Daniel Gruss

Software-based Microarchitectural Attacks

PhD Thesis

Assessors: Stefan Mangard, Thorsten Holz

June 2017

Abstract

Modern processors are highly optimized systems where every single cycle of
computation time matters. Many optimizations depend on the data that is
being processed. Software-based microarchitectural attacks exploit effects
of these optimizations. Microarchitectural side-channel attacks leak secrets
from cryptographic computations, from general purpose computations, or
from the kernel. This leakage even persists across all common isolation
boundaries, such as processes, containers, and virtual machines.

Microarchitectural fault attacks exploit the physical imperfections of
modern computer systems. Shrinking process technology introduces effects
between isolated hardware elements that can be exploited by attackers to
take control of the entire system. These attacks are especially interesting
in scenarios where the attacker is unprivileged or even sandboxed.

In this thesis, we focus on microarchitectural attacks and defenses on
commodity systems. We investigate known and new side channels and
show that microarchitectural attacks can be fully automated. Further-
more, we show that these attacks can be mounted in highly restricted
environments such as sandboxed JavaScript code in websites. We show
that microarchitectural attacks exist on any modern computer system,
including mobile devices (e.g., smartphones), personal computers, and
commercial cloud systems.

This thesis consists of two parts. In the first part, we provide background
on modern processor architectures and discuss state-of-the-art attacks
and defenses in the area of microarchitectural side-channel attacks and
microarchitectural fault attacks. In the second part, a selection of our
papers are provided without modification from their original publications.!
I have co-authored these papers, which have subsequently been anony-
mously peer-reviewed, accepted, and presented at renowned international
conferences.

1Several of the original publications were in a two-column layout. Without any changes
in content, we updated the layout for all included papers from the camera-ready
versions to fit the layout and formatting of this thesis, including resizing some figures
and tables, and changing the citation format.

Acknowledgements

First and foremost, I want to thank my advisor Stefan Mangard. You
constantly challenged my mind with ambitious ideas like the one of a
cache-based key logger at the beginning of my PhD. You gave me the
freedom to research anything I’'m interested in and supported me in all
endeavors. Thank you for your guidance throughout the last years.

I also want to thank my assessor Thorsten Holz for valuable comments
and interesting discussions at past conferences.

I really enjoyed my time at IAIK and in the Secure Systems group — you
were the best colleagues one can wish for and I owe thanks to all of you!
You all helped me directly or indirectly throughout my PhD.

I owe special thanks to some of my colleagues. Thank you Raphael for
helping me in the first months of my PhD and in my first steps on cache
attacks. Thank you Clémentine. I’ve learned so much from you — without
you, the amazing last years would not have been possible. It was a great
time and a lot of fun working with you, independent of linguistic opinions!
Thank you Michael and Moritz. You are two of the most brilliant minds I
know and I enjoy every day working with you!

I also want to thank Anders Fogh for fierce competition, great collabora-
tions, great ideas and lots of fun!

Thank you Peter Lipp and David Derler. I enjoyed teaching during my
PhD so much and not least because it’s great working in a team with youl!

Finally, I want to thank my fiancée Maria Eichlseder, my friends, my
family, and my fiancée’s family for supporting me during my PhD. Thank
you Maria for supporting me in everything I do, helping me with my
numerous questions on cryptography and maths, and tolerating what I
call a healthy work-job balance.

iii

Contents

Abstract
Acknowledgements

Contents

I Introduction to Microarchitectural Attacks
1. Introduction

2. Background

3. State of the Art

4. Future Work and Conclusions

References

IT Publications

List of Publications

5. Cache Template Attacks

6. Memory Deduplication Attacks
7. Rowhammer.js

8. Flush+Flush

9. ARMageddon

10. Prefetch Side-Channel Attacks

iii

13
29
53

55

75
7
79
121
143
175
205

243

Part 1.

Introduction to
Software-based
Microarchitectural Attacks

Introduction

The idea of learning the secret code for a safe by listening to the clicking
sounds of the lock, is likely as old as safes are. The clicking sound is an
inadvertent influence on the environment revealing secret information. In
1996, Kocher [Koc96] described side-channel attacks, a technique that
allows to derive secret values used in a computation from inadvertent
influences the computation has on its environment. This seminal work
was the beginning of an entire area of research on side channels. Kocher
performed what we now describe as a timing attack, an attack exploiting
differences in the execution time of an algorithm. In the following years,
side-channel attacks have been demonstrated based on virtually any mea-
surable environmental change caused by various types of computations,
such as power consumption [MOPO0S], electro-magnetic radiation [RR01;
KOPO09], temperature [HS13], photonic emission [Sch+12; CSW17], acous-
tic emissions [Bac+10], and many more. These attacks have in common
that they require an attacker to have some form of physical access to the
target device.

In contrast to side-channel attacks, which do not cause any damage
to the target device, there are also fault attacks [BDL97; BS97]. In a
fault attack an attacker tries to manipulate computations of a device to
either evade security mechanisms of the device or to leak its secrets. For
this purpose, the attacker manipulates the environment in a way that
influences the target device. Typically such fault-inducing environments
are at the border of or beyond the specification range of the target device.
Like for side-channel attacks, different environment manipulations have
been investigated, such as exposure to voltage glitching [Aum+02], clock
glitching [SMCO09], extreme temperatures [HS13], or photons [SA02]. Again,
to perform a fault attack, some form of physical access to the target device
is required.

1. Introduction

Modern computer systems are highly complex and highly optimized. Conse-
quently, information leakage, the inadvertent influence of the environment
in a secret-dependent way, is not only introduced on an algorithmic level.
Optimizations are performed based on the specific data values that are
processed, the location of the data, the frequency of accesses to locations,
and many other factors. It is clear to see, that any adversary observing the
effects of these optimizations through a side channel can make deductions
on the specific cause of the optimizations. Through these deductions,
the adversary learns information about the secret data values that are
processed.

In this thesis, we investigate software-based microarchitectural attacks.
Software-based microarchitectural side-channel attacks exploit timing and
behavior differences that are (partially) caused through microarchitectural
optimizations, i.e., differences that are not architecturally documented.
Software-based microarchitectural fault attacks induce faults through mi-
croarchitectural optimizations, i.e., operate elements of modern computer
systems at the border of or beyond their specification range. Generally,
software-based microarchitectural attacks do not require physical access,
but instead only some form of code execution on the target system.

Cache attacks are the most prominent class of software-based microar-
chitectural attacks. The possibility of timing differences induced through
processor caches was first described by Kocher [Koc96]. Cache timing
attacks have first mostly been applied on cryptographic algorithms in
software-based attacks [Pag02; TSS03; Ber05; BMO06].

Cache attacks in more recent works are usually instances of three generic
cache attack techniques. These techniques have been used in targeted
attacks on cryptographic algorithms [Ber05; Per05; GBK11] and were later
on generalized by Osvik et al. [OST06] and Yarom et al. [YF14]. These
generic techniques are independent of the specific cache and hardware on
which they are performed. Osvik et al. [OST06] described two generalized
cache attack techniques. First, Evict+Time, where an attacker measures
how the execution time of an algorithm is influenced by evicting a chosen
cache set. Second, Prime+Probe, where an attacker measures whether a
victim computation influences how long it takes to access every way of a
chosen cache set.

In both attacks the attacker learns that the chosen cache set was used by
the victim. Yarom et al. [YF14] introduced the third generalized attack
technique, Flush+Reload. In a Flush+Reload attack, the attacker flushes

a shared memory location from the cache and subsequently measures
how long it takes to reaccess it. If the victim loaded the shared memory
location back into the cache in the meantime, the reaccess is faster. In
a Flush+Reload attack the attacker does not only learn which cache set
was used by the victim, but even the specific memory location (at the
granularity of cache lines).

Based on these three attack primitives various computations have been
attacked, for instance cryptographic algorithms [YF14; Liu+15], web server
function calls [Zha+14], user input [GSM15; Gru+16b; Ore+15], kernel
addressing information [HWH13; Gru+16a].

Software-based fault attacks are considerably more difficult to build in
practice as faults must be induced in hardware. Hence, software has to
move the system component that is targeted to the border of or beyond its
specification range. Only in 2014 software-based fault attacks have been
found to be practical, in the so-called Rowhammer attack [Kim+14; SD15].
In concurrent work, Karimi et al. [Kar+15] demonstrated a second software-
based fault attack. They showed that a carefully crafted instruction stream
can deteriorate the processor stability and cause severe permanent damage
to the processor if executed continuously for weeks. Rowhammer attacks
have by now been demonstrated in JavaScript [GMM16; Bos+16], on
supposedly safe DDR4 [Pes+16], on co-located virtual machines [Raz+16;
Xia+16], and on mobile devices [Vee+16].

To develop and evaluate potential countermeasures against software-based
microarchitectural attacks, it is necessary to map and understand the
attack surface in detail. In this thesis, we aim to improve the general
understanding of the attack surface of software-based microarchitectural
attacks and to provide novel insights to software-based microarchitectural
attacks and attack vectors. Our research includes the minimization of
requirements, the automation of previous attacks, and the identification of
previously unknown side channels. Figure 1.1 gives an overview how the
papers relate to each other and where they are located in this exploration
space.

1. Introduction

minimization of requirements

Dedup [GBM15
(d ~.,
RH.js [GMM16]

~....

L Hello Maus17] %
.- ARM [Lip+16]
Prefetch [Gru+16a] B
.. ¢ DRAMA [Pes+16] ~— CTA [(.;SMH’}
F+F [Gru+16b]

novel side channels automation of attacks

Figure 1.1.: Overview of the relation of the papers to each other. The
dotted arrows illustrate where ideas from one paper facilitated the research
conducted in the other. The continuous arrows illustrate where concepts
from one paper where more directly applied in the other paper.

1.1. Main Contributions

We started the work on software-based microarchitectural attacks by en-
hancing the Flush+Reload cache attack technique [YF14] by an automated
method to find and exploit vulnerabilities. This generic technique called
Cache Template Attacks has been published at the USENIX Security 2015
conference [GSM15] in collaboration with Raphael Spreitzer and Stefan
Mangard. We demonstrated that Cache Template Attacks can be used
to identify and exploit leakage in old implementations of cryptographic
algorithms, or automatically spy on user input events such as keystrokes
or mouse movements. This publication is included as Chapter 5 of this
thesis.

While caches buffer the comparably slow DRAM, the DRAM itself buffers
the even slower hard disk. Hence, side-channel attacks are also possible
on the DRAM level. Suzaki et al. [Suz+11] demonstrated a side-channel
attack on page deduplication, as performed by the operating system or

1.1. Main Contributions

hypervisor, which reveals whether specific data can be found in memory.
We demonstrated that such attacks can even be performed from JavaScript
integrated into a website. Our results have been published at the ESORICS
2015 conference [GBM15] in collaboration with David Bidner and Stefan
Mangard. This publication is included as Chapter 6 of this thesis.

Based on these two works we investigated the possibility of Rowhammer
attacks [Kim+14; SD15] from JavaScript integrated into websites. For
such attacks to work it was necessary to evict data from caches using
regular memory accesses fast enough to replace the comparably fast
clflush instruction. Our investigations showed that cache eviction can
be performed fast enough for such attacks to successfully be mounted.
In our proof-of-concept implementation we were able to trigger bit flips
in exploitable memory locations from JavaScript. The results of this
research have been published at the DIMVA 2016 conference [GMM16]
in collaboration with Clémentine Maurice, and Stefan Mangard. This
publication is included as Chapter 7 of this thesis.

Related to the Flush+Reload attack we developed a new cache attack called
Flush+Flush. This technique makes cache attacks faster and stealthier as
it does not perform memory accesses itself. We evaluated the performance
and stealthiness of the attack in comparison to other cache attacks such
as Flush+Reload and Prime+Probe as well as to Rowhammer attacks.
The results of our work are also published at the DIMVA 2016 confer-
ence [Gru+16b] in collaboration with Clémentine Maurice, Klaus Wagner,
and Stefan Mangard. This publication is included as Chapter 8 of this
thesis.

Our work on fast cache eviction motivated investigations on fine-grained
access-driven cache attacks ARM Cortex-A systems, which usually has
no user-space flush instruction. We demonstrated that all cache attack
techniques can be performed on ARM Cortex-A systems as well. Based
on these attack primitives we demonstrated that Cache Template Attacks
provide a powerful means to find and exploit cache leakage on mobile
devices. Our results have been published at the USENIX Security 2016
conference [Lip+16] in collaboration with Moritz Lipp, Raphael Spreitzer,
Clémentine Maurice, and Stefan Mangard. This publication is included as
Chapter 9 of this thesis.

Besides the unified cache hierarchy there is also a second cache hierarchy
in modern processors for page table entries. We found that prefetch
instructions have a different execution time based on the state of these

1. Introduction

page translation caches. Even worse, the x86 prefetch instructions allow
unprivileged processes to prefetch privileged memory into the cache. We
exploited these observations in order to defeat kernel address space-layout
randomization (KASLR). Our results have been published at the CCS 2016
conference [Gru+16a] in collaboration with Clémentine Maurice, Anders
Fogh, Moritz Lipp, and Stefan Mangard. This publication is included as
Chapter 10 of this thesis.

1.2. Other Contributions

While working on this thesis, several contributions to other works that are
not included as a part of this thesis. Nonetheless, we discuss them here to
draw the complete picture of all contributions.

While working on the Rowhammer attack we observed timing differences
caused by so-called row hits and row conflicts in the DRAM module. To
get a better understanding of these timing differences we developed a fully
automated method to reverse-engineer the mapping of physical addresses
to DRAM cells in software. Using these reverse-engineered mappings
reduces the runtime of Rowhammer attacks significantly. Investigating
the timing differences in more detail, we found significant side-channel
leakage that is comparable to that of cache attacks. These novel DRAM
side-channel attacks have been published at the USENIX Security 2016
conference [Pes+16] in collaboration with Peter Pessl, Clémentine Maurice,
Michael Schwarz, and Stefan Mangard.

Our previous works on Rowhammer, cache eviction on ARM Cortex-A,
and DRAM reverse-engineering systems, sparked the idea of performing
Rowhammer attacks on Android devices. In a collaboration with Victor
van der Veen, Yanick Fratantonio, Martina Lindorfer, Clémentine Mau-
rice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, Cristiano Giuffrida we
published our results on Rowhammer attacks on mobile devices at the
ACM CCS 2016 conference [Vee+16].

Related work on software-based microarchitectural side channels typically
discusses the capacity of a side channel based on the raw capacity of a covert
channel built on top of it. Due to the nature of side channels, these covert
channels are not error-free. Previous work claimed that straightforward
application of error correcting codes is sufficient to eliminate all errors.
Thus, to provide realistic estimates the error rate is taken into account to

10

1.2. Other Contributions

compute a real-world capacity for the channel. Investigating how realistic
these estimates are, we built an entirely error-free covert channel. We found
that the application of error correcting codes is possible but has to be
combined with other error detection techniques in a non-trivial way. Our
channel is so reliable that we can even tunnel an SSH connection through it.
Our results have been published at the NDSS 2017 conference [Mau+17] in
collaboration with Clémentine Maurice, Manuel Weber, Michael Schwarz,
Lukas Giner, Carlo Alberto Boano, Kay Rémer, and Stefan Mangard.

Many microarchitectural attacks could generally run in JavaScript, but
require high-precision timers. We investigated high-precision timing sources
in JavaScript and found techniques which allow to mount reliable attacks.
We demonstrate this by building a covert channel through DRAM between
JavaScript running on a website and an unprivileged application running
inside a virtual machine. Our results have been published at the Financial
Crypto 2017 conference [Sch+17c] in collaboration with Michael Schwarz,
Clémentine Maurice, and Stefan Mangard.

A new feature in modern Intel processors is Intel SGX, an environment
for secure execution on untrusted hardware and operating systems. SGX
enclaves are highly secure and can generally not be inspected or monitored
by the operating system. However, they are also restricted environments,
which cannot perform any system calls directly. We investigated whether
it is possible to exploit the security features to protect malicious software
running inside an SGX enclave. We built cache side-channel attacks ex-
tracting cryptographic keys from the host or from co-located SGX enclaves.
Our results will be published at the DIMVA 2017 conference [Sch+17b] in
collaboration with Michael Schwarz, Samuel Weiser, Clémentine Maurice,
and Stefan Mangard.

We investigated possible countermeasures against attacks on address-
translation caches (cf. Chapter 10). Our solution called KAISER is a
practical extension for the Linux kernel, which eliminates the leakage
entirely while having a low performance overhead on modern processors.
Our results will be published at the ESSoS 2017 conference [Gru+17b]
in collaboration with Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard.

Finally, we also investigated generic countermeasures against cache side-

channel attacks. Modern Intel processors implement hardware-transactional
memory on top of the cache hierarchy. Through creative instrumentation

11

1. Introduction

we can use hardware-transactional memory to abort upon conflicting mem-
ory operations and cache misses. This effectively eliminates the leakage
which is exploited in cache attacks. Our results will be published at the
Usenix Security 2017 conference [Gru+17a] in collaboration with Julian
Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and Manuel Costa.

1.3. Thesis Outline

This thesis consists of two parts. In the first part (Chapter 2 — Chapter 4),
a we provide an overview on software-based microarchitectural attacks.

Chapter 2 explains the relevant background. We first detail in Section 2.1
how processors are organized. We explain the basic concept of virtual
memory in Section 2.2 and discuss the idea of caching in Section 2.3. In
Section 2.4, we provide an overview of how DRAM works.

Chapter 3 discusses the state of the art in microarchitectural attacks.
We discuss software-based microarchitectural side-channel attacks in Sec-
tion 3.1. We describe how cache attacks developed in the past decades
to the current state of the art and provide a discussion of attacks on
various caches. In Section 3.2 we introduce the concept of software-based
microarchitectural fault attacks. Finally, we discuss countermeasures and
defense mechanisms in Section 3.3.

Chapter 4 discusses future work and draws conclusions.

In the second part of this thesis (Chapter 5 — Chapter 10), a list of all
publications is provided, together with transcripts for a selection of papers
constituting this thesis.

Chapter 5 consists of our USENIX Security 2015 conference paper [GSM15]
on Cache Template Attacks. Chapter 6 consists of our ESORICS 2015
conference paper [GBM15] on page deduplication attacks in JavaScript.
Chapter 7 consists of our DIMVA 2016 conference paper [GMM16] on
Rowhammer.js. Chapter 8 consists of our DIMVA 2016 conference pa-
per [Gru+16b] on Flush+Flush. Chapter 9 consists of our USENIX Security
2016 conference paper [Lip+16] on cache attacks on ARM-based mobile
devices. Chapter 10 consists of our CCS 2016 conference paper [Gru+16a]
on prefetch side-channel attacks.

12

Background

In this chapter, we provide background which is necessary to understand
and discuss microarchitectural attacks. First of all, these attacks target
microarchitectural elements, i.e., elements of specific processor families
and models. Hence, we discuss how processors are organized in Section 2.1.
With virtual memory the processor provides process isolation for modern
operating systems. It is deeply rooted in today’s processor architectures
and influences how various microarchitectural elements work. We discuss
virtual memory in Section 2.2. Cache attacks are the most important class
of microarchitectural attacks. They typically exploit timing differences
introduced by the specific organization of the cache. We discuss caches
in detail in Section 2.3. Finally, we discuss how the memory controller
interacts with DRAM and exposes timing differences caused by the DRAM
to software in Section 2.4.

2.1. Processor organization

Modern processors are highly parallelized machines operating at extremely
high speeds. With shrinking process technology sizes, energy demands
have decreased allowing to increase processor clock frequencies. Processor
clock frequencies stayed roughly at the same level in the past decade.
However, besides the processor clock frequency, there are other ways to
improve the processing speed. Many optimizations reduce the execution
time of specific instructions by a few cycles, sometimes depending on the
data or the processor state.

Pipelining. Pipelining is one of the main contributors to performance
improvements. Pipelining splits instructions into several stages. The num-

13

2. Background

ber of stages and their purpose varies between processors. Modern proces-
sors have many pipelining stages, most importantly

e a fetch stage, loading the instruction opcode into the processor,

e a decode stage, decoding the instruction opcode to an internal
representation of the instruction,

e and an execute stage, executing the instruction.

Hence, the processor can execute multiple instructions at once, each with
a slight interleaving to the previous and the next. Modern processors can
have multiple identical stages to perform certain computations in parallel
and further improve performance.

Multi-core. Instead of optimizing the processing speed of a single exe-
cution core it is also possible to increase the number of execution cores.
Especially in server environments multiple processors are installed in a
single machine to multiply the performance for parallelizable tasks. Nat-
urally, if a task is not parallelized, there is no performance difference.
Hence, depending on the workload, a multi-processor system can provide
a significant performance improvement. Workloads on personal computers
have changed over the past decades. Today, these systems run several
hundred tasks in parallel all the time and thus benefit from multiple
processors. For this reason, multi-core processors have been introduced.
These processors combine multiple execution cores into a single processor.
Each of these execution cores has some private resources, e.g., registers
and the execution pipeline, and some shared resources, e.g., the main
memory interface.

Instruction Stream Optimization. Another idea to increase the pro-
cessor performance is to execute branches speculatively. With this opti-
mization the processor makes a guess and execute a branch before it knows
whether this branch will be executed. If the guess was correct, the proces-
sor already has the information ready when it is required. Otherwise, the
processor just discards the result. Another idea is to execute instructions
out of order. The execution of instructions with pending data dependencies
is delayed and other instructions without pending data dependencies are
executed before, to optimize the CPU throughput.

14

2.2. Virtual memory

2.2. Virtual memory

As multi-processing became more popular, proper isolation between dif-
ferent processes became more important. As a first step processor man-
ufacturers introduced coarse-grained forms of wvirtual memory, such as
Intel’s x86 segmentation. Virtual memory regions are mapped to physical
memory regions in large coherent blocks. At this level of virtual memory,
the operating system can specify access privileges, an offset, and a length
for each segment. Different processes use different segments and thus work
on different physical memory. Consequently, we distinguish between two
types of addresses: virtual addresses, which are specific to a process, and
physical addresses, which are valid system-wide but not directly accessible
for processes.

Instead of segmentation, modern processors employ a better form of virtual
memory, called “paging”, which works at a granularity of “pages”, which
are memory blocks of a fixed size. The entire virtual memory is sliced
into virtual pages and the entire physical memory is sliced into physical
pages. By numbering the pages we obtain page numbers. Paging can be
seen as a process-specific map from virtual page numbers to physical page
numbers. Modern processors typically support multiple page sizes where
the smallest page size is often 4 KB or 1 KB. Larger page sizes are always
multiples of smaller page sizes. Pages are aligned in physical memory and
in virtual memory to their own size, i.e., 4 KB pages are aligned to 4 KB
boundaries in virtual and physical address space.

With 64-bit processors the address-width was increased significantly from
32 bits to 48 bits and an extension to 57 bits is already planned. Address
translation is extremely critical to performance and the processor must
be able to handle the data structure. Hence, the data structure must be
similar to a simple array. An array that could possibly map every 4 KB
page of the 48-bit virtual address space to a physical page would already
consume 512 GB of physical memory just to store the map, at a map-entry
size of 64 bits. Clearly, this is not a practical solution. The idea behind
multi-level translation tables is that the virtual address space is usually
mapped sparsely to physical memory. With multiple levels, the size of the
map can be reduced to a negligible overhead.

To translate a virtual address into a physical address the processor first
locates the top-level translation table by reading its address from a pro-
cessor register. This register value is exchanged upon a context switch

15

2. Background

PMI4
CR3 PMIL4E 0
PMIAE 1
: PDPT
#P:MLM PDPTE 0
PMLA4E 511 PDP:TE L
: Page Directory
PDPTI
- PDE 0
PDPTE 511 PD:E 1
: Page Table
PDE #PDI
:# PTE 0
PDE 511 PT:E !
: 4 KiB Page
PTE :#PTI Byte 0
PTE 511 Byte 1
Offset
[PMLAI (9 b)PDPTI (9 b)JPDI (9 b)[PTI (9 b)] Offset (12b) | Byte 4095

48-bit virtual address

Figure 2.1.: Address translation for 4 KB pages on x86-64 processors.
Starting with the PML4 base address from the CR3 register, the processor
determines the physical address by gradually using parts of the virtual
address.

to enable multi-processing. This is the basis for the process isolation we
mentioned before. Each process has its own virtual address mappings and
can only access to its own address space.

Modern Intel processors have 4 levels of translation tables as shown in
Figure 2.2. The top-most level is the page map level 4 (PML4). It divides
the 48-bit virtual address space into 512 memory regions of each 512 GB
(PML4 entries). PML4 entries always map to page directory pointer tables
(PDPT), i.e., there is no possibility to map a 512 GB page. Each PML4
entry defines properties of the corresponding 512 GB memory region, e.g.,
whether the memory is mapped to physical memory, whether it is readable,
writable, and whether it is accessible to user space. The lower levels are
organized in the same way. Each PDPT again has 512 entries, with each
entry defining the properties of a 1 GB virtual memory region. This 1 GB
virtual page can directly be mapped to a so-called 1 GB page or to a
page directory (PD). Modern operating systems use 1 GB virtual pages
for instance for the large direct-physical mapping in kernel space which
allows working on physical address directly although running in virtual

16

2.3. Caches

addressing mode. Each PD again has 512 entries, defining the properties of
a 2 MB virtual memory region. Modern operating systems commonly use
2 MB pages to map files or large arrays. Alternatively, the PD entry can
map a page table (PT). Each PT again has 512 entries, each controlling a
4 KB page. This is the default page size for most use cases.

For any operation the processor performs, one or more virtual addresses
have to be translated into physical addresses. Consequently, the address
translation latency must be very small. With translation tables being
located in the main memory, this is not the case. Consequently, address
translation caches have been introduced to hide the DRAM latency as we
will see in the next section.

2.3. Caches

In this section we discuss caches and cache organization in detail. We
will discuss the general organization of caches and the basic concepts
in Section 2.3.1. Subsequently, we discuss cache replacement policies
in Section 2.3.2. We describe the relation between virtual and physical
addresses and caches in Section 2.3.3. Finally, we discuss how caches on
modern Intel processors work in Section 2.3.4.

2.3.1. Cache Organization

The plain computation speed of processors was the bottleneck for a
long time. However, with increasing processor frequencies, the latency of
physical memory (DRAM) increasingly became a new bottleneck. While
the bandwidth of DRAM has increased over the past decades, the latency
is still very high. Processors caches are small and fast buffers intended
to hide the latency of the slow DRAM. Modern processors have multiple
cache hierarchies for different purposes with each multiple levels of different
sized caches. Some caches are private to one execution core while other
caches are shared among all cores.

Generally, all memory accesses go through the cache. If a memory access
is served from the cache it is called a cache hit. Otherwise, it is a cache
miss causing a fetch from the slow main memory.

17

2. Background

Memory Address Cache

| | n bits | b bits | Tag Data

I
f 2" cache lines

Cache Indey k

H/_/

20 bytes

Hit/Miss

Figure 2.2.: A directly-mapped cache. Based on the middle n bits the
cache index is computed to choose a cache line. The tag is used to check
whether an address is cached. If it is cached (cache hit), the 2° bytes data
are returned to the processor.

Directly-mapped Caches. The most simple form of a cache is a
directly-mapped cache, as illustrated in Figure 2.2. A cache consists 2"
cache lines, each consisting of a tag and 2° bytes of associated data. The
tag is computed from the corresponding memory address that is buffered in
this cache line. It is used to determine whether or not a cache line currently
buffers a specific memory address. The lowest b bits of the address are
used as an offset within the cache line data. Most modern processors have
a cache line size of 64 bytes, i.e., b = 6. The middle n bits of the memory
address are used as a cache indez, telling the processor in which cache
line to look for corresponding data. The size of the cache determines how
many bits are used, i.e., how many indices there are. Addresses with the
same middle n bits are congruent, as they map to the same cache line. A
significant problem of directly-mapped caches is that they can only store
a single cache line out of all congruent cache lines. Hence, if the processor
needs to work on two or more congruent cache lines, a directly-mapped
cache would experience cache misses most of the time.

Fully-associative Caches. The congruency problem does not exist
in fully-associative caches, as illustrated in Figure 2.3. Fully-associative
caches do not have cache indices and thus they do not have any cache lines.
Instead they have multiple cache ways to store data. The tag is now used
to determine whether the corresponding memory address is cached and

18

2.3. Caches

Memory Address Cache

| | b bits | . Tag 1 Data

4—\/14———————- .

Data

Figure 2.3.: A fully-associative cache. All cache ways are checked in parallel
using the tag. The corresponding data value is selected based on the tag
comparison.

which cache way contains the associated data. Fully-associative caches are
increasingly expensive with the number of ways. Hence, they are typically
restricted to a small number of ways, e.g., translation-lookaside buffers
with 64 ways can be found in several modern processors.

Set-associative Caches. An elegant compromise are set-associative
caches, which have cache sets instead of cache lines. These caches are
widely used in modern processors, often referred to as m-way set-associative
caches. Figure 2.4 shows an abstract model of a 2-way set-associative cache.
The cache is divided into 2" cache sets. The cache set indez is determined
from the middle n bits of the memory address. Each cache set has m ways
to provide storage locations for m congruent addresses. Note that cache
sets can also be seen as tiny fully-associative caches with m ways, for
the set of congruent addresses. Hence, the tag is again used to determine
which cache way buffers a specific memory address.

Data and instruction caches today are typically implemented as m-way
set-associative caches, but processor manufacturers are also transitioning
some address translation caches from fully-associative to set-associative.

19

2. Background

Memory Address Cache

Way 1 Tag Way 1 Data

| | n bits | b bits | Way 2 Tag Way 2 Data

I
f 2" cache sets

Cache Index k

Data

Figure 2.4.: A 2-way set-associative cache. The middle n bits are the
cache index, selecting the cache set. The tag is used to check all ways
simultaneously. The data in the matching cache way is returned to the
execution core.

2.3.2. Cache Replacement Policies

Inevitably, with a limited number of ways and many congruent addresses
mapping to the same cache set, the processor constantly has to evict cache
ways to replace their content with newly requested data fetched from
the main memory. Hence, a replacement policy is implemented to decide
which cache way is replaced next when loading new data into a cache
set. Processor manufacturers keep the details of their replacement policies
mostly secret as they are a relevant contributing factor for the overall
processor performance.

A wide-spread replacement policy commonly used by Intel for different
caches is least-recently used (LRU). With an LRU replacement policy,
every cache way has some form of last-usage timestamp. This is often an
approximation to reduce the implementation complexity. Whenever the
processor has to load new data into a cache set, LRU replaces the cache
way with the oldest last-usage timestamp. LRU fails in cases where the
processor works on a set of congruent addresses larger than the number
of cache ways. In this case an LRU replacement policy yields a worst-case
performance as every single memory access will be a cache miss.

20

2.3. Caches

Virtual Address Cache

Way 1 Tag Way 1 Data
Way 2 Tag Way 2 Data

| | n bits

b bits |

- e

| QR

2" cache sets

o

Data

Figure 2.5.: A virtually-indexed virtually-tagged (VIVT) cache. The virtual
address is used to compute both index and tag. The processor does not
have to translate any addresses.

ARM processors commonly employs a pseudo-random replacement policy.
Here the next cache way to be replaced is determined by a pseudo-
random number generator. Random replacement policies are the easiest
to implement in hardware [Sez93]. They additionally have the advantage
of being energy-efficient [PS05]. In practice, random replacement policies
have shown to deliver a high performance.

To overcome the limitations of simpler algorithms, since Ivy Bridge, Intel
uses a bimodal insertion policy where the CPU can switch between the
two strategies to achieve optimal cache usage [Qur+07]. For a group of
cache sets the processor can either use a quad-age LRU strategy or a
strategy that replaces more recent cache lines first unless they are accessed
multiple times. This yields a significantly better performance when using
slightly more congruent addresses than would fit in a cache set.

2.3.3. Addressing Modes

Caches can use either virtual addresses or physical addresses to compute
the cache index and tag. Three designs have found their way into real-world
processors.

21

2. Background

Virtual Address Cache

Way 1 Tag Way 1 Data
Way 2 Tag ‘Way 2 Data

n bits b bits |

r—— - =1

I TLB | 2" cache sets

(——

Y
| n bits | b bits

i]
I f r Y
L—-- Tag —>{ =7

Data

Figure 2.6.: A physically-indexed physically-tagged (PIPT) cache. The
physical address is used to compute both index and tag. The processor
has to translate the virtual address before the cache set lookup.

Virtually-indexed virtually-tagged (VIVT) caches (cf. Figure 2.5) use the
virtual address for both index and tag. Consequently, they don’t have to
translate addresses at all and have the advantage of a low latency. However,
this comes at the price that shared memory might not be shared in the
cache, causing an unnecessary increase in cache utilization. Furthermore,
upon a context switch it may be necessary to invalidate entries because the
virtual tag is not unique. VIVT caches have been used for the smallest and
fastest data and instruction caches in some ARM processors. Furthermore,
address translation caches are typically VIVT caches.

Physically-indexed physically-tagged (PIPT) caches (cf. Figure 2.6) use
the physical address for both index and tag. Consequently, they have a
significantly higher latency than VIVT caches. However, shared memory
will always be shared in the cache. Thus, there is no unnecessary cache
utilization. Furthermore, the tag is physically unique and thus caches do
not need to be invalidated upon context switches. Today, PIPT caches are
widely used for data and instruction caches with the address translation
latency mostly hidden in the address translation caches.

Virtually-indexed physically-tagged (VIPT) caches (cf. Figure 2.7) try to
combine the advantages of both approaches by using the virtual address
for the index which is required immediately. While the cache index is

22

2.3. Caches

Virtual Address Cache
. . Way 1 Tag Way 1 Data
n bits b bits | Way 2 Tag Way 2 Data
r— ===
I TLB | 2" cache sets
[N————
Cache Index
n bits b bits
, .l-, 1 X7
I f r
L—- Tag > C?

Data

Figure 2.7.: A virtually-indexed physically-tagged (VIPT) cache. The
physical address is used to compute both the tag, but the virtual address
is used to compute the index. The cache set lookup is done in parallel to
the address translation and tag computation.

looked up the tag is computed. This hides the latency of the address
translation mostly and allows using a physical tag.

To avoid the disadvantages of VIVT caches, the cache index should not
use address bits that are not part of the page offset in the virtual address.
With a page size of 4 KB and a cache line size of 64 bytes, there are 6
bits which can be used as a cache index. Most Intel x86 processors from
the past decade integrate two 8-way set-associative VIPT L1 caches per
processor core, one for instructions and one for data. Consequently, the
size of Intel’s L1 caches is 20 - 64 - 8 = 32 KB for most processors from the
past decade.

2.3.4. Caches in Modern Intel Processors

For instructions and data, Intel x86 processors have a cache hierarchy
consisting of L1, L2, and L3 cache. The instruction and data L1 caches
are the fastest and smallest caches in this hierarchy. They are private
per-core caches, i.e., they are not shared with other cores. The L2 cache is
a unified cache, storing both instruction and data cache lines. There is no
strict relation between L1 and L2 cache, i.e., cache lines can be presented

23

2. Background

AddressBit33333333222222222211111111110000

716|5(413|2(1|0]9(8|7|6(5(4|3(2|1|0({9|8|7(6]|5]4|3|2]|1|0]|9|8|7|6

2 cores| og DD |D|B| D] |DDD|BIB| (D |D |DDBDB| |B| |B| |D 52

4 cores| DD DD D DDDB|IDID| |D |D |DBDB |D |D]| |D 2]
01 |O] |DD|D| |D| |D|D| |D| |DD|D|D|DB|D| D] (D |D| |D S2)

0o DD DD D |DDD|DID| |D |D |DDBDB| |D| |D]| |D 2]

8 cores| o1 (B |DD|B| (D] (@D |D| |D|D|B|D|DOB| D] |B] D] |B D
02 |D|D|B|D DD D|D DD D 2] Sl 2]

Table 2.1.: Complex addressing functions extrapolated from [Mau+15a].

in none, in one of the two caches, or in both caches. The L3 cache is a
unified cache which is shared among all CPU cores. It is also commonly
referred to as the last-level cache. The L3 cache is inclusive to L1 and L2
caches, i.e., all cache lines in the L1 and L2 caches must also be present in
the L3 cache. Both L2 and L3 cache are PIPT caches, enabling to share
cache lines based on the physical address.

To enhance the performance, the last-level cache is divided into cache
slices since the Intel Nehalem microarchitecture [Mau+15a]. On current
Intel processors, each core has its own L3 cache slice. The slices are inter-
connected by a ring bus allowing all cores to access all L3 cache lines. The
mapping from physical addresses to slices is not documented by Intel and
referred is to as a complex addressing function. This function has recently
been reversed-engineered by researchers [Mau+15a; Inc+15; Yar+15]. Ta-
ble 2.1 lists the slices functions for different processors. Knowledge of the
complex addressing functions facilitates cache side-channel attacks.

2.4. DRAM

The main memory of modern computer systems is typically DRAM.
DRAM has a significantly higher latency than the various caches inside
the processors. The reason for the latency is not only the low clock
frequency of DRAM cells but also how DRAM is organized and how it is
connected to the processor. As it is difficult to reduce the latency, hardware
manufacturers instead focused on increasing the bandwidth of DRAM. The
high bandwidth can be utilized to hide the latency, e.g., through speculative
prefetching. Modern processors have an on-chip memory controller which
communicates through the memory bus with the DRAM.

24

2.4. DRAM

DRAM array

Row 0

= Row 1
Memory bus %

Processor g Row 2
&

Row 3

Row 4

Figure 2.8.: A very simple computer system, with a single DRAM array,
which is connected to the processor through a memory bus. The DRAM
array consists of rows which are each 8 KB in size.

Figure 2.8 shows a very simple computer system which consists of a single
DRAM array, which is connected to the processor through a memory
bus. This DRAM array consists of DRAM rows and columns (typically
1024). Modern systems organize the memory in a way that a DRAM row
typically has a row size of 8 KB. A row can either be opened or closed. If
it is currently opened, the entire row is preserved in the row buffer.

To fetch a data value from DRAM, the processor sends a request to the
integrated memory controller. The memory controller then determines a
sequence of commands to send over the memory bus to the DRAM to
retrieve the data. If the currently opened row contains the data to retrieve,
the memory controller just fetches the data from the DRAM row buffer.
As this situation is very similar to a cache hit, we call it a row hit. If
the currently opened row does not contain the data to retrieve, we call it
a row conflict. The memory controller then first closes the current row,
i.e., writes back the entire row to the actual DRAM cells. It subsequently
activates the row with the data to retrieve, which is then loaded into the
row buffer. Then the memory controller fetches the data value from the
row buffer. Similar to cache misses, row conflicts incur an increased access
latency.

We can see that the DRAM row buffer in our simple computer system (cf.
Figure 2.8) behaves identically to a directly-mapped cache (cf. Figure 2.2).
Just as congruent memory accesses constantly lead to cache misses in a
directly-mapped cache, alternating row accesses constantly lead to row
conflicts in DRAM. Unsurprisingly, similar approaches as in the case
of caches have been implemented to increase DRAM performance and

25

2. Background

CPU Ch. DIMM | BAO BAl BA2 BA3 Rank DIMM Channel
Sandy Bridge 1 1 13,17 14,18 15,19 - 16 -
2 1 14,18 15,19 16,20 - 17 - 6
1 1 13,17 14,18 16,20 - 15, 19 -
Ivy Bridge / 1 2 13,18 14,19 17,21 - 16,20 15 -
Haswell 2 2 14,18 15,19 17,21 - 16, 20 - 7,8,9,12, 13, 18, 19
2 4 14,19 15,20 18,22 - 17,21 16 7,8,9,12, 13, 18, 19
Skylake 2 1 7,14 15,19 17,21 18,22 16,20 - 8,9, 12, 13, 18, 19
2x HaswellEP 1 2 6,22 19,23 20,24 21,25 14 7,17 -
(interleaved) 2 4 6,23 20,24 21,25 22,2 15 7,17 8,12, 14, 16, 18, 20, 22, 24, 26
2x HaswellkEP 1 2 6,21 18,22 19,23 20,24 13 -
(non-interleaved) 2 4 6,22 19,23, 20,24 21,25 14 - 7,12, 14, 16, 18, 20, 22, 24, 26
Exynos 7420 2 - 14 15 16 8,13 - - 7,12

Table 2.2.: DRAM addressing functions from [Pes+16].

eliminate bottlenecks. Modern computer systems organize the DRAM into
channels, DIMMs (Dual Inline Memory Modules), ranks, and banks.

Our simple computer system (cf. Figure 2.8) had only 1 channel, 1 DIMM,
1 rank, and 1 bank. Modern DDR3 DRAM memory has 8 banks and
DDR4 DRAM memory has even 16 banks (per rank). Each of these
banks has an independent state and thus can have different rows opened
at the same time. This reduces the chance of row conflicts for random
memory accesses significantly. Modern DRAM modules typically have 1 to
4 ranks, multiplying the number of banks even further. Similarly, modern
systems often allow to install multiple DIMM modules, again multiplying
the number of banks with the number of DIMMs. Finally, the memory
controller reorders memory accesses to reduce the number of row conflicts,
e.g., accesses to the same row and bank are grouped together temporally.

This spatial parallelism reduces the number of row conflicts. Hence, it
does not directly influence the bandwidth, but the average latency. To
increase temporal parallelism and thus the bandwidth directly, modern
computer systems employ multiple channels. Each channel is operated in-
dependently and in parallel over the DRAM bus. This effectively multiplies
the bandwidth by the number of channels.

Only if two addresses map to the same DIMM, rank and bank they can
be physically adjacent in the DRAM chip. In this case the two addresses
are in the same bank. If two addresses map to the same bank number,
but to a different rank or DIMM, they are not in the same bank and thus
generally not physically adjacent in the DRAM chip.

Similar to the slice functions of the last-level cache there are functions
mapping from physical addresses to channels, DIMMs, ranks, and banks.

26

2.4. DRAM

While AMD publicly documents these addressing function [Adv13, p.
345], Intel does not. However, the addressing functions have recently been
reverse-engineered for one architecture by Seaborn [Seal5] and with a
generic software-based approach by us [Pes+16]. Table 2.2 lists the DRAM
addressing functions for several common configurations. Knowledge of the
DRAM addressing functions enables DRAM-based side-channel attacks.

27

State of the Art

In this chapter, we discuss the state-of-the-art microarchitectural attacks
and defenses. We discuss software-based microarchitectural side-channel
attacks in Section 3.1. We discuss software-based microarchitectural fault
attacks in Section 3.2. Finally, we discuss defenses against software-based
microarchitectural attacks in Section 3.3.

3.1. Software-based Microarchitectural
Side-Channel Attacks

In this section, we discuss the most important microarchitectural side-
channel attacks. We show that imperfections of the hardware, introduced
by optimizations on a microarchitectural level, undermine system secu-
rity and software security. The hardware leaks part of its internal state
including potentially secret information through differences in behavior
and timing. Software-based microarchitectural side-channel attacks exploit
these differences entirely from software.

With the constantly growing field of microarchitectural attacks and
software-based side-channel attacks several works aim to provide a sys-
tematization of attacks and defenses in this area of research [AK; Ge+16b;
Ge+16a; BWM16; Szel6; DK16; Spr+16; Zha+16).

We discuss state-of-the-art cache attacks in Section 3.1.1, including Fvict+
Time, Prime+Probe, and Flush+Reload and variants of these attacks. We
discuss branch-prediction attacks in Section 3.1.2. We discuss attacks on
page-translation caches in Section 3.1.3, including prefetch side-channel at-
tacks. We discuss exception-based attacks in Section 3.1.4, including page
deduplication attacks. We discuss DRAM-based attacks in Section 3.1.5.

29

3. State of the Art

Finally, we discuss other microarchitectural side-channel attacks in Sec-
tion 3.1.6.

3.1.1. Cache Attacks

The idea of caches is to hide the latency of the comparably slow physical
main memory. Fetching data from the cache has a significantly lower
latency. Kocher [Koc96] described the possibility of exploiting these tim-
ing differences in so-called cache-timing attacks. The idea is to deduce
information on cryptographic secrets from the influence of the cache on the
execution time of a cryptographic implementation. Cache timing attacks
have been studied in many works [Kel4-00; Pag02; T'SS03; Ber05; BMO06].

The first cache attacks have been cache-based timing attacks. More recent
cache attacks are usually categorized into instances of three generalized
cache attack techniques, which have first been performed on cryptographic
algorithms [Ber05; Per05; GBK11] and were later on generalized by Os-
vik et al. [OSTO06] (Evict+Time and Prime+Probe) and Yarom et al.
[YF14] (Flush+Reload). We discuss the different attack techniques in
detail in the following.

Bernstein’s attack. Bernstein [Ber05] described a remote cache-timing
attack on an AES T-table implementation. T-tables are preprocessed S-
box computations that directly follow the AES design [Nat01; DR13]. The
entire AES algorithm can then be implemented as a fast sequence of T-
table lookups. The T-table entries are accessed based on an algorithmically
defined scheme. For instance in the first encryption round, the algorithm
accesses the T-table entries T)j[p; @ k;], where p; is the i-th plaintext
byte and k; is the i-th key byte, with ¢ = 7 mod 4 and 0 < ¢ < 16.
Bernstein observed that these accesses may be cached and depending on
whether they are cached a timing difference can be observed. By observing
the timing difference, the attacker can deduce which T-table entry was
accessed and thus, learns the upper 4 bits of the result of p; ® k;. In a
chosen-plaintext attack the attacker can eliminate p; from the equation
and thus obtain the upper 4 bits for every key byte. Combining the
information from not only the first round but from multiple rounds yields
the full AES key. Bernstein’s attack has been reproduced and evaluated
in many works [NSW06; BM06; SP13b; Wei+14; SG14].

30

3.1. Software-based Microarchitectural Side-Channel Attacks

Evict+Time. Osvik et al. [OST06] described Evict+Time as a generic
cache-timing attack technique. The attacker triggers several victim com-
putations and measures the victim’s execution time. To measure the
influence of a specific cache set the attacker evicts the cache set before
the computation for half of the victim runs. If there is a timing difference
when evicting the cache set, the attacker can conclude that the cache set
was used by the victim computation.

Similar as in Bernstein’s attack, the timing differences observed this way
yield which T-table entries were accessed. Evict+Time yields information
on a cache-set granularity but suffers from various sources of noise on
the execution time. Hence, several hundred thousand repetitions may
be necessary to extract an entire AES key. Ewvict+Time requires the
attacker to be able to measure the exact starting and end time of a victim
computation. This might not be possible in asynchronous attacks where the
attacker cannot trigger the computation or more generally in many cloud
scenarios. An advantage of Evict+Time is that it does not require any
shared memory. Complex addressing functions and replacement policies
of modern processors make eviction more difficult and thus make Fvict+
Time attacks harder.

Evict+Time attacks have been investigated by Osvik et al. [OST06] in an
attack on OpenSSL AES. Spreitzer et al. [SP13a; Lip+16] demonstrated
that Evict+Time on OpenSSL AES is also applicable to mobile ARM-
based devices. Hund et al. [HWH13] demonstrated that Evict+Time can
be used to defeat kernel address space-layout randomization (KASLR).

Prime+Probe. The second technique presented by Osvik et al. [OST06]
is much more powerful. In a Prime+Probe attack, the attacker continuously
fills (primes) a cache set and measures how long it takes to refill the cache
set, as illustrated in Figure 3.1. Osvik et al. described that the time it
takes to refill the cache set is proportional to the number of cache ways
that have been replaced by other processes. While this proportionality
is not strictly present anymore for more recent microarchitectures, the
general idea is still valid. A higher timing means that at least one cache
way has been replaced. A lower timing means that likely no cache way
has been replaced.

Prime+Probe has the same granularity as Fuvict+Time, i.e., a cache set.
The accuracy is higher than with Evict+Time as it measures the cache ac-
cess times directly, whereas Fvict+ Time measures it indirectly through the

31

3. State of the Art

Attacker Cach Victim
address space ache address space

\| [—
'
=
|
Z

f

[[[1
I

step 143: prime + measure (=probe)

N—|

Figure 3.1.: A Prime+Probe attack illustrated in 3 steps. The attacker
continuously primes a cache set using its own memory locations and
measures the execution time of this step (step 1 and step 3). In step 2, the
victim possibly accesses (non-shared) memory locations that map to the
same cache set. If the victim accessed memory locations in the same cache
set in step 2, the execution time of the priming (i.e., the probe step) is
high as one of the cache ways has been replaced. Otherwise, the execution
time of the priming is low.

execution time. Prime+Probe does not require any measurement of the ex-
ecution time and thus allows performing asynchronous attacks. Analogous
to Fvict+Time, complex addressing functions and replacement policies of
modern processors also make Prime+Probe attacks more difficult.

The first Prime+Probe attacks targeted the L1 cache. However, the reverse-
engineering of the last-level cache [Mau+15a; Inc+15; Yar+15] opened up
the possibility to perform cross-core Prime+Probe attacks through the
inclusive last-level cache. The first Prime+Probe attacks on the L1 cache
have first been demonstrated by Percival [Per05] on RSA. Neve et al. [NS06]
attacked an AES implementation, Osvik et al. [OST06] demonstrated an
an attack on OpenSSL AES, Aciicmez et al. [AK06; Aci07b; AS08a;
AS07] demonstrated attacks on OpenSSL AES and RSA exploiting the L1
instruction cache, Bonneau et al. [BMO06] attack OpenSSL AES exploiting
internal collisions, Brumley and Hakala [BH09] demonstrated and attack
on ECDSA, Aciicmez et al. [ABG10] demonstrated an attack on DSA
exploiting the L1 instruction cache, Zhang et al. [Zha+12] demonstrated
an attack on ElGamal.

The first Prime-+Probe attacks on the last-level cache have been per-
formed by Ristenpart et al. [Ris+09] and later by Zhang et al. [Zha+11]
to detect co-location in the cloud and eavesdrop on co-located virtual

32

3.1. Software-based Microarchitectural Side-Channel Attacks

Attacker Cach Victim
address space ache address space

Step

1: flug},
h
—I% step 2: Dossibly accesses

s

Figure 3.2.: A Flush+Reload attack illustrated in 3 steps. In step 1, the
attacker flushes a shared memory location in the attacker virtual address
space. In step 2, the victim possibly accesses the same shared memory
location in the victim virtual address space. In step 3, the attacker reloads
the shared memory location and measures the access latency. If the victim
accessed the memory location in step 2, the access latency observed in the
reload step is low. Otherwise, the access latency in the reload step is high.

machines. However, these attacks were performed on microarchitectures
with a simpler organization, i.e., before Intel Nehalem, without cache
slices and without complex addressing functions [Mau+15a]. Maurice et al.
[Mau+15b] presented a Prime+Probe covert channel through the last-level
cache on a recent Intel processor. Liu et al. [Liu+15] demonstrated an at-
tack on ElGamal, Irazoqui et al. [IES15] and later Kayaalp et al. [Kay+16]
demonstrated attacks on AES. Oren et al. [Ore+15] performed a Prime+
Probe attack in the browser to eavesdrop on user activities, Inci et al.
[Inc+15] attacked ElGamal. Our Prime+Probe attack on BouncyCastle
AES was the first last-level Prime+Probe attack on ARM-based mobile
devices [Lip+16]. Finally, we presented a fast and robust Prime+Probe
covert channel on the Amazon EC2 cloud which employs synchronization
techniques and error correction codes to achieve a 0% error rate [Mau+17].

Brasser et al. [Bra+17] showed that Prime+Probe attacks can also be per-
formed by a malicious operating system on Intel SGX enclaves. Intel SGX
enclaves aim to provide a secure execution environment where software
can be executed securely even if the operating system is compromised. We
showed that Prime+Probe attacks can even be performed from inside an
enclave [Sch+17b]. They use the protection features provided by Intel SGX
to effectively hide the attack from the operating system. They demonstrate
that they can steal most key bits of an RSA private key from a single
RSA exponentiation running on the host or a co-located enclave.

33

3. State of the Art

Flush+Reload. Flush+Reload is often considered the most powerful
cache attack. They work on a single cache line granularity and even
more, they reveal to the attacker whether a very specific memory location
was cached or not. The attack works by frequently flushing a cache line
using the clflush instruction. The attacker then measures the time it
takes to reload the data. If the reload time is low the attacker learns
that another process (i.e., the victim) must have reloaded the very same
memory location into the cache. If the reload time is high the attacker
learns that likely no other process accessed the memory location in the
meantime. This general attack flow is illustrated in Figure 3.2. Flush+
Reload exploits the availability of shared memory and especially shared
libraries between the attacker and the victim program. Hence, in scenarios
where shared memory is not available, Flush+ Reload cannot be applied
and an attacker has to resort to Prime+Probe instead.

There are many variants of Flush+Reload, most prominently FEvict+
Reload [GSM15; Lip+16] and Flush+Flush [Gru+16b; Lip+16], both
of which we introduced. In an Fvict+Reload attack the c1flush instruc-
tion is replaced by a cache eviction as in a Prime+Probe attack. This
makes Fuvict+Reload applicable to architectures that do not expose a
flush instruction. Flush+Flush exploits a timing difference in the c1flush
instruction to determine whether a memory location is cached. Hence,
the attacker can omit the reload step from Flush+Reload and build a
significantly faster and stealthier cache attack that does not perform a
single memory access.

The first Flush+ Reload-like attack has been demonstrated by Gullasch et al.
[GBK11], attacking AES. Yarom and Falkner [YF14] demonstrated the
first full Flush+ Reload attack, attacking RSA. Flush+Reload attacks on
AES have been demonstrated on Intel processors by Irazoqui et al. [IES15;
Ira+15a] and Giilmezoglu et al. [Giil+15]. We also demonstrated Flush+
Reload attacks on AES on Intel processors [GSM15] and on mobile ARM-
based devices [Lip+16]. Flush+Reload attacks have also been demonstrated
on ECDSA by Benger et al. [Ben+14], van de Pol et al. [PSY15], and
Yarom and Benger et al. [YB14]. Allan et al. [All4+16] demonstrated that
a combination with a denial-of-service attack to degrade the speed of
the ECDSA algorithm can yield a more efficient Flush+Reload attack on
ECDSA. Other attacks have been performed by Zhang et al. [Zha+14] on
activities in co-located virtual machines and by Irazoqui et al. [Ira+15b]
on TLS. Inci et al. [Inc+16] demonstrated that they can recover encryption
keys used in co-located VMs on Amazon EC2 in a larger and automated

34

3.1. Software-based Microarchitectural Side-Channel Attacks

scale. Bruinderink et al. [Gro+16] demonstrated an attack on the BLISS
signature scheme. Irazoqui et al. [Ira+14; IES16] demonstrated cross-VM
and cross-CPU variants of the Flush+Reload attack. Another variation of
the Flush+Reload attack combines it with return-oriented programming
to attack cache designs that are less straightforward to attack [ZXZ16].

Beyond Flush+Reload attacks on cryptographic implementations, we
demonstrated Flush+Reload attacks on user input [GSM15; Lip+16].

3.1.2. Branch-Prediction Attacks

Another set of caches are used for branch prediction. The branch-pattern
table stores past results on branches and uses them to predict the outcome
of future branches. The branch-target buffer caches branch targets from
past branches to predict targets of future branches. Both caches are
virtually-indexed and thus an adversary can target these caches without
knowledge of physical addresses.

Software-based side-channel attacks based on branch prediction hits and
misses have first been demonstrated by Aciicmez et al. [ASK07; Aci07a] in
attacks on the RSA implementation of OpenSSL. The attacker primes the
branch-target buffer by executing a sequence of branches. If the victim
experiences a branch misprediction, an entry of the branch-target buffer
will be replaced. The attacker subsequently observes a higher execution
time due to a misprediction for one of its branches.

Bhattacharya et al. [BM15] show that branch prediction attacks based
on hardware performance counters can be used to extract RSA keys from
exponentiations running in other processes. Evtyushkin et al. [EPA15]
demonstrate a covert channel between two processes manipulating the
branch predictor. Evtyushkin et al. [EPA16] also demonstrate that KASLR
can be defeated using the branch-target buffer. They infer where code has
been executed in the kernel based on the mapping from virtual addresses
to the branch-target buffer cache lines. Lee et al. [Lee+16] show that
a malicious operating system can reverse-engineer the control flow of
SGX enclaves through branch-prediction analysis. Ge et al. [Ge+16a]
analyze besides other side channels also the capacity and error rate of a
branch-prediction-based covert channel.

35

3. State of the Art
3.1.3. Page-translation Cache Attacks

Hund et al. [HWH13] presented the first attack exploiting timing differences
caused by page-translation caches. Triggering page faults on inaccessible
memory regions reveals whether the memory region would be valid for
the kernel, as the valid page-translation entries are cached, independent
of the current privilege level. This allows recovering which addresses are
valid and even which addresses are used by specific parts of the kernel,
i.e., it defeats kernel address-space-layout randomization (KASLR). To
run the attack, multiple page faults are triggered. When processing the
first page fault, the processor walks through the page translation tables,
caching every valid entry. For every subsequent page fault on the same
address, the translation table entries are already cached and thus the time
until the page fault is triggered is significantly lower.

Jang et al. [JLK16] exploited TSX transaction aborts upon page faults to
optimize this attack. Their attack is significantly faster and more reliable
and allows defeating KASLR within seconds. Furthermore, they observed
a timing difference when trying to execute inaccessible kernel addresses.
For executable kernel addresses the latency until the TSX transaction
abort is lower than for non-executable kernel memory. Simultaneously
to their work, we demonstrated that prefetch instructions leak the same
timing difference and can be used to defeat KASLR as well [Gru+16a).

Van Schaik et al. [Sch+17a] showed that timing attacks allow to reverse-
engineer the size and structure of the page translation caches. Gras et al.
[Gra+17] showed that this information can be used in FEvict+Reload
attacks to defeat ASLR from sandboxed JavaScript.

3.1.4. Exception-based Attacks

Exception-based attacks deduce information from processor exceptions
they trigger. Typical exceptions are scheduler interrupts, instruction aborts,
page faults, but also behavioral differences, e.g., instructions providing
the user with an error code. Through this behavior the CPU leaks direct
information (i.e., the behavior itself) and indirect information (i.e., timing
differences due to the behavior).

We include exception-based attacks as microarchitectural attacks, as they
exploit both architecturally defined and undefined behavior. Especially the
implementation of instructions depends on the specific microarchitectural

36

3.1. Software-based Microarchitectural Side-Channel Attacks

design. Unspecified cases may influence the processor state and operation
on some microarchitectures whereas others ignore it.

Two decades ago, Warner et al. [War+96] presented the first covert channel
based on page faults. Page faults can leak sensitive information in three
ways: the location of the page fault, the execution time of the page fault,
and the mere fact that a page fault occurred i.e., the memory access was
delayed or not successful. Page deduplication is a mechanism to share
identical memory pages across boundaries of virtual machines to reduce
the memory footprint of systems [Mil+09]. However, the fact that a page
fault occurred reveals to a user process that a second copy of the same page
exists somewhere on the same machine. Suzaki et al. [Suz+11] presented
an attack exploiting this to detect programs running in co-located virtual
machines. Owens et al. [OW11] demonstrated fingerprinting based on
page deduplication attacks. Xiao et al. [Xia+12; Xia+13] demonstrated
cross-VM covert channels based on the page deduplication side channel.
We demonstrated page deduplication attacks from JavaScript running in
a website [GBM15].

