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Abstract 

English 

Drug development suffers from high failure rates. Apart from adverse side effects the 

limited efficacy of a drug under study in the entire disease population is often a reason 

for stopping development. Specifically, single nucleotide polymorphisms (SNPs) 

occurring in the drug targets binding site region may hamper the efficacy of a drug. 

In the course of this thesis a computational workflow for evaluating drug efficacy in the 

context of mutation status of drug targets was developed. The implemented workflow 

was exemplarily applied to drugs used in breast cancer therapy. Relevant drugs, drug 

targets, and SNPs were retrieved from the following publicly accessible biological 

databases: ClinicalTrials.gov, ChEMBL, DrugBank and COSMIC. A major part of the 

in-silico workflow deals with the integration of such heterogeneous data from different 

sources and making them accessible for common processing. The identified set of 

drugs and their targets were analysed in greater detail including a target relevance 

ranking. 

A significant difference in the mutation ratios between targets of the identified breast 

cancer drug set and other human proteins was observed. Drug targets of the identified 

set reveal lower mutation ratios. In addition, they show a higher number of associated 

breast cancer publications. 

Furthermore, SNPs occurring in drug-targets were evaluated. For some of them, 

evidence of the influence on the drug binding efficacy and consequently on the therapy 

outcome was found in literature. 

Keywords: breast cancer, drug efficacy, data integration, in-silico workflow, clinical 

trials, drug-target interactions, SNPs 

  



 

 
 
 

Deutsch 

Die Entwicklung von Medikamenten ist durch eine hohe Ausfallrate gekennzeichnet. 

Abgesehen von unerwünschten Nebenwirkungen führt oft die unzureichende Wirkung 

eines getesteten Medikaments zum Abbruch der klinischen Studie. Insbesondere 

können Einzelnukleotid-Polymorphismen (SNPs), die sich in Targetgenen des 

Medikaments befinden, dessen Wirksamkeit beeinträchtigen. 

Im Zuge dieser Arbeit wurde ein in silico Workflow zur Evaluierung der Wirksamkeit 

unter Berücksichtigung von SNPs in der Targetregion des Medikaments entwickelt. 

Dieser wurde am Beispiel von Brustkrebs erstellt und anhand von öffentlich 

zugänglichen Daten validiert. Dazu wurden die relevanten Wirkstoffe, Zielproteine 

(Targets) und SNPs aus den biologischen Datenbanken ClinicalTrials.gov, ChEMBL, 

DrugBank und COSMIC extrahiert. 

Ein erheblicher Teil des in silico Workflows befasst sich mit der Integration heterogener 

Daten aus verschiedenen Quellen mit dem Ziel diese einer gemeinsamen 

Verarbeitung zugänglich zu machen. Die für die Anwendung bei Brustkrebs ermittelten 

Wirkstoffe sowie ihre Zielproteine wurden in weiterer Folge näher analysiert und eine 

Reihung hinsichtlich der Relevanz der Targets erstellt. 

Dabei wurde ein signifikanter Unterschied zwischen Targets der ermittelten 

Brustkrebswirkstoffe und anderen humanen Proteinen beobachtet. Jene aus dem 

ermittelten Set zeigen eine deutlich niedrigere Mutationsrate. Zugleich sind sie mit 

einer größeren Anzahl an Brustkrebs Publikationen assoziiert. 

Des Weiteren wurden SNPs, welche in Genen vorkommen, die für Zielproteine 

kodieren, sowie ihr Einfluss auf die Medikamentenwirksamkeit näher ausgewertet. Für 

einige der identifizierten SNPs konnte in der Literatur ein Nachweis der tatsächlichen 

Auswirkung auf die Bindungsfähigkeit der Medikamente an ihr Target gefunden und 

so der negative Einfluss auf die Wirksamkeit der Therapie aufgezeigt werden. 

Stichworte: Brustkrebs, Medikamentenwirksamkeit, Datenintegration, in silico 

Workflow, klinische Studien, Medikament-Zielprotein-Interaktionen, SNPs 
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1 Introduction 

Breast cancer is the second most commonly diagnosed cancer type worldwide 

following lung cancer. Moreover, breast cancer is the most frequent cancer among 

women with an incidence rate of about 90 and a mortality rate of 21 per 100,000 

women in Austria in 2012 [1]. Breast cancer medication regimes comprise 

chemotherapy, hormone blocking therapy and monoclonal antibodies (anti-HER2). 

With the identification of five intrinsic molecular subtypes of breast cancer, known as 

luminal A, luminal B, Her2-enriched, basal-like (triple-negative) and Claudin-low, as 

well as the advances in omics technologies, a strong focus on personalized therapy 

has evolved [2]. However, this also requires an assessment of drug binding efficacy 

taking into account the influence of inter-individual genomic variations. 

Drug development is a long lasting process which has become more extensive and 

complex within the past few decades [3]. It comprises preclinical studies using animal 

models followed by clinical trials in humans including in general four phases during 

which the safety and efficacy is tested. Failure rates in clinical trials are still high [4]. 

Only about 10% of new agents tested from Clinical Phase II and 50% tested from 

Phase III [5] ultimately receive approval. Success rates of drug approvals vary 

considerably between different therapeutic areas with oncology still showing the lowest 

[6-8]. Only one of every 5,000-10,000 antineoplastic drugs under development reaches 

FDA approval and only 5% of oncology drugs entering Phase I clinical trials are finally 

approved [5, 9]. According to an analysis of Arrowsmith et al. in the years 2011 and 

2012, 148 drugs failed in total between Phase II and approval. Among these, 105 had 

indicated reasons for attrition, e.g. safety issues (28%). However, the majority (56%) 

failed due to a lack of drug efficacy [10]. Figure 1.1 shows the trends in attrition rates 

resulting from the Arrowsmith analysis. 
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Figure 1.1:   Trends in attrition rates. (a) On the left, the majority of failures were caused by limited 
efficacy. As shown on the right, oncology is the single therapeutic area with the highest failure rates. 
(b) Comparison of the reasons for drug failures in Phase II and Phase III trials in different periods of 
time (modified from [10]). 

As shown in Figure 1.1, in Phase II as well as in Phase III and beyond, the limited drug 

efficacy represents the main reason for drug failure. 
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Drug efficacy is directly correlated to the proper functionality of the drug’s binding 

mechanism to its intended target. 

Drug targets can be genetic material such as DNA but mostly proteins such as 

enzymes, membrane receptors, transporters and ion channels [11]. The most 

important protein targets are the membrane receptors. Drugs can either stimulate them 

(i.e. they are agonists) or block them (i.e. they are antagonists) inhibiting a further 

interaction with an agonist. The activation of a receptor may directly lead to an opening 

or closing of ion channels or a transduction of the drug’s signal (inhibition, activation) 

to enzymes and thus an influence of biological pathways. In the case of cancer, drugs 

may e.g. block the ligand binding domain of the epidermal growth factor receptor 

(EGFR) or inhibit the EGFR tyrosine kinase resulting in a prevention of EGFR 

activation and in this way interrupting its signalling pathway and tumour proliferation. 

 

Figure 1.2:   Possible influences of SNPs on efficacy of BC therapy. The drug activity may be altered 
by individual genetic variations in target genes involved in drug absorption, distribution, metabolism 
and excretion (figure from [15]). 

However, the variations in the individual’s genetic profile may influence the intended 

drug binding and lead to inter-patient variability of drug efficacy and toxicity. These 

differences occur partly due to mutations in genes encoding drug targets, e.g. 

receptors [12, 13]. Especially in the case of cancer, single nucleotide polymorphisms 
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(SNPs) located in the drug targets binding site region may hamper drug efficacy (see 

Figure 1.2). Consequently, the characterization of toxicity and efficacy in an early stage 

of drug development might reduce drug failure rates [14]. 

Genetic variability further plays a crucial role in choosing the appropriate therapy as 

well as predicting the clinical outcome [15, 16]. The availability of molecular criteria 

such as mutation status for predicting sensitivity to a specific group of drugs hence 

represents an important prerequisite for prescribing the correct medication [17]. 

Single nucleotide polymorphisms (SNPs) represent the most common polymorphisms 

in the human genome [18]. This form of genetic variation is found within every 1,000 

nucleotides on average. SNPs may occur in non-coding as well as in coding regions 

of the genome. Those being located in a coding sequence may either change only a 

codon without any effect on the amino acid (synonymous SNPs) or result in amino acid 

substitutions (nonsynonymous SNPs) [19]. As a consequence, this change in the 

amino acid sequence might affect the function of the protein product [16]. 

With the completion of the Human Genome Project (HGP) in 2003, which aimed to 

sequence the whole human genome, followed by the International HapMap Project, 

millions of DNA sequence variants, mostly SNPs, have been detected. However, the 

majority of the identified SNPs has not yet been associated with drug response or 

disease susceptibility [20]. 

Nowadays, several technologies are available for SNP detection encompassing 

scanning of DNA sequences for previously unknown polymorphisms as well as 

genotyping individuals for known polymorphisms. These methods include DNA 

sequencing technologies such as pyrosequencing, hybridization-based methods (e.g. 

molecular beacons, SNP microarrays), enzyme-based methods (e.g. primer extension, 

PCR-based methods) as well as other methods based on physical properties of DNA 

(e.g. single strand conformation polymorphism) [21, 22]. With the emergence of high-

throughput sequencing technologies, which enable large-scale characterization of 

SNPs, also vast amounts of sequencing data are produced and need to be stored. The 

most commonly used genomic repositories are the databases of the European 

Molecular Biology Laboratory (EMBL)/European Bioinformatics Institute (EBI) e.g. 

Ensembl [23], the National Center of Biotechnology (NCBI, GenBank [24]) database 
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and the DNA Database of Japan (DDBJ) [25]. One of the most popular SNP 

repositories maintained by the NCBI is the dbSNP database [26], a public-domain 

archive containing millions of genomic variants [27]. Further sources for genetic 

variants are OMIM [28], the Online Mendelian Inheritance in Man database, and 

COSMIC (Catalogue Of Somatic Mutations In Cancer) [29] which focuses on mutations 

in human cancer. This flood of individual genomic data leads to new bioinformatics 

challenges in several areas, one of them the interpretation of the functional effect and 

the impact of genomic variation [30]. With the growing number of public accessible 

biological databases also the demand on bioinformatics solutions to analyse these 

data is expanding. Data integration as a prerequisite plays a key role in this field. Next 

to the quantity in data, the complexity of the different datasets makes data integration 

efforts a challenge. This complexity arises for example from the diversity of sources, 

the variability of data quality and evidence levels and the diversity in types of data [31]. 

