
Secure, Centralized Multi-Stakeholder
Telemetry Data Acquisition and

Distribution for the Internet of Things

Martin Maritsch

Martin Maritsch BSc

Secure, Centralized Multi-Stakeholder
Telemetry Data Acquisition and

Distribution for the Internet of Things

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Priv.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner
Institute of Interactive Systems and Data Science

Graz, July 2017

Martin Maritsch BSc

Sichere, zentralisierte Aggregation
und Distribution von Telemetriedaten

zwischen mehreren Stakeholdern
im Internet der Dinge

Masterarbeit

für den akademischen Grad

Diplom-Ingenieur

Masterstudium: Software Engineering and Management

an der

Technischen Universität Graz

Begutachter

Priv.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner
Institute of Interactive Systems and Data Science

Graz, Juli 2017

Diese Arbeit ist in englischer Sprache verfasst.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Date/Datum Signature/Unterschrift

Abstract
Increasing the efficiency and flexibility of industrial processes is a major goal of ongoing

initiatives like Industry 4.0 or the Industrial Internet. Smart and connected industrial equipment
will substantially change organizational structures and business processes [Porter and Heppel-
mann, 2015]. For example, recurring maintenance, repair and overhaul (MRO) activities for
sophisticated industrial equipment requires personnel to service equipment to minimize down-
time, prevent failure or improve performance. However, a vendor supplies its equipment to its
global customer base, requiring to send MRO technicians there. Thus, preemptively scheduling
MRO activities is a central use case and often labeled Intelligent Maintenance Services or – as
it is referred to in this thesis – Smart Maintenance Services (SMSs).

Lesjak, Hein, Hofmann, et al. [2015] designed and implemented a prototype system for
equipment status data (snapshot) acquisition on customer-side. Our work focuses on the snap-
shot being in transport and the vendor-side backend. Thus an analysis of existing Internet of
Things (IoT) protocols for data transmission is performed and they are compared to other pop-
ular protocols.

In the proposed system, a broker-based message exchange system is used to transfer snap-
shots and other arbitrary information (e.g. firmware updates) from industrial equipment to ven-
dors or customers and vice versa. This broker based system is described by Maritsch, Lesjak,
and Aldrian [2016]. The data exchange systems based on a broker provides at least two ma-
jor advantages for the scenario: First, all participants need to actively push or pull data to the
broker. Thus, a vendor does not need to initiate connections to customer premises to reach its
equipment. Second, when all snapshots are exchanged via the broker, customers are able to
audit transmitted data to check that no sensitive non-maintenance relevant data was send off its
equipment.

The possibilities of how to systematically structure data and flows inside the SMS frame-
work to allow an easy aggregation of desired data for different stakeholders are shown. Empha-
sis is placed on the scalability, extendability and failure resistance of the system.

In parallel to the broker-based system implementation, the security aspect is always kept
in mind. It is vital, to ensure the confidentiality and authenticity of sensitive customer data.
For this purpose current, standardized security techniques for authentication and authorization
are shown. A mechanism is presented, which allows to securely transmit data in a globally
distributed SMS framework. Furthermore, multiple security functions which protect data on
different stages of SMS framework dataflows, are proposed.

Kurzfassung

Die Effizienzsteigerung und Flexibilität von industriellen Prozessen ist eines der Hauptzie-
le von Initiativen wie Industrie 4.0 oder dem Industriellen Internet. Intelligente und vernetzte
industrielle Geräte werden sukzessive organisatorische Strukturen und Businessprozesse än-
dern [Porter und Heppelmann, 2015]. Beispielsweise erfordern sich wiederholende Wartungs-,
Reparatur- und Überhol-Tätigkeiten (WRÜ) für hochkomplexe industrielle Geräte spezielles
Personal um Standzeiten zu minimieren, Fehler vorzubeugen und die Leistung zu steigern. Je-
doch unterhalten HerstellerInnen solcher Geräte oft einen weltweiten KundInnenstock, welcher
es erfordert, dass SpezialistInnen von HerstellerInnen dorthin entsandt werden. Deshalb wird
das präventive und dadurch kosteneinsparende Einplanen solcher WRÜ-Tätigkeiten oft als In-
telligent Maintenance Services oder Smart Maintenance Services (SMSs) bezeichnet.

Lesjak, Hein, Hofmann u. a. [2015] entwarfen und implementierten ein prototypisches Sy-
stem um Statusdaten von Geräten (Snapshots) zu erfassen. Diese Arbeit fokussiert sich auf den
Transport dieser Snapshots zum Hersteller/zur Herstellerin und auf das HerstellerInnen-seitige
Backend. Daher werden bestehende Internet-Of-Things-Protokolle (IoT) für Datenübertragung
evaluiert und mit anderen populären Protokollen verglichen.

Im vorgeschlagenen System wird ein Broker-basiertes Nachrichtenaustausch-System im-
plementiert um Snapshots und andere beliebige Daten, wie zum Beispiel Firmware-Updates,
von industriellen Geräten zum Hersteller/zur Herstellerin oder zum Kunden/zur Kundin und
vice versa zu übertragen. Dieses Broker-basierte System wird von Maritsch, Lesjak und Al-
drian [2016] beschrieben. Der Datenaustausch über einen zentralen Broker hat zumindest zwei
große Vorteile: Erstens müssen alle TeilnehmerInnen aktiv Daten an den Broker schicken oder
von dort abholen. Daher müssen HerstellerInnen nicht aktiv Verbindungen zu deren Geräten
bei KundInnen initiieren. Zweitens können KundInnen, wenn alle Snapshots über diesen zen-
tralen Broker übertragen werden, diese einfach prüfen und sicherstellen, dass keine sensitiven,
nicht-wartungsrelevanten Informationen von seinen/ihren Geräten übertragen werden.

Es werden verschiedene Möglichkeiten aufgezeigt, wie man Daten und Datenflüsse syste-
matisch strukturieren kann um eine einfache Datenaggregation innerhalb des SMS-Frameworks
für verschieden StakeholderInnen zu gewährleisten. Dabei wird spezieller Wert auf die Skalier-
barkeit, Erweiterbarkeit und Fehlertoleranz des Systems gelegt.

Parallel zur Implementierung des Broker-basierten Nachrichtenaustausch-Systems wird im-
mer den Sicherheitsaspekt im Blick behalten. Es ist unumgänglich, dass die Vertraulichkeit und

Richtigkeit von Gerätedaten sichergestellt wird. Es wird ein Mechanismus gezeigt, welcher es
erlaubt Daten in einem global verteilen SMS-Framework sicher zu übertragen. Des Weiteren
werden mehrere Sicherheitsmaßnahmen aufgezeigt, welche die Daten in verschiedenen Layern
des SMS-Frameworks schützen.

Contents

List of Abbreviations v

List of Figures x

List of Tables xi

List of Listings xiii

Acknowledgements xv

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Arrowhead project . 2

1.2 Background . 2

1.2.1 The Internet of Things (IoT) . 3

1.2.2 Smart Services . 4

1.3 Scenario . 5

1.3.1 Requirements . 8

1.4 Proposed Solution . 9

1.4.1 Scope and Limitations . 10

1.5 Research Questions . 10

1.6 Methodology . 11

1.7 Scientific Contribution . 11

1.8 Thesis Structure . 12

i

2 State of the Art 13
2.1 service-oriented architecture (SOA) . 13
2.2 Data transmission in IoT . 14

2.2.1 The Message Queue Telemetry Transport (MQTT) protocol 16
2.2.2 Features . 17

2.2.2.1 Topics . 17
2.2.2.2 Quality of Service (QoS) 19
2.2.2.3 Persistent Session . 20
2.2.2.4 Last Will . 21

2.3 Security . 22
2.3.1 Transport Layer Security (TLS) . 25
2.3.2 End-to-end Encryption . 27

2.3.2.1 Cryptography Message Syntax (CMS) 28

3 The MQTT Data Aggregation Framework 35
3.1 MQTT . 35
3.2 MQTT topic structuring . 36

3.2.1 Topic candidates . 36
3.2.2 Potential topic structuring variants . 38

3.3 MQTT Broker Architecture and Cascading 41
3.3.1 Single broker on vendor’s premises 41
3.3.2 Per-customer-broker on customer’s premises plus central master broker 42
3.3.3 Per-customer-broker on vendor’s premises plus central master broker . 43
3.3.4 Distributed vendor brokers plus central master broker 44

4 Securing the SMS Framework 47
4.1 Overview . 47
4.2 TLS . 48

4.2.1 Key Management . 49
4.3 Authentication . 50
4.4 Authorization . 51

4.4.1 Implementation of a Topic Access Control System (TACS) in Mosquitto 52
4.4.1.1 Authentication Plugin . 53
4.4.1.2 Source Code Modification 53
4.4.1.3 Access Control List (ACL) 53

4.5 End-to-end Encryption . 54

ii

5 Prototypical Backend Implementation 59
5.1 Introduction . 59
5.2 Dataflows . 60
5.3 Mosquitto Setup . 61
5.4 MQTT subscriber . 61

5.4.1 TLS connection initialization . 63
5.5 CMS decryptor . 65

5.5.1 Advanced Encryption Standard (AES)-Galois/Counter Mode (GCM)
engine . 70

5.6 Relational database schema . 70
5.7 Exemplary data workflows . 70

5.7.1 Dashboard . 73
5.7.2 Business Process Model (BPM) . 73

6 Discussion 79
6.1 The SMS framework as a SOA . 80
6.2 Data transmission with MQTT . 81

6.2.1 Topic Structuring . 82
6.2.2 Broker Architecture and Cascading 83
6.2.3 TACS . 83

6.3 Security . 84
6.3.1 Authentication . 84
6.3.2 Authorization . 84
6.3.3 End-to-end Encryption . 85
6.3.4 Key Management . 86

6.3.4.1 Potentially Problematic Scenarios 86

7 Conclusion 89
7.1 Evaluation of the raised Research Questions 89
7.2 Problems Solved . 91
7.3 Lessons Learned . 91

7.3.1 The IoT . 91
7.3.2 Security . 91

7.4 Next steps . 92

A MQTT broker comparison 95

Bibliography 97

iii

iv

List of Abbreviations

ACL

Access Control List. ii, xiii, 53, 54, 63, 81

AE

Authenticated Encryption. 24

AES

Advanced Encryption Standard. iii, xiii, 24, 26, 30–33, 49, 67, 70, 89

API

Application Programmer Interface. 52, 61, 64

ASN.1

Abstract Syntax Notation One. 29, 32, 64, 89

AVL

AVL List GmbH. ix, 2, 5–7, 87, 89, 90

BPM

Business Process Model. iii, x, 71, 72, 75

CA

Certificate Authority. 23, 24, 27, 50, 51, 63, 64, 84

CMS

Cryptography Message Syntax. ii, iii, ix, xiii, 22, 28–33, 55, 57, 59, 64, 65, 67–69, 83,
84, 88

v

CoAP
Constrained Application Protocol. 16

CPS
Cyber-physical system. 1, 4, 5

CRL
Certificate Revocation List. 23, 24, 49, 50, 64, 83, 84

CSR
Certificate Signing Request. 50

DMZ
Demilitarized Zone. 40–44, 60, 61, 80, 81

ECC
Elliptic Curve Cryptography. 30, 31, 48, 77

ECDSA
Elliptic Curve Digital Signature Algorithm. 26, 61

ECMQV
Elliptic Curve Menezes-Qu-Vanstone. 31–33, 67

FM
Fuel Meter. 36, 40

GCM
Galois/Counter Mode. iii, xiii, 24, 30–33, 67, 70, 89

HTTP
Hypertext Transfer Protocol. x, 15–18, 50, 79, 80, 85, 87

IIoT
Industrial Internet of Things. 3, 14

IoT
Internet of Things. i–iii, IX, XI, 2, 3, 10, 11, 13–17, 19, 21, 78, 87, 89, 90

vi

IP
Internet Protocol. 17, 18, 28, 79

ISO
International Standards Organization. 16, 77, 89

M2M
Machine-to-Machine. 10, 16, 89

MAC
Message Authentication Code. 24, 25, 28, 31, 49, 55, 67

MQTT
Message Queue Telemetry Transport. ii, iii, ix–xi, 11–13, 15–22, 26, 28–30, 35–46,
50–55, 59, 61, 63, 64, 77–85, 87–90, 93, 94

MQV
Menezes–Qu–Vanstone. 30

MRO
maintenance, repair and overhaul. IX, 2, 5

OASIS
Organization for the Advancement of Structured Information Standards. 16, 89

OSI
Open Systems Interconnection. ix, 26, 28, 29

PC
Particle Counter. 36, 40

PKCS #12
Public Key Cryptography Standard #12. 63, 67

PKI
Public Key Infrastructure. 23, 24, 49, 84

QoS
Quality of Service. ii, ix, xi, 18–21, 36, 80, 85

vii

SHA
Secure Hash Algorithm. 26, 49

SMS
Smart Maintenance Service. ii, IX, XI, XII, 2, 5–10, 12–14, 17, 35, 36, 39, 41, 47–52,
54–56, 58–60, 71, 72, 77–84, 87–91

SMTP
Simple Mail Transfer Protocol. 17, 18, 79

SOA
service-oriented architecture. ii, iii, ix, x, 2, 13, 14, 77, 78, 87

SPOF
Single Point of Failure. 41, 42

TACS
Topic Access Control System. ii, iii, ix, 12, 47, 52, 53, 56, 78, 81, 83

TCP
Transmission Control Protocol. 9, 16–18, 28, 79, 80

TLS
Transport Layer Security. ii, iii, ix, xiii, 12, 18, 22, 26, 28–30, 35, 37, 39, 40, 47–52, 55,
61, 63–66, 77, 82–84, 88

UDP
User Datagram Protocol. 16

URI
Uniform Resource Identifier. 23, 50

XML
Extensible Markup Language. 16

XMPP
Extensible Messaging and Presence Protocol. 16

viii

List of Figures

1.1 Architecture in AVL List GmbH (AVL) . 6

2.1 Basic SOA . 14
2.2 Simple MQTT topic example . 19
2.3 Advanced MQTT topic example . 20
2.4 MQTT publishes with different QoS levels . 21
2.5 Exemplary certificate chain . 31
2.6 MQTT and TLS in the Open Systems Interconnection (OSI) reference model . 32
2.7 TLS tunnel with CMS packet . 33
2.8 Abstracted composition of a CMS packet . 34

3.1 Procedures between client and broker . 37
3.2 MQTT topic structure . 40
3.3 Single MQTT broker system . 42
3.4 Distributed MQTT broker system . 43
3.5 Multiple customer MQTT brokers at vendor system 44
3.6 Globally distributed MQTT brokers system 45

4.1 Security levels in the dataflow . 48
4.2 Certificate Hierarchy in the system . 51
4.3 Basic overview of the TACS . 57
4.4 Structure of a CMS message . 58

5.1 Prototypical backend implementation . 60
5.2 Dataflow from customer to vendor . 61
5.3 Dataflow from vendor to customer . 63
5.4 Relational data schema for snapshot data . 75

ix

5.5 Dashboard for data visualization . 76
5.6 Exemplary BPM . 77

6.1 Snapshot acquisition use case portrayed as a SOA 80
6.2 MQTT publish vs. Hypertext Transfer Protocol (HTTP) request 87

x

List of Tables

2.1 Protocol comparison . 18
2.2 QoS levels in MQTT . 19

4.1 MQTT topic access examples . 52

A.1 MQTT broker implementation comparison . 96

xi

xii

List of Listings

4.1 Simple Mosquitto ACL example . 53
4.2 Final Mosquitto ACL configuration . 55
5.1 Mosquitto configuration . 62
5.2 Implementation of the Java TLS socket factory 64
5.3 Implementation of the TLS trust manager . 66
5.4 Implementation of the Java Interface for a CMS strategy 68
5.5 Implementation of the CMS data decryptor 69
5.6 Unwrapping of the symmetric key for AES 71
5.7 Implementation of the AES-GCM initialization and encryption 72

xiii

xiv

Acknowledgements

I would like to thank the following individuals for their great support and collaboration through-
out my work on this thesis:

• The great folks at evolaris next level GmbH. Beginning with my supervisor Thomas
Ebner, who provided me with great technical and organizational guidance, to all the col-
leagues I got to work with during this thesis (Martin Lessacher, Matej Vuković, Richard
Hable, Ernesto Rico-Schmidt, Markus Schüssler, Christian Kittl). I am very grateful that
I have had the opportunity to work with them.

• The colleagues in the Arrowhead team: Andreas Aldrian (AVL GmbH); Christian Les-
jak, Thomas Ruprechter (Infineon Technologies Austria AG); Michael Hofmann, Günther
Pregartner (GUEP Software GmbH); Daniel Hein (Institute for Applied Information Pro-
cessing and Communications, Graz University of Technology). Their great competencies
were the foundation of our fruitful work in the smart services area. Special thanks go to
Christian Lesjak for encouraging and supporting me in the process of writing research
papers.

• My academical supervisor Martin Ebner from the Institute of Interactive Systems and
Data Science (ISDS) at Graz University of Technology for his guidance and support in
the academical realization of this thesis.

• My family, especially Arnold and Gerhild, which provided me with ever ongoing support
throughout my studies which finally led to this thesis. I am grateful for the sheer endless
energy and resources they have put into motivating and encouraging me.

Martin Maritsch
Graz, Austria, August 2017

xv

xvi

Chapter 1

Introduction

“ Industry 4.0 is more than just a flashy catchphrase. A confluence of trends and
technologies promises to reshape the way things are made. ”

[Cornelius Baur and Dominik Wee, McKinsey & Company]

1.1 Motivation

Industrial organizations are constantly facing challenges to optimize their productivity and pro-
cesses in order to survive in global competition. As technology found its way into industrial
production and factories, many processes were improved and automatized.

From a historical point of view, industrialization started back in the late 18th century, with
the First Industrial Revolution. Water and steam power was used to power mechanical ma-
chines. This was the basis for optimization of repeating work tasks.

With the Second Industrial Revolution starting in the late nineteenth century, electrical
power completely changed processes in factories and led to still existing technologies like the
conveyor belt. Mass production became the new form of fabrication.

The Third Industrial Revolution – also known as the Digital Revolution – was caused by
electronics and information technology which led to further automation. Undebatable, the in-
vention of electronic chips and computers had an dramatical impact on everyday live.

According to [Kagermann et al., 2013] mankind is now just at the beginning of the Fourth
Industrial Revolution, which is based on Cyber-physical systems (CPSs). Industrial produc-
tion should be interconnected with modern information technology tools. The goal is a widely
autonomous and self-organizing production line by introducing communication between ma-
chines, humans and all other entities in factories.

1

1. Introduction

Factories in the future will benefit from interconnected devices and big scale data analysis.
Holmes [2015] described the Factory of the Future as follows:

“The factory of the future today is automated, connected, and integrated. It is also
a journey rather than an absolute end state. It is also dynamic in nature. A key
attribute is the culture of the organization: to be able to proactively act upon the
real-time information and insight into the manufacturing process, and to be able to
continuously improve the process is fundamental to making the factory of the future
successful.”

1.1.1 The Arrowhead project

Arrowhead1 is an international research project funded by the European Union. With more
than eighty partners from all over Europe, it addresses efficiency and flexibility of industry at a
global scale. It is the ultimate goal to enable automation based on the collaboration of network
enabled devices. The challenge is, to interconnect all these devices and enable interoperability;
Internet of Things (IoT) technologies shall be used for this purpose. The Arrowhead project
aims to produce a framework which allows this interoperability. This framework is realized as
a service-oriented architecture (SOA) and publicly available2.

The Austrian consortium of this project, being led by AVL List GmbH (AVL), focuses on
building an IoT automation system for enabling Smart Maintenance Services (SMSs) (Sec-
tion 1.3) in automotive testbed engineering systems.

1.2 Background

Increasing the efficiency and flexibility of industrial processes is a major goal of ongoing initia-
tives like Industry 4.0 or the Industrial Internet. Smart and connected industrial equipment will
substantially change organizational structures and business processes [Porter and Heppelmann,
2015]. For example, recurring maintenance, repair and overhaul (MRO) activities for sophis-
ticated industrial equipment requires personnel to service equipment to minimize downtime,
prevent failure or improve performance. However, a vendor supplies its equipment to its global
customer base, requiring to send MRO technicians there. Thus, preemptively scheduling MRO
activities is a central use case and often labeled Intelligent Maintenance Services or – as it is
referred to throughout this thesis – SMSs.

Priller, Aldrian, and Ebner [2014] proposed a SMS framework which brings connectivity to
a vendor’s end of line testing equipment being used in engine production. They sketched the

1www.arrowhead.eu, Accessed: May 3, 2017
2www.arrowhead.eu/arrowhead-wiki/, Accessed: May 3, 2017

2

www.arrowhead.eu
www.arrowhead.eu/arrowhead-wiki/

1.2. Background

concept of the mediator, a device that equips legacy industrial equipment with the necessary
connectivity to send maintenance relevant status data to remote endpoints via the Internet.