Xu et al. [XCP15] demonstrated that page faults can be used as a side-
channel by a malicious operating system to spy on an application running
in a secure enclave. Shinde et al. [Shi+16] later confirmed their results.
The malicious operating system frequently changes the virtual memory
mappings of the enclave from valid to invalid. This forces the enclave
to experience page faults for almost every memory reference. Although
the page fault address in Intel SGX is truncated to be page-aligned
the operating system is able derive accurate information of what the
application in the secure enclave is processing. Weichbrodt et al. [Wei+16]
used a similar approach to interrupt the secure enclave frequently to
exploit double-fetch vulnerabilities in enclaves reliably. Zhang et al. [ZW09]
proposed an attack that uses system interrupts information to derive user
input. Simon et al. [SXA16] demonstrated a similar attack on Android
that allows an attacker to recover words and sentences.

3.1.5. DRAM-based Attacks

Modern cloud systems often have multiple processors installed in a multi-
socket mainboard. The processor caches are kept coherent with an inter-
processor coherency protocol. However, this only has an effect on shared
memory cache lines. For co-located virtual machines that do not share

37

3. State of the Art

memory, the cache does not provide a communication channel in this
setup.

Wu et al. [WXW12; WXW14] found that timing differences caused by
memory bus locking can be exploited to build a covert channel between
co-located virtual machines in this setup. Their covert channel works
through channel contention and has a raw capacity of 13.5 KB/s at an
error rate of 0.75% on the Amazon EC2 cloud. Inci et al. [Inc+16] found
that memory bus locking can be used to verify co-location in the Microsoft
Azure cloud.

More recently, we found found that the DRAM itself can also be ex-
ploited [Pes+16]. They described two attack primitives as so-called DRAM
addressing (DRAMA) attacks. The row-conflict attack primitive works
similar to Prime+Probe, the row-hit attack primitive is a side channel that
is comparable to a Flush+Reload attack. Both side channels work without
requiring any shared memory. DRAMA attacks exploit the DRAM row
buffer which acts similarly as a directly-mapped per-bank cache for the
DRAM rows.

In case of the row-conflict attack, the attacker and victim share a DRAM
bank, but no DRAM row. The attacker continuously opens the same row
in a bank. Whenever the victim accesses a different row in the same bank,
the attacker observes a higher latency. The row-conflict covert channel
achieves a performance of 74.5KB/s with an error rate of 0.4% in a
cross-VM cross-processor cloud setup.

In a row-hit attack, attacker and victim share a DRAM row in hardware.
The attacker loads another row into the row buffer, comparable to the
flush-step in a Flush+Reload attack. If the victim accesses the shared row
again, it will be loaded into the row buffer. The attacker then reloads a
memory location from the shared row and measures the access latency. If
the victim accessed the shared row in the meantime, the access latency is
low. Otherwise, the access latency is high.

Bhattacharya et al. [BM16] exploited the row-conflict side channel to
locate the DRAM bank of a cryptographic secret exponent. They use this
side-channel information to perform a Rowhammer attack on the secret
exponent, leading to faulty signatures which allow a full key recovery. We
demonstrated that the timing differences of the row-conflict side channel
are large enough to be measured from JavaScript [Sch+17¢c|. Based on
this observation, we demonstrated a transmission from an unprivileged
process inside a virtual machine with no network access to JavaScript

38

3.2. Software-based Microarchitectural Fault Attacks

code running inside a website. The covert channel achieves a raw capacity
of 11b/s and an error rate of 0%.

3.1.6. Other Microarchitectural Side-Channel Attacks

Besides these main categories of software-based microarchitectural side-
channel attacks, some works have investigated other interferences in in-
structions and microarchitectural elements. These interferences originate
in the throughput limitations of processors. Aciicmez et al. [AS08b] demon-
strated that parallel execution of multiplication instructions can leak an
RSA key used in a square-and-multiply exponentiation. Evtyushkin et al.
[EP16] build a covert channel exploiting timing differences of the rdseed
instruction depending on the state of the internal random number buffer.

3.2. Software-based Microarchitectural Fault
Attacks

A common assumption in system security and software security is the
security of the hardware and its error-free operation. However, hardware is
not perfect and especially when operated outside the specification, faults
can be induced by an attacker [BDL97; BS97; Aum+02; SMC09; HS13;
SA02]. A unique feature of microarchitectural fault attacks is that they use
effects caused by microarchitectural elements or operations implemented
on a microarchitectural level. In the software-based variant these effects
and operations are triggered from software.

The first software-based microarchitectural fault attack was the so-called
Rowhammer bug. Kim et al. [Kim+14] found that it can be triggered
from software and that this could have implications on system security.
They execute a sequence of memory accesses and clflush operations to
frequently open and close DRAM rows, as illustrated in Figure 3.3. If the
DRAM rows are in physical proximity, a bit can flip in another DRAM row
without accessing it. This other memory location might be inaccessible
to the attacker and even belong to another security domain. Their work
sparked a series of publications that investigated the security implications
of the Rowhammer bug and the requirements to successfully trigger it.

In early 2015, Seaborn and Dullien [SD15] presented the first two practical
Rowhammer exploits. The first exploit escapes from the Google NaCl

39

3. State of the Art

DRAM bank

step 3: bits in
the middle row
11111111111111 flipped from 1 to 0

11111111111111

step 1: activate

10111110101111

step 2: activate
11111111111111

copy 11111111111111

row buffer

Figure 3.3.: To trigger the Rowhammer bug, memory locations in the
same bank but in different rows are alternately accessed (steps 1 and
2) in a high frequency. Depending on the DRAM cell susceptibility to
Rowhammer and the activation frequency, bits flip in step 3.

sandbox by causing a bit flip in dynamically generated indirect jumps.
They spray the memory with indirect jumps, to maximize the probability
to flip a bit in one of them. After a bit flipped in the jump instruction, the
attacker gains control over the jump and can thus escape from the NaCl
sandbox. The second exploit escalates from user mode to kernel privileges
by causing a bit flip in a page table. Again they spray the memory, but
this time with page tables, by memory-mapping the same file over and
over again. Every mapping requires page table entries, which consist to
more than 80% of address bits. The file contents are only kept in memory
once. Hence, they fill almost the entire memory with address bits. When a
bit flips in an address bit, the user memory mappings change from the file
contents to another page. Hence, the user program has very likely gained
access to its own page tables and thus has gained kernel privileges.

Seaborn and Dullien found 85% of all DDR3 modules they tested to be
susceptible to the Rowhammer bug.

In July 2015, we demonstrated the first Rowhammer attack from sand-
boxed JavaScript [GMM16]. We triggered bit flips in page tables from
JavaScript, by using cache eviction instead of the clflush instruction.
We introduced a new hammering technique called amplified single-sided
hammering, where an attacker hammers two DRAM rows in a 2 MB page
to flip a bit in another 2 MB page.

40

3.2. Software-based Microarchitectural Fault Attacks

Despite claims by DRAM vendors, we publicly reported the first bit
flips on DDR4 memory in late 2015 and published our results in early
2016 [Pes+16]. For our attack we reverse-engineered the DRAM addressing
functions for this purpose to perform an optimized attack. Our results on
DDRA4 were later on confirmed independently by Lanteigne [Lanl16]. He
observed a susceptibility rate of 67% of the DDR4 memory modules he
tested. Aichinger [Aicl5a; Aicl5b] found that the Rowhammer bug also
exists in ECC memory.

Also in 2016, Qiao and Seaborn [QS16] implemented a Rowhammer attack
with non-temporal memory accesses, showing that prohibiting access to
clflush is not sufficient. Bosman et al. [Bos+16] developed a reliable
Rowhammer exploit in JavaScript exploiting page deduplication on Win-
dows systems besides the Rowhammer bug. Bhattacharya et al. [BM16]
demonstrated the first Rowhammer attack on cryptographic secrets. They
trigger bit flips in an RSA key used in an exponentiation. Subsequently,
they recover the RSA key through the Chinese remainder theorem as in
first fault attacks on RSA [BDL97|. Xiao et al. [Xia+16] implemented a
Rowhammer attack on Xen-PVM, triggering bit flips in hypervisor page
tables and consequently obtaining hypervisor privileges.

Razavi et al. [Raz+16] demonstrated a Rowhammer attack on co-located
tenants in the presence of page deduplication. They first scan the entire
DRAM of the system for bit flips using the Rowhammer attack. Subse-
quently, they fill vulnerable pages with data that they suspect to be in
a victim machine that will be co-located in the future. As soon as the
victim is co-located, the identical memory pages are deduplicated. If the
attacker now performs the Rowhammer attack again to trigger a bit flip
in the page that is now also used by the victim. Through this attack they
are able to manipulate installed certificates and update URLs used in the
co-located machine to install malicious fake updates.

Besides personal computers and servers, mobile devices can also be at-
tacked using the Rowhammer bug [Vee+16]. In our work with Van der
Veen et al. we show that memory allocation techniques on Android devices
expose uncached memory to user programs. Thus, the user can hammer
DRAM rows efficiently and flip bits in kernel-level data structures.

In simultaneous work another software-based microarchitectural fault
attack has been presented. Karimi et al. [Kar+15] demonstrated that
software can artificially age circuits used in specific pipeline stages. A
carefully crafted instruction stream increases the latency of the critical

41

3. State of the Art

path of circuits if executed for several weeks. When the latency of the
critical path exceeds the specification the subsequent pipeline stages work
with incorrect values. Consequently, any further computations on the
processor may have erroneous results.

3.3. Defenses Against Software-based
Microarchitectural Attacks

Defenses against software-based microarchitectural attacks can be imple-
mented on the user-space layer, system layer, or hardware layer. System
layer and user-space layer would allow for protecting commodity systems.
However, on a hardware level, defenses may induce a smaller performance
overhead.

Most generic defenses try to reduce the amount of resource sharing to
mitigate specific side-channel attacks. A countermeasure that has been
proposed against same-core attacks is to schedule processes in different
security domains only to different CPU cores [Per05; Mar+10]. Similarly,
to mitigate cross-core attacks one could schedule such processes to different
CPUs. For cross-CPU attacks one could perform the entire computation
on different physical systems. However, the central idea of the cloud is
to share resources and cloud providers will not eliminate multi-tenancy.
Furthermore, information leakage through a remote interface might still
be possible [Ber05].

Eliminating resource sharing does not work at all in the case of personal
computers. Users deliberately want to execute third-party code such as
native binaries or JavaScript on a website. Hence, it is important to find
defense mechanisms that do not eliminate sharing but provide protection
through other means. Furthermore, defenses against Rowhammer, as a
microarchitectural fault attack, often follow similar approaches as defenses
against microarchitectural side-channel attacks in many cases. In the
following, we discuss possible state-of-the-art defenses grouped by the
three layers: user-space layer, system layer, and hardware layer.

3.3.1. User-Space Layer

Constant-time and data-obliviousness. In his seminal work on cache
timing attacks, Bernstein [Ber05] already proposed several mitigation tech-

42

3.3. Defenses Against Software-based Microarchitectural Attacks

niques to protect AES computations. He emphasized that constant-time
implementations are the most important protection mechanisms for cryp-
tographic algorithms. Furthermore, he criticized the design of AES that
suggests to perform data-dependent lookups in software. Similar defense
mechanisms have been advised by later work [Cop+09; BLS12; Zha+12].
In his work on RSA cache timing attacks, Aciicmez et al. [Aci107a] proposed
eliminating secret-dependent branches to defeat branch prediction attacks.
Agosta et al. [Ago+07] suggested to either eliminate secret-dependent
branches by replacing the branch by arithmetic operations or by convert-
ing branches to indirect jumps. Joye et al. [JTO7] proposed an oblivious
software exponentiation that performs no secret-dependent data or code
accesses and thus is cache side-channel resistant.

Today, constant-time and oblivious computations are a standard counter-
measure against attacks on cryptographic implementations. However, it
has been found very hard to write truly constant-time implementations for
some algorithms [BS13; YGH16; GBY16]. Still, microarchitectural side-
channel attacks on cryptographic algorithms can generally be mitigated
entirely in user-space implementations.

Preloading all data into the cache before running an algorithm has
been investigated as a countermeasure against cache side-channel attacks.
Hilton et al. [HLL16] demonstrated that this can improve performance
of secure enclaves significantly while eliminating leakage based on cache
misses. However, this approach is probabilistic and an attacker running
on a second core might still be able to manipulate the cache state to
restore the cache misses and thus, the leakage. However, experiments we
performed showed that prefetching or preloading AES T-tables does not
have any significant effect on asynchronous Flush+Reload and Prime+
Probe cross-core cache attacks.

3.3.2. System Layer

Constant-time and data-obliviousness. Andrysco et al. [And+15]
developed a library that allows constant-time fixed-point numeric compu-
tations. Ohrimenko et al. [Ohr+16] developed a framework that allows
making any algorithm data- and code-oblivious. Through conditional
CPU operations the control flow is always the same and memory fetches
are always performed. They demonstrated the practicality of their solu-
tion on commonly used machine learning algorithms run in Intel SGX

43

3. State of the Art

enclaves. However, the framework does not protect against accidentally
adding code that leaks side-channel information through timing or data
accesses. From a more theoretical aspect Oblivious RAM (ORAM) could
provide data-obliviousness in general. To perform an array lookup, a sim-
ple ORAM construction would access every element in the array. More
complex ORAM constructions achieve a lower runtime overhead while
still maintaining certain lower security bounds for distinguishing any two
array lookups based on the access sequence. In practice, ORAM suffers
from severe performance and latency penalties and is therefore not widely
applicable.

Manipulation of timing sources. Most microarchitectural attacks re-
quire some form of accurate timing measurements. Consequently, simulat-
ing timing sources to reduce their usefulness for attackers has been pro-
posed in several independent works [Avi+10a; Avi+10b; Forl2; Wu+15a;
Wu+15b; LGR13; MDS12]. In modern cloud environments, this is typically
already the case. Every virtual machine has its own timing offsets, including
low-level timers like cycle counter registers. However, microarchitectural
attacks seem widely unaffected from this [Ira+14; IES16; Liu+15].

Vattikonda et al. [VDS11] proposed to add additional fuzziness to timers
to destroy any reliable timing information for the guest. However, micro-
benchmark measurements as used in modern cache attacks only require
minimal timing differences [Gru+16b; Mau+17]. Furthermore, statistical
methods allow to align traces and recover the secret information [Liu+15].
Furthermore, even in absence of any timing source an attacker can fall-back
to a counting thread [Wra92; Lip+16] or build even more sophisticated
and accurate timers [Sch+17c; Sch+17b]. Hence, it would be necessary to
prevent any form of parallelism in the attacker process and also prevent
any access to indirect timing sources such as interrupts from a preemptive
scheduler [Dun+02; Avi+10a; Ste+13; Coc+14].

Timing differences in general can be made invisible to other processes, by
making algorithms always consume the worst case time or by bucketing
their computation time [KD09; AZM10; ZAM11; Coc+14]. This can be
effective against timing attacks including the FEwvict+ Time cache timing
attack. However, it does not have a significant effect on other cache
side-channel attacks such as Flush+Reload or Prime+Probe, as they can
derive exactly when a memory access is performed and not only overall
execution time differences. Many threat models, especially for multi-user
environments, exclude direct measurement of the execution time of a

44

3.3. Defenses Against Software-based Microarchitectural Attacks

specific algorithm. Hence, Evict+Time is not possible in such a threat
model, whereas Flush+Reload and Prime+Probe are.

Disabling cache-line sharing and shared memory. Disabling re-
source sharing can be applied on every level for different resources with
different granularities. As the last-level cache is typically physically-indexed
and physically-tagged, cache lines can only be shared across processes if
they are part of a shared memory region. Disabling cache-line sharing by
avoiding shared memory has first been suggested by Yarom et al. [YF14]
against Flush+Reload attacks. However, this would increase memory uti-
lization significantly and also increase the execution time due to higher
cache miss rates.

Another source of shared memory is page deduplication. Suzaki et al.
[Suz+11] recommended to disable page deduplication in cloud environ-
ments to mitigate page deduplication attacks. The importance of disabling
page deduplication in cloud environments has been substantiated with
more sophisticated attacks being demonstrated [OW11; Xia+12; Xia+13;
Bar+15; Raz+16]. In our work on page deduplication attacks, we also
recommended disabling page deduplication to prevent attacks on personal
computers [GBM15]. Bosman et al. [Bos+16] came to the same conclusion
in order to prevent Rowhammer attacks on Windows systems.

While the large cloud providers have already disabled page deduplication,
cloud providers generally have a large interest in keeping page deduplica-
tion enabled to optimize resource utilization and increase cost efficiency.
Ning et al. [Nin+16] designed a system that enables page deduplication
between virtual machines belonging to the same group, while preventing
cross-group attacks.

Zhou et al. [ZRZ16] proposed “copy-on-access”, a more dynamic approach
to disable cache-line sharing. They developed a system where the operating
system or hypervisor dynamically creates copies of pages that are used
simultaneously by multiple programs. However, in practice it only increases
the amount of measurements an attacker has to perform, but does not
fully mitigate any cache side-channel attack.

To mitigate microarchitectural attacks on KASLR, we proposed to use
separate paging structures for kernel space and user space to avoid sharing
cache lines in paging structure caches [Gru+16a]. This was also proposed
in concurrent work by Jang et al. [JLK16]. Gruss et al. [Gru+17b] showed

45

3. State of the Art

that separating paging structures indeed eliminates the page-translation
cache side channel.

Avoiding cache-set sharing. Assuming the problem of cache-line shar-
ing is solved and thus Flush+Reload attacks are not possible anymore,
cache-set sharing still allows performing Prime-+Probe attacks. To pre-
vent cache-set sharing, cache-coloring has been proposed as a counter-
measure against side-channel attacks by Shi et al. [Shi411]. Kim et al.
[KPM12] implemented a protection mechanism for cryptographic im-
plementations based on cache coloring on modern Intel CPUs. God-
frey [GZ14] implemented a similar protection mechanism in the Xen
hypervisor. Cock [Coc+14] evaluated cache coloring on ARM-based de-
vices. In all cases the authors measured only a small performance impact.
However, the memory overhead is significant: colors are fixed to physical
addresses and thus large portions of physical memory have to be assigned
to the same virtual machine or process in order to provide strict cache
coloring without other virtual machines or processes working in the same
cache set. Costan et al. [CD16] proposed Sanctum, an alternative to Intel
SGX that employs cache coloring to protect against cache side-channel
attacks on enclaves.

The slices used in the last-level cache in modern Intel processors can be
utilized for cache coloring [HWH13; Mau+15a; Inc+15; Yar+15]. They
already implicitly make cache attacks more difficult as the attacker has
to gain knowledge on how addresses map to slices. Additionally, slices
facilitates implementing cache coloring schemes on a system level. With
every slice the number of colors is multiplied by 2.

With Intel CAT (cache allocation technology) [Int14], system software can
now directly control how the slices are used. Intel CAT allows restricting
cores to a subset of slices of the last-level cache. By separating processes
of different security domain to different cores and thus their data into
different cache slices, any cache-set sharing is eliminated. Liu et al. [Liu+16]
implemented CATalyst, a system that instruments Intel CAT to protect
general purpose software and cryptographic algorithms. They use Intel
CAT to pin cache lines in the cache by first restricting access to one slice
to its core and subsequently removing all cores from this slice. Still, cached
values are served from the cache, effectively pinning the values cached in
this slice into the cache. A compiler could generate the code to protect
secret-dependent operations with Intel CAT. The performance overhead
for low-memory tasks is negligible.

46

3.3. Defenses Against Software-based Microarchitectural Attacks

Intel CAT likely can also be used to prevent DRAMA side-channel attacks.
The attacker may not be able to flush or evict victim data. Consequently,
the victim process has full control over all its memory accesses in terms
of cache hits and cache misses and can avoid information leakage through
cache misses.

Weif} et al. [Wei+14] developed a scheduler that reduces the amount of
cache set sharing between different virtual machines. Moon et al. [MSR15]
proposed frequent VM migration to avoid colocation for longer periods in

time. A similar approach based on container migration has been proposed
by Azab et al. [AE16].

Avoiding spatial proximity. To mitigate Rowhammer attacks it is not
sufficient to avoid memory and cache-set sharing, but it is also necessary
to avoid spatial proximity in DRAM. Brasser et al. [Bra+16] proposed
to isolate processes running in different security domains in DRAM such
that no security domain can flip bits in another security domain.

Cache cleansing. If we assume that attacker and victim cannot access
any cache set simultaneously, the question is how to cope with leakage that
remains in the cache after the victim was descheduled. Cache cleansing
aims to protect against attacks in such a scenario. It tries to maintain
the cache in a state that leaks no information to prevent cache attacks.
Zhang et al. [ZR13] and Godfrey et al. [GZ14] proposed cache cleansing
to prevent leakage in cloud scenarios. They flush the cache upon context
switches to eliminate the secret information from the cache. Cock et al.
[Cocl3] implemented a scheduler that reduces the amount of flushes on
context switches and while maintaining the same security properties.
Varadarajan et al. [VRS14] proposed a minimum-runtime guarantee for
virtual machines in the cloud to prevent frequent context switches between
different virtual machines. They also use cache cleansing to mitigate
leakage of sensitive data. While this does not degrade system performance
significantly it increases latency for requests to other VMs by up to 17%.
Braun et al. [BJB15] proposed to compile specially annotated functions to
be constant-time and data-oblivious. These functions also do not access
any shared cache sets. Furthermore, they employ cache cleansing before
and after the secret-dependent execution.

With the advent of multi-core processors, cache cleansing lost some of its
practical relevance. Although disabling hyperthreading might be viable,
disabling multi-core or the last-level cache entirely is not a practical

47

3. State of the Art

solution. Even without the last-level cache, coherency protocols can keep
cache lines coherent across processors and reintroduce the supposedly
eliminated timing differences.

Detecting vulnerabilities. A different branch of countermeasures are
mechanisms to detect vulnerabilities in software. Detected vulnerabilities
can be eliminated by patching the software.

With Cache Template Attacks [GSM15]|, we presented a way to scan
software for vulnerabilities. Doychev et al. [Doy+15] proposed to detect
potential leakage in applications using static analysis techniques. A similar
system has been proposed by Irazoqui et al. [IES17] to detect microar-
chitectural attacks including DRAMA and Rowhammer. Reparaz et al.
[RBV16] proposed black-box leakage detection for cryptographic implemen-
tations and other algorithms. Zankl et al. [ZHS16] advised to incorporate
automated leakage detection in the deployment process for cryptographic
libraries. In line with these works are also approaches to quantify cache
leakage using detailed abstract models of the cache [Dem+12; DK16;
Cha+16]. A developer can use this information to eliminate the leakage
through source code improvements.

To mitigate Rowhammer attacks, Kim et al. [Kim+14] proposed to detect
vulnerable DRAM rows and remap them to spare DRAM cells. Brasser et al.
[Bra+16] proposed to disable these DRAM regions in the boot loader.

Detecting and stopping ongoing attacks. Another form of detection
mechanisms aim at detecting ongoing attacks. Following the idea of virus
and malware scanners, a software runs continuously checking the system for
malicious activity and subsequently stop the attacking processes or virtual
machines. Zhang et al. [Zha+11] proposed HomeAlone, a system using
a Prime+Probe covert channel to detect colocation. Their system allows
detecting when a virtual machine is co-located with other virtual machines
on the same physical machine although being billed for a dedicated machine.
With Cache Template Attacks [GSM15], we presented a way to search
and detect ongoing cache attacks. However, both approaches increase the
system load significantly.

Cardenas et al. [CB12] used performance counters to detect microarchi-
tectural denial-of-service attacks in cloud environments. Demme et al.
[Dem+13] proposed the use of performance counters to detect abnormal
cache behavior to detect malware and Tang et al. [T'SS14] enhanced this
idea by evaluating performance counters using unsupervised learning.

48

3.3. Defenses Against Software-based Microarchitectural Attacks

Chouhan et al. [CH16] proposed to use bloom filters on the cache miss
traces to detect yet unknown cache side-channel attacks. Hunger et al.
[Hun+15] proposed detecting side-channel attacks through measuring
the performance variations in a program that mimics a typical victim
application.

Herath and Fogh [HF15] proposed to monitor cache misses to detect
Flush+Reload attacks and Rowhammer. Similar approaches have been
chosen by Chiappetta et al. [CSY15] and Zhang et al. [ZZL16]. Both built
systems that use cache hit and miss traces to detect Flush+Reload attacks
in native and cloud environments respectively. We showed that detection
mechanisms through performance counters might be an insufficient solu-
tion [Gru+16b]. We showed that performance counters fail to detect all
variants of cache attacks, such as Flush+Flush and slowed-down variants of
Flush+Reload. In response, Fogh [Fogl5] developed a mechanism that uses
performance-monitor interrupts on rdtsc instructions. This mechanism
checks the program code around the current instruction pointer for suspi-
cious instructions like c1flush. If suspicious instructions are found, the
potentially malicious program is slowed down or terminated. Payer [Pay16]
developed a system called HexPADS, which detects cache attacks and
Rowhammer at runtime. HexPADS uses different performance events like
cache references, cache misses, and page faults to evaluate whether a pro-
cess is malicious. HexPADS can easily be applied to commodity operating
systems.

Chen et al. [Che+17] designed a framework to detect ongoing controlled-
channel attacks on SGX enclaves at runtime. They use TSX to built
a trusted in-enclave counting thread. This counting thread is used to
measure the execution time of code sections. If the execution time is too
high an interrupt must have occurred and thus the untrusted operating
system interrupted the enclave, likely to perform an attack.

To specifically detect and stop ongoing Rowhammer attacks, several works
propose the usage of performance counters to detect whether to induce or
wait for row refreshes [Kim+14; Corl6; Awe+16].

3.3.3. Hardware Layer

Eliminating timing differences. Naturally, timing differences intro-
duced by the hardware could be eliminated in hardware [Pag03; Ber05;
Per05]. The best example might be the c1flush instruction, which has

49

3. State of the Art

a small but exploitable timing difference when accessing cached and un-
cached memory locations. Making this instruction constant-time would
likely not be noticed in practice [Gru+16b]. The instruction is rarely
used and a timing penalty of less than 10 cycles is negligible for rarely
used instructions. Similarly, prefetch instructions leak through timing
differences that could be eliminated without a significant performance
penalty [Gru+16a].

Timing differences due to hardware modification only occur if the soft-
ware runs through an instruction stream that runs into these hardware
optimizations. Leakage introduced this way could be avoided by providing
constant-time instructions as building blocks for more complex algorithms,
e.g., cryptographic implementations. Indeed, processor manufacturers are
incorporating and increasing number of constant-time instructions for
cryptographic primitives [Int08; AMDO09; ARM12; ARM13], most promi-
nently Intel AES-NI. Instruction set extensions like AES-NI have been
proposed as countermeasures against various attacks [Pag03; Ber05; Per05].
Today, many cryptographic libraries use these instructions typically by
default [Ope].

Wang et al. [WFS14] proposed to change memory controllers to eliminate
timing side-channels. Most importantly, they suggest changes to the row-
buffer policy. Instead of keeping the row buffer open, they immediately
close the row buffer again, leaving the DRAM in a pre-charged state.
This introduces a lower latency penalty than a row conflict, but still
a significant performance penalty as compared to current implementa-
tions. This countermeasure would likely eliminate DRAMA side-channel
attacks [Pes+16].

Timing differences are no problem if the execution time does not vary
depending on secret information. Wang et al. [WLO0T7] proposed to eliminate
cache side-channel leakage with their so-called partition-locked caches
(PLcache) and random-permutation caches (RPcache). The PLcache allows
locking cache lines in the cache and prevent their eviction. Hence, an
attacker cannot observe any cache misses from the victim process as the
victim operates entirely on the cache. The RPcache approach introduces a
different mapping from physical addresses to cache sets for every process
at runtime. Hence, each program has its own cache sets which may be
overlapping or disjoint but are never identical. Consequently, the attacker
cannot prime a cache set of the victim and thus the attacker cannot
perform a cache attack on the victim.

50

3.3. Defenses Against Software-based Microarchitectural Attacks

Kong et al. [Kon+08] showed that both the PLcache and the RPcache
protections can be circumvented by an attacker. They proposed informing
loads as an extension to the RPcache to protect against cache side channels.
Informed loads are special instructions that do not only perform the
memory load but also re-randomize data structures [Kon+09]. Liu et al.
[LL14] proposed a cache design where the mapping from addresses to
cache sets is dynamically randomized at runtime. While the randomized
address mapping does not prevent that attacker and victim share a cache
set, it does effectively prevent that attacker and victim share a cache set
over a longer period in time. Consequently, many attacks are mitigated.
Fuchs et al. [FL15] proposed to use specialized prefetching algorithms to
mitigate side-channel attacks.

Disabling resource sharing. Also on the hardware level it is possi-
ble to disable or reduce the amount of resource sharing. Page [Pag05]
suggested partitioned caches to avoid cache-set sharing across processes.
These per-process partitions are maintained dynamically, avoiding any
static cache mapping and cache sharing. Wang et al. [WLO08] proposed a
new cache architecture to mitigate cache side-channel attacks. Their cache
architecture would prevent cache-set sharing between attacker and victim
using dynamic mappings between addresses and cache sets. Tiwari et al.
[Tiw-+09] proposed a mechanism to execute untrusted code with tight up-
per limits on the leakage in terms of time and side effects, with a moderate
performance impact. Sanchez et al. [SK10] proposed a faster cache design
which decouples cache ways and cache associativity. This cache design is
also likely to impact the applicability of eviction-based attacks like Prime+
Probe. Domnitser et al. [Dom+11] proposed non-monopolizable caches as
a defense against cache attacks. Non-monopolizable caches prevent that
any process can allocate enough cache lines to observe cache collisions
with another process. Domnitser et al. observed a low performance penalty
for cryptographic algorithms. However, using non-monopolizable caches
for larger parts of the software stack would severely impact the system
performance, as it is equivalent to reducing the cache size per process.

To mitigate branch prediction attacks, Tan et al. [TWG14] proposed a new
branch target buffer scheme which allows detecting potentially malicious
activity. After detection, the hardware prevents that branch target buffer
entries are shared with the suspected malicious processes.

Rowhammer countermeasures in hardware. Hardware countermea-
sures against Rowhammer are specific to the Rowhammer hardware defi-

o1

3. State of the Art

ciency. Kim et al. [Kim+14] proposed several solutions to the Rowhammer
bug, including usage of ECC memory, building more reliable DRAM cells,
and increasing the refresh rate. They also showed that increasing the
refresh rate is not always effective unless it is increased by a factor of 7 or
more. Instead, they propose PARA, a mechanism which probabilistically
opens adjacent rows. As Rowhammer attacks require a huge number of
accesses, the adjacent rows are very likely refreshed early enough and no
bit flip occurs.

A different mechanism is target-row refresh (TRR). TRR refreshes lines
after a certain number of accesses to adjacent lines. Although TRR has
been announced for DDR4 modules, it was removed from the final DDR4
standard [GMM16].

52

Future Work and Conclusions

We can draw conclusions on four different axis from this thesis and the
corresponding publications.

First, microarchitectural attacks can be widely automated. We have shown
this with our work on Cache Template Attacks [GSM15], but automation
also played a significant role in our other works [Lip+16; Mau+17]. Au-
tomation provides any unsophisticated user with the ability to perform
microarchitectural attacks. It also enables more large scale attacks. Future
work will likely investigate automation of microarchitectural attacks in
further detail.

Second, unknown and novel side channels are very likely to exist and to be
found. We showed that modern microarchitectures expose several previ-
ously unknown side channels, such as the c1flush instruction [Gru+16b],
the DRAM [Pes+16], or prefetch instructions [Gru+16a]. While we found
several new side channel, it is more difficult to find all microarchitectural
side channels. Hence, we can expect to find more microarchitectural side
channels and especially find new side channels with every new microar-
chitecture. Furthermore, many microarchitectural side channels have not
been investigated in detail yet. For instance, it is likely that the prefetch
side channel [Gru+16a] contains information that has not been used in
any published attacks. Also microarchitectural elements at low levels,
closer to the execution core, should be investigated for new side channels.
Future work should investigate whether these hardware components, such
as graphic adapters, can be instrumented in attacks.

Third, it is possible to reduce and minimize requirements of known at-
tacks to a point where they can be performed in highly-restricted and
sandboxed environments. We have shown that this is the case in our work
on Rowhammer attacks in JavaScript [GMM16] and in our work on page
deduplication attacks in JavaScript [GBM15]. In terms of software-based
microarchitectural fault attacks, we are just starting to investigate various

93

4. Future Work and Conclusions

hardware elements and how they can be accessed from unprivileged envi-
ronments. Investigating the applicability of Rowhammer [Kim+14; SD15]
and MAGIC [Kar+15] attacks in different scenarios will help to assess their
risks. However, besides the DRAM and specific processor components,
there is an abundance of other hardware elements in modern systems that
could be attacked. Such novel attacks might reduce the requirements for
fault attacks even further.

Fourth, constructing both effective and efficient countermeasures is a
difficult task. Research often over-ambitiously aims to find universal
countermeasures against microarchitectural attacks, ignoring that the var-
ious attacks have vastly different requirements and properties [Gru+16b;
Pes+16]. At the core of microarchitectural attacks is usually a temporal
or behavioral difference that is intended by the processor manufacturer
to optimize the performance. Hence, it we cannot always find a universal
countermeasure that does not degrade the performance as was the case
for the prefetch side channel [Gru+16a]. Security and performance are
contradicting each other to a growing extent. Countermeasures can only
be practical if they provide useful and possibly dynamic trade-offs between
security and performance. Instead of universal countermeasures, it may ap-
pear as a low-hanging fruit to protect specific scenarios, but it is also more
likely to be practical. Especially cryptographic implementations are al-
ready being constantly improved to defend against new microarchitectural
attacks.

o4

[ABG10]

[Aci07a]

[Ac107b)

[Adv13]

[AE16]

[Ago+07]

[Aiclbal
[Aic15b]
[AK]

[AKOG]

[All+16]

References

O. Aciigmez, B. B. Brumley, and P. Grabher. New Results
on Instruction Cache Attacks. In: CHES’10. 2010 (p. 32).

0. Aciigmez. Advances in Side-Channel Cryptanalysis: Mi-
croArchitectural Attacks. PhD Thesis. Oregon State Univer-
sity, 2007 (pp. 35, 43).

O. Aciicmez. Yet Another MicroArchitectural Attack: Ex-
ploiting I-cache. In: Proceedings of the 1st ACM Computer
Security Architecture Workshop. 2007 (p. 32).

Advanced Micro Devices. BIOS and Kernel Developer’s
Guide (BKDG) for AMD Family 15h Models 00h-OFh Pro-
cessors. 2013. URL: http://support.amd.com/TechDocs/
42301_15h_Mod_00h-OFh_BKDG.pdf (p. 27).

M. Azab and M. Eltoweissy. MIGRATE: Towards a Light-
weight Moving-target Defense against Cloud Side-Channels.
In: IEEE Security and Privacy Workshops (SPW). 2016
(p. 47).

G. Agosta, L. Breveglieri, G. Pelosi, and I. Koren. Coun-
termeasures against branch target buffer attacks. In: IEEE
Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’07). 2007 (p. 43).

B. Aichinger. DDR memory errors caused by Row Hammer.
In: HPEC’15. 2015 (p. 41).

B. Aichinger. Row Hammer Failures in DDR Memory. In:
memcon’15. 2015 (p. 41).

0. Aciigmez and C. K. Kog. Microarchitectural attacks and
countermeasures. In: (p. 29).

0. Aciicmez and C. K. Kog. Trace-Driven Cache Attacks on
AES (Short Paper). In: Proceedings of the 8th international

conference on Information and Communications Security.
2006, pp. 112-121 (p. 32).

T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and
Y. Yarom. Amplifying Side Channels Through Performance

Degradation. In: Proceedings of the 32th Annual Computer
Security Applications Conference (ACSAC’16). 2016 (p. 34).

95

http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf

References

[AMDOY]

[And+15]

[ARM12]
[ARM13]

[AS07]

[AS08a]

[ASO8b]

[ASKO7]

[Aum+02]

[Avi+10a]

[Avi+10Db]

[Awe+16]

56

AMD. AMD I/0O Virtualization Technology (IOMMU) Spec-
ification, rev 1.26. 2009 (p. 50).

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S.
Lerner, and H. Shacham. On subnormal floating point and
abnormal timing. In: S&P’15. 2015 (p. 43).

ARM Limited. ARM Architecture Reference Manual. ARM
v7-A and ARMv7-R edition. ARM Limited, 2012 (p. 50).

ARM Limited. ARM Architecture Reference Manual ARMvS.
ARM Limited, 2013 (p. 50).

O. Aciigmez and J.-P. Seifert. Cheap Hardware Parallelism
Implies Cheap Security. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC 2007) (Sept. 2007),
pp. 80-91 (p. 32).

O. Aciigmez and W. Schindler. A Vulnerability in RSA
Implementations Due to Instruction Cache Analysis and Its
Demonstration on OpenSSL. In: CT-RSA 2008. 2008 (p. 32).

0. Aciigmez and W. Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demon-
stration on OpenSSL. In: CT-RSA 2008. 2008 (p. 39).

0. Aciigmez, J.-P. Seifert, and C. K. Kog. Predicting secret
keys via branch prediction. In: CT-RSA 2007. 2007 (p. 35).

C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter, and J.-P.
Seifert. Fault attacks on RSA with CRT: Concrete results
and practical countermeasures. In: CHES’02. 2002 (pp. 5,
39).

A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating
timing channels in compute clouds. In: Proceedings of the
2nd ACM Cloud Computing Security Workshop (CCSW’10).
2010, pp. 103-108 (p. 44).

A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In: Proceedings of the

9th USENIX conference on Operating systems design and
implementation (OSDI'10). 2010 (p. 44).

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin. ANVIL: Software-based protec-

tion against next-generation rowhammer attacks. In: ACM
SIGPLAN Notices 51.4 (2016), pp. 743755 (p. 49).

[AZM10]

[Bac+10]

[Bar+15]

[BDL97]

[Ben+14]

[Ber05]

[BHOY]

[BJB15]

[BLS12]

[BMOG]

[BM15]

References

A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box
mitigation of timing channels. In: CCS’10. 2010 (p. 44).

M. Backes, M. Diirmuth, S. Gerling, M. Pinkal, and C.
Sporleder. Acoustic Side-Channel Attacks on Printers. In:
USENIX Security Symposium. 2010 (p. 5).

A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently Breaking ASLR in the Cloud. In: WOOT’15. 2015
(p. 45).

D. Boneh, R. A. DeMillo, and R. J. Lipton. On the im-
portance of checking cryptographic protocols for faults. In:
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 1997, pp. 37-51 (pp. 5,
39, 41).

N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “Ooh
Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In: CHES’14. 2014 (p. 34).

D. J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
Department of Mathematics, Statistics, and Computer Sci-
ence, University of Illinois at Chicago, 2005. URL: http:
//cr.yp.to/antiforgery/cachetiming-20050414 . pdf
(pp- 6, 30, 42, 49, 50).

B. Brumley and R. Hakala. Cache-Timing Template Attacks.
In: ASTACRYPT’09. 2009 (p. 32).

B. A. Braun, S. Jana, and D. Boneh. Robust and Effi-
cient Elimination of Cache and Timing Side Channels. In:
arXiv:1506.00189 (2015) (p. 47).

D. J. Bernstein, T. Lange, and P. Schwabe. The security
impact of a new cryptographic library. In: International

Conference on Cryptology and Information Security in Latin
America. 2012 (p. 43).

J. Bonneau and I. Mironov. Cache-collision timing attacks
against AES. In: CHES’06. 2006 (pp. 6, 30, 32).

S. Bhattacharya and D. Mukhopadhyay. Who watches the
watchmen?: Utilizing Performance Monitors for Compromis-
ing keys of RSA on Intel Platforms. In: Cryptology ePrint
Archive, Report 2015/621 (2015) (p. 35).

o7

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

References

[BM16]

[Bos+16]

[Bra+16]

[Bra+17]

[BS13]

[BS97]

[BWM16]

[CB12]

[CD16]

[CH16]

[Cha+16]

o8

S. Bhattacharya and D. Mukhopadhyay. Curious case of
Rowhammer: Flipping Secret Exponent Bits using Timing
Analysis. In: CHES’16. 2016 (pp. 38, 41).

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est
Machina: Memory Deduplication as an Advanced Exploita-
tion Vector. In: S&P’16. 2016 (pp. 7, 41, 45).

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi.
CAn’t Touch This: Practical and Generic Software-only
Defenses Against Rowhammer Attacks. In: arXiv:1611.08396
(2016) (pp. 47, 48).

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S.
Capkun, and A.-R. Sadeghi. Software Grand Exposure: SGX
Cache Attacks Are Practical. In: arXiv:1702.07521 (2017)

(p. 33).

D. J. Bernstein and P. Schwabe. A word of warning. In:
CHES’13 Rump Session. 2013 (p. 43).

E. Biham and A. Shamir. Differential fault analysis of secret
key cryptosystems. In: Annual International Cryptology
Conference. Springer. 1997, pp. 513-525 (pp. 5, 39).

J. Betz, D. Westhoff, and G. Miiller. Survey on covert chan-
nels in virtual machines and cloud computing. In: Transac-
tions on Emerging Telecommunications Technologies (2016)
(p. 29).

C. Cardenas and R. V. Boppana. Detection and mitigation
of performance attacks in multi-tenant cloud computing. In:
1st International IBM Cloud Academy Conference, Research
Triangle Park, NC, US. 2012 (p. 48).

V. Costan and S. Devadas. Intel SGX explained. Tech. rep.
Cryptology ePrint Archive, Report 2016/086, 2016 (p. 46).

M. Chouhan and H. Hasbullah. Adaptive detection technique
for Cache-based Side Channel Attack using Bloom Filter for

secure cloud. In: 3rd International Conference on Computer
and Information Sciences (ICCOINS). IEEE. 2016 (p. 49).

S. Chattopadhyay, M. Beck, A. Rezine, and A. Zeller. Quan-
tifying the Information Leak in Cache Attacks through Sym-
bolic Execution. In: arXiv:1611.04426 (2016) (p. 48).

[Che+17]

[Coc+14]

[Cocl3]

[Cop+09]

[Cor16]
[CSW17]

[CSY15]

[Dem+12]

[Dem+13]

[DK16]

References

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detect-
ing Privileged Side-Channel Attacks in Shielded Execution
with Déja Vu. In: Proceedings of the 12th ACM on Asia
Conference on Computer and Communications Security (Asi-
aCCS’17). 2017 (p. 49).

D. Cock, Q. Ge, T. Murray, and G. Heiser. The last mile:
an empirical study of timing channels on selL4. In: CCS’14.
2014 (pp. 44, 46).

D. Cock. Practical probability: Applying pGCL to lattice
scheduling. In: International Conference on Interactive The-
orem Proving. 2013 (p. 47).

B. Coppens, 1. Verbauwhede, K. De Bosschere, and B. De
Sutter. Practical mitigations for timing-based side-channel
attacks on modern x86 processors. In: S&P’09 45-60 (2009)

(p. 43).
J. Corbet. Defending against Rowhammer in the kernel. Oct.
2016. URL: https://lwn.net/Articles/704920/ (p. 49).

E. Carmon, J.-P. Seifert, and A. Wool. Photonic Side Chan-
nel Attacks Against RSA. In: HOST’17. 2017 (p. 5).

M. Chiappetta, E. Savas, and C. Yilmaz. Real time detec-
tion of cache-based side-channel attacks using Hardware

Performance Counters. Cryptology ePrint Archive, Report
2015/1034. 2015 (p. 49).

J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan.
Side-channel vulnerability factor: a metric for measuring
information leakage. In: ACM SIGARCH Computer Archi-
tecture News 40.3 (2012), pp. 106-117 (p. 48).

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waks-
man, S. Sethumadhavan, and S. Stolfo. On the feasibility
of online malware detection with performance counters. In:
ACM SIGARCH Computer Architecture News 41.3 (2013),
pp. 559-570 (p. 48).

G. Doychev and B. Kopf. Rigorous Analysis of Software
Countermeasures against Cache Attacks. In: arXiv:1603.021
87 (2016) (pp- 29, 48).

99

https://lwn.net/Articles/704920/

References

[Dom+11]

[Doy+15]

[DR13]

[Dun-+02]

[EP16]

[EPA15]

[EPA16]

[FL15]

[Fogl5]

[For12]

60

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. In: ACM Trans-
actions on Architecture and Code Optimization (TACO) 8.4
(2011) (p. 51).

G. Doychev, B. Kopf, L. Mauborgne, and J. Reineke. Cache-
Audit: a tool for the static analysis of cache side channels.

In: ACM Transactions on Information and System Security
(2015) (p. 48).

J. Daemen and V. Rijmen. The Design of Rijndael: AES —
The Advanced Encryption Standard. 2013 (p. 30).

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In: ACM SIGOPS Operating
Systems Review (2002) (p. 44).

D. Evtyushkin and D. Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation
and mitigations. In: CCS’16. 2016 (p. 39).

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Covert
channels through branch predictors: a feasibility study. In:
Proceedings of the Fourth Workshop on Hardware and Ar-
chitectural Support for Security and Privacy. ACM. 2015,
p. 5 (p. 35).

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In:

International Symposium on Microarchitecture (MICRO’16).
2016 (p. 35).

A. Fuchs and R. B. Lee. Disruptive Prefetching: Impact on
Side-Channel Attacks and Cache Designs. In: Proceedings of
the 8th ACM International Systems and Storage Conference
(SYSTOR’15). 2015 (p. 51).

A. Fogh. Detecting stealth mode cache attacks: Flush+Flush.
2015. URL: http://dreamsofastone . blogspot.co.at/
2015/ 11/ detecting - stealth - mode - cache - attacks .
html (p. 49).

B. Ford. Plugging side-channel leaks with timing information
flow control. In: Proceedings of the 4th USENIX conference
on Hot Topics in Cloud Ccomputing. 2012 (p. 44).

http://dreamsofastone.blogspot.co.at/2015/11/detecting-stealth-mode-cache-attacks.html
http://dreamsofastone.blogspot.co.at/2015/11/detecting-stealth-mode-cache-attacks.html
http://dreamsofastone.blogspot.co.at/2015/11/detecting-stealth-mode-cache-attacks.html

[GBK11]

[GBM15]

[GBY16]

[Ge+16a]

[Ge+16b)]

[GMM16]

[Gra+17]

[Gro+16]

[Gru+16a]

[Gru+16b]

References

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: IEEE Symposium on Security and Privacy — S&P. IEEE
Computer Society, 2011, pp. 490-505 (pp. 6, 30, 34).

D. Gruss, D. Bidner, and S. Mangard. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In: 20th
Furopean Symposium on Research in Computer Security
(ESORICS’15). 2015 (pp. 8, 9, 12, 37, 45, 53, 121).

C. P. Garcia, B. B. Brumley, and Y. Yarom. Make Sure
DSA Signing Exponentiations Really are Constant-Time. In:
CCS’16. 2016 (p. 43).

Q. Ge, Y. Yarom, F. Li, and G. Heiser. Contemporary Pro-
cessors Are Leaky — and There’s Nothing You Can Do About
It. In: arXiv:1612.04474 (2016) (pp. 29, 35).

Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A Survey of
Microarchitectural Timing Attacks and Countermeasures
on Contemporary Hardware. In: Journal of Cryptographic
Engineering (2016), pp. 1-27. DOI: 10.1007/s13389-016-
0141-6 (p. 29).

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016 (pp. 7-9, 12, 40, 52, 53, 143).

B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida.
ASLR on the Line: Practical Cache Attacks on the MMU.
In: (2017) (p. 36).

L. Groot Bruinderink, A. Hiilsing, T. Lange, and Y. Yarom.
Flush, Gauss, and Reload — A Cache Attack on the BLISS
Lattice-Based Signature Scheme. In: CHES’16. 2016 (p. 35).

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR. In: CCS’16. 2016 (pp. 7, 8, 10, 12, 36, 45, 50, 53, 54,
243).

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+
Flush: A Fast and Stealthy Cache Attack. In: DIMVA’16.
2016 (pp. 7-9, 12, 34, 44, 49, 50, 53, 54, 175).

61

http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6

References

[Gru+17a]

[Gru+17b]

[GSM15]

[Giil+15]

(GZ14]

[HF15]

[HLL16]

[HS13]

[Hun+15]

[HWH13]

62

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa. Strong and Efficient Cache Side-Channel Pro-
tection using Hardware Transactional Memory. In: USENIX
Security Symposium. (to appear). 2017 (p. 12).

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,

and S. Mangard. KASLR is Dead: Long Live KASLR. In:
ESSo0S’17. (to appear). 2017 (pp. 11, 45).

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 7, 8, 12, 34, 35,
48, 53, 79).

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush+Reload Attack on AES.

In: Constructive Side-Channel Analysis and Secure Design
(COSADE). 2015 (p. 34).

M. M. Godfrey and M. Zulkernine. Preventing cache-based
side-channel attacks in a cloud environment. In: IEEE Trans-
actions on Cloud Computing (2014) (pp. 46, 47).

N. Herath and A. Fogh. These are Not Your Grand Daddys
CPU Performance Counters — CPU Hardware Performance
Counters for Security. In: Black Hat 2015 Briefings. Aug.
2015 (p. 49).

A. Hilton, B. Lee, and T. Lehman. Poisonlvy: Safe specula-
tion for secure memory. In: Proceedings of the 49th Interna-
tional Symposium on Microarchitecture (MICRO’16). 2016
(p. 43).

M. Hutter and J.-M. Schmidt. The temperature side channel
and heating fault attacks. In: International Conference on

Smart Card Research and Advanced Applications. Springer.
2013, pp. 219-235 (pp. 5, 39).

C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vish-
wanath, and M. Tiwari. Understanding contention-based
channels and using them for defense. In: IEEE 21st Inter-
national Symposium on High Performance Computer Archi-
tecture (HPCA). 2015 (p. 49).

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (pp. 7, 31, 36, 46).

[IES15]

[IES16]

[IES17]

[Inc+15]

[Inc+16]

[Inc+16]

[Int0g]

[Int14]

[Ira+14]

[Ira+15a]

[Tra+15b]

References

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(pp- 33, 34).

G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross processor
cache attacks. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security (Asi-
aCCS’16). 2016 (pp. 35, 44).

G. Irazoqui, T. Eisenbarth, and B. Sunar. MASCAT: Stop-
ping Microarchitectural Attacks Before Execution. Cryptol-
ogy ePrint Archive, Report 2016/1196. 2017. URL: http:
//eprint.iacr.org/2016/1196 (p. 48).

M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud. Tech. rep. Cryptology ePrint
Archive, Report 2015/898, 2015., 2015 (pp. 24, 32, 33, 46).

M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Cache Attacks Enable Bulk Key Recovery on the
Cloud. In: CHES’16. 2016 (p. 34).

M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar. Effi-
cient, adversarial neighbor discovery using logical channels
on Microsoft Azure. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM. 2016

(p. 38).
Intel. Advanced Encryption Standard (AES) Instructions
Set: White Paper. 2008 (p. 50).

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3 (3A, 3B & 3C): System Program-
ming Guide. In: 253665 (2014) (p. 46).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In: RAID’14.
2014 (pp. 35, 44).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies (2015) (p. 34).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 34).

63

http://eprint.iacr.org/2016/1196
http://eprint.iacr.org/2016/1196

References

[JLK16]

[JT07]

[Kar+15]

[Kay+16]

[KD09)

[Kel+00]

[Kim+14]

[Koc96]

[Kon+08]

[Kon-+09]

64

Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space
Layout Randomization with Intel TSX. In: CCS’16. 2016
(pp. 36, 45).

M. Joye and M. Tunstall. Securing OpenSSL against Micro-
Architectural Attacks. In: SECRYPT. 2007 (p. 43).

N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and
R. Karri. MAGIC: Malicious aging in circuits/cores. In:
ACM Transactions on Architecture and Code Optimization

(TACO) 12.1 (2015) (pp. 7, 41, 54).

M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel.
A high-resolution side-channel attack on last-level cache.
In: Proceedings of the 53rd Annual Design Automation
Conference. 2016 (p. 33).

B. Kopf and M. Diirmuth. A provably secure and efficient
countermeasure against timing attacks. In: 22nd IEEE Com-
puter Security Foundations Symposium. 2009 (p. 44).

J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel
Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141-158 (p. 30).

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors. In: ISCA’14. 2014 (pp. 7, 9, 39, 48, 49,
52, 54).

P. C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: Crypto’96. 1996
(pp. 5, 6, 30).

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou. Decon-
structing new cache designs for thwarting software cache-
based side channel attacks. In: Proceedings of the 2nd ACM
Computer Security Architectures Workshop (2008) (p. 51).

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou. Hardware-
software integrated approaches to defend against software
cache-based side channel attacks. In: Proceedings of the 15th
International Symposium on High Performance Computer

Architecture (HPCA’09). 2009, pp. 393-404 (p. 51).

[KOPOY]

[KPM12]

[Lan16)

[Lee+16]

[LGR13]

[Lip+16]

[Liut15]

[Liu+16]

[LL14]

[Mar+10]

References

T. Kasper, D. Oswald, and C. Paar. EM side-channel at-
tacks on commercial contactless smartcards using low-cost
equipment. In: Information Security Applications. Springer,
2009, pp. 79-93 (p. 5).

T. Kim, M. Peinado, and G. Mainar-Ruiz. StealthMem:
system-level protection against cache-based side channel
attacks in the cloud. In: USENIX Security Symposium. 2012
(p. 46).

M. Lanteigne. How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware. Mar. 2016. URL: http:
//www.thirdio.com/rowhammer.pdf (p. 41).

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M.
Peinado. Inferring fine-grained control flow inside SGX en-
claves with branch shadowing. In: arXiv:1611.06952 (2016)
(p. 35).

P. Li, D. Gao, and M. K. Reiter. Mitigating access-driven
timing channels in clouds using StopWatch. In: DNS’13. 2013
(p. 44).

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. ARMageddon: Cache Attacks on Mobile Devices. In:
USENIX Security Symposium. 2016 (pp. 8, 9, 12, 31, 33-35,
44, 53, 205).

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: IEEE

Symposium on Security and Privacy — SP. IEEE Computer
Society, 2015, pp. 605-622 (pp. 7, 33, 44).

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In: IEEE International
Symposium on High Performance Computer Architecture

(HPCA). 2016 (p. 46).

F. Liu and R. B. Lee. Random Fill Cache Architecture. In:
IEEE/ACM International Symposium on Microarchitecture
(MICRO’14). 2014, pp. 203-215 (p. 51).

A. Marshall, M. Howard, G. Bugher, B. Harden, C. Kauf-
man, M. Rues, and V. Bertocci. Security best practices for
developing windows azure applications. In: Microsoft Corp

(2010) (p. 42).

65

http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf

References

[Mau+15a]

[Mau+15b]

[Mau+17]

IMDS12]

[Mit-+09]

[MOPOS]

[MSR15]

[NatO1]

[Nin+16]

[NS06]

[NSW06]

66

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A.
Francillon. Reverse Engineering Intel Complex Addressing
Using Performance Counters. In: RAID’15. 2015 (pp. 24, 32,
33, 46).

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(p. 33).

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C.
Alberto Boano, S. Mangard, and K. Rémer. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the
Cloud. In: NDSS’17. 2017 (pp. 8, 11, 33, 44, 53).

R. Martin, J. Demme, and S. Sethumadhavan. TimeWarp:
rethinking timekeeping and performance monitoring mecha-
nisms to mitigate side-channel attacks. In: ACM SIGARCH
Computer Architecture News (2012) (p. 44).

G. Mités, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: Enlightened page sharing. In: USENIX ATC’09. 2009

(p. 37).
S. Mangard, E. Oswald, and T. Popp. Power analysis attacks:

Revealing the secrets of smart cards. Vol. 31. Springer Science
& Business Media, 2008 (p. 5).

S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating
arbitrary cloud side channels via provider-assisted migration.
In: CCS’15. 2015 (p. 47).

National Institute of Standards and Technology. Advanced
Encryption Standard. NIST FIPS PUB 197. 2001 (p. 30).

F. Ning, M. Zhu, R. You, G. Shi, and D. Meng. Group-Based
Memory Deduplication against Covert Channel Attacks in
Virtualized Environments. In: IEEE Trustcom. 2016 (p. 45).

M. Neve and J.-P. Seifert. Advances on Access-Driven Cache
Attacks on AES. In: Proceedings of the 13th international
conference on Selected areas in cryptography (SAC’06). 2006
(p. 32).

M. Neve, J.-P. Seifert, and Z. Wang. A refined look at
Bernstein’s AES side-channel analysis. In: Proceedings of
the 2006 ACM Symposium on Information, computer and
communications security (ASTACCS’06). 2006 (p. 30).

[Ohr+16]

[Ope]

[Ore+15]

[0STO06]

[OW11]

[Pag02]

[Pag03]

[Pag05]

[Pay16]

[Per05]

References

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. No-
wozin, K. Vaswani, and M. Costa. Oblivious Multi-Party
Machine Learning on Trusted Processors. In: USENIX Secu-
rity Symposium. 2016 (p. 43).

OpenSSL. OpenSSL: The Open Source toolkit for SSL/TLS.
URL: http://www.openssl.org (p. 50).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis. The Spy in the Sandbox: Practical Cache Attacks
in JavaScript and their Implications. In: ACM Conference

on Computer and Communications Security — CCS. ACM,
2015, pp. 1406-1418 (pp. 7, 33).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: Topics in Cryptology
— CT-RSA. Vol. 3860. LNCS. Springer, 2006, pp. 1-20 (pp. 6,
30-32).

R. Owens and W. Wang. Non-interactive OS fingerprinting
through memory de-duplication technique in virtual ma-
chines. In: 30th IEEE International Performance Computing
and Communications Conference. Nov. 2011, pp. 1-8 (pp. 37,
45).

D. Page. Theoretical use of cache memory as a cryptana-
lytic side-channel. In: Cryptology ePrint Archive, Report
2002/169 (2002) (pp. 6, 30).

D. Page. Defending Against Cache Based Side-Channel At-
tacks. Tech. rep. Department of Computer Science, Univer-
sity of Bristol, 2003 (pp. 49, 50).

D. Page. Partitioned Cache Architecture as a Side-Channel
Defence Mechanism. Cryptology ePrint Archive, Report
2005/280. 2005. URL: http://eprint.iacr.org/2005/280

(p. 51).

M. Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESS0S’16. 2016 (p. 49).

C. Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005 (pp. 6, 30, 32, 42, 49, 50).

67

http://www.openssl.org
http://eprint.iacr.org/2005/280

References

[Pes+16]

[PS05]

[PSY15]

[QS16]

[Qur+07]

[Raz+16]

[RBV16]

[Ris+09]

[RRO1]
[SA02]

[Sch+12]

68

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard.
DRAMA: Exploiting DRAM Addressing for Cross-CPU At-
tacks. In: USENIX Security Symposium. 2016 (pp. 7, 8, 10,
26, 27, 38, 41, 50, 53, 54).

K. Pagiamtzis and A. Sheikholeslami. Using cache to reduce
power in content-addressable memories (CAMs). In: Pro-
ceedings of the IEEE Custom Integrated Circuits Conference.
2005 (p. 21).

J. van de Pol, N. P. Smart, and Y. Yarom. Just a little bit
more. In: CT-RSA 2015. 2015 (p. 34).

R. Qiao and M. Seaborn. A New Approach for Rowhammer
Attacks. In: HOST"16. 2016 (p. 41).

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News
35.2 (June 2007), p. 381 (p. 21).

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and
H. Bos. Flip Feng Shui: Hammering a Needle in the Software
Stack. In: USENIX Security Symposium. 2016 (pp. 7, 41,
45).