Similar data can be contained in several databases but their representation may be 

different. To overcome this problem of representational heterogeneity and to ease the 

entity identification across sources, several online databases provide cross references 

to other repositories but they are by far not complete. 

1.1 Objectives 

The overall aim of the present thesis was the development of a computational workflow 

for identifying a drug-target dataset for drugs in clinical development for a given 

indication in order to evaluate whether prevalent SNPs in drug targets hamper drug 

efficacy. The workflow should be exemplified on the disease term “breast cancer”. 

Specifically, it should include the following steps: 

 Extraction of clinical trials on breast cancer 

 Identification of investigated drugs in these trials 

 Extraction of drug targets of these drugs 

 Identification of prevalent SNPs within genes encoding these targets 

 Prediction of drug binding domains 

 Integration of the collected information for evaluating if SNPs located in 

the genomic regions of drug target binding sites have an influence on 

drug efficacy by evaluating information available from scientific 

publications 
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 Evaluation of functional association of the targets to breast cancer based 

on scientific literature 

Drug-domain prediction is carried out by the collaboration partner of the project. 

The workflow itself as well as the results on the breast cancer targets will be presented 

and discussed. 
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2 Materials and Methods 

This chapter provides an overview of biological data resources and software tools used 

throughout this thesis. Furthermore, a description of the applied methods is given. 

2.1 Biological Data sources 

This work is based on data retrieved from the following data sources. 

2.1.1 ClinicalTrials.gov database 

ClinicalTrials.gov [32] is a publicly accessible database maintained by the U.S. 

National Library of Medicine (NLM) at the National Institutes of Health (NIH). It lists 

interventional and observational studies and covers a wide range of diseases and 

conditions, including cancer. The registered studies are conducted in 185 countries 

and all 50 U.S. States. According to the FDA Amendments Act of 2007 “basic” results 

of clinical trials which involve testing of FDA-regulated and FDA-approved chemical or 

biologic agents or medical devices need to be reported in ClinicalTrials.gov. 

The ClinicalTrials.gov results database contains information on study participants and 

a summary of study outcomes in a tabular format. On ClinicalTrials.gov, studies can 

be identified via “Basic Search”, “Advanced Search”, by topic or location. The study 

record data of the search result can then be downloaded in Extensible Markup 

Language (XML) and other data formats. 

2.1.2 ChEMBL 

ChEMBL [33] is an open access bioactivity database (established in 2009) that is 

maintained by the European Bioinformatics Institute (EBI). It contains drugs, drug-like 

small molecules and their bioactivity data. 

ChEMBL data is regularly updated, with releases approximately every three to four 

months. In August 2013, EBI released the 17th version of the ChEMBL database with 

more than 1 million distinct compounds and 12 million activity measures for about 

9,300 targets. 

Access to ChEMBL is available via a web-based interface, data downloads, web 

services as well as via the EMBL-EBI RDF Platform [34]. 
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2.1.3 DrugBank 

DrugBank [35] is a publicly accessible database maintained by the University of 

Alberta. It serves as bioinformatics and chemoinformatics resource for drug and drug 

target information. DrugBank contains more than 7,600 drug entries of FDA-approved 

drugs, experimental drugs and nutraceuticals. The web page allows a direct search as 

well as a download in XML or CSV (Comma-separated values) format. 

2.1.4 National Cancer Institute 

The National Cancer Institute (NCI) belongs to the NIH (National Institutes of Health), 

which is part of the U.S. Department of Health and Human Services. It is the U.S. 

government’s principal agency for cancer research and training. On the web site of the 

NCI, information on cancer, clinical trials and cancer statistics as well as a drug 

dictionary are provided. 

2.1.5 DailyMed 

The DailyMed [36] website provides information on FDA-approved drugs such as FDA 

labels, descriptions, usage, dosage and warnings. It is maintained by the U.S. National 

Library of Medicine (NLM) and updated daily by the U.S. Food and Drug Administration 

(FDA). 

2.1.6 UniProt 

UniProt [37], also known as “universal protein resource”, is a public resource for protein 

sequence and annotation data established by the European Bioinformatics Institute 

(EBI), the Swiss Institute for Bioinformatics (SIB) and the Protein Information Resource 

(PIR). 

UniProt hosts several tools such as text search, sequence alignments and database 

identifier mappings. 

2.1.7 COSMIC 

The catalogue of somatic mutations in cancer (COSMIC) [29] is a public accessible 

online database hosted by the Sanger Institute, UK, which provides information on 

somatic mutations occurring in human cancers. Data are curated from scientific 

literature as well as from the Cancer Genome Project (CGP) at the Sanger Institute 
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(http://www.sanger.ac.uk/research/projects/cancergenome/). The COSMIC website 

offers a data search either by cancer type, gene- or sample name. 

Via the COSMIC Biomart [38] somatic mutation data can be filtered, e.g. by primary 

histology, and easily downloaded. 

2.1.8 Anatomical Therapeutic Chemical classification system 

The Anatomical Therapeutic Chemical (ATC) classification system was established by 

the WHO (World Health Organisation) Collaborating Centre for Drug Statistics 

Methodology in 1990 [39]. 

This system can be used to compare data on drugs regarding the organ or anatomical 

system on which they act as well as their therapeutic, pharmacological and chemical 

characteristics. Drugs are classified into groups at five different hierarchy levels. The 

first three ATC levels indicate the anatomical main group as well as the 

therapeutic/pharmacological group. The fourth and the fifth level specify the drug’s 

chemical structure. 

2.2 Software Tools 

2.2.1 R 

R [40] is an open source programming language and environment for statistical 

computing and graphical representation of data. The data processing and analysis of 

the present master thesis was performed using R version 3.0.2 in combination with 

RStudio [41], version 0.97.551, which is an open source integrated development 

environment (IDE) for R. 

2.2.2 C 

For resource intensive data manipulations leading to long processing time, the 

programming language C [42] was used in addition. Programming was carried out by 

means of Code::Blocks 13.12 [43], a free integrated development environment, using 

the MinGW compiler. The functions coded in C were compiled into a shared library (dll) 

which can be called from inside the R script (see R manual “Writing R extensions”, 

chapter 5.3: http://cran.r-project.org/doc/manuals/R-exts.html#dyn_002eload-and-

dyn_002eunload). 
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2.2.3 Auxiliary tools 

In addition to R, the following tools were used for visualisation: 

 MS Visio (version 2007) for drawing the workflow charts and Venn diagrams 

 Tagxedo (http://www.tagxedo.com/) for creating a tag cloud 

 

The initial drug mapping step was performed by making use of the DiseaseLookup 

Excel Add-In developed as in-house software by emergentec. It is a managed plugin 

built with Visual Studio Tools for Office. Apache Lucene.Net (lucenenet.apache.org/) 

is used to construct a search index from a drug thesaurus. This search index is 

subsequently used for fuzzy matching of a user selected value against the drug 

thesaurus. The DiseaseLookup Excel Add-In provides a Task Pane that allows the 

user to query the index either with the value of the currently selected cell or with a 

manually entered value. Search results are presented in a ListBox from which the best 

hit can be selected and merged back into the active document. 
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2.3 Applied Methods 

This section presents the components of the workflow as well as a detailed description 

of the applied methods. Figure 2.1 shows the procedure that was followed to evaluate 

drugs, their targets and prevalent SNPs. 

 

Figure 2.1:   Workflow for evaluating drug-targets with respect to target relevance and prevalent SNPs.
It consisted of the following steps: (i) selection of a cancer disease term, (ii) identification of drugs via 
clinical trials data by making use of a  DiseaseLookup Excel Add-In and further manual mapping, (iii) 
identification of associated targets by integrating data extracted from biological databases using R and 
C, (iv) identification of prevalent SNPs using R for data manipulation, (v) target rating according to 
relevance and mutation frequency using R, (vi) validation of targets by means of scientific literature. 

 

2.3.1 Breast cancer trials identification 

An advanced search with the condition “breast cancer” was performed on 28th of 

October 2013 in ClinicalTrails.gov in order to identify all breast cancer trials available 

at that date. Figure 4 shows a sample of the search results returned. 
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Figure 2.2:   Sample of the trials data extracted from ClinicalTrails.gov. Each registered study has a 
unique trial ID consisting of “NTC” followed by an 8-digit number. Furthermore, information on e.g. the 
recruitment state, interventions and study phase are usually indicated. The highlighted fields were 
used for further analysis. 

From the resulting list of breast cancer trials only studies containing at least one 

intervention of type “Drug” were considered for further analysis, thus excluding all 

studies e.g. on medical devices, procedures and vaccines. 

In the studies of ClinicalTrials.gov, eleven different recruitment states are used. These 

eleven states were grouped into the following five broader recruitment states to 

guarantee sufficient numbers in the individual groups in further analysis steps: active, 

completed, not active, terminated and withdrawn. The table below shows the 

classification used. 

Table 2.1: Simplified classification of clinical trial recruitment states. The first column shows the 
introduced recruitment states combining all states listed in the second column. 

Active “Active, not recruiting” 

Completed 
“Approved for marketing”, “Completed”, “No longer available for 
expanded access” 

Not active 
“Available for expanded access”, “Enrolling by invitation”, “Not 
yet recruiting”, “Recruiting”, “Suspended” 

Terminated “Terminated” 

Withdrawn “Withdrawn” 
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In addition to the recruitment state, information on the phase of the trial (phase 0, phase 

1, phase 2, phase 3, phase 4) was extracted. In case multiple phases were listed (e.g. 

phase 2/3) the higher phase was used for further analysis. 

2.3.2 Drug retrieval and mapping 

2.3.2.1 Extraction of drugs from clinical trials 

From the set of eligible breast cancer trials described above, all tested drugs were 

extracted from the intervention attribute and their names were mapped to a common 

reference namespace. This process was carried out by making use of an already 

existing DiseaseLookup Excel Add-In that is accessing a list of all ChEMBL 

compounds including their synonyms and drug names as well as the URI of the 

Compound Report Card. As the Add-In was case sensitive and not tolerating additional 

spaces and hyphens, approximately two-thirds of the drugs could be mapped 

automatically with the remaining thirty percent requiring a manual step. This consisted 

of searching the drug in the ChEMBL database, extracting the ChEMBL ID and 

inserting it into the Excel sheet. Drugs not found in ChEMBL were searched in the NCI 

catalogue. Finally, the drug list was reviewed to exclude drugs which have not been 

specifically administered to tackle the tumour but merely given for the treatment of side 

effects (e.g. analgesics, anaesthetics, antibiotics) or compounds such as imaging 

agents (often recognisable by additional terms like “fluoro” or “PET scan”). 