1.2.1 The Internet of Things (IoT)

The term Internet of Things describes, how (electronic) devices are getting connected to the
Internet. One can perceive this trend with everyday items such as fridges, coffee makers or
washing machines becoming “smart” when they are connected to the Internet. The IoT trend
has already arrived in everyday products; just recently a smart hairbrush3 was announced by a
subsidiary of Finnish Nokia.

However, not the devices themselves are becoming smart. They will normally just exchange
data or transmit status data to a central backend, which is usually located at the vendor. The real
intelligence is in those vendor controlled backends, where value is generated by evaluating the
aggregated data.

When speaking of IoT devices, it is usually talked of technical devices, with access to the
Internet. Not all of these devices will have a good availability of power and network resources
like for example a fridge in a personal home would. Many devices will be located in restricted
areas and will only have limited access to those resources. Thus, when developing standards
for the IoT, an emphasis needs to be placed on efficiency and resource usage. Due to different
communication patterns, some traditional methods will not work anymore and new challenges
arise.

The Industrial Internet of Things (IIoT) describes the use of the IoT in an industrial context,
specifically in relation to Industry 4.0. The IIoT will connect devices in factories and enable
smart services.

In industrial applications, the IoT is facing different challenges compared to usages in pri-
vate environments. Security and data privacy have a completely different value. Not only for
keeping trade secrets but also since data processing guidelines are required by law.

The IoT is certainly one key contributor to what is called Big Data; the collection and anal-
ysis of tremendous amounts of data. IoT enables organizations to collect data in a previously
unknown fashion and dimension. This kind of data aggregation and the subsequent analysis of
data is especially relevant for applications in an industrial context. If an organization was for
example able to predict machine failures and act before they even happen, downtimes could be
minimized and maintenance costs reduced.

3www.withings.com/eu/en/products/hair-coach, Accessed: May 3, 2017

3

www.withings.com/eu/en/products/hair-coach

1. Introduction

1.2.2 Smart Services

There is no clear definition of what a “smart service” is. It rather depends on the context where
it is applied. However, it is often described as generating value from the extraction, aggregation
and evaluation of existing products’ data.

Tillotson and Lundin [2012] explained smart services as follows:

“Smart Services are the commercial realization of the Internet of Things for man-
ufacturers, where post-sales product support capabilities enable a fundamental
change in the value equation of business.”

When speaking of a smart service, a system is meant, which anticipates service needs and
preemptively organize or perform service needs. The service’s task is, to avoid incidents by
preemptively reacting and evading them.

CPSs are the foundation for smart services. They provide a framework for the functionality
needed to aggregate and evaluate data. These CPSs will influence the way of how work is
conducted in industrial factories.

Herterich, Uebernickel, and Brenner [2015] identified the following impacts of CPSs on
manufacturing:

1. Improvement of equipment
The development of future versions of equipment can benefit from leveraging perfor-
mance data of current versions.

2. Optimization of equipment utilization
Operators of industrial equipment are able to evaluate usage over time and to optimized
operations based on historic usage patterns.

3. Remote control and management of equipment
CPSs can receive remote information and commands. This allows the operator as well as
the vendor to easily access equipment in remote locations.

4. Predict and trigger actions
Due to continuous evaluation of equipment telemetry and performance data the operator
and vendor are able to prevent machine failure. The service activities can be preemptively
scheduled in an efficient way.

5. Remote diagnostics
Service agents can remotely access equipment diagnostics and do not need to travel to the
machine location.

4

1.3. Scenario

6. Optimization of service efficiency
With the use of CPSs, field services can be conducted more efficiently. For example a
component, which is scheduled to be replaced every six months might – depending on
the machine usage – still be in good condition after its expected lifetime. With evaluation
of usage data, such replacements can be scheduled based on the actual usage and not only
in fixed intervals. Furthermore, field service agents can be remotely supported by experts
in back-offices.

7. Information and data-driven services
The gathered data allows for detailed insights and can reveal unexpected information.
Equipment operators are able to generate additional value by evaluating data.

1.3 Scenario

Preemptive scheduling of MRO activities requires the vendor to have knowledge of the status
of industrial equipment. However, industrial equipment is usually situated on a customer site
without the vendor having remote access to it. Therefore, it is necessary to embed connectivity
into industrial equipment.

Already today, industrial equipment is producing tremendous amounts of valuable data –
both for the customer and vendor. With the data, a vendor would be able to preemptively
schedule MRO operations and thus avoid costly downtimes. For example, some sensors of
AVL devices can only be calibrated in the global headquarter in Graz if they break. Including
shipping, this could mean a loss of the machine’s capabilities for up to six weeks.

Naturally, added Internet-connectivity to industrial equipment requires tough security con-
siderations, as status data of industrial equipment comprises a wide range of equipment param-
eters related to maintenance and thus contain valuable and sensitive data which must be kept
confidential by the SMS framework. Such a set of equipment values is referred to as snapshot
since it represents the status of a device at a certain point in time.

The service needs to distinguish between different stakeholders, which should have access
to data. First, the vendor needs access to data to preemptively schedule MRO activities. How-
ever, also the customer should be able to obtain a copy of the data which was sent by their
industrial equipment to the vendor in order to validate the integrity of the data and do further
investigations based on the data (e.g. device utilization). The vendor also needs to have the
possibility, to directly communicate with industrial equipment, for example in order to publish
firmware updates over-the-air. Consequently, the SMS framework must also provide a "way
back" from the vendor to the customer.

The aim of this work is to enable the vendor of a device to be able to gather device informa-
tion in a secure way as well as the customer to supervise this process by being able to monitor

5

1. Introduction

incoming and outgoing data.
In Figure 1.1 the architecture in AVL before the implementation of the SMS framework is

depicted. Equipment is located in field and does not have a connection to transmit data to the
vendor. The vendor has some knowledge about devices such as service data records in their
existing data collections. However, the data is often not up-to-date. The SMS framework will
introduce the possibility to transmit data by linking field devices with the vendor backend.

Customer 2

SAP

Share

-point

Prod

DBs

???

Customer 1

Customer n

Data Pool

AVL

Internet

Figure 1.1: The system architecture in AVL before the use of the proposed system. [Drawn
by the author of this thesis.]

For the vendor, the following advantages it will have from the SMS framework are antici-
pated:

• Utilization Analysis
Analyze device utilization and inform customers about saving potentials.

• Product Improvement
Evaluate the gathered data, identify the most error prone components and specifically
improve them for succeeding versions of products.

6

1.3. Scenario

• Update Rollout
Easily roll out device firmware updates remotely.

• Remote Service Commands
Issue service commands such as triggering a cleaning procedure or a reboot to a device
remotely.

• Proactive Maintenance
Offer proactive maintenance service by analyzing historical data and identifying potential
machine failures before they even happen; thereby increase customer satisfaction.

• Remote Diagnosis
A vendor’s back-office employee should be able to conduct remote diagnosis and device
investigation.

The customer is able to benefit in the following ways:

• Proactive Maintenance
At AVL, maintenance intervals are currently typically selected by service technicians
by "rule of thumb" [Priller, Aldrian, and Ebner, 2014]. However, according to Priller,
Aldrian, and Ebner [2014], “service needs of devices typically depend on multiple factors
in addition to operating time, and are often influenced by operating conditions like tem-
peratures, gas flows, peak load, load distribution”; leading to maintenance being sched-
uled sometimes too early and sometimes too late. With smart estimation based on data
gathered in the SMS framework, the maintenance can be specifically arranged based on
the device’s condition.

• Remote Monitoring
Remotely monitor device status and issue commands, no need to be in front of the device.

• Utilization Analysis
Analyze device utilization and investigate on downtimes.

• Automatic Reordering
Automatic, preemptive ordering of necessary device consumables (e.g. lubricants) based
on equipment status data evaluation.

One can see, that the SMS framework not only has potential to improve the device utilization
and maintenance itself but can also contribute to cost savings on both the vendor and customer
side.

7

1. Introduction

1.3.1 Requirements

In this section, only the identified requirements of the SMS framework, which are dealt with in
this thesis are listed.

Regarding data transmission in the SMS framework, the following requirements were iden-
tified:

• Withstand network downtimes
The devices in the SMS framework will not always have a working network connection.
Nevertheless, they should still be able to receive all relevant information. They should
also be able to publish data, which was generated during downtimes, once a network
connection is available again.

• Minimal protocol overhead
It is supposed, that target devices are often operating in restricted areas, where bandwidth
and network speed is limited. Also, some use cases might require data transmission in a
frequencies of one Hertz or even beyond. Thus, it is a requirement to keep the overhead
necessary for data transmission at a minimum.

• Routability to specific network entities
Network entities must be able to send their messages to specific other network identi-
ties, which have expressed interest in the data. Thus, a routable transmission solution is
needed.

• One-to-many, one-to-one, many-to-one support
In the scenario, different communication patterns are used. Multiple entities should be
able to receive and process status data from industrial devices. Industrial devices should
be able to receive data and commands from different entities, for example the vendor and
the device owner.

The following security requirements were identified:

• Authentication
Only authenticated clients should be able to use the SMS framework and transmit infor-
mation via its infrastructure.

• Authorization
Only authorized clients should be able to read messages. Customers should never be able
to gain access to information of other customers.

• Message authentication and Non-Repudiation
Recipients of messages should be able to verify the authenticity and its origin. The origi-
nator must not be able to repudiate having sent the message.

8

1.4. Proposed Solution

• Data Integrity
The recipient must be able to verify the message’s integrity and – if any changes occurred
to the data while in transit – reject processing it.

• “Firewall Friendliness”
The data connection between the customer and vendor should be "firewall friendly" for
the customer. This means, that it should ideally only use a single port and establish
connections from the inside and not vice versa. Furthermore, to guarantee that firewalls
can follow and track sessions, data should be transmitted on top of Transmission Control
Protocol (TCP).

• Use established standards
It is of utmost importance, to convince customers of the security of the SMS framework
and the safety of their data. After all, they will be transmitting very sensitive and secret
information via the SMS framework. It is a goal, to only use well established standards
and not to implement own cryptographic methods.

• Ability to revoke access for devices
If a customer device gets stolen or an advisory gets access to its data store, the vendor
should be able to revoke the device’s access rights. Sometimes devices will change lo-
cations or be resold to different customers. Then, the old customer should not be able to
access any device information anymore.

1.4 Proposed Solution

Bases on the elaborated requirements, a data transmission system via a central network linking
entity on the vendor’s premises is proposed.

During the design of the system, special emphasis should be placed on data security. Not
only while data is in transit but also while it is processed by network entities on the path between
an originator and recipient. Thus, end-to-end encryption should be applied between network
entities.

It needs to be considered, that data from industrial equipment is interesting for multiple
different stakeholders, such as the customer and vendor. The applied cryptographic functions
thus need to be capable to encrypt data for multiple recipients simultaneously.

Although the goal of this thesis’ work is to implement a prototype, it is needed to structure
the system in such a way, that it could be moved to a fully productive system without major
changes in the system architecture.

9

1. Introduction

1.4.1 Scope and Limitations

Since the implementation of the whole SMS framework is a task for multiple project partners,
the focus of this thesis is limited to specific parts of it. The focus of this thesis is on the
transmission of data and the backend services.

This thesis does not deal with the data collection or connectivity on the customer device.
Furthermore, the implementation of a fully scalable productive SMS framework is also out of
scope of this thesis.

To sum up in one sentence: This thesis focuses on how data can securely be transmitted
from an industrial device to multiple stakeholders and show a prototypical implementation of
how to do so.

1.5 Research Questions

Based on the scenario and the specified requirements, the following research questions (RQs)
in this thesis are dealt with:

• (RQ1) Which technology can be used, to centrally aggregate and distribute data
from globally distributed clients?
Research on the technologies being used in IoT applications today is made. There, it is
specifically focused on the variety of transmission protocols and its features. Ways of how
to aggregate and distribute data on a global scale for a vendor, which has field clients all
over the world are proposed. Specifically, the technology should fulfill the requirements
for Machine-to-Machine (M2M) communication in an IoT scenario.

• (RQ2) How can established standards be used to secure data transmission in the
SMS framework?
The devices in the SMS framework will be globally distributed. For comprehensive analy-
sis data needs to be aggregated at a central point. One has to transmit this highly sensitive
industrial data via insecure channels such as the Internet. Thus, high emphasis is placed
on the security of the data while in transit. For security functions, it is desired to make
use of established industry standards with a broad acceptance among potential customers.
Additionally, wide spread security functions and implementations are well tested. This
should help to avoid making security mistakes in cryptographic implementations.

• (RQ3) Implement a prototype to proof the elaborated concepts and show a working
data transmission from customer devices to the vendor’s backend using the elabo-
rated concepts
In order to proof the feasibility of this work, a prototypical implementation of a SMS

10

1.6. Methodology

framework using the proposed technologies and features is done. The goal is, to do the
breakthrough of data transmission all the way from a field client via the Internet to the
vendor’s backend. Furthermore, the backend service which handles data processing and
storage on vendor side is implemented. Project partners do support on customer device
side and implement all necessary functionality there.

1.6 Methodology

This work is affected by the structure of the Arrowhead project: the project was divided in
generations in which the target was, to have a working prototype at the end of each generation.

Thus, the methodology of evolutionary prototyping was applied during the research of this
thesis. Here, the system evolves over time and new features are added in each iteration. At
the end of each iteration, there should be a working prototype which demonstrates the features
implemented in the preceding iteration. However, it is not the goal to have a solution ready for
use in a productive environment at the end of each iteration.

In the first of all iterations, a check of the existing IoT landscape is made, the available tools
and features. No ready system was found, which would fulfill all of the project’s needs. In
the next step investigations on the available data transmission protocols for IoT are performed.
Multiple protocols in terms of their applicability for the scenario and their security features are
tested. In parallel to the data transmission research existing security features, such as authenti-
cation and authorization, for IoT are investigated on.

The prototype is also incrementally implemented: In the very beginning, it is started with a
simple foundation for the data transmission system. Then, simple security features are applied
to the system. These security features are incrementally improved until the final prototype for
this project with hybrid data encryption is reached (Chapter 4).

To show the practicality of the system, typical showcases are elaborated on and they are
developed in parallel with the prototype (Section 5.7).

1.7 Scientific Contribution

Partial content of this work has already been disseminated in the following peer-reviewed pub-
lications:

• Lesjak, Hein, Hofmann, et al. [2015]

• Maritsch, Kittl, and Ebner [2015]

• Maritsch, Lesjak, and Aldrian [2016]

11

1. Introduction

• Lesjak, Bock, et al. [2016]

Additionally, contributions to Chapter 10 “Application System Design - High Security” of
[Delsing, 2017] have been made.

Some sections and figures of this thesis are based on and reuse contents from these publica-
tions. References to these sources are not always made explicit.

1.8 Thesis Structure

Chapter 2 describes the current State of the Art in concepts relevant for the scenario. A sum-
mary on transmission protocols for IoT in Section 2.2 and specifically on the Message Queue
Telemetry Transport (MQTT) protocol (Section 2.2.1) and its relevant concepts is made. In
Section 2.3 the current methods regarding security are described. Specifically, Transport Layer
Security (TLS) and certificates are explained in Section 2.3.1 as well as end-to-end encryption
in Section 2.3.2.

In Chapter 3 the architectural design of the data aggregation framework based on MQTT is
shown. It is discussed how to structure the data in transmission (Section 3.2). Next, the broker
placement for the publisher-subscriber architecture (Section 3.3) is elaborated on.

Next, in Chapter 4, the approach to securing the data aggregation framework is shown.
Special emphasis is placedon TLS (Section 4.2), authentication (Section 4.3), authorization
(Section 4.4) and end-to-end encryption (Section 4.5). An implementation of a Topic Access
Control System (TACS) for MQTT in Section 4.4.1 is shown as well.

In Chapter 5 the specific implementation of functionality in the backend system is described.
After showing the dataflows in the SMS framework architecture (Section 5.2), the implemen-
tation and configuration of components is demonstrated. These include the configuration of
the MQTT message broker in Section 5.3, the MQTT subscriber (Section 5.4), the end-to-end
cryptography service (Section 5.5) and the design of a database schema for data collection in
Section 5.6. To proof the working of the prototypical implementation, exemplary workflows
which are based on the aggregated data in Section 5.7 are shown.

Chapter 6 discusses the implementation which is made based on this research. It is elabo-
rated on the advantages and disadvantages of decisions which are made regarding the architec-
ture and implementation.

In Chapter 7 finally, the raised research questions are evaluated, the lessons learned are
concluded and an outlook is given on the next steps to be performed.

12

Chapter 2

State of the Art

“ The Internet of Things has the potential to change the world, just as the Internet
did. Maybe even more so. ”

[Kevin Ashton, British technology pioneer]

The emerging of the IoT quickly obtained attention from many organizations and compa-
nies. Thus, the technical standards and implementations in the field evolved quickly.

This chapter describes the most important concepts which are used for the implementation.
First, the connection between the SMS framework and a SOA is discusses. Next, data transmis-
sion in the IoT in Section 2.2 is elaborated on. MQTT and some of its features important for
the use case are specifically described in Section 2.2.1. Finally, Section 2.3 describes concepts,
which are relevant for the authentication and authorization features in the system.

Parts of this chapter are reproduced from the publications (Maritsch, Kittl, and Ebner, 2015
as well as Lesjak, Hein, Hofmann, et al., 2015).

2.1 service-oriented architecture (SOA)

A SOA is a paradigm of distributed systems. It consists of different services, which provide
functionality. It is not important, how the functionality is achieved; thus, the service can be
imagined as a blackbox. The service can be used independently and it has a defined interface
specifying how to communicate with it. The SOA also involves a service registry, where ser-
vices can register and offer their functionality. There, the services can be queried and used by
consumers. Optionally, there can be an authorization system, which manages access to services
[The Open Group, 2009, pages 1–2].

13

2. State of the Art

According to Priller, Aldrian, and Ebner [2014] one can portray the SMS framework as a
kind of SOA: The vendor will host a service registry, where customer devices can register and
offer services. An exemplary service is the provision of a snapshot. A consumer can then use
the services provided by the devices, like the snapshot provision, and process the gathered data.
Another service would be the firmware update provision service by the vendor. It will offer
this service in the registry and interested clients can consume this service. Additionally, an
authorization service is needed, to only allow authorized devices to consume specific services.

Figure 2.1 shows a basic SOA with a publisher, consumer, registry and authorization service.
The arrows depict the interactions inside the SOA.

Provider Consumer

Registry

Publish

Contract

Lookup

Authorization

Service

Authorize Authorize

Interact

Figure 2.1: Basic SOA consisting of a service publisher, consumer, registry and an au-
thorization service. The publisher provides a service contract to the registry.
[Drawn by the author of this thesis.]

2.2 Data transmission in IoT

When speaking of the IIoT one is usually talking of things with very limited computing power
(e.g. devices in sensor networks). In order to integrate these devices into a system, several
properties are desirable for transmission protocols to be used:

• Scalability
In order to support a large amount of clients in a network, the protocol should allow for
simple scalability; both in terms of the amount of connected clients and the messages
being transmitted via the network.

• Efficiency

14

2.2. Data transmission in IoT

The protocol should transmit payloads as efficiently as possible and only require minimal
overhead for transmitting the payload.

• Portability
As there can be devices with different architectures and operating systems involved, the
protocol should be portable to all of these devices, regardless of their specific technology.

• Simplicity
Since IoT devices may have only limited computing power, it is of advantage, if the
protocol is kept simple so that it is easy for clients to compose and parse messages.

• Failure tolerance
Due to their use in restricted environments, IoT devices may be unable to be reached
sometimes. Also, the network might experience some downtimes. The transmission
system should cache messages until a network connection is available again.

Before looking at some specific protocols, it is needed to distinguish between two basic
patterns of communication in Internet protocols:

• Request/Response
Communication in these kinds of protocols is based on the principle, that a client has to
make a request in order to get information from another entity. The other entity would not
publish information without a prior request. A prominent example would be Hypertext
Transfer Protocol (HTTP), where a client needs to make a request to a web server. Only
then, the web server will return information in a response. But the server would never
initiate a data exchange.

• Publish-Subscribe
In a publish-subscribe pattern, the communication is bidirectional. Every entity in the
system can initiate data exchange. Network entities can subscribe for desired messages
and publish messages to other clients, which have expressed interest. Clients can publish
information without being requested for doing so. This communication pattern provides
loose coupling; subscribers might not be aware of publishers and vice versa and subscrip-
tions can occur before publications (for example “What is the temperature tomorrow”).
Since no data is transmitted without explicit subscription, the approach provides a good
protection against spam messages and Denial-of-Service attacks. MQTT is a prominent
publish-subscribe-pattern based protocol.

Over the last decade, many protocols were declared to be made for IoT. The following
paragraphs describe a few of them.

15

2. State of the Art

Extensible Messaging and Presence Protocol (XMPP) The Extensible Markup Lan-
guage (XML)-based protocol XMPP [RFC6120] (previously known as Jabber), is a client-
server protocol with a decentralized architecture. It allows for one-to-one as well as many-to-
many communication. The connection between two XMPP client is established via at least one
server.