O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is my
code constant time? Cryptology ePrint Archive, Report
2016/1123. 2016. URL: http://eprint.iacr.org/2016/
1123 (p. 48).

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In: ACM Conference on
Computer and Communications Security — CCS. ACM, 2009,
pp. 199-212 (p. 32).

J. R. Rao and P. Rohatgi. EMpowering Side-Channel Attacks.
In: TACR Cryptology ePrint Archive 2001 (2001), p. 37 (p. 5).

S. P. Skorobogatov and R. J. Anderson. Optical fault induc-
tion attacks. In: CHES’02. 2002 (pp. 5, 39).

A. Schlésser, D. Nedospasov, J. Kramer, S. Orlic, and J.-P.
Seifert. Simple Photonic Emission Analysis of AES. In:
CHES’12. 2012 (p. 5).

http://eprint.iacr.org/2016/1123
http://eprint.iacr.org/2016/1123

[Sch+17a]

[Sch+17b]

[Sch+17c]

[SD15]

[Sealb]

[Sez93]

[SG14]

[Shi+11]

[Shi-+16]

References

S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida.
Reverse Engineering Hardware Page Table Caches Using
Side-Channel Attacks on the MMU. 2017. URL: http://www.
cs.vu.nl/~herbertb/download/papers/revanc_ir-cs-
77.pdf (p. 36).

M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Man-
gard. Malware Guard Extension: Using SGX to Conceal
Cache Attacks. In: DIMVA’17. (to appear). 2017 (pp. 11,
33, 44).

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fan-
tastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. In: Proceedings of
the 21th International Conference on Financial Cryptogra-

phy and Data Security (FC’17). 2017 (pp. 11, 38, 44).

M. Seaborn and T. Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. In: Black Hat 2015 Brief-
ings. 2015 (pp. 7, 9, 39, 54).

M. Seaborn. How physical addresses map to rows and banks
in DRAM. Retrieved on July 20, 2015. May 2015. URL:
http://lackingrhoticity.blogspot.com/2015/05/how-
physical - addresses -map-to—-rows - and - banks . html
(p. 27).

A. Seznec. A case for two-way skewed-associative caches. In:
ACM SIGARCH Computer Architecture News. Vol. 21. 2.
ACM. 1993, pp. 169-178 (p. 21).

R. Spreitzer and B. Gérard. Towards More Practical Time-
Driven Cache Attacks. In: IFIP International Workshop on
Information Security Theory and Practice. 2014 (p. 30).

J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page
coloring. In: 2011 IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops (DSN-W).
2011 (p. 46).

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Prevent-
ing Page Faults from Telling Your Secrets. In: Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security (AsiaCCS’16). 2016 (p. 37).

69

http://www.cs.vu.nl/~herbertb/download/papers/revanc_ir-cs-77.pdf
http://www.cs.vu.nl/~herbertb/download/papers/revanc_ir-cs-77.pdf
http://www.cs.vu.nl/~herbertb/download/papers/revanc_ir-cs-77.pdf
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html

References

[SK10]

[SMCO9]

[SP13a]

[SP13b)

[Spr+16]

[Ste+13]

[Suz+11]

[SXA16]

[Szel6)

70

D. Sanchez and C. Kozyrakis. The ZCache: Decoupling ways
and associativity. In: 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’10). 2010 (p. 51).

D. Saha, D. Mukhopadhyay, and D. R. Chowdhury. A Di-
agonal Fault Attack on the Advanced Encryption Standard.
In: TACR Cryptology ePrint Archive 2009.581 (2009) (pp. 5,
39).

R. Spreitzer and T. Plos. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2013, pp. 200-214
(p. 31).

R. Spreitzer and T. Plos. On the Applicability of Time-
Driven Cache Attacks on Mobile Devices. In: International
Conference on Network and System Security. 2013 (p. 30).

R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard. SoK:
Systematic Classification of Side-Channel Attacks on Mobile
Devices. In: arXiv:1611.03748 (2016) (p. 29).

D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A.
Russo, and D. Mazieres. Eliminating cache-based timing
attacks with instruction-based scheduling. In: Proceedings

of the 18th European Symposium on Research in Computer
Security (ESORICS’13). 2013 (p. 44).

K. Suzaki, K. Lijima, T. Yagi, and C. Artho. Memory Dedu-
plication as a Threat to the Guest OS. In: Proceedings of

the 4th European Workshop on System Security. 2011 (pp. 8,
37, 45).

L. Simon, W. Xu, and R. Anderson. Don’t Interrupt Me
While I Type: Inferring Text Entered Through Gesture Typ-
ing on Android Keyboards. In: Proceedings on Privacy En-
hancing Technologies (2016) (p. 37).

J. Szefer. Survey of Microarchitectural Side and Covert
Channels, Attacks, and Defenses. Cryptology ePrint Archive,
Report 2016/479. 2016. URL: http://eprint.iacr.org/
2016/479 (p. 29).

http://eprint.iacr.org/2016/479
http://eprint.iacr.org/2016/479

[Tiw+09]

[TSS03)]

[TSS14]

[TWG14]

[VDS11]

[Vee+16]

[VRS14]

[War+96]

[Wei+14]

References

M. Tiwari, X. Li, H. M. Wassel, F. T. Chong, and T.
Sherwood. Execution leases: A hardware-supported mecha-
nism for enforcing strong non-interference. In: 42nd Annual
IEEE/ACM International Symposium on Microarchitecture

(MICRO’09). 2009 (p. 51).

Y. Tsunoo, T. Saito, and T. Suzaki. Cryptanalysis of DES
implemented on computers with cache. In: CHES’03. 2003,
pp. 62-76 (pp. 6, 30).

A. Tang, S. Sethumadhavan, and S. J. Stolfo. Unsupervised
anomaly-based malware detection using hardware features.
In: RAID’14. 2014 (p. 48).

Y. Tan, J. Wei, and W. Guo. The Micro-architectural Sup-
port Countermeasures against the Branch Prediction Analy-
sis Attack. In: 2014 IEEE 13th International Conference on

Trust, Security and Privacy in Computing and Communica-
tions. 2014 (p. 51).

B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine
grained timers in Xen. In: Proceedings of the 3rd ACM work-
shop on Cloud computing security workshop (CCSW’11).
2011 (p. 44).

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In: CCS’16. 2016 (pp. 7, 10, 41).

V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-
based defenses against cross-vm side-channels. In: USENIX
Security Symposium. 2014 (p. 47).

A. Warner, Q. Li, T. Keefe, and S. Pal. The impact of
multilevel security on database buffer management. In: Pro-
ceedings of the 4th European Symposium on Research in
Computer Security (ESORICS’96). 1996 (p. 37).

M. Weif}, B. Weggenmann, M. August, and G. Sigl. On cache
timing attacks considering multi-core aspects in virtualized
embedded systems. In: International Conference on Trusted
Systems. 2014 (pp. 30, 47).

71

References

[Wei+16]

[WFS14]

[WLO7]

[WLOS]

[Wra92|

[Wu+15a]

[Wu+15b]

[WXW12]

[WXW14]

[XCP15]

72

N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza.
AsyncShock: Exploiting Synchronisation Bugs in Intel SGX
Enclaves. In: Proceedings of the 21st European Symposium
on Research in Computer Security (ESORICS’16). 2016
(p. 37).

Y. Wang, A. Ferraiuolo, and G. E. Suh. Timing channel
protection for a shared memory controller. In: IEEE 20th

International Symposium on High Performance Computer
Architecture (HPCA’14). 2014 (p. 50).

Z. Wang and R. B. Lee. New cache designs for thwart-
ing software cache-based side channel attacks. In: ACM
SIGARCH Computer Architecture News 35.2 (June 2007),
p. 494 (p. 50).

Z. Wang and R. B. Lee. A Novel Cache Architecture with
Enhanced Performance and Security. In: IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’08).
2008, pp. 83-93 (p. 51).

J. C. Wray. An analysis of covert timing channels. In: Journal
of Computer Security 1.3-4 (1992), pp. 219-232 (p. 44).

W. Wu, E. Zhai, D. Jackowitz, D. I. Wolinsky, L. Gu,
and B. Ford. Warding off timing attacks in Deterland. In:
arXiv:1504.07070 (2015) (p. 44).

W. Wu, E. Zhai, D. Jackowitz, D. I. Wolinsky, L. Gu,
and B. Ford. Warding off timing attacks in Deterland. In:
arXiv:1504.07070 (2015) (p. 44).

Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In: USE-
NIX Security Symposium. 2012 (p. 38).

Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud. In: IEEE/ACM Transactions on Networking
(2014) (p. 38).

Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In: S&P’15. 2015 (p. 37).

[Xia+12]

[Xia+13]

[Xia+16]

[Yar+15]

[YB14]

[YF14]

[YGHI16]

[ZAM11]

[Zha+11]

[Zha+12]

[Zha+14]

References

J. Xijao, Z. Xu, H. Huang, and H. Wang. A covert channel
construction in a virtualized environment. In: CCS’12. 2012
(pp. 37, 45).

J. Xiao, Z. Xu, H. Huang, and H. Wang. Security implications
of memory deduplication in a virtualized environment. In:
2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 2013 (pp. 37,
45).

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation. In: USENIX Security Symposium.
2016 (pp. 7, 41).

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. Mapping
the Intel Last-Level Cache. In: Cryptology ePrint Archive,
Report 2015/905 (2015), pp. 1-12 (pp. 24, 32, 46).

Y. Yarom and N. Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH4+RELOAD Cache Side-channel
Attack. Cryptology ePrint Archive, Report 2014,/140. 2014.
URL: http://eprint.iacr.org/2014/140 (p. 34).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 6-8, 30, 34, 45).

Y. Yarom, D. Genkin, and N. Heninger. Cachebleed: A
timing attack on openssl constant time rsa. In: CHES’16.
2016 (p. 43).

D. Zhang, A. Askarov, and A. C. Myers. Predictive mitiga-
tion of timing channels in interactive systems. In: CCS’11.
2011 (p. 44).

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Anal-
ysis. In: S&P’11. 2011 (pp. 32, 48).

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
VM side channels and their use to extract private keys. In:
CCS’12. 2012 (pp. 32, 43).

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In: CCS’14.
2014 (pp. 7, 34).

73

http://eprint.iacr.org/2014/140

References

[Zha+16]

[ZHS16]

[ZR13)]

[ZRZ16]

[ZW09)]

[ZXZ716]

[Z71.16]

74

W. Zhang, X. Jia, C. Wang, S. Zhang, Q. Huang, M. Wang,
and P. Liu. A Comprehensive Study of Co-residence Threat
in Multi-tenant Public PaaS Clouds. In: Information and
Communications Security. Springer, 2016 (p. 29).

A. Zankl, J. Heyszl, and G. Sigl. Automated Detection of
Instruction Cache Leaks in Modular Exponentiation Soft-
ware. In: International Conference on Smart Card Research
and Advanced Applications. Springer. 2016 (p. 48).

Y. Zhang and M. Reiter. Diippel: retrofitting commodity
operating systems to mitigate cache side channels in the
cloud. In: CCS’13. 2013 (p. 47).

Z. Zhou, M. K. Reiter, and Y. Zhang. A software approach
to defeating side channels in last-level caches. In: CCS’16.
2016 (p. 45).

K. Zhang and X. Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (p. 37).

X. Zhang, Y. Xiao, and Y. Zhang. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for
Android Devices. In: CCS’16. 2016 (p. 35).

T. Zhang, Y. Zhang, and R. B. Lee. CloudRadar: A Real-
Time Side-Channel Attack Detection System in Clouds. In:
International Symposium on Research in Attacks, Intrusions,
and Defenses. 2016 (p. 49).

Part 1I.

Publications

75

List of Publications

During my thesis, I contributed to 13 publications in conference proceed-
ings, 6 of which are included in this thesis as shown below.

Publications in this Thesis

[GBM15a)

[GMM16a)]

[Gru+16a]

[Gru+16b]

[GSM15a]

[Lip+16a]

D. Gruss, D. Bidner, and S. Mangard. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In: 20th
European Symposium on Research in Computer Security
(ESORICS’15). 2015.

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR. In: CCS’16. 2016.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+
Flush: A Fast and Stealthy Cache Attack. In: DIMVA’16.
2016.

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. ARMageddon: Cache Attacks on Mobile Devices. In:
USENIX Security Symposium. 2016.

Other Contributions

[Gru+17a]

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa. Strong and Efficient Cache Side-Channel Pro-
tection using Hardware Transactional Memory. In: USENIX
Security Symposium. (to appear). 2017.

77

[Gru+17b]

[Mau+17]

[Pes+16b]

[Sch+17b)]

[Sch+17c]

[Vee+16]

78

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard. KASLR is Dead: Long Live KASLR. In:
ESSo0S’17. (to appear). 2017.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C.
Alberto Boano, S. Mangard, and K. Rémer. Hello from the
Other Side: SSH over Robust Cache Covert Channels in the
Cloud. In: NDSS’17. 2017.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard.
DRAMA: Exploiting DRAM Addressing for Cross-CPU At-
tacks. In: USENIX Security Symposium. 2016.

M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Man-
gard. Malware Guard Extension: Using SGX to Conceal
Cache Attacks. In: DIMVA’17. (to appear). 2017.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fan-
tastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript. In: Proceedings of
the 21th International Conference on Financial Cryptogra-
phy and Data Security (FC’17). 2017.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In: CCS’16. 2016.

Cache Template Attacks:
Automating Attacks on Inclusive
Last-Level Caches

Publication Data

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. In: USENIX Security
Symposium. 2015

Contributions

Main author.

79

5. Cache Template Attacks

Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard
Graz University of Technology, Austria

Abstract

Recent work on cache attacks has shown that CPU caches represent a
powerful source of information leakage. However, existing attacks require
manual identification of vulnerabilities, i.e., data accesses or instruction
execution depending on secret information. In this paper, we present
Cache Template Attacks. This generic attack technique allows us to profile
and exploit cache-based information leakage of any program automatically,
without prior knowledge of specific software versions or even specific
system information. Cache Template Attacks can be executed online on a
remote system without any prior offline computations or measurements.

Cache Template Attacks consist of two phases. In the profiling phase, we
determine dependencies between the processing of secret information, e.g.,
specific key inputs or private keys of cryptographic primitives, and specific
cache accesses. In the exploitation phase, we derive the secret values
based on observed cache accesses. We illustrate the power of the presented
approach in several attacks, but also in a useful application for developers.
Among the presented attacks is the application of Cache Template Attacks
to infer keystrokes and—even more severe—the identification of specific
keys on Linux and Windows user interfaces. More specifically, for lower-case
only passwords, we can reduce the entropy per character from logy(26) =
4.7 to 1.4 bits on Linux systems. Furthermore, we perform an automated
attack on the T-table-based AES implementation of OpenSSL that is as
efficient as state-of-the-art manual cache attacks.

The original publication is available at https://www.usenix.org/conference/
usenixsecurityl5/technical-sessions/presentation/gruss.

80

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

1. Introduction

1. Introduction

Cache-based side-channel attacks have gained increasing attention among
the scientific community. First, in terms of ever improving attacks against
cryptographic implementations, both symmetric [Pag02; Ber04; BMO06;
OSTO06; WHS12; GBK11] as well as asymmetric cryptography [YB14;
Ben+14; Che+13; BHO09], and second, in terms of developing counter-
measures to prevent these types of attacks [LL14; MKS12]. Recently,
Yarom and Falkner [YF14] proposed the Flush+Reload attack, which has
been successfully applied against cryptographic implementations [Ben+14;
Ira+14b; Giil+15]. Besides the possibility of attacking cryptographic im-
plementations, Yarom and Falkner pointed out that their attack might also
be used to attack other software as well, for instance, to collect keystroke
timing information. However, no clear indication is given on how to exploit
such vulnerabilities with their attack. A similar attack has already been
suggested in 2009 by Ristenpart et al. [Ris+09], who reported being able
to gather keystroke timing information by observing cache activities on
an otherwise idle machine.

The limiting factor of all existing attacks is that sophisticated knowledge
about the attacked algorithm or software is necessary, i.e., access to the
source code or even modification of the source code [BH09] is required in
order to identify vulnerable memory accesses or the execution of specific
code fragments manually.

In this paper, we make use of the Flush+Reload attack [YF14] and present
the concept of Cache Template Attacks,' a generic approach to exploit
cache-based vulnerabilities in any program running on architectures with
shared inclusive last-level caches. Our attack exploits four fundamental
concepts of modern cache architectures and operating systems.

1. Last-level caches are shared among all CPUs.

2. Last-level caches are inclusive, i.e., all data which is cached within
the L1 and L2 cache must also be cached in the L3 cache. Thus, any
modification of the L3 cache on one core immediately influences the
cache behavior of all other cores.

3. Cache lines are shared among different processes.

!The basic framework can be found at https://github.com/IAIK/cache_template_
attacks.

81

https://github.com/IAIK/cache_template_attacks
https://github.com/IAIK/cache_template_attacks

5. Cache Template Attacks

4. The operating system allows programs to map any other program
binary or library, i.e., code and static data, into their own address
space.

Based on these observations, we demonstrate how to perform Cache
Template Attacks on any program automatically in order to determine
memory addresses which are accessed depending on secret information
or specific events. Thus, we are not only able to attack cryptographic
implementations, but also any other event, e.g., keyboard input, which
might be of interest to an attacker.

We demonstrate how to use Cache Template Attacks to derive keystroke
information with a deviation of less than 1 microsecond from the actual
keystroke and an accuracy of almost 100%. With our approach, we are not
only able to infer keystroke timing information, but even to infer specific
keys pressed on the keyboard, both for GTK-based Linux user interfaces
and Windows user interfaces. Furthermore, all attacks to date require
sophisticated knowledge of the attacked software and the executable itself.
In contrast, our technique can be applied to any executable in a generic way.
In order to demonstrate this, we automatically attack the T-table-based
AES [Nat01; DR13] implementation of OpenSSL [Opel4].

Besides demonstrating the power of Cache Template Attacks to exploit
cache-based vulnerabilities, we also discuss how this generic concept sup-
ports developers in detecting cache-based information leaks within their
own software, including third party libraries. Based on the insights we
gained during the development of the presented concept, we also present
possible countermeasures to mitigate specific types of cache attacks.

Outline

The remaining paper is organized as follows. In Section 2, we provide
background information on CPU caches, shared memory, and cache at-
tacks in general. We describe Cache Template Attacks in Section 3. We
illustrate the basic idea on an artificial example program in Section 4 and
demonstrate Cache Template Attacks against real-world applications in
Section 5. In Section 6, we discuss countermeasures against cache attacks
in general. Finally, we conclude in Section 7.

82

2. Background and Related Work

2. Background and Related Work

In this section, we give a basic introduction to the concept of CPU caches
and shared memory. Furthermore, we provide a basic introduction to cache
attacks.

2.1. CPU Caches

The basic idea of CPU caches is to hide memory accesses to the slow
physical memory by buffering frequently used data in a small and fast
memory. Today, most architectures employ set-associative caches, meaning
that the cache is divided into multiple cache sets and each cache set consists
of several cache lines (also called ways). An index is used to map specific
memory locations to the sets of the cache memory.

We distinguish between virtually indexed and physically indexed caches,
which derive the index from the virtual or physical address, respectively. In
general, virtually indexed caches are considered to be faster than physically
indexed caches. However, the drawback of virtually indexed caches is that
different virtual addresses mapping to the same physical address are cached
in different cache lines. In order to uniquely identify a specific cache line
within a cache set, so-called tags are used. Again, caches can be virtually
tagged or physically tagged. A virtual tag has the same drawback as a
virtual index. Physical tags, however, are less expensive than physical
indices as they can be computed simultaneously with the virtual index.

In addition, there is a distinction between inclusive and exclusive caches.
On Intel systems, the L3 cache is an inclusive cache, meaning that all data
within the L1 and L2 caches are also present within the L3 cache. Further-
more, the L3 cache is shared among all cores. Due to the shared L3 cache,
executing code or accessing data on one core has immediate consequences
for all other cores. This is the basis for the Flush+Reload [YF14] attack
as described in Section 2.3.

Our test systems (Intel Core i5-2/3 CPUs) have two 32 KB L1 caches—one
for data and one for instructions—per core, a unified L2 cache of 256 KB,
and a unified L3 cache of 3MB (12 ways) shared among all cores. The
cache-line size is 64 bytes for all caches.

83

5. Cache Template Attacks

2.2. Shared Memory

Operating systems use shared memory to reduce memory utilization. For
instance, libraries used by several programs are shared among all processes
using them. The operating system loads the libraries into physical memory
only once and maps the same physical pages into the address space of
each process.

The operating system employs shared memory in several more cases. First,
when forking a process, the memory is shared between the two processes.
Only when the data is modified, the corresponding memory regions are
copied. Second, a similar mechanism is used when starting another instance
of an already running program. Third, it is also possible for user programs
to request shared memory

using system calls like mmap.

The operating system tries to unify these three categories. On Linux,
mapping a program file or a shared library file as a read-only memory
with mmap results in sharing memory with all these programs, respectively
programs using the same shared library or program binary. This is also
possible on Windows using the LoadLibrary function. Thus, even if a
program is statically linked, its memory is shared with other programs
which execute or map the same binary.

Another form of shared memory is content-based page deduplication. The
hypervisor or operating system scans the physical memory for pages with
identical content. All mappings to identical pages are redirected to one
of the pages while the other pages are marked as free. Thus, memory is
shared between completely unrelated processes and even between processes
running in different virtual machines. When the data is modified by one
process, memory is duplicated again. These examples demonstrate that
code as well as static data can be shared among processes, even without
their knowledge. Nevertheless, page deduplication can enhance system
performance and besides the application in cloud systems, it is also relevant
in smaller systems like smartphones.

User programs can retrieve information on their virtual and physical
memory using operating-system services like /proc/<pid>/maps on Linux
or tools like vmmap on Windows. The list of mappings typically includes
all loaded shared-object files and the program binary.

84

2. Background and Related Work

2.3. Cache Attacks

Cache attacks are a specific type of side-channel attacks that exploit
the effects of the cache memory on the execution time of algorithms.
The first theoretical attacks were mentioned by Kocher [Koc96] and
Kelsey et al. [Kel+00]. Later on, practical attacks for DES were proposed by
Page [Pag02] as well as Tsunoo et al. [Tsu+03]. In 2004, Bernstein [Ber04]
proposed the first time-driven cache attack against AES. This attack has
been investigated quite extensively [Nev06].

A more fine-grained attack has been proposed by Percival [Per05], who
suggested to measure the time to access all ways of a cache set. As the
access time correlates with the number of occupied cache ways, an attacker
can determine the cache ways occupied by other processes. At the same
time, Osvik et al. [OSTO06] proposed two fundamental techniques that
allow an attacker to determine which specific cache sets have been accessed
by a victim program. The first technique is Evict+Time, which consists
of three steps. First, the victim program is executed and its execution
time is measured. Afterwards, an attacker evicts one specific cache set and
finally measures the execution time of the victim again. If the execution
time increased, the cache set was probably accessed during the execution.

The second technique is Prime+Probe, which is similar to Percival’s attack.
During the Prime step, the attacker occupies specific cache sets. After the
victim program has been scheduled, the Probe step is used to determine
which cache sets are still occupied.

Later on, Gullasch et al. [GBK11] proposed a significantly more powerful
attack that exploits the fact that shared memory is loaded into the same
cache sets for different processes. While Gullasch et al. attacked the
L1 cache, Yarom and Falkner [YF14] presented an improvement called
Flush+Reload that targets the L3 cache.

Flush+Reload relies on the availability of shared memory and especially
shared libraries between the attacker and the victim program. An attacker
constantly flushes a cache line using the c1flush instruction on an address
within the shared memory. After the victim has been scheduled, the
attacker measures the time it takes to reaccess the same address again.
The measured time reveals whether the data has been loaded into the
cache by reaccessing it or whether the victim program loaded the data
into the cache before reaccessing. This allows the attacker to determine
the memory accesses of the victim process. As the L3 cache is shared

85

5. Cache Template Attacks

among all cores, it is not necessary to constantly interrupt the victim
process. Instead, both processes run on different cores while still working
on the same L3 cache. Furthermore, the L3 cache is a unified inclusive
cache and, thus, even allows to determine when a certain instruction
is executed. Because of the size of the L3 cache, there are significantly
fewer false negative cache-hit detections caused by evictions. Even though
false positive cache-hit detections (as in Prime+Probe) are not possible
because of the shared-memory-based approach, false positive cache hits
can still occur if data is loaded into the cache accidentally (e.g., by the
prefetcher). Nevertheless, applications of Flush+Reload have been shown
to be quite reliable and powerful, for example, to detect specific versions of
cryptographic libraries [Ira+15a], to revive supposedly fixed attacks (e.g.,
Lucky 13) [Ira415b] as well as to improve attacks against T-table-based
AES implementations [Giil+15].

As shared memory is not always available between different virtual ma-
chines in the cloud, more recent cache attacks use the Prime+Probe
technique to perform cache attacks across virtual machine borders. For
example, Irazoqui et al. [IES15] demonstrated a cross-VM attack on a
T-Table-based AES implementation and Liu et al. [Liu+15] demonstrated
a cross-VM attack on GnuPG. Both attacks require manual identification
of exploitable code and data in targeted binaries. Similarly, Maurice et al.
[Mau+15] built a cache-index-agnostic cross-VM covert channel based on
Prime+Probe.

Simultaneous to our work, Oren et al. [Ore+15] developed a cache attack
from within sandboxed JavaScript to attack user-specific data like net-
work traffic or mouse movements. Contrary to existing attack approaches,
we present a general attack framework to exploit cache vulnerabilities
automatically. We demonstrate the effectiveness of this approach by infer-
ring keystroke information and, for comparison reasons, by attacking a
T-table-based AES implementation.

3. Cache Template Attacks

Chari et al. [CRRO02] presented template attacks as one of the strongest
forms of side-channel attacks. First, side-channel traces are generated on a
device controlled by the attacker. Based on these traces, the template—an
exact model of signal and noise—is generated. A single side-channel trace

86

3. Cache Template Attacks

from an identical device with unknown key is then iteratively classified
using the template to derive the unknown key.

Similarly, Brumley and Hakala [BH09] described cache-timing template
attacks to automatically analyze and exploit cache vulnerabilities. Their
attack is based on Prime+Probe on the L1 cache and, thus, needs to run on
the same core as the spy program. Furthermore, they describe a profiling
phase for specific operations executed in the attacked binary, which requires
manual work or even modification of the attacked software. In contrast,
our attack only requires an attacker to know how to trigger specific events
in order to attack them. Subsequently, Brumley and Hakala match these
timing templates against the cache timing observed. In contrast, we match
memory-access templates against the observed memory accesses.

Inspired by their work we propose Cache Template Attacks. The presented
approach of Cache Template Attacks allows the exploitation of any cache
vulnerability present in any program on any operating system executed on
architectures with shared inclusive last-level caches and shared memory
enabled. Cache Template Attacks consist of two phases: 1) a profiling
phase, and 2) an exploitation phase. In the profiling phase, we compute a
Cache Template matrix containing the cache-hit ratio on an address given
a specific target event in the binary under attack. The exploitation phase
uses this Cache Template matrix to infer events from cache hits.

Both phases rely on Flush+Reload and, thus, attack code and static data
within binaries. In both phases the attacked binary is mapped into read-
only shared memory in the attacker process. By accessing its own virtual
addresses in the allocated read-only shared memory region, the attacker
accesses the same physical memory and the same cache lines (due to the
physically-indexed last level cache) as the process under attack. Therefore,
the attacker completely bypasses address space layout randomization
(ASLR). Also, due to shared memory, the additional memory consumption
caused by the attacker process is negligible, i.e., in the range of a few
megabytes at most.

In general, both phases are performed online on the attacked system
and, therefore, cannot be prevented through differences in binaries due to
different versions or the concept of software diversity [Fral0]. However, if
online profiling is not possible, e.g., in case the events must be triggered
by a user or Flush+Reload is not possible on the attacked system, it can
also be performed in a controlled environment. Below, we describe the
profiling phase and the exploitation phase in more detail.

87

5. Cache Template Attacks

3.1. Profiling Phase

The profiling phase measures how many cache hits occur on a specific
address during the execution of a specific event, i.e., the cache-hit ratio.
The cache-hit ratios for different events are stored in the Cache Template
matrix which has one column per event and one row per address. We
refer to the column vector for an event as a profile. Examples of Cache
Template matrices can be found in Section 4 and Section 5.1.

An event in terms of a Cache Template Attack can be anything that
involves code execution or data accesses, e.g., low-frequency events, such
as keystrokes or receiving an email, or high-frequency events, such as
encryption with one or more key bits set to a specific value. To automate the
profiling phase, it must be possible to trigger the event programmatically,
e.g., by calling a function to simulate a keypress event, or executing a
program.

The Cache Template matrix is computed in three steps. The first step
is the generation of the cache-hit trace and the event trace. This is the
main computation step of the Cache Template Attack, where the data for
the Template is measured. In the second step, we extract the cache-hit
ratio for each trace and store it in the Cache Template matrix. In a third
post-processing step, we prune rows and columns which contain redundant
information from the matrix. Algorithm 1 summarizes the profiling phase.
We explain the corresponding steps in detail below.

Cache-Hit Trace and Event Trace

The generation of the cache-hit trace and the event trace is repeated
for each event and address for the specified duration (the while loop of
Algorithm 1). The cache-hit trace g((lg) is a binary function which has
value 1 for every timestamp ¢ where a cache hit has been observed. The
function value remains 1 until the next timestamp ¢ where a cache miss
has been observed. We call subsequent cache hits a cache-hit phase. The
event trace g((fe) is a binary function which has value 1 when the processing
of one specific event e starts or ends and value 0 for all other points.

In the measurement step, the binary under attack is executed and the event
is triggered constantly. Each address of the attacked binary is profiled
for a specific duration d. It must be long enough to trigger one or more
events. Therefore, d depends only on the execution time of the event to be

88

3. Cache Template Attacks

Algorithm 1: Profiling phase.

Input: Set of events F, target program binary B, duration d
Output: Cache Template matrix T'

Map binary B into memory

foreach cvent e in F do

foreach address a in binary B do

while duration d not passed do
simultaneously
Trigger event e and save event trace gé{i)
Flush+Reload attack on address a

and save cache-hit trace g((lg)

end
Extract cache-hit ratio H, . from g((li)
and gé{i) and store it in T’
end
end
Prune Cache Template matrix T
oEvent trace —— Cache-hit trace
Hit L
wn
a
£ 2
3 = E
% = o
| +
g |
= =
52|
MiSS 1T © ‘ ‘ O
0 01 02 ' 224 225 226
TIME IN CYCLES .107

Figure 5.1.: Trace of a single keypress event for address Ox4ebcO of
libgdk.so.

89

5. Cache Template Attacks

measured. The more events triggered within the specified duration d, the
more accurate the resulting profile is. However, increasing the duration d
increases the overall time required for the profiling phase.

The results of this measurement step are a cache-hit trace and an event
trace, which are generated for all addresses a in the binary and all events
e we want to profile. An excerpt of such a cache-hit trace and the cor-
responding event trace is shown in Figure 5.1. The start of the event is
measured directly before the event is triggered. As we monitor library
code, the cache-hit phase is measured before the attacked binary observes
the event.

The generation of the traces can be sped up by two factors. First, in case
of a cache miss, the CPU always fetches a whole cache line. Thus, we
cannot distinguish between offsets of different accesses within a cache line
and we can deduce the same information by probing only one address
within each cache-line sized memory area.

Second, we reduce the overall number of triggered events by profiling
multiple addresses at the same time. However, profiling multiple addresses
on the same page can cause prefetching of more data from this page.
Therefore, we can only profile addresses on different pages simultaneously.
Thus, profiling all pages only takes as long as profiling a single page.

In case of low-frequency events, it is possible to profile all pages within
one binary in parallel. However, this may lead to less accurate cache-hit
traces gé{i), i.e., timing deviations above 1 microsecond from the real

event, which is only acceptable for low-frequency events.

Hit-Ratio Extraction

After the cache-hit trace and the event trace have been computed for a
specific event e and a specific address a (the while loop of Algorithm 1),
we derive the cache-hit ratio for each event and address. The cache-hit
ratio H, . is either a simple value or a time-dependent ratio function. In
our case it is the ratio of cache hits on address a and the number of times
the event e has been triggered within the profiling duration d.

To illustrate the difference between a cache-hit ratio with time dependency
and without time dependency, we discuss two such functions. The cache-hit
ratio with time dependency can be defined as follows. The event traces
contain the start and end points of the processing of one event e. These

90

3. Cache Template Attacks

start and end points define the relevant parts (denoted as slices) within
the cache-hit trace. The slices are stored in a vector and scaled to the
same length. Each slice contains a cache-hit pattern relative to the event
e. If we average over this vector, we get the cache-hit ratio function for
event e.

The second, much simpler approach is to define the cache-hit ratio without
time dependency. In this case, we count the number of cache hits k on
address a and divide it by the number of times n the event e has been
triggered within the profiling duration d. That is, we define H, , = % In
case of a low-noise side channel and event detection through single cache

hits, it is sufficient to use a simple hit-ratio extraction function.

Like the previous step, this step is repeated for all addresses a in the binary
b and all events e to be profiled. The result is the full Cache Template
matrix T. We denote the column vectors p, as profiles for specific events.

Pruning

In the exploitation phase, we are limited regarding the number of addresses
we can attack. Therefore, we want to reduce the number of addresses in
the Cache Template. We remove redundant rows from the Cache Template
matrix and merge events which cannot be distinguished based on their
profiles pe.

As cache hits can be independent of an event, the measured cache-hit ratio
on a specific address can be independent of the event, i.e., code which is
always executed, frequent data accesses by threads running all the time,
or code that is never executed and data that is never accessed. In order
to be able to detect an event e, the set of events has to contain at least
one event e’ which does not include event e. For example, in order to be
able to detect the event “user pressed key A” we need to profile at least
one event where the user does not press key A.

The pruning happens in three steps on the matrix. First, the removal of all
addresses that have a small difference between minimum and maximum
cache-hit ratio for all events. Second, merging all similar columns (events)
into one set of events, i.e., events that cannot be distinguished from each
other are merged into one column. The similarity measure for this is,
for example, based on a mean squared error (MSE) function. Third, the
removal of redundant lines. These steps ensure that we select the most

91

5. Cache Template Attacks

interesting addresses and also allows us to reduce the attack complexity
by reducing the overall number of monitored addresses.

We measure the reliability of a cache-based side channel by true and false
positives as well as true and false negatives. Cache hits that coincide with
an event are counted as true positive and cache hits that do not coincide
with an event as false positive. Cache misses which coincide with an event
are counted as true negative and cache misses which do not coincide with
an event as false negative. Based on these four values we can determine
the accuracy of our Template, for instance, by computing the F-Score,
which is defined as the harmonic mean of the cache-hit ratio and the
positive predictive value (percentage of true positives of the total cache
hits). High F-Score values show that we can distinguish the given event
accurately by attacking a specific address. In some cases further lines
can be pruned from the Cache Template matrix based on these measures.
The true positive rate and the false positive rate for an event e can be
determined by the profile p. of e and the average over all profiles except e.

Runtime of the Profiling Phase

Measuring the cache-hit ratio is the most expensive step in our attack. To
quantify the cost we give two examples. In both cases we want to profile
a 1 MB library, once for a low-frequency event, e.g., a keypress, and once
for a high-frequency event, e.g., an encryption. In both cases, we try to
achieve a runtime which is realistic for offline and online attacks while
maintaining a high accuracy.

We choose a profiling duration of d = 0.8 seconds for the low-frequency
event. During 0.8 seconds we can trigger around 200 events, which is
enough to create a highly accurate profile. Profiling each address in the
library for 0.8 seconds would take 10 days. Profiling only cache-line-aligned
addresses still takes 4 hours. Applying both optimizations, the full library
is profiled in 17 seconds.

In case of the high-frequency event, we attack an encryption. We assume
that one encryption and the corresponding Flush+Reload measurement
take 520 cycles on average. As in the previous example, we profile each
address 200 times and, thus, we need 40-50 microseconds per address,
i.e., d = 50us. The basic attack takes less than 55 seconds to profile the
full library for one event. Profiling only cache-line-aligned addresses takes

92

3. Cache Template Attacks

less than 1 second and applying both optimizations results in a negligible
runtime.

As already mentioned above, the accuracy of the resulting profile depends
on how many times an event can be triggered during profiling duration d.
In both cases we chose durations which are more than sufficient to create
accurate profiles and still achieve reasonable execution times for an online
attack. Our observations showed that it is necessary to profile each event
at least 10 times to get meaningful results. However, profiling an event
more than a few hundred times does not increase the accuracy of the
profile anymore.

3.2. Exploitation Phase

In the exploitation phase we execute a generic spy program which performs
either the Flush+Reload or the Prime+Probe algorithm. For all addresses
in the Cache Template matrix resulting from the profiling phase, the cache
activity is constantly monitored.

We monitor all addresses and record whether a cache hit occurred. This
information is stored in a boolean vector h. To determine which event
occurred based on this observation, we compute the similarity S (f_i,ﬁe)
between h and each profile p, from the Cache Template matrix. The
similarity measure S can be based, for example, on a mean squared error
(MSE) function. Algorithm 2 summarizes the exploitation phase.

Algorithm 2: Exploitation phase.

Input: Target program binary b,
Cache Template matrix T' = (Pe, , Peys -5 Pe,,)

Map binary b into memory
repeat

foreach address a in T do
Flush+Reload attack on address a

Store 0/1 in hla] for cache miss/cache hit
end
if p. equals h w.r.t. similarity measure then
| Event e detected
end

93

5. Cache Template Attacks

The exploitation phase has the same requirements as the underlying attack
techniques. The attacker needs to be able to execute a spy program on
the attacked system. In case of Flush+Reload, the spy program needs
no privileges, except opening the attacked program binary in a read-only
shared memory. It is even possible to attack binaries running in a different
virtual machine on the same physical machine, if the hypervisor has page
deduplication enabled. In case of Prime+Probe, the spy program needs
no privileges at all and it is even possible to attack binaries running in
a different virtual machine on the same physical machine, as shown by
Irazoqui et al. [IES15]. However, the Prime+Probe technique is more
susceptible to noise and therefore the exploitation phase will produce less
reliable results, making attacks on low-frequency events more difficult.

The result of the exploitation phase is a log file containing all detected
events and their corresponding timestamps. The interpretation of the log
file still has to be done manually by the attacker.

4. Attacks on Artificial Applications

Before we actually exploit cache-based vulnerabilities in real applications
in Section 5, we demonstrate the basic working principle of Cache Template
Attacks on two artificial victim programs. These illustrative attacks show
how Cache Template Attacks automatically profile and exploit cache
activity in any program. The two attack scenarios we demonstrate are:
1) an attack on lookup tables, and 2) an attack on executed instructions.
Hence, our ideal victim program or library either contains a large lookup
table which is accessed depending on secret information, e.g., depending
on secret lookup indices, or specific portions of program code which are
executed based on secret information.

Attack on Data Accesses

For demonstration purposes, we spy on simple events like keypresses. In
our victim program, shown in Listing 1, each keypress causes a memory
access in a large array called map. These key-based accesses are 4096
bytes apart from each other to avoid triggering the prefetcher. The array
is initialized with static values in order to place it in the data segment
and to guarantee that each page contains different data and, thus, is not

94

4. Attacks on Artificial Applications

1 int map[130]1[1024] = {{-1U},...,{-130U}};
2 int main(int argc, char**x argv) {

3 while (1) {

4 int ¢ = getchar(); // unbuffered

5 if (map[(c % 128) + 1]1[0] == 0)

6 exit (-1);

73 1}

Listing 1: Victim program with large array on Linux

Key

0123456789
0x32040
0x33040 ..
0x34040 .
0x35040]
0x36040 .
0x37040 |
0x38040]
0x39040 .
0x3a040 .
0x3b040 .

ADDRESS

Figure 5.2.: Cache Template matrix for the artificial victim program shown
in Listing 1. Dark cells indicate high cache-hit ratios.

deduplicated in any way. It is necessary to place it in the data segment in
order to make it shareable with the spy program.

In the profiling phase of the Cache Template Attack, we simulate different
keystroke events using the X11 automation library libxdo. This library
can be linked statically into the spy program, i.e., it does not need to
be installed. The Cache Template matrix is generated as described in
Section 3. Within a duration of d = 0.8 seconds we simulated around
700 keypress events. The resulting Cache Template matrix can be seen
in Figure 5.2 for all number keys. We observe cache hits on addresses
that are exactly 4096 bytes apart, which is due to the data type and the
dimension of the map array. In our measurements, there were less than
0.3% false positive cache hits on the corresponding addresses and less than
2% false negative cache hits. The false positive and false negative cache
hits are due to the high key rate in the keypress simulation.

For verification purposes, we executed the generated keylogger for a period
of 60 seconds and randomly pressed keys on the keyboard. In this setting
we measured no false positives and no false negatives at all. This results

95

5. Cache Template Attacks

1 #define NOP1024 /%1024 times asm("nop");*/
2 #define CASE(X) case X:\

3 { ALIGN(0x1000) void f##X() { NOP1024 I};\
4 f##X(); break; }

5 int main(int argc, char**x argv) {

6 while (1) {

7 int ¢ = getchar(); // unbuffered

8 switch (c¢) {

9 CASE (0) ;
10 /7 ...

11 CASE (128);
12} 3}

Listing 2: Victim program with long functions on Linux

from significantly lower key rates than in the profiling phase. The table is
not used by any process other than the spy and the victim process and
the probability that the array access happens exactly between the reload
and the flush instruction is rather small, as we have longer idle periods
than during the profiling phase. Thus, we are able to uniquely identify
each key without errors.

Attack on Instruction Executions

The same attack can easily be performed on executed instructions. The
source code for this example is shown in Listing 2. Each key is now
processed in its own function, as defined by the CASE(X) macro. The
functions are page aligned to avoid prefetcher activity. The NOP1024 macro
generates 1024 nop instructions, which is enough to avoid accidental code
prefetching of function code.

Our measurements show that there is no difference between Cache Tem-
plate Attacks on code and data accesses.

Performance Evaluation

To examine the performance limits of the exploitation phase of Cache
Template Attacks, we evaluated the number of addresses which can be
accurately monitored simultaneously at different key rates. At a key rate of
50 keys per second, we managed to spy on 16 000 addresses simultaneously
on an Intel i5 Sandy Bridge CPU without any false positives or false

96

5. Attacks on Real-World Applications

negatives. The first errors occurred when monitoring 18 000 addresses si-
multaneously. At a key rate of 250 keys per second, which is the maximum
on our system, we were able to spy on 4 000 addresses simultaneously with-
out any errors. The first errors occurred when monitoring 5000 addresses
simultaneously. In both cases, we monitor significantly more addresses
than in any practical cache attack today.

However, monitoring that many addresses is only possible if their position
in virtual memory is such that the prefetcher remains inactive. Accessing
several consecutive addresses on the same page causes prefetching of
more data, resulting in cache hits although no program accessed the data.
The limiting effect of the prefetcher on the Flush+Reload attack has
already been observed by Yarom and Benger [YB14]. Based on these
observations, we discuss the possibility of using the prefetcher as an
effective countermeasure against cache attacks in Section 6.3.

5. Attacks on Real-World Applications

In this section, we consider an attack scenario where an attacker is able
to execute an attack tool on a targeted machine in unprivileged mode. By
executing this attack tool, the attacker extracts the cache-activity profiles
which are exploited subsequently. Afterwards, the attacker collects the
secret information acquired during the exploitation phase.

For this rather realistic and powerful scenario we present various case
studies of attacks launched against real applications. We demonstrate
the power of automatically launching cache attacks against any binary or
library. First, we launch two attacks on Linux user interfaces, including
GDK-based user interfaces, and an attack against a Windows user interface.
In all attacks we simulate the user input in the profiling phase. Thus, the
attack can be automated on the device under attack. To demonstrate the
range of possible applications, we also present an automated attack on
the T-table-based AES implementation of OpenSSL 1.0.2 [Opel4].

5.1. Attack on Linux User Interfaces
There exists a variety of software-based side-channel attacks on user input
data. These attacks either measure differences in the execution time of code

in other programs or libraries [Tan+08], approximate keypresses through

97

5. Cache Template Attacks

CPU and cache activity [Ris+09], or exploit system services leaking user
input data [ZW09]. In particular, Zhang et al. [ZW09] use information
about other processes from procfs on Linux to measure inter-keystroke
timings and derive key sequences. Their proposed countermeasures can
be implemented with low costs and prevent their attack completely. We,
however, employ Cache Template Attacks to find and exploit leaking
side-channel information in shared libraries automatically in order to spy
on keyboard input.

Given root access to the system, it is trivial to write a keylogger on Linux
using /dev/input/event* devices. Furthermore, the xinput tool can also
be used to write a keylogger on Linux, but root access is required to install
it. However, using our approach of Cache Template Attacks only requires
the unprivileged execution of untrusted code as well as the capability of
opening the attacked binaries or shared libraries in a read-only shared
memory. In the exploitation phase one round of Flush+Reload on a single
address takes less than 100 nanoseconds. If we measure the average latency
between keypress and cache hit, we can determine the actual keypress
timing up to a few hundred nanoseconds. Compared to the existing attacks
mentioned above, our attack is significantly more accurate in terms of
both event detection (detection rates near 100%) and timing deviations.

In all attacks presented in this section we compute time-independent
cache-hit ratios.

Attack on the GDK Library

Launching the Cache Template profiling phase on different Linux appli-
cations revealed thousands of addresses in different libraries, binaries,
and data files showing cache activity upon keypresses. Subsequently, we
targeted different keypress events in order to find addresses distinguishing
the different keys. Figure 5.3 shows the Cache Template of a memory
area in the GDK library libgdk-3.s0.0.1000.8, a part of the GTK
framework which is the default user-interface framework on many Linux
distributions.

Figure 5.3 shows several addresses that yield a cache hit with a high
accuracy if and only if a certain key is pressed. For instance, every keypress
on key n results in cache hit on address 0x7c800, whereas the same address
reacts in only 0.5% of our tests on other keypresses. Furthermore, we
found a high cache-hit ratio on some addresses when a key is pressed

98

5. Attacks on Real-World Applications

H n
0x7c1cO
0x7c200 I
H H [
0x7c3c0
0x7c500
0x7c640

0x7c240
oxrcao I T
0x7c540
0x7c680

KEY
0x7c280
0x7c440
0x7c580
0x7c6c0

ghijklmnopgrstuvwxyz

0x7c340

0x7c480

0x7cb5c0

07700 NN W HjEN I
N

ADDRESS

0x7c100
0x7c140
0x7¢180 .
0x7c380
0x7c4c0
0x7c600
0x7c740

0x7c780

0x7c7cO

0x7c800

0x7c840

0x7c880 . .
0x7c8c0

0x7¢900

0x7c940

0x7c980

0x7c9c0

0x7cal0

0x7cb80
0x7cc40

0x7cc80

0xT7cccO

0x7cd00

0x7cd40

Figure 5.3.: Excerpt of the GDK Cache Template. Dark cells indicate
key-address-pairs with high cache-hit ratios.

99

5. Cache Template Attacks

(i.e., 0x6cd00 in 1ibgdk), the mouse is moved (i.e., 0x28760 in 1ibgdk)
or a modifier key is pressed (i.e., 0x72fc0 in libgdk). We also profiled
the range of keys a—f but it is omitted from Figure 5.3 because no high
cache-hit ratios have been observed for the shown addresses.

We use the spy tool described in Section 3.2 in order to spy on events
based on the Cache Template. We are able to accurately determine the
following sets of pressed keys: {i},{j},{n}.{q}.,{v} {l,w} {u, z},{g, h, k,t}.
That is, we cannot distinguish between keys in the same set, but keys in
one set from keys in other sets. Similarly, we can deduce whether a key is
contained in none of these sets.

Not as part of our attack, but in order to understand how keyboard input
is processed in the GDK library, we analyzed the binary and the source
code. In general, we found out that most of the addresses revealed in
the profiling phase point to code executed while processing keyboard
input. The address range discussed in this section contains the array
gdk_keysym_to_unicode_tab which is used to translate key symbols to
unicode special characters. The library performs a binary search on this
array, which explains why we can identify certain keys accurately, namely
the leaf nodes in the binary search.

As the corresponding array is used for keyboard input in all GDK user-
interface components, including password fields, our spy tool works for
all applications that use the GDK library. This observation allows us to
use Cache Template Attacks to build powerful keyloggers for GDK-based
user interfaces automatically. Even if we cannot distinguish all keys from
each other, Cache Template Attacks allow us to significantly reduce the
complexity of cracking a password. In this scenario, we are able to identify
3 keys reliably, as well as the total number of keypresses. Thus, in case
of a lower-case password we can reduce the entropy per character from
log,(26) = 4.7 to 4.0 bits. Attacking more than 3 addresses in order to
identify more keys adds a significant amount of noise to the results, as
it triggers the prefetcher. First experiments demonstrated the feasibility
of attacking the lock screen of Linux distributions. However, further
evaluation is necessary in order to reliably determine the effectiveness of
this approach.

100

5. Attacks on Real-World Applications

1 M

0.5 i

F-SCORE

1
0 0x71000 0x72000 0x73000 0x74000

ADDRESS

Figure 5.4.: Excerpt of the F-score plot for the address range of the
gdk_keys_by keyval table. High values reveal addresses that can be ex-
ploited.

Attack on GDK Key Remapping

If an attacker has additional knowledge about the attacked system or
software, more efficient and more powerful attacks are possible. Inspired
by Tannous et al. [Tan408] who performed a timing attack on GDK key
remapping, we demonstrate a more powerful attack on the GDK library,
by examining how the remapping of keys influences the sets of identifiable
keypresses. The remapping functionality uses a large key-translation table
gdk_keys_by_keyval which spreads over more than four pages.

Hence, we repeated the Cache Template Attack on the GDK library with a
small modification. Before measuring cache activity for an address during
an event, we remapped one key to the key code at that address, retrieved
from the gdk_keys_by_keyval table. We found significant cache activity
for some address and key-remapping combinations.

When profiling each key remapping for d = 0.8 seconds, we measured
cache activity in 52 cache-line-sized memory regions. In verification scans,
we found 0.2-2.5% false positive cache hits in these memory regions.
Thus, we have found another highly accurate side channel for specific key
remappings. The results are shown in the F-score graph in Figure 5.4.
High values allow accurate detection of keypresses if the key is remapped
to this address. Thus, we find more accurate results in terms of timing in
our automated attack than Tannous et al. [Tan+08].

We can only attack 8 addresses in the profiled memory area simultaneously,
since it spreads over 4 pages and we can only monitor 2 or 3 addresses
without triggering the prefetcher. Thus, we are able to remap any 8 keys
to these addresses and reliably distinguish them. In combination with the

101

5. Cache Template Attacks

3 addresses of our previous results, we are able to distinguish at least 11
keys and observe the timestamp of any keystroke in the system based on
cache accesses simultaneously.

It is also possible to remap more than one key to the same key code.
Hence, it is possible to distinguish between groups of keys. If we consider
a lower-case password again, we can now reduce the entropy per character
from log,(26) = 4.7 to 1.4 bits.

We also profiled keypresses on capslock and shift. Although we were
able to log keypresses on both keys, we did not consider upper case or
mixed case input. The exploitation phase automatically generates a log
file containing the information observed through the cache side channel.
However, interpretation of these results, such as deriving a program state
from a sequence of events (shift key pressed or capslock active) and the
influence of the program state on subsequent events is up to analysis of
the results after the attack has been performed.

Tannous et al. [Tan+08] also described a login-detection mechanism in
order to avoid remapping keys unless the user types in a password field.
The spy program simply watches /proc to see whether a login program is
running. Then the keys are remapped. As soon as the user pauses, the
original key mappings are restored. The user will then notice a password
mismatch, but the next password entry will work as expected.

Our completely automated password keylogger is a single binary which
runs on the attacked system. It maps the GDK library into its own address
space and performs the profiling phase. The profiling of each keypress
requires the simulation of the keypress into a hidden window. Furthermore,
some events require the key remapping we just described. Finally, the
keylogger switches into the exploit mode. As soon as a logon screen is
detected, for instance, after the screensaver was active or the screen was
locked, the keys are remapped and all keypresses are logged into a file
accessible by the attacker. Thus, all steps from the deployment of the
keylogger to the final log file are fully automated.

5.2. Attacks on other Linux Applications

We also found leakage of accurate keypress timings in other libraries,
such as the ncurses library (i.e., offset 0xb£f90 in libncurses.so), and
in files used to cache generated data related to user text input, such as

102

5. Attacks on Real-World Applications

/usr/lib/locale/locale-archive. The latter one is used to translate
keypresses into the current locale. It is a generated file which differs on
each system and which changes more frequently than the attacked libraries.
In consequence, it is not possible to perform an offline attack, i.e., to
use a pre-generated Cache Template in the exploitation phase on another
system. Still, our concept of Cache Template Attacks allows us to perform
an online attack, as profiling is fully automated by generating keystrokes
through 1ibxdo or comparable libraries. Thus, keystroke side channels are
found within a few seconds of profiling. All keypress-timing side channels
we found have a high accuracy and a timing deviation of less than 1
microsecond to the actual keypress.

In order to demonstrate Cache Template Attacks on a low-frequency
event which is only indirectly connected to keypresses, we attacked sshd,
trying to detect when input is sent over an active ssh connection. The
received characters are unrelated to the local user input. When profiling
for a duration of d = 0.8 seconds per address, we found 428 addresses
showing cache activity when a character was received. We verified these
results for some addresses manually. None of these checked addresses
showed false positive hits within a verification period of 60 seconds. Thus,
by exploiting the resulting Cache Template matrix, we are able to gain
accurate timings for the transmitted characters (significantly less than 1
microsecond deviation to the transmission of the character). These timings
can be used to derive the transmitted letters as shown by Zhang et al.
[ZW09].

5.3. Attack on Windows User Interfaces

We also performed Cache Template Attacks on Windows applications.
The attack works on Windows using MinGW identically to Linux. Even
the implementation is the same, except for the keystroke simulation which
is now performed using the Windows API instead of the 1ibxdo library,
and the file under attack is mapped using LoadLibrary instead of mmap.
We performed our attack on Windows 7 and Windows 8.1 systems with
the same results on three different platforms, namely Intel Core 2 Duo,
Intel i5 Sandy Bridge, and Intel i5 Ivy Bridge. As in the attacks on Linux
user interfaces, address space layout randomization has been activated
during both profiling and exploitation phase.

103

5. Cache Template Attacks

In an automated attack, we found cache activity upon keypresses in
different libraries with reasonable accuracy. For instance, the Windows 7
common control library comct132.d11 can be used to detect keypresses on
different addresses. Probing 0xc5c40 results in cache hits on every keypress
and mouse click within text fields accurately. Running the generated
keypress logger in a verification period of 60 seconds with keyboard input
by a real user, we found only a single false positive event detection based
on this address. Address 0xc6c00 reacts only on keypresses and not on
mouse clicks, but yields more false positive cache hits in general. Again,
we can apply the attack proposed by Zhang et al. [ZW09] to recover typed
words from inter-keystroke timings.

We did not disassemble the shared library and therefore do not know
which function or data accesses cause the cache hit. The addresses were
found by starting the Cache Template Attack with the same parameters
as on Linux, but on a Windows shared library instead of a Linux shared
library. As modern operating systems like Windows 7 and Windows 8.1
employ an immense number of shared libraries, we profiled only a few of
these libraries. Hence, further investigations might even reveal addresses
for a more accurate identification of keypresses.

5.4. Attack on a T-table-based AES

Cache attacks have been shown to enable powerful attacks against crypto-
graphic implementations. Thus, appropriate countermeasures have already
been suggested for the case of AES [Guel0; KS09; RSD06; K6n08|. Never-
theless, in order to compare the presented approach of Cache Template
Attacks to related attacks, we launched an efficient and automated access-
driven attack against the AES T-table implementation of OpenSSL 1.0.2,
which is known to be insecure and susceptible to cache attacks [WHS12;
Ber04; OST06; GBK11; Bog+10; Ira+14a; AK06; Ira+14b]. Recall that
the T-tables are accessed according to the plaintext p and the secret key k,
i.e., Tj[p; ® k;] with i = j mod 4 and 0 < i < 16, during the first round
of the AES encryption. For the sake of brevity, we omit the full details of
an access-driven cache attack against AES and refer the interested reader
to the work of Osvik et al. [OST06; TOS10].

104

5. Attacks on Real-World Applications
Attack of Encryption Events

In a first step, we profiled the two events “no encryption” and “encryption
with random key and random plaintext”. We profiled each cache-line-
aligned address in the OpenSSL library during 100 encryptions. On our
test system, one encryption takes around 320 cycles, which is very fast
compared to a latency of at least 200 cycles caused by a single cache
miss. In order to make the results more deterministically reproducible,
we measure whether a cache line was used only after the encryption has
finished. Thus, the profiling phase does not run in parallel and only one
cache hit or miss is measured per triggered event.

This profiling step takes less than 200 seconds. We detected cache activity
on 0.2%-0.3% of the addresses. Only 82 addresses showed a significant
difference in cache activity depending on the event. For 18 of these ad-
dresses, the cache-hit ratio was 100% for the encryption event. Thus, our
generated spy tool is able to accurately detect whenever an encryption is
performed.

For the remaining 64 addresses the cache-hit ratio was around 92% for
the encryption event. Thus, not each of these addresses is accessed in
every encryption, depending on key and plaintext. Since we attack a
T-table-based AES implementation, we know that these 64 addresses must
be the T-tables, which occupy 4 KB respectively 64 cache lines. Although
this information is not used in the first generated spy tool, it encourages
performing a second attack to target specific key-byte values.

Attack on Specific Key-Byte Values

Exploiting the knowledge that we attack a T-table implementation, we
enhance the attack by profiling over different key-byte values for a fixed
plaintext, i.e., the set of events consists of the different key-byte values.
Our attack remains fully automated, as we change only the values with
which the encryption is performed. The result is again a log file containing
the accurate timestamp of each event monitored. The interpretation of
the log file, of course, involves manual work and is specific to the targeted
events, i.e., key bytes in this case.

For each key byte k;, we profile only the upper 4 bits of k; as the lower
4 bits cannot be distinguished because of the cache-line size of 64 bytes.
This means that we need to profile only 16 addresses for each key byte ;.

105

5. Cache Template Attacks

ADDRESS ADDRESS
0 = = 0= =
BgEsE=== E=SEEE | a B s
o [| | =E=EE [|
S SEEEEE = u | s=
% = | [| E=8E S==o
=] E n SSE=
g B SRE=EE =cEE===2i
- g=8 SSENg= - u N
2 - g = =
- = ._l H H N
255 - u 255 ==

Figure 5.5.: Excerpt of the Cache Template (address range of the first
T-table). The plot is transposed to match [OSTO06]. In the left trace
ko = 0x00, in the right trace ky = 0x51.

Furthermore, on average 92% of these addresses are already in the cache
and the Reload step of the Flush+Reload attack is unlikely to trigger
the prefetcher. Thus, we can probe all addresses after a single encryption.
Two profiles for different values of kg are shown in Figure 5.5. The two
traces were generated using 1000 encryptions per key byte and address
to show the pattern more clearly. According to Osvik et al. [OST06] and
Spreitzer et al. [SP13] these plots (or patterns) reveal at least the upper 4
bits of a key byte and, hence, attacking the AES T-table implementation
works as expected. In our case, experiments showed that 1 to 10 encryptions
per key byte are enough to infer these upper 4 bits correctly.

