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Abstract

Low cost depth imaging has the potential to revolutionize the way we interact with tech-

nical devices in 3D. The most promising device for depth acquisition is the Time-of-Flight

technology. Thanks to an adoption by the gaming industry it is on its way into the mass

market. Although the Time-of-Flight measurement principle is well understood and tech-

nical implementations are already available for several years, its measurement quality and

range of possible applications reached a barrier due to limited packet size and energy con-

sumption as well as its physical limitations. The sensors deliver dense depth maps from

the scene with very high frame rates but the measurements are prune to high noise and

low resolution.

In this thesis we meliorate these shortcomings by novel computer vision methods based

on energy minimization and machine learning with the Time-of-Flight sensors. Further-

more, we present methods to fuse the sensor output with other sensor modalities and

time-sequential sensing. These novel methods increase the quality of measured data of

depth camera outputs in different ways. On the one side we propose a computer vision

model to reduce the high acquisition noise (lateral resolution) and image size (spacial

resolution) by a depth superresolution framework. For a successful superresolution we

propose to fuse different sensor modalities in the optimization model. Furthermore, we

show how learned models are included in the superresolution which aid the single image

superresolution. With this novel approaches we achieve an image resolution of up to 16

times the original size while the quality is drastically increased. On the other side we

propose a model to increase the depth information gain of acquisition sequences. We in-

troduce an optimization framework to accurately measure the metric 3D motion between

consecutive depth acquisitions. With the additional 3D motion, known as scene flow, we

show how depth sensors can be used for the position and movement of the sensor in space,

the 3D reconstruction of complex scenes as well as super-resolving depth measurements

of dynamic scenes in time. The scene flow estimation is formulated as convex energy

optimization problem by using the projective calibrated camera model. For a successful
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motion estimation we define novel matching terms adapted from stereo imaging and 3D

reconstruction.

In an extensive evaluation we show that with the proposed methods we can improve

the quality and the quantity above of the traditional depth measurements. Consequently,

these novel methods enable researches to increase the accuracy and robustness of all kinds

of depth sensing applications such as object reconstruction, gesture recognition, robotic

navigation and autonomous driver assistance.

This work was supported by Infineon Technologies Austria AG, the Austrian Research

Promotion Agency (FFG) under the FIT-IT Bridge program, project #838513 (TOFU-

SION).



Kurzfassung

Die Bilderfassung mit Tiefenkameras hat das Potential den Umgang und die Möglichkeiten

wie wir mit technischen Geräten interagieren von Grund auf zu verändern. Durch den

großen Einsatz im Gaming-Bereich und die damit verbundene Verbreitung ist die vielver-

sprechendste Technologie zur Aufnahme von Tiefendaten die Time-of-Flight Kamera. Das

Messprinzip von Time-of-Flight Kameras wird schon seit längerer Zeit erforscht. Jedoch

sind aufgrund von physikalischen Grenzen die Qualität und die Reichweite der Aufnahmen

begrenzt. Die Sensoren liefern dichte Tiefenbilder der Szene mit sehr hohen Frame-Raten.

Der Nachteil der Technologie ist ein sehr hoher Anteil an Rauschen und sehr geringer

Bild-Auflösung.

In dieser Arbeit arbeiten wir an neuartigen Algorithmen um diese Nachteile der Time-

of-Flight Technologie zu kompensieren und gleichzeitig nicht auf die Vorteile zu verzichten.

Die Computer-Vision Methoden basieren hierbei auf Energie-Minimierungs-Modellen und

Maschinellem Lernen. Darüber hinaus stellen wir eine Kombination mit anderen Sen-

soren vor um die Qualität weiter zu verbessern. Im ersten Teil dieser Arbeit stellen wir

eine Methode vor um die Auflösung von Time-of-Flight Tiefenmessungen zu erhöhen. In

einem mathematischen Optimierungsverfahren wird die räumliche Auflösung der Bilder

drastisch erhöht während das Kamera-Rauschen um ein vielfaches verringert wird. Um

die Qualität weiter zu verbessern zeigen wir wie das bestehende Optimierungsmodell mit

anderen Sensoren kombiniert werden kann. Mit unserem Modell erreichen wir eine bis zu

16-fache Erhöhung der Bildauflösung während Rauschen und Messfehler um ein vielfaches

verringert werden. In einem zweiten Teil zeigen wir ein Modell um die Genauigkeit der

Messungen in Aufnahmesequenzen zu erhöhen. Hier präsentieren wir ein mathematisches

Optimierungs-Modell um die exakte metrische Bewegung von beobachteten Punkten einer

Szene zu messen, bekannt als Szenen-Fluss. Mit der zusätzlichen Information über die

Bewegung in einer Szene ist es einfach die Auflösung in dynamischen Szenen zu erhöhen

sowie komplexe Szenen zu rekonstruieren. Wir haben die Messung des Szenen-Flusses als
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konvexes Optimierungsproblem formuliert wobei das Mathematische Bewegungsmodell als

Projektion und Rückprojektion in einer Kalibrierten Tiefenkamera realisiert ist. In einer

Umfangreichen Auswertung dieser Methoden zeigen wir, dass die Qualität gegenüber allen

bisherigen Methoden verbessert werden kann. Mit der Verbesserung der Tiefenmessung

und der Erhöhung des gemessenen Informationsgehalts werden auch alle darauf aufbauen-

den Methoden verbessert oder überhaupt ermöglicht. Diese Methoden reichen von Ob-

jektrekonstruktion/Erkennung, Gesichts und Gestenerkennung sowie Roboter Navigation

und autonomer Fahrerassistenz in Autos.

Diese Arbeit wurde unterstützt von Infineon Technologies Austria AG und der

Österreichischen Forschungsförderungsgesellschaft (FFG) im Rahmen des FIT-IT Bridge

Programms, Projekt #838513 (TOFUSION).
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The enhancements and quality improvements of intensity images by means of com-

puter vision methods have a long history. Most current smartphones use built in systems

for denoising, superresolution and motion estimation running in real-time. Along with

these low-level quality improvements also the quality of algorithms building on the im-

proved camera output increase such as face recognition and different applications for image

retrieval.

Recently, depth sensing became more important in computer vision. Once prohibitively

expensive range sensors reached their way to the mass market. Now, depth cameras range

from expensive Lidar systems to very affordable consumer systems, such as the Microsoft

Kinect, Asus Xtion Pro or the Creative Senz3D camera. These new depth cameras bring

a new sense of metric distance into the field of low-cost computer vision. Many traditional

computer vision problems have been simplified, such as 3D reconstruction, object recogni-

tion, gesture recognition or pose estimation. Currently, depth sensors are an essential part

of many real-world applications such as human-computer interaction, robotic navigation

or autonomous driving.

When it comes to implementing consumer products, there is always a tradeoff between

package size, quality and price. Most of these cameras reliably deliver dense or semi-dense

depth images of a scene, where every pixel gives the metric distance of the sensor pixel to a

3D scene point. On the downside, these sensors are limited in their spatial resolution and

suffer from acquisition noise. Therefore, there is a huge need for cheap software solutions

to improve the quality and information richness of the depth data.

1
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In this thesis we propose several methods to enhance the depth output of these cam-

eras. Our research mostly on two directions. First, we show different approaches for the

superresolution of single depth images. We propose a formulation of the general super-

resolution as a convex optimization problem. The superresolution in our model covers

an increase of the lateral resolution (noise in the image) and an extension of the spatial

resolution (image size). In this context we further propose to combine the depth sensor

with other sensing modalities to increase the superresolution quality. We show a method

to drastically increase the resolution by a fusion of the low resolution depth image with a

high resolution intensity image or a learned upsampling model.

Second, we show a method to increase the acquisition quality of image sequences by

an estimation of the metric 3D motion in space, namely the estimation of scene flow.

Measured depth and dense scene motion are essential to characterize a dynamic scene.

Through the information of structure and motion in a scene both the movement of the

camera as well as the movement of objects can be determined. Furthermore, also a tem-

poral superresolution becomes possible.

The technology behind consumer depth cameras can be divided into active stereo and

Time of Flight (ToF) technology. Throughout the thesis we focus on depth measurements

based on the ToF principle due to its advantages and general applicability. In the following

sections we will briefly discuss the advantages and disadvantages of this sensor technology

in Section 2.1. Further we will give a short description of the problems we are facing in

the following methods and give a short outline of the rest of the thesis in Section 2.2.

2.1 Why Time-of-Flight?

One of the most promising sensor principles for modern consumer depth cameras is the

ToF sensor. It measures a per-pixel depth through the runtime of light. They deliver

a dense depth map where every pixel delivers the metric distance from the sensor pixel

to the observed point in space. This measurement is done by emitting and capturing a

continuous-wave modulated light usually in the near infrared range (NIR). The distance

of the camera pixel to the scene point is given by the phase difference between the emitted

and the received signal, as shown in Figure 2.1. Due to this active measurement principle

the measurements are independent of scene texture and largely independent of environ-

mental lighting conditions. Compared to (active/passive) stereo sensors the ToF principle

requires only one sensor. The emitting device is a Light-emitting Diode (LED). Therefore,

no camera baseline is required which leads to small packet sizes and dense depth maps

without occluded areas, even at very close ranges. Further, for the depth measurement

no expensive calculations such as feature matching and triangulation are necessary. The

depth information is readily available from the sensor pixel which results in depth ac-

quisitions at very high frame rates (up to 160fps). Due to their small package size and

low energy consumption these cameras are well suited for mobile devices as shown at the

Google Tango smartphone.
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3D surface

Detector

Emitter

Phase Meter

contiuous wave

phase shift

reflected wave

ToF sensor

Figure 2.1: Time-of-Flight (ToF) measurement principle. Emitted and detected a continuous-
wave modulated light. The distance of the 3D surface is measured by the phase shift between
emitted and detected wave.

In contrast to the promising advantages of the ToF sensor, there exist several draw-

backs of this technology. The ToF sensor captures the phase difference and therefore the

resulting depth for each pixel. One pixel, called Photonic Mixing Device (PMD), directly

measures the correlation between the emitted and received signal. Its high complexity is

a limiting factor regarding the spatial resolution of the sensor. Although there has been

a massive increase of pixels density, this development is reaching its physical limitations.

Current state of the art sensors have a maximum of 100k pixels, compared to several

megapixels which are reached for intensity imaging. Another limitation comes with the

principle of an active illumination. The low dynamic range of these sensors results from

the fact that the PMD pixels are linearly sensitive to incident light whereas the amplitude

of an emitted light signal decreases with the square of the distance. The measurement

quality is further dependent on the ratio between the signal strength of the reflected NIR

signal and environmental light (Signal-to-Noise Ratio). This low dynamic range leads to

high noise in the depth measurements, where the noise increases with the distance. Apart

of these main problems there exist other drawbacks such as a limited working range due

to the periodicity of the modulated signal and biased measurements due to multi-path

reflections of the emitted light.

Overall, the ToF sensor seems to be the most promising choice for todays consumer

depth cameras. In our work we focus on methods to increase the limited spatial resolution

and reduce the high acquisition noise of this ToF sensors. Using the 3D measurements of

ToF cameras we further show novel approaches to estimate dense 3D motion over time to

increase the temporal resolution. Since most depth cameras come equipped with an addi-

tional intensity camera with a comparable higher resolution, we show several approaches

to incorporate this information into our model to further increase the quality.
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2.2 Problem Description and Outlook

When facing the quality improvements of ToF depth measurements we first have to state

the underlying problem. In this section we give a rough overview of our definition of depth

image superresolution and state the problem of scene flow estimation.

2.2.1 Increase the Depth Image Resolution

The goal of depth image superresolution is to find a high resolution (HR) estimate of a

single low resolution (LR) depth measurement. In Figure 2.2 we have shown the super-

resolution of an exemplar ToF acquisition and a superresolved estimate.

(a) LR input

7→

(b) HR estimate

Figure 2.2: Depth superresolution problem on real ToF data from [66]. The goal is to calculate
a high resolution estimate (b) of a given a low resolution depth measurement (a) (depth is color
coded).

The formulation of an image superresolution is to model the image formation process

from a high resolution to a low resolution exemplar. This image formation is defined by

a fixed downsampling factor and a known point spread function added by an unknown

amount of noise. The goal of superresolution is to estimate the inverse image formation

which is extremely ill-posed since for a given low resolution input infinitely many high

resolution images satisfy this model.

While the field of image superresolution is a widely researched area in computer vision,

the superresolution of depth images is a quite new field. Although the main principle is

the same, the underlying modalities and their internal problems are quite different. While

intensity acquisitions include a lot of texture and comparably low acquisition noise the

depth map of a scene mostly consists of piece-wise planar surfaces with a comparably

high amount of acquisition noise. Hence, also the estimation procedure has to be chosen
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appropriately. In our work we formulate the superresolution problem as a convex energy

minimization and define specific regularization terms to reconstruct depth images. Fur-

ther, we show different approaches where additional data from an intensity camera or a

learned model is used to support the optimization.

2.2.2 Scene Flow Estimation

In contrast to depth superresolution where the measurement quality is increased for a

single acquisition, the field of scene flow estimation aims to increase the amount of in-

formation over time. Most of todays consumer depth sensors come equipped with an

additional intensity camera or deliver an additional infrared image of the scene. Hence,

the fundamental goal for a successful scene flow estimation is to calculate a motion field

of an observed scene using consecutive depth and intensity acquisitions. Given a set of

two consecutive acquisitions the scene flow is defined by the metric 3D movement of every

observed scene point from the first frame into the second frame, as shown in Figure 2.3.

(a) Depth Input (b) Intensity Input (c) Scene Flow in X, Y and Z

Figure 2.3: Scene Flow Problem. Given two consecutive depth and intensity acquisitions (a,b)
the goal of scene flow estimation is to accurately estimate the 3D motion in X, Y and Z direction
(c). The left side of (c) shows the intensity coded flow in each direction (black negative, white
positive) and the right side shows the color coded 2D motion rendered on the depth map (2D color
key in the bottom right).

Scene flow estimation builds on the assumption that the intensity and depth value of

an object at a given object position does not change over time. Hence, the main idea of

flow estimation is to find a motion vector for each scene point such that the difference

of the pixel intensity and depth between the acquisitions is minimized according to the

motion. By using the depth information this motion vector is defined as the metric 3D

motion in space. Even if this assumption holds, this estimation is extremely ill-posed. Real

camera acquisitions are affected by noise and illumination changes. Hence, in a successful
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estimation additional constraints on noise, illumination changes and constancy have to be

defined in the model.

2.2.3 Outlook

In the following chapters we present methods for depth image superresolution and scene

flow estimation to solve the above problems and give a deep insight of their properties and

principles.

In Chapter 3 we start with a definition of the mathematical background which is used

throughout the thesis. We define the mathematical notation and give an overview of the

geometric camera models as well as the mapping between different cameras. Further, we

give a short introduction to convex analysis and optimization given a variational model.

Next, we propose different methods for depth image superresolution in Chapter 4. We

first define the basic superresolution model and how it is solved using convex optimization.

Further, we show how an additional high resolution intensity image or a learned model

is used to guide the optimization process to increase the accuracy. In an evaluation

based on different real and synthetic datasets we show the performance of the proposed

superresolution models compared to the State-of-the-Art (SoA) in this field.

Third, in Chapter 5, we propose a basic variational model to estimate dense scene

flow from consecutive acquisitions. We extend the basic model to increase the accuracy

and robustness to noise and illumination changes during the acquisitions. The chapter

is concluded by an extensive evaluation of each part of our scene flow model with a

comparison to current SoA methods in this field.

Finally, we give a conclusion of our work and propose different ideas for extensions and

future work, in Chapter 6.
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In this thesis we show novel approaches to improve the quality and robustness of

current depth sensors using optimization models. This chapter is devoted to give a brief

overview on the mathematical framework for the presented models. We first introduce

the common basic notations, norms and operations used throughout the thesis. Further,

we will introduce the image formation process when a camera acquires an image, the

projective camera model between 3D world and 2D image space as well as the mapping

between different 2D and 2.5D camera models. We conclude this chapter with a short

review on variational methods commonly used for imaging problems and present some

basics on convex analysis and optimization used as foundation in our methods.

7
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3.1 Notation

In this section we give an overview of the mathematical notations and definitions. This

includes the spaces, norms and operations that are used throughout the thesis.

Entity Notation

Scalar a, bi
Position in 2D space x = (x, y)T

Position in 3D space X = (X,Y, Z)T

N -dimensional vector a = (a1, . . . , aN )T

Matrix A =

(
a b
c d

)

Table 3.1: Basic notations. Points in space, scalar, vector and matrix.

The most basic notation of scalars, vectors and matrices shown in Table 3.1. According

to this definition the set of real N-dimensional vectors is devoted as RN and the set of

matrices of size M × N is RM×N . In this context we use the vectorization operator

vec(A) ∈ RMN to indicate a row-major vector representation of the matrix A ∈ RM×N .

Definition: The Inner Product Given the vectors a,b, c ∈ X, where X is a finite

dimensional vector space X = RM , the inner product is a function 〈.〉X : 7→ X ×X 7→ R
defined by the following conditions

〈a,b〉X = 〈b,a〉X (3.1)

〈a,a〉X ≥ 0 (3.2)

〈a,b + c〉X = 〈a,b〉X + 〈a, c〉X (3.3)

Further, two vectors a and b are called orthogonal if 〈a,b〉X = 0.

Definition: Normed Vector Spaces Let X be a finite dimensional vector space.

Given a vector a ∈ X and a vector b ∈ X, a semi-norm on X is a function f : X 7→ R≥0 if

f(λa) = |λ|f(a) ∀ λ ∈ R
f(a + b) ≤ f(a) + f(b).

(3.4)

If the function f additionally satisfies

f(a) = 0 iff a = 0 (3.5)

then f is called norm ‖.‖. This can be seen as a generalization of |.| on R. A vector space

together with a norm is called a normed vector space (X, ‖.‖).
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The `p-norm of a is defined as

‖a‖p =

(
M∑
i=1

|ai|p
)1/p

∀ 1 ≤ p <∞. (3.6)

Common cases of the `p-norm are the `2-norm (Euclidean) and the `1-norm (Manhattan)

which are defined as

‖a‖2 =
√

aTa and ‖a‖1 =
M∑
i=1

|ai| (3.7)

The case for p =∞ is called the Chebyshev- or `∞-norm is given by

‖a‖∞ = max (|a1|, |a2|, . . . , |aM |) (3.8)

An illustration of unit cycles of the different norms in R2 is shown in Figure 3.1.

1

x1

−1

x2

(a) ‖a‖2 ≤ 1

1

a1

−1

a2

(b) ‖a‖1 ≤ 1

1

a1

−1

a2

(c) ‖a‖∞ ≤ 1

Figure 3.1: Illustration of the unit norm ball for different norms in R2.

It is also possible to define a mixture of different norms. A popular example is the

Huber-norm [51] which combines the `2-norm and the `1-norm and is defined as

|q|ε =

{ |q|2
2ε if |q| ≤ ε
|q| − ε

2 if |q| > ε
, (3.9)

where ε ∈ R≥0 defines the Huber parameter that combines the properties of the `2 at

values q smaller than ε and the `1 norm at larger values. In the sense of signal processing

the Huber-norm introduces a Gaussian smoothing for small values and linear smoothing

at higher values.
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A special case is the `0-norm

‖a‖0 = lim
p→0

(
M∑
i=1

|ai|p
)1/p

= # {ai 6= 0}Mi=1 , (3.10)

where the number of non-zero entries (sparsity) in a vector is calculated. Note that the

`0-norm does not fulfill the norm definition since it is not a semi-norm, according to

Eqn. (3.4) and therefore not also not a norm (Eqn. (3.5)).

Definition: Linear Continuous Operators Let X and Y be linear spaces. Given the

vectors a,b ∈ X, an operator L : X 7→ Y is called linear if

L(a + b) = La + Lb (3.11)

L(λx) = λL(x) ∀λ ∈ R (3.12)

L(X,Y ) is the space of linear continuous operators for X and Y . If X and Y are normed

vector spaces, then the norm on L(X,Y ) is defined by

‖L‖L(X,Y ) = sup
‖a‖X≤1

‖L(a)‖Y = sup
‖a‖X 6=0

‖L(a)‖Y
‖a‖X

. (3.13)

This is called the operator norm.

Definition: Derivative Operator Let F : X 7→ Y be a map. It is called differentiable

in a ∈ X if there exists an operator DF (a) ∈ L(X,Y ) s.t.

∀ε > 0 ∃δ > 0, 0 < ‖h‖X < δ, a + h ∈ X and (3.14)

‖F (a + h)− F (a)−DF (a)h‖Y
‖h‖X

< ε (3.15)

The derivative operator for F : RM 7→ R defines the gradient operator

DF (a) = ∇F (a) =

(
∂F

∂a1
,
∂F

∂a2
, . . . ,

∂F

∂aM

)
(3.16)

for which the squared derivative (second derivative) given by

D2F (a) = ∇2F (a) =


∂2F
∂2a1

. . . ∂2F
∂a1∂aM

...
. . .

...
∂2F

∂aM∂a1
. . . ∂2F

∂2aM

 , (3.17)
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defines the Hessian Matrix. Similar, the Jacobian Matrix defines a matrix of all partial

derivatives of a function F : RM 7→ RN usually defined as

DF (a) = ∇F (a) =


∂F1
∂a1

. . . ∂F1
∂aM

...
. . .

...
∂FN
∂a1

. . . ∂FN
∂aM

 . (3.18)

Furthermore, we define the adjoint gradient operator as ∇T : Y 7→ X also known as the

negative divergence operator given by

〈∇a,b〉 ≡
〈
a,∇Tb

〉
X

= 〈a,−div b〉X . (3.19)

Definition: Image Space An image containing either scalar values (either intensity or

depth) is defined as the spatial real valued function I(x). The 2D vector x ∈ R2 denotes

the spatial image coordinate defined as x = (x, y)T which defines the location on a regular

Cartesian grid of size M ×N given by

Ω = {(x, y) : 1 ≤ x ≤M, 1 ≤ y ≤ N} . (3.20)

From this it follows that images are defined as I : (Ω = R2) 7→ R. Hence, the discrete pixel

position can also be described as (x, y). Using the previously defined gradient operator

and discrete gradient of an image becomes

∇I =

(
∇xI
∇yI

)
, (3.21)

which represents the gradient in both directions of the defined Cartesian grid s.t. ∇ : Ω 7→
R2×M×N . In a numerical scheme the gradient operators ∇x,∇y are calculated by standard

forward differences on the regular grid with Neumann boundary conditions given by

∇xI(x, y) =

{
I(x+ 1, y)− I(x, y) if x < M

0 else
and

∇yI(x, y) =

{
I(x, y + 1)− I(x, y) if y < N

0 else
.

(3.22)

Given the gradient result P ∈ R2×M×N the inverse to the gradient is given by the adjoint

gradient operator as ∇T : R2×M×N 7→ Ω calculated as standard backward differences

∇TP = ∇TxP1 +∇Ty P2. (3.23)
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The backward differences with Dirichlet boundary condition are defined as

∇TxP 1(x, y) =


P 1(x, y) if x = 1

P 1(x, y)− P 1(x− 1, y) if 1 < x < M

−P 1(x− 1, y) if x = M

and

∇Ty P 2(x, y) =


P 2(x, y) if y = 1

P 2(x, y)− P 2(x, y − 1) if 1 < y < N

−P 2(x− 1, y) if y = N

.

(3.24)

3.2 Camera Model

In our work we are dealing with one or more cameras which image the scene. In this section

we introduce the standard camera model and image formation process used throughout

all our methods called the finite projective camera. In our work we distinguish between

two types of camera which differ in the sort of information they acquire. An intensity

camera acquires intensity values for each point in the field of view while a depth camera

acquires information about the absolute or relative distance between the camera and each

point in the field of view. In principle a standard pinhole camera model as shown in the

seminal work of Hartley and Zisserman [42] applies to both of our camera types. The

pinhole camera model is depicted in Figure 3.2.

C

f

X

x

p

C

X

X

x

Z

Y

p
f

Figure 3.2: Pinhole camera model. The camera model with projection center C at the coordinate
origin.

Definition: Central Perspective Projection The pinhole model defines the mapping

of points in space onto a plane. Let the center of the our model be the origin of a Euclidean

coordinate system we define this plane at depth Z = f . This plane is called the image

plane. The central projection of a point Xh = (X,Y, Z,W )T in space onto the image point

xh = (x, y, w)T represented as a homogeneous 3-vector. This projection onto the image
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plane can be described by

xh =

xy
w

 =

fx 0 px 0

0 fy py 0

0 0 1 0



X

Y

Z

1

 = K
(
I 0

)
Xh, (3.25)

where the vector f = (fx, fy)
T is the focal length and p = (px, py)

T is the principle point

offset (both in pixels) defining the camera calibration matrix K.

Definition: Projection in Space To describe the central perspective projection it

is assumed that the camera coordinate system is the coordinate center of all observed

points. In general this does not hold since points are often in a world coordinate system

(especially when multiple cameras observe a scene). Hence, the camera and the world

coordinate system are related by a rotation and a translation, as shown in Figure 3.3.

Together with Eqn. (3.25) a projection of a sample point X in space is described as

xh = KR
(
I −C

)
Xh = PXh, (3.26)

where I is the identity matrix, R ∈ SO(3) defines the rotation and C ∈ R3 the translation

of the camera with reference to the world coordinate system. The parameters contained

in K are called the intrinsic parameters of the camera and the parameters R and C are

called the extrinsic parameters which relate the camera orientation and position in the

world coordinate system. The camera calibration matrix together with the rotation and

translation forms the camera matrix P. Note: to get the Euclidean image point x the

result has to be normalized by its homogeneous coordinate w.

C

R, t
0

Z

X

Y

Figure 3.3: Transformation between the camera and the world coordinate system through rotation
and translation.
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Definition: Back-Projection into Space Similar to the projection of 3D points into

the 2D image space one can back-project an image point to a ray in space. The ray

in 3D space may be specified in several representations, e.g. Plücker representation. In

this thesis a 3D ray is represented as the joint of a known point and a direction vector.

The point in this representation is the camera center C. Assume a central perspective

projection, where the camera center lies in the origin of the Euclidean coordinate system,

then the ray into space is defined by

X(λ) = λK−1xh, (3.27)

where λ defines the position on the ray. Given either the rotation matrix R and the

camera center C the general back-projection of points to rays is defined by

X(λ) = λ(RK)−1xh + C. (3.28)

Alternatively if only the camera matrix P is known it can be decomposed into its left

hand 3 × 3 submatrix and its last column such that P =
(
M p4

)
. Hence, we can

easily substitute the unknown parts of Eqn. (3.28) such that M = KR and M−1p4 = C.

Note that by this definition the rotation matrix and the camera projection matrix can be

decomposed by RQ matrix decomposition of M. Furthermore, from the definition PC = 0

it follows that the camera center is defined as the right null space of P found by Singular

Value Decomposition (SVD).

If the depth d at pixel x is known from e.g. the pixel value of a depth camera the

corresponding 3D point is calculated with Eqn. (3.28). Hence, the exact 3D point in space

is defined by

X =
(RK)−1xh

‖(RK)−1xh‖2
d(x) + C, (3.29)

where the viewing ray (RK)−1xh is normalized to unit length.

Mapping between Images In our work we often use the projection and back-projection

together to map depth or intensity values from one camera coordinate system to the

other. Mathematically this is done by combining Eqn. (3.29) to project into 3D space and

Eqn. (3.26) to project back into the next image space.

Given two calibrated cameras 1, 2 defined by a subscript on the intrinsic and extrinsic

parameters P, K, R and C the mapping from image space Ω1 to Ω2 is given by

xh2 = P2

(
(R1K1)−1xh1
‖(R1K1)−1xh‖2

d(x1)1 + C1

)
, (3.30)

given all depth measurements d1 ∈ Ω1. This mapping is shown in Figure 3.4 for some

sample points. In the case of intensity mapping the pixels in Ω2 take over the intensity
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X1
1

X2
1

X2
1

x1
1

x2
1

x3
1

P1 P2

(a) Back-projection from 2D into 3D space

X1
1

X2
1

X2
1

x1
1

x2
1

x3
1 x1

2

x2
2

x3
2

P1 P2

(b) Projection from 3D into the second image system

Figure 3.4: Mapping between images. The mapping between two image system 1 and 2 is done
through projection into 3D space followed by a back-projection into the second image.

values from Ω1. In case of a depth mapping the new values in Ω2 are given by the Euclidean

distance ‖X−C2‖2.

Definition: Distortion Until now we assumed a linear projection model of the imaging

process. However, for real (non-pinhole) lenses this assumption does not hold. The most

common distortion errors are the radial and the tangential distortions. While the radial

distortion arises from the imperfection of a photographic lens and becomes more significant

as the focal length decreases the tangential distortion comes from imperfect alignment

between lenses and sensor. The cure for these distortions is to calibrate a mapping function

which maps the distorted image positions to the image positions of a perfect linear camera

model. In this thesis we use a distortion model defined by

x̂ = (x− px)
(
1 + κ1r + κ2r

2
)

+
(
2ξ1xy + ξ2(r2 + 2x2)

)
+ px (3.31)

ŷ = (y − py)
(
1 + κ1r + κ2r

2
)

+
(
2ξ1xy + ξ2(r2 + 2y2)

)
+ py, (3.32)

where x̂ = (x̂, ŷ)T is the distorted image position and r =
√

(x− px)2 + (y − py)2 is

the pixel distance to the principal point. The distortion coefficients are κ1, κ2 for radial
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distortion and ξ1, ξ2 to model the tangential distortion.

3.3 Introduction in Convex Analysis

In this section we show how convexity is defined and give an overview of convex optimiza-

tion, focusing on the special role of variational energy minimization. The concepts which

are introduced here are used throughout our work.

The field of convex optimization refers to the minimization of convex functions (or

maximization of concave functions). It finds numerous applications in scientific fields

such as signal processing, images processing, computational geometry or machine learn-

ing. Specifically variational methods that are based on continuous energy functionals are

formulated to model a convex energy functional. There exists a number of optimization

methods which are used to obtain the minimizer of such a convex functional. The very ac-

tive field convex optimization has been studied for multiple centuries. Hence, we refer the

interested readers to more detailed works such as Boyd and Vadenberghe [11], Rockafellar

[97, 98], Nesterov [74].