Constrained Application Protocol (CoAP) CoAP [RFC7252] aims to be a lightweight
substitution for HTTP. It works in a request/response manner and offers the well-known HTTP
methods such as GET, POST, PUT and DELETE. Thus it is easy to interchange existing HTTP-
based solutions with it. It is mainly designed for M2M communications but it can also be used
in communication between machines and general Internet and in communication between ma-
chines over Internet. As the name implies, it is specifically designed to work in constrained
networks that are lossy or low-powered. For transportation, it uses User Datagram Protocol
(UDP) by default but can also be run over other transport protocols such as the reliable TCP.
CoAP messages are encoded in a simple binary format and the protocol adds a fixed four byte
header to each message. Furthermore, it has built-in discovery methods in order to allow clients
to query servers for functionality they offer. In terms of security, bindings to the Datagram
Transport Layer Security protocol are available. However, it only offers one-to-one communi-
cation.

MQTT The MQTT protocol is exhaustively described in Section 2.2.1.

2.2.1 The Message Queue Telemetry Transport (MQTT) protocol

With the hype of the IoT, many dedicated protocols evolved. One that emerged quickly and
gained broad acceptance was MQTT.

In 2014, it became an Organization for the Advancement of Structured Information Stan-
dards (OASIS) standard in version 3.1.1 [MQTT Version 3.1.1]. Then, in 2016, MQTT gained
a boost in recognition when it finally became an International Standards Organization (ISO)
standard [ISO20922].

MQTT is a binary publish-subscribe protocol, which was specifically developed with respect
to M2M communication. Due to its structure, which offers a dramatically reduced protocol
overhead compared to other protocols (see Table 2.1 for details), it is specifically useful for
communication in environments with restricted network access, limited bandwidths as well as
low available computing power. Additionally, MQTT distinguishes from other protocols with
its infrastructure: based on a publish-subscribe-model (see Figure 2.2) messages are exchanged
between senders and recipients via a central unit: the MQTT message broker (referred to as

16

2.2. Data transmission in IoT

broker throughout this document). An example of the described publish-subscribe architecture
with the broker can be seen in Figure 2.2.

Furthermore, the MQTT protocol specifies the building of a hierarchy of message brokers
(bridging). To give an example, in a system a dedicated broker can be installed at every pro-
duction location, serving as a bridge between the local machines and a central master broker.

Since MQTT has a huge user base, many implementations of the protocol are available for
all major programming languages. Moreover, many different broker implementations exist –
commercial (e.g. HiveMQ1, IBM Websphere2) as well as open-source (e.g. mosquitto3, Mo-
quette4, Apache ActiveMQ5). In Table A.1 in Appendix A the features of different open-source
and commercial MQTT broker implementations are evaluated.

Table 2.1 compares some important attributes of MQTT with two of the most widely spread
protocols on top of TCP/Internet Protocol (IP): HTTP and Simple Mail Transfer Protocol
(SMTP). Contrary to for example HTTP, MQTT is a data-centric protocol. It does not care
which type of content is transferred and every payload will simple be treated as a sequence of
bytes.

The unsuitability of HTTP for IoT applications, where small payloads of data are transferred
is also described by Yokotani and Sasaki [2016]. They show the significant differences in data
overhead between HTTP and MQTT.

MQTT is a publish/subscribe based protocol. Thus an implementation of various commu-
nication patterns, such as one-to-one, one-to-many or many-to-one is possible. This allows for
a wide covering of use cases in the SMS framework.

2.2.2 Features

MQTT provides various features, which make it very useful for the use in an IoT scenario. The
most important features for the use case are described in the next sections.

2.2.2.1 Topics

The categorization and clustering of messages is made available by the MQTT concept of top-
ics. They offer the possibility, to manage messages in a hierarchy; comparable to how it is in a
forum. Thus, subscribers are able to specifically state their interested topics and receive mes-
sages for them. Topics are treated as a hierarchy, using a slash (/) as a separator. Figure 2.2
shows a simple MQTT topic structure.

1www.hivemq.com/, Accessed: April 23, 2017
2www.ibm.com/software/products/en/appserv-was, Accessed: April 23, 2017
3www.mosquitto.org, Accessed: April 23, 2017
4github.com/andsel/moquette, Accessed: April 23, 2017
5activemq.apache.org, Accessed: April 23, 2017

17

www.hivemq.com/
www.ibm.com/software/products/en/appserv-was
www.mosquitto.org
github.com/andsel/moquette
activemq.apache.org

2. State of the Art

MQTT HTTP SMTP
Transport protocol TCP/IP TCP/IP TCP/IP

Security optional (TLS) optional (TLS) optional (TLS)
Differentiation between

subscribing and publishing
clients

yes no no

One-to-many/many-to-one
communication yes no yes

Simple integration of new
clients yes no no

Quality of Service (QoS)
yes (at most one,

at least one,
exactly once)

no no

typical protocol overhead
2 bytes +

variable header
(≈ 3 bytes)

200 - 2000 bytes
(typical 500

bytes)
≈ 1000 bytes

Table 2.1: Comparison between MQTT, HTTP and SMTP.

In a multi-level topic hierarchy, single levels are divided by forward slashes (/). Thus,
exemplary MQTT topics could be the following:

• temperature/roomA

• factoryA/hallB/device567/operatinghours

Wildcards In a topic hierarchy, publishers can use wildcards to subscribe to multiple topics
at once. MQTT specifies two wildcards: the single-level wildcard (+) as well as the multi-level
wildcard (#). While the single-level wildcard represents one arbitrary topic level, the multi-level
wildcard represents arbitrarily many topic levels. Thus, the multi-level can only be used as the
last character in a topic subscription string (e.g. temperature/# but also #).

To continue the example from above, a client interested in all data from factoryA would
subscribe to the MQTT topic factoryA/#. A client interested in operating hours data from all
devices, would need to subscribe to +/+/+/operatinghours.

However, factoryA/# and factoryA/+ would not represent an equal subscription, since
for example factoryA/hallB/device567will not be matched by the latter subscription while
it will by the first.

Figure 2.3 depicts several examples and possibilities of wildcard subscriptions.

18

2.2. Data transmission in IoT

Publisher
1

Publisher
2

Publisher
3

Subscriber
1

Broker
Subscriber

2

Subscriber
3

a

b

c

a

b,	c

a,	c

Topic Subscriber

a 1,	3

b 2

c 2,	3

Figure 2.2: A simple example of how subscribers and publishers can make use of MQTT’s
topic system. [Drawn by the author of this thesis and Thomas Ebner.]

2.2.2.2 Quality of Service (QoS)

Another feature of MQTT is Quality of Service (QoS). Every message can be provided with a
QoS level, which tells entities in the system how to deal with its delivery. Depending on the QoS
level of a message, different treatments regarding its delivery are intended (refer to Table 2.2).

QoS level Delivery Delivery guarantee
0 maximal once no guarantee; "best effort"
1 minimal once guaranteed delivery; duplicates possible
2 exactly once guaranteed delivery; no duplicates possible

Table 2.2: QoS levels specified by the MQTT standard.

QoS 0 corresponds to the Fire & Forget principle: as soon as a message has left the client,
it is dropped. In contrast, when using QoS levels 1 or 2, the client must wait for an acknowl-
edgment, that the message has been delivered (at least) once. Only after receiving the acknowl-
edgment, the sender is allowed to drop the message. However, higher QoS levels mean more
network traffic and higher latencies, since several control and acknowledge packets need to be
exchanged between the entities in the system. But since MQTT was specified and developed as
a lightweight protocol and not all applications do require guaranteed delivery, the choice of the
QoS level has been left over to the user.

Figure 2.4 shows a network protocol analysis made with Wireshark6. Subfigures 2.4a, 2.4b

6www.wireshark.org, Accessed: April 23, 2017

19

www.wireshark.org

2. State of the Art

ID	1	
devA

ID	2
devB

ID	3	
devA

Subscriber
1

Broker

Subscriber
2

Subscriber
3

Subscriber Topic Messages	
from	device ID

1 temp/r2/devB 4

2 temp/+/+ 1,	2,	3,	4

3 temp/+/devB 2,	4

4 temp/r1/# 1,	2

Room	1	(r1)

Room	2	(r2)

ID	4	
devB

temp/+/+

Subscriber
4

Figure 2.3: This advanced MQTT topic example shows the publications and subscriptions
to topics with more levels. In the fictional setup, two rooms (Room 1 and
Room 2) are used with two devices each (Device A and Device B). These de-
vices measure some temperature and publish it into their specific topic. On
the subscriber side, there are clients with interests in different partitions of the
data: Subscriber 1 subscribes to messages from a specific device, Subscriber
2 subscribes to messages of all rooms and devices, Subscriber 3 subscribes to
messages from all instances of Device B and Subscriber 4 subscribes to mes-
sages from all devices in Room A. [Drawn by the author of this thesis and Thomas
Ebner.]

and 2.4c show the packets being transfered for QoS 0, QoS 1, and QoS 2 respectively. For the
test, a publicly accessible MQTT broker7 was used.

2.2.2.3 Persistent Session

MQTT specifies persistent sessions, which is a kind of a contract between a client and the
broker. This contract instructs the broker, to keep a client’s session alive, also when it discon-
nects. This means, that while the client is unreachable and does not acknowledge publishes,
the broker needs to queue all messages of QoS levels 1 and 2 until the client connects the next

7iot.eclipse.org, Accessed: April 23, 2017

20

iot.eclipse.org

2.2. Data transmission in IoT

(a) MQTT publish with QoS 0

(b) MQTT publish with QoS 1

(c) MQTT publish with QoS 2

Figure 2.4: MQTT publishes with different QoS levels. An MQTT message to topic
foo/bar with the content “Hello World” has been sent to the publicly avail-
able MQTT broker. The figure shows the flow of messages needed for the
completion of the message for the respective QoS levels. The network traffic
was captured with the Wireshark network protocol analyzer. [All screenshots from
Wireshark made by the author of this thesis.]

time. Then, all messages will be delivered immediately. The session is identified by the MQTT
clientId [MQTT Version 3.1.1, Section 3.1.3.1], which must be specified on the client upon
every connection attempt.

This feature is extremely useful in the IoT scenario, where devices might not always be
online and available for receiving messages from the vendor.

2.2.2.4 Last Will

Another concept relevant for the IoT, which is offered by MQTT, is Last Will. During the
initial connection handshake, a client can tell the MQTT broker a last will, which consists of a
message and an MQTT topic, which will be posted by the broker when the connection to the

21

2. State of the Art

client is dropped. The cancellation of a connection to a client is detected by the broker when a
ping attempt does not succeed or the client intentionally cancels the connection. Thereby, for
example a failure of devices in a system can be monitored.

2.3 Security

Understandably, the use case has some strong security requirements (described in Section 1.3.1).
A vendor’s customers might be exchanging very sensitive data. Leaking of any information may
allow unauthorized third parties to draw conclusions and – in the worst case – gain competitive
advantages.

Since MQTT does not specify any security features (apart from username and password
fields, which can be used by the client during the initial connection procedure), one needs to
make use of other methods8.

First, it is elaborated on the TLS protocol and digital certificates in Section 2.3.1. Then, end-
to-end encryption using Cryptography Message Syntax (CMS) in Section 2.3.2 is discussed.

To promote a general understanding, a few terms are described beforehand.

Digital Certificate A digital certificate binds a cryptographic (public) key to an identity and
is issued by an authority. The entity holding the certificate is in possession of the corresponding
private key. With this key, it can prove its identity to other entities.

Digital certificates can be used to get the public key of a remote identity, and verify the
identity. This happens everyday in the world wide web, when a client wants to establish a
secure connection to a web server. The server will provide the client its digital certificate and
prove its identity. The client will verify the certificate and check, whether it was issued by a
trusted authority.

Certificate Chain A digital certificate always has an issuer, which signs it. Certificates can
also be self-signed (also known as Root Certificate Authorities). Thus, a chain can evolve,
where each level represents a different entity. Figure 2.5 shows an exemplary certificate chain.
The trustworthiness of a certificate is always assured by the certificate on level above (except
for self-signed certificates). The upper certificate is also known as a trust anchor. As for the
root certificate there is no upper level, it is signed with its own key. Here trust can only be
established by the client, if it already knows the certificate and is trusting it.

8The very specific details as well as the justifications why certain security algorithms have been chosen for this
project are out of scope for this thesis. They have been elaborated during the project and were mainly selected
and defined by project partners at the Institute of Applied Information Processing and Communications at Graz
University of Technology.

22

2.3. Security

Certificate Revocation List (CRL) A CRL is usually attached to a Certificate Authority
(CA) and contains all certificates of the root CA, which had to be revoked. Revocation reasons
for a certificate include compromising of key material. The revocation list is usually identified
via an Uniform Resource Identifier (URI) in the root CA and made available by the root CA is-
suer, which is also responsible for its maintenance. CRLs are supported by the X.509 certificate
standard [RFC5280].

Public Key Infrastructure (PKI) A PKI is a system for exchanging, issuing and verifying
digital certificates. It is built upon the concept of asymmetric cryptography, where a key pair for
cryptographic operation consists of a public and a private key. A PKI is used for managing the
public keys. This includes for example issuing or revoking certificates. A simple PKI consists
of a root CA, digital certificates for entities in the infrastructure and an optional CRL.

Message Authentication Code (MAC) A MAC can be used to verify a message’s authen-
ticity and integrity. It is a value calculated by the originator of a (encrypted) message, transmit-
ted alongside the payload and verified by the recipient. The following two functions allow to
calculate and verify a MAC:

(mac) = generateMAC(m, k)
(valid) = validateMAC(m,mac, k)

generateMAC() generates a MAC mac for the message m using a secret key k. The function
validateMAC() takes as input parameters the same message m, the calculated previously calcu-
late MAC mac as well as the secret key k. Iff the calculated MAC equals the transmitted MAC,
the message can be considered valid and unaltered.

Authenticated Encryption (AE) AE is a symmetric-key scheme, which allows for the au-
thenticated exchange of encrypted data. In a symmetric-key scheme, the same key will be used
for encryption and decryption. One well-known symmetric-key scheme is Advanced Encryp-
tion Standard (AES).

An AE schema specifies the following two (deterministic) functions:

(m′,mac) = aeEnc(m, k, iv)
(m, v) = aeDec(m′,mac, k, iv)

The function aeEnc() encrypts and authenticates a message m using a symmetric key k and
an initialization vector iv, which is optionally necessary depending on the kind of encryption
algorithm used (the Galois/Counter Mode (GCM) requires one for example). The output of this

23

2. State of the Art

function are two values: the encrypted message m′ and a MAC mac, which can later be used to
verify the message’s integrity.

The function aeDec() receives as input the encrypted message m′, the MAC mac, the sym-
metric key k and optionally the initialization vector iv. The function will decrypt the encrypted
message and return the plain message m along with a validity value v which states, whether the
message was successfully validated with the MAC mac or not.

While the parameters m′ and mac are public, the key k must not be accessible to unautho-
rized entities. The optionally required initialization vector iv is also public. However, depending
on the encryption scheme, for a strong security it must only be used once.

An AE scheme will yield confidentiality, integrity and authenticity at once:

• Confidentiality is provided by the encryption of the message. The plain message is not
visible.

• Integrity is yielded by the MAC. Any change of the message or the MAC lead to the
recipient rejecting the message.

• Authenticity is given by the MAC. The recipient will be able to detect if the message has
been altered while in transport in which case the authenticity of the originator is not given
anymore.

Digital Signature A digital signature can be used to verify both the integrity and authenticity
of a message. The originator generates a signature for a message, which can be verified by the
recipient.

A digital signature scheme consists of two functions:

(s) = sign(m, kpriv)
(v) = verify(m, s, kpub)

The originator of a message uses the function sign() to calculate a signature value s from a
message m using a private key kpriv. Upon receiving, the recipient can check the validity v of
the signature s of the message m with the corresponding public key kpub of the originator.

Key Wrapping This is a cryptographic function, which wraps a key with a symmetric key.
This feature is used in hybrid encryption, where some payload is encrypted symmetrically and
the symmetric key needs to be securely transmitted alongside the encrypted message. Thus, a
key wrapping algorithm consists of the following two functions:

(sk′) = wrap(sk, kwk)
(sk) = unwrap(sk′, kwk)

24

2.3. Security

The wrap() function wraps the secret key sk using a key wrapping key kwk. The unwrap()
function can restore the original secret key sk given the wrapped secret key sk′ and the key
wrapping key kwk.

Now the question might arise, why would one wrap the symmetric key sk with another
symmetric key kwk? Why not just use kwk for encryption? The reason is rather simple: when
an entity wants to send encrypted data to multiple recipients, it first encrypts the data with sk. As
sk should be kept secret between the originator and the recipients and not be shared publicly,
the originator establishes the key wrapping key kwk as a shared secret which is different for
every recipient. This kwk is then used to wrap the symmetric key. The advantage clearly is, that
the originator needs to encrypt the data only once for all recipients.

Key Agreement A key agreement scheme is a cryptographic function, which allows two
parties to establish a shared secret. A well-known key agreement scheme is Diffie-Hellman
key exchange. It allows two parties to establish a secret over an insecure channel in multiple
communication rounds. However, this may be sometimes difficult when the two communicating
parties cannot directly connect or the message is processed asynchronously at the recipient. In
such cases, one can make use of a one pass key-agreement scheme. Information needs to be sent
only from one client to the other so it can construct the same secret. No response or bidirectional
communication is necessary.

Cipher Suite For TLS, many different algorithms exist and can be used for cryptographic
security functions. To agree on the algorithms to be used, the interacting parties need to agree
on them. A cipher suite is a standardized identifier for a set of algorithms being used in TLS. It
specifies, which algorithms are to be used for the following functions:

• Message Authentication (e.g. Elliptic Curve Digital Signature Algorithm (ECDSA))

• Key exchange (e.g. Diffie-Hellman)

• Hashing (e.g. Secure Hash Algorithm (SHA))

• Encryption (e.g. AES)

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 is an example of a cipher suite identi-
fier. Its parameters are explained in Section 4.2.

2.3.1 Transport Layer Security (TLS)

The TLS protocol is well known for securing connections in the world wide web and is used
whenever an user’s web browser connects to a remote server via a secure connection. On a high

25

2. State of the Art

level, in this scenario the server typically presents a digital certificate which is then validated by
the user’s web browser.

In the Open Systems Interconnection (OSI) reference model, TLS acts on the transport
layer. This means, that it is separated from the procedures and contents on the application
layer (MQTT). From a technical point of view, a TLS tunnel between a client and a server is
established according to the following procedure [RFC5246, Section 7.3]:

1. Client: ClientHello
The client sends a connection request to the server. This request includes a random num-
ber to be used later on, a session identifier and a list of supported cipher suites.

2. Server: ServerHello
The server responds to the connection request. This message includes a random number,
session identifier and a selected cipher suite. If there is no ciphers suite supported by both
the client and server an error message is returned.

3. Server: Certificate (optional)
The server sends a message containing its certificate (chain). The public key inside the
certificate must be supported by the agreed cipher suite.

4. Server: ServerKeyExchange (optional)
The server sends a premaster secret to establish a shared key with the client.

5. Server: CertificateRequest (optional)
If the client needs to present a certificate as well, the server requests for it with this
message. It might include a list of allowed certificate types, CAs and supported signature
algorithms.

6. Server: ServerHelloDone
This message signalizes to the client, that the server has finished sending relevant mes-
sages of the ServerHello.

7. Client: Certificate (optional)
The client responds to the server’s CertificateRequest by sending its certificate.

8. Client: ClientKeyExchange
In this step, the client sets the premaster secret and transmits any relevant information
to the server, for example the parameters for a Diffie-Hellman key exchange. The client
and server are not able to compute the master secret for the connection. The specific
calculation of the master secret depends on the used key exchange algorithm.

26

2.3. Security

9. Client: CertificateVerify (optional)
If the client has provided a certificate, it must send a CertificateVerify message.
This allows the server to verify the certificate ownership of the client. In this message,
the client sends a signature of the previous ClientKeyExchange message, which it has
generated with its private key. The server can verify the signature with the corresponding
public key of the client’s certificate.

10. Client: ChangeCipherSpec
With this message, the client indicates to the server, that it sends encrypted and authenti-
cated messages from now on.

11. Client: Finished
The client sends an encrypted and authenticated Finishedmessage. The server attempts
to decrypt it and verify its MAC. In case any of these steps does not succeed, the hand-
shake was a failure and the connection needs to be dropped.

12. Server: ChangeCipherSpec
As above, With this message, the server indicates to the client, that it will be sending
encrypted and authenticated messages from now on.

13. Server: Finished
The server sends a Finished message in the same way the client has done earlier. The
client verifies the message internally.

14. Handshake complete
From now on, the parties can exchange application data in an encrypted and authenticated
way.

In a system based on an MQTT, the broker plays the role of the remote server. Thus, it
has its own certificate for being able to prove its identity to clients. However, as the broker
is publicly accessible and only certain devices should be able to establish a connection to it,
some sort of authentication mechanism already at the data transport layer is favorable. The TLS
protocol also specifies the use of client certificates [RFC5246, Section 7.4.6], which allows to
also equip entities, which are clients to the broker, with a certificate proving their identity.

