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Abstract

Within this thesis the biharmonic boundary value problem of the static isothermic Kirchhoff-Love
plate with constant thickness is formulated as a system of four second order partial differential
equations in the deflection and the internal moments of the plate. An isoparametric approach is
chosen based on Lagrange finite elements in a conforming method.

The boundary conditions of the Kirchhoff-Love plate on curved boundaries are considered via La-
grange multipliers within the mixed weak formulation of the boundary value problem. Three different
approaches to enforce boundary conditions to model simply supported, clamped, free or symmetry
boundaries are investigated. The first two methods prescribe Neumann boundary conditions via
evaluation of boundary terms and Dirichlet boundary conditions via the Point Collocation Method
or Lagrange multipliers discretised by mapped Lagrange polynomials. The third method enforces
both essential and natural boundary conditions by introducing Lagrange multipliers discretised by
mapped Lagrange polynomials of different order.

The presented mixed formulations are verified with convergence studies using well-known analytical
solutions of rectangular and circular plates as well as manufactured solutions for arbitrarily shaped
domains with curved boundaries.

Zusammenfassung

Diese Arbeit befasst sich mit der approximativen Lösung der statischen isothermen Kirchhoff-Love
Platte, deren Grundgleichung eine partielle Differentialgleichung vierter Ordnung ist. Um global
stetige Ansatzfunktionen verwenden zu können wird die Bipotentialgleichung in ein System von
vier partiellen Differentialgleichungen in der Durchbiegung und den Biege- und Torsionsmomenten
überführt. Isoparametrische Lagrange Elemente werden eingesetzt, um die Lösung der Kirchhoff-Love
Platte in krummlinig berandeten Gebieten näherungsweise zu berechnen.

Die Randbedingungen der Kirchhoff-Love Platte für momentenfrei gelagerte, eingespannte sowie
freie Ränder und Symmetrieränder werden mit Lagrange’schen Multiplikatoren in schwacher Form
erzwungen. Drei Methoden, die Randbedingungen vorzuschreiben, werden vorgestellt. Die ersten
beiden Methoden setzen Neumann-Randbedingungen über die Auswertung der Randterme und die
Dirichlet Randbedingungen über Lagrange Multiplikatoren in einem Punkt-Kollokationsverfahren
bzw. mit abgebildeten Lagrange Polynomen am Rand des Gebietes. Die dritte präsentierte Meth-
ode erzwingt natürliche als auch essentielle Randbedingungen über Lagrangesche Multiplikatoren,
diskretisiert durch Lagrange-Polynome von unterschiedlicher Ansatzordnung in schwacher Form.

Die Validierung der gemischten Formulierungen wird anhand von Konvergenzstudien mehrerer Test-
fälle vorgenommen. Dabei werden zum Vergleich Referenzlösungen mechanischer Probleme auf
rechteckigen und runden Platten verwendet, oder für beliebige Platten mit krummlinigen Rändern
Lösungen basierend auf der "method of manufactured solutions".
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Notation

a Scalar
n Vector
R Matrix or tensor
R> Transposed matrix or tensor
w,i Derivative of w with respect to i
∆2 biharmonic operator
Ω Real domain
ΓD Dirichlet boundary
Γw Dirichlet boundary with prescribed w
Γmn Dirichlet boundary with prescribed mn

ΓN Neumann boundary
Γw,n Neumann boundary with prescribed w,n
Γq̄n Neumann boundary with prescribed q̄n
ni Component of the unit outward normal vector in direction i
w Deformation of the plate normal to the mid-plane surface, bending
βi Angle of inclination of the mid-plane surface of the plate in direction i
p Surface load per unit area acting on the plate
t Thickness of the plate
E Young’s modulus
ν Poisson’s ratio
σ Linearised Cauchy stress tensor
K Bending stiffness, flexural rigidity of the plate
mi Bending or twisting moment per unit length in direction i
qi Transverse shear force per unit length in direction i
q̄i Effective shear force per unit length in direction i
Fc Force concentrated in the corners of the plate
ŵ Prescribed value, shown for w here





1 Introduction

Thin plates as widely used structural members are modelled as two-dimensional solids, loaded in
perpendicular direction to the midsurface of the plane plate. The assumptions of Kirchhoff [12] lead
to a governing partial differential equation of fourth order for the deflection normal to the midsurface.
Within the Kirchhoff-Love plate theory, strains are defined as functions of the second derivatives of
the displacement w. As a result the inter-element continuity conditions are imposed on the deflections
as well as on their derivatives. These conditions may be met e.g. via construction of C1-continuous
finite elements or applying mixed or hybrid variational formulations [18, 4, 5].

Within this thesis the governing equation of the static isothermic Kirchhoff-Love plate with constant
thickness is, following Ahrens et al. [1], formulated as a system of four second order partial differential
equations, such that the continuity requirements are reduced to C0 and the internal moments of the
thin plate are directly obtained from solving the emerging linear system of equations. Lagrange
elements are therefore sufficient and used in an isoparametric approach, which is easily incorporated
in an existing finite element code.

The boundary conditions of the Kirchhoff-Love plate on curved polygonal boundaries are presented
and introduced as Lagrange multipliers into the mixed weak formulation of the boundary value
problem. In doing so three approaches were taken to prescribe Neumann and Dirichlet data along
the boundary of the domain. Within the first two methods, Neumann boundary conditions are
enforced via the evaluation of boundary terms and Dirichlet boundary conditions on the one hand
via Lagrange multipliers discretised by spaces of Dirac-delta functions, which is known as the Point
Collocation Method [8], or on the other hand via mapped one-dimensional Lagrange Polynomials.
The third method introduces Lagrange multipliers for both essential and natural boundary conditions,
which are discretised by mapped one-dimensional Lagrange polynomials of different order.

The arising minimization problem under linear constraints must fulfil the Babuška-Brezzi stability
criterion which is shown numerically by completion of convergence studies using solutions obtained
via the manufactured solution method as well as several other reference solutions on a non-uniform
mesh with curved boundaries. For the mathematical analysis of this problem the reader is referred
to Babuška [3], Boffi et al. [5], Brezzi [6] , Ciarlet et al. [7] and the references therein. In the nu-
merical results, it is shown that higher-order convergence rates are achieved for a number of different
problems. Thereby, it is found that a mixed FEM is a very attractive method for approximating
Kirchhoff-Love plates with no need for increased continuity requirements.
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2 Kirchhoff-Love Plate Theory

The Kirchhoff-Love plate theory or classical plate theory was first derived by Love [13] based on
assumptions proposed by Kirchhoff [12]. For thin plates this theory yields satisfactory results con-
sidering lateral loading or bending moments acting along the boundary of the plate and is therefore
widely used in engineering science as well as in engineering practice.
Within the classical plate theory, the following assumptions are made [17]:

• The midsurface of the plate remains neutral during the whole deformation, i.e. strains in the
middle plane are neglected.

• Points on a plane normal to the midsurface remain on the plane normal to the midsurface after
deformation.

• The normal stress component in thickness direction σzz is negligible compared to the in-plane
normal stresses σxx and σyy.

Within this thesis bending of homogeneous isotropic and isothermic plates with constant thickness
and time independent behaviour are considered. The constitutive relation applied is the generalized
linear-elastic Hook’s law. In combination with the restrictions stated above this implies a plane
stress state. The a-priori non-zero shear components of the linearised Cauchy stress tensor σ are
directly linked to the transverse loading p via equilibrium and do not contribute to plate deflection.
Thus all stress and strain components at every point in the plate are described as functions of the
transverse displacement w. The governing linear partial differential equation on the domain Ω is
therefore expressed solely in w and together with Dirichlet and Neumann boundary conditions on
the corresponding partitions of the boundary of the domain ΓD and ΓN complete the boundary value
problem. In the following the underlying model equations taken from [17, 2] are summarized using
a Cartesian coordinate system. Matrix notation is avoided for the sake of simplicity when deriving
the needed boundary terms.

2.1 Kinematics

Due to the small deflections of the plate linearization is carried out and the curvature κ of any given
plane parallel to the midplane surface is written in terms of the deflection w. As depicted in figure
2.1, the following relations may be derived using the plates angle of inclination βi at the point in
i-direction and the in-plane displacements ux and uy:

βx := w,x , βy := w,y

ux := −sin(βx) z ≈ −βx z , uy := −sin(βy) z ≈ −βy z
κx := −βx,x = −w,xx , κy := −βy,y = −w,yy , κxy := −βx,y = −w,xy = −βy,x =: κyx (2.1)

The strains in x and y directions due to pure bending of a thin plate at a distance z from the neutral
midplane surface are:

εxx = ux,x = z κx , εyy = uy,y = z κy (2.2)
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x axis

z axis

w,x = βx

−ux

Fig. 2.1: Kinematics of a thin plate in x-direction

The non-zero shear strain components are:

γxy = γyx := ux,y + uy,x = βx,y + βy,x = −2z w,xy = 2z κxy (2.3)

The strains in the Kirchhoff-Love plate theory are linear functions in the distance from the midplane
surface z and second derivatives of the deflection of the midplane surface, which are equal to the
corresponding curvatures at any given point.

2.2 Internal Forces and Equilibrium

The assumption of pure plate bending, allowing for transverse loading and bending moments per
unit length acting on the Neumann boundary ΓN, implies that the normal stress components are
integrated over the thickness of the plate resulting in expressions for the bending moments mx and
my and the twisting moment mxy all defined per unit length:

mx :=
t/2∫
−t/2

σxx z dz , my :=
t/2∫
−t/2

σyy z dz , mxy = myx :=
t/2∫
−t/2

τxy z dz (2.4)

The equality of the twist moments per unit length mxy and myx follows from the symmetry of the
corresponding stresses, which is a necessary condition for fulfilling the balance of angular momentum
[9] and can easily be seen considering equation 2.3.
Analogously to the normal stress components the shear stress components are integrated over the
plate thickness resulting in the shear forces:

qx :=
t/2∫
−t/2

τxz z dz , qy :=
t/2∫
−t/2

τyz z dz (2.5)

In figure 2.2 all internal forces per unit length acting on a differential element of the plate are shown.
Using the above relations 2.4 and 2.5 the linearized local balance of linear and angular momentum
considering a surface loading per unit area p(x, y) result in:

qx,x + qy,y = −p (2.6)
mxy,x +my,y = qy (2.7)
mx,x +myx,y = qx (2.8)
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x axis

y axis

z axis

(mx +mx,x dx) dy
(mxy +mxy,x dx) dy
(qx + qx,x dx) dy

mx dy
mxy dy
qx dy

(my +my,y dy) dx
(myx +myx,y dy) dx
(qy + qy,y dy) dx

my dx
myx dx
qy dx

p dxdy

dy

dx

Fig. 2.2: Internal forces acting on a differential element of the Kirchhoff-Love plate

Substituting qx and qy in 2.6 and using mxy = myx from 2.4 yields the local equilibrium in terms of
the bending and twisting moments per unit length of the plate:

mx,xx + 2mxy,xy +my,yy = −p (2.9)

2.3 Constitutive relation

The generalized linear-elastic Hooks law for plain stress analysis neglecting normal stress components
acting transversely to the midplane surface with Young’s modulus E and Poisson’s ratio ν yields:

εxx := 1
E

(σxx − ν σyy) , εyy := 1
E

(σyy − ν σxx) , γxy := 2
E

(1 + ν) τxy (2.10)

Using the equations 2.1, 2.2 and 2.4 from above the constitutive relation is expressed in terms of the
moments per unit length and the flexural rigidity K of the plate:

mx = −K (w,xx + ν w,yy)

my = −K (w,yy + ν w,xx)

mxy = −K (1− ν)w,xy with : K = E t3

12 (1− ν2) (2.11)

Substituting these expressions in the local equilibrium 2.9 results in the governing linear partial
differential equation of Kirchhoff-Love plate bending:

w,xxxx + 2w,xxyy + w,yyyy = p

K
or ∆2w = p

K
(2.12)

Applying boundary conditions and solving equation 2.12 provides the deflection of the midplane
surface w(x) of the thin plate. In the process of designing a plate as a structural member not
only the deformation, but also the internal forces, stresses and strains are of particular interest.
Hence the following relations are provided to solve for the desired quantities in a postprocessing step,
considering the deformation w and all bending and twisting moments mx, my and mxy, which are
primary variables of the mixed method introduced in chapter 3.
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2.4 Stress and strain recovery

The constitutive relation expressed in the internal forces of the Kirchhoff-Love plate in equations
2.11 is rewritten using the relation between the second derivative of the deflection and the curvature
in equation 2.1 as:

κx = 1
K (1− ν2) (mx − ν my)

κy = 1
K (1− ν2) (my − ν mx)

κxy = 1
K (1− ν2) (1 + ν)mxy (2.13)

Further inserting into 2.2 and 2.3 gives the following expressions of the strains as functions of the
bending and twisting moments per unit length:

εxx = z κx = z

K (1− ν2) (mx − ν my)

εyy = z κy = z

K (1− ν2) (my − ν mx)

γxy = 2z κxy = 2z
K (1− ν2) (1 + ν)mxy (2.14)

Finally using the constitutive relation 2.10 yields:

σx = 12
t3
z mx , σy = 12

t3
z my , τxy = 12

t3
z mxy (2.15)

The shear stress components acting normal to the midplane surface of the plate is recovered most
efficiently using the equilibrium equations 2.7 and 2.8, i.e. partially differentiating the bending and
twisting moments mx, my and mxy:

τxz = (mx,x +mxy,y)
6
t3

(
t2

4 − z
2
)

, τyz = (my,y +mxy,x) 6
t3

(
t2

4 − z
2
)

(2.16)

It is highlighted, that the strains are computed directly from the bending and twisting moments,
while all entries of the linearised Cauchy stress tensor σ may only be recovered using the solutions
to the mixed method as well as their first derivatives. Describing these quantities in terms of the
deflection w of the plate results in relations involving higher derivatives. To preserve the numerical
accuracy of the presented mixed method, the above relations are considered.
The boundary value problem consists of the partial differential equation of the Kirchhoff-Love plate
in the domain Ω and appropriate Dirichlet and Neumann boundary conditions on the boundary ∂Ω.
To formulate the latter for arbitrarily shaped boundaries, transformation equations for the internal
moments and shear forces are introduced in the next section.