2.3.2.2 ChEMBL drugs to DrugBank 

In order to verify the drugs retrieved via ChEMBL and to provide a curated repository 

of drug targets for the next steps, a second resource, DrugBank, containing detailed 

drug data with drug target information was used. For this purpose the identified 

ChEMBL breast cancer drug set was further mapped to DrugBank using (i) the cross 

reference mapping provided by ChEMBL and (ii) manual (human interference) 

identification of the respective entry in DrugBank. In general each ChEMBL drug ID 

referred to one unique DrugBank ID. 
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2.3.3 Drug target identification 

On the one hand drug targets were extracted from ChEMBL providing information on 

drug mechanism of actions as well as bioactivity data, and on the other hand targets 

were retrieved via DrugBank as outlined in the next sections in more detail. 

2.3.3.1 Drug target identification via ChEMBL 

2.3.3.1.1 Curated 

ChEMBL provides information on the mechanism of action of FDA-approved drugs. 

Targets are only included in the mechanism table if the drug interacts directly with the 

target and its interaction exerts the efficacy in the disease for which the drug is 

indicated. The mechanism table was extracted from the ChEMBL MySQL database 

dump (ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/) and used to identify the 

targets associated to the present breast cancer drug set. 

2.3.3.1.2 Experimental 

To identify further targets, specifically for not approved drugs, activity information 

available in the ChEMBL database was retrieved via the EMBL-EBI RDF platform [44]. 

This bioactivity data comprises several parameters such as confidence score and 

pChEMBL value. The confidence score value reflects on the one hand the type of a 

target tested in a specific assay and on the other hand the confidence in the 

correctness of the assigned target for a particular assay. It ranges from 0 (“target 

assignment has yet to be curated”) to 9 (“direct single protein target assigned”). The 

pChEMBL value (> 0) arises from several measures like affinity and potency 

(https://www.ebi.ac.uk/chembl/faq#faq67). In order to evaluate the drug-target 

interactions via bioactivity assays, a threshold for the confidence score as well as for 

the pChEMBL value was chosen. In this thesis only activity entries with pChEMBL 

values and assay data with assay confidence scores ≥ 8 (8 = homologous single 

protein target assigned, 9 = direct single protein target assigned) were selected for 

further analysis. Moreover all non-human targets were excluded and only reviewed 

human UniProt targets were considered. A pChEMBL threshold value of 7 was applied. 

Since multiple activity entries for the same drug-target interaction can exist having 

different pChEMBL values, the concept of a pChEMBL ratio was introduced for 

consolidation. The pChEMBL ratio was defined as the number of activity entries for a 

specific drug-target interaction with a pChEMBL value above the threshold divided by 
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the total number of activities for that drug-target interaction. It was calculated per drug-

target interaction as follows: 

௥௔௧௜௢ܮܤܯܧ݄ܥ݌ ൌ
ݎܾ݁݉ݑܰ ݂݋ ݕݐ݅ݒ݅ݐܿܽ ݏ݁݅ݎݐ݊݁ ݄ݐ݅ݓ ܮܤܯܧ݄ܥ݌ ൐ 7

݈ܽݐ݋ܶ ݎܾ݁݉ݑ݊ ݂݋ ݕݐ݅ݒ݅ݐܿܽ ݏ݁݅ݎݐ݊݁
 

(1)

All drug-target interactions with pChEMBL ratios higher than 0.75 were considered as 

positive interactions. 

The final ChEMBL breast cancer target list resulted from merging the directly identified 

ChEMBL breast cancer drug set with targets derived from the activity entries. 

2.3.3.2 Drug target identification via DrugBank 

DrugBank drug records hold drug target associations which are manually curated from 

scientific literature. Drug targets are characterized by their gene name, 

pharmacological action as well as references to PubMed citations. 

Figure 2.3 shows clippings of a DrugBank drug entry, the “DrugCard”, containing 

specific information on the drug and its target(s). 
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Figure 2.3:   Screen dump of a DrugBank DrugCard showing the breast cancer drug Paclitaxel and 
one of its targets. The highlighted fields were used for further analysis. 

 

For this work DrugBank drug target information was extracted from the drug target 

identifiers file provided in the download section of the DrugBank homepage. UniProt 

targets with the species category "human" were selected and used for the drug to 

target mapping. 



 

17 
 

2.3.4 Target relevance ranking 

The targets of the final drug set (ChEMBL and DrugBank) were analysed with respect 

to breast cancer disease associations extracted from scientific publications. 

Therefore, the number of breast cancer aggregated Gene References Into Function 

(GeneRIFs) for each gene was derived from the information provided in NCBIs 

gene2geneRIF file (ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/generifs_basic.gz). 

GeneRIFs are short phrases which describe the function of a gene including the 

reference to a corresponding PubMed publication. They are manually added in NCBIs 

Gene database by scientists in order to enrich the functional annotation of a gene. 

Articles in NCBIs PubMed are indexed by Medical Subject Headings (MeSH) [45] 

which is a controlled vocabulary that can also be used as a thesaurus for searching. 

Only GeneRIFs referencing a paper having the MeSH term "Breast Neoplasms" or one 

of its narrower terms (listed in Table 2.2) as major concept were considered for the 

score calculation, i.e. breast cancer “aggregated” GeneRIFs were counted. 

Table 2.2: Narrower MeSH terms of “Breast Neoplasms” 

Breast Neoplasms 

Breast Neoplasms, Male 

Carcinoma, Ductal, Breast 

Hereditary Breast and Ovarian Cancer Syndrome 

Inflammatory Breast Neoplasms 

Triple Negative Breast Neoplasms 
 

The number of breast cancer associated papers for each gene (“#disease BC agg 

papers”) was derived by counting the number of breast cancer associated papers 

linked to the gene. The following PubMed query was used to identify a set of breast 

cancer associated papers: 

"Breast Neoplasms/pathology[majr] OR Breast Neoplasms/ 

physiopathology[majr] OR Breast Neoplasms/enzymology[majr] 

OR Breast Neoplasms/chemistry[majr] OR Breast 

Neoplasms/metabolism[majr]" 

Gene paper links were used as provided in NCBIs gene2pubmed (available under 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz). 
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The sensitivity of each gene for breast cancer (“SE disease BC”) was estimated based 

on the number of breast cancer papers linked to that gene. The genes having at least 

one associated paper (2,998 genes) were sorted according to this number. The 

sensitivity value represents the percentile ranking of the gene under investigation in 

this list. 

஻஼	ௗ௜௦௘௔௦௘ܧܵ ൌ ൬1 െ
ݏ݁݊݁݃	݂݋	ݎܾ݁݉ݑܰ ݄ݐ݅ݓ ݁ݎ݋݉ ݀݁ݐܽ݅ܿ݋ݏݏܽ ݏݎ݁݌ܽ݌
ݎܾ݁݉ݑ݊	݈ܽݐ݋ܶ ݂݋ ݏ݁݊݁݃ ݄ݐ݅ݓ ݀݁ݐܽ݅ܿ݋ݏݏܽ ݏݎ݁݌ܽ݌

൰ ∗ 100	ሾ%ሿ (2)

To compare the target relevance ranking of the different target sets, boxplots were 

generated. ChEMBL targets were grouped in the following subsets: positive assessed 

ChEMBL BC targets, negative assessed ChEMBL BC targets and ChEMBL targets 

being not part of the identified BC target set. DrugBank targets were classified into 

pharmacological active targets of BC approved drugs, pharmacological active targets 

of BC experimental drugs, pharmacological inactive targets of BC approved drugs, 

pharmacological inactive targets of BC experimental drugs and pharmacological 

inactive targets that are not part of the identified BC target set. In case a protein has 

been a target of an approved as well as an experimental drug, it was classified as 

approved drug target. 

To assess the differences between the target and non-target sets as well as the 

pharmacological active and pharmacological inactive target set, Wilcoxon tests were 

calculated setting the significance level to < 0.05. The Benjamini-Hochberg correction 

was used to adjust the p-values for multiple comparisons. Statistical tests as well as 

generation of boxplots were done in R. 

2.3.5 SNP identification 

For identifying SNPs occurring in breast cancer tissue the COSMIC database was 

used. All COSMIC variants isolated from breast samples were extracted via COSMIC 

Biomart, COSMIC v68, (retrieval date: 2014-02-16). The figure below provides a 

screenshot of the COSMIC query illustrating the used dataset, filters and attributes. 
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Figure 2.4:   Screenshot of the COSMIC Biomart BC sample query. As dataset COSMIC68 was 
chosen and the following filters were applied: Primary Site: breast, Primary Histology: carcinoma. In 
the right, an excerpt of the results table is illustrated. 

The results table comprised 29 columns e.g. Pubmed ID, Gene Name, COSMIC 

Sample ID, Sample Name, Accession Number, Swissprot ID, AA Mutation Syntax. As 

the Swissprot ID was not indicated for every entry, the Accession Numbers, if 

consisting of an ENST accession, were mapped to UniProt ID by making use of the 

UniProt ID mapper (http://www.uniprot.org/mapping/). For entries which did not have 

ENST accession numbers but e.g. NCBI Refseq or GenBank ID, the Swissprot ID if 

provided by COSMIC was used. 

In order to compare the frequency of diverse mutations detected per gene, a mutation 

ratio was calculated. The mutation ratio was defined as the number of mutated samples 

divided by the total amount of examined samples per gene. If there were several 

mutations found in the same sample, it was still counted only once as mutated sample. 

As example the mutation ratio for the data provided in Table 2.3 is calculated as 

follows. The data contains five different samples (unique sample IDs). Among these, 

three samples harbour mutations resulting in a mutation ratio of 0.6. 
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Table 2.3: Example data for mutation ratio calculation including UniProt ID, COSMIC mutation ID and 
COSMIC sample ID. 

UniProt ID COSMIC 
mutation ID 

COSMIC 
sample ID 

A1Z1Q3 NA 1184078

A1Z1Q3 NA 1230672

A1Z1Q3 162314 1331073

A1Z1Q3 162315 1331073

A1Z1Q3 NA 1779393

A1Z1Q3 443475 1779393

A1Z1Q3 443474 1899732

 

For further analysis only mutation ratios of genes with a tested sample size bigger than 

20 were considered. 
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3 Results 

In the first part of this chapter the design as well as the implementation of the 

developed workflow is described in greater detail. The main intention was to apply this 

workflow to breast cancer and to achieve a detailed overview of approved and 

experimental drugs, their targets and SNPs influencing their efficacy. The results of 

this analysis are covered in the second part of the results section. 