Typically, MQTT is transported over TCP/IP. Thus, one can make use of TLS operating on
the data transport layer which is beyond the application layer, where MQTT operates. Figure 2.6
visualizes the TLS and MQTT protocol as layers in the OSI reference model.

2.3.2 End-to-end Encryption

Since data of many different parties are processed by the MQTT broker, it needs to be assured,
that not only the paths between the clients and the broker are secure but also the application

27

2. State of the Art

data while in process.

Thus, a kind of encryption needs to be applied to the application data, which protects it all
the way from leaving the originating client until reaching the final recipient processing the data.
This is commonly referred to as end-to-end encryption. For this purpose, the interacting parties
need something in common. In particular, the originator needs to be aware of the recipient as
they need to compose the message already initially in such a way, that the recipient is able to
decrypt it.

Ideally, the originating party should be able to define a set of recipients, which will be able
to decrypt the message. This can be achieved using CMS, which is described in Section 2.3.2.1.

As a bonus, adversaries being able to compromise the MQTT broker and reading the mes-
sages being exchanged via it, can not do anything with the data. The only thing they are capable
of, is determining the originator and the intended recipients of the message. However, if they
do not have access to any of the recipients cryptographic material (in particular the private key
needed for the cryptographic operations) they will be unable to decrypt the application data.

Figure 2.7 illustrates an end-to-end encrypted packet being delivered through a TLS tunnel.

2.3.2.1 Cryptography Message Syntax (CMS)

CMS [RFC5652] is a platform-independent standard for exchanging cryptographic data using
the Abstract Syntax Notation One (ASN.1) format.

CMS is designed to fit many different purposes and different cryptographic methods. In
the use case, it is made use of its authenticated-enveloped-data content type which is suited for
authenticated encryption functionality as described in [RFC5083]. This allows to encrypt and
authenticate operational data in such a way, that only predefined parties will be able to decrypt
it.

As mentioned before, authenticated encryption is a symmetric cryptography scheme that
achieves data authenticity and confidentiality using a single, ephemeral symmetric key. CMS
provides key encapsulation capabilities to wrap the symmetric key under an ephemeral wrap-
ping key using the One-Pass MQV, C(1e, 2s, ECC MQV) Scheme as described by Barker et al.
[2013, Section 6.2.1.4].

Simply spoken, this procedure uses features of Elliptic Curve Cryptography (ECC) to wrap
the symmetric key needed in the AES-GCM encryption process for each recipient in such a
way, that only they can unwrap it. In this process, the Menezes–Qu–Vanstone (MQV) protocol
is used for key agreement between the entities.

CMS specifies a range of content types for different kinds and levels of security. One of
them is the Authenticated-Enveloped-Data content type, which is summarized by [RFC5083]
as follows:

28

2.3. Security

“The authenticated-enveloped-data content type consists of an authenticated and
encrypted content of any type and encrypted content-authenticated-encryption keys
for one or more recipients. The combination of the authenticated and encrypted
content and one encrypted content-authenticated-encryption key for a recipient is
a "digital envelope" for that recipient. Any type of content can be enveloped for an
arbitrary number of recipients using any of the supported key management tech-
niques for each recipient. In addition, authenticated but not encrypted attributes
may be provided by the originator.”

The Authenticated-Enveloped-Data content type is intended for authenticated modes of en-
cryption such as the prior described AES-GCM. For each recipient, the key for AES-GCM
encryption is pairwise established in a key agreement process using the recipient’s public key
and the originator’s private key with the Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key
agreement protocol.

Besides encrypting content, CMS provides capabilities to include unencrypted but authenti-
cated attributes. This means, that for example an originator could securely pass an unencrypted
MAC along the encrypted payload. Since the attribute is authenticated, it cannot be changed
while in transport without the recipient getting aware of it.

For the sake of completeness, it should be mentioned, that CMS also supports the encap-
sulation of unauthenticated attributes. However, these attributes can be changed without the
recipient getting aware of it. Thus, these attributes are not used.

ECMQV ECMQV is an one-pass key-agreement scheme [Barker et al., 2013]. It uses three
key pairs for operation: the static key pair of the originator, the static key pair of the recipient
and an ephemeral key pair. Furthermore, it uses the ECMQV primitive ecmqv() [Barker et al.,
2013, Section 5.7.2.3] and assumes, that all keys are derived from the same ECC domain.

It allows an originator O and a recipient R to establish a shared secret in a single pass. This
means, that there is no bilateral communication between the clients necessary and processing at
the originator is timely independent from processing at the recipient.

ECMQV assumes, that both parties are in possession of a static key pair Okpub,kpriv and
Rkpub,kpriv . It is assumed, that originator O is in possession of recipient R’s public key Rkpub and
vice versa.

Then, the procedure for key establishment is as follows:

1. Procedure at originator O

• Generate a random ephemeral key-pair Ekpub,kpriv

• Compute the shared secret Z by calling ECMQV:
Z = ecmqv(Okpriv ,Rkpub , Ekpriv , Ekpub ,Rkpub). Rkpub is intentionally used twice.

29

2. State of the Art

2. Transfer the public ephemeral key contribution Ekpub from originator O to recipient R.

3. Procedure at recipient R

• Compute the shared secret Z by calling ECMQV:
Z = ecmqv(Rkpriv ,Okpub ,Rkpriv ,Rkpub , Ekpub).

Both parties have now obtained the shared secret Z. Note: usually Z is not directly used for
cryptographic functions such as encryption but a key derivation function is applied to Z in order
to get a key in desired format.

AES-GCM AES is a cryptographic function, which is used to encrypt and decrypt data with
a symmetric key. GCM describes the mode of operation of the encryption/decryption. GCM
introduces additional security to AES by using an initialization vector and a counter value for
block encryption in AES. The initialization vector is protected by the scheme [Dworkin, 2007].

Figure 2.8 shows and describes the creation, transmission and unpacking of the CMS mes-
sage. Further information can be found in [Barker et al., 2013, Section 6.2.1.4] for ECMQV
respectively in [RFC5084] for AES-GCM in a CMS context.

30

2.3. Security

Figure 2.5: This figure illustrates an exemplary certificate chain. A self-signed certificate
is used to sign an intermediate certificate. This again is used to sign another in-
termediate certificate. Finally, an endpoint certificate issued to www.acme.com
is signed. A web server reachable under this domain would present this cer-
tificate to a client and verify that it has the corresponding private key. The
client would traverse the certificates’ signatures in the chain up to a root. If
all signatures are valid and the client trusts the root certificate, it can also trust
the endpoint certificate and thus verify, that the entity they are communicating
with is really the web server at www.acme.com. [Drawn by the author of this thesis.]

31

2. State of the Art

 – Physical Physical Devices

e.g. Ethernet, 802.11 – Data Link

 – Network IP

TLS – Transport

MQTT – Application

Application Data

MQTT Payload
MQTT

Header

TLS Payload (encrypted)
TLS

Header

IP Payload

Ethernet Payload

IP

Header

Ethernet

Header

Ethernet

Trailer

0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 ...

Figure 2.6: MQTT and TLS in the OSI reference model. MQTT works on the application
layers and is encapsulated in TLS packets. [Drawn by the author of this thesis.]

32

2.3. Security

Customer Vendor

Message BrokerIndustrial Device

Mediator
Core

Engine

MQTT Packet

MQTT

Header

Payload

(CMS encrypted)

TLS Tunnel

Backend

Backend

Service

Database

TLS Tunnel

Topic

Engine/Router

Figure 2.7: This figure illustrates an end-to-end encrypted CMS message as payload of an
MQTT packet being delivered through an established TLS tunnel. Although
the TLS secured connection is only established between network entities, the
data is not available in plain on the message broker since it is secured with an
additional layer. [Drawn by the author of this thesis.]

33

2. State of the Art

recipient

required information

originator

ECMQV

+ keywrap

ECMQV

+ keywrap

AES GCMAES GCM

CMS message (ASN.1 structure)CMS message (ASN.1 structure)

originatorInfooriginatorInfo

recipientInfos []recipientInfos []

authEncryptedContentInfoauthEncryptedContentInfo

MACMAC

version (0)version (0)

required informationrequired information

symmetric keysymmetric key

initialization vectorinitialization vector

plain textplain text

recipient certificates []recipient certificates []

originator private keyoriginator private key

originator certificateoriginator certificate

initialization vectorinitialization vector

outputoutput

plain textplain text

valid ?valid ?

symmetric keysymmetric key

recipient private keyrecipient private key

recipient certificaterecipient certificate

ECMQV

+ keywrap

ECMQV

+ keywrap

AES GCMAES GCM

Figure 2.8: This figure shows the abstracted composition of a CMS packet in the use
case. The left side shows the encryption of a plain text (colored in blue)
and all information, which is required to encrypt the text for particular recipi-
ents (identified by their certificates). The resulting CMS message (encoded in
ASN.1) is indicated in center. The encrypted text is now encapsulated in the
authEncryptedContentInfo field (colored in blue). On the recipient again,
the information required to unwrap the key and decrypt the text is indicated as
well as the results after processing the CMS message. The two engines needed
to perform all necessary steps for encryption and decryption (ECMQV and
AES-GCM) are here represented as black boxes, as their very detailed mode
of operation is out of scope. [Drawn by the author of this thesis.]

34

Chapter 3

The MQTT Data Aggregation Framework

“ You can have data without information but you cannot have information without
data. ”

[Daniel Keys Moran, computer programmer and science fiction author]

In this chapter, we will show our implementation considerations for the proposed SMS
framework regarding data aggregation. Section 3.1 describes the usage of MQTT in our SMS
framework. Here, we specifically focus on how to make smart use of MQTT’s topic hierarchy
capabilities in Section 3.2 as well as the infrastructure of brokers in Section 3.3.

Parts of this chapter are reproduced from the author’s publications [Maritsch, Kittl, and
Ebner, 2015], [Maritsch, Lesjak, and Aldrian, 2016] as well as [Lesjak, Bock, et al., 2016].

3.1 MQTT

For the data transmission protocol, we chose to use MQTT based on our elaborations docu-
mented in Section 2.2.1.

On vendor side, we make use of the open-source MQTT broker implementation Mosquitto1.
It implements version 3.1.1 of the MQTT standard. The broker is implemented in C and C++

and also offers client libraries. Mosquitto has an authentication plugin system, which allows
users, to built custom authentication solutions.

Figure 3.1 shows the communication sequence between an MQTT client and a broker. Dur-
ing the initial TLS handshake, the two parties will exchange certificates and verify the respec-
tive other. Upon the successful completion of the TLS handshake, the client will initialize the

1mosquitto.org, Accessed: April 23, 2017

35

mosquitto.org

3. The MQTT Data Aggregation Framework

MQTT connection procedure. Afterwards, the client will be able to subscribe and publish mes-
sages. For subscriptions, the client will send its topic and QoS desires to the broker, which
will acknowledge them. For the publishing of a message with QoS 2, the client will first send
the message (PUBLISH). If the message is valid, the broker will respond that it has received
the publish desire (PUBREC). The client requests the broker to release the message (PUBREL).
Finally, the broker will acknowledge the complete procedure (PUBCOMP). This handshake-like
procedure guarantees, that the message was successfully received by the broker and the client
can verify the delivery. The disconnection procedure of MQTT is unidirectional; the client will
send a disconnect message to the broker without having to wait for acknowledgment.

3.2 MQTT topic structuring

In the SMS framework, one goal is to make smart use of MQTT’s topic system. We want to
achieve a system, which on the one hand allows clients to easily subscribe for intended messages
on the broker and on the other hand complies with our security standards.

3.2.1 Topic candidates

For topic structuring, there are a number of suitable topic types. The following (non-exhaustive)
list enumerates a number of those potential categories. However it is up to the very specific use
case to identify the topic categories to be used.

• serialnumber
The serial number string of an equipment uniquely identifies an instance of a specific
industrial equipment.

• class
The class string of an equipment identifies its type, for example a Fuel Meter (FM) or
Particle Counter (PC).

• customer
The customer string uniquely identifies a vendor’s customer operating equipment in-
stances.

• premise
The premise string identifies the customer’s site, on which the customer is operating the
industrial equipment.

36

3.2. MQTT topic structuring

MQTT BrokerMQTT BrokerClientClient

TLS CONNECT

Server Certificate

Client Certificate

TLS HandshakeTLS Handshake

Finished

CONNECT

CONNACK

MQTT Connection ProcedureMQTT Connection Procedure

SUBSCRIBE
topic: "macc1/acc2/dev123"

QOS: 2

SUBACK
grantedQOS: 2

MQTT SubscriptionMQTT Subscription

PUBLISH
topic: "macc1/acc2/dev123/snapshot"

message: "hello world"
QOS: 2

PUBREC

MQTT PublishMQTT Publish

PUBREL

PUBCOMP

DISCONNECT

MQTT Disconnection ProcedureMQTT Disconnection Procedure

Figure 3.1: This sequence diagram illustrates the procedures to be taken by the client and
server in order to establish an MQTT connection and exchange data via a TLS
tunnel. For readability purposes, only the most important parameters are shown
and some steps in the TLS handshake have been omitted. [Drawn by the author of
this thesis.] 37

3. The MQTT Data Aggregation Framework

• country
The country string identifies the country of a customer’s site, in which the customer is op-
erating the equipment. This might be used to structure equipment by vendor subsidiaries
which are responsible for certain geographic areas.

3.2.2 Potential topic structuring variants

In this section, we discuss and evaluate a range of different topic structuring possibilities. The
goal is, to find the most suitable one for efficient collection of desired data as well as efficient
access restriction of MQTT clients on the broker.

1. /snapshots
Being the simplest structure, we would use a single topic to which all clients connect and
where data is aggregated. This could be any static string (such as /snapshots) or just the
MQTT root topic (/). However, in terms of data aggregation, this system would be rather
unsuitable since all clients of all customers have access to all messages and all messages
would effectively be published as broadcasts. Furthermore, topic restriction cannot be
applied since client can only get access to the complete topic or not at all.

2. /serialnumber
It would probably be the most reasonable approach to use a unique equipment identifier –
such as the serial number – as a topic and allow every client to only access their dedicated
topic. This deems to be a fruitful approach where industrial equipment of only one spe-
cific type and customer is used. Additionally, clients will only receive messages which
have specifically been published for them. Nevertheless, subscribing clients are not able
to efficiently group subscriptions. A topic restriction system is also difficult to realize
since rules for every single equipment and topic would be needed. It is for example not
easily possible without configuration, that a customer gets access to all its devices.

3. /customer/serialnumber
The broker would structure data based on equipment serial numbers and a customer iden-
tifier. In this system data can be easily assigned to a customer and thus data aggregation
on a per-customer-basis is easily possible. This also allows customers to easily aggregate
data for all of their devices.

4. /class/serialnumber
In this scenario, the topic would include an class identifier (such as FM or PC) to the
equipment’s serial number. This might be useful in case there are multiple different
types of industrial equipment using the SMS framework. The topic structure would al-
low clients to easily aggregate data for certain classes. A vendor’s department in charge
for all devices of a specific class could for example easily subscribe to data of a specific

38

3.2. MQTT topic structuring

equipment class XYZ by subscribing to the MQTT topic /XYZ/#. However, data can not
be aggregated on a per-customer-basis.

5. /customer/premise/class/serialnumber
This approach proposes a deeper and more sophisticated hierarchy than the ones previ-
ously mentioned. Thus, it offers a more detailed distinction of industrial equipments, its
classes and customers. This approach is specifically useful when there are multiple cus-
tomer’s exchanging data in the same SMS framework. This sophisticated topic hierarchy
allows to make full use of MQTT’s topic wildcards. For example, if a customer named
ACME wants to aggregate data for all of their equipment they could simply subscribe to
the topic /ACME/#. Since we also include premises in the topic identifier they might also
restrict their subscription to data of equipment from specific premises. On vendor side, if
for example a vendor’s department was in charge for equipment of class XYZ they could
subscribe to the topic /+/+/XYZ/+ in order to receive data from all industrial equipment
of this class. The approach offers various subscription possibilities for all different stake-
holders. The subscription possibilities can be used to intelligently aggregate relevant data.
Figure 3.2 visualizes this system

6. /class/customer/premise/serialnumber
In fact, this approach has no practical difference to the previous one. It depends on how
one wants their data structured and the decision is up to the implementor.

MQTT topics are both routing information and metadata. Thus not only the MQTT message
payload needs to be protected but the potentially valuable or sensitive information in the topic
information as well. TLS protects topic labels while in transport. However, if an adversary
should be able to compromise the broker, the labels will be available to them unencrypted.

In order to not disclose any valuable customer identifiable information on the broker, we
decided to replace customer and equipment names with unpredictable identifiers. We use the
following values in our final topic structure:

• master_account
An identifier for the overall account of a customer.

• account
An identifier for a specific customer account inside the master_account.

• equipmentid
An unique identifier (e.g. a serial number) for an industrial equipment owned by the
account.

39

3. The MQTT Data Aggregation Framework

Cust A

Broker

Vendor

Premise APremise A Premise B

Cust A Cust X

...

Premise APremise A Premise BPremise B

PC FM

P

PC

P

PC

...

FMFM

...
...Eqpt 1Eqpt 1

...

Eqpt 1Eqpt 1

...

HeadquarterHeadquarter

/c
u

s
tA

/p
re

m
A

/P
C

/e
q
p

t1

/c
u

s
tA

/#

/c
u

s
tA

/p
re

m
B

/F
M

/e
q

p
t1

/#

/+
/+

/F
M

/#

Site MgmtSite Mgmt Cust MgmtCust Mgmt

Cust A Mgmt General Mgmt FM Mgmt

/c
u

s
tA

/#

/c
u

s
tA

/p
re

m
A

/#

Figure 3.2: Visualization of the topic structure /customer/premise/class/serialnumber.
The levels in the topic hierarchy represent the customer, premise, class and
equipment (in this particular order). These topics are divided into different
groups in the broker in order to visualize their membership to parent topics
and mutual dependencies. On customer side, we have different premises,
classes (PC, FM) and management stakeholders. Arrows indicate all possible
client connections; the arrowheads indicate the direction of allowed dataflows.
The arrow labels describe the MQTT topics which would be used by the
clients in this particular scenario. [Drawn by the author of this thesis; adapted from
[Maritsch, Lesjak, and Aldrian, 2016].]

The resulting topic structure is as follows: master_account/account/equipmentid/.
All the sub-topics of such a topic are for the equipment identified by the equipmentid. An
exemplary used topic could be 000001/00002/EQID00000234/firmwareupdate.

Using this structure, we have a reasonable trade-off between data aggregation possibilities
and information visible to the outside: On the one hand, enough information is available for
customers to aggregate and monitor data for all of their devices. On the other hand, not too
much sensitive information is visible to the outside. One could only do statistical research, for
example of how many snapshots a customer publishes per day. However, all of this information
is also hidden to the outside by TLS.

40

3.3. MQTT Broker Architecture and Cascading

3.3 MQTT Broker Architecture and Cascading

In this section we discuss where to physically place the broker(s). One important aspect is that
the broker must be reachable by either customer equipment or another customer-side broker.
Thus, one broker instance needs to be placed inside a vendor-controlled Demilitarized Zone
(DMZ).

The basis of the following considerations are the SMS use cases, where all equipment snap-
shots shall be available to the vendor’s backend services that enable SMSs.

We have drafted and evaluated four different broker architectures which are discussed in the
following.

3.3.1 Single broker on vendor’s premises

In this variant for a broker architecture, the only broker is put in a DMZ inside the vendor’s
premises. All instances of equipment – regardless of the customer owning them – directly
publish their data into the central point of data aggregation.

One main advantage of this architectural variant is its extendability. New customers and
equipment can easily be added without the need for any additional vendor-side configuration or
setup. Thus, there are only initial installation and administration efforts necessary for the single
master broker.

However, from a security point of view, data of different customers is not physically segre-
gated. For some customers, this lack of segregation might arouse security concerns since highly
sensitive equipment data is transmitted. Consequently, a customer might refrain from allowing
the equipment to connect to the Internet without any additional security measures such as strong
payload encryption.

In the considered architecture, the broker acts as a Single Point of Failure (SPOF). This
means, that in case the broker fails to process messages, clients would have to retry the delivery
of their messages. Furthermore, the single central broker requires customers to allow per-device
direct connections to the vendor’s DMZ for publishing their data. This may represent a security
issue for customers striving for minimum outbound Internet connections for the purpose of
easier control. They maybe would prefer one central point of aggregation inside their premises
which transmits data to the vendor. We elaborate on this in the following sections.

This architecture is visualized in Figure 3.3.

41

3. The MQTT Data Aggregation Framework

Vendor

Customer 1

Master BrokerMaster Broker

ServicesServices

Customer 2 Customer n

...

Figure 3.3: Single MQTT broker system. All customer devices need to establish a dedi-
cated connection to the broker inside the vendor’s DMZ. [Drawn by the author of
this thesis.]

3.3.2 Per-customer-broker on customer’s premises plus central mas-
ter broker

A customer-side security-by-isolation characterizes this approach. Here we use one broker for
snapshot aggregation per customer on customer’s premises. Thus, data of different customers is
physically segregated. One master broker in the vendor’s DMZ collects data from all globally
distributed customer brokers.