A convex optimization problem is a mathematical optimization problem of the generic

form

min
x∈Rn

f0(x) fi(x) ≤ bi, i = 1 . . .m, (3.33)

where f0, . . . , fm : Rn 7→ R are convex functions. In this formulation f0 is called the objec-

tive function and f1, . . . , fm are called the constraint functions. The optimization variable

is denoted as x ∈ C, where C is a convex set. If a minimum of a convex optimization

problem exists it is guaranteed that every local minimum is also a global minimum. In

the following we will define the special properties of convex functions and give details on

general convexity and convex sets.

3.3.1 Convex Sets

Given two points in space x1 6= x2 ∈ Rm a line including these points is defined as

y = Θx1 + (1−Θ)x2. (3.34)

If the parameter value Θ is bounded in the interval [0, 1] then the line function defines the

(closed) line segment between x1 and x2.

Definition: Convex Set A subset C ∈ Rm is called convex set if

Θx1 + (1−Θ)x2 ∈ C ∀x1,x2 ∈ C, Θ ∈ [0, 1]. (3.35)
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Meaning that if the line segment between any two points in C lies in C and Θ ∈ [0, 1] then

C is called a convex set. An example of convex and non-convex sets in R2 is shown in

Figure 3.5. Generally, a set is called convex if every point in the set can be seen by every

other point along a straight path.

x1,Θ = 1

x2,Θ = 0

Θ = 0.5

C

(a) Convex set

x1
x2

C

(b) Non-convex set

Figure 3.5: Example for convex and non-convex sets.

Definition: Convex Hull The convex hull of a set (convex or non-convex) C is defined

as the set of all convex combinations of points in C, defined by{ ∞∑
i=1

Θixi

}
, withΘi ≥ 0,

∞∑
i=1

Θi = 1. (3.36)

Consequently the convex hull of a set is always convex.

Definition: Convex Cone A set C is called convex cone if for any two points in the

set x1,x2 ∈ C we have

Θ1x1 + Θ2x2 ∈ C ∀Θ1,Θ2 ≥ 0. (3.37)

Similar to a convex hull the set of all possible conic combinations of points in C called the

conic hull.

Convex set verification Operations on convex convex sets that preserve convexity:

• For any collection of convex sets the intersection
⋂
iCi is again convex (Figure 3.6a).

• The vector sum C1 + C2 = {x1 + x2 | x1 ∈ C1,x2 ∈ C2} of two convex sets C1, C2

(Minkowiski-Sum) is again convex (Figure 3.6b).

• The image of a convex set under affine transformation T ◦ C is again convex

(Figure 3.6c).
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C1 C2

C3
⋂
i=1,2,3Ci

(a) Intersection

C1

C2

C1 + C2

(b) Vector sum

C

T T ◦ C

(c) Affine transform

Figure 3.6: Convex set verification.

3.3.2 Convex Functions

Given a convex set C, a function f(x) : Rn 7→ R is convex if the assumption

f(Θx1 + (1−Θ)x2) ≤ Θf(x1) + (1−Θ)f(x2) (3.38)

holds for any x1,x2 ∈ C and 0 ≤ Θ ≤ 1. Eqn. (3.38) is also known as the Jensen’s

Inequality. speaking the above inequality means that the line connecting two function

points (x1, f(x1)) and (x2, f(x2) is entirely above the graph, as shown in Figure 3.7.

Further, a function is called strictly convex if

f(Θx1 + (1−Θ)x2) < Θf(x1) + (1−Θ)f(x2), (3.39)

whenever x1 6= x2 and 0 < Θ < 1. Consequently a function is called concave if -f is convex

and strictly concave if -f is strictly convex.

Θf(x1) + (1−Θ)f(x2)

f(Θx1 + (1−Θ)x2)

x1 x2

(a) Convex function

x1 x2

(b) Non-convex function

Figure 3.7: Graph example for convex and non-convex functions. The function is convex is the
line segments between two points on the graph is above the graph.

The epigraph of a function (epi(f)) is defined as the set

epi(f) = {(x, ε) | x ∈ C, f(x) ≤ ε} . (3.40)
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Geometrically this means that the epigraph of a function defines the area above the func-

tion, as shown in Figure 3.8. The epigraph epi(f) is a convex subset of Rn+1 if f(x) is

convex on C ⊂ Rn.

f(x)

epi(f)

Figure 3.8: Example epigraph of a convex function f(x).

Characterization of differentiable convex functions For the class of differentiable

functions there exists an alternative characterization of function convexity based on the

first and second order conditions.

Suppose f : Rn 7→ R that is differentiable over Rn and the domain C is a convex set.

According to the first order convexity definition the function f is convex if and only if

f(x1) ≥ f(x2) + (x1 − x2)T∇f(x2), ∀x1,x2 ∈ C. (3.41)

Further, f is strictly convex if and only if

f(x1) > f(x2) + (x1 − x2)T∇f(x2), ∀x1,x2 ∈ C, x1 6= x2. (3.42)

The affine function f(x2) + (x1 − x2)T∇f(x2) is the first order Taylor approximation

(linearization) at point x2. For convex functions it is the global underestimatior of the

function, which is an important property of convex functions since it shows that we can

derive global information from the local derivative. Hence, for convex optimization prob-

lems Eqn. (3.41) shows that if ∇f(x2) = 0, then for all x1 ∈ C, f(x1) ≤ f(x2). global

minimizer of the function f . This is a necessary and sufficient condition for x2 to be a

global minimizer of the function f over C.

Consequently, assume that f : Rn 7→ R is twice continuously differentiable over Rn and

the domain C is a convex set then f is convex if and only if

∇2f(x) � 0, ∀x ∈ C (3.43)

and strictly convex if

∇2f(x) � 0, ∀x ∈ C. (3.44)

This means that the derivative of f is non-decreasing and hence, the function f has a
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f(x1)

f(x2) + (x1 − x2)∇f(x2)

x2

Figure 3.9: First-order Taylor approximation f(x2)+(x1−x2)T∇f(x2) is a global underestimatior
of f .

non-negative curvature at any point x.

f1f2

f3

h(x) = sup
i=1,2,3

fi(x)

Figure 3.10: Supremum of convex function is again convex.

Properties of convex functions and operations that maintain convexity

• If a minimum of a convex function exists any local minimum is a global minimum.

• If the function is strictly convex the global minimum is unique.

• The weighted sum of convex functions is again convex.

• Any vector norm is convex (Section 3.1).

• The scaling of a convex function λf(x), where λ ≥ 0, is convex.

• If I is an index set and C ⊂ Rn and fi : C 7→ R∪{∞} are convex functions, then the

function h : C 7→ R∪{∞} defined by the pointwise maximum h(x) = supi∈I fi(x) is

convex (see Figure 3.10).

3.3.3 Convex Conjugate

In this section we introduce the convex conjugate function which is a generalization of

the Legendre-Fenchel transform (LF) transform and plays an important role in the convex

optimization problems in later chapters where we will stick to the terminus conjugate

transform or simply dual.
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Given a function f : Rn 7→ R then the function f∗ : Rn 7→ R is defined as

f∗(y) = sup
x∈dom f

(
yTx− f(x)

)
(3.45)

is called the conjugate of f . As the name suggests, the convex conjugate is always convex

and closed. As depicted in Figure 3.11a, the convex conjugate is convex by definition since

it is the point-wise supremum of a set of convex (affine) functions of y, independent on

the convexity of f .

(0,−f∗(y))

yTx

yTx− f(x)

x

f(x)

(a) Convex Conjugate

f∗∗(x)

x

f(x)

(b) Conjugate Transform

Figure 3.11: Illustration of the conjugate transform. (a) the conjugate function f∗ is the maxi-
mum between the linear function yTx and f . (b) the bi-conjugate f∗∗ is the largest convex function
below f (convex envelope).

From the definition in Eqn. (3.45) we obtain the so-called Fenchel Inequality defined

by

f(x) + f∗(y) ≤ yTx, ∀x,y ∈ Rn. (3.46)

The bi-conjugate function f∗∗ is defined by

f∗∗(z) = sup
y∈dom f∗∗

(
zTy − f∗(y)

)
, (3.47)

where f∗ is the convex conjugate of f . The name ’bi-conjugate’ may suggests that the

twice conjugated function is again the original function. This proposition holds if f is

convex and closed, then f∗∗ = f and x = z. Generally for any real function f(x) it holds

that

f(x) ≥ f∗∗(z), (3.48)
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which shows that f∗∗ is the largest convex function below f and thus is called the convex

envelope, as shown in Figure 3.11b.

3.3.4 Subdifferential

In all gradient based optimizations the function f has to be differentiable at any point.

Let us recall the convexity definition of Eqn. (3.41) which states that a global underes-

timator of a convex and differentiable function f : Rn 7→ R is given by the first order

approximation. But in many (non-smooth) convex optimizations the function f is convex

but not differentiable, e.g. the absolute value function or L1-norm. Hence, we introduce

the subgradient to generalize the derivative for non-smooth functions. A vector g is called

the subgradient of f at a point x0 for any x ∈ dom f if

f(x) ≥ f(x0) + 〈x− x0, g〉. (3.49)

The set of all subgradients of f at x0 is called the subdifferential ∂f(x0). Note that if

the function f is differentiable at x the subgradient only contains the gradient: ∂f(x) =

{∇f(x)}.
For example the subdifferential of the absolute function f(x) = |x| results in

∂f(x) =


+1 x > 0

−1 x < 0

[−1, 1] else,

(3.50)

as illustrated in Figure 3.12.

x

f(x)

∂f(x)

(a) f(x)

1
∂f(x)

x

−1

(b) ∂f(x)

Figure 3.12: Exemplar subdifferential of the absolute function f(x) = |x|.

3.3.5 Proximal Mapping

The proximal mapping, also known as the resolvent- or proximity-operator, is a method

to restrict closed proper convex functions to a certain bound, as proposed in [96]. Let
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f : Rn 7→ R ∪+∞ be a convex, proper lower-semicontinuous function, which means that

epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t} (3.51)

is a nonempty closed convex set and

dom(f) = {x ∈ Rn : f(x) < +∞} (3.52)

is the set of points for which f takes on finite values.

Hence, the proximal mapping is given by

proxλf (y) = (I + λ∂f)−1 (y) arg min
x

{
f(x) +

1

2λ
‖x− y‖22

}
. (3.53)

The proximal operator proxf : Rn 7→ Rn can be interpreted as moving points inside the

domain towards the minimum, and points outside the domain towards the boundary of

the domain in direction of the minimum. The parameter λ controls the extent of the

movement, as shown in [81]. This interpretation is depicted in Figure 3.13.

dom(f)

Figure 3.13: Proximal mapping. The proximal operator moves points outside of the domain on
the boundary of the domain and points inside the domain towards the minimum (adopted from
[81]).

3.4 Convex Optimization

The field of convex optimization is a subfield of mathematical optimization and studies

the problem of finding a minimum in a convex function. We already briefly introduced in

the form of convex optimization problems in Eqn. (3.33). The main advantage of convex

problems over non-convex problems is that every local optimum must also be a global

optimum. Hence, the global optimum can always be found, independent from the initial-

ization. If we provide a reasonable amount of time to iterate, the accuracy of our model

only depends on its design. Since variational models have been proven to be particularly

useful to solve various imaging problems, we use them to solve the convex optimization
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problems in our work. For a broader overview of we will refer to the works of Rockafellar

[97, 98], Boyd [11], Chambolle and Pock [21], or Nesterov [74].

Let us consider the convex optimization problem of finding the global optimizer x∗

such that

f(x∗) = min
x∈Rn

f(x), f : Rn 7→ R, (3.54)

where f is a real-valued convex and differentiable function. Where the gradient defined by

∇f(x) is Lipschitz continuous. For optimization the optimality condition ∇f(x∗) = 0 is a

necessary and sufficient to define the solution. Although, in some cases the optimality can

be directly calculated by setting the gradient to zero it is not possible for most large-scale

imaging problems.

3.4.1 Gradient Descend

The basis of most optimization techniques and also the most simple optimization method

is Gradient Descend (GD). It strictly minimizes the function according to the optimality

condition ∇f(x∗) = 0 and optimizes along the gradient, with the restriction that f is

convex and smooth (see Section 3.3.4). The simple GD update is given by

xk+1 = xk − τ∇f(xk), (3.55)

for all iterations k ≥ 0 and any x0 ∈ Rn. The variable τ is the step size of the gradient

update. It is chosen such that the function f(x) is minimized until convergence. The

convergence can be defined by e.g. a fixed number of iterations k or until f reaches a

stationary point. In this context the measured speed (in number of iterations) in which

the convergent sequence approaches its limits is called the convergence rate.

There are multiple optimization techniques that improve the convergence rate of GD

by modifying the step size or adding terms to the gradient update. A famous extension

of the basic GD is the heavy-ball method proposed by Polyak [86]. The basic update rule

is given by

xk+1 = xk − τ∇f(xk) + α
(
xk − xk−1

)
, for x0 ∈ Rn, x−1 = x0, (3.56)

for all k ≥ 0, where the additional momentum term is inspired by the friction of a body

motion in a potential field.

3.4.2 Proximal Gradient

In large scale optimization problems especially in computer vision the optimization has a

more complex form such that the function may not be continuously differentiable in every
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point. These unconstrained optimization problems often have the form

min
x∈Rn

f(x) = g(x) + h(x), (3.57)

where the (sub-)function g(x) : Rn 7→ R is convex and continuously differentiable and

h(x) : Rn 7→ R ∪ +∞ is convex but non-smooth. In this case the gradient update is

calculated by the proximal mapping of h(x), as shown in Section 3.3.5.

Starting from x0 ∈ Rn the iteration step of the proximal gradient method is then given

by

xk+1 = proxλh

(
xk − τ∇g(xk)

)
(3.58)

for k ≥ 0 and τ > 0. In the case where h ≡ 0 the algorithm results in standard GD .

Similar to variants of GD there exist a lot of variants for accelerations or generalizations

to the proximal gradient method, such as the FISTA (Fast Iterative Shrinkage Thresh-

olding Algorithm) [6], the Douglas-Rachford Splitting or Alternating Direction Method of

Multipliers (ADMM) algorithm [63].

3.4.3 Primal-Dual Algorithm

Variational energy minimization problems in computer vision often have non-differentiable

parts and often the whole functional is non-differentiable. Variational problems often have

the form of

min
x∈Rn

f(x) = g(Kx) + h(x), (3.59)

where g and h are convex but possibly non-smooth functions and K is a linear operator

(i.e. K ∈ Rm×n). A very prominent example of this problem is the ROF energy functional

used for e.g. image denoising as proposed by Rudin et al. [99]. The energy functional has

the form

min
x∈R
‖∇x‖1 +

λ

2
‖x− d‖22, (3.60)

where d is the noisy input and x is the optimizer. Chambolle [20] proposed an optimization

algorithm to solve this functional transforming the non-smooth Total Variation (TV) into

the dual formulation (see Section 3.3.3). Generalizations of the primal-dual formulation

where proposed by Chambolle and Pock [21] and Esser et al. [26], where an optimal

convergence rate in terms of Nesterov [74] has been shown.

Considering the class of non-smooth optimization problems

min
x∈Rn

g(Kx) + h(x), (3.61)
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where g and h are non-smooth functions but convex function. When substituting Kx = z

in Eqn. (3.61) our problem is defined as

min
x,z

g(z) + h(x), s.t. Kx− z = 0. (3.62)

Transferred into the Lagrange dual the above function is given by

inf
x,z

g(z) + h(x) +
〈
KTy,x

〉
− 〈y, z〉 (3.63)

=− sup
z
{〈y, z〉 − g(z)} − sup

x

{〈
x,−KTy

〉
− h(x)

}
. (3.64)

Hence, the respective dual problem of Eqn. (3.61) is given by

max
y∈Rm

−g∗(y)− h∗(−KTy), (3.65)

where g∗ and f∗ are the convex conjugate functions of g and f . This dual problem has

the same optimal values as the primal problem for x and y. This strong duality is given

by holds if

min
x∈Rn

g(Kx) + h(x) = max
y∈Rm

−g∗(y)− h∗(−KTy). (3.66)

An optimal value for x and y of this primal-dual formulation exists iff it is a solution of

the transferred convex-concave saddle-point problem (primal-dual problem)

min
x∈Rn

max
y∈Rm

〈Kx,y〉+ h(x)− g∗(y) (3.67)

exists.

The primal dual algorithm aims to iteratively maximize the primal-dual problem given

in Eqn. (3.67) w.r.t the dual variable y (gradient ascend) and the minimize the problem

w.r.t the primal variable x (gradient descend). Using the proximal mapping (Section 3.3.5)

on g∗ and h as used in previous algorithms the update scheme of the primal-dual algorithm

is given by

yk+1 = proxσg∗
(
yk + σKx̄k

)
xk+1 = proxτh

(
xk − τKTyk+1

)
x̄k+1 = xk+1 + Θ

(
xk+1 − xk

) (3.68)

The last part in the update scheme is an overrelaxation step added by Chambolle [20]

proves that a guaranteed convergence exists for Θ = 1. The step sizes τ > 0 and σ > 0

are chosen such that the Lipschitz-continuity τσL2 ≤ 1, with L = ‖K‖ is satisfied. As

can be seen from the algorithm, the linear operator K must have a simple structure such
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that L can be computed in reasonable time and the proximal mapping on g∗ and h has a

closed form representation such that a unique minimizer can be computed.

An improvement in terms of convergence speed of the primal-dual algorithm was pro-

posed by Pock and Chambolle [84] where the step sizes τ and σ are defined through diago-

nal preconditioners. This diagonal preconditioners used as point-wise step sizes are defined

as two symmetric and the positive definite matrices T and Σ, such that ‖Σ1/2KT 1/2‖ ≤ 1

holds. In [84] it is shown that that the diagonal preconditioners T = diag(τ1, . . . , τn) and

Σ = diag(σ1, . . . , σm) can be calculated as

τj =
1∑m

i=1 |Ai,j |2−α
and σi =

1∑n
j=1 |Ai,j |α

, ∀α ∈ [0, 1]. (3.69)

Because of its general applicability the primal-dual optimization scheme is used in

many imaging problems, e.g. denoising, superresolution, stereo reconstruction, optical

flow estimation or segmentation. The paper by Chambolle and Pock [21] gives a good

overview of the different models and applications in computer vision.
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Modern Time of Flight (ToF) sensors often suffer from a low lateral resolution and high

acquisition noise. In this chapter we show different optimization techniques to increase

the resolution and quality of depth measurements by combining them with other sensor

modalities and data. Hence, we propose different approaches for depth image superresolu-

tion for single ToF depth acquisitions, combined with an intensity sensors or by including

a learned model into the optimization.
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4.1 Introduction

In recent years, once prohibitively expensive range sensors reached their way to the mass

market with the introduction of Microsoft Kinect, ASUS Xtion Pro or the Creative Senz3D

camera. These cameras can now capture scene depth in real time and enable a variety of

different applications in computer vision including 3D reconstruction, pose estimation or

driver assistance. As described above this Time of Flight (ToF) sensors are measuring the

depth actively through the runtime of light. The depth measurement is therefore indepen-

dent from scene texture and largely independent from environmental lighting conditions.

It delivers a dense depth map even at very close ranges [56, 103]. No additional calcula-

tions are necessary, which results in depth measurements at high frame rates. Its small

packet size and low energy consumption makes these camera generally applicable even

in mobile devices. But this compact design does not come without any quality restric-

tions and acquisitions remain afflicted by less than ideal attributes. Most of these sensors

reached a natural upper limit on the spatial resolution of the sensor and also the precision

of each depth sample decreases with the energy consumption. Henceforth, the two main

disadvantages of the ToF measurement principle are the low lateral resolution and the

high acquisition noise. This noise is composed of systematic parts, non-systematic parts

and gross outliers. The main systematic errors are caused by different object reflectance.

A lower object reflectance results in a depth offset. The non-systematic errors occur due

to measurement inaccuracies depending on the signal-to-noise ratio of the reflected light.

These inaccuracies result in random noise with zero mean. Outliers occur when the re-

gion that is acquired by one pixel contains large depth discontinuities, e.g. foreground

and background. This error source is commonly known as the mixed pixel problem. An

analysis of all these errors and their compensation can be found in [34, 38, 62, 68].

In this chapter the goal is to develop different approaches to increase and lateral reso-

lution of ToF sensors while reducing noise and outliers. Hence our work combines increase

spatial resolution (denoising and outlier removal) and the superresolution in depth image

space (increase the lateral resolution). In our work we use a combination of different

modalities or a learned model to achieve this goal. The different combinations are formu-

lated as convex optimization problem, where the optimizer in our model is the resulting

high resolution depth image. In particular we propose different sensor fusion models which

are generally applicable to all of the following superresolution frameworks. Since the su-

perresolution in our work is calculated by a fusion with other modalities the frameworks

can my roughly divided by the used modalities. First, we will show the general varia-

tional superresolution (SR) framework. In this section we introduce the SR problem and

show how we formulate this problem as a convex energy minimization using higher order

regularization. Second, we show how the optimization of a superresolved depth image

can be calculated by the low resolution (LR) ToF depth aided by an additional intensity

image with higher resolution, as presented in Section 4.4. Third, we propose a single

depth image superresolution where we combine the ToF image with a learned model of
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low and high resolution dictionaries in Section 4.5. In the last section in this chapter we

will show an extensive qualitative and quantitative evaluation of all the above approaches

in Section 4.6.

4.2 Related Work

The field of image SR is a widely researched area in computer vision. The general problem

of image SR is to find a high resolution image IH out of a low resolution input image l.

Hence, the image formation process is defined as

IL = f(IH) + v, (4.1)

where v defines the noise inherit during the acquisition process. The function f(.) defines

the images formation from the low resolution space into high resolution space. This

includes the downsampling, the blur operator and the mapping.

The research on depth image SR mostly originates from intensity image SR. For depth

image SR the main difference is the importance of denoising in the upsampling process.

While the noise level of intensity images is low the amount of noise and outliers for depth

sensing is much higher as explained above. The main focus of most approaches is to

increase a depth measurement resolution and accuracy aided by other information sources.

This additional information comes from multiple acquisitions, additional sensors or trained

models. Hence, the main principle can be divided into: (1) the low level depth error

characterization and calibration of the ToF sensor (2) the temporal and spacial fusion of

multiple acquisitions (3) depth SR aided by high resolution intensity images and (4) the

large field of SR of single depth images, namely single image superresolution (SISR). In

this section we propose a general overview of these principles and show the work related

to each field.

Sensor Calibration

A common low-level approach is to exactly investigate and calibrate each error source.

The basic calibration of depth measurements aims to find an offset model for the indi-

vidual sensors and error sources. In the image formation process shown in Eqn. (4.1)

the calibration approaches aim to improve the accuracy of input image IL and model the

acquisition noise v.

For the Kinect stereo sensor this is shown in [18, 45, 108], where the goal is to find the

best possible model or parameters to calculate a real depth out of the disparity values from

the sensor. For ToF measurements the depth calibration faces different problems. Due to

the various error sources of the ToF measurement principle a constant offset calibration

is not sufficient. In literature most methods calibrate the depth error by fitting non-linear

functions or defining look-up tables that relate the measured depth at each pixel to the
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corrected depth value.

Kahlmann et al. [53] proposed to acquire look-up tables for the distance related error at

different integration times. Based this work Lindner and Kolb [61] calibrated the distance

related error of a ToF camera with B-Splines. In [62] they extended their work by a

intensity related component based on the surface reflectivity. Fuchs and Hirzinger [35]

modeled the distance related error by a third order polynomial function which is directly

calibrated with the camera intrinsics.

Belhedi et al. [7] propose a non-parametric method to compensate for the depth errors.

In contrast to previously presented methods no underlying model is assumed, but the

measurement volume in front of the camera is discretized and a depth offset is estimated

for each voxel in the calibration step. Since not all voxels can be hit during calibration, a

regularization term fills in the missing values. The authors only utilize the depth as input

feature, in contrast our method also makes use of the intensity image and does not require

a volumetric representation and thus no discretization of the world.

It is shown in all these works that the ToF offset is can not be directly separated a dis-

tinctive source. Hence the distance, intensity and integration related errors are correlated.

Reynolds et al. [95] proposed a method to quantify the confidence of a ToF measurement.

Instead of modeling each error as a separate mapping they propose to train non-linear

mapping from depth and intensity features to a measurement confidence. Hence, a Ran-

dom Forest (RF) [14] is trained using ground truth depth together with acquired depth

and intensity features. As output it delivers a per-pixel-confidence according to each mea-

surement. In our work [30] we go one step further and directly model the depth error in a

Alternating Regression Forest (ARF) [104] setting. Instead of the pixel wise input features

the approach uses patchwise information around each center pixel including the first and

second order derivatives and the position in the image. An analysis of all measurement

related errors of ToF acquisitions is shown in [38, 62, 91].

Multiple Depth Image Superresolution

A common way to improve the resolution and quality of depth information is to fuse

multiple depth measurements from different viewpoints into one depth map of higher

resolution and quality. In input measurements of a scene are acquired either while the

depth camera is moved or by multiple 3D sensors. Relating to the image formation from

Eqn. (4.1) these methods aim to estimate one super-resolved image IH from multiple low

resolution measurements IkL. Furthermore, the mapping in the formation function f(.)

and the noise v is estimated.

Schuon et al. [105] proposed a method to fuse ToF acquisitions of slightly moved

viewpoints, where the movement between the images is known. In this work a Markov

Random Field (MRF) optimization framework is used with a bilateral regularization term.

The method further incorporates the ToF sensor characteristics to increase the input

quality. Based on this work, Schuon et al. [106] used a set of fused depth maps with larger
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displacements, where additionally to the SR result the camera movement of the individual

scans is estimated. In Cui et al. [24] this method was extended by scanning complete 3D

shapes.

Newcombe et al. [76] proposed a method to create a dense surface model of a scene

by integrating depth measurements over time from multiple viewpoints. In this approach

the first depth scan is used to initialize a 3D volume. For each consecutive measurement

the camera pose is tracked as the sensor is moved. According to this pose the new scan is

integrated into the 3D volume. In [75] they extended this method for dynamic scenes. In

this approach the scene geometry is reconstructed while simultaneously a dense volumetric

6D motion field is estimated. This motion field is used to warp the estimated geometry

into the actual acquisition to increase the quality of the dense reconstruction.

Recent works addressed the fusion of different depth sensing techniques to increase

resolution and quality. Gudmundsson et al. [37] presented a method for stereo and ToF

depth map fusion in a dynamic programming approach. Similar work has been proposed

by Zhu et al. [140] using an accurate depth calibration and fusing the measurements in a

MRF framework. Additionally to this spatial fusion also a temporal fusion was performed

by measuring the frame-to-frame displacement acquired with high speed intensity cameras.

In the work of Ferstl et al. [27] a framework is presented to fuse the acquisitions of different

depth senors from different viewing directions in a convex energy minimization framework.

Image Guided Depth Superresolution

With the new generation of range sensors that combine the capture of low resolution depth

images with the acquisition of high resolution intensity images this class of approaches uses

this additional intensity information as depth cue for image upsampling. In the estimation

of a super-resolved output the goal is to use intensity information to infer information

for the denoising of the solution without losing fine details. The intuition behind this

approaches is that depth discontinuities in a scene often co-occur with color or brightness

changes. Hence, in the upsampling process this textural information is used to guide the

denoising process, where textural edges are lesser denoised than homogeneously textured

regions.

Among the first works which exploited this possibility was presented by Diebel and

Thrun [25]. In their work they have show an upsampling using a MRF formulation. In

their model the unary term measures the quadratic distance between the high resolution

estimate and the low resolution input where depth data exists. The binary term is for-

mulated as the quadratic distance between neighboring pixels in the solution, weighted

according to texture derivatives. In the work of Kopf et al. [55] a depth image interpo-

lation technique was proposed leveraging a joint bilateral filter [115]. Similar Yang et al.

[133] proposed a SR approach as post-processing for stereo reconstructions. They use a

joint bilateral filtering of a depth cost volume and a RGB image in an iterative refinement

process. Chan et al. [22] used a noise aware joint bilateral filter to increase the resolution
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and to reduce depth map errors at multiple frames per second. In their method a term is

introduced to blend between the results of standard upsampling and joint bilateral filtering

depending on the regional statistics of the depth map.

Based on the seminal work of Diebel and Thrun [25] a successful extension was pro-

posed by Park et al. [82]. The weighted in the MRF binary term is formulated as a com-

bination of low level segmentation, image gradients, edge saliency and non-local means

for depth upsampling. Similar, this combination of intensity and depth data for non-local

regularization was proposed by Li et al. [60] for optimization of Bayesian Framework.

Single Image Superresolution

Typically, SR approaches based on dictionary learning build upon sparse coding [79].

Yang et al. [132] used the background of sparse coding to reconstruct high resolution test

patches as sparse linear combination of atoms from a learned dictionary of paired high and

low resolution training patches. Zeyde et al. [137] build upon this framework and improve

the quality by adding several modifications. For training they use a combination of K-SVD

[2] and Orthogonal Matching Pursuit (OMP) [116] for the low resolution dictionary and a

direct regression of the high resolution dictionary using the pseudo-inverse. In the sparse

coding approach of Mandal et al. [67] they additional penalized the input and output

gradient in each low resolution patch during sparse optimization. Very recently, Timofte

et al. [114] accelerated the inference of sparse coding by relaxing the `0 regularization with

`2 regularization and replacing the single dictionary with many smaller sub-dictionaries

which are pre-calculated. Hence, finding the sparse representation becomes a quadratic

problem for each sub-dictionary which can be solved in closed form.

Other works use a dictionary of sample patches in a multi-class labeling problem in

a MRF . In the work of Freeman and Liu [32] the goal is to minimize the difference of

the set of high resolution dictionary atoms to the low resolution input, where the label

being optimized represents the high resolution patch. Additionally, the overlap between

neighboring patches is penalized in a binary term. Similar, Aodha et al. [66] proposed a

MRF framework especially focused on depth image SR with higher noise. In their work

an additional depth normalization is proposed to penalize the patch overlap. In a post-

processing step they use a novel noise-removal algorithm to increase the quality. Instead

of using a dictionary from an external database, Hornáček et al. [50] proposed a similar

method where the low and high resolution patch-pairs of arbitrary size are searched in the

image itself.