2.5 Transformation equations

Considering the definitions of the bending and twisting moments and the shear forces per unit length
in equations 2.4 and 2.5 the desired quantities may be derived by expressing the components of the
stress tensor σ in a coordinate system rotated by an angle ϕ about the z axis, which is normal to
the midplane surface [2]. The angle of rotation is defined positive in counter-clockwise direction, as
depicted in figure 2.3.
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x

y

z

ϕ

n

t

Fig. 2.3: xyz coordinate system and rotated ntz coordinate system

The second order tensor σ is transformed by pre- and postmultiplying with the orthogonal tensor
of second order R and its transpose [9]:

R =

cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 , with det (R) = 1 and R−1 = R> (2.17)

σ′ = R · σ ·R> ⇐⇒ σ = R> · σ′ ·R (2.18)
Using the latter expression of equation 2.18 and the definitions of the internal forces in 2.4 and 2.5 the
internal forces defined in a rotated coordinate system ntz are expressed in the initial xyz coordinate
system:

mn = mx cos
2(ϕ) +my sin

2(ϕ) +mxy sin(2ϕ)
mt = mx sin

2(ϕ) +my cos
2(ϕ)−mxy sin(2ϕ)

mnt = (my −mx) sin(ϕ) cos(ϕ) +mxy cos(2ϕ)
qn = qx cos(ϕ) + qy sin(ϕ)
qt = −qx sin(ϕ) + qy cos(ϕ) (2.19)

The xyz coordinates of a point are transformed into the ntz coordinate system using:

x = n cos(ϕ)− t sin(ϕ) , y = n sin(ϕ) + t cos(ϕ) , z = z (2.20)

Differentiating a scalar function w(x) with respect to the ntz coordinates considering the chain rule
gives:

w,n = w,x x,n + w,y y,n = w,x cos(ϕ) + w,y sin(ϕ)
w,t = w,x x,t + w,y y,t = −w,x sin(ϕ) + w,y cos(ϕ)
w,z = w,z (2.21)

The above relations are used to formulate boundary conditions to model different types of physical
boundaries of the Kirchhoff-Love plate. The emphasis therein lies on prescribing natural and essential
boundary conditions on curved boundaries, which are later approximated using isoparametric finite
elements. Robin or mixed boundary conditions, which may be utilised to model e.g. elastic supports,
are not considered.

2.6 Boundary conditions

As the governing equation 2.12 of the Kirchhoff-Love plate is a fourth-order problem, enforcing two
independent displacement or force quantities in every point of the boundary is sufficient and necessary

7



[2]. Revisiting the kinematics and kinetics of a differential plate element one may observe, that on
a boundary of such an element of the plate three kinetic quantities, namely mn, mnt and qn, and
three kinematic quantities w, w,n and w,t are defined. The assumption of zero shear deformation in
equation 2.1 of the plate allowed for a simplification and is inevitable for the model reduction in thin
plate bending.
To circumvent this problem, the so-called effective shear force was introduced by Kirchhoff [12],
which is a quantity defined per unit length.

2.6.1 Effective shear force

In a point on a arbitrarily shaped boundary of a thin plate the bending moment per unit length
producing normal stresses in direction normal to the boundary mn, the twisting moment per unit
length mnt as well as the shear force per unit length qn, both the latter two producing shear stresses
in the local tz plane, act as depicted in figure 2.4.

x

y

z

ϕ

n

t

mnt

mn

qn

Fig. 2.4: Internal forces acting on an edge of a thin plate

Saint Venant’s principle states, that the stress state of any given continuum does not change con-
siderably, if a surface traction, which is in equilibrium with itself, is applied to a small partition of
the surface of the continuum [2]. To reduce the number of boundary conditions to two, the twist-
ing moment per unit length is decomposed statically equivalent into pairs of forces acting in the
boundary-plane, as shown in figure 2.5.
This allows for the summation of the shear force qn and the pair of forces induced by the twisting
moment mnt per unit length acting on the boundary [17, 2]:

q̄n = qn +mnt,t (2.22)

The resulting disturbances in the stress state of the plate will only affect a small region alongside
the boundary, which is of the same order as the thickness of the plate [17, 14]. Therefore a loss of
accuracy is expected if the plate is comparatively thick or the influence of the part of the Neumann
boundary, on which the effective shear force is prescribed Γq̄n ⊂ ∂Ω, is not negligible.
It is noted, that the individual quantities of the shear force and the twisting moment per unit length
are not prescribed individually. Hence it is not possible to apply boundary conditions on these
quantities. Moreover prescribing the desired value for the effective shear force is not identically equal
to prescribing the individual values and will in general not result in exactly the same values.
The decomposition of the twisting moment per unit length acting on the edge of the plate has a
drastic consequence for the points on the boundary, in which a discontinuity of the twisting moment
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z

n

t

dt
dt

qn

mnt + 1
2 mnt dt

mnt − 1
2 mnt dt

Fig. 2.5: Internal forces acting on an edge of a thin plate

per unit length is present. This is e.g. the case in the corners of the plate and at points, where the
thickness of the plate changes. As depicted in figure 2.6, which shows a corner with two adjacent
edges coinciding at an arbitrary angle, a force concentrated at the corner of the plate, denoted by
Fc, arises [17, 2].

z

ni+1ni

Fc

mi+1
nt dti+1mi

nt dti

Fig. 2.6: Concentrated force in the corners Fc arising from the twisting moments

The force in the corner is a function of the twisting moments per unit length at the corner mi
nt and

mi+1
nt , with i and i+ 1 indicating two consecutive boundary sections and equals the negative reaction

force Rc in the corner [17, 2]:
Fc = mi+1

nt −mi
nt = −Rc (2.23)

The successive sections of the boundary are defined positively in the counter-clockwise direction such
that a positive i.e. lifting force in the corner Fc points into the positive z direction. After solving for
the primary variables and utilising equations 2.19 the concentrated forces in the corners are computed
in a postprocessing step:

Fc = (my −mx)
[
sin(ϕi+1) cos(ϕi+1)− sin(ϕi) cos(ϕi)

]
+

+mxy

[
cos(2ϕi+1)− cos(2ϕi)

]
= 1

2 (my −mx)
[
sin(2ϕi+1)− sin(2ϕi)

]
+mxy

[
cos(2ϕi+1)− cos(2ϕi)

]
(2.24)

9



An angle α = π
2 of two neighbouring boundary sections gives a force in the corner equal to Fc =

−2mnt for a simply supported plate and thus a lifting reaction force Rc = 2 |mxy|. For an angle
α = 0 or α = 2π, which implies ϕi = ϕi+1, the resulting force in the corner vanishes.
The forces Fc are a consequence of the assumption of zero shear deformation made in the Kirchhoff-
Love plate model, therefore choosing the thin plate bending model implies in general the presence of
forces in the corners of the plate.
Nevertheless the force in the corner itself is not a boundary condition of the boundary value problem,
but the bearing of the plate in the corners must withstand the arising forces. If the forces in the
corners cannot build up, the load-bearing effect of a plate with shear deformations extends to the
Reissner-Mindlin plate theory which is not considered herein [17].
The introduction of the effective shear force enables the derivation of the boundary conditions to
model certain physical boundary types.

2.6.2 Clamped boundary

At a clamped boundary both the deflection w of a plate and the partial derivative of the bending
surface normal to the edge of the plate w,n on Γw, Γw,n ⊂ ∂Ω are prescribed [17, 2]:

w
∣∣∣
Γw

= ŵ with : ŵ ... prescribed deflection

w,n
∣∣∣
Γw,n

= ŵ,n with : ŵ,n ... prescribed rotation (2.25)

The partial derivative tangential to the boundary may, in general, be non-zero and depends on the
given Dirichlet data for the deflection on the boundary Γw. Figure 2.7 shows the local ntz coordinate
system at a point on the boundary of a plate and the prescribed values for a clamped edge.

x

y

z

ϕ

n

t

ŵ,n

ŵ

Fig. 2.7: Boundary conditions in w and w,n at a clamped boundary
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2.6.3 Pinned boundary

The mathematical modelling of a pinned edge within thin plates includes prescribing Dirichlet data
for both the deflections w and the bending moment per unit length mn normal to the boundary
Γmn ⊂ ∂Ω [17, 2]:

w
∣∣∣
Γw

= ŵ , mn

∣∣∣
Γmn

= m̂n

with : m̂n ... prescribed bending moment (2.26)

Prescribing a value m̂n for the internal bending moment is equivalent to loading the plate with
an external bending moment with same magnitude but opposite sign. This follows from Cauchy’s
Lemma [9].
In figure 2.8 a pinned edge of a thin plate and the boundary conditions are depicted.

x

y

z

ϕ

n

t

m̂n

ŵ

Fig. 2.8: Boundary conditions in w and mn on a pinned boundary

2.6.4 Free boundary

A free edge in the Kirchhoff-Love plate theory is defined as a boundary, on which the bending moment
per unit length mn normal to the edge as well as the effective shear force q̄n normal to the boundary
Γq̄n ⊂ ∂Ω are prescribed [17, 2]:

mn

∣∣∣
Γmn

= m̂n , q̄n
∣∣∣
Γq̄n

= ˆ̄qn

with : ˆ̄qn ... prescribed effective shear force (2.27)

For inhomogeneous boundary conditions the loading terms considered must be introduced into equa-
tion 2.27 with an opposite sign due to Cauchy’s lemma [9]. The convention for a positive effective
shear force is illustrated in figure 2.9.

11



x

y

z

ϕ

n

tm̂n

ˆ̄qn

Fig. 2.9: Boundary conditions in mn and q̄n at a free boundary

2.6.5 Symmetry boundary

Symmetry boundary conditions are introduced into the present boundary value problem by prescrib-
ing Neumann boundary data for the partial derivative in normal direction to the boundary w,n and
the effective shear force normal to the boundary q̄n [17, 2]:

w,n
∣∣∣
Γw,n

= 0 , q̄n
∣∣∣
Γq̄n

= 0 (2.28)

As discussed thoroughly in 2.6.1 the individual quantities mnt and qn contributing to the effective
shear force q̄n are not enforced separately. Therefore these quantities will in general not fulfil the
homogeneous Neumann boundary condition stated, but their sum will approximate the desired value.
In figure 2.10 a symmetry boundary is depicted including the local ntz coordinate system.

x

y

z

ϕ
n

t

ˆ̄qn

ŵ,n

Fig. 2.10: Boundary conditions in w,n and q̄n at a symmetry boundary

It is noted, that the twisting moment per unit length mnt in the corners of the plate and therefore the
force Fc is not part of any of the above boundary conditions. Nevertheless, using other variational
formulations than the one presented within this thesis, they may be prescribed in terms of a single
force loading at the corner, which is not considered. The influence of this inconsistency within the
formulation of the problem is adressed in chapter 4.
The formulated boundary conditions complete the boundary value problem of Kirchhoff-Love plate
bending.
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3 Application of the Mixed Finite Element
Method

Further analysis of the strong form of the governing equation of Kirchhoff-Love plate theory 2.12
reveals the need for an ansatz, whose function values as well as the first derivatives at interelement
boundaries are globally continuous. The construction of C1-continuous shape functions, typically
involving complex construction methods or Hermite-type elements, is circumvented utilising a mixed
finite element formulation. Therefore Lagrange-type elements are sufficient for the approximation
of the boundary value problem. In the following an approach using one field for the deflection and
three fields for the internal moments of the Kirchhoff-Love plate with emphasis on the enforcement
of both essential and natural boundary conditions is taken. For further mathematical analysis of the
problem the reader is referred to Boffi et al. [5] and Ciarlet et al. [7] and the references therein.

3.1 Mixed Formulation of the Boundary Value Problem

The derivation of a multi-field formulation of the problem is based on [1] and reformulates equations
2.1, 2.9 and 2.13 from chapter 2, which are repeated at this point:

κx = −w,xx , κy = −w,yy , κxy = −w,xy = κyx (2.1 revisited)

mx,xx + 2mxy,xy +my,yy = −p (2.9 revisited)

κx = 1
K (1− ν2) (mx − ν my)

κy = 1
K (1− ν2) (my − ν mx)

κxy = 1
K (1− ν2) (1 + ν)mxy (2.13 revisited)

The kinematic relation in Kirchhoff-Love plate theory enables one to combine the constitutive relation
expressed in bending and twisting moments 2.13 and the kinematics 2.1 of the plate:

w,xx + 1
K (1− ν2) (mx − ν my) = 0 (3.1)

w,yy + 1
K (1− ν2) (my − ν mx) = 0 (3.2)

2w,xy + 2
K (1− ν2) (1 + ν)mxy = 0 (3.3)
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The boundary value problem in strong form considering inhomogeneous Dirichlet and Neumann
Boundary conditions is, given the plate Ω with flexural rigidity K and loading p in Ω:

find w, mx, my and mxy in Ω, such that

mx,xx + 2mxy,xy +my,yy = −p in Ω ⊂ R2 ,

w,xx + 1
K (1− ν2) (mx − ν my) = 0 in Ω ⊂ R2 ,

w,yy + 1
K (1− ν2) (my − ν mx) = 0 in Ω ⊂ R2 ,

2w,xy + 2
K (1− ν2) (1 + ν)mxy = 0 in Ω ⊂ R2 ,

w = ŵ on Γw ⊂ ∂Ω ,

w,n = ŵ,n on Γw,n ⊂ ∂Ω ,

mn = m̂n on Γmn = ∂Ω \ Γw,n ,

q̄n = ˆ̄qn on Γq̄n = ∂Ω \ Γw .

(3.4)

It is noted that matrix notation is not introduced, since the field equations in 3.4 are rewritten to
apply the Neumann boundary conditions.
In the following the derivation of the weak form of the boundary value problem and three methods
to prescribe Neumann and Dirichlet data are presented.

3.2 Weak Form of the Multi-Field Boundary Value Problem

To derive a variational formulation of the boundary value problem, each field-equation in 3.4 is
multiplied by a test function, indicated by φ, before integration over the domain is carried out.
Integration by parts leads to line integrals and evaluations in the corners of the plate, through which
one may enforce the Neumann boundary conditions. Alternatively the Neumann boundary conditions
may be enforced adopting other methods, out of the numerous possibilities the method chosen is to
introduce Lagrange multipliers denoted by λ with corresponding test functions µ.
For both the deflection of the plate w and the bending moment mn Dirichlet boundary conditions on
the respective boundaries must hold, but the bending moment normal to an edge is not a primary
variable of any field. Therefore the Lagrange Multiplier Method is utilised again.
The stiffness matrix of an element is formulated based on the following methods, which will be
referred to as method 1, 2 and 3 in the following, to impose the boundary conditions:

Methods used to apply Boundary Conditions

1. Enforce Dirichlet boundary conditions via Lagrange multipliers, discretised by a space of Dirac
delta functions, whose degrees of freedom live on the respective boundary, and apply Neumann
boundary conditions via evaluation of line integrals and evaluations in the corners added to the
stiffness matrix.

2. Same as above, but discretise the Lagrange multipliers by a space of mapped Lagrange shape
functions.

3. Enforce both the Dirichlet and Neumann boundary conditions via Lagrange multipliers, dis-
cretised by spaces of mapped Lagrange shape functions of different polynomial degree.
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Multiplying each field-equation in 3.4 by a test function and integrating over the domain gives:∫
Ω

φw (mx,xx + 2mxy,xy +my,yy) dΩ = −
∫
Ω

φw p dΩ (3.5)

∫
Ω

φmx w,xx dΩ +
∫
Ω

φmx

1
K (1− ν2) (mx − ν my) dΩ = 0 (3.6)

∫
Ω

φmy w,yy dΩ +
∫
Ω

φmy

1
K (1− ν2) (my − ν mx) dΩ = 0 (3.7)

∫
Ω

φmxy 2w,xy dΩ +
∫
Ω

φmxy

2
K (1− ν2) (1 + ν)mxy dΩ = 0 (3.8)

Next, all of the field equations are reformulated, such that only first derivatives remain and the
Neumann and Dirichlet boundary conditions may be prescribed by evaluating line integrals on the
corresponding boundaries if needed.