Customers are able to experience several advantages using this approach. First of all, the
broker on customer’s premises will act as an intermediate broker and fallback solution in case
the master broker should be unavailable. Also, the whole system will not be affected by fail-
ures of single customer brokers. Customers are able to monitor their data traffic of equipment
services at one central point. Lastly, customers only need one network connection to the master
broker in the vendor’s DMZ.

Nevertheless, the system still does not provide physical segregation of equipment data on a
per-customer-basis in the vendor’s DMZ. Furthermore, the usage of such a system would also
require the customer to set up, operate and maintain their own MQTT brokers. Thus, this might
be a solution for customer’s with big amounts of equipment but certainly not for smaller ones.

Figure 3.4 visualizes this approach.

42

3.3. MQTT Broker Architecture and Cascading

Vendor

Customer 1

Local BrokerLocal Broker

Master BrokerMaster Broker

ServicesServices

Customer 2

Local BrokerLocal Broker

Customer n

Local BrokerLocal Broker

...

Figure 3.4: Distributed MQTT broker system. The customers have local brokers, to which
their devices can connect. Only the brokers need to establish a dedicated con-
nection to the master broker inside the vendor’s DMZ. [Drawn by the author of this
thesis.]

3.3.3 Per-customer-broker on vendor’s premises plus central master
broker

In this approach we propose a system using a per-customer point of data aggregation on vendor’s
premises or more specifically in its DMZ. One master broker in the vendor’s backend serves as
the point of aggregation for all customer brokers.

In the proposed system data is physically segregated on a per-customer-basis in the vendor’s
DMZ. Additionally, we do not have a SPOF on vendor side as intermediate customer brokers
are able to cache messages in case the master broker should be unavailable. Also, if one of the
customer brokers fails, the other customers are not affected.

But this system would require notable infrastructural overheads for the vendor compared
to other approaches: one dedicated broker instance for every customer is needed on vendor
side. This leaves us with bad extendability of the overall system since a new broker is needed
for every customer. As a side note, this architecture might also increase the latency of data
acquisition in the vendor backend.

This approach is depicted in Figure 3.5.

43

3. The MQTT Data Aggregation Framework

Vendor

Customer 1

Broker 1Broker 1

Master BrokerMaster Broker

ServicesServices

Customer 2

Broker 2Broker 2

Customer n

Broker nBroker n

...

Figure 3.5: Multiple customer MQTT brokers at vendor system. All customer devices
need to establish a dedicated connection to their specific customer broker in-
side the vendor’s DMZ. A master broker will aggregate data of the customer
brokers. [Drawn by the author of this thesis.]

3.3.4 Distributed vendor brokers plus central master broker

Here we propose to distribute a small number of brokers globally on vendor’s premises. One
master broker in the vendor’s DMZ collects data from all those globally distributed brokers.

One of the advantages is, that there will be shorter latencies between customer and vendor.
This might become relevant, since equipment might be operating in restricted areas, where
Internet connection is at a premium. In this approach, it might be easier for a customer or rather
its equipment to set up a stable connection to a geographically close broker of the vendor.

Nevertheless, the vendor is still left with the task of aggregating data of all globally spread
brokers at a central point. This might be not as much of a difficulty as it seems, since the
corporate network of the vendor will usually be well established between different locations.
However, the architecture we propose here might also increase latencies of data acquisition in
the vendor backend where it is processed.

Figure 3.6 illustrates this architecture.

44

3.3. MQTT Broker Architecture and Cascading

HQ USAsia

Customer Devices

BrokerBroker

Master BrokerMaster Broker

ServicesServices

Customer Devices

BrokerBroker

Customer Devices

BrokerBroker

...

Figure 3.6: Globally distributed MQTT brokers system. Customer devices need to estab-
lish a dedicated connection to the respective geographically closest broker. A
master broker will aggregate data of the globally distributed vendor brokers.
[Drawn by the author of this thesis.]

45

3. The MQTT Data Aggregation Framework

46

Chapter 4

Securing the SMS Framework

“ New threats will emerge through 2021 as hackers find new ways to attack IoT
devices and protocols, so long-lived "things" may need updatable hardware and
software to adapt during their life span. ”

[Nick Jones, vice president and distinguished analyst at Gartner]

Regarding security, it is first proposed how to use TLS in the SMS framework in Section 4.2.
It is shown how authentication (Section 4.3) and authorization features (Section 4.4) based on a
TACS (Section 4.4.1) is implemented in the broker. Besides that, it is outlined how end-to-end
encryption can be achieved in Section 4.5.

Parts of this chapter are reproduced from the author’s publications [Lesjak, Hein, Hofmann,
et al., 2015], [Maritsch, Lesjak, and Aldrian, 2016] as well as [Lesjak, Bock, et al., 2016].

4.1 Overview

In general, two levels of security are applied, which results in a hybrid encryption. First, data is
secured on the transport layer by standard TLS which is described in Section 4.2.

However, TLS does not only secure data while in transport between different network com-
ponents in the SMS framework. When data is processed – for example on the broker – the
application data is not protected anymore by TLS. Thus, data is additionally encrypted from
end to end between target entities in the SMS framework. This security mechanism is described
in Section 4.5. Figure 4.1 shows the encryption levels of data on its way through the SMS
framework.

47

4. Securing the SMS Framework

For the purpose of hybrid encryption, three different mechanisms required in the use case
are elaborated on: authentication in Section 4.3, authorization in Section 4.4 and end-to-end
data encryption in Section 4.5.

Vendor

Backend Service

DMZ Intranet

Message BrokerMessage Broker
SubscriberSubscriber ProcessorProcessor

Device ID

Table

Device ID

Table

Device ID

Table

Certificate

Store

Certificate

Store

Certificate

Store

DecryptorDecryptorDecryptor
 Mediator InternetEthernetEthernet

Encrypted Payload (CMS) &

TLS

Encrypted

Payload (CMS)

DBDB

PlainEncrypted

Payload

(CMS)

Plain Encrypted

Payload

(CMS)

Encrypted

Payload (CMS)

& TLS

Figure 4.1: Security levels of the dataflow. The blue shade represents parts of the dataflow,
where data is processed in plain. The yellow shade illustrates stages of the
dataflow, in which end-to-end encryption has been applied to the data. The
green shade represents the state of hybrid encryption, where data is end-to-
end-encrypted and transferred via a TLS tunnel. [Drawn by the author of this thesis.]

4.2 Transport Layer Security (TLS)

Regarding the TLS connection between client devices and the message broker, the TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
cipher suite is used, which utilizes ECC for key agreement and signatures. The cipher suite is –
on a high level – explained here:

• TLS

– Transport Layer Security protocol

• ECDHE

– Elliptic curve Diffie-Hellman exchange

– Anonymous key agreement protocol

– Used to establish a shared secret over an insecure channel

• ECDSA

– Elliptic Curve Digital Signature Algorithm

– Sign messages with ECC keys

– 521 bit key length

48

4.2. TLS

• AES256

– Advanced Encryption Standard

– 256 bit key length

– Used for the encryption of transferred information

– AES is a symmetric encryption algorithm and due to its simpler mathematic op-
erations compared to asymmetric encryption much faster. Also, many hardware
modules have dedicated AES engines.

• GCM

– Galois/Counter Mode

– Provides data authenticity and confidentiality

– Calculates a MAC while encrypting with AES which is used for authenticity verifi-
cation by the opposite party

• SHA384

– Secure Hash Algorithm

– 384 bit key length

– Hashing of messages

– Note: SHA384 is used for TLS, as the more secure SHA2 hashing function (512 bit
key length) is not yet standardized for TLS

4.2.1 Key Management

For hybrid encryption, it is needed to distribute quite some keys in the SMS framework. For
easier handling of those keys, digital certificates are used which are part of a PKI.

This allows, to use the following features of a PKI, which are useful for the use case:

• Identity verification
By checking the signature of a certificate, a client can easily verify the authenticity of the
remote party.

• Key revocation
Using CRLs, certificates – and thus identities – which can not be considered secure any-
more can be revoked. This comes in handy when a key gets compromised, a device is
stolen or is moved from one customer to another.

49

4. Securing the SMS Framework

• Hierarchical structuring of identities
As described in Section 2.3, certificates can be used to sign other certificates. A hierar-
chical structure for all entities in the SMS framework can be implemented, which allows
for an easier authentication and classification of the entities.

The customer-device architecture in the SMS framework can easily be represented in an
X.509 certificate hierarchy. A root CA is used to sign master account certificates. These master
account certificates can be used as intermediate CAs and sign account certificates. Finally, an
account can also serve as an intermediate CA and sign device certificates. Device certificates
do not need and will not be allowed to sign any other certificates further down the chain. The
root CA is also configured to allow a maximal path length of 2 for validation, in order that the
customer does not introduce any other intermediate CAs.

Figure 4.2 shows an exemplary implementation of a certificate hierarchy, which can be used
in the system. The hierarchy was designed to comply with the MQTT topic structure proposed
in Section 3.2.

Certificate Revocation Lists (CRLs) Distribution points of these CRLs are usually pro-
vided by the root CA issuers. They are commonly offered via HTTP and its URIs are incorpo-
rated in the root CA certificates. However, in the SMS framework, devices are only allowed to
make MQTT connections and block every other connection attempts. Thus, the approach is to
provide the CRLs via MQTT to the devices in timely fixed intervals.

4.3 Authentication

For authentication purposes, every client in the system, needs an unique identifier, which can
be validated by the entity granting or denying access.

When having a look at the world wide web, these identifiers are commonly (unique) combi-
nations of an username and a password. Other authentication methods include one time tokens
(e.g. in online banking services) or simple numerical combinations (e.g. disarming an alarm
system).

Another approach is, to equip every client with their own, unique certificate, proving their
identity. These certificates can then be used for the establishment of the TLS tunnel as well as
the authentication in the MQTT broker.

Using the same certificates as with TLS brings along another major advantage: when the
broker starts to operate on the MQTT layer, the certificate and its values have already been
verified during the establishment of the TLS tunnel one layer beyond. Thus, when the commu-
nication reaches the MQTT layer, the broker can safely assume, that the client at the remote end
of the tunnel really is the client described by the identity in the certificate.

50

4.4. Authorization

Figure 4.2: An exemplary certificate hierarchy in the system. The root CA must be trusted
by all entities in the SMS framework. Every master account get their own
intermediate CA. These again are used to sign another level of intermediate
CAs for accounts. Finally, the account certificates are used to sign the endpoint
certificates of customer devices. [Drawn by the author of this thesis.]

The identifier is given by the Subject field’s value in the X.509 certificate [RFC5280, Section
4.1.2.6], which identifies the entity associated with the public key. It is required upon the initial
connection to the MQTT broker and verified by the broker’s TLS module.

4.4 Authorization

The authorization again is also based on the client certificate’s identity.

When connecting to the broker, a client first needs to authenticate by sending its whole
certificate chain to the trusted root which is anchored in the broker; i.e. the root CA. Once the
TLS tunnel is established, the client sends MQTT commands to publish or subscribe to specific
topics. The broker authorizes the client’s desires based on the Subject value in the client’s
certificate.

51

4. Securing the SMS Framework

In the configuration the MQTT topics are assumed as namespaces. This means, that clients
are granted access to all topics in their subtree. Thus, a master account client is able to access
topics for all of his accounts and devices, while an account is only able to access information
for its devices and devices is only able to access their own information (see Figure 3.2).

Table 4.1 shows some examples of access requests, which is allowed or denied by the broker.
This control mechanism inside the broker is called Topic Access Control System (TACS).

Certificate Subject Topic Access Request Allowed
ms-acc-1 ms-acc-1/# 3

ms-acc-1 ms-acc-1/acc-1/dev-1/snapshots 3

ms-acc-1 # 7

ms-acc-1/acc-1 ms-acc-1/# 7

ms-acc-1/acc-1 ms-acc-1/acc-1 3

ms-acc-1/acc-1 ms-acc-1/acc-1/# 3

ms-acc-1/acc-1 ms-acc-1/acc-1/dev-1/snapshots 3

ms-acc-1/acc-1/dev-1 ms-acc-1/acc-1/dev-1/# 3

ms-acc-1/acc-1/dev-1 ms-acc-2/acc-1/dev-1/# 7

ms-acc-1/acc-1/dev-1 ms-acc-1/acc-1/dev-2/snapshots 7

ms-acc-1/acc-1/dev-1 ms-acc-1/acc-1/# 7

ms-acc-2 ms-acc-1/# 7

ms-acc-2 ms-acc-2/acc-1/# 3

ms-acc-2/acc-1/dev-2 ms-acc-2/acc-1/dev-2/# 3

ms-acc-2/acc-1/dev-2 ms-acc-2/acc-1/dev-1/# 7

Table 4.1: MQTT topic access examples.

4.4.1 Implementation of a Topic Access Control System (TACS) in
Mosquitto

In Section 3.2 it is described, how the topic structuring possibilities of MQTT are utilized.

However, it is also needed to ensure, that only authorized clients are able to write into and
read from topics, which are intended for them.

Using the topic structure /master_account/account/identifier (proposed in Sec-
tion 3.2) in combination with the certificates used in the TLS client authentication process,
a straightforward TACS can be implemented. Under the assumption, that the certificate and all
its values are valid – which has already been verified in the authentication process – the values
specified in the certificate chain’s Subject fields [RFC5280] can be used.

52

4.4. Authorization

1 # grant access rights to all topics to clients
2 # using a certificate with identity ’Root’
3 user readwrite Root
4 topic #

Listing 4.1: Simple Mosquitto ACL example

Mosquitto ships with two different Application Programmer Interfaces (APIs) for imple-
menting a TACS. These systems apply restrictions based on the MQTT username – which in
this case is not in use by clients. Thus, the Mosquitto broker has been configured to use the
client certificate’s Subject field value as MQTT username.

Figure 4.3 shows a basic overview of what the TACS does.

4.4.1.1 Authentication Plugin

An alternative to implement a TACS based on an Access Control List (ACL) is to provide
a plugin, which is implemented as an external module and is integrated by Mosquitto as a
shared library. The module must implement specific callback functions, which can validate
subscriptions and publications of clients.

4.4.1.2 Source Code Modification

Alternatively – as Mosquitto is an open-source MQTT broker implementation – a TACS may
be also directly integrated into the broker source.

4.4.1.3 Access Control List (ACL)

When using this approach, it is needed to specify a list containing topics, in which allowed topic
accesses are denoted in a specific syntax. For example one can include an entry

pattern write devices/%u/snapshots
for general restrictions applying to all clients, where %u is substituted by the client username –
the certificate’s Subject field value in this case. This would restrict publishing clients to only
be able to publish into their very own topic. One can also define exemptions from general rules
for specific users. The configuration in Listing 4.1 grants a client, which is identified as Root –
i.e., the Subject field’s content of the client’s certificate equals the string "Root" – access to all
topics (using the multilevel wildcard).

As this is a rather straight-forward approach and it is possible to cover the needs with it, it
was chosen to implement the TACS based on an ACL. The final working version of the ACL

53

4. Securing the SMS Framework

configuration is shown in Listing 4.2. Since %u is substituted by the identity of the connecting
client, it grants access to the subtree of topics relevant for a client. There are several exceptions
from this basic rule:

• Grant an administrator access to all topics
If a client’s identifier equals "MRO-Admin", the broker grants access to all topics. This
client identity is useful for testing and maintaining purposes. Due to its privileges it needs
to be carefully used and stored.

• Grant an administrator access to system relevant topics
The Mosquitto MQTT broker implementation provides a special set of topics under the
topic $SYS, which offer system relevant information lie for example the number of con-
nected clients or the amount of memory used. This data will not be included with a wild-
card subscription (#) but needs the specific $SYS prefix to be accessible. For maintenance
reasons, the administrator can also access these topics.

• Grant the snapshot processing service access to all snapshot topics
The snapshot processing service needs to be able to subscribe to snapshot topics of all
devices of the SMS framework. Thus it is granted read access to +/+/+/snapshots.

• Grant the firmware updating service access to all firmware topics
The firmware updating service needs to be able to publish to firmware topics of all devices
of the SMS framework. Thus it is granted write access to +/+/+/firmware.

4.5 End-to-end Encryption

To transport application data in an authenticated and encrypted manner, CMS’ Authenticated-
Enveloped-Data Content Type is used as described in [RFC5083] and elaborated on in Sec-
tion 2.3.2.1.

The end-to-end encryption in the SMS framework adds an additional layer of security.
While data is being protected when in transport with TLS, CMS protects data on application
layer. It enables the originator of a message to be in full control to restrict the potential readers
of the message.

The contents of the CMS structure are the following:

• Originator Info
This part describes the originator of the CMS message. The specification allows different
types of identities to be inserted here. These include for example the complete certificate,
only the public key or the (unique) pair of certificate issuer and version number. In the

54

4.5. End-to-end Encryption

1 # grant every client in the system access rights to their subtree of topics
2 pattern readwrite %u/#
3
4 # grant admin access rights to all topics
5 user MRO-Admin
6 topic readwrite #
7
8 # grant admin access rights to Mosquitto -specific topics (load info, ...)
9 user MRO-Admin

10 topic readwrite $SYS/#
11
12 # grant vendor-snapshot-service read rights to snapshot topics
13 user vendor-snapshot-service
14 topic read +/+/+/snapshots
15
16 # grant vendor-firmware-service write rights to firmware update topics
17 user vendor-firmware-service
18 topic write +/+/+/firmware

Listing 4.2: Final Mosquitto ACL configuration

SMS framework the whole certificate chain is used as an originator info. Thus, recipi-
ents are able to verify the validity of the certificate without any additional information
necessary.

• Recipient Infos
For each recipient, the CMS message contains an information object. It contains an iden-
tifier of the recipient, which is able to unwrap the encrypted key (c.f. Section 2.3 Key
Wrapping). The recipient is e identified by issuer and serial number of its certificate. The
structure also includes all material to establish the key wrapping key for the symmetric
key (c.f. Section 2.3 Key Agreement). Finally, the wrapped key is included.

• Encrypted Content Info
This structure contains the identifier of the CMS type (authEnvelopedData) as well as
the encrypted content and the algorithm used for encryption.

• Authenticated Attributes
The optional authenticated attributes field contains a set of key-value attributes. The
timestamp, at which the originator has signed the message, is included.

• MAC
The final part contains the MAC over the message as calculated by the originator. The
recipients can use it, to verify the message’s authenticity.

55

4. Securing the SMS Framework

Figure 4.4 summarizes the contents of the CMS structure. The entire data structure is being
transferred as the payload of an MQTT message to recipients.

56

4.5. End-to-end Encryption

MQTT Broker

Core

MQTT

EngineTACS
Topic Access

Policy

/ACME/germany/123

write /ACME/germany/123/snapshots

/ACME/germany/123

read /ACME/germany/123/updates

/ACME/germany/123

read /ACME/japan/456/updates

/ACME/germany/123

write /XCorp/germany/789/snapshots

/ACME/germany

read /ACME/germany/+/updates

/ACME

read /XCorp/+/+/snapshots

MRO-Admin

write /ACME/+/+/updates

Figure 4.3: Basic overview of the TACS implemented for Mosquitto. The rectangles on
the left-hand side indicate clients requesting read or write access to topics. The
descriptions in the rectangles are the identity of the client as proven by their
identity certificate. Upon finding a topic access request match in its predefined
topic access policy, the TACS grants access to the topic. Otherwise access is
denied and the topic access request is rejected. For the purpose of this example
it is assumed, that the certificates used by clients have already been validated
and the clients are authenticated against the broker. [Drawn by the author of this
thesis.]

57

4. Securing the SMS Framework

Recipient Infos

Encrypted Content Info

Authenticated Attributes

Originator Info

Message Authentication Code

Authenticated Enveloped Data

per

recipient

Key Agreement Recipient Info

Recipient Info

Originator Info

Algorithm Identifier

Public Key

User Keying Material

ephemeral public key

"ecPublicKey"

ephemeral private key

Key Encryption Algorithm IdentifierKey Encryption Algorithm Identifier

Recipient Encrypted Keys

Key Agree Recipient Identifier

Issuer and Serial Number

Encrypted Key key bytes

Content Type

Encrypted Content Info

Content Encryption Algorithm Identifier

Algorithm Identifier

Parameters

Encrypted Content

initialization vector

"aes356-GCM"

bytes

"authEnvelopedData"

Signature Time

Authenticated Attributes

timestamp

Originator Certificate

Originator Info

X.509 certificate

Message Authentication Code

Message Authentication Code

bytes

Figure 4.4: Structure of a CMS message with authenticated enveloped data. [Drawn by the
author of this thesis.]

58

Chapter 5

Prototypical Backend Implementation

“ The IoT is removing mundane repetitive tasks or creating things that just were
not possible before, enabling more people to do more rewarding tasks and leaving
the machines to do the repetitive jobs. ”

[Grant Notman, Head of Sales and Marketing, Wood & Douglas]

This chapter describes the prototypical implementation of the SMS framework backend. In
Section 5.3 it is elaborated on how to set up the MQTT broker to comply with the security
concept. While laying focus on the MQTT subscriber in Section 5.4 and on the CMS decryptor
in Section 5.5, the elaborated database schema is also described in Section 5.6.