3.1 Workflow and implementation 

The first step consisted of identifying a breast cancer drug set. Figure 3.1 illustrates 

the input and output tables used in this step as well as the analyses executed. The 

initial table retrieved from ClinicalTrials.gov (Table A: Study) was remodelled and 

filtered for “Drug” interventions. By looking up the drug names in ChEMBL, the table 

was extended with a ChEMBL drug ID and a ChEMBL drug name. The mapping 

process finally leads to Table B (for details of the mapping process see chapter 2.3.1). 

This first procedure was executed by means of Microsoft Excel. All further steps were 

implemented as R scripts. This comprised the import of Table B as a data.frame, 

further simplifications leading to Table C and a common analysis of both tables. 

Out of Table C four subsets were generated: ChEMBL drugs, NCI drugs, drugs that 

are not breast cancer relevant (“other”) and drugs that could neither be found in the 

ChEMBL drug catalogue nor in NCI’s drug dictionary. This information was stored in 

the attribute column “comment”. The column “ChEMBL ID” either contains ChEMBL 

drug links which include the ID or the ones of NCI. In subsequent steps of the workflow 

only drugs indexed in ChEMBL were considered thus forming the final drug set used 

for the following analysis. 

One way to classify the ChEMBL drug set was via the Anatomical Therapeutic 

Chemical Classification System. The ATC codes of the ChEMBL drugs were retrieved 

via the EMBL-EBI RDF platform and merged into the unique ChEMBL drug set using 

the ChEMBL ID. A substring of the first three characters of the ATC code was 

generated in order to group the ChEMBL breast cancer drug set and to check the 

number of neoplastic agents. 
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Figure 3.1:   ChEMBL breast cancer drug identification: Input and output tables of the ChEMBL breast
cancer drug identification step (grey boxes) and output of the analysis of trials and drugs (red boxes).

Furthermore, the identified drugs were analysed in greater detail pertaining to the 

phase and recruitment state of the trials they were tested in. To identify the number of 

unique drugs per phase and recruitment state Table A was merged with Table C by 

column “ClinicalTrials.gov ID”. However, this did not result in unique drug rows as the 

same drug might be used in several trials. Therefore, the highest development phase 

of each drug was determined. The following code snippet shows this procedure: 

#data of drugs with no phase indicated are ignored: 
data_phase <- subset(data_phase_drug,data_phase_drug$Phases.y != "") 
#simplify phase labels so that only phase indices are left: 
data_phase$Phases.y <- gsub("Phase","",data_phase$Phases.y) 
#transform phase indices to type “integer”: 
data_phase$Phases.y <- as.integer(data_phase$Phases.y) 
data_phase_s <- data_phase 
data_phase_s$comment = NULL #delete the column “comment” 
data_phase_s$ChEMBL_name = NULL #delete the column “ChEMBL_name” 
data_max <- data.frame() #create new dataframe for max phases 
for (i in 1: nrow(data_phase_s)) 
{ 

#retrieve indices of all occurring phases of a specific drug: 



 

23 
 

g <- which(data_phase_s$ChEMBL_id == data_phase_s[i,1]) 
#return index of g of the highest phase of the selected drug: 
k <- which.max(data_phase_s[g,2]) 
i_max <- g[k] #returns equivalent index of data_phase_s 
#add the drug ID and its highest phase to data_max: 
data_max <- rbind(data_max, data_phase_s[i_max,]) 

} 
#unique ChEMBL and NCI drugs in highest development phase: 
data_max <- unique(data_max) 

Listing 3.1: Code snippet of highest development phase calculation. 

As one drug (in its highest development phase) could also have multiple recruitment 

states, it was necessary to sort the recruitment states according to completeness state. 

To avoid time consuming loops with string comparisons, the recruitment state string 

was replaced by a completeness index which was derived in the following way: 

“Completed"= 5, "Active"= 4, "Not active"= 3, “Terminated"= 2, "Withdrawn"= 1. 

This index was then used for sorting instead of the recruitment state as shown in the 

following code snippet: 

data_max_state <- data.frame()#create new dataframe 
for (i in 1: nrow(data_max)) 
{ 

g <- which(data_trials$ChEMBL_id == data_max[i,1] & data_trials$Phases == 
data_max[i,2]) #select drugs with certain ChEMBL ID and phase 
#dataframe with drugs, their highest phase and recruitment states: 
data_max_state <- rbind(data_max_state, data_trials[g,]) 

} 
data_max_state <- unique(data_max_state) #remove duplicates 
 
data_max_state_x <- data.frame() 
data_max_state_num <- data_max_state 
states_num <- c("5", "4", "3", "2", "1") #recruitment states as numeric 
#recruitment states: 
states <- c("Completed", "Active", "Not active", "Terminated", "Withdrawn") 
#loop for substitution of recruitment states by the introduced numeric values: 
for(k in 1:length(states)) 
{ 
data_max_state_num$Recruitment <-gsub(states[k],states_num[k], 
data_max_state_num$Recruitment) 

} 
for (i in 1: nrow(data_max_state_num)) 
{ 

#dataframe subset containing all recruitment states of a certain drug (in 
#highest development phase): 
drugx_states <- subset(data_max_state_num, ChEMBL_id == 
data_max_state_num[i,1]) 
k <- which.max(drugx_states[,2]) #index of the most completed recruitment state 
#dataframe of drugs with their highest development phase and most completed 
#recruitment state 
data_max_state_x <- rbind(data_max_state_x, drugx_states[k,]) 

} 
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data_max_state_x_unique <- unique(data_max_state_x) #remove duplicates 
#indices of ChEMBL drugs: 
i <- grep("http://rdf.ebi.ac.uk/resource/chembl/molecule/", 
data_max_state_x_unique[,1], fixed = TRUE) 
data_max_state_x_unique_chembl <- data_max_state_x_unique[i,] 
#loop for substitution of numeric values by recruitment states: 
for(k in 1:length(states)) 
{ 
data_max_state_x_unique_chembl$Recruitment <- gsub(states_num[k], states[k], 
data_max_state_x_unique_chembl$Recruitment) 

} 

Listing 3.2: Code snippet for determination of the highest recruitment state belonging to the respective 
highest development phase. 

During the second step of the workflow targets associated to the drug set were 

identified either via information provided in ChEMBL or DrugBank. Figure 3.2 shows 

the input and output tables used in the ChEMBL breast cancer drug-target identification 

step. 

 

Figure 3.2:   ChEMBL breast cancer target identification: Input and output tables of the ChEMBL 
breast cancer target identification step (grey boxes) and output of the analysis of ChEMBL targets 
(red box). 
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As described in chapter 2.3.3.1 the activity information extracted from the ChEMBL 

database was first pre-processed by defining a pChEMBL and confidence score 

threshold as well as by choosing the target organism “Homo Sapiens” and excluding 

non-human reviewed targets. In order to calculate the pChEMBL ratio (see chapter 

2.3.3.1) all drug-target combinations were taken into account. To avoid time consuming 

string comparisons a unique numeric id for each drug-target combination was 

introduced (“combi_id”) according to the equation below. 

௜ௗܾ݅݉݋ܿ ൌ 10ୡୣ୧୪ሺ୪୭୥భబሺ୫ୟ୶ሺ௧௔௥௚௘௧೔೏ሻሻሻ ∗ ݑݎ݀ ௜݃ௗ ൅ ௜ௗ (3)ݐ݁݃ݎܽݐ

This combi_id was then used to sort the total dataset. 

As the calculation of the pChEMBL ratio requires nested loops the calculation time 

achieved in R was not satisfying due to the large amount of data containing many 

duplicates. Therefore, a C function was written to calculate the pChEMBL ratio. R can 

directly call C functions from a shared library (dynamic link library in Microsoft 

Windows). 

The implemented function requires the following one-dimensional arrays as input: 

combi_id, pChEMBL, pChEMBL_threshold. Address references (pointers) to these 

elements are passed as arguments. 

The function returns a reduced data set consisting of unique combi_ids together with 

the pChEMBL_ratio for each id. 

The memory for these output arrays also has to be allocated by the caller and the 

address references are passed as further arguments. 

R code calling C function: 

df_int <- data.frame(drug_id = as.numeric(df$ChEMBL_drug_id), target_id = 
as.numeric(df$ChEMBL_target_id), uniprot_id = df$uniprot_id, conf_score = 
df$conf_score, pChEMBL = df$pChEMBL, combi_id = NA) 
#identify the highest target_id: 
mult_fact <- ceiling(log10(max(df_int$target_id))) 
#create a unique id for each drug/target combination by multiplying the drug_id 
#with mult_fact and adding the target_id: 
df_int$combi_id <- (df_int$drug_id * 10^(mult_fact)) + df_int$target_id 
#sort by combi_id so that same drug-target interactions are consecutive: 
df_int_sort <- df_int[order(df_int$combi_id),] 
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#count of unique drug-target interactions (combi ids): 
unique_combi <- length(unique(df_int_sort$combi_id)) 
 
cutoff <- 7 #choose pChEMBL cutoff 
c_combi_id <- as.double(df_int_sort$combi_id) 
c_pChEMBL <- as.double(df_int_sort$pChEMBL) 
c_count_id <- as.integer(length(df_int_sort$combi_id)) 
#zero vector with the same length as unique combi ids: 
c_ratio <- as.double(rep(0, unique_combi)) 
 
dyn.load("dll_path\\pchembl.dll") #loading dll 
out <- .C("pChEMBL_ratio", c_combi_id, c_pChEMBL, c_count_id, as.double(cutoff), 
c_ratio, as.integer(unique_combi)) #calling C function 
str(out) #structure of C function output 
#List of 6 
# $ : num [1:930655] 1e+07 2e+07 2e+07 2e+07 2e+07 ... 
# $ : num [1:930655] 6.38 9.49 9.29 9.49 9.49 5.8 9.07 5.39 4.9 5.67 ... 
# $ : int 930655 
# $ : num 7 
# $ : num [1:852679] 0 1 1 1 0 1 0 0 0 1 ... 
# $ : int 852679 
result <- out[[5]] #calculated pChEMBL ratios 

Listing 3.3: Code snippet of combi_id calculation and C function calling. 

