subframe
with an experimentally determined height threshold areas of
interest are selected. If the size of an area is big enough,
it defines a particle hypothesis and features are calculated.
Features reach from simple positions to more complex ones,
like feret diameters or maximum cross-sectional area (overall
25 different features in 2D and 3D respectively).
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B. Classification systems

The current application employs two different classifica-
tion subsystems. Both systems provide a satisfactory solution
for the non-ferrous metal classification. Currently linear
classifiers with several features are used, but in the future
neuronal networks will be trained.
The LIBS system measures the chemical composition of the
particles and separates them into cast and wrought aluminium
categories and into selected aluminium and magnesium
alloys.[1]
The EMTS system on the other hand measures the electrical
conductivity of the particles to separate the fragments into
aluminium, copper and brass categories.[2]

III. RESULTS

A. Timing Performance

Due to the described settings, the maximum computation
time is 50ms for one subframe. Two types of evaluations
were realized with separated aluminium particles on a
1000mm x 400mm belt area. The first test (small covering,
SC) simulated the real coverage with 139g particles. In the
second test the belt was fully covered (full covering, FC).
Three test sets of particles were used. The particles were
placed on the belt and processed three times in the same
arrangement. The arrangement itself was varied three times,
such that nine timing tests for every particle size were done.
Table I shows the test conditions and the calculation time for
one subframe. As can be seen, the maximum computation
time is 24.5ms for a full covered belt with 55 large samples.

TABLE I
MAXIMUM COMPUTATION TIME FOR FEATURE

CALCULATION ON ONE SUBFRAME (200 3D PROFILES)

Test set Small Medium Large
Sample size [mm] 9x9 20x20 30x30
Test size SC FC SC FC SC FC
Sample count 71 355 29 145 11 55
Max. time [ms] 20.91 23.33 21.26 24.1 11.78 24.5

B. Accuracy

To verify the accuracy of the Image Analysis System
objects with defined dimensions were used (e.g. eurocents
and washers) as well as real particles. Due to the complex
real particle shapes no ground truth for heights, areas and
diameters were available. Therefore, just the positions and
recognition rates of real particles were tested.

The feature calculation accuracy is higher than 95% and
almost every single particle can be detected (see Table II).
Nearly all coins were detected correctly. Only one misdetec-
tion was observed since two 2 eurocents were not separated
on the belt. The small deviation of the area can be explained
by the fact that reflections on the edge lead to overestimate
the real object size. Thus, the height is measured also on
edge regions with height values produced by reflections. The
height is furthermore influenced by the shape of the coins.
Only the edge has full height, whereas the rest of the surface

TABLE II
ACCURACY OF THE IMAGE ANALYSIS SYSTEM IN %

Sample Height Area Diameter Found
1 eurocent 96.74 98.13 99.89 100
2 eurocent 98.91 96.68 99.87 99
5 eurocent 99.14 99.29 99.29 100
10 eurocent 98.25 99.10 99.10 100
20 eurocent 99.67 98.33 99.27 100
50 eurocent 98.97 98.97 99.58 100
Washer 16 98.94 95.18 97.12 100
Washer 20 95.38 98.50 98.84 100
Washer 22.5 97.38 98.49 95.66 100
Shredder - - - 100

is below this level caused by different motives. As can be
seen in Fig. 4 the height and area could be used to derived
a simple image based classifier for coins.

Fig. 4. Simple coin classification and comparison of the calculated values
for the mean height and area with the nominal values.

All washers were detected correctly. The accuracy of the
washer analysis is similar to the coins, only the area is a little
less accurate, due to the hole in the middle of the washers.

The real particles were all detected by the system and the
position on the belt were calculated correctly.

IV. CONCLUSIONS
In this work we have shown that the Image Analysis

System is capable of detecting particles and calculating all
required features at very high accuracy over 95%. This can be
done in less than 24.5ms at a full covered belt with subframes
of 400mm width and 100mm length. The system exceeds
all requirements and has enough processing capabilities for
several extensions. Its simplicity and independency of other
systems enable its usage for other applications as well.
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Automated Quality Assessment of Remelted Steel Ingots

Daniel Gruber1, Harald Ganster1 and Robert Tanzer2

Abstract— For high quality steel products it is essential to
have specific understanding of the underlying steel production
process such as the electric slag remelting process (ESR). To
assist the currently manual assessment there is a high need
for objective quality measures and standardized evaluation
methods. A set of relevant parameters can be derived from
the so-called pool profiles that give insight to the remelting
process. Based on texture segmentation and ridge detection a
computer-vision based automated evaluation of the pool profiles
is achieved. A comparison with manually extracted pool profiles
from expert metallurgists shows the feasibility of the approach
and the good performance of the automated analysis. Further
evaluation on different types of steel blocks will yield valuable
insight to and improve the overall steel production process.

I. INTRODUCTION AND MOTIVATION

The field of quality management and improvement in
high quality steel production is one of the deciding reasons
whether a steel producer remains competitive or not. In
the production of high quality steel products for demanding
applications it is essential to remelt conventional produced
ingots. In order to yield specific understanding of the remelt-
ing process as well as to improve the process, there is a high
need for an objective and standardized evaluation of remelted
blocks.

The advantage through technology is to be able to sub-
stitute pure manual quality control and, thus, very time-
consuming work flows. Furthermore, it is possible to provide
repeatable calculations of quantitative measurements. This
paper presents a vision-based solution to be able to automate
those processes.

Currently, most of the structure evaluation is done man-
ually and the information is stored in different analog and
digital files. In order to be able to store all information in
one place, a software was developed where various different
kinds of meta data can be directly mapped to the analyzed
steel block.

After a short introduction of the data material (Section II)
and a brief overview of related work (Section III), Section
IV gives insight into the quality assessment of steel ingots.
Section V presents the automated segmentation, Section VI
an objective method to derive steel quality parameters and
Section VII gives some final conclusions and an outlook on
future work.

1JOANNEUM RESEARCH Forschungsgesellschaft mbH,
DIGITAL - Institute for Information and Communication
Technologies, Austria daniel.gruber@joanneum.at,
harald.ganster@joanneum.at

2BÖHLER Edelstahl GmbH & Co KG, Austria
robert.tanzer@bohler-edelstahl.at

II. DATA MATERIAL

Figure 1 shows the scheme of an ESR. Those remelted
high quality steel blocks have a weight up to 20 tons. To
analyze the inner solidification of such blocks, it is necessary
to saw out longitudinal slices from the center of the block.
Furthermore, these plates are cut into pieces to be able to
handle size and weight as illustrated in Figure 2.

Fig. 1: Scheme of electric slag remelting process.

Fig. 2: Preparation of steel blocks for evaluation.

In order to gain deeper knowledge of the remelting process
those plates are ground, polished and etched to reveal the
inner crystalline solidification structure. Those structures
provide information directly linked to the remelting param-
eters and as a consequence are essential for optimizing
these parameters. Changes within the remelting process are
directly related to the solidification structure [11], [8]. As a
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last step, the prepared steel specimen are scanned by a 4k
line scan camera. The problem with conventional assessment
approaches is that the preparation of the data material is very
costly and time consuming. Thus, the available data material
for this work consisted of only three blocks with manually
annotated ground truth.

III. RELATED WORK

Vision-based approaches are already well established in
assessment of material surface characteristics. As well there
are also several approaches related to steel quality assess-
ment.

A computer vision based microstructure analysis and
classification approach is introduced in [3]. The strategy is
to set up a complex histogram representing a ’fingerprint’
of a microstructure. With the aid of those histograms it is
possible to classify similar texture patterns by calculating
the χ2 distance.

Characterization of steel specimen surfaces are also pre-
sented in [2]. Signatures of surface profiles are extracted with
multiresolution wavelet decomposition. Furthermore, surface
roughness parameters are derived from those signatures.

Another feature extraction from micrographs is elaborated
in [7]. The focus within this paper lies on extracting features
like grain size, anisotropy of grains and the amount of δ
phase.

Further research on vision-based steel surface inspection
mainly focuses on the detection of defects. A summary of
detectable surface defects and approaches to identify them
can be found in [5].

Nevertheless, the proposed methods focus on the analysis
of microscopic scale specimens (few mm2) with their specific
microscopic structures or the detection of defects. In contrast,
the approach presented in this paper aims at the inspection
and analysis of a full steel block with its macroscopic
features. Those features exhibit completely different appear-
ances than the microscopic structures.

IV. QUALITY ASSESSMENT OF STEEL INGOTS

Significant parameters for the quality of steel can be
derived from so-called pool profiles, which can be derived
from inspection of the remelted steel blocks. With the aid of
those pool profiles it is possible to determine certain quality
attributes within the whole steel block. Therefore the equality
of the individual pool profile lines with their surroundings
are taken into account. Figure 3 shows manually derived pool
profiles of an example steel block plate. These are generated
by human experts (metallurgists) who try to identify the
growth direction of the dendrites1 in the image. Based on
those direction vectors, lines in predefined distances are
estimated perpendicular to the vectors. This process is very
time consuming and prone to human error. Furthermore, the
results are influenced by subjective interpretation and, thus,
experts easily end up with diverse results.

1Dendrites are complex three-dimensional tree-like structures. Dendritic
morphology is the most commonly observed solidification structure [9], p.
78.

Fig. 3: Manually derived pool profiles.

Further ground truth data analysis revealed that some
blocks show much more irregularities on top, bottom and
in the middle due to the globular solidification in those
areas. To be still able to extract meaningful pool profiles,
metallurgists disregard those areas and simply classify pool
profiles in regions with trans-crystalline solidification only.
This basically means that trans-crystalline solidification areas
provide representative information, whereas globular areas
are basically unstructured and as a result do not provide
meaningful information for the pool profiles. Thus, for an ob-
jective evaluation it is essential to automatically distinguish
between globular and trans-crystalline solidification areas.

V. STEEL SPECIMEN SEGMENTATION

The consequential first step of the automated quality as-
sessment is the segmentation of globular and trans-crystalline
solidification areas. The main idea for automated segmenta-
tion is based on the different textural appearance (regular
and irregular patterns) of the different solidification regions.
Therefore, various algorithms for the description of the
surfaces were selected. The resulting classification gives
information about where the actual extraction of information
used for pool profile generation/calculation can be retrieved
from.

Due to the lack of extensive ground truth data, it was
necessary to find suitable texture features and to implement
customized classification methods rather than to train already
existing classifiers. The following sections give an overview
about the selected algorithms and the respective evaluation
results.

A. Gabor Filter

The basic idea of using Gabor filters was to analyze spatial
frequencies and their orientations within image patches.
Trans-crystalline solidification areas represent areas with
clearly visible frequencies and orientations whereas globular
solidification areas do not. 2D Gabor filters are sinusoid
functions combined with a Gaussian (see Figure 4) [6].

Two classes of training patches were created for globu-
lar and trans-crystalline solidification areas. These patches
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Fig. 4: Gabor filter composition: (a) 2D sinusoid oriented
at 30◦ with the x-axis, (b) a Gaussian kernel, (c) the
corresponding Gabor filter [6].

were used to generate covariance descriptors of Gabor filter
outputs with one frequency and six orientations. Nearest
neighbor classification was used for evaluation.

Figure 5 shows a whole steel block and the segmentation
results. From Figure 5b it is obvious that the classification
output delivers plausible results for the trained type of
steel, although the trans-crystalline areas are not perfectly
classified if the orientation of the solidification structure does
not perfectly match the trained ground truth data.

B. Spatial Filter Bank

The paper presented by Ahmadvand and Daliri [1] intro-
duces a way to perform invariant texture classification by
using a spatial filter bank in multi-resolution analysis. The
generated features comprise l1-norm, standard deviation and
entropy calculated from the spatial filter bank results of the
original patch and the discrete wavelet transformed patch.
Proposed filters are Gaussian, Laplacian of Gaussian and
local standard deviation.

Same as for Gabor filters, two different patch classes are
used to set up two feature matrices. For classification simple
Mahalanobis distances between the feature vector and the
matrices are calculated to determine class affiliation.

Although certain regions (middle and bottom in Figure
5c) are extracted more homogeneously than in the Gabor
filter approach, the classification output does not yield a
satisfactory result as it is too dependent on selection of
training patches. The filter bank matches good within direct
surroundings of training patch areas, whereas other areas
cannot clearly be separated.

(a) Original image. (b) Gabor filter output
with nearest neighbor
classification.

(c) Spatial filter
bank output with
Mahalanobis distance
classification.

Fig. 5: Original image and segmentation output.

C. Local Binary Patterns (LBP)

LBP [10] are used to describe the surrounding of a pixel.
This is done by comparing a pixel to each of its neighbors
(which [10] defines by radius and number of points on the
consequential circle). Given eight neighbors LBP result in an
eight digit binary number where each digit gives information
about whether the center point value is greater/equal or
smaller than its neighbor. To retrieve information about a
larger area LBP for each pixel in that area are summed up
in a histogram illustrated in Figure 6.

Fig. 6: LBP histogram generation.

To be able to determine certain edge and line infor-
mation of an area’s histogram, we decided to summarize
inverted patterns, same orientation patterns or patterns that
just describe noise. Overall dominating bins like noise and
white/black dots are deleted from the histogram. Following
those steps, it is possible to determine features (histogram
bins) that correlate with the desired regions.
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Fig. 7: LBP dominating feature/bin output.

Figure 7 shows a color coded image on the left hand
side where each color matches a bin from the summarized
histogram. The output image on the right hand side was
generated by using a majority filter calculating the dom-
inating feature for a specified area around a center pixel
and then plotting its assigned color in the output image.
The background colors of the illustrated patterns (in the
middle) correlate with the colors in the left image. Together
they represent the orange area within the final binary output
image on the right. It is clearly evident that horizontal lines
(line endings) smoothly correlate with globular solidification
areas whereas trans-crystalline areas are dominated by other
orientations.

D. Feature Comparison

Experiments with different steel compositions have shown
that the Gabor, as well as the spatial filter bank approach, do
not deliver generic solutions. Even for equal types of steel
with other block dimensions, those algorithms do not deliver
satisfying results.

Interestingly, the discovery that dominating horizontal
orientations correlate with the globular solidification area,
was also proven for further steel blocks. The validation of the
segmentation output was performed by metallurgists visually.
Thus, the segmentation based on LBP (Figure 7) is used as
basis for the quality parameter extraction.

VI. POOL PROFILES

As previously mentioned, pool profiles are used to de-
termine quality parameters. Therefore, a fast and reliable
process that can produce repeatable results with a minimum
need of human interaction is required.

The best performing method during analysis of different
steel types is based on a combination of scale-space and
ridge detection. The ridge detection is similar to a biomet-
ric fingerprint recognition approach [4] with the difference
that in this application regions with constant directions are
important, whereas in fingerprint recognition characteristics
like crossing points or ridge ends are relevant.

A. Ridges and Orientations

The algorithm for ridge preparation, extraction and orien-
tation calculation is based on a paper presented by Hong,
Wan and Jain [4]. They show a way to identify and nor-
malize ridge regions within an image and to calculate their
orientations. Figure 8 illustrates the process of pool profile
derivation on a small sample sector of a steel specimen.

Fig. 8: Pool profile detection by ridge analysis. Top: Sector
of steel specimen and derived ridges. Bottom: Derivation of
orientations and final pool profile.

B. Orientation Filtering

The cutting or etching process in preparation of the steel
sample or the imaging/scanning process itself can lead to
artifacts. In order to handle those problematic areas, it is
necessary to implement a filtering algorithm for the ridge
orientations.

The first step of optimization takes place during pre-
processing and delivers a mask of non-valid areas through
a gray scale segmentation process performed on a smoothed
and re-sampled image of the steel specimen.

The second step is the filtering of derived orientations.
This filtering relies on homogeneity properties of the ori-
entations in image areas. If an orientation vector is not in
conformity with its surrounding/neighboring orientations it
is treated as outlier and, thus, filtered before deriving the
final pool profile.

Additionally, as a third step orientations are calculated
on different scales of the image to pre-filter orientations
deviating from smaller scales.

Figure 9 shows a sample steel plate and the calculated
orientations (short blue lines) with and without filtering. It
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is clearly evident that areas with little or even no information
content were masked out. The resulting orientations are
smaller in number, but more expressive.

Fig. 9: Optimization of orientation detection. Left: Result
without filtering. Right: Result with filtering.

C. Pool Profile Results

The pool profile itself comprises of trace lines derived
from ridge orientations. Each trace line is calculated from a
given individual starting point by calculating a normal on the
underlying orientation to the consequential next one and so
forth. The calculation begins either from the outer borders
(left and right) to the middle or vice versa. Figure 10 shows
an example of automatic generated pool profiles overlaid on
automatically detected orientations. The two colors of the
trace lines represent the different starting orientations.

Fig. 10: Automatic generated pool profiles from the sample
steel block displayed in Figure 3.

Metallurgists verified the quality of this approach by
comparing the manually derived ground truth (Figure 3) with
the achieved results (Figure 10). The comparison shows the
good correspondence of manually generated ground truth
with automated derived pool profiles.

VII. CONCLUSIONS AND OUTLOOK

This paper presented algorithms to perform steel speci-
men segmentation for classification of globular and trans-
crystalline solidification areas and algorithms to automate
pool profile generation. Figure 11 displays a whole steel
block with segmentation and pool profiles. The automated
quality assessment is currently under evaluation by metallur-
gists on additional steel blocks.

Fig. 11: Final result with segmentation and pool profiles.
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First feedback indicates that the method for segmentation
and pool profile generation is applicable for a wide range of
steel products. This might require further implementations
and/or parametrization for segmentation and pool profile
generation. In the future, as image acquisition will take
place regularly and, thus, more data will be available, we
intend to investigate approaches based on deep learning, that
will enhance automated segmentation and quality assessment
even further.
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Fusion of Point Clouds derived from Aerial Images

Andreas Schönfelder1,2, Roland Perko1, Karlheinz Gutjahr1, and Mathias Schardt2

Abstract— State of the art dense image matching in combi-
nation with advances in camera technology enables the recon-
struction of scenes in a novel high spatial resolution and offers
new mapping potential. This work presents a strategy for fusing
highly redundant disparity maps by applying a local filtering
method to a set of classified and oriented 3D point clouds.
The information obtained from stereo matching is enhanced
by computing a set of normal maps and by classifying the
disparity maps in quality classes based on total variation. With
this information given, a filtering method is applied that fuses
the oriented point clouds along the surface normals of the 3D
geometry. The proposed fusion strategy aims at the reduction of
point cloud artifacts while generating a non-redundant surface
representation, which prioritize high quality disparities. The
potential of the fusion method is evaluated based on airborne
imagery (oblique and nadir) by using reference data from
terrestrial laser scanners.

I. INTRODUCTION

While the processing of aerial and satellite imagery for the
generation of 2.5D Digital Elevation Models (DEM) from
Multi-View Stereo (MVS) systems is a standard procedure
in the field of photogrammetry and remote sensing, the
reconstruction of complex 3D scenes poses several new
challenges. Therefore, this work focuses on a 3D fusion of
point clouds, in contrast to classical mapping approaches that
only produce and fuse 2.5D DEMs or elevation maps (cf.
[14]). In order to process large frame airborne and satellite
imagery, it is necessary to ensure that the MVS system
is capable of processing data of arbitrary size in adequate
runtime at highest possible geometric accuracy.
The main contribution of this work is an easy to implement,
scalable 3D point cloud fusion strategy which builds on clas-
sic multi-view stereo pipelines. By restricting, respectively
weighting, disparities based on their quality it is possible
to generate surface representations of large-scale datasets in
adequate runtime, simultaneously reducing the redundancy
in the point cloud and increasing the geometric accuracy.