In a T-table-based AES implementation, the index of the T-table is
determined by p; ® k;. Therefore, the same profiles can be generated by
iterating over the different plaintext byte values while encrypting with a
fixed key. Osvik et al. [OST06] show a similar plot, generated using the
Evict+Time attack. However, in our attack the profiles are aggregated
into the Cache Template matrix, as described in Section 3.1.

In the exploitation phase, the automatically generated spy tool monitors
cache hits on the addresses from the Cache Template in order to determine
secret key-byte values. We perform encryptions using chosen plaintexts.
We attack the 16 key bytes k; sequentially. In each step ¢ =0,...,15, the
plaintext is random, except for the upper 4 bits of p;, which are fixed to
the same chosen value as in the profiling phase. Hence, the encryption is
performed over a chosen plaintext. The spy tool triggers an encryption,
detects when the encryption actually happens and after each encryption,

106

5. Attacks on Real-World Applications

reports the set of possible values for the upper 4 bits of key byte k;. As
soon as only one candidate for the upper 4 bits of key byte k; remains, we
continue with the next key byte.

Using Cache Template Attacks, we are able to infer 64 bits of the secret key
with only 16-160 encryptions in a chosen-plaintext attack. Compared to
the work of Osvik et al. [OST06] who require several hundred or thousands
encryptions (depending on the measurement approach) targeting the L1
cache, and the work of Spreitzer and Plos [SP13] who require millions
of encryptions targeting the L1 cache on the ARM platform, we clearly
observe a significant performance improvement. More recent work shows
that full key recovery is possible with less than 30 000 encryptions [Giil+15]
using Flush+Reload.

The benefit of our approach, compared to existing cache attacks against
AES, is that our attack is fully automated. Once the binary is deployed
on the target system, it performs both profiling and exploitation phase
automatically and finally returns a log file containing the key byte candi-
dates to the attacker. Moreover, we do not need prior knowledge of the
attacked system or the attacked executable or library.

AES T-table implementations are already known to be insecure and coun-
termeasures have already been integrated, e.g., in the AES implementation
of OpenSSL. Performing our attack on a non-T-table implementation (e.g.,
by employing AES-NT instructions) did not show key dependent informa-
tion leakage, but still, we can accurately determine the start and end of
the encryption through the cache behavior. However, we leave it as an
interesting open issue to employ the presented approach of cache template
attacks for further investigations of vulnerabilities in already protected
implementations.

Trace-Driven Attack on AES

When attacking an insecure implementation of a cryptographic algorithm,
an attacker can often gain significantly more information if it is possible
to perform measurements during the encryption [AK06; GKT10], i.e., in
case the exact trace of cache hits and cache misses can be observed. Even
if we cannot increase the frequency of the Flush+Reload attack, we are
able to slow down the encryption by constantly flushing the 18 addresses
which showed cache activity in every profile. We managed to increase the
encryption time from 320 cycles to 16 000-20 000 cycles. Thus, a more

107

5. Cache Template Attacks

fine-grained trace of cache hits and cache misses can be obtained which
might even allow the implementation of trace-driven cache attacks purely
in software.

6. Countermeasures

We have demonstrated in Section 5 that Cache Template Attacks are
applicable to real-world applications without knowledge of the system
or the application. Therefore, we emphasize the need for research on
effective countermeasures against cache attacks. In Section 6.1, we discuss
several countermeasures which have been proposed so far. Subsequently,
in Section 6.2, we discuss how Cache Template Attacks can be employed
by developers to detect and eliminate cache-based information leakage
and also by users to detect and prevent cache attacks running actively on
a system. Finally, in Section 6.3, we propose changes to the prefetcher to
build a powerful countermeasure against cache attacks.

6.1. Discussion of Countermeasures
Removal of the clflush Instruction is not Effective

The restriction of the c1f1lush instruction has been suggested as a possible
countermeasure against cache attacks in [YB14; YF14; Zha+14]. However,
by adapting our spy tool to evict the cache line without using the c1flush
instruction (Evict+Reload instead of Flush+Reload), we demonstrate
that this countermeasure is not effective at all. Thereby, we show that
cache attacks can be launched successfully even without the cl1flush
instruction.

Instead of using the c1flush instruction, the eviction is done by accessing
physically congruent addresses in a large array which is placed in large
pages by the operating system. In order to compute physically congruent
addresses we need to determine the lowest 18 bits of the physical address
to attack, which can then be used to evict specific cache sets.

The actual mapping of virtual to physical addresses can be retrieved from
/proc/self/pagemap. Even if such a mapping is not available, methods
to find congruent addresses have been developed—simultaneously to this
work—by Irazoqui et al. [IES15] by exploiting large pages, Oren et al.

108

6. Countermeasures

[Ore+15] by exploiting timing differences in JavaScript, and Liu et al.
[Liu+15] by exploiting timing differences in native code.

The removal of the clflush instruction has also been discussed as a
countermeasure to protect against DRAM disturbance errors (denoted as
rowhammer bug). These disturbance errors have been studied by Kim et al.
[Kim+14] and, later on, exploited by Seaborn et al. [SD15] to gain kernel
privileges. Several researchers have already claimed to be able to exploit
the rowhammer bug without the c1flush instruction [Gool5], This can
be done by exploiting the Sandy Bridge cache mapping function, which
has been reverse engineered by Hund et al. [HWH13], to find congruent
addresses.

Our eviction strategy only uses the lowest 18 bits and therefore, we need
more than 12 accesses to evict a cache line. With 48 accessed addresses,
we measured an eviction rate close to 100%. For performance reasons we
use write accesses, as the CPU does not have to wait for data fetches from
the physical memory. In contrast to the c1flush instruction, which takes
only 41 cycles, our eviction function takes 325 cycles. This is still fast
enough for most Flush+Reload attacks.

While clflush always evicts the cache line, our eviction rate is only
near 100%. Therefore, false positive cache hits occur if the line has not
been evicted. Using Flush+Reload, there is a rather low probability for a
memory access on the monitored address to happen exactly between the
Reload step and the point where the c1flush takes effect. This probability
is much higher in the case of Evict+Reload, as the eviction step takes 8
times longer than the c1flush instruction.

We compare the accuracy of Evict+Reload to Flush+Reload using previ-
ously found cache vulnerabilities. For instance, as described in Section 5.1,
probing address 0x7c800 of 1ibgdk-3.s0.0.1000.8 allows us to detect
keypresses on key n. The Flush+Reload spy tool detects on average 98%
of the keypresses on key n with a 2% false positive rate (keypresses on
other keys). Using Evict+Reload, we still detect 90% of the keypresses on
key n with a 5% false positive rate. This clearly shows that the restriction
of c1flush is not sufficient to prevent this type of cache attack.

109

5. Cache Template Attacks

Disable Cache-Line Sharing

One prerequisite of Flush+Reload attacks is shared memory. In cloud
scenarios, shared memory across virtual machine borders is established
through page deduplication. Page deduplication between virtual machines
is commonly disabled in order to prevent more coarse-grained attacks
like fingerprinting operating systems and files [Suz+11; OW11] as well as
Flush+Reload. Still, as shown by Irazoqui et al. [IES15], it is possible to
use Prime+Probe as a fallback. However, attacking low-frequency events
like keypresses becomes infeasible, because Prime+Probe is significantly
more susceptible to noise.

Flush+Reload can also be prevented on a system by preventing cache-
line sharing, i.e., by disabling shared memory. Unfortunately, operating
systems make heavy use of shared memory, and without modifying the
operating system it is not possible for a user program to prevent its own
memory from being shared with an attacker, even in the case of static
linkage as discussed in Section 2.2.

With operating-system modifications, it would be possible to disable
shared memory in all cases where a victim program cannot prevent an
attack, i.e., shared program binaries, shared libraries, shared generated
files (for instance, locale-archive). Furthermore, it would be possible to

provide a system call to user programs to mark memory as “do-not-share.”

A hardware-based approach is to change cache tags. Virtually tagged
caches are either invalidated on context switches or the virtual tag is
combined with an address space identifier. Therefore, shared memory is
not shared in the cache. Thus, Flush+Reload is not possible on virtually
tagged caches.

We emphasize that as long as shared cache lines are available to an attacker,
Flush+Reload or Evict+Reload cannot be prevented completely.

Cache Set Associativity

Prime+Probe, Evict+Time and Evict+Reload exploit set-associative
caches. In all three cases, it is necessary to fill all ways of a cache set,
either for eviction or for the detection of evicted cache sets. Based on
which cache set was reloaded (respectively evicted), secret information
is deduced. Fully associative caches have better security properties, as

110

6. Countermeasures

such information deduction is not possible and cache eviction can only
be enforced by filling the whole cache. However, a timing attack would
still be possible, e.g., due to internal cache collisions [Bog+10] leading
to different execution times. As fully associative caches are impractical
for larger caches, new cache architectures have been proposed to provide
similar security properties [WL07; Kon+08; WLO08|. However, even fully
associative caches only prevent attacks which do not exploit cache-line
sharing. Thus, a combination of countermeasures is necessary to prevent
most types of cache attacks.

6.2. Proactive Prevention of Cache Attacks

Instrumenting cache attacks to detect co-residency [Zha+11] with another
virtual machine on the same physical machine, or even to detect cache
attacks [Zha+14] and cache-based side channels in general [Doy+13] has
already been proposed in the past. Moreover, Brumley and Hakala [BH09]
even suggested that developers should use their attack technique to detect
and eliminate cache vulnerabilities in their programs. Inspired by these
works, we present defense mechanisms against cache attacks which can be
improved by using Cache Template Attacks.

Detect Cache Vulnerabilities as a Developer

Similar to Brumley and Hakala [BH09], we propose the employment of
Cache Template Attacks to find cache-based vulnerabilities automatically.
Compared to [BH09], Cache Template Attacks allow developers to detect
potential cache side channels for specifically chosen events automatically,
which can subsequently be fixed by the developer. A developer only
needs to select the targeted events (e.g., keystrokes, window switches,
or encryptions) and to trigger these events automatically during the
profiling phase, which significantly eases the evaluation of cache side
channels. Ultimately, our approach even allows developers to find such
cache vulnerabilities in third party libraries.

Detect and Impede Ongoing Attacks as a User

Zhang et al. [Zha+14] stated the possibility to detect cache attacks by
performing a cache attack on one of the vulnerable addresses or cache

111

5. Cache Template Attacks

sets. We propose running a Cache Template Attack as a system service
to detect code and data under attack. If Flush+Reload prevention is
sufficient, we simply disable page sharing for all pages with cache lines
under attack. Otherwise, we disable caching for these pages as proposed
by Aciigmez et al. [ABG10] and, thus, prevent all cache attacks. Only the
performance for critical code and data parts is reduced, as the cache is
only disabled for specific pages in virtual memory.

Furthermore, cache attacks can be impeded by performing additional
memory accesses, unrelated to the secret information, or random cache
flushes. Such obfuscation methods on the attacker’s measurements have
already been proposed by Zhang et al. [ZR13]. The idea of the proposed
obfuscation technique is to generate random memory accesses, denoted as
cache cleansing. However, it does not address the shared last-level cache.
In contrast, Cache Template Attacks can be used to identify possible
cache-based information leaks and then to specifically add noise to these
specific locations by accessing or flushing the corresponding cache lines.

6.3. Enhancing the Prefetcher

During our experiments, we found that the prefetcher influences the cache
activity of certain access patterns during cache attacks, especially due to
the spatial locality of addresses, as also observed in other work [OSTO6;
YB14; GBK11]. However, we want to discuss the prefetcher in more detail
as it is crucial for the success of a cache attack.

Although the profiling phase of Cache Template Attacks is not restricted by
the prefetcher, the spy program performing the exploitation phase might
be unable to probe all leaking addresses simultaneously. For instance, we
found 255 addresses leaking side-channel information about keypresses in
the GDK library but we were only able to probe 8 of them simultaneously
in the exploitation phase, because the prefetcher loads multiple cache lines
in advance and, thus, generates numerous false positive cache hits.

According to the Intel 64 and IA-32 Architectures Optimization Reference
Manual [Int12], the prefetcher loads multiple memory addresses in advance
if “¢wo cache misses occur in the last level cache” and the corresponding
memory accesses are within a specific range (the so-called trigger distance).
Depending on the CPU model this range is either 256 or 512 bytes, but
does not exceed a page boundary of 4 KB. Due to this, we are able to
probe at least 2 addresses per page.

112

7. Conclusion

We suggest increasing the trigger distance of the prefetcher beyond the
4 KB page boundary if the corresponding page already exists in the
translation lookaside buffer. The granularity of the attack will then be too
high for many practical targets, especially attacks on executed instructions
will then be prevented.

As cache attacks constantly reaccess specific memory locations, another
suggestion is to adapt the prefetcher to take temporal spatiality into con-
sideration. If the prefetcher were to prefetch data based on that temporal
distance, most existing attacks would be prevented.

Just as we did in Section 4, an attacker might still be able to establish a
communication channel targeted to circumvent the prefetcher. However,
the presented countermeasures would prevent most cache attacks targeting
real-world applications.

7. Conclusion

In this paper, we introduced Cache Template Attacks, a novel technique
to find and exploit cache-based side channels easily. Although specific
knowledge of the attacked machine and executed programs or libraries
helps, it is not required for a successful attack. The attack is performed
on closed-source and open-source binaries in exactly the same way.

We studied various applications of Cache Template Attacks. Our results
show that an attacker is able to infer highly accurate keystroke timings on
Linux as well as Windows. For Linux distributions we even demonstrated
a fully automatic keylogger that significantly reduces the entropy of
passwords. Hence, we conclude that cache-based side-channel attacks are
an even greater threat for today’s computer architectures than assumed so
far. In fact, even sensitive user input, like passwords, cannot be considered
secure on machines employing CPU caches.

We argue that fundamental concepts of computer architectures and ope-
rating systems enable the automatic exploitation of cache-based vulnera-
bilities. We observed that many of the existing countermeasures do not
prevent such attacks as expected. Still, the combination of multiple coun-
termeasures can effectively mitigate cache attacks. However, the fact that
cache attacks can be launched automatically marks a change of perspective,
from a more academic interest towards practical attacks, which can be
launched by less sophisticated attackers. This shift emphasizes the need to

113

5. Cache Template Attacks

develop and integrate effective countermeasures immediately. In particular,
it is not sufficient to protect only specific cryptographic algorithms like
AES. More general countermeasures will be necessary to counter the threat
of automated cache attacks.

8. Acknowledgments

We would like to thank the anonymous reviewers and our shepherd, Ben
Ransford, for their valuable comments and suggestions. The research
e leading to these results has received funding from the Eu-
rs ropean Union’s Horizon 2020 research and innovation pro-
s gramme under grant agreement No 644052 (HECTOR).
Furthermore, this work has been supported by the Austrian Research
Promotion Agency (FFG) and the Styrian Business Promotion Agency
(SFG) under grant number 836628 (SeCoS).

References

[ABG10] O. Aciigmez, B. B. Brumley, and P. Grabher. New Results
on Instruction Cache Attacks. In: CHES’10. 2010 (p. 112).

[AKO06] 0. Aciigmez and C. K. Kog. Trace-Driven Cache Attacks on
AES (Short Paper). In: Proceedings of the 8th International
Conference on Information and Communications Security.

2006 (pp. 104, 107).

[Ben+14] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “Ooh
Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In: CHES’14. 2014 (p. 81).

[Ber04] D. J. Bernstein. Cache-Timing Attacks on AES. 2004. URL:
http://cr.yp.to/papers.html#cachetiming (pp. 81, 85,
104).

[BHO9] B. B. Brumley and R. M. Hakala. Cache-Timing Template
Attacks. In: ASTACRYPT’09. 2009 (pp. 81, 87, 111).

[BMO06] J. Bonneau and I. Mironov. Cache-collision timing attacks

against AES. In: CHES’06. 2006 (p. 81).

114

http://cr.yp.to/papers.html#cachetiming

[Bog+10]

[Che+13]

[CRRO2]

[Doy+13]

[DR13]

[Fral0]

[GBK11]

[GKT10]

[Gool5]

[Guel0]

[Giil415]

References

A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Dif-
ferential Cache-Collision Timing Attacks on AES with Ap-
plications to Embedded CPUs. In: CT-RSA. 2010 (pp. 104,
111).

C. Chen, T. Wang, Y. Kou, X. Chen, and X. Li. Improve-
ment of Trace-Driven I-Cache Timing Attack on the RSA
Algorithm. In: Journal of Systems and Software 86.1 (2013),
pp. 100-107 (p. 81).

S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In:
CHES’02. 2002 (p. 86).

G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke.
CacheAudit: A Tool for the Static Analysis of Cache Side
Channels. In: USENIX Security '13. 2013 (p. 111).

J. Daemen and V. Rijmen. The Design of Rijndael: AES —
The Advanced Encryption Standard. 2013 (p. 82).

M. Franz. E unibus pluram: Massive-Scale Software Diver-
sity as a Defense Mechanism. In: Proceedings of the 2010
Workshop on New Security Paradigms. 2010 (p. 87).

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (pp. 81, 85, 104, 112).

J. Gallais, 1. Kizhvatov, and M. Tunstall. Improved Trace-
Driven Cache-Collision Attacks against Embedded AES

Implementations. In: Cryptology ePrint Archive, Report
2010/408 (2010) (p. 107).

Google Groups. Rowhammer without CLFLUSH. 2015. URL:
http://groups.google.com/forum/#!topic/rowhammer-
discuss/ojgTglrdq_M (p. 109).

S. Gueron. White Paper: Intel Advanced Encryption Stan-

dard (AES) Instructions Set. 2010. URL: https://software.
intel.com/file/24917 (p. 104).

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush+Reload Attack on AES.

In: Constructive Side-Channel Analysis and Secure Design
(COSADE). 2015 (pp. 81, 86, 107).

115

http://groups.google.com/forum/#!topic/rowhammer-discuss/ojgTgLr4q_M
http://groups.google.com/forum/#!topic/rowhammer-discuss/ojgTgLr4q_M
https://software.intel.com/file/24917
https://software.intel.com/file/24917

5. Cache Template Attacks

[HWH13]

[IES15]

[Int12]

[Ira+14a)

[Ira+14b]

[Ira-+15a]

[Tra+15b]

[Kel+00]

[Kim+14]

[Koc96]

[Kon+08]

[Kén08]

116

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (p. 109).

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(pp. 86, 94, 108, 110).

Intel Corporation. Intel® 64 and TA-32 Architectures Opti-
mization Reference Manual. 248966-026. 2012 (p. 112).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Fine
grain Cross-VM Attacks on Xen and VMware are possible! In:
Cryptology ePrint Archive, Report 2014/248 (2014) (p. 104).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In: RAID’14.
2014 (pp. 81, 104).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies (2015) (p. 86).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 86).

J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel
Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141-158 (p. 85).

Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors. In: ISCA’14. 2014 (p. 109).

P. C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: Crypto’96. 1996
(p. 85).

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou. Decon-
structing new cache designs for thwarting software cache-
based side channel attacks. In: New York, New York, USA,
2008 (p. 111).

R. Konighofer. A Fast and Cache-Timing Resistant Imple-
mentation of the AES. In: CT-RSA. 2008 (p. 104).

[KS09]

[Liut15]

[LL14]

[Mau+15]

[MKS12]

[Nat01]

[Nev06]

[Opel4]

[Ore+15]

[0STO06]

[OW11]

[Pag02]

[Per05]

References

E. Késper and P. Schwabe. Faster and Timing-Attack Resis-
tant AES-GCM. In: CHES’09. 2009 (p. 104).

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: S&P’15.
2015 (pp. 86, 109).

F. Liu and R. B. Lee. Random Fill Cache Architecture. In:
IEEE/ACM International Symposium on Microarchitecture
(MICRO’14). 2014 (p. 81).

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(p. 86).

K. Mowery, S. Keelveedhi, and H. Shacham. Are AES x86
Cache Timing Attacks Still Feasible? In: Proceedings of the
4th ACM Cloud Computing Security Workshop (CCSW’12).
2012 (p. 81).

National Institute of Standards and Technology. Advanced
Encryption Standard. NIST FIPS PUB 197. 2001 (p. 82).

M. Neve. Cache-based Vulnerabilities and SPAM Analysis.
PhD thesis. UCL, 2006 (p. 85).

OpenSSL Software Foundation. OpenSSL Project. 2014. URL:
http://www.openssl.org/ (pp. 82, 97).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Ke-
romytis. The Spy in the Sandbox - Practical Cache Attacks
in Javascript. In: arXiv:1502.07373 (2015) (pp. 86, 109).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006
(pp. 81, 85, 104, 106, 107, 112).

R. Owens and W. Wang. Non-interactive OS fingerprinting
through memory de-duplication technique in virtual ma-
chines. In: 30th IEEE International Performance Computing
and Communications Conference. 2011 (p. 110).

D. Page. Theoretical use of cache memory as a cryptana-
lytic side-channel. In: Cryptology ePrint Archive, Report
2002/169 (2002) (pp. 81, 85).

C. Percival. Cache missing for fun and profit. 2005 (p. 85).

117

http://www.openssl.org/

5. Cache Template Attacks

[Ris+09]

[RSDOG]

[SD15]

[SP13]

[Suz+11]

[Tan+08]

[TOS10]

[Tsu+03]

[WHS12]

[WLO7]

118

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In: CCS’09. 2009 (pp. 81,
98).

C. Rebeiro, D. Selvakumar, and A. Devi. Bitslice Implemen-
tation of AES. In: International Conference on Cryptology
and Network Security. 2006 (p. 104).

M. Seaborn and T. Dullien. Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges. Retrieved on June 26,
2015. 2015. URL: http://googleprojectzero.blogspot.
co.at/2015/03/exploiting-dram-rowhammer-bug-to-
gain.html (p. 109).

R. Spreitzer and T. Plos. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2013 (pp. 106, 107).

K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory Dedu-
plication as a Threat to the Guest OS. In: Proceedings of the
4th European Workshop on System Security. 2011 (p. 110).

A. Tannous, J. T. Trostle, M. Hassan, S. E. McLaughlin,
and T. Jaeger. New Side Channels Targeted at Passwords.
In: ACSAC. 2008 (pp. 97, 101, 102).

E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache
Attacks on AES, and Countermeasures. In: Journal of Cryp-
tology 23.1 (July 2010), pp. 37-71 (p. 104).

Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi.
Cryptanalysis of DES implemented on computers with cache.
In: CHES’03. 2003 (p. 85).

M. Weif}, B. Heinz, and F. Stumpf. A Cache Timing Attack
on AES in Virtualization Environments. In: Proceedings of
the 16th International Conference on Financial Cryptogra-
phy and Data Security (FC’12). 2012 (pp. 81, 104).

Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ISCA’07. 2007

(p. 111).

http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[WLO0S]

[YB14]

[YF14]

[Zha+11]

[Zha+14]

[ZR13]

[ZW09]

References

Z. Wang and R. B. Lee. A Novel Cache Architecture with
Enhanced Performance and Security. In: IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’08).
2008 (p. 111).

Y. Yarom and N. Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH4+RELOAD Cache Side-channel
Attack. In: Cryptology ePrint Archive, Report 2014/140
(2014) (pp. 81, 97, 108, 112).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 81, 83, 85, 108).

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Anal-
ysis. In: S&P’11. 2011 (p. 111).

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In: CCS’14.
2014 (pp. 108, 111).

Y. Zhang and M. K. Reiter. Diippel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the
Cloud. In: CCS’13. 2013 (p. 112).

K. Zhang and X. Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (pp. 98, 103, 104).

119

Practical Memory Deduplication
Attacks in Sandboxed Javascript

Publication Data

D. Gruss, D. Bidner, and S. Mangard. Practical Memory Deduplication
Attacks in Sandboxed JavaScript. In: 20th FEuropean Symposium on
Research in Computer Security (ESORICS’15). 2015

Contributions

Main author.

121

6. Memory Deduplication Attacks

Practical Memory Deduplication Attacks
in Sandboxed Javascript

Daniel Gruss, David Bidner, and Stefan Mangard
Graz University of Technology, Austria

Abstract

Page deduplication is a mechanism to reduce the memory footprint of a
system. Identical physical pages are identified across borders of virtual
machines and programs and merged by the operating system or the
hypervisor. However, this enables side-channel information leakage through
cache or memory access time. Therefore, it is considered harmful in public
clouds today, but it is still considered safe to use in a private environment,
i.e., private clouds, personal computers, and smartphones.

We present the first memory-disclosure attack in sandboxed JavaScript
which exploits page deduplication. Unlike previous attacks, our attack
does not require the victim to execute an adversary’s program, but simply
to open a website which contains the adversary’s JavaScript code. We
are not only able to determine which applications are running, but also
specific user activities, for instance, whether the user has specific websites
currently opened. The attack works on servers, personal computers and
smartphones, and across the borders of virtual machines.

Keywords. Memory Deduplication, Side-Channel Attack, JavaScript-
based Attack, Website Fingerprinting

1. Introduction

Software-based timing attacks are side-channel attacks which exploit dif-
ferences in the execution time to derive secret values used during the
computation. These timing differences arise from the attacked software

The original publication is available at http://link.springer.com/chapter/10.
1007/978-3-319-24174-6_6.

122

http://link.springer.com/chapter/10.1007/978-3-319-24174-6_6
http://link.springer.com/chapter/10.1007/978-3-319-24174-6_6

1. Introduction

itself, different memory types or optimizations implemented in modern com-
puters. For instance, cache attacks exploit the timing difference between
a cache access and a memory access caused by a cache miss. An attacker
process can measure whether a victim process has evicted one of the
attacker’s cache lines [OST06] or whether a victim program has reloaded a
cache line the attacker previously evicted from the cache [GBK11; YF14].

A similar timing difference can be observed between a regular memory
access and a pagefault. Upon a pagefault, the operating system loads the
data to the given location in virtual memory and returns control to the
process. Apart from the difference in the memory access time, pagefault
handling is transparent to the user process. This timing difference can be
exploited to build a covert channel [War+96].

Suzaki et al. [Suz+11] presented page-deduplication attacks, which enable
an attacker on the same physical machine, to determine whether specific
programs are running, even across the borders of virtual machines. This
is possible, because identical physical pages are merged by the operating
system or the hypervisor. After a page is merged write accesses to this
page cause a pagefault which is then resolved by the operating system.
The timing difference the pagefault causes can be observed by the attacker
program. Thus, the attacker learns that somewhere on the same physical
machine another instance of this page exists.

JavaScript-based timing attacks have first been described by Felten et al.
[FS00]. They were able to identify recently visited websites if website
elements are fetched from the local browser cache instead of the network.
A similar attack has been presented by Bortz et al. [BB07]. More recently
Stone [Stol13] presented attacks which exploit timing differences caused by
the modification of HTML5 elements. Using their approach, an attacker
is able to determine whether specific websites have been visited, and even
read pixels from other websites.

In this paper, we present the first page-deduplication attack mounted in
sandboxed JavaScript. This allows a remote attacker to collect private
information, such as whether a program or website is currently opened
by a user. In contrast to existing JavaScript-based timing attacks, we
do not exploit any weaknesses in JavaScript or the browser, but timing
differences caused by optimizations in the operating system or hypervisor.

JavaScript is a scripting language implemented in modern browsers to
create interactive elements on websites. It is strictly sandboxed, so it
is not possible to access files or system services. The language has no

123

6. Memory Deduplication Attacks

representation of pointers or the virtual address space layout, and less
accurate timing information than native code. Oren et al. [Ore+15] already
demonstrated in a JavaScript-based cache attack that timer accuracy is
high enough to distinguish cache hits from cache misses. Our attack is
possible with less accurate timers, on a microsecond or millisecond basis.

To demonstrate the power of our attack, we show that we can accurately
determine whether the user has opened specific websites. Our attack can be
applied in a generic way to any system which employs page deduplication,
independently of the CPU architecture and in particular independently of
the CPU cache structure. This is a significant share of modern personal
computers and smartphones.

With our attack, an adversary is not only able to perform the attack
remotely through a website, on an arbitrary number of victims, but an
adversary is also able to attack a variety of different devices in the same
way. Thus, page-deduplication attacks no longer target one specific system,
but instead target large numbers of internet users simultaneously. For
instance, a website can detect which other websites a user has opened and
thereby add more valuable information to user profiles. Furthermore, the
attack causes negligible CPU and memory utilization and is thus, hard to
detect if placed in a large JavaScript framework.

We show that page deduplication must be considered a security threat on
any system and not only on public cloud servers. Therefore, we conclude
that the only effective countermeasure is to disable page deduplication.

Outline

The remaining paper is organized as follows. In Section 2, we provide
background information on shared memory and page deduplication, as
well as existing attacks. We describe the implementation of our attack
in Section 3. In Section 4.1, we present the performance of our attack in
a private cloud and in Section 4.2, we present results of our attack on
personal computers and smartphones. We discuss countermeasures against
page-deduplication attacks in Section 5. Finally, we conclude in Section 6.

124

2. Background

2. Background

2.1. Shared Memory

Operating systems and hypervisors use shared memory to reduce physical
memory utilization. Libraries which are used by several programs are
loaded into physical memory only once, and are then shared among the
processes using it. Thus, multiple programs access the same physical pages
mapped within their own virtual address space.

The operating system makes use of shared memory in more cases. When
forking a process, the memory is first shared between the parent process
and the child process. As soon as one of the processes writes into the
shared memory area, a copy-on-write page fault occurs and the operating
system creates a copy of the according memory region. Note that write
accesses into non-shared memory areas do not incur page faults and thus
are significantly faster.

Shared memory is not only used when forking a process, but when starting
instances of an already running program, or if a user program explicitly
requests shared memory using system calls like mmap or dlopen. Mapping
a file using one of these methods results in a memory region shared with
all other proceses mapping the same file.

The form of shared memory we target in this paper is content-based page
deduplication. The hypervisor or operating system scans the physical
memory for pages with identical content. If identical pages are found, they
are remapped to one of the pages, while the other pages are marked as
free. Thus, memory is shared between completely unrelated and possibly
sandboxed processes, and even between processes running in different
virtual machines. If a process modifies its shared data, a copy-on-write
page fault occurs and the hypervisor or operating system creates a copy
of the memory region. Although searching for identical pages costs CPU
time, page deduplication can increase the system performance, by reducing
the number of block device accesses, as more data can be held in memory.
Therefore, it is especially relevant in small systems like smartphones,
besides the primary application in cloud systems.

125

6. Memory Deduplication Attacks
2.2. Page-Deduplication Attacks

Page-deduplication attacks are a specific type of side-channel attacks,
which exploit timing differences in write accesses on deduplicated pages.
The first attack on page deduplication was presented by Suzaki et al.
[Suz+11]. They were able to determine whether specific applications
are running in a co-located virtual machine in the cloud. Furthermore,
they described the possibility of building covert communication channels
between virtual machines by exploiting page deduplication.

In the basic attack scheme, an attacker is able to run a spy program on the
victim’s system. However, the spy program may be sandboxed or even run
in a virtual machine. The spy program fills a page with data it suspects
to find in the memory of the victim machine. The hypervisor or operating
system constantly deduplicates identical physical pages. When the spy
program tries to write to the page again, it can measure the elapsed time
and infer whether a copy-on-write page fault occurs or not. Thus, the
attacker can determine whether some other process on the same physical
machine has an identical page in memory. Such attacks can be performed
on both, binary code and static data as well as dynamically generated
data.

Owens et al. [OW11] demonstrated that it is possible to efficiently finger-
print operating systems in co-located virtual machines by exploiting page
deduplication. Since then, covert channels based on page deduplication
[Xia+13; Xia+12] have been constructed and evaluated.

At the same time, researchers were able to build more efficient cache attacks
if attacker and victim process share memory [GBK11]. Page deduplication
introduces a way to share memory with a victim process in a co-located
virtual machine in the cloud. The possibility of performing a cache attack
on a victim process across virtual machine borders has first been described
by Yarom et al. [YF14]. Since then, several page-deduplication-based cache
attacks have been demonstrated [Ira+14a; Ira+14Db].

3. Description of our JavaScript-based Attack

Our attack follows the same methodology as the page-deduplication attack
presented by Suzaki et al. [Suz+11], which was implemented in native
code. As our attack is implemented in JavaScript, we face several new

126

3. Description of our JavaScript-based Attack

challenges, such as setting the content of a whole page in physical memory
or detecting whether and when page deduplication has occurred.

As described in Section 2.2, the first step of a page-deduplication attack
is to fill a page with data we expect to find on the system under attack.
In native code, this done by filling a page-aligned region in an array
with the according data. We found that JavaScript engines in common
browsers (Firefox and Chrome) perform a call to their own internal
malloc implementation when creating a large array in JavaScript. As a
means of optimization, these malloc implementations align large memory
allocations to page borders. Therefore, creating and filling a large array
in JavaScript works as in native code, in terms of our attack.

The second step is to wait until the operating system or hypervisor
deduplicates our array. In our attacker model, the adversary performs
the attack through a website on every visitor. Therefore, we cannot make
assumptions about how long it takes until page deduplication has been
performed. Instead, we repeatedly write the same value to the same
position on the target page and measure the time the write access took.
We observed no influence of these repeated writes on whether the page
is considered for deduplication. Thus, we can perform the deduplication
check in a regular frequency.

The third step is the measurement of the write-access time, to infer
whether a page has been deduplicated. This is done by measuring the
time a write access on our own page takes. Based on the access time, we
decide whether a copy-on-write page fault occurred. In native x86 code,
we use the rdtsc assembly instruction for this purpose. In JavaScript,
we can use the function performance.now(). The accuracy of this func-
tion varies from sub-microsecond to millisecond range. If checking for
deduplication of a single page in memory, our attack requires accurate
microsecond measurements. However, usually more pages are attacked and
thus less accurate timers are sufficient. For instance, when checking for
deduplication of a 600 kilobyte image, even an accurate millisecond-based
timer can be used to implement our attack. Thus, performance.now()
is sufficient to distinguish copy-on-write page faults from regular write
accesses. Furthermore, performance.now() is available independently of
the underlying hardware. Therefore, we can attack systems with a variety
of different processors using the same JavaScript code, such as personal
computers or smartphones.

127

6. Memory Deduplication Attacks

The only remaining question to perform our attack is how to know the
data we want to fill the page with. Neither static code and data nor
dynamically generated data is necessarily page-aligned. However, if the
attacker knows the content of 8192 bytes contiguous in virtual memory,
we can fill 4096 pages with data from these 8192 bytes, with every possible
offset from the page alignment. Although this allows us to attack systems
and programs with random offsets for the targeted data, we found that
this is hardly necessary for most cases. For instance, we observed that
images and CSS style sheets in websites are page-aligned in memory. This
greatly facilitates our attack, as we can trivially extract the page content
from a file and include it in our JavaScript code.

The resulting attack applies to a wide range of scenarios, from mobile phone
usage, over personal computers, to multi-tenant cloud systems. A user
on a targeted system accesses a website, which contains the adversary’s
JavaScript code. The JavaScript code is then executed. After a few minutes,
the JavaScript code transmits the results back to the adversary. Our attack
not only extracts sensitive information, like the browsing behavior of a
user, but it is also extremely powerful due to its scalability. Once the
JavaScript code is deployed on a website, it automatically attacks anyone
who accesses the website. We will demonstrate the attack in different
scenarios in the following section.

4. Practical Attacks and Evaluation

In this section, we demonstrate our attack on a KVM-based private
cloud server, on Windows 8 personal computers and finally on Android
smartphones. In all scenarios, we use the same JavaScript source code.

4.1. Cross-VM Attack on Private Clouds

Existing page-deduplication attacks have been demonstrated on public TaaS
(Infrastructure-as-a-Service) cloud systems [Suz+11; Xia+13; Xia+12].
In this attack scenario, an adversary tries to be co-located on the same
physical server with a targeted virtual machine. Once the adversary is
co-located, the adversary extracts sensitive information from other virtual
machines, e.g., whether vulnerable versions of specific server applications
are running, or whether specific files are currently open.

128

4. Practical Attacks and Evaluation

- Image not loaded Image loaded
T T T T T T
10° |)
<0 1
O
e mee e
10 |)
|

| | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Page

Figure 6.1.: Timings measured in native code on an otherwise idle Linux
KVM virtual machine. The graph shows write-access times on an array
containing an image file.

Although public cloud providers reacted and now disable page deduplica-
tion in public TaaS clouds [IES14], we found that page deduplication is not
yet considered a security problem on private cloud systems and servers.
Popular Linux server distributions enable page deduplication, either by
default, or automatically when reaching a certain memory usage level. For
instance, we observed this behavior on Proxmox VE, Redhat Server and
Ubuntu Server if configured as a KVM host.

Therefore, we demonstrate our attack in a private IaaS cloud. This is
a realistic scenario, for instance in companies where users work on thin
clients, connected to a virtual machine in the private IaaS cloud. In
this scenario, a victim working in one virtual machine opens a website
containing the malicious JavaScript code, which is then continuously run
in the background in a browser tab. Compared to existing attacks, our
attack is possible even if the system does not allow users to start arbitrary
programs, or if the user is well-educated to avoid executing programs
from an untrusted origin. Furthermore, we want to emphasize that our
attack is doubly sandboxed in this scenario, by running in the JavaScript
sandbox in the virtual machine separated from the targeted program in
another virtual machine. That is, the adversary is able to extract sensitive
information from the victim’s virtual machine and other virtual machines
on the same server.

The malicious JavaScript code has to stay in memory until page dedupli-
cation has been performed. Depending on the system configuration, this
can be between 30 seconds and several hours. During our tests with 4

129

6. Memory Deduplication Attacks

- Image not loaded Image loaded
105 [T T T T T T]
< 103 :
=
O
.1
10t)
|

| | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Page

Figure 6.2.: Timings measured in native code on a Linux KVM virtual
machine under high CPU load. The graph shows write-access times on an
array containing an image file.

gigabytes of physical memory and the default system configuration, we
found that our memory is deduplicated after 3 minutes.

In order to evaluate the accuracy of our attack in JavaScript code, we first
perform the same attack in native x86 code. Figure 6.1 and Figure 6.2
show write-access times on an array containing a 14 megabyte image file as
measured by our native-code spy program within the same virtual machine,
with low and high system load. This is equivalent to loading 3584 small
images (2-4 kilobytes) and measuring the deduplication of each of them.
These write-access times quantify the accuracy of our page deduplication
detection. When the image is loaded, we found no measurements to be
lower than the expected copy-on-write access time. When having the image
not loaded in the browser, we found less than 0.1 % of the measurements
to be significantly above the expected regular write-access time. These
0.1% can lead to false positive copy-on-write detection. However, as there
is a timing difference of at least a factor of 103, we found an even smaller
number of peaks to be above the lowest copy-on-write access times. We
subsequently tested our attack using native code in the cross-VM setting
and achieved the same accuracy. Therefore, we can accurately determine
whether an image has been deduplicated and thus, has been loaded by a
user.

Subsequently, we measured the performance of our JavaScript-based attack.
In Figure 6.3 and Figure 6.4, the write-access times on an array containing
the same 14 megabyte image file are shown, but this time measured by our
JavaScript spy program. Even in with full system load and the browser

130

4. Practical Attacks and Evaluation

- Image not loaded - Image loaded
T T

10° - .] 1
_‘z L T W T L g tT e .t
S0Pl et ' Lo
% NI A
]
=
<
Z 10! .

| | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Page

Figure 6.3.: Timings measured in JavaScript on an otherwise idle Linux
KVM virtual machine. The graph shows write-access times on an array
containing an image file.

- Image not loaded - Image loaded

—_
)
<}
T
|

Nanoseconds
—
=
S
T
|

101 L | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Page

Figure 6.4.: Timings measured in JavaScript on a Linux KVM virtual
machine under high CPU load. The graph shows write-access times on an
array containing an image file.

131

6. Memory Deduplication Attacks

under attack running in a different virtual machine, page deduplication
was detected correctly in all of our measurements. However, in contrast
to the native-code implementation of our spy program, we found up to
0.3% of the pages to be falsely detected as deduplicated when having low
system load and 1.1 % on average when having a high system load.

We performed this attack on recent versions of the most commonly used
browsers, Chrome 40 and Firefox 31. As both browsers load the image
file to a page-aligned location in memory, the attack works in exactly the
same way and gives the same results for both browsers. Furthermore, we
performed the same attack on a browser in a different virtual machine. Even
in this setting, we did not find more false positives, and all deduplicated
pages were detected successfully.

In order to demonstrate our attack on a real-world scenario, we determine
the websites currently opened by a user. In this scenario, the adversary
creates arrays containing image data of the websites to detect on the
targeted machine. For demonstration purposes, we examined the 10 most-
visited websites [Alel5] and chose an image or style sheet file from each
website, to determine whether it is currently open in a web browser on the
same machine. Furthermore, we generate several pages filled with zeros
and several pages filled with random data, to measure reference timings
for deduplicated and non-deduplicated pages. When the operating system
or hypervisor has tried to deduplicate our pages, the zero-filled pages will
have high write-access times, as they are deduplicated. The random-filled
pages still have low write-access times, as each random-filled page is unique
in the system and therefore not deduplicated. Some websites only contain
very small or very few images. In these cases we combine several images to
perform the attack more reliably. In all cases we had at least 24 kilobytes
of data to measure deduplication.

Figure 6.5 shows the write-access times to arrays containing image data
from these websites, as well as the zero-filled pages and random-filled
pages. We can clearly see which websites are currently opened in the
browser, because of the higher write-access times, due to the copy-on-write
page-fault handling. Based on such measurements, an adversary is able to
spy on users’ browsing behavior through malicious JavaScript code, even
across browsers and virtual machine borders.

132

4. Practical Attacks and Evaluation

8,000 ! ! ! ! ! ! !
6,781 6,642
n —] 6,061 A
< 6,000 | 5,626 7
S
2 4,000 i
o
3 2,000
Z 9 [|
0 78 170 60 148 57 39 148 100
T 1)) B R T [E— \
F F SR e O 0 & P O P
¥ ¢ o T Q&@Ow:@“@@b&‘yoo@
0 o
60& af e > & <
&

Figure 6.5.: Write-access times measured in JavaScript inside a Linux
KVM virtual machine, for images from frequented websites as well as
random-filled an zero-filled pages. We measured high access times only
for the currently opened websites: Amazon, QQ, Taobao, Wikipedia and
Yahoo.

4.2. Attack on Personal Computers and Smartphones

Our attack is even more precise if performed on a personal computer or
smartphone, as the device under attack is only used by a single user at a
time. Therefore, we can create accurate profiles of single users. As in the
cross-VM attack, the victim merely needs to access a website containing
the malicious JavaScript code.

This scenario is not only very simple and realistic, but moreover, it has
a huge impact, as it can be applied to popular operating systems like
Windows 8 on personal computers, or Android on smartphones. Windows 8
and 8.1 have a market share of around 15 % [Net15] on personal computers
and have page deduplication enabled by default [KS11]. Android has a
market share of 81.5% [Int15] on smartphones, but it is device-specific
whether page deduplication is enabled by default or not. However, Google
recommends [Gool5] that manufacturers enable page deduplication by de-
fault on memory-constrained devices, and many manufacturers follow this
recommendation. Therefore, we assume that the number of smartphones
having page deduplication enabled, and thus vulnerable to this attack, is
significant.

133

6. Memory Deduplication Attacks

- Image not loaded Image loaded
T T T T

10°

Nanoseconds
—_
o
'

0 100 200 300 400 500
Page

Figure 6.6.: Timings measured in JavaScript on Windows 8.1. The graph
shows write-access times on an array containing an image file.

In our attack, the malicious JavaScript code runs continuously in the
background in a browser tab. We found that on our Windows 8.1 test
machine, page deduplication has been performed after 15 minutes on
average. On our Android 4.4.4 test device, page deduplication has been
performed after 45 minutes on average. As in the cloud scenario, we
can then detect running applications and which specific version of an
application is running, or even detect which specific websites are opened by
a user. To evaluate the side channel, we again measure the deduplication
detection rate for an image loaded in a browser. As we encountered
problems with browsers on smartphones loading the 14 megabyte image
file, we now use a 2 megabyte image file. This is equivalent to performing
the same test with 512 small images (24 kilobytes).

Figure 6.6 shows our JavaScript-based measurements for the image file,
using Firefox 36 on Windows. We can detect page deduplication almost as
reliably as in the private-cloud scenario, with less than 2 % false positives.
We are able to perform the attack without changes in Internet Explorer 11
and Firefox 36 on Windows, as both return micro- or nanosecond accurate
timings via the window.performance.now() function. However, Chrome
41 on Windows only allows measuring time in milliseconds. Thus, we
cannot measure the timing difference for each single page. Instead, we
have to measure the time over a large number of pages at once. When
measuring time over 150 write accesses at once, we are able to distinguish
whether these 150 pages were deduplicated or not, with only millisecond
timer accuracy.

134

4. Practical Attacks and Evaluation

4,000
< 3,000 | 2,775 7
O 5 ’
$ 20000 = . e
2
< 1,000 - |
Z 285 468 312 396 306 285 370
o%:'%DDQF'DD =
S Q SN Q
quéo@ Q@QOQ) ;&\»Otbé,}b \OOSbOOQ} (@) 60%04&{;&)@ Q@@4{S>Q’OO &60
{ Y
60&(\}250 N S & &’$§9 <°
&
»Qw

Figure 6.7.: Write-access times measured in JavaScript on Windows 8.1,
for images from frequented websites as well as random an zero-filled pages.
We measured high access times only for the currently opened websites:
Baidu, Google, Wikipedia and Yahoo.

When targeting website usage as a real-world scenario, the adversary
creates arrays containing image data of the websites to detect on the
targeted machine. As in the private-cloud scenario, we examined the 10
most-visited websites [Alel5]. Figure 6.7 shows the write-access times to
arrays containing image data from these websites, as well as the zero-filled
pages and random-filled pages. Again, we clearly see which websites are
opened, based on the higher write-access time.

When attacking Android smartphones, we found that although it takes
up to one hour until deduplication is performed, the accuracy is not much
worse than in the other scenarios we tested. We measured up to 0.8 % of
false positives when having the image file not loaded in a browser and up
to 0.5 % false negatives when having the image file loaded in a browser.
This is slightly less accurate than in the other scenarios. Figure 6.8 shows
the timing difference with and without the image loaded by a browser.
Again, we examined the 10 most-visited websites [Alel5]. Figure 6.9 shows
the write-access times to arrays containing image data from these websites,
as well as the zero-filled pages and random-filled pages. As in all other
scenarios, we also see on Android which websites are opened, based on
the higher write-access time.

135

6. Memory Deduplication Attacks

- Image not loaded Image loaded

[T T T T |

106 b E

|92} = E|
< B 6
g sl i
g 1070
g B]
g 104} o : s
Z B . '-‘ - A S E
103 L | | | | | | i

0 100 200 300 400 500
Page

Figure 6.8.: Timings measured in JavaScript on Android 4.4.4. The graph
shows write-access times on an array containing an image file.

8,000 | s [
s
£ 6,000 |- |
8 4,375 4,200
§ 4,000 | |
= .
z, 2,000 1 703 727 lﬁb 857 682 833 730 905 |
o mEmNENEnEnN]
5 @ ©
@éo@ :zyéo@ 4»00 ‘@0 osb o% Q “O‘bo-%& S “QOO S
I T E S S
bo@(\ﬁo ¥ & -
g

Figure 6.9.: Write-access times measured in JavaScript on Android 4.4.4,
for images from frequented websites as well as random an zero-filled pages.
We measured high access times only for the currently opened websites:
Google, QQ and Youtube.

136

5. Countermeasures

5. Countermeasures

Our attack shows that even in sandboxed JavaScript code, an adversary
is able to extract significant sensitive information from real-world applica-
tions if the underlying system employs page deduplication. Our specific
attack can be prevented on application level, i.e., in the browser execut-
ing the adversary’s code, or in the applications under attack. However,
countermeasures on this level incur limitation of functionality. Disabling
page deduplication is the only generic effective countermeasure against
page-deduplication attacks.

It is possible prevent or at least weaken our specific attack in JavaScript
runtime environments by changing the way data is stored in memory,
reducing the accuracy of timers, or disabling JavaScript execution for
untrusted code completely.

Our attack benefits from the fact that we are able to allocate page-sized
physically contiguous memory areas. Thus, we are able to define the value
of each byte on a physical page. JavaScript engines could prevent this
by adding small offsets to array indices, so that a few bytes per page
cannot be controlled by the attacker. Consequently, the attacker-controlled
memory will not be deduplicated. This would cause a small performance
impact while impeding page-deduplication attacks in JavaScript.

Another optimization we exploit is page alignment of large data, like
images, as performed by modern web browsers. However, adding a random
offset to the page alignment would not prevent our attack. The adversary
can create 4096 copies of a targeted page, and thereby perform the same
attack with only a small overhead. Furthermore, such a countermeasure
would require manual modification of existing software, and would incur
a performance penalty at the same time.

Oren et al. [Ore+15] suggested reducing the accuracy of JavaScript timers
as a countermeasure against JavaScript-based cache attacks. However, a
reduced timer accuracy would not prevent our attack. It is easily possible
to measure the timing over a large number of pages and thereby invoke
several copy-on-write page faults, resulting in timing differences in a
millisecond range, which can be detected even with coarse-grained timers.

Our attack could also be prevented by disabling the execution of untrusted
JavaScript, i.e., disable JavaScript on websites completely. However, this
imposes a significant drawback on functionality of modern browsers and

137

6. Memory Deduplication Attacks

websites. In any case, the attack is still possible if implemented in a browser
plugin or smartphone application, where JavaScript-level countermeasures
do not apply.

However, we think that any form of content-based page deduplication
implies a security problem. As writable pages can be generated in any
script language, sandboxed or not, and furthermore, we only require
coarse-grained timer accuracy, we consider it insecure to perform page
deduplication on writable pages. Considering only read-only pages has
already been suggested by Suzaki et al. [Suz+11] as a countermeasure.
Apparently, this countermeasure has not been implemented on the systems
we attacked. We assume that one of the reasons is that the hypervisor
or operating system is not able to distinguish between read-only pages
and writable pages within virtual machines, one of the core applications
of page deduplication.

However, not considering writeable pages would prevent page-deduplication
attacks in JavaScript or other script languages which do not support read-
only data. Still, even in case that only read-only pages are merged, an
attack could still be possible through browser plugins or smartphone appli-
cations on code and static data of targeted binaries, as they are able to load
read-only pages or even execute native code. Thus, disabling page dedupli-
cation completely is the only way to effectively prevent page-deduplication
attacks as presented in this paper.

6. Conclusion

In this paper, we presented the first page-deduplication attack in sandboxed
JavaScript. In particular, the attack can be launched from any website. We
show how the attack can be used to determine whether specific images or
websites are currently opened by a user. We demonstrated the attack on
private clouds, personal computers and smartphones. In all scenarios, it is
even possible to mount the attack across the borders of virtual machines.
Thus, we conclude that page deduplication must always be considered
vulnerable to attacks as presented in this paper. Systems which have page
deduplication enabled cannot be considered secure anymore.

The fact that page-deduplication attacks can be launched through web-
sites marks a paradigm shift, from a targeted attack on a specific system

138

7. Acknowledgments

towards large-scale practical attacks launched on a huge number of de-
vices simultaneously. Therefore, we strongly recommend to disable page
deduplication.

7. Acknowledgments

The research leading to these results has received funding
£ s from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644052
(HECTOR). Furthermore, this work has been supported by the Austrian
Research Promotion Agency (FFG) and the Styrian Business Promotion
Agency (SFG) under grant number 836628 (SeCoS).

References

[Alel5] Alexa Internet, Inc. The top 500 sites on the web. Mar. 2015.
URL: http://www.alexa.com/topsites (pp. 132, 135).

[BBO7] A. Bortz and D. Boneh. Exposing private information by
timing web applications. In: Proceedings of the 16th Inter-
national Conference on World Wide Web. 2007 (p. 123).

[F'S00] E. W. Felten and M. A. Schneider. Timing attacks on web
privacy. In: CCS’00. 2000 (p. 123).

[GBK11] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (pp. 123, 126).

[Gool5] Google Inc. Android 4.4 platform optimizations. Feb. 2015.
URL: https://source.android.com/devices/tech/low—
ram.html (p. 133).

[IES14] G. Irazoqui, T. Eisenbarth, and B. Sunar. Jackpot — Stealing
Information From Large Caches via Huge Pages. In: Cryp-
tology ePrint Archive, Report 2014/970 (2014) (p. 129).

[Int15] International Data Corporation. Android and iOS Squeeze

the Competition. Feb. 2015. URL: http://www.idc.com/
getdoc. jsp?containerId=prUS25450615 (p. 133).

139

http://www.alexa.com/topsites
https://source.android.com/devices/tech/low-ram.html
https://source.android.com/devices/tech/low-ram.html
http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.idc.com/getdoc.jsp?containerId=prUS25450615

6. Memory Deduplication Attacks

[Ira+14a)

[Ira+14b]

[KS11]

[Net15]

[Ore+15]

[OSTO6]

[OW11]

[Stol3]

[Suz+11]

[War+96]

[Xia+12]

140

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Fine
grain Cross-VM Attacks on Xen and VMware are possible! In:
Cryptology ePrint Archive, Report 2014/248 (2014) (p. 126).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In: RAID’14.
2014 (p. 126).

B. Karagounis and S. Sinofsky. Reducing runtime memory
in Windows 8. Oct. 2011. URL: http://blogs.msdn.com/
b/b8/archive/2011/10/07/reducing-runtime-memory-
in-windows-8.aspx (p. 133).

Net Applications.com. Desktop Operating System Market
Share. Feb. 2015. URL: http : //netmarketshare . com/
operating-system-market-share.aspx (p. 133).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Ke-
romytis. The Spy in the Sandbox — Practical Cache Attacks
in Javascript. In: arXiv:1502.07373 (2015) (pp. 124, 137).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006
(p. 123).

R. Owens and W. Wang. Non-interactive OS fingerprinting
through memory de-duplication technique in virtual ma-
chines. In: 30th IEEE International Performance Computing
and Communications Conference. 2011 (p. 126).

P. Stone. Pixel perfect timing attacks with HTML5. Tech.
rep. 2013 (p. 123).

K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory Dedu-
plication as a Threat to the Guest OS. In: Proceedings of the

4th European Workshop on System Security. 2011 (pp. 123,
126, 128, 138).

A. Warner, Q. Li, T. F. Keefe, and S. Pal. The Impact of
Multilevel Security on Database Buffer Management. In: 4th

Furopean Symposium on Research in Computer Security
(ESORICS’96). 1996 (p. 123).

J. Xiao, Z. Xu, H. Huang, and H. Wang. A covert channel
construction in a virtualized environment. In: CCS’12. 2012
(pp. 126, 128).

http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-memory-in-windows-8.aspx
http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-memory-in-windows-8.aspx
http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-memory-in-windows-8.aspx
http://netmarketshare.com/operating-system-market-share.aspx
http://netmarketshare.com/operating-system-market-share.aspx

References

[Xia+13] J. Xiao, Z. Xu, H. Huang, and H. Wang. Security implications
of memory deduplication in a virtualized environment. In:
2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 2013 (pp. 126,
128).

[YF14] Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 123, 126).

141

Rowhammer.js: A Remote
Software-Induced Fault Attack in
JavaScript

Publication Data

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. In: DIMVA’16. 2016

Contributions

Main author.

143

7. Rowhammer.js

Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript

Daniel Gruss, Clémentine Maurice, and Stefan Mangard

Graz University of Technology, Austria

Abstract

A fundamental assumption in software security is that a memory location
can only be modified by processes that may write to this memory location.
However, a recent study has shown that parasitic effects in DRAM can
change the content of a memory cell without accessing it, but by accessing
other memory locations in a high frequency. This so-called Rowhammer
bug occurs in most of today’s memory modules and has fatal consequences
for the security of all affected systems, e.g., privilege escalation attacks.

All studies and attacks related to Rowhammer so far rely on the availability
of a cache flush instruction in order to cause accesses to DRAM modules
at a sufficiently high frequency. We overcome this limitation by defeating
complex cache replacement policies. We show that caches can be forced
into fast cache eviction to trigger the Rowhammer bug with only regular
memory accesses. This allows to trigger the Rowhammer bug in highly
restricted and even scripting environments.

We demonstrate a fully automated attack that requires nothing but a
website with JavaScript to trigger faults on remote hardware. Thereby we
can gain unrestricted access to systems of website visitors. We show that
the attack works on off-the-shelf systems. Existing countermeasures fail
to protect against this new Rowhammer attack.

1. Introduction

Hardware-fault attacks have been a security threat since the first attacks
in 1997 by Boneh et al. [BDL97] and Biham et al. [BS97]. Fault attacks

The original publication is available at http://link.springer.com/chapter/10.
1007/978-3-319-40667-1_15.
t Part of the work was done while author was affiliated to Technicolor and Eurecom.

144

http://link.springer.com/chapter/10.1007/978-3-319-40667-1_15
http://link.springer.com/chapter/10.1007/978-3-319-40667-1_15

1. Introduction

typically require physical access to the device to expose it to physical
conditions which are outside the specification. This includes high or
low temperature, radiation, as well as laser on dismantled microchips.
However, software-induced hardware faults are also possible, if the device
can be brought to the border or out of the specified operation conditions
using software. Kim et al. [Kim+14] showed that frequently accessing
specific memory locations can cause random bit flips in DRAM chips.
85% of the DDR3 modules they examined are vulnerable. The number
of bit flips varies from one module to another, i.e., some modules can be
more vulnerable than others. More recently, DDR4 modules have been
found to be vulnerable as well [Pes+15]. Bit flips can be triggered by
software by flushing a memory location from the cache and reloading it.
Seaborn [SD15] demonstrated that an attacker can exploit such bit flips
for privilege escalation. These exploits are written in native code and use
special instructions to flush data from the cache.

We show that it is possible to trigger hardware faults by performing fast
cache eviction on all architectures, if the DRAM modules are vulnerable.
Compared to previous work, we do not use any specific instruction, but only
regular memory accesses to evict data from the cache. The attack technique
is thus generic and can be applied to any architecture, programming
language and runtime environment that allows producing a fast stream of
memory accesses. Therefore, proposed countermeasures such as removing
the c1flush instruction cannot prevent attacks. Even more severe, we show
that on vulnerable modules, we can also perform remote JavaScript-based
Rowhammer attacks.

Since an attack through a website can be performed on millions of victim
machines simultaneously and stealthily, it poses an enormous security
threat. Rowhammer.js is independent of the instruction set of the CPU.
It is the first remote software-induced hardware-fault attack. As a proof
of concept, we implemented a JavaScript version that as of today runs in
all recent versions of Firefox and Google Chrome.

For a Rowhammer attack in JavaScript we perform the following steps:

Find 2 addresses in different rows

Evict and reload the 2 addresses in a high frequency

Search for an exploitable bit flip

Exploit the bit flip (e.g., manipulate page tables, remote code exe-
cution)

=

145

7. Rowhammer.js

Platform CPU Architecture RAM
Lenovo T420 i5-2540M Sandy Bridge Corsair DDR3-1333 8 GB

and Samsung DDR3-1600 4 GB (2x)
Lenovo x230 i5-3320M Ivy Bridge Samsung DDR3-1600 4 GB (2x)
Asus H97-Pro i7-4790 Haswell Kingston DDR3-1600 8 GB
ASRock 7170 ITX i7-6700K Skylake G.Skill DDR4-3200 8 GB (2x)

and Crucial DDR4-2133 8 GB (2x)

Table 7.1.: Experimental setups.

Steps 3 and 4 have already been solved in previous work [SD15], but step
1 and 2 remain open challenges.