3.2.1 Recasting Equation 3.5

The local equilibrium is rewritten such that Neumann boundary conditions on q̄n may be prescribed
and only first derivatives of the test functions remain. Integration by parts of equation 3.5 and
introducing line loads q̂x and q̂y leads to:

−
∫
Ω

φw,xmx,x dΩ +
∫
Γ

φwmx,x nx dΓ

−
∫
Ω

φw,ymy,y dΩ +
∫
Γ

φwmy,y ny dΓ

−
∫
Ω

φw,xmxy,y dΩ +
∫
Γ

φwmxy,y nx dΓ

−
∫
Ω

φw,ymxy,x dΩ +
∫
Γ

φwmxy,x nx dΓ

=−
∫
Ω

φw p dΩ −
∫
Γ

φw (q̂x nx + q̂y ny) dΓ (3.9)

The line loads q̂x and q̂y correspond to the shear forces inside the domain on interelement boundaries
and may be used to prescribe a line load q̂n on a curved interelement boundary. Nevertheless these
terms are dropped for simplicity.
Using the equations of local equilibrium in terms of the internal forces of the plate 2.7 and 2.8,

mxy,x +my,y = qy (2.7 revisited)
mx,x +myx,y = qx (2.8 revisited)

the boundary terms may be rewritten as:∫
Γ

φw
[

(mx,x +mxy,y) nx + (my,y +mxy,y) ny
]

dΓ =
∫
Γ

φw (qx nx + qy ny) dΓ (3.10)
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To prescribe Neumann boundary data for the effective shear force q̄n = ˆ̄qn via evaluation of the
boundary terms, the definition of effective shear force 2.22 as well as transformation equations of the
internal forces 2.19 are used:

q̄n = qn +mnt,t =

= qx cos(ϕ) + qy sin(ϕ) + ∂

∂t
[(my −mx) sin(ϕ) cos(ϕ) +mxy cos(2ϕ)] (3.11)

=⇒ q̄n = ˆ̄qn = qn +mnt,t ⇐⇒


qx = (ˆ̄qn −mnt,t − qy sin(ϕ)) 1

cos(ϕ)

qy = (ˆ̄qn −mnt,t − qx cos(ϕ)) 1
sin(ϕ)

(3.12)

Further using nx = cos(ϕ) and ny = sin(ϕ) and inserting 3.12 into 3.10 gives:∫
Γq̄n

φw (qx nx + qy ny) dΓq̄n =

=
∫

Γq̄n

φw

[ =1︷ ︸︸ ︷
nx

cos(ϕ) (ˆ̄qn −mnt,t − qy sin(ϕ)) +

=1︷ ︸︸ ︷
ny

sin(ϕ) (ˆ̄qn −mnt,t − qx cos(ϕ))
]

dΓq̄n =

=
∫

Γq̄n

φw
[
ˆ̄qn − (my,y −mxy,x) sin(ϕ) + ˆ̄qn − (mx,x −mxy,y) cos(ϕ)− 2mnt,t

]
dΓq̄n

In a final step the term involving the derivative of twisting moment in tangential direction mnt,t is
rewritten using integration by parts and the transformation equations 2.19:

∫
Γq̄n

φw
[
ˆ̄qn − (my,y −mxy,x) sin(ϕ) + ˆ̄qn − (mx,x −mxy,y) cos(ϕ)− 2mnt,t

]
dΓq̄n =

=
∫

Γq̄n

φw
[
2 ˆ̄qn − (my,y −mxy,x) sin(ϕ)− (mx,x −mxy,y) cos(ϕ)

]
dΓq̄n

+
∫

Γq̄n

2φw,tmnt dΓq̄n − 2φwmnt

=0︷︸︸︷
nt
∣∣∣
C

=

= −
∫

Γq̄n

φw
[
(my,y −mxy,x) sin(ϕ) + (mx,x −mxy,y) cos(ϕ)

]
dΓq̄n

+
∫

Γq̄n

2φw ˆ̄qn dΓq̄n +
∫

Γq̄n

2φw,t
[
(my −mx) sin(ϕ) cos(ϕ) +mxy cos(2ϕ)

]
dΓq̄n

= −
∫

Γq̄n

φw
[
(my,y −mxy,x) sin(ϕ) + (mx,x −mxy,y) cos(ϕ)

]
dΓq̄n +

∫
Γq̄n

2φw ˆ̄qn dΓq̄n

+
∫

Γq̄n

2
[
− φw,x sin(ϕ) + φw,y cos(ϕ)

] [
(my −mx) sin(ϕ) cos(ϕ) +mxy cos(2ϕ)

]
dΓq̄n

(3.13)

Applying integration by parts on the line integral over the term including mnt,t gives a sum of point
measures at the corners of the domain Ω, which is equal to zero if any of its components is zero. The
twisting moment and thus the concentrated force in the corners Fc cannot be set, since the tangential
component of the unit outward normal nt is always zero.Transforming the twisting moment mnt in
equation 3.12 before integrating by parts leads to an equivalent factor, which is also identically equal
to zero for any angle ϕ. Inserting 3.13 into local equilibrium 3.5 yields the final representation, which
is presented in section 3.3.
The Neumann boundary condition within methods 1 and 2 from the list in section 3.2 is enforced by
evaluating the boundary terms 3.13 accordingly on the corresponding parts of the boundary Γq̄n . On
parts of the boundary, on which the effective shear force is not prescribed, or if the chosen method
to set the Neumann boundary conditions is 3, which involves Lagrange multipliers for all boundary
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conditions, the initial boundary terms in 3.9 are evaluated.
Line integrals over the boundary, which are not used to enforce boundary conditions, are evaluated
and added to the corresponding rows and columns in the stiffness matrix after making an ansatz
and discretising the problem, while line integrals including one test function and Neumann boundary
data are added to the load vector, as described in section 3.4.3.
For the unknown ˆ̄qn the deflection w of the thin plate is the conjugated quantity, hence the boundary
terms vanish for homogenious Dirichlet boundary conditions on the deflection field. If the effective
shear force is set using boundary term evaluation, derivatives of the deflection field are also involved.
Thus the boundary terms are identically equal to zero on a clamped boundary with homogenious
Dirchlet data on w.

3.2.2 Recasting Equations 3.6 and 3.7

Equations 3.6 and 3.7 are rewritten such that Neumann boundary conditions on w,n = ŵ,n may be
prescribed and only first derivatives of the test functions remain. Integration by parts of the first
terms of these equations, which include second derivatives of the deflection, gives:∫

Ω

φmx w,xx dΩ = −
∫
Ω

φmx,xw,x dΩ +
∫
Γ

φmx w,x nx dΓ

∫
Ω

φmy w,yy dΩ = −
∫
Ω

φmy ,y w,y dΩ +
∫
Γ

φmy w,y ny dΓ (3.14)

Analogous to 3.2.1 the line integrals over the whole boundary of the domain must be evaluated, if
the normal derivative of the plates’ deflection is not prescribed. To set Neumann boundary data on
the slope of the plate via the boundary terms, the boundary terms in 3.14 are recast:

w,n = w,x cos(ϕ) + w,y sin(ϕ) (3.15)

=⇒ w,n = ŵ,n = w,x cos(ϕ) + w,y sin(ϕ) ⇐⇒


w,x = (ŵ,n − w,y sin(ϕ)) 1

cos(ϕ)

w,y = (ŵ,n − w,x cos(ϕ)) 1
sin(ϕ)

(3.16)

By inserting into 3.14 Neumann boundary conditions on w,n are enforced:

∫
Γw,n

φmx w,x nx dΓw,n =
∫

Γw,n

φmx

=1︷ ︸︸ ︷
nx

cos(ϕ) (ŵ,n − w,y sin(ϕ)) dΓw,n =

=
∫

Γw,n

φmx ŵ,n dΓw,n −
∫

Γw,n

φmx w,y sin(ϕ) dΓw,n (3.17)

∫
Γw,n

φmy w,y ny dΓw,n =
∫

Γw,n

φmy

=1︷ ︸︸ ︷
ny

sin(ϕ) (ŵ,n − w,x cos(ϕ)) dΓw,n =

=
∫

Γw,n

φmy ŵ,n dΓw,n −
∫

Γw,n

φmy w,x cos(ϕ) dΓw,n (3.18)

Again integrals, which are not used to prescribe boundary conditions, are added to the stiffness ma-
trix after making an ansatz and discretising the boundary value problem, while the other terms are
evaluated and added to the right hand side of the linear system of equations.
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3.2.3 Recasting Equation 3.8

Integration by parts applied to the terms involving second derivatives in the governing equation on
the twisting moment field yields:∫

Ω

φmxy 2w,xy dΩ =−
∫
Ω

φmxy ,xw,y dΩ +
∫
Γ

φmxy w,y nx dΓ

−
∫
Ω

φmxy ,y w,x dΩ +
∫
Γ

φmxy w,x ny dΓ (3.19)

The chosen form of the line integral over the whole boundary of the domain is not used to prescribe
any boundary data. However it is explicitly highlighted, that the first three field equations may be
used to enforce Neumann boundary conditions in q̄n and w,n respectively, but there is no line inte-
gral available and no integral over the domain may be rewritten to prescribe the bending moment
normal to an edge of the plate with producing a factor, which is bounded for any angle ϕ. Thus
an alternative approach in prescribing this condition is taken in formulating Lagrange multipliers,
which are introduced in the following section.

3.2.4 Lagrange Multipliers

In order to set essential boundary conditions on curved edges in the deflection and the bending
moment normal to the edge Lagrange multipliers are introduced. While the deflection w could be
prescribed utilising the Kronecker-delta property of the employed Lagrange shape functions, the
bending moment normal to the boundary Γmn is not a primary variable and hence Dirichlet data
cannot be enforced in a straightforward manner.
The Dirichlet boundary condition in terms of the deflection of the plate is converted into integral
form using Lagrange multipliers λw:

w = ŵ =⇒
∫

Γw

λw (w − ŵ) dΓw = 0 ⇐⇒
∫

Γw

λw w dΓw =
∫

Γw

λw ŵ dΓw (3.20)

The Dirichlet boundary condition on the bending moment mn normal to the boundary Γmn is pre-
scribed in a weak manner using Lagrange multipliers λmn :

mn = m̂n =⇒
∫

Γmn

λmn (mn − m̂n) dΓmn = 0

⇐⇒
∫

Γmn

λmn mn dΓmn =
∫

Γmn

λmn m̂n dΓmn =

=
∫

Γmn

λmn

[
mx cos

2(ϕ) +my sin
2(ϕ) +mxy sin(2ϕ)

]
dΓmn (3.21)

Adding additional constraints on the approximation fields is mandatory if curved boundaries shall
be treated within the presented approach.
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Natural boundary conditions are also enforced introducing Lagrange multipliers for the respective
quantities within method 3. The Neumann boundary condition for the normal derivative of the
deflection surface of the plate w,n is prescribed in integral form using the Lagrange multiplier λw,n :

w,n = ŵ,n =⇒
∫

Γw,n

λw,n (w,n − ŵ,n) dΓw,n = 0

⇐⇒
∫

Γw,n

λw,n w,n dΓw,n =
∫

Γw,n

λw,n ŵ,n dΓw,n =

=
∫

Γw,n

λw,n

[
w,x cos(ϕ) + w,y sin(ϕ)

]
dΓw,n (3.22)

Analogously the Neumann boundary condition for the effective shear force q̄n normal to the partition
of the boundary Γq̄n may be fulfilled in a weak sense by introducing a Lagrange multiplier λq̄n to
convert the natural boundary condition into the following integral form:

q̄n = ˆ̄qn =⇒
∫

Γq̄n

λq̄n (q̄n − ˆ̄qn) dΓq̄n = 0

⇐⇒
∫

Γq̄n

λq̄n q̄n dΓq̄n =
∫

Γq̄n

λq̄n
ˆ̄qn dΓq̄n =

=
∫

Γq̄n

λq̄n

[
qn +mnt,t

]
dΓq̄n =

∫
Γq̄n

λq̄n

[
qx cos(ϕ) + qy sin(ϕ)

+ ∂

∂t

(
(my −mx) sin(ϕ) cos(ϕ) +mxy cos(2ϕ)

)]
dΓq̄n =

=
∫

Γq̄n

λq̄n

[ =qx︷ ︸︸ ︷
(mx,x +mxy,y) cos(ϕ) +

=qy︷ ︸︸ ︷
(my,y +mxy,x) sin(ϕ)

+
(( =my,t︷ ︸︸ ︷(

−my,x sin(ϕ) +my,y cos(ϕ)
)
−

=mx,t︷ ︸︸ ︷(
−mx,x sin(ϕ) +mx,y cos(ϕ)

) )

sin(ϕ) cos(ϕ) +

=mxy,t︷ ︸︸ ︷(
−mxy,x sin(ϕ) +mxy,y cos(ϕ)

)
cos(2ϕ)

)]
dΓq̄n (3.23)

Where the derivative in tangential direction is rewritten using equation 2.21. With the Lagrange
multipliers introduced it is possible to enforce all Neumann and Dirichlet boundary conditions de-
scribed in section 2.6, namely clamped, pinned, free or symmetry boundary conditions on polygonal
domains with curved boundries.
To apply a Finite Element Method the weak form of the system of partial differential equations is
derived in the following sections.
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3.3 Continuous Weak Form

Before introducing the continuous weak form the function space of square integrable functions L2(Ω)
and the Sobolev space of square integrable functions with square integrable derivatives are defined
[5, 10]:

L2(Ω) :=
{
φ
∣∣∣ ∫

Ω
[φ]2 dΩ = ||φ||2L2(Ω) < +∞

}
(3.24)

H1(Ω) :=
{
φ ∈ L2(Ω), φ,x ∈ L2(Ω), φ,y ∈ L2(Ω)

}
(3.25)

If Γ = ∂Ω is smooth enough (for instance Lipschitzian), the trace γφ = φ|Γ of φ ∈ H1(Ω) on the
boundary Γ may be defined. The traces of functions in H1(Ω) span a Hilbert space, denoted H1/2(Ω),
that is a proper dense subspace of L2(Ω) with the dual space denoted as H−1/2(Ω) [5, p. 48].
For the complementary parts of the partitions Γ� of the boundary of the domain ∂Ω an additional
notation is introduced:

Γc
� := {x ∈ ∂Ω \ Γ�} with � = w,w,n,mn, q̄n (3.26)