II. STATE OF THE ART

Typically, the processing of multiple stereo images yields
one depth map or disparity map per stereo pair. To generate
one consistent, non-redundant representation of the mapped
scene, the depth maps have to be fused. Some MVS systems
tackle this problem by linking surface points directly in the
process of image matching. In contrast, MVS systems like
PMVS [4], use multi-photo consistency measures to opti-
mize position and normals of surface patches and iteratively

1Joanneum Research Forschungsgesellschaft mbH, Steyrergasse 17, 8010
Graz, Austria {firstname.lastname}@joanneum.at

2Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
{firstname.lastname}@tugraz.at

grow the surface starting from a set of feature points. In
many MVS systems, depth maps are generated via Semi-
Global Matching (SGM) [6] and spatial point intersection
yielding one depth map per stereo pair. SGM is one of the
most common stereo matching algorithms used in mapping
applications offering robust and dense reconstruction while
preserving disparities discontinues.
Depth map fusion or integration is one of the main challenges
in MVS and different approaches have been developed
over the last decades. Authors of [17] propose an excellent
benchmark dataset for the evaluation of MVS surface re-
construction methods. As mentioned in [12], the Middlebury
MVS benchmark test demonstrates that global methods tend
to produce the best results regarding completeness and ac-
curacy, while local methods like [3] offer good scalability
at smaller computational costs. Moreover MVS methods
can be categorized based on their representation which can
differ from voxels, level-sets, polygon meshes up to depth
maps [17]. Authors like [5] and [15] focus on the fusion
of depth maps to generate oriented 3D point clouds. The
surface reconstruction in terms of fitting a surface to the
reconstructed and fused points is defined as a post-processing
step which can be solved using algorithms like the generic
Poisson surface reconstruction method proposed by Kazhdan
et al. [8].
Regarding the processing of aerial imagery scalability is an
important factor. As mentioned in [12], a number of scalable
fusion methods have been presented in the last years, e.g. [3],
[11], [18], yet they are still not able to process billions of 3D
points in a single day or less [18]. Kuhn et al. [9] propose
a fast fusion method via occupancy grids for semantic
classification. The fusion method complements state-of-the-
art depth map fusion as it is much faster. However, it is only
suitable for applications that have no need for dense point
clouds. All of the mentioned scalable fusion methods have in
common, that octrees are used as underlying data structures.
Kuhn et al. [10] introduce an algorithm for division of very
large point clouds. They discuss different data structures
and their capability for the decomposition of reconstruction
space. In addition, Kuhn et al. [12] show that the 3D
reconstruction of fused disparity maps can be improved
by modeling the uncertainties of disparity maps. These
uncertainties are modeled by introducing a feature based on
Total Variation (TV) which allows pixel-wise classification
of disparities into different error classes. Total variation in
context with MVS was first introduced by Zach et al. [19].
They propose a novel range integration method using a global
energy functional containing a TV regularization force and
an L1 data fidelity term for increased robustness to outliers.
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Fig. 1. Workflow of the processing pipeline for point cloud fusion.

As mentioned before, Rothermel et al. [15] fuse depth maps
in terms of oriented 3D point cloud generation. They intro-
duce a local median-based fusion scheme which is robust to
outliers and produces surfaces comparable to the results of
the Middlebury MVS. Similar to Fuhrmann and Goesele [3]
points are subsampled using a multi-level octree. Favoring
points with the smallest pixel footprint, an initial point set
is created utilizing nearest neighbor queries optimized for
cylindrical neighborhoods, points are then iteratively filtered
along line of sight or surface normals. The capability of
the fusion strategy for large scale city reconstruction and
the straight forward manner for implementation make it
particularly interesting for this work. In our work we adopt
the concept of the fusion strategy using a weighted median
approach favoring high quality disparities assessed by a total
variation based classification.

III. METHODOLOGY

The proposed framework builds upon the Remote Sensing
Software Graz (RSG)1. The photogrammetric processing (i.e.
image registration, stereo matching) leads to different inter-
mediate results which are utilized in the processing pipeline
(see Fig. 1). Disparity maps are derived from a set of epipolar
rectified images using a matching algorithm based on SGM
[6]. Forward and backward matching are employed to derive
two point clouds via spatial point intersection per stereo pair
whose coordinates are stored in East-North-Height (ENH)
raster files (i.e. a three band raster file holding the coordinates
in geometry of the disparity map). The advantage of this
approach is that coordinates can be accessed directly while
preserving the spatial organization, i.e. the structure, of the
point cloud.
In the next step, surface normals and weights are computed
and stored into a compressed LAS file (i.e. a lossless com-
pressed data format for point cloud data) [7]. Subsequently,
the point clouds are assigned to tiles in order to enable a tile-
wise fusion of the data. Fig. 1 depicts the complete workflow
of the presented processing pipeline.

1http://www.remotesensing.at/en/
remote-sensing-software.html

A. Oriented Point Cloud Generation

While in Rothermel et al. [15] normals are derived based
on a restricted quadtree triangulation [13], we estimate
surface normals in a least squares manner. A moving window
operation is applied on the ENH raster files. Normals are
derived by locally fitting a plane to the extracted point neigh-
borhood. The normal estimation fails in areas with less than
three reconstructed disparities. By introducing a threshold
defining a minimum number of successfully reconstructed
points, we are able to control the robustness of the normal
calculation. In our experiments we set the pixel neighborhood
to 5 pixels and used a threshold of 3 points for all datasets.

B. Disparity Quality Assessment

The quality of disparities is affected by many factors like
variation of texture strength and surface slant. We assess the
quality of disparities in order to derive weights for every
single observed point. These weights are later used in the
fusion procedure using a weighted-median approach. Kuhn
et al. [12] introduced a TV-L2 based classification of the
disparities uncertainty. In contrast to many TV-L1 based
MVS methods, the L2 norm takes noise and outliers into
consideration which is required to measure the quality of the
disparities. The TV is calculated over square windows with
increasing radius m resulting in n ∈ [1, 20] ⊂ N discrete
classes. Starting from a neighborhood containing 8 connected
pixels at a radius of m = 1 it increases by the factor of 8m.
The discretization is achieved by introducing a regularization
term τ which limits the TV to stay below a certain value.
These TV classes describe the degree of the local oscillation
of the disparities. The outlier probability can be obtained
by learning error distributions from this classification using
ground truth disparities. In our case we evaluate the quality
of the disparities based on the work of Kuhn et al. [12] using
a regularization term of τ = 2.
Due to the lack of ground truth disparities, we are not able to
learn error distributions directly. Therefore, we analyze the
quality of the classified disparities in 3D space. Reference
data from Terrestrial Laser Scanners (TLS) is used to assess
the quality of the raw dense point cloud for every single
TV class independently. According to Cavegn et al. [2],
vertical Digital Surface Models (DSM) are computed for
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facade patches where reference data is available. Analysing
the DSM derived from the classified pointcloud and the
reference data enables us to compute the weights in form
of a weighting function. The weighting function is derived
by calulating the standard deviation of the flatness error and
fitting an exponential function in a least squares manner. The
flatness error is defined as the point cloud deviations to a best
fitting plane and is also an indicator for the noise of the 3D
geometry [1].
Later on, we evaluate the fused pointcloud in a similiar way,
to gain insight on the potential and quality of the entire
fusion method. Specific information regarding the evaluation
routine, selected test areas and datasets are given in Section
IV.

C. Weighted-Median Based Fusion

The concept of median-based fusion originates from
fusion algorithms for the generation of 2.5D DSMs.
Rothermel et al. [15] adapted the idea by fusing point
clouds in 3D space along a defined filtering direction.
While for close range datasets the line of sight is suitable
as filtering direction, point-wise normals are used for the
fusion of aerial datasets. We adapt this fusion strategy using
a weighted-median based approach.
In a first step, an initial pointset P is created from the input
point cloud by storing the input point cloud in an octree
data structure. The pointset P is derived by subsampling
the point cloud with the centroid of the points located in
a leaf node. In our work the entire fusion process was
realized with the aid of the Point Cloud Library (PCL ver.
1.8.0) [16] which also provides a custom tailored octree
implementation.
As a result of the disparity quality assessment every point
possesses a weight representing the quality of the point.
We add up the weights of all points located in the same
leaf node. Thus, the weight of the initial point p ∈ P is an
indicator for the density and quality of the reconstructed
scene.
Subsequently, the point cloud is fused using nearest neighbor
queries optimized for cylindrical neighborhoods. For every
point in the initial pointset P a set of candidate points
Q, located in a cylinder with its central axis given by the
initial point and its normal, is derived. Points with surface
normals diverging more than 60◦ are discarded for further
processing. After the candidate pointset Q is detected,
the point p is filtered by projecting all candidate points
onto the surface normal of the initial point p. Taking the
weighted-median of all deviations to the point p yields the
new point coordinates. Especially for noisy data further
iterations can be inevitable to generate a consistent surface
representation. Between every iteration, duplicate points
are united to avoid redundant computations. A detailed
description of the original fusion routine including the
parameters and employed neighborhood queries is given in
[15].
In a first iteration, Rothermel et al. [15] includes all points of
the input point clouds for the identification of the candidate

pointset Q. To speed up further iterations the filtering is
restricted to the initial pointset p ∈ P solely. In our case, we
restrict the filtering of the point cloud to the initial pointset
P from the beginning on. We compensate the loss of detail
of the input point cloud by approximating the density of the
captured 3D scene with the accumulated weight. The final
surface representation is derived by discarding points with
weights smaller than a defined threshold α. The influence
of the threshold is analyzed in Section IV-A. In this way
large and highly redundant 3D point clouds can be fused
in moderate time (e.g. processing 2.5 billion points on a
computer with 16 cores within a single day, resulting in a
fused point cloud whose density fits the spatial resolution
of the input imagery).

IV. RESULTS

In this section we discuss results obtained with the pro-
posed fusion pipeline. The datasets used for the evaluation
are provided by the ISPRS/EuroSDR project on “Benchmark
on High Density Aerial Image Matching”2 and consist of one
nadir and one oblique dataset.

A. Oblique Aerial Imagery

The oblique imagery dataset was acquired over the city of
Zürich with a Leica RCD30 Oblique Penta camera consisting
of one nadir and four oblique 80 megapixel camera heads.
While the nadir camera head is pointing downwards, directly
towards the earth, the four oblique camera heads are tilted
at an angle of 35 degrees, each pointing in a different
cardinal direction. The entire datasets comprises 135 images,
captured from 15 unique camera positions. While the nadir
imagery leads to a Ground Sample Distance (GSD) (i.e.
the spatial resolution) of 6 cm the GSD of the oblique
views vary between 6 and 13 cm. Reference data captured
with terrestrial laser scans provide accurate and reliable
information for the evaluation of the datasets. The evaluation
was carried out by computing DSM’s of different facade
patches distributed over the test area. More information on
the image acquisition, benchmark and reference data can be
found in [2].

Photogrammetric Processing and Pre-processing. In a first
step, the image registration was carried out using the interior
and exterior orientation parameters provided along with the
image data. Subsequently images are matched in flight direc-
tion with an overlap of 70%, resulting in a total of 314 stereo-
pairs, containing approximately 10.6 billion points. After the
generation of disparity maps TV classes and normal maps
are computed. As mentioned in Section IV the weighting
function assigns a weight to every TV class which is then
used in the fusion process.

The derived weighting function is depicted in Fig. 3
and shows that a correlation between TV classes and the
geometric precision (i.e. level of noise) can be verified.

2http://www.ifp.uni-stuttgart.de/ISPRS-EuroSDR/
ImageMatching/
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Fig. 2. Raw dense point cloud restricted to different TV classes.

While higher TV-classes show smaller standard deviations
and deliver better overall accuracy, lower TV-classes are
more likely to contain outliers (also cf. Fig. 2). TV classes
greater than 8 are only present in flat areas facing the camera
position. Since we focus on the reconstruction of vertical
surfaces (i.e. facades) the information obtained by the test
areas is extrapolated for all TV classes. The weighting
function is derived by inverting the estimated function and
defining the minimum weight with 1.0.

Fig. 3. Box plots representing the standard deviation of the flatness error
derived from different test areas for all available TV classes (top). Estimated
weight function (bottom).

Point Cloud Fusion. The fusion of the point cloud was carried
out in three iterations with a cylinder radius of 15 cm (i.e. two
times the GSD) and a height of 1.5 m. It is worth mentioning
that, in some cases, during the image acquisition parts of the
helicopter skids protruded into the camera angle, which leads
to strong distortions in the matching procedure. The size of
the octrees leaf node, which is used for the generation of the
initial pointset, controls the approximate output density of the
fused point cloud. Therefore, faster runtimes can be achieved
producing point clouds with lower density. The resolution
used for the oblique imagery is set to 10 cm, to match the
GSD of the input data. Within the point cloud fusion process,

the points are filtered along the surface normal and weights
are accumulated. The final surface representation is derived
by discarding low weights, which are more likely to contain
outliers. As depicted in Fig. 4, increasing the minimum
weight threshold α leads to more accurate, however less
dense point clouds.

Fig. 4. Impact of rejecting low weighted points after the fusion procedure
on density (top), accuracy and precision (bottom).

Since the fusion method produces oriented point clouds, a
mesh representation can be computed using Poisson surface
reconstruction [8]. The complete workflow is depicted in Fig.
5. The runtime of the fusion process can be improved by
discarding low level TV classes in a pre-processing step.
However, the rejection of low level TV classes causes a loss
in detail in areas with bad coverage.

Evaluation. In order to measure the capability of the fu-
sion routine different statistical measures are analyzed. The
RMSE of the deviations between the reference point cloud
and fused point cloud, give information about the accuracy
of the 3D geometry. The standard deviation of the vertical
digital surface model indicates the noise level of the point
cloud, respectively the distribution of points perpendicular
to the facade. As mentioned before, the density can be
controlled by setting the octree resolution and by regulating
the threshold for the minimum weight α. In Table I the raw
point cloud is compared to the fused point cloud considering
the influence of TV weights. The minimum weight threshold
α is set to generate point clouds with comparable densities.
Test areas include the school building located in the northern
part of the mapped scene and the tower building located in
the south.

TABLE I
COMPARISON OF THE FUSION ROUTINE REGARDING WEIGHTS.

min. Density RMSE Fused Mean Fused Std. Dev.
weight α [pnts/m2] PC-TLS [m] PC-TLS [m] of DSM [m]

Raw (unfused) - 4398.00 0.199 0.108 0.296
Fused (no weights) 20 75.15 0.122 0.067 0.052
Fused (weighted) 30 74.25 0.111 0.063 0.040
Fused (weighted 18 75.23 0.102 0.049 0.032

pre-filter TV >1)
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Fig. 5. Processing pipeline of the point cloud fusion: (1) Raw data from dense image matching (50.64 M points), (2) fused point cloud (1.73 M points),
(3) discarding weights smaller than α = 30 (0.47 M points), (4) mesh generation, and (right side) merged surface tiles.

Regarding the oblique dataset, best results can be achieved
by neglecting points with TV class 1. By doing so, execution
time is speed up by a factor of 2.2. Compared to the raw point
cloud the fusion procedure reduces noise while improving the
accuracy of the point cloud (see Fig. 6). A visual assessment
shows that the fused point cloud including all TV classes
and applying weights produces the best results regarding
completeness and outliers (see Fig. 7). As expected, roof

Fig. 6. Comparison of the main school facade before and after fusion
procedure (cf. Fig. 5): Mean deviation between DSM derived from terrestrial
laser scanner data and point cloud (top), and standard deviation of the point
clouds DSM representing the level of noise (bottom).

Fig. 7. Taking all TV classes into account produces point clouds containing
less outliers (left), in contrast to point clouds restricted to TV classes > 1
(right).

structures and other nadir oriented faces are reconstructed
with the highest precision. Table II shows that in all cases
the precision of the point cloud can be improved while
decreasing redundant information.

TABLE II
COMPARISON OF TEST AREAS BEFORE AND AFTER THE POINT CLOUD

FUSION.

Density RMSE Fused Mean Fused Std. Dev.
[pnts/m2] PC-TLS [m] PC-TLS [m] of DSM [m]

Tower South (raw) 2345.9 0.378 0.051 0.538
Tower South (fused) 49.4 0.204 0.003 0.087
Tower North (raw) 1781.4 0.427 -0.222 0.447
Tower North (fused) 45.3 0.195 -0.052 0.071
Tower West (raw) 3570.8 0.350 0.237 0.499
Tower West (fused) 62.7 0.256 0.152 0.155
Roof (raw) 13864.2 0.150 -0.023 0.218
Roof (fused) 178.7 0.122 0.028 0.105

B. Nadir Aerial Imagery

The nadir image dataset covers an area of approximate 1.5
× 1.7 km2 in the city of Munich. The dataset was acquired
by a DMC II 230 megapixel aerial image camera with a
spatial resolution of 10 cm and consists of 15 panchromatic
images. As depicted in Fig. 8, facade information can be
reconstructed by utilizing the proposed fusion routine. Due
to the wide angle of the aerial camera, enough information
is captured to produce 3D city models from nadir aerial
imagery.

V. CONCLUSION

A novel method for fusing 3D point clouds was presented.
The underlying point clouds originate from stereo matching
of aerial images and were enriched by the calculation of
surface normals and a classification of the disparity maps
into quality classes. The proposed filtering method then
fused the point cloud in direction of the surface normals
and used a weighting based on the classification. Evaluation
to ground truth data showed the increased quality of the
fused point cloud while reducing the redundancy. Overall,
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Fig. 8. Reconstructed surface from nadir aerial imagery. The depicted surface shows the Frauenkirche in Munich, located in the west part of the test
area. Therefore, west-facing facades cannot be reconstructed.

this fusion concept can be easily put into state-of-the-art
mapping pipelines, is able to handle large point clouds due
to the tiling concept and can be applied for terrestrial, aerial
or satellite based mapping application.
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Superresolution Alignment with Innocence Assumption: Towards a Fair
Quality Measurement for Blind Deconvolution

Martin Welk1

Abstract— Quantitative measurements of restoration quality
in blind deconvolution are complicated by the necessity to
compensate for opposite shifts of reconstructed image and
point-spread function. Alignment procedures mentioned for this
purpose in the literature are sometimes not exactly enough
specified; alignment-free approaches sometimes do not take into
account the full variability of possible shifts. We investigate
by experiments on a simple test case the errors induced by
interpolation-based alignment procedures. We propose a new
method for MSE/PSNR measurement of image pairs involving
non-integer displacements that is based on a superresolution
approach. We introduce an innocence assumption in order
to keep deviations that can be explained by shifted sampling
grids out of the error measurement. In our test case, the new
measurement procedure reduces the variations in MSE/PSNR
measurements substantially, creating the hope that it can be
used for valid comparisons of blind deconvolution methods.

I. INTRODUCTION

The removal of blur in images by blind image deconvo-
lution has been studied for many years [2], [3], [4], [5], [6],
[10], [16], [21], and received increasing interest during the
last years [1], [7], [8], [9], [11], [12], [14]. A frequently used
simplifying assumption is that the blur is spatially invariant,
i.e. the redistribution of intensity is described by the same
point-spread function (PSF) h at each image location. Blur
is then described by a convolution between the unobserved
sharp image g and the PSF h; incorporating additive noise
n, the observed image f is given by the blur model

f = g∗h+n . (1)

Whereas for non-blind deconvolution one assumes that f and
h are known, and aims at an estimate u for the sharp image
g, the knowledge of h is often not available in practice, thus
necessitating blind deconvolution where the estimate u of the
sharp image is to be obtained along with the PSF h, using
only f as input image.

A variety of approaches to solve this task have been de-
veloped, creating the need for quality comparisons. Besides
visual assessment, one is interested in quantitative measure-
ments of reconstruction quality versus a known ground truth.

Frequently used standard measures for image reconstruc-
tion methods include the mean-square error (MSE) as well
as the signal-to-noise ratio (SNR) and peak signal-to-noise
ratio (PSNR) both of which are closely related to the MSE;
furthermore, sometimes the average absolute error (AAE) is
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1Martin Welk is with Department of Biomedical Informatics

and Mechatronics, Private University for Health Sciences, Medical
Informatics and Technology (UMIT), 6060 Hall/Tyrol, Austria
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advocated. Another measure that puts some more emphasis
on important structural details of images such as contrast
edges is the structural similarity index (SSIM), see [17]. Let
us shortly recall the first three measures.

For a reference (ground-truth) image g and degraded (or
reconstructed) image u, both of size n×m pixels, their MSE
is given by

MSE(u,g) =
1

nm

n−1

∑
i=0

m−1

∑
j=0

(ui, j−gi, j)
2 . (2)

Provided that u and g have equal mean intensity µ (which we
will assume in the following), this is the variance var(u−g)
of u−g. Using the variance of g given by

var(g) =
1

nm

n−1

∑
i=0

m−1

∑
j=0

(gi, j−µ)2 , (3)

and the range R(g) := maxi, j gi, j−mini, j gi, j (255 for satu-
rated 8-bit images), one can compute the SNR

SNR(u,g) = 10log
var(g)

var(u−g)
dB (4)

and PSNR

PSNR(u,g) = 10log
R(g)2

var(u−g)
dB . (5)

For non-blind deconvolution, both MSE/(P)SNR and
SSIM are frequently used to assess reconstruction quality.
Although these quantitative measures are not always in good
agreement with visual assessments by humans, they are
generally accepted as simple and objective measures. For a
recent study on measures that approximate better the human
perception of restoration quality see [13].