In Section 5.7 finally, exemplary workflows are described, to get a first impression of what
can be achieved with aggregated device data.

Parts of this chapter are reproduced from the author’s publications [Maritsch, Lesjak, and
Aldrian, 2016] as well as [Lesjak, Bock, et al., 2016].

5.1 Introduction

During research, a prototype is implemented to proof the concepts for snapshot aggregation
in the SMS framework. The components of the prototypical implementation are illustrated in
Figure 5.1.

This data aggregation service involves different components: in Section 5.2 an overview of
the dataflows in the SMS framework is given with special focus on the backend. Section 5.3
describes the setup and configuration of the Mosquitto MQTT broker. Next, in Section 5.4 the
implementation of the MQTT subscriber in the data processing service is explained. The CMS

59

5. Prototypical Backend Implementation

decryptor is shown in Section 5.5. Finally, in Section 5.6, the relational data schema which was
elaborated for the storage of aggregated snapshots is shown.

For the technical realization of the implementation Java1 is used.

Mediator

Prototypical Backend Service

Mosquitto MQTT
Broker [C] :8885

ACL

Msg Queues

Snapshot Interpreter
[Java]

Logic

JDBC

3rd party

Device
KB

API
devicekb:8080

TCP/IP

Backend Service [Java]

Subscriber

CMS Decryptor

TCP/IPTLS over
TCP/IP

Customer Device

file

MySQL DB :3306

DB
TCP/IP

Administrator TLS over
TCP/IP

Figure 5.1: Here the components of the prototypical backend implementation are illus-
trated. The components with light green background have been implement-
ed/set up during the work on this thesis. Other components were provided by
other project members. [Drawn by the author of this thesis.]

5.2 Dataflows

To promote a general understanding of communication and data exchange in the SMS frame-
work, the dataflows inside the system are shown. From an abstract point of view, one is able
to observe two different ways of communication: On the one hand, transferring equipment in-
formation such as snapshots from customer devices to the vendor backend. This is usually an
one-to-one way of communication. However, industrial equipment might also be distributed
to customer clients which yields an one-to-n connection. On the other hand, the vendor might
distribute data from its central backend to field devices in a one-to-one way; for example for
signed firmware updates. Data might also be distributed in a one-to-n way; for instance security
policy issues.

Figure 5.2 shows the flow of incoming data inside the vendor controlled DMZ and backend.

Figure 5.3 shows the flow of outgoing data inside the vendor controlled DMZ and backend.

1java.com, Accessed: May 6, 2017

60

java.com

5.3. Mosquitto Setup

Vendor

SAP

Share-
point

Product

???
Backend Service

History Data

D
a

ta
 l

in
ki

n
g

Data pool

DMZ Intranet

Message
Broker

Message
Broker

SubscriberSubscriber

In
te

rn
et ProcessorProcessor Device ID TableDevice ID TableDevice ID Table

Certificate StoreCertificate StoreCertificate Store

DecryptorDecryptorDecryptor

Figure 5.2: Here the flow of data being sent from a customer device through the backend
is illustrated. First, the broker in the DMZ forwards the data to an MQTT
subscriber in the backend. In the next step, the end-to-end encryption of the
payload needs to be processed. For this purpose, the backend decryptor checks
the authenticity of the originator and decrypt the data. The payload, now in
plain again, can then be processed and forwarded into data stores. [Drawn by the
author of this thesis.]

5.3 Mosquitto Setup

Listing 5.1 shows the configuration of the prototypical Mosquitto broker.
For Mosquitto versions earlier than 1.4, it was needed to patch the source code to support

the TLS cipher suite. Mosquitto was not yet able to deal with ECDSA signatures. However,
starting with version 1.4, the feature got integrated into Mosquitto and no source code adaption
was necessary anymore. Instead it is possible to configure all security relevant features with
Mosquitto’s integrated standard configuration options.

5.4 MQTT subscriber

Many client implementations exist for MQTT. In the backend service, one of the probably
widest spread ones available is used: the Paho Java Client2 by Eclipse. It provides an asyn-
chronous API for MQTT events and the – for this use case important – ability to use custom

2eclipse.org/paho/clients/java/, Accessed: May 5, 2017

61

eclipse.org/paho/clients/java/

5. Prototypical Backend Implementation

1 # use standard secure MQTT port
2 port 8883
3
4 # define CA and own certificate + key
5 cafile MQTT_CA.crt
6 certfile MQTT_Server.crt
7 keyfile MQTT_Server_Key.pem
8
9 # only allow TLS version 1.2 with our specific cipher

10 tls_version tlsv1.2
11 ciphers ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384
12
13 # clients MUST present certfificates from the same CA
14 require_certificate true
15
16 # authorization mechanism: use certificate identity as username
17 # and our configured ACL
18 use_identity_as_username true
19 acl_file topic.access
20
21 # logging settings
22 log_dest stdout
23 log_dest file broker.log
24 log_type all
25 connection_messages true

Listing 5.1: Mosquitto configuration for the prototype.

62

5.4. MQTT subscriber

Vendor

WFLsWFLs

Firmware

Policies

???

Business Process
Engine

D
a

ta
 l

in
ki

n
g

Data pool

DMZ Intranet

Message
Broker

Message
Broker

PublisherPublisher

In
te

rn
et ProcessorProcessor Device ID TableDevice ID TableDevice ID Table

Certificate StoreCertificate StoreCertificate Store

EncryptorEncryptorEncryptor

Figure 5.3: Here is illustrated, how data flows from the vendor to the customer. For ex-
ample, backend workflows (WFLs) can trigger the publishing of new policies
or roll out new firmware versions to devices. For end-to-end-encryption, the
backend encryptor wraps the payload specifically for desired devices. The
MQTT publisher sends the encrypted payload to the broker which then for-
wards it to subscribed clients. [Drawn by the author of this thesis.]

socket implementations for the connection to the MQTT broker.

The subscriber in the prototype is in possession of an identity certificate with the subject
"vendor-backend-service" and the corresponding private key. According to the ACL configura-
tion of the MQTT broker in Listing 4.2, the subscriber is granted access to topics +/+/+/snapshots.
Thus, it is able to collect snapshots from all devices.

5.4.1 TLS connection initialization

Regarding TLS, the Java framework provides sufficient functionality for general use cases, like
for example establishing a connection to remote server. However, the TLS related procedures
are quite specific and are not supported out of the box with Java’s built in secure socket generator
(SSLSocketFactory). One feature they are lacking, is the support of client identity certificates.
It was needed to develop an own implementation of a socket generator, to fulfill the strong
security needs.

Listing 5.2 shows the implementation of the TLS socket factory, which can be used to gener-
ate TLS sockets to connect to the MQTT broker. The generated sockets use an identity given in
Public Key Cryptography Standard #12 (PKCS #12) format to connect to remote entities. Ad-
ditionally, the socket connection checks the identity of the remote endpoint by trying to build a
chain of trust to a given CA. For this purpose, it uses a custom trust manager.

63

5. Prototypical Backend Implementation

1 /**
2 * Builds a TLS socket factory using a given identity and trusting
3 * remote entities for which a chain of trust can be built to a given CA.
4 *
5 * @param caFile CA file
6 * @param privateCertKeyFile certificate/key file in PKCS12 format
7 * @param privateCertKeyPassword password to open the privateCertKeyFile
8 * @return TLS socket factory
9 */

10 public static SSLSocketFactory getFactory(
11 File caFile,
12 File privateCertKeyFile ,
13 String privateCertKeyPassword
14) throws Exception {
15 // keyStoreType is either "JKS" or "PKCS12"
16 KeyStore keyStore = KeyStore.getInstance("PKCS12");
17 keyStore.load(new FileInputStream(privateCertKeyFile),
18 privateCertKeyPassword.toCharArray());
19
20 // build keymanager
21 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
22 kmf.init(keyStore, privateCertKeyPassword.toCharArray());
23
24 KeyManager[] x509KeyManagers = Arrays.stream(kmf.getKeyManagers())
25 .filter(x -> x instanceof X509KeyManager)
26 .toArray(KeyManager[]::new);
27
28 // ensure a X509KeyManager was found
29 if (x509KeyManagers == null || x509KeyManagers.length == 0) {
30 throw new NullPointerException("No X509KeyManager has been found");
31 }
32
33 // build trust manager, which trusts all certificates
34 // which have a chain to the trusted root
35 TrustManager[] x509TrustManagers =
36 new TrustManager[]{new TrustedRootTrustManager(caFile)};
37
38 // create the SSLContext with TLS 1.2
39 SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
40
41 // initialize the SSLContext with the X509KeyManager and TrustManager
42 sslContext.init(
43 x509KeyManagers ,
44 x509TrustManagers ,
45 new SecureRandom());
46
47 return sslContext.getSocketFactory();
48 }

Listing 5.2: Implementation of the Java TLS socket factory.
64

5.5. CMS decryptor

Listing 5.3 shows the implementation of the trust manager for the backend MQTT sub-
scriber. The custom socket factory uses it to verify certificate chains of remote entities. It
utilizes a predefined root CA for validating certificate chains. During the TLS handshake the
broker provides its certificate chain. The trust manager first checks, whether the broker also
attached the root CA to the chain. According to the TLS specification [RFC5246], this is not
mandatory. However, some TLS implementations attach it and it is not a breach of contract to
do so. After it was assured, that the chain contains the root CA, it is traversed through the chain
and validate each certificate’s signature with the public key of the succeeding key. In the same
step, it is also verified, that the current time is inside the validity period of the certificate. In
the next step, it is checked whether the root CA equals the trusted root (if it was added it in the
first step it will of course but if the broker already sent it, it is needed to verify it). In the last
step it is verified, that the maximal path length as specified by the root CA is not exceeded. The
maximal path length specifies the number of intermediate certificates allowed between the root
CA and the endpoint certificate. Thus, it is needed to check against the chain’s length minus
two (for the endpoint certificate and root CA).

5.5 CMS decryptor

For the needed cryptographic operations Bouncy Castle3, an open-source Java library providing
cryptographic APIs, is used.

The BouncyCastle cryptography API is structured into a set of packages. The following
packages are used:

• Provider for the Java Cryptography Extension and the Java Cryptography Archi-
tecture
Provides general security functions compliant with existing Java security APIs.

• A library for reading and writing encoded ASN.1 objects
This package provides functionality for encoding and decoding all kinds of ASN.1 objects
and data structures.

• Generators for Version 1 and Version 3 X.509 certificates, Version 2 CRLs, and
PKCS12 files
By using this package, one can handle digital certificates and CRLs.

• Generators/Processors for S/MIME and CMS (PKCS7/RFC 3852)
This package allows to generate and read messages in a CMS format.

3www.bouncycastle.org, Accessed: May 6, 2017

65

www.bouncycastle.org

5. Prototypical Backend Implementation

1 public void checkServerTrusted(X509Certificate[] chain, String authType)
2 throws CertificateException {
3 try {
4 List<X509Certificate > certChain = Arrays.asList(chain);
5
6 // check if the chain contains the trusted root or not
7 // if not, add it
8 if (!certChain.get(certChain.size() - 1).equals(this.caCert)) {
9 certChain.add(this.caCert);

10 }
11
12 // verify all certificates in the chain are valid and signed by
13 // the succeeding certificate
14 for (int i = 0; i < certChain.size() - 1; i++) {
15 X509Certificate cert = certChain.get(i);
16 cert.verify(certChain.get(i + 1).getPublicKey());
17 cert.checkValidity();
18 }
19
20 // ensure that the server has the same CA as we do
21 // CA is always the last certificate
22 if (!certChain.get(certChain.size() - 1).equals(this.caCert)) {
23 throw new CertificateException("Invalid CA certificate");
24 }
25
26 // assure that the max path length is not exceeded
27 int maxPathLength = this.caCert.getBasicConstraints();
28 if (maxPathLength > -1 &&
29 maxPathLength != Integer.MAX_VALUE &&
30 certChain.size() - 2 > maxPathLength)
31 {
32 throw new CertificateException("Path length is "
33 + (certChain.size() - 2)
34 + ", exceeds allowed maximum of " + maxPathLength);
35 }
36
37 } catch (Exception e) {
38 throw new CertificateException(e.getMessage());
39 }
40 }

Listing 5.3: Implementation of the TLS trust manager for verification of the broker
certificate.

66

5.5. CMS decryptor

The CMS relevant operations for end-to-end operation have been implemented in such a
way, that they can be used on both the customer device side as well as the vendor side. Thus,
first a common set of functions was defined which is needed for all entities, which want to
conduct CMS operations.

Interface Listing 5.4 defines a Java interface, which classes need to implement in order to be
able to handle CMS messages. Implementations must allow to specify the caller’s identity via
a PKCS #12 encoded identity file. For CMS operations, a function for encryption as well as
decryption of data needs to be implemented.

The encrypting function takes a sequence of bytes to encrypt alongside a list of recipients’
certificates. The certificates are needed to wrap the symmetric encryption key for each recipient
separately. The decrypting function accepts a sequence of bytes representing a CMS message.
It tries to find a wrapped key for the caller’s identity and decrypt the payload.

General decryption process In Listing 5.5 the decryption of a received CMS message on
an abstract level is shown. The function takes as arguments the digital certificate and the private
key of the recipient as well as the encrypted CMS message. Upon successful completion, it
returns the decrypted payload.

The first step in the decryptor is to generate a BouncyCastle CMS object from the plain
message bytes for easier handling. Then the public key of the originator is extracted.

In the next step, it is tried to find the key, which was wrapped for the specific recipient. In
case the wrapped key is not found, the message can not be decrypted. The function terminates
and throw an exception. If the wrapped key for the recipient was found, it is tried to unwrap the
key using ECMQV operations.

Then the initialization vector for the MAC validation needs to be extracted. Using the ini-
tialization vector and the symmetric key, it is possible to recalculate the MAC for the encrypted
content info and compare it to the MAC, which was calculated by the sender and sent along in
the message.

Lastly, using the extracted key from before, the content can be decrypted and returned to the
function caller.

Calculation of the shared secret Listing 5.6 shows the specific unwrapping of the wrapped
key for AES operations according to the description in Section 2.3.2.1 in more detail.

In order to unwrap the key using ECMQV, the needs as input the originator’s public key, the
recipients private key as well as the wrapped key and the user keying material, which have been
extracted from the CMS data in a step not shown. From the user keying material, the ephemeral
public key, which was previously generated by the originator, can be reproduced.

67

5. Prototypical Backend Implementation

1 /**
2 * Provides an interface for the decryption and encryption of CMS messages.
3 * @author martin.maritsch
4 */
5 public interface ICmsStrategy {
6 /**
7 * Instructs the underlying implementation to use an identity for
8 * CMS operations
9 * @param identity the identity to be used for CMS operations

10 * @param pkcs12FilePassword the password to access the pkcs12File
11 * @throws InputException in case the identity file could not be parsed
12 */
13 void setClientIdentity(Pkcs12File identity , String pkcs12FilePassword)
14 throws InputException;
15
16 /**
17 * Decrypt an CMS message
18 * @param encryptedMessage the byte representation of the CMS message
19 * @return the decrypted payload of the CMS message
20 * @throws InputException in case an invalid CMS message is provided
21 * @throws BugException in case there is an server related issue
22 */
23 byte[] decrypt(byte[] encryptedMessage)
24 throws InputException , BugException;
25
26 /**
27 * CMS encrypts gdata for a list of recipients
28 * @param recipientCerts X.509 certificate identities of recipients
29 * @param data data to be encrypted
30 * @return the CmsMessage
31 * @throws InputException in case there are any invalid parameters
32 * @throws BugException in case there is a server related issue
33 */
34 byte[] encrypt(List<X509Certificate > recipientCerts , byte[] data)
35 throws InputException , BugException;
36 }

Listing 5.4: Implementation of the Java Interface for a CMS strategy.

68

5.5. CMS decryptor

1 /**
2 * Decrypts a CMS message (Authenticated -Enveloped -Data) for a recipient
3 *
4 * @param recipientPrivateKey recipient’s private key for the certificate
5 * @param recipientCert recipient’s certificate
6 * @param encCmsBytes byte array representing CMS message
7 * @return decrypted content of CMS message
8 */
9 public static byte[] decryptData(

10 @NonNull PrivateKey recipientPrivateKey ,
11 @NonNull X509Certificate recipientCert ,
12 byte @NonNull [] encCmsBytes) {
13 // construct BouncyCastle CMS object from byte array
14 AuthEnvelopedData data = AuthEnvelopedData.getInstance(
15 ASN1Sequence.getInstance(encCmsBytes));
16
17 try {
18 // load originator key, wrapped key and unwrap the key
19 PublicKey originatorPublicKey = getOriginatorPublicKey(
20 data.getOriginatorInfo());
21 byte[] wrappedKey = getWrappedKey(data.getRecipientInfos(),
22 recipientCert);
23 SecretKey symmetricKey = unwrapKey(wrappedKey , originatorPublicKey ,
24 recipientPrivateKey ,
25 getUserKeyingMaterial(data.getRecipientInfos(), recipientCert));
26
27 EncryptedContentInfo contentInfo = data.getAuthEncryptedContentInfo();
28
29 // get the initialization vector and validate the MAC
30 byte[] iv = ((ASN1OctetString) contentInfo
31 .getContentEncryptionAlgorithm().getParameters()).getOctets();
32 validateMac(data.getMac(), contentInfo , symmetricKey , iv);
33
34 byte[] encBytes = contentInfo.getEncryptedContent().getOctets();
35
36 // do the decryption
37 byte[] decBytes = decryptMessage(encBytes , symmetricKey , iv);
38 return decBytes;
39 } catch ([...]) {
40 [...]
41 }
42 }

Listing 5.5: Implementation of the CMS data decryptor.

69

5. Prototypical Backend Implementation

Afterwards, the key wrapping key can be computed using the ECMQV key agreement ser-
vice provided by BouncyCastle. Finally, the wrapped key can be unwrapped.

5.5.1 AES-GCM engine

Listing 5.7 shows the initialization and the encryption of the implemented AES-GCM engine.
The decryption works analogous to the encryption with the only difference being the initializa-
tion of the AES engine.

An implementation must allow to set an identity of the calling client. This serves two
purposes: for encryption, this identity is used as the originator identity. For decryption, the
recipient information set of the CMS message to be decrypted is searched for the given identity.
If the set does not contain a recipient information for the identity, the CMS message can not
be decrypted since the symmetric key needed for operations in the AES process can not be
reconstructed.

5.6 Relational database schema

A relational data schema was designed, which allows to aggregate device snapshot information
in a relational database. The database serves as the foundation for the exemplary data workflows
described in Section 5.7.

During a few iterations, the schema was tested with 100,000 mocked snapshots comprising
a total of 34,000,000 snapshot value rows. Based on the result of commonly needed queries,
the schema was revised to execute these queries within seconds instead of minutes.

Figure 5.4 shows the final data schema.
However, the schema might not be perfectly suited for a subsequent use in big data applica-

tions where the trend is to use non-relational databases.

5.7 Exemplary data workflows

In order to demonstrate the practical use of the prototypical design and implementation, two
exemplary workflows are made, which are built on top of the data aggregation framework.

The workflows are fully based on the implemented prototype. They are accessing data in a
MySQL database set up with the data schema proposed in Section 5.6.

From resulting applications are prototypes and not ready for production use. However, it is
believed that they show the great potential of the SMS framework and the variety of applications
and services, which can be built on top of the framework.

70

5.7. Exemplary data workflows

1 /**
2 * Unwraps the symmetric key from the wrapped key.
3 *
4 * @param wrappedKey wrapped key
5 * @param originatorPubKey public key of originator
6 * @param recipientPrivKey private key of recipient
7 * @param ukm user keying material for the recipient
8 * @return symmetric key
9 */

10 private static SecretKey unwrapKey(byte[] wrappedKey ,
11 PublicKey originatorPubKey ,
12 PrivateKey recipientPrivKey ,
13 ASN1OctetString ukm)
14 throws Exception {
15 String keyAgreeAlgoId = CMSAlgorithm.ECMQV_SHA1KDF.getId();
16 String keyWrapAlgoId = CMSAlgorithm.AES256_WRAP.getId();
17
18 // extract the ephemeral public key
19 AlgorithmIdentifier privateKeyAlgo = PrivateKeyInfo
20 .getInstance(recipientPrivKey.getEncoded()).getPrivateKeyAlgorithm();
21 MQVuserKeyingMaterial mqvUkm = MQVuserKeyingMaterial
22 .getInstance(ASN1Primitive.fromByteArray(ukm.getOctets()));
23 byte[] publicKeyBytes = mqvUkm.getEphemeralPublicKey()
24 .getPublicKey().getBytes();
25
26 X509EncodedKeySpec pubSpec = new X509EncodedKeySpec(
27 new SubjectPublicKeyInfo(privateKeyAlgo , publicKeyBytes)
28 .getEncoded());
29 PublicKey ephemeralPublicKey = KeyFactory.getInstance(keyAgreeAlgoId)
30 .generatePublic(pubSpec);
31
32 // calculate the key used for key wrapping usieng ecmqv
33 MQVParameterSpec mqvParameters =
34 new MQVParameterSpec(recipientPrivKey , ephemeralPublicKey);
35 KeyAgreement agreement = KeyAgreement.getInstance(keyAgreeAlgoId);
36 agreement.init(recipientPrivKey , mqvParameters);
37 agreement.doPhase(originatorPubKey , true);
38 SecretKey wrappingKey = agreement.generateSecret(keyWrapAlgoId);
39
40 // unwrap the key to get the plain symmetric key for AES
41 Cipher keyCipher = Cipher.getInstance(keyWrapAlgoId);
42 keyCipher.init(Cipher.UNWRAP_MODE , wrappingKey);
43
44 return (SecretKey)
45 keyCipher.unwrap(wrappedKey , keyAgreeAlgoId , Cipher.SECRET_KEY);
46 }

Listing 5.6: Unwrapping of the symmetric key for AES from the wrapped key.