The test functions φw, φmx , φmy and φmxy are chosen from the Sobolev space of square integrable
functions H1(Ω), whose first derivatives are also square integrable. Also for both continuous weak
forms 3.27 and 3.28 the space of test functions corresponding to the Lagrange multipliers is H−1/2(Γ)
(compare [8]).
The choice of spaces is crucial for the quality of the approximation, in fact the spaces of test functions
in the weak mixed formulation presented must meet the Babuška-Brezzi condition, i.e. an inf-sup
condition. The weak formulations induce a saddle point problem for which existence and uniqueness
must be proven, which will not be covered within this thesis.
Herein, the fulfilment of the inf-sup criterion is shown numerically by completion of convergence
studies. For the mathematical analysis of this problem the reader is referred to Babuška [3], Boffi et.
al. [5], Brezzi [6], Ciarlet et al. [7] and the references therein.
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3.3.1 Continuous Weak Form - Methods 1 & 2

The continuous weak form of the multi-field boundary value problem of the Kirchhoff-Love plate
including Lagrange multipliers for the Dirichlet boundary conditions on the deflection w and the
bending moment normal to the boundary mn is:

find φw, φmx , φmy , φmxy ∈ H1(Ω)
and µw ∈ H−1/2(Γw), µmn ∈ H−1/2(Γmn) such that

−
∫
Ω
φw,xmx,x + φw,ymy,y + φw,xmxy,y + φw,ymxy,x dΩ

−
∫

Γq̄n

φw
[
(my,y −mxy,x)ny + (mx,x −mxy,y)nx

]
dΓq̄n

+
∫

Γq̄n

2
[
− φw,x ny + φw,y nx

][
(my −mx)ny nx +mxy (n2

x − n2
y)
]

dΓq̄n

+
∫

Γc
q̄n

φw
[

(mx,x +mxy,y) nx + (my,y +mxy,x) ny
]

dΓc
q̄n

+
∫

Γw

φw λw dΓw =

= −
∫
Ω
φw p dΩ−

∫
Γq̄n

2φw ˆ̄qn dΓq̄n

∀φw ∈ H1(Ω) ,

−
∫
Ω
φmx,xw,x dΩ−

∫
Γw,n

φmx w,y ny dΓw,n +
∫

Γc
w,n

φmx w,x nx dΓc
w,n

+
∫

Γmn

φmx λmn n
2
x dΓmn +

∫
Ω
φmx

mx−ν my

K (1−ν2) dΩ = −
∫

Γw,n

φmx ŵ,n dΓw,n

∀φmx ∈ H1(Ω) ,

−
∫
Ω
φmy ,y w,y dΩ−

∫
Γw,n

φmy w,x nx dΓw,n +
∫

Γc
w,n

φmy w,y ny dΓc
w,n

+
∫

Γmn

φmy λmn n
2
y dΓmn +

∫
Ω
φmy

my−ν mx

K (1−ν2) dΩ = −
∫

Γw,n

φmy ŵ,n dΓw,n

∀φmy ∈ H1(Ω) ,

−
∫
Ω
φmxy ,xw,y + φmxy ,y w,x dΩ +

∫
Γ
φmxy (w,x ny + w,y nx) dΓ

+
∫
Ω
φmxy

2 (1+ν)
K (1−ν2) mxy dΩ +

∫
Γmn

2φmxy λmn nx ny dΓmn = 0

∀φmxy ∈ H1(Ω) ,∫
Γw

µw w dΓw =
∫

Γw

µw ŵ dΓw

∀µw ∈ H−1/2(Γw) ,∫
Γmn

µmn

(
mx n

2
x +my n

2
y + 2mxy nx ny

)
dΓmn =

=
∫

Γmn

µmn m̂n dΓmn

∀µmn ∈ H−1/2(Γmn) .

(3.27)
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3.3.2 Continuous Weak Form - Method 3

The continuous weak form of the multi-field boundary value problem of the Kirchhoff-Love plate
including Lagrange multipliers λw, λmn and, contrary to the foregoing methods, also λw,n and λq̄n

to enforce both Dirichlet and Neumann boundary conditions is:

find φw, φmx , φmy , φmxy ∈ H1(Ω) and µw ∈ H−1/2(Γw), µmn ∈ H−1/2(Γmn),
µw,n ∈ H−1/2(Γw,n), µq̄n ∈ H−1/2(Γq̄n) such that

−
∫
Ω
φw,xmx,x + φw,ymy,y + φw,xmxy,y + φw,ymxy,x dΩ

+
∫
Γ
φw
[

(mx,x +mxy,y) nx + (my,y +mxy,x) ny
]

dΓ +
∫

Γw

φw λwdΓw

+
∫

Γw,n

(φw,x nx + φw,y ny) λw,ndΓw,n = −
∫
Ω
φw p dΩ

∀φw ∈ H1(Ω) ,
−
∫
Ω
φmx,xw,x dΩ +

∫
Γ
φmx w,x nx dΓ +

∫
Γmn

φmx λmn n
2
x dΓmn

+
∫

Γq̄n

(
φmx,x (nx + nx n

2
y)− φmx,y (n2

x ny)
)
λq̄n dΓq̄n +

∫
Ω
φmx

mx−ν my

K (1−ν2) dΩ = 0

∀φmx ∈ H1(Ω) ,

−
∫
Ω
φmy ,y w,y dΩ +

∫
Γ
φmy w,y ny dΓ +

∫
Γmn

φmy λmn n
2
y dΓmn

+
∫

Γq̄n

(
φmy ,y (ny + n2

x ny)− φmy ,x (nx n2
y)
)
λq̄n dΓq̄n +

∫
Ω
φmy

my−ν mx

K (1−ν2) dΩ = 0

∀φmy ∈ H1(Ω) ,

−
∫
Ω
φmxy ,xw,y + φmxy ,y w,x dΩ +

∫
Γ
φmxy (w,x ny + w,y nx) dΓ

+
∫
Ω
φmxy

2 (1+ν)
K (1−ν2) mxy dΩ +

∫
Γmn

2φmxy λmn nx ny dΓmn∫
Γq̄n

(
φmxy ,x ny (1− n2

x + n2
y) + φmxy ,y nx (1 + n2

x − n2
y)
)
λq̄n dΓq̄n = 0

∀φmxy ∈ H1(Ω) ,∫
Γw

µw w dΓw =
∫

Γw

µw ŵ dΓw

∀µw ∈ H−1/2(Γw) ,∫
Γmn

µmn

(
mx n

2
x +m2

y ny + 2mxy nx ny
)

dΓmn =
∫

Γmn

µmn m̂n dΓmn

∀µmn ∈ H−1/2(Γmn) ,∫
Γw,n

µw,n (w,x nx + w,y ny) dΓw,n =
∫

Γmn

µw,n ŵ,n dΓw,n

∀µw,n ∈ H−1/2(Γw,n) ,∫
Γq̄n

µq̄n

(
mx,x nx (1 + n2

y)−mx,y n
2
x ny +my,y ny (1 + n2

x)−my,x n
2
y nx

+mxy,x ny (1− n2
x + n2

y) +mxy,y nx (1 + n2
x − n2

y)
)

dΓq̄n =

=
∫

Γq̄n

µq̄n
ˆ̄qn dΓq̄n

∀µq̄n ∈ H−1/2(Γq̄n) .

(3.28)
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3.4 Discrete Weak Form

Adopting the isoparametric concept to approximate the given domain Ω an ansatz is made. The
number of globally continuous nodal based functions of the decomposition of the domain is therein
denoted with n, the number of nodes on the boundary with m. The nodal values of the fields are
marked by a right subscript corresponding to the shape function, whose function value is equal to 1
in the same node, the tilde above indicates the approximation:

w(x) ≈ w̃(x) =
n∑
i=1

wiNi(x) mx(x) ≈ m̃x(x) =
n∑
i=1

mx iNi(x)

my(x) ≈ m̃y(x) =
n∑
i=1

my iNi(x) mxy(x) ≈ m̃xy(x) =
n∑
i=1

mxy iNi(x)

λ.(xΓ.) ≈ λ̃.(xΓ.) =
m∑
i=1

λ. iMi(xΓ.) λ./(xΓ./) ≈ λ̃./(xΓ./) =
m∑
i=1

λ./ iM
d
i (xΓ./)

with: x ∈ Ω, xΓ. ∈ Γ., xΓ./ ∈ Γ./, . = w,mn, ./= w,n, q̄n (3.29)

Following a Ritz-Galerkin approach, the discretisation of the trial functions is the same as for the
corresponding field quantities and is labeled analogously with a tilde. The element local shape
functions for the nodal based trial functions Ni are built from Lagrange polynomials.
The trial functions Mi are either also composed by 1-dimensional Lagrange Polynomials defined by
nodes on the boundary or by Dirac-delta functions δ. The latter choice is referred to as the Point
Collocation Method [8]. Within this approach the nodal value λi in a point xΓ i on the boundary Γi
is prescribed in a straightforward manner.
The shape functionsMi andMd

i to approximate the trial spaces are chosen differently for the methods
formulated within this thesis as presented in the following list:

Methods used to apply Boundary Conditions

1. Choose Mi(x) = δ(x−xΓ i) and prescribe all Dirichlet boundary conditions (Point Collocation
Method). Natural boundary conditions enter the system via boundary terms, the unit outward
normal in corners is weighted by the element areas of the coinciding elements.

2. Enforce Dirichlet boundary conditions using Mi(x) = Φ(Pp)i(x) with Φ(Pp)i being an image
of a Lagrange polynomial of order k ≤ p defined in a reference element. The points defining
the Mi(x) are edge nodes of the neighbouring two dimensional Lagrange elements. Neumann
boundary conditions are applied via evaluation of boundary terms.

3. Enforce Dirichlet boundary conditions using Mi(x) = Φ(Pp)i(x) and natural boundary condi-
tions via Md

i (x) = Φ(Pp−1)i(x).

It is explicitly highlighted, that for the discretisation of the Lagrange multiplier spaces corresponding
to the slope normal to an edge w,n and the effective shear force q̄n Lagrange polynomials are used,
which are one order lower than the ones used for the Lagrange multipliers corresponding to the
deflection w or the bending moment mn.
The geometry description for Mi(x) is of the same order as the ansatz, i.e. isoparametric, using the
nodes of a neighbouring two dimensional element. The ansatz for Md

i (x) is one order lower, leading
to a superparametric mapping [4].
This choice was made since an isoparametric approach for all trial spaces led to a singular system of
equations for the third method of applying boundary conditions. This is an immediate consequence
of not fulfilling the Babuška-Brezzi stability criterion. The enforcement of boundary conditions via
Lagrange multipliers on the one hand must not be too strict, but on the other hand allow for a proper
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approximation [6, 3]. For the third method of applying boundary conditions the presented choice led
to satisfactory results, which will be presented in chapter 4.
Considering the transformation equations introduced in section 2.5 the problem of choosing an angle
ϕ within method 1 is imminent. For arbitrary corner angles only one Lagrange multiplier may
be defined in the corner prescribing any of the described Dirichlet boundary conditions, since the
resulting linear system of equations becomes singular, if the edge is in fact not an edge but a corner
node of two or more coinciding elements along a boundary forming a straight line. The unit outward
normal and thus the angle ϕ is therefore weighted by the areas of the elements with edges coinciding
in the collocation point and only one condition for one multiplier is set in the node. This approach
leads in general to an error, because the geometry description of the boundary is not C1 continuous.
For the methods 2 and 3 the choice of ϕ is trivial, since the integration points using Gauss quadrature
are not located at the corners of the boundary.
To present the discrete weak form of the mixed boundary value problem the finite element trial spaces
D(Γ) and Hs

h,p(Ξ) with Ξ ⊂ R2 are introduced [5, 8]:

H−1/2 ⊃ D(Γ) := span
{
δ(x− xΓ i)

}m
i=1

Hs ⊃ Hs
h,p(Ξ) := span

{
Mi|Mi ∈ Hs(Ξ), Mi ∈ Φ(Pp)

}m
i=1

with m ... number of nodes in Ξ,

Φ(Pp) ... image of a Lagrange polynomial of order k ≤ p.

(3.30)

The continuous weak form is recast with the ansatz 3.29 using the test functions Ni, Mi and Md
i

chosen from the finite dimensional trial spaces 3.30. This results in the discrete weak forms of
the multi-field boundary value problem 3.31 and 3.32, which are equivalent to linear systems of
equations.
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3.4.1 Discrete Weak Form - Methods 1 & 2

The discrete weak form of the mixed formulation of the boundary value problem considered, using
methods 1 or 2 described in 3.2 to prescribe boundary conditions is:

find φ̃w, φ̃mx , φ̃my , φ̃mxy ∈ H1
h,p(Ω),

and µ̃w ∈ D(Γw) , µ̃mn ∈ D(Γmn) (method 1),

or µ̃w ∈ H−1/2
h,p (Γw) , µ̃mn ∈ H−1/2

h,p (Γmn) (method 2) such that

−
∫
Ω
φ̃w,y m̃x,x + φ̃w,y m̃y,y + φ̃w,x m̃xy,y + φ̃w,y m̃xy,x dΩ

−
∫

Γq̄n

φ̃w
[
(m̃y,y − m̃xy,x)ny + (m̃x,x − m̃xy,y)nx

]
dΓq̄n

+
∫

Γq̄n

2
[
− φ̃w,x ny + φ̃w,y nx

][
(m̃y − m̃x)ny nx + m̃xy (n2

x − n2
y)
]

dΓq̄n

+
∫

Γc
q̄n

φ̃w
[

(m̃x,x + m̃xy,y) nx + (m̃y,y + m̃xy,y) ny
]

dΓc
q̄n

+
∫

Γw

φ̃w λ̃wdΓw =

= −
∫
Ω
φ̃w p dΩ−

∫
Γq̄n

2 φ̃w ˆ̄qn dΓq̄n

∀φ̃w ∈ H1
h,p(Ω) ,

−
∫
Ω
φ̃mx,x w̃,x dΩ−

∫
Γw,n

φ̃mx w̃,y ny dΓw,n +
∫

Γc
w,n

φ̃mx w̃,x nx dΓc
w,n

+
∫

Γmn

φ̃mx λ̃mn n
2
x dΓmn +

∫
Ω
φ̃mx

m̃x−ν m̃y

K (1−ν2) dΩ = −
∫

Γw,n

φ̃mx ŵ,n dΓw,n

∀φ̃mx ∈ H1
h,p(Ω) ,

−
∫
Ω
φ̃my ,y w̃,y dΩ−

∫
Γw,n

φ̃my w̃,x nx dΓw,n +
∫

Γc
w,n

φ̃my w̃,y ny dΓc
w,n

+
∫

Γmn

φ̃my λ̃mn n
2
y dΓmn +

∫
Ω
φ̃my

m̃y−ν m̃x

K (1−ν2) dΩ = −
∫

Γw,n

φ̃my ŵ,n dΓw,n

∀φ̃my ∈ H1
h,p(Ω) ,

−
∫
Ω
φ̃mxy ,x w̃,y + φ̃mxy ,y w̃,x dΩ +

∫
Γ
φ̃mxy (w̃,x ny + w̃,y nx) dΓ

+
∫
Ω
φ̃mxy

2 (1+ν)
K (1−ν2) m̃xy dΩ +

∫
Γmn

2 φ̃mxy λ̃mn nx ny dΓmn = 0

∀φ̃mxy ∈ H1
h,p(Ω) ,∫

Γw

µ̃w w̃ dΓw =
∫

Γw

µ̃w ŵ dΓw

∀µ̃w ∈ D(Γw) - method 1 ,
∀µ̃w ∈ H−1/2

h,p (Γw) - method 2 ,∫
Γmn

µ̃mn

(
m̃x n

2
x + m̃y n

2
y + 2 m̃xy nx ny

)
dΓmn =

=
∫

Γmn

µ̃mn m̂n dΓmn

∀µ̃mn ∈ D(Γmn) - method 1 ,
∀µ̃mn ∈ H−1/2

h,p (Γmn) - method 2 .