In blind deconvolution, however, their application meets
a difficulty: If the reconstructed image u is translated by an
arbitrary, often non-integer, displacement d, and the point-
spread function h is translated by −d, these translations
cancel in the convolution u ∗ h. Blind deconvolution results
that differ just by such opposite translations of u and h must
therefore be considered equally valid reconstructions. An ex-
ample of such shifts that indeed occur in blind deconvolution
results is shown in Fig. 1. This precludes a straightforward
(P)SNR or SSIM comparison of blind deconvolution results
with ground truth. Obviously, some kind of alignment – rigid
registration restricted to translations as transformations – has
to be applied.

Nevertheless, blind deconvolution results are compared
by PSNR and other quantitative measures in a number of
works, e.g. [6], [7], [8], [9], [10], [14]. In many of these,
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Fig. 1. (a) Synthetically blurred image with ground-truth PSF, from [11].
– (b) Blind deconvolution result with PSF, from [12]. Note the opposite
shifts of image and PSF.

no alignment whatsoever is mentioned [6], [8], [9], [10].
Such an evaluation relies implicitly on the assumption that
estimated PSFs are aligned with the ground truth PSF;
probably this is approximately achieved by some test cases
with small PSF support. Efforts to compensate shifts, either
for images or for PSFs, are found in [7], [14], [20]. A bench-
mark established in [7] is based on simulating camera shake
by generated trajectories. Multiple ground truth images are
acquired directly along those trajectories, and the best match
is used for error measurement. On one hand, a computational
alignment step is avoided in this way. On the other hand,
the procedure constrains shifts to the ground-truth trajectory
which may be insufficient since blind deconvolution methods
can well yield translations in which the coordinate origin of
the PSF does not happen to be on the (unknown) trajectory
that was used to generate the ground truth. The benchmark
from [7] is also used in [20] and part of the evaluation
in [14]. Further tests in [14] are based on data from [9].
Here, absolute errors of PSFs are measured, namely for
“(aligned) blur estimates” with respect to ground truth PSFs.
This allows indeed to handle unconstrained displacements.
Details of the alignment procedure are not given, however.

In the following we discuss how to make precise such
an alignment procedure. We focus on a scenario where a
ground-truth image and PSF are available, and restoration
quality is to be estimated by measuring the error between
the ground truth and reconstructed images. In specifying
the alignment procedure, some choices have to be made:
first, should one register the reconstructed image to the
ground truth image, or vice versa, or should perhaps both
be transformed? Which interpolation procedure is to be
used in the registration process? It is not a far-fetched
guess that these details will influence the subsequent error
measurements. In fact, we will demonstrate by a simple
experiment in Section II that, dependent on details of the
registration, the PSNR measures vary by 1.5dB and more.

Given the fact that relative improvements of one blind
deconvolution method over the other as reported in e.g. [7],
[14] often amount to as little as 0.5dB or even less, such a
difference is significant.

This might be mitigated by using multiple test images and
performing statistics on the errors measured for these. How-

ever, questions remain: Since errors introduced by interpola-
tion can be expected to differ substantially between test cases
where the displacement is approximately integer, and test
cases where the displacement is near a half-pixel position,
results may be strongly biased towards blind deconvolution
methods that, for whatever reason, tend to reconstruct PSFs
in similar pixel alignment as the ground-truth. Given the
complexity of procedures both for constructing apparently
realistic test cases, and of the blind deconvolution procedures
themselves, it is such favourable alignments occur more often
for some methods under investigation than for others. In
such a case, the bias won’t necessarily average out for larger
sample sizes.

For this reason, we pursue in this paper the goal to
establish an alignment procedure for blind deconvolution
results that avoids these pitfalls. We focus here on the MSE,
from which (P)SNR can be derived via (4), (5).

Structure of the paper. In Section II we evaluate the
errors introduced by interpolation-based alignment proce-
dures using a simple test case. Section III establishes the
fundamentals of an alignment procedure by superresolution
in order to avoid these errors. The details of the procedure
are discussed in Section IV, followed by experiments on
the previously introduced test case in Section V. A short
summary and outlook in Section VI concludes the paper.

II. ALIGNMENT BY INTERPOLATION

To assess the errors introduced by alignment with inter-
polation, we set up a simple test case based on a ground
truth grey-value image shown in Fig. 2 (a). We blur this
image by 16 different PSFs shown in Fig. 2 (b); all these
PSFs are downsampled versions of the same high-resolution
PSF with horizontal and vertical shifts in 1/4 pixel steps.
One blurred image is shown in Fig. 2 (c). Each of the
blurred images is deconvolved with each of the 16 PSFs
using the non-blind deconvolution method from [18] with
the same parameters (α = 0.01, 300 iterations). This yields
256 deblurred images with effective shifts w.r.t. the ground
truth images from −0.75 to +0.75 pixels in x and y direction;
one exemplary deblurred image is shown in Fig. 2 (d).

We can now measure the MSE (and resulting PSNR) for
each deblurred image w.r.t. the ground truth image. In the
following we report PSNR values as this is the most familiar
measure in deconvolution literature. To reduce the impact of
boundary artifacts, a 20 pixel wide margin is excluded from
the measurement, thus using a 88× 88 central patch of the
reference image.

We notice first that in the 16 translation-free cases (where
the same PSF was used for blurring and deblurring) the
PSNR varies between 29.74 and 30.41dB, with an average
of 30.07dB and a standard deviation of 0.21dB.

Next, we measure PSNR values for the entire set of 256
deblurred images. Here, the ground-truth and reconstructed
images are aligned using either bilinear and bicubic interpo-
lation with the ground-truth shift values. For the direction
of alignment we consider three settings: (a) warping the
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c d

Fig. 2. (a) Ground truth image, 128× 128 pixels. (Clipped, downscaled
and converted to greyscale from a photograph of the building of
TU Vienna. Source of original image: https://upload.wikimedia.
org/wikipedia/commons/e/e9/TU Bibl 01 DSC1099w.jpg, Author: Peter
Haas. Available under licence CC BY-SA 3.0.) – (b) 16 PSFs, 10× 10
pixels each, subsampled from the same high-resolution input. The shift
from row to row and from column to column is 0.25 pixels. – (c) Image
(a) blurred by convolution with PSF from (b), first row, second column.
– Bottom right: Image (c) deblurred with PSF from fourth row, third
column, resulting in a shift relative to ground truth of (0.25,0.75) pixels.

reconstructed image to match the ground-truth image; (b)
warping the ground-truth image to match the reconstructed
image; (c) applying half the shift to each of the ground-truth
and reconstructed image. Statistics of the resulting PSNR
values are presented in Table I.

To bring the previous procedure closer to a true blind
deconvolution setting, we now switch to determining also
the displacement from a minimisation of the MSE (or max-
imisation of the PSNR). To avoid analysing possible multiple
optima, we employ here a brute-force optimisation varying
the displacements in x and y direction in 0.01 steps from −1
to 1; note that the exact displacements occur in the sequence

TABLE I
PSNR STATISTICS FOR 256 RECONSTRUCTED IMAGES WITH ALIGNMENT

BY THE KNOWN (GROUND-TRUTH) SHIFT USING BILINEAR OR BICUBIC

INTERPOLATION; (A) WARPING THE RECONSTRUCTED IMAGE, (B)
WARPING THE GROUND TRUTH, (C) HALF-WAY WARPING GROUND

TRUTH AND RECONSTRUCTED IMAGE.

Interpolation bilinear bicubic
Alignment (a) (b) (c) (a) (b) (c)
min 27.47 29.74 29.74 28.35 29.74 29.39
max 30.41 33.54 33.55 30.41 31.84 31.55
(max−min) 2.94 3.80 3.81 2.06 2.10 2.16
mean 28.57 32.18 31.25 29.23 30.85 30.05
standard dev. 0.711 0.970 0.805 0.474 0.489 0.459

of displacements sampled thereby. Table II contains statistics
of the misestimations δx, δy of the x and y displacements,
and the resulting PSNR. The latter values are slightly higher
than in Table I but not seriously so.

As can be expected, warping the reconstructed image to
match the ground truth (see columns marked (a) in Tables I
and II) leads to lower PSNR values for image pairs with non-
integer displacements. The variation is about 3dB with bi-
linear interpolation; bicubic interpolation reduces it to about
2dB which is still likely to warp comparisons substantially.
When aligning instead the ground truth to the reconstructed
images (columns (b) in Tables I and II) PSNR values are sur-
prisingly higher for non-integer displacements, which means
by comparison to the no-shift cases a clear overestimation of
reconstruction quality. Apparently the warping of the ground
truth image introduces some blur which matches well the
remaining blur in the deconvolution results.

Inspection of the detail results corroborates that for the
same image pair the choice which image is aligned to
which one leads to discrepancies in PSNR of 4dB and more
with bilinear, and still about 3dB with bicubic interpolation.
Distributing the shift to both images (columns (c) in Table I)
yields similar results as shifting the ground truth. As this
proceeding does not offer an advantage, we do not pursue
it further in the computationally more expensive scenario of
Table II where also the displacements are optimised.

III. ALIGNMENT BY SUPERRESOLUTION

We turn now to designing a procedure for image re-
construction error measurement with alignment. We give
preference to the MSE as basis of our considerations because
unlike the (P)SNR it treats the two images being compared in
a completely symmetric way. We want to keep this symmetry
also in the alignment procedure, thereby removing one of the
arbitrarities of interpolation-based alignment procedures. For
easier comparison to usual PSNR figures we will neverthe-
less report in the experiments later PSNR values computed
from our MSE measurements.

An obvious requirement is that for perfectly aligned
images the standard MSE measure has to be reproduced.
Whereas the procedure will be described for prescribed

TABLE II
STATISTICS OF DISPLACEMENT MISESTIMATIONS δx, δy AND PSNR FOR

256 RECONSTRUCTED IMAGES WITH ALIGNMENT ESTIMATED BY MSE
MINIMISATION.

Interpolation bilinear bicubic
Alignment (a) (b) (a) (b)
max|δx| 0.18 0.17 0.07 0.16
std. dev. δx 0.079 0.081 0.028 0.080
max|δy| 0.17 0.15 0.06 0.14
std. dev. δy 0.064 0.067 0.024 0.072
min PSNR 27.47 31.42 28.37 29.89
max PSNR 30.41 33.61 30.41 31.86
(max−min) PSNR 2.94 2.19 2.04 1.97
mean PSNR 28.67 32.67 29.25 31.10
std. dev. PSNR 0.697 0.527 0.471 0.465
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displacement values, minimisation of the MSE measure is
an obvious way to estimate also unknown displacements.

For the following, let us consider two images u and
g, which are sampled representations of continuous-scale
images. To specify the sampling process more precise, we
assume that each pixel of g is the integral of the underlying
continuous-scale image G over a rectangled region such that
all pixels together tesselate (a rectangle of) the image plane:

gi, j =
∫ i+1

i

∫ j+1

j
G(x,y)dydx , (6)

and similarly for u whose grid is of equal resolution but
shifted by d = (α,β ) ∈ R2,

ui, j =
∫ i+1+α

i+α

∫ j+1+β

j+β
U(x,y)dydx . (7)

Without loss of generality, we assume 0≤ α,β < 1.
Whereas in the special case of band-limited images sam-

pled with at least their double limiting frequency, Shannon’s
sampling theorem guarantees that u and g contain full
information on their continuous counterparts, this can usually
not be expected to hold true for natural images; thus the
continuous images U and G are in fact unknown.

A good measure for the discrepancy between u and g
should essentially measure the discrepancy between their
continuous versions U and G. In other words, we do not
want to punish reconstructions for badly aligned grids, and
formulate therefore an “innocence assumption” (in dubio
pro reo – in case of doubt for the defendant): Whatever
discrepancy between two images can plausibly be attributed
to different sampling, shall not enter the discrepancy mea-
sure. In particular, if a sufficiently plausible continuous-
scale image V ≡ U ≡ G exists from which both u and g
can be obtained by sampling, their discrepancy should be
measured as zero. Notice that the exact meaning of the word
“plausible” remains to be specified later.

Our considerations can be boiled down to a discrete
image v of size (2n+ 1)× (2m+ 1) whose pixels are the
intersections of pixels of u and g:

vi, j =
∫ ξi+1

ξi

∫ η j+1

η j

V (x,y)dydx , (8)

i = 0, . . . ,2n, j = 0, . . . ,2m, where ξi = i/2 for even i and
ξi = i/2+α for odd i, η j = j/2 for even j and η j = j/2+β
for odd j. Note that pixel (i, j) of g covers the four pixels
(2i,2 j), (2i,2 j + 1), (2i + 1,2 j) and (2i + 1,2 j + 1) of v
whereas pixel (i, j) of u covers the four pixels (2i+1,2 j+1),
(2i+1,2 j+2), (2i+2,2 j+1) and (2i+2,2 j+2) of v. The
image v is therefore a superresolution image [15] of g and u,
albeit with pixels of different sizes. In x direction grid cells
of size α alternate with such of size 1−α , whereas in y
direction the same is true with β and 1−β .

In the general situation when U and G cannot be chosen
as equal, we want to retain this idea and construct a super-
resolution image v that tries to reconciliate the information
of u and g as good as possible. The discrepancy of u and g

will then be measured by combining discrepancies between
u and v, and between v and g.

In the perfectly aligned case, α = β = 0, the MSE (2) of
images g and u can be combined from the MSEs between
each of g and u and their average v := 1

2 (g+u) via

MSE(u,g) = 2(MSE(u,v)+MSE(v,g)) . (9)

Moreover, using the parallelogram identity (or by an
easy combination of Cauchy-Schwarz’ inequality with the
arithmetic-geometric mean inequality) we see that for any
other image v the right-hand side of (9) will be greater than
MSE(u,g). This motivates the following definition.

Definition. Let images u and g of size n×m sampled as
in (6), (7) be given. Let a class X of (2n+ 1)× (2m+ 1)-
images v sampled as in (8) be given. For each image v ∈ X,
define vu, vg as the downsamplings of v to the grids of u and
g, respectively. The alignment-MSE MSEX between u and g
with respect to X is defined as

MSEX (u,g) = min
v∈X

2(MSE(u,vu)+MSE(vg,g)) . (10)

Application of this definition requires, first, the specifi-
cation of the class X for given images u, g. The class X
essentially defines what are plausible superresolution images.
Second, a minimisation method will be needed to find the
minimiser. We will turn to these issues in the next section.

IV. SPECIFYING CONSTRAINTS

Given u and g, a superresolution image v as specified in
the previous section must satisfy the equations

αβv2i,2 j +αβ̄v2i,2 j+1

+ᾱβv2i+1,2 j + ᾱβ̄v2i+1,2 j+1 = gi, j , (11)

ᾱβ̄v2i+1,2 j+1 + ᾱβv2i+1,2 j+2

+αβ̄v2i+2,2 j+1 +αβv2i+2,2 j+2 = ui, j (12)

for i = 1, . . . ,n, j = 1, . . . ,m, where we have used the
abbreviations ᾱ := 1−α , β̄ := 1−β .

On one hand, these are just 2nm equations for 4nm +
2n + 2m + 1 pixels of v (from which two corner pixels
could be eliminated as they are neither covered by g nor
by u); additional conditions will therefore be necessary to
remove this underdetermination. On the other hand, for
images u and g that do not match perfectly, we expect that
the equations should be satisfied only approximately. which
favours smoothness. Thus, we are led to reformulate our
equation system into the minimisation of an energy function

E(v) = Sg(v)+Su(v) (13)

under suitable constraints, where Sg and Su are quadratic
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error terms for the equations above,

Sg(v) :=
n−1

∑
i=0

m−1

∑
j=0

(
gi, j−αβv2i,2 j−αβ̄v2i,2 j+1

− ᾱβv2i+1,2 j− ᾱβ̄v2i+1,2 j+1
)2

, (14)

Su(v) :=
n−1

∑
i=0

m−1

∑
j=0

(
ui, j− ᾱβ̄v2i+1,2 j+1− ᾱβv2i+1,2 j+2

−αβ̄v2i+2,2 j+1−αβv2i+2,2 j+2
)2

. (15)

Up to constant factors, Sg and Su are just the MSE(g,vg) and
MSE(u,vu) from the alignment-MSE definition.

Let us therefore now discuss possible constraints for this
minimisation problem. These constraints will constitute the
class X of images to minimise over that appeared in the
definition of the alignment-MSE.

Note first that in the equations (11), (12) for subsequent
indices i or j the two input images u and g alternate.
This suggests that for images u and g that do not perfectly
match, solutions of (11), (12) are likely to develop oscillating
patterns like stripes of alternating intensity or checkerboard
structures, so the discrepancy between u and g can be
translated to the image boundary where the first and last row
and column of v are linked only to one of the input images
and therefore provide degrees of freedom that can absorb
the discrepancy. In extreme, this could mean that even for
completely mismatching u and g highly oscillatory images
v might exist that fulfil (11), (12) without any error. Such
solutions should be rejected by a suitable class X .

In order to prevent v from developing strong high-
frequency structures, a natural requirement could be that v
should be essentially interpolating; thus each pixel intensity
vi, j should be in the interval bounded by the intensities
gbi/2c,b j/2c, ub(i−1)/2c,b( j−1)/2c of the two input pixels it is
linked to by (11), (12). Whilst conceptually elegant and free
of additional parameters, this constraint turns the minimi-
sation of (13) into a quadratic minimisation problem on a
highly nonconvex domain. We aim therefore at relaxing this
constraint to a convex regularisation that warrants a unique
solution as well as a practical minimisation procedure.

We extend therefore the energy function (13) to

E(v) = Sg(v)+Su(v)+ γT (∇v) (16)

where T is a regulariser that depends on the derivatives ∇v=
(vx,vy) of v approximated by finite differences, and γ > 0 is
a regularisation weight.

With regard to the quadratic nature of the mean square
error to be measured, a Whittaker-Tikhonov regularisation

T (∇v) := ∑
i, j
|∇v|2 (17)

lends itself as a natural candidate, which yields a convex
quadratic minimisation problem, also removing completely
the non-uniqueness of the original equations. Minimisers
can efficiently be computed using standard iterative solution
methods for the linear system of minimality conditions.

a b

Fig. 3. (a) Superresolution image created in aligning the images from
Fig. 2(a) and (d) with Whittaker-Tikhonov regularisation, γ = 0.003.
Alignment-MSE measurement with this superresolution image yields a
PSNR of 46.05dB. – (b) Same with TV regularisation, γ = 0.03, yielding
a PSNR of 29.92dB.

A further candidate is total variation

T (∇v) := ∑
i, j
|∇v| . (18)

To find minimisers with this regularisation, one can use,
e.g., a gradient descent approach where the regularisation
is realised via a locally analytic scheme related to single-
scale Haar wavelet shrinkage; we use here a variant of the
scheme from [19] adapted to the unequal pixel sizes of v.

As a general rule, in order to just remove the underdeter-
minedness of the equation system (11), (12), it is desirable
to keep the regularisation weight γ rather small.

V. EXPERIMENTS

We evaluate the regularised superresolution alignment pro-
cedure from the preceding two sections by the test case from
Section II. Starting with Whittaker-Tikhonov regularisation,
we observe that for large regularisation weight such as
γ = 0.3 fairly precise estimates for the displacement can be
obtained. However, the superresolution images in this case
are severely blurred, leading to overestimation of alignment-
MSE and low PSNR. For example, the resulting PSNR for
the images from Fig. 2(a) and (d) is 28.61dB. On the other
hand, reducing the regularisation parameter to γ = 0.003
yields extremely high PSNR estimates, e.g. 46.05dB for the
same two images. The reason is that the superresolution
images are far away from interpolating between u and g,
showing unnatural oscillations, see Fig. 3(a). In contrast, TV
regularisation yields plausible results over a wide range of
regularisation parameters, see the exemplary superresolution
image in Fig. 3(b). For a more detailed evaluation we focus
therefore on TV regularisation.

We measure first reconstruction errors for the known exact
displacements, see column (a) of Table III. Next we estimate
the displacements using the TV-regularised error measure
itself, see column (b). Once more the minimisation is done
by a grid search with x and y displacements varying from −1
to +1 in 0.01 steps. The TV regularisation weight γ is set to
0.03. As the application of the superresolution alignment in
this brute-force minimisation is computationally expensive,
we add a third scenario, column (c), in which a faster
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variant of the superresolution alignment with Whittaker-
Tikhonov regularisation and large regularisation parameter
γ = 0.3 is used for the displacement estimation, followed by
the actual MSE/PSNR computation with TV regularisation
and γ = 0.03. The latter method gives in a few cases a
slightly lower PSNR than the ground-truth displacement, but
otherwise approximates the previous scenario well.

It is evident that the variation of PSNR measures is
reduced to about half with respect to the measurements with
bicubic interpolation, both in terms of the amplitude between
maximal and minimal PSNR and the standard deviation.
With an amplitude of 1.2dB it is close to the variation of
the shift-free subset of 0.7dB as reported in Section II.