The challenge in step 1 is to retrieve information on the physical addresses
from JavaScript. It is strictly sandboxed and provides no possibility to
retrieve virtual or physical addresses. To tackle this challenge, we determine
parts of the physical addresses using large arrays that are allocated by
operating systems on large pages. We thus do not exploit any weaknesses
in JavaScript or the browser, but only OS-level optimizations.

The challenge in step 2 is to find fast cache eviction strategies to replace
the clflush instruction. On older CPUs, simply accessing n + 1 addresses
is sufficient to evict lines for an n-way cache [Liu+15; Ore+15]. On Intel
CPUs produced in the last 4 years, i.e., post Sandy Bridge, the replacement
policy has changed and is undocumented. Consequently, known eviction
strategies have a low eviction rate or a high execution time, which is not
suitable for Rowhammer attacks. To tackle this challenge, we present a
novel generic method for finding cache eviction strategies that achieve the
best performance in both timing and eviction rate by comprehensively
exploring the parameter space. We present the best eviction strategies so
far, outperforming previous ones on all recent Intel architectures. Based
on this method, we build a two-phase online attack for remote systems
with unknown hardware configuration.

We compare the different implementations of the Rowhammer attacks on
a fixed set of configurations (see Table 7.1), some vulnerable in default
settings, others at decreased refresh rates.

As of today, software countermeasures against Rowhammer native code
attacks only target specific exploits, and, as we show, do not protect
sufficiently against attacks from JavaScript. Hardware countermeasures
are harder to deploy, since they do not affect legacy hardware including
recent vulnerable DDR4 modules. BIOS updates can be used to solve the

146

2. Background

problem on commodity systems, however it is only a practical solution for
very advanced users.

Summarizing, our key contributions are:

e We provide the first comprehensive exploration of the cache evic-
tion parameter space on all recent Intel CPUs. This also benefits
broader domains, e.g., cache attacks, cache-oblivious algorithms,
cache replacement policies.

e We build a native code implementation of the Rowhammer attack
that only uses memory accesses. The attack is successful on Sandy
Bridge, Ivy Bridge, Haswell and Skylake, in various DDR3 and
DDRA4 configurations.

e We build a pure JavaScript Rowhammer implementation, showing
that an attacker can trigger Rowhammer bit flips remotely, through
a web browser.

The remainder of this paper is organized as follows. In Section 2, we
provide background information on DRAM, the Rowhammer bug, CPU
caches, and cache attacks. In Section 3, we describe a two-phase auto-
mated attack to trigger bit flips on unknown systems. In Section 4, we
demonstrate the Rowhammer bug without c1flush in native code and in
JavaScript. In Section 5, we provide a discussion of our proof-of-concept
exploit, limitations, and countermeasures. Finally, we discuss future work
in Section 6 and provide conclusions in Section 7.

2. Background

2.1. DRAM

Modern memory systems have multiple channels of DRAM memory con-
nected to the memory controller. A channel consists of multiple Dual
Inline Memory Modules (DIMMs), that are the physical modules on the
motherboard. Each DIMM has one or two ranks, that are the sides of
the physical module. Each rank is a collection of chips, that are further
composed of banks. Accesses to different banks can be served concurrently.
Each bank is an array of capacitor cells that are either in a charged or
discharged state, representing a binary data value. The bank is represented
as a collection of rows, typically 2'* to 217,

147

7. Rowhammer.js

The charge from the cells is read into a row buffer on request and written
back to the cells as soon as another row is requested. Thus, access to the
DRAM is done in three steps: 1. opening a row, 2. accessing the data in
the row buffer, 3. closing the row before opening a new row, writing data
back to the cells.

DRAM is volatile memory and discharges over time. The refresh interval
defines when the cell charge is read and restored to sustain the value.
DDR3 and DDRA4 specifications require refreshing all rows at least once
within 64ms [Kim+14; Aiclb5a].

The selection of channel, rank, bank and row is based on physical ad-
dress bits. The mapping for Intel CPUs has recently been reverse engi-
neered [Seal5; Pes+15].

2.2. The Rowhammer Bug

The increase of DRAM density has led to physically smaller cells, thus
capable of storing smaller charges. As a result, cells have a lower noise
margin, and cells can interact electrically with each other although they
should be isolated. The so called Rowhammer bug consists in the corruption
of data, not in rows that are directly accessed, but rather in rows nearby
the accessed one.

DRAM and CPU manufacturers have known the Rowhammer bug since at
least 2012 [BH14; Bai+14]. Hammering DRAM chips is a quality assurance
tests applied to modules [AIA05]. As refreshing DRAM cells consumes
time, DRAM manufacturers optimize the refresh rate to the lowest rate
that still works reliably.

The Rowhammer bug has recently been studied [Kim+14; Hua+12;
Par+14] and the majority of off-the-shelf DRAM modules has been found
vulnerable to bit flips using the c1flush instruction. The c1flush instruc-
tion flushes data from the cache, forcing the CPU to serve the next memory
access from DRAM. Their proof-of-concept implementation frequently
accesses and flushes two memory locations in a loop, causing bit flips in a
third memory location.

Seaborn implemented Rowhammer exploits [SD15] in native code with
the c1flush instruction: a privilege escalation on a Linux system caused
by a bit flip in a page table and an escape from the Google Native Client
sandbox caused by a bit flip in indirect jumps. As a countermeasure, the

148

2. Background

Address Bit
313(3(2]2(2]2(2]|2(2|2(2]|2[1|1|1]|1f1|1f{1|1|1]|1][0|O0fO]|O
2(1]|0|9|8|7|6(5|4(3]|2[1]|0[9|8|7|6(5|4(3|2[1|0[9|8|7|6

(2 coresloo [@]_[e] [eleelele] [o] o] [e[e[e] [e] [e] [e[[[[9]
4 cores/2|®| D] D|DISID|D| D] || |DSD| | |D| |)
01 D| DB | |DD|BD|B|D| D] D] D] |© &)

Table 7.2.: Complex addressing function from [Mau+15a].

clflush instruction was removed from the set of allowed instructions in
Google Chrome Native Client [SD15].

2.3. CPU Caches

A CPU cache is a small and fast memory inside the CPU hiding the latency
of main memory by keeping copies of frequently used data. Modern Intel
CPUs have three levels of cache, where L1 is the smallest and fastest
cache and L3 the slowest and largest cache. The L3 cache is an inclusive
cache, i.e., all data in L1 and L2 cache is also present in the L3 cache. It is
divided into one slice per CPU core, but shared, i.e., cores can access all
slices. The undocumented complex addressing function that maps physical
addresses to slices was recently reverse engineered [Mau+15a; Inc+15;
Yar+15]. We used the results published by Maurice et al. [Mau+15al,
shown in Table 7.2. The table shows how address bits 6 to 32 are xor’d
into one or two output bits og and 01. In case of a dual-core CPU, output
bit 09 determines to which of the two cache slices the physical address
maps. In case of a quad-core CPU, output bits 07 and oy determine the
slice.

Caches are organized in sets of multiple lines. The mapping from physical
addresses to sets is fixed. Addresses that map to the same set and slice are
called congruent. To load a new line from memory, the replacement policy
decides which line to evict. Intel has not disclosed the cache replacement
policy of their CPUs. However, the replacement policies for some archi-
tectures have been reverse-engineered: Sandy Bridge has a pseudo-LRU
replacement policy and Ivy Bridge a modification of the pseudo-LRU
replacement policy [Won|. Moreover, Ivy Bridge, Haswell and Skylake use
adaptive cache replacement policies which only behave as pseudo-LRU in
some situations [Qur+07]. These CPUs can switch the cache replacement
policy frequently.

149

7. Rowhammer.js

2.4. Cache Attacks and Cache Eviction

Cache side-channel attacks exploit timing differences between cache hits
and cache misses. Practical attacks on cryptographic algorithms have been
explored thoroughly [Ber05; Per05]. There are two main types of cache
attacks called Prime+Probe and Flush+Reload. The Prime+Probe attack
has been introduced by Percival [Per05] and Osvik et al. [OSTO06]. It deter-
mines activities of a victim process by repeatedly measuring the duration
to access once every address in a set of congruent addresses, i.e., a so-
called eviction set. Prime+Probe on the last-level cache enables cross-core
cache attacks such as cross-VM attacks without shared memory [IES15;
Liu+15], covert channels [Mau+15b] and attacks from within sandboxed
JavaScript [Ore+15]. Oren et al. [Ore+15] and Liu et al. [Liu+15] compute
the eviction set by adding addresses to the eviction set until eviction works.
Flush+Reload has been introduced by Gullasch et al. [GBK11] and Yarom
and Falkner [YF14]. It exploits shared memory between attacker and
victim and is very fine-grained. Cache lines are flushed with the c1flush
instruction or using cache eviction [GSM15].

Evicting data from the cache is just as crucial to cache attacks as it is for
the Rowhammer attack. Previous work either uses the c1f1lush instruction
or hand-crafted eviction loops. Hund et al. [HWH13] showed that data can
be evicted by filling a large memory buffer the size of the cache. However,
this is very slow and thus not applicable to fine-grained cache attacks or
Rowhammer attacks. Using the reverse-engineered complex addressing
function solves the problem of finding addresses that are congruent in the
cache, but it leaves the non-trivial problem of finding access sequences to
achieve high eviction rates while maintaining a low execution time.

3. Cache Eviction Strategies

In this section, we describe how to find cache eviction strategies in a fully
automated way for microarchitectures post Sandy Bridge. An eviction
strategy accesses addresses from an eviction set in a specific access pattern
and can ideally be used as a replacement for clflush. Fviction set is
commonly defined as a set of congruent addresses. The access pattern de-
fines in which order addresses from the eviction set are accessed, including
multiple accesses per address.

150

3. Cache Eviction Strategies

An efficient eviction strategy can replace the clflush instruction in
any cache attack and significantly improves cache attacks based on
Prime+Probe, like JavaScript-based attacks [Ore+15] or cross-VM cache
attacks [Liu+15]. It also allows to replace the clflush instruction in a
Rowhammer attack (see Section 4).

The replacement policy of the CPU influences the size of the eviction set
and the access pattern necessary to build an efficient eviction strategy. For
a pseudo-LRU replacement policy, accessing as many congruent locations
as the number of ways of the L3 cache (for instance 12 or 16) once,
evicts the targeted address with a high probability. For adaptive cache
replacement policies, an eviction strategy that is effective for one policy
is likely to be ineffective for the other. Thus it is necessary to craft an
eviction strategy that causes eviction for both policies and ideally does
not introduce a significant timing overhead.

We distinguish between the following ways to generate an eviction strategy:

1. Static eviction set and static access pattern: uses information on
cache slice function and physical addresses, and generates a pre-
defined pattern in negligible time. Sections 3.2 and 3.3 describe new
efficient eviction strategies computed this way.

2. Dynamic eviction set and static access pattern: computes the eviction
set in an automated way, without any knowledge of the system,
e.g., the number of cores. A good access pattern that matches the
replacement policy of the targeted system is necessary for a successful
attack. Section 3.3 describes this approach.

3. Dynamic eviction set and dynamic access pattern: automatically
computes the eviction set and the access pattern based on random-
ness. This comes at the cost of performing a huge number of eviction
tests, but it has the advantage to require almost no information on
the system, and allows to implement fully automated online attacks
for unknown systems. Section 3.3 describes this approach.

4. Static eviction set and dynamic access pattern: uses a pre-defined
eviction set, but a random pattern that is computed in an auto-
mated way. This is possible in theory, but it has no advantage over
automatically testing static access patterns. We thus do not further
investigate this approach.

We first describe a model to represent access patterns, given several
parameters. To find a good eviction strategy for a given system, we
define an offline and an online phase. In the offline phase, the attacker

151

7. Rowhammer.js

explores the parameter space to find the best eviction strategies for a set
of controlled systems. The goal is to find a eviction strategy that matches
the undocumented replacement policy the closest, including the possibility
of policy switches. In the online phase, the attacker targets an unknown
system, with no privileges.

3.1. Cache Eviction Strategy Model

The success of a cache eviction strategy is measured by testing whether the
targeted memory address is not cached anymore over many experiments,
i.e., average success rate. For such cases, we made the following three
observations.

First, only cache hits and cache misses to addresses in the same cache set
have a non-negligible influence on the cache, apart from cache maintenance
and prefetching operations to the same cache set. We verified this by taking
an eviction algorithm and randomly adding memory accesses that are not
congruent. The eviction rate is the average success rate of the eviction
function. It does not change by adding non-congruent accesses to an
eviction strategy as long as the timing does not deviate. Thus, the eviction
set only contains congruent addresses and the effectiveness of the eviction
strategy depends on the eviction set size.

Second, addresses are indistinguishable with respect to the cache. Thus, we
represent access patterns as sequences of address labels a;, e.g., ajazas
Each address label is set to a different address and thus for each time
frame the sequence defines which address to access. A pattern ajasag is
equivalent to any pattern axa;a,, where k # [# m. If run in a loop, the
number of different memory addresses has an influence on the effectiveness
on the eviction strategy.

Third, repeated accesses to the same address are necessary to keep it in
the cache, as replacement policies can prefer to evict recently added cache
lines over older ones. Changing the eviction sequence from ajas...a17
to ajaiasas . . .aira;r reduces the execution time by more than 33% on
Haswell, and increases the eviction rate significantly if executed repeatedly,
as the cache remains filled with our eviction set. However, we observed a
diminishing marginal utility for the number of accesses to the same address.
For all addresses we observed that after a certain number of accesses,
further accesses do not increase and can even decrease the eviction rate.
Thus, we describe eviction strategies as a loop over an eviction set of size

152

3. Cache Eviction Strategies

1 for (s = 0; s <= 8-D; s += L)
2 for (¢ = 0; ¢ < C; ¢c += 1)
3 for (d = 0; d < D; d += 1)
4 *a[s+d];

Listing 3: Eviction loop for pattern testing.

S, where only a subset of D addresses is accessed per round. A parameter
L allows to make accesses overlap for repeated accesses.

While testing all possible sequences even for very small sequence lengths
is not possible in practical time (cf. Stirling numbers of second kind as
a good estimate), a systematic exploration of influential parameters is
possible. In theory, better eviction strategies may lie outside of this reduced
search space. However using this method, we found eviction strategies that
allowed us to successfully trigger bit flips using eviction-based Rowhammer
(see Section 4). To discuss and compare eviction strategies systematically,
we use the following naming scheme in this paper to describe parametrized
eviction strategies as depicted in Listing 3. The eviction strategy name
has the form P-C-D-L-S, with C, the number of accesses to each memory
address per loop round, D, the number of different memory addresses
accessed per loop round, L, the step size/increment of the loop (for
overlapping accesses), and S, the eviction set size. For instance, LRU-
eviction is P-1-1-1-S with an access sequence of ajasas...ag.

3.2. Offline Phase

In the offline phase, the attacker has at his disposal a set of machines and
tries to learn the eviction strategy that matches the replacement policy the
closest for each machine. While it is not strictly a reverse engineering of
the replacement policy, by knowing the best eviction strategy, the attacker
gains knowledge on the systems. In this phase, the attacker has no time
constraints.

We discuss the evaluation in detail for the Haswell platform with a single
DIMM in single channel mode. We explored the parameter space up to
degree 6 in the dimensions of C'; D and L and 23 different eviction set sizes
each, in order to find eviction strategies that are fast and effective enough to
perform Rowhammer attacks. Including the equivalent eviction strategies
we evaluated a total of 18293 eviction strategies on 3 of our test platforms.
We tested each eviction strategy in 20 double-sided Rowhammer tests

153

7. Rowhammer.js

with 2 million hammering rounds (i.e., 80 million evictions per eviction
strategy) and evaluated them using different evaluation criteria including
eviction rate, runtime, number of cache hits and misses. The runtime was
more than 6 days. The hammering was performed on a fixed set of physical
addresses congruent to one specific cache set to allow for a fair comparison
of the eviction strategies. Half of the evictions, i.e., 40 millions, were used
to measure eviction rate, cache hits and cache misses. The other half was
used to measure the average execution time per eviction. We verified that
the sample size is high enough to get reproducible measurements.

The number of bit flips is not suitable for the evaluation of a single eviction
strategy, but only to determine whether and how cache hits, cache misses,
the execution time and the eviction rate influence the probability of a
bit flip. Bit flips are reproducible in terms of the memory location, but
the time and the number of memory accesses until a bit flip occurs again
varies widely. In order to measure the average number of bit flips for a
eviction strategy, we would have to test every eviction strategy for several
hours instead of minutes. This would increase the test time per machine
to several weeks, and even then, it would not yield reproducible results,
as it has been observed that the DRAM cells get permanently damaged if
hammered for a long time [Kim+14].

High execution times are too slow to trigger bit flips and low execution
times are useless without a good eviction rate. The execution time of the
eviction strategy is directly related to the number of memory accesses to
the two victim addresses. Hence, it influences the probability of a bit flip
directly. On our default configured Ivy Bridge notebook we observed bit
flips even with execution times of 1.5 microseconds per hammering round,
that is approximately 21,500 accesses per address within the specified total
refresh interval of 64ms. This maps to the average periodic refresh interval
tREFI by dividing 64ms by 8192 [Mic03]|. Double-sided rowhammering
using clflush takes only 60 nanoseconds on our Haswell test system, that
is approximately 0.6 million accesses per address in 64ms. Figure 7.1a
shows how bit flips are correlated with the eviction execution time.

The eviction rate has to be very high to trigger bit flips. Figure 7.1b shows
how many bit flips occurred at which eviction rate. We observe that 81%
of the bit flips occurred at an eviction rate of 99.75% or higher and thus
use this as a threshold for good eviction strategies on our Haswell system.
Even though a bit flip may occur at lower eviction rates, the probability
is significantly lower.

154

3. Cache Eviction Strategies

C D L S Accesses Hits Misses Time (ns) Eviction
- - - - - 2 2 60 99.9999%
5 2 2 18 90 34 4 179 99.9624%
2 2 1 17 64 35 5 180 99.9820%
2 1 1 17 34 47 5 191 99.8595%
6 2 2 18 108 34 5 216 99.9365%
11 1 17 17 96 13 307 74.4593%
4 2 2 20 80 41 23 329 99.7800%
1 1 1 20 20 187 78 934 99.8200%

Table 7.3.: The fastest 5 eviction strategies with an eviction rate above
99.75% compared to c1flush and LRU eviction on the Haswell test system.

The eviction loop contributes to a high number of cache hits and cache
misses, apart from the two addresses we want to hammer. We measure
the number of cache hits and cache misses that occur during our test run
using hardware performance counters through the Linux syscall interface
perf_event_open. Cache hits have a negligible influence on the execution
time and no effect on the DRAM. Cache misses increase the execution
time and, if performed on a different row but in the same channel, rank
and bank, additional DRAM accesses. However, Figures 7.1c and 7.1d
show that both cache hits and cache misses do not impact the number
of bit flips significantly, as the average for all eviction strategies is in the
range of the eviction strategies that triggered a bit flip.

Thus, we thus use the eviction rate as a criteria for good eviction strategies,
and among those eviction strategies, we prefer those with a lower average
execution time. This method requires no access to any system interfaces
and can be implemented in any language and execution environment that
allows to measure time and perform arbitrary memory accesses, such as
JavaScript.

Table 7.3 shows a comparison of the fastest 5 of these eviction strategies
with an eviction rate above 99.75% (see Figure 7.1b) and clflush based
rowhammering as well as the fastest LRU (P-1-1-1-20) eviction strategy
that achieves the same eviction rate. The best two eviction strategies
are P-5-2-2-18 and P-2-2-1-17, both with an execution time around 180
nanoseconds.

Accessing each address in the eviction set only once (LRU eviction) is far
from optimal for cache attacks and impractical for Rowhammer. Although
counterintuitive, adding more accesses to the eviction loop will lower the

155

7. Rowhammer.js

overall execution time. We can observe this for instance by comparing
the eviction strategies P-1-1-1-20 and P-4-2-2-20. While both access the
same set of 20 addresses, the latter one performs 4 times as many memory
accesses, yet its execution time is only one third. Comparing the best
eviction strategy we found to LRU eviction as described in previous work,
performs only as good if the set size is at least S = 25, increasing the
average execution time 9 times higher than the one of the best eviction
strategy we found. On the other hand, the eviction set size in previous work
is typically specified as S = 17. For P-1-1-1-17 we measured an eviction
rate of 74.5% and even then a 1.7 times higher execution time than with
the best eviction strategy we found. This shows that the eviction strategies
we found are a significant improvement over previously published eviction
methods.

We performed the same evaluation for the other architectures. The dis-
tribution of bit flips on our Ivy Bridge test system relative to eviction
rate and execution time is shown in Figure 7.2. Most bit flips occurred
at eviction rates above 99%. The fastest 5 of these eviction strategies
are shown in Table 7.4 in comparison with c1flush and the fastest LRU
(P-1-1-1-15) eviction strategy.

According to our measurements the complex addressing function on Sky-
lake is not the same as in Haswell, but it can be trivially derived from
the reverse engineered 8-core function. We again found that LRU eviction
performs much worse than the best eviction strategy we found as shown
in Table 7.4.

3.3. Online Phase

In the online phase, the attacker targets an unknown system. In particular,
microarchitecture and number of CPU cores are unknown to the attacker.
The attacker has the knowledge gained from the offline phase at his
disposal. However, he has no privilege on the victim’s machine and no
time to run the extensive search from the offline phase. The online phase
consists in two attacks: an assumption-based attack, and a fall-back attack
in case the first one does not work. In both cases the attack is based on
a series of timing attacks and no access to specific system interfaces is
necessary.

156

3. Cache Eviction Strategies

C D L S Acc. Hits Misses Time (ns) FEviction
- - - - - 2 2 40 100.000%
4 5 5 20 80 43 35 327 99.514%
1 1 1 13 13 52 33 333 72.145%
3 1 1 17 51 46 41 341 99.081%
4 5 b5 17 60 45 37 345 99.604%
3 1 1 19 57 50 47 369 99.267%
3 2 2 18 54 48 43 376 99.412%
1 1 1 15 15 97 84 632 99.085%

C D L S Acc. Hits Misses Time (ns) Eviction
- - - - - 2 2 47 100.000%
3 1 1 22 66 48 45 218 99.937%
2 2 1 22 84 47 45 222 99.932%
3 3 3 24 72 50 45 222 99.938%
3 3 3 21 63 51 45 223 99.937%
4 3 3 24 96 49 45 225 99.905%
1 1 1 17 17 240 36 240 82.959%
1 1 1 21 21 145 87 495 99.970%

Table 7.4.: c1flush and LRU eviction compared to the fastest 5 eviction
strategies above 99% eviction rate on the Ivy Bridge test system (top)
and compared to the fastest 5 eviction strategies above 99.9% eviction
rate on the Skylake DDR4 test system (bottom).

Assumption-based Attack

The attacker first tests whether the targeted system resembles a system
tested in the offline phase, by performing timing attacks. No access to
syscalls or system interfaces is required for this step. The attacker defines
a threshold eviction rate based on the results from the offline phase (for
instance 99.75%) and searches for eviction strategies above this threshold
on the system under attack. By testing a set of eviction strategies from the
offline phase, the attacker learns whether the architecture of the system
under attack resembles an architecture from the offline phase. In this case
the best eviction strategy for the system under attack is within the set of
eviction strategies previously tested. The number of eviction strategies to
test is as low as the number of targeted CPU architectures and thus it
only takes a few seconds to compute.

The eviction set can be computed in a static or dynamic way. Without any
further assumptions we can run modified versions of the algorithms by

157

7. Rowhammer.js

Oren et al. [Ore+15] or Liu et al. [Liu+15]. Instead of the P-1-1-1 access
pattern they implement, we use one of the suspected eviction strategies
to build a dynamic assumption-based algorithm. This improves the suc-
cess rate of their algorithms on recent architectures. However, we make
additional assumptions to reduce the execution time to a minimum and
build a static assumption-based algorithm. One assumption is that large
arrays are allocated on large pages, as has been observed before [GBM15].
Based on this assumption we can use the complex addressing function
from Table 7.2 to determine the slice patterns for 4KB and 2MB pages as
shown in Figure 7.3. These distinct patterns in the mapping from physical
addresses to cache slices depend only on the number of cache slices and
are the same for Intel CPUs since the Sandy Bridge architecture. The
algorithm by Oren et al. [Ore+15] or Liu et al. [Liu+15] finds only ad-
dresses in the same cache slice and cache set. We use it to build an eviction
set of 2MB-aligned congruent addresses in the same slice. Subsequent
eviction set computations are performed statically based on the complex
addressing function and the identified 2MB offsets.

Fall-back Attack

If the assumption-based phase does not work on a system under attack,
e.g., because the unknown system is none of the systems tested in the
offline phase, the attacker runs a fall-back phase to find an eviction strategy
that is sufficient to trigger a bit flip with Rowhammer.

Oren et al. [Ore+15] and Liu et al. [Liu+15] compute a dynamic eviction
set with a static access pattern P-1-1-1. We extend their algorithms to
compute eviction strategies with dynamic eviction sets and dynamic access
patterns. In the first step, we continuously add addresses to the eviction
strategy multiple times to create eviction strategies with multiple accesses
to the same address. We know that the eviction strategy is large enough
as soon as we can clearly measure the eviction of the target physical
address. In a second step, when the eviction rate is above the attacker
chosen threshold, eviction addresses that do not lower the eviction rate
are removed by replacing them with other addresses that are still in the
eviction set. Thus, the number of memory accesses does not decrease, but
the eviction set is minimized. This decreases the number of cache misses
and thus the execution time. Finally, we randomly remove accesses that
do not decrease the eviction rate and do not increase the execution time.

158

3. Cache Eviction Strategies

This again decreases the number of unnecessary cache hits and thus the
execution time.

The resulting eviction strategy can neither access less addresses nor can
any duplicate accesses be removed without lowering the eviction rate.
They thus perform similarly to statically computed eviction strategies.
The result of the algorithm is a series of accesses that fulfill the eviction
rate threshold chosen by the attacker and that has a low execution time
on the system under attack. If the threshold was set high enough so that
bit flips are likely to occur in practice, the eviction strategy found by the
fall-back algorithm can be used for an attack.

The algorithm uses a function cached(p) that tries to evict a target
address p using the current eviction strategy and set and decides whether
p is cached or not based on the access time. The quality of the solution
depends on the number of tests that are performed in this function. The
function only returns true, if an eviction rate below the attacker defined
threshold is measured. A higher number of tests increases the execution
time and the accuracy of this binary decision. Figure 7.4 shows how the
number of tests influences the eviction rate and the execution time of the
resulting eviction strategy. If a high eviction rate is necessary, the execution
time of the algorithm is can exceed 40 minutes. Thus, our algorithm can
precompute a working eviction strategy once and subsequent eviction set
computations are done with the fixed eviction strategy within seconds.

159

7. Rowhammer.js

. 20 .
o 1
= 15 : g
5 10 |- ' o

5[28°9® - %8S @ ' N
Eis 0 se B ® 5 |) | | | X !

0 1,000 2,000 3,000 4,000 5,000 6,000
Execution time in ns
(a) Low execution time is better.

L 20
o
a 15
5 10 -

5 -
F 0 | | | e \ 52 &

98.0% 98.5% 99.0% 99.5% 100%

Eviction rate

(b) High eviction rate is better. Average over all eviction strategies
is 73.96%.

g 20 . _
& 15 E ° .
= 101 ' .
ool © g looqpe s MCee ¢ : :
:H: O | m"‘o) @ o \fI:‘ ‘f o) o‘p‘. :&"5 - \d ‘:‘.;, o) s | ; “ (Ir,‘:") Q|

50 100 150 200 250 300 350

Cache hits

(¢) Number of cache hits is not a good criteria for bit flips.

w 20 ; T T
o, I
a 15 : 8
5 10 [1]
5 [) ° m
iz oL 0 p® 8 0 008 ~ ! !
0 50 100 150 200 250 300

Cache misses
(d) Number of cache misses is not a good criteria for bit flips.

Figure 7.1.: Relation between the number of bit flips and average execution
time, cache hits and cache misses per eviction and the eviction rate of
the corresponding eviction strategy measured in 40 million samples. One
point per eviction strategy that caused a bit flip, others are omitted. The
darker the more points overlay. Average over all eviction strategies shown
as dashed line. Good eviction strategies have high eviction rates and low
execution times.

160

Eviction rate

0.9

0.8

3. Cache Eviction Strategies

|
300 400 500 60

Round execution time in ns

700 800 900 1,000 1,100 1,200 1,300 1,400

Figure 7.2.: Average execution time and eviction rate per eviction strategy
on Ivy Bridge measured in 40 million samples per eviction strategy. One
point per eviction strategy that caused a bit flip, others are omitted. The
darker the more points overlay. Average over all eviction strategies shown

as dashed line.

0123 0123 0123 0123 1032 1032 1032 1032 2301 2301 2301 2301 3210 3210 3210 3210
1032 1032 1032 1032 0123 0123 0123 0123 3210 3210 3210 3210 2301 2301 2301 2301
2301 2301 2301 2301 3210 3210 3210 3210 0123 0123 0123 0123 1032 1032 1032 1032
3210 3210 3210 3210 2301 2301 2301 2301 1032 1032 1032 1032 0123 0123 0123 0123

Figure 7.3.: Slice patterns for 64-byte offsets on 4KB pages on a 4-core
system. An attacker can derive which addresses map to the same cache
slice. Substituting 2 by 0 and 3 by 1 gives the slice pattern for 2-core

systems.
—— Eviction rate
= Execution time
99.7% |
&g §
© 99.0% | 1
= |
.g 95.0% |
S B
5 75.0% |-) o 7
|

| | |
1000 5000 10000
Number of eviction tests

100 500

|
50000

3000

300s

30s

Execution time

Figure 7.4.: The eviction rate and execution time of the dynamic eviction
strategy when implementing the cached (p) function with n eviction tests.

161

7. Rowhammer.js

4. Implementation of eviction-based
Rowhammer

We now perform Rowhammer attacks using the eviction strategies from
Section 3 instead of clflush in different scenarios. First, we demonstrate
that it is possible to trigger bit flips in the same conditions as in the existing
attacks where an attacker is able to execute native code on the system
under attack. We then show that given knowledge about the physical
addresses, it is possible to trigger bit flips even from a remote website
using JavaScript. In a third step, we show that the full Rowhammer attack
is possible from a remote website using JavaScript without any additional
information on the system.

4.1. Rowhammer in Native Code

We extended the double_sided_rowhammer program by Dullien [SD15]
by using the best eviction strategy we have found. The two clflush
instructions were first replaced by the eviction code described in Section 3.1,
with parameters for a P-2-2-1 eviction strategy. The eviction sets are
either precomputed statically using the physical address mapping and the
complex addressing function in Table 7.2, or using a dynamic eviction
strategy computation algorithm.

This way, we were able to reproducibly flip bits on our Sandy Bridge and
Ivy Bridge test machine using different eviction strategies when running
with the Samsung DDR3 RAM and our Skylake test machine when running
with the Crucial DDR4 RAM. The machines were operated in default
configuration.

On our Haswell test machine we were not able to reproducibly flip bits
with the default settings, not even with the c1flush instruction. However,
the BIOS configuration allows setting a custom refresh rate by setting
the average periodic refresh interval tREFI. We had to increase the tREFI
value from 6,549 to over 19,000 just to be able to trigger bit flips with the
clflush instruction. The refresh interval is a typical parameter used by
computer gaming enthusiasts and the overclocking community to increase
system performance. However, while this might also be an interesting target
group, we rather want to analyze the influence of the refresh interval on
the applicability of the Rowhammer attack using cache eviction and the
Rowhammer attack in JavaScript. Kim et al. [Kim+14] observed that

162

4. Implementation of eviction-based Rowhammer

the refresh interval directly influences the number of bit flips that occur
and that below a module dependent tREFI value no bit flips occur. We
will show that their observation also applies to Rowhammer with cache
eviction and Rowhammer in JavaScript.

Lowering the refresh interval is not part of an actual attack. Existing
work has already examined the prevalence of the Rowhammer and found
that 85% of the DDR3 modules examined are susceptible to Rowhammer
bit flips [Kim+14]. Also in our case only the modules of the Haswell
test system and the G.Skill DIMMs in the Skylake test system were not
susceptible to Rowhammer bit flips at default settings, whereas it was
possible to induce Rowhammer bit flips in the other three DIMMs at
default settings. Thus, our results do not contradict previous estimates
and we must assume that millions of systems are still vulnerable.

Rowhammer with eviction in native code revives the Google Native Client
exploit [SD15] that allows privilege escalation in Google Chrome. The
clflush instruction has been blacklisted to solve this vulnerability, how-
ever, this is ineffective and a sandbox escape is still possible, as we can
trigger bit flips in Google Native Client based on eviction.

4.2. Rowhammer in JavaScript

Triggering the Rowhammer bug from JavaScript is more difficult as
JavaScript has no concept of virtual addresses or pointers and no ac-
cess to physical address mappings. We observed that large typed arrays in
JavaScript in all recent Firefox and Google Chrome versions on Linux are
allocated 1MB aligned and use anonymous 2MB pages when possible. The
reason for this lies in the memory allocation mechanism implemented by
the operating system. Any memory allocation in a comparable scripting
language and environment will also result in the allocation of anonymous
2MB pages for large arrays.

By performing a timing attack similar to the one performed by Gruss et al.
[GBM15], we can determine the 2MB page frames in the browser. In
this attack we iterate over an array and measure the access latency. The
latency peaks during memory initialization are caused by the pagefaults
that occur with the start of each new 2MB page, as shown in Figure 7.5.
This also works in recent browser versions with a reduced timer resolution
as suggested by Oren et al. [Ore+15] and added to the HTML5 standard

163

7. Rowhammer.js

I

(an)

(e}
T
.

Latency in us
[N}
[a=)
(e}
T

09 512 1,024 1,536 2,048 2,560 3,072

Page index

$o—b—é-o—4

Figure 7.5.: Access latency of 4KB aligned addresses in a large array in
JavaScript. Pagefaults cause the latency peaks at the start of the 2MB

pages.

by the W3C [W3C15]. Thus, we know the lowest 21 bits of the virtual
and physical address by knowing the offset in the array.

As a first proof-of-concept we reproduced bit flips in JavaScript in Firefox
by hammering the exact physical addresses as in native code. In order
to do this we built a tool to translate physical to virtual addresses for
another process. To compute the eviction sets we use the assumption-based
algorithm from Section 3.2. We observed that simple memory accesses as
in our native code implementation are not optimized out by the just-in-
time-compiler.

The final JavaScript-based attack does not require any outside computation
and thus, runs entirely without user interaction in the browser. It exploits
the fact that large typed arrays are allocated on 2MB pages. Thus, we
know that each 2MB region of our array is divided into 16 row offsets of
size 128KB (depends on the lowest row index bit). We can now perform
double-sided hammering in these 2MB regions to trigger a bit flip within
the 2MB region or amplified single-sided hammering on the outer two rows
of every 2MB pages to induce a bit flip in another physical 2MB region.
The result is the first hardware-fault attack implemented in JavaScript on
a remote website.

4.3. Attack Evaluation

As described by Kim et al. [Kim+14] not all addresses in a DRAM are
equally susceptible to bit flips. Therefore, to provide a fair comparison
of the different techniques, we measured the number of bit flips for a

164

4. Implementation of eviction-based Rowhammer

—— Flush (native) —— Evict (native) —— Evict (JavaScript)

10°
10%

Bit flips

103

2
10 20 30 40 50 60 70

Refresh interval in ns

Figure 7.6.: Number of bit flips within 15 minutes on a fixed address
pair for different values for the average periodic refresh interval tREFI on
Haswell in three different setups.

fixed address pair already known to be susceptible. Figure 7.6 shows how
different refresh rates influence the number of bit flips for a fixed time
interval in different setups. The system was under slight usage during
the tests (browsing, typing in an editor, etc.). We see that the c1flush
instruction yields the highest number of bit flips. If the refresh interval
was set to a value where bit flips can be triggered using clflush, they
can be triggered using native code eviction as well. To trigger bit flips
in JavaScript, a slightly higher refresh interval was necessary. Again, it
depends on the particular DIMM whether the refresh interval is chosen
correctly so that no bit flips occur.

The probability for bit flips in JavaScript is slightly lower than in native
code, as native code is slightly faster. However, if a machine is vulnerable to
our native code implementation it is likely vulnerable using our JavaScript
implementation as well. While these plots were obtained on the Haswell
machine, we were also able to trigger bit flips on our Ivy Bridge laptop
with default settings from JavaScript. However, as the Laptop BIOSes did
not allow to set the refresh interval tREFI directly, we could not obtain a
comparable plot.

While DDR4 was assumed to have countermeasures against rowhammer-
ing, countermeasures are not part of the final DDR4 standard [Aicl5a].
Using the Crucial DDR4 DIMMs we even were able to induce bit flips
at default system settings and with the most recent BIOS version, after
applying the functions reverse engineered by Pessl et al. [Pes+15]. On
the G.Skill DDR4 DIMMs we could only induce bit flips at an increased
refresh interval. Thus, even on these very recent and up-to-date systems

165

7. Rowhammer.js

Rowhammer countermeasures have not been implemented in hardware
and those implemented in software are ineffective. Whether a system is
vulnerable to Rowhammer-based attacks still crucially depends on the
refresh interval chosen by DIMM.

5. Discussion and Related Work

5.1. Building an Exploit With Rowhammer.js

Existing exploits assume that a page table is mapped in a row between two
rows occupied by the attacker. However, we observed that this situation
rarely occurs in practice. The operating system prefers to use large pages
to reduce the pressure on the TLB. To make the organization and changes
to physical address mappings easier the operating system will also group
small pages into the same organizational physical frames. Page tables are
only allocated between two user pages in a near-out-of-memory situation.
Thus, the exploits allocate almost all system memory to enforce such a
situation [SD15]. However, swapping is enabled by default in all major
operating systems and thus the system will be severely unresponsive
due to swapping. In our proof-of-concept exploit, we perform “amplified
single-sided hammering”. By hammering two adjacent rows we increase
the probability for a bit flip in a surrounding row significantly compared
to single-sided hammering. This allows to induce bit flips even across the
borders of physically coherent 2MB regions with a high probability. As we
already have been able to trigger bit flips in JavaScript we will only focus
on how to manipulate a page table similar to previous exploits [SD15].
The attacker can repeat any step of the attack as long as necessary to be
successful.

In the first step, the exploit locates an exploitable bit flip as described in
Section 4.2, i.e., a bit flip in the % of the page table bits that are used for
physical addresses. An exploitable bit flip changes an address bit in a page
table that is in an adjacent 2MB region. We have found such bit flips on
our all our test machines. In the second step, the exploit script releases all
pages but the two that have previously been hammered and the ones that
are required for cache eviction. Thus, also the page that contained the bit
flip is released. Allocating arrays requires the browser to reserve virtual
memory regions and to map them to physical memory upon the first
access. The attacker determines the largest array size that still triggers the

166

5. Discussion and Related Work

allocation of a page table in a timing attack (see 4.2). The array size was
1MB on all our test systems. We only access and thus allocate one 4KB
page per 1IMB array and thus 2 user pages per page table. The probability
to place a group of page tables in the targeted 2MB region is ~ % In the
third step, the exploit script triggers the bit flip again and may find that
its own memory mappings changed. With a chance of ~ % the memory
mapped is now one of the attackers page tables. The attacker can now
change mapped addresses in that page table and if successful, has gained
full access to the physical memory of the system. Our proof-of-concept
works on recent Linux systems with all recent versions of Firefox and
it does not require a near-out-of-memory situation. It does not work in
Google Chrome due to the immediate allocation of all physical memory
for an allocated 1MB array after a single access.

5.2. Limitations

In JavaScript we use 2MB pages to find congruent addresses and adjacent
rows efficiently. If the operating system does not provide 2MB pages, we
cannot perform double-sided or amplified single-sided hammering. However,
the probability of a bit flip with single-sided hammering is significantly
lower. Exploiting double-sided hammering with 2MB pages is not possible
because we can then only induce bit flips in our own memory. Thus, an
attack is only possible with amplified single-sided hammering to induce
a bit flip in an adjacent row in an adjacent 2MB page. There is only a
limited number of such rows in a system. Still the search for an exploitable
bit flip can easily take several hours, especially as the probability of a bit
flip in JavaScript is lower than in native code. Furthermore, if we cannot
guess the best eviction strategy for the system, it will take up to an hour
of precomputations to find a good eviction strategy. The victim has to
stay on the website for the duration of the attack. While this was the case
in our proof-of-concept attack it is less realistic for a real-world attack.

5.3. Countermeasures

The operating system allocates memory in large physical memory frames
(often 2MB) for reasons of optimization. Page tables, kernel pages and
user pages are not allocated in the same memory frame, unless the system
is close to out-of-memory (i.e., allocating the last few kilobytes of physi-
cal memory). Thus, the most efficient Rowhammer attack (double-sided

167

7. Rowhammer.js

hammering) would not possible if the operating system memory allocator
was less aggressive in near-out-of-memory situations. Preventing (ampli-
fied) single-sided hammering is more difficult, as hammering across the
boundaries of a 2MB region is possible.

To fully close the attack vector for double-sided hammering, we also have
to deal with read-only shared code and data, i.e., shared libraries. If the
attacker hammers on a shared library, a fault can be induced in this library.
Therefore, shared libraries should not be shared over processes that run
at different privilege levels or under different users. As a consequence, the
attacker would be unable to escape from a sandbox or gain access to a
higher privilege level using c1flush or eviction-based Rowhammer.

Kim et al. [Kim+14] proposed several countermeasures which should be
implemented for new DRAM modules, including increasing the refresh
rate. However, this would cause significant performance impacts. BIOS
updates supplied so far only double the refresh rate, which is insufficient
to prevent attacks on all DRAM modules. Moreover, many users to not
update the BIOS unless it is unavoidable.

Pseudo Target Row Refresh (pTRR) and Target Row Refresh (TRR) are
features that refresh neighboring rows when the number of accesses to
one row exceeds a threshold. They have less overhead compared to double
the refresh rate. Although TRR has been announced as implemented in
all DDR4 modules it has been removed from the final DDR4 standard.
Manufacturers can still choose to implement it in their devices, but if the
memory controller does not support it, it has no effect.

Error-correcting code (ECC) memory is often mentioned as a counter-
measure against Rowhammer attacks. However, recent work shows that it
cannot reliably protect against Rowhammer attacks.cases [Aic15b; Lan16].

At the software level, one proposed countermeasure is the detection using
hardware performance counters [HF15; Pay16; Gru+16; Awe+16]. The
excessive number of cache references and cache hits allows to detect on-
going attacks. However, this countermeasure can suffer from false positives,
so it needs further evaluation before it can be brought to practice.

5.4. Related Work

The initial work by Kim et al. [Kim+14] and Seaborn’s [SD15] root
exploit made the scientific community aware of the security implications

168

6. Future Work

of a Rowhammer attack. However, to date, there have been very few
other publications, focusing on different aspects than our work. Barbara
Aichinger [Aicl5a] analyzed Rowhammer faults in server systems where
the problem exists in spite of ECC memory. She remarks that it will be
difficult to fix the problem in the millions or even billions of DDR3 DRAMs
in server systems. Rahmati et al. [Rah+15] have shown that bit flips can
be used to identify a system based on the unique and repeatable error
pattern that occurs at a significantly increased refresh interval. Our paper
is the first to examine how to perform Rowhammer attacks based on cache
eviction.! Our cache eviction techniques facilitated cache side-channel
attacks on ARM CPUs [Lip+15]. Concurrent and independent work by
Aweke et al. [Awe+16] have also demonstrated bit flips without c1flush
on an old Sandy Bridge laptop. They focus on countermeasures, whereas we
focus on attacking a wider range of architectures and environments. Qiao
and Seaborn [QS16] implemented a Rowhammer attack with non-temporal
memory accesses.

6. Future Work

While we only investigated the possibility of a JavaScript Rowhammer
attack in Firefox and Google Chrome on Linux, the attack exploits fun-
damental concepts that are inbuilt in the way hardware and operating
system work. Whenever the operating system uses 4KB pages, page tables
are required and at latest allocated when one of the 4KB pages belonging
to this page table is accessed. Thus, the operating system cannot prevent
that % of memory is allocated for page tables. The same attack approach
could be applied to hypervisors that allocate 4KB pages to virtual ma-
chines, even if they applies similar allocation mechanisms as the Linux
kernel. While it might seem unreasonable and not realistic that hypervisors
allocate 4KB pages, it in fact makes cross-VM page deduplication easier.
According to Barresi et al. [Bar+15], page deduplication is in fact still
widely used in public clouds. Our work opens the possibility for further
investigation on whether page deduplication in fact is not only a problem
for security and privacy of virtual machines, but a security problem for
the hypervisor itself.

LA draft of this paper was published online since July 24, 2015.

169

7. Rowhammer.js

7. Conclusion

In this paper, we presented Rowhammer.js, an implementation of the
Rowhammer attack using fast cache eviction to trigger the Rowhammer
bug with only regular memory accesses. It is the first work to investigate
eviction strategies to defeat complex cache replacement policies. This
does not only enable to trigger Rowhammer in JavaScript, it also benefits
research on cache attacks as it allows to perform attacks on recent and
unknown CPUs fast and reliably. Our fully automated attack runs in
JavaScript through a remote website and can gain unrestricted access to
systems. The attack technique is independent of CPU microarchitecture,
programming language and execution environment.

The majority of DDR3 modules are vulnerable and DDR4 modules can be
vulnerable too. Thus, it is important to discover all Rowhammer attack
vectors. Automated attacks through websites pose an enormous threat as
they can be performed on millions of victim machines simultaneously.

8. Acknowledgments

We would like to thank our shepherd Stelios Sidiroglou-Douskos and our
anonymous reviewers for their valuable comments and suggestions. We
would also like to thank Mark Seaborn, Thomas Dullien, Yossi Oren, Yuval
Yarom, Barbara Aichinger, Peter Pessl and Raphael Spreitzer for feedback
and advice.

Supported by the EU Horizon 2020 programme under GA
No. 644052 (HECTOR), the EU FP7 programme under
GA No. 610436 (MATTHEW), the Austrian Research Pro-
motion Agency (FFG) and Styrian Business Promotion Agency (SFG)
under GA No. 836628 (SeCoS), and Cryptacus COST Action 1C1403.

* X %

*
*
*

* %

* 4 Kk

References

[Aicl5a] B. Aichinger. DDR memory errors caused by Row Hammer.
In: HPEC'15. 2015 (pp. 148, 165, 169).

[Aic15b] B. Aichinger. Row Hammer Failures in DDR Memory. In:
memcon’15. 2015 (p. 168).

170

[A1A05]

[Awe+16]

[Bai+14]

[Bar+15]

[BDL97]

[Ber05]

[BH14]

[BS97]

[GBK11]

[GBM15]

[Gru+16]

[GSM15]

References

Z. Al-Ars. DRAM fault analysis and test generation. TU
Delft, 2005 (p. 148).

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin. ANVIL: Software-Based Protec-
tion Against Next-Generation Rowhammer Attacks. In: 21th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASLPOS’16).
2016 (pp. 168, 169).

K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z.
Greenfield. Row hammer refresh command. US Patent App.
13/539,415. Jan. 2014 (p. 148).

A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently Breaking ASLR in the Cloud. In: WOOT’15. 2015
(p. 169).

D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In:
EUROCRYPT’97. 1997 (p. 144).

D. J. Bernstein. Cache-timing attacks on AES. Tech. rep. De-
partment of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 2005 (p. 150).

K. Bains and J. Halbert. Row hammer monitoring based
on stored row hammer threshold value. US Patent App.
13/690,523. June 2014 (p. 148).

E. Biham and A. Shamir. Differential Fault Analysis of
Secret Key Cryptosystems. In: CRYPTO ’97. 1997 (p. 144).

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (p. 150).

D. Gruss, D. Bidner, and S. Mangard. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In: ES-
ORICS’15. 2015 (pp. 158, 163).

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+
Flush: A Fast and Stealthy Cache Attack. In: DIMVA’16.
2016 (p. 168).

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 150).

171

7. Rowhammer.js

[HF15]

[Hua+12]

[HWH13]

[IES15]

[Inc+15]

[Kim+14]

[Lan16]

[Lip+15]

[Liut15]

[Mau+15a]

172

N. Herath and A. Fogh. These are Not Your Grand Daddys
CPU Performance Counters - CPU Hardware Performance
Counters for Security. In: Black Hat (2015) (p. 168).

R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C. Lin.
Alternate hammering test for application-specific DRAMs
and an industrial case study. In: DAC’12. 2012 (p. 148).

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (p. 150).

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(p. 150).

M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Seriously, get off my cloud! Cross-VM RSA Key

Recovery in a Public Cloud. In: Cryptology ePrint Archive,
Report 2015/898 (2015) (p. 149).

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors. In: ISCA’14. 2014 (pp. 145, 148, 154,
162-164, 168).

M. Lanteigne. How Rowhammer Could Be Used to Exploit
Weakness Weaknesses in Computer Hardware. In: March
(2016). URL: http://www.thirdio.com/rowhammer . pdf
(p. 168).

M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard. ARMaged-
don: Last-Level Cache Attacks on Mobile Devices. In: CoRR
abs/1511.04897 (2015) (p. 169).

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: S&P’15.
2015 (pp. 146, 150, 151, 158).

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A.
Francillon. Reverse Engineering Intel Last-Level Cache Com-
plex Addressing Using Performance Counters. In: RAID’15.
2015 (p. 149).

http://www.thirdio.com/rowhammer.pdf

[Mau+15b]

[Mic03]

[Ore+15]

[OSTO6]

[Par+14]

[Pay16]
[Per05]

[Pes+15]

[QS16]

[Qur+-07]

[Rah-+15]

[SD15]

References

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(p. 150).

Micron. Designing for 1Gb DDR SDRAM. 2003. URL: https:
/ /www . micron . com/ ~/media/documents / products /
technical-note/dram/tn4609.pdf (p. 154).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Kero-
mytis. The Spy in the Sandbox: Practical Cache Attacks in
JavaScript and their Implications. In: CCS’15. 2015 (pp. 146,
150, 151, 158, 163).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: The Case of AES. In: CT-RSA. 2006
(p. 150).

K. Park, S. Baeg, S. Wen, and R. Wong. Active-Precharge
Hammering on a Row Induced Failure in DDR3 SDRAMs
under 3x nm Technology. In: IIRW’14. 2014 (p. 148).

M. Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESS0S’16. 2016 (p. 168).

C. Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005 (p. 150).

P. Pessl, D. Gruss, C. Maurice, and S. Mangard. Reverse
Engineering Intel DRAM Addressing and Exploitation. In:
CoRR abs/1511.08756 (2015) (pp. 145, 148, 165).

R. Qiao and M. Seaborn. A New Approach for Rowhammer
Attacks. In: HOST’16. 2016 (p. 169).

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News
35.2 (2007), p. 381 (p. 149).

A. Rahmati, M. Hicks, D. E. Holcomb, and K. Fu. Probable
cause: the deanonymizing effects of approximate DRAM. In:

ISCA’15. 2015 (p. 169).

M. Seaborn and T. Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. In: Black Hat. 2015
(pp. 145, 146, 148, 149, 162, 163, 166, 168).

173

https://www.micron.com/~/media/documents/products/technical-note/dram/tn4609.pdf
https://www.micron.com/~/media/documents/products/technical-note/dram/tn4609.pdf
https://www.micron.com/~/media/documents/products/technical-note/dram/tn4609.pdf

7. Rowhammer.js

[Sealb]

[W3C15]

[Won)|

[Yar+15]

[YF14]

174

M. Seaborn. How physical addresses map to rows and banks
in DRAM. Retrieved on July 20, 2015. May 2015. URL:
http://lackingrhoticity.blogspot.com/2015/05/how-
physical - addresses-map-to-rows-and-banks . html
(p. 148).

W3C. High Resolution Time Level 2 - W3C Working Draft 21
July 2015. July 2015. URL: http://www.w3.org/TR/2015/
WD-hr-time-2-20150721/#privacy-security (p. 164).

H. Wong. Intel Ivy Bridge Cache Replacement Policy. Re-

trieved on July 16, 2015. URL: http://blog.stuffedcow.
net/2013/01/ivb-cache-replacement/ (p. 149).

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. Mapping
the Intel Last-Level Cache. In: Cryptology ePrint Archive,
Report 2015/905 (2015) (p. 149).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 150).

http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Flush+Flush: A Fast and Stealthy
Cache Attack

Publication Data

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A Fast
and Stealthy Cache Attack. In: DIMVA’16. 2016

Contributions

Main author.

175

8. Flush+Flush

Flush+Flush
A Fast and Stealthy Cache Attack

Daniel Gruss, Clémentine Maurice’, Klaus Wagner, and Stefan
Mangard

Graz University of Technology, Austria

Abstract

Research on cache attacks has shown that CPU caches leak significant
information. Proposed detection mechanisms assume that all cache attacks
cause more cache hits and cache misses than benign applications and use
hardware performance counters for detection.

In this article, we show that this assumption does not hold by developing a
novel attack technique: the Flush+Flush attack. The Flush+Flush attack
only relies on the execution time of the flush instruction, which depends
on whether data is cached or not. Flush+Flush does not make any memory
accesses, contrary to any other cache attack. Thus, it causes no cache
misses at all and the number of cache hits is reduced to a minimum due
to the constant cache flushes. Therefore, Flush+Flush attacks are stealthy,
i.e., the spy process cannot be detected based on cache hits and misses,
or state-of-the-art detection mechanisms. The Flush+Flush attack runs
in a higher frequency and thus is faster than any existing cache attack.
With 496 KB/s in a cross-core covert channel it is 6.7 times faster than
any previously published cache covert channel.

1. Introduction

The CPU cache is a microarchitectural element that reduces the memory
access time of recently-used data. It is shared across cores in modern
processors, and is thus a piece of hardware that has been extensively
studied in terms of information leakage. Cache attacks include covert and
cryptographic side channels, but caches have also been exploited in other

The original publication is available at http://link.springer.com/chapter/10.
1007/978-3-319-40667-1_14.
t Part of the work was done while author was affiliated to Technicolor and Eurecom.

176

http://link.springer.com/chapter/10.1007/978-3-319-40667-1_14
http://link.springer.com/chapter/10.1007/978-3-319-40667-1_14

1. Introduction

types of attacks, such as bypassing kernel ASLR [HWH13], detecting
cryptographic libraries [Ira+15a], or keystroke logging [GSM15]. Hardware
performance counters have been proposed recently as an OS-level detection
mechanism for cache attacks and Rowhammer [CSY15; HF15; Pay16]. This
countermeasure is based on the assumption that all cache attacks cause
significantly more cache hits and cache misses than benign applications.
While this assumption seems reasonable, it is unknown whether there are
cache attacks that do not cause a significant number of cache hits and
cache misses.

In this article, we present the Flush+Flush attack. Flush+Flush exploits
the fact that the execution time of the clflush instruction is shorter
if the data is not cached and higher if the data is cached. At the same
time, the c1flush instruction evicts the corresponding data from all cache
levels. Flush+Flush exploits the same hardware and software properties
as Flush+Reload [YF14]: it works on read-only shared memory, cross-core
attack and in virtualized environments. In contrast to Flush+Reload,
Flush+Flush does not make any memory accesses and thus does not cause
any cache misses at all and only a minimal number of cache hits. This
distinguishes Flush+Flush from any other cache attack. However, with
both Flush+Reload and Flush+Flush the victim process experiences an
increased number of cache misses.

We evaluate Flush+Flush both in terms of performance and detectability in
three scenarios: a covert channel, a side-channel attack on user input, and
a side-channel attack on AES with T-tables. We implement a detection
mechanism that monitors cache references and cache misses of the last-
level cache, similarly to state of the art [CSY15; HF15; Payl6]. We
show that existing cache attacks as well as Rowhammer attacks can
be detected using performance counters. However, we demonstrate that
this countermeasure is non-effective against the Flush+Flush attack, as
the fundamental assumption fails. The Flush+Flush attack is thus more
stealthy than existing cache attacks, i.e., a Flush+Flush spy process cannot
be detected based on cache hits and cache misses. Thus, it cannot be
detected by state-of-the-art detection mechanisms.

The Flush+Flush attack runs in a higher frequency and thus is faster than
any existing cache attack in side-channel and covert channel scenarios. It
achieves a cross-core transmission rate of 496 KB/s, which is 6.7 times
faster than any previously published cache covert channel. The Flush+
Flush attack does not trigger prefetches and thus allows to monitor multiple

177

8. Flush+Flush

addresses within a 4 KB memory range in contrast to Flush+Reload that
fails in these scenarios [GSM15].

Our key contributions are:

e We detail a new cache attack technique that we call Flush+Flush.
It relies only on the difference in timing of the c1flush instruction
between cached and non-cached memory accesses.

e We show that in contrast to all other attacks, Flush+Flush is stealthy,
i.e., it cannot be detected using hardware performance counters. We
show that Flush+Flush also outperforms all existing cache attacks
in terms of speed.

The remainder of this paper is organized as follows. Section 2 provides
background information on CPU caches, shared memory, and cache at-
tacks. Section 3 describes the Flush+Flush attack. Section 4 investigates
how to leverage hardware performance counters to detect cache attacks.
We compare the performance and detectability of Flush+Flush attacks
compared to state-of-the-art attacks in three scenarios: a covert channel in
Section 5, a side-channel attack on keystroke timings in Section 6, and on
cryptographic algorithms in Section 7. Section 8 discusses implications and
countermeasures. Section 9 discusses related work. Finally, we conclude in
Section 10.

2. Background

2.1. CPU Caches

CPU caches hide the memory accesses latency to the slow physical memory
by buffering frequently used data in a small and fast memory. Modern
CPU architectures implement n-way set-associative caches, where the
cache is divided into cache sets, and each cache set comprises several cache
lines. A line is loaded in a set depending on its address, and each line can
occupy any of the n ways.

On modern Intel processors, there are three cache levels. The L3 cache,
also called last-level cache, is shared between all CPU cores. The L3 cache
is inclusive, i.e., all data within the L1 and L2 caches is also present in
the L3 cache. Due to these properties, executing code or accessing data
on one core has immediate consequences even for the private caches of

178

2. Background

the other cores. This can be exploited in so called cache attacks. The
last-level cache is divided into as many slices as cores, interconnected by a
ring bus. Since the Sandy Bridge microarchitecture, each physical address
is mapped to a slice by an undocumented so-called complez-addressing
function, that has recently been reversed-engineered [Mau+15a].

A cache replacement policy decides which cache line to replace when
loading new data in a set. Typical replacement policies are least-recently
used (LRU), variants of LRU and bimodal insertion policy where the
CPU can switch between the two strategies to achieve optimal cache
usage [Qur+07]. The unprivileged c1flush instruction evicts a cache line
from all the cache hierarchy. However, a program can also evict a cache
line by accessing enough memory.

2.2. Shared Memory

Operating systems and hypervisors instrument shared memory to reduce
the overall physical memory utilization and the TLB utilization. Shared
libraries are loaded into physical memory only once and shared by all
programs using them. Thus, multiple programs access the same physical
pages mapped within their own virtual address space.

The operating system similarly optimizes mapping of files, forking a
process, starting a process twice, or using mmap or dlopen. All cases result
in a memory region shared with all other processes mapping the same file.

On personal computers, smartphones, private cloud systems and even in
public clouds [Bar+15], another form of shared memory can be found,
namely content-based page deduplication. The hypervisor or operating
system scans the physical memory for byte-wise identical pages. Identical
pages are remapped to the same physical page, while the other page is
marked as free. This technique can lower the use of physical memory and
TLB significantly. However, sharing memory between completely unrelated
and possibly sandboxed processes, and between processes running in
different virtual machines brings up security and privacy concerns.