(3.31)
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3.4.2 Discrete Weak Form - Method 3

The discrete weak form of the mixed formulation of the boundary value problem considered, using
method 3 described in 3.2 to prescribe boundary conditions is:

find φ̃w, φ̃mx , φ̃my , φ̃mxy ∈ H1
h,p(Ω),

µ̃w ∈ H−1/2
h,p (Γw), µ̃mn ∈ H−1/2

h,p (Γmn),

and µ̃w,n ∈ H−1/2
h,p−1(Γw), µ̃q̄n ∈ H−1/2

h,p−1(Γmn) such that

−
∫
Ω
φ̃w,x m̃x,x + φ̃w,y m̃y,y + φ̃w,x m̃xy,y + φ̃w,y m̃xy,x dΩ

+
∫
Γ
φ̃w
[

(m̃x,x + m̃xy,y) nx + (m̃y,y + m̃xy,x) ny
]

dΓ +
∫

Γw

φ̃w λ̃wdΓw

+
∫

Γw,n

(
φ̃w,x nx + φ̃w,y ny

)
λ̃w,ndΓw,n = −

∫
Ω
φ̃w p dΩ

∀φ̃w ∈ H1
h,p ,

−
∫
Ω
φ̃mx,x w̃,x dΩ +

∫
Γ
φ̃mx w̃,x nx dΓ +

∫
Γmn

φ̃mx λ̃mn n
2
x dΓmn

+
∫

Γq̄n

(
φ̃mx,x (nx + nx n

2
y)− φ̃mx,y (n2

x ny)
)
λ̃q̄n dΓq̄n +

∫
Ω
φ̃mx

m̃x−ν m̃y

K (1−ν2) dΩ = 0

∀φ̃mx ∈ H1
h,p ,

−
∫
Ω
φ̃my ,y w̃,y dΩ +

∫
Γ
φ̃my w̃,y ny dΓ +

∫
Γmn

φ̃my λ̃mn n
2
y dΓmn

+
∫

Γq̄n

(
φ̃my ,y (ny + n2

x ny)− φ̃my ,x (nx n2
y)
)
λ̃q̄n dΓq̄n +

∫
Ω
φ̃my

m̃y−ν m̃x

K (1−ν2) dΩ = 0

∀φ̃my ∈ H1
h,p ,

−
∫
Ω
φ̃mxy ,x w̃,y + φ̃mxy ,y w̃,x dΩ +

∫
Γ
φ̃mxy (w̃,x ny + w̃,y nx) dΓ

+
∫
Ω
φ̃mxy

2 (1+ν)
K (1−ν2) m̃xy dΩ +

∫
Γmn

2 φ̃mxy λ̃mn nx ny dΓmn∫
Γq̄n

(
φ̃mxy ,x ny (1− n2

x + n2
y) + φ̃mxy ,y nx (1 + n2

x − n2
y)
)
λ̃q̄n dΓq̄n = 0

∀φ̃mxy ∈ H1
h,p ,∫

Γw

µ̃w w̃ dΓw =
∫

Γw

µ̃w ŵ dΓw

∀µ̃w ∈ H−1/2
h,p (Γw) ,∫

Γmn

µ̃mn

(
m̃x n

2
x + m̃y n

2
y + 2 m̃xy nx ny

)
dΓmn =

∫
Γmn

µ̃mn m̂n dΓmn

∀µ̃mn ∈ H−1/2
h,p (Γmn) ,∫

Γw,n

µ̃w,n (w̃,x nx + w̃,y ny) dΓw,n =
∫

Γmn

µ̃w,n ŵ,n dΓw,n

∀µ̃w,n ∈ H−1/2
h,p−1(Γw,n) ,∫

Γq̄n

µ̃q̄n

(
m̃x,x nx (1 + n2

y)− m̃x,y n
2
x ny + m̃y,y ny (1 + n2

x)− m̃y,x n
2
y nx

+m̃xy,x ny (1− n2
x + n2

y) + m̃xy,y nx (1 + n2
x − n2

y)
)

dΓq̄n =
=

∫
Γq̄n

µ̃q̄n
ˆ̄qn dΓq̄n

∀µ̃q̄n ∈ H−1/2
h,p−1(Γq̄n).

(3.32)
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For both discrete weak forms the discrete inf-sup criterion must hold, which may be verified com-
pleting patch tests [4, 18]. The verification of the presented finite element formulations is done
numerically by completion of convergence studies using solutions obtained via the manufactured
solution method as well as several other reference solutions on a non-uniform mesh with curved
boundaries, which are presented in chapter 4.
The mixed finite element formulation of the Kirchhoff-Love plate may now be used to approximate
the solution. To further clarify the discretisation, the element stiffness matrix and the assembly of
the global system stiffness matrix is described in the following sections.

3.4.3 Element Stiffness Matrices and Load Vector

The discrete weak forms may equivalently be rewritten as linear systems of equations [4, 18]. Solving
those systems of the form Kg a = f yields an approximation a of the nodal degrees of freedom,
which define the solution fields according to the ansatz made. The global stiffness matrix Kg and
global load vector f are most efficiently computed by assembling contributions from the elements,
i.e. element stiffness matrices K l and element load vectors bl corresponding to an element nodal
degree of freedom vector ul, and the Lagrange multipliers.

K l =


0 K l 12 K l 13 K l 14

K l 21 K l 22 K l 23 0
K l 31 K l 32 K l 33 0
K l 41 0 0 K l 44

 , ul =


w
mx

my

mxy


l

, bl =


bl 1
bl 2
bl 3
0

 (3.33)

The submatrices K l[i j] of the element stiffness matrix and the entries in the element load vector bl
for the methods introduced are computed as shown in the following equations. These matrices are
assembled into the plates’ stiffness matrix Kp. Since the ansatz made for all primary field variables
is the same, subscripts indicating the field are skipped. All shape functions involved are represented
as vectors.

Submatrices and Vectors - Methods 1 & 2

K l 12 =−
∫
Ω

N>,xN ,x dΩ−
∫

Γq̄n

N>N ,x nx + 2nx ny
(
N>,y nx −N>,x ny

)
N dΓq̄n

+
∫

Γc
q̄n

N>N ,x nx dΓcq̄n
(3.34a)

K l 13 =−
∫
Ω

N>,yN ,y dΩ−
∫

Γq̄n

N>N ,y ny + 2nx ny
(
−N>,y nx +N>,x ny

)
N dΓq̄n

+
∫

Γc
q̄n

N>N ,y ny dΓcq̄n
(3.34b)

K l 14 =−
∫
Ω

N>,xN ,y +N>,yN ,x dΩ−
∫

Γq̄n

N> (N ,x ny +N ,y nx)− 2
(
n2
x − n2

y

)
(
N>,y nx −N>,x ny

)
N dΓq̄n +

∫
Γc

q̄n

N> (N ,y nx +N ,x ny) dΓcq̄n
(3.34c)
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K l 21 =−
∫
Ω

N>,xN ,x dΩ−
∫

Γw,n

N>N ,y ny dΓw,n +
∫

Γc
w,n

N>N ,x nx dΓcw,n
(3.34d)

K l 22 = 1
K (1− ν2)

∫
Ω

N>N dΩ , K l 23 = − ν

K (1− ν2)

∫
Ω

N>N dΩ (3.34e)

K l 31 =−
∫
Ω

N>,yN ,y dΩ−
∫

Γw,n

N>N ,x nx dΓw,n +
∫

Γc
w,n

N>N ,y ny dΓcw,n
(3.34f)

K l 32 = K>l 32 = K l 23 , K l 33 = K>l 33 = K l 22 (3.34g)

K l 41 = −
∫
Ω

N>,xN ,y +N>,yN ,x dΩ +
∫
Γ

N> (N ,x ny +N ,y nx) dΓ (3.34h)

K l 44 = 2 (1 + ν)
K (1− ν2)

∫
Ω

N>N dΩ (3.34i)

bl 1 = −
∫
Ω

N>p dΩ−
∫

Γq̄n

2N> ˆ̄qn dΓq̄n , bl 2 = −
∫

Γw,n

N>ŵ,n dΓw,n = bl 3 (3.35)

Submatrices and Vectors - Method 3

K l 12 =−
∫
Ω

N>,xN ,x dΩ +
∫
Γ

N>N ,x nx dΓ (3.36a)

K l 13 =−
∫
Ω

N>,yN ,y dΩ +
∫
Γ

N>N ,y ny dΓ (3.36b)

K l 14 =−
∫
Ω

N>,xN ,y +N>,yN ,x dΩ +
∫
Γ

N> (N ,y nx +N ,x ny) dΓ (3.36c)

K l 21 =−
∫
Ω

N>,xN ,x dΩ +
∫
Γ

N>N ,x nx dΓ (3.36d)

K l 22 = 1
K (1− ν2)

∫
Ω

N>N dΩ , K l 23 = − ν

K (1− ν2)

∫
Ω

N>N dΩ (3.36e)

K l 31 =−
∫
Ω

N>,yN ,y dΩ +
∫
Γ

N>N ,y ny dΓ (3.36f)
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K l 32 = K>l 32 = K l 23 , K l 33 = K>l 33 = K l 22 (3.36g)

K l 41 = −
∫
Ω

N>,xN ,y +N>,yN ,x dΩ +
∫
Γ

N> (N ,x ny +N ,y nx) dΓ (3.36h)

K l 44 = 2 (1 + ν)
K (1− ν2)

∫
Ω

N>N dΩ (3.36i)

bl 1 = −
∫
Ω

N>p dΩ , bl 2 = 0 = bl 3 (3.37)

The element load vector simplifies significantly, if the boundary conditions are enforced via Lagrange
multipliers, which are added to the system after assembling the plates’ stiffness matrix Kp.

3.4.4 Lagrange Multipliers

The global system of equations has the following form:

Kg a = f =⇒
(
Kp C>

C 0

) (
u
λ

)
=
(
b
d

)
(3.38)

Where the plates’ stiffness matrix Kp is assembled from element stiffness matrices K l and the
additional constraints are discretised via stiffness matrices of the Lagrange multipliers C. The vector
λ therein contains the degrees of freedom of the Lagrange multipliers λi, which correspond to the
entries in C and d. The matrix C is analogously to Kp computed from element contributions.

Lagrange Multipliers - Methods 1 & 2

Within the methods 1 and 2 Lagrange multipliers are utilised to enforce Dirichlet boundary conditions
solely. The matrix C is assembled from C l corresponding to entries in λl and dl. Additionally the
primary field variables are written above, to clarify the position of the submatrices:

C l =
( w mx my mxy

Cw 0 0 0
0 Cmn 2 Cmn 3 Cmn 4

)
, λl =

(
λw
λmn

)
l

, dl =
(
dw
dmn

)
(3.39)

The submatrices of C l and the entries in dl for the methods 1 and 2 are computed as shown in the
following equations. Since the ansatz made for all primary field variables is the same, subscripts
indicating the field are again skipped.

Cw =
∫

Γw

M>N dΓw , Cmn 2 =
∫

Γmn

M>N n2
x dΓmn (3.40a)

Cmn 3 =
∫

Γmn

M>N n2
y dΓmn , Cmn 4 =

∫
Γmn

M>N 2nx ny dΓmn (3.40b)

dw =
∫

Γw

M>ŵ dΓw dmn =
∫

Γmn

M>m̂n dΓmn (3.41)
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Lagrange Multipliers - Method 3

Within method 3 Dirichlet as well as Neumann boundary conditions are applied via Lagrange mul-
tipliers. Analogous to the previously presented the matrix C l is assembled from Lagrange multiplier
element contributions C l:

C l =



w mx my mxy

Cw 0 0 0
Cw,n 0 0 0

0 Cmn 2 Cmn 3 Cmn 4

0 C q̄n 2 C q̄n 3 C q̄n 4

 , λl =


λw
λw,n

λmn

λq̄n


l

, dl =


dw
dw,n

dmn

dq̄n

 (3.42)

The matrices Cw, all Cmn and the entries dw and dmn are computed similar to methods 1 and 2,
the remaining entries are defined in the following equations. The subscripts of the shape functions
indicating the field are again skipped.

Cw,n =
∫

Γw,n

Md> (N ,x nx +N ,y ny) dΓw,n (3.43a)

C q̄n 2 =
∫

Γq̄n

Md>
(
N ,x nx (1 + n2

y)−N ,y n
2
x ny

)
dΓq̄n (3.43b)

C q̄n 3 =
∫

Γq̄n

Md>
(
N ,y ny (1 + n2

x)−N ,x nx n
2
y

)
dΓq̄n (3.43c)

C q̄n 4 =
∫

Γq̄n

Md>
(
N ,x ny (1− n2

x + n2
y)−N ,y nx (1 + n2

x − n2
y)
)

dΓq̄n (3.43d)

dw,n =
∫

Γw,n

Md>ŵ,n dΓw,n dq̄n =
∫

Γq̄n

Md> ˆ̄qn dΓq̄n (3.44)

With the introduced element matrices K l and C l the global stiffness matrix Kg is assembled. The
numbering of the degrees of freedom on the element level is chosen differently from the global num-
bering. Hence the submatrices of the element stiffness matrix and the load vector are still computed
in a straight forward manner, but additionally the plates’ stiffness matrixKp has a banded structure.
The resulting linear system of equations is indefinite and may become severly ill-conditioned for large
numbers of Lagrange multipliers. The linear system is solved using LU-decomposition, since Kg is
not symmetric due to the boundary term evaluation.
Further desired quantities such as the shear forces or the forces Fc arising in the corners of the plate
may be computed in a postprocessing step using the shape functions and their derivatives. The
expected order of convergence for primary variables is O(hp) and hence for the shear forces O(hp−1),
which is a tremendous advantage of this mixed method over standard linear displacement based plate
elements.
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4 Numerical results

The mixed finite element formulations derived are tested considering several examples and con-
vergence studies are performed to compare the effectiveness of the three approaches to prescribe
boundary conditions. The problems considered include Manufactured Solutions, to verify the impos-
ing of inhomogeneous boundary conditions on non-uniform meshes with curved boundaries, as well
as reference solutions for square and circular domains obtained via derivation in a classical sense
taken from well-known references [17, 2].
The studies presented are merely an extract of the investigations carried out, but illustrate all major
aspects observed. The errors computed are the absolute and relative L2(Ω) errors, which are always
depicted in logarithmic scale on the ordinate paired with the global mesh refinement factor nelem on
the abscissa. The expected rates of convergence are plotted as dashed lines of the same color as the
associated curves referring to different ansatz orders.
The parameters considered are t = 0.2 [m], E = 30000 [N/m2] and ν = 0.3 [−], resulting inK ≈ 21.98.
Therefore the loading is also entered in [N/m2] and equals p = 0.75 [N/m2] for the mechanical prob-
lems examined. As long as the values entered do not lead to a significant increase of round-off errors,
they do not have an impact on the quality of the approximation.