VI. SUMMARY AND OUTLOOK

In this paper we have studied the reliability of MSE/PSNR
measurements for the quality assessment of blind deconvo-
lution results, where the necessity arises to compare images
that may be shifted relative to each other by non-integer
displacements. An experimental study of simple alignment
procedures with bilinear and bicubic interpolation showed
that it introduces substantial deviations into the discrepancy
measures in question. Comparisons of blind deconvolution
methods should therefore not be based on such procedures.
As an attempt to overcome this difficulty, we have designed a
superresolution-based error measurement procedure that can
substantially reduce the variations in MSE/PSNR estimates
induced by the alignment step, leaving error margins that are
closer to the uncertainty in shift-free cases.

In future work, these tests will have to be extended to
more test cases. The applicability of the proposed procedure
to other error measures such as MSSIM [17] or perceptual
similarity measures [13] will be studied. Further analysis will
be devoted to the observed variation of error measures among
the shift-free reconstructed images. It will also be of interest
to include the PSF into the displacement estimation.

Furthermore, the proposed approach will be used for
comparisons between blind deconvolution methods. Taking
into account the results from the present contribution and

TABLE III
STATISTICS OF DISPLACEMENT MISESTIMATIONS δx, δy AND PSNR FOR

256 RECONSTRUCTED IMAGES WITH SUPERRESOLUTION-BASED

ALIGNMENT WITH TV REGULARISATION, (A) USING EXACT

DISPLACEMENTS, (B) ESTIMATING DISPLACEMENTS BY MSE
MINIMISATION WITH TV REGULARISATION, (C) ESTIMATING

DISPLACEMENTS BY MSE MINIMISATION WITH WHITTAKER-TIKHONOV

REGULARISATION.

Setting (a) (b) (c)
max|δx| 0.09 0.09
std. dev. δx 0.037 0.033
max|δy| 0.08 0.08
std. dev. δy 0.031 0.036
min PSNR 29.38 29.40 29.40
max PSNR 30.47 30.63 30.46
(max−min) PSNR 1.09 1.23 1.06
mean PSNR 29.93 29.98 29.92
std. dev. PSNR 0.240 0.263 0.236

the envisioned more extensive studies will help to assess the
significance of method differences in such work.
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Generative Adversarial Network based Synthesis for
Supervised Medical Image Segmentation*

Thomas Neff1, Christian Payer1, Darko Štern2, Martin Urschler2

Abstract— Modern deep learning methods achieve state-of-
the-art results in many computer vision tasks. While these
methods perform well when trained on large datasets, deep
learning methods suffer from overfitting and lack of gener-
alization given smaller datasets. Especially in medical image
analysis, acquisition of both imaging data and corresponding
ground-truth annotations (e.g. pixel-wise segmentation masks)
as required for supervised tasks, is time consuming and costly,
since experts are needed to manually annotate data. In this work
we study this problem by proposing a new variant of Generative
Adversarial Networks (GANs), which, in addition to synthesized
medical images, also generates segmentation masks for the use
in supervised medical image analysis applications. We evaluate
our approach on a lung segmentation task involving thorax
X-ray images, and show that GANs have the potential to be
used for synthesizing training data in this specific application.

I. INTRODUCTION
Modern machine learning methods based on deep neural

network architectures require large amounts of training data
to achieve the best possible results. For standard com-
puter vision problems, large datasets, such as MNIST [12],
CIFAR10 [10], or ImageNet [23], containing millions of
images, are publicly available. In the medical field, datasets
are typically smaller by several orders of magnitude, as the
acquisition process of medical images is costly and time
consuming. Furthermore, ethical concerns make it harder to
publicly release and share datasets.

Finding methods to improve performance when training
deep learning methods on small datasets is an area of active
research. Recent work in the medical imaging domain has
shown that it is possible to improve performance with small
datasets by putting application specific prior knowledge into
a deep neural network [17]. Another approach has been
made popular by the U-Net [21] architecture for biomedical
image segmentation, which demonstrated how strong data
augmentation can be used to deal with low amounts of
training data in deep network architectures. Even though
data augmentation is simple to implement and achieves good
results, it is only able to produce fixed variations of any given
dataset, requiring the augmentation to fit the given dataset.

Transfer learning approaches such as [19] show that
training on large datasets (e.g. ImageNet) followed by fine-
tuning on a small dataset achieves state-of-the-art results for
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datasets consisting of natural images. For medical imaging,
the learned features from large natural image datasets may
not be suitable, as the image features are very different com-
pared to natural images. Furthermore, there is no straight-
forward way of transferring 2D features to 3D features,
which poses a limitation when working with 3D medical
images. Due to the difference in features between medical
and natural images, another approach is to use unsupervised
feature extractors (e.g. Autoencoders [27]) which are trained
on medical images only. Nevertheless, transferring weights
learned by these unsupervised methods requires the target
network architecture to be close to the source architecture,
which is rarely the case.

The requirement for large amounts of training data also
popularized image generation methods in deep learning con-
texts. Recently, research has shown that Generative Adver-
sarial Networks (GANs) [4] can be used for a large variety of
applications such as image-to-image translation [6] or unsu-
pervised representation learning [18]. GANs have also been
successfully used for unsupervised domain adaptation [8]
of multi-modal medical imaging data, demonstrating their
potential for use with small medical imaging datasets.

Our goal was to use GANs in a completely different way,
by using the high quality of the generated images to augment
our small set of training data. We propose a novel modifica-
tion to GANs, which generates new, synthetic images as well
as the corresponding segmentation masks from random noise.
This allows us to use the synthetic data as training data for a
supervised segmentation task. We show that this architecture
manages to produce convincing segmentation masks for the
generated images. We evaluate the generated images in two
different scenarios on an image segmentation task and show
that training on purely generated images achieves results
comparable to training on real images for very small datasets.

II. RELATED WORK
A. Training Data Augmentation

Training data augmentation is a commonly used method to
reduce the effects of overfitting with small training datasets
as well as improve the generalization of the trained network.
Most machine learning frameworks allow for simple aug-
mentation such as rotation, translation or intensity shifts of
training data. AlexNet [11] was one of the first convolutional
neural network (CNN) architectures to implement online
data augmentation with successful results. However, data
augmentation only achieves good results if the augmentation
can actually occur in the data, and is relevant to the required
application. For medical imaging, elastic deformations [21]
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Fig. 1. Proposed GAN architecture incorporating the segmentation mask in the real and synthetic image batches

are especially useful for biomedical segmentation, as they
can provide realistic variations of the input data, similar to
natural variations.

B. Transfer Learning

Transfer learning aims to improve the learning of a target
task in a target domain, given the learned knowledge of
a source task in a source domain [16]. Applied to neu-
ral networks, it describes the process of training a source
network on a source dataset, followed by transferring the
learned features to train a different target network on a target
dataset [28]. In the context of small datasets, this can be
applied in different ways. It is possible to train on a large
dataset, e.g. ImageNet, remove the final layer of the network
architecture and fine-tune to a smaller target dataset [19]. A
different approach is taken by using Autoencoders, which
compress a given image to a vector representation and
reconstruct the image from this compressed representation.
As an example, denoising Autoencoders [27] have been
used to extract robust features with great success. However,
transferring Autoencoder features typically requires a target
network architecture very similar to the source architecture,
which is rarely the case.

C. Image Generation

A novel approach to tackle the issue of small datasets
for training deep learning methods is to synthesize new
training data via image generation methods. Recent research
has shown that it is possible to render realistic images using
3D models to alleviate the problem of small datasets [22].
This has the advantage of being able to create an unlimited
amount of training data of various scenarios, as long as
the images are realistic enough. Rendered images have also
recently been used to improve the performance of anatomical
landmark detection in medical applications by learning on a
dataset of rendered 3D models and fine-tuning on medical
data [20]. The disadvantage of using rendered images is that
the virtual model and scene parameters need to be explicitly
defined and tuned towards the application, which is time
consuming.

Generative Adversarial Networks [4] represent a different
approach to image generation. A generator and a discrimi-
nator network are trained to compete against each other. The
goal of the discriminator is to decide if any given image is
real or synthetic. The generator generates synthetic images
in the hope of fooling the discriminator. Since the generator
never directly sees the training data and only receives its
gradients from the discriminator decision, GANs are also
resistant to overfitting [3]. However, the training process
of GANs is very sensitive to changes in hyperparameters.
The problem of finding the Nash Equilibrium between
the generator and the discriminator generally leads to an
unstable training process, but recent architectures such as
DCGAN [18] and WassersteinGAN [2] improved on this
substantially.

III. METHOD AND ARCHITECTURE

Standard GANs either exclusively learn to generate im-
ages [4], or learn to perform image transformations [6].
However, in order to use the generated images for other
supervised deep learning tasks, like image segmentation, it is
also necessary to have a ground-truth solution for any given
input image.

We propose a modification to the standard GAN archi-
tecture, which forces the generator to create segmentation
masks in addition to the generated images. The discriminator
then has to decide whether an observed image-segmentation-
pair is real or synthetic. This forces both the discriminator
and generator to implicitly learn about the structure of the
ground-truth, making the resulting generated data useful for
training in a supervised setup. While it is known that using
ground-truth labels in the discriminator improves the image
quality [24], this is the first time, to our knowledge, that
the ground-truth is used to directly generate new image-
segmentation-pairs. Fig. 1 illustrates this architecture.

As the foundation for our proposed architecture, we use
the DCGAN [18] architecture, which has shown to achieve
good results while having increased training stability in
many different applications, compared to the previous GAN
architectures. DCGAN uses a convolutional generator and
discriminator, makes use of batch normalization, and replaces
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all pooling layers with convolutions. The generator takes
a noise vector z as input and feeds it through multiple
fractionally strided convolutions in a fully convolutional
manner to generate synthetic images G(z). The discriminator
receives both real images x and synthetic images G(z), feeds
them through a fully convolutional classification network
which classifies any given image as either real, i.e. D = 1, or
synthetic, i.e. D= 0. The discriminator uses the cross entropy
loss function

lD =
1
m

m

∑
i=1

[
log
(

D
(

G
(

z(i)
)))

+ log
(

1−D
(

x(i)
))]

, (1)

where the mini-batch size m describes the number of training
inputs for stochastic gradient descent [15], i denotes the
current index in the mini-batch, x(i) is the real image, z(i)

is the noise vector sample, D is the discriminator output and
G is the generator output. The generator loss
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G
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(2)

only takes the discriminator output of the generated images
D(G(z)) into account.

By minimizing lG, the generator is trained to generate
images G(z) which look real, i.e. D(G(z)) ≈ 1, while by
minimizing lD, the discriminator is trained to correctly clas-
sify real and synthetic images, i.e. D(x)≈ 1 and D(G(z))≈ 0.
Therefore, generator and discriminator play against each
other, as the generator creates synthetic images which fool
the discriminator into believing they are real, while the
discriminator attempts to classify real and synthetic images
correctly every time.

In order to implement the additional segmentation mask
generation, the DCGAN architecture was modified to use
2-channel images, where the first channel corresponds to
the image, and the second channel corresponds to the
segmentation mask. The discriminator network then simply
classifies image-segmentation-pairs instead of images only.
The GAN therefore creates synthetic image-segmentation-
pairs, which we then further use for the supervised training
of a segmentation task. For most GAN setups, this change
is simple to implement, as no change in the training process
is necessary, making this adaptation very flexible.

IV. EVALUATION

A. Materials

We evaluate our proposed method using a 3-fold cross-
validation setup on the SCR Lung Database [26], which is
composed of the JSRT Lung Database [25] with correspond-
ing ground-truth segmentation masks. The cross-validation
splits are set up so that all 247 images are tested once,
using 82 test images, and randomly picking 20 validation
images and 145 training images from the remaining images.
The images are downscaled to a resolution of 128x128, on
which all evaluations are performed. In order to demonstrate
possible strengths and limitations of the GAN for even

smaller datasets, we evaluate different scenarios on the full
dataset, as well as on a reduced dataset. For the reduced
dataset, the cross-validation setup for test and validation data
is the same as for the full dataset, only the amount of training
data is reduced to 30 images by randomly picking them from
the training images of the full dataset. For the quantitative
evaluation, we chose to perform image segmentation using
the U-Net [21] fully convolutional network architecture.

B. Experimental Setup

For our proposed GAN architecture, we adapted the
DCGAN [18] TensorFlow [1] implementation tf-dcgan1.
We modified the architecture to include support for the
generation of segmentation masks and increased the image
resolution to 128x128. The higher resolution made it neces-
sary to increase the number of generator and discriminator
feature maps. We also used a random noise vector z of
higher dimension as the generator input. The noise vector
dimension was fixed at 400, using uniform noise in the
range of [−1,1]. Generator feature map sizes were set
to [512,256,128,128,128], discriminator feature map sizes
were set to [128,128,256,512,512]. As suggested in [18], the
convolutional kernel sizes were kept at 5. The weights of all
convolutional layers were initialized randomly using a nor-
mal distribution with zero mean and a standard deviation of
0.05. The input data was scaled to be in the range of [−1,1].
The used optimizer was Adam [9] with a learning rate of
0.0004 and an exponential decay rate for the first and second
moment estimates of β1 = 0.5, β2 = 0.999. The training was
done using a mini-batch size of 128. The network was trained
for 12000 mini-batches in total, as after 12000 mini-batches
the overall quality of the generated images G(z) was high
for all cross-validation folds. Samples were generated every
200 mini-batches of training. To slightly reduce the impact of
Mode Collapse [3], where the generator learns to map several
different noise vector inputs z to the same output image
G(z), the resulting GAN images were checked for similarity
by using a perceptual image hash, which removes images
that are almost identical in a batch of samples. Training the
GAN took approximately 24 hours per cross-validation fold
on an Intel i7-6700HQ CPU @ 2.60 GHz and an NVidia
GTX980M GPU with 8 GB of GPU memory.

For the quantitative segmentation results, we used a U-Net
architecture of depth 4, replacing max pooling with average
pooling for downsampling. This U-Net was implemented
using Caffe [7]. Although data augmentation is used to great
effect and is also described as a strength of the U-Net [21],
we decided not to use it in any of our experiments, in order to
specifically evaluate the impact the synthetic GAN samples
have on the training process and the resulting segmentation
masks. All convolution kernel sizes were set to 3, with
feature map sizes of 64 and weights initialized using the
MSRA [5] method. We used the Nesterov [14] optimizer at
a learning rate of 0.00001 for the segmentation task, with
a momentum of 0.99 and a weight decay of 0.0005. The

1https://github.com/sugyan/tf-dcgan
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Fig. 2. Sample images and segmentation masks from the real training data (top) compared to synthetic data created by the GAN trained on the full
training set (bottom)

mini-batch size was set to 16. The network was trained
until the average of the validation error over the last 10
epochs started to increase. The input data was scaled to be in
the range of [−1,1]. Since the generated GAN images and
segmentation masks are in the value range of [−1,1], the
resulting segmentation image needs to be post-processed to
arrive at a binary segmentation mask, which can then be used
as an input for the U-Net. To achieve this post-processing,
a threshold, largest component and hole filling filter were
applied to the generated GAN segmentation masks before
they were fed into the U-Net. The threshold was set at the
pixel value of 150, and the hole-filling algorithm used is
based on geodesic morphology as described in Chapter 6
of [13]. We tested the segmentation performance when using
only real training data, a mix of real and synthetic data,
as well as only synthetic data. For the synthetic data, we
generated a batch of 120 images and segmentation masks
from the fully trained GAN. For evaluating the segmentation
results, we used the Dice coefficient and Hausdorff distance
metrics. Training the U-Net took approximately 3 hours per
experiment on the same machine as described above.

TABLE I
QUANTITATIVE RESULTS OF SEGMENTATION USING THE FULL

TRAINING SET

U-Net training data Evaluation metrics
# Real # Synthetic Dice

(mean)
Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

145 0 0.9608 0.0101 6.1229 5.0183
145 120 0.9537 0.0121 6.3147 4.8708
0 120 0.9172 0.0283 9.3564 6.0651

C. Results

For the full dataset, Fig. 2 illustrates generated images and
segmentation masks from the fully trained GAN, compared
to real images and segmentation masks. The quantitative
evaluation results for the full dataset can be seen in Table I.

For the reduced dataset, the quantitative evaluation results
are shown in Table II.

V. DISCUSSION AND CONCLUSION

Small datasets pose large issues for deep learning methods,
leading to overfitting and lack of generalization. We propose
an adaptation of Generative Adversarial Networks, where the
generator network is trained to generate artificial images in
addition to their corresponding segmentation masks. While
the qualitative results shown look very promising, they
also heavily depend on the amount of training the GAN
receives. Fig. 2 shows that using a fully trained GAN to
create segmentation data in addition to image data still
leads to high quality images. The segmentation also matches
the generated images very well, suggesting that both the
generator and discriminator are forced to learn the structure
of the segmentation as well. However, it can also be seen
that small noise artefacts appear in the region of the left
lung of the image. These artefacts do not appear if the GAN

TABLE II
QUANTITATIVE RESULTS OF SEGMENTATION USING THE REDUCED

TRAINING SET

U-Net training data Evaluation metrics
# Real # Synthetic Dice

(mean)
Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

30 0 0.9464 0.0158 7.6384 6.0395
30 120 0.9394 0.0133 7.2885 5.1007
0 120 0.9312 0.0199 7.6091 5.5654

143



Fig. 3. Sample images and segmentation masks generated by the GAN
trained on the full dataset if the training is stopped too early

is trained without generating segmentation masks. We also
experience a mild form of Mode Collapse [3], as some of
the generated images look very similar. While the images
obtained by the fully trained GAN shown in Fig. 2 have a
high quality, Fig. 3 illustrates that, if the training time for
the GAN is too short, generated images are unusable for
later supervised training, as the image quality is too low.
Finding a suitable stopping point for GAN training is still a
hot topic of current research, as a lower GAN loss during
training typically does not indicate higher image quality of
the generated images. However, recent modifications to the
GAN learning process show that it is possible to correlate
the GAN loss with image quality [2], which enables the
possibility of stopping the GAN training once the loss is
under a certain threshold.

The results of the quantitative evaluation on the full dataset
shown in Table I indicate that the GAN images are not
sufficient to replace the real images in this case. Using
a combination of real and synthetic images to train our
segmentation network, the Dice score and Hausdorff distance
results are comparable to the results obtained by training on
real images only. When only synthetic images obtained by
the GAN are used to train the segmentation network, the
performance is worse. For the reduced dataset evaluation,
the results shown in Table II are not as conclusive. The
network with the best Dice score was trained exclusively
on real images, while the network with the lowest Hausdorff
distance was trained on a combination of real and synthetic
images. A very interesting point, however, is that for the
reduced dataset, the network trained exclusively on generated
GAN images performed almost as well as the network trained
on real images, showing significant potential of GANs for
training data generation. It is also worth mentioning that the
U-Net trained exclusively on generated GAN images from
the reduced dataset performed better than the U-Net trained
exclusively on generated GAN images from the full dataset.
We suspect that this is because the GAN has an easier time
to converge to generating high quality images for the reduced
dataset compared to the full dataset, leading to better image
quality of the generated images.

The quantitative results still have room for improvement.
As a further outlook, it would be interesting to incorporate
data augmentation in the GAN by using elastic deformations
to induce variance in the GAN’s training data, which may

potentially lead to a greater variety of generated GAN
images. Overall, we demonstrated that GANs have significant
potential for synthesis of medical training data for supervised
tasks by learning to generate segmentation masks in addition
to artificial image data.
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Using a U-Shaped Neural Network for minutiae extraction trained from
refined, synthetic fingerprints

Thomas Pinetz1, Daniel Soukup 1, Reinhold Huber-Mörk 1 and Robert Sablatnig2

Abstract— Minutiae extraction is an important step for
robust fingerprint identification. However, existing minutia
extraction algorithms rely on time consuming and fragile image
enhancement steps in order to work robustly. We propose a
new approach, combining enhancement and extraction into a
Convolutional Neural Network (CNN). This network is trained
from scratch using synthetic fingerprints. To bridge the gap
between synthetic and real fingerprints, refinements are used.
Here, an approach based on Generative Adversarial Networks
(GANs) is used to generate fingerprints suited for training
such a network and improving its matching score on real
fingerprints.

I. INTRODUCTION

Because of their uniqueness and their temporal stabil-
ity [10], fingerprint minutiae are a reliable way to determine
the identity of an individual. Minutiae points are irregularities
in ridge patterns, described using coordinates and orienta-
tion [17]. Over 150 different irregularities in fingerprints
have been identified [18]. While the amount of minutiae
on a single fingerprint varies from finger to finger, there
are approximately one hundred of such points comprising
a regular fingerprint [17]. It was reported that only 10 - 15
minutiae are required to reliably identify an individual [17].