C function inside dll: 

void pChEMBL_ratio (double* p_id, double* p_pCh, int* p_id_count, double* 
p_cutoff, double* p_ratio, int* p_ratio_count) 
{ 
    int count = 1; 
    int count_cutoff = 0; 
    int i; 
    int j = 0; 
    if (p_pCh[0] > *p_cutoff) {count_cutoff = count_cutoff + 1;} 
    for( i = 1; i< *p_id_count; i++) 
        { 
            if (p_id[i] == p_id[i-1]) 
            { 
                count = count + 1; 
                 if (p_pCh[i] > *p_cutoff) {count_cutoff = count_cutoff + 1;} 
            } 
            else 
            { 
                p_ratio[j] = (double)count_cutoff / (double)count; 
                j = j+1; 
                count = 1; 
                count_cutoff = 0; 
                 if (p_pCh[i] > *p_cutoff) {count_cutoff = count_cutoff + 1;} 
            } 
        } 
  p_ratio[j] = (double) count_cutoff / (double) count; 
} 

Listing 3.4: Code snippet of the C function calculating the pChEMBL ratio. 
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With the obtained pChEMBL ratio and the previously selected pChEMBL threshold 

(“cutoff”), ChEMBL targets were assessed and divided into “positive” and “negative” 

targets. 

Apart from the ChEMBL database, also DrugBank was used for target retrieval. In 

Figure 3.3 the input and output tables used for the DrugBank drug-target identification 

are illustrated. In the first step the ChEMBL drug set was mapped to DrugBank (see 

the “Methods” section) resulting in Table H containing all ChEMBL breast cancer drug 

IDs and their respective DrugBank IDs. In the next step Table I containing all available 

targets in DrugBank, had to be remodelled as multiple drugs binding to the same target 

are recorded in the same field. A string split was therefore performed and entries of 

targets were duplicated. In addition, the species category was filtered by “human”. 

Finally the DrugBank targets could be identified by merging the resulting table with 

Table H by means of the DrugBank ID. 

For further analysis Table K and Table L were created with data available in DrugBank. 

These tables contain information on drug status (approved, experimental) and 

pharmacological action of the target (data available from DrugBank). 
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Figure 3.3:   DrugBank breast cancer target identification: In- and output tables of the DrugBank breast 
cancer target identification step (grey boxes) and output of the analysis of DrugBank drugs/targets
(red box). 

In the next step the identified targets were analysed in greater detail by performing a 

relevance ranking (see Figure 3.4). As described earlier in the “Methods” section, 

information about the number of breast cancer relevant GeneRIFs, breast cancer 

associated papers and the sensitivity values for each gene already existed as extract 

from emergentec’s BIO software in the form of an Excel spreadsheet. The genes were 

identified by name and ENSG accession (Ensemble identifier for human genes). In 

order to make them compatible with the target set, the UniProt ID mapping service was 

used to convert ENSGs to UniProt IDs. Then the mapping result was merged with the 

target relevance ranking table (Table M) by means of the ENSG column. A further 

merging step with the identified target set (Table P) by UniProt ID was required to filter 

out only the relevant targets. 
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Figure 3.4:   Target relevance ranking: In- and output tables of the target relevance ranking step (grey 
boxes) and output of the analysis of target relevance (red box). 

The following step of the workflow comprised the SNP identification (see Figure 3.5). 

For this purpose, all breast cancer samples available in COSMIC database were 

extracted (for details see section 2.3.5). The indicated ENSTs were mapped to UniProt 

IDs making use of the UniProt ID mapper and further merged to the SNP data table 

(Table R). 

The retrieved mutation data (Table T) was summarized by introducing the mutation 

ratio that was calculated per gene as follows: 

݋݅ݐܽݎ_݊݋݅ݐܽݐݑܯ ൌ
ݎܾ݁݉ݑܰ ݂݋ ݀݁ݐܽݐݑ݉ ݏ݈݁݌݉ܽݏ
݈ܽݐ݋ܶ ݎܾ݁݉ݑ݊ ݂݋ ݏ݈݁݌݉ܽݏ

 
(4)
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In order to remove sample data of genes which are not part of the identified target set, 

the COSMIC data (Table U) was further merged with the target set (Table P) by UniProt 

ID resulting in Table V. 

 

Figure 3.5:   SNP identification: In- and output tables of the SNP identification step (grey boxes) and 
output of the analysis of targets with mutations (red box). 
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The final step of the workflow after the identification of SNPs located in the drug targets 

consisted of a plausibility check including an extensive literature search. 

So far this chapter has focused on the implementation of the workflow. The following 

section illustrates the outcome of the previously described workflow on breast cancer 

as example disease term. 

3.2 Workflow results 

This section is divided into four main parts, each of which represents the results relating 

to a stage of the workflow. 

3.2.1 Breast cancer trials 

As described in chapter 2.3.1 all available breast cancer trials were extracted from 

ClinicalTrials.gov in order to generate an appropriate drug set. Therefore, pre-

processing and filtering of the trial data was necessary at first, as shown in Figure 3.6. 

 

Figure 3.6:   Filter process of breast cancer trials. The initial breast cancer trial set, retrieved from 
ClinicalTrials.gov, is reduced by selecting a distinct intervention type as well as by separating trials 
testing drugs not indexed in the ChEMBL database. Provided is the number of trials in the different 
filter steps. 
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In total 5,086 relevant studies were identified (retrieval date: 2013-10-28). Out of these 

studies 4,553 trials had indicated “interventions” and 2,892 trials had a drug 

intervention attribute. Drugs used in the latter one were further analysed: 432 trials did 

not investigate breast cancer relevant drugs as e.g. anaesthetics, analgesics, 

antibiotics or imaging agents, 24 trials listed drugs that could not be identified and 195 

trials tested drugs that were exclusively found in NCI’s drug dictionary. 2,357 trials 

investigated breast cancer drugs indexed in the ChEMBL database which were further 

analysed. Rather often more than one drug was tested in a single trial. Furthermore, 

there might be multiple trials for the same drug. As a consequence, trials can be found 

in more than one of the categories listed above. 

The study data which was extracted from ClinicalTrials.gov also included a field called 

“Conditions”. With the help of this field the selected disease can be further specified. 

The following figure shows the tag cloud of condition terms found in trials included in 

the current analysis. It has to be noted that only conditions of breast cancer trials 

testing at least one of the identified ChEMBL breast cancer drugs have been included. 

 

 

Figure 3.7:   Tag cloud of condition terms of BC studies. Visualization of the contents of the “condition” 
attribute column of the study data extracted from ClinicalTrials.gov. Only trials which test at least one 
of the identified ChEMBL breast cancer drugs are included. 
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Non breast cancer relevant terms and contradicting terms like “excluding breast 

cancer” could also be found in the condition attribute. 2230 trials of those investigating 

a drug indexed in ChEMBL had a breast cancer relevant condition indicated. The most 

common condition term is “breast cancer”, followed by “breast neoplasms” and 

“metastatic breast cancer”. 

2,267 unique trials out of the ones with identified ChEMBL drugs showed an indicated 

phase and recruitment state. The following figure illustrates the number of trials per 

phase and recruitment state. The data set includes all breast cancer trials investigating 

an identified ChEMBL drug. 

Figure 3.8:   Number of trials per phase. Trials are grouped according to their clinical phase (see axis 
labels) and subdivided with respect to recruitment state (see legend). The group “Not specified” 
contains the trials without phase indication. 

As can be seen in Figure 3.8 most of the trials are currently in clinical phase II of which 

the majority is of recruitment state “completed” (521). 

Figure 3.9, illustrated below, demonstrates the distribution of drugs versus the highest 

development phase. If a drug was tested in multiple phases, the highest one was taken 

into consideration. The “total” set includes drugs referenced in ChEMBL or NCI and 

comprised 409 drugs. As shown in Figure 3.8 most breast cancer drugs are currently 

tested in clinical phase II. Furthermore it can be seen that drugs not referenced in 

ChEMBL but in NCI’s drug dictionary are almost exclusively in lower clinical phases (I, 

II). 
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Figure 3.9:   Distribution of drugs versus the highest development phase (total = NCI & ChEMBL, 
ChEMBL). If a drug was tested in multiple phases, the highest one was taken into consideration. 

Figure 3.10 shows the distribution of the number of trials per drugs. The used data set 

comprised of all identified breast cancer drugs referenced in the ChEMBL database. 

The diagram shows that the majority of drugs are tested only in a small number of 

trials. Drugs that are frequently used in clinical breast cancer trials are e.g. Docetaxel, 

Cyclophosphamide and Paclitaxel. 

 
Figure 3.10: Distribution of drugs versus number of trials (used drug set: ChEMBL). The highest 
number of trials has been detected for Paclitaxel which is tested in 420 studies. 

In summary 2,357 trials amendable for further analysis were identified leading to the 

generation of the drug set via ChEMBL described in the following section. 
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3.2.2 Breast cancer drug set and targets 

This section describes the identification of a breast cancer drug set as well as a set of 

associated drug targets and the characteristics of these sets. The section is divided 

into two parts due to the databases used for drug and target retrieval, namely ChEMBL 

and DrugBank. 

3.2.2.1 ChEMBL 

The semi-automatic mapping of breast cancer drugs identified in clinical breast cancer 

trials to the ChEMBL database resulted in 292 unique ChEMBL drugs. 

To check the reliability of the identified breast cancer drug set DailyMed 

(dailymed.nlm.nih.gov) was used on the one hand to determine FDA approved breast 

cancer drugs. On the other hand the ATC (Anatomical Therapeutic Chemical) code of 

the drugs was analysed and reviewed by a clinician. The table below shows the 

distribution of the ChEMBL drug set over ATC code groups (consisting of the first two 

levels only). It has to be noted that only approved drugs are classified by ATC codes. 

Table 3.1: Distribution of ChEMBL drugs over ATC code groups (first two levels) of the identified 
ChEMBL breast cancer drug set. Drugs may occur in multiple groups. 

ATC code 
(first two levels) 

name of ATC label number 
of drugs 

A10 drugs used in diabetes 1 

C01 cardiac therapy 1 

C02 antihypertensives 1 

C09 agents acting on the renin-angiotensin system 1 

D11 other dermatological preparations 1 

G02 other gynecologicals 1 

G03 sex hormones and modulators of the genital system 7 

H01 pituitary and hypothalamic hormones and analogues 3 

L01 antineoplastic agents 75 

L02 endocrine therapy 14 

L03 immunostimulants 1 

L04 immunosuppressants 6 

M01 antiinflammatory and antirheumatic products 3 

M02 topical products for joint and muscular pain 1 

N03 antiepileptics 1 

N04 anti-parkinson drugs 1 

P01 antiprotozoals 1 

S01 ophthalmologicals 2 

V04 diagnostic agents 1 
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In total 19 different ATC codes are present in the used drug list which consists of 109 

ChEMBL drugs. However, drugs may occur in more than one group as multiple ATC 

codes may be assigned to a single drug. About 90 drugs were classified into group L01 

and L02 which are the categories “antineoplastic agents” and “endocrine therapy”. 