Most methods where the low resolution patches are reconstructed by a combination

of dictionary entries highly suffer from input noise as reported in previous works. But

there is also a great number of SR approaches that rely on a more general prior, as shown

in [73]. Most related to our approach is the variational SR which is based on a known

Point Spread Function (PSF) or blur-kernel. Mitzel et al. [70] used this model together

with a Total Variation (TV) regularization and optical flow estimation for the image SR
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of multiple image. This work was extended by Unger et al. [117] proposing a more robust

model using the Huber-Norm. In [134] the TV regularization is weighted with an adaptive

spatial algorithm based the scene curvature.

Discussion

Our work on depth image SR can be mostly related to the field of single image superreso-

lution and image guided depth superresolution. In our work we define the basic superres-

olution problem in a variational framework where the blur kernel (PSF ) is approximately

known. Building on this formulation we show different methods to increase the quality by

an intensity image guidance or by combining it with a learning approach based on sparse

coding. Compared to previous works, this gives us the possibility to successfully super-

resolve depth images with higher amount of noise, where only an approximate blur-kernel

is set. Since most man-made environments can be well represented with planar surfaces,

we use a Total Generalized Variation (TGV) for regularization which aids the optimization

to reconstruct piecewise planar surfaces. This helps to improve on both approaches based

on learned dictionaries and on variational SR methods using a known blur-kernel.

4.3 Superresolution Problem

In this section we show the general SR problem which is used throughout all our esti-

mations. The standard SR problem [69, 117] is to recover a high resolution depth map

IDH ∈ RΩH 7→ R out of a low resolution and noisy depth map IDL ∈ RΩH 7→ R, where ΩH

and ΩL denote the high and low resolution image space. Note that if we only want to

increase the spacial resolution (denoising) the high and the low resolution image spaces

are equal.

In our optimization we will rely on the traditional SR reconstruction constraint [134]

for intensity images: An observed low resolution image IDL is a blurred and down-sampled

version of the noisy high resolution image IDH :

IDL = DBIDH + v, (4.2)

where D represents the downsampling operator and B the blur filter. It is assumed that

D performs a decimation by a fixed factor and B, representing the blur-kernel, applies a

low-pass filter to the image based on the downsampling operator. The additional variable

v denotes an unknown amount of noise on the low resolution image. This reconstruction

constraint holds for both intensity and depth images. The SR remains extremely ill-posed

since for a given low resolution input IDL , infinitely many high resolution images IDH satisfy

the reconstruction constraint even if the blur kernel is exactly known.

To solve the ill-posed reconstruction constraint from Eqn. (4.2) we formulate it as a

convex minimization problem. The fundamental estimation of the SR problem as shown
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in [69, 117] is formulated as a variational problem defined by

u = arg min
u

{
D(u, IDL ) + λR(u)

}
, (4.3)

based on the general variational model as introduced in Section 3.4. This model basically

consists of a data term D(.) which measures the fidelity of the optimizer u from the low

resolution measurements IDL and the regularization term R(.) that reflects prior knowledge

of the smoothness of our solution. In the convex model both D(.) and R(.) are convex

lower semi-continuous functions. The scalar value λ ∈ R is used to balance the relative

weight between both terms.

The data term in our energy model is designed to ensure the data consistency to

the base depth measurements IDL . Origin from the reconstruction constraint defined in

Eqn. (4.2) the data term in our optimization problem is formulated as

D(u, IDL ) =

∫
ΩH

|DBu− IDL |Y dx, (4.4)

where Y defines the normed vector space. In literature the space is defined either as the

`1- or the `2-norm depending on the modality of the input data. While the `2 norm is

optimal for Gaussian noise in the input fails at gross outliers. Contrary the `1-norm is

better suited at outliers but has a worse performance in the presence of Gaussian noise. An

common alternative is the Huber-norm which defines a combination by penalizing with `2
for lower values and `1 for higher values, as defined in Section 3.1. The Huber parameter

ε ∈ R denotes the tradeoff between the `1 and the `2 norm in the penalization. Hence, the

data term gets more robust against Gaussian noise as well as gross outliers in the input

depth. Note that if ε = 0 this equals to the `1-norm and if ε = ∞ is the `2-norm. A

definition of these normed vector spaces can be found in Section 3.1.

Given a fixed scalar upsampling factor s ∈ R the linear downsampling operator

D : RΩH → RΩL is defined by calculating the mean of a pixel region s× s. The formation

of one pixel IDL at position x is calculated as

IDL (x) =
1

s2

∫
y∈N (x)

IDH(y)dy. (4.5)

For a regular grid mapping between low and high resolution image space the pixel neigh-

borhood N is defined by

N (x) = (xs, ys) +
[
−s

2
,
s

2

]2
, for x = (x, y)T . (4.6)

The quality of traditional SR methods rely on the quality of the blur-kernel, as shown

in [69]. In our work we aim to present a more general algorithm where the blur-kernel

can be freely defined according to the input modality. A general definition of the blurring
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operator B : RΩH → RΩH is modeled by a Gaussian kernel with a standard deviation

σ = 1
4

√
s2 − 1 and 3σ for the kernel size. Both linear operators are fixed and can be set

in a pre-processing step.

In natural environments depth images have less fine-grained texture components com-

pared to intensity images. Hence, the regularization term R(.) has to meet the challenges

of producing a high resolution depth map that smooths small gradients caused by kernel

inaccuracies while preserving strong edges and planar surfaces. Most current regulariza-

tion terms are based on the TV -norm [77] defined by

R(u) =

∫
ΩH

‖∇u‖1. (4.7)

Due to the `1-norm on the depth image gradient the TV favors constant values in the

solution. This property is nice for the denoising of intensity images but is problematic

at depth image SR because it causes staircase artifacts in the solution. A easy and

very common way to circumvent this problem is to use the Huber-norm for the gradient

penalization defined by

R(u) =

∫
ΩH

‖∇u‖ε. (4.8)

The Huber-norm of the gradient prevents staircasing and only slightly smooths sharp edges

in the solution.

In our model we use a more general regularization namely the TGV [13] of second

order. While the TV penalizes the first derivative of the optimizer, the TGV penalizes the

derivative of arbitrary order. E.g. the TGV of second order penalizes the second derivative

and hence, favors piecewise affine solutions instead of piecewise constant solution as in th

TV case.

Generally, a model that is regularized by a TGV term of order k favors a solution that

is piecewise composed of polynomials of order k−1. This general formulation of the TGV

regularization term of order k ≥ 1 is given by the dual definition

TGVk
λ = sup

{
udivk vdx | v ∈ Ckc (Ω,Symk(Rd)), ‖ divl v‖∞ ≤ λl, l = 0, . . . , k − 1

}
.

(4.9)

The variables λ0, . . . , λk−1 > 0 are individual scalar weights for each order k.

Ckc (Ω,Symk(Rd)) denotes the space of tensors of order k.

The definition of the TGV at order k = 1 is given by

TGV1
λ = λ sup

{
udiv vdx | v ∈ C1

c (Ω, Sym1(Rd)), ‖v‖∞ ≤ 1
}
, (4.10)

= λTV(u). (4.11)

which directly defines the dual definition of the TV . For our SR estimation it turns out
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that the second order TGV is an acceptable tradeoff between accuracy and computational

complexity. It not only includes the first derivative but also the second order derivatives

to approximate the superresolved depth surface by piecewise affine parts. The primal

definition of the second order TGV is formulated as

TGV2
λ = min

u,v

{
λ1

∫
Ω
‖∇u− v‖1 dx+ λ0

∫
Ω
‖∇v‖1 dx

}
, (4.12)

where additional to the first order smoothness of the depth image u, the auxiliary variable

v is introduced to enforce second order smoothness. The scalars λ0, λ1 ∈ R≥0 are used to

weight each order. Because the TGV regularizer is convex in u and v it allows to compute

a globally optimal solution.

Compared to the standard TV the TGV of second order avoids the piecewise constancy

in the solution and in contrast to the Huber-norm it directly optimizes for piecewise affine

high resolution surface instead of an approximation. Hence, we directly can optimize

for planar surfaces while compared to the Huber-norm we can still preserve sharp object

boundaries.

The complete optimization model from Eqn. (4.3) with Huber penalization in the data

term and TGV regularization which is defined as

min
u,v

{∫
ΩL

|DBu− IDL |ε + λ1

∫
ΩH

‖∇u− v‖1 dx+ λ0

∫
ΩH

‖∇v‖1 dx

}
, (4.13)

where ε ∈ R≥0 defines the Huber parameter. In order to optimize this model we discretize

the continuous image space into a regular Cartesian grid. The low and high resolution

space is discretized by ΩL 7→ RMl×Nl and ΩH 7→ RM×N respectively. Hence, the discrete

optimization problem from Eqn. (4.13) is given by

min
u∈RMN ,v∈R2MN

{
‖DBu− IDL ‖ε + λ1‖∇u− v‖1 + λ0‖∇v‖1

}
. (4.14)

The proposed optimization problem (4.14) is convex but non smooth due to `1 terms

in the TGV regularization and the Huber-norm in the data term (if ε = 0). Therefore

the optimization of such problems is not a trivial task. To find a fast, global optimal

solution for our problem we use the primal-dual energy minimization scheme, as shown in

Section 3.4.3. After introducing Lagrange multipliers for the constraints and biconjugation

using the Legendre-Fenchel transform (LF) we are able to reformulate the non-smooth

problem in a convex-concave saddle-point problem. The optimization problem can be

efficiently minimized through gradient ascend of the dual energy and gradient descend of

the primal energy. The transformed saddle-point problem of our energy functional is given

by

min
u,v

max
q,pu,pv

{
〈q,DBu− IDL 〉Q −

ε

2
‖q‖22 + λ1〈pu,∇u− v〉Pu + λ0〈pv,∇v〉Pv

}
, (4.15)
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introducing the dual variables q, pu and pv. The feasible sets of these variables are defined

by

Pu =
{
pu : ΩH → R2MN | ‖pu(x)‖2 ≤ 1

}
, (4.16)

Pv =
{
pv : ΩH → R4MN | ‖pv(x)‖2 ≤ 1

}
, (4.17)

Q =
{
q : ΩL → RMLNL | − 1 ≤ q(x) ≤ 1

}
, (4.18)

∀x ∈ RM×N . (4.19)

This formulation is used in the primal-dual algorithm, where the primal and dual

variables are iteratively optimized for the individual pixels in three steps. First, the

dual variables q, pu and pv are updated using gradient ascend. Second, the primal

variables are updated using gradient-descent. Third, the primal variables are refined in an

overrelaxation step. The primal and dual variables are initialized with u0,v0,q,pu,pv =

0. For any iteration n ≥ 0 the primal-dual steps are calculated according to

pn+1
u = PPu {pnu + σuλ1 (∇ūn − v̄n)} ,

pn+1
v = PPv {pnv + σtλ0∇v̄n} ,

qn+1 = PQ
{

qn + σq
DBūn − IL

1 + σqε

}
,

un+1 = un + τu
(
λ1∇Tpn+1

u −BTDTq
)
,

vn+1 = vn + τv
(
λ0∇Tpn+1

v + λ1pu
n+1
)
,

ūn+1 = un+1 + θ(un+1 − ūn),

v̄n+1 = vn+1 + θ(vn+1 − v̄n),

(4.20)

until a stopping criterion is reached. The operators PQ, PPu and PPv are point-wise

Euclidean projection functions onto the previously defined feasible sets Q, Pu and Pv

defined by

(PQ(q̃))(x) = min {1,max{−1, q̃(x)}} , (4.21)

(PPu(p̃u))(x) =

{
p̃u(x)

max{1, ‖p̃u(x)‖2}

}
, (4.22)

(PPv(p̃v))(x) =

{
p̃v(x)

max{1, ‖p̃v(x)‖2}

}
, (4.23)

∀x ∈ RM×N . (4.24)

The overrelaxation stepsize is set to θ = 1 and the timesteps of the optimization are set

by the pixel-wise Lipschitz boundaries determined by diagonal preconditioning as shown
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in Section 3.4.3. Hence, the timesteps are given by

σq(i) =
σ∑

j |(DB)(i, j)|
, (4.25)

σpu =
σ

3λ1
(4.26)

σpv =
σ

2λ0
, (4.27)

τu(j) =
τ

4λ1 +
∑

i |(DB)(i, j)|
, (4.28)

τv =
τ

λ1 + 4λ0
, (4.29)

∀i, j : i = 1 . . .MLNL, j = 1 . . .MN, (4.30)

where the initial timesteps are set such that στ ≤ 1. This scheme achieves a fast and

guaranteed convergence to the global optimal solution for different linear downsampling

and blurring operators. The gradient and divergence operators are approximated using

forward/backward differences with Neumann and Dirichlet boundary conditions, respec-

tively.

4.4 Image Guided Depth Superresolution

In this section we present a novel method for the SR of depth images in a RGB-D system.

The goal of this method is to super-resolve a noisy and low resolution depth image IDL
by using a high resolution intensity image IIH which guides the upsampling estimation, as

shown in Figure 4.1. We use the optimization scheme proposed in the previous section

which is iteratively optimized based on the primal-dual formulation.

(a) LR depth IDL (b) HR intensity IIH (c) HR depth upsampling result IDH

Figure 4.1: Upsampling of a low resolution depth image (a) using an additional high resolution
intensity image (b) through image guided anisotropic Total Generalized Variation (c). Depth maps
are color coded for better visualization.

In a real world RGB-D system such as the Microsoft Kinect V1 and V2 as well as the

Intel Senz3D the depth image IDL and the intensity image IIH are acquired by different

sensors. Although the acquisition is time synchronized, the camera center and viewing
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direction differ. A direct image to image fusion system is not possible and hence, a mapping

of the images into one common coordinate system is required.

4.4.1 Image Mapping

In our sensor fusion system the coordinate system of IIH does not coincide with the coor-

dinate system of IDL . Hence, we propose to define a target coordinate system and map the

data from the other systems into the target system in a preprocessing step. This mapping

is calculated by the projection and back-projection of depth measurements, as defined

in Section 3.2. The intrinsic and extrinsic calibration is calculated with the automatic

camera calibration framework of Ferstl et al. [30]. Each depth measurement IDL (x) at the

homogeneous image coordinate xh = (x, y, 1)T ∈ ΩL is projected into the high resolution

image space ΩH . This projection is calculated as

X =
(RLKL)−1xh

‖(RLKL)−1xh‖2
IDL (x) + CL

x̃h = PHXh ∀x ∈ ΩL,

(4.31)

where RL, CL and KL are the calibrated camera parameters in the low resolution space

used to get a 3D point X the world coordinate system. The camera center and X the 3D

point. Each 3D point is back projected by multiplication with the projection matrix of

the intensity camera PH . Hence, we get a projected depth image IDS ∈ RΩH consisting of

a sparse set of base depth points at position x̃ in the intensity image space ΩH where the

depth value is given by the distance to the 3D point X (see Figure 4.2).

X

CL

CH

IDS

IDL

x ∈ RΩL

x̃ ∈ RΩH

Figure 4.2: Projection from a low resolution depth map IDL to a high resolution sparse depth
map IDS in the high resolution camera coordinate system.
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Although, one low resolution sensor pixel IDL (x) measures the average depth of multi-

ple pixels in the high resolution space we only project it to its central pixel x̃. Therewith,

we minimize the error which can occur due to this averaging in the high resolution space.

In the superresolution reconstruction constraint defined in Eqn. (4.2) the high resolution

(HR) solution is defined as a downsampled and blurred version of the LR input depth.

In our RGB-D fusion model, the downsampling operator D is defined by the pixelwise

backward projections from the HR image pixels x̃ to the LR pixel positions x. Hence,

the downsampling operator D ∈ RΩL×ΩH is given by an irregular grid according to the

projected points x̃ 7→ x, compared to the standard reconstruct constraint where the down-

sampling is defined on a regular grid. Hence, the sparse operator D is 1 at all pixel cor-

respondences (x, x̃) and 0 everywhere else. In our optimization framework, the area in

between the LR depth measurements is interpolated by the regularization force.

4.4.2 Intensity Image Guided Regularization

In our optimization model the high resolution intensity image is used to aid the opti-

mization. Our model builds on the assumption that high depth continuities most likely

correspond to texture edges in the intensity image. Hence, we calculate a tensor based

on the intensity image gradients to produce a more accurate SR result. The tensor is

used as a weighting term in the regularization term. There are different possibilities to

formulate the weighting in the regularization term. Previous works use a pixel wise scalar

weighting calculated from the gradient magnitude of the intensity image, as shown in [25]

or a non-local operator, as shown in [82].

In our SR model we propose to use the anisotropic diffusion tensor T
1
2 based on the

Nagel-Enkerlmann operator [72] since it delivers the overall best results compared to other

methods. This symmetric 2× 2 tensor is defined by

T
1
2 = exp

(
−β
∣∣∇IIH

∣∣γ)nnT + n⊥n⊥
T
, (4.32)

where n is the normalized direction of the image gradient n =
∇IIH
‖∇IIH‖2

, n⊥ is the normal

vector to the gradient and the scalars β, γ adjust the magnitude and the sharpness of the

tensor. The image gradients are calculated by the Sobel operator to decrease the influence

of acquisition noise in the input intensity images. An exemplar tensor calculation is shown

in Figure 4.3a.

This anisotropic tensor is directly included as a weighting term in the convex regular-

ization force. In our model we include the anisotropic tensor into TGV model. Included

in the regularization term, the anisotropic diffusion tensor not only weights the first order

depth gradient but also orients the gradient direction during the optimization process.

Hence, the model is able to penalize high depth discontinuities at homogeneous regions

and allow sharp depth edges at corresponding texture differences. With the additional

anisotropic tensor information the optimization result leads to sharper and more defined
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edges in our solution. Further, the regions where the depth data is interpolated are filled

out more reasonably. In the complete regularization term, the anisotropic tensor is multi-

plied by the first order TGV term results in the anisotropic TGV regularization (aTGV )

given by

RaTGV(u,v) = λ1‖T
1
2 (∇u− v)‖1 + λ0‖∇v‖1. (4.33)

(a) Input intensity IIH and tensor T
1
2
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(b) ×2 (c) ×4 (d) ×8 (e) ×16

Figure 4.3: Superresolution Quality for different magnification factors with and without an
anisotropic tensor T

1
2 at the given input depth IDL .
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4.4.3 Numerical Optimization

The image guided anisotropic TGV is included into our superresolution problem shown

in Eqn. (4.15). Hence, the complete convex-concave saddle-point problem is changed to

min
u,v

max
q,pu,pv

{
〈q,DBu− IDL 〉Q −

ε

2
‖q‖22 + λ1〈pu,T

1
2 (∇u− v)〉Pu + λ0〈pv,∇v〉Pv

}
,

(4.34)

and, since T
1
2 = T

1
2

T
, the primal-dual optimization steps are calculated by

pn+1
u = PPu

{
pnu + σuλ1

(
T

1
2 (∇ūn − v̄n)

)}
,

pn+1
v = PPv {pnv + σtλ0∇v̄n} ,

qn+1 = PQ
{

qn + σq
DBūn − IL

1 + σqε

}
,

un+1 = un + τu

(
λ1∇TT

1
2 pn+1

u −BTDTq
)
,

vn+1 = vn + τv

(
λ0∇Tpn+1

v + λ1T
1
2 pn+1

u

)
,

ūn+1 = un+1 + θ(un+1 − ūn),

v̄n+1 = vn+1 + θ(vn+1 − v̄n),

(4.35)

until a stopping criterion is reached. Following the diagonal preconditioning from Sec-

tion 3.4.3 the timesteps from Eqn. (4.40) are updated to

σpu(j) =
σ

λ1
∑

j(|(T
1
2∇)(i, j)|)

, σpv =
σ

2λ0
, (4.36)

σq(i) =
σ∑

j |(DB)(i, j)|
, (4.37)

τu(j) =
τ

λ1
∑

i |(T
1
2∇)(i, j)|+

∑
i |(DB)(i, j)|

, (4.38)

τv(j) =
τ

λ1
∑

i |T
1
2 (i, j)|+ 4λ0

(4.39)

∀i, j : i = 1 . . .MLNL, j = 1 . . .MN, (4.40)

due to the introduction of the anisotropic tensor into our model.

Compared to the standard model without the usage of an high resolution intensity

image the accuracy of the SR result is drastically increased. This tensor guidance is

especially useful at object edges where the simple model blurs the result. An exemplar

comparison can be seen in Figure 4.3 where the SR result with and without anisotropic

tensor is shown. It can be seen that the quality improvement of our image guided model

increases with increasing magnification factors.

This fusion of LR depth with a HR intensity image has superior performance compared

the estimation without the guidance. Since most depth cameras come equipped with an
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additional intensity camera this method is very suitable for many applications. However,

the exact calibration of the camera system is a very crucial part of this method. The

quality drastically decreases with calibration inaccuracies and with increasing baseline

due to possible occlusions.

4.5 Single Depth Image Superresolution

In this section we show a novel method for image guided depth superresolution without

the need of an additional camera. Hence, we propose a method which combines both

learning based single image SR with our classical SR problem based on a known blur

kernel. This combination is used in a variational SR together with anisotropic higher

order regularization, as shown in the previous section. The whole workflow of our model

is depicted in Figure 4.4. Similar to depth SR approaches that use a high resolution

intensity image for guidance we use a sparse coding approach to pre-calculate edge priors

out of the low resolution example. The sparse code is reconstructed in a variational

energy minimization using a learned dictionary from an external database of low and

high resolution examples. In addition to the traditional sparsity constraint we minimize

the overlap of neighboring patches in our optimization formulating a variational sparse

coding approach. The spacial coherence in image space leads to more accurate edges than

traditional averaging across the overlap. The edge priors are used in the image guided

regularization of our image guided SR model from Section 4.4. Hence, our method has

the advantage that we do not need an additional intensity camera. The high resolution

guidance is reconstructed via the edge priors. Furthermore, since we use a variational

energy model with TGV as regularization we are able to handle depth inputs with higher

amounts of noise.

In order to estimate the HR guidance image we adapt ideas which were recently pro-

posed in intensity image superresolution. Zeyde et al. [137] proposed a method for single

intensity image SR using the relationship of low and high resolution images through a

sparsity constraint :

For a given low resolution patch the goal is to find the best entry in a dictionary of

sample patches collected from an external database of low and high resolution image pairs.

Sparse coding approaches aim to overcome this search by using an overcomplete dictionary

based on sparse signal representations. Given a learned low resolution dictionary Al the

goal is to find the sparse representation α such that the patch is optimally reconstructed

by the dictionary entries:

pl = DLα, (4.41)

where pl ∈ Rn is the low resolution input patch of size
√
n ×

√
n . The resulting high

resolution patch is found through ph = DHα using the corresponding high resolution

dictionary DH .
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Figure 4.4: Single Depth Image Superresolution. Our method estimates strong edge priors from
a given LR depth image and a learned dictionary using a novel sparse coding approach (blue part).
The learned HR edge prior is used as anisotropic guidance in a novel variational SR using higher
order regularization (red part).

4.5.1 Edge Prior Estimation

The goal of the this estimation is to find high resolution edge priors to guide the regular-

ization in a variational superresolution. The estimation of the optimal patch priors for the

depth regularization in our model is formulated as finding the best entry in a learned dic-

tionary of sampled patches from low and high resolution image pairs using sparse coding.

Similar to most State-of-the-Art (SoA) approaches we start from the K-SVD dictionary

learning of Aharon et al. [2]. Because depth images contain a high variety of discontinuities

caused by different scales and sensor modalities we use image features from normalized

image patches as low resolution input. Similar to Zeyde et al. [137] we apply PCA di-

mensionality reduction projecting the features onto an even lower dimensional subspace.

Further, we use Orthogonal Matching Pursuit (OMP) [116] to find the sparse code while

training. The OMP is an algorithm to quickly solve the sparse coding problem.

In the training phase we start with a set of low and high resolution image pairs. From

these training images we create a set of local patch pairs Y = {Yl,Yh} =
{
F (pil), T (psih )

}
i

extracted at sub-sampled image locations i = {1 . . . p} form IL and si from IH , where s is

the upsampling factor. The operator F (.) : Rn → Rf denotes the feature extraction and

dimensionality reduction of the patch pl, where f is the feature length. T (.) : Rn → Rn

denotes the calculation of the edge prior out of the high resolution image patch ph. In

principle, different kinds of edge priors can be learned in our framework from different

kinds of features. In our SR approach we use first and second order gradients as features

to learn an anisotropic diffusion edge tensor as described later.
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After determining the sampled patch pairs, the low resolution dictionary Dl ∈ Rf×d

and the corresponding sparse code Λ ∈ Rd×p = {αi} is found by minimizing

min
Λ,Dl

‖Yl −DlΛ‖22, s.t. ‖Λ‖0 ≤ L, (4.42)

using the K-SVD algorithm, where the size of the dictionary d is fixed. L denotes

the number of non-zero entries in the sparse code map Λ. Given Λ the corresponding

high resolution dictionary is calculated by the pseudo-inverse expression Dh ∈ Rn×d =

YhΛ
T
(
ΛΛT

)−1
. This is given by the closed form solution of eqn. (4.42) for the dictio-

nary in high resolution space, as shown in [137].

In the reconstruction phase traditional approaches solve eqn. (4.42) through OMP fix-

ing the trained dictionary Dl. The sparse code is estimated for each dictionary atom

separately. After reconstruction, the code Λ is multiplied with the high resolution dictio-

nary Dh to get the high resolution patches Yh. These patches are merged and averaged

across the image space ΩH to get the resulting image. The downside of this traditional

approach of independent calculation and averaging without a neighboring coherence is

that the result gets blurry in the overlapping region. This harms the SR quality which is

based on the sharpness in the solution, as shown in [66].

Figure 4.5: Patch-Gradient. The patch-gradient is formulated as the height difference between
one patch Dhαi to its direct neighboring patch Dhαi+1 in the image domain. It calculates the
pixelwise difference in the overlapping region between two neighboring patches (red area).

In our work we introduce a binary term in the sparse optimization model to introduce

spatial coherence of the patches. This enables to reconstruct the sparse code not only with

respect to the input patch but also to the difference between neighboring patches. The

low resolution patch-features are sparsely reconstructed using the following formulation:

min
Λ
‖DlΛ−Yl‖22 + λ‖Λ‖1 + γ‖∇pV (DhΛ)‖1, (4.43)

where the first term minimizes the distance of the low resolution dictionary atoms to

the input and the second term minimizes the quantity of atoms used for reconstruc-

tion. The scalars λ, γ ∈ R weight the individual terms. The `0 constraint of the spar-

sity constraint is relaxed to a `1 norm constraint, as used in other methods [132]. The
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additional third term reflects a regularization between overlapping regions of patches.

The operator V (.) : Rn×p → Rnp denotes a vectorization of the matrix DhΛ. The term

∇p =
[
∇xp ,∇

y
p

]T
: Rnp → R2rp denotes the novel patch-gradient operator, where r denotes

the size of the overlapping region. Similar to the traditional TV regularization, the patch-

gradient performs absolute forward differences between neighboring patches in x and y

direction. For one high resolution patch it is defined as the sum of pixelwise differences in

the overlapping region to its direct neighbor patch in image space. A visualization of this

gradient is shown in Figure 4.5. The patch-gradient penalizer is applied by a simple ma-

trix multiplication of the linear gradient operator ∇p with the concatenated patch vector

V (DhΛ).

After optimization we get the concatenated high-resolution patches DhΛ. Since our

models finds dictionary entries where the neighbors are better aligned, the resulting image

contains sharper edges after merging all the patches back together.

4.5.2 Anisotropic Edge Prior

In principle, different kinds of the edge priors can be learned in our framework (e.g. scalar

weights, image gradients, guided image filters or shock filters). As shown in the last section

we use an anisotropic diffusion tensor based on the Nagel-Enkelmann operator [72], since

it worked best for all experiments. As already shown in Eqn. (4.32) for intensity images,

given a high resolution depth patch ph the anisotropic edge patch is calculated by

T (ph) = exp (−β |∇ph|γ) nnT + n⊥n⊥T, (4.44)

where n is the normalized direction of the image gradient n = ∇ph
|∇ph| , n⊥ is the normal

vector to the gradient and the scalars β, γ ∈ R adjust the magnitude and the sharpness of

the tensor. The gradients are calculated using the Sobel operator to reduce the influence

of noise in the training data. The advantage of an anisotropic diffusion tensor is that

it not only weights the regularization but also orients the gradient direction during the

optimization process.

In our model the high resolution dictionary is composed of (ideally) incoherent edge

tensor entries. After the sparse reconstruction the concatenated tensor entries DhΛ are

merged to the image space resulting in the weighting tensor TΛ ∈ R4×ΩH . This tensor is

used in to guide the regularization term in the image guided SR from Section 4.4.

4.5.3 Numerical Optimization

In this section we explain the details of the numerical optimization to solve the sparse

reconstruction problem. Both proposed problems are convex but non-smooth due to the

`1 and Huber norms in the different terms. Therefore, the optimization of such problems

is not a trivial task. Since eqn. (4.43) is convex in Λ we make use of the dual principle.

After introducing Lagrange multipliers for the constraints and biconjugation using the
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LF we are able to reformulate the problems as convex-concave saddle point problems, as

shown in Section 3.4.3, given by

min
Λ

max
p,q
‖DlΛ−Yl‖22 + λ 〈p,Λ〉Qp

+ γ 〈q,∇pV (DhΛ)〉Qq
, (4.45)

where p and q denote the dual variables and Yl the concatenated set of input features.