Currently fingerprint matchers like BOZORTH [25] work
using minutiae landmarks. Extraction of minutiae is a hard
problem though, which heavily relies on good quality fin-
gerprint images [10]. To combat this, image enhancement
algorithms are used [4]. Still, reliable minutiae extraction on
arbitrary fingerprint images is an open problem as existing
feature extractors largely rely on image quality (focus, reso-
lution, skin condition, etc.) [23].

With the rise of deep learning in similar fields [7], [14],
[19] and the availability of synthetic fingerprint generators
[2], [5], it looks promising to use such methods for minu-
tiae extraction. This paper contributes a new network for
minutiae extraction following the idea to solve an equivalent
segmentation problem. In this work the synthetic fingerprint
generator Anguli [2] is used because of its availability.
Anguli generates the training data needed as is shown in
Fig. 1a. Because of the difference to real data as visualized
in Fig. 1(d-f), augmentations are used (Fig. 1b) as described
in Section IV. Here we contribute a novel technique to refine
fingerprints based on the GANs [8] paradigm. An example
output can be seen in Fig. 1c. Regularization is used to
force the refinement network to retain the annotation data

1Austrian Institute of Technology, Donau-City-Straße 1,
1220 Wien {thomas.pinetz.fl, daniel.soukup,
reinhold.huber-moerk}@ait.ac.at

2TU Wien, Karlsplatz 1, 1040 Wien sab@caa.tuwien.ac.at

(a) Anguli generated
fingeprint.

(b) Augmented finger-
print.

(c) Refined fingerprint
using our GAN based
approach.

(d) Finger taken from
FVC2000 DB1.

(e) Finger taken from
FVC2000 DB3.

(f) Finger taken from
UareU dataset.

Fig. 1. Illustration of the fingerprint data used in this work. (a-c are
synthetic fingerprints, while d-f are real fingerprints.)

while outputting a refined representation of the simulated
fingerprint.

The rest of the paper is organized as follows. Section II
reviews related work. In Section III and IV the minutiae
extraction algorithm and the refinement method are described
in detail. In Section V the results obtained with our method
are presented. Finally in Section VI we draw our conclusions.

II. RELATED WORK

Minutiae detection for a sufficiently enhanced image is
done by binarization of the grayscale image [10]. Currently
fingerprint minutiae extractors use image enhancement rou-
tines to achieve the desired quality [10], [4], [25], [24].

Recently there has been a similar approach to the minutiae
extraction problem using a pre-trained Convolutional Neural
Network, in a forensic setting [23]. However the CNN
in [23] is used as a pre-processing step to find large regions
containing a minutiae point. Then logistic regression and
region pooling are used to extract the actual minutia position.

In our approach the minutia extraction problem is rede-
fined as a binary segmentation task, which the CNN solves
directly. With our method there is no need for any time
consuming pre- or post-processing. Additionally, synthetic
fingerprint generators are used to train the network from
scratch and make it suitable for the minutiae extraction
problem.
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Fig. 2. The whole processing pipeline used for training the minutiae extraction network.

The U-shaped network architecture applied here is used for
medical segmentation applications [19], [7]. Training deep
neural networks is also the focus of [9], where residual
connections are used to allow training of very deep neural
networks. Research into making residual connection better
is reported in [12], [27], [7].

The GAN framework is first introduced in [8]. Improve-
ments to the stability of adversarial training are proposed in
[20], [3]. Based on the results in GANs a refinement network
is introduced in [21] for the gaze direction of eye images.
In our work a similar approach is used to refine fingerprints.

III. MINUTIAE EXTRACTION USING CNN

The ground truth minutiae list is turned into a binary
image by creating an image with the same shape as the
corresponding fingerprint and setting every pixel to zero.
Then every point in a minutiae region is set to one. A minutia
region is defined as a 7× 7 pixel square encapsulating the
minutia landmark as its centroid. Our deep neural network
is used to find a mapping from the input fingerprint to this
binary image. This procedure turns the task into a binary
segmentation problem.

A. Training Pipeline

The synthetic fingerprint generator Anguli [2] is used to
generate a training set. As can be seen in Fig. 2 Verifinger
is used to extract the ground truth of the original ridge
pattern. For the purpose of this algorithm it is assumed that
the minutiae extractor works perfectly on the ridge pattern.
Therefore the estimated bifurcations and terminations of the
ridge image in Fig. 2 are input to the learning stage as well
as ground truth for evaluation. The deviation of the minutiae
map and the network output is calculated using dice loss
(1), where α is a smoothing factor. Dice loss is reported to
produce almost binary outputs [7].

loss =− 2ypredytrue +α
∑ypred +∑ytrue +α

(1)

B. Network Architecture

The base architecture of the models used in this work
can be seen in Fig. 3 and builds on the U-Shaped Network
pioneered in [19]. The key differences are:

1) Strided convolution instead of pooling to learn down-
sampling filters.

2) 224 × 224 crop to preserve the aspect ratio of the
fingerprints.

3) Layer blocks on intermediate levels of the U-Shaped
Network instead of pure convolutions.

4) Batch Normalization [11] before every convolution.
5) Dropout with a probability of 0.5 before the final

Convolution Layer.
6) Upsampling is done by repeating the pixel in a 2×2

window. Then the upsampling feature maps are con-
catenated with the output feature maps of the layer
block on the same level in the downsampling path.
Finally batch normalization, a Regularized Linear Unit
(ReLU) activation function and a 3×3 convolution are
applied to all the feature maps, before they are passed
on to the next layer block.

To preserve information flow, the amount of filters is
doubled, when the size of the input data is reduced, as
observed in [22]. The layer blocks on specific levels vary
in the number of filters used. A model is build with only
Wide Residual Blocks [27] (WRN), one with only Densely
Connected Blocks [12] (DenseNet) and one with only Bot-
tleneck Residual Blocks [7] (ResUnet). In total, each model
used in this work has approximately 8 million parameters.

C. Extracting a Minutiae List

The output of the neural network is a binary minutia
regions map. For biometric authentication, a list of minutia
points with quality and orientation is needed. For the final
position of the minutiae the connected components of the
binary map are used. The centroid of each component
represents one minutia position. The area a of the connected
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Fig. 3. U-Shaped network architecture used for minutiae extraction.

(a) (b)

Fig. 4. Estimation of the orientation field for a sample fingerprint taken
from the FVC2000 DB 1.

components is used to determine the quality of the minutiae
between 0−100 using quality = min(a∗2,100).

The orientation of the minutiae is extracted using an
orientation field as described in [10]. The orientation is
estimated for every 16×16 region as visualized in Fig. 4b.

IV. FINGERPRINT REFINEMENT

The synthetic fingerprint generator Anguli [2] is used
to generate random ridge patterns (Fig. 5a). Then multiple
variations of every ridge pattern are generated by using
different noise models as can be seen in Fig. 5(b,c). Each
variation is called an impression of that particular ridge
pattern. Because Anguli does not output the minutiae in-
formation, a commercial minutiae extractor, Verifinger [24],
is used to extract the minutiae data out of the ridge pattern.
For the purpose of this paper it is assumed that Verifinger
works perfectly on the binary ridge pattern. Those minutiae
landmarks are then used for all the impressions (Fig. 5(a-c)).

A. Augmentation on Synthetic Fingerprints

By comparing Fig. 1(d-f) with Fig. 5(a-c) the differences
between real and synthetic fingerprints are easily spotted. To
bridge this gap the following augmentations are used:

1) Non linear distortions: To model the contact region of
a fingerprint, random non-linear distortions are used.

(a) (b) (c)

Fig. 5. Anguli [2] generated ridge pattern with two different impressions
and the minutiae extracted using Verifinger [24] .

This also introduces changes in local ridge frequency
to synthetic fingerprints as can be seen in Fig. 6d. The
distorted ridge pattern is used by Anguli to generate
new impressions.

2) Morphological operations: Grayscale Dilation and
Erosion are used to model wet and dry fingerprint
images [5]. An example of this can be seen in Fig.
6c.

3) Random rotation, translation and shearing: Fin-
gerprint images are randomly translated, rotated and
sheared to gain invariance to linear transformations.
An example of this can be seen in Fig. 6a.

4) Random Blurs: The images are randomly blurred
with a Gaussian kernel, where the variance varies to
simulate noisy fingerprints as can be seen in Fig. 6b.

5) Random Mirroring: Fingerprint images are randomly
mirrored either horizontally or vertically with a 0.5
probability for each direction.

6) Refinement Network: A Refinement Neural Network,
based on GANs is used to refine images to look
more like real world fingerprints. The input size to the
network is 224×224. Therefore synthetic fingerprints
are resized by a random factor between zero and
the difference in image dimension, while keeping the
aspect ratio. Then a random 224 × 224 crop of the
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(a) Linear Transform
Augmentation

(b) Gaussian Augmen-
tation

(c) Morphological
Augmentation

(d) Distorted Ground
Truth Ridge Pattern

(e) Refinement Net-
work Input

(f) Refinement
Network Output with
minutiae regions.

Fig. 6. Illustration of the refined data.

resized image is used as input to the network. An
example input and output image can be seen in Fig.
6e and Fig. 6f.

B. Refinement Network

The Refinement Network used in this work is based on the
GAN paradigm, where a dual optimization problem is solved.
A refiner and a discriminator network are simultaneously
trained against each other. The refiner network tries to fool
the discriminator by applying refinements to a synthetic
fingerprint, while the discriminator is used to discriminate
between fake and real data. The purpose of such a network
is to find a Nash Equilibrium [20] where both networks are
optimal.

The only application of a refinement network to our
knowledge is in [21]. In our work the approach therein is
extended by using noise on the input data to improve the
stability of training such a network [3].

One key observation is that using the input image itself for
regularization is limiting the amount of possible refinements
for fingerprints. Here we propose to use the Hessian of the
image instead of the image itself for regularization. The
Hessian represents the actual ridge pattern of the fingerprint
independent of the pixel intensity values. Mean Squared
Error is used to penalize deviation from the Hessian, while
the refiner network still needs to fool the discriminator
network.

The refiner network uses the same architecture as the
minutiae extraction network (Fig. 3), only smaller in the
number of layer blocks and filters. Wide residual blocks [27]

are used for every layer block starting with 32 filters and
doubled on its way down and halved on their way up.
Fingerprints like in Fig. 6f are produced by this method.
Here, the problem observed by current synthetic fingerprint
refiners of modeling noise is addressed by using such a
network [5].

V. EXPERIMENTS

This section showcases the results obtained with our
method. All our models were programmed using the python
framework Keras [6] and trained on a Nvidia Geforce Titan
X. For training, the Adam [13] optimizer is used with an
initial learning rate of 0.001. The learning rate is cut in half,
if the validation error has not decreased for three consecutive
epochs. For other minutiae extraction algorithms, an Intel
Xeon - W3550 CPU was used.

A. Experimental Setup

For training 28.000 fingerprints with five impressions per
fingerprint were generated using Anguli. In total 140.000
fingerprints were used for training, which included a vali-
dation set of 10.000 fingerprints. The different impressions
can be seen in Fig. 1. Out of the impressions three contain
medium noise and the other two use little and heavy noise
respectively.

Non linear distortions are used on 3.000 of those fin-
gerprints and on all of their impressions. All the other
augmentations, as described in Section IV are applied on
the fly.

An annotated real dataset of 300 fingerprints constructed
from 220 samples of the sd04 [26] and the 80 images of the
fvc2000 DB4 B [15] dataset are used additionally to increase
the effectiveness of the classifier. The real dataset used for
the refinement network is the UareU [1] dataset.

B. Deep Learning Experiments

In Fig. 9 the difference in performance for the various
layer blocks defined in Section III can be seen. In contrast
to the findings in [12] using densely connected blocks did not
work as well for the minutiae detection problem. Bottleneck
residual blocks performed similarly to wide residual blocks,
which is similar to the findings in the original paper [27].

C. Experiments on FVC2000 databases

Here, the performance of our method is compared to other
minutiae extraction algorithms on the FVC2000 [15] dataset
consisting of real world fingerprints. To match the minutiae
against each other, the minutiae matcher BOZORTH [25]
was used. The results of this experiment can be seen in Fig.
7 and Fig. 8, where GAR and FAR denote the Genuine
Acceptance Rate and False Acceptance Rate accordingly.
Using those metrics the Equal Error Rate (EER) can be
calculated by finding the rate where (2) holds.

GAR = 1−FAR (2)

The extracted EER of the evaluated minutiae extractors
is shown in Table I. Our algorithm performs better than
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Fig. 7. Equal Error Rate Comparison on FVC2000 [15] DB 1 using synthetic, augmentated or refined data.
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Fig. 8. Equal Error Rate Comparison on FVC2000 [15] DB 3 using synthetic, augmentated or refined data.

Fig. 9. Model comparision between Dense Blocks, Wide Residual Blocks
and Bottleneck Residual Blocks.

MINDTCT on real datasets. Also we report clear perfor-
mance improvements by using a refinement network. Addi-
tionally it is also the fastest method, when run on a GPU.

D. Sample Results for Refinement Network
The only quality metric to our knowledge for GANs is

the inception score [20], which is not applicable for our use
case. Therefore, this section shows the visual result of the
refinement network. In Fig. 10 we can see a comparison of
using self regularized MSE versus the Hessian regularized
version of the network. In the Hessian regularized examples
the ridge pattern is better preserved and less artifacts are
introduced into the refined fingerprint.

E. Sample Results for Various Fingers
An illustration on which minutiae are found using different

training data is given in Fig. 11. Here, by training solely on

TABLE I
EQUAL ERROR RATE AND ENROLLMENT SPEED FOR FVC2000 [15]

DATABASES

Algorithm DB 1 DB 3 Time in sec.
Synth. Unet FCNN 21.80% 32.75% 0.12 on gpu
Augm. Unet FCNN 7.01% 16.63% 0.12 on gpu

Ref. Unet FCNN 5.99% 9.42% 0.12 on gpu
MINDTCT [25] 6.63% 12.11% 0.14 on cpu
Verifinger [24] 3.28% 6.31% 1.08 on cpu

(a) Self regularized
GAN Output

(b) Hessian regular-
ized GAN Output.

(c) Hessian regular-
ized GAN Output.

Fig. 10. Sample refiner network output images for self regularized and
Hessian regularized training based on the GAN approach.

synthetic fingerprints the minutiae map is clearly wrong as
shown in Fig. 11. The network trained on augmented data
outputs a subset of the correct minutiae. In contrast, the
network trained on GAN data outputs a reasonable minutiae
map for this example.

An example of a clear mismatch between two images of
the same fingerprint can be seen in Fig. 12. Even though
the matching score is 0%, overlapping minutiae are found.
However, the orientation does not match because of the noise
in the fingerprint.
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(a) FCNN trained with
synthetic data

(b) FCNN trained
with augmented data

(c) FCNN trained on
augmented + GAN
data.

Fig. 11. Comparison of the output of the same network trained only on
synthetic, on augmented and on refined data.

Fig. 12. 0% match of two impressions of the same finger taken from FVC
2002 [16] database with minutiae extracted using the FCNN algorithm.

VI. CONCLUSION

In this work the possibility of reformulating the fingerprint
minutiae extraction problem as a binary segmentation task is
shown. Deep learning is used to address this problem. Even
with synthetic data as a substitute to annotated real data, the
algorithm is able to detect reasonable minutiae with better
results than MINDTCT on the FVC2000 dataset without
fine tuning of any parameters. Additionally, the performance
gain of using our refinement approach was clearly illustrated
and advances in training GANs are likely to bring better
performance for this minutiae extraction algorithm. A first
step is made by using the Hessian instead of the image itself
for regularization. However, this performance gain illustrates
the dependence on good training data.

Currently, the angle of the minutiae points are calculated
using an orientation field. In a future network, we want to
learn the orientation of the minutiae by using the orientation
field of the ground truth ridge pattern. We believe that better
than state-of-the-art performance can be reached using deep
learning given sufficiently diverse training data.
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Photometric Stereo in Multi-Line Scan Framework under Complex
Illumination via Simulation and Learning

Dominik Hirner12, Svorad Štolc1, Thomas Pock2

Fig. 1: Visualization of the image stack created by the
multi-line scan acquisition. The middle part shows the EPI-
lines (here a slice through the image stack). The dashed
line represents the read out of one such EPI-line with the
respective RGB intensity vector e, which is used in order
to infer (by training the network) the surface gradient in
transport direction ∇x.

Abstract— This paper presents a neural network implemen-
tation of photometric stereo formulated as a regression task.
Photometric stereo estimates the surface normals by measuring
the irradiance of any visible given point under different lighting
angles. Instead of the traditional setup, where the object has a
fixed position and the illumination angles changes around the
object, we use two constant light sources. In order to produce
different illumination geometries, the object is moved under a
multi-line scan camera. In this paper we show an approach
where we present a multi-layer perceptron with a number
of intensity vectors (i.e. points with constant albedo under
different illumination angles) from randomly chosen pixels of
six materials with different reflectance properties. We train it to
estimate the gradient of the surface normal along the transport
direction of the given point. This completely eliminates the need
of knowing the light source configuration while still remaining a
competitive accuracy even when presented with materials which
have non-Lambertian surface properties. Due to the random
pooling of the pixels our implementation is also independent
from spatial information.

I. INTRODUCTION
The goal of photometric stereo is to estimate the surface

normals (and therefore 3D information) of an object using
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2D images. This is done by exploiting Lambert’s cosine
law [1], which states that the intensity of the light at a point
is directly proportional to the cosine of its surface normal and
the angle of the incident light (see Eq. (1)). By measuring
the light intensity of each point under different known and
fixed illumination angles the surface normal of each point
can be calculated. This approach was first introduced by
Woodham in 1980 [2]. However, this equation only holds
with the assumption of a Lambertian surface, i.e. a surface
that scatters the light in all directions equally. In case of
specular reflections the observed intensity of a point also
dependents on the position of the observer and therefore
the basic approach of photometric stereo does not hold. In
the standard photometric stereo approach the orientation and
position of the observer (i.e. camera) is known and fixed.
Light-field processing via light-field cameras can be seen as
an add-on to the general photometric stereo idea. A light-field
is a 4-D radiance function written as L(u,v,s, t), where (u,v)
denotes the angle, and (s, t) denotes the position of each
light ray respectively. To capture a light-field with a camera,
a number of different approaches exist, for instance commer-
cially avaliable plenoptic cameras such as the Lytro [3] or
by using an array of cameras (multi-camera array) [4]. Using
multi-line scan acquisition with a light-field in order to create
2.5/3D surface structure was first introduced in [5]. The same
multi-line scan light field camera was used in this approach,
which acquires multiple single lines (in our implementation
13) with different viewing angles at one time. Between the
active lines on the sensor there are a number of predefined
inactive lines (in our implementation 40), so that different
viewing angles are produced within one acquisition step
without the need of placing several cameras (as e.g. in a
multi-camera array).

In our setup an object is placed underneath the camera
and is transported in a defined direction over time with two
constant light strips placed orthogonal to the transport direc-
tion. Between two acquisition steps si and si+1 the object has
to move the distance equivalent by exactly one pixel. After
the acquisition process, the single lines acquired by one such
step of each active line on the sensor are concatenated and
thus all possible lighting angles and a number of different
views are created. This produces a 3D light field structure
(two spatial and one directional dimension), instead of the
usual 4D structure. This 3D light field can be represented
as an image stack that can be seen in Fig. 1. This allows
for a fast in-line acquisition suitable for industrial inspection.
However, since different lighting responses are dependent on
the movement of the object, only inference in the transport
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(a) Surface matte (b) Surface glossy (c) Ground Truth

(d) Prediction Lambertian (e) Prediction Semi-glossy (f) Prediction glossy

Fig. 2: Yellow pixels show positive and blue pixels show negative gradients. Predictions of the surface gradient in transport
direction are shown as follows: (a) Surface of the Lambertian material (first view of the 3D light field data), (b) Surface of
the glossy material (first view of the 3D light field data), (c) ground truth surface normal gradient in transport direction ∇x
used as labels for the regression network, (d) surface normal gradient in transport direction of a Lambertian material learned
by the network, (e) surface normal gradient in transport direction of a semi-glossy (gloss = 0.25, roughness = 0.75, see
Fig. 4) material learned by the network, (f) surface normal gradient in transport direction of a very glossy material learned
by the network. The properties of the different materials can be seen in Fig. 4. One can see that the peaks of the specular
lobes (i.e. areas of the biggest negative or positive gradients in (c)) can produce wrong gradient signs.

direction is possible.
The basic method of photometric stereo uses the fact that

the observed intensity (or light response) of a given point
is dependent on the surface normal orientation as well as
the direction of the light, under the assumption of viewing
a Lambertian material and a constant albedo. This can be
formulated as follows:

e = L ·n ·a (1)

where e = [e1 . . .en]
T is a vector of observed intensities, L

is a matrix describing the light directions and n denotes the
surface normal n = [nx,ny,nz]

T . a denotes the albedo which
is a scalar value in range a ∈ [0,1]. Inverting this linear
equation system yields:

n ·a = L+ · e (2)

Solving this over-determined least squares problem pro-
duces an estimation of the surface normal (Note: L+

is the Pseudo-Inverse of the light direction matrix us-
ing, e.g. the Moore-Penrose method [6]). Instead of solv-
ing Eq. (1) directly we use a multi-layer perceptron
in order to learn a mapping between the intensity re-
sponses (eR = [eR1 . . .eR13]

T ,eG = [eG1 . . .eG13]
T ,eB =

[eB1 . . .eB13]
T ) in each pixel to the gradient of the surface

normal in transport direction ∇x = anx/any.
Some results of the learned mapping are visualized in

Fig. 2. The figure depicts the same small area in all six
images. The first two images are examples of how the

surfaces that where used for inference from two different
material types (matte and glossy) looks like. For both images
the first view (i.e. the first illumination angle) of the 3D
light field structure was taken. The remaining images show
a color-coded visualization of the surface normal gradient
∇x.