4.1 Manufactured Solution

To test the implementation of varying inhomogeneous boundary conditions in a mesh, that is repre-
sented exactly, the deformation w is assumed and inserting into the governing equations yields the
associated fields and the loading p. The boundary conditions constructed in this manner are available
in any point of the domain and may therefore easily applied to approximate the solution to the given
boundary value problem. Additionally singularities, inducing reduced convergence rates, are avoided
by choosing an appropriate function w:

w(x) =
(
sin
(x

5
)

+ 2 cos
(x y

5
))

10−5 (4.1)

Rewriting the governing equations given in chapter 2 gives the following expressions, which may be
computed trivially [2]:

mx = −K (w,xx + ν w,yy) , my = −K (w,yy + ν w,xx) , mxy = −K (1− ν) w,xy

qx = −K (w,xxx + w,yyx) = −K (∆w),x , qy = −K (w,yyy + w,xxy) = −K (∆w),y (4.2)

The load per unit area p(x) solving the partial differential equation 2.12 in Ω ⊂ R2 is:

∆2w = p

K
⇐⇒ p = K ∆2w = K (w,xxxx + w,xxyy + w,yyyy) (4.3)

The explicit expressions are not given here for brevity. The Dirichlet and Neumann data is computed
in each integration or collocation point. Using the transformation equations 2.19 the values enforced
depend on the angle ϕ, which is computed using the element area weighted unit outward normal of
the coinciding elements.
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4.1.1 Mesh Construction

The mesh considered is generated via mapping a mesh of a rectangular domain with side lengths of
lx and ly by a mapping Φ1(x) scaled by cg:

Φ1 : x 7→ x̃ , Φ1(x) =


x+ 1 + cg

lx
5 cos

(
π x
3 lx

)
sin

(
π y
3 ly

)
y + 1 + cg

3 ly
10 sin

((
π x
lx

+ π
2

)
3
2

)
 , with: cg ∈ R (4.4)

If the configuration of the mapping Φ1(x) is not done with enough caution, the approximation
properties of the mesh are severely corrupted or degenerated elements occur.
On the resulting domain, the solution of the boundary value problem is approximated enforcing
Dirichlet boundary conditions in w and mn. Neumann boundary conditions are met since the loading
is constructed, and the implementation involving the treating of inhomogeneous Neumann boundary
conditions is tested.

4.1.2 Manufactured solution - Dirichlet and Neumann boundary conditions

The presented mixed finite element formulation is utilised to approximate the solution to the bound-
ary value problem of the Kirchhoff-Love plate with all essential and natural boundary conditions
enforced along the whole boundary of the domain. The mesh considered as well as markers indicat-
ing nodes on a boundary with given boundary conditions is depicted in figure 4.1.

Fig. 4.1: Mesh considered: 4× 4 quadrilateral elements of second order

The performed convergence studies indicate, that the methods approximate the solution of the deflec-
tion of the plate with optimal convergence rates and are in some cases superconvergent for the first
orders using quadrilateral Lagrange elements (see figure 4.2). Using triangular Lagrange elements
also leads to superconvergent behaviour for some orders, but linear triangles do not converge at all
(see figure 4.3). This result is known and discussed in the literature, e.g. Boffi et al.[5].
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In general quadrilateral elements performed better or gave the same results as triangular elements
in most cases, which may be due to the mixed terms involved in the shape functions. The methods
1 and 2 yield almost identical results in this test and are therefore not depicted individually.

(a) Methods 1 and 2 (b) Method 3

Fig. 4.2: Convergence studies in w using quadrilateral elements

(a) Methods 1 and 2 (b) Method 3

Fig. 4.3: Convergence studies in w using triangular elements

The approximation of the internal moments of the plate is in general worse than the deflection
although the shape functions used to discretise the ansatz have the same polynomial degree. The
reason being that, the internal moment fields are more sensible to mesh distortion, as concluded from
section 4.2. Methods 1 and 2 yield almost identical results. Figure 4.4 compares the convergence
behaviour of the bending moment mx using methods 1 and 3.
The results obtained show uniform convergence, which is for some orders slightly worse than the
expected O(hp). Nevertheless higher order convergence rates are reached and the mentioned effect
remains small in this specific test.
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(a) Methods 1 and 2 (b) Method 3

Fig. 4.4: Convergence studies in mx using quadrilateral elements

The shear forces are computed in a postprocessing step from the bending moments and hence also
suffer from this loss of accuracy and do in general not reach the expected O(hp−1) rate of convergence
(see figure 4.5), if the mesh is distorted. Nevertheless method 3 performs slightly better comparing
the shear forces and internal moments.
The discontinuous nodal values of the shear forces are averaged over the weighted element areas
and interpolated into the integration points using the shape functions, which are one order higher.
Nevertheless the gained accuracy is not significant.

(a) Methods 1 and 2 (b) Method 3

Fig. 4.5: Convergence studies in qx using quadrilateral elements

After solving the linear system of equations the Lagrange multipliers λmn are used to compute the
relative L2 error inmn, which is a boundary condition on Γmn . Within methods 2 and 3 the Lagrange
elements on the boundary are utilised to integrate over the boundary. If method 1 is used, Lagrange
elements are constructed. This results in three convergence studies depicted in figure 4.6, showing
optimal convergence rates.
The improper convergence of mn using linear triangles is clearly visible in the study of method 1.
Though the kink in the corresponding curve emerges at the fifth refinement step, while the kink in
the convergence curve of the deformation w using the same method occurs in the third refinement
step (see figures 4.6c and 4.6d). The respective kink is not apparent in the convergence curve of
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mn using method 2 and the curves associated with the deformation w are of the same appearance.
Which leads to the conclusion, that the boundary conditions in mn are approximated sufficiently for
all methods used.

(a) Method 1, quadrilateral elements (b) Method 3, quadrilateral elements

(c) Method 1, triangular elements (d) Method 1, triangular elements

Fig. 4.6: Convergence studies in mn and w, comparing triangular and quadrilateral elements

Finally the solution fields w, mx and qx are presented using the shape functions and their derivatives
of each element (see figure 4.7, left). Additionally the relative L2 error distribution is shown for a
mesh of 15×15 quintic elements (see figure 4.7, right). The contributions to the L2 error are depicted
as point values and a surface is reconstructed using a Delauney triangulation. All methods result in
similar L2 error distributions, with high values in corners, along edges or across the domain, where
solution values are close to zero. The error calculation in theses points involves larger round-off
errors, but studies examinig the absolute L2 error show the same effects as the ones depicted.
The boundary conditions are enforced using method 2, but as already mentioned, every method
produces converging results.
Moreover the derivatives of the primary variables feature strong jumps and peaks in the element
corners on the boundary, as observed in figure 4.7e. The introduction of Kirchhoff’s effective shear
force q̄n as a boundary condition, substituting the shear force and twisting moment, reflects in the
quality and appearance of the solution. To emphasize this issue, all figures containing shear forces do
not display averaged nodal values, but the raw data computed. The geometry of the mesh is exact,
but features kinks between the elements on the boundary. The internal moments and the shear forces
therefore yield higher errors on the boundaries, where mn is prescribed.
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(a) Solution: deformation w (b) Error: deformation w

(c) Solution: bending moment mx (d) Error: bending moment mx

(e) Solution: shear force qx (f) Error: shear force qx average

Fig. 4.7: Mesh of 6× 6 quintic elements - solutions (l.) and L2 error distribution in Ω (r.)

Finally the study of this test is complemented by commenting on the behaviour of linear triangles.
Using linear triangles the solution of the deformation of the plate is of smooth appearance and
therefore not presented again. The incorrect approximation of w is only detected examining the
convergence tables already shown. All bending moments however, and therefore the shear forces,
feature major errors. The bending moment fields show oscillations, which remain under h-refinement.
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Increasing the order of the Finite Elements used diminishes the effect, but does not completely erase
it, as can also be seen in figure 4.7 (right). Figure 4.8 depicts the solution mx in the domain meshed
with 1600 linear triangular elements. Method 2 is chosen to apply boundary conditions, but all
methods result in solutions featuring oscillations.

Fig. 4.8: Oscillations in the bending moment mx - 1600 linear triangular elements

4.1.3 Manufactured solution - Dirichlet boundary conditions

Within the following study the same manufactured solution given in equation 4.1 is considered.
In this examination again the Dirichlet boundary conditions in w and mn are prescribed, but the
Neumann boundary conditions are treated as unknown. Therefore the associated terms entering
the linear system of equations in case of unknown natural boundary conditions are tested and the
convergence behaviour is investigated.
Analysing the results shows, that the results and observations are identical to the ones observed
considering Dirichlet and Neumann boundary conditions. All methods yield higher order convergence,
applying any method results in almost identical convergence studies not only in the deformations
but in every study. The deformation of the plate is again superconvergent for some orders and is in
general better approximated than the internal moments of the plate.
The shear forces converge withO(hp−1). Linear triangular elements do not converge, but the expected
O(hp) convergence is reached for higher order triangular elements. Enforcing the boundary conditions
is for all methods accomplished with success, the errors in the domain are distributed similar to those
already imaged in figure 4.7 (r.), i.e. high values occur in corners or along edges and in points, where
the solution value is almost zero.
The results are not shown here since they feature the same characteristics as the ones in figure 4.7
(l.).
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(a) Methods 1 and 2, quadrilaterals (b) Method 3, quadrilaterals

(c) Methods 1 and 2, triangles (d) Method 3, triangles

Fig. 4.9: Convergence studies in w (t.) and mx (b.) using quadrilateral (t.) and triangular (b.) elements

These results complete the studies on plates with manufactured solution on a mapped rectangular
domain.

4.2 Square Plates with Various Boundary Conditions

Within this section the convergence behaviour of the presented mixed Finite Element formulations
is tested on square plates using the three methods to apply boundary conditions. Therein the main
focus lies on comparing the different methods and solutions with symmetry boundary conditions
introduced.
Therefore the convergence of moments and shear forces is not examined, since they would typically
yield worse results than the deformation analogous to the previous section.

4.2.1 Square Plates - Analytical Solutions

For a sinusoidal load distribution, which vanishes at the edges of the plate, the solution to the
boundary value problem of a simply supported rectangular plate is known explicitly (compare 4.5).
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This load distribution is of minor practical interest, but any load distribution may be approximated
by a double trigonometric series, which converges in the limit case to the desired load distribution.
This result was first obtained by Navier [15] and is presented in a coordinate system with origin in
the point x = y = 0 [17]:

p(x) =
∞∑
m=1

∞∑
n=1

amn sin

(
mπ x

lx

)
sin

(
nπ y

ly

)
with: amn ∈ R , 0 ≤ x ≤ lx , 0 ≤ y ≤ ly

=⇒ w = 1
π4K

∞∑
m=1

∞∑
n=1

amn(
m2

l2x
+ n2

l2y

)2 sin

(
mπ x

lx

)
sin

(
nπ y

ly

)
(4.5)

The factors amn in the general solution for a pinned rectangular plate simplify in the case of uniform
loading of magnitude p0 to amn = 16 p0

π2mn
. This solution transferred to a coordinate system with

origin in the center of a square plate with side length l can also be written as:[17]

wp =4 p0 l
4

π5K

∞∑
m=1,3,5...

−1 m−1
2

m5 cos

(
mπ x

l

) (
1− αm tanh(αm) + 2

2 cosh(αm) cosh

(
mπ y

l

)

+ αm y

l cosh(αm) sinh
(
mπ y

l

))
, with: αm = mπ

2 (4.6)

Both presented solutions converge fast but lead to numerical problems evaluating the expressions
gained. In a solution with 200 terms considered the sum of the changes relative to the last increments
by adding another term is ≈ 10−10 in the deflection.
The deformation of a clamped square plate under constant loading is constructed by superposition of
the solution of a pinned square plate wp given in equation 4.6 and two solutions wm of square plates
loaded by pairs of bending moments distributed along opposing edges. The necessary condition
to determine the intensity of those moments, defined by coefficients Cm for m = 1, 3, 5... is the
zero normal derivative w,n on the boundary of the clamped plate, which yields the linear system of
equations [17]:

Cm
m

(
tanh(αm) + αm

cosh2(αm)

)
+ 8m

π

∞∑
n=1,3,5...

Cn
n3

1(
1 + m2

n2

)2 =

= 4 p0 l
2

π3
1
m4

(
αm

cosh2(αm) − tanh(αm)
)

(4.7)

Solving for a given number m as the maximum index in the sums gives the constants Cm. The two
solutions wm of a square plate loaded by pairs of moments acting on opposing edges with the plates
flexural regidity K and αm from equation 4.6 are obtained as [17]:

wm =− l2

2πK

∞∑
m=1,3,5...