The operators in the subscript denote a projection of the dual variable on the convex sets

Qp =
{

p ∈ Rd×p | −1 ≤ p(i, j) ≤ 1
}
, ∀i = 1 . . . d, j = 1 . . . p, (4.46)

Qq =
{
q ∈ R2×rp | ‖pv(k)‖ ≤ 1

}
, ∀k = 1 . . . rp. (4.47)

With the formulation of the discrete saddle-point problem (4.45) we can apply the primal-

dual algorithm [21]. The algorithm iteratively optimizes the primal and the dual variables

for the individual pixels in three steps. First, the dual variables p, q are updated using

gradient ascend. Second, the primal variable Λ is updated using gradient descend. Third,

the primal variable is refined in an over-relaxation step. The optimizer variables are

initialized with Λ = 0, p = 0 and q = 0. For any iteration n ≥ 0 and every level the

primal dual steps are calculated according to
pn+1 = PQp

{
pn + σpλ

(
Λ̄n
)}
,

qn+1 = PQq

{
qn + σqγ

(
∇pV (DhΛ̄

n)
)}
,

Λn+1 =
(
I + τΛDT

l Dl

)−1 (
DT
l Yl − λp− γDT

hVI(∇Tp p)
)
,

Λ̄n+1 = 2Λn+1 − Λ̄n,

(4.48)

Where I denotes the identity matrix and VI(.) : Rnp → Rn×p denotes the inverse of the

operator V (.). The variables σp, σq and τΛ are the step sizes of the gradient ascend and

gradient descend steps. The exact setting of the step sizes is explained in Section Step

Sizes. The operators PQp and PQq are defined as the point-wise Euclidean projections

onto the convex sets Qp and Qq:

(PQp(p̃)))(i, j) = min {1,max{−1, p̃(i, j)}} , (4.49)

(PQq(q̃)))(k) =

{
q̃

max{1, ‖q̃(k)‖}

}
, (4.50)
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The preconditioned step sizes for solving the sparse reconstruction Eqn. (4.48) are given

by

σp =
σ

λ
, σq(i) =

σ∑
j |(∇pD̃h)(i, j)|

,

τu(j) =
tau∑

i |(∇pD̃h)(i, j)|
∀i, j : i = 1 . . . rp, j = 1 . . . np.

(4.51)

The matrix D̃h denotes a concatenated diagonal matrix of the high resolution dictionary

where Dh is repeated p times such that

D̃h =


Dh 0

Dh

. . .

0 Dh

 ∈ R2rp×dp. (4.52)

The result of this optimization gives us the reconstructed sparse code Λ. The reconstructed

high resolution patches DhΛ are merged into the image space to result in the final edge

tensor TΛ ∈ RΩh 7→ R2. This reconstructed edge tensor is directly used in the image

guided depth SR from Eqn. (4.34) which is iteratively solved using the primal-dual scheme

from Eqn. (4.35). The final optimization result gives the single depth SR result shown in

Section 4.4.

4.6 Evaluation

In this section we show a quantitative and qualitative evaluation of the proposed SR

methods. The evaluation in this section is divided into different part to evaluate all

aspects and properties of the different variations. We compare our methods to multiple

SoA methods from depth and intensity image superresolution. For an extensive analysis we

investigate the performance compared on a variety of different synthetic and real datasets.

For the synthetic evaluation we use the well known Middlebury datasets from [47, 100–

102]. To follow SoA work we additionally evaluate our work on the Middlebury variations

from Park et al. [82] (added depth dependent noise) and Aodha et al. [66] (filled out

occlusions). For the real-world evaluations we use the Laser Scan Dataset of Aodha et al.

[66] and our ToF camera dataset (ToFMark) proposed in [28].

We will first discuss some of the algorithm details for the single image superresolution

from Section 4.5 such as used features and dictionary sizes. Further, we show the per-

formance under increasing (acquisition) noise, where different levels of Gaussian noise are

applied on the input data compared to other SISR approaches. After that we perform

an extensive analysis of the proposed image guided SR and single image SR compared to
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multiple SoA approaches in this fields. We evaluate all methods on the clean and noisy

Middlebury dataset to show the performance of the different methods under each con-

dition. This evaluation is shown in Section 4.6.3. Finally in Section 4.6.4 we show the

SR results for real-world datasets where the SR performance for real ToF acquisitions is

shown. We will evaluate all methods based on the Mean Absolute Error (MAE) and the

Root Mean Squared Error (RMSE) since this widely used metrics give the best indication

on the performance of noise reduction and edge sharpness.

Before we start our exhaustive evaluation we will shortly introduce a naming convention

of the different approaches in Section 4.6.1. This naming convention is used throughout

the whole section.

To allow for a fair comparison all weighting parameters in our model are set once and

are kept constant over all experiments.

4.6.1 Method Namings

The namings in our evaluation are stated as follows. For the proposed SR methods the

name is composed of the different parts that are used in the energy functional. The first

part of the method name is the optimization model followed by the source of the image

guidance. Hence, the complete method name is defined as

Model Abbreviation

No guidance + TGV (Section 4.3) TGV-SR

IIH guided + anisotropic TGV (Section 4.4) aTGV-IG

Variational Sparse Coding TΛ guided + anisotr. TGV (Section 4.5) aTGV-VSC

For evaluation of the SoA approaches we use the publicly available framework of Tim-

ofte et al. [114]. In the following we compare our method with the standard interpolation

methods Nearest Neighbor, Bilinear and Bicubic upsampling as well as the sparse coding

approach of Yang et al. [132] and Zeyde et al. [137]. We further show the results of

both methods reported in [114], namely Global Regression (GR) and Anchored Neighbor-

hood Regression (ANR), and the neighborhood embedding [8, 23] approaches (NE+LS,

NE+NNLS, NE+LLE ). Additionally, we compare to the MRF based methods of Aodha

et al. [66] and Hornáček et al. [50].

The approaches for image guided depth SR which are compared in this evaluation

are the MRF based methods of Diebel and Thrun [25] and Park et al. [82]. We further

compare to the bilateral filter approaches of Yang et al. [133], Chan et al. [22] and Kopf

et al. [55], and to the guided image filtering approach of He et al. [43].

In Table 4.1 we define the namings of the SoA methods which are used throughout the

evaluation.
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Papar Principle Abbreviation

- nearest neighbor interpolation Nearest
- bilinear interpolation Bilinear
- bicubic interpolation Bicubic
He et al. [43] Guided Image Filtering GIF

Yang et al. [132] Sparse Coding Yang-SC
Zeyde et al. [137] Sparse Coding Zhang-SC
Timofte et al. [114] Sparse Coding/Neighbor Embedding GR
Timofte et al. [114] Sparse Coding/Neighbor Embedding ANR
Bevilacqua/Chang et al. [8, 23] Neighbor Embedding NE+LS
Bevilacqua/Chang et al. [8, 23] Neighbor Embedding NE+NNLS
Bevilacqua/Chang et al. [8, 23] Neighbor Embedding NE+LLE

Aodha et al. [66] Patch-Dictionary + MRF Aodha
Hornáček et al. [50] Patch-Search + MRF Hornáček

Kopf et al. [55] Joint Bilateral Upsampling JBU
Chan et al. [22] Joint Bilateral Filtering Chan-IG
Yang et al. [133] Joint Bilateral Filtering Yang-IG
Diebel et al. [25] Image guided MRF Diebel-IG
Park et al. [82] Image guided MRF Park-IG

Table 4.1: Naming Overview. Overview of the SoA methods used in this evaluation separated by
their Principle. Intensity image guided methods are indicated by IG and methods based on sparse
coding with SC.

4.6.2 Discussion of Sparse Coding Details

In this section we evaluate the properties of our variational sparse coding (VSC ) model

compared to traditional sparse coding methods. As defined in Section 4.5 the SR models

based on sparse coding use the feature of a LR input and estimate its HR version based

on a learned dictionary. In this estimation the choice of the patch feature is a crucial

part. For SR based on sparse representations one of the most basic features is to use

the sample patches itself. Other methods such as [114, 132, 137] use the first and second

order derivative for intensity image features. However, for depth images this is not directly

applicable, because the range from minimum to maximum value greatly varies between

different scenes. To tackle this problem Aodha et al. [66] proposed a patch normalization

which accounts for the ranges of both high and low resolution patch. In our work we first

normalize each patch to [0, 1] and then use the first and second order gradients as patch-

features. An additional PCA dimensionality reduction is applied to project the feature

vector onto a lower dimensional subspace while preserving 99.9% of the average energy.

E.g. an upscaling factor of 3 this reduces each feature of length 144 to a size of about 36.

Throughout all experiments we use a patch-size of 3×3 in the low resolution image space,
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which delivers the best results for all sparse coding approaches.

For all dictionary based methods we use the same synthetic range image data of [66]

for training, which contains 30 scenes of size 800× 800 in the high resolution space. The

reported error is described as the RMSE to a known groundtruth.

The choice and the size of the dictionary are very critical parts in any sparse coding

approach. Usually, the more incoherent atoms a dictionary contains the better the per-

formance, however, this comes with a higher computational cost. In Figure 4.6 we show

the influence of the dictionary size on the performance. As expected, the performance

increases with the size of the dictionary. But while the performance of other sparse coding

methods drastically increases with the size our method already starts at a much lower

RMSE and is less influenced by the choice of the dictionary size.

For most depth SR approaches the correct noise handling plays a major role. Therefore,

we test the accuracy under different levels of noise on the Middlebury dataset. We chose

a depth dependent Gaussian noise with zero mean, as reported in [82]. The standard

deviation of the noise ranges from 0− 50% of the depth range (minimum to maximum) in

the input images for an upsampling factor of ×3. In Figure 4.7a and Figure 4.7b the error

results are shown for the different methods. In Figure 4.8 we show visual SR results of

different methods for a standard deviation of 2%. Obviously, the error increases with the

input noise for all methods. But, while the error drastically increases for methods which

solely depend on the sparse reconstruction, the variational method [117] produces a higher

error at lower noise factors and performs comparably better with increasing noise. This is

caused by the regularization of the depth during optimization which reduces the noise but

smooths the edges. Since we use a regularization which is only guided by a sparse edge

reconstruction we get more accurate results over the whole noise range.

Dictionary size d

R
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E

Figure 4.6: Influence of dictionary size on the average accuracy (RMSE in pixel disparity)
for the Middlebury images Teddy, Cones, Venus and Tsukuba with a magnification of ×3. All
neighborhood embedding approaches where used with their best neighborhood size (as reported in
[114]). In the results are shown where each sparse coding method uses the same dictionary.
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(a) (b)

Figure 4.7: Influence of input noise on the average RMSE (in pixel disparity) for the Middlebury
images Teddy, Cones, Venus and Tsukuba with a magnification of ×3. All neighborhood embedding
approaches where used with their best neighborhood size (as reported in [114]). In (a) the results for
increasing Gaussian noise are shown, where every sparse coding method shares the same dictionary
with 1024 entires. In (b) a magnified sector of the noise evaluation in (b) is shown, where the noise
level ranges from 0-2%. Figure best viewed magnified in the electronic version.

4.6.3 Middlebury Benchmark Evaluation

In this section we evaluate the performance of the different SoA methods on the publicly

available Middlebury benchmark. Following most image guided SR methods we will first

show the MAE results for the noisy and noise-free Middlebury datasets Art, Books and

Moebius treating the disparity values as depth. In this evaluation the low resolution input

depth is given by bilcubic downsampling with downsampling factors of ×2, ×4, ×8 and

×16. For the noisy example we use the noisy Middlebury dataset provided by Park et al.

[82]. To simulate the noise characteristics of most depth cameras depends where the noise

increases with the distance between camera and scene depth dependent Gaussian noise

is added to the low resolution input depth images. According [82] this Gaussian noise is

defined by

v(k, σd) = k exp

(
− 1

2(1 + σd)2

)
, (4.53)

where σd is a value proportional to depth and k is the magnitude of the Gaussian noise.

Additionally, following [50, 66] we show the MAE for single images SR results on the

Middlebury datasets Teddy, Cones, Venus and Tsukuba for upsampling factors of ×2 and

×4 where the groundtruth is downsampled by nearest neighbor interpolation. Further, we

show the results for the real-world laserscan dataset (Scan21, Scan30, Scan42 ) proposed

by [66] for an upsampling factor of ×4.
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(a) Noisy input (b) Zeyde et al. [137] (c) NE-NNLS

(d) TGV-SR (e) aTGV-VSC (f) Tensor TΛ

Figure 4.8: Color-coded visual SR results for noisy input data. The figure shows a zoomed region
of interest from the Teddy dataset for an upsampling factor of ×3. On the low resolution input
we applied Gaussian noise with zero mean and a standard deviation of 2% of the input disparity
range.

The quantitative results for the noisy Middlebury datatset is shown in Table 4.2 and

the results for the clean Middlebury dataset is shown in Table 4.3. Exemplar visual results

are shown in Figure 4.9, 4.10, 4.11 and 4.12.

The comparison to [66] and [50] for single image superresolution is shown in Table 4.4

for nearest neighbor downsampling of the input image. To evaluate the influence of our

sparse coding scheme to the overall solution we compare to a combination of the sparse

coding method [137] for edge prior estimation in our variational SR ([137] + aTGV-SR).

4.6.3.1 Discussion

In the results it can be clearly seen that there is a big difference between between the

clean and noisy data in the input depth maps. While approaches based on sparse coding

are very well suited for clean data, image guided optimization approaches deliver much

better results for noisy data, as shown in Table 4.3 and Table 4.2.

For the clean data it can be clearly seen that the methods based on a sparse representa-

tions (Yang-SC, Zeyde-SC, NE+NLL, ...) have slightly better performance than methods
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based on a MRF (Diebel, Park, Yang) for lower upsampling factors. Further is can be

seen that our methods are overall superior compared to most other methods. This quality

improvement originates from a TGV regularization with anisotropic tensor together with

the basic SR problem. The higher order regularization better captures the surface of real

world scenes, while the anisotropic tensor delivers a defined guidance of the optimization.

It can be seen that the guidance from a the variational sparse coding in our optimization

(aTGV-VSC ) is on par with the image guided approach (aTGV-IG). This is because the

variational sparse coding does only rely on the depth input. Hence, if the intensity texture

does not coincide with depth steps this will not lead to errors in the optimization.

When dealing with noise in the input acquisition one can see the clear advantage of the

intensity image guided models. While the models based on sparse coding have problems

in the presents of noise, models with a regularization term have a big advantage since they

implicitly denoise the SR result. Furthermore, the image guided methods have the big

advantage that they can rely on an intensity image for guidance, which has a comparably

low amount of noise. Similar to the sparse coding methods the SR quality decreases with

increasing levels of noise in the guidance image. The proposed SR method guided by the

variational sparse coding delivers superior results, in contrast to all other sparse coding

methods. For smaller magnification factor it delivers even better than most image guided

methods. Overall, our optimization model with higher order regularization and anisotropic

guidance from a noise-free intensity image delivers the best results for every magnification

factor and dataset.
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×2 ×4 ×8 ×16

Art Books Moebius Art Books Moebius Art Books Moebius Art Books Moebius

Nearest 4.6529 4.6011 5.0752 5.0147 4.6848 5.1979 5.7090 4.8479 5.3051 7.0978 5.2274 5.6492
Bilinear 3.0846 2.9172 3.2084 3.5861 3.1195 3.4471 4.3931 3.3427 3.6238 5.9087 3.7118 3.9991
Bicubic 3.8124 3.7367 4.1121 4.1489 3.8127 4.2168 4.7827 3.9843 4.3069 6.1180 4.2867 4.6066
GIF 1.9190 1.6025 1.7722 2.3962 1.8164 2.0271 3.3209 2.3136 2.5960 5.0751 3.0592 3.3394

Yang-SC 6.8161 6.8761 7.6471 3.7816 3.4060 3.8134 - - - - - -
Zeyde-SC 5.0151 5.1366 5.6733 4.7738 4.4034 4.8736 5.5444 5.1934 5.6873 5.9181 4.8617 5.3616
GR 5.8324 5.8823 6.4912 3.7864 3.0847 3.4006 6.4245 5.9010 6.4256 7.2734 5.9083 6.3829
ANR 5.5240 5.6523 6.2415 5.4898 5.0616 5.5975 6.1235 5.7548 6.2937 6.7339 5.6257 6.1772
NE+LS 5.1830 5.2901 5.8398 4.5811 4.1666 4.6158 5.7287 5.3374 5.8197 6.5745 5.3556 5.8672
NE+NNLS 5.1179 5.2162 5.7510 4.8598 4.3479 4.8478 5.6531 5.2209 5.6895 6.6501 5.3076 5.7679
NE+LLE 5.5112 5.6392 6.2251 5.4364 5.0805 5.5974 5.9192 5.5665 6.0901 6.4253 5.3023 5.7845

Chan-IG 2.0229 1.0366 1.1674 2.6310 1.3550 1.5482 3.8127 1.9398 2.2848 5.3957 3.0694 3.5528
Yang-IG 1.3592 1.1191 1.2506 1.9315 1.4721 1.6334 2.4535 1.8055 2.0559 4.5192 2.9235 3.2054
Diebel-IG 1.6198 1.3399 1.4653 2.5428 2.0840 2.2855 3.8514 2.8537 3.0946 5.6960 3.5412 3.8133
Park-IG 1.2401 0.9861 1.0343 1.8159 1.4301 1.4894 2.7047 1.9771 2.1289 4.3940 3.0358 3.0910

TGV-SR 1.4228 1.3103 1.4787 1.7824 1.3390 1.5007 3.0938 2.0296 2.2620 5.3096 3.1303 3.4328
aTGV-IG 0.8365 0.5054 0.5695 1.2908 0.7526 0.8983 2.0562 1.1556 1.3786 3.5634 1.8872 2.1503
aTGV-VSC 1.0729 0.9422 1.1477 2.6443 1.6603 1.9656 5.2530 2.6544 2.9765 8.3711 4.0739 4.3922

Table 4.2: Quantitative comparison on the Middlebury 2007 datasets with added noise. The error is measured as RMSE of the pixel
disparity for four different magnification factors (×2, ×4, ×8, ×16).First, we show the results for standard interpolation methods. Second,
the results for SoA image guided SR methods is shown. Third, we show the results for SoA sparse coding SR. Fourth the results of the
proposed methods is shown. The best result for each dataset and upscaling factor is highlighted and the second best is underlined.



5
8

C
h

ap
ter

4.
D

ep
th

S
u

p
erresolu

tion

×2 ×4 ×8 ×16

Art Books Moebius Art Books Moebius Art Books Moebius Art Books Moebius

Nearest 0.5155 0.1737 0.1824 1.0730 0.3513 0.3810 2.0722 0.6718 0.7517 4.0151 1.3545 1.4149
Bilinear 0.5247 0.1497 0.1676 1.0533 0.3108 0.3436 2.0684 0.6109 0.6758 3.9961 1.2042 1.2873
Bicubic 0.4797 0.1342 0.1501 0.9857 0.2878 0.3178 1.8842 0.5550 0.6185 3.6531 1.0817 1.1298
GIF 0.6598 0.2191 0.2392 1.0564 0.3557 0.3776 1.7726 0.5951 0.6099 3.6251 1.1593 1.1998

Yang-SC 0.9200 0.4473 0.3994 1.2170 0.4610 0.4788 - - - - - -
Zeyde-SC 0.2834 0.0932 0.1146 0.7954 0.2611 0.2811 1.7458 0.5727 0.5945 3.9014 1.1131 1.1139
GR 0.4899 0.1383 0.1494 1.6043 0.4832 0.5137 1.9293 0.5825 0.6311 3.6108 1.1142 1.1278
ANR 0.3338 0.0979 0.1075 1.3494 0.3930 0.4482 1.5737 0.4613 0.5126 3.0099 0.8542 0.9213
NE+LS 0.2665 0.0798 0.0932 1.1480 0.3595 0.3873 1.4293 0.3948 0.4662 2.8984 0.7912 0.9228
NE+NNLS 0.3009 0.0919 0.1022 1.3000 0.3884 0.4354 1.5583 0.4358 0.4899 3.1328 0.8314 0.9302
NE+LLE 0.4801 0.3641 0.2916 2.3556 1.5656 1.6675 1.6269 0.5861 0.6644 3.0540 0.8475 0.9025

Yang-IG 0.5708 0.3013 0.3868 0.7002 0.4514 0.4760 1.5046 0.6373 0.6893 3.6903 1.4532 1.1366
Diebel-IG 0.6249 0.2166 0.2502 1.0052 0.3331 0.3679 1.9741 0.6162 0.6731 3.9370 1.2107 1.2884
Park-IG 0.4306 0.1954 0.1795 0.6745 0.3228 0.2965 1.0734 0.5542 0.5218 2.2117 1.0525 0.8965

TGV-SR 0.2683 0.0882 0.0894 0.7699 0.2897 0.3059 2.1093 0.8744 0.9574 3.9624 1.3666 1.4840
aTGV-IG 0.2590 0.0759 0.0841 0.5085 0.1702 0.1880 1.0094 0.3460 0.3933 2.1483 0.8209 0.9093
aTGV-VSC 0.2494 0.0705 0.0838 1.0865 0.3556 0.3739 1.3247 0.3423 0.4249 2.5730 0.6696 0.7925

Table 4.3: Quantitative comparison on the noise-free Middlebury 2007 datasets. The error is measured as MAE of the pixel disparity for
four different magnification factors (×2, ×4, ×8, ×16). First, we show the results for standard interpolation methods. Second, the results for
SoA image guided SR methods is shown. Third, we show the results for SoA sparse coding SR. Fourth the results of the proposed methods
is shown. The best result for each dataset and upscaling factor is highlighted and the second best is underlined.
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×2 ×4 ×4

Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus Scan21 Scan30 Scan42

Nearest 1.0943 0.8149 0.6123 0.2676 1.5309 1.1292 0.8328 0.3679 0.0177 0.0163 0.0396
Bicubic 0.9598 0.6917 0.5228 0.2274 1.2386 0.8936 0.6685 0.2938 0.0132 0.0125 0.0326
Diebel 0.7397 0.5265 0.4013 0.1703 1.1406 0.8010 0.5490 0.2426 - - -

Yang-SC 1.4794 1.0909 0.8583 0.3666 1.3239 0.9401 0.6849 0.3010 0.0138 0.0130 0.0337
Zeyde-SC 0.6920 0.4904 0.3871 0.1650 0.9617 0.6953 0.5477 0.2199 0.0100 0.0093 0.0246
GR 0.7780 0.5521 0.4289 0.1896 1.0790 0.8193 0.6480 0.2776 0.0117 0.0114 0.0271
ANR 0.6968 0.4954 0.3830 0.1666 1.0050 0.7564 0.6019 0.2452 0.0106 0.0101 0.0264
NE+LS 0.7066 0.4957 0.3939 0.1712 8.6221 10.3913 0.5641 14.7920 0.0818 0.1090 0.0725
NE+NNLS 0.6886 0.6073 0.3939 0.1646 0.9906 0.7346 0.5704 0.2431 0.0106 0.0101 0.0238
NE+LLE 0.6942 0.4995 0.3813 0.1654 0.9766 0.7396 0.5706 0.2406 0.0102 0.0097 0.0262
Aodha 1.1269 0.8247 0.6012 0.2761 1.5042 1.0259 0.8333 0.3365 0.0175 0.0170 0.0452
Hornáček 0.9936 0.7910 0.5802 0.2574 1.3986 1.1957 0.7272 0.4501 0.0205 0.0179 0.0299

TGV-SR 1.1342 0.8446 0.6445 0.2789 1.5797 1.1131 0.8438 0.3660 0.0170 0.0157 0.0415
aTGV-VSC 0.6247 0.4397 0.3504 0.1433 0.9334 0.6670 0.4901 0.2262 0.0085 0.0083 0.0190
Zeyde-SC + Our SR 0.6450 0.4543 0.3700 0.1573 0.9430 0.6769 0.4983 0.2363 0.0205 0.0179 0.0299

Table 4.4: Quantitative evaluation on the Aodha dataset. The RMSE is calculated for different SoA methods for the Middlebury and the
Laserscan dataset for factors of ×2 and ×4. The first four rows show the comparison against two standard interpolation techniques and two
depth SR which use an HR intensity image for guidance. The best result of all single image methods for each dataset and upscaling factor
is highlighted and the second best is underlined. Additionally we show the sparse coding method [137] used for the edge prior estimation in
our SR optimization. The error numbers are given in pixel disparity for the Middlebury and in [mm] for the Laserscan dataset.
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4.6.4 Benchmarking based on Real Sensor Data

For the evaluation on real sensor acquisitions we use our publicly available ToFMark

dataset from [28]. It is made using different scenes acquired with a ToF and an inten-

sity camera simultaneously. For depth measurements we use a PMD Nano ToF camera

delivering a 120 × 160 dense depth and IR amplitude image [83]. The intensity image is

acquired by a CMOS camera with a sensor size of 810× 610 pixel. In this experiment we

could not evaluate methods based on sparse coding since the intensity image and the LR

depth image are acquired from different camera poses.

4.6.4.1 ToFMark Evaluation

The groundtruth measurements are generated using a structured light scanner which con-

sists of two 2048× 2048 pixel high-speed intensity cameras and one high-speed projector.

The whole multi-camera model is calibrated with our camera calibration framework pro-

posed in [30].

The depth uncertainty of the complete structured light system at the given baseline

is 1.2mm. to generate one consistent depth map, multiple acquisitions with slightly dis-

placed projection angles are fused together while the position of the stereo cameras is

kept constant. The acquired scenes are chosen to incorporate structures with high texture

variations (see Books scene) as well as thin wiry elements (Shark and Devil scenes) to

evaluate the upsampling accuracy. All scenes lie in the depth range of 0.8 − 1.2m which

reflects the operation distance of modern ToF cameras.

A quantitative accuracy evaluation of our SR for three real world datasets is shown

in Table 4.5. The upsampling error is calculated by the MAE to the groundtruth depth

map measured with the highly accurate structured light scanner. Additionally to the stan-

dard interpolation techniques and the methods based on sparse coding we compared our

methods to two common image guided interpolation techniques, joint bilateral upsampling

proposed by Kopf et al. [55] and the guided image filtering technique of He et al. [43].

The dictionary for the sparse coding techniques was trained for an upsampling factor of 6.

As depth input to our methods we used the sparse ToF depth input IDS and the intensity

image IIH . The visual results for all three datasets are shown in Figure 4.13, 4.13 and 4.15.

4.6.4.2 Discussion

One issue that occurs in real world datasets is that wrong ToF measurements result in

displaced surfaces in the upsampled result. Another problem arises due to the difference

in the viewpoint of the observing cameras. Thus, the projected depth measurements near

large depth steps can differ from correct depth values. Because the distance between

the cameras is very small compared to the measured depth range, these wrong measure-

ments have no large impact on the result and can be handled by the regularization in our

variational model. The approximate upsampling factor of ×6.25 for all datasets.
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Books Devil Shark

Nearest 18.7834 19.3200 20.9710
Bilinear 17.2005 17.4737 18.9881
Bicubic 17.5838 18.0166 19.4697

Yang-SC 16.5190 16.7171 18.3103
Zeyde 16.5377 16.9484 18.0739
GR 16.9745 17.1833 18.7332
ANR 17.1124 17.4507 18.8782
NE+LS 18.2209 18.3561 20.8852
NE+NNLS 17.9824 18.2196 20.4539
NE+LLE 17.1654 17.4983 18.8750

JBU 15.7371 16.3449 17.2538
GIF 15.2612 15.7724 16.8543

TGV-SR 16.7697 16.3153 21.5916
aTGV-IG 12.2046 14.6083 15.0586
aTGV-VSC 16.2903 16.3702 17.9358

Table 4.5: Quantitative evaluation on the real datasets Books, Shark and Devil. The error is
calculated as RMSE to the measured groundtruth in mm. We compare standard interpolation
methods as well as joint bilateral upsampling [55] and guided image filtering [43], and SoA sparse
coding methods to our approach. The input density value shows the percentage of sparse depth
values which are projected into the high resolution image space. This corresponds to an upsampling
factor of approximately ×6.25.

Our variational sparse coding approach (aTGV-VSC ) delivers more accurate results

than SoA methods based on sparse coding on all datasets. Similar to the Middlebury

evaluation above this results from their inability to deal with input noise. Overall it

can be seen that the methods without a guidance image deliver worse results compared

to the guided methods (JBU, GIF and aTGV-IG). Further, it can be seen that our

optimization model without guidance (TGV-SR) loses fine details and oversmooths the

SR result compared to the model with guidance.

Through the additional incorporation of the anisotropic diffusion tensor and the higher

order regularization into our optimization, the acquisition noise is drastically reduced,

while sharp edges and smooth surfaces are preserved. Compared to other methods the

image guided optimization aTGV-IG delivers superior results for all datasets.

v
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) GIF (e) Zeyde-SC (f) NE+LS

(g) Yang-IG (h) Diebel-IG (i) Park-IG

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.9: Visual evaluation on the clean Middlebury Art dataset for a magnification factor of
×2. In the first row the input and Groundtruth is shown. In the following rows a selection of the
best methods for interpolation, sparse codding and optimization is shown, while in the last row
the results of the proposed methods are shown.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) GIF (e) Zeyde-SC (f) NE+LS

(g) Yang-IG (h) Diebel-IG (i) Park-IG

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.10: Visual evaluation on the noisy Middlebury Art dataset for a magnification factor
of ×16. In the first row the input and Groundtruth is shown. In the following rows a selection
of the best methods for interpolation, sparse codding and optimization is shown, while in the last
row the results of the proposed methods are shown.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) GIF (e) Zeyde-SC (f) NE+LS

(g) Yang-IG (h) Diebel-IG (i) Park-IG

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.11: Visual evaluation on the noisy Middlebury Moebius dataset for a magnification
factor of ×8. In the first row the input and Groundtruth is shown. In the following rows a
selection of the best methods for interpolation, sparse codding and optimization is shown, while in
the last row the results of the proposed methods are shown.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) GIF (e) Zeyde-SC (f) NE+LS

(g) Yang-IG (h) Diebel-IG (i) Park-IG

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.12: Visual evaluation on the noisy Middlebury Books dataset for a magnification factor
of ×16. In the first row the input and Groundtruth is shown. In the following rows a selection
of the best methods for interpolation, sparse codding and optimization is shown, while in the last
row the results of the proposed methods are shown.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) Zeyde-SC (e) NE+LS (f) GR

(g) Yang-SC (h) JBU (i) GIF

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.13: Visual evaluation of the Books ToFMark dataset. In the first row we show the
LR input depth (enlarged), the input intensity image and the structured light groundtruth. In
the middle rows SoA SR methods are shown. In the last row the results using our methods are
depicted.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) Zeyde-SC (e) NE+LS (f) GR

(g) Yang-SC (h) JBU (i) GIF

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.14: Visual evaluation of the Devil ToFMark dataset. In the first row we show the
LR input depth (enlarged), the input intensity image and the structured light groundtruth. In
the middle rows SoA SR methods are shown. In the last row the results using our methods are
depicted.
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(a) LR input IDL (b) Intensity image IIH (c) Groundtruth IDH

(d) Zeyde-SC (e) NE+LS (f) GR

(g) Yang-SC (h) JBU (i) GIF

(j) TGV-SR (k) aTGV-IG (l) aTGV-VSC

Figure 4.15: Visual evaluation of the Shark ToFMark dataset. In the first row we show the
LR input depth (enlarged), the input intensity image and the structured light groundtruth. In
the middle rows SoA SR methods are shown. In the last row the results using our methods are
depicted.
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In the last chapter we have shown how to improve Time of Flight (ToF) imaging

by combining the depth output with other knowledge such as other sensors or learned

dictionaries. But image enhancement is not limited to the images at a single time. Further,

one can also improve the depth quality through the temporal domain by fusing acquisitions

over time. Since most scenes are not static, the basis of a successful temporal fusion is the

correct estimation of motion in time. In this chapter we show our approach to estimate

motion using modern ToF cameras, for what this fusion can be used in general and

especially how to fuse consecutive images to gain quality.