The intensity vectors eR, eG and eB correspond to the
observed intensity values of the different illumination angles
(here referred to as views) for each channel of the RGB pixel
value respectively. These three vectors (eR,eG and eB) are
then stacked vertically for each pixel in order to create the
data samples for the network, which then has the form E =
[eR1 . . .eR13,eG1 . . .eG13,eB1 . . .eB13]

T , where E ∈ R39 (three
color-channels a 13 illumination angles). These data-points
of all six datasets are then randomly shuffled in order to
avoid a spatial bias due to, e.g. non-constant lighting before
presenting it to the network. Since the cumulative number of
all points from all datasets is very large (around 3 million
samples), a batch based training approach with a batch size
of 1000 was used rather then an online learning approach.
We used the TensorFlow library [7] for the implementation
of the network as well as for the cost function and optimizer.

II. RELATED WORK

3D reconstruction using 2D images has been a well studied
problem in the field of computer vision. Over the years
many different methods to solve this problem arose. In [8]
range scanning with stripe patterns were combined with
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Fig. 3: Schematic illustration of the Blender Node Setup for
creating different materials.

photometric stereo with five light sources in order to recover
the 3D surface of an object. Using epipolar plane image (EPI)
structures from motion analysis for depth reconstruction was
introduced in [9]. The paper by Tao deals with incorporating
a shading term to depth from defocus with correspondence
cues in order to refine the shape estimation [10]. In [11]
Hayakawa used a singular-value decomposition (SVD) of a
formulated matrix in order to get a surface normal estimation
without the need of a-priori knowledge of the light source
direction under the Lambertian assumption. Some machine
learning approaches have been explored, such as [12] where
a multi-layered neural network was used in order to learn the
mapping between image intensities and the surface normal
orientation, using a Gaussian sphere with average reflectance
as the training data. In [13] Cheng used a symmetrical
6-layer neural network to train a mapping between the
vectorized image and a reflectance value for each pixel.
Another machine learning approach has been investigated
in [14], where a neural network was used in order to solve the
shape from shading problem, previously introduced by [15].

III. EXPERIMENTS

A. Generating Ground Truth Data

Blender 2.78 [16] Cycles Renderer was used to generate
the ground truth data. This artificial ground truth data has
some advantages over real-world acquisition, such as the
ease of modification of the setup, feasibility of generating
many images quickly as well as being less prone to errors.
However, in order to make the resulting images more re-
alistic, some artefacts, such as jitter or salt&pepper noise,
can be taken into consideration. The goal while creating the
ground truth data was to cover as much ground as possible
with the synthetic data regarding the task. The network
should learn a mapping between the RGB intensity vectors
of the different views and surface properties, to the surface
normal gradient. As it is infeasible to cover all possible map-
pings between color, light reflectance and surface normals,

Fig. 4: Visualization of the six different datasets created by
changing the roughness and the percentage of which the
glossy or diffuse node is taken.

a random approach was chosen. A uniformly distributed,
8-bit random color pattern was created (each RGB color
channel uniformly distributed between 0-255) and used as
a texture. The blender-intern noise texture and displacement
map node was used in order to create a random surface
normal structure on a flat surface. With this approach the
possible mapping space is sparsely covered. Furthermore we
created six different material datasets with different gloss
values using a mixture of the Diffuse BSDF and Glossy
BSDF node shaders. In this model two parameters can be
changed, namely the gloss factor (controlled by the mix
node) and the roughness of the two BSDF nodes. For the
sake of simplicity, the roughness is the same for both, the
Diffuse and the Glossy BSDF node. A schematic illustration
of this setup can be seen in Fig. 4. This model is based on
a presentation from Gastaldo [17], where he states:

R+T +A = 1 (3)

where R denotes reflectivity, T denotes transparency and
A denotes absorption. Furthermore he states that reflectivity
can be divided into diffuse reflectivity (Rd) and specular
reflectivity (Rs). With this he derives:

Rd +Rs +T ≤ 1 (4)

In our setup Rd correlates to the Diffuse BSDF node and
Rs to the Glossy BSDF node. Transparency was not taken
into consideration (i.e. is always 0) as we exclude glass like
materials from our data. The roughness parameter of the
Diffuse BSDF node corresponds with the roughness of the
Oren-Nayar reflectance model [18]. The model used for the
glossy factor of the material was GGX [19]. The roughness
parameter of the GGX model simulates microscopic bumps
in the surface, so that the reflections of the material look
blurrier the higher the roughness parameter is.

We excluded a glossy dataset with a roughness value of
0, which would imitate a mirror like behavior. However,
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a material with a roughness of 0.2 already shows highly
specular behavior.

The multi-line scan camera setup as described in Sec. I
was recreated in Blender, where a plane with a random
color texture and a bump map (see Fig. 3) was moved
underneath the camera. During each animation step the plane
was moved by exactly one pixel. The resulting images were
concatenated and reshaped in order to create a 3D image
stack representation of the light field. Each image plane is
then shifted to the left in the following manner:

∀x,y, i : I′i (x,y) = Ii(x−40i,y) (5)

where i ∈ [0 . . .12] denotes the index of the image in the
3D light field structure, Ii ∈ {width× height × 3} is the
spatial image domain of the i’th view and I′i denotes the new
translated image. Since the disparity (i.e. the gap between
active lines on the camera sensor) is 40 pixels it was used as
the shifting constant. The resulting overlap (at most 12×40
in the last view) is then cropped. This is done so that the
EPI-lines are vertical with no slope, as they would be with
an object with true 3D geometries.

B. Network Parameters Evaluation

For the optimal performance of a neural network some
parameter evaluation and tuning, such as changing the num-
ber of hidden neurons, using different activation functions
or cost functions, is needed. In our evaluation, we looked at
3 different activation functions, namely linear, Sigmoid and
rectified linear unit (RELU). The input layer, which consists
of 39 neurons is fully connected with the hidden layer. We
tried different numbers of neurons in the hidden layer for
each evaluated activation function respectively. The results
of these experiments can be seen in Table I. For the read-out
of the output layer, which consists of one neuron since we
only regress the gradient in the transport direction, a linear
activation function was used.

Given the problem we want to solve and our material
properties, one can expect that a low number of hidden
neurons will suffice and already give a good performance,
as the Lambertian reflectance function is low dimensional.
The low dimensionality of a Lambertian reflectance has been
proven and explored in [20]. Having a less complex network
architecture can be beneficial for both the runtime as well
as the generalization of the network. Here 1, 3, 10 and 20
neurons of one hidden layer were used.

The cost function used to measure the quality of the
regressed prediction (therefore also the value used for the
optimization of the network) was the mean square error
(MSE):

MSE =
1
n

n

∑
i=1

(Ŷi−Yi)
2 (6)

For optimization the batch based gradient descent algorithm
with a learning rate of η = 0.001 was used. The dataset was
split into 80% training set and 20% testing set, as proposed
by the Pareto Principle by J.M. Juran [21]. The network was
trained for 100 epochs.

Table I shows that the Sigmoid has both the best overall, as
well as the best performance in a single run with 20 neurons
in the hidden layer. As the aforementioned experiments
were performed only to show the overall tendency and
convergence of the network structure, a small learning rate
η was used for all the experiments. However, [22] shows
that exploring this parameter further is important for the
overall network accuracy. For this task we found that a
learning rate of η = 0.2 works best which improved the
overall accuracy of the network to MSEtrain = 0.020464 and
MSEtest = 0.02052 when trained for 100 epochs.

TABLE I: Training and testing MSE with different numbers
of neurons and activation functions.

Training set MSE
# hidden
neurons 1 3 10 20 avg
act. fct.
linear 0.05903 0.05988 0.05760 0.05857 0.05877

Sigmoid 0.05429 0.05285 0.05263 0.04792 0.05192
RELU 0.05605 0.05543 0.05283 0.05150 0.05395

Testing set MSE
linear 0.05902 0.05972 0.05777 0.05855 0.05877

Sigmoid 0.05402 0.05276 0.05266 0.04768 0.05178
RELU 0.05608 0.05571 0.05312 0.05147 0.054095

C. Network Performance

Fig. 5: Evolution of the mean square error over epochs with
a learning rate of η = 0.2. Left: Training set (80% randomly
chosen from all sets), right: Testing set (20% randomly
chosen from all sets).

Fig. 5 shows the convergence of the overall accuracy on
the training and test set, combining and shuffling all six
created datasets. This was done in order to generalize the
network as much as possible regarding the material type
(matte, semi-glossy or glossy). Once the network was learned
it was applied to each material type individually and the
accuracy of the prediction on the whole set was reported.
For simplicity we use acronyms for each created dataset,
as shown in Fig. 3. For the sake of simplicity we took the
liberty of reporting the error on the whole dataset (data points
used for training and testing combined). As the errors on the
training and on the testing set are very close together and
there is no sign of overfitting the network, this liberty can
be taken without distorting the results. The best performance
was achieved on the semi-glossy datasets. The larger error
on the glossy dataset is due to the fact that the sign of the
surface normal is sometimes predicted wrong if the specular
lobe is narrow and outside of the observed range. This can
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TABLE II: MSE of each individual whole dataset applied
to the network. On the left we report the accuracy of our
neural network, then the accuracy of the Lambertian model
when 80% of the Lambertian dataset was used to estimate the
illumination matrix L from Eq. (1) as an analogy of learning
(L.m.L stands for Lambertian model Lambertian datasets). In
the last column 80% of all datasets were used (Lambertian
model all dataset).

Dataset MSEnetwork MSEL.m.L MSEL.m.a
Lambertian 0.01637 0.02435 0.02804
g025r025 0.01537 0.05550 0.03268
g025r075 0.01835 0.02063 0.02741
g075r025 0.01760 0.24619 0.10237
g075r075 0.01795 0.03233 0.02930

glossy 0.03722 0.89302 0.37912
avg. 0.02047 0.21200 0.09982

also be seen in the correlation plots in Fig. (6) where some
of the outliers from the glossy dataset also show up in the
correlation plot for the whole train and test dataset.

We compare our results with the model-based Lambertian
approach by solving Eq. (1) for L as an analogy of learning
with the same dataset training/testing split as for our machine
learning approach. For this the assumption of an constant
albedo with a value of 1 was taken. Despite it can be
argued that the Lambertian model only works for Lambertian
materials. The quantitative results are reported in Table II. It
can be seen that the L.m.L. approach completely failed for
the glossier material datasets. On the other hand the L.m.a.
approach proved to perform in average about twice as good
improving significantly especially on the glossy cases. Last
but not least, we show that our neural network approach
outperforms the traditional photometric stereo by far for the
given task, especially for glossier material.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we showed a neural network based machine
learning approach in order to learn a mapping between
intensity vectors (i.e different illumination angles) of points
with different reflectance properties to a surface normal
gradient. We showed that in our approach we do not need
to know the position and direction of the light source as
well as no spatial information and were still able to produce
competitive accuracy. The proposed machine learning ap-
proach outperformed the standard photometric stereo based
on the Lambertian model by 5-10 times. We tested the
network on synthetically generated data and showed that
our implementation works well even for very glossy surface
properties. In our simulations the train error converges very
fast which suggests that we did not yet reach the absolute
best accuracy possible and increasing the number of features
as well as training the network for longer may still increase
the overall prediction of the multilayer perceptron. The mean
absolute error (MAE) can be advantageous as it is more
robust against outliers [23], however since we excluded
strong outliers manually in our datasets beforehand we did
not need to use MAE. Nevertheless, exploring this cost
function in the future should be done.

(a) Train (b) Test

(c) Lambertian (d) Semi-Glossy(g025r075)

(e) Glossy

Fig. 6: (a-e) Show the correlation plot between label and
prediction of ∇x for the respective datasets of 100 samples
uniformly taken from the set. (a) combines 80% of all
datasets (which were randomly chosen). (b) combines 20%
of all datasets (which were randomly chosen). (e) shows
some outliers where the sign of the gradient was wrongly
predicted due to the high specular response. The stronger
outliers on (a) and (b) also come from this set.

For future work we intend to extend this approach to
perform material classification (e.g. classify matte, glossy,
semi-glossy material etc.) as well as learning the albedo of
the created datasets. In this paper we only used synthetic data
in order to prove the correctness of the method, however
an evaluation on real-world data for the trained networks
would be the next step. Additionally, we want to investigate
the possibilities of inference on the surface normal gradient
orthogonal to the transport direction.
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3D Localization in Urban Environments from Single Images*

Anil Armagan1, Martin Hirzer1, Peter M. Roth1 and Vincent Lepetit1,2 .

Abstract— In this paper, we tackle the problem of geo-
localization in urban environments overcoming the limitations
in terms of accuracy of sensors like GPS, compass and
accelerometer. For that purpose, we adopt recent findings in
image segmentation and machine learning and combine them
with the valuable information given by 2.5D maps of buildings.
In particular, we first extract the façades of buildings and their
edges and use this information to estimate the orientation and
location that best align an input image to a 3D rendering of
the given 2.5D map. As this step builds on a learned semantic
segmentation procedure, rich training data is required. Thus,
we also discuss how the required training data can be efficiently
generated via a 3D tracking system.

I. INTRODUCTION

Accurate geo-localization of images is a very active area
in Computer Vision, as it can potentially be used for appli-
cations such as autonomous driving and Augmented Reality.
As the typically available GPS and compass information are
often not accurate enough for such applications, we recently
proposed a method that builds only on untextured 2.5D maps
[3]. In general, 2.5D maps hold the 2D information about
the environment, more precisely the buildings’ outlines and
their heights. However, this approach is limited in practice,
as it heavily relies on the often unreliable and error prone
extraction of straight line segments to find the re-projections
of the corners of the buildings.

To overcome this limitation, as shown in Fig. 1, we
replace this step by semantic segmentation (i.e., [4] and
[5]) to extract the visible façades and their edges, which
is described in more detail in Sec. II. Since learning the
necessary model requires a large amount of training data,
as detailed in Sec. III, we use a 3D tracking algorithm
to semi-automatically label the huge amount of required
training images. In order to estimate the correct pose, we
introduce two strategies. The first strategy samples random
poses around the initial pose given by the sensors and selects
the best one. The second strategy builds on a more advanced
search algorithm by using CNNs to iteratively update the
pose. Both approaches are discussed in Sec. IV.

II. SEMANTIC SEGMENTATION

Given a color input image I, we train a fully convolutional
network (FCN) [5] to perform a semantic segmentation. FCN
applies a series of convolutional and pooling layers to the

* This work was funded by the Christian Doppler Laboratory for
Semantic 3D Computer Vision.

1 Institute of Computer Graphics and Vision, Graz University
of Technology, Graz, Austria {armagan, hirzer, pmroth,
lepetit}@icg.tugraz.at

2 Laboratoire Bordelais de Recherche en Informatique, Université de
Bordeaux, Bordeaux, France

(a) (b)

(c) (d)

Fig. 1. Overview of our approach: Given an input image (a), we segment
the façades and their edges (b). We can either sample poses around the
pose provided by the sensors or use CNNs to move the camera starting
from the sensor pose (c), and keep the pose that aligns the 2.5D map and
the segmentation best (d).

input image, followed by deconvolution layers to produce
a segmentation map of the whole image at the original
resolution. In our case, we aim at segmenting the façades and
the edges at building corners or between different façades.
Everything else is referred to as “background”. We therefore
consider four classes: façade, vertical edges, horizontal edges
and background. We use a stage-wise training procedure,
where we start with a coarse network (FCN-32s) initialized
from VGG-16 [6], fine-tune it on our data, and then use
the thus generated model to initialize the weights of a more
fine-grained network (FCN-16s). This process is repeated in
order to compute the final segmentation network having an
8 pixels prediction stride (FCN-8s).

III. ACQUISITION OF TRAINING DATA

Deep-learning segmentation methods require a large num-
ber of training images to generalize well, however, man-
ual annotation is costly. We therefore use a 3D tracking
system [3] to easily annotate frames of video sequences.
First, we create simple 3D models from the 2.5D maps.
Then, for each sequence, we initialize the pose for the first
frame manually, and the tracker estimates the poses for the
remaining frames. This allows us to label façades and their
edges very efficiently. More precisely, we recorded 95 short
video sequences using a mobile device. In order to ensure an
accurate labeling, in particular for the edges, we only keep
frames in which the re-projection of the 3D model is well
aligned with the real image, and remove those frames that
suffer from tracking errors or drift.
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(a) (b) (c) (d)
Fig. 2. Iteratively pose refinement from an initial sensor estimate: (a) Test image with overlaid ground truth pose, (b) initial noisy sensor pose,
(c) segmented image, (d) finally pose obtained with our method.

IV. 3D LOCALIZATION

Building on the same segmentation approach trained using
the training data as described in Secs. II and III, we proposed
two different approaches for pose estimation.

A. Direct Pose Selection [1]

Given a coarse initial estimate p̃ of the pose provided by
the sensors and a 2.5D map of its surrounding, the goal is
to finally estimate the correct pose p̂. Therefore, we sample
poses in a regular grid around p̃ and estimate

p̂ = argmax
p

L (p) , (1)

where L (p) is the log-likelihood

L (p) = ∑
x

logPc(p,x)(x) . (2)

The sum runs over all image locations x, where c(p,x) is
the class at location x when rendering the model under pose
p, and Pc(x) is the probability for class c at location x where
Pc is one of the probability maps predicted by the semantic
segmentation.

B. CNN-based Refinement [2]

As this brute-force strategy is not very efficient, we addi-
tionally proposed a CNN-based approach for iterative pose
refinement. To refine the location, we discretize the directions
along the ground plane into 8 possible directions and train a
network to predict the best direction to refine the currently
estimated location. We also add a class that indicates that
the estimated location is already correct and should not
be changed. Thus, given the semantic segmentation of the
current input image and a rendering of the 2.5D map from
the current pose estimate, the network, denoted by CNNt ,
yields a 9-dimensional output vector:

dt = CNNt(RF,RHE,RVE,RBG,SF,SHE,SVE,SBG) , (3)

Here, SF, SHE, SVE, and SBG denote the probability maps
computed by the semantic segmentation for the classes
façade, horizontal edge, vertical edge and background, re-
spectively; RF, RHE, RVE, RBG are binary maps for the same
classes, created by rendering the 2.5D map for the current
pose estimate.

In addition, we train a second network to refine the
orientations:

do = CNNo(RF,RHE,RVE,RBG,SF,SHE,SVE,SBG) , (4)

where do is a 3-dimensional vector, covering the probabilities
to rotate the camera to the right, to the left or not rotate it
at all.

Starting from the initial estimate p̃, we iteratively apply
CNNt and CNNo and update the current pose. These steps
are iterated until both networks are converged and predict
not to move. In particular, there are two main advantages of
having two networks: (a) As the networks for translation
and orientation are treated separately, we do not need to
balance between them. (b) The two detached problems are
much easier to solve, reducing both, the training and the
inference effort.