In order to determine the targets of the identified ChEMBL breast cancer drug set the 

bioactivity data from ChEMBL was used. The initial set of bioactivity data (assay 

confidence score ≥ 8) comprised 1,404,385 entries. By excluding non-human targets, 

the dataset was reduced to 930,828 entries and, after removal of non-reviewed UniProt 

targets, 930,655 entries remained. These contained 852,679 unique drug-target pairs 

(852,799 on the level of UniProt protein accessions as target). Filtering these 

interactions by the ChEMBL breast cancer drug set resulted in 1805 drug-target 

interactions. 

After evaluating the ChEMBL targets as described in the “Methods” section (see 

chapter 2.3.3.1) and after merging them with the selected cancer drug set 75 drugs 

and 177 distinct targets remained. In total 299 unique drug-target interactions were 

determined. The figure below shows the distribution of the number of drug targets 

associated to one drug. Most of the drugs affect one or two specific targets. One of the 

few exceptions is Dasatinib which is related to 45 targets. 

 
Figure 3.11: Distribution of drugs versus number of drug targets (ChEMBL). The majority of drugs are 
associated with a small number of targets. 

In total 75 drugs and 177 targets from ChEMBL were considered for further analysis. 
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3.2.2.2 DrugBank 

Mapping the identified ChEMBL drugs to DrugBank using the cross reference provided 

by ChEMBL resulted in 70 DrugBank breast cancer drugs and 169 distinct targets. 

After an additional manual identification a set of 141 DrugBank breast cancer drugs in 

total was established. 104 out of these drugs had at least one indicated target. In total 

221 unique UniProt targets could be identified for the DrugBank drug set as well as 

456 drug-target interactions. The number of targets associated with each drug ranges 

from 1 to 26. As can be seen in Figure 3.12 the majority of drugs has a small number 

of drug targets associated. Only a few drugs, e.g. Marimastat, affect more than ten 

targets. 

 
Figure 3.12: Distribution of drugs versus number of drug targets (DrugBank). Most drugs have a small 
amount of associated targets. 

The DrugBank drug set could be further characterized by the status of the drug: 

approved, clinical stage and experimental (see Figure 3.13). This information as well 

as the pharmacological action of a drug target is indicated in DrugBank. 
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Figure 3.13: DrugBank breast cancer drug set and its targets. Provided is the number of identified 
DrugBank drugs (approved, in clinical stage, experimental) affecting at least one target, total number 
of unique targets (UniProt) and unique targets with pharmacological action. 

The comparison of the ChEMBL and DrugBank final breast cancer drug-target set 

showed that several times the same drug was assigned to different targets in the two 

databases. A few examples are listed below in Table 3.2. 

Table 3.2: Example of differences in target assignmentvia ChEMBL and DrugBank. Drugs are given as 
ChEMBL and DrugBank IDs, targets as UniProt IDs. Positive and negative assessed ChEMBL targets 
(via pChEMBL as described in the “Methods” section) are listed in separate columns. 

ChEMBL ID DrugBank ID UniProt ID 
IsTarget 
ChEMBL 
(positive)

IsTarget 
ChEMBL 
(negative) 

IsTarget 
DrugBank

ChEMBL428647 DB01229 P27816 no no yes

ChEMBL428647 DB01229 O75469 no no yes

ChEMBL428647 DB01229 P11137 no no yes

ChEMBL428647 DB01229 P10636 no no yes

ChEMBL428647 DB01229 Q9H4B7 no no yes

ChEMBL428647 DB01229 P10415 no no yes

ChEMBL428647 DB01229 O15118 no yes no

ChEMBL1445 DB01185 P16471 no no yes

ChEMBL1445 DB01185 P04150 no no yes

ChEMBL1445 DB01185 P03372 no no yes

ChEMBL1445 DB01185 P10275 yes no yes

ChEMBL1445 DB01185 Q99714 no yes no

ChEMBL939 DB00317 P00533 yes no yes

ChEMBL939 DB00317 O14976 yes no no

ChEMBL24828 DB08764 P00374 no no yes

ChEMBL24828 DB08764 Q9UF33 yes no no

ChEMBL24828 DB08764 P06239 yes no no

ChEMBL24828 DB08764 P00533 yes no no
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To check the overlap of the content of the ChEMBL and DrugBank database in general, 

the coverage of drugs, targets and drug-target interactions of these two databases was 

investigated. 3,411 of the 6,825 drugs indexed in DrugBank (version 3.0) are also 

present in the ChEMBL database. Compared to DrugBank, ChEMBL represents a vast 

repository of chemicals containing more than a million of compounds. 

Figure 3.14 illustrates the Venn diagram of the target content comparison between 

ChEMBL and DrugBank at the UniProt identifier level. For this evaluation only targets 

belonging to the species category “human” were considered. All ChEMBL targets were 

retrieved via bioactivity data available in the ChEMBL database (retrieval date: 2013-

12-23). As can be seen in the diagram below, DrugBank provides significantly more 

drug targets than ChEMBL. Approximately half of the targets detected in ChEMBL are 

annotated in DrugBank. 

 

Figure 3.14: Venn diagram of target coverage. Overlap of targets available in ChEMBL (retrieval date: 
2013-12-23) and DrugBank (version 3.0) for the species category “human” at the UniProt identifier 
level. ChEMBL targets were retrieved via ChEMBL bioactivity data. 

Figure 3.15 illustrates the Venn diagram of all drug-target interactions available in 

ChEMBL and DrugBank. Only interactions of drugs contained in both databases were 

considered. Furthermore, ChEMBL targets that have been assessed as positive 

according to the assay evaluation procedure described in the “Methods” section were 

viewed separately. It has to be noted that this data solely covers targets belonging to 

the species category “human”. In total 1165 shared interactions between the two 

databases have been identified, among these 595 interactions being part of the 

positive ChEMBL set. 
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Figure 3.15: Venn diagram of drug-target interactions. Overlap of drug-target interactions in ChEMBL 
(total = positive + negative assessed targets, positive targets) and DrugBank for the species category 
“human”. Only interactions of the common ChEMBL and DrugBank drug set are included. ChEMBL 
(total), ChEMBL (positive) and DrugBank share 595 drug-target interactions. 

The final DrugBank drug-target set comprised of 104 drugs associated to 221 unique 

UniProt targets. The ChEMBL drug–target set consisted of 75 drugs and 177 targets. 

3.2.3 Target relevance ranking 

In order to perform a target relevance ranking, the targets of the final ChEMBL and 

DrugBank drug set were analysed with respect to their functional disease context as 

described in the “Methods” section. The data used for the evaluation comprised the 

whole human protein coding genome, i.e. 20,288 genes. Among these, 3,033 genes 

were identified holding GeneRIFs extracted from publications on breast neoplasms or 

one of its narrower MeSH terms (aggregated mode). Figure 3.16 shows the distribution 

of the number of GeneRIFs (breast cancer, aggregated) in breast cancer targets and 

non-breast cancer targets. About thousand GeneRIFs for BRCA1 (breast cancer 1) 

are linked to publications on breast neoplasms. Furthermore, ERBB2 (human 

epidermal growth factor receptor 2), BRCA2 (breast cancer 2) and ESR1 (estrogen 

receptor 1) showed a high number of associations to breast cancer based on their 

GeneRIFs. These genes are not displayed in the boxplots below, as outliers have been 

excluded from the graphics. 

Wilcoxon tests were applied using a p-value < 0.05 as significance level. A comparison 

of the target and non-target ChEMBL set revealed no significant difference. On 

contrary, the group of ChEMBL targets showed a significant difference compared to 
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the targets that are not part of the identified target set. However, in the DrugBank set 

higher variations between single target sets were detected. A significant difference was 

identified between pharmacological active and inactive targets of approved drugs as 

well as pharmacological inactive targets that are not part of the identified target set.  

 
Figure 3.16: Boxplots of number of GeneRIFs (BC aggregated) of BC targets. (A) ChEMBL set: (a) 
targets (177), (b) no targets (278), (c) targets that are not part of the identified target set (18,520). (B) 
DrugBank set: (d) pharmacological active targets of approved drugs (153), (e) pharmacological active 
targets of experimental drugs (5), (f) pharmacological inactive targets of approved drugs (33), (g) 
pharmacological inactive targets of experimental drugs (29), (h) pharmacological inactive targets that 
are not part of the identified target set (18,755). Differences between the groups were assessed by 
Wilcoxon test using a significance level of < 0.05. 

Figure 3.17 represents the variability in the number of breast cancer papers associated 

with identified breast cancer targets (ChEMBL and DrugBank set) compared to non-

targets. Outliers are not illustrated in the following boxplots. 

 
Figure 3.17: Boxplots of number of BC papers associated with BC targets (aggregated). (A) ChEMBL 
set: (a) targets (177), (b) no targets (278), (c) targets that are not part of the identified target set 
(18,520). (B) DrugBank set: (d) pharmacological active targets of approved drugs (153), (e) 
pharmacological active targets of experimental drugs (5), (f) pharmacological inactive targets of 
approved drugs (33), (g) pharmacological inactive targets of experimental drugs (29), (h) 
pharmacological inactive targets that are not part of the identified target set (18,755). Differences 
between the groups were assessed by Wilcoxon test using a significance level of < 0.05. 

a b c

0
2

4
6

8
1
0

#
g
e
n
e
R

if(
B

C
 a

g
g
)

p-value < 0.001
p-value= 0.268

d e f g h
0

5
1
5

2
5

#
g
e
n
e
R

if(
B

C
 a

g
g
)

p-value < 0.001
p-value= 0.035

a b c

0
2

4
6

8
1
0

#
B

C
_
p
a
p
e
rs

(d
is

e
a
se

)a
g
g

p-value < 0.001
p-value= 0.081

d e f g h

0
5

1
0

1
5

#
B

C
_
p
a
p
e
rs

(d
is

e
a
se

)a
g
g

p-value < 0.001
p-value= 0.121

A B 

A B 



 

42 
 

In total, 2,998 genes were linked to publications which hold the selected disease term 

breast neoplasms or one of its child terms (aggregated mode) in the annotation. 