69
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5.1 Introduction

The perception of motion describes the process of motion cognition in an observed area.

It infers the speed and direction of elements in a scene based on visual inputs. It provides

a rich source of information to understand the world and make decisions [125]. Although

this process appears to be straightforward for a human it is very difficult to explain it

in terms of neural processing and is proven to be a very hard problem from a computa-

tional perspective. It is studied in many disciplines such as neurology, neurophysiology,

psychology, engineering and computer science. Although the field of research in this area

seems endless, we are interested in the latter discipline in this thesis. For details on the

biological process on motion perception we refer to [1] and [46].

In the last decades a lot of work has addressed pure two-dimensional flow, namely

Optical Flow (OF). It describes the velocity field that represents the 3D motion of object

points projected on a 2D image [54]. It describes the apparent motion of intensity patterns

in an image by estimating a 2D movement vector in image space which links two points

of two consecutive frames as shown by Verri and Poggio [121], and Horn and Schunk [48].

The optical flow field in an image is the velocity field that represents the 3D motion of

object points across a 2D image [54]. Since the OF estimates only a 2D projection of

3D motion, it has problems to recover the true motion in space. Relatively simple 3D

movements such as a translations towards the camera produce very complex 2D motions

which are hard to estimate by current OF approaches.

In computer science we are mostly interested in predicting the motion in a sequence

of acquisitions since the structure and 3D motion of objects are essential to character-

ize and understand a dynamic scene. While Structure from Motion (SfM) [85] on static

scenes is well understood, non-rigid scenes still pose a challenging problem, commonly ad-

dressed as Scene Flow (SF). The applications for SF analysis range from driver assistance,

surveillance, action recognition, tracking, segmentation, 3D reconstruction to camera pose

estimation.

In contrast to measure the movement in the image space the estimation of 3D motion

called SF has recently emerged [119]. The SF estimation aims to calculate the true motion

of scene points in a metric space. A popular way to estimate SF through OF is to use a

calibrated and synchronized multi-view setup to jointly solver for stereo and OF , as shown

in [5, 52, 120, 124, 126].

With recent range sensor developments, direct depth measurements are a popular

alternative to multi-view depth imaging. Such novel sensors e.g. Microsoft Kinect or Intel

Gesture Camera already reached a sufficient level of accuracy and robustness to allow a

wide usage in the mass market. With the help of these very affordable sensors it is no longer

necessary to reconstruct the whole scene through a computationally expensive multi-view

setup but directly access dense depth data from the sensor. This easily accessible depth

information has brought major breakthroughs in many computer vision tasks such as

reconstruction [76], human pose estimation [107] or object detection [109]. The idea of
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using the depth cues for monocular SF estimation has also received increasing attention.

Additionally using color information of the scene this problem is called RGB-D SF .

Although the depth cues from a single view can provide information about the scene

motion, the acquisition setup poses new challenges for SF estimation. Additionally to the

common OF problems such as the aperture problem and changing illumination, the noise,

partially missing measurements and the limited resolution of the depth estimates cause

new challenges.

In this thesis we propose a framework for dense dense SF estimation facing these

challenges. We use a combination of depth and intensity data from the depth sensors. Our

idea is to establish a SF framework, which is able to use a variety of complex data and

regularization terms in a variational energy minimization approach.Originating from the

classical OF warping on the pixel level, the motion in our SF framework is directly modeled

in 3D. The warping in image space is calculated by the projection and back-projection

of the 3D motion. This projective information is directly included in our optimization.

In particular, we propose a method for the estimation of metric motion is space from a

sequence of consecutive RGB-D acquisitions. The estimation method is formulated as a

convex optimization problem which is solved by the primal-dual optimization scheme.

In this chapter we first give a broader overview of the approaches related to our work.

From the general acquisition of the RGB-D images we derive the formulation of 3D motion

in space. By projection of measured 2D points into 3D space we can can compare the

intensity and depth input given the 3D motion. Under the constancy assumption in image

space this comparison gives us an intensity and a depth data term, which builds the basis

of our SF model, as shown in Section 5.3. Out of this basic terms we formulate convex

optimization problem which shown in Section 5.4.

Although this basic model delivers sufficiently good results for SF estimation it still

has problems when the illumination changes during the acquisition, or if low texture, low

structure and noise appear in the acquisitions. To tackle these problems we show more

robust variations of our data term in Section 5.5. In this section we first show some

improvements on the pixel level like modeling the illumination changes of decompose only

the textural part of the input. Second we propose how to include more robust data

terms in our SF model which are calculating the image differences on a larger patch-

level. In this context we show different variations of the patchwise constancy based on

common matching terms. In Section 5.6 we show how the regularization term in the

convex optimization can be improved in order to increase the quality of the SF result.

Finally in Section 5.7 we show an extensive qualitative and quantitative evaluation of the

proposed SF estimation in all its variants. It is further tested at different motions, on

different levels of noise and to other recent State-of-the-Art (SoA) methods.
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5.2 Related Work

Originating from the seminal works of Horn and Schunk [48] and Lucas and Kanade [64] a

vast amount of work has been done on OF estimation. The main idea of OF estimation is

to calculate the movements of pixes in a sequence of consecutive images. In the minimal

case, the OF estimation calculates a two dimensional flow field uOF which measures the

movement between two consecutive image acquisitions I1 and I2. This flow field is either

estimated densely for every pixel in an image [48] or only at sparse image points as shown in

[64]. Recently, Sun et al. [112] surveyed the different OF approaches and their principles.

In contrast to OF estimation, the calculation SF estimates the metric 3D motion in a

space. The SF estimation for two consecutive acquisitions results in the three dimensional

flow field u. Hence, the goal of SF estimation is to captures the true metric motion in

space instead of a 2D projection of 3D motion. The first definition of the terminology

of SF was given by Vedula et al. [119, 120] to estimate the 3D motion from an image

sequence in a calibrated multi-view setup. Following this approach, a lot of work has

been done in the field of SF from multi-view intensity images, as shown in 5.2.1. With the

recent availability of affordable depth sensors, methods for SF calculations from combined

depth and intensity acquisitions (RGB-D) have emerged. In 5.2.2 we present an overview

of the related work on RGB-D scene flow estimation.

5.2.1 Scene Flow from Multi-View

The goal in the field of SF from multi-view is to estimate the 3D motion field from a setup

of two or more intensity cameras.

In the pioneering work of Vedula et al. [119] a fully calibrated multi-view setup is used

to calculate local SF in a Lukas Kanade (LK) [64] framework. Based on the known OF

the SF is derived knowing the exact surface model, knowing the pixel correspondences

in the multi-view setup or by only knowing the pixel correspondences. The resulting SF

is represented in a 3D array of voxels. In their work have shown that the SF estimation

from multi-view is tightly connected to the 3D reconstruction. In the following works

the 3D geometry is either calculated in a preprocessing step or together with the SF in a

complete optimization. Huguet and Devernay [52] coupled dense stereo matching with OF

estimation to recover dense SF . In their work they extend the dense OF estimation from

Brox et al. [16] by adding constraints due to the epipolar geometry. Since the objective

function from stereo and flow is very similar they propose to simultaneously reconstruct

the disparity maps of two consecutive time-steps as well as the OF field for both cameras.

In contrast to this work Wedel et al. [126, 128] proposed to partially decoupled the

stereo depth and 2D motion estimation. This has the advantage that the method is

independent from the stereo reconstruction method and runs in real-time. Valgaerts et

al. [118] proposed an optimization framework that further estimates extrinsic parameters

of the stereo setup in addition to depth and flow estimation. This allows for changes in
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the relative pose of the stereo rig. To achive higher framerates Čech et al. [19] proposed

a method to optimize depth and flow from sparse correspondence seeds and propagate

them to their neighborhood. In all these studies the SF is formulated as 2D motion and

depth. In contrast, Basha et al. [5] proposed a method to directly estimate the 3D SF

and depth in a multi-view setup. In the optimization the smoothness is imposed directly

on the 3D unknowns, while enforcing geometric consistency between the views. Instead of

a regularization of the 3D motion Vogel et al. [123] proposed to penalize deviations from

local rigidity of the motion to improve the robustness. Based on this work they proposed

to model the scene as a collection of planar regions, each moving rigidly over time [124].

Based on an initial superpixel object segmentation the optimization jointly estimates 3D

geometry, 3D motion vectors and updated superpixel boundaries. In [122] they extended

this approach for multiple consecutive frames. By exploiting the consistency over time

they show how both shape and 3D motion estimation can be improved.

5.2.2 Scene Flow from Depth and Intensity Data

With the recent developments of depth and intensity sensors packed in a RGB-D sensor,

methods for SF calculations from RGB-D data have emerged. Similar to In contrast to

SF from multi-view, these methods aim to directly estimate the 3D motion directly out

of depth and intensity data.

The first work using RGB-D data was proposed by Spies et al. [110], where a global

2D OF estimation was enhanced by third channel for depth in a total least squares op-

timization. In there work a laser range finder is used for depth and the brightness of

the reflected laser beam is used as intensity image. Lukins and Fisher [65] extended this

approach by using to multiple color channels with an aligned depth depth image.

Hadfield and Bowden [39] proposed a local approach, where the SF calculation was

modeled using a particle filter. To increase the density of the estimation scene particle

estimation a ray resampling was proposed, where each particle is grouped into to the closest

ray from the camera. An extension of this work was presented in [40] where the scene

flow information is propagated through time to resolve ambiguities. This algorithm was

applied to 3D hand tracking for sign language recognition. Due to the particle optimization

possible oversmoothing of the flow field is avoided.

Similar, Quiroga et al. [88] proposed a method to directly calculate the SF in a LK

framework. In their work the image flow is modeled as a function of 3D motion using the

camera projection parameters. In [90] they embedded this model in a dense variational

framework. The estimation of a dense flow field in a linear optimization scheme was

proposed by Letouzey et al. [57]. In their approach a sparse set of correspondences is

calculated through SIFT feature matching. This set is used as additional data term is the

intensity constraint in the variational optimization to get a dense flow field. Gottfried et

al. [36] proposed a method for depth camera calibration to estimate dense OF together

with a depth flow estimation. Similar, Zhang et al. [138] combined a global energy
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optimization and a bilateral filter to detect occlusions in a two-step framework. Using

depth and intensity information Herbst et al. [44] showed how to generalize variational

OF algorithms for SF calculation. They further show how SF aids object segmentation

from motion. Similar to our work, Hornáček et al. [49] recently showed the advantages

of estimating 3D motion directly through a patch matching in the point cloud. Unlike

our method, they estimate this motion by a full rigid-body estimation for each patch

using a RGB-D PatchMatch algorithm [10, 50]. This is especially useful for large motions.

Following the stereo SF approach from Vogel et al. [124] Quiroga et al. [87] showed that

a pure estimation of local and global rigid motions can be beneficial. In their work they

model the SF through a field of locally rigid twists, which encourages piecewise smooth

solutions of rigid body motions. An approach to jointly segment rigid objects and estimate

their 3D motion was presented by Sun et al. [113]. From depth cues they create layer

ordering information to handle occlusions and estimate a common 3D motion for each

layer.

5.2.3 Discussion

Existing particle based approaches such as [39, 40] estimate SF on a sparse set of cor-

responding points. These approaches deliver only a dense flow field after interpolation.

Other approaches such as [57] calculate local feature correspondences for depth images

and a global flow estimation based on the intensity information separately. Hence, it will

inevitably fail for wrong correspondence estimates. Our model builds on the success of

global optimization methods as shown in [36, 44, 90, 138]. These methods estimate the

flow through pixelwise brightness and depth constancy, where the motion is measured in

pixels. In this thesis we present a SF estimation framework where the flow is directly

modeled as metric motion in space defined by a projection and back-projection in the

3D space. We further show how the SF model can be extended above of the pixelwise

constancy terms. We introduce a general framework for non-convex patchwise comparison

terms such as the Ternary Census Transform (TCT) or the Normalized Cross Correlation

(NCC). We further introduce a patchwise depth fidelity term which is directly calculated

from the 3D point cloud by calculating the patchwise distance to the corresponding Closest

Point (CP) estimates, similar to Iterative Closest Point (ICP). Introducing this new terms

we show that the SF estimation gets more accurate in moderately structured or textured

regions, more robust to acquisition noise and illumination changes. Recently methods

using patchwise information such as [49] and [87] started using local patches in their data

terms. Instead of the estimation of 3D flow vectors, these methods estimate the motion

through the local translation and rotation in 3D. In [49] the fidelity of the local patches

is calculated by a patch matching, which is useful for large motion, but is less capable of

handling input noise or illumination changes.

For regularization most current methods use first order penalization with a squared

`2 or approximations of the `1 norm like the Chabonnier norm. In contrast, we evalu-
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ate higher order regularization terms with `1 penalizer to avoid oversmoothing and flow-

flattening. Edge preserving properties and smooth transitions like rotations or non-rigid

movements are still possible. Furthermore, we introduce different weighing terms for the

regularization calculated from the input images. We point out benefits and drawbacks of

all introduced terms in an extensive evaluation.

5.3 Scene Flow Model

The fundamental goal of dense 3D motion estimation is to calculate the metric motion of

a scene. In our case we consider the flow as the movement of a 3D point Xt = (X,Y, Z)T
t

in a scene over time t. Hence, the scene flow is defined as u = ∂X
∂t = (uX , uY , uZ)T. When

the scene is observed with a RGB-D camera over time a series of images It is acquired.

This image series is divided in an intensity part IIt ∈ RΩ 7→ R (assuming only gray scale)

and a depth part IDt ∈ RΩ 7→ R, where Ω is the image space. The value in the depth image

IDt (xt) at a given image pixel position xt is given by the metric distance of the camera

center to the observed scene point Xt. Hence, the projection of a scene point Xt into the

image space results in the image pixel position xt = (x, y)T
t . After a calibration of the

camera intrinsics this projection is calculated by

xht = PXh
t (5.1)

as shown in Section 3.2. This movement in the 2D image space defined as uOF = dx
dt =(

uOF
x , uOF

y

)T
is well known as Optical Flow (OF ). In Figure 5.1 the flow model is shown

for two consecutive acquisitions t = {1, 2}.

As the image point xt moves let us assume that its intensity (albedo, color) remains

constant over time. This observation from the seminal works of Lukas and Kanade [64],

and Horn and Schunk [48] builds the foundation of most visual OF and SF estimation

methods, namely the brightness constancy assumption

d

dt
IIt (xt) = 0. (5.2)

The basis for OF algorithms is the first order Taylor expansion of Eqn. (5.2) given by

d

dt
IIt (xt) =

∂IIt (xt)

∂x

∂x

∂t
+
∂IIt (xt)

∂t
= 0, (5.3)

where uOF = dx
dt is the motion in the image space, ∇IIt (xt) =

∂IIt (xt)
∂x is the spacial image

derivative and II∆t(xt) =
∂IIt (xt)
∂t is the temporal image derivative. Evaluated at a initial

OF field uOF
0 the brightness constancy is expressed as classical intensity constraint [129]
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Figure 5.1: Geometric Flow Model. After a projection of the 3D scene points into the images
the 3D flow u can be measured as 2D pixel movements uOF.

given by

ρI(u
OF) = II∆t +

(
∇IIt

)T (
uOF − uOF

0

)
, (5.4)

using the first order Taylor expansion. Note that the first order Taylor expansion (lin-

earization) is the convex underestimation of the function at point u, as shown in Sec-

tion 3.3.

This basic model with a variety of modifications has been applied to many OF estima-

tion algorithms. Formulated as an energy minimization problem, the goal of OF estimation

is to find a 2D flow field uOF which minimizes the above equation. The solution to this

problem is ill-posed related to the aperture problem. It describes the ambiguity in the

motion estimation when only a part of an object is visible (as seen through an aperture).

The same problem arises when the object has a repetitive structure where the movement

between frames can not be uniquely identified. The example shown in Figure 5.2 well de-

scribes the problem. Given two consecutive observations (a) and (b) it can not be exactly

determined if the object is moving down, to the left or even in depth.

When dealing with SF the estimation has a very similar objective. The goal is to

define a constancy term which is minimized for the 3D motion field u, where we have the

depth information as additional information. Equally to the projection from 3D to 2D

space as shown in Eqn. (5.1) the scene points are given by the back-projection utilizing

the acquired depth information. We define the camera center as the the world coordinate

center. Hence, we do not have to rotate or translate the 3D points. As shown in Section 3.2,

a 3D point X is calculated by multiplication of the normalized viewing ray at the image
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(a) (b) (c)

Figure 5.2: Aperture Problem. If only a part of an (untextured) object is visible the 2D motion
direction is ambiguous.

point x with the scene distance. While the viewing ray is given by K−1xh and the scene

distance is given by the depth image pixel ID(x) the projected 3D point is given by

Xt =
K−1xht
‖K−1xht ‖2

IDt (xt), (5.5)

for each image pixel x and time t. Let us consider the flow between two consecutive RGB-

D image acquisitions t = {1, 2}. Given projected scene points, the the connection in 3D

space is given by

X2 = X1 + u,XY
Z


2

=

XY
Z


1

+

uXuY
uZ

 . (5.6)

Back-projected into the image space the motion is expressed as the warping function, as

shown in Figure 5.3. Following the flow definition from Eqn. (5.6) the movement in image

space is calculated as

xh2 = W (X1,u) =
K (X1 + u)

Z1 + uZ
. (5.7)

Including the projection from Eqn. (5.5) the pixel to pixel warping from one frame to the

next is given by

xh2 = W (x1,u) =
K
(

K−1xh
1

‖K−1xh
1‖2

ID1 (x1) + u
)

ID1 (x1) + uZ
. (5.8)

This projection and back-projection depicts the geometric relationship between two con-

secutive images. With our definition of warping between images it is possible to use

standard optical flow constraints and optimize for the 3D flow. As a result, the classical
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intensity constraint from Eqn. (5.4) becomes

ρI(x1,u) = II∆t(x1,u0) +
(
∇II2(W (x1,u0))

)T ∂W (x1,u0)

∂u0
(u− u0) , (5.9)

evaluated at the initial stationary flow u0, where ∂W (x1,u0)
∂u0

is the Jacobian matrix of

the warping function W . From now on we will write W0 = W (x1,u0) for brevity. The

temporal derivative in the 3D SF case is defined as

II∆t(x1,u0) = II2(W0)− II1(x1). (5.10)

K

x2

x1

X2

X1 u
uX

uY

II1, I
I
2

ID1 , ID2

uZ

Z

Y
X

(a)

u
uZ

ID1 (x1) ID2 (W (x1,u))

uX

K

W (x1,u)

Ω
x1 x2

(b)

Figure 5.3: Flow Geometry. A scene point X1 acquired in the first frame moves to X2 in the
second frame, as shown in (a). This 3D movement between two acquisitions is defined as flow u.
The projection in the image space from point x1 to x2 is defined as the warping W (x1,u). A
projection of (a) in Y direction is shown in (b).

Although the SF constraint in the intensity space can be optimized for the motion

field the solution is very underdetermined in u. Hence it is necessary to utilize the depth

information acquired by the RGB-D camera as additional information. Similar to the

intensity constraint, the temporal flow derivative in depth space in consecutive acquisitions

is expressed as

ID∆t(x1,u0) = ID2 (W0)− ID1 (x1)− uZ . (5.11)

This connection is depicted in Figure 5.3b. The difference to the temporal intensity deriva-

tive is that for depth image space the motion in depth uZ is included in the formulation.

Following the temporal derivative, the basic depth constraint of our model is given by the
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first order Taylor expansion of Eqn. (5.11):

ρD(x1,u) = ID∆t(x1,u0) +
(
∇ID2 (W0)

)T ∂W0

∂u0
(u− u0) . (5.12)

This function defines the energy functional given two consecutive depth images. Depth

images usually contain less structural information (high frequency parts) compared to

intensity images. In an energy optimization this makes it harder to get a unique solution.

Hence it is difficult to estimate the SF from depth acquisitions alone.

Given the intensity constraint Eqn. (5.9) and the depth constraint Eqn. (5.12) we have

established the basic data fidelity terms of our model. As aforementioned, the SF model

given our two constraints is an inverse problem and hence is ill-posed in its solution. The

SF problem from RGB-D data can be solved by different kinds of algorithms. For OF

they can be mainly divided into local or global models.

Local models, as originated from the well-known LK model [64], estimate the image

motion at sparse positions in the consecutive images (points of interest). The flow vectors

are determined by comparing the intensity values of a small local neighborhood around the

pixel within consecutive images. The final motion of each point of interest is estimated by

solving an over-determined equation system by minimizing the squared error. Because the

LK model is only able to estimate small displacements it is often used in a coarse-to-fine

approach, where the flow is solved in an image pyramid of subsampled input images.

Although local models estimate the motion at high frame-rates and are widely used

in literature they only deliver a very sparse flow field and totally miss in in homogeneous

image regions. In contrast, global models estimate the motion for every pixel in an image,

as shown in the seminal work of Horn and Schunk [48]. Additionally to the data constraints

a regularization term is added to the optimization. This regularization term includes some

prior information of smoothness and noise into the model. Hence, in a global model, the

flow in homogeneous regions is interpolated from surrounding estimates while local models

would end up with poorly conditioned estimates in these regions. The result of the global

models is a dense flow field which gives a flow vector for every pixel in the image. In our

work we used a variational formulation to estimate the dense flow field in a global model,

which is described in the next section.

5.4 Variational Model

The fundamental goal of our estimation task is to estimate the metric 3D motion field of

a scene given a sequence of consecutive RGB-D frames from a stationary camera. The SF

estimation in our approach is formulated as a general variational problem, following [97].

The standard variational minimization is given by

min
u
D(u) +R(u). (5.13)
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The term D is the data term which penalizes deviations from the defined cost functions

given a flow field u. Since the variational model is ill-posed we add constraints on noise and

smoothness to our model. This is expressed as the regularization term R which penalizes

deviations of neighboring estimates and hence is used for denoising and interpolation of

the global flow field.

Both the regularization and the data function are penalized by a defined norm. In

the simplest case the penalty norm ψ(f) in D and R is the `2-norm. This quadratic

penalization has shown some success in the early OF [48] or SF approaches [119] as it is

convex and its derivative can be easily calculated. This makes the whole model suitable

for all variations of gradient descend algorithms. On the downside it is not robust to

outliers in the constancy terms and flow estimates. A popular choice to increase this

robustness to outliers is to use the `1-norm given by ψ(f) = |f | or the Charbonnier-

norm ψ(f) =
√
f2 + ε2 which is a smooth approximation of `1 norm. Recently, some

optimization techniques have proposed that use non-convex penalty functions such as the

`p-norm for 0 < p < 1. These non-convex terms in the optimization have the advantage

that finer details in the solution can be better reconstructed. But, since these function

is non-convex, the problem is much harder to optimize and can only be solved through

alternating optimization approaches by lifting of the non-convex parts, as shown in [78, 93].

One big advantage of the variational model is that it is capable to include all kinds

of different data and regularization terms into the model, as long as they are convex or

can be linearized in a reasonable way. In the following we propose how the basic SF

constraints are included in a variational model using the `1 norm as penalization and the

well known Total Variation (TV) as regularization, forming the TV-`1 optimization for SF

estimation. We further show several new SF models which are based on the intensity and

depth constraints we have stated above. In Section 5.5 we propose various data terms for

SF estimation. The goal is to find a data term which best models errors of the flow field

given the input. Further, in Section 5.6 we show different techniques for regularization of

the flow field to achieve the best possible results in terms of accuracy and robustness.Since

our model sticks to the linearization of the flow field the iterative update are only valid in a

small neighborhood of the stationary point u0 hence we follow traditional OF and perform

a coarse-to-fine warping scheme of the optimization, which is shown in Section 5.4.2.

5.4.1 TV-`1 Scene Flow

The TV-`1 SF model the basis of our SF estimation. In this section we show how the

model is defined in detail and how it is optimized using the primal-dual formulation.

While the traditional OF model of Horn and Schunk [48] uses only a quadratic norm

for regularization, the TV-`1 model is composed of a TV regularization together with a

`1 norm in the data term. The TV is a very common regularization term in variational

models for computer vision. It aims to minimize the first order gradient in the optimization

domain. Hence, the energy term increases if neighboring pixels in the flow field differ from
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each other. There are two possible definitions of the TV regularization term which are

R(u) =

∫
Ω
‖∇u(x)‖1dx and R(u) =

∑
i∈{X,Y,Z}

∫
Ω
|∇ui(x)|dx. (5.14)

While the first definition minimizes the flow gradient vector by the `1 norm, the second

definition penalizes each gradient direction separately. Since it is likely that objects move

in more than one coordinate direction the first model is better suited in the general case.

But it has the disadvantage that it weights all axis equally which could lead to errors if

the directions have different metric resolutions.

In our model we have chosen the first definition since motions in different coordinate

directions are likely to co-appear. Hence, the flow in the different directions is connected

and can be penalized together.

Our basic SF model is composed of the TV regularization together with the `1 norm

of the SF constraints we have established in the previous section. The combined model is

given by

min
u

∫
Ω
‖∇u(x)‖1dx + λD

∫
Ω
|ρD(x,u)|dx + λI

∫
Ω
|ρI(x,u)|dx , where (5.15)

ρD(x1,u) = ID∆t(x1,u0) +
(
∇ID2 (W (x1,u0))

)T ∂W (x1,u0)

∂u0
(u− u0) and (5.16)

ρI(x1,u) = II∆t(x1,u0) +
(
∇II2(W (x1,u0))

)T ∂W (x1,u0)

∂u0
(u− u0) . (5.17)

where optimizer u ∈ R is the metric 3D SF , and the scalars λD, λI ∈ R are parameters to

weight each data term. This model is robust to gross outliers in the intensity constraints

due to the `1 regularization of the data terms, which may come from wrong pixel corre-

spondences. Furthermore, it preserves sharp discontinuities due to the TV regularization.

This model has been extensively used in other computer vision problems such as denoising

or OF estimation, as shown in [21, 136].

In the following we explain how to optimize the above model using the primal-dual

scheme introduced in Section 3.4.3. We discretize the continuous images space into a

regular Cartesian grid of size M × N , hence Ω 7→ RM×N . The discrete minimization

problem is given by

min
u

∑
x∈RM×N

‖∇u(x)‖1 + λD
∑

x∈RM×N

|ρD(x,u)|+ λI
∑

x∈RM×N

|ρI(x,u)|. (5.18)

The first step is to transform the convex but non-smooth model into a convex-concave

saddle-point problem, defined as

min
u

max
p,qD,qI

〈p,∇u〉Pp + λI〈qD, ρD(u)〉QD
+ λI〈qI , ρI(u)〉QI

, (5.19)
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where the dual variables p, qD and qI are introduced. The convex sets for the dual

variables result in

Pp =
{
p : Ω→ R6MN | ‖p(i, j)‖ ≤ 1

}
,

QD =
{
qD : Ω→ RMN | − 1 ≤ qD(i, j) ≤ 1

}
,

QI =
{
qI : Ω→ RMN | − 1 ≤ qI(i, j) ≤ 1

}
,

i = 1, ...,M, j = 1, ..., N.

(5.20)

This primal-dual problem is efficiently optimized by three consecutive steps in each itera-

tion. First, the dual problem from Eqn. (5.19) is maximized by gradient ascend. Second,

the primal problem is minimized by gradient ascend and third, the primal variable is re-

fined in an extrapolation step (overrelaxation) which accelerates the convergence. These

three steps together form the primal dual optimization scheme of the above problem and

result in

pn+1 = PPp {pn + σp∇ūn}
qn+1
D = QQD

{
qnD + σDλD

(
ID∆t(x1,u0) +∇ID2 (W0)∂W0

∂u0
(un − u0)

)}
qn+1
I = QQI

{
qnI + σIλI

(
II∆t(x1,u0) +∇II2 (W0)∂W0

∂u0
(un − u0)

)}
un+1 = un − τu

(
−∇Tpu

n+1 + λD

(
∇ID2 (W0)∂W0

∂u0
− t
)

qn+1
D

+λI∇II2 (W0)∂W0
∂u0

qn+1
I

)
ūn+1 = un+1 + θ(un+1 − ūn)

, (5.21)

for every iteration n > 0. At n = 0 the primal and dual variables are initialized with

zeros. The newly introduced vector t = [0, 0, 1]T which is the result of the derivative ∂uZ
∂u .

The operators PPp , QQI
and QQD

are point-wise Euclidean projections onto the convex

sets Pp, QI and QD and result in

(PPP
(p̃))(i, j) =

{
p̃(i, j)

max{1, ‖p̃(i, j)‖}

}
, (5.22)

(QQD
(q̃D))(i, j) = min {1,max{−1, q̃D(i, j)}} , (5.23)

(QQI
(q̃I))(i, j) = min {1,max{−1, q̃I(i, j)}} , (5.24)

∀i = 1, ...,M, j = 1, ..., N. (5.25)

The timesteps of the optimization are given by the Lipschitz boundaries, defined as

σp =
σ

2
, σI = σD = σ, τu =

τ

4 + λD|∇ID2 (W0)∂W0
∂u0
− b|+ λI |∇II2 (W0)∂W0

∂u0
|
, (5.26)

s.t. τσ ≤ 1. The overrelaxation stepsize is set to Θ = 1.

In order to optimize the flow constraints we have introduced a first order Tailor ex-

pansion on the simple intensity and depth constraints. Since this linearization is only
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valid in a small region around u0 we restrict the flow update in each iteration such that

the change from the stationary point u0 is bounded by umax ≥ ‖u − u0‖2. Although

this linearization makes it possible to optimize such a non-convex problem the downside

of this linearization is that it only covers motions smaller than umax. To overcome this

problem two main techniques have become popular in literature, namely warping and the

coarse-to-fine optimization which are explained in the next section.