71

5. Prototypical Backend Implementation

1 [...]
2 private ParametersWithIV gcmParams;
3 private byte[] mac;
4
5 /**
6 * Constructs an encryption/decryption tool on base of a GCM block cipher
7 * @param iv the initialization vector to be used for GCM
8 * @param key the symmetric key to be used for enctyption/decryption
9 */

10 public AesGcmBcBlockCipher(byte[] iv, SecretKey key) {
11 // inititalize the GCM block cipher parameters
12 // with the symmetric key and an initialization vector
13 this.gcmParams = new ParametersWithIV(
14 new KeyParameter(key.getEncoded()), iv);
15 this.mac = null;
16 }
17
18 /**
19 * Encrypt data using a GCM block cipher
20 * @param data the bytes to encrypt
21 * @return the encrypted bytes
22 */
23 public byte[] encrypt(byte[] data) {
24 GCMBlockCipher gcmEnc = new GCMBlockCipher(new AESEngine());
25
26 // initialize the block cipher for encryption
27 gcmEnc.init(true, this.gcmParams);
28
29 // prepare a new byte array for the output data.
30 // GCMBlockCipher has a handy function to tell us the output size of
31 // a data block before processing it
32 byte[] encrypted = new byte[gcmEncrypt.getOutputSize(data.length)];
33
34 // encrypt the input data
35 int length = gcmEnc.processBytes(data, 0, data.length, encrypted , 0);
36
37 try {
38 // do the final calculations for the message authentication code
39 gcmEncrypt.doFinal(encrypted , length);
40 } catch (IllegalStateException | InvalidCipherTextException e) {
41 return null;
42 }
43 this.mac = gcmEncrypt.getMac();
44 return encrypted;
45 }
46 [...]

Listing 5.7: Implementation of the AES-GCM initialization and encryption.

72

5.7. Exemplary data workflows

5.7.1 Dashboard

In the SMS dashboard, a visualization of collected snapshots is provided. It is primarily in-
tended for customers but may also be used by other stakeholders such as the vendor’s main-
tenance staff. The user is able to gather an overview of statuses for the industrial equipment
they are responsible for. A per-device view provides detailed insights into equipment-specific
information, such as the owner or identifiers of the device. Besides providing status relevant
information at a glance, gauges show the progress of various parts within their expected life-
cycle. Furthermore, period based visualizations – like graphs – can be checked in order to
discover abnormal device conditions or investigate on the general device utilization. Figure 5.5
shows an exemplary device status view of the dashboard prototype.

The SMS dashboard is useful for both customer and vendor. The customer can keep track of
their inventory, schedule operations and investigate utilizations. Furthermore, they can monitor
all their devices and detect possible failures. The vendor is able to check device statuses for its
devices and can warn its customers in case abnormal conditions are observed.

To show the potential of the customer dashboard, a mocked feature was integrated, which
showed customers specific replacement parts and equipment consumables such as lubricants.
Based on device values, specific products were suggested with the possibility to order it with
one click.

5.7.2 Business Process Model (BPM)

To demonstrate the ability of the SMS framework to warn customers or the vendor in case of
abnormal device conditions, a BPM (Figure 5.6) was drafted, which triggers certain workflows
for incoming snapshots of industrial equipment.

The model differentiates between three different equipment states, which are derived from
equipments’ snapshot values. In the standard case, when a snapshot indicates that the equipment
is within regular and expected health condition, a mail is sent to a predefined list of recipients.
Should the snapshot values indicate an abnormal or erroneous equipment state, a text message
is immediately being sent to a service technician in charge for the equipment. Furthermore,
the system generates an investigation task for the service technician. If a snapshot indicates an
overdue maintenance appointment for an equipment, a vendor technician is urged to schedule a
maintenance appointment with the customer.

In order to execute and process the BPM it was decided to make use of the open-source
BPM platform Activiti4. Compared to other BPM processing engines, Activiti was deemed to be
a rather simple platform which was perfectly suited for the straightforward show-case. When-
ever the maintenance service receives a new equipment snapshot, the backend data interpreter

4www.activiti.org, Accessed: May 11, 2017

73

www.activiti.org

5. Prototypical Backend Implementation

triggers the evaluation of the BPM based on the snapshot’s values
A BPM offers an easy-to-understand and pleasant view of underlying workflows in the

system. This was an advantage in so far as it allowed to show the practical use of the SMS
framework on a high level and in an understandable way to potential customers and interested
persons.

However, the design options of a BPM are very limited and the implementation of cus-
tom service tasks for the BPM, which was executed in the BPM platform Activiti, truly is a
challenging task.

74

5.7. Exemplary data workflows

t_snapshot

id INT

device_id INT

framework_version VARCHAR(45)

dui_version VARCHAR(45)

java_version VARCHAR(45)

operating_system VARCHAR(45)

operating_system_architecture VARCHAR(45)

inport_firmware_version VARCHAR(45)

inport_rtos_version VARCHAR(45)

created_at DATETIME

imported_at DATETIME

Indexes

PRIMARY

fk_t_snapshot_t_device_idx

t_snapshot_values

id INT

snapshot_id INT

value_text VARCHAR(45)

value_numeric DECIMAL

min_text VARCHAR(45)

min_numeric DECIMAL

max_text VARCHAR(45)

max_numeric DECIMAL

default VARCHAR(45)

state INT

channel_id INT

channel_group_id INT

unit_id INT

Indexes

PRIMARY

fk_t_snapshot_values_t_snapshot_idx

fk_t_snapshot_values_t_channel_idx

fk_t_snapshot_values_t_group_idx

fk_t_snapshot_values_t_unit_idx

t_device

id INT

device_type_id INT

serial_number VARCHAR(45)

equipment_number VARCHAR(45)

Indexes

fk_t_device_t_device_type_idx

id_UNIQUE

PRIMARY

t_device_type

id INT

name VARCHAR(45)

Indexes

PRIMARY

t_channel

id INT

name VARCHAR(45)

descriptive_name VARCHAR(45)

Indexes

PRIMARY

t_channel_group

id INT

name VARCHAR(45)

Indexes

PRIMARY

t_unit

id INT

type VARCHAR(45)

Indexes

PRIMARY

Figure 5.4: The elaborated relational data schema for the storage of snapshot data. Devices
are clustered based on their type (t_device_type). Entities in t_device
represent single devices. A snapshot (t_snapshot) consists of many snapshot
values (t_snapshot_values). For performance reasons of the queries, often
queried parameters have been moved and fields with little different values into
extra, indexed tables (t_channel_group, t_channel and t_unit). [Drawn by
the author of this thesis.]

75

5. Prototypical Backend Implementation

Figure 5.5: An exemplary dashboard for browser-based visualizing of equipment data. The
dashboard contains several metadata and basic status information about the
equipment. Besides that, there are multiple gauges showing the progress of
component’s values towards the end of their life cycle and recommended re-
placement. The evolution of the equipment’s operating hours is shown in an
line graph, which allows to discover system downtimes and utilize the equip-
ment’s overall utilization. [Screenshot by the author of this thesis.]

76

5.7. Exemplary data workflows

Figure 5.6: Exemplary BPM. The model uses an exclusive gateway which triggers one of
three procedures based on the input values. [Screenshot by the author of this thesis.]

77

5. Prototypical Backend Implementation

78

Chapter 6

Discussion

“ If you went to bed last night as an industrial company, you’re going to wake up
today as a software and analytics company ”

[Jeff Immelt, chairman and CEO of General Electric]

Throughout the whole design and implementation of the SMS framework one of the main
goals was, to use established standards. The communication foundation of the system – MQTT
– is a recognized, industrial standard [MQTT Version 3.1.1; ISO20922]. The security func-
tionalities, like TLS or ECC, are widely in use and have proven effective even in global-scale
applications.

This has several advantages: First, the standards are extensively used, so many of its flaws
and drawbacks have already been found and eradicated. Furthermore, the argument of using for
example an ISO standard in the case of MQTT, is more likely to convince customers and elimi-
nate their security concerns. Moreover, there are many widely-used implementations available.
This is especially convenient for security features, since established implementations can be
used (for example the Bouncy Castle1 cryptography libraries for critical security functions).

Parts of this chapter are reproduced from the author’s publications [Maritsch, Lesjak, and
Aldrian, 2016], [Maritsch, Kittl, and Ebner, 2015] as well as [Lesjak, Bock, et al., 2016].

1www.bouncycastle.org, Accessed: May 16, 2017

79

www.bouncycastle.org

6. Discussion

6.1 The SMS framework as a service-oriented architecture
(SOA)

The implemented SMS framework adheres to the principles of a SOA as described in Sec-
tion 2.1.

One can think of the devices as service providers and consumers at the same time. Also, the
backend consists of consumers and providers. An exemplary service consumer in the vendor
backend would be the snapshot processing service; an exemplary service provider would be the
firmware update service.

In the SMS framework the MQTT broker serves as the service registry. The MQTT topics
are definitions of services. For example, macc1/acc2/device123/snapshots is a service,
which provides snapshots of a specific device. Subscribers of this topic are service consumers.
The TACS in the broker takes over the function of the authorization service by regulating access
to topics. The uncommon thing in the SMS framework as a SOA is, that the interaction between
service consumers and producers is conducted directly via the service registry.

Figure 6.1 illustrates these components in the snapshot acquisition use case.

While the representation of the SMS framework as a SOA has no practical effects, it pro-
motes the understanding of the architecture. It helps us, to understand the principles of the SMS
framework and allows to figure out how to provide and make use of functionality available in
the SMS framework.

Vendor

DMZ Intranet

Broker

Registry

Customer Device

Provider

Snapshot Service

ConsumerTACS

Auth Service

Provide Consume

Interact

(via Broker)

...

Figure 6.1: This figure portrays the snapshot acquisition use case as a SOA. The customer
device represents a service provider and the snapshot service the consumer.
The broker takes over the role of the service registry (i.e. the topics) and the
authorization service with its TACS. [Drawn by the author of this thesis.]

80

6.2. Data transmission with MQTT

6.2 Data transmission with MQTT

First the use of MQTT in regard to the requirements to an IoT transmission protocol is evaluated,
which are mentioned in Section 2.2:

• Scalability
An MQTT architecture is highly scalable to even a large number of clients. Already a
single broker instance can handle hundreds of thousands of connected clients2. If support
for a higher number of clients is needed, multiple MQTT brokers can be used in a bridge
or cluster. Table A.1 shows which MQTT broker implementations support bridging as
well as clustering.

• Efficiency
MQTT only adds a fixed header of two bytes to a message payload [MQTT Version 3.1.1].
This is significantly less compared to other protocols like HTTP or SMTP (see Table 2.1).
Additionally, a variable length header depending on the topic is needed.

• Portability
The only requirement for supporting MQTT is an implementation of the TCP/IP stack
which is commonly even available on very basic embedded devices. MQTT implementa-
tions are available in many different programming languages3.

• Simplicity
MQTT is specifically designed to be extremely simple and lightweight, for use in con-
strained devices. Implementations with a very low code and performance footprint are
available.

• Failure tolerance
Due to its design with a central broker and the support of persistent sessions, messages
for temporary disconnected devices can be cached and delivered once the devices are
available again. Thus, a client will get all its pending messages even after it has been
disconnected to the broker for some time.

Also, the following reasons led to choosing MQTT:

• Publish-subscribe pattern
The pattern of MQTT allows bidirectional communication. This allows for example the
vendor to push information to devices without them explicitly requesting for them.

2stackoverflow.com/q/10087396, Accessed: May 16, 2017
3github.com/mqtt/mqtt.github.io/wiki/libraries, Accessed: May 16, 2017

81

stackoverflow.com/q/10087396
github.com/mqtt/mqtt.github.io/wiki/libraries

6. Discussion

• Connection establishing always from the inside
Connections are always established from the inside of networks to the broker. Thus, a
customer only needs to open one outgoing port in their firewall to connect to the SMS
framework. Connection attempts are never made from the outside of customer networks
to devices.

• Security Features
Using MQTT, all of the security requirements can be implemented using standard frame-
works and libraries.

In the SMS framework it is the system’s duty to reliably deliver certain types of important
messages to devices. These message types would for example include remote commands or
security policy updates. It must be assured, that these messages get delivered to devices. The
reliability of MQTT is ensured as it is working on top of TCP and benefits from TCP’s reli-
ability features. Additionally, as QoS features are used, the delivery of messages in the SMS
framework can be guaranteed whenever needed.

Figure 6.2 shows two network packets captured with Wireshark4. Subfigure 6.2a shows an
MQTT publish encapsulated in a TCP packet. Subfigure 6.2b shows an HTTP post request en-
capsulated in a TCP packet. Both requests use an equivalent resource (MQTT topic: foo/bar,
HTTP resource: /foo/bar) and have the same payload (“Hello World”). As for the transferred
data, with 167 bytes the HTTP packet is almost twice as large compared to the MQTT packet
with 88 bytes. In the screenshots it can be clearly seen, that all of this overhead is imposed
by the application layer protocol since all underlying protocols are equal. The content actually
needed to be transferred has a size of 18 bytes (“foo/bar” + “Hello World”). The MQTT packet
itself is 22 bytes; only an overhead of 4 bytes is added. For HTTP the packet size is 101 bytes
which means an added overhead of 83 bytes. Thus, the overhead of the HTTP message is more
than 20 times larger as for MQTT.

Yokotani and Sasaki [2016, Figure 10] elaborate on the significant overhead of HTTP in
contrast to MQTT in more detail.

6.2.1 Topic Structuring

The chosen structure it is not the "one to rule them all" structure since it is for example not
possible to subscribe to all messages of a device group (for example FMs). However, it is a
reasonable trade-off between an extensive topic structure and the amount of information being
exposed via the topic. In the structure, it can for example not be derived, how many instances
of a device group some customer has. The topic hierarchy allows to easily cluster devices into
groups and cluster data as desired.

4www.wireshark.org, Accessed: May 25, 2017

82

www.wireshark.org

6.2. Data transmission with MQTT

Furthermore, the structure that was chosen is easily and dynamically expandable to newly
added customers. They just need to provide a valid certificate which in turn will be used by the
broker to dynamically create the new topics.

6.2.2 Broker Architecture and Cascading

the physical segregation between customer data of the architecture described in Section 3.3.3
(Per-customer-broker on vendor’s premises plus central master broker) is considered to be its
main advantage. However, there is no need for segregation of data if it is encrypted when
being processed in the broker. Thus, an additional layer of security by applying end-to-end
encryption to data is proposed. Defining a set of recipients which are authorized to receive and
process application data in this security measure is suggested. The proposed hybrid encryption
system is a cryptographic measure to realize this.

In practice, a hybrid solution is proposed consisting of the architectures described in Sec-
tion 3.3.1 (Single broker on vendor’s premises) and Section 3.3.2 (Per-customer-broker on cus-
tomer’s premises plus central master broker) since they provide a reasonable trade off between
scalability, fault tolerance and installation/administration efforts. There might be customers
with only few devices which may not want to set up a dedicated message broker for the connec-
tion of industrial equipment to the vendor and struggle with its implementation and administra-
tion. However a broker may optionally be set up in order for the customer to be able to monitor
outgoing data or when a central gateway to the vendor is desired. On the other hand, customers
with considerable huge amounts of devices, which may also be spread over different premises,
will certainly consider setting up one or more internal broker(s) serving as gateway(s) to the
vendor for industrial equipment.

In general, it is suggested to place the broker(s) on vendor side in a DMZ and not directly in
the backend for multiple reasons. First, since the broker is placed at a public location in which
all data comes together, it is considered to be the most vulnerable link in the whole dataflow
from customer devices to the vendor backend. Thus it might be the most interesting point for
adversaries to attack. Additionally, it is usually of vendors interest, to keep remote Internet
connections into the backend at a minimum. MQTT does not require connections to be actively
established into the backend from the outside. Instead, backend components need to initiate
connections and subscribe to the broker in the DMZ.

6.2.3 Topic Access Control System (TACS)

It was shown how to design a straightforward yet powerful topic hierarchy for the SMS frame-
work with MQTT’s topic system as a foundation. For limiting topic accesses to only legitimate
entities, a simple TACS using Mosquitto’s ACL functionality was implemented. Although the
implementation seems pretty basic on first sight, it proved to be reliable and robust for all needs

83

6. Discussion

in the SMS framework. According to evaluations, it should also be sufficient for use in a pro-
ductive environment with tens of thousands of devices [Maritsch, Lesjak, and Aldrian, 2016].

6.3 Security

As described in Chapter 4, up-to-date cryptographic systems and functions for all of the security-
related operations are used. Furthermore, wherever possible implementing custom security
functions are avoided. Instead, existing implementations which are in broad use were used. The
advantage clearly is, that such widely spread implementations are much more thoroughly tested
and less likely to contain bugs than custom implementations would.

Vendors need to be aware, that customers are providing their highly sensitive data on a
goodwill basis. Of course customers are provided valuable SMSs, however many customers are
– understandably – pedantic about their testbed data being transferred outside their premises.
Thus, vendors should offer possibilities for customers to precisely monitor the data being sent
and received by their devices.

6.3.1 Authentication

Authentication measures in the SMS framework are taken at multiple levels. First of all, on the
data transport layer, authentication is performed by means of standard TLS authentication. For
the purpose of proving identities, digital certificates are used which allows entities throughout
the SMS framework to validate identities of other remote entities.

The nature of the authentication process is largely similar to the way of how web servers
authenticate themselves for remote clients in the world wide web. The only difference is, that
in the SMS framework not only servers (i.e. the vendor backend and its MQTT brokers) need
to authenticate but also the clients (i.e. client devices, vendor backend services) whereas web
servers normally allow arbitrary clients to establish connections.

The SMS framework not only authenticates network entities upon establishing connections
but also allows recipients to authenticate messages being transferred via the SMS framework.
This means, that a recipient of a message can undoubtedly identify the originator of a message.
The security mechanisms also yield non-reputability, meaning that the originator cannot deny
having authored a message. Thus, the sender can always rely on the message being authentic.

6.3.2 Authorization

Some well-established authorization frameworks exist. One might legitimately wonder, why
making use of them in the SMS framework is not wanted. One popular among them is OAuth

84

6.3. Security

[RFC6749]. Niruntasukrat et al. [2016] demonstrated the use of OAuth in an MQTT architec-
ture. Considering the popularity and the features of OAuth, this seems appropriate. However,
the OAuth features would require the customer, to allow an additional outbound connection of
devices into the Internet. This is needed to enable the exchange of tokens with an OAuth autho-
rization server. Unfortunately, every granting of network access abilities increases the danger
of security gaps and possibly exposes industrial equipment to more attacks.

The system allows customers to keep the allowed outbound connections in their firewall
configuration on an absolute minimum; only a single port for MQTT is required. With the cer-
tificate based authorization system, the need for additional security frameworks is eliminated.
All security requirements regarding authorization can be fulfilled using the proposed certificate-
based authorization system.

From an implementation point of view, authorization is mainly conducted in the MQTT
broker or more specifically in its TACS, where topic reads and writes are validated against a
client’s identity.

The chosen certificate hierarchy, which corresponds to the MQTT topic structure, is very
useful for granting more powerful rights to device owners. Thus, they can aggregate data and
transparently monitor incoming as well as outgoing data for all of the devices they own. Ex-
perience has shown, that for many potential customers, the ability of monitoring this data is an
absolute must.

6.3.3 End-to-end Encryption

It was decided to introduce an additional layer of security besides TLS on application layer.
The used end-to-end encryption system ensures that data is not only securely encrypted while in
transport between network entities (i.e. between a client and the MQTT broker). Additionally,
data is also encrypted and never available in plain while being processed at any point.

Furthermore, end-to-end encryption allows the originator of messages to specifically address
recipients of the data and encrypt it in such a way, that only they can decrypt it.

The security benefits are evident: Most importantly, adversaries which manage to gain ac-
cess to the message broker, are not able to read any of the application data being transmitted in
the SMS framework. Secondly, message payload which were – under whatever circumstances
– received by undesired network entities cannot be processed by them.

Message overhead The end-to-end encryption requires some overhead added to the payload
which can be approximated with 700 + n × 500 bytes where n is the number of recipients
according to Lesjak, Bock, et al. [2016]. Although the message overhead could be reduced using
other encodings for cryptographic information, CMS should be preferred whenever possible
since it is designed as a platform-independent and inter-operable standard.