ERBB2 showed the highest number of associations (445), followed by ESR1 and 

BRCA1. Overall, the distribution looks similar to the boxplots based on the GeneRIF 

numbers. Again, a significant difference was detected between ChEMBL targets and 

targets not being in the identified target set as well as between pharmacological active 

DrugBank targets and DrugBank targets that do not belong to the identified target set. 

The following table provides a list of the first ten genes with the highest number of 

GeneRIFs associated to breast neoplasms and the appropriate number of breast 

cancer papers and sensitivity. 

Table 3.3: Excerpt of target relevance ranking. Listed are the first ten genes with number of GeneRIFs, 
number of breast cancer papers and sensitivity, ranked to the number of GeneRIFs. 

UniProt 
ID 

Gene 
name 

#geneRif 
(BC agg) 

#BC papers 
(disease agg)

sensitivity 
(disease) 

P38398 BRCA1 1136 170 99.92 

P04626 ERBB2 786 445 99.98 

P51587 BRCA2 782 58 99.45 

P03372 ESR1 529 331 99.95 

P04637 TP53 454 155 99.88 

P00533 EGFR 193 130 99.85 

P15692 VEGFA 182 97 99.78 

P06401 PGR 160 96 99.82 

O96017 CHEK2 157 10 93.60 

Q92731 ESR2 141 74 99.65 
 

Figure 3.18 displays the disease sensitivity of the targets. In total 2,992 genes of the 

data set have a sensitivity value indicated. There are 287 genes that achieved a 

sensitivity rate higher than 90% for breast neoplasms. A significant difference in 

sensitivity was identified between the identified breast cancer targets and other targets. 

Pharmacological active and inactive targets of approved drugs from DrugBank did not 

show any significant difference. 
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Figure 3.18: Boxplots of disease sensitivity of BC targets. (A) ChEMBL set: (a) targets (177), (b) no 
targets (278), (c) targets that are not part of the identified target set (18,520). (B) DrugBank set: (d) 
pharmacological active targets of approved drugs (153), (e) pharmacological active targets of 
experimental drugs (5), (f) pharmacological inactive targets of approved drugs (33), (g) 
pharmacological inactive targets of experimental drugs (29), (h) pharmacological inactive targets that 
are not part of the identified target set (18,755). Differences between the groups were assessed by 
Wilcoxon test using a significance level of < 0.05. 

 

3.2.4 Drug-SNP evaluation 

SNP information was retrieved via COSMIC Biomart as described in the “Methods” 

section. The extracted data comprised 702,531 unique entries with 34,692 unique 

sample IDs originating from 462 publications. 656,017 entries contained ENST 

accession numbers which were mapped to UniProt IDs making use of the UniProt ID 

mapper. For entries which did not contain ENST accession numbers and consequently 

could not be mapped to UniProt ID, the Swissprot ID - if indicated – was used instead. 

Thus, the data encompass 17,377 genes encoding human reviewed UniProt targets 

that have been tested for mutations. In 14,039 genes SNPs were detected. Overall 

70,277 unique mutations (COSMIC mutation IDs) had been identified in breast 

carcinoma samples. 

In the COSMIC data 170 out of the 177 identified ChEMBL targets as well as 207 out 

of the 221 DrugBank targets were represented. 157 ChEMBL and 181 DrugBank 

targets had mutated samples assigned in COSMIC respectively. 

Figure 3.19 demonstrates the differences in the mutation ratio between targets and 

non-targets of the identified breast cancer drug set (ChEMBL, DrugBank). 
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Figure 3.19: Boxplots of the mutation ratio of BC targets (sample size > 20). (A) ChEMBL set: (a) 
targets (total: 177, NA: 29), (b) no targets (total: 278, NA: 38), (c) targets that are not part of the 
identified target set (total: 18,520, NA: 5,293). (B) DrugBank set: (d) pharmacological active targets 
of approved drugs (total: 153, NA: 31), (e) pharmacological active targets of experimental drugs (total: 
5), (f) pharmacological inactive targets of approved drugs (total: 33, NA: 2), (g) pharmacological 
inactive targets of experimental drugs (total: 29, NA: 1), (h) pharmacological inactive targets that are 
not part of the identified target set (total: 18,755, NA: 5,326). Differences between the groups were 
assessed by Wilcoxon test using a significance level of < 0.05. 

Gene encoding protein targets belonging to the identified target set from ChEMBL as 

well as from DrugBank show a significantly lower mutation ratio than other targets. 

Furthermore, there is a significant difference in mutation ratio between ChEMBL 

positive and negative targets (according to assay data evaluation). 

The most prevalent gene mutations in the COSMIC data are c.3140A>G and 

c.1633G>A occurring on gene PIK3CA. This gene shows an overall mutation ratio of 

0.275. The maximal possible mutation ratio is 1 which means that mutations are found 

in all samples tested. Only a few protein targets included in the breast cancer tissue 

sample data extracted from COSMIC exhibit a mutation ratio of 1. Table 3.4 provides 

the mutation ratios of the five most and least mutated genes being part of the target 

set of both ChEMBL and DrugBank. The highest mutation ratio found is 0.33 occurring 

in HDAC6. 
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Table 3.4: Example of mutated genes. Tabular listing of the five most and least mutated genes included 
in both ChEMBL and DrugBank target set sorted by their mutation ratio in descending order. Only genes 
with a sample size > 20 are included. 

UniProt 
ID 

Gene 
name 

Mutation 
ratio 

Q9UBN7 HDAC6 0.333

P14780 MMP9 0.2

P45452 MMP13 0.167

Q9BY41 HDAC8 0.167

P22894 MMP8 0.136

P30872 SSTR1 0.005

P12931 SRC 0.004

P00374 DHFR 0

P30968 GNRHR 0

P50750 CDK9 0
 

The following table summarizes the mutation ratios of the most frequently annotated 

targets of the common ChEMBL and DrugBank breast cancer target set. 

Table 3.5: Most commonly annotated mutated genes. Tabular listing of the mutation ratios of the most 
frequently referenced genes being part of the common BC target set of ChEMBL and DrugBank. 
Mutation ratios flagged with * are calculated on a basis of less than 21 different samples. 

UniProt 
ID 

Gene 
name 

#BC papers 
(disease agg)

Mutation 
ratio 

P04626 ERBB2 445 0.022

P03372 ESR1 331 0.019

P00533 EGFR 130 0.013

P31749 AKT1 81 0.031

Q92731 ESR2 74 *0.214
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4 Discussion 

The main goal of this thesis was to develop a computational workflow for evaluating 

drug efficacy in the context of mutation status of drug targets. The workflow was 

exemplarily applied to breast cancer drugs and their targets. 

4.1 Workflow construction 

The workflow consisted of the following steps, namely (i) the identification of clinical 

trials on breast cancer, (ii) the identification of investigated drugs in these trials, (iii) the 

extraction of drug targets of these drugs, (iv) the identification of prevalent SNPs in 

these targets, and (v) the evaluation of functional association of the targets to breast 

cancer based on scientific literature. Prediction of drug binding domains proved to be 

difficult and could therefore not be completed in time. Consequently, SNP integration 

was performed on the level of genes. 

While major parts of the workflow could be fully automated making use of R scripting 

supported by a function implemented in C to speed up processing, certain parts of the 

workflow required manual interaction. Mapping of drug names extracted from clinical 

trials to common drug namespaces for example was optimized by manual inspection 

in order to reduce the rate of false positives. 

Basically, it is thus possible to adapt the workflow to investigate other diseases besides 

breast cancer, however, requiring in addition to the modification of the filter conditions 

manual curation of certain mapping steps to fully exploit the potential of the whole 

workflow. 

In addition, it has to be mentioned that the interface of the web data sources and their 

structure is undergoing a permanent change. ChEMBL for instance has changed from 

version 17 to version 18 since start of this thesis. To cope with such changing 

interfaces the import sections of the script needs to be modified accordingly. 

Nevertheless, the required amount of work to adapt the existing workflow to changing 

interfaces and/or different disease terms is considered to be manageable. 
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4.2 Main findings 

In this thesis the workflow was implemented using the example of breast cancer. As 

shown in the “Results” section, a breast cancer drug set could be identified by obtaining 

the required data from ClinicalTrials.gov as well as the ChEMBL database. Associated 

drug targets were detected by making use of information provided in ChEMBL and 

DrugBank. The performed drug-SNP evaluation was based on SNPs that occurred in 

breast cancer tissue samples extracted from COSMIC. Interestingly, the targets of the 

identified breast cancer drugs reveal a significant lower mutation ratio than other 

targets (p-value < 0.001). This is basically valid for targets derived from ChEMBL as 

well as for targets from DrugBank. Of note, ChEMBL breast cancer targets that have 

been assessed as positive according to the assay data evaluation also show significant 

lower mutation ratios in comparison to those assessed as negative (p-value = 0.028). 

Surprisingly, no statistical difference between pharmacological active and inactive 

targets of approved DrugBank breast cancer drugs can be determined. In addition, 

targets that are frequently referenced in breast cancer papers typically reveal rather 

small mutation ratios. 

As expected, both of the breast cancer target sets from ChEMBL and DrugBank show 

a higher number of associated BC papers and GeneRIFs than those targets which are 

not in the identified sets. A significant difference can be seen between pharmacological 

active and inactive targets from DrugBank. 

To assess the SNPs extracted from COSMIC with respect to therapy outcome of the 

treatment an extensive online search was performed. An example is L858R, a mutation 

of the epidermal growth factor receptor (EGFR). This target was ranked in the sixth 

place of the performed target relevance ranking with 193 breast cancer associated 

GeneRIFs and 130 linked publications. Its mutation L858R occurs in 12 different 

samples extracted from COSMIC and is reported in several studies. The study by 

Rajasekaran et al. [46] focused on in-silico identification of significant detrimental 

missense mutations of EGFR and their effect with 4-anilinoquinazoline-based drugs. 

In the study the three major inhibitors of this drug class, erlotinib, gefitinib and lapatinib 

were examined which are all used in the treatment of breast cancer. The atomic contact 

energy between EGFR and its inhibitors was computed in order to evaluate the 

changes in binding efficiency of the drugs related to mutations of EGFR. They were 
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able to show that lapatinib establishes maximum binding affinity with native EGFR as 

well as mutants except for the mutations R748P and L858R. Consequently they 

suggest that a combination of these drugs might improve the outcome of the cancer 

treatment. Further groups studied the efficacy of lapatinib against HER2 (epidermal 

growth factor receptor 2, ERBB2) variants, as lapatinib is a dual inhibitor of EGFR and 

HER2 tyrosine kinases. HER2 is one of most relevant targets in the performed 

relevance ranking with 445 associated breast cancer papers showing a mutation ratio 

of 0.022. The group of Kancha et al. and Trowe et al. identified several potential 

mutations in HER2 kinase domain linked to lapatinib resistance [47, 48]. 