5.4.2 Warping and Coarse-to-Fine Optimization

The constancy equation of optical and scene flow estimation is non-convex. In order to

globally minimize for the constancy formulation, it is linearized at an initial operating

point. In our scene flow formulation this results in the depth and intensity constraints.

Through this approximation by the Taylor expansion the problem becomes convex and

a global minimum of the function can be estimated. The main disadvantage of this lin-

earization is that not the original problem but the approximated problem gets minimized.

The more the solution differs from the operating point the more it also differs from the

original problem. As a result the estimated flow in this way is only valid for small varia-

tions from the operating point. To estimate large displacements two main strategies have

emerged, namely the iterative warping and the coarse-to-fine optimization. In SoA meth-

ods these two techniques are often combined. In our estimation procedure we followed

this combination.

At the iterative warping scheme a warping is applied after a fixed number of iterations.

In other words, after m iterations the operation point is updated by setting u = u0. In

our SF formulation this results in an update of the warped second RGB-D frame (ID2 , II2)

and consequently an update of the spatial and temporal derivatives (I∆t, ∇I2
∂W (x1,u0)

∂u0
)

after each warp. The whole optimization routine is further embedded into a coarse-to-fine

framework as shown in [9, 16, 136] for OF estimation. In this framework the optimization

is solved in a pyramid of a defined number of levels L starting from the coarsest. The

image pyramids are employed with a fixed downsampling factor of ν ∈ R|(0, 1) between

each level. Starting at the coarsest level l = L the flow is initialized with uL = uL0 = 0.

After the optimization for a fixed number of iterations and warps in each level the result is

propagated to the next finer level by bicubic interpolation, where it is used as initialization.

Additionally the camera matrix is updated in each level according to the downsampling

factor by Kl = K diag
(
[νl, νl, 1

]
), ∀l = {0, . . . , L}. Subsequently, the result of the finest

level l = 0 is the final result of the SF estimation. The whole coarse-to-fine pyramid

propagation is shown in Figure 5.4. In our experiments we have shown that a bilinear

interpolation delivers the best results. The warping and coarse-to-fine propagation helps

our optimization to estimate larger displacements and avoids to get stuck in local minima

when the displacement of pixels is bigger than the discretization level.

In contrast to our approach other techniques have been proposed to estimate larger

displacements and to refine the estimated solution. In [3] Amiaz et al. have shown that
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optimization/warping

propagate by ν
optimization/warping

propagate by ν

init: uL, uL0

l = L

l = 0

solution: u

Figure 5.4: Coarse to fine optimization. Starting at the coarsest level l = L the primal-dual
optimization is solved for a fixed number of iteration and then propagated to the next level, where
the output of level 0 is the solution.

it can be beneficial to propagate the pyramid to higher levels than the original image

resolution in the sense of course-to-overfine. Contrary, Letouzey et al. [57] have proposed

to first calculate a sparse set of flow vectors by SIFT feature matching in the intensity

images before optimizing the flow constraints.

5.5 Data Terms Robust to Illumination Changes and Noise

In our variational optimization the data term D is the term which connects input data to

the optimizer, and measures the, so-called, data fidelity. The data fidelity is penalized by

a penalty function. In our case the input data is a set of two RGB-D acquisitions, the

optimizer is the 3D flow field and the cost function connecting both is composed of the SF

constraints. In the Section 5.3 the intensity and the depth image constraints are shown,

which form the basis of the data term. In the optimal case the temporal and spatial

derivative in our model are minimal and hence the intensity and depth constraints are

sufficient for a successful SF estimation. This optimality is given when both the intensity

and depth images are noise-free, without any illumination changes or reflections and with

enough texture/structure to determine the brightness and depth constancy in every pixel

in the image. In practice this is not the case. On the one side, the scene contains some

reflective or partly transparent objects, the illumination changes between the acquisitions

and shadows are present. On the other side, the acquired images contain acquisition noise

and often also blur. In the following we will show different variants to improve the data

term in terms of quality and robustness.

We separate the following methods into pixel-wise, where the constancy is measured

on the pixel level, and patchwise, where the constancy between images is measured on a

larger region around each point.



5.5. Data Terms Robust to Illumination Changes and Noise 85

5.5.1 Pixel-Wise Constancy Assumption

In this section we introduce models for improved data terms that rely on the pixel-wise

constancy assumption. Hence, we only compare the two RGB-D frames on the pixel

level. In this section we focus on improving the pixelwise intensity constraint to get more

robust against changes in the illumination, reflection effects and shadows. Compared

to constraints based on a patch level these pixelwise models are much faster in terms

of computational complexity but have still problems to deal with acquisition noise. In

the following we will show different pixel-wise models and amendments to the traditional

constraints to increase the quality and robustness of the SF estimation.

5.5.1.1 Modeling Illumination Effects

In the brightness constancy assumption which we have stated at the beginning of this

chapter it is assumed that the illumination does not change between the acquisitions.

Hence even the slightest change in the gray values will violate this assumption. Since

the early days of motion estimation researchers have discovered that the simple pixel-wise

brightness assumption does not hold over time, as shown in [71] or [121]. One approach

is to model the changes in illumination in the flow constraints. In this context earlier

works on OF estimation modeled the brightness changes as an additive or multiplicative

compensation mask to the constraint. In our case we follow the work of Werlberger [129]

for OF estimation to add an additional optimizer to the intensity constraint which models

not only the amount of brightness that changes between the images but also upcoming

shadows (lowering brightness) or reflections (increasing brightness). An example of this

brightness compensation is shown in Figure 5.5.

In this model the compensation term is defined as an additional factor directly inside

the SF intensity constraint. The brightness compensation factor is modeled as a separate

optimizer b : RΩ 7→ R which is estimated together with the flow such that the brightness

constancy including the compensation factor is given by

d

dt
IIt (xt) = −γb (5.27)

which states that the brightness constancy is a constant map, as shown in [129]. In our

SFmodel, we include this compensation map into the intensity constraint which changes

to

ρI(x1,u,b) = II∆t(x1,u0) +
(
∇II2(W (x1,u0))

)T ∂W (x1,u0)

∂u0
(u− u0) + γb, (5.28)

where the scalar γ ≥ 0 ∈ R specifies the degree of compensation in the model. Larger

values of γ allow larger brightness variations and vice versa. If γ is set to zero the compen-

sation model is equal to the classical intensity constraint. Note that if the influence is set

too high the quality can deteriorate since valuable information can be compensated as well.
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(a) Depth and Intensity input I1 / I2 (b) Compensation Model b

(c) Flow without compensation (d) Flow with compensation

Figure 5.5: Modeling Illumination Effects by a compensation model. The compensation model
reduces the influence of brightness changes between the image acquisitions. Hence, changes in
reflection, ambient light, shadows and occlusions are compensated in the SF estimation. The
scene is acquired with a Microsoft K4Wv2 sensor.

To avoid that the compensation field b contains important texture information we enforce

it to be smooth. Hence, we introduce a penalization on the gradient of b normed by the

Huber-norm, as introduced in Section 3.1. This penalizer ensures a smooth compensation

model where additional sharp boundaries can be modeled such that shadows or partial

reflective parts can be modeled. Since the compensation model is only a linear addition

of a convex function to the SF model it is still convex and can be optimized in the same

way as the traditional model. The complete minimization problem from Section 5.4.1 is

changed to

min
u

∑
x∈RM×N

(‖∇u(x)‖1 + λD|ρD(x,u)|+ λI |ρI(x1,u,b)|+ ‖∇b(x)‖ε) (5.29)
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and hence, the convex-concave saddle-point problem of the above model is given by

min
u,c

max
p,qD,qI ,r

〈p,∇u〉Pp + λI〈qD, ρD(u)〉QD
+ λI〈qI , ρI(u,b)〉QI

+ 〈r,∇b〉Pr − ε
‖r‖22

2
,

(5.30)

where r is the primal variable for the compensation gradient and maps onto the convex

set Pr given by

Pr =
{
r : Ω→ R2MN | ‖r(i, j)‖ ≤ 1

}
, ∀i = 1, ...,M, j = 1, ..., N. (5.31)

The whole model is optimized using the primal-dual framework as shown above and

the resulting optimization steps are given by

pn+1 = PPp {pn + σp∇ūn}
rn+1 = PPr

{
rn+σr∇b̄n

1+σrε

}
qn+1
D = QQD

{
qnD + σDλD

(
ID∆t(x1,u0) +∇ID2 (W0)∂W0

∂u0
(un − u0)

)}
qn+1
I = QQI

{
qnI + σIλI

(
II∆t(x1,u0) +∇II2 (W0)∂W0

∂u0
(un − u0)

)}
un+1 = un − τu

(
−∇Tpu

n+1 + λD

(
∇ID2 (W0)∂W0

∂u0
− t
)

qn+1
D

+λI

(
∇II2 (W0)∂W0

∂u0
qn+1
I + γbn

))
bn+1 = bn + τbλIγ∇T rn+1

ūn+1 = un+1 + θ(un+1 − ūn)

b̄n+1 = bn+1 + θ(bn+1 − b̄n)

. (5.32)

As in our original TV-`1 optimization the resolvent operator PPr describes the Euclidean

projection onto the unit circle. The newly introduced time-steps for the compensation and

flow update σr, τf l and τb are again calculated with diagonal preconditioning as shown in

Section 3.4.3. Hence the updated time-steps result in

σr =
σ

2
, τb =

τ

4 + λIγ
(5.33)

τu =
τ

4 + λD|∇ID2 (W0)∂W0
∂u0
− b|+ λI |∇II2 (W0)∂W0

∂u0
+ γ|

. (5.34)

The model is optimized to the global illumination factor in the ToF case or to the high

reflective and shadowed parts of the intensity image.

5.5.1.2 Structure/Texture decomposition

Similar to a separate illumination compensation model which is estimated in the optimiza-

tion, methods have been proposed where the illumination part is separated to each input

image separately in a pre-processing step. Furthermore, these models do not only separate
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the illumination part but also all the structural information of intensity images. This is

based on the idea that only the textural parts are necessary to successfully estimate a flow

model.

In general these decomposition models aim to separate the high-frequent part from the

rest of the input image. Most of methods propose to use a higher order term of the input

image as input in the constancy assumption. Common higher order terms are to use the

gradient, Hessian, Laplacian of the intensity image or the norm of them. In the work of

Papenberg et al. [80] an overview of the different variants is shown.

One of the most promising separation from OF is to decompose the input image

into the structure part and the texture part, as presented in [127]. In this sense, the

structure part represents the low frequency component of the image and the texture the

high frequency component. The combination of both parts results in the original input

image. For intensity images it can be said that most illumination changes are encoded

in the structure part while the textural information necessary to estimate the motion are

encoded in the texture part. An example is shown in Figure 5.6 for moving boxes in a

reflective environment. Based on a successful decomposition it is therefore beneficial to

only use the texture part for flow estimation.

Defining the composition problem, the original input image is defined as

I = (1− ξ)ITex + ξIStruct. (5.35)

In this decomposition IITex is the texture part and IIStruct is the structure part. The scalar

weighting term ξ ∈ R | (0, 1) defines the tradeoff between both parts.

By an interpretation of the texture part as noise, the structure part can be defined as

denoised version of the input image according to Eqn. (5.35). The structural image IStruct

can be either simply calculated as a blurred version of the input using a Gaussian filter

or, as proposed in [127] as ROF denoised model of the input.

As shown in Figure 5.6, using only the texture part is beneficial to compensate illumi-

nation changes such as reflections and shadows but compared to the brightness compensa-

tion example in Figure 5.5 it is not able to compensate object occlusions in the consecutive

frames.

5.5.2 Patchwise Constancy

In this section we propose different approaches to model the constancy assumption on

a patch-level. Hence the pixels of consecutive RGB-D frames are compared on a local

neighborhood around the pixel. Hence, for each pixel a stream of intensity values is

compared. Although, the patchwise matching has a higher computational complexity it

has the big advantage that the data term gets more robust against intensity variations

and noise since compared to a pixelwise term.

Traditional intensity data terms are calculated as pixelwise temporal derivatives by

minimizing I∆t(x,u) = I2(W (x,u)) − I1(x), as shown in Section 5.4. After linearization
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(a) Intensity input I1 (b) Structure Part IStruct (c) Texture Part ITex

(d) Flow without decomposition (e) Flow from texture

Figure 5.6: Structure Texture decomposition. The input intensity images II1 / II2 are decomposed
into their structure and texture component. The structural part is calculated using ROF denoising.
The resulting textural part is used to estimate the SF . The scene is acquired with a Microsoft
K4Wv2 sensor.

this model can be optimized with common convex optimzation frameworks. The downside

of this model is that it restricts the data term to be differentiable and therefore to rather

simple constraints. In our work we want to model a more robust data term my measuring

the constancy in a local neighborhood such as the Sum of Squared Differences (SSD). For

SF , the constancy for a pixel x measured around a local window N (x) is defined by a

function

G(x,u) =
1

|N |
∑

y∈N (x)

(I2(W (y,u))− I1(y))2 , (5.36)

which measures the normalized SSD of intensity values. This function alone is much more

robust against noise compared to the pixelwise constancy as defined above. Although this

matching function is better suited for real-world conditions a “simple” linearization in

the image space is no longer possible. The principle idea to use more complex models in

convex gradient descend models to directly linearize and derivate the matching function

G(x,u) itself around the initial flow field u0. Although the direct linearization requires a
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numerical derivation, it has the big advantage that the matching function can be arbitrary

chosen.

Following [31] and [130], a second order Taylor expansion of the matching function is

sufficient in most cases. This second order Taylor approximation of an arbitrary matching

function G(x,u) is defined by

G(x,u) ≈ G̃(x,u) = G(x,u0) +∇G(x,u0)T (u− u0) (5.37)

+
1

2
(u− u0)T∇2G(x,u0)(u− u0). (5.38)

In this approximation the second derivative∇2G(x,u0) (Hessian) of the matching function

is defined by

∇2G(x,u0) =

Gxx(x,u0) Gxy(x,u0) Gxz(x,u0)

Gyx(x,u0) Gyy(x,u0) Gyz(x,u0)

Gzx(x,u0) Gzy(x,u0) Gzz(x,u0)

 . (5.39)

To be convex in G̃(x,u) this symmetric Hessian matrix must, by definition, be a positive

semi-definite matrix, as shown in [11]. This is necessary to ensure convexity in the opti-

mization. The positive semi-definiteness can be checked if all Eigenvalues of the matrix

are positive. To transform the Hessian into a positive semi-definite matrix each entry with

a negative Eigenvalue is set to zero, as shown in [129].

This transformation is not very efficient to compute because this requires the Eigenval-

ues of the 3 × 3 Hessian matrix for every pixel of the dense flow field after every update

of u0. An alternative more efficient approximation is to neglect every mixed derivative in

the matrix with Gij = 0, ∀i 6= j. As shown in [31] this yields the positive semi-definite

approximation of the Hessian defined by

∇2
+G(x,u0) =

Gxx(x,u0)+ 0 0

0 Gyy(x,u0)+ 0

0 0 Gzz(x,u0)+,

 , (5.40)

where only positive second order derivatives are allowed. In [129] it has been shown that

this approximation does not harm the estimation accuracy.

With this generally applicable function approximation we are able to realize more com-

plex data terms. In the following we will show and discuss multiple different matching

terms which are especially suited for SF estimation. These matching functions are chosen

to robustify the traditional SF constraints from Section 5.3 in terms of noise and illu-

mination changes. In spite of this generalization our framework is still capable to deal

with multiple data terms on the same input image, e.g. combining Absolute Differences

(AD) with NCC and to use the quadfit term for the intensity as well as the depth frame.

Therefore we will refer to I1, I2 as the handled input image pair irrespective if the function
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G is applied on the depth or on the intensity frames.

5.5.2.1 Sum of Differences

The sum of differences measures the the deviation from the warped target image I2 to the

source image I1 penalized by a norm and summed up in a local neighborhood N .

As shortly shown above, the SSD at an image position x for a given flow field u is

given by

G(x,u)SSD =
1

|N (x)|
∑

y∈N (x)

‖I2(W (y,u))− I1(y)‖22. (5.41)

Compared to a pixel-wise error measure the SSD is more robust against noise but similar

to the `2 penalization of the pixel-wise data term it is not robust against gross outliers in

the input, such as Salt & Pepper noise.

Similar, the Sum of Absolute Differences (SAD) matching function is given by the

sum of `1 penalizations between the first images and the warped second image on a local

neighborhood N and is given by

G(x,u)SAD =
1

|N (x)|
∑

y∈N (x)

‖I2(W (y,u))− I1(y)‖1. (5.42)

This data term has the same advantages as the `1 norm on the pixel-wise constraints com-

bined with the robustness against noise because of the patch level. With a neighborhood

of size |N | = 1 this data term results in the traditional data term as shown above.

Similarly also any other sum of differences can be realized in our framework. But

the major drawback of difference models is that their robustness to illumination changes,

shadows or occlusions is rather limited. To be also capable of these local changes more

complex methods have been proposed, which are described in the following.

5.5.2.2 Normalized Cross Correlation

Matching terms which are more robust to intensity variations in a local neighborhood

between the images, such as changing illumination, are often designed to calculate only

signs of the difference or the normalized differences. The NCC is one of those methods.

As shown in [12, 59] it calculates the correlation of two patches which are normalized by

mean and standard deviation.

The image patches are calculated by normalization to zero mean and standard devi-

ation of one. The normalized image regions in a local neighborhood y ∈ N around the

pixel x are defined as

In1 (y) =
I1(y)− Ī1(x)

σI1

and In2 (y) =
I2(W (y,u))− Ī2(W (x,u))

σI2

, (5.43)
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where Ī(x) is defined as the mean value and σI is the standard deviation of all values in

N (x). Mean and standard deviation are calculated by

Ī(x) =
1

|N (x)|
∑

y∈N (x)

I(y) and σI =

√√√√ 1

|N (x)|
∑

y∈N (x)(I(y)−Ī(x))
2
,

(5.44)

respectively. Hence, the cross correlation of the normalized patches is defined by the sum

of correlation values between the normalized patches given by

δNCC(x) =
1

|N (x)|
∑

y∈N (x)

In1 (y)In2 (y), (5.45)

which can be interpreted as the cosine angle between the unit feature vectors as 〈In1 , In2 〉.
This normalization by mean and standard deviation, as often used in template matching

problem, has the advantage that the correlation calculates a relative difference independent

of the overall multiplicative or additive intensity differences between the patches.

The NCC calculates a correlation value for each pixel in the image according to the

normalization. This value ranges from −1 if the two patches do not match at all and +1

if they are matching perfectly. To implement this value into our primal minimization the

constraint function is defined at

G(x,u)NCC = 1−max (0, δNCC(x)) (5.46)

where the matching value now is ranged by GNCC ∈ RM×N 7→ (0, 1).

The big advantage of the NCC is that it is still robust to noise and homogeneous

regions similar to the SAD but above that it is robust to illumination changes. On the

downside, the NCC is much more computationally expensive. In the following we show

other matching approaches we used for SF estimation which have the same performance

to illumination changes with a much lower computational cost.

5.5.2.3 Census Transform

The Census Transform (CT), first proposed by Zabih and Woodfill [135], is a technique to

encode an intensity patch as a binary feature vector. Two of those binary feature vectors

are efficiently matched with the other binary vectors by the Hamming distance [41]. This

CT has been successfully used in other computer vision approaches such as Face Detection

[33] and Stereo Estimation [92].

In the original CT the binary vector is defined as an ordered value comparison of every

pixel in the patch to the center pixel. Hence, for an image I the Census signature at an
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image position x is given by

C(I,x) =
⊗

y∈N ′(x)

{ξ(x,y)} , where ξ(x,y) =

{
0, if I(x) < I(y)

1, if I(x) ≥ I(y)
(5.47)

where N ′(x) = N (x)∪x excluding the center pixel. The operator
⊗

denotes the concate-

nation operator. For an input image I this results in a Census image C ∈ RM×N 7→ R|N ′|

where each pixel encodes the local binary census signature of length |N ′|. The similar-

ity between two patches is given by the Hamming distance. In our method the Census

data term for one pixel is given as the normalized sum of differences between the census

signatures of the warped image I2(W (u,x)) and I1(x) given by

G(x,u)CT =
1

|N ′(x)|

|N ′|∑
i=1

[Ci(I2,W (x,u)) 6= Ci(I1,x)]] (5.48)

which measures the normalized sum of differences between Ci(I2,W (x,u)) and Ci(I1,x).

Compared to the NCC , the Census signature and Hamming distance between Census

signatures can be implemented very efficiently in terms of storage and computational

effort. E.g. for a patch-size of 3 × 3 the census signature needs only 8Bit of storage and

the hamming distance between patches can be easily calculated by the XOR operation

between the signatures. The census has still the nice property that it is invariant to most

changes in illumination.

x

(a) N ′(x) (b) ξ(I,N (x))TCT (c) C(I; x)TCT

Figure 5.7: Ternary Census Transform TCT. The TCT string (c) of pixel x is calculated by the
concatenation of the ternary sign (b) from the local neighborhood N ′ (a) from center pixel x.

Although the calculation of the binary Census signature is very simple it has some

drawbacks dealing with noise around the center pixel. This sensitivity to noise can be

avoided by a simple extension of the signature calculation. Instead of calculating a binary

signature Stein [111] proposed a method to extend the Census signature to three distinctive

cases. Hence, it is called the the Ternary Census Transform (TCT). Additionally to the

two cases for lower and higher than the center pixel a third case is introduced for values
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“similar” to the center pixel intensity. The pixel-wise TCT signature is given by

ξ(x,y)TCT =


0, if I(y)− I(x) < −ε
1, if |I(y)− I(x)| ≤ ε
2, if I(y)− I(x) > ε

, where (5.49)

C(I,x)TCT =
⊗

y∈N ′(x)

{ξ(x,y)TCT} (5.50)

where the scalar value ε ∈ R≥0 denotes the sensitivity to intensity differences. Note that

for ε = 0 the TCT is equal to the standard CT . In Figure 5.7 the TCT transformation

from patch intensity values to the Census signature is shown for one exemplar patch. The

similarity between two patches is again given by the Hamming distance from Eqn. (5.48)

and is denoted as G(x,u)TCT.

This TCT matching can be efficiently computed and combines a robustness to illumi-

nation changes such as global illumination, shadows and occlusions and being robust to

acquisition noise.

5.5.2.4 Closest Points

The depth constancy term defined in Section ?? is calculated by minimizing the pixelwise

temporal derivatives in the depth image space. This is given by

ID∆t(x1,u) = ID2 (W (x1,u))− ID1 (x1)− uZ , (5.51)

where the warping function defines the back-projection into 3D space and the projection

into the image space according to the flow. Since the 3D data is directly available from the

depth measurements we propose a data term where the matching is calculated directly in

3D space. This has the advantages that we do not need a projection into the image space.

In this context, we propose a flow error metric based on the ICP algorithm [139], where

the flow error is calculated as point differences directly in 3D space to match the local

surface structure. Since we have two consecutive depth acquisitions ID1 , I
D
2 with known

camera intrinsics we calculate the 3D scene points X1,X2 by back-projection. To follow

the principle of patchwise comparison we define the depth difference of a point X in a

local neighborhood around the center point. Hence, we get more robust in the case of

noise and low structural parts in the depth maps, similar to the patchwise terms in the

image space. Including the flow vectors u, the residual error between these two projected

point clouds is defined by

G(x,u)CP =
1

|N |
∑

y∈N (x)

‖X2(y)− u(y)−X1(y∗)‖2,∈ Ω, (5.52)
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where the point X1(y∗) is denoted as the closest correspondence to X2(y). In the context

of SF the closest point to the transformed X2(y), i.e.

y∗ = argmin
y∈Ω

‖X2(x)− u(x)−X1(y)‖2, (5.53)

as shown in Figure 5.8. This correspondence can be calculated by a quadratic search or,

more efficiently, by the k-Nearest Neighbor calculation. When matching 3D patches in-

N (x)
X2(y)− u(y)

X1(y∗)

Figure 5.8: Patchwise closest point search. The depth fidelity at point x is measured as mean
Euclidean distance of the all warped points X2(y)−u(y) in the neighborhood N around x to the
closest points in the first acquisition X1(y∗).

stead of depth pixel values the method becomes more robust against homogeneous depth

regions and acquisition noise. Further, the direct matching in 3D does not lead to infor-

mation loss due to back-projection and interpolation into the image space.

5.5.2.5 Multiscale Patchwise Terms

The above patchwise terms are calculated for a fixed neighborhood size N around each

pixel during the optimization. In our experiments we figured out that the optimal size

of this neighborhood often changes across datasets or even across regions in one image

sequence. Hence, we propose to use a calculation of multiple neighborhoods for each pixel.

Since all patchwise terms are normalized by the region size the best fitting neighborhood

size is chosen by the minimal matching cost.

N (x)∗ = arg min
N

{
G(x,u)N

1
, G(x,u)N

2
, . . . , G(x,u)N

M
}

(5.54)

Hence the data fidelity cost of the multiscale term is defined as G(x,u)N
∗
.
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5.5.2.6 Optimization of Patchwise Data Terms

When choosing one of the above patchwise terms for the depth image input and one term

for the intensity input the new objective function results in

min
u

{
λI

∫
Ω
w|G̃I(x,u0)| dx+ λD

∫
Ω
w|G̃D(x,u0)|dx+

∫
Ω
|∇u|dx

}
, (5.55)

where G̃D is a patchwise data term from the depth data and G̃I is the patchwise data

term based on the intensity data. The energy is optimized following the primal-dual

scheme, where the primal objective from Eqn. (5.55) is transformed into a discretized

convex-concave saddle-point problem defined as

min
u

max
p,qD,qI

〈p,∇u〉Pp + λI〈qD, G̃D(x,u0)〉QD
+ λI〈qI , G̃I(x,u0)〉QI

. (5.56)

With the formulation of the discrete saddle-point problem (5.56) we can apply the primal-

dual algorithm. As shown in Section 3.4.3, the algorithm iteratively optimizes the primal

and the dual variables for the individual pixels in three steps. First, the dual variables p,

qD and qI are updated using gradient ascend. Second, the primal optimizer u is updated

using gradient descend. Third, u is refined in an over-relaxation step. For any iteration

n ≥ 0 and every level the primal dual steps are calculated according to

pn+1
u = PPu {pnu + σPu (∇ūn)}
qn+1
I = QQI

{
qnI + σIλIw

(
G̃I(x,u0)

)}
qn+1
D = QQD

{
qnD + σDλDw

(
G̃D(x,u0)

)}
un+1 =

(
I + τu

(
λIw∇2

I + λDw∇2
D

))−1{
un + τu

(
α1∇Tpu

n+1

+λIw
(
∇GI(x,u0)− (∇2

I)
T (u− u0)

)
+λDw

(
∇GD(x,u0)− (∇2

D)T (u− u0)
))}

ūn+1 = 2un+1 − ūn,

(5.57)

where ∇2GI(x,u0) and ∇2GD(x,u0) is denoted as ∇2
I and ∇2

D for brevity. The operator

PPu is defined as the point-wise Euclidean projections onto the convex set Pu.

5.6 Advanced Regularization

In the previous section we presented multiple advances of the data term D to improve the

robustness of the matching cost in the SF calculation. On the other side, there is also some

room for improvement in the regularization term R, which ensures a coherency between

neighboring matches aims to generate a dense and hopefully noise-free motion estimation.

In Section 5.4.1 we have already shown the basic TV regularization which penalizes the
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flow gradient by a `1 norm. Compared to a `2 penalization the TV regularization already

has the advantage that is does not smooth across sharp edges, but the main problem is

that the TV favors piecewise constant solutions. This property is very useful for intensity

image denoising but similar to the discussed depth superresolution approaches in the last

chapter, this can be problematic for SF estimation especially in regions where a smooth

motion transition exists, as shown in Figure 5.9.

In the following we show alternatives for convex regularization terms that are better

suited for the multi-dimensional SF estimation. This regularization terms are similar to

the regularization terms in Chapter 4. Second, we propose advanced weighing terms which

use the information from the input sequences. In these terms the input images are used to

guide the regularization which leads to an accuracy improvement in regions around object

borders.

(a) Groundtruth (b) TV (c) Huber (d) TGV

Figure 5.9: Comparison of the regularization term for a simple box rotation. The TV regu-
larization (b) optimizes for a piecewise constant solution. The Huber regularization (c) is more
smooth but suffers from oversmoothing the boundaries. The Total Generalized Variation (TGV)
regularization (d) optimizes for piecewise affine solution which fits best to the groundtruth flow.
The flow is color coded in x and y direction. The color key is shown on the bottom right.

5.6.1 Huber Regularization

The TV regularization is used for many optimization problems such as denoising [99] or

OF estimations [136]. In the case of SF estimation it is well suited to generate sharp

motion boundaries but on the other hand it leads to erroneous results at smooth flow

transitions such as object rotations since the TV favors piecewise constant solutions.

This leads to a staircasing effect in the solution. As we have shortly discussed for the

illumination compensation in Section 5.5.1, the Huber regularization is an alternative to

the TV . Similar to the TV the Huber regularizer is a penalization on the motion gradient

but in contrast to the TV it has a quadratic penalization on smaller gradients and an `1
penalization for larger values. To shortly recapitulate the definition shown in Section 3.1

the Huber-norm is defined as

|q|ε =

{ |q|2
2ε if |q| ≤ ε
|q| − ε

2 if |q| > ε
. (5.58)
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Figure 5.10: Different Norms for gradient penalization. While the penalization with the `2-norm
leads to a smoothing of flow edges, the `1 penalization favors a piecewise constant solutions in the
flow field. The Huber-norm is a tradeoff between `2-norm and `1-norm. Gradient values below ε
are penalized with the `2-norm and values above ε are penalized with the `1-norm.

An illustration of the different norms is shown in Figure 5.10 for the 1D case. In the case of

SF estimation the combination of `1 and `2 norms in the Huber penalization allows smooth

flow transitions while the motion boundaries are only slightly smoothed. An example of

the Huber norm is shown in Figure 5.9c.

5.6.2 Total Generalized Variation

A recently introduced generalization of the TV was proposed by Bredies et al. [13], namely

the Total Generalized Variation (TGV). While the TV penalizes the first derivative of the

optimizer, the TGV penalizes the derivative of arbitrary order. E.g. the TGV of second

order penalizes the second derivative and hence, favors piecewise affine solutions instead
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of piecewise constant solution as in th TV case. It has been shown that this property is

very beneficial for depth denoising [28] and motion estimation [29].