2.3. Cache Attacks and Rowhammer

Cache attacks exploit timing differences caused by the lower latency of
CPU caches compared to physical memory. Access-driven cache attacks

179

8. Flush+Flush

are typically devised in two types: Prime+Probe [OST06; Per05; TOS10]
and Flush+Reload [GBK11; YF14].

In Prime+Probe attacks, the attacker occupies a cache set and measures
whenever a victim replaces a line in that cache set. Modern processors
have a physically indexed last-level cache, use complex addressing, and
undocumented replacement policies. Cross-VM side-channel attacks [IES15;
Liu+15] and covert channels [Mau+15b] that tackle these challenges have
been presented in the last year. Oren et al. [Ore+15] showed that a Prime+
Probe cache attack can be launched from within sandboxed JavaScript
in a browser, allowing a remote attacker to eavesdrop on network traffic
statistics or mouse movements through a website.

Flush+Reload is a two phase attack that works on a single cache line. First,
it flushes a cache line using the clflush instruction, then it measures
the time it takes to reload the data. Based on the time measurement,
the attacker determines whether a targeted address has been reloaded by
another process in the meantime. In contrast to Prime+Probe, Flush+
Reload exploits the availability of shared memory and especially shared
libraries between the attacker and the victim program. Applications of
Flush+Reload have been shown to be reliable and powerful, mainly to
attack cryptographic algorithms [Ira+15a; Ira+15b; Giil+15; Zha+14].

Rowhammer is not a typical cache attack but a DRAM vulnerability that
causes random bit flips by repeatedly accessing a DRAM row [Kim+14].
It however shares some similarities with caches attacks since the accesses
must bypass all levels of caches to reach DRAM and trigger bit flips.
Attacks exploiting this vulnerability have already been demonstrated to
gain root privileges and to evade a sandbox [SD15]. Rowhammer causes a
significant number of cache hits and cache misses, that resemble a cache
attack.

3. The Flush+Flush Attack

The Flush+Flush attack is a faster and stealthier alternative to existing
cache attacks that also has fewer side effects on the cache. In contrast to
other cache attacks, it does not perform any memory accesses. For this
reason it causes no cache misses and only a minimal number of cache hits.
Thus, proposed detection mechanisms based on hardware performance
counters fail to detect the Flush+Flush attack. Flush+Flush exploits the

180

3. The Flush+Flush Attack

—— Sandy Hit - - - Sandy Miss — Ivy Hit - - - Ivy Miss Haswell Hit Haswell Miss ‘

100%
5% |-
50% |-
25% |

0%

NUMBER OF CASES

L S r L i L 2 Il L |
120 130 140 150 160 170 180 190 200
ExecuTioN TIME (IN CYCLES)

00 110
Figure 8.1.: Execution time of the clflush instruction on cached and
uncached memory on different CPU architectures

same hardware and software properties as Flush+Reload. It runs across
cores and in virtualized environments if read-only shared memory with
the victim process can be acquired.

Our attack builds upon the observation that the c1flush instruction can
abort early in case of a cache miss. In case of a cache hit, it has to trigger
eviction on all local caches. This timing difference can be exploited in
form of a cache attack, but it can also be used to derive information on
cache slices and CPU cores as each core can access its own cache slice
faster than others.

The attack consists of only one phase, that is executed in an endless
loop. It is the execution of the c1flush instruction on a targeted shared
memory line. The attacker measures the execution time of the c1flush
instruction. Based on the execution time, the attacker decides whether
the memory line has been cached or not. As the attacker does not load
the memory line into the cache, this reveals whether some other process
has loaded it. At the same time, c1flush evicts the memory line from the
cache for the next loop round of the attack.

The measurement is done using the rdtsc instruction that provides a
sub-nanosecond resolution timestamp. It also uses mfence instructions, as
clflush is only ordered by mfence, but not by any other means.

Figure 8.1 shows the execution time histogram of the c1flush instruction
for cached and non-cached memory lines, run on the three setups with
different recent microarchitectures: a Sandy Bridge i5-2540M, an Ivy
Bridge 15-3320M and a Haswell i7-4790. The timing difference of the peaks
is 12 cycles on Sandy Bridge, 9 cycles on Ivy Bridge, and 12 cycles on
Haswell. If the address maps to a remote core, another penalty of 3 cycles
is added to the minimum execution time for cache hits. The difference is

181

8. Flush+Flush

enough to be observed by an attacker. We discuss this timing difference
and its implications in Section 9.1. In either case the execution time is
less than the access time for both memory cached in the last-level cache
and memory accesses that are not cached. Therefore, Flush+Flush is
significantly faster than any other last-level cache attack.

The Flush+Flush attack inherently has a slightly lower accuracy than the
Flush+Reload technique in some cases, due to the lower timing difference
between a hit and a miss and because of a lower access time on average.
Nevertheless, the same amount of information is extracted faster using
the Flush+Flush attack due to the significantly lower execution time.
Furthermore, the reload-step of the Flush+Reload attack can trigger the
prefetcher and thus destroy measurements by fetching data into the cache.
This is the case especially when monitoring more than one address within
a physical page [GSM15]. As the Flush+Flush attack never performs any
memory accesses, this problem does not exist and the Flush+Flush attack
achieves an even higher accuracy here. For the same reason, the Flush+
Flush attack causes no cache misses and only a minimal number of cache
hits. Thus, recently proposed detection mechanisms using cache references
and cache misses fail to detect Flush+Flush.

4. Detecting Cache Attacks with Hardware
Performance Counters

Cache attacks can lead to an increased number of cache hits or cache
misses in the attacker process or in other processes. Thus, it may be
possible to detect abnormal behavior on a system level. However, to stop
or prevent an attack, it is necessary to identify the attacking process.
Therefore, we consider an attack stealthy if the attacking spy process
cannot be identified.

Hardware performance counters are special-purpose registers that are used
to monitor special hardware-related events. Events that can be monitored
include cache references and cache misses on the last-level cache. They are
mostly used for performance analysis and fine tuning, but have been found
to be suitable to detect Rowhammer and the Flush+Reload attack [HF15;
CSY15; Pay16]. The focus of our work is to show that detection of existing
attacks is straightforward, but detection of the Flush+Flush attack using

182

4. Detecting Cache Attacks with Hardware Performance Counters

Name Description

BPU_RA/ RM Branch prediction unit read access-
es/misses

BRANCH_INSTRUCTIONS/ _MISSES Retired branch instructions/mispredic-
tions

BUS_CYCLES Bus cycles

CACHE_MISSES/ REFERENCES Last-level cache misses/references

UNC_CBO_CACHE_LOOKUP C-Box events incl. c1flush (all slices)

CPU_CYCLES/REF_CPU_CYCLES CPU cycles with/without scaling

DTLB_RA/ RM/ WA/ WM Data TLB read/write accesses/misses

INSTRUCTIONS Retired instructions

ITLB_.RA/ RM Instruction TLB read/write accesses

L1ID_RA/ RM/ WA/ WM L1 data cache read/write accesses/misses

L1I.RM L1 instruction cache read misses

LL_.RA/_-WA Last-level cache read/write accesses

Table 8.1.: List of hardware performance events we use.

these performance counters is infeasible, due to the absence of cache misses
and the minimal number of cache references.

We analyze the feasibility of such detection mechanisms using the Linux
perf_event_open syscall interface that provides userspace access to a
subset of all available performance counters on a per-process basis. The
actual accesses to the model specific registers are performed in the kernel.
The same information can be used by a system service to detect ongoing
attacks. During our tests we ran the performance monitoring with system
service privileges.

We analyzed all 23 hardware and cache performance events available
with the Linux syscall interface on our system. Additionally, we analyzed
the so called uncore [Intl14] performance monitoring units and found
one called C-Box that is influenced by cache hits, misses and c1flush
instructions directly. The UNC_CBO_CACHE_LOOKUP event of the C-Box allows
monitoring a last-level cache lookups per cache slice, including by the
clflush instruction. The C-Box monitoring units are not available through
a generic interface but only through model specific registers. Table 8.1 lists
all events we evaluated. We found that there are no other performance
counters documented to monitor cache hits, misses or c1flush instructions
specifically. Furthermore, neither the hypervisor nor the operating system
can intercept the c1flush instruction or monitor the frequency of c1flush
instructions being executed using performance counters.

183

8. Flush+Flush

The number of performance events that can be monitored simultaneously
is limited by hardware. On all our test systems it is possible to monitor
up to 4 events simultaneously. Thus, any detection mechanism can only
use 4 performance events simultaneously.

We evaluated the 24 performance counters for the following scenarios:
1. Idle: idle system,
2. Firefox: user scrolling down a chosen Twitter feed in Firefox,
3. OpenTTD: user playing a game
4

. stress -m 1: loop reading and writing in dynamically allocated 256 MB
arrays,

ot

stress -¢ 1: loop doing a CPU computation with almost no memory,
6. stress -i 1: loop calling the I/O sync () function,

7. Flush+Reload: cache attack on the GTK library to spy on keystroke
events,

8. Rowhammer: Rowhammer attack.

The first 3 scenarios are casual computer usage scenarios, the next 3 cause
a benign high load situation and the last 2 perform an attack. A good
detection mechanism classifies as benign the scenarios 1 to 6 and as attacks
7 and 8.

We use the instruction TLB (ITLB) performance counters (ITLB_RA +
ITLB_WA) to normalize the performance counters to make cache attacks
easier to detect, and prevent scenarios 2 and 3 from being detected as
malicious. Indeed, the main loop that is used in the Flush+Reload and
Rowhammer attacks causes a high number of last-level cache misses while
executing only a small piece of code. Executing only a small piece of code
causes a low pressure on the ITLB.

Table 8.2 shows a comparison of performance counters for the 8 sce-
narios tested over 135 seconds. These tests were performed in multiple
separate runs as the performance monitoring unit can only monitor 4
events simultaneously. Not all cache events are suitable for detection. The
UNC_CBO_CACHE_LOOKUP event that counts cache slice events including
c1lflush operations shows very high values in case of stress -i. It would
thus lead to false positives. Similarly, the INSTRUCTIONS event used by
Chiappetta et al. [CSY15] has a significantly higher value in case of stress

184

4. Detecting Cache Attacks with Hardware Performance Counters

Event / Test Idle Firefox OTTD stress -m stress -c stress -i F+R Rowhammer
BPU_RA 4.35 14.73 67.21 92.28 6109276.79 3.23 127443.28 23778.66
BPU_RM 0.36 0.32 1.87 0.00 12 320.23 0.36 694.21 25.53
BRANCH_INST. 4.35 14.62 74.73 92.62 6094 264.03 3.23 127605.71 23834.59
BRANCH_MISS. 0.36 0.31 2.06 0.00 12289.93 0.35 693.97 25.85
BUS_CYCLES 441 1.94 12.39 52.09 263 816.26 6.20 30420.54 98406.44
CACHE_MISSES 0.09 0.15 2.35 58.53 0.06 1.92 693.67 13766.65
CACHE_REFER. 0.40 0.98 6.84 61.05 0.31 2.28 693.92 13800.01
UNC_CBO_LO0432.99 3.88 18.66 4166.71 0.31 343224.44 2149.72 50094.17
CPU.CYCLES 38.23 67.45 449.23 2651.60 9497 363.56 237.62 1216701.51 3936969.93
DTLB_RA 5.11 19.19 123.68 31.78 6076031.42 3.04 47123.44 25459.36
DTLB_RM 0.07 0.09 1.67 0.05 0.05 0.04 0.05 0.03
DTLB-WA 1.70 11.18 54.88 30.97 3417764.10 1.13 22 868.02 25163.03
DTLB.WM 0.01 0.01 0.03 2.50 0.01 0.01 0.01 0.16
INSTRUCTIONS 20.24 66.04 470.89 428.15 20224639.96 1177 206014.72 132896.65
ITLB_RA 0.95 0.97 0.98 1.00 0.96 0.97 0.96 0.97
ITLB.RM 0.05 0.03 0.02 0.00 0.04 0.03 0.04 0.03
L1D_RA 5.11 18.30 128.75 31.53 6109271.97 3.01 47230.08 26173.65
L1D_RM 0.37 0.82 8.47 61.63 0.51 0.62 695.22 15630.85
L1D_-WA 1.70 10.69 57.66 30.72 3436461.82 1.13 22919.77 25838.20
L1ID-WM 0.12 0.19 1.50 30.57 0.16 0.44 0.23 10.01
L1I_LRM 0.12 0.65 0.21 0.03 0.65 1.05 1.17 1.14
LL_RA 0.14 0.39 5.61 30.73 0.12 0.47 695.35 9067.77
LL_-WA 0.01 0.02 0.74 30.30 0.01 0.01 0.02 4726.97
REF_CPUCYC.157.70 69.69 445.89 1872.05 405922.02 223.08 1098534.32 3542570.00

Table 8.2.: Comparison of performance counters normalized to the number
of ITLB events in different cache attacks and normal scenarios over 135
seconds in separate runs.

-c than in the attack scenarios and would cause false positives in the case
of benign CPU intensive activities. The REF_CPU_CYCLES is the unscaled
total number of CPU cycles consumed by the process. Divided by the
TLB events, it shows how small the executed loop is. The probability of
false positive matches is high, for instance in the case of stress -c.

Thus, 4 out of 24 events allow detecting both Flush+Reload and Rowham-
mer without causing false positives for benign applications. The rationale
behind these events is as follows:

1. CACHE_MISSES occur after data has been flushed from the last-level
cache,

2. CACHE_REFERENCES occur when reaccessing memory,

3. L1D_RM occur because flushing from last-level cache also flushes from
the lower cache levels,

4. LL_RA are a subset of the CACHE_REFERENCES counter, they occur
when reaccessing memory,

185

8. Flush+Flush

Two of the events are redundant: L1D_RM is redundant with CACHE_MISSES,
and LL_RA with CACHE_REFERENCES. We will thus focus on the
CACHE_MISSES and CACHE_REFERENCES events as proposed in previous
work [HF15; CSY15; Pay16].

We define that a process is considered malicious if more than k,, cache
miss or k, cache reference per ITLB event are observed. The attack is
detected if

CCACHEJ?.EFERENCES
>]{m s or > kT‘)

Crrira + CriiBwa

C’CACHEJ"IISSES

Crrisra + CrTiB WA

with C' the value of the corresponding performance counter. The operating
system can choose the frequency in which to run the detection checks.

The thresholds for the cache reference and cache hit rate are determined
based on a set of benign applications and malicious applications. It is
chosen to have the maximum distance to the minimum value for any
malicious application and the maximum value for any benign application.
In our case this is k,, = 2.35 and k, = 2.34. Based on these thresholds, we
perform a classification of processes into malicious and benign processes.
We tested this detection mechanism against various cache attacks and
found that it is suitable to detect different Flush+Reload, Prime+Probe
and Rowhammer attacks as malicious. However, the focus of our work is
not the evaluation of detection mechanisms based on performance counters,
but to show that such detection mechanisms cannot reliably detect the
Flush+Flush attack due to the absence of cache misses and a minimal
number of cache references.

In the following sections, we evaluate the performance and the detectability
of Flush+Flush compared to the state-of-the-art cache attacks Flush+
Reload and Prime+Probe in three scenarios: a covert channel, a side
channel on user input and a side channel on AES with T-tables.

5. Covert Channel Comparison

In this section, we describe a generic low-error cache covert channel frame-
work. In a covert channel, an attacker runs two unprivileged applications
on the system under attack. The processes are cooperating to communicate
with each other, even though they are not allowed to by the security policy.
We show how the two processes can communicate using the Flush+Flush,

186

5. Covert Channel Comparison

Flush+Reload, and Prime+Probe technique. We compare the performance
and the detectability of the three implementations. In the remainder of
the paper, all the experiments are performed on a Haswell i7-4790 CPU.

5.1. A Low-error Cache Covert Channel Framework

In order to perform meaningful experiments and obtain comparable and
fair results, the experiments must be reproducible and tested in the
same conditions. This includes the same hardware setup, and the same
protocols. Indeed, we cannot compare covert channels from published
work [Mau+15b; Liu+15] that have different capacities and error rates.
Therefore, we build a framework to evaluate covert channels in a repro-
ducible way. This framework is generic and can be implemented over any
covert channel that allows bidirectional communication, by implementing
the send() and receive() functions.

The central component of the framework is a simple transmission protocol.
Data is transmitted in packets of N bytes, consisting of N — 3 bytes
payload, a 1 byte sequence number and a CRC-16 checksum over the
packet. The sequence number is used to distinguish consecutive packets.
The sender retransmits packets until the receiver acknowledges it. Packets
are acknowledged by the receiver if the checksum is valid.

Although errors are still possible in case of a false positive CRC-16 check-
sum match, the probability is low. We choose the parameters such that
the effective error rate is below 5%. The channel capacity measured with
this protocol is comparable and reproducible. Furthermore, it is close to
the effective capacity in a real-world scenario, because error-correction
cannot be omitted. The number of transmitted bits is the minimum of
bits sent and bits received. The transmission rate can be computed by
dividing the number of transmitted bits by the runtime. The error rate is
given by the number of all bit errors between the sent bits and received
bits, divided by the number of transmitted bits.

5.2. Covert Channel Implementations

We first implemented the Flush+Reload covert channel. By accessing fixed
memory locations in a shared library the a 1 is transmitted, whereas a 0
is transmitted by omitting the access. The receiver performs the actual
Flush+Reload attack to determine whether a 1 or a 0 was transmitted. The

187

8. Flush+Flush

Sender Receiver Sender Receiver

L1

- —
0 £

L3

=l

(a) Transmitting a ’1’ (b) Transmitting a 0’

Figure 8.2.: Illustration of the Flush+Flush covert channel.

bits retrieved are then parsed as a data frame according to the transmission
protocol. The sender also monitors some memory locations using Flush+
Reload for cache hits too, to receive packet acknowledgments.

The second implementation is the Flush+Flush covert channel, illustrated
by Figure 8.2. It uses the same sender process as the Flush+Reload covert
channel. To transmit a 1 (Figure 8.2-a), the sender accesses the memory
location, that is cached (step 1). This time, the receiver only flushes the
shared line. As the line is present in the last-level cache by inclusiveness,
it is flushed from this level (step 2). A bit also indicates that the line is
present in the L1 cache, and thus must also be flushed from this level
(step 3). To transmit a 0 (Figure 8.2-b), the sender stays idle. The receiver
flushes the line (step 1). As the line is not present in the last-level cache,
it means that it is also not present in the lower levels, which results in a
faster execution of the c1flush instruction. Thus only the sender process
performs memory accesses, while the receiver only flushes cache lines. To
send acknowledgment bytes the receiver performs memory accesses and
the sender runs a Flush+Flush attack.

The third implementation is the Prime+Probe covert channel. It uses the
same attack technique as Liu et al. [Liu+15], Oren et al. [Ore+15], and
Maurice et al. [Mau+15b]. The sender transmits a 1 bit by priming a cache
set. The receiver probes the same cache set. Again the receiver determines
whether a 1 or a 0 was transmitted. We make two adjustments for conve-
nience and to focus solely on the transmission part. First, we compute a
static eviction set by using the complex addressing function [Mau+15a]
on physical addresses. This avoids the possibility of errors introduced by
timing-based eviction set computation. Second, we map the shared library
into our address space to determine the physical address to attack to make
an agreement on the cache sets in sender and receiver. Yet, the shared

188

5. Covert Channel Comparison

Technique Packet Capacity Error Sender Sender Sender Receiver Receiver Receiver

size in rate refer- misses stealth refer- misses stealth
KB/s ences ences

Flush+Flush 28 496 0.84% 1809.26 96.66 X 1.75 1.25 v
Flush+Reload 28 298 0.00% 526.14 56.09 X 110.52 59.16 X

Flush+Reload 5 132 0.01% 6.19 3.20 X 45.88 44.77 X

Flush+Flush 5 95 0.56% 425.99 418.27 X 0.98 0.95 v
Prime+Probe 5 67 0.36% 48.96 31.81 X 4.64 4.45 X

Flush+Reload 4 54 0.00% 0.86 0.84 v 2.74 1.25 X

Flush+Flush 4 52 1.00% 0.06 0.05 v 0.59 0.59 v
Prime+Probe 4 34 0.04% 55.57 32.66 X 5.23 5.01 X

Table 8.3.: Comparison of capacity and detectability of the three cache
covert channels with different parameters. Flush+Flush and Flush+Reload
use the same sender process.

library is never accessed and unmapped even before the Prime+Probe
attack is started. We assume that the sender and receiver have agreed
on the cache sets in a preprocessing step. This is practical even for a
timing-based approach.

5.3. Performance Evaluation

Table 8.3 compares the capacity and the detectability of the three covert
channels in different configurations. The Flush+Flush covert channel is
the fastest of the three covert channels. With a packet size of 28 bytes
the transmission rate is 496 KB/s. At the same time the effective error
rate is only 0.84%. The Flush+Reload covert channel also achieved a good
performance at a packet size of 28 bytes. The transmission rate then is
298 KB/s and the error rate < 0.005%. With a packet size of 4 bytes, the
performance is lower in all three cases.

A Prime+Probe covert channel with a 28-byte packet size is not realistic.
First, to avoid triggering the hardware prefetcher we do not access more
than one address per physical page. Second, for each eviction set we need
16 addresses. Thus we would require 28B - 4096 - 16 = 14 GB of memory
only for the eviction sets. For Prime+Probe we achieved the best results
with a packet size of 5 bytes. With this configuration the transmission
rate is 68 KB/s at an error rate of 0.14%, compared to 132 KB/s using
Flush+Reload and 95 KB/s using Flush+Flush.

The Flush+Flush transmission rate of 496 KB/s is significantly higher
than any other state-of-the-art cache covert channels. It is 6.7 times as

189

8. Flush+Flush

fast as the fastest cache covert channel to date [Liu+15] at a comparable
error rate. Our covert channel based on Flush+Reload is also faster than
previously published cache covert channels, but still much slower than
the Flush+Flush covert channel. Compared to our Prime+Probe covert
channel, Flush+Flush is 7.3 times faster.

5.4. Detectability

Table 8.3 shows the evaluation of the detectability for packet sizes that
yielded the highest performance in one of the cases. Flush+Reload and
Flush+Flush use the same sender process, the reference and miss count is
mainly influenced by the number of retransmissions and executed program
logic. Flush+Reload is detected in all cases either because of its sender or
its receiver, although its sender process with a 4-byte packet size stays
below the detection threshold. The Prime+Probe attack is always well
above the detection threshold and therefore always detected as malicious.
All Flush+Flush receiver processes are classified as benign. However, only
the sender process used for the Flush+Flush and the Flush+Reload covert
channels with a 4-byte packet size is classified as benign.

The receiver process performs most of the actual cache attack. If it is
sufficient to keep the receiver process stealthy, Flush+Flush clearly outper-
forms all other cache attacks. If the sender has to be stealthy as well, the
sender process used by Flush+Flush and Flush+Reload performs better
than the Prime+Probe sender process. However, due to the high number
of cache hits it is difficult to keep the sender process below the detection
threshold. An adversary could choose to reduce the transmission rate in
order to be stealthier in either case.

6. Side-Channel Attack on User Input

Another cache attack that has been demonstrated recently using Flush+
Reload, is eavesdropping on keystroke timings. We attack an address
in the GTK library invoked when processing keystrokes. The attack is
implemented as a program that constantly flushes the address, and derives
when a keystroke occurred, based on memory access times or the execution
time of the clflush instruction.

190

6. Side-Channel Attack on User Input

Technique Cache references Cache misses Stealthy
Flush+Reload 5.140 5.138 X
Flush+Flush 0.002 0.000 v

Table 8.4.: Comparison of performance counters normalized to the number
of ITLB events for cache attacks on user input.

6.1. Performance Evaluation

We compare the three attacks Flush+Flush, Flush+Reload, and Prime+
Probe, based on their performance in this side-channel attack scenario.
During each test we simulate a user typing a 1000-character text into
an editor. Each test takes 135 seconds. As expected, Flush+Reload has
a very high accuracy of 96.1%. This allows direct logging of keystroke
timings. Flush+Flush performs notably well, with 74.7% correctly detected
keystrokes. However, this makes a practical attack much harder than with
Flush+Reload. The attack with Prime+Probe yielded no meaningful results
at all due to the high noise level. In case of Flush+Reload and Flush+Flush
the accuracy can be increased significantly by attacking 3 addresses that
are used during keystroke processing simultaneously. The decision whether
a keystroke was observed is then based on these 3 addresses increasing the
accuracy significantly. Using this technique reduces the error rate in case
of Flush+Reload close to 100% and above 92% in case of Flush+Flush.

6.2. Detectability

To evaluate the detectability we again monitored the cache references and
cache misses events, and compared the three cache attacks with each other
and with an idle system. Table 8.4 shows that Flush+Reload generates a
high number of cache references, whereas Flush+Flush causes a negligible
number of cache references. We omitted Prime-+Probe in this table as it
was not sufficiently accurate to perform the attack.

Flush+Reload yields the highest accuracy in this side-channel attack, but
it is easily detected. The accuracy of Flush+Flush can easily be increased
to more than 92% and it still is far from being detected. Thus, Flush+
Flush is a viable and stealthy alternative to the Flush+Reload attack as it
is not classified as malicious based on the cache references or cache misses
performance counters.

191

8. Flush+Flush

7. Side-Channel Attack on AES with T-Tables

To round up our comparison with other cache attacks, we compare Flush+
Flush, Flush+Reload, and Prime+Probe in a high frequency side-channel
attack scenario. Finding new cache attacks is out of scope of our work.
Instead, we try to perform a fair comparison between the different attack
techniques by implementing a well known cache attack using the three
techniques on a vulnerable implementation of a cryptographic algorithm.
We attack the OpenSSL T-Table-based AES implementation that is known
to be susceptible to cache attacks [Ber05; OST06]. This AES implemen-
tation is disabled by default for security reasons, but still exists for the
purpose of comparing new and existing side-channel attacks.

The AES algorithm uses the T-tables to compute the ciphertext based on
the secret key k and the plaintext p. During the first round, table accesses
are made to entries T)j[p; ® k;] with i = j mod 4 and 0 < ¢ < 16. Using a
cache attack it is possible to derive values for p; ® k; and thus, possible
key-byte values k; in case p; is known.

7.1. Attack Implementation Using Flush+Flush

The implementation of the chosen-plaintext attack side-channel attacks
for the three attack techniques is very similar. The attacker triggers an
encryption, choosing p; while all p; with ¢ # j are random. One cache
line holds 16 T-Table entries. The cache attack is now performed on the
first line of each T-Table. The attacker repeats the encryptions with new
random plaintext bytes p; until only one p; remains to always cause a
cache hit. The attacker learns that p; ® k; =m0 and thus k; =14 Di- After
performing the attack for all 16 key bytes, the attacker has derived 64
bits of the secret key k. As we only want to compare the three attack
techniques, we do not extend this attack to a full key recovery attack.

7.2. Performance Evaluation

Figure 8.3 shows a comparison of cache templates generated with Flush+
Reload, Flush+Flush, and Prime+Probe using 1000000 encryptions to
create a visible pattern in all three cases. Similar templates can be found
in previous work [OST06; SP13; GSM15]. Table 8.5 shows how many

encryptions are necessary to determine the upper 4 bits correctly. We

192

7. Side-Channel Attack on AES with T-Tables

Figure 8.3.: Comparison of Cache Templates (address range of the first
T-table) generated using Flush+Reload (left), Flush+Flush (middle), and
Prime+Probe (right). In all cases ky = 0x00.

Technique Number of encryptions
Flush+Reload 250
Flush+Flush 350
Prime+Probe 4800

Table 8.5.: Number of encryptions to determine the upper 4 bits of a key
byte.

performed encryptions until the correct guess for the upper 4 bits of key
byte kg had a 5% margin over all other key candidates. Flush+Flush
requires around 1.4 times as many encryptions as Flush+Reload, but 13.7
times less than Prime+Probe to achieve the same accuracy.

Flush+Flush is the only attack that does not trigger the prefetcher. Thus,
we can monitor multiple adjacent cache sets. By doing this we double the
number of cache references, but increase the accuracy of the measurements
so that 275 encryptions are sufficient to identify the correct key byte with
a 5% margin. That is only 1.1 times as many encryptions as Flush+Reload
and 17.5 times less than Prime+Probe. Thus, Flush+Flush on multiple
addresses is faster at deriving the same information as Flush+Reload.

7.3. Detectability

Table 8.6 shows a comparison of the performance counters for the three
attacks over 256 million encryptions. The Flush+Flush attack took only
163 seconds whereas Flush+Reload took 215 seconds and Prime-+Probe
234 seconds for the identical attack. On a system level, it is possible to
notice ongoing cache attacks on AES in all three cases due to the high

193

8. Flush+Flush

Technique Cache Cache Execution References Misses Stealthy
references misses time in s (norm.) (norm.)
Flush+Reload 1024 - 106 19284 602 215 2513.43 47.33 X
Prime+Probe 4222-10° 294897508 234 1099.63 76.81 X
Flush+Flush 768 - 106 1741 163 1.40 0.00 v

Table 8.6.: Comparison of the performance counters when performing 256
million encryptions with different cache attacks and without an attack.

number of cache misses caused by the AES encryption process. However,
to stop or prevent the attack, it is necessary to detect the spy process.
Prime+Probe exceeds the detection threshold by a factor of 468 and
Flush+Reload exceeds the threshold by a factor of 1070. To stay below
the detection threshold, slowing down the attack by at least the same
factor would be necessary. In contrast, Flush+Flush is not detected based
on our classifier and does not have to be slowed down to be stealthy.

8. Discussion

8.1. Using clflush to Detect Cores and Cache Slices

The Flush+Flush attack can be used to determine on which CPU core
a process is running or to which cache slice an address maps. Indeed,
a clflush on a remote cache slice takes longer than a clflush on a
local cache slice, as shown in Figure 8.4. This is due to the ring bus
architecture connecting remote slices. Knowing the physical address of a
memory access on a local slice, we can then use the complex addressing
function [Mau+15a] to determine on which core the process runs. However,
this would require high privileges. Yet, it is possible to determine to which
slice an address maps without knowing the physical address by performing
a timing attack. This can be done by an unprivileged process, as pinning
a thread to a CPU core requires no privileges.

This can be exploited to detect colocation on the same CPU, CPU core
or hyperthreading core in restricted environments even if the cpuid in-
structions is virtualized. It is more difficult to determine which CPU core
a thread runs on based on memory access timings because of the influence
of lower level caches. Such an attack has also not been demonstrated
yet. The information on the executing CPU core can be used to enhance
cache attacks and other attacks such as the Rowhammer attack [Kim+14;

194

8. Discussion

-10°
. : :
—e— Core 0
@ 6 —=— Core 1 ||
8 —eo— Core 2
Byl —— Core 3 | |
o
a4
a
s 27 iy
=]
Z
07 | | |]

1 1 1 1 1 1 1 1
140 142 144 146 148 150 152 154 156 158 160
EXECUTION TIME (IN CYCLES)

Figure 8.4.: Excerpt of the c1flush histogram for an address in slice 1 on
different cores. The lower execution time on core 1 shows that this address
maps to slice 1.

GMM16]. Running clflush on a local slice lowers the execution time
of each Rowhammer loop round by a few cycles. The probability of bit
flips increases as the execution time lowers, thus we can leverage the
information whether an address maps to a local slice to improve this
attack.

A similar timing difference also occurs upon memory accesses that are
served from the local or a remote slice respectively. The reason again is
the direct connection to the local cache slice while remote cache slices are
connected via a ring bus. However, as memory accesses will also be cached
in lower level caches, it is more difficult to observe the timing difference
without c1flush. The clflush instruction directly manipulates the last-
level cache, thus lower level caches cannot hide the timing difference.

While the operating system can restrict access on information such as the
CPU core the process is running on and the physical address mapping
to make efficient cache attacks harder, it cannot restrict access to the
clflush instruction. Hence, the effect of such countermeasures is lower
than expected.

8.2. Countermeasures

We suggest modifying the c1flush instruction to counter the wide range
of attacks that it can be used for. The difference in the execution time
of clflush is 3 cycles depending on the cache slice and less than 12
cycles depending on whether it is a cache miss. In practice the c1flush

195

8. Flush+Flush

instruction is used only in rare situations and not in a high frequency. Thus,
a hypothetical performance advantage cannot justify introducing these
exploitable timing differences. We propose making clflush a constant-
time instruction. This would prevent the Flush+Flush attack completely,
as well as information leakage on cache slices and CPU cores.

Flush+Flush is the only cache attack that does not perform any memory
accesses and thus causes no cache misses and only a minimal number of
cache references. One theoretical way to detect our attack would be to
monitor each load, e.g., by timing, and to stop when detecting too many
misses. However, this solution is currently not practical, as a software-based
solution that monitors each load would cause a significant performance
degradation. A similar hardware-based solution called informing loads has
been proposed by Kong et al. [Kon+09], however it needs a change in
the instruction set. Without hardware modifications it would be possible
to enable the rdtsc instruction only in privileged mode as can be done
using seccomp on Linux [lwn08] since 2008. Fogh [Fogl5] proposed to
simulate the rdtsc in an interrupt handler, degrading the accuracy of
measurements far enough to make cache attacks significantly harder.

Flush+Reload and Flush+Flush both require shared memory. If shared
memory is not available, an attacker would have to resort to a technique
that even works without shared memory such as Prime+Probe. Further-
more, making the c1flush instruction privileged would prevent Flush+
Reload and Flush+Flush as well. However, this would require changes in
hardware and could not be implemented in commodity systems.

9. Related work

9.1. Detecting and Preventing Cache Attacks

Zhang et al. [Zha+11] proposed HomeAlone, a system-level solution that
uses a Prime+Probe covert channel to detect the presence of a foe co-
resident virtual machine. The system monitors random cache sets so that
friendly virtual machines can continue to operate if they change their
workload, and that foe virtual machines are either detected or forced to be
silent. Cache Template Attacks [GSM15] can be used to detect attacks on
shared libraries and binaries as a user. However, such a permanent scan
increases the system load and can only detect attacks in a small address
range within a reasonable response time.

196

9. Related work

Herath and Fogh [HF15] proposed to monitor cache misses to detect
Flush+Reload attacks and Rowhammer. The system would slow down or
halt all attacker processes. With the detection mechanism we implemented,
we show that this technique is feasible for previous attacks but not for
the Flush+Flush attack. Chiappetta et al. [CSY15] proposed to build a
trace of cache references and cache misses over the number of executed
instructions to detect Flush+Reload attacks. They then proposed three
methods to analyze this trace: a correlation-based method, and two other
ones based on machine learning techniques. However, a learning phase is
needed to detect malicious programs that are either from a set of known
malicious programs or resemble a program from this set. They are thus are
less likely to detect new or unknown cache attacks or Rowhammer attacks,
in contrast to our ad-hoc detection mechanism. Payer [Pay16] proposed a
system called HexPADS to use cache references, cache misses, but also
other events like page faults to detect cache attacks and Rowhammer at
runtime.

Cache attacks can be prevented at three levels: at the hardware level, at
the system level, and finally, at the application level. At the hardware
level, several solutions have been proposed to prevent cache attacks, either
by removing cache interferences, or randomizing them. The solutions
include new secure cache designs [WL07; WLO08; LL14] or altering the
prefetcher policy [FL15]. However, hardware changes are not applicable
to commodity systems. At the system level, page coloring provides cache
isolation in software [Raj+09; KPM12]. Zhang et al. [ZR13] proposed a
more relaxed isolation like repeated cache cleansing. These solutions cause
performance issues, as they prevent optimal use of the cache. Application-
level countermeasures seek to find the source of information leakage and
patch it [Bri+-06]. However, application-level countermeasures are bounded
and cannot prevent cache attacks such as covert channels and Rowhammer.
In contrast with prevention solutions that incur a loss of performance,
using performance counters does not prevent attacks but rather detect
them without overhead.

9.2. Usage of Hardware Performance Counters in Security

Hardware performance counters are made for performance monitoring, but
security researchers found other applications. In defensive cases, perfor-
mance counters allow detection of malware [Dem+13], integrity checking

197

8. Flush+Flush

of programs [MZK11], control flow integrity [Xia+12], and binary anal-
ysis [Wil+12]. In offensive scenarios, it has been used for side-channel
attacks against AES [UGV08] and RSA [BM15]. Performance counters
have also been used by Maurice et al. [Mau+15a] to reverse engineer the
complex addressing function of the last-level cache of modern Intel CPUs.

9.3. Cache Covert Channels

Cache covert channels are a well-known problem, and have been studied
relatively to the recent evolutions in microarchitecture. The two main
types of access-driven attacks can be used to derive a covert channel.
Covert channels using Prime+Probe have already been demonstrated
in [Mau+15b; Liu+415]. Flush+Reload has been used for side-channels
attacks [YF14], thus a covert channel can be derived easily. However, to
the best of our knowledge, there was no study of the performance of such
a covert channel.

In addition to building a covert channel with our new attack Flush+Flush,
we re-implemented Prime+Probe and implemented Flush+Reload. We
thus provide an evaluation and a fair comparison between these different
covert channels, in the same hardware setup and with the same protocol.

9.4. Side-Channel Attacks on User Inputs

Section 6 describes a side channel to eavesdrop on keystrokes. If an
attacker has root access to a system, there are simple ways to implement
a keylogger. Without root access, software-based side-channel attacks
have already proven to be a reliable way to eavesdrop on user input.
Attacks exploit the execution time [Tan+08], peaks in CPU and cache
activity graphs [Ris+09], or system services [ZW09]. Zhang et al. [ZW09]
showed that it is possible to derive key sequences from inter-keystroke
timings obtained via procfs. Oren et al. [Ore+15] demonstrated that
cache attacks in sandboxed JavaScript inside a browser can derive user
activities, such as mouse movements. Gruss et al. [GSM15] showed that
auto-generated Flush+Reload attacks can be used to measure keystroke
timings as well as identifying keys.

! After public disclosure of the Flush+Flush attack on November 14, 2015, Flush+
Flush has also been demonstrated on ARM-based mobile devices [Lip+15].

198

10. Conclusion

10. Conclusion

In this paper we presented Flush+Flush, a novel cache attack that, unlike
any other, performs no memory accesses. Instead, it relies only on the
execution time of the flush instruction to determine whether data is cached.
Flush+Flush does not trigger prefetches and thus is applicable in more
situations than other attacks. The Flush+Flush attack is faster than any
existing cache attack. It achieves a transmission rate of 496 KB/s in a
covert channel scenario, which is 6.7 times faster than any previous cache
covert channel. As it performs no memory accesses, the attack causes
no cache misses at all. For this reason, detection mechanisms based on
performance counters to monitor cache activity fail, as their underlying
assumption is incorrect.

While the Flush+Flush attack is significantly harder to detect than existing
cache attacks, it can be prevented with small hardware modifications.
Making the clflush instruction constant-time has no measurable impact
on today’s software and does not introduce any interface changes. Thus,
it is an effective countermeasure that should be implemented.

Finally, the experiments led in this paper broaden the understanding of
the internals of modern CPU caches. Beyond the adoption of detection
mechanisms, the field of cache attacks benefits from these findings, both
to discover new attacks and to be able to prevent them.

11. Acknowledgments

We would like to thank Mathias Payer, Anders Fogh, and our anonymous
reviewers for their valuable comments and suggestions.

Supported by the EU Horizon 2020 programme under GA

* No. 644052 (HECTOR), the EU FP7 programme under

. GA No. 610436 (MATTHEW), the Austrian Research Pro-

motion Agency (FFG) and Styrian Business Promotion Agency (SFG)
under GA No. 836628 (SeCoS), and Cryptacus COST Action 1C1403.

* X x

* %%

199

8. Flush+Flush

References

[Bar+15]

[Ber05]

[BM15]

[Bri+06]

[CSY15]

[Dem+13]

[FL15]

[Fogl5]

[GBK11]

[GMM16]

200

A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently Breaking ASLR in the Cloud. In: WOOT’15. 2015
(p. 179).

D. J. Bernstein. Cache-timing attacks on AES. Tech. rep. De-
partment of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 2005 (p. 192).

S. Bhattacharya and D. Mukhopadhyay. Who watches the
watchmen?: Utilizing Performance Monitors for Compromis-
ing keys of RSA on Intel Platforms. In: Cryptology ePrint
Archive, Report 2015/621 (2015) (p. 198).

E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Soft-
ware mitigations to hedge AES against cache-based software

side channel vulnerabilities. In: Cryptology ePrint Archive,
Report 2006/052 (2006) (p. 197).

M. Chiappetta, E. Savas, and C. Yilmaz. Real time detec-
tion of cache-based side-channel attacks using Hardware
Performance Counters. 2015 (pp. 177, 182, 184, 186, 197).

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waks-
man, S. Sethumadhavan, and S. Stolfo. On the feasibility
of online malware detection with performance counters. In:
ACM SIGARCH Computer Architecture News 41.3 (2013),
pp. 559-570 (p. 197).

A. Fuchs and R. B. Lee. Disruptive Prefetching: Impact on
Side-Channel Attacks and Cache Designs. In: Proceedings of
the 8th ACM International Systems and Storage Conference
(SYSTOR'15). 2015 (p. 197).

A. Fogh. Cache side channel attacks. Sept. 2015. URL: http:
/ /dreamsofastone . blogspot . co.at/2015/09/cache-
side-channel-attacks.html (p. 196).

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (p. 180).

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016 (p. 195).

http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html

[GSM15]

[Giil+15]

[HF15]

[HWHL3]

[IES15]

[Int14]

[Ira+15a)

[Tra+15b]

[Kim+14]

References

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 177, 178, 182,
192, 196, 198).

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush-+Reload Attack on AES.
In: Constructive Side-Channel Analysis and Secure Design

(COSADE). 2015 (p. 180).

N. Herath and A. Fogh. These are Not Your Grand Daddys
CPU Performance Counters - CPU Hardware Performance
Counters for Security. In: Black Hat (2015) (pp. 177, 182,
186, 197).

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (p. 177).

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(p. 180).

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3 (3A, 3B & 3C): System Program-
ming Guide. In: 253665 (2014) (p. 183).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies 1.1 (2015),
pp. 2540 (pp. 177, 180).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 180).

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors. In: Proceeding of the 41st annual Inter-
national Symposium on Computer Architecuture (ISCA’14).
2014 (pp. 180, 194).

201

8. Flush+Flush

[Kon+09)

[KPM12]

[Lip+15]

[Liu+15]

[LL14]

[lwn08]

[Mau+15a]

[Mau-+15b]

[MZK11]

[Ore+15]

202

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou. Hardware-
software integrated approaches to defend against software
cache-based side channel attacks. In: Proceedings of the 15th

International Symposium on High Performance Computer
Architecture (HPCA). 2009 (p. 196).

T. Kim, M. Peinado, and G. Mainar-Ruiz. StealthMem:
system-level protection against cache-based side channel
attacks in the cloud. In: Proceedings of the 21st USENIX
Security Symposium. 2012 (p. 197).

M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard. ARMaged-
don: Last-Level Cache Attacks on Mobile Devices. In: arXiv:
1511.04897 (2015) (p. 198).

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: S&P’15.
2015 (pp. 180, 187, 188, 190, 198).

F. Liu and R. B. Lee. Random Fill Cache Architecture. In:
IEEE/ACM International Symposium on Microarchitecture
(MICRO’14). 2014 (p. 197).

lwn.net. 2.6.26-rcl short-form changelog. May 2008. URL:
https://lwn.net/Articles/280913/ (p. 196).

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A.
Francillon. Reverse Engineering Intel Complex Addressing
Using Performance Counters. In: RAID’15. 2015 (pp. 179,
188, 194, 198).

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(pp. 180, 187, 188, 198).

C. Malone, M. Zahran, and R. Karri. Are hardware perfor-
mance counters a cost effective way for integrity checking
of programs. In: Proceedings of the 6th ACM Workshop on
Scalable Trusted Computing. 2011 (p. 198).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Ke-
romytis. The Spy in the Sandbox — Practical Cache Attacks
in Javascript. In: arXiv: 1502.07373v2 (2015) (pp. 180, 188,
198).

https://lwn.net/Articles/280913/

[0STO06]

[Pay16]
[Per05]

[Qur+07]

[Raj+09)]

[Ris+09]

[SD15]

[SP13]

[Tan-+08]

[TOS10]

[UGV0S]

[Wil+12]

References

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006
(pp. 180, 192).

M. Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESSoS’16. 2016 (pp. 177, 182, 186, 197).

C. Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005 (p. 180).

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News
35.2 (June 2007), p. 381 (p. 179).

H. Raj, R. Nathuji, A. Singh, and P. England. Resource Man-
agement for Isolation Enhanced Cloud Services. In: Proceed-
ings of the 1st ACM Cloud Computing Security Workshop
(CCSW’09). 2009 (p. 197).

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds. In: CCS’09. 2009 (p. 198).

M. Seaborn and T. Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. In: Black Hat. 2015
(p. 180).

R. Spreitzer and T. Plos. Cache-Access Pattern Attack on

Disaligned AES T-Tables. In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2013 (p. 192).

A. Tannous, J. T. Trostle, M. Hassan, S. E. McLaughlin,
and T. Jaeger. New Side Channels Targeted at Passwords.
In: ACSAC. 2008 (p. 198).

E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache
Attacks on AES, and Countermeasures. In: Journal of Cryp-
tology 23.1 (July 2010), pp. 37-71 (p. 180).

L. Uhsadel, A. Georges, and I. Verbauwhede. Exploiting
hardware performance counters. In: 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC’08). 2008
(p. 198).

C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and
A. Vasudevan. Down to the bare metal: Using processor
features for binary analysis. In: ACSAC. 2012 (p. 198).

203

8. Flush+Flush

[WLO7]

[WLOS]

[Xia+12]

[YF14]

[Zha+11]

[Zha+14]

[ZR13)]

[ZW09)]

204

Z. Wang and R. B. Lee. New cache designs for thwart-
ing software cache-based side channel attacks. In: ACM
SIGARCH Computer Architecture News 35.2 (June 2007),
p. 494 (p. 197).

Z. Wang and R. B. Lee. A Novel Cache Architecture with
Enhanced Performance and Security. In: IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO’08).
2008 (p. 197).

Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting
violation of control flow integrity using performance counters.
In: DSN’12. 2012 (p. 198).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 177, 180, 198).

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Anal-
ysis. In: S&P’11. 2011 (p. 196).

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In: CCS’14.
2014 (p. 180).

Y. Zhang and M. Reiter. Diippel: retrofitting commodity
operating systems to mitigate cache side channels in the
cloud. In: CCS’13. 2013 (p. 197).

K. Zhang and X. Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (p. 198).

ARMageddon: Cache Attacks on
Mobile Devices

Publication Data

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMaged-
don: Cache Attacks on Mobile Devices. In: USENIX Security Symposium.
2016

Contributions

Idea. 50% of Text.

205

9. ARMageddon

ARMageddon:
Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard

Graz University of Technology, Austria

Abstract

In the last 10 years, cache attacks on Intel x86 CPUs have gained increas-
ing attention among the scientific community and powerful techniques
to exploit cache side channels have been developed. However, modern
smartphones use one or more multi-core ARM CPUs that have a different
cache organization and instruction set than Intel x86 CPUs. So far, no
cross-core cache attacks have been demonstrated on non-rooted Android
smartphones. In this work, we demonstrate how to solve key challenges to
perform the most powerful cross-core cache attacks Prime+Probe, Flush+
Reload, Evict+Reload, and Flush+Flush on non-rooted ARM-based de-
vices without any privileges. Based on our techniques, we demonstrate
covert channels that outperform state-of-the-art covert channels on An-
droid by several orders of magnitude. Moreover, we present attacks to
monitor tap and swipe events as well as keystrokes, and even derive the
lengths of words entered on the touchscreen. Eventually, we are the first
to attack cryptographic primitives implemented in Java. Our attacks work
across CPUs and can even monitor cache activity in the ARM TrustZone
from the normal world. The techniques we present can be used to attack
hundreds of millions of Android devices.

1. Introduction

Cache attacks represent a powerful means of exploiting the different access
times within the memory hierarchy of modern system architectures. Until
recently, these attacks explicitly targeted cryptographic implementations,
for instance, by means of cache timing attacks [Ber04] or the well-known

The original publication is available at https://www.usenix.org/conference/
usenixsecurityl6/technical-sessions/presentation/lipp.

206

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp

1. Introduction

Evict+Time and Prime+Probe techniques [OST06]. The seminal paper by
Yarom and Falkner [YF14] introduced the so-called Flush+Reload attack,
which allows an attacker to infer which specific parts of a binary are
accessed by a victim program with an unprecedented accuracy and probing
frequency. Recently, Gruss et al. [GSM15] demonstrated the possibility to
use Flush+Reload to automatically exploit cache-based side channels via
cache template attacks on Intel platforms. Flush+Reload does not only
allow for efficient attacks against cryptographic implementations [Ben+14;
Ira+14; PSY15], but also to infer keystroke information and even to
build keyloggers on Intel platforms [GSM15]. In contrast to attacks on
cryptographic algorithms, which are typically triggered multiple times,
these attacks require a significantly higher accuracy as an attacker has
only one single chance to observe a user input event.

Although a few publications about cache attacks on AES T-table implemen-
tations on mobile devices exist [Bog+10; WHS12; SP13b; SP13a; SG14],
the more efficient cross-core attack techniques Prime+Probe, Flush+
Reload, Evict+Reload, and Flush+Flush [Gru+16] have not been applied
on smartphones. In fact, there was reasonable doubt [YF14] whether
these cross-core attacks can be mounted on ARM-based devices at all. In
this work, we demonstrate that these attack techniques are applicable on
ARM-based devices by solving the following key challenges systematically:

1. Last-level caches are not inclusive on ARM and thus cross-core
attacks cannot rely on this property. Indeed, existing cross-core at-
tacks exploit the inclusiveness of shared last-level caches [Liu+15;
Mau+15b; Mau+15a; Ore+15; GSM15; YF14; TES15; Gru+16;
Gil+15] and, thus, no cross-core attacks have been demonstrated
on ARM so far. We present an approach that exploits coherence
protocols and L1-to-L2 transfers to make these attacks applica-
ble on mobile devices with non-inclusive shared last-level caches,
irrespective of the cache organization.!

2. Most modern smartphones have multiple CPUs that do not share
a cache. However, cache coherence protocols allow CPUs to fetch
cache lines from remote cores faster than from the main memory.
We utilize this property to mount both cross-core and cross-CPU
attacks.

!Simultaneously to our work on ARM, Irazoqui et al. [[ES16] developed a technique
to exploit cache coherence protocols on AMD x86 CPUs and mounted the first
cross-CPU cache attack.

207

9. ARMageddon

3. Except ARMvS8-A CPUs, ARM processors do not support a flush
instruction. In these cases, a fast eviction strategy must be applied
for high-frequency measurements. As existing eviction strategies are
too slow, we analyze more than 4 200 eviction strategies for our test
devices, based on Rowhammer attack techniques [GMM16].

4. ARM CPUs use a pseudo-random replacement policy to decide which
cache line to replace within a cache set. This introduces additional
noise even for robust time-driven cache attacks [SP13b; SG14]. For
the same reason, Prime+Probe has been an open challenge [SP13a]
on ARM, as an attacker needs to predict which cache line will be
replaced first and wrong predictions destroy measurements. We
design re-access loops that interlock with a cache eviction strategy
to reduce the effect of wrong predictions.

5. Cycle-accurate timings require root access on ARM [ARM12] and
alternatives have not been evaluated so far. We evaluate different
timing sources and show that cache attacks can be mounted in any
case.

Based on these building blocks, we demonstrate practical and highly
efficient cache attacks on ARM.? We do not restrict our investigations
to cryptographic implementations but also consider cache attacks as
a means to infer other sensitive information—such as inter-keystroke
timings or the length of a swipe action—requiring a significantly higher
measurement accuracy. Besides these generic attacks, we also demonstrate
that cache attacks can be used to monitor cache activity caused within
the ARM TrustZone from the normal world. Nevertheless, we do not
alm to exhaustively list possible exploits or find new attack vectors on
cryptographic algorithms. Instead, we aim to demonstrate the immense
attack potential of the presented cross-core and cross-CPU attacks on
ARM-based mobile devices based on well-studied attack vectors. Our work
allows to apply existing attacks to millions of off-the-shelf Android devices
without any privileges. Furthermore, our investigations show that Android
still employs vulnerable AES T-table implementations.

Contributions. The contributions of this work are:

2Source code for ARMageddon attack examples can be found at https://github.
com/IAIK/armageddon.

208

https://github.com/IAIK/armageddon
https://github.com/IAIK/armageddon

2. Background and Related Work

e We demonstrate the applicability of highly efficient cache attacks
like Prime+Probe, Flush+Reload, Fvict+Reload, and Flush+Flush
on ARM.

e Our attacks work irrespective of the actual cache organization
and, thus, are the first last-level cache attacks that can be applied
cross-core and also cross-CPU on off-the-shelf ARM-based devices.
More specifically, our attacks work against last-level caches that are
instruction-inclusive and data-non-inclusive as well as caches that
are instruction-non-inclusive and data-inclusive.

e Our cache-based covert channel outperforms all existing covert chan-
nels on Android by several orders of magnitude.

e We demonstrate the power of these attacks by attacking crypto-
graphic implementations and by inferring more fine-grained infor-
mation like keystrokes and swipe actions on the touchscreen.

Outline. The remainder of this paper is structured as follows. In Sec-
tion 2, we provide information on background and related work. Section 3
describes the techniques that are the building blocks for our attacks. In
Section 4, we demonstrate and evaluate fast cross-core and cross-CPU
covert channels on Android. In Section 5, we demonstrate cache template
attacks on user input events. In Section 6, we present attacks on crypto-
graphic implementations used in practice as well the possibility to observe
cache activity of cryptographic computations within the TrustZone. We
discuss countermeasures in Section 7 and conclude this work in Section 8.

2. Background and Related Work

In this section, we provide the required preliminaries and discuss related
work in the context of cache attacks.

2.1. CPU Caches

Today’s CPU performance is influenced not only by the clock frequency but
also by the latency of instructions, operand fetches, and other interactions
with internal and external devices. In order to overcome the latency of
system memory accesses, CPUs employ caches to buffer frequently used
data in small and fast internal memories.

209

9. ARMageddon

Modern caches organize cache lines in multiple sets, which is also known
as set-associative caches. Each memory address maps to one of these cache
sets and addresses that map to the same cache set are considered congru-
ent. Congruent addresses compete for cache lines within the same set and
a predefined replacement policy determines which cache line is replaced.
For instance, the last generations of Intel CPUs employ an undocumented
variant of least-recently used (LRU) replacement policy [GMM16]. ARM
processors use a pseudo-LRU replacement policy for the L1 cache and they
support two different cache replacement policies for L2 caches, namely
round-robin and pseudo-random replacement policy. In practice, however,
only the pseudo-random replacement policy is used due to performance
reasons. Switching the cache replacement policy is only possible in privi-
leged mode. The implementation details for the pseudo-random policy are
not documented.

CPU caches can either be virtually indexed or physically indexed, which
determines whether the index is derived from the virtual or physical
address. A so-called tag uniquely identifies the address that is cached
within a specific cache line. Although this tag can also be based on the
virtual or physical address, most modern caches use physical tags because
they can be computed simultaneously while locating the cache set. ARM
typically uses physically indexed, physically tagged L2 caches.

CPUs have multiple cache levels, with the lower levels being faster and
smaller than the higher levels. ARM processors typically have two levels
of cache. If all cache lines from lower levels are also stored in a higher-level
cache, the higher-level cache is called inclusive. If a cache line can only
reside in one of the cache levels at any point in time, the caches are called
exclusive. If the cache is neither inclusive nor exclusive, it is called non-
inclusive. The last-level cache is often shared among all cores to enhance
the performance upon transitioning threads between cores and to simplify
cross-core cache lookups. However, with shared last-level caches, one core
can (intentionally) influence the cache content of all other cores. This
represents the basis for cache attacks like Flush+Reload [YF14].

In order to keep caches of multiple CPU cores or CPUs in a coherent state,
so-called coherence protocols are employed. However, coherence protocols
also introduce exploitable timing effects, which has recently been exploited
by Irazoqui et al. [IES16] on x86 CPUs.

In this paper, we demonstrate attacks on three smartphones as listed in
Table 9.1. The Krait 400 is an ARMv7-A CPU, the other two processors

210

2. Background and Related Work

Device SoC CPU (cores) L1 caches L2 cache Inclusiveness
OnePlus Qualcomm Krait 400 (2) 2x 16KB, 2048 KB, non-inclusive
One Snapdragon 2.5GHz 4-way, 64 sets 8-way, 2048
801 sets
“Alcatel Qualcomm ~ Cortex-A53 4x 32KB, ~ 512KB, instruction-inclusive,
One Touch Snapdragon (4) 4-way, 128 16-way, 512 sets data-non-inclusive
Pop 2 410 1.2GHz sets
777777777777777777 Cortex-A53 4x 32KB, = 256KB, ~ instruction-inclusive,
(4)
Samsung Samsung 1.5 GHz 4-way, 128 16-way, 256 sets data-non-inclusive
Exynos sets
Galaxy S6 7 Octa 7420 Cortex-A57 4x 32KB, 2048 KB, instruction-non-
(4) inclusive,
2.1 GHz 2-way, 256 16-way, 2048 data-inclusive
sets sets

Table 9.1.: Test devices used in this paper.

are ARMv8-A CPUs. However, the stock Android of the Alcatel One Touch
Pop 2 is compiled for an ARMv7-A instruction set and thus ARMv8-A
instructions are not used. We generically refer to ARMv7-A and ARMv8-A
as “ARM architecture” throughout this paper. All devices have a shared
L2 cache. On the Samsung Galaxy S6, the flush instruction is unlocked
by default, which means that it is available in userspace. Furthermore,
all devices employ a cache coherence protocol between cores and on the
Samsung Galaxy S6 even between the two CPUs [ARM14].

2.2. Shared Memory

Read-only shared memory can be used as a means of memory usage
optimization. In case of shared libraries it reduces the memory footprint
and enhances the speed by lowering cache contention. The operating
system implements this behavior by mapping the same physical memory
into the address space of each process. As this memory sharing mechanism
is independent of how a file was opened or accessed, an attacker can map a
binary to have read-only shared memory with a victim program. A similar
effect is caused by content-based page deduplication where physical pages
with identical content are merged.

Android applications are usually written in Java and, thus, contain self-
modifying code or just-in-time compiled code. This code would typically
not be shared. Since Android version 4.4 the Dalvik VM was gradually
replaced by the Android Runtime (ART). With ART, Java byte code is
compiled to native code binaries [And15] and thus can be shared too.

211

9. ARMageddon
2.3. Cache Attacks

Initially, cache timing attacks were performed on cryptographic algo-
rithms [Koc96; Kel+00; Pag02; Tsu+03; Ber04; Nev06; NSW06]. For
example, Bernstein [Ber04] exploited the total execution time of AES T-
table implementations. More fine-grained exploitations of memory accesses
to the CPU cache have been proposed by Percival [Per05] and Osvik et al.
[OSTO06]. More specifically, Osvik et al. formalized two concepts, namely
FEvict+Time and Prime+Probe, to determine which specific cache sets
were accessed by a victim program. Both approaches consist of three basic
steps.

Evict+ Time:

1. Measure execution time of victim program.
2. Evict a specific cache set.
3. Measure execution time of victim program again.