V. RESULTS AND SUMMARY

Two illustrative results obtained by the approach described
in Sec.IV-B are shown in Fig. 2. It clearly can be seen that the
initial sensor poses (Fig. 2(c)) does not cover the groundtruth
(Fig. 2(a)) very well, whereas the finally estimated poses
(Fig. 2(c)) using the segmentation results (Fig. 2(b)) perfectly
fit the buildings. Overall, this demonstrates that adopting
ideas from semantic segmentation in combination with con-
volutional neural networks and the information provided by
2.5D maps can successfully be used for estimating the poses
of buildings and thus their exact location. For more details,
we would like to refer to [1] and [2].
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Depth-guided Disocclusion Inpainting for Novel View Synthesis*

Thomas Rittler1,2, Matej Nezveda1,2, Florian Seitner2, and Margrit Gelautz1

Abstract— The generation of novel views is a crucial process-
ing step in 3D content generation, since it gives control over
the amount of depth impression on (auto-)stereoscopic devices
and enables free-viewpoint video viewing. A critical problem
in novel view generation is the occurrence of disocclusions
caused by a change in the viewing direction. Thus, areas in
the novel views may become visible that were either covered
by foreground objects or were located outside the borders in
the original views. In this paper, we propose a depth-guided
inpainting approach which relies on efficient patch matching
to complete disocclusions along foreground objects and close to
the image borders. Our method adapts its patch sizes depending
on the disocclusion sizes and incorporates the depth information
by focusing on the background scene content for patch selection.
A subjective evaluation based on a user study demonstrates the
effectiveness of the proposed approach in terms of quality of
the 3D viewing experience.

I. INTRODUCTION

The generation of novel views from an existing single
view and its corresponding depth map is a crucial processing
step for 3D content generation and processing. Such newly
generated views enable the users to watch 3D content on
different types of 3D displays, including multi-user au-
tostereoscopic devices with a comfortable range of viewing
perspectives, and navigate in 3D space for free-viewpoint
video applications. The 2D input image and its associated
depth map – known as 2D-plus-depth [11] – can be delivered
by a variety of sources such as depth sensors based on time-
of-flight or structured light (e.g., Microsoft’s Kinect), stereo
cameras, or 2D-to-3D conversion techniques.

A principal problem in novel view generation is the
occurrence of disocclusions due to a change in the viewing
direction. Some areas in the original views that were either
covered by a foreground object or were located outside the
image borders may become visible in the novel views. To
deal with these disocclusions, one common approach is to
pre-process the depth maps. In particular, filtering techniques
are applied to the associated depth maps prior to the novel
view generation [16]. Although this approach can reduce
the appearance of disocclusions, it can also lead to spatial
distortions in the scene geometry of the novel views.

Another approach is to use image inpainting techniques
to fill in the disoccluded areas in the novel views with

*This work was supported by the Technology Agency of the City of
Vienna (ZIT) under the project PAINT3D and finalized under the project
Precise3D, funded by the Austrian Research Promotion Agency (FFG) and
the Austrian Ministry BMVIT under the program ICT of the Future.
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1 Institute of Software Technology and Interactive Systems, Vienna Uni-
versity of Technology, Favoritenstrasse 9-11/188-2, 1040 Vienna, Austria;
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suitable estimates derived from the visible scene content.
However, traditional inpainting algorithms (e.g., [5]) do not
take into account additional knowledge provided by the
depth data. For that reason, several inpainting strategies have
been proposed that incorporate depth information during
disocclusion filling [6], [8], [10], [13], [1], [15], [14]. While
most related work aims at rendering photorealistic views,
suitable inpainting approaches may also be required in the
context of non-photorealistic rendering [9]. A few depth-
induced inpainting strategies build upon PatchMatch (PM)
[2], which is a randomized search algorithm that quickly
finds correspondences between disjoint image patches. For
example, He et al. [10] add the depth information to the
PM algorithm by restricting the validity of patches used for
inpainting. However, as their method was initially proposed
for foreground object removal, the authors rely on a-priori
depth information in the region to be filled which is not
available when considering disocclusions. Morse et al. [13]
extend PM from single image completion to stereo image
pairs by not only incorporating depth information extracted
from the stereo pairs but also allowing the matching of
patches across the stereo pairs. However, the additional orig-
inal view of a stereo image pair is not available in a 2D-plus-
depth setup as considered in this work. Additionally, none
of the aforementioned depth-guided inpainting approaches
considers subjective quality assessment in the evaluation of
their results. However, the results of Bosc et al. [3] indicate
the need of subjective quality assessment in terms of novel
views evaluation, as commonly used 2D quality metrics do
not reflect the subjective quality of novel views. A very
recent publication [4] gives an in-depth evaluation using the
Middlebury ground truth data set, but does not incorporate
user studies.

In this paper, we propose a depth-guided inpainting ap-
proach for disocclusion filling in novel views based on
PM. Our approach incorporates the supplementary depth
information to favor background patches during the disoc-
clusion inpainting and uses adaptive patch sizes for efficient
hole filling. We perform a paired comparison user study to
evaluate our inpainting results in the context of stereoscopic
viewing and present experimental results that show that our
depth-guided inpainting approach yields better subjective
quality compared to several earlier approaches.

The rest of the paper is organized as follows: Section 2
describes the proposed inpainting method. Section 3 provides
details on our experimental setup. Section 4 presents the re-
sults of the user study along with some inpainting examples,
and Section 5 concludes the paper.
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II. PROPOSED APPROACH

We suggest an inpainting technique that builds upon PM as
an efficient strategy for finding patch correspondences based
on color differences. The proposed approach incorporates
adaptive patch sizes and search space restrictions based on
depth information, as explained in the following subsections.
First, the formalism of the general inpainting problem is
recapped [5]: Let I be an input image and Ω ⊆ I a “hole”
to be filled, called the target region. That is, Ω denotes all
the missing pixels within I. Additionally, the source region
Φ provides samples used in the infilling process. The goal
is now to complete the missing region Ω with data from Φ
so that the resulting image will be visually coherent. While
conventionally Φ = I \Ω, we restrict Φ to candidates from
the image background as part of our approach.

A. Adaptive patch sizes

As opposed to iterative inpainting approaches that shrink
the holes by successively copying patches of constant size,
we perform the inpainting step only once at the end of the
image completion chain, with the goal to avoid propagating
erroneous inpainting results from one iteration step to the
next. Our non-iterative approach is enabled by the usage
of adaptive patch sizes. If fixed-size patches are used and
the patch size is smaller than the size of Ω, there are some
target patches containing no valid image information (see
blue rectangle in Fig. 1a) that is required to compute the
patch similarities.

For that purpose, a threshold τ1 is specified to ensure a
minimum percentage of valid pixels in each target patch. The
corresponding patch size for each target pixel is determined
by successively incrementing the patch dimensions until the
percentage of the valid source pixels exceeds τ1. Hence, the
selected patches are smaller near the borders and are growing
as the patch’s central pixel is moving towards the hole’s
centroid, as illustrated in Fig. 1b. As a side effect, fewer
patches are involved in the color synthesis of an individual
pixel (based on weighted color averaging of overlapping
patches) near the boundaries of Ω, which helps avoid blurring
artifacts in these regions.

By introducing adaptive patch sizes it is guaranteed that
the majority of the target patches contain a certain percentage
of valid pixels. However, there may arise situations where
the combination of target and source patches becomes im-
practical, as schematically illustrated in Fig. 1c. Hence, a
second threshold τ2 (equal to or smaller than τ1) is specified
to maintain the majority of valid pixels in the matching step
and to ensure a minimal overlap between valid pixels of the
target patch and the corresponding source patch.

B. Depth

There are two major reasons for disocclusions that cause
blank areas in novel views: (a) areas that had been covered by
a foreground object in the original view, and (b) areas along
the image borders that had been outside the field of view
in the original image. While scene depth is not taken into
account when dealing with case (b), it is reasonable to fill

Fig. 1. Schematical overview of the basic concepts of our inpainting
approach: (a) constant versus (b) adaptive patch size; (c) problem of non-
overlapping valid pixels between target and source patch; (d) target patch
comprising foreground and background pixels. Further details are given in
the text.

occlusions of group (a) with image data obtained from back-
ground regions. As these holes emerge due to sharp depth
transitions (i.e., depth discontinuities) at object boundaries, a
target patch may comprise pixels that belong to foreground
objects as well as pixels that are part of the background,
as illustrated in Fig. 1d. Consequently, inpainting artifacts
occur – hereinafter also referred to as foreground color blur
– which are caused by color bleeding from the foreground.
Therefore, depth information is incorporated in the matching
stage to find appropriate patch correspondences and prevent
foreground regions from being used for filling disoccluded
regions.

Since depth information is not available in the target
region, the depth values have to be synthesized first from the
warped depth values in the surrounding. For every hole in Ω,
each scanline is first filled by a constant value determined as
the maximum depth value of the left and right pixel located
at the hole boundary. Then, the minimum of the newly filled
in depth values is selected as a lower bound of permissible
depth levels in the nearest-neighbor search for target patches
of the respective hole. An additional outlier removal based
on the statistics of the depth histogram is applied to make
the procedure more robust to depth map inaccuracies.

III. EXPERIMENTAL SETUP

In order to investigate the effectiveness of our proposed
inpainting algorithm on the perceived quality of stereoscopic
images, a pair-wise comparison study was conducted. The
stereo pairs used for evaluation were formed by the original
left views and novel right views, i.e., synthesized views
derived from the left views and the corresponding depth
maps with disocclusions filled by inpainting. This section
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TABLE I
THIS TABLE LISTS THE NAME, NUMBER (PERCENTAGE) OF

DISOCCLUDED PIXELS AND THE CHARACTERISTICS OF THE IMAGES

USED IN THE SUBJECTIVE STUDY.

Name Disocclusions Characteristics
Arm 54050 (2.6%) low-textured background
Bird 29790 (1.4%) moderately textured background

Crowd 57711 (2.7%) cluttered repetitive background
Edge 51173 (2.5%) highly textured background

Flower 50483 (2.4%) repetitive background

describes the test material, the inpainting techniques used
for comparison and the selected subjective methodology
including a description of the test environment and subjects.

A. Dataset

All inpainting methods are evaluated on footage from a
movie sequence. Five still images – termed as Arm, Bird,
Crowd, Edge and Flower – have been chosen as test images,
with a resolution of 1920× 1080 pixels. The selected im-
ages cover different image characteristics including varying
densities of background texture and diverse amounts of
disoccluded pixels, as summarized in Table I.

B. Algorithms

We compare our depth-guided PM inpainting approach
(DPM), which was described in Section 2, against our
implementation of PM [2] with constant patch sizes of
51×51 pixels, the image completion function content-aware
fill (CAF) of Adobe’s Photoshop CS53, which does not
use depth information, and horizontal background replication
(HBR) [7]. We use the following, same constant parameter
settings to generate the results: {τ1,τ2}= {10%,10%}. The
thresholds have been chosen to provide a small but reason-
able amount of valid pixels to be used for patch matching
while preventing target patches from becoming too large,
which would lead to blurrier inpainting results and increase
the overall runtime of the algorithm.

C. Subjective assessment procedure

The Pair Comparison (PC) method has been chosen to
quantify the subjective ratings [12]. In the PC method, a
pair of stimuli is compared and the subjects are asked to
rate the quality of the stimuli in terms of preferences using
a ternary scale (i.e., stimulus A is preferred, stimulus B is
preferred, or stimuli A and B are equally preferred).

Particularly, using 4 inpainting approaches and 5 images, a
total number of 30 pair comparisons had to be performed by
each subject. Each pair was presented successively in random
order. The subjects were allowed to switch interactively
between the two stimuli of a pair. Moreover, each subject
performed a trial run in which the test methodology was
introduced.

We compute the quality score for each method by increas-
ing its respective counter by 1 in case of a preference and
0.5 in case of an equal valuation. The accumulated value is

3http://www.adobe.com/technology/projects/content-aware-fill.html

Fig. 2. Pair comparison scores of the subjective study.

then divided by the number of comparisons per method and
by the total number of participants. Hence, the final score
shows the percentage of comparisons “won”, e.g., a value
of 100 indicates that this method has always been preferred
over any other approach.

The test sequences were displayed on a 23.6′′ stereoscopic
display (i.e., Acer GD245HQ) with a native resolution of
1920× 1080 pixels and the NVIDIA 3D vision controller.
To provide an ideal test setup, the room was darkened to
avoid external visual disturbances and the viewing distance
was set to one and a half times the screen size.

Seventeen non-expert observers (six female and eleven
male observers aged between 17 and 49) participated in the
study. All of the subjects were screened for visual acuity,
color vision and stereo vision according to ITU-R BT.1438
recommendation [12].

IV. RESULTS AND DISCUSSION

In Fig. 2, the PC scores obtained for the five test images
are presented, grouped by the evaluated inpainting methods.
Our proposed approach DPM performs best and is preferred
on average in 72.75% of all comparisons. In contrast, the
other PatchMatch-based inpainting methods PM and CAF
attain significantly lower average PC scores of 34.51% and
38.43%, respectively.

Fig. 3 offers a closer look at some examples of inpainted
regions. Regarding our approach, the study participants re-
marked a clear delineation of the foreground objects. A
possible explanation is the reduction of artifacts caused
by foreground color blur, which are mainly perceived as
unnatural shadows of the objects (cf. DPM and PM in the
second and third row of Fig. 3). Additionally, it can be seen
that for holes at the image border, it is possible to inpaint
coherent information by using adaptive instead of fixed-size
patches.

The lower score of our approach (60.78%) compared to
HBR (74.51%) for the image Flower may be caused by
significant inaccuracies of the corresponding depth map. In
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Fig. 3. Visual comparison of inpainting results. The first row shows a snippet including a hole at the border of image Flower. The second and third row
show snippets including holes caused by depth discontinuities for images Crowd and Edge, respectively. Best viewed in color.

particular, parts of the background area have been erro-
neously labeled as foreground and thus are not taken into
account in the patch matching step according to the prede-
fined depth constraints. Consequently, artifacts are present
in the inpainted region, which however could be avoided by
adjusting the depth-based outlier removal.

Another interesting finding is the approximately uniform
distribution of PC scores among the investigated inpainting
methods for the image Bird. The observers declared that they
found it hard to detect any differences, which might be due to
the fact that Bird exhibits the smallest number of disoccluded
pixels (see Table I). Additionally, these disoccluded pixels
are located in primarily low textured areas outside the main
focus of the observer’s attention. Similarly, the better result
of the relatively straightforward inpainting method HBR
(54.31% on average) compared to PM (34.51% on average)
and CAF (38.43% on average) may lie in the fact that in our
test images the inconsistencies caused by HBR inpainting
become mainly noticeable in highly textured background
regions near the image margin, whereas observers tend to
pay more attention to the central image area covered by the
foreground object.

V. CONCLUSION

We have introduced a depth-guided inpainting approach
that addresses the filling of disocclusions in novel views. Our
method is based on efficient patch matching and produces
visually very satisfying results for both disocclusions at
image borders and disocclusions along the boundaries of
foreground objects. Our method adapts its patch sizes to
the disocclusion sizes. For disocclusions along objects, we
additionally incorporate the depth information by focusing

on the background scene content for patch selection. A sub-
jective evaluation of the stereoscopically perceived quality
of the synthesized novel views showed the effectiveness of
our proposed approach. For future work, we plan to extend
our technique to disocclusion inpainting of video sources.
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Line Processes for Highly Accurate Geometric Camera Calibration

Manfred Klopschitz, Niko Benjamin Huber, Gerald Lodron and Gerhard Paar

Abstract— The availability of highly accurate geometric
camera calibration is an implicit assumption for many 3D
computer vision algorithms. Single-camera applications like
structure from motion or rigid multi-camera systems that use
stereo matching algorithms depend on calibration accuracy.
We present an approach that has proven to deliver accurate
geometric information in a reliable, repeatable manner for
many industrial applications. The major limitation in typical
camera calibration methods is the printing accuracy of the used
target. We address this problem by modeling the calibration
target uncertainty as a line process and incorporate a lifted
cost function into a bundle adjustment formulation. The regu-
larized target deformation is incorporated directly into the non-
linear least-squares estimation and is solved in a non-iterative,
principled framework.

I. INTRODUCTION
Geometric camera calibration defines the mapping be-

tween points in world coordinates and their corresponding
image locations. These parameters model imperfections of
the camera optics, i.e. lens distortion, intrinsic parameters of
the idealized pinhole camera and extrinsic parameters like
absolute camera orientation and relative orientation for multi-
camera setups. Most calibration methods assume known
3D world points and minimize a reprojection error of the
known 3D structure into detected image correspondences.
The resulting error is a result of model imperfections, target
imperfections and feature point localization inaccuracies.

Impressive reprojection errors have been shown in [5] by
estimating feature points and 3D structure in an iterative
procedure. We argue, like [2], [4], that the most important
aspect for many applications is printing accuracy, but present
a non-iterative calibration formulation that estimates and cor-
rects for target uncertainty within a single bundle adjustment
minimization.

The geometric camera calibration process estimates the
mapping between points in world coordinates and their cor-
responding image locations. We define the image projection
using standard notation, for the pinhole model

xp = KR[I|− C̃]X = PX

∣∣∣∣∣ K =




f cx
f cy

1




R and C̃ model the location of the camera in space and K
defines the intrinsics. Lens distortion is added to the pinhole
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projection, for example using this popular model:
xd = xp +FD(xp,δ )

FD(xp,δ ) =
[

x1p(k1r2
p + k2r4

p)+2p1x1px2p + p2(r2
p +2x2

1p)

x2p(k1r2
p + k2r4

p)+ p1(r2
p +2x2

2p)+2p2x1px2p

]

with xp = (x1p,x2p)
T , rp =

√
x2

1p + x2
2p and δ =

(k1,k2, p1, p2)
T . k1,k2 are the radial distortion coefficients

and p1, p2 the tangential distortion coefficients.

II. A LIFTED STRUCTURE ADJUSTMENT FORMULATION

Bundle adjustment (BA) minimizes the sum of the ge-
ometric distances of all image measurements xi j and their
corresponding projected 3D points PiX j in image space:

min
Pi,δ ,X j

∑C(xi j,FD(PiX j,δ ))

where Pi is the pinhole camera model, δ the distortion
parameters and C is the reprojection error, for example
with a quadratic error Cs(x,xp) =

∥∥x−xp
∥∥2 for classical

BA. Optimizing all BA parameters with all pinhole terms,
distortion terms and the structure X j simultaneously is ill-
conditioned. Therefore, related work that also adjusts the
calibration target updates the structure X j in an iterative way
by using heuristics of multiple BA runs [2] or use minimal
structure constraints [4] and suffer from convergence issues
and limitations in possible distortion models.

We want to limit the adjustment of the calibration target as
far as possible and only adjust the structure if the observed
error cannot be explained by other parameters of our model.
Suppose we have a scalar error e and rewrite the error as a
robust kernel ψ(e) by introducing an additional variable w,
i.e. a line process [3]

ψ(e) = min
w

(
2w2e2 +(1−w2)2) |w ∈ [0,1].

For small errors w→ 1 and for large errors w vanishes and
ψ(e) becomes constant, see [7] for an intuitive explanation in
the context of outlier estimation (the same kernel is used here
for simplicity) and [6] for a recent application to robust BA.
We apply this concept to camera calibration and introduce
variables to represent the correctness of the calibration target
and therefore 3D structure. Adding the lifted cost function
to represent structure imperfections leads to this extended
calibration formulation:

min
Pi,δ ,X j ,w j

{
∑C(xi j,FD(PiX j,δ ))+α ∑

j
ψ(
∥∥X j−X jc

∥∥)
}

= min
Pi,δ ,X j ,w j

{
∑
i j

C(xi j,FD(PiX j,δ ))

+2α ∑
j

w2
j
∥∥X j−X jc

∥∥+α ∑
j
(1−w2

j)
2
}
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where X jc is the original reference 3D point and
∥∥X j−X jc

∥∥
corresponds to the deviation from this reference during
calibration and α is a free parameter. Note that here each
structure point has its own lifting variable w j, it is also
possible to represent the target accuracy with just one global
scalar w. The system is solved using a standard non-linear
least squares solver [1].

III. INDUSTRIAL APPLICATIONS

The presented calibration formulation has been used in
different industrial applications for single- and multi-camera
calibration and long term calibration maintenance using
commercially printed (low cost) targets that are affected by
printing inaccuracies. A handheld stereo system calibration
has been kept by non-expert users under 0.06 pixel RMS
reprojection error for over a year. Because non-expert users
are involved, strong and robust convergence properties are
essential. Figure 1 shows rectified images of this device with
and without the proposed structure adjustment. The whole
system performs volumetric simultaneous localization and
mapping (SLAM) without opportunities for loop closing. A
3D model of the volumetric fusion can be seen in Figure
2. For the accuracy evaluation ground truth data of the
floor plan of the scene is available. Rectification errors are
accumulated through the volumetric fusion, leading to a de-
tectable influence of slight rectification errors. A rectification
error like in Figure 1a leads to drift in height of about 5cm,
the shown scene is 4 meters long.

(a) Weak calibration, 0.15px
rectification deviation from
zero mean.

(b) Rectification with proposed
method, nearly perfectly cen-
tered optical flow check.