Generally, a model that is regularized by a TGV term of order k favors a solution that

is piecewise composed of polynomials of order k − 1, as defined in Section 4.3.

For SF estimation it turns out that the second order TGV is a well defined trade-

off between accuracy and computational complexity. This regularization penalizes the

second derivatives of the flow field. Hence it approximates the SF by piecewise affine

transformations. The primal definition of the second order TGV is formulated as

TGV2
α = min

u,v

{
α1

∫
Ω
|∇u− v| dx+ α0

∫
Ω
|∇v|dx

}
, (5.59)

where additional to the first order smoothness of the flow field u, the auxiliary variable v

is introduced to enforce second order smoothness. The scalars α0, α1 ∈ R≥0 are used to

weight each order. Because the TGV regularizer is convex in u and v it allows to compute

a global optimal solution.

Compared to the standard TV the TGV of second order avoids the piecewise constancy

in the solution and in contrast to the Huber-norm it directly optimizes for piecewise affine

flow transitions instead of an approximation. Hence, we directly can optimize for more

complex movements while compared to the Huber-norm we can still preserve sharp motion

objects.

In Figure 5.9 a comparison of the different regularizers is shown. As one can see in the

experiments, the TV generates piecewise constant solutions which result in a staircasing

in the output map. Although the Huber-norm is more accurate at smooth flow transitions

than a TV -norm, it has problems to preserve sharp edges due to the `2 smoothing for at

smaller gradients. The TGV regularization creates the best results among the proposed

regularization terms where both sharp edges as well as smooth transitions are possible.

5.6.3 Regularizer Guidance

Building on the idea that moving objects and the flow field share the same edges we can

use the input images to guide the optimization along these edges. Hence we can model

a guidance image out of the depth image to weight the regularization term. Hence, the

regularization force will be increased in homogeneous areas while it is decreased at object

boundaries. This will help to estimate sharper edges while homogeneous areas are still

smoothed. There are many ways to use the input data to aid the regularization term and

in this section we show a few of them which are used throughout our methods.

The basic idea of the guidance term is to weight the regularization according to the

input data where we build on the assumption that motion boundaries are more likely

to appear at object boundaries such as high intensity and depth variations. To increase

the estimation accuracy in those areas a simple approach is to use the image gradient

information to weight the regularization (Huber, TV or TGV ). Hence, the influence of the



100 Chapter 5. 3D Scene Flow

regularization is increased at more homogeneous regions (more smoothing) and decreased

at high gradient magnitudes (lesser smoothing). This simple scalar weighting is has already

been used in other computer vision tasks such as denoising [58], superresolution [25] and

image segmentation [15].

Scalar Weighting In our work the pointwise weighting function g(x) ∈ RM×N 7→ R is

defined by the image gradient as

g(x) = exp
(
αT ‖∇ID(x)‖βT2

)
, (5.60)

where the scalars αT , βT ∈ R are terms to weight the magnitude and sharpness of the

function. The gradients of the guidance image are calculated by the Sobel operator to

reduce the influence of acquisition noise on the weighting. In the case of TV regularization

the complete term is given by

R(u) =

∫
Ω
g(x)‖∇u(x)‖1dx. (5.61)

This simple weighting term already delivers much better optimization results but it has

problems because the magnitude weighting not only down-weights the regularization across

motion boundaries but also along the boundaries. This can lead to high outliers in border

regions.

As shown in previous works, by including the guidance term in the optimization model

the overall numerical optimization scheme only changes with respect to the gradient ∇ and

the divergence operator ∇T in the dual and the primal step. When using the pointwise

weighting the gradient and the divergence is simply multiplied by the gradient magnitude.

Gradient Weighting A very similar guidance approach is to account for the gradient

difference in x and y direction and weight the motion gradient in each direction separately.

Hence, the weighting term from Eqn. (5.60) is changed to the weighting vector

g(x) = exp
(
αT |∇ID(x)|βT2

)
∈ R2. (5.62)

The scalar parameters αT and βT are again weighting the influence on magnitude and

sharpness. In the simple TV case, the gradient weighted regularization is given by

R(u) =

∫
Ω
‖diag (g(x))∇u(x)‖1dx. (5.63)

Hence, in the optimization for every image point x the weighted gradient and weighted

divergence of the motion are given by (diag(g)∇) u and
(
∇Tdiag(g)

)
p, respectively. This

gradient weighted term now accounts for each direction separately in hence yields better

results than a simple scalar weighing.
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Anisotropic Weighting The anisotropic weighing term goes one step further by defin-

ing a rotation matrix that not only weights each gradient direction but also rotates the

gradient vector by its direction. The idea is to integrate a full anisotropic diffusion matrix

into the 2D gradient regularization based on the Nagel-Enkelmann operator [71]. Follow-

ing our gradient definition from above, the anisotropic diffusion tensor T
1
2 is defined as a

symmetric 2 × 2 matrix given by

T
1
2 (x) = exp

(
αT |∇ID(x)|βT2

)
nnT + n⊥n⊥

T
=

(
a c

c b

)
, (5.64)

where n is the normalized direction of the guidance image gradient

n =
∇ID

‖∇ID‖2
(5.65)

and n⊥ is the normal vector to the gradient. As in the previous terms the gradient is

calculated by the Sobel operator. Note that at completely homogeneous guidance images

the tensor becomes the identity matrix. In Figure 5.11 the difference between a simple

isotropic weighting and the anisotropic diffusion tensor is shown. The anisotropic diffusion

tensor not only weights the motion gradient but also orients the gradient direction during

the optimization process. This regularization term has shown great success in stereo

reconstruction [92] and depth image upsampling [28].

∇D1

n
n⊥

g

(a) isotropic weighting

∇D1

n n⊥

T
1
2

(b) anisotropic weighting

Figure 5.11: Anisotropic diffusion tensor. While an isotropic weighting of factor g penalizes each
gradient direction equally, the anisotropic weighting T

1
2 allows flow discontinuities along depth

gradients while preventing discontinuities along depth edges [94].

Including the anisotropic tensor T
1
2 from Eqn. (5.64) the regularization in our TV
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example becomes

R(u) =

∫
Ω
‖T

1
2∇u(x)‖1dx. (5.66)

In the optimization the motion gradient and divergence operator is changed to

T
1
2∇u =



a∇xuX + c∇yuX
c∇xuX + b∇yuX
a∇xuY + c∇yuY
c∇xuY + b∇yuY
a∇xuZ + c∇yuZ
c∇xuZ + b∇yuZ


, and (5.67)

∇TT
1
2 p =

a∇xp1
X + c∇yp1

X + c∇xp2
X + b∇yp2

X

a∇xp1
Y + c∇yp1

Y + c∇xp2
Y + b∇yp2

Y

a∇xp1
Z + c∇yp1

Z + c∇xp2
Z + b∇yp2

Z

 (5.68)

respectively. Including the anisotropic tensor into the second order TGV the combined

regularization term is given by

TGV2
α = min

u,v

{
α1

∫
Ω
|T

1
2 (∇u− v) | dx+ α0

∫
Ω
|∇v|dx

}
, (5.69)

where the anisotropic tensor only influences the first order term but since all orders are

connected by the auxiliary variables it has also influence on the higher orders.

With the combination of convex TGV regularization and anisotropic weighting we

achieve smooth transitions between flows, typically occuring at object rotations and non-

rigid movements, while sharp flow boundaries between moving objects can still be pre-

served.

5.7 Evaluation

In this section we provide and extensive qualitative and quantitative evaluation of the

proposed methods for SF estimation.

First, we start with a very simple synthetic scene, where we evaluate on a variety of

movements to point out the individual advantages and drawbacks of the proposed models

with respect to specific scene motions. This synthetic evaluation is shown in Section 5.7.3.

Second, we show the quality and robustness of the model under different types of

acquisition noise in the input data. This noise evaluation is shown in Section 5.7.4.

Third, we will focus on the quantitative evaluation of a commonly used benchmark

based on the Middlebury dataset. In this evaluation we show how our method performs

compared to SoA methods in terms of speed and accuracy. This evaluation is given in

Section 5.7.5.
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We also demonstrate the applicability to image data acquired in our laboratory. We

show a qualitative evaluation of the SF models on off-the-shelf RGB-D cameras in 5.7.6.

In this evaluation we use a PMD Nano and PMD Pico ToF camera [83], and a Microsoft

Kinect for Windows v2 camera (K4Wv2). Finally we conclude the evaluation section

with evaluations of the SF estimation for the applications of camera pose estimation and

temporal image fusion for depth image superresolution in Section 5.8.

The proposed models are implemented in a C++/GPU framework. The speed of our

models is measured as the average execution time over 100 runs computed on a Nvidia

GTX680 GPU.

5.7.1 Nomenclature

In the following evaluation we abbreviate the method names according to the following

scheme. The first part of the method name is the regularization term and its weighting,

followed by an abbreviation of the depth data term and an abbreviation of the intensity

data term:

x y x y︸ ︷︷ ︸
Weight + Reg.

-

Depth Term︷︸︸︷
x y - x y︸︷︷︸

Intensity Term

In this context we define the abbreviations for the regularization weighting as

Weighting Abbreviation

no weighting -

Scalar Weighting w

Gradient Weighting g

Anisotropic Weighing a

The abbreviations for the regularization term are given by

Regularization Abbreviation

Total Variation TV

Huber H

Total Generalized Variation (2nd order) TGV

The data term is abbreviated as
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Data Term Abbreviation

classical pixel-wise data term with `1 norm L1

pixel-wise `2 term with illumination compensation cL1

patchwise constancy with sum of squared differences SSD

patchwise constancy with sum of absolute differences SAD

patchwise constancy with normalized cross correlation NCC

patchwise constancy with binary census transform BCT

patchwise constancy with ternary census transform TCT

patchwise constancy with closest points in 3D CP

For example a possible combination of our SF model is

aTGV-CP-SAD ,

which states that the model is composed of an anisotropic TGV regularization together

with a closest point depth data term and the sum of absolute differences in the intensity

data term. Furthermore if we use a patchwise dataterm with multiscale neighborhood we

add (ms) to the end of the naming.

5.7.2 Evaluation Metrics

In literature there exists a variety of different error measures. In this work we follow the

common error measurements of traditional OF , namely the End Point Error (EPE) and

the Average Angular Error (AAE) as shown in [4], [112] and [129]. These measures can

be easily extended to 3D space.

The generally applicable EPE is defined as follows:

EPE =

√
1

|Ω|
∑
∀x∈Ω

‖u(x)− uGT(x)‖22 , (5.70)

where u(x) and u(x)GT are the estimated and groundtruth flow vectors at point x, re-

spectively. The EPE measures the absolute flow error in motion magnitude.

The average angular error (AAE ) measures the error in flow direction. This angular

accuracy is defined as angle between the flow vectors by

AAE =
1

|Ω|
∑
∀x∈Ω

−1
cos

(
ũ(x)T ũGT(x)

‖ũ(x)‖2 + ‖ũGT(x)‖2

)
. (5.71)

We follow the angle measure proposed in [4], where the vectors are extended by one

dimension to ũ =
[
uT , 1

]T
and ũGT =

[
uTGT, 1

]T
to avoid the division by zero problem for

zero flows.

The depth images in the Middlebury dataset are derived from given disparity maps.
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The focal length and baseline can be freely defined. Since the EPE in 3D space is di-

rectly dependent on the chosen parameters the general 3D error measures are not directly

applicable for this dataset. Hence, We follow Hornáček et al. [49] to calculate the 2D

flow errors EPE2D and AAE2D together with the Root Mean Squared Error (RMSE) of

disparity deviation, namely the RMSVz. This disparity deviation is defined as

RMSVz =

√√√√ 1

|Ω|
∑
∀x∈Ω

(
bf

D1(x) + uD(x)
− bf

D1(x)

)2

, (5.72)

where f and b are the defined focal length and the baseline. In other works such as

[5, 39, 88, 90] the Normalized Root Mean Square (NRMS) is estimated as global flow error

but since the evaluated numbers in their evaluation sections widely differ from each other

we waived on using this measure in our evaluation.

5.7.3 Movement Evaluation on Synthetic Data

In this experiment we quantitatively evaluate the proposed SF algorithms and show the

contributions of the individual terms in our objective functions. We further compare our

method to several SoA OF and SF algorithms. In our experiment we create a synthetic

dataset where a cube is rotated and translated in front of a static background. The scene

is generated including depth and intensity image pairs as well as a groundtruth SF . The

illumination is modeled by adding a depth dependent illumination model to the input

intensity images. This model is composed of global Gaussian illumination factor and a

depth depend illumination factor, where the illumination decreases with the distance to

the camera. In Figure 5.14 a sample input sequence of the synthetic scene including the

illumination model and the groundtruth motion is shown.

The acquisition noise is simulated with a constant Gaussian noise on the intensity input

data and a depth dependent Gaussian noise on the depth data. To show the properties

of the different data and regularization terms in our model we measure the accuracy for

isolated object movements separately. In this sense, we evaluate the SF accuracy for a

pure translation of 20% of the object size in X direction (TX), a pure translation of 20%

towards the camera (TZ) and a rotation of 15 degrees about the Z axis (RZ). Finally we

evaluate the flow estimation for a combined movement and rotation in every direction.

The experiment on the synthetic dataset is divided into two main parts. First, we

evaluate the basic data terms for different regularization and weighting terms, as shown

in Figure 5.1. Second, we qualitatively evaluate different data term combinations used in

our SF estimation and compare it to SoA OF techniques such as the OF estimation of

Werlberger et al. [130] and the Classic-NL-Full methods of Sun et al. [112]. We further

compare to the currently best performing SF method of Hornáček et al. [49]. Since the

OF methods deliver no real 3D motion the 2D motion is projected into 3D space using
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the noise-free depth maps. This 3D motion is calculated by

u = K−1xhID1 (x)−K−1
(
x + uOF

)h
ID2 (x + uOF ) (5.73)

The detailed evaluation is shown in Table 5.2 where the accuracy of the different

(a) Depth ID1 / ID2 (b) Intensity II1 / II2 (c) Illumination

Figure 5.12: Flow estimation on synthetic datasets. In (a) the color-coded input depth, in (b) the
input intensity images and in (c) the illumination image is shown for the Z-translation example.
The groundtruth OF and the results for this pure Z movement are shown in (c).
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TX = 20% TZ = −20% RZ = 15◦ T = [19%]3, R = [15◦, 15◦, 15◦]
Avg.Time [s]

EPE3D AAE3D EPE3D AAE3D EPE3D AAE3D EPE3D AAE3D

TV-L1-L1 0.2266 9.479 0.4884 8.576 0.2098 8.694 0.2498 7.970 3.02
H-L1-L1 0.2281 9.515 0.4853 8.394 0.2105 8.724 0.2472 7.921 3.00
TGV-L1-L1 0.2520 10.243 0.4674 7.756 0.2024 8.480 0.2417 7.973 3.12
wTV-L1-L1 0.2108 8.894 0.1950 7.166 0.1968 8.113 0.2066 8.136 3.09
wH-L1-L1 0.2157 8.997 0.1965 7.156 0.1936 8.044 0.2073 8.147 3.15
wTGV-L1-L1 0.2130 8.898 0.1940 7.180 0.1879 7.999 0.2037 8.198 3.32
gTV-L1-L1 0.2125 8.985 0.1884 6.943 0.1847 7.958 0.1984 8.016 3.22
gH-L1-L1 0.2163 9.106 0.1886 6.889 0.1910 8.056 0.2010 8.040 3.28
gTGV-L1-L1 0.2065 8.903 0.1837 6.908 0.1801 7.777 0.1913 7.908 3.36
aTV-L1-L1 0.2110 9.072 0.1878 6.876 0.1801 7.847 0.1926 7.940 3.36
aH-L1-L1 0.2099 9.030 0.1870 6.846 0.1808 7.877 0.1932 7.915 3.20
aTGV-L1-L1 0.2026 8.846 0.1848 6.882 0.1783 7.816 0.1845 7.796 3.55

Table 5.1: Scene Flow performance of different regularization terms on synthetic datasets. Comparison of different regularization/weighting
terms at different object movements in terms of EPE and AAE in 3D. The best results for each error metric are highlighted.
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TX = 20% TZ = −20% RZ = 15◦ T = [10%]3, R = [5◦]3
Avg.Time [s]

EPE3D AAE3D EPE3D AAE3D EPE3D AAE3D EPE3D AAE3D

NL-TV-NCC (OF ) 0.282 5.61 0.191 3.07 0.291 5.06
Classic++ (OF ) 0.353 6.16 0.176 3.27 0.322 5.54
Classic+NL-Full (OF ) 0.260 4.57 0.303 3.29 0.388 5.68

Hornáček et al. [49] 0.089 3.85 0.090 3.30 0.056 2.43

aTV-L1-L1 0.2110 9.072 0.1878 6.876 0.1801 7.847 0.1926 7.940 3.15
aH-L1-L1 0.2099 9.030 0.1870 6.846 0.1808 7.877 0.1932 7.915 3.24
aTGV-L1-L1 0.2026 8.846 0.1848 6.882 0.1783 7.816 0.1845 7.796 3.33
aTGV-L1-SSD 1.5902 49.261 0.1016 3.342 0.3216 13.551 0.9290 35.841 3.14
aTGV-L1-SAD 0.0494 1.977 0.0423 0.710 0.1992 6.834 0.1051 1.372 3.31
aTGV-L1-NCC 0.0444 1.726 0.0426 0.681 0.0570 1.358 0.1055 1.472 3.52
aTGV-L1-C 0.0405 1.574 0.0439 0.713 0.0743 1.843 0.1021 1.563 3.36
aTGV-L1-TCT 0.0425 1.663 0.0433 0.673 0.0705 1.745 0.1005 1.509 3.14
aTGV-CP-SSD 4.6599 65.905 10.2481 83.657 2.5805 55.457 6.5689 64.812 3.92
aTGV-CP-SAD 0.0445 1.802 0.0396 0.714 0.0429 1.182 0.0630 1.261 4.08
aTGV-CP-NCC 0.0418 1.590 0.0403 0.658 0.0382 1.116 0.0641 1.314 3.85
aTGV-CP-C 0.0330 1.217 0.0432 0.765 0.0432 1.279 0.0645 1.348 3.71
aTGV-CP-TCT 0.0333 1.241 0.0421 0.704 0.0452 1.357 0.0638 1.238 3.93
aTGV-CP-SAD(ms) 0.0470 1.926 0.0395 0.698 0.0397 1.177 0.0636 1.297 3.88
aTGV-CP-NCC(ms) 0.0356 1.348 0.0398 0.673 0.0457 1.157 0.0627 1.157 4.15
aTGV-CP-C(ms) 0.0362 1.331 0.0445 0.876 0.0496 1.544 0.0653 1.373 3.92
aTGV-CP-TCT(ms) 0.0330 1.196 0.0427 0.784 0.0492 1.454 0.0639 1.266 3.84

Table 5.2: Scene Flow evaluation on a synthetic dataset. Comparison of our method with SOTA OF and SF methods at different object
movements in terms of EPE and AAE in 3D. Further, results of are shown, where different terms are turned off. The best result for each
movement is highlighted and the second best is underlined.
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Discussion

What can be clearly seen in the evaluation of the weighing terms in Table 5.1 is that

the weighting clearly improves the optimization result. Further, gradient directed weight-

ing and anisotropic weighing outperform the simple scalar weighting by far, while the

anisotropic weighting is slightly more accurate than the gradient weighting. Furthermore,

gradient and anisotropic tensors have a big impact on the quality since they bound the

flow field directly at object boundaries.

In terms of regularization, the Huber and the TGV regularization deliver a much

higher accuracy than the standard TV regularization. Further, it can be seen that the

TGV performs best in this experiment due to the higher order regularization. While the

first order approaches work well for pure translational movements they are not suitable

to model smooth flow transitions such as rotations or non-rigid movements since these

approaches enforce piecewise constant solutions in the flow field.

In Table 5.2 the comparison of the standard pixelwise data terms and the patchwise

variants is shown. Using a patchwise data term brings a huge boost in performance, since

the comparison on a larger region is more distinctive than a comparison on the pixel level.

The closest point depth data term improves the performance over a pixelwise L1 depth

data term in every variation. When comparing the variations of the depth data term, the

SSD term has the worst performance due to quadratic penalization of the patch difference.

Further, the illumination invariant Census and NCC models show a slightly better overall

performance compared to the SAD term. However, in this experiment the multiscale

patchwise terms do not improve over the single scale methods since the dataset includes

enough measurable texture in every part of the image.

Compared to SoA approaches it can be seen that our SF estimation significantly

outperforms traditional OF methods due to the additional depth information in our model.

The RGB-D PatchMatch approach of Hornáček et al. [49] delivers comparable results for

the flow magnitude (EPE ) but lacks in angular precision (AAE ).

5.7.4 Noise Evaluation

In this section we evaluate our method according to noise in the input data. Hence we

generate a synthetic dataset and apply different levels of noise. We use the same moving

object as in 5.7.3, which is randomly moved and rotated in all directions, as shown in

Figure 5.17. On the synthetically generated dataset we add zero-mean Gaussian noise

NI(0, σ) to the input intensity images. According to most depth sensor characteristics

we also add depth dependent zero-mean Gaussian noise ND(0, σ(dmax − d)) to the depth

input. The standard deviation σ for the added noise ranges from 0 − 50% of the input

intensity range.

To create a meaningful evaluation of the aforementioned methods we calculate the

average error over 100 random translation/rotation combinations. These random transla-

tions range from −20% to +20% of the object size in X, Y and Z direction. The rotation
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range is between −15 and +15 degrees about the X, Y and Z axis. As in the previous

experiment the error is measured as EPE and AAE in 3D space. In all estimations over all

methods we explicitly use the same initial flow parameters such as weightings and tensors.

In Figure 5.17 the averaged results over all noise levels are shown.

Discussion

Overall, it can be seen that data terms with pixelwise penalization (marked as dashed lines)

perform significantly worse than data terms with a more complex patchwise comparison.

Obviously, the bounding anisotropic tensor has a big impact on the accuracy when com-

paring the anisotropic models (aTGV-L1-L1, aTGV-CP-TCT ) to the unbounded models

(TGV-L1-L1, TGV-CP-TCT ). Further, the TGV regularization works slightly better than

the TV regularization in terms of the overall error. A simple SSD as an intensity data

term performs much worse than the more robust terms NCC and TCT , which have similar

performance and only differ in runtime.

5.7.5 Middlebury Evaluation

In order to perform a quantitative comparison to other SoA SF methods, we evaluate our

method using an existing scene flow benchmark dataset. We follow [5, 39, 49, 52, 87, 88,

90, 138], which use the rectified stereo intensity and disparity maps from the Middlebury

Cones, Teddy and Venus datasets [102] to simulate scene flow. In this setting, two images

are acquired with a pure horizontal camera movement. This allows to recover a ground

truth scene motion at every point in a cluttered scene with pure X movement, where the

3D movement in Y and Z direction is zero and the movement in X-direction is given by

the baseline. As in the compared methods, the disparity maps H1 and H2 are used to

simulate the output of the depth sensor. The depth is calculated with a defined focal

length f and a baseline b with

IDi =
fb

Hi
, ∀i = 1, 2. (5.74)

Throughout all datasets we set f = 150 and b = 50. The calculated SF is backprojected

into the image space for a direct comparison with the ground truth disparity maps. In

Table 5.3 the quantitative accuracy results of our evaluation are shown. In the Figures

5.18, 5.19 and 5.20 the three Middlebury datasets are visually evaluated. A colored map

is shown according to the flow error in a range of [−1,+1] pixel. In our evaluation we

compare the different methods to several SoA methods for OF , SF from stereo and SF

from RGB-D data. We evaluate the different methods according to magnitude and angular

error in 2D space as well as a disparity error in 3D space, as shown in section 5.7.2. We

deliberately use the same parameters for all three datasets even though the Venus dataset

has other lighting and surface conditions.
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(a) Groundtruth (b) TV-L1-L1 (c) H-L1-L1 (d) TGV-L1-L1

(e) wTV-L1-L1 (f) wH-L1-L1 (g) wTGV-L1-L1

(h) gTV-L1-L1 (i) gH-L1-L1 (j) gTGV-L1-L1

(k) aTV-L1-L1 (l) aH-L1-L1 (m) aTGV-L1-L1

(n) aTGV-L1-SAD (o) aTGV-L1-NCC (p) aTGV-L1-C (q) aTGV-L1-TCT

(r) aTGV-CP-SAD (s) aTGV-CP-NCC (t) aTGV-CP-C (u) aTGV-CP-TCT

Figure 5.13: Flow estimation on a synthetic dataset for pure X translation. The color key is
shown on the bottom right.
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(a) Groundtruth (b) TV-L1-L1 (c) H-L1-L1 (d) TGV-L1-L1

(e) wTV-L1-L1 (f) wH-L1-L1 (g) wTGV-L1-L1

(h) gTV-L1-L1 (i) gH-L1-L1 (j) gTGV-L1-L1

(k) aTV-L1-L1 (l) aH-L1-L1 (m) aTGV-L1-L1

(n) aTGV-L1-SAD (o) aTGV-L1-NCC (p) aTGV-L1-C (q) aTGV-L1-TCT

(r) aTGV-CP-SAD (s) aTGV-CP-NCC (t) aTGV-CP-C (u) aTGV-CP-TCT

Figure 5.14: Flow estimation on a synthetic dataset for pure Z translation. The color key is
shown on the bottom right.
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(a) Groundtruth (b) TV-L1-L1 (c) H-L1-L1 (d) TGV-L1-L1

(e) wTV-L1-L1 (f) wH-L1-L1 (g) wTGV-L1-L1

(h) gTV-L1-L1 (i) gH-L1-L1 (j) gTGV-L1-L1

(k) aTV-L1-L1 (l) aH-L1-L1 (m) aTGV-L1-L1

(n) aTGV-L1-SAD (o) aTGV-L1-NCC (p) aTGV-L1-C (q) aTGV-L1-TCT

(r) aTGV-CP-SAD (s) aTGV-CP-NCC (t) aTGV-CP-C (u) aTGV-CP-TCT

Figure 5.15: Flow estimation on a synthetic dataset for a rotation about the Z axis. The color
key is shown on the bottom right.



114 Chapter 5. 3D Scene Flow

(a) Groundtruth (b) TV-L1-L1 (c) H-L1-L1 (d) TGV-L1-L1

(e) wTV-L1-L1 (f) wH-L1-L1 (g) wTGV-L1-L1

(h) gTV-L1-L1 (i) gH-L1-L1 (j) gTGV-L1-L1

(k) aTV-L1-L1 (l) aH-L1-L1 (m) aTGV-L1-L1

(n) aTGV-L1-SAD (o) aTGV-L1-NCC (p) aTGV-L1-C (q) aTGV-L1-TCT

(r) aTGV-CP-SAD (s) aTGV-CP-NCC (t) aTGV-CP-C (u) aTGV-CP-TCT

Figure 5.16: Flow estimation on a synthetic dataset for a rotation of 5 degrees about X, Y and
Z and a translation of t = [10%, 10%,−10%]T of the object size. The color key is shown on the
bottom right.



5.7. Evaluation 115

1

2

3

4

5

·10−2

E
P

E
3
D

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

σ [%]

A
A

E
3
D

TGV-L1-L1

aTV-L1-L1

aTGV-L1-L1

aTGV-CP-SAD

aTGV-CP-NCC

TGV-CP-TCT

TV-CP-TCT

aTGV-CP-TCT

Figure 5.17: Noise Evaluation. Robustness evaluation of different SF models under increasing
input noise. The error is measured as EPE and AAE in 3D space.
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Cones Teddy Venus
Avg.Time [s]

EPE2D RMSVz AAE2D EPE2D RMSVz AAE2D EPE2D RMSVz AAE2D

Brox and Malik [17] (OF ) 2.83 1.75 1.75 3.20 0.47 0.39 0.72 0.14 1.28 -
Xu et al. [131] (OF ) 1.66 1.15 0.21 1.70 0.50 0.28 0.30 0.22 1.43 -

Basha et al. [5] (2 views) (ST ) 0.58 N/A 0.39 0.57 N/A 1.01 0.16 N/A 1.58 -
Huguet and Devernay [52] (ST ) 1.10 N/A 0.69 1.25 N/A 0.51 0.31 N/A 0.98 18000

Hadfield and Bowden [40] 1.24 0.06 1.01 0.83 0.03 0.83 0.36 0.02 1.03 600
Zhang et al. [138] 1.04 0.69 0.73 0.69 0.15 1.15 - - - -
Quiroga et al. [88] (local) 3.50 2.22 4.30 - - - - - - 5s
Quiroga et al. [90] 0.81 0.04 0.36 0.90 0.04 0.69 0.20 0.00 0.98 10
Quiroga et al. [87] 0.75 0.02 0.30 0.65 0.02 0.37 0.16 0.00 0.77 60
Hornáček et al. [49] 0.54 0.02 0.52 0.35 0.01 0.16 0.26 0.02 0.64 -

TGV-L1-L1 0.48 0.09 0.27 0.23 0.03 0.38 0.18 0.00 0.85 1.48
aTV-L1-L1 0.20 0.01 0.27 0.18 0.00 0.30 0.16 0.00 0.70 1.37
aTGV-L1-L1 0.49 0.10 0.28 0.23 0.03 0.38 0.18 0.00 0.85 2.16
aTGV-L1-SAD 0.34 0.01 0.06 0.32 0.00 0.08 0.52 0.00 0.73 2.47
aTGV-CP-SAD 0.23 0.01 0.02 0.21 0.00 0.05 0.52 0.00 0.73 2.47
aTGV-CP-NCC 0.11 0.01 0.07 0.14 0.00 0.06 0.14 0.00 0.49 2.74
TGV-CP-TCT 0.11 0.01 0.07 0.13 0.00 0.06 0.15 0.00 0.49 2.20
aTV-CP-TCT 0.08 0.01 0.05 0.09 0.00 0.01 0.11 0.00 0.15 2.08
aTGV-CP-TCT 0.11 0.01 0.07 0.13 0.00 0.06 0.15 0.00 0.49 2.61

Table 5.3: Quantitative evaluation on the Middlebury dataset. The error is measured by EPE / AAE in 2D, and RMS in disparity change
error. The best result for each dataset is highlighted and the second best is underlined. The topmost methods indicated with (OF ) are RGB
optical flow algorithms where the RMSVz is computed according to the mapped disparity given the 2D flow vector. Methods that calculate
SF from stereo are marked with (ST ). Note that the method [88] is a local method which only covers ∼ 50% of the flow field.