However, SNPs in drug targets may also have benefits on therapeutic intervention. 

The group of Colomer et al. investigated three different aromatase CYP19 gene 

variants and their effect on antiaromatase therapy in postmenopausal women with 

breast cancer. They identified one SNP variant (rs4646) that was associated with 

improved treatment efficacy when treating patients with hormone receptor-positive 

advanced breast carcinoma with the aromatase inhibitor letrozole [49]. 

As shown in the “Results” section, the most common gene mutations found in COSMIC 

data are harboured in the oncogene PIK3CA. Its mutations may result in an activation 

of the PI3K (Phosphatidylinositol 3-kinase) pathway, which mediates cell proliferation 

and survival, and moreover confers increased resistance to some well-known cancer 

drugs, e.g. paclitaxel [50]. Several research groups demonstrated that somatic 

mutations in PIK3CA occur at high frequency in breast cancer tissue [51, 52] but with 

varying occurrence in different subtypes [53]. Furthermore, the vast majority of PIK3CA 

mutations are located at three hotspots thus representing ideal targets for therapeutic 

development [50, 54]. 

The target with the highest mutation ratio of 0.33 in the common ChEMBL and 

DrugBank breast cancer target set is HDAC6 (histone deacetylase 6). According to the 

relevance ranking HDAC6 does not belong to the top targets (ranked on place 434), 

but still reveals seven breast cancer associated GeneRIFs as well as ten linked 

publications. So far one approved drug inhibiting this protein and thus blocking the cell 

proliferation is on the market, called Vorinostat. This drug is used in the treatment of 

skin cancer, whereas several studies are currently ongoing to investigate the drug’s 

applicability in breast cancer therapy as well. 
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4.3 Assessment of data sources 

 Breast cancer trials 

Although FDA requires that “basic” results of clinical trials are reported in 

ClinicalTrials.gov, still not all of the studies conducted in the U.S. are listed. The 

number is increasing, though, as registration requirements are expanded. 

The majority of investigated breast cancer trials are currently in clinical phase II mostly 

having the recruitment state “completed” (see Figure 3.8). However, only drugs of trials 

that are completed either in phase III or in phase IV can be assumed as approved. This 

leads to the conclusion that phase II constitutes a substantial obstacle for drugs under 

approval and the drop-out rate rises significantly during this phase. This issue was 

already discussed in several publications. The group of Gupta et al., for example, 

points out that in 2006-2007 the success rates for Phase II studies was only at 28% 

whereas in 2008-2009 it even fell to 18% [5]. Arrowsmith et al. propose that these low 

Phase II success rates in combination with decreasing Phase III failure rates may be 

an indication that the pharmaceutical industry is redesigning their Phase II 

programmes in order to be able to decide earlier on termination and thereby potentially 

reduce the costs of Phase III failures [10]. 

Concerning the conditions indicated in each clinical trial entry, the analysis showed 

that apart from the selected disease term “breast cancer” also other cancer types 

showed up in the condition attribute e.g. lung cancer and colorectal cancer. This fact 

is due to the possibility of multiple conditions being linked to one clinical study, as 

certain cancer drugs are evaluated in the treatment of more than one specific cancer 

type. 

As shown in the “Results” section (Figure 3.10), well-established drugs as e.g. 

Paclitaxel are used in a large number of clinical trials. This is understandable since 

they often serve as basis for comparison for novel drugs being still in development. 

 Breast cancer drugs and targets 

The two publicly accessible biological databases ChEMBL and DrugBank were used 

for retrieval of drug and drug target information. Both provide approved as well as 

experimental drugs. Nevertheless, ChEMBL encompasses a larger proportion of early 
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stage drugs. The ChEMBL drug set identified in this work comprised 292 breast cancer 

drugs in total, whereas only 142 of them have an equivalent in DrugBank. DrugBank 

provides drug-targets for all FDA-approved drugs. The ChEMBL database includes 

drug mechanism of action information for all FDA-approved drugs as well. In addition, 

to identify further targets, especially those for not yet approved drugs, bioactivity data 

can be retrieved from ChEMBL. However, the usage of the bioactivity data, which 

comprises pChEMBL values and confidence scores as key values, poses a challenge 

as it is difficult to decide on a proper separation algorithm between positive and 

negative targets. In this thesis drug-target interactions with a confidence score ≥ 8 and 

pChEMBL ≥ 7 were considered as positive. By making use of the bioactivity data from 

ChEMBL for determining the associated targets the drug set was reduced to less than 

half of the initial set. This was mainly due to the limited availability of bioactivity data in 

ChEMBL as well as the stringent pChEMBL cutoff and the pChEMBL ratio values used. 

A comparison between the ChEMBL and DrugBank final breast cancer target set 

revealed that several times the same drug was assigned to different targets in the two 

databases (see Table 3.2). 

Furthermore, to assess the conformity between drug target information provided in 

ChEMBL and DrugBank in general, the information of both data sources was 

contrasted with each other. Surprisingly, only a minor overlap between ChEMBL and 

DrugBank drug target interaction data was detected (see Figure 3.15 for further 

details). Among the 9,100 (positive and negative) interactions from ChEMBL and 6,314 

interactions from DrugBank only 1,165 shared drug-target interactions have been 

identified. Restricting the ChEMBL drug-target interaction set to only potentially 

positive interactions (pChEMBL value > 7 and pChEMBL-ratio ≥ 0.75) reduced the 

number of common interactions further down to 595. This small overlap in drug-target 

interactions results from the already low agreement between drugs available in 

ChEMBL and DrugBank. The difference in the chemical content of these two 

databases is probably due to diverging data capture strategies [55]. Furthermore, also 

the target coverage between ChEMBL and DrugBank seems quite low (see Figure 

3.14). In DrugBank, far more targets are represented than really identified via ChEMBL 

assay data. Consequently, the low overlap in drug-target interactions is not as 

surprising as it seems at first glance. The group of Tiikkainen et al. analysed 
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commercial and publicly available bioactivity databases, including the largest data 

supplier ChEMBL, and estimated their error rates [56]. Typically, these resources are 

manually curated from scientific publications and patents. Thus, apart from errors in 

the source document, the human factor during the extraction process may lead to data 

inconsistency between databases. Tiikkainen et al. reported common data 

discrepancies between the vendors when comparing data derived from the same 

article. Furthermore, they showed a minor overlap between bioactivity databases as 

well as a great number of unique data contained in each resource [56, 57]. 

 SNP evaluation 

Data available in the COSMIC database have to be interpreted with caution. One issue 

is the variability in the resolution for mutations when screening genes [58]. Some genes 

are characterized by so called mutation hot spots. These are gene regions where 

mutations are most likely to occur. As a consequence such genes are especially 

screened in this genomic area and mutations located in other regions of the gene might 

not be detected. This strategy might therefore lead to an underestimation of the 

frequency of mutations and moreover to a distorted view of the distribution of genetic 

mutations. Another possible curational bias in COSMIC data originates from sample 

screenings that are reported twice in two different publications. Although these 

samples might have the same name, it is impossible to confirm equality of the data. 

Thus, multiple entries with different COSMIC sample IDs might exist for an identical 

sample. To account for this fact, multiple occurrences of the same sample name being 

assigned to different COSMIC IDs had to be checked. The result showed that 

sometimes identical sample names existed with different sample IDs. As the frequency 

of duplicated sample names was low, this potential bias was neglected. 

Another issue concerning COSMIC data are missing UniProt IDs. It is possible to 

download COSMIC samples with additional Swissprot IDs but actually they are not 

indicated for every entry. Even well-known breast cancer related genes such as 

BRCA1, BRCA2 and ESR1 are not assigned to UniProt IDs in the data extracted from 

COSMIC Biomart. Consequently, mapping of accession numbers via UniProt ID 

mapper is required as well as further manual data integration work. 
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Furthermore, it has to be noted that targets with a sample size smaller than 20 were 

not considered in the analysis although among these are well-known breast cancer 

targets as e.g. ESR2. 

It should also be mentioned that the calculated mutation ratio could only be based on 

genes but not on individual SNPs. As a consequence a statement of the prevalence of 

SNPs could not be derived. 

4.4 Outlook 

In this work approved and experimental drugs for breast cancer treatment have been 

investigated irrespectively of the breast cancer subtype. For instance, one drug of the 

identified set, the experimental drug Olaparib, also known as AZD-2281, was designed 

particularly for patients with BRCA1/2 mutations as it acts as a PARP-1 (Poly ADP 

ribose polymerase 1) inhibitor [59]. Several breast cancer studies showed that 

molecularly distinct subtypes of breast cancer may respond differently to pathway-

targeted therapies. Docetaxel and Cisplatin for example revealed preferential activity 

in basal or claudin-low subtypes [60]. Thus, a possible further refinement of the present 

work could be to focus on a specific type of breast cancer. 

Within the scope of this thesis all SNPs occurring on the target gene affected by one 

of the identified breast cancer drugs were taken into consideration. To determine only 

the SNPs located exactly in the binding domain of the drug, further work would be 

required which includes drug-domain prediction as well as SNP-domain integration. 

In summary, personalized/stratified medication in cancer therapy has gained more and 

more importance over the years as the inter-individual variation on the genomic and 

molecular level influences drug efficacy. Knowledge on the mutation status of drug 

targets is an important piece of information in the selection of appropriate drug targets 

as well as in the design of clinical trials. 
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Appendix 

Drugs, trademarks and trademark owners 

Drug Trademark Trademark Owner 

Cisplatin Platinol Bristol-Myers Squibb 

Cyclophosphamide Cytoxan Bristol-Myers Squibb 

Dasatinib Sprycel Bristol-Myers Squibb 

Docetaxel Taxotere Sanofi-Aventis 

Erlotinib Tarceva Astellas Pharma, Genentech 

Gefitinib Iressa AstraZeneca 

Lapatinib Tykerb GalaxoSmithKline 

Marimastat n/a (development terminated) British Biotech 

Olaparib n/a (investigational) AstraZeneca 

Paclitaxel Taxol Bristol-Myers Squibb 

Vorinostat Zolinza Merck 
 