Fig. 1: The top row shows a histogram of rectification
deviations. They are obtained by computing a histogram
of the vertical component of unconstrained optical flow
initialized with the stereo result. The histogram range is
±2 pixel. The bottom row shows the image pairs with
example epipolar lines.

Figure 3 shows a stereo based inspection application for
corrosion monitoring in hot steel components, ladles and pro-
cess chambers that can cope with up to 1.600◦C. The main
goal of the system is the detection of thinning of material
i.e. volumetric changes in registered consecutively measured
models. The typical distance to the target lies between 60 and
200cm. To cope with the varying distance range focusable
liquid lenses were used (Varioptic Caspian). The lenses are
focusable from 7cm to infinity and are newly calibrated

Fig. 2: A resulting 3D model obtained with a SLAM system
calibrated by the presented method. Rectification errors of
0.2px are clearly noticeable in this application and lead to
insufficient model accuracy.

Fig. 3: Stereo system with active speckle projection for the
inspection of red hot steel components, ladles and cham-
bers with up to 1.600◦C. ©Materials Processing Institute
supported by Dr BG Crutchley of i3D robotics Ltd.

after focus change and prior to each measurement campaign.
The calibration of the liquid lenses together with the high
temperature environment poses the greatest challenge in this
application.
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Bilateral Filters for quick 2.5 D Plane Segmentation

Simon Schreiberhuber1, Thomas Mörwald2 and Markus Vincze1

Abstract— We present a simple and practicable approach to
segment organized point clouds gathered with RGBD sensors
into planar elements. The algorithm proves to execute extremely
fast while delivering all the dominant planes of a scene. As
an integral part of our segmentation algorithm we examined
two off the shelf and one heavily modified filtering algorithms
to increase the quality of the point cloud before the actual
segmentation process. The results of two of these algorithms
were promising. One provides a favorable tradeoff between
speed and quality while the other delivers superior quality at
high computational cost.

I. INTRODUCTION

In mobile robotics many tasks have to be fulfilled in indoor
environments. More specifically one task could e.g. include
the search or classification of objects lying on the floor.
Instead of processing all the points captured by the RGBD
sensor it would be beneficial to early on discard some of
the points that can not be part of the task. Removing the
dominant planes from the scene is one common measure to
achieve this. This becomes obvious when we observe that
indoor environments are dominated by planar surfaces.
While other plane segmentation algorithms operate on unfil-
tered depth data, our algorithm utilizes a filtering step. Data
as it is captured by an RGBD sensor tends to have multiple
sources of noise, all of which tend to make the fitting
of planes difficult. Reducing the noise upfront therefore
is a prerequisite to a fast and simple plane segmentation
approach.
To create ideal conditions for our plane segmentation algo-
rithm we discuss three filter approaches. With these filters
we aim to refine planar regions while keeping the geometric
details where they are needed. We show the results generated
by the standard Bilateral Filter [7], the Sigma Adaptive
Bilateral Filter [2] and the adapted Bilateral Mesh Denoising
algorithm [4]. A discussion shows how these filters relate to
each other and how they behave in specific situations. We
describe the modifications necessary to apply the Bilateral
Mesh Denoising algorithm to depth data and demonstrate its
effectiveness.
Regarding the core of our plane segmentation, we offer a
comparison to two other algorithms: The comparably slow
approach shown by Holz [5] which uses RANSAC to refine
a rough normal based plane segmentation and an approach

1Simon Schreiberhuber and Markus Vincze are with the Vi-
sion4Robotics group (ACIN - TU Wien), Austria {schreiberhuber,
vincze}@acin.tuwien.ac.at
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This work is supported by the European Comission through the Hori-

zon 2020 Programme (H2020-ICT-2014-1, Grant agreement no: 645376),
FLOBOT.

shown by Wang [8] where a rough segmentation is improved
on a point-wise basis. Both algorithms start with clustering
the points into a 3 D voxel grid. By doing this they are re-
placing the inherent neighborhood information with a costly
spacial relation. Finding the nearest neighbors to a specific
point no longer is a simple access to the neighboring depth
pixels but a search of all points in the adjacent voxel blocks.
For our segmentation we follow a similar two-step approach
as in [8] but make use of the neighborhood information
contained in the organized point cloud.

II. RELATED WORK

Most plane segmentation approaches can be assigned to
two categories. A direct approach, where planes are directly
matched with the existing points, and indirect approaches
where the scene is transformed into another representation.
RANSAC [3] is a direct approach that iteratively tests
randomly generated plane hypothesis against a point cloud
and is often used to find the ground plane of a scene. To
extract multiple planes from a scene RANSAC has to be used
repeatedly to assign points to different planes. The outcome
of this approach is highly dependent on the order in which
the RANSAC algorithm finds the planes. Thus the affiliation
of points to planes is ambiguous.
The approach shown in [5] therefore does not use RANSAC
for the segmentation itself but uses it to refine already
existing plane hypothesis. These hypothesis are generated
by clustering normal vectors in normal space or spherical
coordinates. This delivers clusters of points, each of which
is assembled by multiple planes facing the same direction.
Averaging the normals within each of these clusters leads
to a plane hypothesis which allows to separate the points
into their according planes. Calculating the distance of the
points to these plane hypothesis directly allows to cluster
these points into their according planes.
A more direct approach was chosen in [8] is based on
roughly clustering plane patches within a 3 D voxel grid.
Some of these blocks within the voxel grid are containing
enough points to approximate planes. In the following step
it is possible to connect neighboring grid blocks to bigger
surfaces wherever these planes are facing in roughly the same
direction. The approach chosen by Zhang [10] is to find
lines along the horizontal scan-lines which are cuts trough
planes. In a second step the normals get estimated along
these line segments to find corresponding segments between
scan-lines. Fitting line segments can then be connected to a
planar region.
The V-disparity algorithm [11] transforms the 3 D data into
a V-disparity map and therefore reduces the 3 D plane fit to
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a 2 D line fit which greatly reduces the computational effort.
While not being as straight forward as any of the presented
direct algorithms it is capable of finding planes where noise
is dominant or in rough outdoor environments [9].
To improve results of certain plane segmentation algorithms
it is vital to reduce noise of the input data by proper filtering.
While a Gaussian Blur might be sufficient to remove noise
from some intensity images it is not fit to be applied to
depth maps. Besides not being able to handle areas where
the sensor was unable to capture data this filter would destroy
any information on discontinuities. Bilateral filtering [7]
therefore is more selective and reduces over-smoothing along
discontinuities. It is therefore a possible candidate for point
clouds but has serious issues regarding our task since this
filter introduces a bending along edges of tilted planes. This
so called ski effect can be tackled by restraining the filter
from working on edges [2], or by applying a bilateral filter,
that is specifically designed for 3D geometry [4].
Approaches as the Total Variation [6] and the Total Gen-
eralized Variation [1] based algorithms do not inherit their
principle from convolution. Instead they minimize a cost
function to fulfill a tradeoff of being close to the input
and minimizing a smoothness measure. The Total Variation
image denoising algorithms work well for intensity images
but do have downsides as a tendency to frontoparalell planes
when applied to depth-maps. This tendency in particular
can be countered by using the Total Generalized Variation
algorithm which allows for more refined regularization with
higher order derivatives but at the cost of increased compu-
tational complexity.

III. FILTER

The quality of depth images obtained from the Kinect is
moderate, especially in distances bigger than 3 meter (see
Figure 2). To reduce the noise and other artifacts like
quantization, the raw data has to be filtered.

A. Bilateral Filter

The bilateral filter is a suitable candidate. It preserves dis-
continuities and smooths out noise.

D∗p =
1

Wp
∑

q∈Sp

Gσs(‖p−q‖)Gσc(|Dp−Dq|)Dq (1)

Wp = ∑
q∈Sp

Gσs(‖p−q‖))Gσc(|Dp−Dq|) (2)

p: the coordinate of the resulting pixel.
q: the coordinate of a surrounding pixel.

Gσ : Gauss function.
Dp,q: depth values of p or q.

Sp: the neighborhood of p where |p−q|< rSth.
Wp: a normalization term.
σs: standard deviation for difference in depth.
σc: standard deviation for pixel distance.
This filter unfortunately introduces the unpleasant ski effect
as shown in Figure 1.

(a) Unfiltered kinect image of a
desk.

(b) After filtering the edge of the
plane is bent upwards.

Fig. 1: The ski effect (red) is introduced by Bilateral Filter-
ing.

B. Sigma Adaptive Bilateral Filter

Andreas Deutschmann [2] introduced the Sigma Adaptive
Bilateral Filter which got rid of the ski effect and is contain-
ing edges, by reducing sigma around corners and edges.

D∗p =
1

Wp
∑

q∈Sp

Gσs,p(‖p−q‖)Gσc,p(|Dp−Dq|)Dq (3)

Wp = ∑
q∈Sp

Gσs,p(‖p−q‖))Gσc,p(|Dp−Dq|) (4)

Where

σs,c,p = σs,c,max +msat,p ∗ (σs,c,min−σs,c,max) (5)

is depending on the depth-maps curvature

msat,p =





1 if m > (1− kth)

0 if m < kth

m else
. (6)

With

mp =
m̃p− m̃min

m̃max− m̃min
(7)

and

m̃p =

∥∥∥∥∥
1
|Rp| ∑

q∈pR
(Pp−Pq)

∥∥∥∥∥ . (8)

The terms are described the following:

m̃: is the raw curvature.
m: is the normalized curvature of the surface see Figure 5a.

msat : is a curvature that is saturated by kth and (1− kth).
σs,p: standard deviation of the Gauss filter. Weighing depend-

ing on the difference in depth.
σc,p: standard deviation of the Gauss filter. Weighing depend-

ing on the pixel distance.
Pp,q: the point at p or q, given as vector Pp,q =

[
xp yp zp

]T
Rp: like S a neighborhood around p where

∥∥Pp−Pq
∥∥< rRth.

This filter essentially is a Bilateral Filter which is suppressed
in critical regions like edges (see Figure 3).
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Fig. 2: Unfiltered depth data.

(a) Bilateral Filter. Introduces ski
effect (green).

(b) But shows good results at
planes.

(c) Sigma Adaptive Filter. Pre-
serves details like edges, but
can’t filter noise at discontinu-
ities (red).

(d) Delivers good results when
applied to planar regions.

Fig. 3: Filtering results of Bilateral Filter and Sigma Adaptive
Filter.

C. Bilateral Tangential Filter

The promoted filter is based on the Bilateral Mesh Denoising
algorithm [4] which is used for meshes but not raw depth
data. The idea behind this filter is to correct each point
along its normal by a value composed by the deviation
of surrounding points to its tangent plane. We adapt this
principle to depth data by not correcting the points along
their normal as in [4] but along the camera view rays. The
filter is written as

Cp =
1

Wp
∑

q∈Sp

Gσs(‖p−q‖)Gσc(dp,q)dp,q (9)

Wp = ∑
q∈Sp

Gσs(‖p−q‖)Gσc(dp,q) (10)

where the correction term Cp,k is used to correct the depth
values

D∗p = Dp +Cp. (11)

dp,q is the distance of the point q to the tangent plane of p

dp,q = np · (Pp−Pq). (12)

It is not implied in this equation, but this filter is meant to
be used iteratively.
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Fig. 4: Filtering kernels, to calculate horizontal and vertical
derivation of x, y and z. Sizes for these kernels are 23x23
and 5x5.

The quality of this filter strongly depends on the normal
vectors np which tend to be difficult to obtain, especially
along discontinuities and in noisy data. Incorrect normal
values can make the algorithm locally unstable. Figure 6
shows a good example for how normal vectors affect the
result. The normal vector is calculated by the vertical and
horizontal derivation of x, y and z coordinates by the image
coordinates u and v.

np =
ñp

‖ñp‖
ñp =




dxp
du
0

dzp
du


×




0
dyp
dv
dzp
dv


 (13)

To obtain the needed derivatives we can not rely on a Canny
Edge detection like approach since this would lead to wrong
normals along discontinuities. We therefore have to mix the
Canny Edge detection with the idea of the Bilateral Filter. To
reduce the impact of discontinuities on the normals, points
which are further away from the center point contribute less
or not at all. This is achieved by an other Gaussian term Gσn .

d(x,y,z)p

du,v
= ∑

q∈Sp

Kq,pGσn(Dp−Dq)((x,y,z)p− (x,y,z)q)

(14)
Since the depth data along edges of objects is often distorted,
it is necessary to compensate for that by locally extending
the kernel:

Kq,p =

{
Kq,big if cp > cth

Kq,small else
(15)

The filter kernels itself are shown in Figure 4. As basis to
decide we are using a measure for how erratic the image is
(Figure 5b).

cp = ∑
q∈R′p

∣∣Dp−Dq
∣∣ (16)

One example for proper filtering kernels are shown in
Figure 4. Note that R′p is in this case the neighborhood of p
where |p−q|< rR′th.

IV. RESULTS OF FILTERING

The standard Bilateral Filter introduces the unpleasant ski
effect [2] and therefore does not preserve information on
edges (see Figure 3). On said edges the ski effect refers to a
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(a) mp. (b) cp

Fig. 5: Curvature mp and unsteadyness cp. These measures
are used to guide σ in the adaptive filter and the normal
estimation in the tangential filter.

(a) Correct normals. (b) Reasonable result.

(c) Poor normal calculation. (d) Poor filtering.

(e) Even along plane surfaces,
poorly calculated normals are
leading to artifacts or instabili-
ties.

Fig. 6: Filtering results of the proposed Bilateral Tangential
filter.

slight bending towards fronto-parallelity. Note that this effect
gets stronger as the planes get tilted.
The Sigma Adaptive Bilateral Filter gets rid of this effect by
not filtering in these critical regions. As seen in Figures 3c
and 3d the results are comparable to the standard Bilateral
Filter but without creating the ski defects. Spikes, as they
often appear at sharp edges, will unfortunately not undergo
any smoothing. Since we selected this filter to support our
segmentation we created an GPU (AMD Radeon HD 6750M)

implementation that computes within 25 ms.
For the Bilateral Mesh Denoising algorithm the results are
different (see Figure 6). While being equally as suitable
for the planar regions as the Bilateral and Sigma Adaptive
Bilateral Filter, this algorithm shows the best results along
discontinuities. In terms of computational complexity this al-
gorithm unfortunately is way more demanding than the other
two. This is mainly due to the complex normal estimation
but also because it needs two to three iterations the other
algorithms compute within one.

V. SEGMENTATION

Two examples for state of the art algorithms coming close
to a 30 Hz segmentation rate are [5] and [8]. The algorithm
shown in [5] utilizes a segmentation in normal space but
is slower than the other. We therefore follow the approach
shown in [8] where the points are split into a 3D voxel grid. A
coarse pre-segmentationin on these then segments a majority
of points with a relatively small amount of computations.
Although the this approach is the faster one, it still is
overly complicated for our needs. Seperating the organized
pointcloud into equally sized cubes (voxels) only creates
the need to compare these voxels to their 26 neighbouring
voxels.

A. Hierarchical Plane Segmentation

The proposed algorithm follows the idea of pre-segmentation
and splits the depth image into smaller patches similar to
[8] but does it in image space. This reduces the number of
neighbors for each patch to 8 and therefore saves computa-
tion time. The main steps of the algorithms are:

1) Patch generation: The depth data is grouped into
equally sized section with sizes like e.g. 10×10 pixel.
It is then tried to fit a plane into these points. If there
are enough points within a threshold of this plane the
patch is retained and the points will be assigned to
this patch. When this criteria is not met the patch is
discarded and the according points stay unassigned.

2) Patch Segmentation: The initially unassigned patches
get grouped together to assemble planes. This happens
according to their normal vector and position.

3) Post filtering: During this phase, no new patches will
be added, but every pixel, which is bordering onto a
plane and meets certain conditions, will be assigned to
this plane.

1) Patches: As already mentioned. Patches are small equally
sized fragments of the depth image and described by their
plane equation:

ax+by+ cz−1 = 0 (17)

The parameters can be acquired by principal component
analysis of all points. After getting the parameters, it is
necessary to test if they provide a good description of the
plane. To ensure this, at least a certain percentage (e.g. 90 %)
of the points considered for this patch should be inside the
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Fig. 7: Segmentation strategy for patches. Every valid patch
(blue) is a cluster of points e.g. 10× 10 pixel and will be
connected to an neighboring (green) existing collection of
patches if it fits to one of the existing plane hypothesis. If
it can not be added to an existing hypothesis it will become
the starting point for a new hypothesis.

approximated plane. For this the distance

d =
|ax+by+ cz−1|√

a2 +b2 + c2
< dth (18)

has to be below a threshold (e.g. 1 cm).
2) Segmentation: These patches can easily be grouped by
any clustering algorithm that supports 4 or 8 connectivity.
Neighboring planes or patches can be combined by meeting
the criteria of pointing roughly in the same direction e.g.
+-15 ◦.
In this implementation it was sufficient to run one pass with
the following strategy (see Figure 7):

1) If the current patch (blue) is not already assigned to
a plane, create a new plane with this patch as first
member.

2) If the neighboring (green) patch to the right has the
same normal direction as the plane of the current patch,
add the patch (green) to this plane. If the patch to the
right is already assigned to a plane, and both plane
normals are similar, merge the planes.

3) Merge the patch to the bottom with the current plane
if the normal direction is similar.

3) Post-processing: The segmentation of the bigger patches
are by far not satisfying because they leave a lot of pixel
unassigned. In the last step the filter is running from top
left to bottom right and vice versa (see Figure 8) to assign
pixel to the most fitting plane. To assign a pixel to a plane
it must meet one of the following criteria, otherwise it stays
unassigned or assigned to its current plane.
• The considered point is unassigned and fits inside the

neighboring plane.
• If the point is already assigned to a plane, which size

is a lot smaller (e.g. factor of 10) than the new plane,
the point simply has to be close enough (d < dth to get
reassigned.

• If the point is already assigned to a plane, which is of
similar size (|Pnew| f > |Pcurrent |> |Pnew| 1f ) the point has
to be closer to the new plane, than to the old plane
(dPnew < dPcurrent ).

Note that small planes can’t take away points from bigger
planes but bigger planes sure can do this to smaller ones.

Fig. 8: The bottom up and top down processing steps follow-
ing the same pattern: The center point (blue) is traversing the
image pixelwise in the directions top-down (left) or bottom-
up (right). When one of the center points neighboring pixels
(green) is a suitable candidate for the center points plane
hypothesis, it will get added to this plane.

(a) Original image. (b) Raw patch clustering.

(c) The top-down post-
processing step.

(d) The bottom-up post-
processing step.

Fig. 9: Synopsis of the segmentation process.

This is a strategy to eliminate smaller planes, that might be
created in the first step due to oversegmentation. One might
replace this strategy by a more sophisticated one. An other
parameter that could additionally be taken into account is
the normal vector of each point, which should show into the
same direction as the plane it is added to.

VI. RESULTS OF SEGMENTATION

The simple plane segmentation algorithm provides useable
results for indoor scenarios as seen in Figure 9. It is notable
that the depthmap quality degrades in the image corners.
As a result the algorithm wrongly creates another plane in
this region (bottom right corner). Besides this, the algorithm
shows the desired behavior. The cylindrical regions around
the cans and boxes are approximated by smaller planes, while
smaller planar surface patches of boxes get detected as such.
In terms of frame rate our algorithm is competitive as it
runs at 22 Hz while processing a 640× 480 pixel depth
map. The algorithms described by Holz [5] (7 Hz) and Wang
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[8] (25 Hz) additionally implement some kind of obstacle
detection but do not utilize pre-filtering. Apart from this,
the conditions are reasonably similar. On the hardware side
all results where achieved on an Intel Core i7 with around
2 GHz while utilizing only one CPU core and the GPU for
pre filtering.

VII. CONCLUSION

We introduced a new plane segmentation approach for 2.5 D
data. It shows competitive results for both, quality and speed.
Our algorithm relies on a filtering step that improves the
quality of the input data. Hence, we conducted an analysis
of three filters to find a fitting candidate.
We selected the Sigma Adaptive Bilateral Filter wich bal-
ances speed and quality. Our GPU implementation of the
filter algorithm runs within 25 ms on an AMD Radeon HD
6750M. The mesh denoising algorithm [4], together with
our modifications showed promising results. To utilize this
algorithm in real-time, GPUs with higher performance could
be a possible solution. Apart from this, both filters could be
improved by adding a noise model that handles the increased
noise levels at higher distances.
The proposed segmentation algorithm shows competitive re-
sults that were achieved with a hierarchical strategy. Splitting
up the segmentation into a coarse pre-segmentation and a fine
grained post-processing step holds the run-time competitive.
Future work could extend this algorithm with a sensor model
that leads to additional rules such as e.g. depth dependent
thresholds.
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