85

6. Discussion

6.3.4 Key Management

For the key management, the widely spread X.509 standard is used for digital certificates. This
allows to make use of a large number of existing security implementations; both on hardware
as well as on software side.

Furthermore, the X.509 standard provides some features which can be used to defuse severe
security threats. Using CRLs, one can easily revoke invalid certificates – for example if an
industrial equipment gets stolen or a security key gets compromised. The up-to-date CRLs
should periodically be pushed to industrial equipment.

Many security threats can be eliminated by using a custom Root CA which are pinned in
all entities in the SMS framework. Thus, the entities are only allowed to trust certificates, for
which they can build and traverse a certificate chain up to the SMS Root CA. They do not
have a standard set of Root CAs like for example the ones operating systems ship with – for
example macOS5. The described approach is used for both the TLS PKI as well as the PKI used
in end-to-end encryption.

6.3.4.1 Potentially Problematic Scenarios

At least one potentially problematic scenario was identified: In case an adversary is able to
compromise the private key of the MQTT broker, it can set up its own MQTT broker using
the compromised key and certificate. When it re-routes traffic from customer devices to its
own broker, it can trick them to believing, that it is the correct broker. Devices are trying to
verify the certificate and since the malicious broker is in possession of a valid certificate and the
corresponding private key, the client is trusting it.

Here, the troublesome circumstance is, that even if the vendor becomes aware of the key
being compromised and immediately revokes it, the malicious broker will be trusted. The broker
is always the first point the client communicates with and the malicious broker would certainly
not deliver the updated CRLs, which includes its own certificate, to the client. Thus, a working
MQTT connection, which seems valid to the client, can be established.

However, since additional end-to-end encryption is used, another layer of security is left.
The adversary may be able to intercept the device’s messages but it can not read them since they
are encrypted with CMS. The adversary may also send messages containing remote commands
to the devices via the malicious broker but the device simply discards the messages since they
are not signed by a trusted originator. This example shows, that it is important, to use two
different PKIs for the two security layers. As long as an adversary only gets access to one of
them, it cannot do any harm.

5support.apple.com/en-us/HT207189, Accessed: May 8, 2017

86

support.apple.com/en-us/HT207189

6.3. Security

(a) MQTT publish with QoS 0

(b) HTTP POST request

Figure 6.2: MQTT publish with QoS 0 compared to a HTTP POST request. For illus-
tration purposes, the actual payloads of the application protocols have been
highlighted in blue in both screenshots. [All screenshots from Wireshark made by the
author of this thesis.]

87

6. Discussion

88

Chapter 7

Conclusion

“ The Internet of things is coming, be the disrupter or prepare to be disrupted.
There’s no stopping it. ”

[Joe Tucci, CEO of Dell EMC]

In this chapter, the research and implementation of a SMS is concluded.
While the prototypical implementation was described in this thesis, the transformation of

the prototype towards a fully usable production system is in progress at the time of writing.
AVL has already attached some of its customers industrial equipment to the SMS framework
and is aggregating data.

7.1 Evaluation of the raised Research Questions

In the following list, the research questions which were raised in the beginning of this thesis are
evaluated:

• (RQ1) Which technology can be used, to centrally aggregate and distribute data
from globally distributed clients?
First of all, to understand and model the components of the SMS framework, it was
tried to think of it as a SOA (Section 2.1, Section 6.1). The implementation of the SMS
framework in form of a SOA was also a main goal of the project in which this work was
carried out.

In Section 2.2 it was elaborated on data transmission in the IoT. Some popular protocols
specifically labeled for IoT scenarios were presented. After comparing the technologies

89

7. Conclusion

and its features with traditional protocols, such as HTTP, it became clear that the MQTT
protocol and its whole ecosystem are very well suited for the SMS framework.

Chapter 3 described, how one can make use of MQTT in the SMS framework. It was
started off with initial considerations about how to structure the topic hierarchy in such
a way, that is easily possible for clients to subscribe to desired topics (Section 3.2). Af-
terwards, it was elaborated on how to intelligently distribute MQTT broker instances
in a globally spread SMS framework with potentially tens of thousands of clients (Sec-
tion 3.3).

• (RQ2) How can established standards be used to secure data transmission in the
SMS framework?
First of all, in Section 2.3, some security mechanisms and features, which are important
for implementing a secure SMS framework were discussed. Since sensible data is trans-
mitted via insecure data channels – such as the Internet – it was decided to make use of
slightly adapted version of TLS as it is in use in the world wide web (Section 2.3.1).

It turned out that, in order to supply a highly secure system, one would need some addi-
tional layer of security on application layer. It was elaborated on the technologies avail-
able for end-to-end encryption (Section 2.3.2) and decided to rely on the CMS and its
AuthEnvelopedData structure (Section 2.3.2.1).

All of the security mechanisms have been selected in regard to the authentication and
authorization issues. These are thoroughly discussed in Section 4.3 as well as Section 4.4.
Their use is evaluated in Section 6.3.1 as well as Section 6.3.2.

• (RQ3) Implement a prototype to proof the elaborated concepts and show a working
data transmission from customer devices to the vendor’s backend using the elabo-
rated concepts
During the implementation phase of the project, a prototype evolved over some three gen-
erations. In Chapter 5 the implementation work of the concepts evolved in Chapter 3 and
Chapter 4 is described.

On the one hand, elaborations on how to implement the proposed MQTT topic struc-
ture in coherence with the proposed authentication and authorization features have been
conducted. On the other hand, a prototypical backend service capable of handling the
end-to-end encrypted communication with field clients was shown.

For the purpose of storing the aggregated data, it was investigated on a simple, relational
data schema (Section 5.6).

Finally, it was thought of some simple workflows and usages of the data which was col-
lected in the prior steps to be able to show the practical use of the system (Section 5.7).

90

7.2. Problems Solved

7.2 Problems Solved

With the contributions made during the work on this thesis, it was significantly contributed to
the establishment of a SMS framework at AVL. The contents of this thesis are part of highly
topical research currently going on in the field of IoT and security for M2M connections.

The concept was proven with a prototypical implementation and were able to make the
breakthrough for data transmission from customer devices all the way into a vendor’s backend.
The data is transmitted in a secure manner, not only while in transit but also when it is processed
throughout the SMS framework’s network. The published data can also be inspected by other
parties than the vendor, such as the customer.

7.3 Lessons Learned

7.3.1 The IoT

What was found from the conducted research and observations is, that the landscape of IoT
platforms, protocols and implementations rapidly grew over the last years. One can have a hard
time trying to find one’s way in the amount of products available.

For the SMS framework, it was aimed to rely on established standards. MQTT was already
proposed in 19991 and recently became an OASIS [MQTT Version 3.1.1] and ISO [ISO20922]
standard. This shows the recognition of the protocol for IoT applications.

7.3.2 Security

The implementation of security features requires careful thinking. It is certainly the most sen-
sitive part of the whole SMS framework. During implementation, one needs to pay attention on
every little detail. For example, serious problems can arise from re-using initialization vectors
for AES-GCM or using insecure random number generators with predictable output.

To make life easier and avoid common pitfalls, one should not reinvent the wheel and im-
plement cryptographic functions from scratch. Rather, one should rely on well-adapted security
libraries such as OpenSSL2 or Bouncy Castle.

For the use case, Bouncy Castle provided single low-level modules, especially for ASN.1
encoding. However, still lots of efforts were required to combine all those low-level components
into an easy-to-use component for specific necessities.

1mqtt.org/faq, Accessed: May 27, 2017
2www.openssl.org, Accessed: May 27, 2017

91

mqtt.org/faq
www.openssl.org

7. Conclusion

7.4 Next steps

As the feasibility of the SMS framework was proven, the goal is, to deploy it to a productive
environment in AVL. However, there are many steps to be taken in order to move the prototype
to a fully stable solution for use in a productive environment.

Hence, the following issues need to be addressed:

• Scalability
First of all the desire is, to deploy the service in a highly scalable fashion to cloud ar-
chitectures. The estimated data amounts to be processed are far larger than for a simple
server to handle. The existing field devices of AVL gradually get equipped with Internet
connectivity functions, which was developed alongside the prototype implementation by
another project group. Ultimately, it is estimated that some tens of thousands of devices
are interconnected via the SMS framework.

• Data storage
Furthermore, the database technologies used in the prototype are by far not expected to
be sufficient. Instead a data warehouse based on an Oracle database system is deemed to
be used.

• Security tests
Together with dedicated specialists, the architectural concept needs to be checked against
potential leaks and weak spots; especially in terms of security. Thus, penetration tests
should be conducted.

• Certificate management
Another challenge for the security of the SMS framework is the certificate management.
Over time, thousands of certificates need to be distributed, revoked and replaced. It is still
open how this issue should be properly tackled.

• Key storage
Along with certificates many secret keys need to be distributed, both to field devices and
servers on vendor premises. These keys are confidential and in case adversaries should
be able to compromise them, they can do serious harm to the SMS framework. For this
purpose, on client side special hardware security controllers are used [Lesjak, Hein, and
Winter, 2015].

• MQTT
For MQTT, the protocol specification version 53 has already been drafted and is in review
at the time of writing. It brings along useful new features for IoT devices, such as session

3www.oasis-open.org/committees/download.php/59173/mqtt-v5.0-wd08.pdf, Accessed: May 27, 2017

92

www.oasis-open.org/committees/download.php/59173/mqtt-v5.0-wd08.pdf

7.4. Next steps

management or timed message expiration. It is being looked forward to make use of those
new features in the SMS framework.

93

7. Conclusion

94

Appendix A

MQTT broker comparison

Table A.1 shows the results of our MQTT broker evaluation.

95

A. MQTT broker comparison

N
am

e
Technology

L
icense

Q
oS0

Q
oS1

Q
oS2

$SYS
info

SSL
T

L
S

B
ridg-
ing

C
lus-
ter

W
eb-

Socket
sup-
port

Plu-
gin
Sys-
tem

m
osquitto

C
open-source

3
3

3
3

3
3

7
3

3

R
SM

B
C

open-source
3

3
3

3
7

3
7

7
?

W
ebSphere

M
Q

?
com

m
ercial

3
3

3
3

3
3

?
?

?
H

iveM
Q

Java
com

m
ercial

3
3

3
3

3
3

3
3

3

A
pache

A
pollo

Java/Scala
open-source

3
3

3
7

3
7

?
3

?
A

pache
A

ctiveM
Q

Java
open-source

3
3

3
7

3
7

3
3

3

R
abbitM

Q
Javascript

open-source
3

3
7

7
3

7
3

3
3

M
Q

T
T.js

node.js
open-source

3
3

3
7

3
7

7
3

7

m
oquette

Java
open-source

3
3

7
?

3
?

7
7

7

m
osca

node.js
open-source

3
3

7
?

?
?

7
3

7

IB
M

M
essageSight

?
com

m
ercial

3
3

3
3

3
7

7
3

7

G
natM

Q
.N

E
T

open-source
3

3
3

7
7

7
7

7
7

Joram
M

Q
Java

com
m

ercial
3

3
3

3
3

3
3

3
3

V
erneM

Q
E

rlang
open-source

3
3

3
3

3
3

3
3

3

em
qtt

E
rlang

open-source
3

3
3

3
3

3
3

3
3

2lem
etry

?
com

m
ercial

3
3

3
7

3
3

3
3

7

T
hingM

Q
?

com
m

ercial
3

3
3

7
3

3
3

3
3

Table
A

.1:
C

om
parison

ofM
Q

T
T

brokerim
plem

entations.

96

Bibliography

Banks, A. and R. Gupta [2014]. MQTT Version 3.1.1. Technical report. OASIS Standard, Oct.
2014. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (cited on
pages 16, 21, 79, 81, 91).

Barker, E., L. Chen, A. Roginsky, and M. Smid [2013]. Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography. Technical report. May 2013
(cited on pages 28–30).

Cooper, D., S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk [2008]. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280. May 2008. http://www.ietf.org/rfc/rfc5280.txt (cited on pages 23, 51, 52).

Delsing, J., editor [2017]. IoT Automation: Arrowhead Framework. CRC Press, Feb. 2017. ISBN
9781498756754 (cited on page 12).

Dierks, T. and E. Rescorla [2008]. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246. Aug. 2008. http://www.ietf.org/rfc/rfc5246.txt (cited on pages 26, 27, 65).

Dworkin, M. [2007]. NIST Special Publication 800-38D: Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC. Technical report. 2007.
doi:10.6028/nist.sp.800-38d (cited on page 30).

Hardt, D. [2012]. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. http://www.
ietf.org/rfc/rfc6749.txt (cited on page 85).

Herterich, M. M., F. Uebernickel, and W. Brenner [2015]. “The Impact of Cyber-physical Sys-
tems on Industrial Services in Manufacturing”. Procedia CIRP 30 (2015), pages 323–328
(cited on page 4).

Holmes, C. [2015]. Designing and Implementing the Factory of the Future at Mahindra Vehicle
Manufacturers. IDC Customer Spotlight. Apr. 2015 (cited on page 2).

97

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.ietf.org/rfc/rfc5280.txt
http://worldcatlibraries.org/wcpa/isbn/9781498756754
http://www.ietf.org/rfc/rfc5246.txt
http://dx.doi.org/10.6028/nist.sp.800-38d
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt

Bibliography

Housley, R. [2007a]. Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Con-
tent Type. RFC 5083. Nov. 2007. http://www.ietf.org/rfc/rfc5083.txt (cited on pages 28,
54).

Housley, R. [2007b]. Using AES-CCM and AES-GCM Authenticated Encryption in the Crypto-
graphic Message Syntax (CMS). RFC 5084. Nov. 2007. http://www.ietf.org/rfc/rfc5084.
txt (cited on page 30).

Housley, R. [2009]. Cryptographic Message Syntax (CMS). RFC 5652. Sept. 2009. http://www.
ietf.org/rfc/rfc5652.txt (cited on page 28).

ISO 20922: Information technology – Message Queuing Telemetry Transport (MQTT) v3.1.1
[2016]. Standard. Geneva, CH: International Organization for Standardization, 2016 (cited
on pages 16, 79, 91).

Kagermann, H., J. Helbig, A. Hellinger, and W. Wahlster [2013]. Recommendations for Imple-
menting the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufac-
turing Industry; Final Report of the Industrie 4.0 Working Group. 2013 (cited on page 1).

Lesjak, C., H. Bock, D. Hein, and M. Maritsch [2016]. “Hardware-secured and Transparent
Multi-stakeholder Data Exchange for Industrial IoT”. In: 2016 IEEE International Confer-
ence on Industrial Informatics (INDIN 2016). Futuroscope-Poitiers, France, 2016 (cited on
pages 12, 35, 47, 59, 79, 85).

Lesjak, C., D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner, T. Ruprechter,
and G. Pregartner [2015]. “Securing smart maintenance services: hardware-security and
TLS for MQTT”. In: Industrial Informatics (INDIN), 2015 IEEE 13th International Con-
ference on. IEEE. 2015 (cited on pages IX, XI, 11, 13, 47).

Lesjak, C., D. Hein, and J. Winter [2015]. “Hardware-security technologies for Industrial IoT:
TrustZone and Security Controller”. In: IECON 2015, 41st IEEE Industrial Electronics So-
ciety Conference. IEEE. 2015 (cited on page 92).

Maritsch, M., C. Kittl, and T. Ebner [2015]. “Sichere Vernetzung von Geräten in Smart Factories
mit MQTT [Secure connection of devices in smart factories using MQTT]”. In: Mensch und
Computer 2015, Stuttgart. in German. 2015 (cited on pages 11, 13, 35, 79).

Maritsch, M., C. Lesjak, and A. Aldrian [2016]. “Enabling Smart Maintenance Services: Broker-
based Equipment Status Data Acquisition and Backend Workflows”. In: 2016 IEEE Inter-
national Conference on Industrial Informatics (INDIN 2016). Futuroscope-Poitiers, France,
2016 (cited on pages IX, XI, 11, 35, 40, 47, 59, 79, 84).

Niruntasukrat, A., C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aiumsupucgul, and A. Pa-
nya [2016]. “Authorization mechanism for MQTT-based Internet of Things”. In: 2016 IEEE

98

http://www.ietf.org/rfc/rfc5083.txt
http://www.ietf.org/rfc/rfc5084.txt
http://www.ietf.org/rfc/rfc5084.txt
http://www.ietf.org/rfc/rfc5652.txt
http://www.ietf.org/rfc/rfc5652.txt

Bibliography

International Conference on Communications Workshops (ICC). May 2016, pages 290–295.
doi:10.1109/ICCW.2016.7503802 (cited on page 85).

Porter, M. and J. Heppelmann [2015]. “How Smart, Connected Products Are Transforming
Companies”. Harvard Business Review 93.10 (2015) (cited on pages IX, XI, 2).

Priller, P., A. Aldrian, and T. Ebner [2014]. “Case study: from Legacy to connectivity - migrating
industrial devices into the world of smart services”. In: Emerging Technologies and Factory
Automation (ETFA), 2014 IEEE International Conference on. IEEE. 2014 (cited on pages 2,
7, 14).

Saint-Andre, P. [2011]. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 6120.
Mar. 2011. http://www.ietf.org/rfc/rfc6120.txt (cited on page 16).

Shelby, Z., K. Hartke, and C. Bormann [2014]. The Constrained Application Protocol (CoAP).
RFC 7252. June 2014. http://www.ietf.org/rfc/rfc7252.txt (cited on page 16).

The Open Group [2009]. SOA Source Book. TOGAF Series. Van Haren Publishing, 2009. ISBN
9789087535384 (cited on page 13).

Tillotson, J. and S. Lundin [2012]. The Art of Smart Services. Volume 2. Qualcomm, 2012 (cited
on page 4).

Yokotani, T. and Y. Sasaki [2016]. “Comparison with HTTP and MQTT on required network
resources for IoT”. In: 2016 International Conference on Control, Electronics, Renewable
Energy and Communications (ICCEREC). Sept. 2016, pages 1–6. doi:10.1109/ICCEREC.
2016.7814989 (cited on pages 17, 82).

99

http://dx.doi.org/10.1109/ICCW.2016.7503802
http://www.ietf.org/rfc/rfc6120.txt
http://www.ietf.org/rfc/rfc7252.txt
http://worldcatlibraries.org/wcpa/isbn/9789087535384
http://dx.doi.org/10.1109/ICCEREC.2016.7814989
http://dx.doi.org/10.1109/ICCEREC.2016.7814989

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.1.1 The Arrowhead project

	1.2 Background
	1.2.1 The IOT
	1.2.2 Smart Services

	1.3 Scenario
	1.3.1 Requirements

	1.4 Proposed Solution
	1.4.1 Scope and Limitations

	1.5 Research Questions
	1.6 Methodology
	1.7 Scientific Contribution
	1.8 Thesis Structure

	2 State of the Art
	2.1 SOA
	2.2 Data transmission in IOT
	2.2.1 The MQTT protocol
	2.2.2 Features
	2.2.2.1 Topics
	2.2.2.2 QOS
	2.2.2.3 Persistent Session
	2.2.2.4 Last Will

	2.3 Security
	2.3.1 TLS
	2.3.2 End-to-end Encryption
	2.3.2.1 CMS

	3 The MQTT Data Aggregation Framework
	3.1 MQTT
	3.2 MQTT topic structuring
	3.2.1 Topic candidates
	3.2.2 Potential topic structuring variants

	3.3 MQTT Broker Architecture and Cascading
	3.3.1 Single broker on vendor's premises
	3.3.2 Per-customer-broker on customer's premises plus central master broker
	3.3.3 Per-customer-broker on vendor's premises plus central master broker
	3.3.4 Distributed vendor brokers plus central master broker

	4 Securing the SMS Framework
	4.1 Overview
	4.2 TLS
	4.2.1 Key Management

	4.3 Authentication
	4.4 Authorization
	4.4.1 Implementation of a TACS in Mosquitto
	4.4.1.1 Authentication Plugin
	4.4.1.2 Source Code Modification
	4.4.1.3 ACL

	4.5 End-to-end Encryption

	5 Prototypical Backend Implementation
	5.1 Introduction
	5.2 Dataflows
	5.3 Mosquitto Setup
	5.4 MQTT subscriber
	5.4.1 TLS connection initialization

	5.5 CMS decryptor
	5.5.1 AES-GCM engine

	5.6 Relational database schema
	5.7 Exemplary data workflows
	5.7.1 Dashboard
	5.7.2 BPM

	6 Discussion
	6.1 The SMS framework as a SOA
	6.2 Data transmission with MQTT
	6.2.1 Topic Structuring
	6.2.2 Broker Architecture and Cascading
	6.2.3 TACS

	6.3 Security
	6.3.1 Authentication
	6.3.2 Authorization
	6.3.3 End-to-end Encryption
	6.3.4 Key Management
	6.3.4.1 Potentially Problematic Scenarios

	7 Conclusion
	7.1 Evaluation of the raised Research Questions
	7.2 Problems Solved
	7.3 Lessons Learned
	7.3.1 The IOT
	7.3.2 Security

	7.4 Next steps

	A MQTT broker comparison
	Bibliography