Prime+Probe:

1. Occupy specific cache sets.
2. Victim program is scheduled.
3. Determine which cache sets are still occupied.

Both approaches allow an adversary to determine which cache sets are
used during the victim’s computations and have been exploited to attack
cryptographic implementations [OST06; TOS10; IES15; Liu+15] and to
build cross-VM covert channels [Mau+15b]. Yarom and Falkner [YF14]
proposed Flush+Reload, a significantly more fine-grained attack that
exploits three fundamental concepts of modern system architectures. First,
the availability of shared memory between the victim process and the
adversary. Second, last-level caches are typically shared among all cores.
Third, Intel platforms use inclusive last-level caches, meaning that the
eviction of information from the last-level cache leads to the eviction
of this data from all lower-level caches of other cores, which allows any
program to evict data from other programs on other cores. While the
basic idea of this attack has been proposed by Gullasch et al. [GBK11],
Yarom and Falkner extended this idea to shared last-level caches, allowing
cross-core attacks. Flush+Reload works as follows.

Flush+Reload:

1. Map binary (e.g., shared object) into address space.
2. Flush a cache line (code or data) from the cache.

212

2. Background and Related Work

3. Schedule the victim program.
4. Check if the corresponding line from step 2 has been loaded by the
victim program.

Thereby, Flush+Reload allows an attacker to determine which specific
instructions are executed and also which specific data is accessed by the
victim program. Thus, rather fine-grained attacks are possible and have al-
ready been demonstrated against cryptographic implementations [Ira+15a;
Ira+15b; Giil+15]. Furthermore, Gruss et al. [GSM15] demonstrated the
possibility to automatically exploit cache-based side-channel information
based on the Flush+Reload approach. Besides attacking cryptographic
implementations like AES T-table implementations, they showed how to
infer keystroke information and even how to build a keylogger by exploiting
the cache side channel. Similarly, Oren et al. [Ore+15] demonstrated the
possibility to exploit cache attacks on Intel platforms from JavaScript and
showed how to infer visited websites and how to track the user’s mouse
activity.

Gruss et al. [GSM15] proposed the Evict+Reload technique that replaces
the flush instruction in Flush+Reload by eviction. While it has no prac-
tical application on x86 CPUs, we show that it can be used on ARM
CPUs. Recently, Flush+Flush [Gru+16] has been proposed. Unlike other
techniques, it does not perform any memory access but relies on the timing
of the flush instruction to determine whether a line has been loaded by a
victim. We show that the execution time of the ARMv8-A flush instruction
also depends on whether or not data is cached and, thus, can be used to
implement this attack.

While the attacks discussed above have been proposed and investigated
for Intel processors, the same attacks were considered not applicable to
modern smartphones due to differences in the instruction set, the cache
organization [YF14], and in the multi-core and multi-CPU architecture.
Thus, only same-core cache attacks have been demonstrated on smart-
phones so far. For instance, Weif§ et al. [WHS12] investigated Bernstein’s
cache-timing attack [Ber04] on a Beagleboard employing an ARM Cortex-
A8 processor. Later on, Weifl et al. [Wei+14] investigated this timing
attack in a multi-core setting on a development board. As Weif} et al.
[WHS12] claimed that noise makes the attack difficult, Spreitzer and
Plos [SP13b] investigated the applicability of Bernstein’s cache-timing
attack on different ARM Cortex-A8 and ARM Cortex-A9 smartphones
running Android. Both investigations [WHS12; SP13b] confirmed that
timing information is leaking, but the attack takes several hours due to

213

9. ARMageddon

the high number of measurement samples that are required, i.e., about
230 AES encryptions. Later on, Spreitzer and Gérard [SG14] improved
upon these results and managed to reduce the key space to a complexity
which is practically relevant.

Besides Bernstein’s attack, another attack against AES T-table implemen-
tations has been proposed by Bogdanov et al. [Bog+10], who exploited
so-called wide collisions on an ARM9 microprocessor. In addition, power
analysis attacks [GKT10] and electromagnetic emanations [GK11] have
been used to visualize cache accesses during AES computations on ARM
microprocessors. Furthermore, Spreitzer and Plos [SP13a] implemented
Evict+Time [OSTO06] in order to attack an AES T-table implementation
on Android-based smartphones. However, so far only cache attacks against
AES T-table implementations have been considered on smartphone plat-
forms and none of the recent advances have been demonstrated on mobile
devices.

3. ARMageddon Attack Techniques

We consider a scenario where an adversary attacks a smartphone user
by means of a malicious application. This application does not require
any permission and, most importantly, it can be executed in unprivileged
userspace and does not require a rooted device. As our attack techniques
do not exploit specific vulnerabilities of Android versions, they work on
stock Android ROMs as well as customized ROMs in use today.

3.1. Defeating the Cache Organization

In this section, we tackle the aforementioned challenges 1 and 2, i.e., the
last-level cache is not inclusive and multiple processors do not necessarily
share a cache level.

When it comes to caches, ARM CPUs are very heterogeneous compared
to Intel CPUs. For example, whether or not a CPU has a second-level
cache can be decided by the manufacturer. Nevertheless, the last-level
cache on ARM devices is usually shared among all cores and it can have
different inclusiveness properties for instructions and data. Due to cache
coherence, shared memory is kept in a coherent state across cores and
CPUs. This is of importance when measuring timing differences between

214

3. ARMageddon Attack Techniques

Core 0 Core 1

Li1I L1D L1I L1D

Sets

= L2 Unified Cache
—

Sets
A

Figure 9.1.: Cross-core instruction cache eviction through data accesses.

cache accesses and memory accesses (cache misses), as fast remote-cache
accesses are performed instead of slow memory accesses [ARM14]. In case
of a non-coherent cache, a cross-core attack is not possible but an attacker
can run the spy process on all cores simultaneously and thus fall back to
a same-core attack. However, we observed that caches are coherent on all
our test devices.

To perform a cross-core attack we load enough data into the cache to fully
evict the corresponding last-level cache set. Thereby, we exploit that we
can fill the last-level cache directly or indirectly depending on the cache
organization. On the Alcatel One Touch Pop 2, the last-level cache is
instruction-inclusive and thus we can evict instructions from the local
caches of the other core. Figure 9.1 illustrates such an eviction. In step
1, an instruction is allocated to the last-level cache and the instruction
cache of one core. In step 2, a process fills its core’s data cache, thereby
evicting cache lines into the last-level cache. In step 3, the process has
filled the last-level cache set using only data accesses and thereby evicts
the instructions from instruction caches of other cores as well.

We access cache lines multiple times to perform transfers between L1 and
L2 cache. Thus, more and more addresses used for eviction are cached
in either L1 or L2. As ARM CPUs typically have L1 caches with a very
low associativity, the probability of eviction to L2 through other system
activity is high. Using an eviction strategy that performs frequent transfers
between L1 and L2 increases this probability further. Thus, this approach
also works for other cache organizations to perform cross-core and cross-
CPU cache attacks. Due to the cache coherence protocol between the
CPU cores [Lal13; ARM14], remote-core fetches are faster than memory
accesses and thus can be distinguished from cache misses. For instance,

215

9. ARMageddon

— Hit (same core) — Hit (cross-core)
--- Miss (same core) - - - Miss (cross-core)
o 10
%
23 i
[
S
o 2 |
S
8 1+ n N
Q " ‘l)
g n ':\
ZSO ! ! ! L M e e o !

0 100 200 300 400 500 600 700 800 900 1,000

Measured access time in CPU cycles

Figure 9.2.: Histograms of cache hits and cache misses measured same-core
and cross-core on the OnePlus One.

Figure 9.2 shows the cache hit and miss histogram on the OnePlus One.
The cross-core access introduces a latency of 40 CPU cycles on average.
However, cache misses take more than 500 CPU cycles on average. Thus,
cache hits and misses are clearly distinguishable based on a single threshold
value.

3.2. Fast Cache Eviction

In this section, we tackle the aforementioned challenges 3 and 4, i.e., not
all ARM processors support a flush instruction, and the replacement policy
is pseudo-random.

There are two options to evict cache lines: (1) the flush instruction or (2)
evict data with memory accesses to congruent addresses, i.e., addresses
that map to the same cache set. As the flush instruction is only available
on the Samsung Galaxy S6, we need to rely on eviction strategies for the
other devices and, therefore, to defeat the replacement policy. The L1
cache in Cortex-A53 and Cortex-A57 has a very small number of ways
and employs a least-recently used (LRU) replacement policy [ARM13Db].
However, for a full cache eviction, we also have to evict cache lines from
the L2 cache, which uses a pseudo-random replacement policy.

Eviction strategies. Previous approaches to evict data on Intel x86
platforms either have too much overhead [HWH13] or are only applicable

216

3. ARMageddon Attack Techniques

to caches implementing an LRU replacement policy [Liu+15; Mau+15b;
Ore+15]. Spreitzer and Plos [SP13a] proposed an eviction strategy for
ARMv7-A CPUs that requires to access more addresses than there are
cache lines per cache set, due to the pseudo-random replacement policy.
Recently, Gruss et al. [GMM16] demonstrated how to automatically find
fast eviction strategies on Intel x86 architectures. We show that their
algorithm is applicable to ARM CPUs as well. Thereby, we establish
eviction strategies in an automated way and significantly reduce the
overhead compared to [SP13a]. We evaluated more than 4200 access
patterns on our smartphones and identified the best eviction strategies.
Even though the cache employs a random replacement policy, average
eviction rate and average execution time are reproducible. Eviction sets
are computed based on physical addresses, which can be retrieved via
/proc/self/pagemap as current Android versions allow access to these
mappings to any unprivileged app without any permissions. Thus, eviction
patterns and eviction sets can be efficiently computed.

We applied the algorithm of Gruss et al. [GMM16] to a set of physically
congruent addresses. Table 9.2 summarizes different eviction strategies,
i.e., loop parameters, for the Krait 400. N denotes the total eviction
set size (length of the loop), A denotes the shift offset (loop increment)
to be applied after each round, and D denotes the number of memory
accesses in each iteration (loop body). The column cycles states the
average execution time in CPU cycles over 1 million evictions and the last
column denotes the average eviction rate. The first line in Table 9.2 shows
the average execution time and the average eviction rate for the privileged
flush instruction, which gives the best result in terms of average execution
time (549 CPU cycles). We evaluated 1863 different strategies and our
best identified eviction strategy (N = 11, A = 2, D = 2) also achieves
an average eviction rate of 100% but takes 1578 CPU cycles. Although
a strategy accessing every address in the eviction set only once (A = 1,
D =1, also called LRU eviction) performs significantly fewer memory
accesses, it consumes more CPU cycles. For an average eviction rate of
100%, LRU eviction requires an eviction set size of at least 16. The average
execution time then is 3026 CPU cycles. Considering the eviction strategy
used in [SP13a] that takes 4371 CPU cycles, clearly demonstrates the
advantage of our optimized eviction strategy that takes only 1578 CPU
cycles.

We performed the same evaluation with 2295 different strategies on
the ARM Cortex-A53 in our Alcatel One Touch Pop 2 test system and

217

9. ARMageddon

N A D Cycles Eviction rate

- - - 549 100.00%
1 2 2 1578 100.00%
12 1 3 2094 100.00%
13 1 5 2213 100.00%
6 1 1 3026 100.00%
24 1 1 4371 100.00%
13 1 2 2372 99.58%
1 1 3 1608 80.94%
1 4 1 1948 58.93%
0 2 2 1275 51.12%

Table 9.2.: Different eviction strategies on the Krait 400.

N A D Cycles Eviction rate
- - - 767 100.00%
23 2 5 6209 100.00%
23 4 6 16912 100.00%
22 1 6 5101 99.99%
21 1 6 4275 99.93%
20 4 6 13265 99.44%
800 1 1 142876 99.10%
200 1 1 33110 96.04%
100 1 1 15493 89.77%
48 1 1 6517 70.78%

Table 9.3.: Different eviction strategies on the Cortex-A53.

summarize them in Table 9.3. For the best strategy we found (N = 21,
A =1, D = 6), we measured an average eviction rate of 99.93% and
an average execution time of 4275 CPU cycles. We observed that LRU
eviction (A =1, D = 1) on the ARM Cortex-A53 would take 28 times
more CPU cycles to achieve an average eviction rate of only 99.10%, thus
it is not suitable for attacks on the last-level cache as used in previous
work [SP13a]. The reason for this is that data can only be allocated
to L2 cache by evicting it from the L1 cache on the ARM Cortex-A53.
Therefore, it is better to reaccess the data that is already in the L2 cache
and gradually add new addresses to the set of cached addresses instead of
accessing more different addresses.

218

3. ARMageddon Attack Techniques

—— Flush (address cached)
- - - Flush (address not cached)

-10%

i
'

1+ P |
'
Pt

Number of cases

| | | | | | | \, A |
OO 50 100 150 200 250 300 350 400 450 500 550 600

Measured execution time in CPU cycles

Figure 9.3.: Histograms of the execution time of the flush operation on
cached and not cached addresses measured on the Samsung Galaxy S6.

On the ARM Cortex-A57 the userspace flush instruction was significantly
faster in any case. Thus, for Flush+Reload we use the flush instruction
and for Prime+Probe the eviction strategy. Falling back to Fvict+Reload
is not necessary on the Cortex-A57. Similarly to recent Intel x86 CPUs,
the execution time of the flush instruction on ARM depends on whether
or not the value is cached, as shown in Figure 9.3. The execution time is
higher if the address is cached and lower if the address is not cached. This
observation allows us to distinguish between cache hits and cache misses
depending on the timing behavior of the flush instruction, and therefore to
perform a Flush+Flush attack. Thus, in case of shared memory between
the victim and the attacker, it is not even required to evict and reload an
address in order to exploit the cache side channel.

A note on Prime+Probe. Finding a fast eviction strategy for Prime+
Probe on architectures with a random replacement policy is not as straight-
forward as on Intel x86. Even in case of x86 platforms, the problem of cache
trashing has been discussed by Tromer et al. [TOS10]. Cache trashing
occurs when reloading (probing) an address evicts one of the addresses that
are to be accessed next. While Tromer et al. were able to overcome this
problem by using a doubly-linked list that is accessed forward during the
prime step and backwards during the probe step, the random replacement
policy on ARM also contributes to the negative effect of cache trashing.

We analyzed the behavior of the cache and designed a prime step and a
probe step that work with a smaller set size to avoid set thrashing. Thus,

219

9. ARMageddon

we set the eviction set size to 15 on the Alcatel One Touch Pop 2. As we
run the Prime+Probe attack in a loop, exactly 1 way in the L2 cache will
not be occupied after a few attack rounds. We might miss a victim access
in 1—16 of the cases, which however is necessary as otherwise we would not
be able to get reproducible measurements at all due to set thrashing. If
the victim replaces one of the 15 ways occupied by the attacker, there is
still one free way to reload the address that was evicted. This reduces the
chance of set thrashing significantly and allows us to successfully perform
Prime+Probe on caches with a random replacement policy.

3.3. Accurate Unprivileged Timing

In this section, we tackle the aforementioned challenge 5, i.e., cycle-
accurate timings require root access on ARM.

In order to distinguish cache hits and cache misses, timing sources or ded-
icated performance counters can be used. We focus on timing sources, as
cache misses have a significantly higher access latency and timing sources
are well studied on Intel x86 CPUs. Cache attacks on x86 CPUs employ
the unprivileged rdtsc instruction to obtain a sub-nanosecond resolution
timestamp. The ARMv7-A architecture does not provide an instruction for
this purpose. Instead, the ARMv7-A architecture has a performance moni-
toring unit that allows to monitor CPU activity. One of these performance
counters—denoted as cycle count register (PMCCNTR)—can be used to
distinguish cache hits and cache misses by relying on the number of CPU
cycles that passed during a memory access. However, these performance
counters are not accessible from userspace by default and an attacker
would need root privileges.

We broaden the attack surface by exploiting timing sources that are acces-
sible without any privileges or permissions. We identified three possible
alternatives for timing measurements.

Unprivileged syscall. The perf_event_open syscall is an abstract layer
to access performance information through the kernel independently
of the underlying hardware. For instance, PERF_COUNT_HW_CPU_CYCLES
returns an accurate cycle count including a minor overhead due to the
syscall. The availability of this feature depends on the Android kernel
configuration, e.g., the stock kernel on the Alcatel One Touch Pop 2
as well as the OnePlus One provide this feature by default. Thus, in
contrast to previous work [SP13a], the attacker does not have to load

220

3. ARMageddon Attack Techniques

—— Hit (PMCCNTR) —— Hit (clock_gettimex.15)

-+- Miss (PMCCNTR) -+- Miss (clock_gettimex.15)
—=— Hit (syscallx.25) Hit (counter threadx.05)
-2- Miss (syscallx.25) Miss (counter threadx.05)

1t
§ 10 T T T T T
¥ !
& '
S T
52 Voo 1
E T At
25 0 1) ¢ | | TN Il) S l"k
0 20 40 60 80 100 120 140 160 180 200

Measured access time (scaled)

Figure 9.4.: Histogram of cross-core cache hits/misses on the Alcatel
One Touch Pop 2 using different methods. X-values are scaled for visual
representation.

a kernel module to access this information as the perf_event_open
syscall can be accessed without any privileges or permissions.

POSIX function. Another alternative to obtain sufficiently accurate tim-
ing information is the POSIX function clock_gettime (), with an accu-
racy in the range of microseconds to nanoseconds. Similar information
can also be obtained from /proc/timer_list.

Dedicated thread timer. If no interface with sufficient accuracy is avail-
able, an attacker can run a thread that increments a global variable in a
loop, providing a fair approximation of a cycle counter. Our experiments
show that this approach works reliably on smartphones as well as recent
x86 CPUs. The resolution of this threaded timing information is as high
as with the other methods.

In Figure 9.4 we show the cache hit and miss histogram based on the four
different methods, including the cycle count register, on a Alcatel One
Touch Pop 2. Despite the latency and noise, cache hits and cache misses
are clearly distinguishable with all approaches. Thus, all methods can be
used to implement cache attacks. Determining the best timing method on
the device under attack can be done in a few seconds during an online
attack.

221

9. ARMageddon

Work Type Bandwidth [bps] Error rate
Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1140650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Alcatel One Touch Pop 2) Fwvict+Reload, cross-core 13618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12537 5.00%
Marforio et al. [Mar+12] Type of Intents 4300 -
Marforio et al. [Mar+12] UNIX socket discovery 2600 -
Schlegel et al. [Sch+411] File locks 685 -
Schlegel et al. [Sch+11] Volume settings 150 -
Schlegel et al. [Sch+11] Vibration settings 87

Table 9.4.: Comparison of covert channels on Android.

4. High Performance Covert Channels

To evaluate the performance of our attacks, we measure the capacity
of cross-core and cross-CPU cache covert channels. A covert channel
enables two unprivileged applications on a system to communicate with
each other without using any data transfer mechanisms provided by the
operating system. This communication evades the sandboxing concept and
the permission system (cf. collusion attacks [Mar+12]). Both applications
were running in the background while the phone was mostly idle and an
unrelated app was running as the foreground application.

Our covert channel is established on addresses of a shared library that
is used by both the sender and the receiver. While both processes have
read-only access to the shared library, they can transmit information
by loading addresses from the shared library into the cache or evicting
(flushing) it from the cache, respectively.

The covert channel transmits packets of n-bit data, an s-bit sequence
number, and a c-bit checksum that is computed over data and sequence
number. The sequence number is used to distinguish consecutive packets
and the checksum is used to check the integrity of the packet. The receiver
acknowledges valid packets by responding with an s-bit sequence number
and an z-bit checksum. By adjusting the sizes of checksums and sequence
numbers the error rate of the covert channel can be controlled.

Each bit is represented by one address in the shared library, whereas no
two addresses are chosen that map to the same cache set. To transmit
a bit value of 1, the sender accesses the corresponding address in the
library. To transmit a bit value of 0, the sender does not access the

222

5. Attacking User Input on Smartphones

corresponding address, resulting in a cache miss on the receiver’s side.
Thus, the receiving process observes a cache hit or a cache miss depending
on the memory access performed by the sender. The same method is used
for the acknowledgements sent by the receiving process.

We implemented this covert channel using Fvict+Reload, Flush+Reload,
and Flush+Flush on our smartphones. The results are summarized in
Table 9.4. On the Samsung Galaxy S6, we achieve a cross-core transmission
rate of 1140650 bps at an error rate of 1.10%. This is 265 times faster than
any existing covert channel on smartphones. In a cross-CPU transmission
we achieve a transmission rate of 257 509 bps at an error rate of 1.83%. We
achieve a cross-core transition rate of 178 292 bps at an error rate of 0.48%
using Flush+Flush on the Samsung Galaxy S6. On the Alcatel One Touch
Pop 2 we achieve a cross-core transmission rate of 13618 bps at an error
rate of 3.79% using Evict+Reload. This is still 3 times faster than previous
covert channels on smartphones. The covert channel is significantly slower
on the Alcatel One Touch Pop 2 than on the Samsung Galaxy S6 because
the hardware is much slower, Fvict+Reload is slower than Flush+Reload,
and retransmission might be necessary in 0.14% of the cases where eviction
is not successful (cf. Section 3.2). On the older OnePlus One we achieve
a cross-core transmission rate of 12537 bps at an error rate of 5.00%, 3
times faster than previous covert channels on smartphones. The reason
for the higher error rate is the additional timing noise due to the cache
coherence protocol performing a high number of remote-core fetches.

5. Attacking User Input on Smartphones

In this section we demonstrate cache side-channel attacks on Android
smartphones. We implement cache template attacks [GSM15] to create and
exploit accurate cache-usage profiles using the Evict+Reload or Flush+
Reload attack. Cache template attacks have a profiling phase and an
exploitation phase. In the profiling phase, a template matrix is computed
that represents how many cache hits occur on a specific address when
triggering a specific event. The exploitation phase uses this matrix to infer
events from cache hits.

To perform cache template attacks, an attacker has to map shared binaries
or shared libraries as read-only shared memory into its own address
space. By using shared libraries, the attacker bypasses any potential
countermeasures taken by the operating system, such as restricted access

223

9. ARMageddon

to runtime data of other apps or address space layout randomization
(ASLR). The attack can even be performed online on the device under
attack if the event can be simulated.

Triggering the actual event that an attacker wants to spy on might require
either (1) an offline phase or (2) privileged access. For instance, in case of
a keylogger, the attacker can gather a cache template matrix offline for
a specific version of a library, or the attacker relies on privileged access
of the application (or a dedicated permission) in order to be able to
simulate events for gathering the cache template matrix. However, the
actual exploitation of the cache template matrix to infer events neither
requires privileged access nor any permission.

5.1. Attacking a Shared Library

Just as Linux, Android uses a large number of shared libraries, each with
a size of up to several megabytes. We inspected all available libraries on
the system by manually scanning the names and identified libraries that
might be responsible for handling user input, e.g., the libinput.so library.
Without loss of generality, we restricted the set of attacked libraries since
testing all libraries would have taken a significant amount of time. Yet,
an adversary could exhaustively probe all libraries.

We automated the search for addresses in these shared libraries and after
identifying addresses, we monitored them in order to infer user input
events. For instance, in the profiling phase on libinput.so, we simu-
lated events via the android-debug bridge (adb shell) with two different
methods. The first method uses the input command line tool to simu-
late user input events. The second method is writing event messages to
/dev/input/event*. Both methods can run entirely on the device for
instance in idle periods while the user is not actively using the device. As
the second method only requires a write() statement it is significantly
faster, but it is also more device specific. Therefore, we used the input
command line except when profiling differences between different letter
keys. While simulating these events, we simultaneously probed all ad-
dresses within the libinput.so library, i.e., we measured the number of
cache hits that occurred on each address when triggering a specific event.
As already mentioned above, the simulation of some events might require
either an offline phase or specific privileges in case of online attacks.

224

5. Attacking User Input on Smartphones

key EEENEETE
% longpress [[] ||
o swipe |
= tap |
text HEEYE
O OO O OO O OO OO0 OOO
OOV OVOFFWO FHFWO FH O
VD ONI>TOHHWWMWODHO OO OO
M) M) D~ 00 00 00 00 0 00 G0 Q0 v v r—
SER R AR A AR R R R =~
QO OO OO ODODOO X X X
[N e]
Addresses

Figure 9.5.: Cache template matrix for 1ibinput.so.

Figure 9.5 shows part of the cache template matrix for libinput.so. We
triggered the following events: key events including the power button (key),
long touch events (longpress), swipe events, touch events (tap), and text
input events (text) via the input tool as often as possible and measured
each address and event for one second. The cache template matrix clearly
reveals addresses with high cache-hit rates for specific events. Darker
colors represent addresses with higher cache-hit rates for a specific event
and lighter colors represent addresses with lower cache-hit rates. Hence,
we can distinguish different events based on cache hits on these addresses.

We verified our results by monitoring the identified addresses while opera-
ting the smartphone manually, ¢.e., we touched the screen and our attack
application reliably reported cache hits on the monitored addresses. For
instance, address 0x11040 of 1ibinput.so can be used to distinguish tap
actions and swipe actions on the screen of the Alcatel One Touch Pop
2. Tap actions cause a smaller number of cache hits than swipe actions.
Swipe actions cause cache hits in a high frequency as long as the screen is
touched. Figure 9.6 shows a sequence of 3 tap events, 3 swipe events, 3
tap events, and 2 swipe events. These events can be clearly distinguished
due to the fast access times. The gaps mark periods of time where our
program was not scheduled on the CPU. Events occurring in those periods
can be missed by our attack.

Swipe input allows to enter words by swiping over the soft-keyboard
and thereby connecting single characters to form a word. Since we are
able to determine the length of swipe movements, we can correlate the
length of the swipe movement with the actual word length in any Android
application or system interface that uses swipe input without any privileges.
Furthermore, we can determine the actual length of the unlock pattern
for the pattern-unlock mechanism.

225

9. ARMageddon

200 |
]
g 150+ .
+~
n
8
€ 100 .
]
<

50 Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe —|

| |

0 2 4 6 8 10 12 14 16 18

Time in seconds

Figure 9.6.: Monitoring address 0x11040 of libinput.so on the Alcatel
One Touch Pop 2 reveals taps and swipes.

Figure 9.7 shows a user input sequence consisting of 3 tap events and
3 swipe events on the Samsung Galaxy S6. The attack was conducted
using Flush+Reload. An attacker can monitor every single event. Taps
and swipes can be distinguished based on the length of the cache hit
phase. The length of a swipe movement can be determined from the
same information. Figure 9.8 shows the same experiment on the OnePlus
One using FEvict+Reload. Thus, our attack techniques work on coherent
non-inclusive last-level caches.

W
(@]
(@)
%

200 - i

Access time

0 1 2 3 4 5 6 7 8 9
Time in seconds

Figure 9.7.: Monitoring address 0xDC5C of 1libinput.so on the Samsung
Galaxy S6 reveals tap and swipe events.

5.2. Attacking ART Binaries

Instead of attacking shared libraries, it is also possible to apply this attack
to ART (Android Runtime) executables [And15] that are compiled ahead

226

5. Attacking User Input on Smartphones

1,000
o 800
e
+ 600
7
g 400
<
200
Tap ‘ Tap ‘ Tap ‘ Swip‘e S\‘Vipe ‘ Swipe‘
0 1 2 3 4) 6 7

Time in seconds

Figure 9.8.: Monitoring address 0xBFF4 of libinput.so on the OnePlus
One reveals tap and swipe events.

alphabet-

FRS] | B |
2,
g sl HE W
backspace [l |
S O O O O O O O O
<t < o0 O O <FH W < ®©
— OO N AN N 0 M M
D © b 0 O O O © ©
< 0 W0 10 O © O O ©
MoOoM oM R X X R oK K
S O O O O O O O o
Addresses

Figure 9.9.: Cache template matrix for the default AOSP keyboard.

of time. We used this attack on the default AOSP keyboard and evaluated
the number of accesses to every address in the optimized executable that
responds to an input of a letter on the keyboard. It is possible to find
addresses that correspond to a key press and more importantly to distin-
guish between taps and key presses. Figure 9.9 shows the corresponding
cache template matrix. We summarize the letter keys in one line (alphabet)
as they did not vary significantly. These addresses can be used to monitor
key presses on the keyboard. We identified an address that corresponds
only to letters on the keyboard and hardly on the space bar or the return
button. With this information it is possible to precisely determine the
length of single words entered using the default AOSP keyboard.

We illustrate the capability of detecting word lengths in Figure 9.10. The
blue line shows the timing measurements for the address identified for
keys in general, the red dots represent measurements of the address for

227

9. ARMageddon

300

Access time
[\
o
o

100 i pac i s Space a Sphce
| | | | | | |

0 1 2 3 4 5 6 7

Time in seconds

Figure 9.10.: FEwvict+Reload on 2 addresses in custpack@app@
withoutlibs@LatinIME.apk@classes.dex on the Alcatel One Touch Pop
2 while entering the sentence “this is a message”.

the space key. The plot shows that we can clearly determine the length of
entered words and monitor user input accurately over time.

5.3. Discussion and Impact

Our proof-of-concept attacks exploit shared libraries and binaries from
Android apk files to infer key strokes. The cache template attack tech-
nique we used for these attacks is generic and can also be used to attack
any other library. For instance, there are various libraries that handle
different hardware modules and software events on the device, such as
GPS, Bluetooth, camera, NFC, vibrator, audio and video decoding, web
and PDF viewers. Each of these libraries contains code that is executed
and data that is accessed when the device is in use. Thus, an attacker
can perform a cache template attack on any of these libraries and spy on
the corresponding device events. For instance, our attack can be used to
monitor activity of the GPS sensor, bluetooth, or the camera. An attacker
can record such user activities over time to learn more about the user.

We can establish inter-keystroke timings at an accuracy as high as the
accuracy of cache side-channel attacks on keystrokes on x86 systems with
a physical keyboard. Thus, the inter-keystroke timings can be used to infer
entered words, as has been shown by Zhang et al. [ZW09]. Our attack
even has a higher resolution than [ZWO09], i.e., it is sub-microsecond
accurate. Furthermore, we can distinguish between keystrokes on the
soft-keyboard and generic touch actions outside the soft-keyboard. This
information can be used to enhance sensor-based keyloggers that infer
user input on mobile devices by exploiting, e.g., the accelerometer and the

228

6. Attack on Cryptographic Algorithms

gyroscope [CC11; CC12; Avi+12; Mil+12; XBZ12] or the ambient-light
sensor [Sprl4]|. However, these attacks suffer from a lack of knowledge
when exactly a user touches the screen. Based on our attack, these sensor-
based keyloggers can be improved as our attack allows to infer (1) the
exact time when the user touches the screen, and (2) whether the user
touches the soft-keyboard or any other region of the display.

Our attacks only require the user to install a malicious app on the smart-
phone. However, as shown by Oren et al. [Ore+15], Prime+Probe attacks
can even be performed from within browser sandboxes through remote
websites using JavaScript on Intel platforms. Gruss et al. [GBM15] showed
that JavaScript timing measurements in web browsers on ARM-based
smartphones achieve a comparable accuracy as on Intel platforms. Thus,
it seems likely that Prime+Probe through a website works on ARM-based
smartphones as well. We expect that such attacks will be demonstrated in
future work. The possibility of attacking millions of users shifts the focus
of cache attacks to a new range of potential malicious applications.

In our experiments with the predecessor of ART, the Dalvik VM, we found
that the just-in-time compilation effectively prevents Evict+Reload and
Flush+Reload attacks. The just-in-time compiled code is not shared and
thus the requirements for these two attacks are not met. However, Prime+
Probe attacks work on ART binaries and just-in-time compiled Dalvik
VM code likewise.

6. Attack on Cryptographic Algorithms

In this section we show how Flush+Reload, Evict+Reload, and Prime+
Probe can be used to attack AES T-table implementations that are still in
use on Android devices. Furthermore, we demonstrate the possibility to
infer activities within the ARM TrustZone by observing the cache activity
using Prime+Probe. We perform all attacks cross-core and in a synchro-
nized setting, i.e., the attacker triggers the execution of cryptographic
algorithms by the victim process. Although more sophisticated attacks
are possible, our goal is to demonstrate that our work enables practical
cache attacks on smartphones.

229

9. ARMageddon

6.1. AES T-Table Attacks

Many cache attacks against AES T-table implementations have been
demonstrated and appropriate countermeasures have already been pro-
posed. Among these countermeasures are, e.g., so-called bit-sliced im-
plementations [RSD06; Kén08; KS09]. Furthermore, Intel addressed the
problem by adding dedicated instructions for AES [Guel0] and ARM also
follows the same direction with the ARMvS8 instruction set [ARM13a].
However, our investigations showed that Bouncy Castle, a crypto library
widely used in Android apps such as the WhatsApp messenger[App16],
still uses a T-table implementation. Moreover, the OpenSSL library, which
is the default crypto provider on recent Android versions, uses T-table im-
plementations until version 1.0.1.3 This version is still officially supported
and commonly used on Android devices, e.g., the Alcatel One Touch Pop
2. T-tables contain the precomputed AES round transformations, allowing
to perform encryptions and decryptions by simple XOR operations. For
instance, let p; denote the plaintext bytes, k; the initial key bytes, and
s; = p; @ k; the initial state bytes. The initial state bytes are used to
retrieve precomputed T-table elements for the next round. If an attacker
knows a plaintext byte p; and the accessed element of the T-table, it is
possible to recover the key bytes k; = s; ® p;. However, it is only possible
to derive the upper 4 bits of k; through our cache attack on a device with
a cache line size of 64 bytes. This way, the attacker can learn 64 key bits.
In second-round and last-round attacks the key space can be reduced
further. For details about the basic attack strategy we refer to the work
of Osvik et al. [OST06; TOS10]. Although we successfully mounted an
Evict+Reload attack on the Alcatel One Touch Pop 2 against the OpenSSL
AES implementation, we do not provide further insights as we are more
interested to perform the first cache attack on a Java implementation.

Attack on Bouncy Castle. Bouncy Castle is implemented in Java
and provides various cryptographic primitives including AES. As Bouncy
Castle 1.5 still employs AES T-table implementations by default, all
Android devices that use this version are vulnerable to our presented
attack. To the best of our knowledge, we are the first to show an attack
on a Java implementation.

3Later versions use a bit-sliced implementation if ARM NEON is available or dedicated
AES instructions if ARMv8-A instructions are available. Otherwise, a T-table
implementation is used. This is also the case for Google’s BoringSSL library.

230

6. Attack on Cryptographic Algorithms

Il
wn w0
wn wn
() ()
~ ~
3 3
ks ks
4 |'I 4
22333830283383388 235333853833%838¢8
AR EPEEREEN N RN R R R ERRRIRRRER
COOOOOOOCOCOCoocossoO COO0OOCOOOOCOOCoocOossTO
Plaintext byte values Plaintext byte values

Figure 9.11.: Attack on Bouncy Castle’s AES using Fvict+Reload on the
Alcatel One Touch Pop 2 (left) and Flush+Reload on the Samsung Galaxy
S6 (right).

During the initialization of Bouncy Castle, the T-tables are copied to a
local private memory area. Therefore, these copies are not shared among
different processes. Nevertheless, we demonstrate that Flush+Reload and
FEvict+Reload are efficient attacks on such an implementation if shared
memory is available. Further, we demonstrate a cross-core Prime+Probe
attack without shared memory that is applicable in a real-world scenario.

Figure 9.11 shows a template matrix of the first T-table for all 256 values
for plaintext byte pg and a key that is fixed to 0 while the remaining
plaintext bytes are random. These plots reveal the upper 4 key bits of
ko [OSTO06; SP13a]. Thus, in our case the key space is reduced to 64
bits after 256-512 encryptions. We consider a first-round attack only,
because we aim to demonstrate the applicability of these attacks on ARM-
based mobile devices. However, full-key recovery is possible with the same
techniques by considering more sophisticated attacks targeting different
rounds [TOS10; SY15], even for asynchronous attackers [Ira+14; Giil+15].

We can exploit the fact that the T-tables are placed on a different boundary
every time the process is started. By restarting the victim application we
can obtain arbitrary disalignments of T-tables. Disaligned T-tables allow
to reduce the key space to 20 bits on average and for specific disalignments
even full-key recovery without a single brute-force computation is possi-
ble [SP13a; Tak+13]. We observed not a single case where the T-tables
were aligned. Based on the first-round attack matrix in Figure 9.11, the
expected number of encryptions until a key byte is identified is 1.81 - 128.

231

9. ARMageddon

o
o
o
o

T

—— Victim access ||
----No victim access

il
n
h
4,000 |- !
¥
H

| 4 M 7
I’\ } \ SN
! ! IRWANENTALY ! AL !

0
1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400 3,600

Execution time in CPU cycles

Number of cases

Figure 9.12.: Histogram of Prime+Probe timings depending on whether
the victim accesses congruent memory on the ARM Cortex-A53.

Thus, full key recovery is possible after 1.81 - 128 - 16 = 3707 encryptions
by monitoring a single address during each encryption.

Real-world cross-core attack on Bouncy Castle. If the attacker
has no way to share a targeted memory region with the victim, Prime+
Probe instead of Ewvict+Reload or Flush+Reload can be used. This is
the case for dynamically generated data or private memory of another
process. Figure 9.12 shows the Prime+Probe histogram for cache hits and
cache misses. We observe a higher execution time if the victim accesses
a congruent memory location. Thus, Prime+Probe can be used for a
real-world cross-core attack on Bouncy Castle and also allows to exploit
disaligned T-tables as mentioned above.

In a preprocessing step, the attacker identifies the cache sets to be attacked
by performing random encryptions and searching for active cache sets.
Recall that the cache set (index) is derived directly from the physical
address on ARM, i.e., the lowest n bits determine the offset within a
2™-byte cache line and the next s bits determine one of the 2° cache sets.
Thus, we only have to find a few cache sets where a T-table maps to
in order to identify all cache sets required for the attack. On x86 the
replacement policy facilitates this attack and allows even to deduce the
number of ways that have been replaced in a specific cache set [OST06]. On
ARM the random replacement policy makes Prime+Probe more difficult
as cache lines are replaced in a less predictable way. To launch a Prime+
Probe attack, we apply the eviction strategy and the crafted reaccess
patterns we described in Section 3.2.

Figure 9.13 shows an excerpt of the cache template matrix resulting from
a Prime+Probe attack on one T-table. For each combination of plaintext

232

6. Attack on Cryptographic Algorithms

ox240 [
0x280 [|
3 0x2C0 B
¢ 0x300 [|
O 0x340
0x380 [|
0x3C0 [|
E2SEIRCERISIRCRAR
O O O OO0 OO0 OO0 oo oo o
Plaintext byte values

Figure 9.13.: Excerpt of the attack on Bouncy Castle’s AES using Prime+
Probe.

byte and offset we performed 100 000 encryptions for illustration purposes.
We only need to monitor a single address to obtain the upper 4 bits of
s; and, thus, the upper 4 bits of k; = s; @ p;. Compared to the Fvict+
Reload attack from the previous section, Prime+Probe requires 3 times
as many measurements to achieve the same accuracy. Nevertheless, our
results show that an attacker can run Prime-+Probe attacks on ARM
CPUs just as on Intel CPUs.

6.2. Spy on TrustZone Code Execution

The ARM TrustZone is a hardware-based security technology built into
ARM CPUs to provide a secure execution environment [ARM13a]. This
trusted execution environment is isolated from the normal world using
hardware support. The TrustZone is used, e.g., as a hardware-backed cre-
dential store, to emulate secure elements for payment applications, digital
rights management as well as verified boot and kernel integrity measure-
ments. The services are provided by so-called trustlets, i.e., applications
that run in the secure world.

Since the secure monitor can only be called from the supervisor context,
the kernel provides an interface for the userspace to interact with the
TrustZone. On the Alcatel One Touch Pop 2, the TrustZone is accessible
through a device driver called QSEECOM (Qualcomm Secure Execution
Environment Communication) and a library 1ibQSEEComAPI.so. The key
master trustlet on the Alcatel One Touch Pop 2 provides an interface to
generate hardware-backed RSA keys, which can then be used inside the
TrustZone to sign and verify signatures.

233

9. ARMageddon

<
o

h

\

. 108
— T ‘ ‘ ‘ |
e . Valid key 1
--- Valid key 2
1 Valid key 3 | |
— Invalid key \S

'y

W
LT
NG AL B L

| | | | | | | | |
250 260 270 280 290 300 310 320 330 340 350
Set number

Probing time in CPU cycles

Figure 9.14.: Mean squared error between the average Prime+Probe tim-
ings of valid keys and invalid keys on the Alcatel One Touch Pop 2.

Our observations showed that a Prime+Probe attack on the TrustZone is
not much different from a Prime+Probe attack on any application in the
normal world. However, as we do not have access to the source code of
the TrustZone OS or any trustlet, we only conduct simple attacks.* We
show that Prime+Probe can be used to distinguish whether a provided
key is valid or not. While this might also be observable through the overall
execution time, we demonstrate that the TrustZone isolation does not
protect against cache attacks from the normal world and any trustlet can
be attacked.

We evaluated cache profiles for multiple valid as well as invalid keys.
Figure 9.14 shows the mean squared error over two runs for different
valid keys and one invalid key compared to the average of valid keys. We
performed Prime+Probe before and after the invocation of the correspond-
ing trustlet, ¢.e., prime before the invocation and probe afterwards. We
clearly see a difference in some sets (cache sets 250-320) that are used
during the signature generation using a valid key. These cache profiles
are reproducible and can be used to distinguish whether a valid or an
invalid key has been used in the TrustZone. Thus, the secure world leaks
information to the non-secure world.

On the Samsung Galaxy S6, the TrustZone flushes the cache when entering
or leaving the trusted world. However, by performing a Prime+Probe
attack in parallel, i.e., multiple times while the trustlet performs the
corresponding computations, the same attack can be mounted.

“More sophisticated attacks would be possible by reverse engineering these trustlets.

234

7. Countermeasures

7. Countermeasures

Although our attacks exploit hardware weaknesses, software-based coun-
termeasures could impede such attacks. Indeed, we use unprotected access
to system information that is available on all Android versions.

As we have shown, the operating system cannot prevent access to tim-
ing information. However, other information supplied by the operating
system that facilitates these attacks could be restricted. For instance,
we use /proc/pid/ to retrieve information about any other process on
the device, e.g., /proc/pid/pagemap is used to resolve virtual addresses
to physical addresses. Even though access to /proc/pid/pagemap and
/proc/self/pagemap has been restricted in Linux in early 2015, the
Android kernel still allows access to these resources. Given the immedi-
ately applicable attacks we presented, we stress the urgency to merge
the corresponding patches into the Android kernel. Furthermore, we use
/proc/pid/maps to determine shared objects that are mapped into the
address space of a victim. Restricting access to procfs to specific privileges
or permissions would make attacks harder. We recommend this for both
the Linux kernel as well as Android.

We also exploit the fact that access to shared libraries as well as dex
and art optimized program binaries is only partially restricted on
the file system level. While we cannot retrieve a directory listing of
/data/dalvik-cache/, all files are readable for any process or Android
application. We recommend to allow read access to these files to their
respective owner exclusively to prevent Fvict+Reload, Flush+Reload, and
Flush+Flush attacks through these shared files.

In order to prevent cache attacks against AES T-tables, hardware instruc-
tions should be used. If this is not an option, a software-only bit-sliced im-
plementation must be employed, especially when disalignment is possible,
as it is the case in Java. Since OpenSSL 1.0.2 a bit-sliced implementation
is available for devices capable of the ARM NEON instruction set and
dedicated AES instructions are used on ARMvS8-A devices. Cryptographic
algorithms can also be protected using cache partitioning [Liu+16]. How-
ever, cache partitioning comes with a performance impact and it can not
prevent all attacks, as the number of cache partitions is limited.

We responsibly disclosed our attacks and the proposed countermeasures
to Google and other development groups prior to the publication of
our attacks. Google has applied upstream patches preventing access to

235

9. ARMageddon

/proc/pid/pagemap in early 2016 and recommended installing the security
update in March 2016 [Gool6].

8. Conclusion

In this work we demonstrated the most powerful cross-core cache attacks
Prime+Probe, Flush+Reload, Evict+Reload, and Flush+Flush on default
configured unmodified Android smartphones. Furthermore, these attacks
do not require any permission or privileges. In order to enable these attacks
in real-world scenarios, we have systematically solved all challenges that
prevented highly accurate cache attacks on ARM so far. Our attacks are
the first cross-core and cross-CPU attacks on ARM CPUs. Furthermore,
our attack techniques provide a high resolution and a high accuracy, which
allows monitoring singular events such as touch and swipe actions on the
screen, touch actions on the soft-keyboard, and inter-keystroke timings.
In addition, we show that efficient state-of-the-art key-recovery attacks
can be mounted against the default AES implementation that is part of
the Java Bouncy Castle crypto provider and that cache activity in the
ARM TrustZone can be monitored from the normal world.

The presented example attacks are by no means exhaustive and launching
our proposed attack against other libraries and apps will reveal numer-
ous further exploitable information leaks. Our attacks are applicable to
hundreds of millions of today’s off-the-shelf smartphones as they all have
very similar if not identical hardware. This is especially daunting since
smartphones have become the most important personal computing devices
and our techniques significantly broaden the scope and impact of cache
attacks.

Acknowledgment

We would like to thank our anonymous reviewers for their valuable com-
ments and suggestions.

x s Supported by the EU Horizon 2020 programme under GA
£ No. 644052 (HECTOR), the EU FP7 programme under
GA No. 610436 (MATTHEW), and the Austrian Research
Promotion Agency (FFG) under grant number 845579 (MEMSEC).

* Kk

236

References

References

[And15]

[Appl6]

[ARM12]
[ARM13a]
[ARM13b]

[ARM14]

[Avit12]

[Ben+14]

[Ber04]

[Bog+10]

[CC11]

Android Open Source Project. Configuring ART. Retrieved
on November 10, 2015. Nov. 2015. URL: https://source.
android . com/devices/tech/dalvik/configure . html

(pp. 211, 226).

AppTornado. AppBrain - Android library statistics - Spongy
Castle - Bouncy Castle for Android. Retrieved on June
6, 2016. June 2016. URL: http://www . appbrain. com/
stats/libraries/details/spongycastle/spongy%5C%
2dcastle % 5C%2dbouncy % 5C% 2dcastle % 5C% 2dfor % 5C%
2dandroid (p. 230).

ARM Limited. ARM Architecture Reference Manual. ARM
v7-A and ARMv7-R edition. ARM Limited, 2012 (p. 208).

ARM Limited. ARM Architecture Reference Manual ARMvS.
ARM Limited, 2013 (pp. 230, 233).

ARM Limited. ARM Cortex-A57 MPCore Processor Tech-
nical Reference Manual r1p0. ARM Limited, 2013 (p. 216).

ARM Limited. ARM Cortex-A53 MPCore Processor Tech-
nical Reference Manual rOp3. ARM Limited, 2014 (pp. 211,
215).

A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith. Practicality
of Accelerometer Side Channels on Smartphones. In: ACSAC.
2012 (p. 229).

N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “Ooh
Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In: CHES’14. 2014 (p. 207).

D. J. Bernstein. Cache-Timing Attacks on AES. 2004. URL:
http://cr.yp.to/papers.html#cachetiming (pp. 206,
212, 213).

A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Dif-
ferential Cache-Collision Timing Attacks on AES with Ap-
plications to Embedded CPUs. In: CT-RSA. 2010 (pp. 207,
214).

L. Cai and H. Chen. TouchLogger: Inferring Keystrokes
on Touch Screen from Smartphone Motion. In: USENIX
Workshop on Hot Topics in Security — HotSec. 2011 (p. 229).

237

https://source.android.com/devices/tech/dalvik/configure.html
https://source.android.com/devices/tech/dalvik/configure.html
http://www.appbrain.com/stats/libraries/details/spongycastle/spongy%5C%2dcastle%5C%2dbouncy%5C%2dcastle%5C%2dfor%5C%2dandroid
http://www.appbrain.com/stats/libraries/details/spongycastle/spongy%5C%2dcastle%5C%2dbouncy%5C%2dcastle%5C%2dfor%5C%2dandroid
http://www.appbrain.com/stats/libraries/details/spongycastle/spongy%5C%2dcastle%5C%2dbouncy%5C%2dcastle%5C%2dfor%5C%2dandroid
http://www.appbrain.com/stats/libraries/details/spongycastle/spongy%5C%2dcastle%5C%2dbouncy%5C%2dcastle%5C%2dfor%5C%2dandroid
http://cr.yp.to/papers.html#cachetiming

9. ARMageddon

[CC12]

[GBK11]

[GBM15]

[GK11]

[GKT10]

[GMM16]

[Gool6]

[Gru+16]

[GSM15]

[Guel0]

[Giil415]

[HWH13]

238

L. Cai and H. Chen. On the practicality of motion based
keystroke inference attack. In: International Conference on
Trust and Trustworthy Computing. 2012 (p. 229).

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (p. 212).

D. Gruss, D. Bidner, and S. Mangard. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In: ES-
ORICS’15. 2015 (p. 229).

J.-F. Gallais and I. Kizhvatov. Error-tolerance in trace-driven
cache collision attacks. In: Constructive Side-Channel Anal-
ysis and Secure Design (COSADE). 2011 (p. 214).

J. Gallais, 1. Kizhvatov, and M. Tunstall. Improved Trace-
Driven Cache-Collision Attacks against Embedded AES Im-
plementations. In: 2010 (p. 214).

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
(2016) (pp. 208, 210, 217).

Google Inc. Nexus Security Bulletin - March 2016. Retrieved
on June 6, 2016. Mar. 2016. URL: https://source.android.
com/security/bulletin/2016-03-01.html (p. 236).

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush—+
Flush: A Fast and Stealthy Cache Attack. In: (2016) (pp. 207,
213).

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (pp. 207, 213, 223).

S. Gueron. White Paper: Intel Advanced Encryption Stan-
dard (AES) Instructions Set. 2010. URL: https://software.
intel.com/file/24917 (p. 230).

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush+Reload Attack on AES.

In: Constructive Side-Channel Analysis and Secure Design
(COSADE). 2015 (pp. 207, 213, 231).

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (p. 216).

https://source.android.com/security/bulletin/2016-03-01.html
https://source.android.com/security/bulletin/2016-03-01.html
https://software.intel.com/file/24917
https://software.intel.com/file/24917

[IES15]

[IES16]

[Ira+14]

[Ira+15a)

[Tra+15b]

[Kel+00]

[Koc96]

[K6n08]
[KS09]

[Lall3]

[Liu+15]

[Liu+16]

References

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(pp. 207, 212).

G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross Processor
Cache Attacks. In: AsiaCCS’16. 2016 (pp. 207, 210).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait
a minute! A fast, Cross-VM attack on AES. In: RAID’14.
2014 (pp. 207, 231).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies (2015) (p. 213).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 213).

J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel
Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141-158 (p. 212).

P. C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: Crypto’96. 1996
(p. 212).

R. Konighofer. A Fast and Cache-Timing Resistant Imple-
mentation of the AES. In: CT-RSA. 2008 (p. 230).

E. Késper and P. Schwabe. Faster and Timing-Attack Resis-
tant AES-GCM. In: CHES’09. 2009 (p. 230).

Lal Shimpi, AnandTech. Answered by the Experts: ARM’s
Cortex A53 Lead Architect, Peter Greenhalgh. Retrieved on
Nov 10, 2015. Dec. 2013. URL: http://www.anandtech.com/
show /7591 /answered - by - the - experts - arms - cortex-
ab3-lead-architect-peter-greenhalgh (p. 215).

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: S&P’15.
2015 (pp. 207, 212, 217).

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee. Catalyst: Defeating last-level cache side channel
attacks in cloud computing. In: 2016 IEEE International
Symposium on High Performance Computer Architecture

(HPCA). 2016 (p. 235).

239

http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh
http://www.anandtech.com/show/7591/answered-by-the-experts-arms-cortex-a53-lead-architect-peter-greenhalgh

9. ARMageddon

[Mar+12]

[Mau+15a]

[Mau+15b]

[Mil+12]

[Nev06]

[NSW06]

[Ore+15]

[0STO6]

[Pag02]

[Per05]
[PSY15]

[RSDO6]

[Sch+11]

240

C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun. Anal-
ysis of the communication between colluding applications
on modern smartphones. In: ACSAC. 2012 (p. 222).

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A.

Francillon. Reverse Engineering Intel Complex Addressing
Using Performance Counters. In: RAID’15. 2015 (p. 207).

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(pp. 207, 212, 217).

E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury. Tapprints: your finger taps have fingerprints. In:
Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services. 2012 (p. 229).

M. Neve. Cache-based Vulnerabilities and SPAM Analysis.
PhD thesis. UCL, 2006 (p. 212).

M. Neve, J.-P. Seifert, and Z. Wang. A refined look at
Bernstein’s AES side-channel analysis. In: AsiaCCS’06. 2006
(p. 212).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Kero-
mytis. The Spy in the Sandbox: Practical Cache Attacks in
JavaScript and their Implications. In: CCS’15. 2015 (pp. 207,
213, 217, 229).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006
(pp. 207, 212, 214, 230-232).

D. Page. Theoretical use of cache memory as a cryptana-
lytic side-channel. In: Cryptology ePrint Archive, Report
2002/169 (2002) (p. 212).

C. Percival. Cache missing for fun and profit. 2005 (p. 212).

J. van de Pol, N. P. Smart, and Y. Yarom. Just a Little Bit
More. In: CT-RSA. 2015 (p. 207).

C. Rebeiro, D. Selvakumar, and A. Devi. Bitslice Implemen-
tation of AES. In: International Conference on Cryptology
and Network Security. 2006 (p. 230).

R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A Stealthy and Context-Aware
Sound Trojan for Smartphones. In: NDSS’11. 2011 (p. 222).

[SG14]

[SP13a]

[SP13b)]

[Spr14]

[SY15]

[Tak+13]

[TOS10]

[Tsu+03]

[Wei+14]

[WHS12]

References

R. Spreitzer and B. Gérard. Towards More Practical Time-
Driven Cache Attacks. In: IFTP International Workshop on
Information Security Theory and Practice. 2014 (pp. 207,
208, 214).

R. Spreitzer and T. Plos. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2013 (pp. 207, 208,
214, 217, 218, 220, 231).

R. Spreitzer and T. Plos. On the Applicability of Time-
Driven Cache Attacks on Mobile Devices. In: International
Conference on Network and System Security. 2013 (pp. 207,
208, 213).

R. Spreitzer. Pin skimming: Exploiting the ambient-light
sensor in mobile devices. In: Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile
Devices. 2014 (p. 229).

E. Savag and C. Yilmaz. A Generic Method for the Analysis
of a Class of Cache Attacks: A Case Study for AES. In: The
Computer Journal (2015), bxv027 (p. 231).

J. Takahashi, T. Fukunaga, K. Aoki, and H. Fuji. Highly ac-
curate key extraction method for access-driven cache attacks
using correlation coefficient. In: Australasian Conference on
Information Security and Privacy. 2013 (p. 231).

E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache
Attacks on AES, and Countermeasures. In: Journal of Cryp-
tology 23.1 (July 2010), pp. 37-71 (pp. 212, 219, 230, 231).

Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi.
Cryptanalysis of DES implemented on computers with cache.
In: CHES03. 2003 (p. 212).

M. Weif}, B. Weggenmann, M. August, and G. Sigl. On cache
timing attacks considering multi-core aspects in virtualized
embedded systems. In: International Conference on Trusted
Systems. 2014 (p. 213).

M. Weif}, B. Heinz, and F. Stumpf. A Cache Timing Attack
on AES in Virtualization Environments. In: Proceedings of
the 16th International Conference on Financial Cryptogra-
phy and Data Security (FC’12). 2012 (pp. 207, 213).

241

9. ARMageddon

[XBZ12]

[YF14]

[ZW09]

242

7. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs
on smartphone touchscreens using on-board motion sensors.
In: Proceedings of the 5th ACM conference on Security and
Privacy in Wireless and Mobile Networks. 2012 (p. 229).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (pp. 207, 210, 212, 213).

K. Zhang and X. Wang. Peeping Tom in the Neighbor-
hood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (p. 228).

10

Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel
ASLR

Publication Data

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In: CCS’16.
2016

Contributions

Main author.

243

10. Prefetch Side-Channel Attacks

Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR

Daniel Gruss*, Clémentine Maurice*, Anders Fogh', Moritz Lipp*,
and Stefan Mangard*

* Graz University of Technology T G DATA Advanced Analytics

Abstract

Modern operating systems use hardware support to protect against control-
flow hijacking attacks such as code-injection attacks. Typically, write access
to executable pages is prevented and kernel mode execution is restricted
to kernel code pages only. However, current CPUs provide no protection
against code-reuse attacks like ROP. ASLR is used to prevent these attacks
by making all addresses unpredictable for an attacker. Hence, the kernel
security relies fundamentally on preventing access to address information.

We introduce Prefetch Side-Channel Attacks, a new class of generic attacks
exploiting major weaknesses in prefetch instructions. This allows unprivi-
leged attackers to obtain address information and thus compromise the
entire system by defeating SMAP, SMEP, and kernel ASLR. Prefetch can
fetch inaccessible privileged memory into various caches on Intel x86. It
also leaks the translation-level for virtual addresses on both Intel x86 and
ARMvS8-A. We build three attacks exploiting these properties. Our first
attack retrieves an exact image of the full paging hierarchy of a process,
defeating both user space and kernel space ASLR. Our second attack
resolves virtual to physical addresses to bypass SMAP on 64-bit Linux
systems, enabling ret2dir attacks. We demonstrate this from unprivileged
user programs on Linux and inside Amazon EC2 virtual machines. Finally,
we demonstrate how to defeat kernel ASLR on Windows 10, enabling
ROP attacks on kernel and driver binary code. We propose a new form of
strong kernel isolation to protect commodity systems incuring an overhead
of only 0.06-5.09%.

Keywords. ASLR, Kernel Vulnerabilities, Timing Attacks

The original publication is available at http://dl.acm.org/citation.cfm?id=
2978356.

244

http://dl.acm.org/citation.cfm?id=2978356
http://dl.acm.org/citation.cfm?id=2978356

1. Introduction

1. Introduction

The exploitation of software bugs imperils the security of modern com-
puter systems fundamentally. Especially, buffer overflows can allow an
attacker to overwrite data structures that are used in the control flow of
the program. These attacks are not limited to user space software but
are also possible on operating system kernels [HHF09]. Modern computer
hardware provides various features to prevent exploitation of software
bugs. To protect against control-flow hijacking attacks, the operating
system configures the hardware such that write access to executable pages
is prevented. Furthermore, the hardware is configured such that in kernel
mode, the instruction pointer may not point into the user space, using a
mechanism called supervisor mode execution prevention (SMEP). Data
accesses from kernel mode to user space virtual addresses are prevented
by operating system and hardware, using a mechanism called supervi-
sor mode access prevention (SMAP). To close remaining attack vectors,
address-space layout randomization (ASLR) is used to make all addresses
unpredictable for an attacker and thus make return-oriented-programming
(ROP) attacks infeasible. All major operating systems employ kernel
ASLR (KASLR) [PaX03; Lev12; RSI12]. Information on where objects
are located in the kernel address space is generally not available to user
programs.

Knowledge of virtual address information can be exploited by an attacker
to defeat ASLR [Sha+04; HWH13]. Knowledge of physical address infor-
mation can be exploited to bypass SMEP and SMAP [KPK14], as well
as in side-channel attacks [Liu+15; IES15; Gru+16; Mau+15; Pes+16]
and Rowhammer attacks [SD15b; Kim+14; GMM16; Kirl5]. Thus, the
security of user programs and the kernel itself relies fundamentally on
preventing access to address information. Address information is often
leaked directly through system interfaces such as procfs [KPK14] or indi-
rectly through side channels such as double page faults [HWH13]. However,
operating system developers close these information leaks through security
patches [Kirl5]. In this paper, we show that even if the operating system
itself does not leak address information, recent Intel and ARM systems
leak this information on the microarchitectural level.