Cm
−1 m−1

2

m2 cosh(αm) cos (βm x)

(
βm y sinh (βm y)− αm tanh(αm) cosh (βm y)

)
with: βm = mπ

l
(4.8)

Finally the solution wc of a clamped square plate is given as [17]:

wc = wp + 2wm (4.9)

The associated solution fields for the internal forces are computed using the relations given in equation
4.2, i.e. differentiating the expressions for wp and wc.
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4.2.2 Mesh Construction

A rectangular mesh is constructed in a cartesian grid with 0 ≤ x ≤ lx and 0 ≤ y ≤ ly. The node
coordinates of the mesh are mapped by Φ2:

Φ2 : x 7→ x̃ , Φ2(x) :=

x+ lx
10 sin

(
π x
lx

)
sin

(
π y
ly

)
y + ly

10 sin
(
π x
lx

)
sin

(
π y
ly

)
 (4.10)

This mapping gives back the same coordinates for points lying on the edges and ensures, that the
element geometry is disturbed and not uniform in the mesh. Thereby, it shall be excluded that
results are improved or disturbed due to a mesh regularity which, in general, can not be expected.
Additionally the whole domain is rotated by transforming the coordinates of the mesh via Φ3, adding
an angle ∆ϕ and transforming it back using Φ−1

3 [11]:

Φ3 : x 7→ r , Φ3(x) :=
(
r
ϕ

)
=
( √

x2 + y2

arg(x+ i y)

)
(4.11)

Φ−1
3 : r 7→ x , Φ−1

3 (r) :=
(
x
y

)
=
(

r cos(ϕ)
arg(x+ i y)

)
(4.12)

Therefore the coordinates x̃ in the new mesh are obtained via:

x̃ = Φ−1
3

(
Φ3(x) +

(
0

∆ϕ

))
(4.13)

4.2.3 Clamped square plate

In the studies presented in this section the solution of a clamped plate with and without symmetry
boundary conditions is investigated. Without symmetry boundary conditions all four edges of the
plate are treated as clamped boundary partitions. The deflection w as well as the slope normal to
the edge w,n is set to zero, i.e. ∂Ω = Γ = Γw = Γw,n as depicted in figure 4.10a.
Since the plate is double symmetric only one quarter of the plate may be meshed, but the focus lies
on convergence rates, meaning that the same meshing routine, given in section 4.2.2, may be used.
The boundary conditions for two adjacent edges are the same as for the clamped plate, but the other
two adjacent edges are symmetry boundaries as imaged in figure 4.10b, i.e. the normal derivative
w,n of the deflection on these edges and the effective shear force q̄n is zero.
This study allows for a direct observation of the effects of the Kirchchoff effective shear force as a
boundary condition in the presented approach. In fact the convergence studies show, that quadrilat-
eral elements perform better or converge with the same convergence rate than triangular elements,
being less sensitive to the applied boundary conditions. Using quadrilaterals in the context of meth-
ods 1 and 2 yield higher order convergence rates (see figure 4.11), but higher orders than p = 5 are not
obtained. This is independent of boundary conditions in q̄n and the use of an absolute error measure.
Using quadrilateral elements and applying all boundary conditions via Lagrange multipliers enables
convergence rates higher than p = 5 only for the symmetric case, but the orders p = 3 and p = 5
were found to converge with O(hp−1) (see figure 4.12a).
Using a triangulation to approximate the domain it is again observed, that convergence rates higher
than O(h5) are not reached with p = 6 being the highest order of triangular Lagrange elements used.
Using any method presented yields said reduced convergence rates, if no symmetry boundary con-
dition is applied (see figure 4.12b). Otherwise the maximum rate of convergence reduces drastically
to O(h) for orders p = 2 and p = 3 and to O(h2) for the higher orders used (see figure 4.13a) for
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methods 1 and 2 and for method 3 the reduction is less predictive showing the expected behaviour
for orders p = 3 and p = 5 and reduced convergence for all other ansatz orders (see figure 4.13b).
Linear triangular elements are similar to the foregoing studies found to be non-convergent.

(a) Clamped plate (b) Clamped plate using symmetry BC

Fig. 4.10: Boundary conditions considered in the mapped rectangular mesh

(a) Methods 1 and 2, no BC in q̄n (b) Methods 1 and 2, with BC in q̄n

Fig. 4.11: Absolute (l.) and relative (r.) L2 error in w using quadrilateral elements

In conclusion quadrilateral elements performed better than triangular elements, although an approx-
imation with O(hp) is in general not achieved for higher orders.
It is again mentioned that the analytical solution, presented as a series expression in 4.2.1, is evalu-
ated using the same amount of terms in the sums for every study. The minimum relative L2 error in w
reached is ≈ 10−10 in the manufactured as well as in this solution and can be observed in the studies
plotted (see figure 4.11b). In fact the remaining error in the approximation of the analytical solution
depends on the field variable expressed as well as the coordinate system, since the terms involved in
the analytical solution are evaluated with varying precision. To circumvent analytical solutions of
mechanical problems obtained via methods using any kind of approximation or truncation, circular
plates are considered in section 4.3.
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(a) Method 3, with BC in q̄n (b) Methods 1,2 and 3, no BC in q̄n

Fig. 4.12: Convergence studies in w using quadrilateral (l.) and triangular (r.) elements

(a) Methods 1 and 2, with BC in q̄n (b) Method 3, with BC in q̄n

Fig. 4.13: Convergence studies in w using triangular elements

Examining the absolute L2 error distribution within the domain gives additional insight on the loss
of accuracy. As can be seen from figure 4.14, errors in the corners of the domain are in general orders
higher than in the center, although the solution w is zero. Along the edges within a small zone the
error is also increased. Using a relative error measure in integration points near the boundary, thus
having values of the deformation w tending to zero, would lead to a drastic increase of round-off
errors involved in the error computation in that point. Therefore the absolute L2 error is computed.
Methods 1 and 2 feature wave patterns of increased accuracy within the domain for some constella-
tions (see figure 4.14a), while the flickering colors in most of the L2 error distributions indicate, that
quadrilateral as well as triangular elements suffer from oscillations.
Comparing the distributions of the L2 error resulting from approximations using symmetry boundary
conditions with the corresponding ones without the effective shear force introduced, it can be seen
that independent of element type or method used, the error does not have a kink or jump in corners,
where the effective shear force is prescribed (see figure 4.15).
In all the corners of the clamped plate either the resulting corner force Fc or the deflection tend to
zero, since the sum of twisting moment on the symmetry edge mnt and shear force qn at the sup-
ported corner tend to zero. Therefore the forces Fc , which in general arise at kinks on the boundary
Γq̄n , are not the source of the reduced convergence.
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Another point supporting this hypothesis is made comparing the error distribution of the clamped
plate with the distribution observed when studying the manufactured solution (see figure 4.7b). For
the manufactured solution the twisting moments and therefore forces Fc at the corners are non-zero,
which leads to the conclusion, that the forces Fc do not hinder convergence.
Furthermore the absolute L2 error distribution in figure 4.15b shows, that the error in the corner
with two adjacent edges being clamped is in fact not always singular. Areas close to the corner and
in the center of the domain give higher contributions to the overall absolute errors, while the other
patterns observed of course remain.

(a) Methods 1 and 2, quintic Quadrilaterals (b) Method 3, quintic triangles

Fig. 4.14: Absolute L2 error distribution in the domain without symmetry BC

(a) Methods 1 and 2, quintic Quadrilaterals (b) Methods 1 and 2, quintic triangles

Fig. 4.15: Relative (l.) and absolute (r.) L2 error distribution in the domain with symmetry BC

Additionally to the convergence curves of the deformation and the L2 error distribution the condition
numbers of the global stiffness matrix Kg are estimated during the study. It is observed, that the
condition number in general grows with ≈ h2, neither depending on the method used, the element
class considered nor on the enforcement of boundary conditions involving the effective shear force. In
figure 4.16b a representative study using method 2 and symmetry boundary conditions is depicted.
However, considering same decompositions method 1 yields significantly lower initial convergence
numbers than method 2, which again gives significantly lower initial condition numbers than method
3, when Lagrange multipliers for the Neumann boundary conditions are used. The magnitude of the
initial estimate of the condition number of Kg grows with symmetry boundary conditions used and

43



Lagrange multipliers defined. Moreover using method 1 without symmetry boundary conditions, the
condition number estimate is found to grow with ≈ h (see figure 4.16a). The consistent growth of the
estimate of the condition number of Kg does not indicate any issues, though the absolute numbers
are in fact very high for the finest meshes considered. The numerical error in the load vector has
strong influence, but is not worse compared to the previous study.
Approximating the solution of the Kirchhoff-Love boundary value problem for a clamped plate typical
in mechanics with Dirichlet boundary conditions in w and Neumann boundary conditions in w,n and
q̄n higher order convergence rates are obtained. The effect of the Kirchhoff effective shear force
applied as a boundary condition on the solution is strongly dependant on the method and element
type used. The L2 error distributions shown indicate, that the reduced convergence rates are an
effect of small oscillations appearing using any of the methods presented, which grow in intensity, if
no symmetry boundary condition is applied. Since the solution is extremely sensitive to boundary
conditions in the field of the deformation w, the Lagrange multipliers λw approximating the boundary
condition may be too inaccurate to enable higher convergence rates than ≈ O(h6).
In the next section the pinned square plate is examined to verify the results obtained for the clamped
plate.

(a) Method 1, no BC in q̄n (b) Methods 1, 2 and 3, all other combinations

Fig. 4.16: Estimates of the condition number of the global stiffness matrix Kg

4.2.4 Pinned square plate

Similar to the clamped square plate the pinned square plate is investigated with and without sym-
metry boundary conditions. Therefore the simple pinned square plate is approximated enforcing
homogeneous boundary conditions in the deflection w and the bending moment mn normal to the
edge on the whole boundary of the domain, i.e. ∂Ω = Γw = Γmn . Introducing symmetry boundary
conditions on two adjacent edges is done as described in section 2.6.5 by prescribing values for the
normal slope to a boundary w,n on Γw,n and the effective shear force q̄n on Γq̄n . The boundary con-
ditions indicated by markers in the nodes on the boundary of the mesh for both cases are depicted
in figure 4.17.

Again this setting allows for a direct observation of the effects of the Kirchhoff effective shear force on
the quality of the approximation. Using the point collocation method to enforce boundary conditions
yields a maximum convergence rate of O(h2) for all orders p used, when no boundary condition in
q̄n is enforced. Introducing symmetry boundaries reduces convergence of orders p = 3 and higher
for quadrilaterals (see figure 4.18a), while triangular elements analogously to the clamped plate are
found to be more sensible to this boundary condition. The convergence of the absolute L2 error in
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(a) Pinned plate (b) Pinned plate using symmetry

Fig. 4.17: Boundary conditions considered in the mapped rectangular mesh

mn on the boundary Γmn is sub-linear with ≈ O(h0.5) and therefore not presented.
Utilising method 2 it is observed, that all reach the expected convergence rates O(hp) if quadrilaterals
or no symmetry boundary condition is used. The studies obtained are similar to those corresponding
to the clamped plate and therefore only one study corresponding to method 2 with symmetry bound-
ary conditions is shown in figure 4.18b, wherein it is observed, that introducing symmetry boundary
conditions is also beneficial in some constellations. The absolute L2 error in mn on the boundary
Γmn is approximated with ≈ O(hp+2) for the first orders using quadrilaterals (see figure 4.19a) and
with ≈ O(h4) for higher orders and with ≈ O(hp) using triangular elements.
Method 3 yields similar results to method 2, but also shows effects similar to the ones occurring
in the studies of the clamped plate, i.e. being less predictive for symmetry boundary conditions or
triangular elements on the one side, but also yielding the best results in other constellations.

(a) Method 1, with BC in q̄n (b) Method 2, with BC in q̄n

Fig. 4.18: Convergence studies in w using quadrilateral elements

The L2 error distribution in the domain shows, that oscillations are present again. Being minor
for quadrilateral elements in the study of the clamped plate, similar effects are in the case of the
pinned plate much more distinctive. For the pinned plate with no symmetry boundary condition the
solutions obtained via methods 2 and 3 feature oscillations, which vanish with the introduction of
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(a) Methods 2 and 3, with BC in q̄n (b) Methods 2 and 3, without BC in q̄n

Fig. 4.19: Convergence study in mn and L2 error distribution, independent of element type

symmetry boundaries (compare figures 4.19b and 4.20b). Using method 1, which yields the worst
results, the boundary conditions are not applied properly, indicated by high absolute L2 errors and
incorrect behaviour in the regions around the corner (see figure 4.20a). The high error in the corners
is introduced via averaging the unit outward normal with the areas of the coinciding elements, which
is the best possible result obtained for arbitrary geometries. The maximum convergence rate of the
L2 error in w is ≈ O(h2).

(a) Method 1, incorrect behaviour in the corner (b) Methods 2 and 3, correct behaviour in the corner

Fig. 4.20: L2 error distribution with symmetry BC, independent of element type

The estimated condition number of the global stiffness matrix Kg grows, similar to the clamped
plate problem, with O(h2) for all cases but method 1 using no symmetry boundary conditions. This
is of no advantage, since the bending moment in the corners is prescribed inaccurately.
For the pinned square plate higher order convergence rates are reached using methods 2 and 3 with
quadrilaterals or without symmetry boundary conditions. The L2 error distributions indicate, that
using only pinned boundaries increases accuracy, but also introduces oscillations.
Method 1 is not able to enforce the boundary conditions in mn correctly which is in this particular
case of right angles resulting in the maximum error. The errors are high but distributed smoothly.
Comparing with the manufactured solution, which yielded the expected O(hp) convergence rates and
also featured corners with almost right angles, it is concluded, that the errors induced by the corners
are not the main reason for the reduced convergence but the error in the domain as a consequence
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of the incorrect enforcement along the boundaries.
The studies of the square plate again indicated, that the introduction of the effective shear force
q̄n does not per se hinder higher order convergence rates, but quadrilaterals were found to be more
robust than triangular elements.
For all the presented methods the treatment of kinks in the boundary of the domain is found to be
of utmost importance. The twisting moment mnt along the boundary of pinned or clamped square
plates is in general non-zero, but the deflection vanishes on the boundary. Therefore statements
concerning the contributions of the forces concentrated in the corners Fc to the deflection of the
plate do not play a role.
The further investigation of L2 error distributions revealed, that all of the methods presented suffer
from oscillations using lower order elements. This was already observed in the case of linear triangles,
which were non-convergent for any mesh refinement. Using higher order elements reduces the effect
in general. The L2 error distributions in the figures presented show, that the three methods are of
different sensitivity concerning the oscillations.
However the approximate solution due to Navier, which includes sums of trigonometric expressions,
is troublesome. Therefore the square plate with sinusoidal load distribution was studied (see figure
4.21), showing results similar to the manufactured solution. Oscillations occurred for all three meth-
ods independent of symmetry boundary conditions and element type. Super convergent behaviour of
all primary field variables was observed up to the minimum error for all orders using methods 2 and
3, no symmetry boundary conditions, quadrilateral elements and an undistorted rectangular mesh
(see figure 4.21a). The node distortion within the mesh already reduces the O(hp+1) convergence rate
to the expected level for orders higher than p = 1 (see figure 4.21b), applying symmetry boundary
conditions adds in the effects described in this section. Method 1 showed the same behaviour as the
pinned plate with constant loading, i.e. reduced convergence for all orders p. In conclusion, the small
oscillations are significantly reduced with h and p refinement except for linear triangles.

(a) Uniform mesh, elements of same size (b) Distorted inner mesh nodes via Φ2

Fig. 4.21: Sinusoidal load distribution: mx, methods 2 and 3, no symmetry BC, quadrilaterals

Revisiting the L2 error distribution for the manufactured solution in figure 4.7b one can see, that small
oscillations are present. The reason for the oscillations not dominating the error remains unknown,
since both relative and absolute error measures were used giving equivalent results. The factor cg in
the mapping Φ1 is set to cg = 0 resulting in a square mesh (figure 4.22a). Comparing the relative
L2 errors using method 2 and 50 × 50 quadratic triangular elements identical color-scaling reveals,
that the initial relative L2 error for the unrotated square plate shows the same oscillation patterns.
Therefore the approximative character of the Navier solution is not the reason for the patterns
observed in the L2 error distributions. The study of the manufactured solution on the square domain
yielded optimal convergence rates. The routines used are exactly the same and studies of the pinned
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square plate in a not rotated mesh still give same results as the rotated mesh. Possible reason
remaining is solely, that the solution itself influences the convergence behaviour in an unexpected
way (since it is smooth in Ω and not singular). The approximative solution considered as a reference
solution is not exact, though the error involved is for a constant number of terms in the sum the
same, which would not trigger different behaviour of the methods considered and the convergence
curves would stagnate at a certain level.