5.7. Evaluation 117

(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Quiroga [89] (d) Quiroga [87] (e) Hornáček [49] (f) aTV-L1-L1

(g) aTGV-L1-L1 (h) aTGV-CP-SAD (i) aTV-CP-TCT (j) aTGV-CP-TCT

Figure 5.18: Qualitative evaluation on the Middlebury Cones dataset. The 2D flow error is shown
as color map in a range of [−1,+1] pixel for all datasets and all methods. The color intensity depicts
the amount of error. The error direction is encoded by the color itself. The color key is shown on
the bottom right.

Discussion

What can be clearly seen is that the proposed models clearly improve over SoA. Similar

to the last experiments, it can be seen that the patchwise dataterms get better results

than methods with a pixelwise comparison in the data fidelity. In both qualitative and

quantitative evaluations the anisotropic CP-TCT with simple TV regularization compared

to TGV produces more accurate results. This is caused by the property of the Middlebury

dataset. In this dataset only a constant translational movement in X direction appears

without any flow transitions, which is perfectly suited for the TV case but probably will

not appear in real world scenes.

Although we achieve superior results, we have to mention that the Middlebury se-

quence is not very well suited to evaluate SF algorithms, since it only incorporates a

static movement in X direction without any movement in Y or Z direction. This does not
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(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Quiroga [89] (d) Quiroga [87] (e) Hornáček [49] (f) aTV-L1-L1

(g) aTGV-L1-L1 (h) aTGV-CP-SAD (i) aTV-CP-TCT (j) aTGV-CP-TCT

Figure 5.19: Qualitative evaluation on the Middlebury Teddy dataset. The 2D flow error is
shown as color map in a range of [−1,+1] pixel for all datasets and all methods. The color
intensity depicts the amount of error. The error direction is encoded by the color itself. The color
key is shown on the bottom right.

show the advantages of higher order regularization or gradient weighting.

5.7.6 Real-World Evaluation

In this section we show a visual evaluation of SF estimation methods used for real ToF

sensors. Hence, we apply the proposed methods to the measurement output of different

sensors such as the a PMD Nano ToF camera and a Microsoft Kinect for Windows v2

camera (K4Wv2). In the acquisition setting we used rigid and non-rigid objects moving

freely in the environment. The scenes are chosen to contain reflecting parts, changing

illumination and shadows. The Microsoft K4Wv2 comes equipped with an additional

intensity camera. The output of this sensor is used for the intensity data term in our

model. Since the PMD Nano ToF camera does not offer a separate intensity image we use

the amplitude image from the ToF sensor as intensity data input. The ToF sensor uses

active infrared illumination. Hence the scene is not equally illuminated which causes a
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(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Quiroga [89] (d) Quiroga [87] (e) Hornáček [49] (f) aTV-L1-L1

(g) aTGV-L1-L1 (h) aTGV-CP-SAD (i) aTV-CP-TCT (j) aTGV-CP-TCT

Figure 5.20: Qualitative evaluation on the Middlebury Venus dataset. The 2D flow error is shown
as color map in a range of [−1,+1] pixel for all datasets and all methods. The color intensity depicts
the amount of error. The error direction is encoded by the color itself. The color key is shown on
the bottom right.

change in the reflected illumination from objects during a movement. To correctly estimate

the metric flow we used our camera calibration toolbox from [30].

The visual evaluation for the three different datasets is shown in Figures 5.21, 5.22

and 5.23. In Figure 5.21 we show a scene with moving objects acquired with the Microsoft

K4Wv2. The scene contains a global illumination with highly reflective object parts and

shadows. In the second scene we acquired a moving box with the PMD Nano camera

in Figure 5.22. One big challenge in this scene is that the depth acquisitions contain a

high amount of noise. Furthermore, due to the direct illumination the reflected intensity

decreases with the distance from the image center and the distance from the camera. In

the third scene we acquired a moving hand with the PMD Nano camera to evaluate our

methods under non-rigid movements.
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(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Hornáček [49] (d) aTGV-L1-L1

(e) TGV-CP-TCT (f) aTV-CP-TCT (g) aTGV-CP-TCT

Figure 5.21: Evaluation of different SF methods on real image sequences. The dataset contains
a rotated and translated box acquired with the K4Wv2.

Discussion

This qualitative evaluation on real sensors clearly points out the properties of the different

methods. Compared to the noise-free Middlebury datasets, real sensor acquisitions contain

a high amount of noise. Furthermore, the intensity images contain specular reflections,

shadows or illumination artifacts due to the active illumination. Due to these less than

ideal properties an accurate SF estimation becomes more difficult. In the real-world

evaluations it can be seen that pure pixelwise comparisons in the data terms such as

aTGV-L1-L1 clearly lack in precision. Methods based on a patch-wise comparison deliver

much more accurate results due to the improved robustness to noise and illumination

artifacts.

We further compared TV and TGV regularization. While the optimization result

using TV regularization suffers from staircasing the optimization result from TGV models

delivers more smooth results due to the higher order flow modeling. With the weighting

of the regularization with an anisotropic tensor, the quality of the flow estimate further

increases. This can be seen at flow boarders where models without edge weighting such
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(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Hornáček [49] (d) aTGV-L1-L1

(e) TGV-CP-TCT (f) aTV-CP-TCT (g) aTGV-CP-TCT

Figure 5.22: Evaluation of different SF methods on real image sequences. The dataset contains
a rotated box acquired with the PMD Nano Camera.

as TGV-CP-TCT0 are blurry while models using an anisotropic weighting deliver much

sharper motion boundaries. Beyond that, we compare our models with the SoA scene

flow estimation SphereFlow proposed by Hornáček et al. [49]. This model delivers a high

precision at noise-free datasets but has big problems to estimate the SF at larger noise

levels or illumination changes, which appear at the PMD Nano sequences.

5.8 Applications

Fast and accurate SF estimation has many potential computer vision applications. In this

section we will present two applications of our SF estimation method on real-world data.

In 5.8.1 we show how to estimate the camera pose in a static scene without explicitly

building a model of the scene. In 5.8.2 we use our model to increase the lateral resolution

of a depth image by moving an object in front of an observing depth camera.
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(a) Depth ID1 / ID2 (b) Intensity II1 / II2

(c) Hornáček [49] (d) aTGV-L1-L1

(e) TGV-CP-TCT (f) aTV-CP-TCT (g) aTGV-CP-TCT

Figure 5.23: Evaluation of different SF methods on real image sequences. The dataset contains
a hand movement acquired with the PMD Nano Camera.

5.8.1 Camera Pose Estimation

An accurate SF allows to estimate the pose of a moving camera in space. Since our method

calculates metric SF we can directly estimate the movement of each scene point from one

frame to the next. Compared to traditional camera pose estimation this approach has

the big advantage that a feature calculation as well as a robust feature matching is no

longer necessary. The point correspondences are directly taken from the estimated flow

field. This reduces the computational effort and therefore leads to higher frame rates.

Given the estimated flow field u between two consecutive frames t = {1, 2}, we can es-

tablish corresponding point sets X1 and X̃2 = X1 +u, according to (5.6). As in traditional

pose estimation, the general rotation R1 ∈ SO(3) and translation T1 ∈ R3 is calculated by

Euclidean motion estimation as

min
R1,T1

(
R1X1 + T1 − X̃2

)2
. (5.75)

The camera pose is updated by P2 = P1[R1|T1]−1, where P1 and P2 are the camera poses.
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For multiple frames this pose estimation can be propagated by

Pt+1 = Pt1

t⋂
i=t1

[Ri|Ti]−1, (5.76)

where t1 denotes the first frame.
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Figure 5.24: Evaluation of camera pose estimation using aTGV-CP-TCT and the method using
only pixelwise dataterms aTGV compared to standard ICP and the model based ICP (Kinect
Fusion (KFusion)). The error is given by means of RMSE between real and estimated camera pose
in [mm] for a relative distance between two consecutive frames of 1.73, 8.66 and 17.32mm.

For the numerical evaluation of the camera pose estimation, we use the PMD Nano ToF

camera mounted on the head of an industrial robot. We use the real scene from Fig. 5.22

(2nd row) acquired by different, known camera poses instead of moving the objects. The

robot moves 260mm in a linear movement in positive X, Y and Z direction with a distance

of 1.73, 8.66 and 17.32mm between consecutive acquisitions. The estimation accuracy is

compared to standard ICP with 100 iterations and to a model based multi-scale ICP as

proposed in the KFusion framework [76].

The camera position of the first frame Pt1 is defined as the world coordinate center

defined as the initial position of the robot head. The error is quantified as the metric dif-

ference between the accumulated camera poses Pt and the known robot poses is calculated

in terms of RMSE . The propagated average movement error is shown in Fig. 5.24 and the

RMSE per mm movement separated in X/Y/Z direction is shown in Table 5.4.
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X [mm] Y [mm] Z [mm]

RMSE - ICP 0.203 0.109 0.176
RMSE - KFusion 0.049 0.135 0.085
RMSE - aTGV 0.031 0.074 0.149
RMSE - aTGV-CP-TCT 0.049 0.062 0.069

Table 5.4: Camera Pose Estimation using different methods. The positioning error of the different
methods used for camera pose estimation is measured as RMSE in [mm]. The best result for each
axis is highlighted.

The relative rotation error in the pose estimation is below 0.8 degrees for all three

methods. Because we assume a static scene, the SF computation is accelerated by reducing

the number of levels and iterations per level resulting in an average frame rate of 12.2fps.

Discussion

In the error statistics of mean and relative error it can be seen that CP-TCT clearly

outperforms the compared methods ICP , KFusion and the pixelwise flow estimation aTGV

used for camera pose estimation. Further, the relative error of aTGV-CP-TCT is not

dependent on the movement magnitude compared to ICP , which has a higher error for

smaller steps. The KFusion method builds a model of the scene, which evolves over time.

In contrast, a big advantage of camera pose estimation based on SF methods is to estimate

a frame-to-frame pose propagation over the whole sequence without the need of an explicit

model, which makes them also applicable on dynamic scenes.

5.8.2 Superresolution

Similar to the camera pose estimation, SF can also be used for depth superresolution of

a scene. each acquisition back into the first frame, according to the estimated flow field.

In this experiment we show how our SF estimation is used for depth superresolution of

freely moving objects in a scene. Therefore, we compute the SF for consecutive depth and

intensity image pairs in a sequence of T frames. The point set of each acquisition is then

back propagated into the first frame solely through the SF vectors at each point by

X1(t) = Xt −
t∑
i=1

ui, ∀t = T...1. (5.77)

space, the superresolution result. The superresolved depth image results by

back-projecting all point sets X1(t) into a higher resolution image space ΩH and applying

our variational superresolution approach [28] without the use of an intensity guidance.

If multiple 3D points map in the same image pixel, the median depth of these points is



5.8. Applications 125

taken. For this experiment we use T = 10 consecutive images from the real world scene

shown in Fig. 5.22 (2nd and 3rd row). The resulting depth map has 3× the size of the

original input images. The visual results for a rigid and a non-rigid movements of our

superresolution approach compared to the first input depth map are shown in Fig. 5.25.

(a) Low resolution input

(b) Superresolved output

Figure 5.25: Temporal depth image superresolution from SF on real image sequences. In (a)
the object snippet of the first input depth map is shown. In (b) the corresponding superresolution
result is shown with a lateral resolution of 3× the input size.





6
Conclusion

6.1 Conclusion

In this thesis we have proposed methods to improve the quality of 3D information from

Time of Flight (ToF) depth cameras. These cameras create dense depth maps at very

high frame rates. However, due to the active measurement principle and the physical

limitations of the sensor chip, the downsides of this technology are a high acquisition

noise with gross outliers and a low image resolution. The main focus of this thesis was

to improve the depth measurements of ToF cameras in terms of image quality. In this

context we first have shown different methods to increase the lateral and spatial resolution

of single image acquisition. Second, we have presented approaches to enhance the depth

measurements by the temporal motion of each scene point in an image sequence.

6.1.1 Depth superresolution

Given a noisy depth acquisition the goal of the superresolution is to estimate a depth

image with reduced noise and higher resolution. The estimation is formulated as a global

energy optimization problem. To deal with the problems of current depth acquisitions we

define a higher order regularization term in the model. This higher order regularization is

able reconstruct the depth map out of piecewise planar parts while reducing the noise and

preserving sharp discontinuities. For a fast numerical optimization we use a first order

primal-dual algorithm.

Further, we show how the superresolution quality can be improved by adding informa-

tion from other sensor modalities or a learned model into the optimization. First, we show

how the superresolution quality can be improved by adding an intensity image of higher

resolution into the model. This approach builds on the assumption that textural edges

in the intensity image are more likely to appear at high depth discontinuities. Hence,

we use this image as a guidance during the optimization. The guidance in this model

is formulated as a anisotropic diffusion tensor. Second, we show how we can combine

127
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the superresolution from a single depth image by sparse coding. The idea comes from

intensity image superresolution where sparse coding is directly used for superresolving

an image. In depth image superresolution this method fails since it is not applicable for

higher levels of noise. Therefore, we estimated a high resolution guidance from the low

resolution input depth by the proposed variational sparse coding. This approach is more

robust to noise since it penalizes not only the number of code samples used but also the

difference of neighboring patches. The result of the variational sparse coding is used as an

anisotropic guidance in our superresolution approach. With this combination we are able

to get more robust against noise than State-of-the-Art (SoA) sparse coding approaches

and more accurate than variational approaches.

6.1.2 3D Scene Flow

In our work on 3D motion estimation the main goal was to calculate the scene flow from a

sequence of depth and intensity acquisitions. The intensity image in this sequence comes

either from an additional intensity camera or by using the infrared image from the ToF

camera. The main problems we have faced in this estimation were the high acquisition

noise and homogeneous parts in the input images as well as illumination changes in the

intensity images between acquisitions. In our work, we first proposed the general scene

flow framework where we defined the 3D flow through a projection and back-projection

using the calibrated camera parameters. To account for the main problems we formulated

a model which is more robust to noise and illumination changes. The model is additionally

capable of low textured and low structured areas in the input images. The estimation of

the scene flow is formulated as a convex energy minimization problem. We have shown

different models for the regularization which are capable of smooth flow transitions, which

occur at rotations and non-rigid movements, while sharp boundaries of the flow field are

preserved. In our evaluation we discussed the properties of the proposed models and gave

an qualitative and quantitative comparison to SoA approaches. In this context we gave

exemplar applications for the scene flow estimation for temporal image superresolution,

3D reconstruction and camera pose estimation.

6.2 Outlook and Future Work

We proposed methods to drastically increase the quality and information from ToF depth

acquisitions. Despite their success, there is always room for improvement. On the one

side we plan to further improve the proposed methods and on the other side we want to

apply the current methods to improve other applications in computer vision.

With the recent success of deep learning and Convolutional Neural Networks (CNNs)

in computer vision we want to combine their output with our variational models to further

increase the quality. We plan to work on novel algorithms which combine a CNN together

with the proposed superresolution, where the primal-dual scheme is formulated as a neural
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network. The whole combination of CNN and variational optimization is trained end to

end. But the usage of deep learning is not limited to image superresolution. In future

work it would be interesting how we can train a scene flow estimation in a similar fashion.

In this way, we could train the patchbased comparison operators in our model to get

illumination invariant features from a trained CNN instead of the existing handcrafted

features.

Another direction will be to include the proposed methods in SoA applications. The

superresolution in combination with the scene flow could be easily used for full 3D re-

constructions and structure from motion of non-rigid scenes. The performance of other

applications such as gesture recognition, object detection or pose estimation can greatly

benefit from the success of our methods.
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List of Acronyms

AAE Average Angular Error

AD Absolute Differences

ANR Anchored Neighborhood Regression

ARF Alternating Regression Forest

CNN Convolutional Neural Network

CP Closest Point

CT Census Transform

EPE End Point Error

GD Gradient Descend

GR Global Regression

HR high resolution

ICP Iterative Closest Point

KFusion Kinect Fusion

LED Light-emitting Diode

LF Legendre-Fenchel transform

LK Lukas Kanade

LR low resolution

MAE Mean Absolute Error

MRF Markov Random Field

NCC Normalized Cross Correlation

NIR near infrared range

NRMS Normalized Root Mean Square

OF Optical Flow

OMP Orthogonal Matching Pursuit

PMD Photonic Mixing Device

PSF Point Spread Function

RF Random Forest
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RMSE Root Mean Squared Error

SAD Sum of Absolute Differences

SF Scene Flow

SfM Structure from Motion

SISR single image superresolution

SoA State-of-the-Art

SR superresolution

SSD Sum of Squared Differences

SVD Singular Value Decomposition

TCT Ternary Census Transform

TGV Total Generalized Variation

ToF Time of Flight

TV Total Variation
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List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this Thesis, they are listed in

chronological order along with the respective abstracts.

B.1 2016

A Deep Primal-Dual Network for Guided Depth Super-Resolution

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2016, York, Great Britain

(Accepted for oral presentation)

Abstract: In this paper we present a novel method to increase the spatial resolution

of depth images. We combine a deep fully convolutional network with a non-local varia-

tional method in a deep primal-dual network. The joint network computes a noise-free,

high-resolution estimate from a noisy, low-resolution input depth map. Additionally, a

high-resolution intensity image is used to guide the reconstruction in the network. By

unrolling the optimization steps of a first-order primal-dual algorithm and formulating it

as a network, we can train our joint method end-to-end. This not only enables us to learn-

the weights of the fully convolutional network, but also to optimize all parameters of the

variational method and its optimization procedure. The training of such a deep network

requires a large dataset for supervision. Therefore, we generate high-quality depth maps

and corresponding color images with a physically based renderer. In an exhaustive evalu-

ation we show that our method outperforms the state-of-the-art on multiple benchmarks.
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Depth Data Fusion for Simultaneous Localization and Mapping – RGB-

DD SLAM

Krzysztof Tadeusz Walas, Michal Nowicki, David Ferstl and Piotr Skrzypczynski

In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI)

September 2016, Baden-Baden, Germany

(Accepted for oral presentation)

Abstract: This paper presents an approach to data fusion from multiple depth sensors

with different principles of range measurements. This concept is motivated by the ob-

servation that depth sensors exploiting different range measurement techniques have also

different characteristics of the uncertainty and artifacts in the obtained depth images.

Thus, fusing the information from two or more measurement channels allows us to mutu-

ally compensate for some of the unwanted effects. The target application of our combined

sensor is Simultaneous Localization and Mapping (SLAM). We demonstrated that fusing

depth data from two sources in the convex optimization framework yields better results in

feature-based 3-D SLAM, than the use of individual sensors for this task. The experimen-

tal part is based on data registered with a calibrated rig comprising ASUS Xtion Pro Live

and MESA SwissRanger SR-4000 sensors, and ground truth trajectories obtained from a

motion capture system. The results of sensor trajectory estimation are demonstrated in

terms of the ATE and RPE metrics, widely adopted by the SLAM community.

B.2 2015

Variational Depth Superresolution using Example-Based Edge Represen-

tations

David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of IEEE International Conference on Computer Vision (ICCV)

December 2015, Santiago de Chile, Chile

(Accepted for poster presentation)

Abstract: In this paper we propose a novel method for depth image superresolution

which combines recent advances in example based upsampling with variational superres-

olution based on a known blur kernel. Most traditional depth superresolution approaches

try to use additional high resolution intensity images as guidance for superresolution. In

our method we learn a dictionary of edge priors from an external database of high and

low resolution examples. In a novel variational sparse coding approach this dictionary is

used to infer strong edge priors. Additionally to the traditional sparse coding constraints

the difference in the overlap of neighboring edge patches is minimized in our optimization.

These edge priors are used in a novel variational superresolution as anisotropic guidance of
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a higher order regularization. Both the sparse coding and the variational superresolution

of the depth are solved based on the primal-dual formulation. In an exhaustive numerical

and visual evaluation we show that our method clearly outperforms existing approaches

on multiple real and synthetic datasets.

Learning Depth Calibration of Time-of-Flight Cameras

David Ferstl, Christian Reinbacher, Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2015, Swansea, Great Britain

(Accepted for poster presentation)

Abstract: We present a novel method for an automatic calibration of modern consumer

Time-of-Flight cameras. Usually, these sensors come equipped with an integrated color

camera. Albeit they deliver acquisitions at high frame rates they usually suffer from in-

correct calibration and low accuracy due to multiple error sources. Using information

from both cameras together with a simple planar target, we will show how to accurately

calibrate both color and depth camera and tackle most error sources inherent to Time-of-

Flight technology in a unified calibration framework. Automatic feature detection min-

imizes user interaction during calibration. We utilize a Random Regression Forest to

optimize the manufacturer supplied depth measurements. We show the improvements to

commonly used depth calibration methods in a qualitative and quantitative evaluation on

multiple scenes acquired by an accurate reference system for the application of dense 3D

reconstruction.

A Framework for Articulated Hand Pose Estimation and Evaluation

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of Scandinavian Conference on Image Analysis (SCIA)

june 2015, Copenhagen, Denmark

(Accepted for oral presentation)

Abstract: We present in this paper a framework for articulated hand pose estimation

and evaluation. Within this framework we implemented recently published methods for

hand segmentation and inference of hand postures. We further propose a new approach

for the segmentation and extend existing convolutional network based inference methods.

Additionally, we created a new dataset that consists of a synthetically generated training

set and accurately annotated test sequences captured with two different consumer depth

cameras. The evaluation shows that we can improve with our methods the state-of-the-

art. To foster further research, we will make all sources and the complete dataset used in

this work publicly available.
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B.3 2014

aTGV-SF: Dense Variational Scene Flow through Projective Warping

and Higher Order Regularization

David Ferstl, Christian Reinbacher, Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of IEEE International Conference on 3D Vision (3DV)

December 2014, Tokio, Japan

(Won best Runner Up Paper Award - Accepted for oral presentation)

Abstract: In this paper we present a novel method to accurately estimate the dense

3D motion field, known as scene flow, from depth and intensity acquisitions. The method

is formulated as a convex energy optimization, where the motion warping of each scene

point is estimated through a projection and back-projection directly in 3D space. We

utilize higher order regularization which is weighted and directed according to the input

data by an anisotropic diffusion tensor. Our formulation enables the calculation of a dense

flow field which does not penalize smooth and non-rigid movements while aligning motion

boundaries with strong depth boundaries. An efficient parallelization of the numerical

algorithm leads to runtimes in the order of 1s and therefore enables the method to be

used in a variety of applications. We show that this novel scene flow calculation outper-

forms existing approaches in terms of speed and accuracy. Furthermore, we demonstrate

applications such as camera pose estimation and depth image superresolution, which are

enabled by the high accuracy of the proposed method. We show these applications using

modern depth sensors such as Microsoft Kinect or the PMD Nano Time-of-Flight sensor.

CP-Census: A Novel Model for Dense Variational Scene Flow from RGB-

D Data

David Ferstl, Gernot Riegler, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2014, Nottingham, Great Britain

(Accepted for oral presentation)

Abstract: We present a novel method for dense variational scene flow estimation based

a multiscale Ternary Census Transform in combination with a patchwise Closest Points

depth data term. On the one hand, the Ternary Census Transform in the intensity data

term is capable of handling illumination changes, low texture and noise. On the other

hand, the patchwise Closest Points search in the depth data term increases the robustness

in low structured regions. Further, we utilize higher order regularization which is weighted

and directed according to the input data by an anisotropic diffusion tensor. This allows

to calculate a dense and accurate flow field which supports smooth as well as non-rigid

movements while preserving flow boundaries. The numerical algorithm is solved based
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on a primal-dual formulation and is efficiently parallelized to run at high frame rates. In

an extensive qualitative and quantitative evaluation we show that this novel method for

scene flow calculation outperforms existing approaches. The method is applicable to any

sensor delivering dense depth and intensity data such as Microsoft Kinect or Intel Gesture

Camera.

Hough Networks for Head Pose Estimation and Facial Feature Localiza-

tion

Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2014, Nottingham, Great Britain

(Accepted for poster presentation)

Abstract: We present Hough Networks (HNs): a novel method that combines the idea

of Hough Forests (HFs) with Convolutional Neural Networks (CNNs). Similar to HFs, we

perform a simultaneous classification and regression on densely-extracted image patches.

But instead of a Random Forest we utilize a CNN which is capable of learning higher-

order feature representations and does not rely on any handcrafted features. Applying a

CNN at patch level allows the segmentation of the image into foreground and background.

Furthermore, the structure of a CNN supports efficient inference of patches extracted

from a regular grid. We evaluate HNs on two computer vision tasks: head pose estimation

and facial feature localization. Our method achieves at least state-of-the-art performance

without sacrificing versatility which allows extension to many other applications.

MedEyeTrac-a System for optical Monitoring of Eye Positions in tomo-

graphic Imaging and Radiotherapy of Eye Tumors

Winkler, P, Ruether, M, Ferstl, D, Huepf, T, Flitsch, R, Konrad, T, Wackernagel, W,

Tarmann, L, Langmann, G, Doeller, C, and others

In: Strahlentherapie und Onkologie

May 2014

B.4 2013

Image Guided Depth Upsampling using Anisotropic Total Generalized

Variation

David Ferstl, Christian Reinbacher, Rene Ranftl, Matthias Rüther, and Horst Bischof

In: Proceedings of IEEE International Conference on Computer Vision (ICCV)

December 2013, Sydney, Australia

(Accepted for poster presentation)
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Abstract: In this work we present a novel method for the challenging problem of depth

image upsampling. Modern depth cameras such as Kinect or Time of Flight cameras

deliver dense, high quality depth measurements but are limited in their lateral resolution.

To overcome this limitation we formulate a convex optimization problem using higher

order regularization for depth image upsampling. In this optimization an anisotropic

diffusion tensor, calculated from a high resolution intensity image, is used to guide the

upsampling. We derive a numerical algorithm based on a primal-dual formulation that is

efficiently parallelized and runs at multiple frames per second. We show that this novel

upsampling clearly outperforms state of the art approaches in terms of speed and accuracy

on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets

with highly accurate groundtruth, which, for the first time, enable to benchmark depth

upsampling methods using real sensor data.

Multi-Modality Depth Map Fusion using Primal-Dual Optimization

David Ferstl, Rene Ranftl, Matthias Rüther, and Horst Bischof

In: Proceedings of IEEE International Conference on Computational Photography (ICCP)

December 2013, Boston, USA

(Accepted for oral presentation)

Abstract: We present a novel fusion method that combines complementary 3D and 2D

imaging techniques. Consider a Time-of-Flight sensor that acquires a dense depth map

on a wide depth range but with a comparably small resolution. Complementary, a stereo

sensor generates a disparity map in high resolution but with occlusions and outliers. In

our method, we fuse depth data, and optionally also intensity data using a primal-dual

optimization, with an energy functional that is designed to compensate for missing parts,

filter strong outliers and reduce the acquisition noise. The numerical algorithm is efficiently

implemented on a GPU to achieve a processing speed of 10 to 15 frames per second.

Experiments on synthetic, real and benchmark datasets show that the results are superior

compared to each sensor alone and to competing optimization techniques. In a practical

example, we are able to fuse a Kinect triangulation sensor and a small size Time-of-Flight

camera to create a gaming sensor with superior resolution, acquisition range and accuracy.

B.5 2012

Real-Time Hand Gesture Recognition in a Virtual 3D Environment

David Ferstl, Matthias Rüther, and Horst Bischof

In: In Proceedings German and Austrian Association for Pattern Recognition (DAGM)

September 2012, Graz, Austria

(Accepted for oral presentation)
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Abstract: We present a novel technique using a range camera for real-time recognition

of the hand gesture and position in 3D. Simultaneously the user’s hand and head pose

are tracked and used for interaction in a virtual 3D desktop environment. As human

gestures provide a natural way of communications between humans, gesture recognition is a

major field of research used also for human-computer communication. Most existing hand

interaction systems are restricted to a 2D touch-sensitive plane, or track and recognize

the hand gesture on color images. Due to the lack of depth information, these systems

are limited to the 2D space only, provide little depth invariance and are sensitive to

rotation and segmentation errors, whereas we built a system for bare-hand 3D interaction,

independent from hand rotation and depth.

Depth Coded Shape from Focus

Martin Lenz, David Ferstl, Matthias Rüther, and Horst Bischof

In: In Proceedings IEEE International Conference on Computational Photography (ICCP)

April 2012, Seattle, USA

(Accepted for oral presentation)

Abstract: We present a novel shape from focus method for high- speed shape recon-

struction in optical microscopy. While the traditional shape from focus approach heavily

depends on presence of surface texture, and requires a considerable amount of measure-

ment time, our method is able to perform reconstruction from only two images. Our

method relies the rapid projection of a binary pattern sequence, while object is continu-

ously moved through the camera focus range and a single image is continuously exposed.

Deconvolution of the integral image allows a direct decoding of binary pattern and its

associated depth. Experiments a synthetic dataset and on real scenes show that a depth

map can be reconstructed at only 3% of memory costs and fraction of the computational

effort compared with traditional shape from focus.

Integral Shape from Focus

David Ferstl, Martin Lenz, Matthias Rüther, and Horst Bischof

In: In Proceedings Computer Vision Winter Workshop (CVWW)

February 2012, Mala Nedelja, Slovenia

(Accepted for oral presentation)

Abstract: A disadvantage of traditional Shape From Focus methods is its huge compu-

tational cost, which is directly dependent on the size and amount of the acquired images.

In this paper we propose a novel method to reduce the measurement time of traditional

Shape From Focus to a minimum. This reduction is achieved with a novel focus measure,

which calculates the focus by comparison of an estimated all-in-focus image with the stack

images using a normalized similarity measure. The all-in-focus image is calculated by a
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deconvolution of the integrated image stack with an calibrated integral point spread func-

tion. Because of the normalized result, the depth estimation of each surface point stops if

a local focus maximum beyond a predefined threshold is found, which leads to a reduction

of 45 percent in computation time compared to traditional Shape From Focus. Experi-

ments show, that our method outperforms the traditional Shape Form Focus algorithm in

terms of speed with a comparable accuracy.
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