We introduce Prefetch Side-Channel Attacks, a new class of generic at-
tacks that allow an unprivileged local attacker to completely bypass access
control on address information. This information can be used to com-
promise the entire physical system by bypassing SMAP and SMEP in

245

10. Prefetch Side-Channel Attacks

ret2dir attacks or defeating KASLR and performing ROP attacks in the
kernel address space. Our attacks are based on weaknesses in the hardware
design of prefetch instructions. Indeed, prefetch instructions leak timing
information on the exact translation level for every virtual address. More
severely, they lack a privilege check and thus allow fetching inaccessible
privileged memory into various CPU caches. Using these two properties,
we build two attack primitives: the translation-level oracle and the address-
translation oracle. Building upon these primitives, we then present three
different attacks. Our first attack infers the translation level for every
virtual address, effectively defeating ASLR. Our second attack resolves
virtual addresses to physical addresses on 64-bit Linux systems and on
Amazon EC2 PVM instances in less than one minute per gigabyte of
system memory. This allows an attacker to perform ret2dir-like attacks.
On modern systems, this mapping can only be accessed with root or kernel
privileges to prevent attacks that rely on knowledge of physical addresses.
Prefetch Side-Channel Attacks thus render existing approaches to KASLR
ineffective. Our third attack is a practical KASLR exploit. We provide a
proof-of-concept on a Windows 10 system that enables return-oriented
programming on Windows drivers in memory. We demonstrate our attacks
on recent Intel x86 and ARM Cortex-A CPUs, on Windows and Linux
operating systems, and on Amazon EC2 virtual machines.

We present a countermeasure against Prefetch Side-Channel Attacks on
commodity systems, that involves reorganizing the user and kernel address
space to protect KASLR. Our countermeasure requires only a small number
of changes to operating system kernels and comes with a performance
impact of 0.06-5.09%.

Our key contributions are:

1. We present two generic attack primitives leveraging the prefetch
instructions: the translation-level oracle and the address-translation
oracle. We then use these primitives in three different attacks.

2. We present a generic attack to infer the translation level for every
virtual address to defeat ASLR.

3. We demonstrate generic unprivileged virtual-to-physical address
translation attack in the presence of a physical direct map in kernel
or hypervisor, on Linux and in a PVM on Amazon EC2. This allows
bypassing SMAP and SMEP, enabling ret2dir attacks.

4. We present a generic attack to circumvent KASLR, which enables
ROP attacks inside the kernel. We demonstrate our attack on a
Windows 10 system.

246

2. Background and Related Work

5. We propose a new form of strong kernel isolation to mitigate Prefetch
Side-Channel Attacks and double page fault attacks on kernel mem-
ory.

Outline This paper is structured as follows. Section 2 provides back-
ground on caches and address spaces. Section 3 presents the settings
and two novel attack primitives leveraging the prefetch instructions: the
translation-level oracle and the address-translation oracle. The translation-
level oracle is used in Section 4 to perform a translation-level recovery
attack to defeat ASLR. The address-translation oracle is used in Section 5
to perform unprivileged virtual-to-physical address translation as the basis
of ret2dir attacks. Both oracles are used in Section 6 to defeat KASLR. Sec-
tion 7 shows how to perform cache side-channel and Rowhammer attacks
on inaccessible kernel memory. Section 8 presents countermeasures against
our attacks. Section 9 discusses related work, and Section 10 concludes
this article.

2. Background and Related Work

2.1. Address translation

To isolate processes from each other, CPUs support virtual address spaces.
For this purpose, they typically use a multi-level translation table. Which
translation table is used is determined by a value stored in a CPU register.
This register value is exchanged upon a context switch. Thus, each process
has its own address mappings and only access to its own address space.
The kernel is typically mapped into every address space but protected via
hardware-level access control. When a thread performs a system call it
switches to an operating system controlled stack and executes a kernel-
level system call handler. However, it still has the same translation table
register value.

In the case of recent Intel CPUs, this translation table has 4 levels. On
each level, translation table entries define the properties of this virtual
memory region, e.g., whether the memory region is present (i.e., mapped
to physical memory), or whether it is accessible to user space. The upper-
most level is the page map level 4 (PML4). It divides the 48-bit virtual
address space into 512 memory regions of each 512 GB (PML4 entries).
Each PML4 entry maps to page directory pointer table (PDPT) with

247

10. Prefetch Side-Channel Attacks

Physical memory max. phys
X. ys.

T u |

- LR
- Lo

19
7 <@

=~ < RS
S

0 247 7247 —1
User Kernel

Virtual address space

Figure 10.1.: Direct mapping of physical memory. A physical address is
mapped multiple times, once accessible for user space and once in the
kernel space.

512 entries each controlling a 1 GB memory region that is either 1 GB of
physical memory directly mapped (a so-called 1 GB page), or to a page
directory (PD). The PD again has 512 entries, each controlling a 2 MB
region that is either 2 MB of physical memory directly mapped (a so-called
2MB page), or a page table (PT). The PT again has 512 entries, each
controlling a 4 KB page. The lowest level that is involved in the address
translation is called the translation level. The CPU has special caches and
so-called translation-lookaside buffers for different translation levels, to
speed up address translation and privilege checks.

A second, older mechanism that is used on x86 CPUs in virtual-to-physical
address translation is segmentation. User processes can be isolated from
each other and especially from the kernel by using different code and data
segments. Segments can have a physical address offset and a size limit,
as well as access control properties. However, these features are widely
redundant with the newer translation table mechanism. Thus, most of
these features are not available in 64-bit mode on x86 CPUs. In particular,
all general purpose segments are required to have the offset set to physical
address 0 and the limit to the maximum value. Thus, the CPU can ignore
these values at runtime and does not have to perform runtime range checks
for memory accesses.

2.2. Virtual address space

The virtual address space of every process is divided into user address
space and kernel address space. The user address space is mapped as

248

2. Background and Related Work

user-accessible, unlike the kernel space that can only be accessed when
the CPU is running in kernel mode.The user address space is divided into
memory regions for code, data, heap, shared libraries and stack. Depending
on the operating system, the user address space may look entirely different
in different processes with respect to the absolute virtual offsets of the
regions and also the order of the regions. In contrast, the kernel address
space looks mostly identical in all processes.

To perform context switches, the hardware requires mapping parts of the
kernel in the virtual address space of every process. When a user thread
performs a syscall or handles an interrupt, the hardware simply switches
into kernel mode and continues operating in the same address space. The
difference is that the privileged bit of the CPU is set and kernel code is
executed instead of the user code. Thus, the entire user and kernel address
mappings remain generally unchanged while operating in kernel mode.
As sandboxed processes also use a regular virtual address space that is
primarily organized by the kernel, the kernel address space is also mapped
in an inaccessible way in sandboxed processes.

Many operating systems have a physical memory region or the whole
physical memory directly mapped somewhere in the kernel space [ker09;
Lev12]. This mapping is illustrated in Figure 10.1. It is used to organize
paging structures and other data in physical memory. The mapping is
located at a fixed and known location, even in the presence of KASLR.
Some hypervisors also employ a direct map of physical memory [xen09].
Thus, every user page is mapped at least twice, once in the user address
space and once in the kernel direct map. When performing operations on
either of the two virtual addresses, the CPU translates the corresponding
address to the same physical address in both cases. The CPU then performs
the operation based on the physical address.

Physical direct maps have been exploited in ret2dir attacks [KPK14].
The attacker prepares a code page to be used in the kernel in the user
space. Exploiting a kernel vulnerability, code execution in the kernel is
then redirected to the same page in the physical direct map. Hence, the
attacker has obtained arbitrary code execution in the kernel.

2.3. Address-space layout randomization

Modern CPUs protect against code injection attacks (e.g., NX-bit, W & X
policy), code execution in user space memory in privileged mode (e.g.,

249

10. Prefetch Side-Channel Attacks

SMEP, supervisor mode execution protection), and data accesses in user
space memory regions in privileged mode (e.g., SMAP, supervisor mode
access protection). However, by chaining return addresses on the stack it is
possible to execute small code gadgets that already exist in the executable
memory regions, e.g., return-to-libc and ROP attacks. In an ROP attack,
the attacker injects return addresses into the stack and in some cases
modifies the stack pointer to a user-controlled region, in order to chain the
execution of so-called gadgets. These gadgets are fragments of code already
existing in the binary, typically consisting of a few useful instructions and
a return instruction.

ASLR is a countermeasure against these control flow hijacking attacks.
Every time a process is started, its virtual memory layout is randomized.
ASLR can be applied on a coarse-grained level or a fine-grained level.
In the case of coarse-grained ASLR, only the base addresses of different
memory regions are randomized, e.g., code, data, heap, libraries, stack.
This is mostly performed on a page-level granularity. An attacker cannot
predict addresses of code and data and thus cannot inject modified code
or manipulate data accesses. In particular, an attacker cannot predict the
address of gadgets to be used in an ROP attack. All modern operating
systems implement coarse-grained ASLR. Fine-grained ASLR randomizes
even the order of functions, variables, and constants in memory on a
sub-page-level granularity. However, it incurs performance penalties, and
can be bypassed [Sno+13] and thus is rarely used in practice.

User space ASLR primarily protects against remote attackers that only
have restricted access to the system and thus cannot predict addresses for
ROP chains. KASLR primarily protects against local attackers as they
cannot predict addresses in the kernel space for ROP chains. In particular,
invalid accesses cause a crash of the application under attack or the entire
system. On Windows, the start offsets of the kernel image, drivers and
modules, are randomized.

2.4. CPU caches

CPU caches hide slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Modern CPUs employ
set-associative caches, where addresses are mapped to cache sets and each
cache set consists of multiple equivalent cache lines (also called ways).
The index to determine the cache set for an address can be based on the

250

2. Background and Related Work

Core 0 Core 1
T T N T T
ITLB DTLB 2, ITLB DTLB
I I 5 I I
ol
PDE cache = PDE cache
I s I
g
PDPTE cache PDPTE cache
I I
PMLAE cache PMLA4E cache
| |
Page table structures in
system memory (DRAM)

Figure 10.2.: Paging caches are used to speed-up address translation table
lookups.

virtual or physical address. The last-level cache is typically physically
indexed and shared among all cores. Thus executing code or accessing
data on one core has immediate consequences for all other cores.

Address translation structures are stored in memory and thus will also be
cached by the regular data caches [Intl4c|. In addition to that, address
translation table entries are stored in special caches such as the translation-
lookaside buffers to allow the CPU to work with them. When accessing
virtual addresses these buffers are traversed to find the corresponding
physical address for the requested memory area. The caches of the different
table lookups are represented in Figure 10.2. These caches are typically
fully-associative.

As CPUs are getting faster, they rely on speculative execution to per-
form tasks before they are needed. Data prefetching exploits this idea to
speculatively load data into the cache. This can be done in two different
ways: hardware prefetching, that is done transparently by the CPU itself,
and software prefetching, that can be done by a programmer. Recent
Intel CPUs have five instructions for software prefetching: prefetchtO,
prefetchtl, prefetch2, prefetchnta, and prefetchw. These instruc-
tions are treated like hints to tell the processor that a specific memory
location is likely to be accessed soon. The different instructions allow
hinting future repeated accesses to the same location or write accesses.

251

10. Prefetch Side-Channel Attacks

Similarly, recent ARMv8-A CPUs supply the prefetch instruction PRFM.
Both on Intel and ARM CPUs, the processor may ignore prefetch hints.

2.5. Cache attacks

Cache attacks are side-channel attacks exploiting timing differences in-
troduced by CPU caches. Cache attacks have first been studied theoreti-
cally [Koc96; Kel+00], but practical attacks on cryptographic algorithms
followed since 2002 [Pag02; T'SS03; Ber04].

In the last ten years, fine-grained cache attacks have been proposed,
targeting single cache sets. In an Fvict+ Time attack [OST06], the attacker
measures the average execution time of a victim process, e.g., running an
encryption. The attacker then measures how the average execution time
changes when evicting one specific cache set before the victim starts its
computation. If the average execution time is higher, then this cache set
is probably accessed by the victim.

A Prime+Probe attack [OST06; Per05] consists of two steps. In the Prime
step, the attacker occupies one specific cache set. After the victim program
has been scheduled, the Probe step is used to determine whether the
cache set is still occupied. A new generation of Prime+Probe attacks have
recently been used to perform attacks across cores and virtual machine bor-
ders [IES15; Liu+15; Mau+15] as well as from within sandboxes [Ore+15].

Gullasch et al. [GBK11] built a significantly more accurate attack that
exploits the fact that shared memory, e.g., shared libraries, is loaded into
the same cache set for different processes running on the same CPU core.
Yarom and Falkner [YF14] presented an improvement over this attack,
called Flush+Reload that targets the last-level cache and thus works across
cores. Flush+Reload attacks work on a single cache line granularity. These
attacks exploit shared inclusive last-level caches. An attacker frequently
flushes a targeted memory location using the clflush instruction. By
measuring the time it takes to reload the data, the attacker determines
whether data was loaded into the cache by another process in the meantime.
Applications of Flush+Reload are more reliable and powerful in a wide
range of attacks [GSM15; Gil+15; Zha+14; Ira+15a; Ira+15b].

Flush+Reload causes a high number of cache misses due to the frequent
cache flushes. This has recently also been used to perform a memory
corruption attack called Rowhammer [Kim+14]. In a Rowhammer attack,

252

3. Setting and Attack Primitives

an attacker causes random bit flips in inaccessible and higher privileged
memory regions. These random bit flips occur in DRAM memory and
the Flush+Reload loop is only used to bypass all levels of caches to reach
DRAM in a high frequency. Proof-of-concept exploits to gain root privileges
and to evade a sandbox have been demonstrated [SD15a]. For the attack to
succeed, an attacker must hammer memory locations that map to different
rows in the same bank. However, the mapping from addresses to rows
and banks is based on physical addresses. Thus, Rowhammer attacks are
substantially faster and easier if physical address information is available as
an attacker can directly target the comparably small set of addresses that
map to different rows in the same bank. As a countermeasure, operating
systems have recently restricted access to physical address information to
privileged processes [Kirl5].

3. Setting and Attack Primitives

In this section, we describe the prefetch side channel and two primitives
that exploit this side channel. We build a translation-level oracle, that
determines whether a page is present and which translation table level
is used for the mapping. This primitive is the basis for our translation-
level recovery attack described in Section 4 to defeat ASLR. We build an
address-translation oracle that allows verifying whether a specific virtual
address maps to a specific physical address. We use this to resolve the
mapping of arbitrary virtual addresses to physical addresses to mount
ret2dir attacks, defeating SMAP and SMEP, in Section 5. We use both
attack primitives in our the KASLR exploit described in Section 6.

3.1. Attack setting and attack vector

Attack setting In our attacks, we consider a local attack scenario where
user space and KASLR are in place. The attacker can run arbitrary code
on the system under attack, but does not have access to the kernel or any
privileged interfaces such as /proc/self/pagemap providing user space
address information. This includes settings such as an unprivileged process
in a native environment, an unprivileged process in a virtual machine, and
a sandboxed process.

To exploit a potential vulnerability in kernel code, an attacker cannot
inject code into a writable memory region in the kernel, or directly jump

253

10. Prefetch Side-Channel Attacks

into code located in the user address space as this is prevented by modern
CPUs with features like the NX-bit, SMEP, and SMAP. Thus, an attacker
can only reuse existing code in a so-called code reuse attack, e.g., ROP
attacks. However, building an ROP payload requires exact knowledge of
the addresses space layout. Even if the operating system does not leak any
address space information and ASLR is employed and effective, we show
that the hardware leaks a significant amount of address space information.

The information gained allows an attacker to conduct cache side-channel
attacks and Rowhammer attacks, as well as to defeat KASLR and bypass
SMAP and SMEP in a ret2dir-like attack.

Attack vector Prefetch Side-Channel Attacks are novel and generic
side-channel attacks. We exploit the following two properties:

Property 1 The execution time of prefetch instructions varies depending
on the state of various CPU internal caches.

Property 2 Prefetch instructions do not perform any privilege checks.

The execution time (Property 1) of a prefetch instruction can be directly
measured. It is independent of privilege levels and access permissions.
We exploit this property in our translation-level oracle. Intel states that
prefetching “addresses that are not mapped to physical pages” can intro-
duce non-deterministic performance penalties [Int14c]. ARM states that
the prefetch instructions are guaranteed not to cause any effect that is
not equivalent to loading the address directly from the same user pro-
cess|]ARM13]. In both cases, we found timing differences to be deterministic
enough to be exploitable. That is, Property 1 can be observed on all our
test platforms shown in Table 10.1, i.e., all Intel microarchitectures since
Sandy Bridge as well as the ARMv8-A microarchitecture. Thus, attacks
based on Property 1 are applicable to the vast majority of systems used
in practice. We demonstrate our translation-level recovery attack on all
platforms.

The timing difference caused by the lack of privilege checks (Property 2)
can only be measured indirectly using one of the existing cache attack
techniques. The combination of the prefetch side channel with different
cache attack techniques yields different properties. Intel states that soft-
ware prefetches should not be used on addresses that are not “managed
or owned” by the user process [Int14al], but in practice does not prevent
it, thus letting us do this in our attack. Property 2 can be observed on all

254

3. Setting and Attack Primitives

CPU / SoC Microarchitecture System type
15-2530M, i5-2540M Sandy Bridge Laptop
15-3230M Ivy Bridge Laptop
i7-4790 Haswell Desktop
i3-5005U, i5-5200U Broadwell Laptop
i7-6700K Skylake Desktop

Xeon E5-2650 Sandy Bridge Amazon EC2 VM
Exynos 7420 ARMvS-A Smartphone

Table 10.1.: Experimental setups.

Intel test platforms shown in Table 10.1, i.e., all microarchitectures since
Sandy Bridge. Thus, attacks based on Property 2 are applicable to the
vast majority of desktop, server, and cloud systems.

Measurements Measuring the execution time of instructions or memory
accesses is typically necessary to perform micro-benchmarks. On ARM
CPUs we experienced no difficulties with out-of-order execution. We
used clock_gettime() to measure time in nanoseconds, as in previous
work [Lip+16], and surrounded the target instr. with a memory and
instruction barrier consisting of DSB SY; ISB. Depending on the attack
we used a memory access or the PRFM instruction as target instruction.

On Intel CPUs micro-benchmark measurements are significantly harder,
due to out-of-order execution. The instructions rdtsc and rdtscp both
provide a sub-nanosecond timestamp. rdtscp also waits for all memory
load operations to be processed before retrieving the timestamp. The
cpuid instruction can be used to serialize the instruction stream. To
perform accurate measurements, Intel recommends using a sequence of
cpuid; rdtsc before executing the code to measure and rdtscp; cpuid
afterward [Int10]. In cache side-channel attacks memory fences like mfence
can be used to ensure that memory store operations are also serialized.
However, the prefetch instruction is not serialized by rdtscp or any
memory fence, but only by cpuid [Int14b]. Due to these serialization issues
we crafted instruction sequences to measure exactly a target instruction
in different scenarios:

1. In cases of long measurements and measurements of memory access
times, the target instruction is unlikely to be reordered before a
preceding rdtscp instruction. We thus use:
mfence cpuid rdtscp farget nstr. rdtscp cpuid mfence.

255

10. Prefetch Side-Channel Attacks

2. When measuring prefetch instructions repeatedly, correct values for
minimum and median latency are important. Thus, noise introduced
by cpuid is tolerable but reordering the target instruction is not,
because it could lead to a lower measurement for the minimum
latency. In this case we use:
mfence rdtscp cpuid target instr. cpuid rdtscp mfence.

Depending on the attack we used a memory access, or the prefetch in-
structions prefetchnta and prefetcht?2 as target instruction.

3.2. Translation-level oracle

In the translation-level oracle, we exploit differences in the execution
time of prefetch instructions (Property 1). Prefetch instructions resolve
virtual addresses to physical addresses to enqueue the prefetching request.
Intel CPUs follow a defined procedure to find a cache entry or a physical
address for a specific virtual address (cf. Section 4.10.3.2 of Intel Manual
Vol. 3A [Int14c]):

Cache lookup (requires TLB lookup)
TLB lookup

PDE cache lookup

PDPTE cache lookup

PMLA4E cache lookup

Cuk

The procedure aborts as early as possible omitting all subsequent steps.
Step 1 and 2 can be executed in parallel for the L1 cache and thus the
latency of step 2 is hidden in this case. However, in case of the L2 or L3
cache, step 2 needs to be executed before to complete the cache lookup
in step 1. If no entry is found in any TLB, step 3 needs to be executed
to complete step 2 and the same applies for steps 4 and 5. Depending on
the specific CPU, some caches may not be present and the corresponding
steps are omitted. Every step of the lookup procedure introduces a timing
differences that can be measured. For ARM CPUs, the same mechanism
applies to the corresponding translation tables. However, on all CPUs
tested, we found at least 4 distinct average execution times for different
cases.

The translation-level oracle works in two steps. First, we calibrate the
execution time of a prefetch instruction on the system under attack.
Second, we measure the execution time of a prefetch instruction on an

256

3. Setting and Attack Primitives

arbitrary virtual address. Based on the execution time, we can now derive
on which level a prefetch instruction finished the search for a cache entry
or a physical address.

Prefetch instructions on Intel CPUs ignore privilege levels and access
permissions (Property 2). Thus, it is possible to prefetch execute-only
pages, as well as inaccessible kernel memory. When running the procedure
over the whole address space, we now also obtain information on all kernel
pages. Note that even a process with root privileges could not obtain
this information without loading a kernel module on modern operating
systems.

3.3. Address-translation oracle

The lack of privilege checks (Property 2) is the basis for our second oracle,
as well as other privilege checks that are not active in 64-bit mode on x86
CPUs (cf. Section 2.1). An attacker can execute prefetch on any virtual
address including kernel addresses and non-mapped addresses. Thus, we
can use prefetch as an oracle to verify whether two virtual addresses p
and p map to the same physical address. The address-translation oracle
works in three steps:

1. Flush address p
2. Prefetch (inaccessible) address p
3. Reload p

If the two addresses map to the same physical address, the prefetch of
P in step 2 leads to a cache hit in step 3 with a high probability. Thus,
the access time in step 3 is lower than for a cache miss. By repeating this
measurement, the confidence level can be increased to the desired value.
One measurement round takes 100-200 nanoseconds on our test systems.
Thus, an attacker can run up to 10 million such measurements per second.
Figure 10.3 shows the minimum access time from step 3, over a set of
inaccessible addresses p measured on an i5-3320M. The peak shows the
single address p that maps to the same physical address as p.

Similarly, we can also perform a microarchitectural timing attack on
prefetch instructions directly. Based on the execution time of prefetch
instructions (Property 1), we can measure whether a targeted address p
is in the cache. In this Fvict+Prefetch-variant of the address-translation
oracle, we exploit both properties of prefetch instructions (cf. Section 3.1).

257

10. Prefetch Side-Channel Attacks

250 WWMWWW

200 2

150 - 2

Min. latency

100 & | | | | | | | | | | | [
0 20 40 60 &80 100 120 140 160 180 200 220 24

Page offset in kernel direct map

Figure 10.3.: Minimum memory access time for an address p after prefetch-
ing different inaccessible addresses, on an i5-3320M. Peak shows the single
address p mapping to the same physical address as p.

As the target address might be inaccessible, we evict the address instead
of flushing it in the first step. The prefetching replaces the reload step
and checks whether the inaccessible address is already in the cache:

1. Evict address p
2. Execute function or system call
3. Prefetch p

If the function or system call in step 2 accesses any address p that maps to
the same physical address as address p, we will observe a lower timing in
step 3 with a high probability. Thus, as in the regular address-translation
oracle, we determine whether an address p and an address p map to the
same physical address. The difference is that in the Evict+Prefetch-variant
the address p is unknown to the attacker. Instead, the attacker learns that
a targeted address p is used by the function or system call.

4. Translation-level recovery attack

In this section, we describe how to determine the translation level from
an unprivileged user space process based on the translation-level oracle
described in Section 3.2. Processes with root privileges can normally ob-
tain system information to derive the translation level, for instance on
Linux using the pagemap file in procfs. However, even here the informa-
tion provided by the operating system is incomplete and to obtain the
translation-level information for kernel memory, it is necessary to install

258

4. Translation-level recovery attack

L 400 | 383 |
E
=]
S 300 .
=}
246

;JE 230 222

200 | 181 .

—/

?D?T 3% 9 a?%g (caéze@“cache&
Pa

Mapping level

Figure 10.4.: Median prefetch execution time in cycles compared to the
actual address mapping level, measured on an i5-2540M.

a kernel module for this purpose. We instead only rely on the timing
difference observed when running a prefetch attack on an address.

Figure 10.4 shows the median prefetch execution time for 5 different
cases measured on an i5-2540M compared to the actual mapping level.
We measured the execution time of prefetchnta and prefetcht2 in 0.5
million tests. The lowest median timing can be observed when the address
is valid and cached, with a median of 181 cycles. It is interesting to observe
that prefetching a non-cached address when all TLB entries are present
has a median execution time of 383 cycles. Thus, we can use prefetch
instructions to distinguish cache hits and misses for valid addresses. In
case the targeted address is not valid, we observe different execution times
depending the mapping level where the address resolution ends. If the
memory region has a page directory but the page table is not valid, the
median execution time is 222 cycles. If the memory region does not have
a page directory but a PDPT, the median execution time is 246 cycles. If
the memory region does not have a PDPT, the median execution time is
230 cycles. Note that these timings strongly depend on the measurement
techniques in Section 3.1.

We perform a breadth-first search starting with the PML4 and going
down to single pages as illustrated in Figure 10.5. We start the recovery
attack with the top-level PML4 recursively going down to the lowest level
(cf. Section 2.1). We eliminate measurement noise by checking multiple
addresses in each of the 512 regions on each layer. The median execution

259

10. Prefetch Side-Channel Attacks

Check PMLA4 offsets

____________________________ >

LT |

511

heck PDPT offset

0 011

1 GB page

O Entr resent
Yy P

2 MB page

Figure 10.5.: Breadth-first search through the page translation entries that
are present. The attacker obtains an accurate map of the page translation
level for user and kernel address space.

time of a prefetch instruction sequence is used to decide whether a PDPT
is mapped or not. On the PDPT level we thus obtain information on 1 GB
pages, on the PD level we obtain information on 2 MB pages and on the
lowest level (PT) we obtain information on 4 KB pages. On each level we
learn whether the address is mapped directly from this level, or a lower
level, or whether it is marked as invalid.

For a single check, we perform 2® tests that in total take less than 4ms
on the i5-2540M. We check 4 addresses per region and thus require less
than 16ms per memory region. Thus, for every translation table that is
present, our attack has a runtime of approximately 8 seconds. Programs
on Linux typically use at least 8 translations tables (1 PML4, 2 PDPTs,
2 page directories, 3 page tables). The total runtime to only recover
the translation levels for the user space here is approximately 1 minute.
However, recovering the translation levels for the kernel can take several
minutes if 1 GB pages are used by the kernel, or even several hours if 2 MB
pages are used for the physical direct map. If more addresses are mapped
in the user space, the execution time can increase to several minutes or
hours, depending on the target process.

In either case, our attack successfully recovers the translation level which is
normally only accessible for processes with root privileges. Obtaining this
information effectively defeats ASLR, as the attacker can now accurately
determine which addresses are mapped to physical memory by locating
libraries or drivers in inaccessible memory regions. Finally, our attack

260

5. Address-translation attack

defeats recently proposed countermeasures [Cra+15] that employ execute-
only mappings, as prefetch instructions ignore access permissions.

Translation-level recovery from Android apps Similarly to 64-bit
x86, 64-bit ARMv8-A has a 4-level page translation mechanism. This is
for instance the case on our Samsung Galaxy S6 with an Exynos 7420
system-on-chip with a non-rooted stock Android system. On this system,
we use the unprivileged PRFM PLDL1KEEP instruction to prefetch memory
and the unprivileged DC CIVAC instruction to flush memory from user
space.

The basic translation-level recovery attack on our ARMv8-A CPU is the
same as on Intel x86 CPUs. The timing measurement by clock_gettime
provides a measurement on a nanosecond scale. The timing measurement is
significantly faster than on Intel x86 CPUs as there is no cpuid instruction
consuming a significant amount of cycles. We performed 2% tests per
address from an Android app. In total this takes less than 50us on our
ARMvS8-A system. Thus, the translation-level recovery attack runs on
ARM-based devices successfully.

5. Address-translation attack

In this section, we describe how to mount ret2dir-like attacks without
knowledge of physical addresses based on our address-translation oracle.
We also build an efficient attack to resolve virtual addresses to physical
addresses. This attack exploits the physical direct map in the kernel.
Many operating systems and hypervisors use such a mapping to read
and write on physical memory [ker09; Lev12; xen09]. The physical direct
map has been exploited by Kemerlis et al. [KPK14] to bypass SMEP in
their attack called ret2dir. Similarly, this map can also be used for return
stacks in an ROP attack if the attacker has knowledge of the physical
address of user-accessible memory. However, our address-translation attack
is not restricted to ret2dir-like attacks, it also provides physical address
information that is necessary in many side-channel attacks and fault
attacks [Liu+15; IES15; Gru+16; Pes+16; SD15b; Kim+14; Kirl5].

The attack does not require prior knowledge of the virtual offset of the
physical direct map in the kernel. This offset is typically fixed, but it
can also be determined by using a translation-level recovery attack. We

261

10. Prefetch Side-Channel Attacks

e Prefetched Not prefetched

10% | g]
- _e»
q_ c
9] d....'. | o®
§ 10° | e o N
o
102 | .T .o o‘. .oo‘o |

| | | |
100 150 200 250 300 350 400

Latency in cycles

Figure 10.6.: Access latency that has (or has not) been prefetched through
a kernel address. Measurements performed on Linux on an Intel i5-3320M.

demonstrate our attack on a native Ubuntu Linux system, and from within
an Amazon EC2 instance.

The attacker runs the address-translation oracle on one address p and one
address p in the virtual memory area of the kernel that is directly mapped
to physical memory. The timing difference resulting from prefetching p is
shown in Figure 10.6. Note that p and p have the same page offset, as the
page offset is identical for physical and virtual pages. By only checking
the possible offsets based on the known page size, the attacker reduces the
number of addresses to check to a minimum. The search space for 2 MB
pages is only 512 possibilities per 1 GB of physical memory and for 4 KB
pages only 262 144 possibilities per 1 GB of physical memory. The attacker
performs a brute-force search for the correct kernel physical direct-map
address by trying all possible values for p. Finding an address p means that
the attacker has obtained an address that maps user space memory in the
kernel address space, thus providing a bypass for SMAP and SMEP. Thus
it is possible to mount ret2dir-like attacks using this address. However,
the correct physical address can be obtained by subtracting the virtual
address of the start of the physical direct map. On Linux, the physical
direct map is located at virtual address Oxffff 8800 0000 0000.

Figure 10.7 shows the average brute-force search time per gigabyte of

physical memory, when searching for a 2 MB page. In this search, we
ran our address-translation oracle 2'* to 2'7 times, depending on the

262

5. Address-translation attack

1 Expected time per GB A Raw false negatives
150 1 1 1 1 60%
w 100 | s
= 100 40%
=
S
g s
07
wo50f p 77777 20%
55007 22270
55000 iy 22277
7 i v e i
‘ 0%

Experimental setup

Figure 10.7.: Expected brute-force search time per GB of physical memory,
searching for a 2 MB page. Raw false negative rate after a single run of
the attack. On all platforms the whole system memory can be searched
exhaustively within minutes to hours.

architecture. Increasing the number of runs of the address-translation
oracle decreases the false negative rate but at the same time increases the
execution time. We did not find any false positives in any of the native
attack settings. Depending on the architecture, delays were introduced to
lower the pressure on the prefetcher. The highest accuracy was achieved
on the 15-3230M (Ivy Bridge), the i7-4790 (Haswell), and the i5-5200U
(Broadwell) systems where the false negative rate was between 7% and
13%. The accuracy was significantly lower on the 15-2540M (Sandy Bridge)
test system. However, the false-negative rate remained at > 25% even
with a higher number of address-translation oracle runs. For the expected
execution time per gigabyte of physical memory, we computed how long
the attacks have to be repeated until the physical address is found with a
probability of more than 99%. The 15-2540M (Sandy Bridge) test system
had the highest false negative rate and thus the expected search time is
the highest here. Similarly, on the Skylake system, the attack needs to
be executed 3 times to find a physical address with a probability of more
than 99%. However, as the execution time per round of the attack on the
Skylake system was much lower than on the other systems, the expected
execution time is close to the other systems.

263

10. Prefetch Side-Channel Attacks

Getting host physical addresses on Amazon EC2 On the Amazon
EC2 instance running Linux, we exploit the Xen PVM physical direct
map, located at virtual address Oxffff 8300 0000 0000. Apart from
this, the basic attack remains the same. To perform the attack on an
Amazon EC2 instance, we compensated the noise by checking multiple
4 KB offsets per 2 MB page. Our machine was scheduled on an Intel Xeon
E5-2650 (Sandy Bridge). In a dual CPU configuration, it can manage
up to 768 GB of physical memory. To compensate for this huge amount
of potentially addressable physical memory, we reduced the number of
address-translation oracle runs from 2% to 2. Our attack speed is thus
reduced from 154 seconds to 46 seconds per gigabyte on average, limiting
the total attack time to less than 10 hours. While this is significantly more
than in a native environment with a smaller amount of physical memory,
it is still practical to use this attack to translate a small number of virtual
addresses to physical addresses.

As we had no direct access to the real address translation information, we
verified our results based on the technique from Section 3.3. Translations
are considered correct if multiple consecutive verification loops confirm
that the hypervisor physical direct-map addresses indeed allow prefetching
the targeted user virtual address, and if the mappings of multiple addresses
from the same virtual page can be confirmed as well using the address-
translation oracle. We obtained an accuracy of the attack in the cloud
that is comparable to the accuracy of the attack in a native environment.
The presumably correct physical address is always found, ¢.e., no false
negatives. When searching through the maximum 768 GB of address space,
we consistently found 1 false positive match (i.e., a 2MB page) that was
later eliminated in the verification loop.

Other operating systems Many other operating systems, such as
BSD or OSX, maintain a physical direct map. However, we found no
such mapping on Windows. Thus, our address-translation oracle can not
directly be applied to Windows systems.

Although 64-bit Android has a physical direct map located at virtual
address Oxffff ffcO 0000 0000 and 32-bit Android at virtual address
0xc000 0000, we were not able to build an address-translation oracle on
Android. As the prefetch instructions do not prefetch kernel addresses
mapped through the second translation-table base register, the attack is
mitigated. However, an attack could be possible on systems where user

264

6. Kernel ASLR exploit

space and kernel space share a translation-table base register, while the
kernel would still be inaccessible. Similarly, the attack does not work
on today’s Google NaCl sandbox as it uses a 32-bit address space using
32-bit segmentation. The sandboxed process therefore only partially shares
an address space with the non-sandboxed code and thus the attack is
mitigated. However, we verified that a Prefetch Side-Channel Attack using
cache eviction instead of c1flush within the Google NaCl sandbox works
on the lowest 4 GB of virtual memory. Thus, when Google NaCl introduces
support for 64-bit address spaces in the NaCl sandbox, 32-bit segmentation
cannot be used anymore and our attack is likely to succeed on all virtual
addresses and thus to leak physical addresses to sandboxed processes.

6. Kernel ASLR exploit

In this section, we demonstrate how to defeat KASLR by using prefetch
instructions. We demonstrate our attack on Windows 10 and Windows
7 systems. Similarly as in the previous attack, we try to locate mapped
memory regions in address space regions that are not accessible from
user space. Again, we exploit the omission of privilege checks by prefetch
instructions (Property 2). As described in Section 3, we use prefetch
instructions in combination with code execution to identify the load
address of drivers in kernel mode in this first stage of the attack. In the
second stage of the attack, we determine addresses used by a specific
driver. By locating the driver, we effectively defeat KASLR.

Similarly, on Windows 7, kernel and hardware-abstraction layer are located
between virtual address Oxffff £800 0000 0000 and Oxffff f87f ffff
ffff and system drivers are located between virtual address Oxffff £880
0000 0000 and Oxffff £88f ffff ffff. On Windows 10, the address
range is extended to the region from Oxffff 8000 0000 0000 to Oxffff
offf ffff ffff. Which drivers are present in the driver area depends on
the system configuration. Furthermore, the order in virtual address space
directly depends on the order the drivers are loaded, which again depends
on the system configuration. To exploit a kernel vulnerability and build
an ROP chain in the code of a known driver, an attacker has to know
the exact address offset of the driver. However, the exact address offsets
are randomized and can normally not be retrieved from user processes.
Our attack exploits that KASLR does not randomize the offset of drivers
on a sub-page level. Kernel and hardware-abstraction layer are loaded on

265

10. Prefetch Side-Channel Attacks

100% T T T T

750/]— Valid -- - Invalid
o[) |

50%

Cases

25% [A ‘\]

O% | ! LY L | | | |
70 80 90 100 110 120 130 140

Time in cycles

Figure 10.8.: Timing difference of a prefetch sequence on valid and in-
valid addresses in kernel space, from unprivileged user space process.
Measurements performed on Windows 7 on an Intel i3-5005U.

consecutive 2 MB pages with a random 4 KB start offset on Windows 7.
Thus, we cannot attack this memory region directly using a translation-
level recovery attack. However, an Evict+Prefetch attack is possible on
any kernel memory region. To build the most efficient attack, we target
the driver memory area where we can first perform a translation-level
recovery attack and an Fvict+Prefetch attack afterward. Windows 10 uses
4 KB pages instead, adding entropy to the randomized driver location.

In the first stage of our attack, we locate addresses mapped to physical
memory in the driver memory area using our translation-level recovery
attack. Figure 10.8 illustrates the timing difference between valid and
invalid addresses in the driver region on Windows 7 on an Intel i3-5005U.
As drivers are loaded consecutively in the virtual address space, we found
it to be sufficient for our attack to search through the address space in
2 MB steps and measure where pages are mapped to physical memory. On
Windows 7, the average runtime for the first stage of the attack, mapping
both the kernel region and the driver region, is 7ms on an idle system.
On Windows 10, the first stage runs in 64 KB steps and takes 101 ms on
average. As Windows 10 maps 4 KB pages we scan the address range in
4 KB steps in an intermediate step taking 180 ms on average. At a high
system load, the attack requires several hundred repetitions to perform
the first stage of the attack reliably, having an average runtime below 2
seconds on Windows 7.

266

6. Kernel ASLR exploit

120 7

110

100 | E : : |

el
o
T
|

Avg. execution time

| | |
0 4,000 8,000 12,000

Page offset in kernel driver region

Figure 10.9.: Second stage: driver region is searched by measuring average
execution times of prefetching addresses in the driver memory area from
the first stage. Lowest average execution time is measured on an address
in the memory of the targeted driver.

In the second stage of our attack, we use the Fvict+Prefetch variant of the
address-translation oracle. Instead of searching for pages that are mapped
to physical memory, we now determine whether a target address p is used
by a syscall. Therefore, we perform the FEuvict+Prefetch attack over all
potentially used addresses in a random order. We run the following three
steps:

1. We evict all caches. For this purpose, we access a buffer large enough
to evict all driver addresses from all TLBs, page translation caches,
code and data caches.

2. We perform a syscall to the targeted driver. If the target address p
is used by the targeted driver, the CPU fetches it into the caches
while executing the syscall.

3. We measure the timing of a prefetch instruction sequence. This
reveals whether the target address p was loaded into the cache by
the driver in the second step.

In order to verify the measurement, we perform a control run where we
omit the system call to the targeted driver. If the execution time of a
prefetch instruction sequence on the target address p is higher without the
system call, we learn that p is in fact used by the driver and not loaded
into the cache by other driver activity on the system. The attack can be
repeated multiple times to increase the accuracy.

267

10. Prefetch Side-Channel Attacks

By determining the lowest virtual address in the driver region that is used
by the targeted driver, we learn where the driver starts. As we know the
driver version we can now use the virtual addresses from this kernel driver
in return-oriented-programming attacks.

The average runtime for the second stage of the attack is 490 seconds
on Windows 7. Thus, the total average runtime is below 500 seconds
on Windows 7 on our i3-5005U. On Windows 10 we narrowed down the
potential addresses in the first stage more than in Windows 7. Thus, the
average runtime of the second stage is also lower on Windows 10, requiring
only 12 seconds on average to locate a driver.

7. Other applications

In this section, we discuss how prefetch instructions can be used in other
cache attacks. First, we implemented modified variant of Flush+Reload
called Flush+Prefetch. The measurement accuracy of this cache attack
is comparable to Prime+Probe while the spatial accuracy is the same
as in a Flush+Reload attack. We verified the feasibility of this attack
by implementing a cross-core covert channel. On a Haswell i7-4790 we
achieved a performance of 146 KB/s at an error rate of < 1%. This is in
the same order of magnitude as the fastest state-of-the-art cache covert
channels [Gru+16].

Second, the Evict+Prefetch variant of the address-translation oracle can be
used to perform a Flush+Reload-style attack on privileged kernel addresses.
Indeed, we demonstrated such an attack in Section 6 to detect whether
specific virtual addresses are used by a driver. However, an attacker could
also spy on the usage of known virtual addresses in kernel code and drivers.
This would allow monitoring activity on system and specific hardware
interfaces.

Third, the FEwvict+Prefetch attack also allows performing Rowhammer
attacks on privileged addresses. An attacker could directly target kernel
page tables or any other kernel data structure. As the execution time is
lower than that of Evict+Reload, an attack is likely possible. We verified
that bit flips can be induced by this attack on a system running at a refresh
rate reduced to 25%. However, we leave examinations on the prevalence
of this problem on default configured systems and the study of practical
Rowhammer exploits using Fvict+Prefetch open to future work.

268

8. Countermeasures

8. Countermeasures

In this section, we discuss countermeasures against Prefetch Side-Channel
Attacks. First, we propose a new form of strong kernel isolation, that
effectively prevents all Prefetch Side-Channel Attacks on the kernel address
space. Second, we will discuss countermeasures that have been proposed
against other side-channel attacks and hardware modifications to mitigate
Prefetch Side-Channel Attacks.

Stronger kernel isolation Removing the identity mapping would help
against our virtual-to-physical address translation attack and completely
prevent ret2dir-like attacks, however, it would not protect against our
KASLR or translation-level recovery attacks.

We propose stronger kernel isolation, a new form of strong kernel isolation,
to provide security against a wide range of attacks. Strong kernel isolation
ensures that no address is mapped in both user space and kernel space. This
mechanism has initially been proposed by Kemerlis et al. [KPK14]. Their
approach unmaps pages from the kernel physical direct map when they
are mapped in user space. This only introduces a performance penalty of
0.18-2.91%. However, this is not sufficient to protect against our attacks.
Instead, stronger kernel isolation does not run syscalls and unrelated
kernel threads in the same address space as user threads. We propose
to switch the address translation tables immediately after the context
switch into the kernel. Thus, only short and generic interrupt dispatching
code would need to be mapped in the same address space used by the
user program. The remainder of the kernel and also the direct mapping of
physical memory would thus not be mapped in the address translation
tables of the user program. This layout is illustrated in Figure 10.10.

Stronger kernel isolation also eliminates the double page fault side chan-
nel [HWH13], as no virtual address in the user program is valid in both
user space and kernel space. This countermeasure can be implemented on
commodity hardware and existing operating systems and it only requires
a few modifications in operating system kernels. The performance impact
is comparably small as switching the address translation tables has to be
done once per context switch into the kernel and once per context switch
from the kernel back to the user space. This is done by replacing the
value in the cr3 register on Intel x86 CPUs once per context switch. We
implemented a proof-of-concept to measure the overhead of updating the

269

10. Prefetch Side-Channel Attacks

Today’s operating systems:
Shared address space

User memory S ﬂ Kernel memory

context switch

Stronger kernel isolation:

User address space

User memory S ﬂ\ Not mapped

0 \/ g_ S - 1
context switch % ,% : Interl‘llpt :
3 g | dlspatcher i
Not mapped S ﬂ ’Kernel memory
0 —1

Kernel address space

Figure 10.10.: Currently kernel and user memory are only separated
through privilege levels. With stronger kernel isolation, the kernel switches
from the user space to a dedicated kernel space, directly after a context
switch into privileged mode. Thus, only a negligible portion of interrupt
dispatcher code is mapped in both address spaces.

cr3 as an estimate for the performance penalty of stronger kernel isolation.
Table 10.2 shows the overhead in different benchmarks. We observe that
for benchmarks that perform a small number of syscalls, the performance
overhead is negligible, e.g., 0.06%. For other benchmarks the overhead
can be higher, e.g., up to 5.09% in the case of pgbench.

State-of-the-art countermeasures While there have been recent ad-
vances in detecting cache attacks using performance counters [HF15;
CSY15; Gru+16; Pay16] it is less clear whether this is also applicable to
Prefetch Side-Channel Attacks. Prefetch Side-Channel Attacks can indeed
cause an increased number of DTLB misses and thus could be detected
using hardware performance counters. We observe approximatively 4 bil-
lion DTLB hits/minute while browsing in Firefox, and approximatively
47 billion while running our virtual-to-physical attack. A more thorough
evaluation is needed to assess false positives. While there are numerous
events related to prefetching that can be monitored with performance

270

9. Related Work

Benchmark Baseline Stronger kernel isolation Overhead
apache 37578.83 req./s 37205.16 req./s +1.00%
pgbench 146.81 trans./s 139.70 trans./s +5.09%
pybench 1552 ms 1553 ms 40,06%
x264 96.20 fps 96.14 fps +0.06%

Table 10.2.: Estimation of overhead.

counters, to the best of our knowledge, since Nehalem micro-architecture
it is not possible anymore to monitor software prefetching but only hard-
ware prefetching [Int14c|. Future work has to show whether performance
counters can indeed be used for a reliable detection mechanism. We also
note that while it is possible to disable hardware prefetching, it is not
possible to disable software prefetching.

Hardware modifications Complete protection against Prefetch Side-
Channel Attacks could also be achieved through microarchitectural modi-
fications. We think that prefetch instructions need to be modified in two
ways to completely close this attack vector. First, if prefetch instructions
performed privilege checks just as other memory referencing instructions,
prefetching kernel addresses would trigger a segmentation fault and the
process would be killed. It would also prevent measuring the transla-
tion table levels over the whole address space as the process would be
killed after accessing the first invalid address. Second, prefetch instruc-
tions leak timing information on the cache state. The timing difference
on our ARM-based smartphones was even higher than on our Intel x86
test system. Eliminating this timing difference would only introduce a
small performance overhead, as prefetch instruction are not used by most
software. This would prevent cache attacks based on prefetch instructions
completely.

9. Related Work

Hund et al. [HWH13] demonstrated three timing side channel attacks to
obtain address information. The first is a cache attack searching for cache
collisions with kernel addresses. The second performs double page faults to
measure timing differences for valid and invalid memory regions introduced

271

10. Prefetch Side-Channel Attacks

by the TLB. The third exploits page fault timing differences due to the
TLB and address translation caches. The first attack is mitigated on
current operating systems by preventing access to physical addresses, and
the second and third attacks can be prevented at the operating system
level by preventing excessive use of page faults leading to segmentation
faults. In contrast, our attack exploits the TLB and address translation
caches without triggering any page faults. Furthermore, as our approach
leaks the timing more directly through prefetch instructions, it is faster
and retrieves information on a finer granularity, i.e., we can obtain the
exact virtual-to-physical address translation. Our approach is also more
generic as it bypasses the operating system.

Kemerlis et al. [KPK14] presented two methods providing a basis of ret2dir
attacks. First, they use the procfs interface to obtain physical addresses,
now mitigated on current operating systems by preventing access to this
interface. Second, they perform a memory spraying attack where they
can use any address in the physical direct map for their ret2dir attack.
Our attack enables ret2dir-like attacks without knowledge of physical
addresses and recovery of physical addresses from unprivileged user space
applications, enabling ret2dir attacks. As a countermeasure, they proposed
strong kernel isolation, which we extended in this paper.

Barresi et al. [Bar+15] focused on a cross-VM scenario to break ASLR in
the cloud with CAIN, while our work mostly focuses on a local attack, that
can also be performed on a guest VM. However, CAIN attacks assume a
cloud environment that enables memory deduplication, which is already
known to be nefarious and is not deployed on e.g., Amazon EC2. In
contrast, our attacks do not require memory deduplication and have been
performed on Amazon EC2.

Bhattacharya et al. [BRM12] showed that hardware prefetching, performed
automatically by the CPU, leaks information. In contrast to this work,
we exploit software prefetching which can be triggered at any time by an
attacker, from user space. The hardware prefetcher has also been used by
Fuchs and Lee [FL15], as a countermeasure against cache side channels.

Concurrent to our work, Jang et al. [JLK16] exploited Intel TSX transac-
tion to defeat KASLR. TSX transactions prevent pagefaults by jumping
to an alternative code path. When accessing or executing on kernel ad-
dress the timing difference until reaching the alternative code path leaks
information on the address translation caches. Evtyushkin et al. [EPA16]
exploit the branch-target buffer to break KASLR. Finally, Chen et al.

272

10. Conclusion

[Che+16] proposed dynamic fine-grained ASLR during runtime to defeat
KASLR attacks.

10. Conclusion

Prefetch Side-Channel Attacks are a new class of generic attacks exploiting
fundamental weaknesses in the hardware design of prefetch instructions.
These new attacks allow unprivileged local attackers to completely bypass
access control on address information and thus to compromise an entire
physical system by defeating SMAP, SMEP, and kernel ASLR. Our attacks
work in native and virtualized environments alike. We introduced two
primitives that build the basis of our attacks. First, the translation-
level oracle, exploiting that prefetch leaks timing information on address
translation. Second, the address-translation oracle, exploiting that prefetch
does not perform any privilege checks and can be used to fetch inaccessible
privileged memory into various caches. The translation-level oracle allowed
us to defeat ASLR and locate libraries and drivers in inaccessible memory
regions. Using the address-translation oracle, we were able to resolve
virtual to physical addresses on 64-bit Linux systems and from unprivileged
user programs inside an Amazon EC2 virtual machine. This is the basis
for ret2dir-like attacks that bypass SMEP and SMAP. Based on both
oracles, we demonstrated how to defeat kernel ASLR on Windows 10,
providing the basis for ROP attacks on kernel and driver binary code. As
a countermeasure against this new class of attacks, we proposed stronger
kernel isolation, such that syscalls and unrelated kernel threads do not
run in the same address space as user threads. This countermeasure only
requires a few modifications in operating system kernels and that the
performance penalty is as low as 0.06-5.09%. Therefore, we recommend
that it is deployed in all commodity operating systems.

11. Acknowledgments

We would like to thank Klaus Wagner for help with some experiments and
our anonymous reviewers for their valuable comments and suggestions.

x s Supported by EU Horizon 2020 programme GA No. 644052
£ (HECTOR) and EU FP7 programme GA No. 610436
i (MATTHEW).

273

10. Prefetch Side-Channel Attacks

References

[ARM13]

[Bar+15]

[Ber04]

[BRM12]

[Che+16]

[Cra+15]

[CSY15]

[EPA16]

[FL15]

[GBK11]

[GMM16]

274

ARM Limited. ARM Architecture Reference Manual ARMvS.
ARM Limited, 2013 (p. 254).

A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently Breaking ASLR in the Cloud. In: WOOT’15. 2015
(p. 272).

D. J. Bernstein. Cache-Timing Attacks on AES. 2004. URL:
http://cr.yp.to/papers.html#cachetiming (p. 252).

S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay. Hard-
ware prefetchers leak : A revisit of SVF for cache-timing
attacks. In: 45th International Symposium on Microarchi-
tecture Workshops (MICRO’12). 2012 (p. 272).

Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix: On-
demand live randomization. In: 6th ACM Conference on
Data and Application Security and Privacy. 2016 (p. 273).

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.
Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical

Code Randomization Resilient to Memory Disclosure. In:
S&P’15. 2015 (p. 261).

M. Chiappetta, E. Savas, and C. Yilmaz. Real time detec-
tion of cache-based side-channel attacks using Hardware
Performance Counters. 2015 (p. 270).

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Jump
Over ASLR: Attacking Branch Predictors to Bypass ASLR.

In: IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). 2016 (p. 272).

A. Fuchs and R. B. Lee. Disruptive Prefetching: Impact on
Side-Channel Attacks and Cache Designs. In: Proceedings of
the 8th ACM International Systems and Storage Conference
(SYSTOR'15). 2015 (p. 272).

D. Gullasch, E. Bangerter, and S. Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice.
In: S&P’11. 2011 (p. 252).

D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In:
DIMVA’16. 2016 (p. 245).

http://cr.yp.to/papers.html#cachetiming

[Gru+16]

[GSM15]

[Giil+15]

[HF15]

[HHF09]

[HWH13]

[IES15]

[Int10]

[Int14al

[Int14b]

[Int14c]

References

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+
Flush: A Fast and Stealthy Cache Attack. In: DIMVA’16.
2016 (pp. 245, 261, 268, 270).

D. Gruss, R. Spreitzer, and S. Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security Symposium. 2015 (p. 252).

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. A
Faster and More Realistic Flush+Reload Attack on AES.

In: Constructive Side-Channel Analysis and Secure Design
(COSADE). 2015 (p. 252).

N. Herath and A. Fogh. These are Not Your Grand Daddys
CPU Performance Counters - CPU Hardware Performance
Counters for Security. In: 2015 (p. 270).

R. Hund, T. Holz, and F. C. Freiling. Return-Oriented Rootk-
its: Bypassing Kernel Code Integrity Protection Mechanisms.
In: USENIX Security Symposium. 2009 (p. 245).

R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In: S&P’13.
2013 (pp. 245, 269, 271).

G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing — and its Application to AES. In: S&P’15. 2015
(pp. 245, 252, 261).

Intel. How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures White Paper.
2010 (p. 255).

Intel. Intel® 64 and TA-32 Architectures Optimization Ref-
erence Manual. In: (2014) (p. 254).

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 2 (2A, 2B & 2C): Instruction Set
Reference, A-Z. In: 253665 (2014) (p. 255).

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3 (3A, 3B & 3C): System Program-
ming Guide. In: 253665 (2014) (pp. 251, 254, 256, 271).

275

10. Prefetch Side-Channel Attacks

[Ira+15a)

[Ira+15b)

[JLK16]

[Kel+00]

[ker09]

[Kim+14]

[Kirl5]

[Koc96]

[KPK14]

[Lev12)

[Lip+16]

276

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Know
Thy Neighbor: Crypto Library Detection in Cloud. In: Pro-
ceedings on Privacy Enhancing Technologies 1.1 (2015),
pp. 25-40 (p. 252).

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky
13 Strikes Back. In: AsiaCCS’15. 2015 (p. 252).

Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space
Layout Randomization with Intel TSX. In: CCS’16. 2016
(p. 272).

J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side Channel
Cryptanalysis of Product Ciphers. In: Journal of Computer
Security 8.2/3 (2000), pp. 141-158 (p. 252).

kernel.org. Virtual memory map with 4 level page tables
(x86_64). May 2009. URL: https://www.kernel.org/doc/
Documentation/x86/x86_64/mm.txt (pp. 249, 261).

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.
Wilkerson, K. Lai, and O. Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors. In: ISCA’14. 2014 (pp. 245, 252, 261).

Kirill A. Shutemov. Pagemap: Do Not Leak Physical Ad-
dresses to Non-Privileged Userspace. Retrieved on November
10, 2015. Mar. 2015. URL: https://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e (pp. 245, 253, 261).

P. C. Kocher. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In: Crypto’96. 1996
(p. 252).

V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
ret2dir: Rethinking kernel isolation. In: USENIX Security
Symposium. 2014, pp. 957-972 (pp. 245, 249, 261, 269, 272).

J. Levin. Mac OS X and I0S Internals: To the Apple’s Core.
John Wiley & Sons, 2012 (pp. 245, 249, 261).

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard.
ARMageddon: Last-Level Cache Attacks on Mobile Devices.
In: USENIX Security Symposium. 2016 (p. 255).

https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e

[Liut15]

[Mau+15]

[Ore+15]

[0STO06]

[Pag02]

[PaXO03]

[Pay16]
[Per05]

[Pes+16]

[RSI12]

[SD15a]

[SD15b)

References

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In: S&P’15.
2015 (pp. 245, 252, 261).

C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5:
Cross-Cores Cache Covert Channel. In: DIMVA’15. 2015
(pp. 245, 252).

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Kero-
mytis. The Spy in the Sandbox: Practical Cache Attacks in
JavaScript and their Implications. In: CCS’15. 2015 (p. 252).

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006
(p. 252).

D. Page. Theoretical use of cache memory as a cryptana-
lytic side-channel. In: Cryptology ePrint Archive, Report
2002/169 (2002) (p. 252).

PaX Team. Address space layout randomization (ASLR).
2003. URL: http://pax.grsecurity.net/docs/aslr.txt
(p. 245).

M. Payer. HexPADS: a platform to detect “stealth” attacks.
In: ESS0S’16. 2016 (p. 270).

C. Percival. Cache missing for fun and profit. In: Proceedings
of BSDCan. 2005 (p. 252).

P. Pessl, D. Gruss, C. Maurice, and S. Mangard. Reverse
Engineering Intel DRAM Addressing and Exploitation. In:
USENIX Security Symposium. 2016 (pp. 245, 261).

M. E. Russinovich, D. A. Solomon, and A. Ionescu. Windows
internals. Pearson Education, 2012 (p. 245).

M. Seaborn and T. Dullien. Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges. Retrieved on June 26,
2015. 2015. URL: http://googleprojectzero.blogspot .
co.at/2015/03/exploiting-dram-rowhammer-bug-to-
gain.html (p. 253).

M. Seaborn and T. Dullien. Exploiting the DRAM rowham-
mer bug to gain kernel privileges. In: Black Hat 2015 Brief-
ings. 2015 (pp. 245, 261).

277

http://pax.grsecurity.net/docs/aslr.txt
http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.co.at/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

10. Prefetch Side-Channel Attacks

[Sha+04]

[Sno+13]

[TSS03]

[xen09]

[YF14]

[Zha+14]

278

H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D.
Boneh. On the effectiveness of address-space randomization.
In: CCS’04. 2004 (p. 245).

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. R. Sadeghi. Just-in-time code reuse: On the effective-
ness of fine-grained address space layout randomization. In:
S&P’13. 2013 (p. 250).

Y. Tsunoo, T. Saito, and T. Suzaki. Cryptanalysis of DES
implemented on computers with cache. In: CHES’03. 2003,
pp. 62-76 (p. 252).

xenbits.xen.org. page.h source code. Mar. 2009. URL: http:
//xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=
refs/heads/stable-4.3;f=xen/include/asm-x86/x86_
64/page.h (pp. 249, 261).

Y. Yarom and K. Falkner. Flush+Reload: a High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 252).

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-

Tenant Side-Channel Attacks in PaaS Clouds. In: CCS’14.
2014 (p. 252).

http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h

References

279

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

281

	Abstract
	Acknowledgements
	Contents
	Introduction to Microarchitectural Attacks
	Introduction
	Background
	State of the Art
	Future Work and Conclusions
	References

	Publications
	List of Publications
	Cache Template Attacks
	Memory Deduplication Attacks
	Rowhammer.js
	Flush+Flush
	ARMageddon
	Prefetch Side-Channel Attacks