(a) Manufactured solution, cg = 0 (b) Unrotated square mesh

Fig. 4.22: Oscillations in the meshes, method 2, all boundaries pinned, 50× 50 quadratic triangular elements

The geometry of the square domain considered is exactly represented for any polynomial order p
of the Lagrange shape functions chosen. To further examine the behaviour of the presented mixed
Finite Element formulations considering real mechanical problems and to investigate the influence of
approximating the domain Ω circular plates are considered next.

4.3 Circular Plates with Various Boundary Conditions

Within this section the convergence and distribution of the L2 error of the solutions obtained via
mixed finite element formulations is examined. The geometry of the square plate is therein only
approximated using the shape functions. Enforcing boundary conditions using the three presented
methods on the geometry description and applying the Kirchhhoff effective shear force along the
symmetry axes as a boundary condition is the main focus of the following elaborations.

4.3.1 Circular Plates - Analytical Solutions

The analytical solutions of the deformations of clamped and pinned circular plates with radius R
and bending stiffness K under constant loading p0, transformed via Φ−1

3 (r) : r 7→ x, are [17]:

clamped: wcc = p0
64K

(
R2 − r2

)2 Φ−1
3= p0

64K
(
R2 − x2 − y2

)2
(4.14)

pinned: wpc = p0
64K

(
R2 − r2

) (5 + ν

1 + ν
R2 − r2

)
=

Φ−1
3= p0

64K
(
R2 − x2 − y2

) (5 + ν

1 + ν
R2 − x2 − y2

)
(4.15)
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The solutions presented are symmetric with respect to the center of the plate and are not obtained
involving any approximations or truncations.

4.3.2 Mesh Construction

The domain of a circular plate is constructed via manipulation of a polygon with corners lying on
the boundary of the disk. The nodes on the edges on the boundary of the domain do not lie on the
circle describing the boundary. In order to reach higher order convergence the edge-nodes of higher
order elements need to lie on the boundary.
As a first approach the nodes on the boundary of the domain were forced onto the circle solving the
corresponding Dirichlet boundary value problem of linear elasticity with plane strain assumption on
the polygon [2]: 

find ux and uy in Ω, such that

ux,xx + 1−ν
2 ux,yy + 1+ν

2 uy,xy = 0 in Ω ⊂ R2 ,

uy,yy + 1−ν
2 uy,xx + 1+ν

2 ux,xy = 0 in Ω ⊂ R2 ,

ux = ûx on Γ = ∂Ω ,

uy = ûy on Γ = ∂Ω .

(4.16)

Therein ux and uy are the nodal displacement degrees of freedom and ν is Poisson’s ratio. As de-
picted in figure 4.23a, the nodes in the resulting mesh are shifted smoothly and a circular mesh with
all nodes on the boundary being on a circle remain.
The second approach taken is to apply a transfinite mapping algorithm by Šolin et al. [16], to map
the points of the elements on the boundary onto the circle. The outcome is a mesh with elements
on the boundary, that have one curved edge, as can be seen in figure 4.23b. Elements within the
domain are not adapted.

(a) Mesh constructed via solving linear elasticity (b) Mesh constructed using transfinite mappings

Fig. 4.23: Circular mesh with the boundary conditions used, symmetry applied

The mesh generation procedure solving linear elasticity in R2 is especially for large problems cumber-
some, but easily implemented, if the needed finite element code is available. The second approach is
based on element-local mappings and is therefore not associated with as much computational effort
as the first mesh generation. Both topics are not covered within this thesis, the interested reader is
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referred to Bathe [4] and Šolin et al.[16].
In the following circular Kirchhoff-Love plates are studied. The Kirchhoff effective shear force as
well as the slope normal to the boundary is prescribed at symmetry boundaries and the effects are
examined.

4.3.3 Circular Plate - Mesh obtained via Linear Elasticity in R2

The convergence studies of the circular plate with pinned or clamped boundaries without symmetry
boundary conditions show convergence with O(hp) or O(hp+1) for lower order elements depending
on the method and element used, but the expected convergence rates for shape functions of order
p = 4 or higher are never reached (see figure 4.24a). To indentify the reason for this behaviour the
efforts described in the following are made.
The estimate of the convergence number of the global stiffness matrix Kg is growing with ≈ O(h2)
similar to plates already considered and is therefore not presented again. The manufactured solution
is utilized on the circular mesh and convergence studies are completed. These showed the same
reduced convergence rates as clamped and pinned plates, but smaller initial errors (see figure 4.24b).

(a) Pinned circular plate (b) Manufactured solution

Fig. 4.24: Circular mesh without symmetry BC, prescribing ŵ and m̂n on ∂Ω

From the convergence curve of the bending moment mn it is concluded, that the boundary conditions
are not enforced properly using any of the presented methods for any homogeneous or inhomogeneous
boundary conditions applied, resulting in curves similar to those in figure 4.25a.
The absolute L2 error distribution in w is depicted in figure 4.25b and shows oscillations in the
bending moment mx. The symmetry boundary conditions do not enhance the oscillations, which are
clearly visible only in the internal moment fields. As already pointed out, the occuring oscillations
do not per se hinder higher order convergence. The oscillations vanish under h and p refinement.

The area of the circle is approximated with convergence orders of O(hp+1), as can be seen in figure
4.26a, and the manufactured solution on the polygonal domain, which was used to construct the
mesh, yields the expected convergence rates using the same boundary conditions (see figure 4.26b).
From the successful integration in the circular mesh and the optimal convergence on the polygonal
domain it is concluded, that the mesh construction procedure is of minor quality.
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(a) Pinned plate without symmetry BC (b) Quarter of a pinned plate

Fig. 4.25: Absolute L2 errors in circular mesh, BC in ŵ and m̂n on ∂Ω

The testing of the mesh properties is completed by prescribing boundary conditions in every primary
field variable, i.e. w, mx, my and mxy, in every node of the mesh. The resulting convergence study
is similar to 4.24a and hence indicates, that the interpolation error is dominating the approximation
error and also the reason for the improper convergence rates. The same result may be obtained using
the Kronecker Delta property of the Lagrange Elements, yielding a global stiffness matrix Kg equal
to the second order isotropic tensor I, or by simply interpolating the known solution in the domain
directly.

(a) Converging area A(Ω) of the circular mesh
constructed via solving linear elasticity

(b) Manufactured solution on polygonal domain
from which the circular mesh was constructed

Fig. 4.26: Convergence studies using quadratic elements

In conclusion the manipulation of the polygonal mesh by solving a Dirichlet boundary value problem
for linear elasticity with plane strain assumption yields a mesh which is not able to provide optimal
convergence rates for an ansatz of polynomial order p = 4 or higher. The determinant of the Jacobi
matrix evaluated at the nodes that were originally on the circle and are forced to stay exactly on the
circle reaches nearly singular values, as can be seen in figure 4.27a. Increasing the polynomial order
of the shape functions simultaneously increases the pointedness of the cusps observed.
For comparison the determinant of the Jacobi matrix in the domain resulting from the second ap-
proach involving transfinite mappings is depicted in figure 4.27b. It is observed that the points on
the boundary do not feature nearly singular values.
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(a) Mesh constructed via solving linear elasticity (b) Mesh constructed using transfinite mappings

Fig. 4.27: Determinant of the Jacobi matrix evaluated in a quarter of the mesh,
quadrilateral elements of order p = 9

4.3.4 Circular Plate - Mesh obtained via Transfinite Mapping

Clamped boundary conditions

The transfinite mapping applied to the polygonal domain to approximate the geometry of a circle
enabled the completion of convergence studies with success. Similar to the studies concerning the
manufactured solution convergence orders of O(hp) were reached. Surprisingly the orders p = 1 to 3
were found to behave differently than higher orders. In the following all methods showed equivalent
convergence behaviour if not mentioned otherwise.
The introduction of the Kirchhoff effective shear force as a boundary condition did only influence the
convergence behaviour of the orders p = 1 to 3 using quadrilateral elements, as can be seen in figure
4.28. The internal moments are approximated with accuracy loss of one order for p ≤ 3 and with
O(hp) for higher orders (see figure 4.29a).
Triangular elements are more sensitive to symmetry boundary conditions and similarly to quadrilat-
erals polynomial orders of p = 4 or higher were found to show expected behaviour or even supercon-
vergence. The internal moments are approximated with an accuracy loss of half an order (see figure
4.29b).

The absolute L2 error in the domain is examined and similar patterns were observed for all methods
presented. The distribution of the error does not differ whether symmetry boundary conditions are
enforced or not. In the deformation field no oscillations were found using a mesh of 300 quadrilateral
or 600 triangular cubic finite elements per quarter of the circular plate, whereas the internal moment
fields featured patterns similar to those observed in the previous studies (see figure 4.30). Prescribing
the slope normal to the boundary w,n resulted in arc-shaped zones of enhanced accuracy in the
internal moment fields similar to the ones observed in the deflection field of the rectangular plate
(see figure 4.15a).

Symmetry boundary conditions on the circular clamped plate are successfully enforced yielding higher
order convergence rates. The pinned circular plate remains to be studied.
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(a) Methods 1 to 3, without BC in q̄n (b) Methods 1 to 3, with BC in q̄n

Fig. 4.28: Convergence studies in w using quadrilateral elements

(a) Methods 1 and 2, with BC in q̄n (b) Method 3, with BC in q̄n

Fig. 4.29: Convergence studies in mx using quadrilateral (l.) and triangular elements (r.) elements

Fig. 4.30: Distribution of the absolute L2 error in w (l.) and mx (r.),
independent of element and method used
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Pinned boundary conditions

The convergence studies of the circular plate show widely similar results to those obtained for the
clamped circular plate. It is mentioned, that in the limit case the approximated circular plate without
symmetry boundary conditions has no kink in the boundary. Additionally the bending moment mn

is not prescribed on symmetry boundaries, hence method 1 does not suffer from a major loss of
accuracy as faced in the case of square plates. The results obtained via methods 1 and 2 are identical
or equivalent for the most part.
The orders p = 1 to 3 again showed worse convergence behaviour compared to the orders p = 4 and
higher. Without symmetry boundary conditions convergence rates of Op+1

h are reached for p ≥ 4 in
w, similar to 4.28a.
Contrary to the studies of the clamped circular plate the quadrilateral elements were found to be as
sensitive as triangular elements to the symmetry boundary condition introduced and feature kinks
for some orders, as can be seen in figure 4.31.

(a) Methods 1 and 2, with BC in q̄n (b) Method 1 and 2, with BC in q̄n

Fig. 4.31: Convergence studies in w using quadrilateral (l.) and triangular (r.) elements

Method 3 with symmetry boundary conditions introduced using quadrilateral or triangular ele-
ments showed super-convergent behaviour, approximating the solution better than without sym-
metry boundary conditions, as can be seen in figure 4.32. This case is considered to be a result of
the combination of the regularity of the mesh and the solution, though method 3 yields mostly the
best results with effective shear forces as boundary conditions.

The internal bending moments converge with the same or slightly reduced convergence orders com-
pared to the deformation, as depicted in figure 4.33.

The absolute L2 error distributions are calculated and show the same patterns as the ones presented
in 4.30 corresponding to the clamped circular plate, i.e. no oscillations in the deformation field visi-
ble, but in the internal moment fields.
The examinations of the circular plate demonstrated the importance of a proper domain decompo-
sition. While the mesh constructed via solving linear elasticity in R2 and thus forcing the nodes on
the boundary yielded a mesh of minor quality, the application of transfinite mappings was successful.
The impact on the approximation quality of applying symmetry boundary conditions depends on
the boundary data on the other boundaries, how boundary conditions are enforced in general, the
choice of element and lastly the order. For a wide variety of constellations the expected convergence
rates of O(hp) were reached. Certain constellations combined with a regular mesh enabled rates of
O(hp+1) or even more. This concludes the numerical examples considered.
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(a) Method 3, without BC in q̄n (b) Method 3, with BC in q̄n

Fig. 4.32: Convergence studies in w using quadrilateral elements

(a) Methods 1 and 2, with BC in q̄n (b) Method 3, with BC in q̄n

Fig. 4.33: Convergence studies in mx using triangular (l.) and quadrilateral (r.) elements
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5 Conclusion

A mixed FEM for the approximation of the boundary value problem related to the Kirchhoff-Love
Plate is verified by convergence studies and higher order convergence rates are achieved. Prescrib-
ing Dirichlet boundary conditions by introducing Lagrange multipliers, which are defined along the
whole corresponding partition of the boundary of the domain, yields optimal convergence rates but
also causes oscillations in most cases. These oscillations lead to nonconvergence of linear triangular
elements but drastically decrease with order elevation.
Allowing arbitrary geometries, kinks in the boundary of the domain are inevitable, causing the unit
outward normal to be discontinuous. As a result the solution fields feature jumps and kinks in the
corners on the boundary of the domain, where edges with Lagrange multipliers corresponding to the
same variables depending on the angle ϕ coincide. However, for an arbitrary domain with corners
this does not per se hinder higher order convergence, as can be seen from the manufactured solution
on the mapped square domain.
On the domains considered, all of the presented methods yield optimal convergence rates except for
the square plate with constant load distribution, but sinusoidal load distribution and the manufac-
tured solution resulted in convergence rates of O(hp).
The examination of circular plates demonstrates the importance of proper higher-order meshes for
optimal rates of convergence. It was found that for meshes which are generated by solving a shell
problem in linear elasticity, the convergence rates were bounded. However, using transfinite map-
pings as proposed by Šolin [16], leads to meshes which enable optimal rates.
The introduction of the Kirchhoff effective shear force has significant impact on the quality of the
approximation, with quadrilaterals being less sensitive than triangular elements, but again higher
order convergence rates are not hindered per se.
Furthermore, the deformations are better approximated than the internal moments of the plate if
disturbances are present in the mesh. Nevertheless the quantities of interest, which are the internal
bending moments and shear forces besides the deformation of the plate, are directly obtained via
solving the emerging linear system of equations.
Concerning the oscillations, which were found in most cases, the method may be further improved
by reducing the number of collocation points or by choosing less degrees of freedom for the La-
grange multipliers or by decreasing the order of the one-dimensional Lagrange polynomials, which is
a commonly known technique [5]. The Lagrange multipliers may lead to an over-constraint problem,
nevertheless, optimal convergence rates were observed in the bulk of the studies conducted.
In conclusion, the aim of this thesis, to achieve higher order convergence rates on plates of arbitrary
geometry possibly featuring curved boundaries with pinned, clamped, free or symmetry boundary
conditions using standard Lagrange elements, was successfully gained.
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